These are representative sample records from Science.gov related to your search topic.
For comprehensive and current results, perform a real-time search at Science.gov.
1

PERFORMANCE PROPERTIES OF SALTSTONE PRODUCED USING SWPF SIMULANTS  

SciTech Connect

The overwhelming majority of waste to be immobilized at the Saltstone Production Facility will come from the waste stream exiting the Salt Waste Processing Facility (SWPF). These SWPF batches are salt solutions that result from pretreatment of the High Level Waste (HLW) supernate by an Actinide Removal Process followed by Caustic Side Solvent Extraction. The concentration of aluminate within these streams will vary and be determined by (1) the concentration in the incoming salt waste stream, (2) the degree of aluminum leaching from the HLW, (3) the method for introducing the aluminate into the waste stream (continuous or batch) and (4) and any operational or regulatory limitations. The overall Performance Assessment outcome for the Saltstone Disposal Facility will depend significantly on the performance properties of the SWPF Saltstone grouts. This report identifies and quantifies, when possible, those factors that drive the performance properties of the projected SWPF grouts. Previous work has identified aluminate concentration in the salt waste stream as a key factor in determining performance. Consequently, significant variation in the aluminate concentration to a maximum level of 0.65 M was investigated in this report. The SWPF baseline grout is a mix with a 0.60 water to cementitious ratio and a premix composition of 45 wt % slag, 45 wt % fly ash and 10 wt % portland cement. The key factors that drive performance of the SWPF mixes were determined to be (1) the time/temperature profile for curing, (2) water to cementitious materials ratio, (3) aluminate concentration in the waste stream, and (4) wt % slag in the premix. An increase in the curing temperature for mixes with 45 wt % slag resulted in a 2.5 times decrease in Young's modulus. The reduction of Young's modulus measured at 60 C versus 22 C was mitigated by an increase in the aluminate concentration but was still significant. For mixes containing 60 wt % slag, the reduction in Young's modulus between these two curing temperatures was significantly lessened. The importance of curing conditions can not be overemphasized. The gain realized in performance by, e.g., a higher level of aluminate or wt % slag or a reduction in w/cm ratio, can be offset by the effects of a higher curing temperature. In fact, the final performance properties of a mix cured at 60 C can be lower than the initial values before any of the performance enhancing changes are introduced. Control of the time/temperature curing profile can be managed by pour schedules and other temperature control measures. The reduction in performance at higher curing temperatures is consistent with results obtained in a separate study. Although preliminary, results from this task on the measurement of hydraulic conductivity at MACTEC showed that curing of a Saltstone mix at 60 C increased the hydraulic conductivity by several orders of magnitude. The permeability data are based on only one mix but, were consistent with a measured reduction in Young's modulus for these same samples. Therefore, it is recommended that impact of curing temperature on performance properties be further investigated. An increase in dynamic Young's modulus (indicator of performance) is observed as the water to cementitious materials (w/cm) ratio decreases. The w/cm ratio is a process parameter which can be adjusted to improve performance as long as the processing properties of the grout are still within an operational window that will lead to successful placement. The same conclusions apply to wt % slag in the premix. That is, an increase in the wt % slag at the expense of fly ash in the premix increases Young's modulus and performance. An increase in wt % slag (as with a decrease in w/cm ratio) increases viscosity and yield stress and a final mix design must be balanced such that acceptable processing properties are obtained. The performance properties of SWPF mixes show a non-linear dependence on aluminate concentration. As the aluminate concentration is increased from 0.1 M to 0.25 M, the Young's modulus and compressive strength inc

Harbour, J.; Edwards, T.

2010-02-16

2

BLENDING ANALYSIS FOR RADIOACTIVE SALT WASTE PROCESSING FACILITY  

SciTech Connect

Savannah River National Laboratory (SRNL) evaluated methods to mix and blend the contents of the blend tanks to ensure the contents are properly blended before they are transferred from the blend tank such as Tank 21 and Tank 24 to the Salt Waste Processing Facility (SWPF) feed tank. The tank contents consist of three forms: dissolved salt solution, other waste salt solutions, and sludge containing settled solids. This paper focuses on developing the computational model and estimating the operation time of submersible slurry pump when the tank contents are adequately blended prior to their transfer to the SWPF facility. A three-dimensional computational fluid dynamics approach was taken by using the full scale configuration of SRS Type-IV tank, Tank 21H. Major solid obstructions such as the tank wall boundary, the transfer pump column, and three slurry pump housings including one active and two inactive pumps were included in the mixing performance model. Basic flow pattern results predicted by the computational model were benchmarked against the SRNL test results and literature data. Tank 21 is a waste tank that is used to prepare batches of salt feed for SWPF. The salt feed must be a homogeneous solution satisfying the acceptance criterion of the solids entrainment during transfer operation. The work scope described here consists of two modeling areas. They are the steady state flow pattern calculations before the addition of acid solution for tank blending operation and the transient mixing analysis during miscible liquid blending operation. The transient blending calculations were performed by using the 95% homogeneity criterion for the entire liquid domain of the tank. The initial conditions for the entire modeling domain were based on the steady-state flow pattern results with zero second phase concentration. The performance model was also benchmarked against the SRNL test results and literature data.

Lee, S.

2012-05-10

3

PRELIMINARY EVALUATION OF DWPF IMPACTS OF BORIC ACID USE IN CESIUM STRIP FOR SWPF AND MCU  

SciTech Connect

A new solvent system is being evaluated for use in the Modular Caustic-Side Solvent Extraction Unit (MCU) and in the Salt Waste Processing Facility (SWPF). The new system includes the option to replace the current dilute nitric acid strip solution with boric acid. To support this effort, the impact of using 0.01M, 0.1M, 0.25M and 0.5M boric acid in place of 0.001M nitric acid was evaluated for impacts on the DWPF facility. The evaluation only covered the impacts of boric acid in the strip effluent and does not address the other changes in solvents (i.e., the new extractant, called MaxCalix, or the new suppressor, guanidine). Boric acid additions may lead to increased hydrogen generation during the SRAT and SME cycles as well as change the rheological properties of the feed. The boron in the strip effluent will impact glass composition and could require each SME batch to be trimmed with boric acid to account for any changes in the boron from strip effluent additions. Addition of boron with the strip effluent will require changes in the frit composition and could lead to changes in melt behavior. The severity of the impacts from the boric acid additions is dependent on the amount of boric acid added by the strip effluent. The use of 0.1M or higher concentrations of boric acid in the strip effluent was found to significantly impact DWPF operations while the impact of 0.01M boric acid is expected to be relatively minor. Experimental testing is required to resolve the issues identified during the preliminary evaluation. The issues to be addressed by the testing are: (1) Impact on SRAT acid addition and hydrogen generation; (2) Impact on melter feed rheology; (3) Impact on glass composition control; (4) Impact on frit production; and (5) Impact on melter offgas. A new solvent system is being evaluated for use in the Modular Caustic-Side Solvent Extraction Unit (MCU) and in the Salt Waste Processing Facility (SWPF). The new system includes the option to replace the current dilute nitric acid strip solution with boric acid. To support this effort, the impact of using 0.01M, 0.1M, 0.25M and 0.5M boric acid in place of 0.001M nitric acid was evaluated for impacts on the DWPF facility. The evaluation only covered the impacts of boric acid in the strip effluent and does not address the other changes in solvents (i.e., the new extractant, called MaxCalix, or the new suppressor, guanidine). Experimental testing with the improved solvent is required to determine the impact of any changes in the entrained solvent on DWPF processing.

Stone, M.

2010-09-28

4

Defense Waste Processing Facility (DWPF), Modular CSSX Unit (CSSX), and Waste Transfer Line System of Salt Processing Program (U)  

SciTech Connect

All of the waste streams from ARP, MCU, and SWPF processes will be sent to DWPF for vitrification. The impact these new waste streams will have on DWPF's ability to meet its canister production goal and its ability to support the Salt Processing Program (ARP, MCU, and SWPF) throughput needed to be evaluated. DWPF Engineering and Operations requested OBU Systems Engineering to evaluate DWPF operations and determine how the process could be optimized. The ultimate goal will be to evaluate all of the Liquid Radioactive Waste (LRW) System by developing process modules to cover all facilities/projects which are relevant to the LRW Program and to link the modules together to: (1) study the interfaces issues, (2) identify bottlenecks, and (3) determine the most cost effective way to eliminate them. The results from the evaluation can be used to assist DWPF in identifying improvement opportunities, to assist CBU in LRW strategic planning/tank space management, and to determine the project completion date for the Salt Processing Program.

CHANG, ROBERT

2006-02-02

5

IMPACT OF THE SMALL COLUMN ION EXCHANGE PROCESS ON THE DEFENSE WASTE PROCESSING FACILITY - 12112  

SciTech Connect

The Savannah River Site (SRS) is investigating the deployment of a parallel technology to the Salt Waste Processing Facility (SWPF, presently under construction) to accelerate high activity salt waste processing. The proposed technology combines large waste tank strikes of monosodium titanate (MST) to sorb strontium and actinides with two ion exchange columns packed with crystalline silicotitanate (CST) resin to sorb cesium. The new process was designated Small Column Ion Exchange (SCIX), since the ion exchange columns were sized to fit within a waste storage tank riser. Loaded resins are to be combined with high activity sludge waste and fed to the Defense Waste Processing Facility (DWPF) for incorporation into the current glass waste form. Decontaminated salt solution produced by SCIX will be fed to the SRS Saltstone Facility for on-site immobilization as a grout waste form. Determining the potential impact of SCIX resins on DWPF processing was the basis for this study. Accelerated salt waste treatment is projected to produce a significant savings in the overall life cycle cost of waste treatment at SRS.

Koopman, D.; Lambert, D.; Fox, K.; Stone, M.

2011-11-07

6

Modular Containerless Processing Facility  

NASA Technical Reports Server (NTRS)

The Modular Containerless Processing Facility (MCPF) of the Space Station Freedom, being developed by the Jet Propulsion Laboratory, is described. The MCPF will be capable of positioning, manipulating, and performing processing operations on samples completely free of container walls. It will be comprised of a host facility and a series of interchangeable plug-in modules. Initial iterations of MCPF modules will be flown on the U.S. Microgravity Laboratory (USML) series of Shuttle flights. The Drop Physics Module schedualed to fly on USML-1 in March 1992 is also considered.

Morrison, Andrew D.

1990-01-01

7

Defense Waste Processing Facility  

SciTech Connect

The information contained in this report is intended to supplement the original Environmental Impact Statement (EIS) for the Defense Waste Processing Facility (DWPF). Since the original EIS in 1982, alterations have been made to he conceptual process that reduce the impact to the groundwater. This reduced impact is documented in this report along with an update of the understanding of seismology and geology of the Savannah River Site. 6 refs., 2 figs., 2 tabs.

Haselow, J.S.; Wilhite, E.L.; Stieve, A.L.

1990-05-01

8

Studsvik Processing Facility Update  

SciTech Connect

Studsvik has completed over four years of operation at its Erwin, TN facility. During this time period Studsvik processed over 3.3 million pounds (1.5 million kgs) of radioactive ion exchange bead resin, powdered filter media, and activated carbon, which comprised a cumulative total activity of 18,852.5 Ci (6.98E+08 MBq). To date, the highest radiation level for an incoming resin container has been 395 R/hr (3.95 Sv/h). The Studsvik Processing Facility (SPF) has the capability to safely and efficiently receive and process a wide variety of solid and liquid Low Level Radioactive Waste (LLRW) streams including: Ion Exchange Resins (IER), activated carbon (charcoal), graphite, oils, solvents, and cleaning solutions with contact radiation levels of up to 400 R/hr (4.0 Sv/h). The licensed and heavily shielded SPF can receive and process liquid and solid LLRWs with high water and/or organic content. This paper provides an overview of the last four years of commercial operations processing radioactive LLRW from commercial nuclear power plants. Process improvements and lessons learned will be discussed.

Mason, J. B.; Oliver, T. W.; Hill, G. M.; Davin, P. F.; Ping, M. R.

2003-02-25

9

Advanced Polymer Processing Facility  

SciTech Connect

Some conclusions of this presentation are: (1) Radiation-assisted nanotechnology applications will continue to grow; (2) The APPF will provide a unique focus for radiolytic processing of nanomaterials in support of DOE-DP, other DOE and advanced manufacturing initiatives; (3) {gamma}, X-ray, e-beam and ion beam processing will increasingly be applied for 'green' manufacturing of nanomaterials and nanocomposites; and (4) Biomedical science and engineering may ultimately be the biggest application area for radiation-assisted nanotechnology development.

Muenchausen, Ross E. [Los Alamos National Laboratory

2012-07-25

10

RESULTS OF THE EXTRACTION-SCRUB-STRIP TESTING USING AN IMPROVED SOLVENT FORMULATION AND SALT WASTE PROCESSING FACILITY SIMULATED WASTE  

SciTech Connect

The Office of Waste Processing, within the Office of Technology Innovation and Development, is funding the development of an enhanced solvent - also known as the next generation solvent (NGS) - for deployment at the Savannah River Site to remove cesium from High Level Waste. The technical effort is a collaborative effort between Oak Ridge National Laboratory (ORNL) and Savannah River National Laboratory (SRNL). As part of the program, the Savannah River National Laboratory (SRNL) has performed a number of Extraction-Scrub-Strip (ESS) tests. These batch contact tests serve as first indicators of the cesium mass transfer solvent performance with actual or simulated waste. The test detailed in this report used simulated Tank 49H material, with the addition of extra potassium. The potassium was added at 1677 mg/L, the maximum projected (i.e., a worst case feed scenario) value for the Salt Waste Processing Facility (SWPF). The results of the test gave favorable results given that the potassium concentration was elevated (1677 mg/L compared to the current 513 mg/L). The cesium distribution value, DCs, for extraction was 57.1. As a comparison, a typical D{sub Cs} in an ESS test, using the baseline solvent formulation and the typical waste feed, is {approx}15. The Modular Caustic Side Solvent Extraction Unit (MCU) uses the Caustic-Side Solvent Extraction (CSSX) process to remove cesium (Cs) from alkaline waste. This process involves the use of an organic extractant, BoBCalixC6, in an organic matrix to selectively remove cesium from the caustic waste. The organic solvent mixture flows counter-current to the caustic aqueous waste stream within centrifugal contactors. After extracting the cesium, the loaded solvent is stripped of cesium by contact with dilute nitric acid and the cesium concentrate is transferred to the Defense Waste Processing Facility (DWPF), while the organic solvent is cleaned and recycled for further use. The Salt Waste Processing Facility (SWPF), under construction, will use the same process chemistry. The Office of Waste Processing (EM-31) expressed an interest in investigating the further optimization of the organic solvent by replacing the BoBCalixC6 extractant with a more efficient extractant. This replacement should yield dividends in improving cesium removal from the caustic waste stream, and in the rate at which the caustic waste can be processed. To that end, EM-31 provided funding for both the Savannah River National Laboratory (SRNL) and the Oak Ridge National Laboratory (ORNL). SRNL wrote a Task Technical Quality and Assurance Plan for this work. As part of the envisioned testing regime, it was decided to perform an ESS test using a simulated waste that simulated a typical envisioned SWPF feed, but with added potassium to make the waste more challenging. Potassium interferes in the cesium removal, and its concentration is limited in the feed to <1950 mg/L. The feed to MCU has typically contained <500 mg/L of potassium.

Peters, T.; Washington, A.; Fink, S.

2012-01-09

11

PAPER STUDY EVALUATIONS OF THE INTRODUCTION OF SMALL COLUMN ION EXCHANGE WASTE STREAMS TO THE DEFENSE WASTE PROCESSING FACILITY  

SciTech Connect

The objective of this paper study is to provide guidance on the impact of Monosodium Titanate (MST) and Crystalline Silicotitanate (CST) streams from the Small Column Ion Exchange (SCIX) process on the Defense Waste Processing Facility (DWPF) flowsheet and glass waste form. A series of waste processing scenarios was evaluated, including projected compositions of Sludge Batches 8 through 17 (SB8 through SB17), MST additions, CST additions to Tank 40 or to a sludge batch preparation tank (Tank 42 or Tank 51, referred to generically as Tank 51 in this report), streams from the Salt Waste Processing Facility (SWPF), and two canister production rates. A wide array of potential glass frit compositions was used to support this assessment. The sludge and frit combinations were evaluated using the predictive models in the current DWPF Product Composition Control System (PCCS). The results were evaluated based on the number of frit compositions available for a particular sludge composition scenario. A large number of candidate frit compositions (e.g., several dozen to several hundred) is typically a good indicator of a sludge composition for which there is flexibility in forming an acceptable waste glass and meeting canister production rate commitments. The MST and CST streams will significantly increase the concentrations of certain components in glass, such as Nb{sub 2}O{sub 5}, TiO{sub 2}, and ZrO{sub 2}, to levels much higher than have been previously processed at DWPF. Therefore, several important assumptions, described in detail in the report, had to be made in performing the evaluations. The results of the paper studies, which must be applied carefully given the assumptions made concerning the impact of higher Ti, Zr, and Nb concentrations on model validity, provided several observations: (1) There was difficulty in identifying a reasonable number of candidate frits (and in some cases an inability to identify any candidate frits) when a waste loading of 40% is targeted for Sludge Batches 8, 16, and 17, regardless of the addition of SCIX or SWPF streams. This indicates that the blending strategy for these sludge batches should be reevaluated by Savannah River Remediation (SRR). (2) In general, candidate frits were available to accommodate CST additions to either Tank 40 or Tank 51. A larger number of candidate frits were typically available for the sludge batches when CST is added to Tank 51 rather than Tank 40, meaning that more compositional flexibility would be available for frit selection and DWPF operation. Note however that for SB8 and SB17, no candidate frits were available to accommodate CST going to Tank 40 with and without SWPF streams. The addition of SWPF streams generally improves the number of candidate frits available for processing of a given sludge batch. (3) The change in production rate from 40 Sludge Receipt and Adjustment Tank (SRAT) batches per year (i.e., the current production rate) to 75 SRAT batches per year, without SWPF streams included, had varied results in terms of the number of candidate frits available for processing of a given sludge batch. Therefore, this variable is not of much concern in terms of incorporating the SCIX streams. Note that the evaluation at 75 SRAT batches per year (approximately equivalent to 325 canisters per year) is more conservative in terms of the impact of SCIX streams as compared to a production rate of 400 canisters per year. Overall, the outcome of this paper study shows no major issues with the ability to identify an acceptable glass processing window when CST from the SCIX process is transferred to either Tank 40 or Tank 51. The assumptions used and the model limitations identified in this report must be addressed through further experimental studies, which are currently being performed. As changes occur to the planned additions of MST and CST, or to the sludge batch preparation strategy, additional evaluations will be performed to determine the potential impacts. As stated above, the issues with Sludge Batches 8, 16, and 17 should be further evaluated by SRR. A

Fox, K.; Edwards, T.; Stone, M.; Koopman, D.

2010-06-29

12

LANL Plutonium-Processing Facilities National Security  

E-print Network

TA-55 PF-4 LANL Plutonium-Processing Facilities National Security At the Los Alamos National Laboratory (LANL), virtually all plutonium operations occur within the Plutonium Facility at Tech- nical Area, and it is the only fully operational, full capability plutonium facility in the nation. Thus, TA-55 supports a wide

13

10 CFR 70.64 - Requirements for new facilities or new processes at existing facilities.  

Code of Federal Regulations, 2010 CFR

10 Energy 2 2010-01-01...facilities or new processes at existing facilities...Section 70.64 Energy NUCLEAR REGULATORY...facilities or new processes at existing facilities...criticality control including adherence to...

2010-01-01

14

Springfield Processing Plant (SPP) Facility Information  

SciTech Connect

The Springfield Processing Plant is a hypothetical facility. It has been constructed for use in training workshops. Information is provided about the facility and its surroundings, particularly security-related aspects such as target identification, threat data, entry control, and response force data.

Leach, Janice; Torres, Teresa M.

2012-10-01

15

Rapid-Solidification Processing Facility  

NASA Technical Reports Server (NTRS)

Microstructural changes enhance properties of alloys. Major feature of process is rapid quenching of alloys or intermetallic compounds from liquid to solid state at cooling rates of 10 to the 6th power C/s.

Glasgow, Thomas K.; Jech, Robert W.; Moore, Thomas J.; Orth, Norman W.

1987-01-01

16

40 CFR 52.279 - Food processing facilities.  

Code of Federal Regulations, 2013 CFR

...2013-07-01 2013-07-01 false Food processing facilities. 52.279 Section...PLANS California § 52.279 Food processing facilities. (a) The following...the control on emissions from food processing facilities without any...

2013-07-01

17

40 CFR 52.279 - Food processing facilities.  

Code of Federal Regulations, 2011 CFR

...2011-07-01 2011-07-01 false Food processing facilities. 52.279 Section...PLANS California § 52.279 Food processing facilities. (a) The following...the control on emissions from food processing facilities without any...

2011-07-01

18

40 CFR 52.279 - Food processing facilities.  

Code of Federal Regulations, 2014 CFR

...2014-07-01 2014-07-01 false Food processing facilities. 52.279 Section...PLANS California § 52.279 Food processing facilities. (a) The following...the control on emissions from food processing facilities without any...

2014-07-01

19

40 CFR 52.279 - Food processing facilities.  

Code of Federal Regulations, 2012 CFR

...2012-07-01 2012-07-01 false Food processing facilities. 52.279 Section...PLANS California § 52.279 Food processing facilities. (a) The following...the control on emissions from food processing facilities without any...

2012-07-01

20

SALTSTONE PROCESSING FACILITY TRANSFER SAMPLE  

SciTech Connect

On May 19, 2010, the Saltstone Production Facility inadvertently transferred 1800 gallons of untreated waste from the salt feed tank to Vault 4. During shut down, approximately 70 gallons of the material was left in the Saltstone hopper. A sample of the slurry in the hopper was sent to Savannah River National Laboratory (SRNL) to analyze the density, pH and the eight Resource Conservation and Recovery Act (RCRA) metals. The sample was hazardous for chromium, mercury and pH. The sample received from the Saltstone hopper was analyzed visually while obtaining sample aliquots and while the sample was allowed to settle. It was observed that the sample contains solids that settle in approximately 20 minutes (Figure 3-1). There is a floating layer on top of the supernate during settling and disperses when the sample is agitated (Figure 3-2). The untreated waste inadvertently transferred from the SFT to Vault 4 was toxic for chromium and mercury. In addition, the pH of the sample is at the regulatory limit. Visually inspecting the sample indicates solids present in the sample.

Cozzi, A.; Reigel, M.

2010-08-04

21

Chemical process safety at fuel cycle facilities  

SciTech Connect

This NUREG provides broad guidance on chemical safety issues relevant to fuel cycle facilities. It describes an approach acceptable to the NRC staff, with examples that are not exhaustive, for addressing chemical process safety in the safe storage, handling, and processing of licensed nuclear material. It expounds to license holders and applicants a general philosophy of the role of chemical process safety with respect to NRC-licensed materials; sets forth the basic information needed to properly evaluate chemical process safety; and describes plausible methods of identifying and evaluating chemical hazards and assessing the adequacy of the chemical safety of the proposed equipment and facilities. Examples of equipment and methods commonly used to prevent and/or mitigate the consequences of chemical incidents are discussed in this document.

Ayres, D.A.

1997-08-01

22

Teaching Basic Nanofabrication Processing Using Core Facilities  

NSDL National Science Digital Library

Nanofabrication is "manipulating and assembling materials atom by atom" and it is used to create materials, devices, and systems with new and unique properties. This involves the application of nanofabrication processing equipment, devices and materials. It behooves industrial technology programs to prepare students with skills necessary to supervise and manage the workforce of any organization that desire to implement nanofabrication technology. This paper addresses the educational aspects of research facilities and nano-research clusters for nanofabrication processing at Jackson State University (JSU).

Ejiwale, James

23

Defense Waste Processing Facility prototypic analytical laboratory  

SciTech Connect

The Defense Waste Processing Technology (DWPT) Analytical Laboratory is a relatively new laboratory facility at the Savannah River Site (SRS). It is a non-regulated, non-radioactive laboratory whose mission is to support research and development (R & D) and waste treatment operations by providing analytical and experimental services in a way that is safe, efficient, and produces quality results in a timely manner so that R & D personnel can provide quality technical data and operations personnel can efficiently operate waste treatment facilities. The modules are sample receiving, chromatography I, chromatography II, wet chemistry and carbon, sample preparation, and spectroscopy.

Policke, T.A.; Bryant, M.F.; Spencer, R.B.

1991-12-31

24

15 CFR 923.13 - Energy facility planning process.  

Code of Federal Regulations, 2013 CFR

...13 Energy facility planning process. The management program must contain a planning process for energy facilities likely...the coastal zone, including a process for anticipating the management of the impacts resulting...

2013-01-01

25

15 CFR 923.13 - Energy facility planning process.  

Code of Federal Regulations, 2012 CFR

...13 Energy facility planning process. The management program must contain a planning process for energy facilities likely...the coastal zone, including a process for anticipating the management of the impacts resulting...

2012-01-01

26

15 CFR 923.13 - Energy facility planning process.  

Code of Federal Regulations, 2011 CFR

...13 Energy facility planning process. The management program must contain a planning process for energy facilities likely...the coastal zone, including a process for anticipating the management of the impacts resulting...

2011-01-01

27

15 CFR 923.13 - Energy facility planning process.  

Code of Federal Regulations, 2014 CFR

...13 Energy facility planning process. The management program must contain a planning process for energy facilities likely...the coastal zone, including a process for anticipating the management of the impacts resulting...

2014-01-01

28

Node 2 In Space Station Processing Facility  

NASA Technical Reports Server (NTRS)

The U.S. Node 2 awaits launch in the Space Station Processing Facility at the Kennedy Space Center (KSC) since its arrival on June 1, 2003. Node 2, the 'utility hub' and second of three connectors between International Space Station (ISS) modules, was built in the Torino, Italy facility of Alenia Spazio, an International contractor based in Rome. Alenia built Node 2 as part of an agreement between NASA and the European Space Agency (ESA). Weighing in at approximately 30,000 pounds, the Node is more than 20-feet long and 14.5-feet wide. This centerpiece of the ISS will be the next pressurized module installed on the Station and will result in a roomier Station, allowing it to expand from the equivalent space of a 3-bedroom house to a 5-bedroom house once the Japanese and European laboratories are attached to it. The Marshall Space Center in Huntsville, Alabama manages the Node program for NASA.

2003-01-01

29

Safeguards Approaches for Black Box Processes or Facilities  

SciTech Connect

The objective of this study is to determine whether a safeguards approach can be developed for “black box” processes or facilities. These are facilities where a State or operator may limit IAEA access to specific processes or portions of a facility; in other cases, the IAEA may be prohibited access to the entire facility. The determination of whether a black box process or facility is safeguardable is dependent upon the details of the process type, design, and layout; the specific limitations on inspector access; and the restrictions placed upon the design information that can be provided to the IAEA. This analysis identified the necessary conditions for safeguardability of black box processes and facilities.

Diaz-Marcano, Helly; Gitau, Ernest TN; Hockert, John; Miller, Erin; Wylie, Joann

2013-09-25

30

15 CFR 923.13 - Energy facility planning process.  

Code of Federal Regulations, 2010 CFR

...MANAGEMENT COASTAL ZONE MANAGEMENT PROGRAM REGULATIONS Uses Subject to Management § 923.13 Energy facility planning process. The management program must contain a planning process for energy facilities likely to be located in or which...

2010-01-01

31

10 CFR 70.72 - Facility changes and change process.  

Code of Federal Regulations, 2010 CFR

10 Energy 2 2010-01-01...Facility changes and change process. 70.72 Section 70.72 Energy NUCLEAR REGULATORY...Facility changes and change process. (a) The licensee...operating procedures including any necessary...

2010-01-01

32

Facilities for pyrochemical process studies at ENEA  

SciTech Connect

Some facilities have successfully been installed at ENEA laboratories for pyrochemical process studies under inactive conditions. PYREL III, MECRYP and OGATA plants allow to perform experiments about electrorefining and electroreduction of simulated fuel, melt crystallization of lithium chloride containing impurities from electroreduction campaigns, and trapping of volatile and semi-volatile fission products. Moreover, an argon-atmosphere glove-box is used for conditioning of chloride salt wastes with sodalite or SAP (SiO{sub 2}-Al{sub 2}O{sub 3}-P{sub 2}O{sub 5}) matrix.

De Angelis, G.; Fedeli, C.; Tiranti, G. [Italian National Agency for New Technology, Energy and the Environment - ENEA, Casaccia Research Center, Via Anguillarese 301, 00123 S. Maria di Galeria, Roma (Italy); Baicchi, E. [ENEA, Brasimone Research Center, 40032 Camugnano, Bologna (Italy)

2013-07-01

33

Defense waste processing facility startup progress report  

SciTech Connect

The Savannah River Site (SRS) has been operating a nuclear fuel cycle since the 1950's to produce nuclear materials in support of the national defense effort. About 83 million gallons of high level waste produced since operation began have been consolidated into 33 million gallons by evaporation at the waste tank farm. The Department of Energy has authorized the construction of the Defense Waste Processing Facility (DWPF) to immobilize the waste as a durable borosilicate glass contained in stainless steel canisters, prior to emplacement in a federal repository. The DWPF is now mechanically complete and undergoing commissioning and run-in activities. Cold startup testing using simulated non-radioactive feeds is scheduled to begin in November 1992 with radioactive operation scheduled to begin in May 1994. While technical issues have been identified which can potentially affect DWPF operation, they are not expected to negatively impact the start of non-radioactive startup testing.

Iverson, D.C.; Elder, H.H.

1992-01-01

34

Defense waste processing facility startup progress report  

SciTech Connect

The Savannah River Site (SRS) has been operating a nuclear fuel cycle since the 1950`s to produce nuclear materials in support of the national defense effort. About 83 million gallons of high level waste produced since operation began have been consolidated into 33 million gallons by evaporation at the waste tank farm. The Department of Energy has authorized the construction of the Defense Waste Processing Facility (DWPF) to immobilize the waste as a durable borosilicate glass contained in stainless steel canisters, prior to emplacement in a federal repository. The DWPF is now mechanically complete and undergoing commissioning and run-in activities. Cold startup testing using simulated non-radioactive feeds is scheduled to begin in November 1992 with radioactive operation scheduled to begin in May 1994. While technical issues have been identified which can potentially affect DWPF operation, they are not expected to negatively impact the start of non-radioactive startup testing.

Iverson, D.C.; Elder, H.H.

1992-07-01

35

Altering Design Decisions to Better Suit Facilities Management Processes  

E-print Network

Research work reported in this paper tackles the communication between processes of both facilities management (FM) and design, showing the effect of such communication on the capability of newly built facilities in supporting organizations...

Jawdeh, H. B.; Abudul-Malak, M. A.; Wood, G.

2010-01-01

36

Defense Waste Processing Facility canister impact testing  

SciTech Connect

This report summarizes impact testing of seven Defense Waste Processing Facility (DWPF) high level waste canisters during FY 1988. Impact testing was conducted to demonstrate compliance of DWPF canisters with the drop test specification of the Waste Acceptance Preliminary Specification. The prototypical stainless steel canisters were filled with simulated waste to about 85% capacity at Savannah River Laboratory (SRL). They were received from SRL in April 1988. Each canister was approximately 300 cm (9 ft 10 in.) long, and 61 cm (2 ft) in diameter, and weighed about 2150 kg (4740 lb). Each canister was dropped twice from a height of 7 m (23 ft). The first drop was a vertical bottom impact where the bottom of the canister was oriented parallel to the impact pad. The second was a center-of-gravity-over-the-corner top impact. Procedures used to examine the canisters were the application and analysis of strain circles, helium leak testing, dye penetrant examination, and canister dimensional measurements. 39 refs., 39 figs., 11 tabs.

Olson, K.M.; Alzheimer, J.M.

1989-09-01

37

Pinellas Plant facts. [Products, processes, laboratory facilities  

SciTech Connect

This plant was built in 1956 in response to a need for the manufacture of neutron generators, a principal component in nuclear weapons. The neutron generators consist of a miniaturized linear ion accelerator assembled with the pulsed electrical power supplies required for its operation. The ion accelerator, or neutron tube, requires ultra clean, high vacuum technology: hermetic seals between glass, ceramic, glass-ceramic, and metal materials: plus high voltage generation and measurement technology. The existence of these capabilities at the Pinellas Plant has led directly to the assignment of the lightning arrester connector, specialty capacitor, vacuum switch, and crystal resonator. Active and reserve batteries and the radioisotopically-powered thermoelectric generator draw on the materials measurement and controls technologies which are required to ensure neutron generator life. A product development and production capability in alumina ceramics, cermet (electrical) feedthroughs, and glass ceramics has become a specialty of the plant; the laboratories monitor the materials and processes used by the plant's commercial suppliers of ferroelectric ceramics. In addition to the manufacturing facility, a production development capability is maintained at the Pinellas Plant.

Not Available

1986-09-01

38

Northwestern University Facility for Clean Catalytic Process Research  

SciTech Connect

Northwestern University with DOE support created a Facility for Clean Catalytic Process Research. This facility is designed to further strengthen our already strong catalysis research capabilities and thus to address these National challenges. Thus, state-of-the art instrumentation and experimentation facility was commissioned to add far greater breadth, depth, and throughput to our ability to invent, test, and understand catalysts and catalytic processes, hence to improve them via knowledge-based design and evaluation approaches.

Marks, Tobin Jay [Northwestern University

2013-05-08

39

77 FR 823 - Guidance for Fuel Cycle Facility Change Processes  

Federal Register 2010, 2011, 2012, 2013, 2014

...processing, fabrication of uranium fuel or fuel assemblies, uranium enrichment, enriched uranium hexafluoride conversion, plutonium processing, or fabrication of mixed-oxide fuel or fuel assemblies. Such fuel cycle facility licensees must establish...

2012-01-06

40

Integration Process for Payloads in the Fluids and Combustion Facility  

NASA Technical Reports Server (NTRS)

The Fluids and Combustion Facility (FCF) is an ISS research facility located in the United States Laboratory (US Lab), Destiny. The FCF is a multi-discipline facility that performs microgravity research primarily in fluids physics science and combustion science. This facility remains on-orbit and provides accommodations to multi-user and Principal investigator (PI) unique hardware. The FCF is designed to accommodate 15 PI's per year. In order to allow for this number of payloads per year, the FCF has developed an end-to-end analytical and physical integration process. The process includes provision of integration tools, products and interface management throughout the life of the payload. The payload is provided with a single point of contact from the facility and works with that interface from PI selection through post flight processing. The process utilizes electronic tools for creation of interface documents/agreements, storage of payload data and rollup for facility submittals to ISS. Additionally, the process provides integration to and testing with flight-like simulators prior to payload delivery to KSC. These simulators allow the payload to test in the flight configuration and perform final facility interface and science verifications. The process also provides for support to the payload from the FCF through the Payload Safety Review Panel (PSRP). Finally, the process includes support in the development of operational products and the operation of the payload on-orbit.

Free, James M.; Nall, Marsha M.

2001-01-01

41

Insect pest management decisions in food processing facilities  

Technology Transfer Automated Retrieval System (TEKTRAN)

Pest management decision making in food processing facilities such as flour mills, rice mills, human and pet food manufacturing facilities, distribution centers and warehouses, and retail stores is a challenging undertaking. Insect pest management programs require an understanding of the food facili...

42

Waste Heat Recovery from Refrigeration in a Meat Processing Facility  

E-print Network

A case study is reviewed on a heat recovery system installed in a meat processing facility to preheat water for the plant hot water supply. The system utilizes waste superheat from the facility's 1,350-ton ammonia refrigeration system. The heat...

Murphy, W. T.; Woods, B. E.; Gerdes, J. E.

1980-01-01

43

Metals Processing Laboratory User Facility: Facilities capabilities; Interactive programs; Recent experience  

SciTech Connect

MPLUS is a DOE designated User Facility providing extensive Technical Expertise and Specialized Facilities to assist Industrial and Academic Partners in becoming more Energy Efficient and enhancing US Competitiveness in the World market. MPLUS focusing on 7 major vision industries (aluminum, chemical, forest products, glass, metals castings, refineries, and steel) identified by DOE as being energy intensive, as well as cross-cutting industries such as welding and heat treating. MPLUS consists of four primary facilities: (1) Materials Processing, (2) Materials Joining, (3) Materials Characterization and Properties, and (4) Materials Process Modeling. Each facility provides rapid access to unique, state-of-the-art equipment, capabilities, and technical expertise necessary for solving materials processing issues that limit the development and implementation of emerging technologies. These capabilities include: (1) materials synthesis; (2) deformation processing; (3) materials characterization; (4) joining and mathematical modeling.

Mackiewicz-Ludtka, G.; Raschke, R.A. [eds.] [comps.

1998-02-12

44

10 CFR 70.72 - Facility changes and change process.  

Code of Federal Regulations, 2013 CFR

...70.72 Facility changes and change process. (a) The licensee...evaluate, implement, and track each change to the site, structures...following are addressed prior to implementing any change: (1) The technical...

2013-01-01

45

10 CFR 70.72 - Facility changes and change process.  

Code of Federal Regulations, 2014 CFR

...70.72 Facility changes and change process. (a) The licensee...evaluate, implement, and track each change to the site, structures...following are addressed prior to implementing any change: (1) The technical...

2014-01-01

46

10 CFR 70.72 - Facility changes and change process.  

Code of Federal Regulations, 2012 CFR

...70.72 Facility changes and change process. (a) The licensee...evaluate, implement, and track each change to the site, structures...following are addressed prior to implementing any change: (1) The technical...

2012-01-01

47

10 CFR 70.72 - Facility changes and change process.  

Code of Federal Regulations, 2011 CFR

...70.72 Facility changes and change process. (a) The licensee...evaluate, implement, and track each change to the site, structures...following are addressed prior to implementing any change: (1) The technical...

2011-01-01

48

Spacelab Data Processing Facility (SLDPF) quality assurance expert systems development  

NASA Technical Reports Server (NTRS)

Spacelab Data Processing Facility (SLDPF) expert system prototypes were developed to assist in the quality assurance of Spacelab and/or Attached Shuttle Payload (ASP) processed telemetry data. The SLDPF functions include the capturing, quality monitoring, processing, accounting, and forwarding of mission data to various user facilities. Prototypes for the two SLDPF functional elements, the Spacelab Output Processing System and the Spacelab Input Processing Element, are described. The prototypes have produced beneficial results including an increase in analyst productivity, a decrease in the burden of tedious analyses, the consistent evaluation of data, and the providing of concise historical records.

Kelly, Angelita C.; Basile, Lisa; Ames, Troy; Watson, Janice; Dallam, William

1987-01-01

49

Ninth Processing Campaign in the Waste Calcining Facility  

SciTech Connect

This report discusses the Ninth (and final) Processing Campaign at the Waste Calcining Facility. Several processing interruptions were experienced during this campaign and the emphasis of this report is on process and equipment performance with operating problems and corrective actions discussed in detail.

Childs, K F; Donovan, R I; Swenson, M C

1982-04-01

50

Design criteria for Waste Coolant Processing Facility and preliminary proposal 722 for Waste Coolant Processing Facility  

SciTech Connect

This document contains the design criteria to be used by the architect-engineer (A-E) in the performance of Titles 1 and 2 design for the construction of a facility to treat the biodegradable, water soluble, waste machine coolant generated at the Y-12 plant. The purpose of this facility is to reduce the organic loading of coolants prior to final treatment at the proposed West Tank Farm Treatment Facility.

Not Available

1991-09-27

51

Opportunities for Process Monitoring Techniques at Delayed Access Facilities  

SciTech Connect

Except for specific cases where the International Atomic Energy Agency (IAEA) maintains a continuous presence at a facility (such as the Japanese Rokkasho Reprocessing Plant), there is always a period of time or delay between the moment a State is notified or aware of an upcoming inspection, and the time the inspector actually enters the material balance area or facility. Termed by the authors as “delayed access,” this period of time between inspection notice and inspector entrance to a facility poses a concern. Delayed access also has the potential to reduce the effectiveness of measures applied as part of the Safeguards Approach for a facility (such as short-notice inspections). This report investigates the feasibility of using process monitoring to address safeguards challenges posed by delayed access at a subset of facility types.

Curtis, Michael M.; Gitau, Ernest TN; Johnson, Shirley J.; Schanfein, Mark; Toomey, Christopher

2013-09-20

52

Defense waste processing facility radioactive operations. Part 1 - operating experience  

SciTech Connect

The Savannah River Site`s Defense Waste Processing Facility (DWPF) near Aiken, SC is the nation`s first and the world`s largest vitrification facility. Following a ten year construction program and a 3 year non-radioactive test program, DWPF began radioactive operations in March 1996. This paper presents the results of the first 9 months of radioactive operations. Topics include: operations of the remote processing equipment reliability, and decontamination facilities for the remote processing equipment. Key equipment discussed includes process pumps, telerobotic manipulators, infrared camera, Holledge{trademark} level gauges and in-cell (remote) cranes. Information is presented regarding equipment at the conclusion of the DWPF test program it also discussed, with special emphasis on agitator blades and cooling/heating coil wear. 3 refs., 4 figs.

Little, D.B.; Gee, J.T.; Barnes, W.M.

1997-12-31

53

NASA Construction of Facilities Validation Processes - Total Building Commissioning (TBCx)  

NASA Technical Reports Server (NTRS)

Key Atributes include: Total Quality Management (TQM) System that looks at all phases of a project. A team process that spans boundaries. A Commissioning Authority to lead the process. Commissioning requirements in contracts. Independent design review to verify compliance with Facility Project Requirements (FPR). Formal written Commissioning Plan with Documented Results. Functional performance testing (FPT) against the requirements document.

Hoover, Jay C.

2004-01-01

54

Overview of the Facility Safeguardability Analysis (FSA) Process  

SciTech Connect

The safeguards system of the International Atomic Energy Agency (IAEA) provides the international community with credible assurance that a State is fulfilling its nonproliferation obligations. The IAEA draws such conclusions from the evaluation of all available information. Effective and cost-efficient IAEA safeguards at the facility level are, and will remain, an important element of this “State-level” approach. Efficiently used, the Safeguards by Design (SBD) methodologies , , , now being developed can contribute to effective and cost-efficient facility-level safeguards. The Facility Safeguardability Assessment (FSA) introduced here supports SBD in three areas. 1. It describes necessary interactions between the IAEA, the State regulator, and the owner / designer of a new or modified facility to determine where SBD efforts can be productively applied, 2. It presents a screening approach intended to identify potential safeguard issues for; a) design changes to existing facilities; b) new facilities similar to existing facilities with approved safeguards approaches, and c) new designs, 3. It identifies resources (the FSA toolkit), such as good practice guides, design guidance, and safeguardability evaluation methods that can be used by the owner/designer to develop solutions for potential safeguards issues during the interactions with the State regulator and IAEA. FSA presents a structured framework for the application of the SBD tools developed in other efforts. The more a design evolves, the greater the probability that new safeguards issues could be introduced. Likewise, for first-of-a-kind facilities or research facilities that involve previously unused processes or technologies, it is reasonable to expect that a number of possible safeguards issues might exist. Accordingly, FSA is intended to help the designer and its safeguards experts identify early in the design process: • Areas where elements of previous accepted safeguards approach(es) may be applied to facility modifications or new designs • Modifications of the design that could mitigate a potential safeguards issue or facilitate a more efficient application of the safeguards approach • Possible innovative ideas for more efficient application of safeguards • The potential for changes in elements of the safeguard approach that may be required by IAEA as a result of facility design features and characteristics • Other potential concerns These issues will then be presented to the IAEA and the state regulator to be resolved in a timely manner, ensuring that the planned safeguards approach is acceptable and compatible with the facility design. The proposed approach should be validated by application to suitable facilities to assess its utility, comprehensiveness, and cost-effectiveness. The approach and example application should also be reviewed by industry to confirm the conclusions reached in the DOE review.

Bari, Robert A.; Hockert, John; Wonder, Edward F.; Johnson, Shirley J.; Wigeland, Roald; Zentner, Michael D.

2011-10-10

55

Facility Effluent Monitoring Plan for the 325 Radiochemical Processing Laboratory  

SciTech Connect

This Facility Effluent Monitoring Plan (FEMP) has been prepared for the 325 Building Radiochemical Processing Laboratory (RPL) at the Pacific Northwest National Laboratory (PNNL) to meet the requirements in DOE Order 5400.1, ''General Environmental Protection Programs.'' This FEMP has been prepared for the RPL primarily because it has a ''major'' (potential to emit >0.1 mrem/yr) emission point for radionuclide air emissions according to the annual National Emission Standards for Hazardous Air Pollutants (NESHAP) assessment performed. This section summarizes the airborne and liquid effluents and the inventory based NESHAP assessment for the facility. The complete monitoring plan includes characterization of effluent streams, monitoring/sampling design criteria, a description of the monitoring systems and sample analysis, and quality assurance requirements. The RPL at PNNL houses radiochemistry research, radioanalytical service, radiochemical process development, and hazardous and radioactive mixed waste treatment activities. The laboratories and specialized facilities enable work ranging from that with nonradioactive materials to work with picogram to kilogram quantities of fissionable materials and up to megacurie quantities of other radionuclides. The special facilities within the building include two shielded hot-cell areas that provide for process development or analytical chemistry work with highly radioactive materials and a waste treatment facility for processing hazardous, mixed radioactive, low-level radioactive, and transuranic wastes generated by PNNL activities.

Shields, K.D.; Ballinger, M.Y.

1999-04-02

56

Facility effluent monitoring plan for the Waste Receiving and Processing Facility Module 1  

SciTech Connect

A facility effluent monitoring plan is required by the US Department of Energy in Order 5400.1 for any operations that involve hazardous materials and radioactive substances that could impact employee or public safety or the environment. This document is prepared using the specific guidelines identified in A Guide for Preparing Hanford Site Facility Effluent Monitoring Plans, WHC-EP-0438. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether they are adequate to ensure the public health and safety as specified in applicable federal state, and local requirements. This facility effluent monitoring plan shall ensure lonq-range integrity of the effluent monitoring systems by requiring an update whenever a new process or operation introduces new hazardous materials or significant radioactive materials. This document must be reviewed annually even if there are no operational changes, and it must be updated as a minimum every three years.

Lewis, C.J.

1995-10-01

57

Defense Waste Processing Facility Radioactive Operations - Year Two  

SciTech Connect

The Savannah River Site`s Defense Waste Processing Facility (DWPF) near Aiken, SC is the nation`s first high-level radioactive waste vitrification facility. This waste (130 million liters) which has been stored in carbon steel underground tanks and is now being pretreated, melted into a highly durable borosilicate glass and poured into stainless steel canisters for eventual disposal in a geologic repository. Following a ten-year construction period and nearly three-year nonradioactive test program, the DWPF began radioactive operations in March 1996. The first nine months of radioactive operations have been reported previously. As with any complex technical facility, difficulties were encountered during the transition to radioactive operations. Results of the second year of radioactive operations are presented in this paper. The discussion includes: feed preparation and glass melting, resolution of the melter pouring issues, improvements in processing attainment and throughput, and planned improvements in laboratory attainment and throughput.

Occhipinti, J.E.; Carter, J.T.; Edwards, R.E.; Beck, R.S.; Iverson, D.C.

1998-03-01

58

PROCESS AND EQUIPMENT CHANGES FOR CLEANER PRODUCTION IN FEDERAL FACILITIES  

EPA Science Inventory

The paper discusses process and equipment changes for cleaner production in federal facilities. During the 1990s, DoD and EPA conducted joint research and development, aimed at reducing the discharge of hazardous and toxic pollutants from military production and maintenance faci...

59

General view from outside the Orbiter Processing Facility at the ...  

Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

General view from outside the Orbiter Processing Facility at the Kennedy Space Center with the bay doors open as the Orbiter Discovery is atop the transport vehicle prepared to be moved over to the Vehicle Assembly Building. - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

60

PREVALENCE OF CAMPYLOBACTER WITHIN A SWINE SLAUGHTER AND PROCESSING FACILITY  

Technology Transfer Automated Retrieval System (TEKTRAN)

The present study examined the prevalence and distribution of Campylobacter in a swine slaughter and processing facility. Samples obtained on three visits over a 30-day period in the summer of 2001 included composite carcass samples (30 total), representing 360 swine carcasses, taken at each of the ...

61

ANALYTICAL PLANS SUPPORTING THE SWPF GAP ANALYSIS BEING CONDUCTED WITH ENERGYSOLUTIONS AND THE VITREOUS STATE LABORATORY AT THE CUA  

SciTech Connect

EnergySolutions (ES) and its partner, the Vitreous State Laboratory (VSL) of The Catholic University of America (CUA), are to provide engineering and technical services support to Savannah River Remediation, LLC (SRR) for ongoing operation of the Defense Waste Processing Facility (DWPF) flowsheet as well as for modifications to improve overall plant performance. SRR has requested that the glass formulation team of Savannah River National Laboratory (SRNL) and ES-VSL develop a technical basis that validates the current Product Composition Control System models for use during the processing of the coupled flowsheet or that leads to the refinements of or modifications to the models that are needed so that they may be used during the processing of the coupled flowsheet. SRNL has developed a matrix of test glasses that are to be batched and fabricated by ES-VSL as part of this effort. This document provides two analytical plans for use by ES-VSL: one plan is to guide the measurement of the chemical composition of the study glasses while the second is to guide the measurement of the durability of the study glasses based upon the results of testing by ASTM’s Product Consistency Test (PCT) Method A.

Edwards, T.; Peeler, D.

2014-10-28

62

Defense waste processing facility project at the Savannah River Plant  

SciTech Connect

The Du Pont Company is building for the Department of Energy a facility to vitrify high-level waste at the Savannah River Plant near Aiken, South Carolina. The Defense Waste Processing Facility (DWPF) will solidify existing and future radioactive wastes produced by defense activities at the site. At the present time engineering and design are 45% complete, the site has been cleared, and startup is expected in 1989. This paper will describe project status as well as features of the design. 9 figures.

Baxter, R G; Maher, R; Mellen, J B; Shafranek, L F; Stevens, III, W R

1984-01-01

63

Facility Effluent Monitoring Plan for the Waste Receiving and Processing (WRAP) Facility  

SciTech Connect

A facility effluent monitoring plan is required by the U.S. Department of Energy in Order 5400.1 for any operations that involve hazardous materials and radioactive substances that could impact employee public safety, or the environment. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether these systems are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements. This facility effluent monitoring plan ensures long-range integrity of the effluent monitoring systems by requiring an update whenever a new process or operation introduces new hazardous materials or significant radioactive materials. This document must be reviewed annually even if there are no operational changes, and must be updated, as a minimum, every 3 years.

DAVIS, W.E.

2000-03-08

64

Advanced Process Monitoring Techniques for Safeguarding Reprocessing Facilities  

SciTech Connect

The International Atomic Energy Agency (IAEA) has established international safeguards standards for fissionable material at spent fuel reprocessing plants to ensure that significant quantities of weapons-grade nuclear material are not diverted from these facilities. For large throughput nuclear facilities, it is difficult to satisfy the IAEA safeguards accountancy goal for detection of abrupt diversion. Currently, methods to verify material control and accountancy (MC&A) at these facilities require time-consuming and resource-intensive destructive assay (DA). Leveraging new on-line non destructive assay (NDA) process monitoring techniques in conjunction with the traditional and highly precise DA methods may provide an additional measure to nuclear material accountancy which would potentially result in a more timely, cost-effective and resource efficient means for safeguards verification at such facilities. By monitoring process control measurements (e.g. flowrates, temperatures, or concentrations of reagents, products or wastes), abnormal plant operations can be detected. Pacific Northwest National Laboratory (PNNL) is developing on-line NDA process monitoring technologies, including both the Multi-Isotope Process (MIP) Monitor and a spectroscopy-based monitoring system, to potentially reduce the time and resource burden associated with current techniques. The MIP Monitor uses gamma spectroscopy and multivariate analysis to identify off-normal conditions in process streams. The spectroscopic monitor continuously measures chemical compositions of the process streams including actinide metal ions (U, Pu, Np), selected fission products, and major cold flowsheet chemicals using UV-Vis, Near IR and Raman spectroscopy. This paper will provide an overview of our methods and report our on-going efforts to develop and demonstrate the technologies.

Orton, Christopher R.; Bryan, Samuel A.; Schwantes, Jon M.; Levitskaia, Tatiana G.; Fraga, Carlos G.; Peper, Shane M.

2010-11-30

65

Design characteristics for facilities which process hazardous particulate  

SciTech Connect

Los Alamos National Laboratory is establishing a research and processing capability for beryllium. The unique properties of beryllium, including light weight, rigidity, thermal conductivity, heat capacity, and nuclear properties make it critical to a number of US defense and aerospace programs. Concomitant with the unique engineering properties are the health hazards associated with processing beryllium in a particulate form and the potential for worker inhalation of aerosolized beryllium. Beryllium has the lowest airborne standard for worker protection compared to all other nonradioactive metals by more than an order of magnitude. This paper describes the design characteristics of the new beryllium facility at Los Alamos as they relate to protection of the workforce. Design characteristics to be reviewed include; facility layout, support systems to minimize aerosol exposure and spread, and detailed review of the ventilation system design for general room air cleanliness and extraction of particulate at the source.

Abeln, S.P.; Creek, K.; Salisbury, S.

1998-12-01

66

Accident Fault Trees for Defense Waste Processing Facility  

SciTech Connect

The purpose of this report is to document fault tree analyses which have been completed for the Defense Waste Processing Facility (DWPF) safety analysis. Logic models for equipment failures and human error combinations that could lead to flammable gas explosions in various process tanks, or failure of critical support systems were developed for internal initiating events and for earthquakes. These fault trees provide frequency estimates for support systems failures and accidents that could lead to radioactive and hazardous chemical releases both on-site and off-site. Top event frequency results from these fault trees will be used in further APET analyses to calculate accident risk associated with DWPF facility operations. This report lists and explains important underlying assumptions, provides references for failure data sources, and briefly describes the fault tree method used. Specific commitments from DWPF to provide new procedural/administrative controls or system design changes are listed in the ''Facility Commitments'' section. The purpose of the ''Assumptions'' section is to clarify the basis for fault tree modeling, and is not necessarily a list of items required to be protected by Technical Safety Requirements (TSRs).

Sarrack, A.G.

1999-06-22

67

Orbiter processing facility service platform failure and redesign  

NASA Technical Reports Server (NTRS)

In a high bay of the Orbiter Processing Facility (OPF) at the Kennedy Space Center, technicians were preparing the space shuttle orbiter Discovery for rollout to the Vehicle Assembly Building (VAB). A service platform, commonly referred to as an OPF Bucket, was being retracted when it suddenly fell, striking a technician and impacting Discovery's payload bay door. A critical component in the OPF Bucket hoist system had failed, allowing the platform to fall. The incident was thoroughly investigated by both NASA and Lockheed, revealing many design deficiencies within the system. The deficiencies and the design changes made to correct them are reviewed.

Harris, Jesse L.

1988-01-01

68

Tank 42 sludge-only process development for the Defense Waste Processing Facility (DWPF)  

SciTech Connect

Defense Waste Processing Facility (DWPF) requested the development of a sludge-only process for Tank 42 sludge since at the current processing rate, the Tank 51 sludge has been projected to be depleted as early as August 1998. Testing was completed using a non-radioactive Tank 42 sludge simulant. The testing was completed under a range of operating conditions, including worst case conditions, to develop the processing conditions for radioactive Tank 42 sludge. The existing Tank 51 sludge-only process is adequate with the exception that 10 percent additional acid is recommended during sludge receipt and adjustment tank (SRAT) processing to ensure adequate destruction of nitrite during the SRAT cycle.

Lambert, D.P.

2000-03-22

69

Standardization of DOE Disposal Facilities Waste Acceptance Process  

SciTech Connect

On February 25, 2000, the US. Department of Energy (DOE) issued the Record of Decision (ROD) for the Waste Management Programmatic Environmental Impact Statement (WM PEIS) for low-level and mixed low-level wastes (LLW/ MLLW) treatment and disposal. The ROD designated the disposal sites at Hanford and the Nevada Test Site (NTS) to dispose of LLWMLLW from sites without their own disposal facilities. DOE's Richland Operations Office (RL) and the National Nuclear Security Administration's Nevada Operations Office (NV) have been charged with effectively implementing the ROD. To accomplish this task NV and RL, assisted by their operating contractors Bechtel Nevada (BN), Fluor Hanford (FH), and Bechtel Hanford (BH) assembled a task team to systematically map out and evaluate the current waste acceptance processes and develop an integrated, standardized process for the acceptance of LLWMLLW. A structured, systematic, analytical process using the Six Sigma system identified disposal process improvements and quantified the associated efficiency gains to guide changes to be implemented. The review concluded that a unified and integrated Hanford/NTS Waste Acceptance Process would be a benefit to the DOE Complex, particularly the waste generators. The Six Sigma review developed quantitative metrics to address waste acceptance process efficiency improvements, and provides an initial look at development of comparable waste disposal cost models between the two disposal sites to allow quantification of the proposed improvements.

SHRADER, T.; MACBETH, P.

2002-01-01

70

Standardization of DOE Disposal Facilities Waste Acceptance Processes  

SciTech Connect

On February 25, 2000, the U.S. Department of Energy (DOE) issued the Record of Decision (ROD) for the Waste Management Programmatic Environmental Impact Statement (WM PEIS) for low-level and mixed low-level wastes (LLW/ MLLW) treatment and disposal. The ROD designated the disposal sites at Hanford and the Nevada Test Site (NTS) to dispose of LLW/MLLW from sites without their own disposal facilities. DOE's Richland Operations Office (RL) and the National Nuclear Security Administration's Nevada Operations Office (NV) have been charged with effectively implementing the ROD. To accomplish this task NV and RL, assisted by their operating contractors Bechtel Nevada (BN), Fluor Hanford (FH), and Bechtel Hanford (BH) assembled a task team to systematically map out and evaluate the current waste acceptance processes and develop an integrated, standardized process for the acceptance of LLW/MLLW. A structured, systematic, analytical process using the Six Sigma system identified dispos al process improvements and quantified the associated efficiency gains to guide changes to be implemented. The review concluded that a unified and integrated Hanford/NTS Waste Acceptance Process would be a benefit to the DOE Complex, particularly the waste generators. The Six Sigma review developed quantitative metrics to address waste acceptance process efficiency improvements, and provides an initial look at development of comparable waste disposal cost models between the two disposal sites to allow quantification of the proposed improvements.

Shrader, T. A.; Macbeth, P. J.

2002-02-26

71

Materials evaluation programs at the Defense Waste Processing Facility  

SciTech Connect

The Savannah River Site (SRS) has been operating a nuclear fuel cycle since the 1950s to produce nuclear materials in support of the national defense effort. About 83 million gallons of high-level waste produced since operations began has been consolidated by evaporation into 33 million gallons at the waste tank farm. The Department of Energy authorized the construction of the Defense Waste Processing Facility (DWPF), the function of which is to immobilize the waste as a durable borosilicate glass contained in stainless steel canisters prior to the placement of the canisters in a federal repository. The DWPF is now mechanically complete and is undergoing commissioning and run-in activities. A brief description of the DWPF process is provided.

Gee, J.T.; Iverson, D.C.; Bickford, D.F.

1992-12-31

72

Materials evaluation programs at the Defense Waste Processing Facility  

SciTech Connect

The Savannah River Site (SRS) has been operating a nuclear fuel cycle since the 1950s to produce nuclear materials in support of the national defense effort. About 83 million gallons of high-level waste produced since operations began has been consolidated by evaporation into 33 million gallons at the waste tank farm. The Department of Energy authorized the construction of the Defense Waste Processing Facility (DWPF), the function of which is to immobilize the waste as a durable borosilicate glass contained in stainless steel canisters prior to the placement of the canisters in a federal repository. The DWPF is now mechanically complete and is undergoing commissioning and run-in activities. A brief description of the DWPF process is provided.

Gee, J.T.; Iverson, D.C.; Bickford, D.F.

1992-01-01

73

ENGINEERED NEAR SURFACE DISPOSAL FACILITY OF THE INDUSTRIAL COMPLEX FOR SOLID RADWASTE MANAGEMENT AT CHERNOBYL NUCLEAR POWER PLANT  

SciTech Connect

As a part of the turnkey project ''Industrial Complex for Solid Radwaste Management (ICSRM) at the Chernobyl Nuclear Power Plant (ChNPP)'' an Engineered Near Surface Disposal Facility (ENSDF, LOT 3) will be built on the VEKTOR site within the 30 km Exclusion Zone of the ChNPP. This will be performed by RWE NUKEM GmbH, Germany, and it governs the design, licensing support, fabrication, assembly, testing, inspection, delivery, erection, installation and commissioning of the ENSDF. The ENSDF will receive low to intermediate level, short lived, processed/conditioned wastes from the ICSRM Solid Waste Processing Facility (SWPF, LOT 2), the ChNPP Liquid Radwaste Treatment Plant (LRTP) and the ChNPP Interim Storage Facility for RBMK Fuel Assemblies (ISF). The ENSDF has a capacity of 55,000 m{sup 3}. The primary functions of the ENSDF are: to receive, monitor and record waste packages, to load the waste packages into concrete disposal units, to enable capping and closure of the disposal unit s, to allow monitoring following closure. The ENSDF comprises the turnkey installation of a near surface repository in the form of an engineered facility for the final disposal of LILW-SL conditioned in the ICSRM SWPF and other sources of Chernobyl waste. The project has to deal with the challenges of the Chernobyl environment, the fulfillment of both Western and Ukrainian standards, and the installation and coordination of an international project team. It will be shown that proven technologies and processes can be assembled into a unique Management Concept dealing with all the necessary demands and requirements of a turnkey project. The paper emphasizes the proposed concepts for the ENSDF and their integration into existing infrastructure and installations of the VEKTOR site. Further, the paper will consider the integration of Western and Ukrainian Organizations into a cohesive project team and the requirement to guarantee the fulfillment of both Western standards and Ukrainian regulations and licensing requirements. The paper provides information on the output of the Detail Design and will reflect the progress of the design work.

Ziehm, Ronny; Pichurin, Sergey Grigorevich

2003-02-27

74

Waste receiving and processing facility module 1, detailed design report  

SciTech Connect

WRAP 1 baseline documents which guided the technical development of the Title design included: (a) A/E Statement of Work (SOW) Revision 4C: This DOE-RL contractual document specified the workscope, deliverables, schedule, method of performance and reference criteria for the Title design preparation. (b) Functional Design Criteria (FDC) Revision 1: This DOE-RL technical criteria document specified the overall operational criteria for the facility. The document was a Revision 0 at the beginning of the design and advanced to Revision 1 during the tenure of the Title design. (c) Supplemental Design Requirements Document (SDRD) Revision 3: This baseline criteria document prepared by WHC for DOE-RL augments the FDC by providing further definition of the process, operational safety, and facility requirements to the A/E for guidance in preparing the design. The document was at a very preliminary stage at the onset of Title design and was revised in concert with the results of the engineering studies that were performed to resolve the numerous technical issues that the project faced when Title I was initiated, as well as, by requirements established during the course of the Title II design.

Not Available

1993-10-01

75

The SRTM is moved into the Space Station Processing Facility  

NASA Technical Reports Server (NTRS)

The Shuttle Radar Topography Mission (SRTM) is moved into the Space Station Processing Facility to prepare it for launch targeted for September 1999. The primary payload on mission STS- 99, the SRTM consists of a specially modified radar system that will fly onboard the Space Shuttle during the 11-day mission. This radar system will gather data that will result in the most accurate and complete topographic map of the Earth's surface that has ever been assembled. SRTM is an international project spearheaded by the National Imagery and Mapping Agency and NASA, with participation of the German Aerospace Center DLR. Its objective is to obtain the most complete high-resolution digital topographic database of the Earth.

1999-01-01

76

Building success : the role of the state in the cultural facility development process  

E-print Network

This thesis investigates the question of what is the current role of the state in the cultural facility development process, and, in light of facility-related warnings that have been made over the years, what role should ...

Choy, Carolyn (Carolyn Anne)

2007-01-01

77

10 CFR 95.17 - Processing facility clearance.  

Code of Federal Regulations, 2011 CFR

...either accept an existing facility clearance granted by a current CSA and authorize possession of license or certificate related classified... (b) An interim Facility Clearance may be granted by the CSA on a temporary basis pending completion of the full...

2011-01-01

78

10 CFR 95.17 - Processing facility clearance.  

Code of Federal Regulations, 2014 CFR

...either accept an existing facility clearance granted by a current CSA and authorize possession of license or certificate related classified... (b) An interim Facility Clearance may be granted by the CSA on a temporary basis pending completion of the full...

2014-01-01

79

10 CFR 95.17 - Processing facility clearance.  

Code of Federal Regulations, 2012 CFR

...either accept an existing facility clearance granted by a current CSA and authorize possession of license or certificate related classified... (b) An interim Facility Clearance may be granted by the CSA on a temporary basis pending completion of the full...

2012-01-01

80

10 CFR 95.17 - Processing facility clearance.  

Code of Federal Regulations, 2010 CFR

...either accept an existing facility clearance granted by a current CSA and authorize possession of license or certificate related classified... (b) An interim Facility Clearance may be granted by the CSA on a temporary basis pending completion of the full...

2010-01-01

81

10 CFR 95.17 - Processing facility clearance.  

Code of Federal Regulations, 2013 CFR

...either accept an existing facility clearance granted by a current CSA and authorize possession of license or certificate related classified... (b) An interim Facility Clearance may be granted by the CSA on a temporary basis pending completion of the full...

2013-01-01

82

A survey of decontamination processes applicable to DOE nuclear facilities  

SciTech Connect

The objective of this survey was to select an appropriate technology for in situ decontamination of equipment interiors as part of the decommissioning of U.S. Department of Energy nuclear facilities. This selection depends on knowledge of existing chemical decontamination methods. This report provides an up-to-date review of chemical decontamination methods. According to available information, aqueous systems are probably the most universally used method for decontaminating and cleaning metal surfaces. We have subdivided the technologies, on the basis of the types of chemical solvents, into acid, alkaline permanganate, highly oxidizing, peroxide, and miscellaneous systems. Two miscellaneous chemical decontamination methods (electrochemical processes and foam and gel systems) are also described. A concise technical description of various processes is given, and the report also outlines technical considerations in the choice of technologies, including decontamination effectiveness, waste handing, fields of application, and the advantages and limitations in application. On the basis of this survey, six processes were identified for further evaluation. 144 refs., 2 tabs.

Chen, L.; Chamberlain, D.B.; Conner, C.; Vandegrift, G.F.

1997-05-01

83

Characterization of emissions from scrap metal processing facilities  

SciTech Connect

To prepare its members for the permitting requirements under Title 5 of the Clean Act, the Institute of Scrap Recycling Industries (ISRI) commissioned a project to develop a Title 5 applicability workbook. A critical element in the preparation of the workbook was the characterization of emissions from processes and equipment typically found in the scrap metal processing industry. This paper describes the approach to the preparation of the workbook with emphasis on characterization of specific emission units which are deemed important for Title 5. The paper describes the methodology employed for acquiring existing emissions information from equipment manufacturers, vendors, and scrap recycling facility operators. The data were aggregated and analyzed to develop a variety of emission tabulations for pollutants requiring analysis under Title 5. The project also involved a survey of numerous state and local air pollution agencies to determine regulatory requirements regarding critical issues in the scrap processing industry. The paper describes a methodology for determining Title 5 applicability with emphasis on the use of emission tabulations and example worksheets. Emissions data are presented for metal shredders to demonstrate the methodology and procedures developed during the project. Finally, the paper discusses the structure of the Title 5 applicability workbook and its dissemination to a major industry trade association.

Norco, J.E. [Versar, Inc., Lombard, IL (United States); Tyler, T. [Inst. of Scrap Recycling Industries, Inc., Washington, DC (United States)

1997-12-31

84

Defense Waste Processing Facility wasteform and canister description: Revision 2  

SciTech Connect

This document describes the reference wasteform and canister for the Defense Waste Processing Facility (DWPF). The principal changes include revised feed and glass product compositions, an estimate of glass product characteristics as a function of time after the start of vitrification, and additional data on glass leaching performance. The feed and glass product composition data are identical to that described in the DWPF Basic Data Report, Revision 90/91. The DWPF facility is located at the Savannah River Plant in Aiken, SC, and it is scheduled for construction completion during December 1989. The wasteform is borosilicate glass containing approximately 28 wt % sludge oxides, with the balance consisting of glass-forming chemicals, primarily glass frit. Borosilicate glass was chosen because of its stability toward reaction with potential repository groundwaters, its relatively high ability to incorporate nuclides found in the sludge into the solid matrix, and its reasonably low melting temperature. The glass frit contains approximately 71% SiO/sub 2/, 12% B/sub 2/O/sub 3/, and 10% Na/sub 2/O. Tests to quantify the stability of DWPF waste glass have been performed under a wide variety of conditions, including simulations of potential repository environments. Based on these tests, DWPF waste glass should easily meet repository criteria. The canister is filled with about 3700 lb of glass which occupies 85% of the free canister volume. The filled canister will generate approximately 690 watts when filled with oxides from 5-year-old sludge and precipitate from 15-year-old supernate. The radionuclide activity of the canister is about 233,000 curies, with an estimated radiation level of 5600 rad/hour at the canister surface. 14 figs., 28 tabs.

Baxter, R.G.

1988-12-01

85

75 FR 71733 - Requirements for Measurement Facilities Used for the Royalty Valuation of Processed Natural Gas  

Federal Register 2010, 2011, 2012, 2013, 2014

...the Royalty Valuation of Processed Natural Gas AGENCY: Bureau of Ocean Energy Management...requirements of royalty measurement equipment at gas plants and other processing facilities...the measurement of Federal production at gas processing plants when royalty is...

2010-11-24

86

Defense waste processing facility: the vitrification of high-level nuclear waste  

Microsoft Academic Search

The Defense Waste Processing Facility (DWPF) will be the United States' first production scale facility and the worlds' largest plant for the vitrification of high-level nuclear waste. The EDWPF, which is under construction at the Department of Energy's Savannah River Plant (SRP) will immobilize the highly radioactive fraction f over 33 million gallons of high-level nuclear waste. The facility is

Brumley

1986-01-01

87

Metals Processing Laboratory User Facility: Facilities capabilities; Interactive programs; Recent experience  

Microsoft Academic Search

MPLUS is a DOE designated User Facility providing extensive Technical Expertise and Specialized Facilities to assist Industrial and Academic Partners in becoming more Energy Efficient and enhancing US Competitiveness in the World market. MPLUS focusing on 7 major vision industries (aluminum, chemical, forest products, glass, metals castings, refineries, and steel) identified by DOE as being energy intensive, as well as

G. Mackiewicz-Ludtka; R. A. Raschke

1998-01-01

88

Estimating and bidding for the Space Station Processing Facility  

NASA Technical Reports Server (NTRS)

This new, unique Cost Engineering Report introduces the 800-page, C-100 government estimate for the Space Station Processing Facility (SSPF) and Volume IV Aerospace Construction Price Book. At the January 23, 1991, bid opening for the SSPF, the government cost estimate was right on target. Metric, Inc., Prime Contractor, low bid was 1.2 percent below the government estimate. This project contains many different and complex systems. Volume IV is a summary of the cost associated with construction, activation and Ground Support Equipment (GSE) design, estimating, fabrication, installation, testing, termination, and verification of this project. Included are 13 reasons the government estimate was so accurate; abstract of bids, for 8 bidders and government estimate with additive alternates, special labor and materials, budget comparison and system summaries; and comments on the energy credit from local electrical utility. This report adds another project to our continuing study of 'How Does the Low Bidder Get Low and Make Money?' which was started in 1967, and first published in the 1973 AACE Transaction with 10 more ways the low bidder got low. The accuracy of this estimate proves the benefits of our Kennedy Space Center (KSC) teamwork efforts and KSC Cost Engineer Tools which are contributing toward our goals of the Space Station.

Brown, Joseph A.

1993-01-01

89

The Hanford Site solid waste treatment project; Waste Receiving and Processing (WRAP) Facility  

Microsoft Academic Search

The Waste Receiving and Processing (WRAP) Facility will provide treatment and temporary storage (consisting of in-process storage) for radioactive and radioactive\\/hazardous mixed waste. This facility must be constructed and operated in compliance with all appropriate US Department of Energy (DOE) orders and Resource Conservation and Recovery Act (RCRA) regulations. The WRAP Facility will examine and certify, segregate\\/sort, and treat for

1991-01-01

90

Plantwide Energy Assessment of a Sugarcane Farming and Processing Facility  

SciTech Connect

A plantwide energy assessment was performed at Hawaiian Commercial & Sugar Co., an integrated sugarcane farming and processing facility on the island of Maui in the State of Hawaii. There were four main tasks performed for the plantwide energy assessment: 1) pump energy assessment in both field and factory operations, 2) steam generation assessment in the power production operations, 3) steam distribution assessment in the sugar manufacturing operation, and 4) electric power distribution assessment of the company system grid. The energy savings identified in each of these tasks were summarized in terms of fuel savings, electricity savings, or opportunity revenue that potentially exists mostly from increased electric power sales to the local electric utility. The results of this investigation revealed eight energy saving projects that can be implemented at HC&S. These eight projects were determined to have potential for $1.5 million in annual fuel savings or 22,337 MWh equivalent annual electricity savings. Most of the savings were derived from pump efficiency improvements and steam efficiency improvements both in generation and distribution. If all the energy saving projects were implemented and the energy savings were realized as less fuel consumed, there would be corresponding reductions in regulated air pollutants and carbon dioxide emissions from supplemental coal fuel. As HC&S is already a significant user of renewable biomass fuel for its operations, the projected reductions in air pollutants and emissions will not be as great compared to using only coal fuel for example. A classification of implementation priority into operations was performed for the identified energy saving projects based on payback period and ease of implementation.

Jakeway, L.A.; Turn, S.Q.; Keffer, V.I.; Kinoshita, C.M.

2006-02-27

91

47 CFR 3.42 - Location of processing facility.  

Code of Federal Regulations, 2014 CFR

... Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL AUTHORIZATION...AUTHORITIES IN MARITIME AND MARITIME MOBILE-SATELLITE RADIO SERVICES...facility. Settlement of maritime mobile and maritime mobile-satellite service...

2014-10-01

92

47 CFR 3.42 - Location of processing facility.  

Code of Federal Regulations, 2013 CFR

... Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL AUTHORIZATION...AUTHORITIES IN MARITIME AND MARITIME MOBILE-SATELLITE RADIO SERVICES...facility. Settlement of maritime mobile and maritime mobile-satellite service...

2013-10-01

93

47 CFR 3.42 - Location of processing facility.  

Code of Federal Regulations, 2011 CFR

... Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL AUTHORIZATION...AUTHORITIES IN MARITIME AND MARITIME MOBILE-SATELLITE RADIO SERVICES...facility. Settlement of maritime mobile and maritime mobile-satellite service...

2011-10-01

94

47 CFR 3.42 - Location of processing facility.  

Code of Federal Regulations, 2010 CFR

... Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL AUTHORIZATION...AUTHORITIES IN MARITIME AND MARITIME MOBILE-SATELLITE RADIO SERVICES...facility. Settlement of maritime mobile and maritime mobile-satellite service...

2010-10-01

95

47 CFR 3.42 - Location of processing facility.  

Code of Federal Regulations, 2012 CFR

... Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL AUTHORIZATION...AUTHORITIES IN MARITIME AND MARITIME MOBILE-SATELLITE RADIO SERVICES...facility. Settlement of maritime mobile and maritime mobile-satellite service...

2012-10-01

96

76 FR 44049 - Guidance for Fuel Cycle Facility Change Processes  

Federal Register 2010, 2011, 2012, 2013, 2014

...DG-3037 describes the types of changes for fuel cycle facilities for which...how licensees can evaluate potential changes to determine whether NRC approval is required before implementing a change. This regulatory guide also...

2011-07-22

97

A SURVEY OF COMMON PRACTICES IN COMMERCIAL BROILER PROCESSING FACILITIES AND THEIR EFFECTS ON WATER USE  

Technology Transfer Automated Retrieval System (TEKTRAN)

A survey of broiler processing facilities was conducted to determine the relationship between common industry practices and water use. One hundred-thirty written surveys were sent to broiler processing facilities throughout the U.S. with 35% (45/130) responding. The respondents represented a bell ...

98

MOLECULAR CHARACTERIZATION OF LISTERIA MONOCYTOGENES ISOLATED FROM A POULTRY FURTHER PROCESSING FACILITY AND FULLY COOKED PRODUCT  

Technology Transfer Automated Retrieval System (TEKTRAN)

This study was undertaken to explore environmental sources of L. monocytogenes in a commercial chicken further processing facility and to compare those isolates found to others detected on fully cooked product. A survey was conducted in the processing facility whereby forty environmental sites repr...

99

30 CFR 922.827 - Special performance standards-coal processing plants and support facilities not located at or...  

Code of Federal Regulations, 2010 CFR

...false Special performance standards-coal processing plants and support facilities...827 Special performance standards—coal processing plants and support facilities...Permanent Program Performance Standards—Coal Processing Plants and Support...

2010-07-01

100

30 CFR 912.827 - Special performance standards-coal processing plants and support facilities not located at or...  

Code of Federal Regulations, 2010 CFR

...false Special performance standards-coal processing plants and support facilities...827 Special performance standards—coal processing plants and support facilities...Permanent Program Performance Standards—Coal Processing Plants and Support...

2010-07-01

101

30 CFR 910.827 - Special performance standards-coal processing plants and support facilities not located at or...  

Code of Federal Regulations, 2010 CFR

...false Special performance standards-coal processing plants and support facilities...827 Special performance standards—coal processing plants and support facilities...Permanent Program Performance Standards—Coal Processing Plants and Support...

2010-07-01

102

30 CFR 941.827 - Special performance standards-coal processing plants and support facilities not located at or...  

Code of Federal Regulations, 2010 CFR

...false Special performance standards-coal processing plants and support facilities...827 Special performance standards—coal processing plants and support facilities...Permanent Program Performance Standards—Coal Processing Plants and Support...

2010-07-01

103

30 CFR 937.827 - Special performance standards-coal processing plants and support facilities not located at or...  

Code of Federal Regulations, 2010 CFR

...false Special performance standards-coal processing plants and support facilities...827 Special performance standards—coal processing plants and support facilities...Permanent Program Performance Standards—Coal Processing plants and Support...

2010-07-01

104

30 CFR 947.827 - Special performance standards-coal processing plants and support facilities not located at or...  

Code of Federal Regulations, 2010 CFR

...false Special performance standards-coal processing plants and support facilities...827 Special performance standards—coal processing plants and support facilities...Permanent Program Performance Standards—Coal Processing Plants and Support...

2010-07-01

105

30 CFR 933.827 - Special performance standards-coal processing plants and support facilities not located at or...  

Code of Federal Regulations, 2010 CFR

...false Special performance standards-coal processing plants and support facilities...827 Special performance standards—coal processing plants and support facilities...Permanent Program Performance Standards—Coal Processing Plants and Support...

2010-07-01

106

30 CFR 939.827 - Special performance standards-coal processing plants and support facilities not located at or...  

Code of Federal Regulations, 2010 CFR

...false Special performance standards-coal processing plants and support facilities...827 Special performance standards—coal processing plants and support facilities...Permanent Program Performance Standards—Coal Processing Plants and Support...

2010-07-01

107

30 CFR 933.827 - Special performance standards-coal processing plants and support facilities not located at or...  

Code of Federal Regulations, 2012 CFR

...false Special performance standards-coal processing plants and support facilities...827 Special performance standards—coal processing plants and support facilities...Permanent Program Performance Standards—Coal Processing Plants and Support...

2012-07-01

108

30 CFR 939.827 - Special performance standards-coal processing plants and support facilities not located at or...  

Code of Federal Regulations, 2013 CFR

...false Special performance standards-coal processing plants and support facilities...827 Special performance standards—coal processing plants and support facilities...Permanent Program Performance Standards—Coal Processing Plants and Support...

2013-07-01

109

30 CFR 947.827 - Special performance standards-coal processing plants and support facilities not located at or...  

Code of Federal Regulations, 2014 CFR

...false Special performance standards-coal processing plants and support facilities...827 Special performance standards—coal processing plants and support facilities...Permanent Program Performance Standards—Coal Processing Plants and Support...

2014-07-01

110

30 CFR 941.827 - Special performance standards-coal processing plants and support facilities not located at or...  

Code of Federal Regulations, 2013 CFR

...false Special performance standards-coal processing plants and support facilities...827 Special performance standards—coal processing plants and support facilities...Permanent Program Performance Standards—Coal Processing Plants and Support...

2013-07-01

111

30 CFR 933.827 - Special performance standards-coal processing plants and support facilities not located at or...  

Code of Federal Regulations, 2014 CFR

...false Special performance standards-coal processing plants and support facilities...827 Special performance standards—coal processing plants and support facilities...Permanent Program Performance Standards—Coal Processing Plants and Support...

2014-07-01

112

30 CFR 922.827 - Special performance standards-coal processing plants and support facilities not located at or...  

Code of Federal Regulations, 2013 CFR

...false Special performance standards-coal processing plants and support facilities...827 Special performance standards—coal processing plants and support facilities...Permanent Program Performance Standards—Coal Processing Plants and Support...

2013-07-01

113

30 CFR 947.827 - Special performance standards-coal processing plants and support facilities not located at or...  

Code of Federal Regulations, 2012 CFR

...false Special performance standards-coal processing plants and support facilities...827 Special performance standards—coal processing plants and support facilities...Permanent Program Performance Standards—Coal Processing Plants and Support...

2012-07-01

114

30 CFR 939.827 - Special performance standards-coal processing plants and support facilities not located at or...  

Code of Federal Regulations, 2014 CFR

...false Special performance standards-coal processing plants and support facilities...827 Special performance standards—coal processing plants and support facilities...Permanent Program Performance Standards—Coal Processing Plants and Support...

2014-07-01

115

30 CFR 912.827 - Special performance standards-coal processing plants and support facilities not located at or...  

Code of Federal Regulations, 2012 CFR

...false Special performance standards-coal processing plants and support facilities...827 Special performance standards—coal processing plants and support facilities...Permanent Program Performance Standards—Coal Processing Plants and Support...

2012-07-01

116

30 CFR 937.827 - Special performance standards-coal processing plants and support facilities not located at or...  

Code of Federal Regulations, 2014 CFR

...false Special performance standards-coal processing plants and support facilities...827 Special performance standards—coal processing plants and support facilities...Permanent Program Performance Standards—Coal Processing plants and Support...

2014-07-01

117

Evaluation of the DYMAC demonstration program. Phase III report. [LASL Plutonium Processing Facility  

SciTech Connect

An accountancy system based on the Dynamic Materials Accountability (DYMAC) System has been in operation at the Plutonium Processing Facility at the Los Alamos National Laboratory since January 1978. This system, now designated the Plutonium Facility/Los Alamos Safeguards System (PF/LASS), has enhanced nuclear material accountability and process control at the Los Alamos facility. The nondestructive assay instruments and the central computer system are operating accurately and reliably. As anticipated, several uses of the system, notably scrap control and quality control, have developed in addition to safeguards. The successes of this experiment strongly suggest that implementation of DYMAC-based systems should be attempted at other facilities.

Malanify, J.J.; Bearse, R.C. (comps.)

1980-12-31

118

Integrating Sustainability Programs into the Facilities Capital Planning Process  

ERIC Educational Resources Information Center

With detailed information about the costs and benefits of potential green investments, educational facilities can effectively evaluate which initiatives will ultimately provide the greatest results over the short and long term. Based on its overall goals, every school, college, or university will have different values and therefore different…

Buchanan, Susan

2011-01-01

119

State-of-the-Art Facility: A Planning Process.  

ERIC Educational Resources Information Center

Chief executive officers of school districts and facility planners must assume the role of change agent to meet the information needs of the 21st century. Public school learning, which will serve more groupings of people on a continual basis, will be disseminated through media learning centers. Management should follow six steps in planning…

Day, C. William; Speicher, A. Dean

120

Process Control Manual for Aerobic Biological Wastewater Treatment Facilities.  

ERIC Educational Resources Information Center

This Environmental Protection Agency (EPA) publication is an operations manual for activated sludge and trickling filter wastewater treatment facilities. The stated purpose of the manual is to provide an on-the-job reference for operators of these two types of treatment plants. The overall objective of the manual is to aid the operator in…

Environmental Protection Agency, Washington, DC. Office of Water Programs.

121

Processing of tetraphenylborate precipitates in the Savannah River Site Defense Waste Processing Facility  

SciTech Connect

The Savannah River Site has generated 77 million gallons of high level radioactive waste since the early 1950`s. By 1987, evaporation had reduced the concentration of the waste inventory to 35 million gallons. Currently, the wastes reside in large underground tanks as a soluble fraction stored, crystallized salts, and an insoluble fraction, sludge, which consists of hydrated transition metal oxides. The bulk of the radionuclides, 67 percent, are in the sludge while the crystallized salts and supernate are composed of the nitrates, nitrites, sulfates and hydroxides of sodium, potassium, and cesium. The principal radionuclide in the soluble waste is {sup 137}Cs with traces of {sup 90}Sr. The transformation of the high level wastes into a borosilicate glass suitable for permanent disposal is the goal of the Defense Waste Processing Facility (DWPF). To minimize the volume of glass produced, the soluble fraction of the waste is treated with sodium tetraphenylborate and sodium titanate in the waste tanks to precipitate the radioactive cesium ion and absorb the radioactive strontium ion. The precipitate is washed in the waste tanks and is then pumped to the DWPF. The precipitate, as received, is incompatible with the vitrification process because of the high aromatic carbon content and requires further chemical treatment. Within the DWPF, the precipitate is processed in the Salt Processing Cell to remove the aromatic carbon as benzene. The precipitate hydrolysis process hydrolyzes the tetraphenylborate anion to produce borate anion and benzene. The benzene is removed by distillation, decontaminated and transferred out of the DWPF for disposal.

Eibling, R.E.

1990-12-31

122

Processing of tetraphenylborate precipitates in the Savannah River Site Defense Waste Processing Facility  

SciTech Connect

The Savannah River Site has generated 77 million gallons of high level radioactive waste since the early 1950's. By 1987, evaporation had reduced the concentration of the waste inventory to 35 million gallons. Currently, the wastes reside in large underground tanks as a soluble fraction stored, crystallized salts, and an insoluble fraction, sludge, which consists of hydrated transition metal oxides. The bulk of the radionuclides, 67 percent, are in the sludge while the crystallized salts and supernate are composed of the nitrates, nitrites, sulfates and hydroxides of sodium, potassium, and cesium. The principal radionuclide in the soluble waste is {sup 137}Cs with traces of {sup 90}Sr. The transformation of the high level wastes into a borosilicate glass suitable for permanent disposal is the goal of the Defense Waste Processing Facility (DWPF). To minimize the volume of glass produced, the soluble fraction of the waste is treated with sodium tetraphenylborate and sodium titanate in the waste tanks to precipitate the radioactive cesium ion and absorb the radioactive strontium ion. The precipitate is washed in the waste tanks and is then pumped to the DWPF. The precipitate, as received, is incompatible with the vitrification process because of the high aromatic carbon content and requires further chemical treatment. Within the DWPF, the precipitate is processed in the Salt Processing Cell to remove the aromatic carbon as benzene. The precipitate hydrolysis process hydrolyzes the tetraphenylborate anion to produce borate anion and benzene. The benzene is removed by distillation, decontaminated and transferred out of the DWPF for disposal.

Eibling, R.E.

1990-01-01

123

Facility design philosophy: Tank Waste Remediation System Process support and infrastructure definition  

SciTech Connect

This report documents the current facility design philosophy for the Tank Waste Remediation System (TWRS) process support and infrastructure definition. The Tank Waste Remediation System Facility Configuration Study (FCS) initially documented the identification and definition of support functions and infrastructure essential to the TWRS processing mission. Since the issuance of the FCS, the Westinghouse Hanford Company (WHC) has proceeded to develop information and requirements essential for the technical definition of the TWRS treatment processing programs.

Leach, C.E.; Galbraith, J.D. [Westinghouse Hanford Co., Richland, WA (United States); Grant, P.R.; Francuz, D.J.; Schroeder, P.J. [Fluor Daniel, Inc., Richland, WA (United States)

1995-11-01

124

Measurements of methane emissions from natural gas gathering facilities and processing plants: measurement results.  

PubMed

Facility-level methane emissions were measured at 114 gathering facilities and 16 processing plants in the United States natural gas system. At gathering facilities, the measured methane emission rates ranged from 0.7 to 700 kg per hour (kg/h) (0.6 to 600 standard cubic feet per minute (scfm)). Normalized emissions (as a % of total methane throughput) were less than 1% for 85 gathering facilities and 19 had normalized emissions less than 0.1%. The range of methane emissions rates for processing plants was 3 to 600 kg/h (3 to 524 scfm), corresponding to normalized methane emissions rates <1% in all cases. The distributions of methane emissions, particularly for gathering facilities, are skewed. For example, 30% of gathering facilities contribute 80% of the total emissions. Normalized emissions rates are negatively correlated with facility throughput. The variation in methane emissions also appears driven by differences between inlet and outlet pressure, as well as venting and leaking equipment. Substantial venting from liquids storage tanks was observed at 20% of gathering facilities. Emissions rates at these facilities were, on average, around four times the rates observed at similar facilities without substantial venting. PMID:25668106

Mitchell, Austin L; Tkacik, Daniel S; Roscioli, Joseph R; Herndon, Scott C; Yacovitch, Tara I; Martinez, David M; Vaughn, Timothy L; Williams, Laurie L; Sullivan, Melissa R; Floerchinger, Cody; Omara, Mark; Subramanian, R; Zimmerle, Daniel; Marchese, Anthony J; Robinson, Allen L

2015-03-01

125

Overview of the Facility Safeguardability Analysis (FSA) Process  

SciTech Connect

Executive Summary The safeguards system of the International Atomic Energy Agency (IAEA) is intended to provide the international community with credible assurance that a State is fulfilling its safeguards obligations. Effective and cost-efficient IAEA safeguards at the facility level are, and will remain, an important element of IAEA safeguards as those safeguards evolve towards a “State-Level approach.” The Safeguards by Design (SBD) concept can facilitate the implementation of these effective and cost-efficient facility-level safeguards (Bjornard, et al. 2009a, 2009b; IAEA, 1998; Wonder & Hockert, 2011). This report, sponsored by the National Nuclear Security Administration’s Office of Nuclear Safeguards and Security, introduces a methodology intended to ensure that the diverse approaches to Safeguards by Design can be effectively integrated and consistently used to cost effectively enhance the application of international safeguards.

Bari, Robert A.; Hockert, John; Wonder, Edward F.; Johnson, Scott J.; Wigeland, Roald; Zentner, Michael D.

2012-08-01

126

Safety and environmental process for the design and construction of the National Ignition Facility  

SciTech Connect

The National Ignition Facility (NIF) is a U.S. Department of Energy (DOE) laser fusion experimental facility currently under construction at the Lawrence Livermore National Laboratory (LLNL). This paper describes the safety and environmental processes followed by NIF during the design and construction activities.

Brereton, S.J., LLNL

1998-05-27

127

High level nuclear waste treatment in the Defense Waste Processing Facility: Overview and integrated flowsheet model  

Microsoft Academic Search

Design and construction of the world's largest vitrification facility for high level nuclear waste has been nearly completed at the US Department of Energy's Savannah River Site. Equipment testing and calibration are currently being performed in preparation for the nonradioactive Chemical Runs in the late 1991. In 1993, the Defense Waste Processing Facility (DWPF) will begin producing 100 kg\\/hr of

A. S. Choi; J. R. Fowler; R. E. Jr. Edwards; C. T. Randall

1991-01-01

128

RECOMMENDED FRIT COMPOSITION FOR INITIAL SLUDGE BATCH 5 PROCESSING AT THE DEFENSE WASTE PROCESSING FACILITY  

SciTech Connect

The Savannah River National Laboratory (SRNL) Frit Development Team recommends that the Defense Waste Processing Facility (DWPF) utilize Frit 418 for initial processing of high level waste (HLW) Sludge Batch 5 (SB5). The extended SB5 preparation time and need for DWPF feed have necessitated the use of a frit that is already included on the DWPF procurement specification. Frit 418 has been used previously in vitrification of Sludge Batches 3 and 4. Paper study assessments predict that Frit 418 will form an acceptable glass when combined with SB5 over a range of waste loadings (WLs), typically 30-41% based on nominal projected SB5 compositions. Frit 418 has a relatively high degree of robustness with regard to variation in the projected SB5 composition, particularly when the Na{sub 2}O concentration is varied. The acceptability (chemical durability) and model applicability of the Frit 418-SB5 system will be verified experimentally through a variability study, to be documented separately. Frit 418 has not been designed to provide an optimal melt rate with SB5, but is recommended for initial processing of SB5 until experimental testing to optimize a frit composition for melt rate can be completed. Melt rate performance can not be predicted at this time and must be determined experimentally. Note that melt rate testing may either identify an improved frit for SB5 processing (one which produces an acceptable glass at a faster rate than Frit 418) or confirm that Frit 418 is the best option.

Fox, K; Tommy Edwards, T; David Peeler, D

2008-06-25

129

FRIT OPTIMIZATION FOR SLUDGE BATCH PROCESSING AT THE DEFENSE WASTE PROCESSING FACILITY  

SciTech Connect

The Savannah River National Laboratory (SRNL) Frit Development Team recommends that the Defense Waste Processing Facility (DWPF) utilize Frit 418 for initial processing of high level waste (HLW) Sludge Batch 5 (SB5). The extended SB5 preparation time and need for DWPF feed have necessitated the use of a frit that is already included on the DWPF procurement specification. Frit 418 has been used previously in vitrification of Sludge Batches 3 and 4. Paper study assessments predict that Frit 418 will form an acceptable glass when combined with SB5 over a range of waste loadings (WLs), typically 30-41% based on nominal projected SB5 compositions. Frit 418 has a relatively high degree of robustness with regard to variation in the projected SB5 composition, particularly when the Na{sub 2}O concentration is varied. The acceptability (chemical durability) and model applicability of the Frit 418-SB5 system will be verified experimentally through a variability study, to be documented separately. Frit 418 has not been designed to provide an optimal melt rate with SB5, but is recommended for initial processing of SB5 until experimental testing to optimize a frit composition for melt rate can be completed. Melt rate performance can not be predicted at this time and must be determined experimentally. Note that melt rate testing may either identify an improved frit for SB5 processing (one which produces an acceptable glass at a faster rate than Frit 418) or confirm that Frit 418 is the best option.

Fox, K.

2009-01-28

130

Seismic Qualification Program Plan for continued operation at DOE-SRS Nuclear Material Processing facilities  

SciTech Connect

The Savannah River Facilities for the most part were constructed and maintained to standards that were developed by Du Pont and are not rigorously in compliance with the current General Design Criteria (GDC); DOE Order 6430.1A requirements. In addition, any of the facilities were built more than 30 years ago, well before DOE standards for design were issued. The Westinghouse Savannah River Company (WSRC) has developed a program to address the evaluation of the Nuclear Material Processing (NMP) facilities to GDC requirements. The program includes a facility base-line review, assessment of areas that are not in compliance with the GDC requirements, planned corrective actions or exemptions to address the requirements, and a safety assessment. The authors from their direct involvement with the Program, describe the program plan for seismic qualification including other natural phenomena hazards for existing NMP facility structures to continue operation. Professionals involved in similar effort at other DOE facilities may find the program useful.

Talukdar, B.K.; Kennedy, W.N.

1991-01-01

131

Seismic Qualification Program Plan for continued operation at DOE-SRS Nuclear Material Processing facilities  

SciTech Connect

The Savannah River Facilities for the most part were constructed and maintained to standards that were developed by Du Pont and are not rigorously in compliance with the current General Design Criteria (GDC); DOE Order 6430.1A requirements. In addition, any of the facilities were built more than 30 years ago, well before DOE standards for design were issued. The Westinghouse Savannah River Company (WSRC) has developed a program to address the evaluation of the Nuclear Material Processing (NMP) facilities to GDC requirements. The program includes a facility base-line review, assessment of areas that are not in compliance with the GDC requirements, planned corrective actions or exemptions to address the requirements, and a safety assessment. The authors from their direct involvement with the Program, describe the program plan for seismic qualification including other natural phenomena hazards for existing NMP facility structures to continue operation. Professionals involved in similar effort at other DOE facilities may find the program useful.

Talukdar, B.K.; Kennedy, W.N.

1991-12-31

132

Energy Efficiency Opportunities in California Food Processing Facilities  

E-print Network

) and the Energy Commission cover process steam, process heating, compressed air, motor, pump, and fan systems. Technical services provided consist of conducting both targeted and plant-wide assessments of energy-consuming plant equipment and systems. Since 2004...

Wong, T.; Kazama, D; Wang, J.

2008-01-01

133

Pulmonary Alveolar Proteinosis in Workers at an Indium Processing Facility  

PubMed Central

Two cases of pulmonary alveolar proteinosis, including one death, occurred in workers at a facility producing indium-tin oxide (ITO), a compound used in recent years to make flat panel displays. Both workers were exposed to airborne ITO dust and had indium in lung tissue specimens. One worker was tested for autoantibodies to granulocytemacrophage–colonystimulating factor (GM-CSF) and found to have an elevated level. These cases suggest that inhalational exposure to ITO causes pulmonary alveolar proteinosis, which may occur via an autoimmune mechanism. PMID:20019344

Cummings, Kristin J.; Donat, Walter E.; Ettensohn, David B.; Roggli, Victor L.; Ingram, Peter; Kreiss, Kathleen

2010-01-01

134

Facility Siting and Layout Optimization Based on Process Safety  

E-print Network

-4 Correlated sigmoid function parameters for BLEVE and VCE ................. 97 4-5 Optimized cost from the overpressure-based approach ............................. 98 4-6 Population data and weighting factor for each facility... this release is given by the advection equation g3105g3004g3105g3047 g3397 g3105g3105g3051g3037 g3435g1873g3037 g1829 g3439 g3404 0 (1-1) where the subscript j represents the summation for all coordinate directions x, y, and z, and uj...

Jung, Seungho

2012-02-14

135

78 FR 69539 - Removal of Attestation Process for Facilities Using H-1A Registered Nurses  

Federal Register 2010, 2011, 2012, 2013, 2014

...Attestation Process for Facilities Using H-1A Registered Nurses AGENCY: Employment...foreign workers as registered nurses under the H-1A visa program. These subparts became...INFORMATION: In 1989, Congress created an H-1A nonimmigrant classification...

2013-11-20

136

Characterization of decontamination and decommissioning wastes expected from the major processing facilities in the 200 Areas  

SciTech Connect

This study was intended to characterize and estimate the amounts of equipment and other materials that are candidates for removal and subsequent processing in a solid waste facility when the major processing and handling facilities in the 200 Areas of the Hanford Site are decontaminated and decommissioned. The facilities in this study were selected based on processing history and on the magnitude of the estimated decommissioning cost cited in the Surplus Facilities Program Plan; Fiscal Year 1993 (Winship and Hughes 1992). The facilities chosen for this study include B Plant (221-B), T Plant (221-T), U Plant (221-U), the Uranium Trioxide (UO{sub 3}) Plant (224-U and 224-UA), the Reduction Oxidation (REDOX) or S Plant (202-S), the Plutonium Concentration Facility for B Plant (224-B), and the Concentration Facility for the Plutonium Finishing Plant (PFP) and REDOX (233-S). This information is required to support planning activities for current and future solid waste treatment, storage, and disposal operations and facilities.

Amato, L.C.; Franklin, J.D.; Hyre, R.A.; Lowy, R.M.; Millar, J.S.; Pottmeyer, J.A. [Los Alamos Technical Associates, Kennewick, WA (United States); Duncan, D.R. [Westinghouse Hanford Co., Richland, WA (United States)

1994-08-01

137

Determination of Satisfactory Scale for Data Processing Facilities  

ERIC Educational Resources Information Center

An analysis to ascertain which electronic data processing (EDP) systems are most flexible in processing wide ranges of volumes efficiently. A simulation model of the job environment of three common EDP systems provides information on the shape of their cost functions in the neighborhood of optimality. (Author/LS)

Solomon, Susan L.

1974-01-01

138

Lessons learned from the Siting Process of an Interim Storage Facility in Spain - 12024  

SciTech Connect

On 29 December 2009, the Spanish government launched a site selection process to host a centralised interim storage facility for spent fuel and high-level radioactive waste. It was an unprecedented call for voluntarism among Spanish municipalities to site a controversial facility. Two nuclear municipalities, amongst a total of thirteen municipalities from five different regions, presented their candidatures to host the facility in their territories. For two years the government did not make a decision. Only in November 30, 2011, the new government elected on 20 November 2011 officially selected a non-nuclear municipality, Villar de Canas, for hosting this facility. This paper focuses on analysing the factors facilitating and hindering the siting of controversial facilities, in particular the interim storage facility in Spain. It demonstrates that involving all stakeholders in the decision-making process should not be underestimated. In the case of Spain, all regional governments where there were candidate municipalities willing to host the centralised interim storage facility, publicly opposed to the siting of the facility. (author)

Lamolla, Meritxell Martell [MERIENCE Strategic Thinking, 08734 Olerdola, Barcelona (Spain)

2012-07-01

139

Progress of the High Level Waste Program at the Defense Waste Processing Facility - 13178  

SciTech Connect

The Defense Waste Processing Facility at the Savannah River Site treats and immobilizes High Level Waste into a durable borosilicate glass for safe, permanent storage. The High Level Waste program significantly reduces environmental risks associated with the storage of radioactive waste from legacy efforts to separate fissionable nuclear material from irradiated targets and fuels. In an effort to support the disposition of radioactive waste and accelerate tank closure at the Savannah River Site, the Defense Waste Processing Facility recently implemented facility and flowsheet modifications to improve production by 25%. These improvements, while low in cost, translated to record facility production in fiscal years 2011 and 2012. In addition, significant progress has been accomplished on longer term projects aimed at simplifying and expanding the flexibility of the existing flowsheet in order to accommodate future processing needs and goals. (authors)

Bricker, Jonathan M.; Fellinger, Terri L.; Staub, Aaron V.; Ray, Jeff W.; Iaukea, John F. [Savannah River Remediation, Aiken, South Carolina, 29808 (United States)] [Savannah River Remediation, Aiken, South Carolina, 29808 (United States)

2013-07-01

140

Leveraging the PASRR process to divert and transition elders with mental illness from nursing facilities.  

PubMed

This study examines how some states use Pre-Admission Screening and Resident Review (PASRR) processes to provide opportunities for nursing facility diversion and/or transition for elders with mental illness and highlights potential promising practices from selected states. Document reviews and interviews were conducted with key informants across 13 states. Key themes presented are 1) philosophies of diversion/transition embedded into PASRR processes, 2) questions on screening tools used to promote diversion/transition, 3) PASRR authorities' collaboration with other initiatives to promote diversion/transition, and 4) the extent to which states used PASRR to help identify mental health supports needed by nursing facility residents. Findings provide policy-relevant information to help states consider enhancement of their PASRR processes to further support nursing facility diversion and transition for persons with mental illness and improved mental health services for those in nursing facilities. PMID:21740204

O'Connor, Darlene; Ingle, Jennifer S; Wamback, Kimberly N

2011-01-01

141

A new design concept for an automated peanut processing facility  

SciTech Connect

Peanut quality is a major concern in all phases of the peanut industry from production to manufacturing. Postharvest processing of peanuts can have profound effects on the quality and safety of peanut food products. Curing is a key step in postharvest processing. Curing peanuts improperly can significantly reduce quality, and result in significant losses to both farmers and processors. The conventional drying system designed in the 1960`s is still being used in the processing of the peanuts today. The objectives of this paper is to design and develop a new automated peanut drying system for dry climates capable of handling approximately 20 million lbm of peanuts per harvest season.

Ertas, A.; Tanju, B.T. [Texas Tech Univ., Lubbock, TX (United States); Fair, W.T. [Long Shot, Inc., Seminole, TX (United States); Butts, C. [National Peanut Research Lab., Dawson, GA (United States)

1996-12-31

142

Electronic Data Processing Curricula and Facilities: A College Survey  

ERIC Educational Resources Information Center

Data from a survey of colleges and universities indicate most offer some academic program in electronic data processing, but only larger institutions offer computer science as a major field. (Author/RA)

Mc Gough, Bobby C.

1971-01-01

143

REPORT ON TWO PROCESS EQUIPMENT CHANGES FOR FEDERAL PAINTING FACILITIES  

EPA Science Inventory

EPA's National Risk Management Research Laboratory (NRMRL) has actively participated in the Strategic Environmental Research and Development Program (SERDP) to develop innovative technologies and processes for the reduction of environmental pollution. Technology developments fro...

144

Lax regulation of oil vessels and processing facilities continues  

SciTech Connect

Four years after the grounding of the Exxon Valdez on Bligh Reef in 1989, oil spills continue to occur with alarming frequency: In 1992 the Shoko Maru spilled more than 96,000 gallons of crude oil into the Texas City Channel and a leak at an offshore well in Louisiana spilled at least 30,000 gallons; in 1991 alone, there were 677 spills in the Port of New Orleans, 398 spills in New York Harbor, 239 spills in Port of Hampton Roads, 235 spills in Port of Philadelphia, 130 spills in Seattle, and 116 spills in Boston Harbor. The amount of oil spilled in these ports alone in one year exceeded 300,000 gallons. The recent huge spills off foreign coasts-the Shetland Islands, the coasts of Spain and Indonesia-reinforce the importance of regulation. The Oil Pollution Act, passed in August 1992 mandates that all vessels traveling in US waters and all oil transfer and storage facilities take measurable and enforceable actions to reduce spills. However, major problems remain, both with the act and with enforcing it. This article discusses both the problems and the solutions to pollution control of oil spills.

Sankovitch, N.

1993-12-31

145

Zero-Release Mixed Waste Process Facility Design and Testing  

SciTech Connect

A zero-release offgas cleaning system for mixed-waste thermal treatment processes has been evaluated through experimental scoping tests and process modeling. The principles can possibly be adapted to a fluidized-bed calcination or stream reforming process, a waste melter, a rotarykiln process, and possibly other waste treatment thermal processes. The basic concept of a zero-release offgas cleaning system is to recycle the bulk of the offgas stream to the thermal treatment process. A slip stream is taken off the offgas recycle to separate and purge benign constituents that may build up in the gas, such as water vapor, argon, nitrogen, and CO2. Contaminants are separated from the slip stream and returned to the thermal unit for eventual destruction or incorporation into the waste immobilization media. In the current study, a standard packed-bed scrubber, followed by gas separation membranes, is proposed for removal of contaminants from the offgas recycle slipstream. The scrub solution is continuously regenerated by cooling and precipitating sulfate, nitrate, and other salts that reach a solubility limit in the scrub solution. Mercury is also separated by the scrubber. A miscible chemical oxidizing agent was shown to effectively oxidize mercury and also NO, thus increasing their removal efficiency. The current study indicates that the proposed process is a viable option for reducing offgas emissions. Consideration of the proposed closed-system offgas cleaning loop is warranted when emissions limits are stringent, or when a reduction in the total gas emissions volume is desired. Although the current closed-loop appears to be technically feasible, economical considerations must be also be evaluated on a case-by-case basis.

Richard D. Boardman; John A. Deldebbio; Robert J. Kirkham; Martin K. Clemens; Robert Geosits; Ping Wan

2004-02-01

146

Grout pump selection process for the Transportable Grout Facility  

SciTech Connect

Selected low-level radioactive liquid wastes at Hanford will be disposed by grouting. Grout is formed by mixing the liquid wastes with solid materials, including Portland cement, fly ash, and clay. The mixed grouts will be pumped to disposal sites (e.g., trenches and buried structures) where the grout will be allowed to harden and, thereby, immobilize the wastes. A Transportable Grout Facility (TGF) will be constructed and operated by Rockwell Hanford Operations to perform the grouting function. A critical component of the TGF is the grout pump. A preliminary review of pumping requirements identified reciprocating pumps and progressive cavity pumps as the two classes of pumps best suited for the application. The advantages and disadvantages of specific types of pumps within these two classes were subsequently investigated. As a result of this study, the single-screw, rotary positive displacement pump was identified as the best choice for the TGF application. This pump has a simple design, is easy to operate, is rugged, and is suitable for a radioactive environment. It produces a steady, uniform flow that simplifies suction and discharge piping requirements. This pump will likely require less maintenance than reciprocating pumps and can be disassembled rapidly and decontaminated easily. If the TGF should eventually require discharge pressures in excess of 500 psi, a double-acting duplex piston pump is recommended because it can operate at low speed, with only moderate flow rate fluctuations. However, the check valves, stuffing box, piston, suction, and discharge piping must be designed carefully to allow trouble-free operations.

McCarthy, D.; Treat, R.L.

1985-01-01

147

SSOPs and GMPs for commercial shell egg processing facilities  

Technology Transfer Automated Retrieval System (TEKTRAN)

Hazard analysis and critical control programs (HACCP) will eventually be required for commercial shell egg processing plants. Sanitation is an essential prerequisite program for HACCP and is based upon current Good Manufacturing Practices (cGMPs) as listed in the Code of Federal Regulations. Good ...

148

Attached Bacterial Cell Contamination of Shell Egg Processing Facilities  

Technology Transfer Automated Retrieval System (TEKTRAN)

Sanitation is vital to providing safe, healthy food to consumers. Understanding the degree to which microorganisms persist on specific equipment or locations contributes to developing effective sanitation programs. Certain microbial populations may be used to determine areas within a processing pl...

149

Waste Receiving and Processing Facility Module 2A: Advanced Conceptual Design Report. Volume 1  

SciTech Connect

This ACDR was performed following completed of the Conceptual Design Report in July 1992; the work encompassed August 1992 to January 1994. Mission of the WRAP Module 2A facility is to receive, process, package, certify, and ship for permanent burial at the Hanford site disposal facilities the Category 1 and 3 contact handled low-level radioactive mixed wastes that are currently in retrievable storage at Hanford and are forecast to be generated over the next 30 years by Hanford, and waste to be shipped to Hanford from about DOE sites. This volume provides an introduction to the ACDR process and the scope of the task along with a project summary of the facility, treatment technologies, cost, and schedule. Major areas of departure from the CDR are highlighted. Descriptions of the facility layout and operations are included.

Not Available

1994-03-01

150

Structure, Components, and Interfaces of the Airborne Prism Experiment (APEX) Processing and Archiving Facility  

Microsoft Academic Search

The product generation from hyperspectral sensor data has high requirements on the processing infrastructure, both hardware and software. The Airborne Prism Experiment (APEX) processing and archiving facility has been set up to provide for the automated generation of level-1 calibrated data and user-configurable on-demand product generation for higher processing levels. The system offers full reproducibility of user orders and processing

Andreas Hueni; Jan Biesemans; Koen Meuleman; Francesco Dell' Endice; Daniel Schlapfer; Daniel Odermatt; Mathias Kneubuehler; Stefan Adriaensen; Stephen Kempenaers; Jens Nieke; Klaus I. Itten

2009-01-01

151

High level nuclear waste treatment in the Defense Waste Processing Facility: Overview and integrated flowsheet model  

SciTech Connect

Design and construction of the world`s largest vitrification facility for high level nuclear waste has been nearly completed at the US Department of Energy`s Savannah River Site. Equipment testing and calibration are currently being performed in preparation for the nonradioactive Chemical Runs in the late 1991. In 1993, the Defense Waste Processing Facility (DWPF) will begin producing 100 kg/hr of radioactive waste glass at 28 wt% waste oxide loading. This paper describes all phases of waste processing operations in DWPF and waste tank farms using the integrated flowsheet modeling approach. Particular emphases are given to recent developments in the DWPF processes and design.

Choi, A.S.; Fowler, J.R.; Edwards, R.E. Jr.; Randall, C.T.

1991-12-31

152

High level nuclear waste treatment in the Defense Waste Processing Facility: Overview and integrated flowsheet model  

SciTech Connect

Design and construction of the world's largest vitrification facility for high level nuclear waste has been nearly completed at the US Department of Energy's Savannah River Site. Equipment testing and calibration are currently being performed in preparation for the nonradioactive Chemical Runs in the late 1991. In 1993, the Defense Waste Processing Facility (DWPF) will begin producing 100 kg/hr of radioactive waste glass at 28 wt% waste oxide loading. This paper describes all phases of waste processing operations in DWPF and waste tank farms using the integrated flowsheet modeling approach. Particular emphases are given to recent developments in the DWPF processes and design.

Choi, A.S.; Fowler, J.R.; Edwards, R.E. Jr.; Randall, C.T.

1991-01-01

153

Preliminary technical data summary No. 3 for the Defense Waste Processing Facility  

SciTech Connect

This document presents an update on the best information presently available for the purpose of establishing the basis for the design of a Defense Waste Processing Facility. Objective of this project is to provide a facility to fix the radionuclides present in Savannah River Plant (SRP) high-level liquid waste in a high-integrity form (glass). Flowsheets and material balances reflect the alternate CAB case including the incorporation of low-level supernate in concrete. (DLC)

Landon, L.F. (comp.)

1980-05-01

154

Integrating real-time digital signal processing capability into a large research and development facility  

SciTech Connect

The Instrumentation and Controls Division at Oak Ridge National Laboratory recently developed and installed a large scale, real-time measurement system for the world`s largest pressurized water tunnel. This water tunnel, the Large Cavitation Channel (LCC) provides a research and development facility for the study of acoustic phenomena to aid in model testing of new naval ship and submarine designs. The LCC design required the development of a near-field beamformer in addition to extending the range of real-time processing capability to frequencies unavailable at other facilities. The beamformer acquires and processes time-domain acoustic data at 9.5 MB/s from up to 45 hydrophones while. The acoustic processing software provides for the real-time analysis of acoustic data. Up to 128 facility sensors are sampled, time stamped, and stored at 600 kB/s. The system generates information for acoustic phenomena and facility measurements in real time so that the operator can make facility adjustments to control the running experiment This real-time control of facility conditions requires that the measurement system integrate facility and acoustic data for simultaneous display to the operator in engineering units via high-end workstations. A dual-host minicomputer configuration with high-end workstations connected via an Ethernet networking cluster controls and integrates measurement and display subsystems. The system architecture integrates high-performance array processors, matrix switches, signal conditioning amplifiers, antialiasing filter subsystems, high-precision analog-to-digital subsystems, high-performance data disks, and support equipment The hardware and software architecture with its distributed computers and distributed real-time data base, the signal processing algorithms and architecture, and the flexible user interface for facility and measurements integration are described in this paper.

Manges, W.W.; Mallinak-Glassell, J.T.; Breeding, J.E.; Jansen, J.M. Jr.; Tate, R.M.; Bentz, R.R.

1992-12-31

155

Integrating real-time digital signal processing capability into a large research and development facility  

SciTech Connect

The Instrumentation and Controls Division at Oak Ridge National Laboratory recently developed and installed a large scale, real-time measurement system for the world's largest pressurized water tunnel. This water tunnel, the Large Cavitation Channel (LCC) provides a research and development facility for the study of acoustic phenomena to aid in model testing of new naval ship and submarine designs. The LCC design required the development of a near-field beamformer in addition to extending the range of real-time processing capability to frequencies unavailable at other facilities. The beamformer acquires and processes time-domain acoustic data at 9.5 MB/s from up to 45 hydrophones while. The acoustic processing software provides for the real-time analysis of acoustic data. Up to 128 facility sensors are sampled, time stamped, and stored at 600 kB/s. The system generates information for acoustic phenomena and facility measurements in real time so that the operator can make facility adjustments to control the running experiment This real-time control of facility conditions requires that the measurement system integrate facility and acoustic data for simultaneous display to the operator in engineering units via high-end workstations. A dual-host minicomputer configuration with high-end workstations connected via an Ethernet networking cluster controls and integrates measurement and display subsystems. The system architecture integrates high-performance array processors, matrix switches, signal conditioning amplifiers, antialiasing filter subsystems, high-precision analog-to-digital subsystems, high-performance data disks, and support equipment The hardware and software architecture with its distributed computers and distributed real-time data base, the signal processing algorithms and architecture, and the flexible user interface for facility and measurements integration are described in this paper.

Manges, W.W.; Mallinak-Glassell, J.T.; Breeding, J.E.; Jansen, J.M. Jr.; Tate, R.M.; Bentz, R.R.

1992-01-01

156

High level nuclear waste treatment in the Defense Waste Processing Facility: Overview and integrated flowsheet model  

Microsoft Academic Search

Design and construction of the world`s largest vitrification facility for high level nuclear waste has been nearly completed at the US Department of Energy`s Savannah River Site. Equipment testing and calibration are currently being performed in preparation for the nonradioactive Chemical Runs in the late 1991. In 1993, the Defense Waste Processing Facility (DWPF) will begin producing 100 kg\\/hr of

A. S. Choi; J. R. Fowler; R. E. Jr. Edwards; C. T. Randall

1991-01-01

157

Assessment of Microbial Contaminants Present on Vacuum Loaders in Shell Egg Processing Facilities  

Technology Transfer Automated Retrieval System (TEKTRAN)

Previous studies have shown vacuum loader cups in shell egg processing facilities to be a reservoir of high levels of bacteria. This study was conducted to determine the prevalence of pathogens on the surface of the vacuum loaders cups. An off-line and a mixed operation shell egg processing facili...

158

Biomass resource facilities and biomass conversion processing for fuels and chemicals  

Microsoft Academic Search

Biomass resources include wood and wood wastes, agricultural crops and their waste byproducts, municipal solid waste, animal wastes, waste from food processing and aquatic plants and algae. Biomass is used to meet a variety of energy needs, including generating electricity, heating homes, fueling vehicles and providing process heat for industrial facilities. The conversion technologies for utilizing biomass can be separated

Ayhan Demirba?

2001-01-01

159

AERIAL SHOWING COMPLETED REMOTE ANALYTICAL FACILITY (CPP627) ADJOINING FUEL PROCESSING ...  

Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

AERIAL SHOWING COMPLETED REMOTE ANALYTICAL FACILITY (CPP-627) ADJOINING FUEL PROCESSING BUILDING AND EXCAVATION FOR HOT PILOT PLANT TO RIGHT (CPP-640). INL PHOTO NUMBER NRTS-60-1221. J. Anderson, Photographer, 3/22/1960 - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

160

Automation of process accountability flow diagrams at Los Alamos National Laboratory's Plutonium Facility  

Microsoft Academic Search

Many industrial processes (including reprocessing activities; nuclear fuel fabrication; and material storage, measurement and transfer) make use of process flow diagrams. These flows can be used for material accountancy and for data analysis. At Los Alamos National Laboratory (LANL), the Technical Area (TA)-55 Plutonium Facility is home to various research and development activities involving the use of special nuclear material

P. Knepper; R. Whiteson; R. Strittmatter; K. Mousseau

1999-01-01

161

ST. LOUIS DEMONSTRATION: REFUSE PROCESSING PLANT EQUIPMENT, FACILITIES, AND ENVIRONMENTAL EVALUATIONS  

EPA Science Inventory

This report presents the results of processing plant evaluations of the St. Louis-Union Electric Refuse Fuel Project, including equipment and facilities as well as assessment of environmental emissions at both the processing and power plants. Data on plant material flows and oper...

162

Inline Monitors for Measuring Cs-137 in the SRS Caustic Side Solvent Extraction Process  

SciTech Connect

The Department of Energy (DOE) selected Caustic-Side Solvent Extraction (CSSX) as the preferred technology for the removal of radioactive cesium from High-Level Waste (HLW) at the Savannah River Site (SRS). Before the full-scale Salt Waste Processing Facility (SWPF) becomes operational, a portion of dissolved saltcake waste will be processed through a Modular CSSX Unit (MCU). The MCU employs the CSSX process, a continuous process that uses a novel solvent to extract cesium from waste and concentrate it in dilute nitric acid. Of primary concern is Cs-137 which makes the solution highly radioactive. Since the MCU does not have the capacity to wait for sample results while continuing to operate, the Waste Acceptance Strategy is to perform inline analyses. Gamma-ray monitors are used to: measure the Cs-137 concentration in the decontaminated salt solution (DSS) before entering the DSS Hold Tank; measure the Cs-137 concentration in the strip effluent (SE) before entering the SE Hold Tank; and verify proper operation of the solvent extraction system by verifying material balance within the process. Since this gamma ray monitoring system application is unique, specially designed shielding was developed and software was written and acceptance tested by Savannah River National Laboratory (SRNL) personnel. The software is a LabView-based application that serves as a unified interface for controlling the monitor hardware and communicating with the host Distributed Control System. This paper presents the design, fabrication and implementation of this monitoring system.

Casella, V

2006-04-24

163

Process logic flow diagram write up for the Advanced Recovery and Integrated Extraction System (ARIES) facility  

SciTech Connect

The Department of Energy Office of Fissile Materials Disposition (DOE-MD) is planning a facility to disassemble pits and convert the plutonium in the pits into a form suitable for international inspection. The facility, called the Advanced Recovery and Integrated Extraction System (ARIES) Facility, must handle much of the 38.2 metric tons of plutonium declared excess to national security needs in ten years of operation. A process logic flow diagram for the ARIES Facility is presented here. This flow diagram is based on and supported by a library of fact sheets on topics that impact the design of the facility. Developing the flow diagram raised issues that significantly impact the design of the facility. These issues are discussed later in this document, and for some issues, discussed in greater detail in the appropriate fact sheets. The flow diagram is designed to show requirements that dictate the need for space and/or equipment. In physically designing the facility, the same space or equipment may be used to meet several requirements. The flow diagram merely shows the activities that need to occur to meet requirements for the facility. The flow diagram is not associated with any DOE site. The requirements shown on the flow diagram may be met by an existing facilities at a given site. The flow diagram and this write up do not contain a great deal of detail on how each step in the diagram is performed. At this stage of design, the flow diagram merely identifies the need for the activity. Examples for some of the activities are given in the appropriate fact sheet. How the steps are performed becomes more defined as the design of the facility progresses.

Zygmunt, S.J.

1997-05-01

164

Development of Advanced Multizone Facilities for Microgravity Processing  

NASA Technical Reports Server (NTRS)

NASA has been interested in experimental ground based study to investigate the fundamental processes involved in phase transformation processes during growth of metallic, nonmetallic and electronic materials. Solidification, vapor growth and solution growth techniques of growing crystals are of special interest because of the inherent importance of convection in the nutrient solution. Convection enhances the mass transport through the nutrient and results in faster growth rates. Availability of low gravity environment of space has provided scientists a new variable to control the extent of convection and thus isolate the diffusive phenomena for their better understanding. The thermal gradient at the liquid-solid interface is determined by the alloy characteristics, the hot zone temperature, cold zone temperature and the width of the insulating zone. The thermal profiles get established by the existing material and geometrical constraints of the experimental set up. The major effort under this research was devoted to designing a programmable furnace which can be used to obtain thermal profiles along the length of the sample as per the demands of the scientists. The furnace did not have active cooling of the zones. Only active heating and passive cooling were utilized.

1998-01-01

165

324 Facility B-Cell quality process plan  

SciTech Connect

B-Cell is currently being cleaned out (i.e., removal of equipment, fixtures and residual radioactive materials) and deactivated. TPA Milestone M-89-02 dictates that all mixed waste and equipment be removed from B-Cell by 5/31/99. The following sections describe the major activities that remain for completion of the TPA milestone. This includes: (1) Size Reduce Tank 119 and Miscellaneous Equipment. This activity is the restart of hotwork in B-Cell to size reduce the remainder of Tank 119 and other miscellaneous pieces of equipment into sizes that can be loaded into a grout container. This activity also includes the process of preparing the containers for shipment from the cell. The specific activities and procedures used are detailed in a table. (2) Load and Ship Low-Level Waste. This activity covers the process of taking a grouted LLW container from B-Cell and loading it into the cask in the REC airlock and Cask Handling Area (CHA) for shipment to the LLBG. The detailed activities and procedures for this part of cell cleanout are included in second table.

Carlson, J.L.

1998-06-10

166

Waste Receiving and Processing (WRAP) Facility Final Safety Analysis Report (FSAR)  

SciTech Connect

The Waste Receiving and Processing Facility (WRAP), 2336W Building, on the Hanford Site is designed to receive, confirm, repackage, certify, treat, store, and ship contact-handled transuranic and low-level radioactive waste from past and present U.S. Department of Energy activities. The WRAP facility is comprised of three buildings: 2336W, the main processing facility (also referred to generically as WRAP); 2740W, an administrative support building; and 2620W, a maintenance support building. The support buildings are subject to the normal hazards associated with industrial buildings (no radiological materials are handled) and are not part of this analysis except as they are impacted by operations in the processing building, 2336W. WRAP is designed to provide safer, more efficient methods of handling the waste than currently exist on the Hanford Site and contributes to the achievement of as low as reasonably achievable goals for Hanford Site waste management.

TOMASZEWSKI, T.A.

2000-04-25

167

Radioactive Air Emissions Notice of Construction (NOC) for Characterization of the 224-T Facility Process Cells  

SciTech Connect

This document serves as a notice of construction (NOC) pursuant to the requirements of Washington Administrative Code (WAC) 246-247-060, and as a request for approval to construct pursuant to 40 Code of Federal Regulations (CFR) 61.07, for entering and characterizing the 224-T Facility process cells. The 224-T Facility is a small canyon building with six process cells separated from three levels of operating galleries by a 0.3-meter thick concrete wall. The original mission was to concentrate dilute solutions of plutonium received from the 221-T Plutonium Separation Facility from 1945 until 1956. Various shutdown activities were carried out including flushing the tanks and piping during the 1960s. During the second mission from 1975 to 1985, the operating gallery areas of the structure were converted into a storage area for plutonium-bearing scrap and liquids. The third and final mission converted the operating galleries for use as the 224-T Transuranic Waste Storage and Assay Facility (224-T TRUSAF). All stored waste from the gallery areas was removed in the late 1990s. The process cells were not considered part of the waste storage areas and were isolated from storage activities. The 224-T Facility has been excessed with no anticipated plans for further missions. The purpose of the characterization effort is to determine the condition and contents of the cells, tanks, and vessels. This information is needed to update the Facility's Authorization Basis, maintain appropriate managing practices, and ensure there is no potential threat to the public or environment. The information also will be used to establish operational criteria for the decontamination and decommissioning of this facility. Using the currently approved unit dose conversion factors in HNF-3602, the estimated potential total effective dose equivalent (TEDE) to the maximally exposed individual (MEI) resulting from the unabated, fugitive emissions from characterization of the 224-T process cells is 7.37 E-03 millirem per year.

HOMAN, N.A.

2001-03-14

168

Facility siting as a decision process at the Savannah River Site  

SciTech Connect

Site selection for new facilities at Savannah River Site (SRS) historically has been a process dependent only upon specific requirements of the facility. While this approach is normally well suited to engineering and operational concerns, it can have serious deficiencies in the modern era of regulatory oversight and compliance requirements. There are many issues related to the site selection for a facility that are not directly related to engineering or operational requirements; such environmental concerns can cause large schedule delays and budget impact,s thereby slowing or stopping the progress of a project. Some of the many concerns in locating a facility include: waste site avoidance, National Environmental Policy Act requirements, Clean Water Act, Clean Air Act, wetlands conservation, US Army Corps of Engineers considerations, US Fish and Wildlife Service statutes including threatened and endangered species issues, and State of South Carolina regulations, especially those of the Department of Health and Environmental Control. In addition, there are SRS restrictions on research areas set aside for National Environmental Research Park (NERP), Savannah River Ecology Laboratory, Savannah River Forest Station, University of South Carolina Institute of Archaeology and Anthropology, Southeastern Forest Experimental Station, and Savannah River Technology Center (SRTC) programs. As with facility operational needs, all of these siting considerations do not have equal importance. The purpose of this document is to review recent site selection exercises conducted for a variety of proposed facilities, develop the logic and basis for the methods employed, and standardize the process and terminology for future site selection efforts.

Wike, L.D.

1995-12-31

169

Exposure to protein aeroallergens in egg processing facilities.  

PubMed

Proteinaceous materials in the air can be highly allergenic and result in a range of immunologically mediated respiratory effects, including asthma. We report on the largest evaluation of exposure to date of airborne egg protein concentrations in an egg breaking and processing plant that had cases of occupational asthma. Personal air samples for egg protein were analyzed in duplicate on each PTFE filter using two analytical methods: (1) a commercial assay for non-specific total protein, and (2) indirect competitive inhibition assay using an ELISA method to quantify specific egg protein components. The highest concentrations were found in the egg washing room (mean exposure 644 microg/m3) and breaking room (255 microg/m3), which were also the areas where the risk of being sensitized was the greatest. There was excellent quantitative agreement between the airborne concentrations of total protein and sum of the specific protein antigens (ovalbumin, ovomucoid, and lysozyme). The correlation coefficient of the log-transformed data from the two methods was 0.88 (p < 0.0001). Size-selective sampling also indicated that most of the aerosol was capable of reaching the small airways. The methods described can be utilized to evaluate employee exposure to egg proteins. Exposure documentation, coupled with recommended exposure reduction strategies, could facilitate prevention of future employee sensitization and allergic respiratory responses by identifying high-exposure jobs and evaluating control measures. PMID:11414516

Boeniger, M F; Lummus, Z L; Biagini, R E; Bernstein, D I; Swanson, M C; Reed, C; Massoudi, M

2001-06-01

170

Onboard experiment data support facility. Task 2 report: Definition of onboard processing requirements  

NASA Technical Reports Server (NTRS)

The onboard experiment data support facility (OEDSF) will provide data processing support to various experiment payloads on board the space shuttle. The OEDSF study will define the conceptual design and generate specifications for an OEDSF which will meet the following objectives: (1) provide a cost-effective approach to end-to-end processing requirements, (2) service multiple disciplines (3) satisfy user needs, (4) reduce the amount and improve the quality of data collected, stored and processed, and (5) embody growth capacity.

1976-01-01

171

Tritium confinement in a new tritium processing facility at the Savannah River Site  

SciTech Connect

A new tritium processing facility, named the Replacement Tritium Facility (RTF), has been completed and is being prepared for startup at the Savannah River Site (SRS). The RTF has the capability to recover, purify and separate hydrogen isotopes from recycled gas containers. A multilayered confinement system is designed to reduce tritium losses to the environment. This confinement system is expected to confine and recover any tritium that might escape the process equipment, and to maintain the tritium concentration in the nitrogen glovebox atmosphere to less than 10{sup {minus}2} {mu}Ci/cc tritium.

Heung, L.K.; Owen, J.H.; Hsu, R.H.; Hashinger, R.F.; Ward, D.E.; Bandola, P.E.

1991-01-01

172

Tritium confinement in a new tritium processing facility at the Savannah River Site  

SciTech Connect

A new tritium processing facility, named the Replacement Tritium Facility (RTF), has been completed and is being prepared for startup at the Savannah River Site (SRS). The RTF has the capability to recover, purify and separate hydrogen isotopes from recycled gas containers. A multilayered confinement system is designed to reduce tritium losses to the environment. This confinement system is expected to confine and recover any tritium that might escape the process equipment, and to maintain the tritium concentration in the nitrogen glovebox atmosphere to less than 10{sup {minus}2} {mu}Ci/cc tritium.

Heung, L.K.; Owen, J.H.; Hsu, R.H.; Hashinger, R.F.; Ward, D.E.; Bandola, P.E.

1991-12-31

173

Waste Receiving and Processing Facility Module 2A: Advanced Conceptual Design Report. Volume 2  

SciTech Connect

This volume presents the Total Estimated Cost (TEC) for the WRAP (Waste Receiving and Processing) 2A facility. The TEC is $81.9 million, including an overall project contingency of 25% and escalation of 13%, based on a 1997 construction midpoint. (The mission of WRAP 2A is to receive, process, package, certify, and ship for permanent burial at the Hanford site disposal facilities the Category 1 and 3 contact handled low-level radioactive mixed wastes that are currently in retrievable storage, and are forecast to be generated over the next 30 years by Hanford, and waste to be shipped to Hanford site from about 20 DOE sites.)

Not Available

1994-03-01

174

Waste minimization and the goal of an environmentally benign plutonium processing facility: A strategic plan  

SciTech Connect

To maintain capabilities in nuclear weapons technologies, the Department of Energy (DOE) has to maintain a plutonium processing facility that meets all the current and emerging standards of environmental regulations. A strategic goal to transform the Plutonium Processing Facility at Los Alamos into an environmentally benign operation is identified. A variety of technologies and systems necessary to meet this goal are identified. Two initiatives now in early stages of implementation are described in some detail. A highly motivated and trained work force and a systems approach to waste minimization and pollution prevention are necessary to maintain technical capabilities, to comply with regulations, and to meet the strategic goal.

Pillay, K.K.S.

1994-02-01

175

The Establishment of a New Friction Stir Welding Process Development Facility at NASA/MSFC  

NASA Technical Reports Server (NTRS)

Full-scale weld process development is being performed at MSFC to develop the tools, fixtures, and facilities necessary for Ares I production. Full scale development in-house at MSFC fosters technical acuity within the NASA engineering community, and allows engineers to identify and correct tooling and equipment shortcomings before they become problems on the production floor. Finally, while the new weld process development facility is currently being outfitted in support of Ares I development, it has been established to support all future Constellation Program needs. In particular, both the RWT and VWT were sized with the larger Ares V hardware in mind.

Carter, Robert W.

2009-01-01

176

Ecological survey for the siting of the Mixed and Low-Level Waste Treatment Facility and the Idaho Waste Processing Facility  

Microsoft Academic Search

This report summarizes the results of field ecological surveys conducted by the Center for Integrated Environmental Technologies (CIET) on the Idaho National Engineering Laboratory (INEL) at four candidate locations for the siting of the Mixed and Low-Level Waste Treatment Facility (MLLWTF) and the Idaho Waste Processing Facility (IWPF). The purpose of these surveys was to comply with all Federal laws

Hoskinson

1994-01-01

177

Critical Protection Item classification for a waste processing facility at Savannah River Site  

SciTech Connect

This paper describes the methodology for Critical Protection Item (CPI) classification and its application to the Structures, Systems and Components (SSC) of a waste processing facility at the Savannah River Site (SRS). The WSRC methodology for CPI classification includes the evaluation of the radiological and non-radiological consequences resulting from postulated accidents at the waste processing facility and comparison of these consequences with allowable limits. The types of accidents considered include explosions and fire in the facility and postulated accidents due to natural phenomena, including earthquakes, tornadoes, and high velocity straight winds. The radiological analysis results indicate that CPIs are not required at the waste processing facility to mitigate the consequences of radiological release. The non-radiological analysis, however, shows that the Waste Storage Tank (WST) and the dike spill containment structures around the formic acid tanks in the cold chemical feed area and waste treatment area of the facility should be identified as CPIs. Accident mitigation options are provided and discussed.

Ades, M.J. [Westinghouse Savannah River Co., Aiken, SC (United States); Garrett, R.J. [ABB Government Services, Aiken, SC (United States)

1993-10-01

178

Trial Application of the Facility Safeguardability Assessment Process to the NuScale SMR Design  

SciTech Connect

FSA is a screening process intended to focus a facility designer’s attention on the aspects of their facility or process design that would most benefit from application of SBD principles and practices. The process is meant to identify the most relevant guidance within the SBD tools for enhancing the safeguardability of the design. In fiscal year (FY) 2012, NNSA sponsored PNNL to evaluate the practical application of FSA by applying it to the NuScale small modular nuclear power plant. This report documents the application of the FSA process, presenting conclusions regarding its efficiency and robustness. It describes the NuScale safeguards design concept and presents functional "infrastructure" guidelines that were developed using the FSA process.

Coles, Garill A.; Hockert, John; Gitau, Ernest TN; Zentner, Michael D.

2013-01-26

179

Trial Application of the Facility Safeguardability Assessment Process to the NuScale SMR Design  

SciTech Connect

FSA is a screening process intended to focus a facility designer’s attention on the aspects of their facility or process design that would most benefit from application of SBD principles and practices. The process is meant to identify the most relevant guidance within the SBD tools for enhancing the safeguardability of the design. In fiscal year (FY) 2012, NNSA sponsored PNNL to evaluate the practical application of FSA by applying it to the NuScale small modular nuclear power plant. This report documents the application of the FSA process, presenting conclusions regarding its efficiency and robustness. It describes the NuScale safeguards design concept and presents functional "infrastructure" guidelines that were developed using the FSA process.

Coles, Garill A.; Gitau, Ernest TN; Hockert, John; Zentner, Michael D.

2012-11-09

180

Spent nuclear fuel project cold vacuum drying facility process water conditioning system design description  

SciTech Connect

This document provides the System Design Description (SDD) for the Cold Vacuum Drying Facility (CVDF) Process Water Conditioning (PWC) System. The SDD was developed in conjunction with HNF-SD-SNF-SAR-002, Safety Analysis Report for the Cold Vacuum Drying Facility, Phase 2, Supporting Installation of Processing Systems (Garvin 1998), the HNF-SD-SNF-DRD-O02, 1998, Cold Vacuum Drying Facility Design Requirements, and the CVDF Design Summary Report. The SDD contains general descriptions of the PWC equipment, the system functions, requirements and interfaces. The SDD provides references for design and fabrication details, operation sequences and maintenance. This SDD has been developed for the SNFP Operations Organization and shall be updated, expanded, and revised in accordance with future design, construction and startup phases of the CVDF until the CVDF final ORR is approved.

IRWIN, J.J.

1998-11-30

181

Spatio-temporal distribution of stored-product inects around food processing and storage facilities  

Technology Transfer Automated Retrieval System (TEKTRAN)

Grain storage and processing facilities consist of a landscape of indoor and outdoor habitats that can potentially support stored-product insect pests, and understanding patterns of species diversity and spatial distribution in the landscape surrounding structures can provide insight into how the ou...

182

Project management plan, Waste Receiving and Processing Facility, Module 1, Project W-026  

SciTech Connect

The Hanford Waste Receiving and Processing Facility Module 1 Project (WRAP 1) has been established to support the retrieval and final disposal of approximately 400K grams of plutonium and quantities of hazardous components currently stored in drums at the Hanford Site.

Starkey, J.G.

1993-05-01

183

Simulation application for resource allocation in facility management processes in hospitals  

Microsoft Academic Search

Purpose – The increasing percentage of aging population (longer life expectancy) and the changing financial policies in the healthcare systems put governments under pressure to optimize its healthcare expenditures without compromising quality. One way to cut down the costs is through improving and optimizing the facility management processes. This paper aims to focus on the issues surrounding this. Design\\/methodology\\/approach –

Vishal Sharma; Jochen Abel; Mohamed Al-Hussein; Kunibert Lennerts; Uwe Pfründer

2007-01-01

184

Skylab experiment performance evaluation manual. Appendix E: Experiment M512 Materials processing facility (MSFC)  

NASA Technical Reports Server (NTRS)

Analyses for Experiment M512, Materials Processing Facility (MSFC), to be used for evaluating the performance of the Skylab corollary experiments under preflight, inflight, and post-flight conditions are presented. Experiment contingency plan workaround procedure and malfunction analyses are presented in order to assist in making the experiment operationally successful.

Thomas, O. H., Jr.

1973-01-01

185

CRITICAL ISSUES IN THE DEVELOPMENT AND INTERPRETATION OF PEST MONITORING PROGRAMS FOR FOOD PROCESSING FACILITIES  

Technology Transfer Automated Retrieval System (TEKTRAN)

Pest management in commercial food processing facilities such as flour mills continues to rely heavily on methyl bromide fumigations. The pending loss of this fumigant has triggered a great deal of interest in developing alternative strategies, but the lack of effective monitoring programs and data...

186

Enterobacteriaceae and related organisms recovered from biofilms in a commercial shell egg processing facility.  

Technology Transfer Automated Retrieval System (TEKTRAN)

During six visits, biofilms from egg contact and non-contact surfaces in a commercial shell egg processing facility were sampled. Thirty-five different sample sites were selected: Pre-wash and wash tanks (lids, screens, tank interiors, nozzle guards), post-wash spindles, blower filters, belts (far...

187

COMPARISON OF METHODS FOR SAMPLING BACTERIA AT SOLID WASTE PROCESSING FACILITIES  

EPA Science Inventory

The report is an assessment of the field sampling methodologies used to measure concentrations of airborne bacteria and viruses in and around waste handling and processing facilities. The sampling methods are discussed as well as the problems encountered and subsequent changes ma...

188

Measurements of methane emissions from natural gas gathering facilities and processing plants: measurement methods  

NASA Astrophysics Data System (ADS)

Increased natural gas production in recent years has spurred intense interest in methane (CH4) emissions associated with its production, gathering, processing, transmission and distribution. Gathering and processing facilities (G&P facilities) are unique in that the wide range of gas sources (shale, coal-bed, tight gas, conventional, etc.) results in a wide range of gas compositions, which in turn requires an array of technologies to prepare the gas for pipeline transmission and distribution. We present an overview and detailed description of the measurement method and analysis approach used during a 20-week field campaign studying CH4 emissions from the natural gas G&P facilities between October 2013 and April 2014. Dual tracer flux measurements and onsite observations were used to address the magnitude and origins of CH4 emissions from these facilities. The use of a second tracer as an internal standard revealed plume-specific uncertainties in the measured emission rates of 20-47%, depending upon plume classification. Combining downwind methane, ethane (C2H6), carbon monoxide (CO), carbon dioxide (CO2), and tracer gas measurements with onsite tracer gas release allows for quantification of facility emissions, and in some cases a more detailed picture of source locations.

Roscioli, J. R.; Yacovitch, T. I.; Floerchinger, C.; Mitchell, A. L.; Tkacik, D. S.; Subramanian, R.; Martinez, D. M.; Vaughn, T. L.; Williams, L.; Zimmerle, D.; Robinson, A. L.; Herndon, S. C.; Marchese, A. J.

2014-12-01

189

Trace component analysis of process hydrogen streams at the Wilsonville Advanced Coal Liquefaction Facility  

SciTech Connect

This report summarizes subcontracted work done by the Radian Corporation to analyze trace components in process hydrogen streams at the Advanced Coal Liquefaction Facility in Wilsonville, Alabama. The data will be used to help define whether the gas streams to be treated in the hydrogen processing unit in the SRC-I Demonstration Plant will require further treatment to remove trace contaminants that could be explosive under certain conditions. 2 references.

Bronfenbrenner, J.C.

1983-09-01

190

Waste Receiving and Processing Facility Module 1 Data Management System Software Requirements Specification  

SciTech Connect

This document provides the software requirements for Waste Receiving and Processing (WRAP) Module 1 Data Management System (DMS). The DMS is one of the plant computer systems for the new WRAP 1 facility (Project W-026). The DMS will collect, store and report data required to certify the low level waste (LLW) and transuranic (TRU) waste items processed at WRAP 1 as acceptable for shipment, storage, or disposal.

Brann, E.C. II

1994-09-09

191

Safeguards design strategies: designing and constructing new uranium and plutonium processing facilities in the United States  

SciTech Connect

In the United States, the Department of Energy (DOE) is transforming its outdated and oversized complex of aging nuclear material facilities into a smaller, safer, and more secure National Security Enterprise (NSE). Environmental concerns, worker health and safety risks, material security, reducing the role of nuclear weapons in our national security strategy while maintaining the capability for an effective nuclear deterrence by the United States, are influencing this transformation. As part of the nation's Uranium Center of Excellence (UCE), the Uranium Processing Facility (UPF) at the Y-12 National Security Complex in Oak Ridge, Tennessee, will advance the U.S.'s capability to meet all concerns when processing uranium and is located adjacent to the Highly Enriched Uranium Materials Facility (HEUMF), designed for consolidated storage of enriched uranium. The HEUMF became operational in March 2010, and the UPF is currently entering its final design phase. The designs of both facilities are for meeting anticipated security challenges for the 21st century. For plutonium research, development, and manufacturing, the Chemistry and Metallurgy Research Replacement (CMRR) building at the Los Alamos National Laboratory (LANL) in Los Alamos, New Mexico is now under construction. The first phase of the CMRR Project is the design and construction of a Radiological Laboratory/Utility/Office Building. The second phase consists of the design and construction of the Nuclear Facility (NF). The National Nuclear Security Administration (NNSA) selected these two sites as part of the national plan to consolidate nuclear materials, provide for nuclear deterrence, and nonproliferation mission requirements. This work examines these two projects independent approaches to design requirements, and objectives for safeguards, security, and safety (3S) systems as well as the subsequent construction of these modern processing facilities. Emphasis is on the use of Safeguards-by-Design (SBD), incorporating Systems Engineering (SE) principles for these two projects.

Scherer, Carolynn P [Los Alamos National Laboratory; Long, Jon D [Los Alamos National Laboratory

2010-09-28

192

Processing liquid radioactive waste by centrifuge and indrum dehydration facility at NPP Philippsburg  

SciTech Connect

Until 1989 the evaporator and filter concentrates have been treated by concreting. The centrifuge facility is used for the liquid waste from laundry, showers and also for processing filter concentrates and evaporator feedwater. The hot high pressure compacting of filter concentrates gives a volume reduction by a factor of 6. The evaporator concentrate is drained in a 200 l drum and this drum is heated by an external heating device. The indrum-dehydration facility reduces the treated volume by a factor of 12 compared with the former cementation.

Grundke, E.; Blaser, W. [NPP Philippsburg (Germany)

1993-12-31

193

Use of process monitoring for verifying facility design of large-scale reprocessing plants  

SciTech Connect

During the decade of the 1990s, the International Atomic Energy Agency (IAEA) faces the challenge of implementing safeguards in large, new reprocessing facilities. The Agency will be involved in the design, construction, checkout and initial operation of these new facilities to ensure effective safeguards are implemented. One aspect of the Agency involvement is in the area of design verification. The United States Support Program has initiated a task to develop methods for applying process data collection and validation during the cold commissioning phase of plant construction. This paper summarizes the results of this task. 14 refs., 1 tab.

Hakkila, E.A.; Zack, N.R. (Los Alamos National Lab., NM (USA)); Ehinger, M.H. (Oak Ridge National Lab., TN (USA)); Franssen, F. (International Atomic Energy Agency, Vienna (Austria))

1991-01-01

194

Metals Processing Laboratory Users (MPLUS) Facility Annual Report: October 1, 2000 through September 30, 2001  

SciTech Connect

The Metals Processing Laboratory Users Facility (MPLUS) is a Department of Energy (DOE), Energy Efficiency and Renewable Energy, Industrial Technologies Program user facility designated to assist researchers in key industries, universities, and federal laboratories in improving energy efficiency, improving environmental aspects, and increasing competitiveness. The goal of MPLUS is to provide access to the specialized technical expertise and equipment needed to solve metals processing issues that limit the development and implementation of emerging metals processing technologies. The scope of work can also extend to other types of materials. MPLUS has four primary User Centers including: (1) Processing--casting, powder metallurgy, deformation processing including (extrusion, forging, rolling), melting, thermomechanical processing, high density infrared processing; (2) Joining--welding, monitoring and control, solidification, brazing, bonding; (3) Characterization--corrosion, mechanical properties, fracture mechanics, microstructure, nondestructive examination, computer-controlled dilatometry, and emissivity; (4) Materials/Process Modeling--mathematical design and analyses, high performance computing, process modeling, solidification/deformation, microstructure evolution, thermodynamic and kinetic, and materials data bases. A fully integrated approach provides researchers with unique opportunities to address technologically related issues to solve metals processing problems and probe new technologies. Access is also available to 16 additional Oak Ridge National Laboratory (ORNL) user facilities ranging from state of the art materials characterization capabilities, high performance computing, to manufacturing technologies. MPLUS can be accessed through a standardized User-submitted Proposal and a User Agreement. Nonproprietary (open) or proprietary proposals can be submitted. For open research and development, access to capabilities is provides free of charge while for proprietary efforts, the user pays the entire project costs based on DOE guidelines for ORNL costs.

Angelini, P

2004-04-27

195

Metals Processing Laboratory Users (MPLUS) Facility Annual Report FY 2002 (October 1, 2001-September 30, 2002)  

SciTech Connect

The Metals Processing Laboratory Users Facility (MPLUS) is a Department of Energy (DOE), Energy Efficiency and Renewable Energy, Industrial Technologies Program, user facility designated to assist researchers in key industries, universities, and federal laboratories in improving energy efficiency, improving environmental aspects, and increasing competitiveness. The goal of MPLUS is to provide access to the specialized technical expertise and equipment needed to solve metals processing issues that limit the development and implementation of emerging metals processing technologies. The scope of work can also extend to other types of materials. MPLUS has four primary user centers: (1) Processing--casting, powder metallurgy, deformation processing (including extrusion, forging, rolling), melting, thermomechanical processing, and high-density infrared processing; (2) Joining--welding, monitoring and control, solidification, brazing, and bonding; (3) Characterization--corrosion, mechanical properties, fracture mechanics, microstructure, nondestructive examination, computer-controlled dilatometry, and emissivity; and (4) Materials/Process Modeling--mathematical design and analyses, high-performance computing, process modeling, solidification/deformation, microstructure evolution, thermodynamic and kinetic, and materials databases A fully integrated approach provides researchers with unique opportunities to address technologically related issues to solve metals processing problems and probe new technologies. Access is also available to 16 additional Oak Ridge National Laboratory (ORNL) user facilities ranging from state-of-the-art materials characterization capabilities, and high-performance computing to manufacturing technologies. MPLUS can be accessed through a standardized user-submitted proposal and a user agreement. Nonproprietary (open) or proprietary proposals can be submitted. For open research and development, access to capabilities is provided free of charge, while for proprietary efforts, the user pays the entire project costs based on DOE guidelines for ORNL costs.

Angelini, P

2004-04-27

196

Human Engineering Operations and Habitability Assessment: A Process for Advanced Life Support Ground Facility Testbeds  

NASA Technical Reports Server (NTRS)

Design and Human Engineering (HE) processes strive to ensure that the human-machine interface is designed for optimal performance throughout the system life cycle. Each component can be tested and assessed independently to assure optimal performance, but it is not until full integration that the system and the inherent interactions between the system components can be assessed as a whole. HE processes (which are defining/app lying requirements for human interaction with missions/systems) are included in space flight activities, but also need to be included in ground activities and specifically, ground facility testbeds such as Bio-Plex. A unique aspect of the Bio-Plex Facility is the integral issue of Habitability which includes qualities of the environment that allow humans to work and live. HE is a process by which Habitability and system performance can be assessed.

Connolly, Janis H.; Arch, M.; Elfezouaty, Eileen Schultz; Novak, Jennifer Blume; Bond, Robert L. (Technical Monitor)

1999-01-01

197

Electromagnetic containerless processing requirements and recommended facility concept and capabilities for space lab  

NASA Technical Reports Server (NTRS)

Containerless melting, reaction, and solidification experiments and processes which potentially can lead to new understanding of material science and production of new or improved materials in the weightless space environment are reviewed in terms of planning for spacelab. Most of the experiments and processes discussed are amenable to the employment of electromagnetic position control and electromagnetic induction or electron beam heating and melting. The spectrum of relevant properties of materials, which determine requirements for a space laboratory electromagnetic containerless processing facility are reviewed. Appropriate distributions and associated coil structures are analyzed and compared on the basis of efficiency, for providing the functions of position sensing, control, and induction heating. Several coil systems are found capable of providing these functions. Exchangeable modular coils in appropriate sizes are recommended to achieve the maximum power efficiencies, for a wide range of specimen sizes and resistivities, in order to conserve total facility power.

Frost, R. T.; Bloom, H. L.; Napaluch, L. J.; Stockhoff, E. H.; Wouch, G.

1974-01-01

198

Changes in Attitudes towards and Awareness of A Medical Waste Incinerator during the Facility Siting Process.  

PubMed

The authors investigated the impact of the process of siting a medical waste incinerator on knowledge and attitudes among subgroups within an adjacent community using a model of risk perception that conceptually divided the community into attitudinal and behavioral subgroups based on awareness and concern in relation to the planned facility. The study design was a one-year survey and a three-year postintervention survey conducted during the siting process. The authors also documented the siting process in order to relate siting inputs to attitudinal and knowledge changes within the community. After three years of promotion, 80% of the respondents remained unaware of the site. The authors conclude that it may be very difficult to engender awareness in affected communities and more difficult still to influence attitudes towards the proposed facility. PMID:9990154

Ostry; Hertzman; Marion

1995-01-01

199

The environmental impact assessment process for nuclear facilities: An examination of the Indian experience  

SciTech Connect

India plans to construct numerous nuclear plants and uranium mines across the country, which could have significant environmental, health, and social impacts. The national Environmental Impact Assessment process is supposed to regulate these impacts. This paper examines how effective this process has been, and the extent to which public inputs have been taken into account. In addition to generic problems associated with the EIA process for all kinds of projects in India, there are concerns that are specific to nuclear facilities. One is that some nuclear facilities are exempt from the environmental clearance process. The second is that data regarding radiation baseline levels and future releases, which is the principle environmental concern with respect to nuclear facilities, is controlled entirely by the nuclear establishment. The third is that members of the nuclear establishment take part in almost every level of the environmental clearance procedure. For these reasons and others, the EIA process with regard to nuclear projects in India is of dubious quality. We make a number of recommendations that could address these lacunae, and more generally the imbalance of power between the nuclear establishment on the one hand, and civil society and the regulatory agencies on the other.

Ramana, M.V., E-mail: mvramana@gmail.co [Centre for Interdisciplinary Studies in Environment and Development, Bangalore (India); Centre for Interdisciplinary Studies in Environment and Development, ISEC Campus, Nagarbhavi, Bangalore 560 070 (India); Rao, Divya Badami, E-mail: di.badamirao@gmail.co [Centre for Interdisciplinary Studies in Environment and Development, Bangalore (India); Centre for Interdisciplinary Studies in Environment and Development, ISEC Campus, Nagarbhavi, Bangalore 560 070 (India)

2010-07-15

200

Mines and Mineral Processing Facilities in the Vicinity of the March 11, 2011, Earthquake in Northern Honshu, Japan  

E-print Network

Mines and Mineral Processing Facilities in the Vicinity of the March 11, 2011, Earthquake://store.usgs.gov Suggested citation: Menzie, W.D., Baker, M.S., Bleiwas, D.I., and Kuo, Chin, 2011, Mines and mineral. #12;iii Contents Mines and Mineral Processing Facilities in Northern Honshu, Japan

Torgersen, Christian

201

40 CFR 60.5400 - What equipment leak standards apply to affected facilities at an onshore natural gas processing...  

Code of Federal Regulations, 2014 CFR

...facilities at an onshore natural gas processing plant? 60.5400 Section 60.5400 Protection...SOURCES Standards of Performance for Crude Oil and Natural Gas Production, Transmission...facilities at an onshore natural gas processing plant? This section applies to the...

2014-07-01

202

40 CFR 60.5400 - What equipment leak standards apply to affected facilities at an onshore natural gas processing...  

Code of Federal Regulations, 2013 CFR

...facilities at an onshore natural gas processing plant? 60.5400 Section 60.5400 Protection...SOURCES Standards of Performance for Crude Oil and Natural Gas Production, Transmission...facilities at an onshore natural gas processing plant? This section applies to the...

2013-07-01

203

Distinguishing between Natural Crude Oil Seepage and Anthropogenic Petroleum Hydrocarbons in Soils at a Crude Oil Processing Facility, Coastal California  

Microsoft Academic Search

Crude oil from offshore deposits in the Miocene Monterey Formation is commonly processed at facilities along the California coast. This formation is known for natural crude oil seepage (NCS), manifested at a California oil and gas processing facility (the site) as small pools on the ground surface, discharge from an adjacent bluff, and as free product in a hand-dug well.

Susan J. McCaffery; Andy Davis; David Craig

2009-01-01

204

Completely automated measurement facility (PAVICOM) for track-detector data processing  

NASA Astrophysics Data System (ADS)

A review of technical capabilities and investigations performed using the completely automated measuring facility (PAVICOM) is presented. This very efficient facility for track-detector data processing in the field of nuclear and high-energy particle physics has been constructed in the Lebedev physical institute. PAVICOM is widely used in Russia for treatment of experimental data from track detectors (emulsion and solid-state trackers) in high- and low-energy physics, cosmic ray physics, etc. PAVICOM provides an essential improvement of the efficiency of experimental studies. In contrast to semi-automated microscopes widely used until now, PAVICOM is capable of performing completely automated measurements of charged particle tracks in nuclear emulsions and track detectors without employing hard visual work. In this case, track images are recorded by CCD cameras and then are digitized and converted into files. Thus, experimental data processing is accelerated by approximately a thousand times. Completely automated facilities similar to PAVICOM came into operation in scientific centers of Japan, Italy, some other countries, and in CERN. In Russia, PAVICOM is the only facility of such a type. Its capabilities are so wide that it serves not only the needs of investigations being performed at the LPI but is also used by other Russian laboratories and institutes. Thus, PAVICOM actually plays the role of a multipurpose user center.

Aleksandrov, A. B.; Apacheva, I. Yu.; Feinberg, E. L.; Goncharova, L. A.; Konovalova, N. S.; Martynov, A. G.; Polukhina, N. G.; Roussetski, A. S.; Starkov, N. I.; Tsarev, V. A.

2004-12-01

205

Commercial Light Water Reactor -Tritium Extraction Facility Process Waste Assessment (Project S-6091)  

SciTech Connect

The Savannah River Site (SRS) has been tasked by the Department of Energy (DOE) to design and construct a Tritium Extraction Facility (TEF) to process irradiated tritium producing burnable absorber rods (TPBARs) from a Commercial Light Water Reactor (CLWR). The plan is for the CLWR-TEF to provide tritium to the SRS Replacement Tritium Facility (RTF) in Building 233-H in support of DOE requirements. The CLWR-TEF is being designed to provide 3 kg of new tritium per year, from TPBARS and other sources of tritium (Ref. 1-4).The CLWR TPBAR concept is being developed by Pacific Northwest National Laboratory (PNNL). The TPBAR assemblies will be irradiated in a Commercial Utility light water nuclear reactor and transported to the SRS for tritium extraction and processing at the CLWR-TEF. A Conceptual Design Report for the CLWR-TEF Project was issued in July 1997 (Ref. 4).The scope of this Process Waste Assessment (PWA) will be limited to CLWR-TEF processing of CLWR irradiated TPBARs. Although the CLWR- TEF will also be designed to extract APT tritium-containing materials, they will be excluded at this time to facilitate timely development of this PWA. As with any process, CLWR-TEF waste stream characteristics will depend on process feedstock and contaminant sources. If irradiated APT tritium-containing materials are to be processed in the CLWR-TEF, this PWA should be revised to reflect the introduction of this contaminant source term.

Hsu, R.H.; Delley, A.O.; Alexander, G.J.; Clark, E.A.; Holder, J.S.; Lutz, R.N.; Malstrom, R.A.; Nobles, B.R. [Westinghouse Savannah River Co., Aiken, SC (United States); Carson, S.D. [Sandia National Laboratories, New Mexico, NM (United States); Peterson, P.K. [Sandia National Laboratories, New Mexico, NM (United States)

1997-11-30

206

Feasibility Study for a Plasma Dynamo Facility to Investigate Fundamental Processes in Plasma Astrophysics. Final report  

SciTech Connect

The scientific equipment purchased on this grant was used on the Plasma Dynamo Prototype Experiment as part of Professor Forest's feasibility study for determining if it would be worthwhile to propose building a larger plasma physics experiment to investigate various fundamental processes in plasma astrophysics. The initial research on the Plasma Dynamo Prototype Experiment was successful so Professor Forest and Professor Ellen Zweibel at UW-Madison submitted an NSF Major Research Instrumentation proposal titled "ARRA MRI: Development of a Plasma Dynamo Facility for Experimental Investigations of Fundamental Processes in Plasma Astrophysics." They received funding for this project and the Plasma Dynamo Facility also known as the "Madison Plasma Dynamo Experiment" was constructed. This experiment achieved its first plasma in the fall of 2012 and U.S. Dept. of Energy Grant No. DE-SC0008709 "Experimental Studies of Plasma Dynamos," now supports the research.

Forest, Cary B.

2013-09-19

207

Critical Protection Item Classification for a waste processing facility at Savannah River Site. Revision 1  

SciTech Connect

As a part of its compliance with the Department of Energy requirements for safety of nuclear facilities at the Savannah River Site (SRS), Westinghouse Savannah River Company (WSRC) assigns functional classifications to structures, systems and components (SSCs). As a result, changes in design, operations, maintenance, testing, and inspections of SSCs are performed and backfit requirements are established. This paper describes the Critical Protection Item (CPI) Classification for waste processing facility (WPF) at SRS. The descriptions of the WPF and the processes considered are provided elsewhere. The proposed CPI classification methodology includes the evaluation of the onsite radiological consequences, and the onsite and offsite non-radiological consequences from postulated accidents at the WPF, and comparison of these consequences with allowable frequency-dependent limits. When allowable limits are exceeded, CPIs are identified for accident mitigation.

Ades, M.J. [Westinghouse Savannah River Co., Aiken, SC (United States); Garrett, R.J. [ABB Government Services, Aiken, SC (United States)

1993-12-31

208

The Mixed Waste Management Facility: Technology selection and implementation plan, Part 2, Support processes  

SciTech Connect

The purpose of this document is to establish the foundation for the selection and implementation of technologies to be demonstrated in the Mixed Waste Management Facility, and to select the technologies for initial pilot-scale demonstration. Criteria are defined for judging demonstration technologies, and the framework for future technology selection is established. On the basis of these criteria, an initial suite of technologies was chosen, and the demonstration implementation scheme was developed. Part 1, previously released, addresses the selection of the primary processes. Part II addresses process support systems that are considered ``demonstration technologies.`` Other support technologies, e.g., facility off-gas, receiving and shipping, and water treatment, while part of the integrated demonstration, use best available commercial equipment and are not selected against the demonstration technology criteria.

Streit, R.D.; Couture, S.A.

1995-03-01

209

BUILDING SIZE FIXED REFLECTOR CPC TROUGHS and BOWLS for FOOD PROCESSING FACILITIES  

Microsoft Academic Search

Building integrated stationary concentrating building size reflectors for solar thermal food processing applications and facilities in non-seismic regions are schematically presented for: water distillation, drying, cooking and refrigeration. Fixed mirror concentrating collector technologies are: nonimaging (NI) CPC type troughs for low concentrations (E-W horizontal for equatorial tropics, and N-S inclined for higher latitudes); and solar bowls (fixed spherical segment reflector

Joel H. Goodman

210

U.S. Postal Service Brings Energy Efficiency, Solar Power to Northern California Processing Facility  

Microsoft Academic Search

As part of its ongoing drive to optimize efficiency and conserve natural resources, the U.S. Postal Service (USPS) completed major energy efficiency upgrades and one of the largest federal solar power installations in the nation, at the USPS's West Sacramento Processing & Distribution Center. The 573,000-square-foot mail facility is a major Postal Service hub in Northern California, employing more than

Ralph Petty; Diane Sable

2005-01-01

211

Design and verification of shielding for the advanced spent fuel conditioning process facility.  

PubMed

An Advanced spent fuel Conditioning Process Facility (ACPF) has recently been constructed by a modification of previously unused cells. ACPF is a hot cell with two rooms located in the basement of the Irradiated Materials Experiment Facility (IMEF) at the Korea Atomic Energy Research Institute. This is for demonstrating the advanced spent fuel conditioning process being proposed in Korea, which is an electrolytic reduction process of spent oxide fuels into a metallic form. The ACPF was designed with a more than 90 cm thick high density concrete shield wall to handle 1.38 PBq (37,430 Ci) of radioactive materials with dose rates lower than 10 muSv h in the operational areas (7,000 zone) and 150 muSv h in the service areas (8,000 zone). In Monte Carlo calculations with a design basis source inventory, the results for the bounding wall showed a maximum of 3 muSv h dose rate at an exterior surface of the ACPF for gamma radiation and 0.76 muSv h for neutrons. All the bounding structures of the ACPF were investigated to check on the shielding performance of the facility to ensure the radiation safety of the facility. A test was performed with a 2.96 TBq (80 Ci) 60Co source unit and the test results were compared with the calculation results. A few failure points were discovered and carefully fixed to meet the design criteria. After fixing the problems, the failure points were rechecked and the safety of the shielding structures was confirmed. In conclusion, it was confirmed that all the investigated parts of the ACPF passed the shielding safety limits by using this program and the ACPF is ready to fulfill its tasks for the advanced spent fuel conditioning process. PMID:18403959

Cho, I J; Kook, D H; Kwon, K C; Lee, E P; Choung, W M; You, G S

2008-05-01

212

Ecological studies related to construction of the Defense Waste Processing Facility on the Savannah River Site  

SciTech Connect

The Savannah River Ecology Laboratory has completed 10 years of ecological studies related to the construction of the Defense Waste Processing Facility (DWPF) on the Savannah River Site. This progress report examines water quality studies on streams peripheral to the DWPF construction site and examines the effectiveness of refuge ponds'' in ameliorating the effects of construction on local amphibians. Individual papers on these topics are indexed separately. 93 refs., 15 figs., 15 tabs. (MHB)

Scott, D.E.; Pechmann, J.H.K.; Knox, J.N.; Estes, R.A.; McGregor, J.H.; Bailey, K. (ed.)

1988-12-01

213

STS-33 Discovery, OV-103, is moved to KSC Orbiter Processing Facility  

NASA Technical Reports Server (NTRS)

STS-33 Discovery, Orbiter Vehicle (OV) 103, is towed by nose landing gear via ground cart into the Kennedy Space Center (KSC) Orbiter Processing Facility (OPF). During its servicing in the OPF, OV-103's orbital maneuvering system (OMS) pods will be installed. OV-103 will be moved to the Vehicle Assembly Building (VAB) (visible in the background) when OPF maintenance procedures are completed. View provided by KSC with alternate number KSC-89PC-659.

1989-01-01

214

A process for establishing a financial assurance plan for LLW disposal facilities  

SciTech Connect

This document describes a process by which an effective financial assurance program can be developed for new low-level radioactive waste (LLW) disposal facilities. The report identifies examples of activities that might cause financial losses and the types of losses they might create, discusses mechanisms that could be used to quantify and ensure against the various types of potential losses identified and describes a decision process to formulate a financial assurance program that takes into account the characteristics of both the potential losses and available mechanisms. A sample application of the concepts described in the report is provided.

Smith, P. [EG and G Idaho, Inc., Idaho Falls, ID (United States). National Low-Level Waste Management Program

1993-04-01

215

Potential applications of fusion neutral beam facilities for advanced material processing  

SciTech Connect

Surface processing techniques involving high energy ion implantation have achieved commercial success for semiconductors and biomaterials. However, wider use has been limited in good part by economic factors, some of which are related to the line-of-sight nature of the beam implantation process. Plasma source ion implantation is intended to remove some of the limitations imposed by directionality of beam systems and also to help provide economies of scale. The present paper will outline relevant technologies and areas of expertise that exist at Oak Ridge National Laboratory in relation to possible future needs in materials processing. Experience in generation of plasmas, control of ionization states, pulsed extraction, and sheath physics exists. Contributions to future technology can be made either for the immersion mode or for the extracted beam mode. Existing facilities include the High Power Test Facility, which could conservatively operate at 1 A of continuous current at 100 kV delivered to areas of about 1 m{sup 2}. Higher instantaneous voltages and currents are available with a reduced duty cycle. Another facility, the High Heat Flux Facility can supply a maximum of 60 kV and currents of up to 60 A for 2 s on a 10% duty cycle. Plasmas may be generated by use of microwaves, radio-frequency induction or other methods and plasma properties may be tailored to suit specific needs. In addition to ion implantation of large steel components, foreseeable applications include ion implantation of polymers, ion implantation of Ti alloys, Al alloys, or other reactive surfaces.

Williams, J.M.; Tsai, C.C.; Stirling, W.L.; Whealton, J.H.

1994-01-01

216

Potential applications of fusion neutral beam facilities for advanced material processing  

SciTech Connect

Surface processing techniques involving high energy ion implantation have achieved commercial success for semiconductors and biomaterials. However, wider use has been limited in good part by economic factors, some of which are related to the line-of-sight nature of the beam implantation process. Plasma source implantation (or plasma immersion ion implantation) is intended to remove some of the limitations imposed by directionality of beam systems and also to help provide economies of scale. The present paper will outline relevant technologies and areas of expertise that exist at Oak Ridge National Laboratory in relation to possible future needs in materials processing. Experience in generation of plasmas, control of ionization states, pulsed extraction, and sheath physics exist. Contributions to future technology can be made either for the immersion mode or for the extracted beam mode. Existing facilities include the High Power Test Facility, which could conservatively operate at 1 A of continuous current at 100 kV delivered to areas of about 1 m[sup 2]. Higher instantaneous voltages and currents are available with a reduced duty cycle. Another facility, the High Heat Flux Facility can supply a maximum at 60 kV and currents of up to 60 A for 2 s on a 10% duty cycle. Plasmas may be generated by use of microwaves, radio-frequency induction, or other methods and plasma properties may be tailored to suit specific needs. In addition to ion implantation of large steel components, foreseeable applications include ion implantation of polymers, ion implantation of Ti alloys, Al alloys, or other reactive surfaces.

Williams, J.M.; Tsai, C.C.; Stirling, W.L.; Whealton, J.H. (Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States))

1994-03-01

217

FACILITY UPGRADES FOR RECEIPT FROM ACTINIDE REMOVAL AND MODULAR CAUSTIC SIDE SOLVENT EXTRACTION PROCESSES AT THE SAVANNAH RIVER SITE  

SciTech Connect

The Savannah River Site (SRS) is currently on an aggressive program to empty its High Level Waste (HLW) tanks and immobilize its radioactive waste into a durable borosilicate glass in the Defense Waste Processing Facility (DWPF). As a part of that program, two new processes will be brought on-line to assist in emptying the HLW tanks. These processes are in addition to the current sludge removal process and are called the Actinide Removal Process (ARP) and the Modular Caustic Side Solvent Extraction (MCU) Process. In order to accept and process the streams generated from these two new processes, several facility modifications are required and are broken down into several projects. These projects are handling the facility modifications required for the Tank Farm (241-96H), and DWPF vitrification facility (221-S), and DWPF ancillary facilities (511-S, and 512-S). Additional modifications to the 221-S building were required to address the flammability concern from the solvent carryover from the MCU process. This paper will describe a summary of the modifications impacting the 511-S, 512-S, and the 221-S facilities in order to receive the new streams from the ARP and MCU processes at the DWPF.

Fellinger, T; Stephen Phillips, S; Benjamin Culbertson, B; Beverly02 Davis, B; Aaron Staub, A

2007-02-13

218

Risk-based process safety assessment and control measures design for offshore process facilities.  

PubMed

Process operation is the most hazardous activity next to the transportation and drilling operation on an offshore oil and gas (OOG) platform. Past experiences of onshore and offshore oil and gas activities have revealed that a small mis-happening in the process operation might escalate to a catastrophe. This is of especial concern in the OOG platform due to the limited space and compact geometry of the process area, less ventilation, and difficult escape routes. On an OOG platform, each extra control measure, which is implemented, not only occupies space on the platform and increases congestion but also adds extra load to the platform. Eventualities in the OOG platform process operation can be avoided through incorporating the appropriate control measures at the early design stage. In this paper, the authors describe a methodology for risk-based process safety decision making for OOG activities. The methodology is applied to various offshore process units, that is, the compressor, separators, flash drum and driers of an OOG platform. Based on the risk potential, appropriate safety measures are designed for each unit. This paper also illustrates that implementation of the designed safety measures reduces the high Fatal accident rate (FAR) values to an acceptable level. PMID:12141993

Khan, Faisal I; Sadiq, Rehan; Husain, Tahir

2002-09-01

219

Completely automated measurement facility (PAVICOM) for track-detector data processing  

NASA Astrophysics Data System (ADS)

The review of technical possibility and investigations, which are performed at the Completely Automatic Measurement Facility (Russian sounds as PAVICOM), is presented. A very efficient Completely Automated Measuring Facility (PAVICOM) for track-detector data processing in the field of nuclear and high-energy particle physics has been constructed in the Lebedev Physical Institute. PAVICOM is widely used in Russia for experimental data treatment of track detectors (emulsion trackers, solid trackers) in high and low energy physics, cosmic ray physics, etc. The PAVICOM provides the essential improving the efficiency of experimental studies. In contrast to semi-automated microscopes widely used until now, the PAVICOM is capable of performing completely automated measurements and analysis of charged-particle tracks in nuclear emulsions and track detectors without employing hard visual work, In this case, track images are recorded by CCD-cameras and then are digitized and converted into files. Thus, automated measurements and online analysis accelerate the experimental-data processing by approximately thousand times. Completely automatic devices similar to PAVICOM came into operation in scientific centers of Japan, Italy, CERN, and some other countries. In Russia, the PAVICOM is the only facility of such a type. Its possibilities are so wide that satisfy not only needs of investigations being performed in LPI but are also used by other Russian laboratories and Institutes. Thus, PAVICOM actually plays the role of multipurpose user center.

Aleksandrov, A. B.; Apacheva, I. Y.; Feinberg, E. L.; Goncharova, L. A.; Martynov, A. G.; Polukhina, N. G.; Rousettsskii, A. S.; Starkov, N. I.; Tsarev, V. A.

2005-08-01

220

Cancer incidence in municipalities near two former nuclear materials processing facilities in Pennsylvania.  

PubMed

Because nuclear facilities can release radionuclides into the surrounding environment accidentally or during normal operations, there has been public concern over the possibility of adverse health effects. Two former nuclear materials processing facilities in Armstrong County Pennsylvania have been the focus of such public concern for over 20 y. The Apollo and Parks facilities processed uranium and plutonium fuels for use in nuclear applications. To evaluate the possibility of increased cancer rates in the communities near the Apollo-Parks nuclear processing materials plants, cancer incidence rates were assessed for the years 1993-1997, or nearly 40 y after the plants had begun operation in 1957 and 1960, respectively. The rates of cancer were evaluated among the approximately 17,000 persons living in 1 of 8 municipalities encompassing or near these nuclear sites. Numbers of cancers and mailing addresses (n = 935) were obtained from the Pennsylvania Department of Health. Because mailing addresses in small rural areas do not always reflect actual residences within a municipality, each of 935 addresses was validated (and corrections made when indicated) by contacting area postmasters and using Census Bureau geocoding information, street maps, and aerial photographs. Standardized Incidence Ratios (SIRs) were computed as the ratio of observed numbers of cancers in the study area compared to the expected number derived from general population rates of Pennsylvania. Forty percent of the mailing addresses were found not to be within the boundaries of the study municipalities. After excluding these persons who did not reside in one of the eight municipalities near the Apollo-Parks facilities, 581 cancers remained in contrast to 574.0 expected (SIR 1.01; 95% confidence interval 0.93-1.10). Based upon knowledge of the tissues where uranium or plutonium likely would be deposited after intake, cancers of the lung (SIR 0.88), kidney (SIR 1.05), non-Hodgkin's lymphoma (SIR 1.10), liver (SIR 0.61), and bone (2 observed vs. 1.19 expected) were carefully evaluated, but no significant excesses were noted at these sites. Cancers of the female breast and thyroid and leukemia also were not significantly increased, as expected since these tissues are not sites where uranium or plutonium would concentrate. Overall, no increase in cancer risk could be attributed to living near the two former nuclear materials processing facilities. However, misleading elevations in cancer risks would have been suggested if mailing addresses had not been corrected to exclude addresses that were not within the boundaries of the municipalities for which population data were available. The study had sufficient power to exclude increased cancer risks of 10% or greater. PMID:14626319

Boice, John D; Bigbee, William L; Mumma, Michael T; Blot, William J

2003-12-01

221

ATEN: a new high temperature materials processing facility for the international space station.  

PubMed

Since the beginning of microgravity materials research, studies of diffusion in liquids have been performed as the typical research that efficiently uses the microgravity environment. Successful experiments in microgravity have demonstrated the ability of the Canadian Microgravity Program (QUEST I, QUELDs I and II) to make significant contributions to this field of international microgravity research. Recently, Millenium Biologix was selected to develop and build the advanced thermal environment facility (ATEN) for the International Space Station. The design of this new processing facility builds on the considerable experience gained in designing and building the QUELD II furnace and developing sealed samples for use on board a manned space platform. The system requirements for ATEN are presented, along with preliminary test data from a prototype furnace. PMID:12446322

Turnbull, Wayne N O; Misener, Donald L; Smith, Timothy J N; Oram, Guy R J; Smith, Reginald W

2002-10-01

222

Conceptual design of a solar cogeneration facility industrial process heat, category A. Executive summary  

NASA Astrophysics Data System (ADS)

The conceptual design of a central receiver solar cogeneration facility at a California oil field is described. The process of selecting the final cogeneration system configuration is described and the various system level and subsystem level tradeoff studies are presented, including the system configuration study, technology options, and system sizing. The facility is described, and the functional aspects, requirements operational characteristics, and performance are discussed. Capital and operating costs, safety, environmental, regulatory issues and potential limiting considerations for the design are included. Each subsystem is described in detail including a discussion of the functional requirements, design, operating characteristics performance estimates and a top level cost estimate. An economic assessment is performed to determine the near-term economic viability of the project and to examine the impact of variations in major economic parameters such as capital and operating and maintenance costs on economic viability. Two measures of economic viability used are levelized energy cost and net present value.

Joy, P.; Brzeczek, M.; Seilestad, H.; Silverman, C.; Yenetchi, G.

1981-07-01

223

Environmetrics of synfuels. I. Processing the automated PDP-11 data components for the UMD gasifier facility  

SciTech Connect

This report summarizes the techniques and procedures used to handle automated data collected at the University of Minnesota-Duluth (UMD) campus coal gasification facility. This facility, which is partially funded by the Department of Energy, is being evaluated by scientists at Oak Ridge National Laboratory (ORNL) for its potential health and environmental effects. Automatic data collections and manually collected and sample results data are used for this assessment. A data management project at ORNL handles these and other UMD data for the Gasifiers in Industry Program (GIIP). Specifically, this report documents the procedures developed within the data management project for handling two categories of automated data: (1) process and (2) environmental. The examples included use actual data from the first one and a half years of gasifier operation.

Strand, R.H.; Farrell, M.P.; Gudmundson, C.W.; Birchfield, T.K.; Casada, S.S.; Vansuch, M.E.

1981-01-01

224

Fluids and Combustion Facility Acoustic Emissions Controlled by Aggressive Low-Noise Design Process  

NASA Technical Reports Server (NTRS)

The Fluids and Combustion Facility (FCF) is a dual-rack microgravity research facility that is being developed by Northrop Grumman Information Technology (NGIT) for the International Space Station (ISS) at the NASA Glenn Research Center. As an on-orbit test bed, FCF will host a succession of experiments in fluid and combustion physics. The Fluids Integrated Rack (FIR) and the Combustion Integrated Rack (CIR) must meet ISS acoustic emission requirements (ref. 1), which support speech communication and hearing-loss-prevention goals for ISS crew. To meet these requirements, the NGIT acoustics team implemented an aggressive low-noise design effort that incorporated frequent acoustic emission testing for all internal noise sources, larger-scale systems, and fully integrated racks (ref. 2). Glenn's Acoustical Testing Laboratory (ref. 3) provided acoustical testing services (see the following photograph) as well as specialized acoustical engineering support as part of the low-noise design process (ref. 4).

Cooper, Beth A.; Young, Judith A.

2004-01-01

225

Waste Receiving and Processing (WRAP) Facility Public Address System Review Findings  

SciTech Connect

Public address system operation at the Waste Receiving and Processing (WRAP) facility was reviewed. The review was based on an Operational Readiness Review finding that public address performance was not adequate in parts of the WRAP facility. Several improvements were made to the WRAP Public Address (PA) system to correct the deficiencies noted. Speaker gain and position was optimized. A speech processor was installed to boost intelligibility in high noise areas. Additional speakers were added to improve coverage in the work areas. The results of this evaluation indicate that further PA system enhancements are not warranted. Additional speakers cannot compensate for the high background sound and high reverberation levels found in the work areas. Recommendations to improve PA system intelligibility include minor speaker adjustments, enhanced PA announcement techniques, and the use of sound reduction and abatement techniques where economically feasible.

HUMPHRYS, K.L.

1999-11-03

226

Tritium Facilities Modernization and Consolidation Project Process Waste Assessment (Project S-7726)  

SciTech Connect

Under the Tritium Facility Modernization {ampersand} Consolidation (TFM{ampersand}C) Project (S-7726) at the Savannah River Site (SS), all tritium processing operations in Building 232-H, with the exception of extraction and obsolete/abandoned systems, will be reestablished in Building 233-H. These operations include hydrogen isotopic separation, loading and unloading of tritium shipping and storage containers, tritium recovery from zeolite beds, and stripping of nitrogen flush gas to remove tritium prior to stack discharge. The scope of the TFM{ampersand}C Project also provides for a new replacement R&D tritium test manifold in 233-H, upgrading of the 233- H Purge Stripper and 233-H/234-H building HVAC, a new 234-H motor control center equipment building and relocating 232-H Materials Test Facility metallurgical laboratories (met labs), flow tester and life storage program environment chambers to 234-H.

Hsu, R.H. [Westinghouse Savannah River Company, AIKEN, SC (United States); Oji, L.N.

1997-11-14

227

Modeling of batch operations in the Defense Waste Processing Facility at the Savannah River Site  

SciTech Connect

A computer model is in development to provide a dynamic simulation of batch operations within the Defense Waste Processing Facility (DWPF) at the Savannah River Site (SRS). The DWPF will chemically treat high level waste materials from the site tank farm and vitrify the resulting slurry into a borosilicate glass for permanent disposal. The DWPF consists of three major processing areas: Salt Processing Cell (SPC), Chemical Processing Cell (CPC) and the Melt Cell. Separate models have been developed for each of these process units using the SPEEDUP{trademark} software from Aspen Technology. Except for glass production in the Melt Cell, all of the chemical operations within DWPF are batch processes. Since the SPEEDUP software is designed for dynamic modeling of continuous processes, considerable effort was required to devise batch process algorithms. This effort was successful and the models are able to simulate batch operations and the dynamic behavior of the process. In this paper, we will describe the SPC model in some detail and present preliminary results from a few simulation studies.

Smith, F.G.

1995-02-01

228

Work plan, health and safety plan, and site characterization for the Waste Coolant Processing Facility (T-038)  

Microsoft Academic Search

As part of the Resource Conservation and Recovery Act (RCRA) Facility Investigation (RFI) of the Department of Energy's Y-12 Plant located in Oak Ridge, Tennessee, this work plan has been developed for theWaste Coolant Processing Facility (T-038). The work plan was developed by the Measurement Applications and Development Group (MAD) of the Health and Safety Research Division (HASRD) at Oak

D. E. Bohrman; M. S. Uziel; D. C. Landguth; S. W. Hawthorne

1990-01-01

229

Modelling of post-fragmentation waste stream processing within UK shredder facilities.  

PubMed

With the introduction of producer responsibility legislation within the UK (i.e., waste electrical and electronic equipment directive and end-of-life vehicles directive), specific recycling and recovery targets have been imposed to improve the sustainability of end-of-life products. With the introduction of these targets, and the increased investment in post-fragmentation facilities, automated material separation technologies are playing an integral role within the UK's end-of-life waste management strategy. Post-fragmentation facilities utilise a range of purification technologies that target certain material attributes (e.g., density, magnetism, volume) to isolate materials from the shredded waste stream. High ferrous prices have historically meant that UK facilities have been primarily interested in recovering iron and steel, establishing processing routes that are very effective at removing these material types, but as a consequence are extremely rigid and inflexible. With the proliferation of more exotic materials within end-of-life products, combined with more stringent recycling targets, there is therefore a need to optimise the current waste reclamation processes to better realise effort-to-value returns. This paper provides a background as to the current post-fragmentation processing adopted within the UK, and describes the development of a post-fragmentation modelling approach, capable of simulating the value-added processing that a piece of automated separation equipment can have on a fragmented waste stream. These include the modelling of the inefficiencies of the technology, the effects of material entanglement on separation, determination of typical material sizing and an appreciation for compositional value. The implementation of this approach within a software decision-support system is described, before the limitations, calibration and further validation of the approach are discussed. PMID:18472415

Coates, Gareth; Rahimifard, Shahin

2009-01-01

230

High level waste vitrification at the SRP (Savannah River Plant) (DWPF (Defense Waste Processing Facility) summary)  

SciTech Connect

The Savannah River Plant has been operating a nuclear fuel cycle since the early 1950's. Fuel and target elements are fabricated and irradiated to produce nuclear materials. After removal from the reactors, the fuel elements are processed to extract the products, and waste is stored. During the thirty years of operation including evaporation, about 30 million gallons of high level radioactive waste has accumulated. The Defense Waste Processing Facility (DWPF) under construction at Savannah River will process this waste into a borosilicate glass for long-term geologic disposal. The construction of the DWPF is about 70% complete; this paper will describe the status of the project, including design demonstrations, with an emphasis on the melter system. 9 figs.

Weisman, A F; Knight, J R; McIntosh, D L; Papouchado, L M

1988-01-01

231

First Results from the CARIBU Facility: Mass Measurements on the r-Process Path  

NASA Astrophysics Data System (ADS)

The Canadian Penning Trap mass spectrometer has made mass measurements of 33 neutron-rich nuclides provided by the new Californium Rare Isotope Breeder Upgrade facility at Argonne National Laboratory. The studied region includes the Sn132 double shell closure and ranges in Z from In to Cs, with Sn isotopes measured out to A=135, and the typical measurement precision is at the 100 ppb level or better. The region encompasses a possible major waiting point of the astrophysical r process, and the impact of the masses on the r process is shown through a series of simulations. These first-ever simulations with direct mass information on this waiting point show significant increases in waiting time at Sn and Sb in comparison with commonly used mass models, demonstrating the inadequacy of existing models for accurate r-process calculations.

Van Schelt, J.; Lascar, D.; Savard, G.; Clark, J. A.; Bertone, P. F.; Caldwell, S.; Chaudhuri, A.; Levand, A. F.; Li, G.; Morgan, G. E.; Orford, R.; Segel, R. E.; Sharma, K. S.; Sternberg, M. G.

2013-08-01

232

First Results from the CARIBU Facility: Mass Measurements on the r-Process Path  

E-print Network

The Canadian Penning Trap mass spectrometer has made mass measurements of 33 neutron-rich nuclides provided by the new Californium Rare Isotope Breeder Upgrade (CARIBU) facility at Argonne National Laboratory. The studied region includes the 132Sn double shell closure and ranges in Z from In to Cs, with Sn isotopes measured out to A = 135, and the typical measurement precision is at the 100 ppb level or better. The region encompasses a possible major waiting point of the astrophysical r process, and the impact of the masses on the r process is shown through a series of simulations. These first-ever simulations with direct mass information on this waiting point show significant increases in waiting time at Sn and Sb in comparison with commonly used mass models, demonstrating the inadequacy of existing models for accurate r-process calculations.

J. Van Schelt; D. Lascar; G. Savard; J. A. Clark; P. F. Bertone; S. Caldwell; A. Chaudhuri; 1 A. F. Levand; G. Li; G. E. Morgan; R. Orford; R. E. Segel; K. S. Sharma; M. G. Sternberg

2013-07-01

233

A facile process to achieve hysteresis-free and fully stabilized graphene field-effect transistors.  

PubMed

The operation of chemical vapor-deposited (CVD) graphene field-effect transistors (GFETs) is highly sensitive to environmental factors such as the substrate, polymer residues, ambient condition, and other species adsorbed on the graphene surface due to their high defect density. As a result, CVD GFETs often exhibit a large hysteresis and time-dependent instability. These problems become a major roadblock in the systematic study of graphene devices. We report a facile process to alleviate these problems, which can be used to fabricate stable high performance CVD GFETs with symmetrical current-voltage (I-V) characteristics and an effective carrier mobility over 6000 cm(2) V(-1) s(-1). This process combined a few steps of processes in sequence including pre-annealing in a vacuum, depositing a passivation layer, and the final annealing in a vacuum, and eliminated ?50% of charging sources primarily originating from water reduction reactions. PMID:25672592

Kim, Yun Ji; Lee, Young Gon; Jung, Ukjin; Lee, Sangchul; Lee, Sang Kyung; Lee, Byoung Hun

2015-02-19

234

Design analysis of levitation facility for space processing applications. [Skylab program, space shuttles  

NASA Technical Reports Server (NTRS)

Containerless processing facilities for the space laboratory and space shuttle are defined. Materials process examples representative of the most severe requirements for the facility in terms of electrical power, radio frequency equipment, and the use of an auxiliary electron beam heater were used to discuss matters having the greatest effect upon the space shuttle pallet payload interfaces and envelopes. Improved weight, volume, and efficiency estimates for the RF generating equipment were derived. Results are particularly significant because of the reduced requirements for heat rejection from electrical equipment, one of the principal envelope problems for shuttle pallet payloads. It is shown that although experiments on containerless melting of high temperature refractory materials make it desirable to consider the highest peak powers which can be made available on the pallet, total energy requirements are kept relatively low by the very fast processing times typical of containerless experiments and allows consideration of heat rejection capabilities lower than peak power demand if energy storage in system heat capacitances is considered. Batteries are considered to avoid a requirement for fuel cells capable of furnishing this brief peak power demand.

Frost, R. T.; Kornrumpf, W. P.; Napaluch, L. J.; Harden, J. D., Jr.; Walden, J. P.; Stockhoff, E. H.; Wouch, G.; Walker, L. H.

1974-01-01

235

Carbon nanotubes/magnetite hybrids prepared by a facile synthesis process and their magnetic properties  

NASA Astrophysics Data System (ADS)

In this paper, a facile synthesis process is proposed to prepare multiwalled carbon nanotubes/magnetite (MWCNTs/Fe 3O 4) hybrids. The process involves two steps: (1) water-soluble CNTs are synthesized by one-pot modification using potassium persulfate (KPS) as oxidant. (2) Fe 3O 4 is assembled along the treated CNTs by employing a facile hydrothermal process with the presence of hydrazine hydrate as the mineralizer. The treated CNTs can be easily dispersed in aqueous solvent. Moreover, X-ray photoelectron spectroscopy (XPS) analysis reveals that several functional groups such as potassium carboxylate (-COOK), carbonyl (-C dbnd O) and hydroxyl (-C-OH) groups are formed on the nanotube surfaces. The MWCNTs/Fe 3O 4 hybrids are characterized with respect to crystal structure, morphology, element composition and magnetic property by X-ray diffraction (XRD), transmission electron microscopy (TEM), XPS and superconducting quantum interference device (SQUID) magnetometer. XRD and TEM results show that the Fe 3O 4 nanoparticles with diameter in the range of 20-60 nm were firmly assembled on the nanotube surface. The magnetic property investigation indicated that the CNTs/Fe 3O 4 hybrids exhibit a ferromagnetic behavior and possess a saturation magnetization of 32.2 emu/g. Further investigation indicates that the size of assembled Fe 3O 4 nanoparticles can be turned by varying experiment factors. Moreover, a probable growth mechanism for the preparation of CNTs/Fe 3O 4 hybrids was discussed.

Zhang, Li; Ni, Qing-Qing; Natsuki, Toshiaki; Fu, Yaqin

2009-07-01

236

IMPACTS OF ANTIFOAM ADDITIONS AND ARGON BUBBLING ON DEFENSE WASTE PROCESSING FACILITY REDUCTION/OXIDATION  

SciTech Connect

During melting of HLW glass, the REDOX of the melt pool cannot be measured. Therefore, the Fe{sup +2}/{Sigma}Fe ratio in the glass poured from the melter must be related to melter feed organic and oxidant concentrations to ensure production of a high quality glass without impacting production rate (e.g., foaming) or melter life (e.g., metal formation and accumulation). A production facility such as the Defense Waste Processing Facility (DWPF) cannot wait until the melt or waste glass has been made to assess its acceptability, since by then no further changes to the glass composition and acceptability are possible. therefore, the acceptability decision is made on the upstream process, rather than on the downstream melt or glass product. That is, it is based on 'feed foward' statistical process control (SPC) rather than statistical quality control (SQC). In SPC, the feed composition to the melter is controlled prior to vitrification. Use of the DWPF REDOX model has controlled the balanjce of feed reductants and oxidants in the Sludge Receipt and Adjustment Tank (SRAT). Once the alkali/alkaline earth salts (both reduced and oxidized) are formed during reflux in the SRAT, the REDOX can only change if (1) additional reductants or oxidants are added to the SRAT, the Slurry Mix Evaporator (SME), or the Melter Feed Tank (MFT) or (2) if the melt pool is bubble dwith an oxidizing gas or sparging gas that imposes a different REDOX target than the chemical balance set during reflux in the SRAT.

Jantzen, C.; Johnson, F.

2012-06-05

237

INSTALLATION OF BUBBLERS IN THE SAVANNAH RIVER SITED DEFENSE WASTE PROCESSING FACILITY MELTER  

SciTech Connect

Savannah River Remediation (SRR) LLC assumed the liquid waste contract at the Savannah River Site (SRS) in the summer of 2009. The main contractual agreement was to close 22 High Level Waste (HLW) tanks in eight years. To achieve this aggressive commitment, faster waste processing throughout the SRS liquid waste facilities will be required. Part of the approach to achieve faster waste processing is to increase the canister production rate of the Defense Waste Processing Facility (DWPF) from approximately 200 canisters filled with radioactive waste glass per year to 400 canisters per year. To reach this rate for melter throughput, four bubblers were installed in the DWPF Melter in the late summer of 2010. This effort required collaboration between SRR, SRR critical subcontractor EnergySolutions, and Savannah River Nuclear Solutions, including the Savannah River National Laboratory (SRNL). The tasks included design and fabrication of the bubblers and related equipment, testing of the bubblers for various technical issues, the actual installation of the bubblers and related equipment, and the initial successful operation of the bubblers in the DWPF Melter.

Smith, M.; Iverson, D.

2010-12-08

238

200 Area effluent treatment facility process control plan 98-02  

SciTech Connect

This Process Control Plan (PCP) provides a description of the background information, key objectives, and operating criteria defining Effluent Treatment Facility (ETF) Campaign 98-02 as required per HNF-IP-0931 Section 37, Process Control Plans. Campaign 98-62 is expected to process approximately 18 millions gallons of groundwater with an assumption that the UP-1 groundwater pump will be shut down on June 30, 1998. This campaign will resume the UP-1 groundwater treatment operation from Campaign 97-01. The Campaign 97-01 was suspended in November 1997 to allow RCRA waste in LERF Basin 42 to be treated to meet the Land Disposal Restriction Clean Out requirements. The decision to utilize ETF as part of the selected interim remedial action of the 200-UP-1 Operable Unit is documented by the Declaration of the Record of Decision, (Ecology, EPA and DOE 1997). The treatment method was chosen in accordance with the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) as amended by the Superfund Amendments and Reauthorization Act of 1986 (SARA), the Hanford Federal Facility Agreement and Consent Order (known as the Tri-Party Agreement or TPA), and to the extent practicable, the National Oil and Hazardous Substances Pollution Contingency Plan (NCP).

Le, E.Q.

1998-01-30

239

A facile process to achieve hysteresis-free and fully stabilized graphene field-effect transistors  

NASA Astrophysics Data System (ADS)

The operation of chemical vapor-deposited (CVD) graphene field-effect transistors (GFETs) is highly sensitive to environmental factors such as the substrate, polymer residues, ambient condition, and other species adsorbed on the graphene surface due to their high defect density. As a result, CVD GFETs often exhibit a large hysteresis and time-dependent instability. These problems become a major roadblock in the systematic study of graphene devices. We report a facile process to alleviate these problems, which can be used to fabricate stable high performance CVD GFETs with symmetrical current-voltage (I-V) characteristics and an effective carrier mobility over 6000 cm2 V-1 s-1. This process combined a few steps of processes in sequence including pre-annealing in a vacuum, depositing a passivation layer, and the final annealing in a vacuum, and eliminated ~50% of charging sources primarily originating from water reduction reactions.The operation of chemical vapor-deposited (CVD) graphene field-effect transistors (GFETs) is highly sensitive to environmental factors such as the substrate, polymer residues, ambient condition, and other species adsorbed on the graphene surface due to their high defect density. As a result, CVD GFETs often exhibit a large hysteresis and time-dependent instability. These problems become a major roadblock in the systematic study of graphene devices. We report a facile process to alleviate these problems, which can be used to fabricate stable high performance CVD GFETs with symmetrical current-voltage (I-V) characteristics and an effective carrier mobility over 6000 cm2 V-1 s-1. This process combined a few steps of processes in sequence including pre-annealing in a vacuum, depositing a passivation layer, and the final annealing in a vacuum, and eliminated ~50% of charging sources primarily originating from water reduction reactions. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr06397j

Kim, Yun Ji; Lee, Young Gon; Jung, Ukjin; Lee, Sangchul; Lee, Sang Kyung; Lee, Byoung Hun

2015-02-01

240

Design of a lunar propellant processing facility. NASA/USRA advanced program  

NASA Technical Reports Server (NTRS)

Mankind's exploration of space will eventually lead to the establishment of a permanent human presence on the Moon. Essential to the economic viability of such an undertaking will be prudent utilization of indigenous lunar resources. The design of a lunar propellant processing system is presented. The system elements include facilities for ore processing, ice transportation, water splitting, propellant storage, personnel and materials transportation, human habitation, power generation, and communications. The design scenario postulates that ice is present in the lunar polar regions, and that an initial lunar outpost was established. Mining, ore processing, and water transportation operations are located in the polar regions. Water processing and propellant storage facilities are positioned near the equator. A general description of design operations is outlined below. Regolith containing the ice is mined from permanently-shaded polar craters. Water is separated from the ore using a microwave processing technique, and refrozen into projectiles for launch to the equatorial site via railgun. A mass-catching device retrieves the ice. This ice is processed using fractional distillation to remove impurities, and the purified liquid water is fed to an electrolytic cell that splits the water into vaporous hydrogen and oxygen. The hydrogen and oxygen are condensed and stored separately in a tank farm. Electric power for all operations is supplied by SP-100 nuclear reactors. Transportation of materials and personnel is accomplished primarily using chemical rockets. Modular living habitats are used which provide flexibility for the placement and number of personnel. A communications system consisting of lunar surface terminals, a lunar relay satellite, and terrestrial surface stations provides capabilities for continuous Moon-Moon and Moon-Earth transmissions of voice, picture, and data.

Batra, Rajesh; Bell, Jason; Campbell, J. Matt; Cash, Tom; Collins, John; Dailey, Brian; France, Angelique; Gareau, Will; Gleckler, Mark; Hamilton, Charles

1993-01-01

241

30 CFR 921.827 - Special performance standards-coal processing plants and support facilities not located at or...  

Code of Federal Regulations, 2010 CFR

...AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS WITHIN EACH STATE MASSACHUSETTS § 921.827 Special performance standards—coal processing plants and support facilities not located at or near...

2010-07-01

242

30 CFR 921.827 - Special performance standards-coal processing plants and support facilities not located at or...  

Code of Federal Regulations, 2011 CFR

...AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS WITHIN EACH STATE MASSACHUSETTS § 921.827 Special performance standards—coal processing plants and support facilities not located at or near...

2011-07-01

243

30 CFR 912.827 - Special performance standards-coal processing plants and support facilities not located at or...  

Code of Federal Regulations, 2011 CFR

...RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS WITHIN EACH STATE IDAHO § 912.827 Special performance standards—coal processing plants and support facilities not located at or near the...

2011-07-01

244

Work continues on Destiny, the U.S. Lab module, in the Space Station Processing Facility  

NASA Technical Reports Server (NTRS)

In the Space Station Processing Facility (SSPF), work continues on the U.S. Lab module, Destiny, which is scheduled to be launched on Space Shuttle Endeavour in early 2000. It will become the centerpiece of scientific research on the International Space Station. Destiny shares space in the SSPF with the Shuttle Radar Topography Mission (SRTM) and Leonardo, the Multipurpose Logistics Module (MPLM) built by the Agenzia Spaziale Italiana (ASI). The SRTM is targeted for launch on mission STS-99 in September 1999. Leonardo is scheduled to launch on mission STS- 102 in June 2000.

1999-01-01

245

Diagnostics of fast processes by charged particle beams at TWAC-ITEP accelerator-accumulator facility  

NASA Astrophysics Data System (ADS)

A new setup for the experimental investigation of rapid dynamic processes using proton radiography techniques has been created at the TWAC-ITEP terawatt accelerator-accumulator facility. A set of equipment for conducting shock-wave experiments has been designed, constructed, and tested, and an instrumentation-software complex has been developed for the automation of experiments. The first series of experiments with dynamic targets representing high explosives have been carried out, in which the density distribution in detonation waves initiated in these explosives has been measured.

Golubev, A. A.; Demidov, V. S.; Demidova, E. V.; Dudin, S. V.; Kantsyrev, A. V.; Kolesnikov, S. A.; Mintsev, V. B.; Smirnov, G. N.; Turtikov, V. I.; Utkin, A. V.; Fortov, V. E.; Sharkov, B. Yu.

2010-02-01

246

A general and facile one-pot process of isothiocyanates from amines under aqueous conditions  

PubMed Central

Summary A general and facile one-pot protocol for the preparation of a broad range of alkyl and aryl isothiocyanates has been developed from their corresponding primary amines under aqueous conditions. This synthetic process involves an in situ generation of a dithiocarbamate salt from the amine substrate by reacting with CS2 followed by elimination to form the isothiocyanate product with cyanuric acid as the desulfurylation reagent. The choice of solvent is of decisive importance for the successful formation of the dithiocarbamate salt particularly for highly electron-deficient substrates. This novel and economical method is suitable for scale-up activities. PMID:22423272

Sun, Nan; Li, Bin; Shao, Jianping; Hu, Baoxiang; Shen, Zhenlu

2012-01-01

247

RECENT PROCESS AND EQUIPMENT IMPROVEMENTS TO INCREASE HIGH LEVEL WASTE THROUGHPUT AT THE DEFENSE WASTE PROCESSING FACILITY  

SciTech Connect

The Savannah River Site's (SRS) Defense Waste Processing Facility (DWPF) began stabilizing high level waste (HLW) in a glass matrix in 1996. Over the past few years, there have been several process and equipment improvements at the DWPF to increase the rate at which the high level waste can be stabilized. These improvements have either directly increased waste processing rates or have desensitized the process to upsets, thereby minimizing downtime and increasing production. Improvements due to optimization of waste throughput with increased HLW loading of the glass resulted in a 6% waste throughput increase based upon operational efficiencies. Improvements in canister production include the pour spout heated bellows liner (5%), glass surge (siphon) protection software (2%), melter feed pump software logic change to prevent spurious interlocks of the feed pump with subsequent dilution of feed stock (2%) and optimization of the steam atomized scrubber (SAS) operation to minimize downtime (3%) for a total increase in canister production of 12%. A number of process recovery efforts have allowed continued operation. These include the off gas system pluggage and restoration, slurry mix evaporator (SME) tank repair and replacement, remote cleaning of melter top head center nozzle, remote melter internal inspection, SAS pump J-Tube recovery, inadvertent pour scenario resolutions, dome heater transformer bus bar cooling water leak repair and new Infra-red camera for determination of glass height in the canister are discussed.

Odriscoll, R; Allan Barnes, A; Jim Coleman, J; Timothy Glover, T; Robert Hopkins, R; Dan Iverson, D; Jeff Leita, J

2008-01-15

248

Recent Process and Equipment Improvements to Increase High Level Waste Throughput at The Defense Waste Processing Facility (DWPF)  

SciTech Connect

The Savannah River Site's (SRS) Defense Waste Processing Facility (DWPF) began stabilizing high level waste (HLW) in a glass matrix in 1996. Over the past few years, there have been several process and equipment improvements at the DWPF to increase the rate at which the high level waste can be stabilized. These improvements have either directly increased waste processing rates or have desensitized the process to upsets, thereby minimizing downtime and increasing production. Improvements due to optimization of waste throughput with increased HLW loading of the glass resulted in an 8 % waste throughput increase over the standard 28 % waste loading based upon operational efficiencies. Improvements in canister production include the pour spout heated bellows liner (7 %), glass surge (siphon) protection software (2 %), melter feed pump software logic change to prevent spurious interlocks of the feed pump with subsequent dilution of feed stock (2 %) and optimization of the steam atomized scrubber (SAS) operation to minimize downtime (3 %) for a total increase in canister production of 14 %. A number of process recovery efforts have allowed continued operation. These include the off gas system pluggage and restoration, slurry mix evaporator (SME) tank repair and replacement, remote cleaning of melter top head center nozzle, remote melter internal inspection, SAS pump J-Tube recovery, inadvertent pour scenario resolutions, dome heater transformer bus bar cooling water leak repair and new Infra-red camera for determination of glass height in the canister are discussed. (authors)

O'Driscoll, R.J.; Barnes, A.B.; Coleman, J.R.; Glover, T.L.; Hopkins, R.C.; Iverson, D.C.; Leita, J.N. [Defense Waste Processing Facility, Washington Savannah River Co. (WSRC), Aiken, SC (United States)

2008-07-01

249

Radioactive Air Emmission Notice of Construction (NOC) for the Waste Receiving and Processing Facility (WRAP)  

SciTech Connect

This document serves as a notice of construction (NOC) pursuant to the requirements of Washington Administrative Code (WAC) 246-247-060, and as a request for approval to modify pursuant to 40 Code of Federal Regulations (CFR) 61.07 for the Waste Receiving and Processing (WRAP) Facility. The rewrite of this NOC incorporates all the approved revisions (Sections 5.0, 6.0, 8.0, and 9.0), a revised potential to emit (PTE) based on the revised maximally exposed individual (MEI) (Sections 8.0, 10.0, 11.0, 12.0, 13.0, 14.0, and 15.0), the results of a study on fugitive emissions (Sections 6.0, 10.0, and 15.0), and reflects the current operating conditions at the WRAP Facility (Section 5.0). This NOC replaces DOE/RL-93-15 and DOE/RL-93-16 in their entirety. The primary function of the WRAP Facility is to examine, assay, characterize, treat, verify, and repackage radioactive material and mixed waste. There are two sources of emissions from the WRAP Facility: stack emissions and fugitive emissions. The stack emissions have an unabated total effective dose equivalent (TEDE) estimate to the hypothetical offsite MEI of 1.13 E+02 millirem per year. The abated TEDE for the stack emissions is estimated at 5.63 E-02 millirem per year to the MEI. The fugitive emissions have an unabated TEDE estimate to the hypothetical offsite MEI of 5.87 E-04. There is no abatement for the fugitive emissions.

MENARD, N.M.

2000-12-01

250

Review of Catalytic Hydrogen Generation in the Defense Waste Processing Facility (DWPF) Chemical Processing Cell  

SciTech Connect

This report was prepared to fulfill the Phase I deliverable for HLW/DWPF/TTR-98-0018, Rev. 2, ''Hydrogen Generation in the DWPF Chemical Processing Cell'', 6/4/2001. The primary objective for the preliminary phase of the hydrogen generation study was to complete a review of past data on hydrogen generation and to prepare a summary of the findings. The understanding was that the focus should be on catalytic hydrogen generation, not on hydrogen generation by radiolysis. The secondary objective was to develop scope for follow-up experimental and analytical work. The majority of this report provides a summary of past hydrogen generation work with radioactive and simulated Savannah River Site (SRS) waste sludges. The report also includes some work done with Hanford waste sludges and simulants. The review extends to idealized systems containing no sludge, such as solutions of sodium formate and formic acid doped with a noble metal catalyst. This includes general information from the literature, as well as the focused study done by the University of Georgia for the SRS. The various studies had a number of points of universal agreement. For example, noble metals, such as Pd, Rh, and Ru, catalyze hydrogen generation from formic acid and formate ions, and more acid leads to more hydrogen generation. There were also some points of disagreement between different sources on a few topics such as the impact of mercury on the noble metal catalysts and the identity of the most active catalyst species. Finally, there were some issues of potential interest to SRS that apparently have not been systematically studied, e.g. the role of nitrite ion in catalyst activation and reactivity. The review includes studies covering the period from about 1924-2002, or from before the discovery of hydrogen generation during simulant sludge processing in 1988 through the Shielded Cells qualification testing for Sludge Batch 2. The review of prior studies is followed by a discussion of proposed experimental work, additional data analysis, and future modeling programs. These proposals have led to recent investigations into the mercury issue and the effect of co-precipitating noble metals which will be documented in two separate reports. SRS hydrogen generation work since 2002 will also be collected and summarized in a future report on the effect of noble metal-sludge matrix interactions on hydrogen generation. Other potential factors for experimental investigation include sludge composition variations related to both the washing process and to the insoluble species with particular attention given to the role of silver and to improving the understanding of the interaction of nitrite ion with the noble metals.

Koopman, D. C.

2004-12-31

251

A Guide for Developing Standard Operating Job Procedures for the Screening & Grinding Process Wastewater Treatment Facility. SOJP No. 1.  

ERIC Educational Resources Information Center

This guide describes standard operating job procedures for the screening and grinding process of wastewater treatment facilities. The objective of this process is the removal of coarse materials from the raw waste stream for the protection of subsequent equipment and processes. The guide gives step-by-step instructions for safety inspection,…

Deal, Gerald A.; Montgomery, James A.

252

A Guide for Developing Standard Operating Job Procedures for the Sludge Thickening Process Wastewater Treatment Facility. SOJP No. 9.  

ERIC Educational Resources Information Center

This guide describes standard operating job procedures for the screening and grinding process of wastewater treatment facilities. The objective of this process is the removal of coarse materials from the raw waste stream for the protection of subsequent equipment and processes. The guide gives step-by-step instructions for safety inspection,…

Schwing, Carl M.

253

TRENTA Facility for Trade-Off Studies Between Combined Electrolysis Catalytic Exchange and Cryogenic Distillation Processes  

SciTech Connect

One of the most used methods for tritium recovery from different sources of tritiated water is based on the combination between Combined Electrolysis Catalytic Exchange (CECE) and Cryogenic Distillation (CD) processes. The development, i.e. configuration, design and performance testing of critical components, of a tritium recovery system based on the combination CECE-CD is essential for both JET and ITER. For JET, a Water Detritiation System (WDS) is not only needed to process tritiated water which has already been accumulated from operation, but also for the tritiated water which will be generated during decommissioning. For ITER, the WDS is one of the key systems to control the tritium content in the effluents streams, to recover as much tritium as possible and consequently to minimize the impact on the environment. A cryogenic distillation facility with the aim to investigate the trade-off between CECE-CD, to validate different components and mathematical modelling software is current under development at Tritium Laboratory Karlsruhe (TLK) as an extension of the existing CECE facility.

Cristescu, I. [Forschungszentrum Karlsruhe (Germany); Cristescu, I.R. [Forschungszentrum Karlsruhe (Germany); Doerr, L. [Forschungszentrum Karlsruhe (Germany); Glugla, M. [Forschungszentrum Karlsruhe (Germany); Hellriegel, G. [Forschungszentrum Karlsruhe (Germany); Schaefer, P. [Forschungszentrum Karlsruhe (Germany); Welte, S. [Forschungszentrum Karlsruhe (Germany); Kveton, O.; Murdoch, D

2005-07-15

254

Mercury Reduction and Removal from High Level Waste at the Defense Waste Processing Facility - 12511  

SciTech Connect

The Defense Waste Processing Facility processes legacy nuclear waste generated at the Savannah River Site during production of enriched uranium and plutonium required by the Cold War. The nuclear waste is first treated via a complex sequence of controlled chemical reactions and then vitrified into a borosilicate glass form and poured into stainless steel canisters. Converting the nuclear waste into borosilicate glass is a safe, effective way to reduce the volume of the waste and stabilize the radionuclides. One of the constituents in the nuclear waste is mercury, which is present because it served as a catalyst in the dissolution of uranium-aluminum alloy fuel rods. At high temperatures mercury is corrosive to off-gas equipment, this poses a major challenge to the overall vitrification process in separating mercury from the waste stream prior to feeding the high temperature melter. Mercury is currently removed during the chemical process via formic acid reduction followed by steam stripping, which allows elemental mercury to be evaporated with the water vapor generated during boiling. The vapors are then condensed and sent to a hold tank where mercury coalesces and is recovered in the tank's sump via gravity settling. Next, mercury is transferred from the tank sump to a purification cell where it is washed with water and nitric acid and removed from the facility. Throughout the chemical processing cell, compounds of mercury exist in the sludge, condensate, and off-gas; all of which present unique challenges. Mercury removal from sludge waste being fed to the DWPF melter is required to avoid exhausting it to the environment or any negative impacts to the Melter Off-Gas system. The mercury concentration must be reduced to a level of 0.8 wt% or less before being introduced to the melter. Even though this is being successfully accomplished, the material balances accounting for incoming and collected mercury are not equal. In addition, mercury has not been effectively purified and collected in the Mercury Purification Cell (MPC) since 2008. A significant cleaning campaign aims to bring the MPC back up to facility housekeeping standards. Two significant investigations are being undertaken to restore mercury collection. The SMECT mercury pump has been removed from the tank and will be functionally tested. Also, research is being conducted by the Savannah River National Laboratory to determine the effects of antifoam addition on the behavior of mercury. These path forward items will help us better understand what is occurring in the mercury collection system and ultimately lead to an improved DWPF production rate and mercury recovery rate. (authors)

Behrouzi, Aria [Savannah River Remediation, LLC (United States); Zamecnik, Jack [Savannah River National Laboratory, Aiken, South Carolina, 29808 (United States)

2012-07-01

255

Obliterative bronchiolitis in workers in a coffee-processing facility - Texas, 2008-2012.  

PubMed

Obliterative bronchiolitis, a rare, irreversible form of fixed obstructive lung disease, has been identified in workers exposed to flavoring chemicals while working in the microwave-popcorn and flavoring-manufacturing industries; the occupational risk to workers outside these industries is largely unknown. This report describes two cases of obliterative bronchiolitis identified in workers employed in a small coffee-processing facility. Both patients' illness was misdiagnosed before they received a diagnosis of work-related obliterative bronchiolitis, which had not been identified previously in the coffee-processing industry. These cases reinforce the need for exposure evaluation in all industries in which workers are exposed to flavoring chemicals. Additionally, a high index of suspicion is required when these potentially exposed workers have progressive shortness of breath. If obliterative bronchiolitis is suspected, immediate protection from further exposure is crucial to prevent further deterioration of lung function. PMID:23615673

2013-04-26

256

Health care facilities' "war on terrorism": a deliberate process for recommending personal protective equipment.  

PubMed

The protection of health care facility (HCF) staff from the effects of weapons of mass destruction has gained heightened attention since the 9-11 terrorist attacks. One critical component of protection is personal protective equipment (PPE). No universal standard exists for an "essential" level of PPE for HCF staff. The absence of such a standard raises the need for development of national policy for PPE levels, particularly in HCFs. We describe a process used by the Veterans Health Administration for recommending policy for "essential" PPE levels. Although the recommendations are specific for Veterans Health Administration, the process, findings, and applications may be useful to other institutions as they attempt to resolve this critical issue. This descriptive account will serve to generate practical scientific debate in the academic community and lead to definitive public policy recommendations for the Nation's HCFs in executing their roles in the event of a terrorist attack. PMID:17276809

Koenig, Kristi L; Boatright, Connie J; Hancock, John A; Denny, Frank J; Teeter, David S; Kahn, Christopher A; Schultz, Carl H

2007-02-01

257

Idaho Chemical Processing Plant Liquid Effluent Treatment and Disposal Facility hot test report  

SciTech Connect

Prior to initial operation with radioactive feed or ``hot`` operation, the Liquid Effluent Treatment and Disposal (LET&D) Facility underwent extensive testing. This report provides a detailed description and analysis of this testing. Testing has determined that LET&D is capable of processing radioactive solutions between the design flowrates of 275 gph to 550 gph. Modifications made to prevent condensation on the off-gas HEPA filters, to the process vacuum control, bottoms cooler rupture disks, and feed control system operation were successful. Unfortunately, two mixers failed prior to ``hot`` testing due to manufacturer`s error which limited operation of the PEW Evaporator System and sampling was not able to prove that design removal efficiencies for Mercury, Cadmium, Plutonium, and Non-Volatile Radionuclides.

Hastings, R.L.

1993-09-01

258

Cancer incidence in municipalities near two former nuclear materials processing facilities in Pennsylvania--an update.  

PubMed

Previous studies of cancer incidence among persons living in municipalities within one mile of two nuclear materials processing and fabrication plants in Pennsylvania were extended for the years 1998-2004. It had been shown that mailing addresses for residents of rural areas often did not reflect the actual municipality of residence and, if not corrected, would bias study results. The previous studies had corrected for this bias. Accordingly for the extended study, we obtained mailing addresses from the Pennsylvania Department of Health (PDH) for 866 persons with cancer who presumably lived in one of eight minor civil divisions (MCDs) near or encompassing the former nuclear facilities, designated as Area 1 in previous studies conducted by the PDH. Street addresses were geocoded and local postmasters were asked to place rural delivery addresses, post office boxes and street addresses that could not be geocoded into the correct MCD of actual residence. Over 15% of the mailing addresses were found not to be within the boundaries of the Area 1 municipalities. After the mailing addresses of individuals with cancer were placed in their proper MCD of residence, the number of persons diagnosed with cancer (n = 708) and confirmed to have lived in Area 1 was as expected (728.4) based on cancer incidence rates in the general population of Pennsylvania (SIR 0.97; 95% CI 0.90-1.05). To further evaluate the patterns of cancer rates near these nuclear facilities and the influence of improved reporting and geocoding of addresses over time, analyses were conducted of publicly available cancer incidence data from 1990 through 2004. Based on mailing addresses, a steady decrease in the number of cancers reported in the Area 1 proximal MCDs was seen, in contrast to a steady rise in the number of cancers reported in seven adjacent but more distant MCDs from the nuclear facilities, designated as Area 2. These patterns were attributed to improvements over time in the geocoding of residential mailing addresses coupled with the gradual elimination and replacement of rural delivery addresses with street addresses. The incorrect placement of mailing addresses in residential Area 1 municipalities prior to about 2002 overestimated the number of cancers occurring among residents living in close proximity to the nuclear facilities and, correspondingly, underestimated the number among Area 2 residents. Summing Area 1 and Area 2 data showed that there was no change in cancer rates over time. These results are consistent with previous studies indicating that living in municipalities near the former Apollo-Parks nuclear facilities was not associated with an increase in cancer occurrence. PMID:19131733

Boice, John D; Bigbee, William L; Mumma, Michael T; Heath, Clark W; Blot, William J

2009-02-01

259

Studsvik Processing Facility - A proven solution for the conservation of a National Asset  

SciTech Connect

Studsvik has completed over 7.5 years of operation at its Erwin, TN facility. During this time period Studsvik processed over 13.3 million pounds (4.96 million kg) of radioactive ion exchange bead resin, powdered filter media, granular activated carbon (GAC), and filter cartridges which comprised a cumulative total activity of 87,396 Curies (3.23E+09 MBq), with the highest radiation level for any incoming resin container being 400 R/hr (4.0 Sv/hr). The Studsvik Processing Facility (SPF-Erwin) has the capability to safely and efficiently receive and process a wide variety of solid and liquid Low Level Radioactive Waste (LLRW) streams including: Spent Filter Cartridges (Metal or Poly), Ion Exchange Resins (IER), powered filter media, GAC, organic solids, graphite, oils, solvents, and cleaning solutions. In 2005 Studsvik added advanced robotic technology to the SPF greatly increasing its capabilities to safely handle waste streams with radiation levels in excess of 400 R/hr (4.0 Sv/h), saving personnel exposure and maximizing ALARA. The most recent addition to Studsvik's capabilities is the cost and volume efficient processing of filter cartridges (both metal and poly). The SPF-Erwin employs the Thermal Organic Reduction (THOR{sup sm}) process, developed and patented by Studsvik, which utilizes pyrolysis/steam reforming technology. THOR{sup sm} reliably and safely processes these wide varieties of LLRWs in a unique, moderate temperature, pyrolysis/steam reforming, fluidized bed treatment system. The THOR{sup sm} technology is also suitable for processing hazardous, mixed, and dry active LLRW with appropriate licensing and waste feed modifications. Studsvik has proven to be an experienced and reliable source for the cost efficient disposition of LLRW for the nuclear industry. These processing concepts and capabilities have helped generators maximize the utilization of the limited available burial space - extending the Class-A, Class-B, and Class-C burial capabilities. This paper will provide an overview of this proven approach for both organic and inorganic LLRWs. A perfect example of the processors and generators working together to conserve a National Asset we have all come to know as the LLRW burial sites. (authors)

Ping, M.; Hill, M.; Harrison, J.; Wise, D. [Studsvik, Inc., Erwin, TN (United States)

2007-07-01

260

VERIFICATION OF THE DEFENSE WASTE PROCESSING FACILITY'S (DWPF) PROCESS DIGESTION METHOD FOR THE SLUDGE BATCH 7A QUALIFICATION SAMPLE  

SciTech Connect

For each sludge batch that is processed in the Defense Waste Processing Facility (DWPF), the Savannah River National Laboratory (SRNL) performs confirmation of the applicability of the digestion method to be used by the DWPF lab for elemental analysis of Sludge Receipt and Adjustment Tank (SRAT) receipt samples and SRAT product process control samples. DWPF SRAT samples are typically dissolved using a room temperature HF-HNO{sub 3} acid dissolution (i.e., DWPF Cold Chem Method, see DWPF Procedure SW4-15.201) and then analyzed by inductively coupled plasma - atomic emission spectroscopy (ICP-AES). This report contains the results and comparison of data generated from performing the Aqua Regia (AR), Sodium peroxide/Hydroxide Fusion (PF) and DWPF Cold Chem (CC) method digestions of Sludge Batch 7a (SB7a) SRAT Receipt and SB7a SRAT Product samples. The SB7a SRAT Receipt and SB7a SRAT Product samples were prepared in the SRNL Shielded Cells, and the SRAT Receipt material is representative of the sludge that constituates the SB7a Batch or qualification composition. This is the sludge in Tank 51 that is to be transferred into Tank 40, which will contain the heel of Sludge Batch 6 (SB6), to form the Sb7a Blend composition.

Click, D.; Edwards, T.; Jones, M.; Wiedenman, B.

2011-03-14

261

A combined approach of simulation and analytic hierarchy process in assessing production facility layouts  

NASA Astrophysics Data System (ADS)

One of the important areas of concern in order to obtain a competitive level of productivity in a manufacturing system is the layout design and material transportation system (conveyor system). However, changes in customers' requirements have triggered the need to design other alternatives of the manufacturing layout for existing production floor. Hence, this paper discusses effective alternatives of the process layout specifically, the conveyor system layout. Subsequently, two alternative designs for the conveyor system were proposed with the aims to increase the production output and minimize space allocation. The first proposed layout design includes the installation of conveyor oven in the particular manufacturing room based on priority, and the second one is the one without the conveyor oven in the layout. Simulation technique was employed to design the new facility layout. Eventually, simulation experiments were conducted to understand the performance of each conveyor layout design based on operational characteristics, which include predicting the output of layouts. Utilizing the Analytic Hierarchy Process (AHP), the newly and improved layout designs were assessed before the final selection was done. As a comparison, the existing conveyor system layout was included in the assessment process. Relevant criteria involved in this layout design problem were identified as (i) usage of space of each design, (ii) operator's utilization rates, (iii) return of investment (ROI) of the layout, and (iv) output of the layout. In the final stage of AHP analysis, the overall priority of each alternative layout was obtained and thus, a selection for final use by the management was made based on the highest priority value. This efficient planning and designing of facility layout in a particular manufacturing setting is able to minimize material handling cost, minimize overall production time, minimize investment in equipment, and optimize utilization of space.

Ramli, Razamin; Cheng, Kok-Min

2014-07-01

262

Basic Data Report -- Defense Waste Processing Facility Sludge Plant, Savannah River Plant 200-S Area  

SciTech Connect

This Basic Data Report for the Defense Waste Processing Facility (DWPF)--Sludge Plant was prepared to supplement the Technical Data Summary. Jointly, the two reports were intended to form the basis for the design and construction of the DWPF. To the extent that conflicting information may appear, the Basic Data Report takes precedence over the Technical Data Summary. It describes project objectives and design requirements. Pertinent data on the geology, hydrology, and climate of the site are included. Functions and requirements of the major structures are described to provide guidance in the design of the facilities. Revision 9 of the Basic Data Report was prepared to eliminate inconsistencies between the Technical Data Summary, Basic Data Report and Scopes of Work which were used to prepare the September, 1982 updated CAB. Concurrently, pertinent data (material balance, curie balance, etc.) have also been placed in the Basic Data Report. It is intended that these balances be used as a basis for the continuing design of the DWPF even though minor revisions may be made in these balances in future revisions to the Technical Data Summary.

Amerine, D.B.

1982-09-01

263

Letter Report. Defense Waste Processing Facility Pour Spout Heaters - Conceptual Designs and Modeling  

SciTech Connect

The Tanks Focus Area (TFA) identified a major task to address performance limitations and deficiencies of the Defense Waste Processing Facility (DWPF) now in its sixth year of operation. Design, installation, testing, monitoring, operability, and a number of other characteristics were studied by research personnel collaboratively at a number of facilities: Savannah River Technology Center (SRTC), Clemson Environmental Technologies Laboratory (CETL), Pacific Northwest National Laboratory (PNNL), and the Idaho National Engineering and Environmental Laboratory (INEEL). Because the potential limiting feature to the DWPF was identified as the pour spout/riser heater, researches on alternative design concepts originally proposed in the past were revisited. In the original works, finite element modeling was performed to evaluate temperature distribution and stress of the design currently used at the DWPF. Studies were also made to define the requirements of the design and to consider the approaches for remote removal/replacement. Their heater type/location, their remotely replaceable thermocouples, and their capabilities for remote handling characterized the five alternative designs proposed. Review comments on the alternative designs indicated a relatively wide range of advantages and disadvantages of the designs. The present report provides an overview of the design criteria, modeling results, and alternative designs. Based on a review of the past design optimization activities and an assessment of recent experience, recommendations are proposed for future consideration and improvement.

SK Sundaram; JM Perez, Jr.

2000-09-06

264

USING STATISTICAL PROCESS CONTROL TO MONITOR RADIOACTIVE WASTE CHARACTERIZATION AT A RADIOACTIVE FACILITY  

SciTech Connect

Two facilities for storing spent nuclear fuel underwater at the Hanford site in southeastern Washington State being removed from service, decommissioned, and prepared for eventual demolition. The fuel-storage facilities consist of two separate basins called K East (KE) and K West (KW) that are large subsurface concrete pools filled with water, with a containment structure over each. The basins presently contain sludge, debris, and equipment that have accumulated over the years. The spent fuel has been removed from the basins. The process for removing the remaining sludge, equipment, and structure has been initiated for the basins. Ongoing removal operations generate solid waste that is being treated as required, and then disposed. The waste, equipment and building structures must be characterized to properly manage, ship, treat (if necessary), and dispose as radioactive waste. As the work progresses, it is expected that radiological conditions in each basin may change as radioactive materials are being moved within and between the basins. It is imperative that these changing conditions be monitored so that radioactive characterization of waste is adjusted as necessary.

WESTCOTT, J.L.

2006-11-15

265

USING STATISTICAL PROCESS CONTROL TO MONITOR RADIOACTIVE WASTE CHARACTERIZATION AT A RADIOACTIVE FACILITY  

SciTech Connect

Two facilities for storing spent nuclear fuel underwater at the Hanford site in southeastern Washington State are being removed from service, decommissioned, and prepared for eventual demolition. The fuel-storage facilities consist of two separate basins called K East (KE) and K West (KW) that are large subsurface concrete pools filled with water, with a containment structure over each. The basins presently contain sludge, debris, and equipment that have accumulated over the years. The spent fuel has been removed from the basins. The process for removing the remaining sludge, equipment, and structure has been initiated for the basins. Ongoing removal operations generate solid waste that is being treated as required, and then disposed. The waste, equipment and building structures must be characterized to properly manage, ship, treat (if necessary), and dispose as radioactive waste. As the work progresses, it is expected that radiological conditions in each basin may change as radioactive materials are being moved within and between the basins. It is imperative that these changing conditions be monitored so that radioactive characterization of waste is adjusted as necessary.

WESTCOTT, J.L.; JOCHEN; PREVETTE

2007-01-02

266

Test facilities for investigation of combustion processes built at the Technical University of Lodz  

NASA Astrophysics Data System (ADS)

A number of fundamental research projects devoted to combustion processes have been carried out during the last years in the Department of Heat Technology and Refrigeration of the Technical University of Lodz, Poland. The investigations under various conditions of combustion have been conducted with the following research facilities and equipment: (1) a drop tower with 1.2 sec of microgravity conditions and ca. 1 m3 volume of the experimental package, (2) a test rig with a rotating cylindrical vessel (combustion chamber) up to 6000 rpm, (3) schlieren devices of 300 and 150 mm diameter, including a compact system for experiments in the drop tower, (4) several specialized chambers for combustion of gas- and two-phase mixtures, (5) high speed photography equipment including a 500 fps camera. Some of the experiments and facilities are presented on 27.5 min long video and mentioned in this paper in a form of the editing list of the video. Some examples of abstracts of particular specialized publications are quoted.

Kowalewski, Grzegorz

2001-04-01

267

Work plan, health and safety plan, and site characterization for the Waste Coolant Processing Facility (T-038)  

Microsoft Academic Search

As part of the Resource Conservation and Recovery Act (RCRA) Facility Investigation (RFI) of the Department of Energy`s Y-12 Plant located in Oak Ridge, Tennessee, this work plan has been developed for theWaste Coolant Processing Facility (T-038). The work plan was developed by the Measurement Applications and Development Group (MAD) of the Health and Safety Research Division (HASRD) at Oak

D. E. Bohrman; M. S. Uziel; D. C. Landguth; S. W. Hawthorne

1990-01-01

268

A Guide for Developing Standard Operating Job Procedures for the Sludge Conditioning & Dewatering Process Wastewater Treatment Facility. SOJP No. 11.  

ERIC Educational Resources Information Center

This guide describes standard operating job procedures for the sludge conditioning and dewatering process of wastewater treatment facilities. In this process, sludge is treated with chemicals to make the sludge coagulate and give up its water more easily. The treated sludge is then dewatered using a vacuum filter. The guide gives step-by-step…

Schwing, Carl M.

269

A Guide for Developing Standard Operating Job Procedures for the Digestion Process Wastewater Treatment Facility. SOJP No. 10.  

ERIC Educational Resources Information Center

This guide describes standard operating job procedures for the digestion process of wastewater treatment facilities. This process is for reducing the volume of sludge to be treated in subsequent units and to reduce the volatile content of sludge. The guide gives step-by-step instructions for pre-startup, startup, continuous operating, shutdown,…

Schwing, Carl M.

270

The SRTM is moved into place in the Space Station Processing Facility  

NASA Technical Reports Server (NTRS)

Inside the Space Station Processing Facility, the Shuttle Radar Topography Mission (SRTM) is maneuvered into place to prepare it for launch targeted for September 1999. The primary payload on mission STS-99, the SRTM consists of a specially modified radar system that will fly onboard the Space Shuttle during the 11-day mission. This radar system will gather data that will result in the most accurate and complete topographic map of the Earth's surface that has ever been assembled. SRTM is an international project spearheaded by the National Imagery and Mapping Agency and NASA, with participation of the German Aerospace Center DLR. Its objective is to obtain the most complete high-resolution digital topographic database of the Earth.

1999-01-01

271

Performance based seismic qualification of reinforced concrete nuclear materials processing facilities  

SciTech Connect

A seismic qualification of a reinforced concrete nuclear materials processing facility using performance based acceptance criteria is presented. Performance goals are defined in terms of a minimum annual seismic failure frequency. Pushover analyses are used to determine the building`s ultimate capacity and relate the capacity to roof drift and joint rotation. Nonlinear dynamic analyses are used to quantify the building`s drift using a suite of ground motion intensities representing varying soil conditions and levels of seismic hazard. A correlation between joint rotation and building drift to damage state is developed from experimental data. The damage state and seismic hazard are convolved to determine annual seismic failure frequency. The results of this rigorous approach is compared to those using equivalent force methods and pushover techniques recommended by ATC-19 and FEMA-273.

Mertz, G.E.; Loceff, F.; Houston, T.; Rauls, G. [Westinghouse Savannah River Company, Aiken, SC (United States); Mulliken, J. [LPA Group Inc., SC (United States)

1997-09-01

272

Facile control of thermo-responsive wettability through an all-electrostatic self-assembling process  

NASA Astrophysics Data System (ADS)

We describe the facile fabrication of a thermo-responsive wetting surface through an electrostatic assembly process and the use of thermo-responsive polyelectrolyte copolymers. The organic-inorganic nanostructured films were prepared through the layer-by-layer assembly of negatively charged silica nanoparticles (11 nm) and positively charged poly(allylamine hydrochloride) (PAH). The thermo-responsive polyelectrolyte copolymer, poly(allylamine hydrochloride)- g-poly( N-isopropylacrylamide) (PAH- g-PNIPAAm), was synthesized by grafting a carboxylic end group of PNIPAAm on to the PAH. The nanostructured surfaces modified with PAH- g-PNIPAAm exhibit enhanced thermal switching of surface wettability. Our approach provides a versatile strategy for control over the thermo-responsive wettability of substrates with complex structures for various applications such as sensors, microfluidics, etc.

Kwak, Donghoon; Han, Joong Tark; Lee, Ji Hwang; Lim, Ho Sun; Lee, Dae Ho; Cho, Kilwon

2008-10-01

273

Environmental monitoring of the orbiter payload bay and Orbiter Processing Facilities  

NASA Technical Reports Server (NTRS)

Contamination control in the Orbiter Processing Facility (OPF) is studied. The clean level required in the OPF is generally clean, which means no residue, dirt, debris, or other extraneous contamination; various methods of maintaining this level of cleanliness are described. The monitoring and controlling of the temperature, relative humidity, and air quality in the OPF are examined. Additional modifications to the OPF to improve contamination control are discussed. The methods used to maintain the payload changeout room at a level of visually clean, no particulates are to be detected by the unaided eye, are described. The payload bay (PLB) must sustain the cleanliness level required for the specific Orbiter's mission; the three levels of clean are defined as: (1) standard, (2) sensitive, and (3) high sensitive. The cleaning and inspection verification required to achieve the desired cleanliness level on a variety of PLB surface types are examined.

Bartelson, D. W.; Johnson, A. M.

1985-01-01

274

Erosion/corrosion concerns in feed preparation systems at the Defense Waste Processing Facility  

SciTech Connect

The Savannah River Site (SRS) has been operating a nuclear fuel cycle since the 1950`s to produce nuclear materials in support of the national defense effort. The Department of Energy authorized the construction of the Defense Waste Processing Facility (DWPF) to immobilize the high level radioactive waste resulting from these processes as a durable borosilicate glass. The DWPF, after having undergone extensive testing, has been approved for operations and is currently immobilizing radioactive waste. To ensure reliability of the DWPF remote canyon processing equipment, a materials evaluation program was performed prior to radioactive operations to determine to what extent erosion/corrosion would impact design life of equipment. The program consisted of performing pre-service baseline inspections on critical equipment and follow-up inspections after completion of DWPF cold chemical demonstration runs. Non-destructive examination (NDE) techniques were used to assess erosion/corrosion as well as evaluation of corrosion coupon racks. These results were used to arrive at predicted equipment life for selected feed preparation equipment. It was concluded with the exception of the coil and agitator for the slurry mix evaporator (SME), which are exposed to erosive glass frit particles, all of the equipment should meet its design life.

Gee, J.T.; Chandler, C.T.; Daugherty, W.L.; Imrich, K.J.; Jenkins, C.F.

1997-12-31

275

Final report on the public involvement process phase 1, Monitored Retrievable Storage Facility Feasibility Study  

SciTech Connect

This report summarizes the pubic involvement component of Phase 1 of the Monitored Retrievable Storage Facility (NM) Feasibility Study in San Juan County, Utah. Part of this summary includes background information on the federal effort to locate a voluntary site for temporary storage of nuclear waste, how San Juan County came to be involved, and a profile of the county. The heart of the report, however, summarizes the activities within the public involvement process, and the issues raised in those various forums. The authors have made every effort to reflect accurately and thoroughly all the concerns and suggestions expressed to us during the five month process. We hope that this report itself is a successful model of partnership with the citizens of the county -- the same kind of partnership the county is seeking to develop with its constituents. Finally, this report offers some suggestions to both county officials and residents alike. These suggestions concern how decision-making about the county`s future can be done by a partnership of informed citizens and listening decision-makers. In the Appendix are materials relating to the public involvement process in San Juan County.

Moore, L.; Shanteau, C.

1992-12-01

276

Final report on the public involvement process phase 1, Monitored Retrievable Storage Facility Feasibility Study  

SciTech Connect

This report summarizes the pubic involvement component of Phase 1 of the Monitored Retrievable Storage Facility (NM) Feasibility Study in San Juan County, Utah. Part of this summary includes background information on the federal effort to locate a voluntary site for temporary storage of nuclear waste, how San Juan County came to be involved, and a profile of the county. The heart of the report, however, summarizes the activities within the public involvement process, and the issues raised in those various forums. The authors have made every effort to reflect accurately and thoroughly all the concerns and suggestions expressed to us during the five month process. We hope that this report itself is a successful model of partnership with the citizens of the county -- the same kind of partnership the county is seeking to develop with its constituents. Finally, this report offers some suggestions to both county officials and residents alike. These suggestions concern how decision-making about the county's future can be done by a partnership of informed citizens and listening decision-makers. In the Appendix are materials relating to the public involvement process in San Juan County.

Moore, L.; Shanteau, C.

1992-12-01

277

Qualification of a Radioactive High Aluminum Glass for Processing in the Defense Waste Processing Facility at the Savannah River Site  

SciTech Connect

At the Savannah River Site (SRS) the Defense Waste Processing Facility (DWPF) has been immobilizing SRS's radioactive high level waste (HLW) sludge into a borosilicate glass for approximately eleven years. Currently the DWPF is immobilizing HLW sludge in Sludge Batch 4 (SB4). Each sludge batch is nominally two million liters of HLW and produces nominally five hundred stainless steel canisters 0.6 meters in diameter and 3 meters tall filled with the borosilicate glass. In SB4 and earlier sludge batches, the Al concentration has always been rather low, (less than 9.5 weight percent based on total dried solids). It is expected that in the future the Al concentrations will increase due to the changing composition of the HLW. Higher Al concentrations could introduce problems because of its known effect on the viscosity of glass melts and increase the possibility of the precipitation of nepheline in the final glass and decrease its durability. In 2006 Savannah River National Laboratory (SRNL) used DWPF processes to immobilize a radioactive HLW slurry containing 14 weight percent Al to ensure that this waste is viable for future DWPF processing. This paper presents results of the characterization of the high Al glass prepared in that demonstration. At SRNL, a sample of the processed high Al HLW slurry was mixed with an appropriate glass frit as performed in the DWPF to make a waste glass containing nominally 30% waste oxides. The glass was prepared by melting the frit and waste remotely at 1150 deg. C. The glass was then characterized by - determining the chemical composition of the glass including the concentrations of several actinide and U-235 fission products, - calculating the oxide waste loading of the glass based on the chemical composition and comparing it to that of the target - determining if the glass composition met the DWPF processing constraints such as glass melt viscosity and liquidus temperature along with a waste form affecting constraint that prevents the precipitation of nepheline (NaAlSiO{sub 4}) crystals in the glass melt - measuring the durability of the glass using the ASTM Standard Product Consistency Test (PCT) leach test to determine if the durability of the glass based on B, Li, and Na releases met the requirements for acceptance in a US geologic repository - measuring the leachability of several radionuclides using the ASTM Standard PCT leach test and comparing them to the B, Li, and Na releases - examining the glass by scanning electron microscopy and energy dispersive X-ray spectrometry to determine if any crystals had formed in the glass melt. Results indicate that the high Al glass met all the requirements for processing and product quality in the DWPF. (authors)

Bibler, N.E.; Pareizs, J.M.; Edwards, T.B.; Coleman, C.J.; Crawford, C.L. [Savannah River National Laboratory, Washington Savannah River Co., Aiken, SC (United States)

2008-07-01

278

STATUS OF THE DEVELOPMENT OF IN-TANK/AT-TANK SEPARATIONS TECHNOLOGIES FOR FOR HIGH-LEVEL WASTE PROCESSING FOR THE U.S. DEPARTMENT OF ENERGY  

SciTech Connect

Within the U.S. Department of Energy's (DOE) Office of Technology Innovation and Development, the Office of Waste Processing manages a research and development program related to the treatment and disposition of radioactive waste. At the Savannah River (South Carolina) and Hanford (Washington) Sites, approximately 90 million gallons of waste are distributed among 226 storage tanks (grouped or collocated in 'tank farms'). This waste may be considered to contain mixed and stratified high activity and low activity constituent waste liquids, salts and sludges that are collectively managed as high level waste (HLW). A large majority of these wastes and associated facilities are unique to the DOE, meaning many of the programs to treat these materials are 'first-of-a-kind' and unprecedented in scope and complexity. As a result, the technologies required to disposition these wastes must be developed from basic principles, or require significant re-engineering to adapt to DOE's specific applications. Of particular interest recently, the development of In-tank or At-Tank separation processes have the potential to treat waste with high returns on financial investment. The primary objective associated with In-Tank or At-Tank separation processes is to accelerate waste processing. Insertion of the technologies will (1) maximize available tank space to efficiently support permanent waste disposition including vitrification; (2) treat problematic waste prior to transfer to the primary processing facilities at either site (i.e., Hanford's Waste Treatment and Immobilization Plant (WTP) or Savannah River's Salt Waste Processing Facility (SWPF)); and (3) create a parallel treatment process to shorten the overall treatment duration. This paper will review the status of several of the R&D projects being developed by the U.S. DOE including insertion of the ion exchange (IX) technologies, such as Small Column Ion Exchange (SCIX) at Savannah River. This has the potential to align the salt and sludge processing life cycle, thereby reducing the Defense Waste Processing Facility (DWPF) mission by 7 years. Additionally at the Hanford site, problematic waste streams, such as high boehmite and phosphate wastes, could be treated prior to receipt by WTP and thus dramatically improve the capacity of the facility to process HLW. Treatment of boehmite by continuous sludge leaching (CSL) before receipt by WTP will dramatically reduce the process cycle time for the WTP pretreatment facility, while treatment of phosphate will significantly reduce the number of HLW borosilicate glass canisters produced at the WTP. These and other promising technologies will be discussed.

Aaron, G.; Wilmarth, B.

2011-09-19

279

Advanced Distributed Measurements and Data Processing at the Vibro-Acoustic Test Facility, GRC Space Power Facility, Sandusky, Ohio - an Architecture and an Example  

NASA Technical Reports Server (NTRS)

A large-scale, distributed, high-speed data acquisition system (HSDAS) is currently being installed at the Space Power Facility (SPF) at NASA Glenn Research Center s Plum Brook Station in Sandusky, OH. This installation is being done as part of a facility construction project to add Vibro-acoustic Test Capabilities (VTC) to the current thermal-vacuum testing capability of SPF in support of the Orion Project s requirement for Space Environments Testing (SET). The HSDAS architecture is a modular design, which utilizes fully-remotely managed components, enables the system to support multiple test locations with a wide-range of measurement types and a very large system channel count. The architecture of the system is presented along with details on system scalability and measurement verification. In addition, the ability of the system to automate many of its processes such as measurement verification and measurement system analysis is also discussed.

Hill, Gerald M.; Evans, Richard K.

2009-01-01

280

Microgravity and Materials Processing Facility study (MMPF): Requirements and Analyses of Commercial Operations (RACO) preliminary data release  

NASA Technical Reports Server (NTRS)

This requirements and analyses of commercial operations (RACO) study data release reflects the current status of research activities of the Microgravity and Materials Processing Facility under Modification No. 21 to NASA/MSFC Contract NAS8-36122. Section 1 includes 65 commercial space processing projects suitable for deployment aboard the Space Station. Section 2 contains reports of the R:BASE (TM) electronic data base being used in the study, synopses of the experiments, and a summary of data on the experimental facilities. Section 3 is a discussion of video and data compression techniques used as well as a mission timeline analysis.

1988-01-01

281

ANION ANALYSES BY ION CHROMATOGRAPHY FOR THE ALTERNATE REDUCTANT DEMONSTRATION FOR THE DEFENSE WASTE PROCESSING FACILITY  

SciTech Connect

The Process Science Analytical Laboratory (PSAL) at the Savannah River National Laboratory was requested by the Defense Waste Processing Facility (DWPF) to develop and demonstrate an Ion Chromatography (IC) method for the analysis of glycolate, in addition to eight other anions (fluoride, formate, chloride, nitrite, nitrate, sulfate, oxalate and phosphate) in Sludge Receipt and Adjustment Tank (SRAT) and Slurry Mix Evaporator (SME) samples. The method will be used to analyze anions for samples generated from the Alternate Reductant Demonstrations to be performed for the DWPF at the Aiken County Technology Laboratory (ACTL). The method is specific to the characterization of anions in the simulant flowsheet work. Additional work will be needed for the analyses of anions in radiological samples by Analytical Development (AD) and DWPF. The documentation of the development and demonstration of the method fulfills the third requirement in the TTQAP, SRNL-RP-2010-00105, 'Task Technical and Quality Assurance Plan for Glycolic-Formic Acid Flowsheet Development, Definition and Demonstrations Tasks 1-3'.

Best, D.

2010-08-04

282

Facile synthesis of tailored nanostructured ORMOSIL particles by a selective dissolution process.  

PubMed

Tailored nanostructured ORMOSIL particles, of raspberry shaped, hollow, and rattle type structures, were prepared by a selective dissolution of siloxane networks in composite ORMOSIL particles with a multi-layered structure. The synthesis of monodisperse ORMOSIL particles involved a one-pot process in an aqueous solution using a binary or ternary mixture from three organosilanes, (3-aminopropyl)trimethoxysilane (APTMS), vinyltrimethoxysilane (VTMS), and/or phenyltrimethoxysilane (PTMS). In the following step, ORMOSIL particles were treated with a mixture of water and alcohol with mild heating. This mild etching process was efficient to selectively dissolve some of organosilane functional groups within the ORMOSIL particles but not their main silica frameworks, leading to formation of mesoporous particles. The strategy developed in this study is not only very facile, economical, and less time-consuming, but also more environmentally friendly by avoiding the use of corrosive etching chemicals and harsh reaction conditions. Surface roughness, core diameter, and shell thickness of the resultant mesoporous ORMOSIL particles were controlled by manipulating synthetic parameters such as the relative ratios of the silane monomers as well as the dissolution parameters such as temperature and type of solvent. PMID:25454445

Park, Jong Woong; Kim, Jung Soo; Park, Tae Jae; Kim, Euk Hyun; Koo, Sang Man

2015-01-15

283

L. monocytogenes in a cheese processing facility: Learning from contamination scenarios over three years of sampling.  

PubMed

The aim of this study was to analyze the changing patterns of Listeria monocytogenes contamination in a cheese processing facility manufacturing a wide range of ready-to-eat products. Characterization of L. monocytogenes isolates included genotyping by pulsed-field gel electrophoresis (PFGE) and multi-locus sequence typing (MLST). Disinfectant-susceptibility tests and the assessment of L. monocytogenes survival in fresh cheese were also conducted. During the sampling period between 2010 and 2013, a total of 1284 environmental samples were investigated. Overall occurrence rates of Listeria spp. and L. monocytogenes were 21.9% and 19.5%, respectively. Identical L. monocytogenes genotypes were found in the food processing environment (FPE), raw materials and in products. Interventions after the sampling events changed contamination scenarios substantially. The high diversity of globally, widely distributed L. monocytogenes genotypes was reduced by identifying the major sources of contamination. Although susceptible to a broad range of disinfectants and cleaners, one dominant L. monocytogenes sequence type (ST) 5 could not be eradicated from drains and floors. Significantly, intense humidity and steam could be observed in all rooms and water residues were visible on floors due to increased cleaning strategies. This could explain the high L. monocytogenes contamination of the FPE (drains, shoes and floors) throughout the study (15.8%). The outcome of a challenge experiment in fresh cheese showed that L. monocytogenes could survive after 14days of storage at insufficient cooling temperatures (8 and 16°C). All efforts to reduce L. monocytogenes environmental contamination eventually led to a transition from dynamic to stable contamination scenarios. Consequently, implementation of systematic environmental monitoring via in-house systems should either aim for total avoidance of FPE colonization, or emphasize a first reduction of L. monocytogenes to sites where contamination of the processed product is unlikely. Drying of surfaces after cleaning is highly recommended to facilitate the L. monocytogenes eradication. PMID:25136788

Rückerl, I; Muhterem-Uyar, M; Muri-Klinger, S; Wagner, K-H; Wagner, M; Stessl, B

2014-10-17

284

Qualification of the Nippon Instrumentation for use in Measuring Mercury at the Defense Waste Processing Facility  

SciTech Connect

The Nippon Mercury/RA-3000 system installed in 221-S M-14 has been qualified for use. The qualification was a side-by-side comparison of the Nippon Mercury/RA-3000 system with the currently used Bacharach Mercury Analyzer. The side-by-side testing included standards for instrument calibration verifications, spiked samples and unspiked samples. The standards were traceable back to the National Institute of Standards and Technology (NIST). The side-by-side work included the analysis of Sludge Receipt and Adjustment Tank (SRAT) Receipt, SRAT Product, and Slurry Mix Evaporator (SME) samples. With the qualification of the Nippon Mercury/RA-3000 system in M-14, the DWPF lab will be able to perform a head to head comparison of a second Nippon Mercury/RA-3000 system once the system is installed. The Defense Waste Processing Facility (DWPF) analyzes receipt and product samples from the Sludge Receipt and Adjustment Tank (SRAT) to determine the mercury (Hg) concentration in the sludge slurry. The SRAT receipt is typically sampled and analyzed for the first ten SRAT batches of a new sludge batch to obtain an average Hg concentration. This average Hg concentration is then used to determine the amount of steam stripping required during the concentration/reflux step of the SRAT cycle to achieve a less than 0.6 wt% Hg in the SRAT product solids. After processing is complete, the SRAT product is sampled and analyzed for mercury to ensure that the mercury concentration does not exceed the 0.45 wt% limit in the Slurry Mix Evaporator (SME). The DWPF Laboratory utilizes Bacharach Analyzers to support these Hg analyses at this facility. These analyzers are more than 10 years old, and they are no longer supported by the manufacturer. Due to these difficulties, the Bacharach Analyzers are to be replaced by new Nippon Mercury/RA-3000 systems. DWPF issued a Technical Task Request (TTR) for the Savannah River National Laboratory (SRNL) to assist in the qualification of the new systems. SRNL prepared a task technical and quality assurance (TT&QA) plan that outlined the activities that are necessary and sufficient to meet the objectives of the TTR. In addition, TT&QA plan also included a test plan that provided guidance to the DWPF Lab in collecting the data needed to qualify the new Nippon Mercury/RA-3000 systems.

Edwards, T.; Mahannah, R.

2011-07-05

285

VERIFICATION OF THE DEFENSE WASTE PROCESSING FACILITY PROCESS DIGESTION METHOD FOR THE SLUDGE BATCH 6 QUALIFICATION SAMPLE  

SciTech Connect

For each sludge batch that is processed in the Defense Waste Processing Facility (DWPF), the Savannah River National Laboratory (SRNL) confirms applicability of the digestion method to be used by the DWPF lab for elemental analysis of Sludge Receipt and Adjustment Tank (SRAT) receipt samples and SRAT product process control samples.1 DWPF SRAT samples are typically dissolved using a room temperature HF-HNO3 acid dissolution (i.e., DWPF Cold Chem (CC) Method, see DWPF Procedure SW4-15.201) and then analyzed by inductively coupled plasma - atomic emission spectroscopy (ICPAES). In addition to the CC method confirmation, the DWPF lab's mercury (Hg) digestion method was also evaluated for applicability to SB6 (see DWPF procedure 'Mercury System Operating Manual', Manual: SW4-15.204. Section 6.1, Revision 5, Effective date: 12-04-03). This report contains the results and comparison of data generated from performing the Aqua Regia (AR), Sodium Peroxide/Hydroxide Fusion (PF) and DWPF Cold Chem (CC) method digestion of Sludge Batch 6 (SB6) SRAT Receipt and SB6 SRAT Product samples. For validation of the DWPF lab's Hg method, only SRAT receipt material was used and compared to AR digestion results. The SB6 SRAT Receipt and SB6 SRAT Product samples were prepared in the SRNL Shielded Cells, and the SRAT Receipt material is representative of the sludge that constitutes the SB6 Batch or qualification composition. This is the sludge in Tank 51 that is to be transferred into Tank 40, which will contain the heel of Sludge Batch 5 (SB5), to form the SB6 Blend composition. In addition to the 16 elements currently measured by the DWPF, this report includes Hg and thorium (Th) data (Th comprising {approx}2.5 - 3 Wt% of the total solids in SRAT Receipt and SRAT Product, respectively) and provides specific details of ICP-AES analysis of Th. Thorium was found to interfere with the U 367.007 nm emission line, and an inter-element correction (IEC) had to be applied to U data, which is also discussed. The results for any one particular element should not be used in any way to identify the form or speciation of a particular element without support from XRD analysis or used to estimate ratios of compounds in the sludge.

Click, D.; Jones, M.; Edwards, T.

2010-06-09

286

Qualification of a Carbon Analyzer to Support the Defense Waste Processing Facility  

SciTech Connect

The I-O Model 1030 carbon analyzer has been qualified for use at the Defense Waste Processing Facility (DWPF). The qualification was a side-by-side comparison of the Model 1030 system with the currently used Model 1010 Analyzer. This recommendation is based on side-by-side comparisons of the new unit to the currently used Model 1010 analyzer that are presented in this report. The side-by-side testing included standards and process samples. The standards, which were used for instrument calibration verifications in the measurement of total inorganic carbon (TIC) and of total organic carbon (TOC), were traceable back to the National Institute of Standards and Technology. The process samples included TIC analyses of Sludge Receipt and Adjustment Tank samples and TOC analyses for Slurry Mix Evaporator (SME) samples. After the Model 1030 has been used for production reporting, DWPF should consider an investigation into the uncertainties associated with the TOC measurements to determine how far below the 18,916 ppm limit DWPF must control the average of the measurements for a set of SME samples to account for the uncertainties of the measurements from this new analyzer. Based upon the results presented in this report, it is recommended that the Model 1030 carbon analyzer is qualified for use. This recommendation is based on side-by-side comparisons of the new unit to the currently used Model 1010 analyzer that are presented in this report. The side-by-side testing included standards for instrument calibration verifications for TIC and TOC, and process samples. The standards were traceable back to NIST. The process samples included TIC analyses of SRAT Receipt samples and TOC analyses for SME samples. At some point in the future, after the Model 1030 has been used for production reporting, DWPF should consider an investigation into the uncertainties associated with the TOC measurements to determine how far below the 18,916 ppm limit DWPF must control the average of the measurements for a set of SME samples to account for the uncertainties of the measurements from this new analyzer.

Edwards, T.; Feller, M.

2011-07-05

287

University Services Facilities Management  

E-print Network

Utility accounting and billing and engineering records Information & Process Management Facilities Management Customer Service Center Business Application Support and Central Planning Process ImprovementUniversity Services Facilities Management Facilities Management is responsible for all grounds

Weinberger, Hans

288

Development of a portable hyperspectral imaging system for monitoring the efficacy of sanitation procedures in food processing facilities  

Technology Transfer Automated Retrieval System (TEKTRAN)

Cleaning and sanitation in food processing facilities is a critical step in reducing the risk of transfer of pathogenic organisms to food consumed by the public. Current methods to check the effectiveness of sanitation procedures rely on visual observation and sub-sampling tests such as ATP biolumin...

289

CHARACTERIZATION OF A PRECIPITATE REACTOR FEED TANK (PRFT) SAMPLE FROM THE DEFENSE WASTE PROCESSING FACILITY (DWPF)  

SciTech Connect

A sample of from the Defense Waste Processing Facility (DWPF) Precipitate Reactor Feed Tank (PRFT) was pulled and sent to the Savannah River National Laboratory (SRNL) in June of 2013. The PRFT in DWPF receives Actinide Removal Process (ARP)/ Monosodium Titanate (MST) material from the 512-S Facility via the 511-S Facility. This 2.2 L sample was to be used in small-scale DWPF chemical process cell testing in the Shielded Cells Facility of SRNL. A 1L sub-sample portion was characterized to determine the physical properties such as weight percent solids, density, particle size distribution and crystalline phase identification. Further chemical analysis of the PRFT filtrate and dissolved slurry included metals and anions as well as carbon and base analysis. This technical report describes the characterization and analysis of the PRFT sample from DWPF. At SRNL, the 2.2 L PRFT sample was composited from eleven separate samples received from DWPF. The visible solids were observed to be relatively quick settling which allowed for the rinsing of the original shipping vials with PRFT supernate on the same day as compositing. Most analyses were performed in triplicate except for particle size distribution (PSD), X-ray diffraction (XRD), Scanning Electron Microscopy (SEM) and thermogravimetric analysis (TGA). PRFT slurry samples were dissolved using a mixed HNO3/HF acid for subsequent Inductively Coupled Plasma Atomic Emission Spectroscopy (ICPAES) and Inductively Coupled Plasma Mass Spectroscopy (ICP-MS) analyses performed by SRNL Analytical Development (AD). Per the task request for this work, analysis of the PRFT slurry and filtrate for metals, anions, carbon and base were primarily performed to support the planned chemical process cell testing and to provide additional component concentrations in addition to the limited data available from DWPF. Analysis of the insoluble solids portion of the PRFT slurry was aimed at detailed characterization of these solids (TGA, PSD, XRD and SEM) in support of the Salt IPT chemistry team. The overall conclusions from analyses performed in this study are that the PRFT slurry consists of 0.61 Wt.% insoluble MST solids suspended in a 0.77 M [Na+] caustic solution containing various anions such as nitrate, nitrite, sulfate, carbonate and oxalate. The corresponding measured sulfur level in the PRFT slurry, a critical element for determining how much of the PRFT slurry gets blended into the SRAT, is 0.437 Wt.% TS. The PRFT slurry does not contain insoluble oxalates nor significant quantities of high activity sludge solids. The lack of sludge solids has been alluded to by the Salt IPT chemistry team in citing that the mixing pump has been removed from Tank 49H, the feed tank to ARP-MCU, thus allowing the sludge solids to settle out. ? The PRFT aqueous slurry from DWPF was found to contain 5.96 Wt.% total dried solids. Of these total dried solids, relatively low levels of insoluble solids (0.61 Wt.%) were measured. The densities of both the filtrate and slurry were 1.05 g/mL. ? Particle size distribution of the PRFT solids in filtered caustic simulant and XRD analysis of washed/dried PRFT solids indicate that the PRFT slurry contains a bimodal distribution of particles in the range of 1 and 6 ?m and that the particles contain sodium titanium oxide hydroxide Na2Ti2O4(OH)2 crystalline material as determined by XRD. These data are in excellent agreement with similar data obtained from laboratory sampling of vendor supplied MST. Scanning Electron Microscopy (SEM) combined with Energy Dispersive X-ray Spectroscopy (EDS) analysis of washed/dried PRFT solids shows the particles to be like previous MST analyses consisting of irregular shaped micron-sized solids consisting primarily of Na and Ti. ? Thermogravimetric analysis of the washed and unwashed PRFT solids shows that the washed solids are very similar to MST solids. The TGA mass loss signal for the unwashed solids shows similar features to TGA performed on cellulose nitrate filter paper indicating significant presence of the deteriorated filter

Crawford, C.; Bannochie, C.

2014-05-12

290

Reconnaissance hydrogeologic investigation of the Defense Waste Processing Facility and Vicinity, Savannah River Plant, South Carolina  

SciTech Connect

The purposes of this report are two-fold: (1) to define the hydrogeologic conditions in the vicinity of the defense waste processing facility (DWPF) and, (2) to evaluate the potential for movement of a concentrated salt-solution waste if released at or near the DWPF. These purposes were accomplished by assembling and evaluating existing hydrogeologic data; collecting additional geologic, hydrologic, and water-quality data; developing a local geologic framework; developing a conceptual model of the local ground-water flow system; and by performing laboratory experiments to determine the mobility of salt-solution waste in surface and near-surface sediments. Although the unconsolidated sediments are about 1000 ft thick in the study area, only the Tertiary age sediments, or upper 300 ft are discussed in this report. The top of the Ellenton Formation acts as the major confining unit between the overlying aquifers in Tertiary sediments and the underlying aquifers in Cretaceous sediments; therefore, the Ellenton Formation is the vertical limit of our hydrogeologic investigation. The majority of the hydrologic data for this study come from monitoring wells at the saltstone disposal site (SDS) in Z Area (fig. 3). No recent water-level data were collected in S Area owing to the removal of S Area monitoring wells prior to construction at the DWPF. 46 refs., 26 figs., 7 tabs.

Dennehy, K.F.; Prowell, D.C.; McMahon, P.B.

1989-01-01

291

Bioassay testing of simulated effluent from the Defense Waste Processing Facility  

SciTech Connect

Static acute bioassay tests were used to investigate the effect of the proposed effluent from the Defense Waste Processing Facility on juvenile bluegill sunfish, Lepomis macrochirus, and the lower food chain microorganisms present in Four Mile Creek. The simulated effluent contained NaNO/sub 3/ (25 mg/L), NaMnO (0.4 mg/L), NaCHO/sub 2/ (30 mg/L), Na/sub 2/C/sub 2/O/sub 4/ (20 mg/L) and WRICO ZC-830 (150 mg/L). The 96 hour acute toxicity testing for the bluegill sunfish indicated no toxicity for any of the tested concentrations more than 10 times the expected levels to be discharged into Four Mile Creek. These findings were consistent for all the pH values tested and regardless of the presence or absence of WRICO ZC-830. The bacterial studies indicated that the projected effluent would be toxic when the effluent reached concentrations twice that which has been projected or when the NaCHO/sub 2/ reaches 10X above the expected discharge levels. 1 ref., 28 tabs.

Fliermans, C.B.

1984-12-11

292

DWPF (Defense Waste Processing Facility) canister impact testing and analyses for the Transportation Technology Center  

SciTech Connect

A legal weight truck cask design has been developed for the US Department of Energy by GA Technologies, Inc. The cask will be used to transport defense high-level waste canisters produced by the Defense Waste Processing Facility (DWPF) at the Savannah River Plant. The development of the cask required the collection of impact data for the DWPF canisters. The Materials Characterization Center (MCC) performed this work under the guidance of the Transportation Technology Center (TTC) at Sandia National Laboratories. Two full-scale DWPF canisters filled with nonradioactive borosilicate glass were impacted under ''normal'' and ''hypothetical'' accident conditions. Two canisters, supplied by the DWPF, were tested. Each canister was vertically dropped on the bottom end from a height of either 0.3 m or 9.1 m (for normal or hypothetical accident conditions, respectively). The structural integrity of each canister was then examined using helium leak and dye penetrant testing. The canisters' diameters and heights, which had been previously measured, were then remeasured to determine how the canister dimensions had changed. Following structural integrity testing, the canisters were flaw leak tested. For transportation flaw leak testing, four holes were fabricated into the shell of canister A-27 (0.3 m drop height). The canister was then transported a total distance of 2069 miles. During transport, the waste form material that fell from each flaw was collected to determine the amount of size distribution of each flaw release. 2 refs., 8 figs., 12 tabs.

Farnsworth, R.K.; Mishima, J.

1988-12-01

293

Screening study for waste biomass to ethanol production facility using the Amoco process in New York State. Final report  

SciTech Connect

This report evaluates the economic feasibility of locating biomass-to-ethanol waste conversion facilities in New York State. Part 1 of the study evaluates 74 potential sites in New York City and identifies two preferred sites on Staten, the Proctor Gamble and the Arthur Kill sites, for further consideration. Part 2 evaluates upstate New York and determines that four regions surrounding the urban centers of Albany, Buffalo, Rochester, and Syracuse provide suitable areas from which to select specific sites for further consideration. A separate Appendix provides supplemental material supporting the evaluations. A conceptual design and economic viability evaluation were developed for a minimum-size facility capable of processing 500 tons per day (tpd) of biomass consisting of wood or paper, or a combination of the two for upstate regions. The facility would use Amoco`s biomass conversion technology and produce 49,000 gallons per day of ethanol and approximately 300 tpd of lignin solid by-product. For New York City, a 1,000-tpd processing facility was also evaluated to examine effects of economies of scale. The reports evaluate the feasibility of building a biomass conversion facility in terms of city and state economic, environmental, and community factors. Given the data obtained to date, including changing costs for feedstock and ethanol, the project is marginally attractive. A facility should be as large as possible and located in a New York State Economic Development Zone to take advantage of economic incentives. The facility should have on-site oxidation capabilities, which will make it more financially viable given the high cost of energy. 26 figs., 121 tabs.

NONE

1995-08-01

294

Mechanical design and fabrication of a prototype facility for processing NaK using a chlorine reaction method  

SciTech Connect

A prototype facility has been built at the Idaho National Engineering Laboratory (INEL) to dispose of 180 gal(0.68 m{sup 3}) of radioactively contaminated NaK (sodium-potassium) that have been stored on site for 35 years. The NaK was used as primary coolant for the Experimental Breeder Reactor I (EBR-I) at the INEL and was contaminated during a meltdown of the Mark II core in November 1955. The NaK then was transferred to four containers for temporary storage. The facility process will react the NaK with elemental chlorine using a batch process to produce chemically stable sodium chloride and potassium chloride salts. The first use of the facility will be on a prototype level to verify the method. If results are favorable, the facility will be modified to eventually dispose of the EBR-I NaK. The design and intended operation of the prototype facility are described. 2 figs.

Dafoe, R.; Keller, D.; Stoll, F.

1990-01-01

295

A Microsoft Project-Based Planning, Tracking, and Management Tool for the National Transonic Facility's Model Changeover Process  

NASA Technical Reports Server (NTRS)

The removal and installation of sting-mounted wind tunnel models in the National Transonic Facility (NTF) is a multi-task process having a large impact on the annual throughput of the facility. Approximately ten model removal and installation cycles occur annually at the NTF with each cycle requiring slightly over five days to complete. The various tasks of the model changeover process were modeled in Microsoft Project as a template to provide a planning, tracking, and management tool. The template can also be used as a tool to evaluate improvements to this process. This document describes the development of the template and provides step-by-step instructions on its use and as a planning and tracking tool. A secondary role of this document is to provide an overview of the model changeover process and briefly describe the tasks associated with it.

Vairo, Daniel M.

1998-01-01

296

Uranium Exposures in a Community near a Uranium Processing Facility: Relationship with Hypertension and Hematologic Markers  

PubMed Central

Background Environmental uranium exposure originating as a byproduct of uranium processing can impact human health. The Fernald Feed Materials Production Center functioned as a uranium processing facility from 1951 to 1989, and potential health effects among residents living near this plant were investigated via the Fernald Medical Monitoring Program (FMMP). Methods Data from 8,216 adult FMMP participants were used to test the hypothesis that elevated uranium exposure was associated with indicators of hypertension or changes in hematologic parameters at entry into the program. A cumulative uranium exposure estimate, developed by FMMP investigators, was used to classify exposure. Systolic and diastolic blood pressure and physician diagnoses were used to assess hypertension; and red blood cells, platelets, and white blood cell differential counts were used to characterize hematology. The relationship between uranium exposure and hypertension or hematologic parameters was evaluated using generalized linear models and quantile regression for continuous outcomes, and logistic regression or ordinal logistic regression for categorical outcomes, after adjustment for potential confounding factors. Results Of 8,216 adult FMMP participants 4,187 (51%) had low cumulative uranium exposure, 1,273 (15%) had moderate exposure, and 2,756 (34%) were in the high (>0.50 Sievert) cumulative lifetime uranium exposure category. Participants with elevated uranium exposure had decreased white blood cell and lymphocyte counts and increased eosinophil counts. Female participants with higher uranium exposures had elevated systolic blood pressure compared to women with lower exposures. However, no exposure-related changes were observed in diastolic blood pressure or hypertension diagnoses among female or male participants. Conclusions Results from this investigation suggest that residents in the vicinity of the Fernald plant with elevated exposure to uranium primarily via inhalation exhibited decreases in white blood cell counts, and small, though statistically significant, gender-specific alterations in systolic blood pressure at entry into the FMMP. PMID:20889151

Wagner, Sara E.; Burch, James B.; Bottai, Matteo; Pinney, Susan M.; Puett, Robin; Porter, Dwayne; Vena, John E.; Hébert, James R.

2010-01-01

297

Process Flow Chart for Immobilizing of Radioactive High Concentration Sodium Hydroxide Product from the Sodium Processing Facility at the BN350 Nuclear power plant in Aktau, Kazakhstan  

Microsoft Academic Search

This paper describes the results of a joint research investigations carried out by the group of Kazakhstan, British and American specialists in development of a new material for immobilization of radioactive 35% sodium hydroxide solutions from the sodium coolant processing facility of the BN-350 nuclear power plant. The resulting solid matrix product, termed geo-cement stone, is capable of isolating long

M. Burkitbayev; K. Omarova; T. Tolebayev; A. Galkin; N. Bachilova; A. Blynskiy; V. Maev; D. Wells; A. Herrick; J. Michelbacher

2008-01-01

298

The Earthscope USArray Array Network Facility (ANF): Evolution of Data Acquisition, Processing, and Storage Systems  

NASA Astrophysics Data System (ADS)

Since April 2004 the Earthscope USArray Transportable Array (TA) network has grown to over 400 broadband seismic stations that stream multi-channel data in near real-time to the Array Network Facility in San Diego. In total, over 1.7 terabytes per year of 24-bit, 40 samples-per-second seismic and state of health data is recorded from the stations. The ANF provides analysts access to real-time and archived data, as well as state-of-health data, metadata, and interactive tools for station engineers and the public via a website. Additional processing and recovery of missing data from on-site recorders (balers) at the stations is performed before the final data is transmitted to the IRIS Data Management Center (DMC). Assembly of the final data set requires additional storage and processing capabilities to combine the real-time data with baler data. The infrastructure supporting these diverse computational and storage needs currently consists of twelve virtualized Sun Solaris Zones executing on nine physical server systems. The servers are protected against failure by redundant power, storage, and networking connections. Storage needs are provided by a hybrid iSCSI and Fiber Channel Storage Area Network (SAN) with access to over 40 terabytes of RAID 5 and 6 storage. Processing tasks are assigned to systems based on parallelization and floating-point calculation needs. On-site buffering at the data-loggers provide protection in case of short-term network or hardware problems, while backup acquisition systems at the San Diego Supercomputer Center and the DMC protect against catastrophic failure of the primary site. Configuration management and monitoring of these systems is accomplished with open-source (Cfengine, Nagios, Solaris Community Software) and commercial tools (Intermapper). In the evolution from a single server to multiple virtualized server instances, Sun Cluster software was evaluated and found to be unstable in our environment. Shared filesystem architectures using PxFS and QFS were found to be incompatible with our software architecture, so sharing of data between systems is accomplished via traditional NFS. Linux was found to be limited in terms of deployment flexibility and consistency between versions. Despite the experimentation with various technologies, our current virtualized architecture is stable to the point of an average daily real time data return rate of 92.34% over the entire lifetime of the project to date.

Davis, G. A.; Battistuz, B.; Foley, S.; Vernon, F. L.; Eakins, J. A.

2009-12-01

299

Analysis of the process applied to end-of-life vehicles in Authorised Treatment Facilities  

NASA Astrophysics Data System (ADS)

Authorised treatment facilities (ATFs) play a key role in the process undergone by vehicles when they reach their end of life (EoL) within the context of Directive 2000/53/EC. Whenever an EoL vehicle is received at an ATF, a certificate of destruction is issued. The process continues with the depollution of hazardous waste materials from the vehicle and dismantling of parts that will be reused or recycled. Finally, the remaining parts of the vehicle are transported to a shredding plant. Directive 2000/53/EC sets a number of environmental goals regarding the reuse and recycling of vehicle parts and the recovery of waste materials at the EoL of vehicles. These goals will condition the evolution of ATFs as they gradually become more restrictive. As of today, the goals set by Directive 2000/53/EC for the year 2006 are being met (1). However, it would be necessary to assess the situation of those parts that comprise the fraction of the vehicle that is not recycled, reused or recovered in order to predict the degree of compliance with the goals set for the year 2015 (recycling, reusing or recovering 95% by weight of EoL vehicles). The use of lighter materials—light alloys and reinforced plastics—as a vehicle weight-reducing strategy should be coordinated with the process carried out at ATFs in order to ensure compliance with the aforementioned goals. The results of our study seem to indicate that the most usual EoL scenario today—that in which practically all of the ferrous and non-ferrous metals are recycled and the lightweight fraction of vehicles and remaining inert materials are sent to a landfill—should be revised in order to reach the environmental goals set for the year 2015. To that avail, new strategies will have to be developed to allow for an adequate treatment—recycling, reuse or recovery—of those vehicle components that are presently sent to a landfill.

Muñoz, C.; Garraín, D.; Franco, V.; Royo, M.; Justel, D.; Vidal, R.

2009-11-01

300

Ecological studies related to construction of the Defense Waste Processing Facility on the Savannah River Site  

SciTech Connect

The Defense Waste Processing Facility (DWPF) was built on the Savannah River Site (SRS) during the mid-1980's. The Savannah River Ecology Laboratory (SREL) has completed 12 years of ecological studies related to the construction of the DWPF complex. Prior to construction, the 600-acre site (S-Area) contained a Carolina bay and the headwaters of a stream. Research conducted by the SREL has focused primarily on four questions related to these wetlands: (1) Prior to construction, what fauna and flora were present at the DWPF site and at similar, yet undisturbed, alternative sites (2) By comparing the Carolina bay at the DWPF site (Sun Bay) with an undisturbed control Carolina bay (Rainbow Bay), what effect is construction having on the organisms that inhabited the DWPF site (3) By comparing control streams with streams on the periphery of the DWPF site, what effect is construction having on the peripheral streams (4) How effective have efforts been to lessen the impacts of construction, both with respect to erosion control measures and the construction of refuge ponds'' as alternative breeding sites for amphibians that formerly bred at Sun Bay Through the long-term census-taking of biota at the DWPF site and Rainbow Bay, SREL has begun to evaluate the impact of construction on the biota and the effectiveness of mitigation efforts. Similarly, the effects of erosion from the DWPF site on the water quality of S-Area peripheral streams are being assessed. This research provides supporting data relevant to the National Environmental Policy Act (NEPA) of 1969, the Endangered Species Act of 1973, Executive Orders 11988 (Floodplain Management) and 11990 (Protection of Wetlands), and United States Department of Energy (DOE) Guidelines for Compliance with Floodplain/Wetland Environmental Review Requirements (10CFR1022).

Pechmann, J.H.K.; Scott, D.E.; McGregor, J.H.; Estes, R.A.; Chazal, A.C.

1993-02-01

301

Fabrication of biodegradable polyurethane microspheres by a facile and green process.  

PubMed

Two different compositions of water-based biodegradable polyurethane (PU) in the form of homogeneous nanoparticles (NPs) were synthesized using biodegradable polyesters as the soft segment. The first PU (PU01) was based on poly(?-caprolactone) (PCL) diol and the second PU (PU02) was based on 40% PCL diol and 60% polyethylene butylene adipate diol. The PU NP dispersions with different solid contents were sprayed into liquid nitrogen and resuspended in water to generate elastic microspheres (50-60 µm) with different nanoporosities. In vitro degradation analysis revealed that microspheres of PU02 (i.e., PU02 MS) degraded faster than those of PU01 (PU01 MS). Methylene blue was encapsulated during microsphere formation and the release was investigated. Microspheres made from a lower content (10%) of PU02 dispersion (i.e., PU02 MS_10) showed a greater burst release of methylene blue in 6 h, whereas those made from a higher content (30%) of PU01 dispersion (i.e., PU01 MS_30) revealed a prolonged release with a significantly lower burst release. Biocompatibility evaluation using L929 fibroblasts demonstrated that cells were attached and proliferated on microspheres after 24 h. On the other hand, microspheres may further self-assemble into films and scaffolds. Surface modification of microspheres by chitosan may modify the self-assembly behavior of microspheres. Microspheres could be stacked to form scaffolds with different macroporosities. Fibroblasts were successfully seeded and grown in the microsphere-stacked scaffolds. We concluded that the biodegradable and elastic microspheres may be facilely produced from a green and sustainable process with potential applications in drug release and three-dimensional cell culture. © 2014 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2014. PMID:25164115

Lin, Cheng-Yen; Hsu, Shan-Hui

2014-08-28

302

Airborne concentrations of chrysotile asbestos in serpentine quarries and stone processing facilities in Valmalenco, Italy.  

PubMed

Asbestos may be naturally present in rocks and soils. In some cases, there is the possibility of releasing asbestos fibres into the atmosphere from the rock or soil, subsequently exposing workers and the general population, which can lead to an increased risk of developing asbestos-related diseases. In the present study, air contaminated with asbestos fibres released from serpentinites was investigated in occupational settings (quarries and processing factories) and in the environment close to working facilities and at urban sites. The only naturally occurrence of asbestos found in Valmalenco area was chrysotile; amphibole fibres were never detected. An experimental cut-off diameter of 0.25 ?m was established for distinguishing between Valmalenco chrysotile and antigorite single fibres using selected area electron diffraction analyses. Air contamination from chrysotile fibres in the examined occupational settings was site-dependent as the degree of asbestos contamination of Valmalenco serpentinites is highly variable from place to place. Block cutting of massive serpentinites with multiple blades or discs and drilling at the quarry sites that had the highest levels of asbestos contamination generated the highest exposures to (i.e. over the occupational exposure limits) asbestos. Conversely, working activities on foliated serpentinites produced airborne chrysotile concentrations comparable with ambient levels. Environmental chrysotile concentrations were always below the Italian limit for life environments (0.002 f ml(-1)), except for one sample collected at a quarry property boundary. The present exposure assessment study should encourage the development of an effective and concordant policy for proper use of asbestos-bearing rocks and soils as well as for the protection of public health. PMID:22213048

Cattaneo, Andrea; Somigliana, Anna; Gemmi, Mauro; Bernabeo, Ferruccio; Savoca, Domenico; Cavallo, Domenico M; Bertazzi, Pier A

2012-07-01

303

Description of Defense Waste Processing Facility reference waste form and canister. Revision 1  

SciTech Connect

The Defense Waste Processing Facility (DWPF) will be located at the Savannah River Plant in Aiken, SC, and is scheduled for construction authorization during FY-1984. The reference waste form is borosilicate glass containing approx. 28 wt % sludge oxides, with the balance glass frit. Borosilicate glass was chosen because of its high resistance to leaching by water, its relatively high solubility for nuclides found in the sludge, and its reasonably low melting temperature. The glass frit contains about 58% SiO/sub 2/ and 15% B/sub 2/O/sub 3/. Leachabilities of SRP waste glasses are expected to approach 10/sup -8/ g/m/sup 2/-day based upon 1000-day tests using glasses containing SRP radioactive waste. Tests were performed under a wide variety of conditions simulating repository environments. The canister is filled with 3260 lb of glass which occupies about 85% of the free canister volume. The filled canister will generate approx. 470 watts when filled with oxides from 5-year-old sludge and 15-year-old supernate from the sludge and supernate processes. The radionuclide content of the canister is about 177,000 ci, with a radiation level of 5500 rem/h at canister surface contact. The reference canister is fabricated of standard 24-in.-OD, Schedule 20, 304L stainless steel pipe with a dished bottom, domed head, and a combined lifting and welding flange on the head neck. The overall canister length is 9 ft 10 in. with a 3/8-in. wall thickness. The 3-m canister length was selected to reduce equipment cell height in the DWPF to a practical size. The canister diameter was selected as an optimum size from glass quality considerations, a logical size for repository handling and to ensure that a filled canister with its double containment shipping cask could be accommodated on a legal-weight truck. The overall dimensions and weight appear to be compatible with preliminary assessments of repository requirements. 10 references.

Baxter, R.G.

1983-08-01

304

Elimination Of Catalytic Hydrogen Generation In Defense Waste Processing Facility Slurries  

SciTech Connect

Based on lab-scale simulations of Defense Waste Processing Facility (DWPF) slurry chemistry, the addition of sodium nitrite and sodium hydroxide to waste slurries at concentrations sufficient to take the aqueous phase into the alkaline region (pH > 7) with approximately 500 mg nitrite ion/kg slurry (assuming <25 wt% total solids, or equivalently 2,000 mg nitrite/kg total solids) is sufficient to effectively deactivate the noble metal catalysts at temperatures between room temperature and boiling. This is a potential strategy for eliminating catalytic hydrogen generation from the list of concerns for sludge carried over into the DWPF Slurry Mix Evaporator Condensate Tank (SMECT) or Recycle Collection Tank (RCT). These conclusions are drawn in large part from the various phases of the DWPF catalytic hydrogen generation program conducted between 2005 and 2009. The findings could apply to various situations, including a solids carry-over from either the Sludge Receipt and Adjustment Tank (SRAT) or Slurry Mix Evaporator (SME) into the SMECT with subsequent transfer to the RCT, as well as a spill of formic acid into the sump system and transfer into an RCT that already contains sludge solids. There are other potential mitigating factors for the SMECT and RCT, since these vessels are typically operated at temperatures close to the minimum temperatures that catalytic hydrogen has been observed to occur in either the SRAT or SME (pure slurry case), and these vessels are also likely to be considerably more dilute in both noble metals and formate ion (the two essential components to catalytic hydrogen generation) than the two primary process vessels. Rhodium certainly, and ruthenium likely, are present as metal-ligand complexes that are favored under certain concentrations of the surrounding species. Therefore, in the SMECT or RCT, where a small volume of SRAT or SME material would be significantly diluted, conditions would be less optimal for forming or sustaining the catalytic ligand species. Such conditions are likely to adversely impact the ability of the transferred mass to produce hydrogen at the same rate (per unit mass SRAT or SME slurry) as in the SRAT or SME vessels.

Koopman, D. C.

2013-01-22

305

Facile adsorption-dry process to incorporate Cu into TiO2 nanotube for highly efficient photocatalytic hydrogen production.  

PubMed

Cu species was introduced into TiO2 nanotube prepared by hydrothermal method via a facile adsorption-dry process. The fabricated sample exhibited excellent H2 generation activity (76.3 mmol h(-1) g(-1)(catalyst)), which was higher than most of the reported Cu incorporated TiO2 samples, even superior to some Pt/Pd/Au/Ni incorporated TiO2. Compared to wet impregnation and in-situ photo-deposition methods, the facile adsorption-dry process was much simpler but more efficient to introduce Cu species into TiO2 for H2 production. To fully understand the adsorption-dry process, characterizations of the samples were carried out by high-resolution transmission electron microscope, X-ray diffractometer, energy dispersive X-ray spectrometer, BET surface area analysis, UV-visible spectrophotometer and X-ray photoelectron spectroscopy. It was found that the facile adsorption-dry process could well maintain the morphology of TiO2 support, for instance, 1-D tubular structure and large BET surface area of TiO2 nanotube; moreover, the introduced Cu species was highly dispersed and intensively bonded with TiO2. All of these contributed to the high H2 generation activity. PMID:24245156

Xu, Shiping; Sun, Darren Delai

2013-10-01

306

An analysis of workplace exposures to benzene over four decades at a petrochemical processing and manufacturing facility (1962-1999).  

PubMed

Benzene, a known carcinogen, can be generated as a by-product during the use of petroleum-based raw materials in chemical manufacturing. The aim of this study was to analyze a large data set of benzene air concentration measurements collected over nearly 40 years during routine employee exposure monitoring at a petrochemical manufacturing facility. The facility used ethane, propane, and natural gas as raw materials in the production of common commercial materials such as polyethylene, polypropylene, waxes, adhesives, alcohols, and aldehydes. In total, 3607 benzene air samples were collected at the facility from 1962 to 1999. Of these, in total 2359 long-term (>1 h) personal exposure samples for benzene were collected during routine operations at the facility between 1974 and 1999. These samples were analyzed by division, department, and job title to establish employee benzene exposures in different areas of the facility over time. Sampling data were also analyzed by key events over time, including changes in the occupational exposure limits (OELs) for benzene and key equipment process changes at the facility. Although mean benzene concentrations varied according to operation, in nearly all cases measured benzene quantities were below the OEL in place at the time for benzene (10 ppm for 1974-1986 and 1 ppm for 1987-1999). Decreases in mean benzene air concentrations were also found when data were evaluated according to 7- to 10-yr periods following key equipment process changes. Further, an evaluation of mortality rates for a retrospective employee cohort (n = 3938) demonstrated that the average personal benzene exposures at this facility (0.89 ppm for the period 1974-1986 and 0.125 ppm for the period 1987-1999) did not result in increased standardized mortality ratio (SMRs) for diseases or malignancies of the lymphatic system. The robust nature of this data set provides comprehensive exposure information that may be useful for assessing human benzene exposures at similar facilities. The data also provide a basis for comparable measured exposure levels and the potential for adverse health effects. These data may also prove beneficial for comparing relative exposure potential for production versus nonproduction operations and the relationship between area and personal breathing zone samples. PMID:23980839

Sahmel, J; Devlin, K; Burns, A; Ferracini, T; Ground, M; Paustenbach, D

2013-01-01

307

Defense Waste Processing Facility: Report of task force on options to mitigate the effect of nitrite on DWPF operations  

SciTech Connect

The possibility of accumulating ammonium nitrate (an explosive) as well as organic compounds in the DWPF Chemical Processing Cell Vent System was recently discovered. A task force was therefore organized to examine ways to avoid this potential hazard. Of thirty-two processing/engineering options screened, the task force recommended five options, deemed to have the highest technical certainty, for detailed development and evaluation: Radiolysis of nitrite in the tetraphenylborate precipitate slurry feed in a new corrosion-resistant facility. Construction of a Late Washing Facility for precipitate washing before transfer to the DWPF; Just-in-Time'' precipitation; Startup Workaround by radiolysis of nitrite in the existing corrosion-resistant Pump Pit tanks; Ammonia venting and organics separation in the DWPF; and, Estimated costs and schedules are included in this report.

Randall, D. (ed.); Marek, J.C.

1992-03-01

308

SUMMARY OF FY11 SULFATE RETENTION STUDIES FOR DEFENSE WASTE PROCESSING FACILITY GLASS  

SciTech Connect

This report describes the results of studies related to the incorporation of sulfate in high level waste (HLW) borosilicate glass produced at the Savannah River Site (SRS) Defense Waste Processing Facility (DWPF). A group of simulated HLW glasses produced for earlier sulfate retention studies was selected for full chemical composition measurements to determine whether there is any clear link between composition and sulfate retention over the compositional region evaluated. In addition, the viscosity of several glasses was measured to support future efforts in modeling sulfate solubility as a function of predicted viscosity. The intent of these studies was to develop a better understanding of sulfate retention in borosilicate HLW glass to allow for higher loadings of sulfate containing waste. Based on the results of these and other studies, the ability to improve sulfate solubility in DWPF borosilicate glasses lies in reducing the connectivity of the glass network structure. This can be achieved, as an example, by increasing the concentration of alkali species in the glass. However, this must be balanced with other effects of reduced network connectivity, such as reduced viscosity, potentially lower chemical durability, and in the case of higher sodium and aluminum concentrations, the propensity for nepheline crystallization. Future DWPF processing is likely to target higher waste loadings and higher sludge sodium concentrations, meaning that alkali concentrations in the glass will already be relatively high. It is therefore unlikely that there will be the ability to target significantly higher total alkali concentrations in the glass solely to support increased sulfate solubility without the increased alkali concentration causing failure of other Product Composition Control System (PCCS) constraints, such as low viscosity and durability. No individual components were found to provide a significant improvement in sulfate retention (i.e., an increase of the magnitude necessary to have a dramatic impact on blending, washing, or waste loading strategies for DWPF) for the glasses studied here. In general, the concentrations of those species that significantly improve sulfate solubility in a borosilicate glass must be added in relatively large concentrations (e.g., 13 to 38 wt % or more of the frit) in order to have a substantial impact. For DWPF, these concentrations would constitute too large of a portion of the frit to be practical. Therefore, it is unlikely that specific additives may be introduced into the DWPF glass via the frit to significantly improve sulfate solubility. The results presented here continue to show that sulfate solubility or retention is a function of individual glass compositions, rather than a property of a broad glass composition region. It would therefore be inappropriate to set a single sulfate concentration limit for a range of DWPF glass compositions. Sulfate concentration limits should continue to be identified and implemented for each sludge batch. The current PCCS limit is 0.4 wt % SO{sub 4}{sup 2-} in glass, although frit development efforts have led to an increased limit of 0.6 wt % for recent sludge batches. Slightly higher limits (perhaps 0.7-0.8 wt %) may be possible for future sludge batches. An opportunity for allowing a higher sulfate concentration limit at DWPF may lay lie in improving the laboratory experiments used to set this limit. That is, there are several differences between the crucible-scale testing currently used to define a limit for DWPF operation and the actual conditions within the DWPF melter. In particular, no allowance is currently made for sulfur partitioning (volatility versus retention) during melter processing as the sulfate limit is set for a specific sludge batch. A better understanding of the partitioning of sulfur in a bubbled melter operating with a cold cap as well as the impacts of sulfur on the off-gas system may allow a higher sulfate concentration limit to be established for the melter feed. This approach would have to be taken carefully to ensure that a

Fox, K.; Edwards, T.

2012-05-08

309

DEFENSE WASTE PROCESSING FACILITY ANALYTICAL METHOD VERIFICATION FOR THE SLUDGE BATCH 5 QUALIFICATION SAMPLE  

SciTech Connect

For each sludge batch that is processed in the Defense Waste Processing Facility (DWPF), the Savannah River National Laboratory (SRNL) performs confirmation of the applicability of the digestion method to be used by the DWPF lab for elemental analysis of Sludge Receipt and Adjustment Tank (SRAT) receipt samples and SRAT product process control samples. DWPF SRAT samples are typically dissolved using a room temperature HF-HNO3 acid dissolution (i.e., DWPF Cold Chem Method, see Procedure SW4-15.201) and then analyzed by inductively coupled plasma - atomic emission spectroscopy (ICP-AES). This report contains the results and comparison of data generated from performing the Aqua Regia (AR), Sodium Peroxide/Hydroxide Fusion (PF) and DWPF Cold Chem (CC) method digestion of Sludge Batch 5 (SB5) SRAT Receipt and SB5 SRAT Product samples. The SB5 SRAT Receipt and SB5 SRAT Product samples were prepared in the SRNL Shielded Cells, and the SRAT Receipt material is representative of the sludge that constitutes the SB5 Batch composition. This is the sludge in Tank 51 that is to be transferred into Tank 40, which will contain the heel of Sludge Batch 4 (SB4), to form the SB5 Blend composition. The results for any one particular element should not be used in any way to identify the form or speciation of a particular element in the sludge or used to estimate ratios of compounds in the sludge. A statistical comparison of the data validates the use of the DWPF CC method for SB5 Batch composition. However, the difficulty that was encountered in using the CC method for SB4 brings into question the adequacy of CC for the SB5 Blend. Also, it should be noted that visible solids remained in the final diluted solutions of all samples digested by this method at SRNL (8 samples total), which is typical for the DWPF CC method but not seen in the other methods. Recommendations to the DWPF for application to SB5 based on studies to date: (1) A dissolution study should be performed on the WAPS sample by SRNL which consists of the final composition of the sludge (the SB5 Blend); (2) Given the heel of SB4 in Tank 40, the DWPF lab should monitor the aluminum concentration in the first 10 SRAT Receipt batches of SB5 using both CC and sodium peroxide/hydroxide fusion to evaluate the adequacy of aluminum recovery by the CC method for this sludge batch; and (3) SRNL and the DWPF lab should investigate if comparisons between the elemental concentrations of the SME product glass (adjusted for frit addition) obtained by the mixed acid and peroxide fusion digestion and the SRAT Receipt and SRAT Product elemental concentrations obtained via the DWPF CC method provide insight into the adequacy of the CC method for analysis of the SRAT Product. The DWPF lab would need to calcine the SRAT product at 1050 C for the best comparison. If a consistent difference in elemental concentrations is revealed, another type of digestion (i.e. sodium peroxide/hydroxide fusion) should be used to determine the concentration of the element in question. Particular emphasis should be placed on monitoring the aluminum concentration in SB5.

Click, D; Tommy Edwards, T; Henry Ajo, H

2008-07-25

310

QUALIFICATION OF THE SECOND ICS-3000 ION CHROMATOGRAPH FOR USE AT THE DEFENSE WASTE PROCESSING FACILITY  

SciTech Connect

The ICS-3000 Ion Chromatography (IC) system installed in 221-S M-14 has been qualified for use. The qualification testing was a head to head comparison of the second ICS-3000 with the initial ICS-3000 system that was installed in 221-S M-13. The crosscheck work included standards for instrument calibration and calibration verifications and standards for individual anion analysis, where the standards were traceable back to the National Institute of Standards and Technology (NIST). In addition the crosscheck work included the analysis of simulated Sludge Receipt and Adjustment Tank (SRAT) Receipt, SRAT Product, and Slurry Mix Evaporator (SME) samples, along with radioactive Sludge Batch 5 material from the SRAT and SME tanks. The Defense Waste Processing Facility (DWPF) requires the analysis of specific anions at various stages of its processing of high level waste (HLW). The anions of interest to the DWPF are fluoride, formate, chloride, nitrite, nitrate, sulfate, oxalate, and phosphate. The anion analysis is used to evaluate process chemistry including formic acid/nitric acid additions to establish optimum conditions for mercury stripping, reduction-oxidation (REDOX) chemistry for the melter, nitrite destruction, etc. The DWPF Laboratory (Lab) has recently replaced the Dionex DX-500 ion chromatography (IC) systems that had been used since 1998 by the first of two new ICS-3000 systems. The replacement effort was necessary due to the vendor of the DX-500 systems no longer supporting service contracts after 2008. DWPF purchased three new ICS-3000 systems in September of 2006. The ICS-3000 instruments are (a) designed to be more stable using an eluent generator to make eluent, (b) require virtually no daily chemical handling by the analysts, (c) require less line breaks in the hood, and (d) generally require less maintenance due to the pump configuration only using water versus the current system where the pump uses various hydroxide concentrations. The ICS-3000 instruments also allow the DWPF to maintain current service contracts, which support routine preventive maintenance and emergency support for larger problems such as component failure. One of the three new systems was set up in the DWPF Lab trailers in January of 2007 to be used for the development of methods and procedures. This system will continue to be used for training, new method development and potential improvements to current methods. The qualification of the other two ICS-3000 instruments was a phased effort. This effort was supported by the Applied Computational Engineering and Statistical (ACES) group of the Savannah River National Laboratory (SRNL) as authorized by the Technical Task Request (TTR) [1] and as directed by the corresponding Task Technical and Quality Assurance (TT&QA) plan [2]. The installation of the first 'rad' system into the M-13 Lab module required modifications to both the Lab module and to the radiohood. The installation was completed in July 2008. The testing of this system was conducted as directed by the TT&QA plan [2], and the instrument was qualified for use at the DWPF Lab as documented in [3]. As part of that evaluation, a recommendation was made that the second ICS-3000 be installed in the M-14 module and that qualification testing of that system be conducted. The purpose of this technical report is to provide a review of the data generated by these tests that will lead to the recommendation for the qualification of the M-14 ICS-3000 instrument.

Edwards, T.; Mahannah, R.

2009-12-03

311

EVALUATION OF A TURBIDITY METER FOR USE AT THE DEFENSE WASTE PROCESSING FACILITY  

SciTech Connect

Savannah River Remediation’s (SRR’s) Defense Waste Processing Facility (DWPF) Laboratory currently tests for sludge carry-over into the Recycle Collection Tank (RCT) by evaluating the iron concentration in the Slurry Mix Evaporator Condensate Tank (SMECT) and relating this iron concentration to the amount of sludge solids present. A new method was proposed for detecting the amount of sludge in the SMECT that involves the use of an Optek turbidity sensor. Waste Services Laboratory (WSL) personnel conducted testing on two of these units following a test plan developed by Waste Solidification Engineering (WSE). Both Optek units (SN64217 and SN65164) use sensor model AF16-N and signal converter model series C4000. The sensor body of each unit was modified to hold a standard DWPF 12 cc sample vial, also known as a “peanut” vial. The purpose of this testing was to evaluate the use of this model of turbidity sensor, or meter, to provide a measurement of the sludge solids present in the SMECT based upon samples from that tank. During discussions of the results from this study by WSE, WSL, and Savannah River National Laboratory (SRNL) personnel, an upper limit on the acceptable level of solids in SMECT samples was set at 0.14 weight percent (wt%). A “go/no-go” decision criterion was to be developed for the critical turbidity response, which is expressed in concentration units (CUs), for each Optek unit based upon the 0.14 wt% solids value. An acceptable or a “go” decision for the SMECT should reflect the situation that there is an identified risk (e.g. 5%) for a CU response from the Optek unit to be less than the critical CU value when the solids content of the SMECT is actually 0.14 wt% or greater, while a “no-go” determination (i.e., an Optek CU response above the critical CU value, a conservative decision relative to risk) would lead to additional evaluations of the SMECT to better quantify the possible solids content of the tank. Subsequent to the issuance of the initial version of this report but under the scope of the original request for technical assistance, WSE asked for this report to be revised to include the “go/no-go” CU value corresponding to 0.28 wt% solids. It was this request that led to the preparation of Revision 1 of the report. The results for the 0.28 wt% solids value were developed following the same approach as that utilized for the 0.14 wt% solids value. A sludge simulant was used to develop standards for testing both Optek units and to determine the viability of a “go/no-go” CU response for each of the units. Statistical methods were used by SRNL to develop the critical CU value for the “go/no-go” decision for these standards for each Optek unit. Since only one sludge simulant was available for this testing, the sensitivity of these results to other simulants and to actual sludge material is not known. However, limited testing with samples from the actual DWPF process (both SRAT product samples and SMECT samples) demonstrated that the use of the “go/no-go” criteria developed from the sludge simulant testing was conservative for these samples taken from the sludge batch, Sludge Batch 7b, being processed at the time of this testing. While both of the Optek units performed very reliably during this testing, there were statistically significant differences (although small on a practical scale) between the two units. Thus, testing should be conducted on any new unit of this Optek model to qualify it before it is used to support the DWPF operation.

Mahannah, R.; Edwards, T.

2013-06-04

312

Evaluation Of A Turbidity Meter For Use At The Defense Waste Processing Facility  

SciTech Connect

Savannah River Remediation's (SRR's) Defense Waste Processing Facility (DWPF) Laboratory currently tests for sludge carry-over into the Recycle Collection Tank (RCT) by evaluating the iron concentration in the Slurry Mix Evaporator Condensate Tank (SMECT) and relating this iron concentration to the amount of sludge solids present. A new method was proposed for detecting the amount of sludge in the SMECT that involves the use of an Optek turbidity sensor. Waste Services Laboratory (WSL) personnel conducted testing on two of these units following a test plan developed by Waste Solidification Engineering (WSE). Both Optek units (SN64217 and SN65164) use sensor model AF16-N and signal converter model series C4000. The sensor body of each unit was modified to hold a standard DWPF 12 cc sample vial, also known as a ''peanut'' vial. The purpose of this testing was to evaluate the use of this model of turbidity sensor, or meter, to provide a measurement of the sludge solids present in the SMECT based upon samples from that tank. During discussions of the results from this study by WSE, WSL, and Savannah River National Laboratory (SRNL) personnel, an upper limit on the acceptable level of solids in SMECT samples was set at 0.14 wt%. A ''go/no-go'' decision criterion was to be developed for the critical turbidity response, which is expressed in concentration units (CUs), for each Optek unit based upon the 0.14 wt% solids value. An acceptable or a ''go'' decision for the SMECT should reflect the situation that there is an identified risk (e.g. 5%) for a CU response from the Optek unit to be less than the critical CU value when the solids content of the SMECT is actually 0.14 wt% or greater, while a ''no-go'' determination (i.e., an Optek CU response above the critical CU value, a conservative decision relative to risk) would lead to additional evaluations of the SMECT to better quantify the possible solids content of the tank. A sludge simulant was used to develop standards for testing both Optek units and to determine the viability of a ''go/no-go'' CU response for each of the units. Statistical methods were used by SRNL to develop the critical CU value for the ''go/no-go'' decision for these standards for each Optek unit. Since only one sludge simulant was available for this testing, the sensitivity of these results to other simulants and to actual sludge material is not known. However, limited testing with samples from the actual DWPF process (both SRAT product samples and SMECT samples) demonstrated that the use of the ''go/no-go'' criteria developed from the sludge simulant testing was conservative for these samples taken from Sludge Batch 7b (SB7b), the sludge batch currently being processed. While both of the Optek units performed very reliably during this testing, there were statistically significant differences (although small on a practical scale) between the two units. Thus, testing should be conducted on any new unit of this Optek model to qualify it before it is used to support the DWPF operation.

Mahannah, R. N.; Edwards, T. B.

2013-01-15

313

Qualification of the First ICS-3000 ION Chromatograph for use at the Defense Waste Processing Facility  

SciTech Connect

The ICS-3000 Ion Chromatography (IC) system installed in 221-S M-13 has been qualified for use. The qualification was a head to head comparison of the ICS-3000 with the currently used DX-500 IC system. The crosscheck work included standards for instrument calibration and calibration verifications and standards for individual anion analysis, where the standards were traceable back to the National Institute of Standards and Technology (NIST). In addition the crosscheck work included the analysis of simulated Sludge Receipt Adjustment Tank (SRAT) Receipt, SRAT Product, and Slurry Mix Evaporator (SME) samples, along with radioactive Sludge Batch 5 material from the SRAT and SME tanks. Based upon the successful qualification of the ICS-3000 in M-13, it is recommended that this task proceed in developing the data to qualify, by a head to head comparison of the two ICS-3000 instruments, a second ICS-3000 to be installed in M-14. The Defense Waste Processing Facility (DWPF) requires the analysis of specific anions at various stages of its processing of high level waste (HLW). The anions of interest to the DWPF are fluoride, formate, chloride, nitrite, nitrate, sulfate, oxalate, and phosphate. The anion analysis is used to evaluate process chemistry including formic acid/nitric acid additions to establish optimum conditions for mercury stripping, reduction-oxidation (REDOX) chemistry for the melter, nitrite destruction, organic acid constituents, etc. The DWPF Laboratory (Lab) has been using Dionex DX-500 ion chromatography (IC) systems since 1998. The vendor informed DWPF in 2006 that the instruments would no longer be supported by service contracts after 2008. DWPF purchased three new ICS-3000 systems in September of 2006. The ICS-3000 instruments are (a) designed to be more stable using an eluent generator to make eluent, (b) require virtually no daily chemical handling by the analysts, (c) require less line breaks in the hood, and (d) generally require less maintenance due to the pump configuration only using water versus the current system where the pump uses various hydroxide concentrations. The ICS-3000 instruments also allow the DWPF to maintain current service contracts, which support routine preventive maintenance and emergency support for larger problems such as component failure. One of the three new systems was set up in the DWPF Lab trailers in January of 2007 to be used for the development of methods and procedures. This system will continue to be used for training, new method development and potential improvements to current methods. The qualification of the other two ICS-3000 instruments is to be a phased effort. This effort is to be supported by the Applied Computational Engineering and Statistical (ACES) group of the Savannah River National Laboratory (SRNL) as authorized by the Technical Task Request (TTR) and as directed by the corresponding Task Technical and Quality Assurance (TT&QA) plan. The installation of the first 'rad' system into the M-13 Lab module required modifications to both the Lab module and to the radiohood. The installation was completed in July 2008. The testing of this system was conducted as directed by the TT&QA plan. The purpose of this technical report is to provide a review of the data generated by these tests that will lead to the recommendation for the qualification of the M-13 ICS-3000 instrument. With the successful qualification of this first ICS-3000, plans will be developed for the installation of the second 'rad' system in the M-14 Lab module later in fiscal year 2009. When the second 'rad' ICS-3000 system is installed, the DX-500 systems will be removed and retired from service.

Edwards, T; Mahannah, R.

2011-07-05

314

SHORT CIRCUIT COORDINATION STUDY & ARC FLASH EVALUATION FOR LIQUID PROCESSING & CAPSULE STORAGE 310 FACILITY  

SciTech Connect

The objective of this study is to provide a design basis document for the electrical distribution system for the 310 Facility in the 300 Area. The study must assure that electrical equipment is rated to withstand the available fault current under abnormal (short circuit) conditions. Under-rated equipment would result in property damage, prolonged facility outages, and possible personal injury. Also to be considered, is the coordination of protective devices. This assures that the protection device nearest a fault will open and isolate the problem area from the remainder of facility systems. The study must specify what settings are required on adjustable protective devices to achieve optimum coordination. Lastly, the study must calculate Arc Blast energies at all parts of the system so that proper Personal Protective Equipment (PPE) can be specified for energized work.

TOWNE, C.M.

2003-12-26

315

Chemical hazards database and detection system for Microgravity and Materials Processing Facility (MMPF)  

NASA Technical Reports Server (NTRS)

The ability to identify contaminants associated with experiments and facilities is directly related to the safety of the Space Station. A means of identifying these contaminants has been developed through this contracting effort. The delivered system provides a listing of the materials and/or chemicals associated with each facility, information as to the contaminant's physical state, a list of the quantity and/or volume of each suspected contaminant, a database of the toxicological hazards associated with each contaminant, a recommended means of rapid identification of the contaminants under operational conditions, a method of identifying possible failure modes and effects analysis associated with each facility, and a fault tree-type analysis that will provide a means of identifying potential hazardous conditions related to future planned missions.

Steele, Jimmy; Smith, Robert E.

1991-01-01

316

Novel two-to-three hard hadronic processes and possible studies of generalized parton distributions at hadron facilities  

NASA Astrophysics Data System (ADS)

We consider a novel class of hard branching hadronic processes a+b?c+d+e, where hadrons c and d have large and nearly opposite transverse momenta and large invariant energy, which is a finite fraction of the total invariant energy. We use color transparency logic to argue that these processes can be used to study quark generalized parton distributions (GPDs) for baryons and mesons in hadron collisions, hence complementing and adding to the studies of GPDs in the exclusive deep inelastic scattering processes. We propose that a number of GPDs can be investigated in hadron facilities such as Japan Proton Accelerator Research Complex facility and Gesellschaft für Schwerionenforschung -Facility for Antiproton and Ion Research project. In this work, the GPDs for the nucleon and for the N?? transition are studied in the reaction N+N?N+?+B, where N, ?, and B are a nucleon, a pion, and a baryon (nucleon or ?), respectively, with a large momentum transfer between B (or ?) and the incident nucleon. In particular, the Efremov-Radyushkin-Brodsky-Lepage region of the GPDs can be measured in such exclusive reactions. We estimate the cross section of the processes N+N?N+?+B by using current models for relevant GPDs and information about large angle ?N reactions. We find that it will be feasible to measure these cross sections at the high-energy hadron facilities and to get novel information about the nucleon structure, for example, contributions of quark orbital angular momenta to the nucleon spin. The studies of N?? transition GPDs could be valuable also for investigating electromagnetic properties of the transition.

Kumano, S.; Strikman, M.; Sudoh, K.

2009-10-01

317

Inorganic analyses of volatilized and condensed species within prototypic Defense Waste Processing Facility (DWPF) canistered waste  

SciTech Connect

The high-level radioactive waste currently stored in carbon steel tanks at the Savannah River Site (SRS) will be immobilized in a borosilicate glass in the Defense Waste Processing Facility (DWPF). The canistered waste will be sent to a geologic repository for final disposal. The Waste Acceptance Preliminary Specifications (WAPS) require the identification of any inorganic phases that may be present in the canister that may lead to internal corrosion of the canister or that could potentially adversely affect normal canister handling. During vitrification, volatilization of mixed (Na, K, Cs)Cl, (Na, K, Cs){sub 2}SO{sub 4}, (Na, K, Cs)BF{sub 4}, (Na, K){sub 2}B{sub 4}O{sub 7} and (Na,K)CrO{sub 4} species from glass melt condensed in the melter off-gas and in the cyclone separator in the canister pour spout vacuum line. A full-scale DWPF prototypic canister filled during Campaign 10 of the SRS Scale Glass Melter was sectioned and examined. Mixed (NaK)CI, (NaK){sub 2}SO{sub 4}, (NaK) borates, and a (Na,K) fluoride phase (either NaF or Na{sub 2}BF{sub 4}) were identified on the interior canister walls, neck, and shoulder above the melt pour surface. Similar deposits were found on the glass melt surface and on glass fracture surfaces. Chromates were not found. Spinel crystals were found associated with the glass pour surface. Reference amounts of the halides and sulfates were found retained in the glass and the glass chemistry, including the distribution of the halides and sulfates, was homogeneous. In all cases where rust was observed, heavy metals (Zn, Ti, Sn) from the cutting blade/fluid were present indicating that the rust was a reaction product of the cutting fluid with glass and heat sensitized canister or with carbon-steel contamination on canister interior. Only minimal water vapor is present so that internal corrosion of the canister, will not occur.

Jantzen, C.M.

1992-06-30

318

Wetland and Sensitive Species Survey Report for Y-12: Proposed Uranium Processing Facility (UPF)  

SciTech Connect

This report summarizes the results of an environmental survey conducted at sites associated with the proposed Uranium Processing Facility (UPF) at the Y-12 National Security Complex in September-October 2009. The survey was conducted in order to evaluate potential impacts of the overall project. This project includes the construction of a haul road, concrete batch plant, wet soil storage area and dry soil storage area. The environmental surveys were conducted by natural resource experts at ORNL who routinely assess the significance of various project activities on the Oak Ridge Reservation (ORR). Natural resource staff assistance on this project included the collection of environmental information that can aid in project location decisions that minimize impacts to sensitive resource such as significant wildlife populations, rare plants and wetlands. Natural resources work was conducted in various habitats, corresponding to the proposed areas of impact. Thc credentials/qualifications of the researchers are contained in Appendix A. The proposed haul road traverses a number of different habitats including a power-line right-of-way. wetlands, streams, forest and mowed areas. It extends from what is known as the New Salvage Yard on the west to the Polaris Parking Lot on the east. This haul road is meant to connect the proposed concrete batch plant to the UPF building site. The proposed site of the concrete batch plant itself is a highly disturbed fenced area. This area of the project is shown in Fig. 1. The proposed Wet Soils Disposal Area is located on the north side of Bear Creek Road at the former Control Burn Study Area. This is a second growth arce containing thick vegetation, and extensive dead and down woody material. This area of the project is shown in Fig. 2. Thc dry soils storage area is proposed for what is currently known as the West Borrow Area. This site is located on the west side of Reeves Road south of Bear Creek Road. The site is an early successional field. This area of the project is shown in Fig. 2.

Giffen, N.; Peterson, M.; Reasor, S.; Pounds, L.; Byrd, G.; Wiest, M. C.; Hill, C. C.

2009-11-01

319

REMOTE IN-CELL SAMPLING IMPROVEMENTS PROGRAM AT THESAVANNAH RIVER SITE (SRS) DEFENSE WASTE PROCESSING FACILITY (DWPF)  

SciTech Connect

Remote Systems Engineering (RSE) of the Savannah River National Lab (SRNL) in combination with the Defense Waste Processing Facility(DWPF) Engineering and Operations has evaluated the existing equipment and processes used in the facility sample cells for 'pulling' samples from the radioactive waste stream and performing equipment in-cell repairs/replacements. RSE has designed and tested equipment for improving remote in-cell sampling evolutions and reducing the time required for in-cell maintenance of existing equipment. The equipment within the present process tank sampling system has been in constant use since the facility start-up over 17 years ago. At present, the method for taking samples within the sample cells produces excessive maintenance and downtime due to frequent failures relative to the sampling station equipment and manipulator. Location and orientation of many sampling stations within the sample cells is not conducive to manipulator operation. The overextension of manipulators required to perform many in-cell operations is a major cause of manipulator failures. To improve sampling operations and reduce downtime due to equipment maintenance, a Portable Sampling Station (PSS), wireless in-cell cameras, and new commercially available sampling technology has been designed, developed and/or adapted and tested. The uniqueness of the design(s), the results of the scoping tests, and the benefits relative to in-cell operation and reduction of waste are presented.

Marzolf, A

2007-11-26

320

Integrating real-time digital signal processing capability into a large research and development facility  

Microsoft Academic Search

The Instrumentation and Controls Division at Oak Ridge National Laboratory recently developed and installed a large scale, real-time measurement system for the world's largest pressurized water tunnel. This water tunnel, the Large Cavitation Channel (LCC) provides a research and development facility for the study of acoustic phenomena to aid in model testing of new naval ship and submarine designs. The

W. W. Manges; J. T. Mallinak-Glassell; J. E. Breeding; J. M. Jansen Jr.; R. M. Tate; R. R. Bentz

1992-01-01

321

Rationale for the Design of Persistence and Query Processing Facilities in the Database Programming Language O  

Microsoft Academic Search

ODE is a database system and environment based on the object paradigm. It offers one integrated data model for both database and general purpose manipulation. The database is defined, queried, and manipulated in the database programming language O++, an extension of C++. O++ uses the C++ object definition facility, called the class, to provide data encapsulation and multiple inheritance. O++

Rakesh Agrawal; Narain H. Gehani

1989-01-01

322

DESIGN CONSIDERATIONS FOR THE CONSTRUCTION AND OPERATION OF ETHANOL MANUFACTURING FACILITIES. PART II: PROCESS ENGINEERING CONSIDERATIONS  

Technology Transfer Automated Retrieval System (TEKTRAN)

Ethanol manufacturing facilities represent an important segment of our agricultural production system. The ethanol industry is currently experiencing a rapid expansion throughout the country, and is poised to substantially contribute to our country’s growing need for energy, especially as non-renew...

323

Improving the Quality of Services in Residential Treatment Facilities: A Strength-Based Consultative Review Process  

ERIC Educational Resources Information Center

This descriptive case study reports on the positive impact of a consultative review methodology used to conduct quality assurance reviews as part of the Residential Treatment Center Evaluation Project. The study details improvement in the quality of services provided to youth in unmonitored residential treatment facilities. Improvements were…

Pavkov, Thomas W.; Lourie, Ira S.; Hug, Richard W.; Negash, Sesen

2010-01-01

324

Design-Build Process for the Research Support Facility (RSF) (Book)  

SciTech Connect

An in-depth look at how the U.S. DOE and NREL used a performance-based design-build contract to build the Research Support Facility (RSF); one of the most energy efficient office buildings in the world.

Not Available

2012-06-01

325

Ecological survey for the siting of the Mixed and Low-Level Waste Treatment Facility and the Idaho Waste Processing Facility  

SciTech Connect

This report summarizes the results of field ecological surveys conducted by the Center for Integrated Environmental Technologies (CIET) on the Idaho National Engineering Laboratory (INEL) at four candidate locations for the siting of the Mixed and Low-Level Waste Treatment Facility (MLLWTF) and the Idaho Waste Processing Facility (IWPF). The purpose of these surveys was to comply with all Federal laws and Executive Orders to identify and evaluate any potential environmental impacts because of the project. The boundaries of the candidate location were marked with blaze-orange lath survey marker stakes by the project management. Global Positioning System (GPS) measurements of the marker stakes were made, and input to the Arc/Info{reg_sign} geographic information system (GIS). Field surveys were conducted to assess any potential impact to any important species, important habitats, and to any environmental study areas. The GIS location data was overlayed onto the INEL vegetation map and an analysis of vegetation classes on the locations was done. Results of the field surveys indicate use of Candidate Location {number_sign}1 by pygmy rabbits (Sylvilagus idahoensis) and expected use by them of Candidate Locations {number_sign}3 and {number_sign}9. Pygmy rabbits are categorized as a C2 species by the US Fish and Wildlife Service (USFWS). Two other C2 species, the ferruginous hawk (Buteo regalis) and the loggerhead shrike (Lanius ludovicianus) would also be expected to frequent the candidate locations. Candidate Location {number_sign}5 at the north end of the INEL is in the winter range of a large number of pronghorn antelope (Antilocapra americana).

Hoskinson, R.L.

1994-05-01

326

Development of the Next-Generation Caustic-Side Solvent Extraction (NG-CSSX) Process for Cesium Removal from High-Level Tank Waste  

SciTech Connect

This paper describes the chemical performance of the Next-Generation Caustic-Side Solvent Extraction (NG-CSSX) process in its current state of development for removal of cesium from the alkaline high-level tank wastes at the Savannah River Site (SRS) in the US Department of Energy (USDOE) complex. Overall, motivation for seeking a major enhancement in performance for the currently deployed CSSX process stems from needs for accelerating the cleanup schedule and reducing the cost of salt-waste disposition. The primary target of the NG-CSSX development campaign in the past year has been to formulate a solvent system and to design a corresponding flowsheet that boosts the performance of the SRS Modular CSSX Unit (MCU) from a current minimum decontamination factor of 12 to 40,000. The chemical approach entails use of a more soluble calixarene-crown ether, called MaxCalix, allowing the attainment of much higher cesium distribution ratios (DCs) on extraction. Concurrently decreasing the Cs-7SB modifier concentration is anticipated to promote better hydraulics. A new stripping chemistry has been devised using a vitrification-friendly aqueous boric acid strip solution and a guanidine suppressor in the solvent, resulting in sharply decreased DCs on stripping. Results are reported herein on solvent phase behavior and batch Cs distribution for waste simulants and real waste together with a preliminary flowsheet applicable for implementation in the MCU. The new solvent will enable MCU to process a much wider range of salt feeds and thereby extend its service lifetime beyond its design life of three years. Other potential benefits of NG-CSSX include increased throughput of the SRS Salt Waste Processing Facility (SWPF), currently under construction, and an alternative modular near-tank application at Hanford.

Moyer, Bruce A [ORNL; Bonnesen, Peter V [ORNL; Delmau, Laetitia Helene [ORNL; Sloop Jr, Frederick {Fred} V [ORNL; Williams, Neil J [ORNL; Birdwell Jr, Joseph F [ORNL; Lee, Denise L [ORNL; Leonard, Ralph [Argonne National Laboratory (ANL); Fink, Samuel D [Savannah River National Laboratory (SRNL); Peters, Thomas B. [Savannah River National Laboratory (SRNL); Geeting, Mark W [Savannah River Remediation Company

2011-01-01

327

Mines and mineral processing facilities in the vicinity of the March 11, 2011, earthquake in northern Honshu, Japan  

USGS Publications Warehouse

U.S. Geological Survey data indicate that the area affected by the March 11, 2011, magnitude 9.0 earthquake and associated tsunami is home to nine cement plants, eight iodine plants, four iron and steel plants, four limestone mines, three copper refineries, two gold refineries, two lead refineries, two zinc refineries, one titanium dioxide plant, and one titanium sponge processing facility. These facilities have the capacity to produce the following percentages of the world's nonfuel mineral production: 25 percent of iodine, 10 percent of titanium sponge (metal), 3 percent of refined zinc, 2.5 percent of refined copper, and 1.4 percent of steel. In addition, the nine cement plants contribute about one-third of Japan's cement annual production. The iodine is a byproduct from production of natural gas at the Miniami Kanto gas field, east of Tokyo in Chiba Prefecture. Japan is the world's second leading (after Chile) producer of iodine, which is processed in seven nearby facilities.

Menzie, W. David; Baker, Michael S.; Bleiwas, Donald I.; Kuo, Chin

2011-01-01

328

Risk-Based Disposal Plan for PCB Paint in the TRA Fluorinel Dissolution Process Mockup and Gamma Facilities Canal  

SciTech Connect

This Toxic Substances Control Act Risk-Based Polychlorinated Biphenyl Disposal plan was developed for the Test Reactor Area Fluorinel Dissolution Process Mockup and Gamma Facilities Waste System, located in Building TRA-641 at the Reactor Technology Complex, Idaho National Laboratory Site, to address painted surfaces in the empty canal under 40 CFR 761.62(c) for paint, and under 40 CFR 761.61(c) for PCBs that may have penetrated into the concrete. The canal walls and floor will be painted with two coats of contrasting non-PCB paint and labeled as PCB. The canal is covered with open decking; the access grate is locked shut and signed to indicate PCB contamination in the canal. Access to the canal will require facility manager permission. Protective equipment for personnel and equipment entering the canal will be required. Waste from the canal, generated during ultimate Decontamination and Decommissioning, shall be managed and disposed as PCB Bulk Product Waste.

R. A. Montgomery

2008-05-01

329

RADIOLOGICAL CONTROLS FOR PLUTONIUM CONTAMINATED PROCESS EQUIPMENT REMOVAL FROM 232-Z CONTAMINATED WASTE RECOVERY PROCESS FACILITY AT THE PLUTONIUM FINSHING PLANT (PFP)  

SciTech Connect

The 232-Z facility at Hanford's Plutonium Finishing Plant operated as a plutonium scrap incinerator for 11 years. Its mission was to recover residual plutonium through incinerating and/or leaching contaminated wastes and scrap material. Equipment failures, as well as spills, resulted in the release of radionuclides and other contamination to the building, along with small amounts to external soil. Based on the potential threat posed by the residual plutonium, the U.S. Department of Energy (DOE) issued an Action Memorandum to demolish Building 232-2, Comprehensive Environmental Response Compensation, and Liability Act (CERC1.A) Non-Time Critical Removal Action Memorandum for Removal of the 232-2 Waste Recovery Process Facility at the Plutonium Finishing Plant (04-AMCP-0486).

MINETTE, M.J.

2007-05-30

330

18 CFR 157.21 - Pre-filing procedures and review process for LNG terminal facilities and other natural gas...  

Code of Federal Regulations, 2010 CFR

...this section for other natural gas facilities shall include the...location. (3) For natural gas facilities other than LNG terminal...related jurisdictional natural gas facilities, an explanation of...state agencies in the project area with permitting...

2010-04-01

331

Salt Processing at the Savannah River Site: Results of Technology Down-Selection and Research and Development to Support New Salt Waste Processing Facility  

SciTech Connect

The Department of Energy's (DOE) Savannah River Site (SRS) high-level waste (HLW) program is responsible for storage, treatment, and immobilization of HLW for disposal. The Salt Processing Project (SPP) is the salt waste (water-soluble) treatment portion of this effort. The overall SPP encompasses the selection, design, construction, and operation of technologies to prepare the salt-waste feed material for immobilization at the site's Saltstone Production Facility (SPF) and vitrification facility (Defense Waste Processing Facility [DWPF]). Major constituents that must be removed from the salt waste and sent as feed to DWPF include cesium (Cs), strontium (Sr), and actinides. In April 2000, the DOE Deputy Secretary for Project Completion (EM-40) established the SRS Salt Processing Project Technical Working Group (TWG) to manage technology development of treatment alternatives for SRS high-level salt wastes. The separation alternatives investigated included three candidate Cs-removal processes selected, as well as actinide and Sr removal that are also required as a part of each process. The candidate Cs-removal processes are: crystalline Silicotitanate Non-Elutable Ion Exchange (CST); caustic Side Solvent Extraction (CSSX); and small Tank Tetraphenylborate Precipitation (STTP). The Tanks Focus Area was asked to assist DOE by managing the SPP research and development (R&D), revising roadmaps, and developing down-selection criteria. The down-selection decision process focused its analysis on three levels: (a) identification of goals that the selected technology should achieve, (b) selection criteria that are a measure of performance of the goal, and (c) criteria scoring and weighting for each technology alternative. After identifying the goals and criteria, the TWG analyzed R&D results and engineering data and scored the technology alternatives versus the criteria. Based their analysis and scoring, the TWG recommended CSSX as the preferred alternative. This recommendation was formalized in July 2001 when DOE published the Savannah River Site Salt Processing Alternatives Final Supplemental Environmental Impact Statement (SEIS) and was finalized in the DOE Record of Decision issued in October 2001.

Lang, K.; Gerdes, K.; Picha, K.; Spader, W.; McCullough, J.; Reynolds, J.; Morin, J. P.; Harmon, H. D.

2002-02-26

332

HWMA/RCRA Closure Plan for the TRA Fluorinel Dissolution Process Mockup and Gamma Facilities Waste System  

SciTech Connect

This Hazardous Waste Management Act/Resource Conservation and Recovery Act closure plan was developed for the Test Reactor Area Fluorinel Dissolution Process Mockup and Gamma Facilities Waste System, located in Building TRA-641 at the Reactor Technology Complex (RTC), Idaho National Laboratory Site, to meet a further milestone established under the Voluntary Consent Order SITE-TANK-005 Action Plan for Tank System TRA-009. The tank system to be closed is identified as VCO-SITE-TANK-005 Tank System TRA-009. This closure plan presents the closure performance standards and methods for achieving those standards.

K. Winterholler

2007-01-31

333

Using the ABLE facility to observe urbanization effects on planetary boundary layer processes  

SciTech Connect

The Argonne Boundary Layer Experiments (ABLE) facility, located in south central Kansas, east of Wichita, is devoted primarily to investigations of and within the planetary boundary layer (PBL), including the dynamics of the mixed layer during both day and night; effects of varying land use and landform; the interactive role of precipitation, runoff, and soil moisture; storm development; and energy budgets on scales of 10 to 100 km. With an expected lifetime of 10--15 years, the facility is well situated to observe the effects of gradual urbanization on PBL dynamics and structure as the Wichita urban area expands to the east and several small municipalities located within the study area expand. Combining the continuous measurements of ABLE with (1) ancillary continuous measurements of, for example, the Atmospheric Radiation Measurement (ARM) program and the Global Energy Water Cycle Experiment (GEWEX) programs and with (2) shorter, more intensive studies within ABLE, such as the Cooperative Atmosphere Surface Exchange Studies (CASES) Program, allows hypothesized features of urbanization, including heat island effects, precipitation enhancement, and modification of the surface energy budget partitioning, to be studied.

Coulter, R.L.; Klazura, J.; Lesht, B.M.; Shannon, J.D.; Sisterson, D.L.; Wesely, M.L.

1998-12-31

334

Process Flow Chart for Immobilizing of Radioactive High Concentration Sodium Hydroxide Product from the Sodium Processing Facility at the BN-350 Nuclear power plant in Aktau, Kazakhstan  

SciTech Connect

This paper describes the results of a joint research investigations carried out by the group of Kazakhstan, British and American specialists in development of a new material for immobilization of radioactive 35% sodium hydroxide solutions from the sodium coolant processing facility of the BN-350 nuclear power plant. The resulting solid matrix product, termed geo-cement stone, is capable of isolating long lived radionuclides from the environment. The physico-mechanical properties of geo-cement stone have been investigated and the flow chart for its production verified in a full scale experiments. (author)

Burkitbayev, M.; Omarova, K.; Tolebayev, T. [Ai-Farabi Kazakh National University, Chemical Faculty, Republic of Kazakhstan (Kazakhstan); Galkin, A. [KATEP Ltd., Republic of Kazakhstan (Kazakhstan); Bachilova, N. [NIISTROMPROEKT Ltd., Republic of Kazakhstan (Kazakhstan); Blynskiy, A. [Nuclear Technology Safety Centre, Republic of Kazakhstan (Kazakhstan); Maev, V. [MAEK-Kazatomprom Ltd., Republic of Kazakhstan (Kazakhstan); Wells, D. [NUKEM Limited- a member of the Freyssinet Group, Winfrith Technology Centre, Dorchester, Dorset (United Kingdom); Herrick, A. [NUKEM Limited- a member of the Freyssinet Group, Caithness (United Kingdom); Michelbacher, J. [Idaho National Laboratory, Idaho Falls (United States)

2008-07-01

335

Reduce energy use and greenhouse gas emissions from global dairy processing facilities  

Microsoft Academic Search

Global butter, concentrated milk, and milk powder products use approximately 15% of annual raw milk production. Similar to cheese and fluid milk, dairy processing of these products can be energy intensive. In this paper, we analyzed production and energy data compiled through extensive literature reviews on butter, concentrated milk, milk and whey powder processing across various countries and plants. Magnitudes

Tengfang Xu; Joris Flapper

2011-01-01

336

RESEARCH AND DEVELOPMENT OF AN INTEGRAL SEPARATOR FOR A CENTRIFUGAL GAS PROCESSING FACILITY  

SciTech Connect

A COMPACT GAS PROCESSING DEVICE WAS INVESTIGATED TO INCREASE GAS PRODUCTION FROM REMOTE, PREVIOUSLY UN-ECONOMIC RESOURCES. THE UNIT WAS TESTED ON AIR AND WATER AND WITH NATURAL GAS AND LIQUID. RESULTS ARE REPORTED WITH RECOMMENDATIONS FOR FUTURE WORK.

LANCE HAYS

2007-02-27

337

Cost Minimizing Scheduling of Work and Rework Processes on a Single Facility under Deterioration of  

E-print Network

in such a way that they meet the quality level of a good item. As described in Flapper and Jensen [4 in process industries as indicated in Flapper et al. [2]. If deterioration appears as continuous worsening

Magdeburg, Universität

338

Extrinsic and intrinsic complexities of the Los Alamos Plutonium Processing Facility  

SciTech Connect

Analysis of the data obtained in one year of plutonium accounting at Los Alamos reveals significant complexity. Much of this complexity arises from the complexity of the processes themselves. Additional complexity is induced by errors in the data entry process. It is important to note that there is no evidence that this complexity is adversely affecting the accounting in the plant. We have been analyzing transaction data from fiscal year 1983 processing. This study involved 62,595 transactions. The data have been analyzed using the relational database program INGRES on a VAX 11/780 computer. This software allows easy manipulation of the original data and subsets drawn from it. We have been attempting for several years to understand the global features of the TA-55 accounting data. This project has underscored several of the system's complexities. Examples that will be reported here include audit trails, lot-name multiplicity, etc.

Bearse, R.C.; Longmire, V.L.; Roberts, N.J.

1985-01-01

339

Feed Acceptance for the Defense Waste Processing Facility at the Savannah River Site  

SciTech Connect

The DWPF at the Department of Energy`s (DOE) Savannah River Site (SRS) began radioactive operations in December of 1995. The High Level Waste Tank Farm at SRS contains approximately thirty three million gallons of salt, supernate, and insoluble sludge wastes accumulated during more than three decades of weapons manufacture. In the DWPF, the radioactive components from this waste will ultimately be processed into a stable, borosilicate glass for long-term storage in a geological repository.The feeds to the DWPF are pretreated in a number of steps. Insoluble sludges, primarily aluminum, iron and other transition metals, are combined from several tanks, treated by caustic dissolution of aluminum and washed to remove soluble salts; these materials are removed to increase waste loading in the glass produced by the DWPF.The water soluble radioactive species in the salt and supernate, primarily cesium and actinides, are precipitated by sodium tetraphenylborate (NaTPB) or adsorbed onto sodium titanate. The resulting solids are also washed to remove excessive soluble salts before feeding to the DWPF. The soluble species removed by washing are disposed of as low level radioactive waste in a concrete form known as Saltstone. The presentation includes a brief overview of the High Level Waste system, pretreatment, and disposition of the various streams.The washed tetraphenylborate precipitates of cesium and potassium are hydrolyzed by copper catalyzed formic acid hydrolysis in the Salt Processing Cell (SPC) to yield soluble formates, boric acid, benzene and minor organic byproducts.The benzene and most of the organic byproducts are then steam stripped. The resulting aqueous hydrolysis product, including the still insoluble actinides adsorbed onto sodium titanate, is combined in the Chemical Processing Cell (CPC) with the insoluble sludge which has been treated with nitric acid and formic acid to remove mercury and to adjust the glass redox. Borosilicate glass frit is added and after assuring the melter feed meets glass quality and processing requirements, the slurry is fed to the melter producing glass which is poured into stainless steel canisters. The canisters are sealed, blasted to remove surface contamination, and welded prior to temporary storage in the Glass Waste Storage Building (GWSB). An overview of the DWPF process and its chemistry is included.The composition of the feeds is of primary importance to the DWPF. Critical factors determined by the feeds are related to safety, process design and operability, and glass quality.The Safety Analysis Report (SAR) source term, process shielding, potential for criticality, and generation of flammable gases are safety factors related to feed composition. Canister heat generation, NO{sub x} emissions, and corrosive species are process design parameters determined by feed composition. Nitrite in the washed precipitate, glass insolubles, glass liquidus (temperature of complete melting) and glass melt viscosity are operability parameters determined by composition. And glass durability is the critical quality parameter which requires knowledge and control of the feed compositions. The basis for each of these composition related factors is presented and the system for specifying feed acceptance criteria is described.The composition, and thus the durability, of the glass is determined by the mixing ratios of sludge insolubles, aqueous hydrolysis product, and frit. The frit is a purchased raw material; naturally, its composition is essentially fixed. Also, the glass components in the aqueous hydrolysis product are essentially invariant because the cesium plus potassium to boron ratio is unity, essentially all of the water is evaporated, and the sodium titanate concentration is carefully controlled in the precipitation process.Therefore, the sludge composition is the primary source of feed variability. The combination of process and tank farm history, strategic tank samples, system waste removal plans, and process modeling which project sludge batch composition and evaluate process related pa

Jacobs, R.A. [Westinghouse Savannah River Company, AIKEN, SC (United States); Elder, H.H.

1998-03-01

340

Technology Readiness Assessment of Department of Energy Waste Processing Facilities: Lessons Learned, Next Steps  

SciTech Connect

In an effort to improve its oversight of major waste treatment construction projects DOE has piloted a Technical Readiness Assessment/Technology Maturation Plan (TRA/TMP) process based on similar processes employed by the United States Department of Defense (DoD) and the National Aeronautics and Space Administration (NASA. DOE has carried out TRAs for the Hanford Waste Treatment and Immobilization Plant (WTP), for supplemental treatment technologies that may be employed to process Hanford low activity waste (LAW), for the removal of Hanford K-Basin waste, and for treatment technologies for Savannah River Site's tank 48. This paper describes the TRA/TMP methodology and discusses the findings and lessons learned during its application. The paper also discusses the next steps in the technical assessment of DOE environmental projects. (authors)

Alexander, D. [Department of Energy Office of River Protection, Richland, WA (United States); Gerdes, K. [Department of Energy, Office of Waste Processing, EM-21, Germantown, MD (United States); Holton, L. [Pacific Northwest National Laboratory, Richland, WA (United States); Krahn, S. [Department of Energy, Office of Waste Processing, EM-21, Washington DC (United States); Sutter, H. [Consultant, Department of Energy, Office of Project Recovery, Germantown, MD (United States)

2008-07-01

341

A facile process for soak-and-peel delamination of CVD graphene from substrates using water  

NASA Astrophysics Data System (ADS)

We demonstrate a simple technique to transfer chemical vapour deposited (CVD) graphene from copper and platinum substrates using a soak-and-peel delamination technique utilizing only hot deionized water. The lack of chemical etchants results in cleaner CVD graphene films minimizing unintentional doping, as confirmed by Raman and electrical measurements. The process allows the reuse of substrates and hence can enable the use of oriented substrates for growth of higher quality graphene, and is an inherently inexpensive and scalable process for large-area production.

Gupta, Priti; Dongare, Pratiksha D.; Grover, Sameer; Dubey, Sudipta; Mamgain, Hitesh; Bhattacharya, Arnab; Deshmukh, Mandar M.

2014-01-01

342

A facile process for soak-and-peel delamination of CVD graphene from substrates using water  

PubMed Central

We demonstrate a simple technique to transfer chemical vapour deposited (CVD) graphene from copper and platinum substrates using a soak-and-peel delamination technique utilizing only hot deionized water. The lack of chemical etchants results in cleaner CVD graphene films minimizing unintentional doping, as confirmed by Raman and electrical measurements. The process allows the reuse of substrates and hence can enable the use of oriented substrates for growth of higher quality graphene, and is an inherently inexpensive and scalable process for large-area production. PMID:24457558

Gupta, Priti; Dongare, Pratiksha D.; Grover, Sameer; Dubey, Sudipta; Mamgain, Hitesh; Bhattacharya, Arnab; Deshmukh, Mandar M.

2014-01-01

343

Treating wastewater from a pharmaceutical formulation facility by biological process and ozone.  

PubMed

Wastewater from a pharmaceutical formulation facility (TevaKS, Israel) was treated with a biological activated-sludge system followed by ozonation. The goal was to reduce the concentrations of the drugs carbamazepine (CBZ) and venlafaxine (VLX) before discharging the wastewater to the municipal wastewater treatment plant (WWTP). Both drugs were detected at extremely high concentrations in TevaKS raw wastewater ([VLX]=11.72 ± 2.2mg/L, [CBZ]=0.84 ± 0.19 mg/L), and resisted the biological treatment. Ozone efficiently degraded CBZ: at an O3 dose-to-dissolved organic carbon ratio of 0.55 (O3/DOC), the concentration of CBZ was reduced by >99%. A lower removal rate was observed for VLX, which was decreased by ? 98% at the higher O3/DOC ratio of 0.87. Decreasing the pH of the biologically treated effluent from 7 to 5 significantly increased the ozone degradation rate of CBZ, while decreasing the degradation rate of VLX. Ozone treatment did not alter the concentration of the effluent's DOC and filtered chemical oxygen demand (CODf). However, a significant increase was recorded (following ozonation) in the effluent's biological oxygen demand (BOD5) and the BOD5/CODf ratio. This implies an increase in the effluent's biodegradability, which is highly desirable if ozonation is followed by a domestic biological treatment. Different organic byproducts were formed following ozone reaction with the target pharmaceuticals and with the effluent organic matter; however, these byproducts are expected to be removed during biological treatment in the municipal WWTP. PMID:23764586

Lester, Yaal; Mamane, Hadas; Zucker, Ines; Avisar, Dror

2013-09-01

344

The Challenges of Preserving Historic Resources During the Deactivation and Decommissioning of Highly Contaminated Historically Significant Plutonium Process Facilities  

SciTech Connect

The Manhattan Project was initiated to develop nuclear weapons for use in World War II. The Hanford Engineer Works (HEW) was established in eastern Washington State as a production complex for the Manhattan Project. A major product of the HEW was plutonium. The buildings and process equipment used in the early phases of nuclear weapons development are historically significant because of the new and unique work that was performed. When environmental cleanup became Hanford's central mission in 1991, the Department of Energy (DOE) prepared for the deactivation and decommissioning of many of the old process facilities. In many cases, the process facilities were so contaminated, they faced demolition. The National Historic Preservation Act (NHPA) requires federal agencies to evaluate the historic significance of properties under their jurisdiction for eligibility for inclusion in the National Register of Historic Places before altering or demolishing them so that mitigation through documentation of the properties can occur. Specifically, federal agencies are required to evaluate their proposed actions against the effect the actions may have on districts, sites, buildings or structures that are included or eligible for inclusion in the National Register. In an agreement between the DOE's Richland Operations Office (RL), the Washington State Historic Preservation Office (SHPO) and the Advisory Council on Historic Preservation (ACHP), the agencies concurred that the Hanford Site Historic District is eligible for listing on the National Register of Historic Places and that a Site-wide Treatment Plan would streamline compliance with the NHPA while allowing RL to manage the cleanup of the Hanford Site. Currently, many of the old processing buildings at the Plutonium Finishing Plant (PFP) are undergoing deactivation and decommissioning. RL and Fluor Hanford project managers at the PFP are committed to preserving historical artifacts of the plutonium production process. They must also ensure the safety of workers and the full decontamination of buildings or artifacts if they are to be preserved. This paper discusses the real time challenges of working safely, decontaminating process equipment, preserving historical structures and artifacts and documenting their history at PFP. (authors)

Hopkins, A.; Minette, M.; Sorenson, D.; Heineman, R.; Gerber, M. [Fluor Hanford, Inc., PO Box 1000 Richland WA 99352 (United States); Charboneau, S. [US Department of Energy PO Box 550, Richland WA 99352 (United States); Bond, F. [Washington State Department of Ecology, WDOE 3100 Port of Benton Blvd., Richland WA, 99354 (United States)

2006-07-01

345

CHALLENGES OF PRESERVING HISTORIC RESOURCES DURING THE D & D OF HIGHLY CONTAMINATED HISTORICALLY SIGNIFICANT PLUTONIUM PROCESS FACILITIES  

SciTech Connect

The Manhattan Project was initiated to develop nuclear weapons for use in World War II. The Hanford Engineer Works (HEW) was established in eastern Washington State as a production complex for the Manhattan Project. A major product of the HEW was plutonium. The buildings and process equipment used in the early phases of nuclear weapons development are historically significant because of the new and unique work that was performed. When environmental cleanup became Hanford's central mission in 1991, the Department of Energy (DOE) prepared for the deactivation and decommissioning of many of the old process facilities. In many cases, the process facilities were so contaminated, they faced demolition. The National Historic Preservation Act (NHPA) requires federal agencies to evaluate the historic significance of properties under their jurisdiction for eligibility for inclusion in the National Register of Historic Places before altering or demolishing them so that mitigation through documentation of the properties can occur. Specifically, federal agencies are required to evaluate their proposed actions against the effect the actions may have on districts, sites, buildings or structures that ere included or eligible for inclusion in the National Register. In an agreement between the DOE'S Richland Operations Office (RL), the Washington State Historic Preservation Office (SHPO) and the Advisory Council on Historic Preservation (ACHP), the agencies concurred that the Hanford Site Historic District is eligible for listing on the National Register of Historic Places and that a Sitewide Treatment Plan would streamline compliance with the NHPA while allowing RL to manage the cleanup of the Hanford Site. Currently, many of the old processing buildings at the Plutonium Finishing Plant (PFP) are undergoing deactivation and decommissioning. RL and Fluor Hanford project managers at the PFP are committed to preserving historical artifacts of the plutonium production process. They must also ensure the safety of workers and the full decontamination of buildings or artifacts if they are to be preserved. This paper discusses the real time challenges of working safely, decontaminating process equipment, preserving historical structures and artifacts and documenting their history at PFP.

HOPKINS, A.M.

2006-03-17

346

Modeling community asbestos exposure near a vermiculite processing facility: Impact of human activities on cumulative exposure  

Microsoft Academic Search

Contaminated vermiculite ore from Libby, Montana was processed in northeast Minneapolis from 1936 to 1989 in a densely populated urban residential neighborhood, resulting in non-occupational exposure scenarios from plant stack and fugitive emissions as well as from activity-based scenarios associated with use of the waste rock in the surrounding community. The objective of this analysis was to estimate potential cumulative

John L Adgate; Sook Ja Cho; Bruce H Alexander; Gurmurthy Ramachandran; Katherine K Raleigh; Jean Johnson; Rita B Messing; A L Williams; James Kelly; Gregory C Pratt

2011-01-01

347

In-situ wastewater treatment and groundwater remediation at a sugar beet processing facility  

Microsoft Academic Search

Groundwater monitoring data collected at the Western Sugar Company sugar beet processing plant, in Billings, Montana identified groundwater mounding and groundwater nitrogen concentration increases associated with lime slurry discharge to an on-site storage pile. The nitrogen impacts (primarily ammonia) likely originated through decomposition of organic matter in the slurry. Initially, Western Sugar considered constructing an expensive anaerobic and nitrification-denitrification wastewater

J. L. Olson; P. R. Fuller-Pratt; R. A. Mielke

1996-01-01

348

ASSESSMENT OF THE BACTERIOLOGICAL QUALITY OF COMPOST FROM A YARD WASTE PROCESSING FACILITY  

EPA Science Inventory

Citizen concern over possible pathogenic microorganism contamination in compost and in a runoff collection pond prompted a U.S. Environmental Protection Agency (EPA) investigation. One out of eight samples collected from the distribution pile at a yard waste compost processing f...

349

ASSESSMENT OF THE BACTERIOLOGICAL QUALITY OF COMPOST FROM A YARD WASTE PROCESSING FACILITY  

EPA Science Inventory

Citizen concern over possible pathogenic microorganism contamination in compost and in a runoff collection pond prompted a U.S. Environmental Protection Agency (EPA) investigation. ne out of eight samples collected from the distribution pile at a yard waste compost processing fac...

350

Engineering process and cost model for a conventional corn wet milling facility  

Technology Transfer Automated Retrieval System (TEKTRAN)

Conventional wet milling of corn is a process designed for the recovery and purification of starch and several coproducts (germ, gluten, fiber and steep liquor). The total starch produced by the wet milling industry in the USA in 2004 equaled 21.5 billion kilograms, including modified starches and ...

351

A facile process for soak-and-peel delamination of CVD graphene from substrates using water  

E-print Network

, and is an inherently inexpensive and scalable process for large-area production. Graphene, a monolayer honeycomb to few-layer graphene3 especially on large area substrates. These methods include reduction of graphite be grown on Cu(111) oriented grains14 . Thus CVD graphene growth on Cu produces large areas of mostly

Deshmukh, Mandar M.

352

Characterization of the Defense Waste Processing Facility (DWPF) Environmental Assessment (EA) glass Standard Reference Material. Revision 1  

SciTech Connect

Liquid high-level nuclear waste at the Savannah River Site (SRS) will be immobilized by vitrification in borosilicate glass. The glass will be produced and poured into stainless steel canisters in the Defense Waste Processing Facility (DWPF). Other waste form producers, such as West Valley Nuclear Services (WVNS) and the Hanford Waste Vitrification Project (HWVP), will also immobilize high-level radioactive waste in borosilicate glass. The canistered waste will be stored temporarily at each facility for eventual permanent disposal in a geologic repository. The Department of Energy has defined a set of requirements for the canistered waste forms, the Waste Acceptance Product Specifications (WAPS). The current Waste Acceptance Primary Specification (WAPS) 1.3, the product consistency specification, requires the waste form producers to demonstrate control of the consistency of the final waste form using a crushed glass durability test, the Product Consistency Test (PCI). In order to be acceptable, a waste glass must be more durable during PCT analysis than the waste glass identified in the DWPF Environmental Assessment (EA). In order to supply all the waste form producers with the same standard benchmark glass, 1000 pounds of the EA glass was fabricated. The chemical analyses and characterization of the benchmark EA glass are reported. This material is now available to act as a durability and/or redox Standard Reference Material (SRM) for all waste form producers.

Jantzen, C.M.; Bibler, N.E.; Beam, D.C.; Crawford, C.L.; Pickett, M.A.

1993-06-01

353

A macro-ergonomic work system analysis of the diagnostic testing process in an outpatient health care facility for process improvement and patient safety.  

PubMed

The diagnosis of illness is important for quality patient care and patient safety and is greatly aided by diagnostic testing. For diagnostic tests, such as pathology and radiology, to positively impact patient care, the tests must be processed and the physician and patient must be notified of the results in a timely fashion. There are many steps in the diagnostic testing process, from ordering to result dissemination, where the process can break down and therefore delay patient care and reduce patient safety. This study was carried out to examine the diagnostic testing process (i.e. from ordering to result notification) and used a macro-ergonomic work system analysis to uncover system design flaws that contributed to delayed physician and patient notification of results. The study was carried out in a large urban outpatient health-care facility made up of 30 outpatient clinics. Results indicated a number of variances that contributed to delays, the majority of which occurred across the boundaries of different systems and were related to poor or absent feedback structures. Recommendations for improvements are discussed. PMID:16723328

Hallock, M L; Alper, S J; Karsh, B

354

Potential For Energy, Peak Demand, and Water Savings in California Tomato Processing Facilities  

E-print Network

flumes, which serve two purposes: the flumes will transport the tomatoes to either the ESL-IE-13-05-34 Proceedings of the Thrity-Fifth Industrial Energy Technology Conference New Orleans, LA. May 21-24, 2013 peeling area or the crushing area.../ SortingPeeling Crushing Diced & Whole Dicing Mixing Packaging Cooking and Sterilizing Cooling Storage Raw Tomatoes Hot & Cold Break Finishing Evaporation Water Figure 1 - Typical Tomato Canning Process Grading/Sorting (All Tomatoes...

Trueblood, A. J.; Wu, Y. Y.; Ganji, A. R.

2013-01-01

355

Chemical and petroleum and gas processing plant selection of certain parameters for designing sublimation facilities  

SciTech Connect

One of the promising methods of obtaining the ultradisperse powders used in industry is the sublimation method. The authors attempt to establish the relation between the product dispersion and the processing conditions, and to construct on this basis a method of designing sublimation plants with direct introduction of the solution into a vacuum. The study is made for single component aqueous salt solutions having concentrations less than eutectic.

Brazhnikov, S.M.; Serova, L.A.; Karabanov, A.V.

1987-11-01

356

The LHEA PDP 11/70 graphics processing facility users guide  

NASA Technical Reports Server (NTRS)

A compilation of all necessary and useful information needed to allow the inexperienced user to program on the PDP 11/70. Information regarding the use of editing and file manipulation utilities as well as operational procedures are included. The inexperienced user is taken through the process of creating, editing, compiling, task building and debugging his/her FORTRAN program. Also, documentation on additional software is included.

1978-01-01

357

A Guide for Developing Standard Operating Job Procedures for the Activated Sludge - Aeration & Sedimentation Process Wastewater Treatment Facility. SOJP No. 5.  

ERIC Educational Resources Information Center

This guide for developing standard operating job procedures for wastewater treatment facilities is devoted to the activated sludge aeration and sedimentation process. This process is for conversion of nonsettleable and nonfloatable materials in wastewater to settleable, floculated biological groups and separation of the settleable solids from the…

Mason, George J.

358

Risk-Based Decision Process for Accelerated Closure of a Nuclear Weapons Facility  

SciTech Connect

Nearly 40 years of nuclear weapons production at the Rocky Flats Environmental Technology Site (RFETS or Site) resulted in contamination of soil and underground systems and structures with hazardous substances, including plutonium, uranium and hazardous waste constituents. The Site was placed on the National Priority List in 1989. There are more than 370 Individual Hazardous Substance Sites (IHSSs) at RFETS. Accelerated cleanup and closure of RFETS is being achieved through implementation and refinement of a regulatory framework that fosters programmatic and technical innovations: (1) extensive use of ''accelerated actions'' to remediate IHSSs, (2) development of a risk-based screening process that triggers and helps define the scope of accelerated actions consistent with the final remedial action objectives for the Site, (3) use of field instrumentation for real time data collection, (4) a data management system that renders near real time field data assessment, and (5) a regulatory agency consultative process to facilitate timely decisions. This paper presents the process and interim results for these aspects of the accelerated closure program applied to Environmental Restoration activities at the Site.

Butler, L.; Norland, R. L.; DiSalvo, R.; Anderson, M.

2003-02-25

359

The SRTM is in place in the Space Station Processing Facility to undergo pre-launch preparations  

NASA Technical Reports Server (NTRS)

In the Space Station Processing Facility (SSPF), workers (lower right) disconnect the transport vehicle from the Shuttle Radar Topography Mission (SRTM) after moving it into the building for pre-launch preparations. The primary payload on mission STS-99, the SRTM consists of a specially modified radar system that will fly onboard the Space Shuttle during the 11-day mission targeted for launch in September 1999. This radar system will gather data that will result in the most accurate and complete topographic map of the Earth's surface that has ever been assembled. SRTM is an international project spearheaded by the National Imagery and Mapping Agency and NASA, with participation of the German Aerospace Center DLR. Its objective is to obtain the most complete high-resolution digital topographic database of the Earth.

1999-01-01

360

A facile processing way of silica needle arrays with tunable orientation by tube arrays fabrication and etching method  

NASA Astrophysics Data System (ADS)

A simple method to fabricate silica micro/nano-needle arrays (SNAs) is presented based on tube-etching mechanism. Using silica fibers as templates, highly aligned and free-standing needle arrays are created over large area by simple processes of polymer infiltration, cutting, chemical etching and polymer removal. Their sizes and orientations can be arbitrarily and precisely tuned by simply selecting fiber sizes and the cutting directions, respectively. This technique enables the needle arrays with special morphology to be fabricated in a greatly facile way, thereby offers them the potentials in various applications, such as optic, energy harvesting, sensors, etc. As a demonstration, the super hydrophobic property of PDMS treated SNAs is examined.

Zhu, Mingwei; Gao, Haigen; Li, Hongwei; Xu, Jiao; Chen, Yanfeng

2010-03-01

361

Reevaluation Of Vitrified High-Level Waste Form Criteria For Potential Cost Savings At The Defense Waste Processing Facility  

SciTech Connect

At the Savannah River Site (SRS) the Defense Waste Processing Facility (DWPF) has been immobilizing SRS's radioactive high level waste (HLW) sludge into a durable borosilicate glass since 1996. Currently the DWPF has poured over 3,500 canisters, all of which are compliant with the U. S. Department of Energy's (DOE) Waste Acceptance Product Specifications for Vitrified High-Level Waste Forms (WAPS) and therefore ready to be shipped to a federal geologic repository for permanent disposal. Due to DOE petitioning to withdraw the Yucca Mountain License Application (LA) from the Nuclear Regulatory Commission (NRC) in 2010 and thus no clear disposal path for SRS canistered waste forms, there are opportunities for cost savings with future canister production at DWPF and other DOE producer sites by reevaluating high-level waste form requirements and compliance strategies and reducing/eliminating those that will not negatively impact the quality of the canistered waste form.

Ray, J. W.; Marra, S. L.; Herman, C. C.

2013-01-09

362

Reevaluation of Vitrified High-Level Waste Form Criteria for Potential Cost Savings at the Defense Waste Processing Facility - 13598  

SciTech Connect

At the Savannah River Site (SRS) the Defense Waste Processing Facility (DWPF) has been immobilizing SRS's radioactive high level waste (HLW) sludge into a durable borosilicate glass since 1996. Currently the DWPF has poured over 3,500 canisters, all of which are compliant with the U. S. Department of Energy's (DOE) Waste Acceptance Product Specifications for Vitrified High-Level Waste Forms (WAPS) and therefore ready to be shipped to a federal geologic repository for permanent disposal. Due to DOE petitioning to withdraw the Yucca Mountain License Application (LA) from the Nuclear Regulatory Commission (NRC) in 2010 and thus no clear disposal path for SRS canistered waste forms, there are opportunities for cost savings with future canister production at DWPF and other DOE producer sites by reevaluating high-level waste form requirements and compliance strategies and reducing/eliminating those that will not negatively impact the quality of the canistered waste form. (authors)

Ray, J.W. [Savannah River Remediation (United States)] [Savannah River Remediation (United States); Marra, S.L.; Herman, C.C. [Savannah River National Laboratory, Savannah River Site, Aiken, SC 29808 (United States)] [Savannah River National Laboratory, Savannah River Site, Aiken, SC 29808 (United States)

2013-07-01

363

A facile processing way of silica needle arrays with tunable orientation by tube arrays fabrication and etching method  

SciTech Connect

A simple method to fabricate silica micro/nano-needle arrays (SNAs) is presented based on tube-etching mechanism. Using silica fibers as templates, highly aligned and free-standing needle arrays are created over large area by simple processes of polymer infiltration, cutting, chemical etching and polymer removal. Their sizes and orientations can be arbitrarily and precisely tuned by simply selecting fiber sizes and the cutting directions, respectively. This technique enables the needle arrays with special morphology to be fabricated in a greatly facile way, thereby offers them the potentials in various applications, such as optic, energy harvesting, sensors, etc. As a demonstration, the super hydrophobic property of PDMS treated SNAs is examined. - Graphical abstract: Silica needle arrays are fabricated by tube arrays fabrication and etching method. They show super hydrophobic property after being treated with PDMS.

Zhu Mingwei; Gao Haigen; Li Hongwei; Xu Jiao [National Laboratory of Solid State Microstructures and Department of Materials Science and Engineering, Nanjing University, Nanjing 210093 (China); Chen Yanfeng, E-mail: yfchen@nju.edu.c [National Laboratory of Solid State Microstructures and Department of Materials Science and Engineering, Nanjing University, Nanjing 210093 (China)

2010-03-15

364

DEVELOPMENT OF REMOTE HANFORD CONNECTOR GASKET REPLACEMENT TOOLING FOR THE SAVANNAH RIVER SITE'S DEFENSE WASTE PROCESSING FACILITY  

SciTech Connect

The Savannah River Site's (SRS) Defense Waste Processing Facility (DWPF) requested development of tooling for remote replacement of gaskets in mechanical Hanford connectors. The facility has compressed air supply, two master-slave manipulators (MSM's) and a lightweight robotic arm for operation of the remote tools. The Savannah River National Laboratory (SRNL) developed and tested multiple tools to perform the gasket replacement tasks. Separate pneumatic snap-ring removal tools that use the connector skirt as a reaction surface were developed for removal of the snap ring and spent gasket on both vertical and horizontal Hanford connectors. A pneumatic tool that clamps and centers on the jumper pipe ID was developed to simultaneously install the new gasket and snap ring. A pneumatic snap-ring-loading tool was developed that compresses the snap ring and places it in a groove in the installation tool. All of the tools are located on a custom work table with a pneumatic valve station that directs compressed air to the desired tool and vents the tools as needed. The entire system has been successfully tested using MSM's to manipulate the various tools. Deployment of the entire system is expected during FY08. The Hanford connector gasket replacement tooling has been successfully tested using MSM's to manipulate the various tools. Nitric acid is used in many of the decontamination processes performed in the REDC, where the tooling will be deployed. Although most of the tool components were fabricated/purchased with nitric acid and radioactive service in mind, some of the prototype parts must be replaced with parts that are more compatible with nitric acid/radioactive service. Several modifications to the various tools are needed to facilitate maintenance and replacement of failed components. Development of installation tools for replacement of 1-inch, 2-inch and multi-hole gaskets is being considered. Deployment of the existing system in the DWPF REDC is expected during FY08.

Krementz, D

2007-11-27

365

Final deactivation report on the Radioactive Gas Processing Facility, Building 3033, and the Actinide Fabrication Facility, Building 3033A, at Oak Ridge National Laboratory, Oak Ridge, Tennessee  

SciTech Connect

The purpose of this report is to document the condition of Buildings 3033 and 3033A, after completion of deactivation activities as outlined by the Department of Energy Office of Nuclear Materials and Facility Stabilization Program (EM-60) guidance documentation. This report outlines the activities conducted to place the facility in a safe and environmentally sound condition for transfer to the Department of Energy Office of Environmental Restoration Program (EM-40). This report provides a history and profile of Buildings 3033 and 3033A prior to commencing deactivation activities and a profile of the building after completion of deactivation activities. Turnover items, such as the Post-Deactivation Surveillance and Maintenance Plan, remaining hazardous materials, radiological controls, Safeguards and Security, quality assurance, facility operations, and supporting documentation provided in the Office of Nuclear Materials and Facility Stabilization Program (EM-60) Turnover package are discussed. Buildings 3033 and 3033A will require access to facilitate required S and M activities to maintain the building safety envelope. Buildings 3033 and 3033A were stabilized during deactivation so that when transferred to the EM-40 program, only a minimal S and M effort would be required to maintain the building safety envelope. Other than the minimal S and M activities the building will be unoccupied and the exterior doors locked to prevent unauthorized access. The building will be entered only to perform the required S and M. All materials have been removed from the building, and all utility systems, piping, and alarms have been deactivated.

NONE

1997-09-01

366

Spacelab data processing facility (SLDPF) quality assurance (QA)/data accounting (DA) expert systems - Transition from prototypes to operational systems  

NASA Technical Reports Server (NTRS)

The SLDPF is responsible for the capture, quality monitoring processing, accounting, and shipment of Spacelab and/or Attached Shuttle Payloads (ASP) telemetry data to various user facilities. Expert systems will aid in the performance of the quality assurance and data accounting functions of the two SLDPF functional elements: the Spacelab Input Processing System (SIPS) and the Spacelab Output Processing System (SOPS). Prototypes were developed for each as independent efforts. The SIPS Knowledge System Prototype (KSP) used the commercial shell OPS5+ on an IBM PC/AT; the SOPS Expert System Prototype used the expert system shell CLIPS implemented on a Macintosh personal computer. Both prototypes emulate the duties of the respective QA/DA analysts based upon analyst input and predetermined mission criteria parameters, and recommended instructions and decisions governing the reprocessing, release, or holding for further analysis of data. These prototypes demonstrated feasibility and high potential for operational systems. Increase in productivity, decrease of tedium, consistency, concise historical records, and a training tool for new analyses were the principal advantages. An operational configuration, taking advantage of the SLDPF network capabilities, is under development with the expert systems being installed on SUN workstations. This new configuration in conjunction with the potential of the expert systems will enhance the efficiency, in both time and quality, of the SLDPF's release of Spacelab/AST data products.

Basile, Lisa

1988-01-01

367

Spacelab data processing facility (SLDPF) Quality Assurance (QA)/Data Accounting (DA) expert systems: Transition from prototypes to operational systems  

NASA Technical Reports Server (NTRS)

The SLDPF is responsible for the capture, quality monitoring processing, accounting, and shipment of Spacelab and/or Attached Shuttle Payloads (ASP) telemetry data to various user facilities. Expert systems will aid in the performance of the quality assurance and data accounting functions of the two SLDPF functional elements: the Spacelab Input Processing System (SIPS) and the Spacelab Output Processing System (SOPS). Prototypes were developed for each as independent efforts. The SIPS Knowledge System Prototype (KSP) used the commercial shell OPS5+ on an IBM PC/AT; the SOPS Expert System Prototype used the expert system shell CLIPS implemented on a Macintosh personal computer. Both prototypes emulate the duties of the respective QA/DA analysts based upon analyst input and predetermined mission criteria parameters, and recommended instructions and decisions governing the reprocessing, release, or holding for further analysis of data. These prototypes demonstrated feasibility and high potential for operational systems. Increase in productivity, decrease of tedium, consistency, concise historial records, and a training tool for new analyses were the principal advantages. An operational configuration, taking advantage of the SLDPF network capabilities, is under development with the expert systems being installed on SUN workstations. This new configuration in conjunction with the potential of the expert systems will enhance the efficiency, in both time and quality, of the SLDPF's release of Spacelab/AST data products.

Basile, Lisa

1988-01-01

368

Supercritical water oxidation technology for DWPF. [Defense Waste Processing Facility (DWPF)  

SciTech Connect

At the request of Mr. H.L. Brandt and others in the Savannah River Field Office High Level Waste Division office, DWPF, and SRL personnel have reviewed two potential applications for supercritical water oxidation technology in DWPF. The first application would replace the current hydrolysis process by destroying the organic fractions of the precipitated cesium / potassium tetraphenylborate slurry. The second application pertains to liquid benzene destruction. After a thorough evaluation the first application is not recommended. The second is ready to be tested if needed.

Carter, J.T.; Gentilucci, J.A.

1992-02-07

369

Aerosol size distribution in a uranium processing and fuel fabrication facility.  

PubMed

In the nuclear fuel complex, magnesium diuranate is processed to produce UO(2) through different chemical and metallurgical processes. UO(2) powder is compacted to produce uranium pallets as fuel. International Commission on Radiological Protection has considered default particle size of 5-mum activity median aerodynamic diameter (AMAD) and 2.5 of geometric standard deviation (GSD) for working out dose coefficients. There is a likelihood of variation in the particle size during each stage of operation. The present study is undertaken to determine the prevailing uranium aerosol size distribution at every stage of operation using Anderson impactor with glass fibre filter paper as collection substrate. AMAD and respective GSD were determined. Aerosol size distribution was studied. Airborne uranium concentration was found to be higher for higher particle sizes in all areas. Average AMAD for different locations varied from 5.8 to 7.7 mum with GSD from 1.63 to 6.73 and the ratio of calculated ALI to standard varies from 1.13 to 1.55. PMID:20406743

Prasad, K Vishwa; Balbudhe, A Y; Srivastava, G K; Tripathi, R M; Puranik, V D

2010-08-01

370

Guide to research facilities  

SciTech Connect

This Guide provides information on facilities at US Department of Energy (DOE) and other government laboratories that focus on research and development of energy efficiency and renewable energy technologies. These laboratories have opened these facilities to outside users within the scientific community to encourage cooperation between the laboratories and the private sector. The Guide features two types of facilities: designated user facilities and other research facilities. Designated user facilities are one-of-a-kind DOE facilities that are staffed by personnel with unparalleled expertise and that contain sophisticated equipment. Other research facilities are facilities at DOE and other government laboratories that provide sophisticated equipment, testing areas, or processes that may not be available at private facilities. Each facility listing includes the name and phone number of someone you can call for more information.

Not Available

1993-06-01

371

In-situ wastewater treatment and groundwater remediation at a sugar beet processing facility  

SciTech Connect

Groundwater monitoring data collected at the Western Sugar Company sugar beet processing plant, in Billings, Montana identified groundwater mounding and groundwater nitrogen concentration increases associated with lime slurry discharge to an on-site storage pile. The nitrogen impacts (primarily ammonia) likely originated through decomposition of organic matter in the slurry. Initially, Western Sugar considered constructing an expensive anaerobic and nitrification-denitrification wastewater treatment system. However, further investigation of the lime pile revealed that it was already serving as an efficient filter and anaerobic reactor. Comparisons of slurry application with other land application systems suggested that groundwater nitrogen impacts could be minimized through groundwater capture, re-application, and improved slurry management. The resultant system required little capitol and maintenance cost. The immediate effect was to substantially decrease the groundwater mound. Subsequent monitoring has demonstrated a gradual decline in nitrogen concentrations under the lime pile and a considerable concentration decrease downgradient of the groundwater recovery system.

Olson, J.L. [MAXIM Technologies, Inc., Billings, MT (United States); Fuller-Pratt, P.R.; Mielke, R.A. [Western Sugar Company, Denver, CO (United States)

1996-06-01

372

HANFORD CONTAINERIZED CAST STONE FACILITY TASK 1 PROCESS TESTING & DEVELOPMENT FINAL TEST REPORT  

SciTech Connect

Laboratory testing and technical evaluation activities on Containerized Cast Stone (CCS) were conducted under the Scope of Work (SOW) contained in CH2M HILL Hanford Group, Inc. (CHG) Contract No. 18548 (CHG 2003a). This report presents the results of testing and demonstration activities discussed in SOW Section 3.1, Task I--''Process Development Testing'', and described in greater detail in the ''Containerized Grout--Phase I Testing and Demonstration Plan'' (CHG, 2003b). CHG (2003b) divided the CCS testing and evaluation activities into six categories, as follows: (1) A short set of tests with simulant to select a preferred dry reagent formulation (DRF), determine allowable liquid addition levels, and confirm the Part 2 test matrix. (2) Waste form performance testing on cast stone made from the preferred DRF and a backup DRF, as selected in Part I, and using low activity waste (LAW) simulant. (3) Waste form performance testing on cast stone made from the preferred DRF using radioactive LAW. (4) Waste form validation testing on a selected nominal cast stone formulation using the preferred DRF and LAW simulant. (5) Engineering evaluations of explosive/toxic gas evolution, including hydrogen, from the cast stone product. (6) Technetium ''getter'' testing with cast stone made with LAW simulant and with radioactive LAW. In addition, nitrate leaching observations were drawn from nitrate leachability data obtained in the course of the Parts 2 and 3 waste form performance testing. The nitrate leachability index results are presented along with other data from the applicable activity categories.

LOCKREM, L L

2005-07-13

373

Analyses by the Defense Waste Processing Facility Laboratory of Thorium Glasses from the Sludge Batch 6 Variability Study  

SciTech Connect

The Savannah River Remediation (SRR) Defense Waste Processing Facility (DWPF) is currently processing Sludge Batch 6 (SB6) with Frit 418. At times during the processing of this glass system, thorium is expected to be at concentrations in the final wasteform that make it a reportable element for the first time since startup of radioactive operations at the DWPF. The Savannah River National Laboratory (SRNL) supported the qualification of the processing of this glass system at the DWPF. A recommendation from the SRNL studies was the need for the DWPF Laboratory to establish a method to measure thorium by Inductively Coupled Plasma - Atomic Emission Spectroscopy (ICPAES). This recommendation led to the set of thorium-bearing glasses from the SB6 Variability Study (VS) being submitted to the DWPF Laboratory for chemical composition measurement. The measurements were conducted by the DWPF Laboratory using the sodium peroxide fusion preparation method routinely employed for analysis of samples from the Slurry Mix Evaporator (SME). These measurements are presented and reviewed in this report. The review indicates that the measurements provided by the DWPF Laboratory are comparable to those provided by Analytical Development's laboratory at SRNL for these same glasses. As a result, the authors of this report recommend that the DWPF Laboratory begin using its routine peroxide fusion dissolution method for the measurement of thorium in SME samples of SB6. The purpose of this technical report is to present the measurements generated by the DWPF Laboratory for the SB6 VS glasses and to compare the measurements to the targeted compositions for these VS glasses as well as to SRNL's measurements (both sets, targeted and measured, of compositional values were reported by SRNL in [2]). The goal of these comparisons is to provide information that will lead to the qualification of peroxide fusion dissolution as a method for the measurement by the DWPF Laboratory of thorium in SME glass samples.

Edwards, T.; Click, D.; Feller, M.

2011-02-28

374

Persistent Listeria monocytogenes subtypes isolated from a smoked fish processing facility included both phage susceptible and resistant isolates.  

PubMed

Contamination of Ready-To-Eat foods with Listeria monocytogenes can typically be traced back to post-processing contamination from environmental sources; contamination is often linked to subtypes that persist in food associated environments. Although phage-based biocontrol strategies have been proposed for controlling this pathogen, information on the efficacy of phage treatment against diverse L. monocytogenes subtypes from food associated environments is still limited. We identified subtypes that were repeatedly found ("persistent") in a smoked fish processing facility by using EcoRI ribotyping data for isolates obtained in 1998-2009. PFGE analysis of 141 isolates (9 ribotypes) supported persistence for up to 11 years. Characterization of selected isolates, representing persistent subtypes, against a panel of 28 listeriaphages showed a wide range of likelihood of phage susceptibility, ranging from 4.6% (for 7 ribotype DUP-1043A isolates) to 95.4% (for 7 ribotype DUP-1044A isolates). In challenge studies with 10(5) and 10(6) CFU/ml L. monocytogenes, using phage cocktails and a commercial phage product at different phage-host ratios, one isolate (ribotype DUP-1043A) was not affected by any treatment. A reduction in L. monocytogenes counts of up to 4 log units was observed, after 8 h of treatment, in isolates of two ribotypes, but subsequent re-growth occurred. Survivor isolates obtained after 24 h of treatment showed decreased susceptibility to individual phages included in the phage cocktail, suggesting rapid emergence of resistant subtypes. PMID:23628613

Vongkamjan, Kitiya; Roof, Sherry; Stasiewicz, Matthew J; Wiedmann, Martin

2013-08-01

375

Mass measurements in the vicinity of the r p-process and the {nu} p-process paths with the Penning trap facilities JYFLTRAP and SHIPTRAP  

SciTech Connect

The masses of very neutron-deficient nuclides close to the astrophysical r p- and {nu} p-process paths have been determined with the Penning trap facilities JYFLTRAP at JYFL/Jyvaeskylae and SHIPTRAP at GSI/Darmstadt. Isotopes from yttrium (Z=39) to palladium (Z=46) have been produced in heavy-ion fusion-evaporation reactions. In total, 21 nuclides were studied, and almost half of the mass values were experimentally determined for the first time: {sup 88}Tc, {sup 90-92}Ru, {sup 92-94}Rh, and {sup 94,95}Pd. For the {sup 95}Pd{sup m}, (21/2{sup +}) high-spin state, a first direct mass determination was performed. Relative mass uncertainties of typically {delta}m/m=5x10{sup -8} were obtained. The impact of the new mass values has been studied in {nu} p-process nucleosynthesis calculations. The resulting reaction flow and the final abundances are compared with those obtained with the data of the Atomic Mass Evaluation 2003.

Weber, C.; Elomaa, V.-V.; Aeystoe, J.; Eronen, T.; Hager, U.; Hakala, J.; Jokinen, A.; Kankainen, A.; Moore, I. D.; Penttilae, H.; Rahaman, S.; Rissanen, J.; Saastamoinen, A.; Sonoda, T. [Department of Physics, University of Jyvaeskylae, FI-40014 Jyvaeskylae (Finland); Ferrer, R. [Institut fuer Physik, Johannes Gutenberg-Universitaet, D-55099 Mainz (Germany); Froehlich, C. [Enrico Fermi Institute, Department of Astronomy and Astrophysics, University of Chicago, Chicago, Illinois 60637 (United States); Ackermann, D.; Block, M.; Dworschak, M.; Herfurth, F. [GSI-Darmstadt mbH, D-64291 Darmstadt (Germany)] (and others)

2008-11-15

376

3D Geospatial Models for Visualization and Analysis of Groundwater Contamination at a Nuclear Materials Processing Facility  

NASA Astrophysics Data System (ADS)

Analysis of hydrostratigraphy and uranium and nitrate contamination in groundwater at a former nuclear materials processing facility in Oklahoma were undertaken employing 3-dimensional (3D) geospatial modeling software. Models constructed played an important role in the regulatory decision process of the U.S. Nuclear Regulatory Commission (NRC) because they enabled visualization of temporal variations in contaminant concentrations and plume geometry. Three aquifer systems occur at the site, comprised of water-bearing fractured shales separated by indurated sandstone aquitards. The uppermost terrace groundwater system (TGWS) aquifer is composed of terrace and alluvial deposits and a basal shale. The shallow groundwater system (SGWS) aquifer is made up of three shale units and two sandstones. It is separated from the overlying TGWS and underlying deep groundwater system (DGWS) aquifer by sandstone aquitards. Spills of nitric acid solutions containing uranium and radioactive decay products around the main processing building (MPB), leakage from storage ponds west of the MPB, and leaching of radioactive materials from discarded equipment and waste containers contaminated both the TGWS and SGWS aquifers during facility operation between 1970 and 1993. Constructing 3D geospatial property models for analysis of groundwater contamination at the site involved use of EarthVision (EV), a 3D geospatial modeling software developed by Dynamic Graphics, Inc. of Alameda, CA. A viable 3D geohydrologic framework model was initially constructed so property data could be spatially located relative to subsurface geohydrologic units. The framework model contained three hydrostratigraphic zones equivalent to the TGWS, SGWS, and DGWS aquifers in which groundwater samples were collected, separated by two sandstone aquitards. Groundwater data collected in the three aquifer systems since 1991 indicated high concentrations of uranium (>10,000 micrograms/liter) and nitrate (> 500 milligrams/liter) around the MPB and elevated nitrate (> 2000 milligrams/ liter) around storage ponds. Vertical connectivity was suggested between the TGWS and SGWS, while the DGWS appeared relatively isolated from the overlying aquifers. Lateral movement of uranium was also suggested over time. For example, lateral migration in the TGWS is suggested along a shallow depression in the bedrock surface trending south-southwest from the southwest corner of the MPB. Another pathway atop the buried bedrock surface, trending west-northwest from the MPB and partially reflected by current surface topography, suggested lateral migration of nitrate in the SGWS. Lateral movement of nitrate in the SGWS was also indicated north, south, and west of the largest storage pond. Definition of contaminant plume movement over time is particularly important for assessing direction and rate of migration and the potential need for preventive measures to control contamination of groundwater outside facility property lines. The 3D geospatial property models proved invaluable for visualizing and analyzing variations in subsurface uranium and nitrate contamination in space and time within and between the three aquifers at the site. The models were an exceptional visualization tool for illustrating extent, volume, and quantitative amounts of uranium and nitrate contamination in the subsurface to regulatory decision-makers in regard to site decommissioning issues, including remediation concerns, providing a perspective not possible to achieve with traditional 2D maps. The geohydrologic framework model provides a conceptual model for consideration in flow and transport analyses.

Stirewalt, G. L.; Shepherd, J. C.

2003-12-01

377

QUALIFICATION OF A RADIOACTIVE HIGH ALUMINUM GLASS FOR PROCESSINGIN THE DEFENSE WASTE PROCESSING FACILITY AT THE SAVANNAH RIVER SITE  

SciTech Connect

At the Savannah River Site (SRS) the Defense Waste Processing Facility (DWPF) has been immobilizing SRS's radioactive high level waste (HLW) sludge into a borosilicate glass for approximately eleven years. Currently the DWPF is immobilizing HLW sludge in Sludge Batch 4 (SB4). Each sludge batch is nominally two million liters of HLW and produces nominally five hundred stainless steel canisters 0.6 meters in diameter and 3 meters tall filled with the borosilicate glass. In SB4 and earlier sludge batches, the Al concentration has always been rather low, (less than 9.5 weight percent based on total dried solids). It is expected that in the future the Al concentrations will increase due to the changing composition of the HLW. Higher Al concentrations could introduce problems because of its known effect on the viscosity of glass melts and increase the possibility of the precipitation of nepheline in the final glass and decrease its durability. In 2006 Savannah River National Laboratory (SRNL) used DWPF processes to immobilize a radioactive HLW slurry containing 14 weight percent Al to ensure that this waste is viable for future DWPF processing. This paper presents results of the characterization of the high Al glass prepared in that demonstration. At SRNL, a sample of the processed high Al HLW slurry was mixed with an appropriate glass frit as performed in the DWPF to make a waste glass containing nominally 30% waste oxides. The glass was prepared by melting the frit and waste remotely at 1150 C. The glass was then characterized by: (1) determining the chemical composition of the glass including the concentrations of several actinide and U-235 fission products; (2) calculating the oxide waste loading of the glass based on the chemical composition and comparing it to that of the target; (3) determining if the glass composition met the DWPF processing constraints such as glass melt viscosity and liquidus temperature along with a waste form affecting constraint that prevents the precipitation of nepheline (NaAlSiO{sub 4}) crystals in the glass melt; (4) measuring the durability of the glass using the ASTM Standard Product Consistency Test (PCT) leach test to determine if the durability of the glass based on B, Li, and Na releases met the requirements for acceptance in a US geologic repository; (5) measuring the leachability of several radionuclides using the ASTM Standard PCT leach test and comparing them to the B, Li, and Na releases; and (6) examining the glass by scanning electron microscopy and energy dispersive X-ray spectrometry to determine if any crystals had formed in the glass melt. Results indicate that the high Al glass met all the requirements for processing and product quality in the DWPF.

Bibler, N; John Pareizs, J; Tommy Edwards,T; Charles02 Coleman, C; Charles Crawford, C

2008-01-29

378

The project RTPPP (Development of a realtime PPP processing facility) is planned to be a followup project of RAPPP (Innovative Algorithms for Rapid Precise Point Positioning),  

E-print Network

RTPPP The project RTPPP (Development of a realtime PPP processing facility) is planned to be a followup project of RAPPP (Innovative Algorithms for Rapid Precise Point Positioning), which has RAPPP, the proposed project RTPPP concentrates on the possibilities of the PPP technique within a real

Schuh, Harald

379

Proposed Use of a Constructed Wetland for the Treatment of Metals in the S-04 Outfall of the Defense Waste Processing Facility at the Savannah River Site  

SciTech Connect

The DWPF is part of an integrated waste treatment system at the SRS to treat wastes containing radioactive contaminants. In the early 1980s the DOE recognized that there would be significant safety and cost advantages associated with immobilizing the radioactive waste in a stable solid form. The Defense Waste Processing Facility was designed and constructed to accomplish this task.

Glover, T.

1999-11-23

380

Tritium Recovery at Fusion Facility 2.Operation Results and Technologies on the Safety Systems of the Tritium Process Laboratory at the Japan Atomic Energy Research Institute  

Microsoft Academic Search

The Tritium Process Laboratory (TPL) at JAERI (Japan Atomic Energy Research Institute) is the only facility in Japan using over 1 gram of tritium for fusion R&D. The TPL was constructed on 1984, and its safety systems have been operated since March 1988 (amount of tritium stored in TPL = 18 PBq at March 2002). The average tritium concentration in

Toshihiko Yamanishi

2002-01-01

381

Facile low-temperature polyol process for LiFePO4 nanoplate and carbon nanotube composite  

NASA Astrophysics Data System (ADS)

Crystalline LiFePO4 nanoplates were incorporated with 5 wt.% multi-walled carbon nanotubes (CNTs) via a facile low temperature polyol process, in one single step without any post heat treatment. The CNTs were embedded into the LiFePO4 particles to form a network to enhance the electrochemical performance of LiFePO4 electrode for lithium-ion battery applications. The structural and morphological characters of the LiFePO4-CNT composites were investigated by X-ray diffraction, Fourier Transform infrared spectroscopy, Raman spectroscopy, scanning electron microscopy and transmission electron microscopy. The electrochemical properties were analyzed by cyclic voltammetry, electrochemical impedance spectroscopy and charge/discharge tests. Primary results showed that well crystallized olivine-type structure without any impurity phases was developed, and the LiFePO4-CNT composites exhibited good electrochemical performance, with a reversible specific capacity of 155 mAh g-1 at the current rate of 10 mA g-1, and a capacity retention ratio close to 100% after 100 cycles.

Wu, Guan; Zhou, Yingke; Gao, Xuefeng; Shao, Zongping

2013-10-01

382

Photocatalytic activities of Bi2S3/BiOBr nanocomposites synthesized by a facile hydrothermal process  

NASA Astrophysics Data System (ADS)

Bi2S3/BiOBr nanocomposites with various weight percents of Bi2S3 were successfully prepared by a facile hydrothermal process at 433 K, and characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HR-TEM), X-ray photoelectron spectroscopy (XPS), photoluminescence (PL) spectroscopy, energy dispersive X-ray spectroscopy (EDS), UV-vis diffuse reflection spectra (UV-vis DRS) and nitrogen physisorption studies. The UV and visible photocatalytic activities of the as-prepared Bi2S3/BiOBr samples were evaluated by the photo-degradation of methyl orange (MO) in an aqueous solution. The results showed that the photocatalytic activity of the Bi2S3/BiOBr samples was greatly enhanced, compared with that over pure Bi2S3 and BiOBr. The enhanced photocatalytic activities could be mainly attributed to the effective transfer of the photogenerated electrons and holes at the heterojunction interface of Bi2S3 and BiOBr, which reduced the recombination of electron-hole pairs, and the mechanism of photocatalytic activity enhancement was discussed.

Cui, Yumin; Jia, Qingfeng; Li, Huiquan; Han, Jingyu; Zhu, Liangjun; Li, Shigang; Zou, Ying; Yang, Jie

2014-01-01

383

Ecological studies related to construction of the Defense Waste Processing Facility on the Savannah River Site. Annual report, FY 1993  

SciTech Connect

Construction of the Defense Waste Processing Facility (DWPF) on the Savannah River Site (SRS) began during FY-1984. The Savannah River Ecology Laboratory (SREL) has completed 15 years of ecological studies related to the construction of the DWPF complex. Prior to construction, the 600-acre site (S-Area) contained a Carolina bay and the headwaters of a stream. Through the long-term census taking of biota at the DWPF site and Rainbow Bay, SREL has been evaluating the impact of construction on the biota and the effectiveness of mitigation efforts. similarly, the effects of erosion from the DWPF site on the water quality of S-Area peripheral streams are being assessed. This research provides supporting data relevant to the National Environmental Policy Act (NEPA) of 1969, the Endangered Species Act of 1973, Executive orders 11988 (Floodplain Management) and 11990 (Protection of Wetlands), and United States Department of Energy (DOE) Guidelines for Compliance with Floodplain/Wetland Environmental Review Requirements (10 CFR 1022).

NONE

1994-11-01

384

Dismantling of Highly Contaminated Process Installations of the German Reprocessing Facility (WAK) - Status of New Remote Handling Technology - 13287  

SciTech Connect

Decommissioning and dismantling of the former German Pilot Reprocessing Plant Karlsruhe (WAK) including the Vitrification Facility (VEK) is being executed in different Project steps related to the reprocessing, HLLW storage and vitrification complexes /1/. While inside the reprocessing building the total inventory of process equipment has already been dismantled and disposed of, the HLLW storage and vitrification complex has been placed out of operation since vitrification and tank rinsing procedures where finalized in year 2010. This paper describes the progress made in dismantling of the shielded boxes of the highly contaminated laboratory as a precondition to get access to the hot cells of the HLLW storage. The major challenges of the dismantling of this laboratory were the high dose rates up to 700 mSv/h and the locking technology for the removal of the hot cell installations. In parallel extensive prototype testing of different carrier systems and power manipulators to be applied to dismantle the HLLW-tanks and other hot cell equipment is ongoing. First experiences with the new manipulator carrier system and a new master slave manipulator with force reflection will be reported. (authors)

Dux, Joachim; Friedrich, Daniel; Lutz, Werner; Ripholz, Martina [WAK Rueckbau- und Entsorgungs- GmbH, P.O. Box 12 63, 76339 Eggenstein-Leopoldshafen (Germany)] [WAK Rueckbau- und Entsorgungs- GmbH, P.O. Box 12 63, 76339 Eggenstein-Leopoldshafen (Germany)

2013-07-01

385

Screening study for waste biomass to ethanol production facility using the Amoco process in New York State. Appendices to the final report  

SciTech Connect

The final report evaluates the economic feasibility of locating biomass-to-ethanol waste conversion facilities in New York State. Part 1 of the study evaluates 74 potential sites in New York City and identifies two preferred sites on Staten Island, the Proctor and Gamble and the Arthur Kill sites for further consideration. Part 2 evaluates upstate New York and determines that four regions surrounding the urban centers of Albany, Buffalo, Rochester, and Syracuse provide suitable areas from which to select specific sites for further consideration. A conceptual design and economic viability evaluation were developed for a minimum-size facility capable of processing 500 tons per day (tpd) of biomass consisting of wood or paper, or a combination of the two for upstate regions. The facility would use Amoco`s biomass conversion technology and produce 49,000 gallons per day of ethanol and approximately 300 tpd of lignin solid by-product. For New York City, a 1,000-tpd processing facility was also evaluated to examine effects of economies of scale. The reports evaluate the feasibility of building a biomass conversion facility in terms of city and state economic, environmental, and community factors. Given the data obtained to date, including changing costs for feedstock and ethanol, the project is marginally attractive. A facility should be as large as possible and located in a New York State Economic Development Zone to take advantage of economic incentives. The facility should have on-site oxidation capabilities, which will make it more financially viable given the high cost of energy. This appendix to the final report provides supplemental material supporting the evaluations.

NONE

1995-08-01

386

Use of the USQ process with an operating SAR for the shutdown/terminal cleanout of the PUREX facility  

SciTech Connect

The Plutonium-Uranium Extraction (PUREX) facility at the Hanford Site is a remote canyon facility that began operations in 1956 to support the Atomic Energy Commission and later the Department of Energy in the recovery of plutonium, uranium, and neptunium from spent reactor fuel. This report follows the transition of the PUREX facility from standby mode in 1990 to shutdown/terminal cleanout. Preparation of the Final Safety Analysis Report (FSAR), evaluation of OSR requirements, and the use of the USQ to successfully complete the deactivation of the facility in a timely and cost effective manner are discussed. The major activities, both administrative and procedural, performed as part of the PUREX facility deactivation are described.

Dodd, E.N.

1993-06-01

387

A cost and returns evaluation of alternative dairy products to determine capital investment and operational feasibility of a small-scale dairy processing facility.  

PubMed

This study examines the economic feasibility of 50- and 500-cow dairy processing facilities for fluid milk, yogurt, and cheese. Net present value and internal rate of return calculations for projected costs and returns over a 10-yr period indicate that larger yogurt and cheese processing plants offer the most profitable prospects, whereas a smaller yogurt plant would break even. A smaller cheese plant would have insufficient returns to cover the cost of capital, and fluid milk processing at either scale is economically infeasible. Economic success in processing is greatly contingent upon individual business, financial management, and marketing skills. PMID:17430955

Becker, K M; Parsons, R L; Kolodinsky, J; Matiru, G N

2007-05-01

388

Facility risk review as a means to addressing existing risks during the life cycle of a process unit, operation or facility  

Microsoft Academic Search

In today's process industry environment, it is becoming more and more important for companies to manage the risks associated with their plants. Amongst others, some reasons for this are that 1) Process Safety is featuring high on the agenda of Trade Unions; 2) that Management is coming under increased pressure to provide a safe workplace; 3) that Companies are trying

W. P. G. Schlechter

1996-01-01

389

High-precision mass measurement of N = Z = 34 nuclides for RP-process simulations and developments for the LEBIT facility  

NASA Astrophysics Data System (ADS)

The Low Energy Beam and Ion Trap (LEBIT) facility at the National Superconducting Cyclotron Laboratory (NSCL) performs high precision mass measurements of rare isotopes. Within this work mass measurements in the N ? Z ? 34 region were performed by Penning trap mass spectrometry. Mass measurements of nuclei in this region are important for understanding the rp process, a driving mechanism behind type I x-ray bursts. The masses measured were 68Se, 70Se, 70mBr, and 71Br and experimental uncertainties ranging from 0.5 keV for 68Se to 15 keV for 70mBr were achieved. Using the LEBIT results along with theoretical Coulomb displacement energies [1] more reliable mass predictions were obtained for 70Kr and 71Kr. The new and improved data were used as input for rp process network calculations. An increase in the effective lifetime of the waiting point nucleus 685se was observed, thus confirming it as a large source of delay in the rp process. More precise information was also obtained on the luminosity during a type I x-ray burst and on the distribution of the final abundances after a burst. Beam manipulation and detection are an important part of the high precision mass measurement process performed at the LEBIT facility. Several upgrades to the LEBIT facility for improved beam quality, control, and observation are presented. The properties of ion pulses ejected from the facility's beam cooler and buncher were investigated and optimized for improved contaminant ion detection and removal. To increase the ion detection efficiency after the Penning trap a multichannel plate detector was implemented in a Daly detector configuration. These upgrades were instrumental in moving the LEBIT facility towards measurements of nuclei with lower yields and higher levels of contaminant.

Savory, Joshua J.

390

18 CFR 157.21 - Pre-filing procedures and review process for LNG terminal facilities and other natural gas...  

Code of Federal Regulations, 2014 CFR

...which Commission staff may make a selection to assist in the preparation of the requisite NEPA document. (9) For natural gas facilities other than LNG terminal...which Commission staff may make a selection to assist in the preparation...

2014-04-01

391

18 CFR 157.21 - Pre-filing procedures and review process for LNG terminal facilities and other natural gas...  

Code of Federal Regulations, 2011 CFR

...which Commission staff may make a selection to assist in the preparation of the requisite NEPA document. (9) For natural gas facilities other than LNG terminal...which Commission staff may make a selection to assist in the preparation...

2011-04-01

392

18 CFR 157.21 - Pre-filing procedures and review process for LNG terminal facilities and other natural gas...  

Code of Federal Regulations, 2012 CFR

...which Commission staff may make a selection to assist in the preparation of the requisite NEPA document. (9) For natural gas facilities other than LNG terminal...which Commission staff may make a selection to assist in the preparation...

2012-04-01

393

18 CFR 157.21 - Pre-filing procedures and review process for LNG terminal facilities and other natural gas...  

Code of Federal Regulations, 2013 CFR

...which Commission staff may make a selection to assist in the preparation of the requisite NEPA document. (9) For natural gas facilities other than LNG terminal...which Commission staff may make a selection to assist in the preparation...

2013-04-01

394

ISIS Facility: Facility Design Challenges  

E-print Network

driven · Safety ­ People ­ Environment Facility Design Goals #12;Facility Design Challenges · TechnicalISIS Facility: Facility Design Challenges Matt Fletcher Head, Design Division ISIS Department development #12;Additional Liquid Metal Target Challenges Design and Operational Features of a Mercury Target

McDonald, Kirk

395

Defense Waste Processing Facility: Report of task force on options to mitigate the effect of nitrite on DWPF operations. Savannah River Site 200-S Area  

SciTech Connect

The possibility of accumulating ammonium nitrate (an explosive) as well as organic compounds in the DWPF Chemical Processing Cell Vent System was recently discovered. A task force was therefore organized to examine ways to avoid this potential hazard. Of thirty-two processing/engineering options screened, the task force recommended five options, deemed to have the highest technical certainty, for detailed development and evaluation: Radiolysis of nitrite in the tetraphenylborate precipitate slurry feed in a new corrosion-resistant facility. Construction of a Late Washing Facility for precipitate washing before transfer to the DWPF; ``Just-in-Time`` precipitation; Startup Workaround by radiolysis of nitrite in the existing corrosion-resistant Pump Pit tanks; Ammonia venting and organics separation in the DWPF; and, Estimated costs and schedules are included in this report.

Randall, D. [ed.; Marek, J.C.

1992-03-01

396

Intensive archeological survey of the proposed Saltcrete area of the Defense Waste Processing Facility, Savannah River Plant, Aiken County, South Carolina. Research manuscript series 172  

SciTech Connect

An intensive archeological survey of the proposed Saltcrete (200-Z) area of the Defense Waste Processing Facility on the Savannah River Plant, Aiken County, South Carolina was conducted. The purpose was to locate, describe and assess the archeological resources within the proposed construction area and to provide the Department of Energy with the recommendations as to the significance of the resources. This report presents a summary of the background, methods, results and recommendations resulting from the Saltcrete area intensive survey.

Brooks, R.D.

1981-06-01

397

Airborne Visible/Infrared Imaging Spectrometer (AVIRIS). A description of the sensor, ground data processing facility, laboratory calibration, and first results  

NASA Technical Reports Server (NTRS)

The papers in this document were presented at the Imaging Spectroscopy 2 Conference of the 31st International Symposium on Optical and Optoelectronic Applied Science and Engineering, in San Diego, California, on 20 and 21 August 1987. They describe the design and performance of the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) sensor and its subsystems, the ground data processing facility, laboratory calibration, and first results.

Vane, Gregg (editor)

1987-01-01

398

Two-stage coal liquefaction process materials from the Wilsonville Facility operated in the nonintegrated and integrated modes: chemical analyses and biological testing  

SciTech Connect

This document reports the results from chemical analyses and biological testing of process materials sampled during operation of the Wilsonville Advanced Coal Liquefaction Research and Development Facility (Wilsonville, Alabama) in both the noncoupled or nonintegrated (NTSL Run 241) and coupled or integrated (ITSL Run 242) two-stage liquefaction operating modes. Mutagenicity and carcinogenicity assays were conducted in conjunction with chromatographic and mass spectrometric analyses to provide detailed, comparative chemical and biological assessments of several NTSL and ITSL process materials. In general, the NTSL process materials were biologically more active and chemically more refractory than analogous ITSL process materials. To provide perspective, the NTSL and ITSL results are compared with those from similar testing and analyses of other direct coal liquefaction materials from the solvent refined coal (SRC) I, SRC II and EDS processes. Comparisons are also made between two-stage coal liquefaction materials from the Wilsonville pilot plant and the C.E. Lummus PDU-ITSL Facility in an effort to assess scale-up effects in these two similar processes. 36 references, 26 figures, 37 tables.

Later, D.W.

1985-01-01

399

40 CFR 80.513 - What provisions apply to transmix processing facilities and pipelines that produce diesel fuel...  

Code of Federal Regulations, 2014 CFR

...facility will segregate any 500 ppm LM diesel fuel produced subject to the standards...ppm LM will also have access to 15 ppm diesel fuel for use in those engines that require the use of 15 ppm diesel fuel. The compliance plan must...

2014-07-01

400

40 CFR 80.513 - What provisions apply to transmix processing facilities and pipelines that produce diesel fuel...  

Code of Federal Regulations, 2013 CFR

...facility will segregate any 500 ppm LM diesel fuel produced subject to the standards...ppm LM will also have access to 15 ppm diesel fuel for use in those engines that require the use of 15 ppm diesel fuel. The compliance plan must...

2013-07-01

401

Acceptance test procedure for C-018H, 242-A evaporator/PUREX plant process condensate treatment facility  

SciTech Connect

This Acceptance Test Procedure (ATP) has been prepared to demonstrate that the Electrical/Instrumentation system function as required for this facility. Each company or organization participating in this ATP will designate personnel to assume the responsibilities and duties as defined herein for their respective roles.

Parrish, D.E.

1994-08-16

402

An Empirical Test of the Structure, Process, and Outcome Quality Paradigm Using Resident-Based, Nursing Facility Assessment Data  

Microsoft Academic Search

This study distinguishes between organizational char acteristics, regarded as exogenous structural indicators of quality, and those identified as endogenous indica tors of structural care (SC), and investigates the degree to which measures of SC vary by ownership mode (defined by four combinations of chain affiliation and profit status) for 142 certified and licensed nursing facilities (NFs) in a southern state.

James D. Ramsay; François Sainfort; David Zimmerman

1995-01-01

403

Proof of concept simulations of the Multi-Isotope Process monitor: An online, nondestructive, near-real-time safeguards monitor for nuclear fuel reprocessing facilities  

NASA Astrophysics Data System (ADS)

The International Atomic Energy Agency will require the development of advanced technologies to effectively safeguard nuclear material at increasingly large-scale nuclear recycling facilities. Ideally, the envisioned technologies would be capable of nondestructive, near-real-time, autonomous process monitoring. This paper describes recent results from model simulations designed to test the Multi-Isotope Process (MIP) monitor, a novel addition to a safeguards system for reprocessing facilities. The MIP monitor combines the detection of intrinsic gamma ray signatures emitted from process solutions with multivariate analysis to detect off-normal conditions in process streams nondestructively and in near-real-time. Three computer models including ORIGEN-ARP, AMUSE, and SYNTH were used in series to predict spent nuclear fuel composition, estimate element partitioning during separation, and simulate spectra from product and raffinate streams using a variety of gamma detectors, respectively. Simulations were generated for fuel with various irradiation histories and under a variety of plant operating conditions. Principal component analysis was applied to the simulated gamma spectra to investigate pattern variations as a function of acid concentration, burnup, and cooling time. Hierarchical cluster analysis and partial least squares (PLS) were also used in the analysis. The MIP monitor was found to be sensitive to induced variations of several operating parameters including distinguishing ±2.5% variation from normal process acid concentrations. The ability of PLS to predict burnup levels from simulated spectra was also demonstrated to be within 3.5% of measured values.

Orton, Christopher R.; Fraga, Carlos G.; Christensen, Richard N.; Schwantes, Jon M.

2011-02-01

404

Structure, process, and outcomes in skilled nursing facilities: understanding what happens to surgical patients when they cannot go home. A systematic review  

PubMed Central

Background The surgical population is aging, and greater numbers of surgical patients are being discharged to skilled nursing facilities. Post-acute care is a poorly understood but very important aspect of our healthcare system. Methods This systematic review examines the current body of literature surrounding the structural, process of care, and outcomes measurements for patients in skilled nursing facilities. English language articles published between 1998 and 2011 that purposed to examine nursing facility structure, process of care, and/or outcomes were included. Results & Conclusions Abstracts (2129) were screened and 102 articles were reviewed in full. Twenty-nine articles were included in the qualitative synthesis. The role of the care setting and care delivery in contributing to outcomes has not been well studied, and no strong conclusions can be made. This area of care currently represents a “black box” to practicing surgeons. An understanding of these factors maybe instrumental to determining future directions for research to maximize positive outcomes for these patients. PMID:25439223

Hakkarainen, Timo W.; Ayoung-Chee, Patricia; Alfonso, Rafael; Arbabi, Saman; Flum, David R.

2014-01-01

405

Facile single-step ammonia heat-treatment and quenching process for the synthesis of improved Pt/N-graphene catalysts  

NASA Astrophysics Data System (ADS)

In this work, we present a facile route to prepare electrocatalysts for methanol oxidation. The catalyst synthesis route involves the simultaneous reduction and nitrogen doping of graphene oxide (GO) along with the reduction of H2PtCl6 to Pt by a facile ammonia gas heat-treatment and quenching process. The resulting catalysts are characterized by X-ray diffraction, transmission electron microscopy, and X-ray photoelectron spectroscopy while their electrocatalytic activity toward the oxidation of methanol is evaluated by cyclic voltammetry. The obtained Pt/graphene composites consist of crystalline Pt nanoparticles in the range of 1-4 nm which are well-dispersed on the N-doped graphene sheets. The best Pt/N-graphene catalyst composite is obtained after a 5 min ammonia treatment at 800 °C followed by rapid ammonia gas quenching at room temperature. This catalyst demonstrates superior catalytic activity for methanol electro-oxidation, with a peak current density of 0.218 A mgPt-1, which is about five times higher than an undoped (hydrogen treated and quenched) Pt/graphene control catalyst. The excellent electrocatalytic performance of the ammonia quenched catalyst is attributed to the nitrogenous functional groups and dopants in the graphene sheets that are formed during the facile quenching process in ammonia.

Xiong, Bin; Zhou, Yingke; O'Hayre, Ryan; Shao, Zongping

2013-02-01

406

Facilities maintenance handbook  

NASA Technical Reports Server (NTRS)

This handbook is a guide for facilities maintenance managers. Its objective is to set minimum facilities maintenance standards. It also provides recommendations on how to meet the standards to ensure that NASA maintains its facilities in a manner that protects and preserves its investment in the facilities in a cost-effective manner while safely and efficiently performing its mission. This handbook implements NMI 8831.1, which states NASA facilities maintenance policy and assigns organizational responsibilities for the management of facilities maintenance activities on all properties under NASA jurisdiction. It is a reference for facilities maintenance managers, not a step-by-step procedural manual. Because of the differences in NASA Field Installation organizations, this handbook does not assume or recommend a typical facilities maintenance organization. Instead, it uses a systems approach to describe the functions that should be included in any facilities maintenance management system, regardless of its organizational structure. For documents referenced in the handbook, the most recent version of the documents is applicable. This handbook is divided into three parts: Part 1 specifies common definitions and facilities maintenance requirements and amplifies the policy requirements contained in NMI 8831. 1; Part 2 provides guidance on how to meet the requirements of Part 1, containing recommendations only; Part 3 contains general facilities maintenance information. One objective of this handbook is to fix commonality of facilities maintenance definitions among the Centers. This will permit the application of uniform measures of facilities conditions, of the relationship between current replacement value and maintenance resources required, and of the backlog of deferred facilities maintenance. The utilization of facilities maintenance system functions will allow the Centers to quantitatively define maintenance objectives in common terms, prepare work plans, and develop management information in order to statistically identify and analyze variances from those plans. It will also add credibility to the NASA facilities maintenance budgeting process. The key to a successful maintenance program is the understanding and support of the senior Center managers.

1991-01-01

407

THE DEACTIVATION DECONTAMINATION & DECOMMISSIONING OF THE PLUTONIUM FINISHING PLANT (PFP) A FORMER PLUTONIUM PROCESSING FACILITY AT DOE HANFORD SITE  

SciTech Connect

The Plutonium Finishing Plant (PFP) was constructed as part of the Manhattan Project during World War II. The Manhattan Project was developed to usher in the use of nuclear weapons to end the war. The primary mission of the PFP was to provide plutonium used as special nuclear material (SNM) for fabrication of nuclear devices for the war effort. Subsequent to the end of World War II, the PFP's mission expanded to support the Cold War effort through plutonium production during the nuclear arms race and later the processing of fuel grade mixed plutonium-uranium oxide to support DOE's breeder reactor program. In October 1990, at the close of the production mission for PFP, a shutdown order was prepared by the Department of Energy (DOE) in Washington, DC and issued to the Richland DOE field office. Subsequent to the shutdown order, a team from the Defense Nuclear Facilities Safety Board (DNFSB) analyzed the hazards at PFP associated with the continued storage of certain forms of plutonium solutions and solids. The assessment identified many discrete actions that were required to stabilize the different plutonium forms into stable form and repackage the material in high integrity containers. These actions were technically complicated and completed as part of the PFP nuclear material stabilization project between 1995 and early 2005. The completion of the stabilization project was a necessary first step in deactivating PFP. During stabilization, DOE entered into negotiations with the U.S. Environmental Protection Agency (EPA) and the State of Washington and established milestones for the Deactivation and Decommissioning (D&D) of the PFP. The DOE and its contractor, Fluor Hanford (Fluor), have made great progress in deactivating, decontaminating and decommissioning the PFP at the Hanford Site as detailed in this paper. Background information covering the PFP D&D effort includes descriptions of negotiations with the State of Washington concerning consent-order milestones, milestones completed to date, and the vision of bringing PFP to slab-on-grade. Innovative approaches in planning and regulatory strategies, as well new technologies from within the United States and from other countries and field decontamination techniques developed by workforce personnel, such as the ''turkey roaster'' and the ''lazy Susan'' are covered in detail in the paper. Critical information on issues and opportunities during the performance of the work such as concerns regarding the handling and storage of special nuclear material, concerns regarding criticality safety and the impact of SNM de-inventory at PFP are also provided. The continued success of the PFP D&D effort is due to the detailed, yet flexible, approach to planning that applied innovative techniques and tools, involved a team of experienced independent reviewers, and incorporated previous lessons learned at the Hanford site, Rocky Flats, and commercial nuclear D&D projects. Multi-disciplined worker involvement in the planning and the execution of the work has produced a committed workforce that has developed innovative techniques, resulting in safer and more efficient work evolutions.

CHARBONEAU, S.L.

2006-02-01

408

Solution processed MoO3 interfacial layer for organic photovoltaics prepared by a facile synthesis method.  

PubMed

An MoO(3) film spin-coated from a solution prepared by an extremely facile and cost-effective synthetic method is introduced as an anode buffer layer of bulk-heterojunction polymer photovoltaic devices. The device efficiency using the MoO(3) anode buffer layer is comparable to that using a conventional PEDOT:PSS layer without annealing at an elevated temperature. PMID:22488552

Murase, Seiichiro; Yang, Yang

2012-05-01

409

New Instrumental Facilities to study High Energy Processes in the Sun, Interplanetary Space and their Effects in the Earth Atmosphere  

NASA Astrophysics Data System (ADS)

We present a new instrumental facility to study the physical mechanisms of high-energy releases taking place in solar quiet and explosive active regions, and their signatures in the Earth's atmosphere. These facilities will be installed in the CASLEO (2550 m asl) observatory, and complement solar flare diagnostic obtained there at millimeter waves (45 and 90 GHZ), submillimeter waves (212 and 405 GHz), IR (30 THz), as well as X-ray radiation imprints in the ionosphere (VLF subionospheric propagation), and of energetic charged particles in Earth's atmosphere (Cosmic Ray CARPET sensor).Specifically, we propose to complement these existing instrumental facilities with a new detector of solar and atmospheric neutrons, a gamma-ray scintillation device, and ELF/VLF wave sensors. The main objectives are: (i) to better characterize the high-frequency radio and high-energy photon flare spectra, in order to provide new clues on the emission mechanism resulting in submillimeter and THz radiation which are still unexplained; (ii) to provide a continuous monitoring of solar energetic phenomena and investigate if they are more frequent than what we do observe nowadays; (iii) to investigate the causal relationship between atmospheric phenomena as lightning occurrence, high-energy photon and neutron production, Terrestrial Gamma-ray Flashes, and cosmic ray fluxes.

Raulin, Jean-Pierre; Makhmutov, Vladimir

410

Facilities Automation and Energy Management  

E-print Network

Computerized facilities automation and energy management systems can be used to maintain high levels of facilities operations efficiencies. The monitoring capabilities provides the current equipment and process status, and the analysis...

Jen, D. P.

1983-01-01

411

Electro-Mechanical Manipulator for Use in the Remote Equipment Decontamination Cell at the Defense Waste Processing Facility, Savannah River Site - 12454  

SciTech Connect

One of the legacies of the cold war is millions of liters of radioactive waste. One of the locations where this waste is stored is at the Savannah River Site (SRS) in South Carolina. A major effort to clean up this waste is on-going at the defense waste processing facility (DWPF) at SRS. A piece of this effort is decontamination of the equipment used in the DWPF to process the waste. The remote equipment decontamination cell (REDC) in the DWPF uses electro-mechanical manipulators (EMM) arms manufactured and supplied by PaR Systems to decontaminate DWPF process equipment. The decontamination fluid creates a highly corrosive environment. After 25 years of operational use the original EMM arms are aging and need replacement. To support continued operation of the DWPF, two direct replacement EMM arms were delivered to the REDC in the summer of 2011. (authors)

Lambrecht, Bill; Dixon, Joe [Par Systems, Shoreview, Minnesota, 55126 (United States); Neuville, John R. [Savannah River Remediation, Savannah River Site, Aiken, South Carolina, 29808 (United States)

2012-07-01

412

Evaluation of trace organic emissions from refuse thermal-processing facilities. Final report, 14 April 1981-31 March 1982  

SciTech Connect

The report presents the results of testing, sampling and analysis of three resource recovery facilities burning municipal wastes for emissions of tetra chlorinated dioxins and furans in the flue gas. The stack emissions were analyzed by the EPA PTMAX dispersion model to determine maximum 1-hour ground-level concentrations. A wide distribution of isomers were reported both for TCDDs and TCDFs. The most toxic 2378 TCDD isomer emissions from the stack ranged from 3.4 to 180 mg per ton of the fuel fired, while 2,378 TCDFs ranged from 22 to 1800 micrograms/ton.

Higgins, G.M.

1982-07-01

413

Associations between oil- and gas-well sites, processing facilities, flaring, and beef cattle reproduction and calf mortality in western Canada.  

PubMed

From the fall of 1992 through calving 1996, detailed cow breeding outcome records were maintained actively for seven large cow-calf herds in western Canada. The numbers of mature females in the study for the breeding seasons beginning in 1992, 1993, 1994, and 1995 were 1122, 1177, 1251, and 1236, respectively. Outcomes included pregnancy status, calving interval, and the occurrence of twins, abortions, stillbirths, and neonatal mortality. Information also was collected on other risk factors known to influence beef-herd health and productivity. Detailed maps of active and inactive oil and natural-gas sites, batteries, compressor stations and processing plants were verified. Records of flaring activity at each facility were obtained from the government regulatory agency. Each flaring site then was classified as sour or sweet based on the presence or absence of hydrogen sulfide in the flared gas. A detailed inventory was prepared itemizing the type and number of facilities within 1.6 km (1 mile) of the center of each quarter section used for pasture. The total volume of gas flared within 1.6 km of the center of each pasture was determined for each month of the study. Appropriate risk periods where specified for each outcome and a cumulative exposure calculated for each breeding female (using detailed individual-animal records of cow movements between pastures and herd-management groups). Generalized estimating equations were used to evaluate the association between exposure and outcome and to adjust for potential confounders and clustering of binomial outcomes within herd. Increased risk of non-pregnancy was sometimes associated with exposure to one or more of the following facility types: sour-gas flaring battery facilities, all battery-flaring sites, active gas wells, and larger field facilities. The associations were not, however, consistent among years or even among risk periods for the same year. Facility proximity and flaring were not associated with increased abortion risk. Volume of flared sour gas from battery sites was associated with increased risk of stillbirth. Finally, sour-gas flaring was associated with increased calf-mortality risk for the 1992-1993 calf crop. Several examples of associations between exposure and increased productivity also were found (most of which involved either oil wells or all well sites). PMID:11448492

Waldner, C L; Ribble, C S; Janzen, E D; Campbell, J R

2001-07-19

414

Reconfigured, close-coupled reconfigured, and Wyodak coal integrated two-stage coal liquefaction process materials from the Wilsonville facility: Chemical and toxicological evaluation  

SciTech Connect

This document reports the results of the chemical analysis and toxicological testing of process materials sampled during the operation of the Advanced Coal Liquefaction Research and Development Facility (Wilsonville, AL) in the reconfigured, integrated (RITSL run No. 247), the close-coupled, reconfigured, integrated (CCRITSL run No. 249), and the Wyodak coal integrated (ITSL run No. 246) two-stage liquefaction operating modes. Chemical methods of analysis included proton nuclear magnetic resonance spectroscopy, adsorption column chromatography, high resolution gas chromatography, gas chromatography/mass spectrometry, and low-voltage probe-inlet mass spectrometry. Toxicological evaluation of the process materials included a histidine reversion assay for microbial mutagenicity, an initiation/promotion assay for tumorigenicity in mouse skin, and an aquatic toxicity assay using Daphnia magna. The results of these analyses and tests are compared to the previously reported results derived from the Illinois No. 6 coal ITSL and nonintegrated two-stage liquefaction (NTSL) process materials from the Wilsonville facility. 21 refs., 13 figs., 21 tabs.

Wright, C.W.

1987-03-01

415

Implementing waste minimization at an active plutonium processing facility: Successes and progress at technical area (TA) -55 of the Los Alamos National Laboratory  

SciTech Connect

The Los Alamos National Laboratory has ongoing national security missions that necessitate increased plutonium processing. The bulk of this activity occurs at Technical Area -55 (TA-55), the nations only operable plutonium facility. TA-55 has developed and demonstrated a number of technologies that significantly minimize waste generation in plutonium processing (supercritical CO{sub 2}, Mg(OH){sub 2} precipitation, supercritical H{sub 2}O oxidation, WAND), disposition of excess fissile materials (hydride-dehydride, electrolytic decontamination), disposition of historical waste inventories (salt distillation), and Decontamination & Decommissioning (D&D) of closed nuclear facilities (electrolytic decontamination). Furthermore, TA-55 is in the process of developing additional waste minimization technologies (molten salt oxidation, nitric acid recycle, americium extraction) that will significantly reduce ongoing waste generation rates and allow volume reduction of existing waste streams. Cost savings from reduction in waste volumes to be managed and disposed far exceed development and deployment costs in every case. Waste minimization is also important because it reduces occupational exposure to ionizing radiation, risks of transportation accidents, and transfer of burdens from current nuclear operations to future generations.

Balkey, J.J.; Robinson, M.A.; Boak, J.

1997-12-01

416

Rheology Of MonoSodium Titanate (MST) And Modified Mst (mMST) Mixtures Relevant To The Salt Waste Processing Facility  

SciTech Connect

The Savannah River National Laboratory performed measurements of the rheology of suspensions and settled layers of treated material applicable to the Savannah River Site Salt Waste Processing Facility. Suspended solids mixtures included monosodium titanate (MST) or modified MST (mMST) at various solid concentrations and soluble ion concentrations with and without the inclusion of kaolin clay or simulated sludge. Layers of settled solids were MST/sludge or mMST/sludge mixtures, either with or without sorbed strontium, over a range of initial solids concentrations, soluble ion concentrations, and settling times.

Koopman, D. C.; Martino, C. J.; Shehee, T. C.; Poirier, M. R.

2013-07-31

417

Proof of concept experiments of the multi-isotope process monitor: An online, nondestructive, near real-time monitor for spent nuclear fuel reprocessing facilities  

NASA Astrophysics Data System (ADS)

Operators, national regulatory agencies and the IAEA will require the development of advanced technologies to efficiently control and safeguard nuclear material at increasingly large-scale nuclear recycling facilities. Ideally, the envisioned technologies would be capable of non-destructive, near real-time (NRT), autonomous process monitoring. This paper describes results from proof-of-principle experiments designed to test the multi-isotope process (MIP) monitor, a novel approach to monitoring and safeguarding reprocessing facilities. The MIP Monitor combines the detection of intrinsic gamma ray signatures emitted from process solutions with multivariate analysis to detect off-normal conditions in process streams nondestructively and in NRT. Commercial spent nuclear fuel of various irradiation histories was dissolved and separated using a PUREX-based batch solvent extraction. Extractions were performed at various nitric acid concentrations to mimic both normal and off-normal industrial plant operating conditions. Principal component analysis (PCA) was applied to the simulated gamma spectra to investigate pattern variations as a function of acid concentration, burnup and cooling time. Partial least squares (PLS) regression was applied to attempt to quantify both the acid concentration and burnup of the dissolved spent fuel during the initial separation stage of recycle. The MIP Monitor demonstrated sensitivity to induced variations of acid concentration, including the distinction of ±1.3 M variation from normal process conditions by way of PCA. Acid concentration was predicted using measurements from the organic extract and PLS resulting in predictions with <0.7 M relative error. Quantification of burnup levels from dissolved fuel spectra using PLS was demonstrated to be within 2.5% of previously measured values.

Orton, Christopher R.; Fraga, Carlos G.; Christensen, Richard N.; Schwantes, Jon M.

2012-04-01

418

300 Area process sewer piping upgrade and 300 Area treated effluent disposal facility discharge to the City of Richland Sewage System, Hanford Site, Richland, Washington  

SciTech Connect

The U.S. Department of Energy (DOE) is proposing to upgrade the existing 300 Area Process Sewer System by constructing and operating a new process sewer collection system that would discharge to the 300 Area Treated Effluent Disposal Facility. The DOE is also considering the construction of a tie-line from the TEDF to the 300 Area Sanitary Sewer for discharging the process wastewater to the City of Richland Sewage System. The proposed action is needed because the integrity of the old piping in the existing 300 Area Process Sewer System is questionable and effluents might be entering the soil column from leaking pipes. In addition, the DOE has identified a need to reduce anticipated operating costs at the new TEDF. The 300 Area Process Sewer Piping Upgrade (Project L-070) is estimated to cost approximately $9.9 million. The proposed work would involve the construction and operation of a new process sewer collection system. The new system would discharge the effluents to a collection sump and lift station for the TEDF. The TEDF is designed to treat and discharge the process effluent to the Columbia River. The process waste liquid effluent is currently well below the DOE requirements for radiological secondary containment and is not considered a RCRA hazardous waste or a State of Washington Hazardous Waste Management Act dangerous waste. A National Pollutant Discharge Elimination, System (NPDES) permit has been obtained from the U.S. Environmental Protection Agency for discharge to the Columbia River. The proposed action would upgrade the existing 300 Area Process Sewer System by the construction and operation of a new combined gravity, vacuum, and pressurized process sewer collection system consisting of vacuum collection sumps, pressure pump stations, and buried polyvinyl chloride or similar pipe. Two buildings would also be built to house a main collection station and a satellite collection station.

NONE

1995-05-01

419

A Guide for Developing Standard Operating Job Procedures for the Primary Sedimentation Process Wastewater Treatment Facility. SOJP No. 4.  

ERIC Educational Resources Information Center

This guide describes standard operating job procedures for the primary sedimentation process of wastewater treatment plants. The primary sedimentation process involves removing settleable and suspended solids, in part, from wastewater by gravitational forces, and scum and other floatable solids from wastewater by mechanical means. Step-by-step…

Charles County Community Coll., La Plata, MD.

420

Reducing Plug and Process Loads for a Large Scale, Low Energy Office Building: NREL's Research Support Facility; Preprint  

SciTech Connect

This paper documents the design and operational plug and process load energy efficiency measures needed to allow a large scale office building to reach ultra high efficiency building goals. The appendices of this document contain a wealth of documentation pertaining to plug and process load design in the RSF, including a list of equipment was selected for use.

Lobato, C.; Pless, S.; Sheppy, M.; Torcellini, P.

2011-02-01

421

A Guide for Developing Standard Operating Job Procedures for the Pump Station Process Wastewater Treatment Facility. SOJP No. 3.  

ERIC Educational Resources Information Center

This is a guide for standard operating job procedures for the pump station process of wastewater treatment plants. Step-by-step instructions are given for pre-start up inspection, start-up procedures, continuous routine operation procedures, and shut-down procedures. A general description of the equipment used in the process is given. Two…

Perley, Gordon F.

422

A Guide for Developing Standard Operating Job Procedures for the Grit Removal Process Wastewater Treatment Facility. SOJP No. 2.  

ERIC Educational Resources Information Center

This guide describes standard operating job procedures for the grit removal process of wastewater treatment plants. Step-by-step instructions are given for pre-start up inspection, start-up, continuous operation, and shut-down procedures. A description of the equipment used in the process is given. Some theoretical material is presented. (BB)

Deal, Gerald A.; Montgomery, James A.

423

Educational Facilities.  

ERIC Educational Resources Information Center

This book is a compilation of nearly 100 projects and trends in school design. The projects were submitted for a 1999-2000 competition and focus on a variety of school facilities. These facilities range from early childhood to community colleges, including public, private, and alternative facilities. A jury of architects and educational…

American Inst. of Architects, Washington, DC.

424

Successful Demolition of Historic Cape Canaveral Air Force Station Launch Facilities: Managing the Process to Maximize Recycle Value to Fund Demolition  

SciTech Connect

This paper will present the history of the Atlas 36 and Titan 40 Space Launch Complexes (SLC), the facility assessment process, demolition planning, recycle methodology, and actual facility demolition that resulted in a 40% reduction in baseline cost. These two SLC launched hundreds of payloads into space from Cape Canaveral Air Force Station (AFS), Florida. The Atlas-Centaur family of rockets could lift small- to medium-size satellites designed for communications, weather, or military use, placing them with near pinpoint accuracy into their intended orbits. The larger Titan family was relied upon for heavier lifting needs, including launching military satellites as well as interplanetary probes. But despite their efficiency and cost-effectiveness, the Titan rockets, as well as earlier generation Atlas models, were retired in 2005. Concerns about potential environmental health hazards from PCBs and lead-based paint chipping off the facilities also contributed to the Air Force's decision in 2005 to dismantle and demolish the Atlas and Titan missile-launching systems. Lockheed Martin secured the complex following the final launch, removed equipment and turned over the site to the Air Force for decommissioning and demolition (D and D). AMEC was retained by the Air Force to perform demolition planning and facility D and D in 2004. AMEC began with a review of historical information, interviews with past operations personnel, and 100% facility assessment of over 100 structures. There where numerous support buildings that due to their age contained asbestos containing material (ACM), PCB-impacted material, and universal material that had to be identified and removed prior to demolition. Environmental testing had revealed that the 36B mobile support tower (MST) exceeded the TSCA standard for polychlorinated biphenyls (PCB) paint (<50 ppm), as did the high bay sections of the Titan Vertical Integration Building (VIB). Thus, while most of the steel structures could be completely recycled, about one-third of 36B MST and the affected areas of the VIB were to be consigned to an on-site regulated waste landfill. In all, it is estimated that approximately 10,000,000 kg (11,000 tons) of PCB-coated steel will be land-filled and 23,000,000 kg (25,000 tons) will be recycled. The recycling of the steel and other materials made it possible to do additional demolition by using these funds. Therefore, finding ways to maximize the recycle value of materials became a key factor in the pre-demolition characterization and implementation strategy. This paper will present the following: - Critical elements in demolition planning working at an active launch facility; - Characterization and strategy to maximize steel recycle; - Waste disposition strategy to maximize recycle/reuse and minimize disposal; - Recycle options available at DOD installations that allow for addition funds for demolition; - Innovation in demolition methodologies for large structures - explosive demolition and large-scale dismantlement; - H and S aspects of explosive demolition and large scale dismantlement. In conclusion: The Cape Canaveral AFS Demolition Program has been a great success due to the integration of multiple operations and contractors working together to determine the most cost-effective demolition methods. It is estimated that by extensive pre-planning and working with CCAFS representatives, as well as maximizing the recycle credits of various material, primarily steel, that the government will be able to complete what was base-lined to be a $30 M demolition program for < $20 M. Other factors included a competitive subcontractor environment where they were encouraged with incentives to maximize recycle/reuse of material and creative demolition solutions. Also, by overlapping multiple demolition tasks at multiple facilities allowed for a reduction in field oversight. (authors)

Jones, A.; Hambro, L. [AMEC Earth and Environmental, Inc., Cocoa, FL (United States); Hooper, K. [U.S. Air Force 45th Space Wing, Patrick AFB, Florida (United States)

2008-07-01

425

Wet processing of palladium for use in the tritium facility at Westinghouse, Savannah River, SC. Preparation of palladium using the Mound Muddy Water process  

SciTech Connect

Palladium used at Savannah River for tritium storage is currently obtained from a commercial source. In order to better understand the processes involved in preparing this material, Savannah River is supporting investigations into the chemical reactions used to synthesize this material and into the conditions necessary to produce palladium powder that meets their specifications. This better understanding may help to guarantee a continued reliable source for this material in the future. As part of this evaluation, a work-for-others contract between Westinghouse Savannah River Company and the Ames Laboratory Metallurgy and Ceramics Program was initiated. During FY98, the process for producing palladium powder developed in 1986 by Dan Grove of Mound Applied Technologies (USDOE) was studied to understand the processing conditions that lead to changes in morphology in the final product. This report details the results of this study of the Mound Muddy Water process, along with the results of a round-robin analysis of well-characterized palladium samples that was performed by Savannah River and Ames Laboratory. The Mound Muddy Water process is comprised of three basic wet chemical processes, palladium dissolution, neutralization, and precipitation, with a number of filtration steps to remove unwanted impurity precipitates.

Baldwin, D.P.; Zamzow, D.S.

1998-11-10