Science.gov

Sample records for processing facility swpf

  1. PERFORMANCE PROPERTIES OF SALTSTONE PRODUCED USING SWPF SIMULANTS

    SciTech Connect

    Harbour, J.; Edwards, T.

    2010-02-16

    The overwhelming majority of waste to be immobilized at the Saltstone Production Facility will come from the waste stream exiting the Salt Waste Processing Facility (SWPF). These SWPF batches are salt solutions that result from pretreatment of the High Level Waste (HLW) supernate by an Actinide Removal Process followed by Caustic Side Solvent Extraction. The concentration of aluminate within these streams will vary and be determined by (1) the concentration in the incoming salt waste stream, (2) the degree of aluminum leaching from the HLW, (3) the method for introducing the aluminate into the waste stream (continuous or batch) and (4) and any operational or regulatory limitations. The overall Performance Assessment outcome for the Saltstone Disposal Facility will depend significantly on the performance properties of the SWPF Saltstone grouts. This report identifies and quantifies, when possible, those factors that drive the performance properties of the projected SWPF grouts. Previous work has identified aluminate concentration in the salt waste stream as a key factor in determining performance. Consequently, significant variation in the aluminate concentration to a maximum level of 0.65 M was investigated in this report. The SWPF baseline grout is a mix with a 0.60 water to cementitious ratio and a premix composition of 45 wt % slag, 45 wt % fly ash and 10 wt % portland cement. The key factors that drive performance of the SWPF mixes were determined to be (1) the time/temperature profile for curing, (2) water to cementitious materials ratio, (3) aluminate concentration in the waste stream, and (4) wt % slag in the premix. An increase in the curing temperature for mixes with 45 wt % slag resulted in a 2.5 times decrease in Young's modulus. The reduction of Young's modulus measured at 60 C versus 22 C was mitigated by an increase in the aluminate concentration but was still significant. For mixes containing 60 wt % slag, the reduction in Young's modulus between

  2. BLENDING ANALYSIS FOR RADIOACTIVE SALT WASTE PROCESSING FACILITY

    SciTech Connect

    Lee, S.

    2012-05-10

    Savannah River National Laboratory (SRNL) evaluated methods to mix and blend the contents of the blend tanks to ensure the contents are properly blended before they are transferred from the blend tank such as Tank 21 and Tank 24 to the Salt Waste Processing Facility (SWPF) feed tank. The tank contents consist of three forms: dissolved salt solution, other waste salt solutions, and sludge containing settled solids. This paper focuses on developing the computational model and estimating the operation time of submersible slurry pump when the tank contents are adequately blended prior to their transfer to the SWPF facility. A three-dimensional computational fluid dynamics approach was taken by using the full scale configuration of SRS Type-IV tank, Tank 21H. Major solid obstructions such as the tank wall boundary, the transfer pump column, and three slurry pump housings including one active and two inactive pumps were included in the mixing performance model. Basic flow pattern results predicted by the computational model were benchmarked against the SRNL test results and literature data. Tank 21 is a waste tank that is used to prepare batches of salt feed for SWPF. The salt feed must be a homogeneous solution satisfying the acceptance criterion of the solids entrainment during transfer operation. The work scope described here consists of two modeling areas. They are the steady state flow pattern calculations before the addition of acid solution for tank blending operation and the transient mixing analysis during miscible liquid blending operation. The transient blending calculations were performed by using the 95% homogeneity criterion for the entire liquid domain of the tank. The initial conditions for the entire modeling domain were based on the steady-state flow pattern results with zero second phase concentration. The performance model was also benchmarked against the SRNL test results and literature data.

  3. PRELIMINARY EVALUATION OF DWPF IMPACTS OF BORIC ACID USE IN CESIUM STRIP FOR SWPF AND MCU

    SciTech Connect

    Stone, M.

    2010-09-28

    A new solvent system is being evaluated for use in the Modular Caustic-Side Solvent Extraction Unit (MCU) and in the Salt Waste Processing Facility (SWPF). The new system includes the option to replace the current dilute nitric acid strip solution with boric acid. To support this effort, the impact of using 0.01M, 0.1M, 0.25M and 0.5M boric acid in place of 0.001M nitric acid was evaluated for impacts on the DWPF facility. The evaluation only covered the impacts of boric acid in the strip effluent and does not address the other changes in solvents (i.e., the new extractant, called MaxCalix, or the new suppressor, guanidine). Boric acid additions may lead to increased hydrogen generation during the SRAT and SME cycles as well as change the rheological properties of the feed. The boron in the strip effluent will impact glass composition and could require each SME batch to be trimmed with boric acid to account for any changes in the boron from strip effluent additions. Addition of boron with the strip effluent will require changes in the frit composition and could lead to changes in melt behavior. The severity of the impacts from the boric acid additions is dependent on the amount of boric acid added by the strip effluent. The use of 0.1M or higher concentrations of boric acid in the strip effluent was found to significantly impact DWPF operations while the impact of 0.01M boric acid is expected to be relatively minor. Experimental testing is required to resolve the issues identified during the preliminary evaluation. The issues to be addressed by the testing are: (1) Impact on SRAT acid addition and hydrogen generation; (2) Impact on melter feed rheology; (3) Impact on glass composition control; (4) Impact on frit production; and (5) Impact on melter offgas. A new solvent system is being evaluated for use in the Modular Caustic-Side Solvent Extraction Unit (MCU) and in the Salt Waste Processing Facility (SWPF). The new system includes the option to replace the

  4. IMPACT OF THE SMALL COLUMN ION EXCHANGE PROCESS ON THE DEFENSE WASTE PROCESSING FACILITY - 12112

    SciTech Connect

    Koopman, D.; Lambert, D.; Fox, K.; Stone, M.

    2011-11-07

    The Savannah River Site (SRS) is investigating the deployment of a parallel technology to the Salt Waste Processing Facility (SWPF, presently under construction) to accelerate high activity salt waste processing. The proposed technology combines large waste tank strikes of monosodium titanate (MST) to sorb strontium and actinides with two ion exchange columns packed with crystalline silicotitanate (CST) resin to sorb cesium. The new process was designated Small Column Ion Exchange (SCIX), since the ion exchange columns were sized to fit within a waste storage tank riser. Loaded resins are to be combined with high activity sludge waste and fed to the Defense Waste Processing Facility (DWPF) for incorporation into the current glass waste form. Decontaminated salt solution produced by SCIX will be fed to the SRS Saltstone Facility for on-site immobilization as a grout waste form. Determining the potential impact of SCIX resins on DWPF processing was the basis for this study. Accelerated salt waste treatment is projected to produce a significant savings in the overall life cycle cost of waste treatment at SRS.

  5. Spacelab Data Processing Facility

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The Spacelab Data Processing Facility (SDPF) processes, monitors, and accounts for the payload data from Spacelab and other Shuttle missions and forwards relevant data to various user facilities worldwide. The SLDPF is divided into the Spacelab Input Processing System (SIPS) and the Spacelab Output Processing System (SOPS). The SIPS division demultiplexes, synchronizes, time tags, quality checks, accounts for the data, and formats the data onto tapes. The SOPS division further edits, blocks, formats, and records the data on tape for shipment to users. User experiments must conform to the Spacelab's onboard High Rate Multiplexer (HRM) format for maximum process ability. Audio, analog, instrumentation, high density, experiment data, input/output data, quality control and accounting, and experimental channel tapes along with a variety of spacelab ancillary tapes are provided to the user by SLDPF.

  6. Book Processing Facility Design.

    ERIC Educational Resources Information Center

    Sheahan (Drake)-Stewart Dougall, Marketing and Physical Distribution Consultants, New York, NY.

    The Association of New York Libraries for Technical Services (ANYLTS) is established to develop and run a centralized book processing facility for the public library systems in New York State. ANYLTS plans to receive book orders from the 22 library systems, transmit orders to publishers, receive the volumes from the publishers, print and attach…

  7. Defense Waste Processing Facility

    SciTech Connect

    Haselow, J.S.; Wilhite, E.L.; Stieve, A.L.

    1990-05-01

    The information contained in this report is intended to supplement the original Environmental Impact Statement (EIS) for the Defense Waste Processing Facility (DWPF). Since the original EIS in 1982, alterations have been made to he conceptual process that reduce the impact to the groundwater. This reduced impact is documented in this report along with an update of the understanding of seismology and geology of the Savannah River Site. 6 refs., 2 figs., 2 tabs.

  8. Studsvik Processing Facility Update

    SciTech Connect

    Mason, J. B.; Oliver, T. W.; Hill, G. M.; Davin, P. F.; Ping, M. R.

    2003-02-25

    Studsvik has completed over four years of operation at its Erwin, TN facility. During this time period Studsvik processed over 3.3 million pounds (1.5 million kgs) of radioactive ion exchange bead resin, powdered filter media, and activated carbon, which comprised a cumulative total activity of 18,852.5 Ci (6.98E+08 MBq). To date, the highest radiation level for an incoming resin container has been 395 R/hr (3.95 Sv/h). The Studsvik Processing Facility (SPF) has the capability to safely and efficiently receive and process a wide variety of solid and liquid Low Level Radioactive Waste (LLRW) streams including: Ion Exchange Resins (IER), activated carbon (charcoal), graphite, oils, solvents, and cleaning solutions with contact radiation levels of up to 400 R/hr (4.0 Sv/h). The licensed and heavily shielded SPF can receive and process liquid and solid LLRWs with high water and/or organic content. This paper provides an overview of the last four years of commercial operations processing radioactive LLRW from commercial nuclear power plants. Process improvements and lessons learned will be discussed.

  9. Advanced Polymer Processing Facility

    SciTech Connect

    Muenchausen, Ross E.

    2012-07-25

    Some conclusions of this presentation are: (1) Radiation-assisted nanotechnology applications will continue to grow; (2) The APPF will provide a unique focus for radiolytic processing of nanomaterials in support of DOE-DP, other DOE and advanced manufacturing initiatives; (3) {gamma}, X-ray, e-beam and ion beam processing will increasingly be applied for 'green' manufacturing of nanomaterials and nanocomposites; and (4) Biomedical science and engineering may ultimately be the biggest application area for radiation-assisted nanotechnology development.

  10. RESULTS OF THE EXTRACTION-SCRUB-STRIP TESTING USING AN IMPROVED SOLVENT FORMULATION AND SALT WASTE PROCESSING FACILITY SIMULATED WASTE

    SciTech Connect

    Peters, T.; Washington, A.; Fink, S.

    2012-01-09

    The Office of Waste Processing, within the Office of Technology Innovation and Development, is funding the development of an enhanced solvent - also known as the next generation solvent (NGS) - for deployment at the Savannah River Site to remove cesium from High Level Waste. The technical effort is a collaborative effort between Oak Ridge National Laboratory (ORNL) and Savannah River National Laboratory (SRNL). As part of the program, the Savannah River National Laboratory (SRNL) has performed a number of Extraction-Scrub-Strip (ESS) tests. These batch contact tests serve as first indicators of the cesium mass transfer solvent performance with actual or simulated waste. The test detailed in this report used simulated Tank 49H material, with the addition of extra potassium. The potassium was added at 1677 mg/L, the maximum projected (i.e., a worst case feed scenario) value for the Salt Waste Processing Facility (SWPF). The results of the test gave favorable results given that the potassium concentration was elevated (1677 mg/L compared to the current 513 mg/L). The cesium distribution value, DCs, for extraction was 57.1. As a comparison, a typical D{sub Cs} in an ESS test, using the baseline solvent formulation and the typical waste feed, is {approx}15. The Modular Caustic Side Solvent Extraction Unit (MCU) uses the Caustic-Side Solvent Extraction (CSSX) process to remove cesium (Cs) from alkaline waste. This process involves the use of an organic extractant, BoBCalixC6, in an organic matrix to selectively remove cesium from the caustic waste. The organic solvent mixture flows counter-current to the caustic aqueous waste stream within centrifugal contactors. After extracting the cesium, the loaded solvent is stripped of cesium by contact with dilute nitric acid and the cesium concentrate is transferred to the Defense Waste Processing Facility (DWPF), while the organic solvent is cleaned and recycled for further use. The Salt Waste Processing Facility (SWPF), under

  11. PAPER STUDY EVALUATIONS OF THE INTRODUCTION OF SMALL COLUMN ION EXCHANGE WASTE STREAMS TO THE DEFENSE WASTE PROCESSING FACILITY

    SciTech Connect

    Fox, K.; Edwards, T.; Stone, M.; Koopman, D.

    2010-06-29

    The objective of this paper study is to provide guidance on the impact of Monosodium Titanate (MST) and Crystalline Silicotitanate (CST) streams from the Small Column Ion Exchange (SCIX) process on the Defense Waste Processing Facility (DWPF) flowsheet and glass waste form. A series of waste processing scenarios was evaluated, including projected compositions of Sludge Batches 8 through 17 (SB8 through SB17), MST additions, CST additions to Tank 40 or to a sludge batch preparation tank (Tank 42 or Tank 51, referred to generically as Tank 51 in this report), streams from the Salt Waste Processing Facility (SWPF), and two canister production rates. A wide array of potential glass frit compositions was used to support this assessment. The sludge and frit combinations were evaluated using the predictive models in the current DWPF Product Composition Control System (PCCS). The results were evaluated based on the number of frit compositions available for a particular sludge composition scenario. A large number of candidate frit compositions (e.g., several dozen to several hundred) is typically a good indicator of a sludge composition for which there is flexibility in forming an acceptable waste glass and meeting canister production rate commitments. The MST and CST streams will significantly increase the concentrations of certain components in glass, such as Nb{sub 2}O{sub 5}, TiO{sub 2}, and ZrO{sub 2}, to levels much higher than have been previously processed at DWPF. Therefore, several important assumptions, described in detail in the report, had to be made in performing the evaluations. The results of the paper studies, which must be applied carefully given the assumptions made concerning the impact of higher Ti, Zr, and Nb concentrations on model validity, provided several observations: (1) There was difficulty in identifying a reasonable number of candidate frits (and in some cases an inability to identify any candidate frits) when a waste loading of 40% is

  12. Conceptual Design of a Simplified Skid-Mounted Caustic-Side Solvent Extraction Process for Removal of Cesium from Savannah Rive Site High-Level Waste

    SciTech Connect

    Birdwell, JR.J.F.

    2004-05-12

    This report presents the results of a conceptual design of a solvent extraction process for the selective removal of {sup 137}Cs from high-level radioactive waste currently stored in underground tanks at the U.S. Department of Energy's Savannah River Site (SRS). This study establishes the need for and feasibility of deploying a simplified version of the Caustic-Side Solvent Extraction (CSSX) process; cost/benefit ratios ranging from 33 to 55 strongly support the considered deployment. Based on projected compositions, 18 million gallons of dissolved salt cake waste has been identified as having {sup 137}Cs concentrations that are substantially lower than the worst-case design basis for the CSSX system that is to be deployed as part of the Salt Waste Processing Facility (SWPF) but that does not meet the waste acceptance criteria for immobilization as grout in the Saltstone Manufacturing and Disposal Facility at SRS. Absent deployment of an alternative cesium removal process, this material will require treatment in the SWPF CSSX system, even though the cesium decontamination factor required is far less than that provided by that system. A conceptual design of a CSSX processing system designed for rapid deployment and having reduced cesium decontamination factor capability has been performed. The proposed accelerated-deployment CSSX system (CSSX-A) has been designed to have a processing rate of 3 million gallons per year, assuming 90% availability. At a more conservative availability of 75% (reflecting the novelty of the process), the annual processing capacity is 2.5 million gallons. The primary component of the process is a 20-stage cascade of centrifugal solvent extraction contactors. The decontamination and concentration factors are 40 and 15, respectively. The solvent, scrub, strip, and wash solutions are to have the same compositions as those planned for the SWPF CSSX system. As in the SWPF CSSX system, the solvent and scrub flow rates are equal. The system is

  13. The Facilities Audit. A Process for Improving Facilities Conditions.

    ERIC Educational Resources Information Center

    Kaiser, Harvey H.

    The problems of deferred maintenance and decaying campus infrastructure have troubled higher education for the past two decades. This book, designed to be a tool for facilities managers, describes a process for inspecting and reporting conditions of buildings and infrastructure. The audit process is meant to be a routine part of maintenance…

  14. Springfield Processing Plant (SPP) Facility Information

    SciTech Connect

    Leach, Janice; Torres, Teresa M.

    2012-10-01

    The Springfield Processing Plant is a hypothetical facility. It has been constructed for use in training workshops. Information is provided about the facility and its surroundings, particularly security-related aspects such as target identification, threat data, entry control, and response force data.

  15. SRS Process Facility Significance Fire Frequency

    SciTech Connect

    Sarrack, A.G.

    1995-10-01

    This report documents the method and assumptions of a study performed to determine a site generic process facility significant fire initiator frequency and explains the proper way this value should be used.

  16. SALTSTONE PROCESSING FACILITY TRANSFER SAMPLE

    SciTech Connect

    Cozzi, A.; Reigel, M.

    2010-08-04

    On May 19, 2010, the Saltstone Production Facility inadvertently transferred 1800 gallons of untreated waste from the salt feed tank to Vault 4. During shut down, approximately 70 gallons of the material was left in the Saltstone hopper. A sample of the slurry in the hopper was sent to Savannah River National Laboratory (SRNL) to analyze the density, pH and the eight Resource Conservation and Recovery Act (RCRA) metals. The sample was hazardous for chromium, mercury and pH. The sample received from the Saltstone hopper was analyzed visually while obtaining sample aliquots and while the sample was allowed to settle. It was observed that the sample contains solids that settle in approximately 20 minutes (Figure 3-1). There is a floating layer on top of the supernate during settling and disperses when the sample is agitated (Figure 3-2). The untreated waste inadvertently transferred from the SFT to Vault 4 was toxic for chromium and mercury. In addition, the pH of the sample is at the regulatory limit. Visually inspecting the sample indicates solids present in the sample.

  17. Fabrication of Separator Demonstration Facility process vessel

    SciTech Connect

    Oberst, E.F.

    1985-01-15

    The process vessel system is the central element in the Separator Development Facility (SDF). It houses the two major process components, i.e., the laser-beam folding optics and the separators pods. This major subsystem is the critical-path procurement for the SDF project. Details of the vaious parts of the process vessel are given.

  18. Skylab materials processing facility experiment developer's report

    NASA Technical Reports Server (NTRS)

    Parks, P. G.

    1975-01-01

    The development of the Skylab M512 Materials Processing Facility is traced from the design of a portable, self-contained electron beam welding system for terrestrial applications to the highly complex experiment system ultimately developed for three Skylab missions. The M512 experiment facility was designed to support six in-space experiments intended to explore the advantages of manufacturing materials in the near-zero-gravity environment of Earth orbit. Detailed descriptions of the M512 facility and related experiment hardware are provided, with discussions of hardware verification and man-machine interfaces included. An analysis of the operation of the facility and experiments during the three Skylab missions is presented, including discussions of the hardware performance, anomalies, and data returned to earth.

  19. The Medina County, Ohio, central processing facility

    SciTech Connect

    White, K.M.

    1994-08-01

    Before deciding on the appropriate county recycling facility for their communities, waste management officials from Medina County, Ohio, spent three years researching their options. First and foremost, they wanted to generate a recycling amount that would at least double House Bill 592's requirements which calls for a 25% reduction in reliance on landfill space. After issuing a request for proposals, the county opted for a central processing facility (CPF)--which was designed, built, and is now operated by Norton Environmental (Independence, Ohio). Currently, the CPF extracts and processes recyclables, materials for refuse-derived fuel (RDF), and compostables from a mixed solid waste stream. After operating for just over one year, the facility, which is located in Seville, Ohio, is well on its way to achieving its goal of recovering two-thirds of the county's incoming mixed solid waste stream, and waste management officials there couldn't be happier with their selection.

  20. Materials evaluation for a transuranic processing facility

    SciTech Connect

    Barker, S.A., Schwenk, E.B. ); Divine, J.R. )

    1990-11-01

    The Westinghouse Hanford Company, with the assistance of the Pacific Northwest Laboratory, is developing a transuranium extraction process for preheating double-shell tank wastes at the Hanford Site to reduce the volume of transuranic waste being sent to a repository. The bench- scale transuranium extraction process development is reaching a stage where a pilot plant design has begun for the construction of a facility in the existing B Plant. Because of the potential corrosivity of neutralized cladding removal waste process streams, existing embedded piping alloys in B Plant are being evaluated and new'' alloys are being selected for the full-scale plant screening corrosion tests. Once the waste is acidified with HNO{sub 3}, some of the process streams that are high in F{sup {minus}} and low in Al and zr can produce corrosion rates exceeding 30,000 mil/yr in austenitic alloys. Initial results results are reported concerning the applicability of existing plant materials to withstand expected process solutions and conditions to help determine the feasibility of locating the plant at the selected facility. In addition, process changes are presented that should make the process solutions less corrosive to the existing materials. Experimental work confirms that Hastelloy B is unsatisfactory for the expected process solutions; type 304L, 347 and 309S stainless steels are satisfactory for service at room temperature and 60{degrees}C, if process stream complexing is performed. Inconel 625 was satisfactory for all solutions. 17 refs., 5 figs., 8 tabs.

  1. Node 2 In Space Station Processing Facility

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The U.S. Node 2 awaits launch in the Space Station Processing Facility at the Kennedy Space Center (KSC) since its arrival on June 1, 2003. Node 2, the 'utility hub' and second of three connectors between International Space Station (ISS) modules, was built in the Torino, Italy facility of Alenia Spazio, an International contractor based in Rome. Alenia built Node 2 as part of an agreement between NASA and the European Space Agency (ESA). Weighing in at approximately 30,000 pounds, the Node is more than 20-feet long and 14.5-feet wide. This centerpiece of the ISS will be the next pressurized module installed on the Station and will result in a roomier Station, allowing it to expand from the equivalent space of a 3-bedroom house to a 5-bedroom house once the Japanese and European laboratories are attached to it. The Marshall Space Center in Huntsville, Alabama manages the Node program for NASA.

  2. A Central Processing Facility within a Distributed Data Processing System

    NASA Astrophysics Data System (ADS)

    de Witte, S.; Rispens, S. M.; van Hees, R. M.

    2009-04-01

    In a complex scientific data processing project, where raw satellite data (Level 1) is processed to end products (Level 2), you may need specific expertise from various groups in different locations. Collaboration between these groups can lead to better results and give the opportunity to try several different scientific approaches and choose, objectively, the best result. Furthermore, such a distributed data processing system or DDPS can be used for independent validation before the end products are released. All participating groups need common and specific data products for their processing. This involves many interfaces needing and producing different data products. Without a central storage location all groups involved have to implement their own checking routines and transformations in order to use the data products. A central processing facility, acting as a single point of interface between the DDPS and the main data provider as well as for all groups within the DDPS, can facilitate in collecting all scientific data necessary for high-level processing, transforming the Level 1 input data to a DDPS internally agreed format, checking all data products on integrity, format and validity, distributing these data products within the DDPS, monitoring the whole data distribution chain and distributing all end products to the main data provider. A DDPS has been implemented for ESA's gravity mission, GOCE (Gravity field and steady-state Ocean Circulation Explorer). GOCE's DDPS is called the High-level Processing Facility (HPF) and is part of the GOCE Ground Segment, developed under ESA contract by the European GOCE Gravity consortium (EGG-c). The HPF is set up as a distributed facility consisting of several sub-processing centers for scientific pre-processing, orbit determination, gravity field analysis and validation. The sub-processing facilities are connected through a central node, the Central Processing Facility (CPF). The CPF has been thoroughly tested and is

  3. Process auditing in long term care facilities.

    PubMed

    Hewitt, S M; LeSage, J; Roberts, K L; Ellor, J R

    1985-01-01

    The ECC tool development and audit experiences indicated that there is promise in developing a process audit tool to monitor quality of care in nursing homes; moreover, the tool selected required only one hour per resident. Focusing on the care process and resident needs provided useful information for care providers at the unit level as well as for administrative personnel. Besides incorporating a more interdisciplinary focus, the revised tool needs to define support services most appropriate for nursing homes, includes items related to discharge planning and increases measurement of significant others' involvement in the care process. Future emphasis at the ECC will focus on developing intervention plans to maintain strengths and correct deficiencies identified in the audits. Various strategies to bring about desired changes in the quality of care will be evaluated through regular, periodic monitoring. Having a valid and reliable measure of quality of care as a tool will be an important step forward for LTC facilities. PMID:3919355

  4. Facilities for pyrochemical process studies at ENEA

    SciTech Connect

    De Angelis, G.; Fedeli, C.; Tiranti, G.; Baicchi, E.

    2013-07-01

    Some facilities have successfully been installed at ENEA laboratories for pyrochemical process studies under inactive conditions. PYREL III, MECRYP and OGATA plants allow to perform experiments about electrorefining and electroreduction of simulated fuel, melt crystallization of lithium chloride containing impurities from electroreduction campaigns, and trapping of volatile and semi-volatile fission products. Moreover, an argon-atmosphere glove-box is used for conditioning of chloride salt wastes with sodalite or SAP (SiO{sub 2}-Al{sub 2}O{sub 3}-P{sub 2}O{sub 5}) matrix.

  5. 10 CFR 70.64 - Requirements for new facilities or new processes at existing facilities.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...., those housing or adjacent to the new process); however, all facilities and processes must comply with... single element of the design, construction, maintenance, or operation of the facility. The net effect...

  6. 10 CFR 95.17 - Processing facility clearance.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... concerning the foreign intelligence threat, risk of unauthorized technology transfer, type and sensitivity of... SECURITY INFORMATION AND RESTRICTED DATA Physical Security § 95.17 Processing facility clearance. (a... related classified information, or process the facility for a facility clearance. Processing will...

  7. 10 CFR 95.17 - Processing facility clearance.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 2 2014-01-01 2014-01-01 false Processing facility clearance. 95.17 Section 95.17 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) FACILITY SECURITY CLEARANCE AND SAFEGUARDING OF NATIONAL SECURITY INFORMATION AND RESTRICTED DATA Physical Security § 95.17 Processing facility clearance. (a) Following the receipt of an acceptable...

  8. 10 CFR 95.17 - Processing facility clearance.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... NUCLEAR REGULATORY COMMISSION (CONTINUED) FACILITY SECURITY CLEARANCE AND SAFEGUARDING OF NATIONAL SECURITY INFORMATION AND RESTRICTED DATA Physical Security § 95.17 Processing facility clearance. (a... pertinent laws, and the nature of international security and information exchange agreements. The...

  9. A graded approach to safety documentation at processing facilities

    SciTech Connect

    Cowen, M.L.

    1992-09-01

    Westinghouse Savannah River Company (WSRC) has over 40 major Safety Analysis Reports (SARs) in preparation for non-reactor facilities. These facilities include nuclear material production facilities, waste management facilities, support laboratories and environmental remediation facilities. The SARs for these various projects encompass hazard levels from High to Low, and mission times from startup, through operation, to shutdown. All of these efforts are competing for scarce resources, and therefore some mechanism is required for balancing the documentation requirements. Three of the key variables useful for the decision making process are Depth of Safety Analysis, Urgency of Safety Analysis, and Resource Availability. This report discusses safety documentation at processing facilities.

  10. Pinellas Plant facts. [Products, processes, laboratory facilities

    SciTech Connect

    Not Available

    1986-09-01

    This plant was built in 1956 in response to a need for the manufacture of neutron generators, a principal component in nuclear weapons. The neutron generators consist of a miniaturized linear ion accelerator assembled with the pulsed electrical power supplies required for its operation. The ion accelerator, or neutron tube, requires ultra clean, high vacuum technology: hermetic seals between glass, ceramic, glass-ceramic, and metal materials: plus high voltage generation and measurement technology. The existence of these capabilities at the Pinellas Plant has led directly to the assignment of the lightning arrester connector, specialty capacitor, vacuum switch, and crystal resonator. Active and reserve batteries and the radioisotopically-powered thermoelectric generator draw on the materials measurement and controls technologies which are required to ensure neutron generator life. A product development and production capability in alumina ceramics, cermet (electrical) feedthroughs, and glass ceramics has become a specialty of the plant; the laboratories monitor the materials and processes used by the plant's commercial suppliers of ferroelectric ceramics. In addition to the manufacturing facility, a production development capability is maintained at the Pinellas Plant.

  11. Defense Waste Processing Facility canister impact testing

    SciTech Connect

    Olson, K.M.; Alzheimer, J.M.

    1989-09-01

    This report summarizes impact testing of seven Defense Waste Processing Facility (DWPF) high level waste canisters during FY 1988. Impact testing was conducted to demonstrate compliance of DWPF canisters with the drop test specification of the Waste Acceptance Preliminary Specification. The prototypical stainless steel canisters were filled with simulated waste to about 85% capacity at Savannah River Laboratory (SRL). They were received from SRL in April 1988. Each canister was approximately 300 cm (9 ft 10 in.) long, and 61 cm (2 ft) in diameter, and weighed about 2150 kg (4740 lb). Each canister was dropped twice from a height of 7 m (23 ft). The first drop was a vertical bottom impact where the bottom of the canister was oriented parallel to the impact pad. The second was a center-of-gravity-over-the-corner top impact. Procedures used to examine the canisters were the application and analysis of strain circles, helium leak testing, dye penetrant examination, and canister dimensional measurements. 39 refs., 39 figs., 11 tabs.

  12. 10 CFR 70.64 - Requirements for new facilities or new processes at existing facilities.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Critical Mass of Special Nuclear Material § 70.64 Requirements for new facilities or new processes at existing facilities. (a) Baseline design criteria. Each prospective applicant or licensee shall address the following baseline design criteria in the design of new facilities. Each existing licensee shall address...

  13. 10 CFR 95.17 - Processing facility clearance.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... clearances (PCLs); and (4) Appointing a U.S. citizen employee as the facility security officer. (b) An... NUCLEAR REGULATORY COMMISSION (CONTINUED) FACILITY SECURITY CLEARANCE AND SAFEGUARDING OF NATIONAL SECURITY INFORMATION AND RESTRICTED DATA Physical Security § 95.17 Processing facility clearance....

  14. 15 CFR 923.13 - Energy facility planning process.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 15 Commerce and Foreign Trade 3 2014-01-01 2014-01-01 false Energy facility planning process. 923... RESOURCE MANAGEMENT COASTAL ZONE MANAGEMENT PROGRAM REGULATIONS Uses Subject to Management § 923.13 Energy facility planning process. The management program must contain a planning process for energy...

  15. 15 CFR 923.13 - Energy facility planning process.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 15 Commerce and Foreign Trade 3 2013-01-01 2013-01-01 false Energy facility planning process. 923... RESOURCE MANAGEMENT COASTAL ZONE MANAGEMENT PROGRAM REGULATIONS Uses Subject to Management § 923.13 Energy facility planning process. The management program must contain a planning process for energy...

  16. 15 CFR 923.13 - Energy facility planning process.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 15 Commerce and Foreign Trade 3 2012-01-01 2012-01-01 false Energy facility planning process. 923... RESOURCE MANAGEMENT COASTAL ZONE MANAGEMENT PROGRAM REGULATIONS Uses Subject to Management § 923.13 Energy facility planning process. The management program must contain a planning process for energy...

  17. 15 CFR 923.13 - Energy facility planning process.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 15 Commerce and Foreign Trade 3 2011-01-01 2011-01-01 false Energy facility planning process. 923... RESOURCE MANAGEMENT COASTAL ZONE MANAGEMENT PROGRAM REGULATIONS Uses Subject to Management § 923.13 Energy facility planning process. The management program must contain a planning process for energy...

  18. 15 CFR 923.13 - Energy facility planning process.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 15 Commerce and Foreign Trade 3 2010-01-01 2010-01-01 false Energy facility planning process. 923... RESOURCE MANAGEMENT COASTAL ZONE MANAGEMENT PROGRAM REGULATIONS Uses Subject to Management § 923.13 Energy facility planning process. The management program must contain a planning process for energy...

  19. 10 CFR 70.72 - Facility changes and change process.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 2 2012-01-01 2012-01-01 false Facility changes and change process. 70.72 Section 70.72... Material § 70.72 Facility changes and change process. (a) The licensee shall establish a configuration management system to evaluate, implement, and track each change to the site, structures, processes,...

  20. Safeguards Approaches for Black Box Processes or Facilities

    SciTech Connect

    Diaz-Marcano, Helly; Gitau, Ernest TN; Hockert, John; Miller, Erin; Wylie, Joann

    2013-09-25

    The objective of this study is to determine whether a safeguards approach can be developed for “black box” processes or facilities. These are facilities where a State or operator may limit IAEA access to specific processes or portions of a facility; in other cases, the IAEA may be prohibited access to the entire facility. The determination of whether a black box process or facility is safeguardable is dependent upon the details of the process type, design, and layout; the specific limitations on inspector access; and the restrictions placed upon the design information that can be provided to the IAEA. This analysis identified the necessary conditions for safeguardability of black box processes and facilities.

  1. Northwestern University Facility for Clean Catalytic Process Research

    SciTech Connect

    Marks, Tobin Jay

    2013-05-08

    Northwestern University with DOE support created a Facility for Clean Catalytic Process Research. This facility is designed to further strengthen our already strong catalysis research capabilities and thus to address these National challenges. Thus, state-of-the art instrumentation and experimentation facility was commissioned to add far greater breadth, depth, and throughput to our ability to invent, test, and understand catalysts and catalytic processes, hence to improve them via knowledge-based design and evaluation approaches.

  2. Managing the Rural School Facility Construction Process.

    ERIC Educational Resources Information Center

    Passarelli, Angelo; Goehring, Wade; Harley, Anne

    The decision to renovate or replace a school building is the starting point for a long and challenging journey with many phases: planning, development, and project delivery and construction. Each phase requires different levels of expertise, skills, and activities. The challenge of a rural facility project is to find leadership to provide guidance…

  3. 40 CFR 52.279 - Food processing facilities.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS California § 52.279 Food processing facilities. (a) The following regulations are disapproved because they conflict with the requirements of 40 CFR... 40 Protection of Environment 3 2010-07-01 2010-07-01 false Food processing facilities....

  4. 10 CFR 1016.9 - Processing security facility approval.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 4 2011-01-01 2011-01-01 false Processing security facility approval. 1016.9 Section 1016.9 Energy DEPARTMENT OF ENERGY (GENERAL PROVISIONS) SAFEGUARDING OF RESTRICTED DATA Physical Security § 1016.9 Processing security facility approval. The following receipt of an acceptable request...

  5. 10 CFR 1016.9 - Processing security facility approval.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 4 2013-01-01 2013-01-01 false Processing security facility approval. 1016.9 Section 1016.9 Energy DEPARTMENT OF ENERGY (GENERAL PROVISIONS) SAFEGUARDING OF RESTRICTED DATA Physical Security § 1016.9 Processing security facility approval. The following receipt of an acceptable request...

  6. 10 CFR 1016.9 - Processing security facility approval.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 4 2014-01-01 2014-01-01 false Processing security facility approval. 1016.9 Section 1016.9 Energy DEPARTMENT OF ENERGY (GENERAL PROVISIONS) SAFEGUARDING OF RESTRICTED DATA Physical Security § 1016.9 Processing security facility approval. The following receipt of an acceptable request...

  7. 10 CFR 1016.9 - Processing security facility approval.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 4 2012-01-01 2012-01-01 false Processing security facility approval. 1016.9 Section 1016.9 Energy DEPARTMENT OF ENERGY (GENERAL PROVISIONS) SAFEGUARDING OF RESTRICTED DATA Physical Security § 1016.9 Processing security facility approval. The following receipt of an acceptable request...

  8. 40 CFR 52.279 - Food processing facilities.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS California § 52.279 Food processing facilities. (a) The following regulations are disapproved because they conflict with the requirements of 40 CFR... 40 Protection of Environment 3 2012-07-01 2012-07-01 false Food processing facilities....

  9. 40 CFR 52.279 - Food processing facilities.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS California § 52.279 Food processing facilities. (a) The following regulations are disapproved because they conflict with the requirements of 40 CFR... 40 Protection of Environment 3 2011-07-01 2011-07-01 false Food processing facilities....

  10. 40 CFR 52.279 - Food processing facilities.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS California § 52.279 Food processing facilities. (a) The following regulations are disapproved because they conflict with the requirements of 40 CFR... 40 Protection of Environment 3 2013-07-01 2013-07-01 false Food processing facilities....

  11. 40 CFR 52.279 - Food processing facilities.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS California § 52.279 Food processing facilities. (a) The following regulations are disapproved because they conflict with the requirements of 40 CFR... 40 Protection of Environment 3 2014-07-01 2014-07-01 false Food processing facilities....

  12. 10 CFR 70.72 - Facility changes and change process.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Facility changes and change process. 70.72 Section 70.72... Material § 70.72 Facility changes and change process. (a) The licensee shall establish a configuration...) The technical basis for the change; (2) Impact of the change on safety and health or control...

  13. 47 CFR 3.42 - Location of processing facility.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 1 2012-10-01 2012-10-01 false Location of processing facility. 3.42 Section 3.42 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL AUTHORIZATION AND ADMINISTRATION OF... Location of processing facility. Settlement of maritime mobile and maritime mobile-satellite...

  14. 77 FR 823 - Guidance for Fuel Cycle Facility Change Processes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-06

    ... Information DG-3037 was published in the Federal Register on July 14, 2011 (76 FR 41527). The public comment... COMMISSION Guidance for Fuel Cycle Facility Change Processes AGENCY: Nuclear Regulatory Commission. ACTION... issuing a new regulatory guide (RG) 3.74, ``Guidance for Fuel Cycle Facility Change Processes.''...

  15. 10 CFR 1016.9 - Processing security facility approval.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Processing security facility approval. 1016.9 Section 1016... § 1016.9 Processing security facility approval. The following receipt of an acceptable request for... granted pursuant to § 1016.6 of this part....

  16. Automation in a material processing/storage facility

    SciTech Connect

    Peterson, K.; Gordon, J.

    1997-05-01

    The Savannah River Site (SRS) is currently developing a new facility, the Actinide Packaging and Storage Facility (APSF), to process and store legacy materials from the United States nuclear stockpile. A variety of materials, with a variety of properties, packaging and handling/storage requirements, will be processed and stored at the facility. Since these materials are hazardous and radioactive, automation will be used to minimize worker exposure. Other benefits derived from automation of the facility include increased throughput capacity and enhanced security. The diversity of materials and packaging geometries to be handled poses challenges to the automation of facility processes. In addition, the nature of the materials to be processed underscores the need for safety, reliability and serviceability. The application of automation in this facility must, therefore, be accomplished in a rational and disciplined manner to satisfy the strict operational requirements of the facility. Among the functions to be automated are the transport of containers between process and storage areas via an Automatic Guided Vehicle (AGV), and various processes in the Shipping Package Unpackaging (SPU) area, the Accountability Measurements (AM) area, the Special Isotope Storage (SIS) vault and the Special Nuclear Materials (SNM) vault. Other areas of the facility are also being automated, but are outside the scope of this paper.

  17. Saltstone studies using the scaled continuous processing facility

    SciTech Connect

    Fowley, M. D.; Cozzi, A. D.; Hansen, E. K.

    2015-08-01

    The Savannah River National Laboratory (SRNL) has supported the Saltstone Facility since its conception with bench-scale laboratory experiments, mid-scale testing at vendor facilities, and consultations and testing at the Saltstone Facility. There have been minimal opportunities for the measurement of rheological properties of the grout slurry at the Saltstone Production Facility (SPF); thus, the Scaled Continuous Processing Facility (SCPF), constructed to provide processing data related to mixing, transfer, and other operations conducted in the SPF, is the most representative process data for determining the expected rheological properties in the SPF. These results can be used to verify the laboratory scale experiments that support the SPF using conventional mixing processes that appropriately represent the shear imparted to the slurry in the SPF.

  18. Integration Process for Payloads in the Fluids and Combustion Facility

    NASA Technical Reports Server (NTRS)

    Free, James M.; Nall, Marsha M.

    2001-01-01

    The Fluids and Combustion Facility (FCF) is an ISS research facility located in the United States Laboratory (US Lab), Destiny. The FCF is a multi-discipline facility that performs microgravity research primarily in fluids physics science and combustion science. This facility remains on-orbit and provides accommodations to multi-user and Principal investigator (PI) unique hardware. The FCF is designed to accommodate 15 PI's per year. In order to allow for this number of payloads per year, the FCF has developed an end-to-end analytical and physical integration process. The process includes provision of integration tools, products and interface management throughout the life of the payload. The payload is provided with a single point of contact from the facility and works with that interface from PI selection through post flight processing. The process utilizes electronic tools for creation of interface documents/agreements, storage of payload data and rollup for facility submittals to ISS. Additionally, the process provides integration to and testing with flight-like simulators prior to payload delivery to KSC. These simulators allow the payload to test in the flight configuration and perform final facility interface and science verifications. The process also provides for support to the payload from the FCF through the Payload Safety Review Panel (PSRP). Finally, the process includes support in the development of operational products and the operation of the payload on-orbit.

  19. TEMPUS: A facility for containerless electromagnetic processing onboard spacelab

    NASA Technical Reports Server (NTRS)

    Lenski, H.; Willnecker, R.

    1990-01-01

    The electromagnetic containerless processing facility TEMPUS was recently assigned for a flight on the IML-2 mission. In comparison to the TEMPUS facility already flown on a sounding rocket, several improvements had to be implemented. These are in particular related to: safety; resource management; and the possibility to process different samples with different requirements in one mission. The basic design of this facility as well as the expected processing capabilities are presented. Two operational aspects turned out to strongly influence the facility design: control of the sample motion (first experimental results indicate that crew or ground interaction will be necessary to minimize residual sample motions during processing); and exchange of RF-coils (during processing in vacuum, evaporated sample materials will condense at the cold surface and may force a coil exchange, when a critical thickness is exceeded).

  20. Insect pest management decisions in food processing facilities

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pest management decision making in food processing facilities such as flour mills, rice mills, human and pet food manufacturing facilities, distribution centers and warehouses, and retail stores is a challenging undertaking. Insect pest management programs require an understanding of the food facili...

  1. Assessment of facilities management process capability: a NHS facilities case study.

    PubMed

    Amaratunga, Dilanthi; Haigh, Richard; Sarshar, Marjan; Baldry, David

    2002-01-01

    Describes a process to assess facilities management (FM) process capabilities: the structured process improvement for construction environments--facilities management (SPICE FM) approach. The SPICE FM framework is a method that FM organizations can use to monitor continuously and subsequently improve their performance. The SPICE FM framework is being tested in a series of case studies to ensure that its outputs are appropriate to the FM sector and of value in the real world. Documents the outcomes of a study undertaken at a facilities directorate of a healthcare NHS trust, in searching its applicability within the NHS. Further describes the study methodology and the key activities undertaken and reviews the key communication and management processes that are in place to support the implementation of the strategic FM objectives within the specific NHS facilities directorate. PMID:12500653

  2. Metals Processing Laboratory User Facility: Facilities capabilities; Interactive programs; Recent experience

    SciTech Connect

    Mackiewicz-Ludtka, G.; Raschke, R.A.

    1998-02-12

    MPLUS is a DOE designated User Facility providing extensive Technical Expertise and Specialized Facilities to assist Industrial and Academic Partners in becoming more Energy Efficient and enhancing US Competitiveness in the World market. MPLUS focusing on 7 major vision industries (aluminum, chemical, forest products, glass, metals castings, refineries, and steel) identified by DOE as being energy intensive, as well as cross-cutting industries such as welding and heat treating. MPLUS consists of four primary facilities: (1) Materials Processing, (2) Materials Joining, (3) Materials Characterization and Properties, and (4) Materials Process Modeling. Each facility provides rapid access to unique, state-of-the-art equipment, capabilities, and technical expertise necessary for solving materials processing issues that limit the development and implementation of emerging technologies. These capabilities include: (1) materials synthesis; (2) deformation processing; (3) materials characterization; (4) joining and mathematical modeling.

  3. Receipt of the Observatory at the Orbital Processing Facility

    NASA Video Gallery

    These series of photos show the receipt of the observatory at the Orbital processing facility at VAFB. The observatory was received on April 16, 2013 and transferred to its handling fixture and the...

  4. Spacelab Data Processing Facility (SLDPF) quality assurance expert systems development

    NASA Technical Reports Server (NTRS)

    Kelly, Angelita C.; Basile, Lisa; Ames, Troy; Watson, Janice; Dallam, William

    1987-01-01

    Spacelab Data Processing Facility (SLDPF) expert system prototypes were developed to assist in the quality assurance of Spacelab and/or Attached Shuttle Payload (ASP) processed telemetry data. The SLDPF functions include the capturing, quality monitoring, processing, accounting, and forwarding of mission data to various user facilities. Prototypes for the two SLDPF functional elements, the Spacelab Output Processing System and the Spacelab Input Processing Element, are described. The prototypes have produced beneficial results including an increase in analyst productivity, a decrease in the burden of tedious analyses, the consistent evaluation of data, and the providing of concise historical records.

  5. Spacelab Data Processing Facility (SLDPF) quality assurance expert systems development

    NASA Technical Reports Server (NTRS)

    Kelly, Angelita C.; Basile, Lisa; Ames, Troy; Watson, Janice; Dallam, William

    1987-01-01

    Spacelab Data Processing Facility (SLDPF) expert system prototypes have been developed to assist in the quality assurance of Spacelab and/or Attached Shuttle Payload (ASP) processed telemetry data. SLDPF functions include the capturing, quality monitoring, processing, accounting, and forwarding of mission data to various user facilities. Prototypes for the two SLDPF functional elements, the Spacelab Output Processing System and the Spacelab Input Processing Element, are described. The prototypes have produced beneficial results including an increase in analyst productivity, a decrease in the burden of tedious analyses, the consistent evaluation of data, and the providing of concise historical records.

  6. Design criteria for Waste Coolant Processing Facility and preliminary proposal 722 for Waste Coolant Processing Facility

    SciTech Connect

    Not Available

    1991-09-27

    This document contains the design criteria to be used by the architect-engineer (A-E) in the performance of Titles 1 and 2 design for the construction of a facility to treat the biodegradable, water soluble, waste machine coolant generated at the Y-12 plant. The purpose of this facility is to reduce the organic loading of coolants prior to final treatment at the proposed West Tank Farm Treatment Facility.

  7. Ninth Processing Campaign in the Waste Calcining Facility

    SciTech Connect

    Childs, K F; Donovan, R I; Swenson, M C

    1982-04-01

    This report discusses the Ninth (and final) Processing Campaign at the Waste Calcining Facility. Several processing interruptions were experienced during this campaign and the emphasis of this report is on process and equipment performance with operating problems and corrective actions discussed in detail.

  8. Opportunities for Process Monitoring Techniques at Delayed Access Facilities

    SciTech Connect

    Curtis, Michael M.; Gitau, Ernest TN; Johnson, Shirley J.; Schanfein, Mark; Toomey, Christopher

    2013-09-20

    Except for specific cases where the International Atomic Energy Agency (IAEA) maintains a continuous presence at a facility (such as the Japanese Rokkasho Reprocessing Plant), there is always a period of time or delay between the moment a State is notified or aware of an upcoming inspection, and the time the inspector actually enters the material balance area or facility. Termed by the authors as “delayed access,” this period of time between inspection notice and inspector entrance to a facility poses a concern. Delayed access also has the potential to reduce the effectiveness of measures applied as part of the Safeguards Approach for a facility (such as short-notice inspections). This report investigates the feasibility of using process monitoring to address safeguards challenges posed by delayed access at a subset of facility types.

  9. Defense waste processing facility radioactive operations. Part 1 - operating experience

    SciTech Connect

    Little, D.B.; Gee, J.T.; Barnes, W.M.

    1997-12-31

    The Savannah River Site`s Defense Waste Processing Facility (DWPF) near Aiken, SC is the nation`s first and the world`s largest vitrification facility. Following a ten year construction program and a 3 year non-radioactive test program, DWPF began radioactive operations in March 1996. This paper presents the results of the first 9 months of radioactive operations. Topics include: operations of the remote processing equipment reliability, and decontamination facilities for the remote processing equipment. Key equipment discussed includes process pumps, telerobotic manipulators, infrared camera, Holledge{trademark} level gauges and in-cell (remote) cranes. Information is presented regarding equipment at the conclusion of the DWPF test program it also discussed, with special emphasis on agitator blades and cooling/heating coil wear. 3 refs., 4 figs.

  10. Defense Waste Processing Facility -- Radioactive operations -- Part 3 -- Remote operations

    SciTech Connect

    Barnes, W.M.; Kerley, W.D.; Hughes, P.D.

    1997-06-01

    The Savannah River Site`s Defense Waste Processing Facility (DWPF) near Aiken, South Carolina is the nation`s first and world`s largest vitrification facility. Following a ten year construction period and nearly three years of non-radioactive testing, the DWPF began radioactive operations in March 1996. Radioactive glass is poured from the joule heated melter into the stainless steel canisters. The canisters are then temporarily sealed, decontaminated, resistance welded for final closure, and transported to an interim storage facility. All of these operations are conducted remotely with equipment specially designed for these processes. This paper reviews canister processing during the first nine months of radioactive operations at DWPF. The fundamental design consideration for DWPF remote canister processing and handling equipment are discussed as well as interim canister storage.

  11. Mock Nuclear Processing Facility-Safeguards Training Requirements

    SciTech Connect

    Gibbs, Philip; Hasty, Tim; Johns, Rissell; Baum, Gregory

    2014-08-31

    This document outlines specific training requirements in the topical areas of Material Control and Accounting (MC&A) and Physical Protection(PP) which are to be used as technical input for designing a mock Integrated Security Facility (ISF) at Sandia National Laboratories (SNL). The overall project objective for these requirements is to enhance the ability to deliver training on Material Protection Control and Accounting (MC&A) concepts regarding hazardous material such as irradiated materials with respect to bulk processing facilities.

  12. NASA Construction of Facilities Validation Processes - Total Building Commissioning (TBCx)

    NASA Technical Reports Server (NTRS)

    Hoover, Jay C.

    2004-01-01

    Key Atributes include: Total Quality Management (TQM) System that looks at all phases of a project. A team process that spans boundaries. A Commissioning Authority to lead the process. Commissioning requirements in contracts. Independent design review to verify compliance with Facility Project Requirements (FPR). Formal written Commissioning Plan with Documented Results. Functional performance testing (FPT) against the requirements document.

  13. Overview of the Facility Safeguardability Analysis (FSA) Process

    SciTech Connect

    Bari, Robert A.; Hockert, John; Wonder, Edward F.; Johnson, Shirley J.; Wigeland, Roald; Zentner, Michael D.

    2011-10-10

    The safeguards system of the International Atomic Energy Agency (IAEA) provides the international community with credible assurance that a State is fulfilling its nonproliferation obligations. The IAEA draws such conclusions from the evaluation of all available information. Effective and cost-efficient IAEA safeguards at the facility level are, and will remain, an important element of this “State-level” approach. Efficiently used, the Safeguards by Design (SBD) methodologies , , , now being developed can contribute to effective and cost-efficient facility-level safeguards. The Facility Safeguardability Assessment (FSA) introduced here supports SBD in three areas. 1. It describes necessary interactions between the IAEA, the State regulator, and the owner / designer of a new or modified facility to determine where SBD efforts can be productively applied, 2. It presents a screening approach intended to identify potential safeguard issues for; a) design changes to existing facilities; b) new facilities similar to existing facilities with approved safeguards approaches, and c) new designs, 3. It identifies resources (the FSA toolkit), such as good practice guides, design guidance, and safeguardability evaluation methods that can be used by the owner/designer to develop solutions for potential safeguards issues during the interactions with the State regulator and IAEA. FSA presents a structured framework for the application of the SBD tools developed in other efforts. The more a design evolves, the greater the probability that new safeguards issues could be introduced. Likewise, for first-of-a-kind facilities or research facilities that involve previously unused processes or technologies, it is reasonable to expect that a number of possible safeguards issues might exist. Accordingly, FSA is intended to help the designer and its safeguards experts identify early in the design process: • Areas where elements of previous accepted safeguards approach(es) may be applied

  14. Facility Effluent Monitoring Plan for the 325 Radiochemical Processing Laboratory

    SciTech Connect

    Shields, K.D.; Ballinger, M.Y.

    1999-04-02

    This Facility Effluent Monitoring Plan (FEMP) has been prepared for the 325 Building Radiochemical Processing Laboratory (RPL) at the Pacific Northwest National Laboratory (PNNL) to meet the requirements in DOE Order 5400.1, ''General Environmental Protection Programs.'' This FEMP has been prepared for the RPL primarily because it has a ''major'' (potential to emit >0.1 mrem/yr) emission point for radionuclide air emissions according to the annual National Emission Standards for Hazardous Air Pollutants (NESHAP) assessment performed. This section summarizes the airborne and liquid effluents and the inventory based NESHAP assessment for the facility. The complete monitoring plan includes characterization of effluent streams, monitoring/sampling design criteria, a description of the monitoring systems and sample analysis, and quality assurance requirements. The RPL at PNNL houses radiochemistry research, radioanalytical service, radiochemical process development, and hazardous and radioactive mixed waste treatment activities. The laboratories and specialized facilities enable work ranging from that with nonradioactive materials to work with picogram to kilogram quantities of fissionable materials and up to megacurie quantities of other radionuclides. The special facilities within the building include two shielded hot-cell areas that provide for process development or analytical chemistry work with highly radioactive materials and a waste treatment facility for processing hazardous, mixed radioactive, low-level radioactive, and transuranic wastes generated by PNNL activities.

  15. Facility effluent monitoring plan for the Waste Receiving and Processing Facility Module 1

    SciTech Connect

    Lewis, C.J.

    1995-10-01

    A facility effluent monitoring plan is required by the US Department of Energy in Order 5400.1 for any operations that involve hazardous materials and radioactive substances that could impact employee or public safety or the environment. This document is prepared using the specific guidelines identified in A Guide for Preparing Hanford Site Facility Effluent Monitoring Plans, WHC-EP-0438. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether they are adequate to ensure the public health and safety as specified in applicable federal state, and local requirements. This facility effluent monitoring plan shall ensure lonq-range integrity of the effluent monitoring systems by requiring an update whenever a new process or operation introduces new hazardous materials or significant radioactive materials. This document must be reviewed annually even if there are no operational changes, and it must be updated as a minimum every three years.

  16. A Review of the Aging Process and Facilities Topic.

    PubMed

    Jornitz, Maik W

    2015-01-01

    Aging facilities have become a concern in the pharmaceutical and biopharmaceutical manufacturing industry, so much that task forces are formed by trade organizations to address the topic. Too often, examples of aging or obsolete equipment, unit operations, processes, or entire facilities have been encountered. Major contributors to this outcome are the failure to invest in new equipment, disregarding appropriate maintenance activities, and neglecting the implementation of modern technologies. In some cases, a production process is insufficiently modified to manufacture a new product in an existing process that was used to produce a phased-out product. In other instances, manufacturers expanded the facility or processes to fulfill increasing demand and the scaling occurred in a non-uniform manner, which led to non-optimal results. Regulatory hurdles of post-approval changes in the process may thwart companies' efforts to implement new technologies. As an example, some changes have required 4 years to gain global approval. This paper will address cases of aging processes and facilities aside from modernizing options. PMID:26242790

  17. The Defense Waste Processing Facility: Two Years of Radioactive Operation

    SciTech Connect

    Marra, S.L.; Gee, J.T.; Sproull, J.F.

    1998-05-01

    The Defense Waste Processing Facility (DWPF) at the Savannah River Site in Aiken, SC is currently immobilizing high level radioactive sludge waste in borosilicate glass. The DWPF began vitrification of radioactive waste in May, 1996. Prior to that time, an extensive startup test program was completed with simulated waste. The DWPF is a first of its kind facility. The experience gained and data collected during the startup program and early years of operation can provide valuable information to other similar facilities. This experience involves many areas such as process enhancements, analytical improvements, glass pouring issues, and documentation/data collection and tracking. A summary of this experience and the results of the first two years of operation will be presented.

  18. Spacelab Data Processing Facility (SLDPF) quality assurance expert systems development

    NASA Technical Reports Server (NTRS)

    Basile, Lisa R.; Kelly, Angelita C.

    1987-01-01

    The Spacelab Data Processing Facility (SLDPF) is an integral part of the Space Shuttle data network for missions that involve attached scientific payloads. Expert system prototypes were developed to aid in the performance of the quality assurance function of the Spacelab and/or Attached Shuttle Payloads processed telemetry data. The Spacelab Input Processing System (SIPS) and the Spacelab Output Processing System (SOPS), two expert systems, were developed to determine their feasibility and potential in the quality assurance of processed telemetry data. The capabilities and performance of these systems are discussed.

  19. General view from outside the Orbiter Processing Facility at the ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    General view from outside the Orbiter Processing Facility at the Kennedy Space Center with the bay doors open as the Orbiter Discovery is atop the transport vehicle prepared to be moved over to the Vehicle Assembly Building. - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  20. 76 FR 44049 - Guidance for Fuel Cycle Facility Change Processes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-22

    ... COMMISSION Guidance for Fuel Cycle Facility Change Processes AGENCY: Nuclear Regulatory Commission. ACTION: Draft regulatory guide; extension of comment period. SUMMARY: On July 14, 2011 (76 FR 41527), the U.S...: Richard.Jervey@nrc.gov . SUPPLEMENTARY INFORMATION: On July 14, 2011 (76 FR 41527), the NRC published...

  1. 10 CFR 95.17 - Processing facility clearance.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... SECURITY INFORMATION AND RESTRICTED DATA Physical Security § 95.17 Processing facility clearance. (a...— (1) A determination based on review and approval of a Standard Practice Procedures Plan that granting... acceptable security review conducted by the NRC; (3) Submitting key management personnel for...

  2. 10 CFR 70.72 - Facility changes and change process.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 2 2011-01-01 2011-01-01 false Facility changes and change process. 70.72 Section 70.72 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) DOMESTIC LICENSING OF SPECIAL NUCLEAR MATERIAL Additional Requirements for Certain Licensees Authorized To Possess a Critical Mass of Special...

  3. 10 CFR 70.72 - Facility changes and change process.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 2 2014-01-01 2014-01-01 false Facility changes and change process. 70.72 Section 70.72 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) DOMESTIC LICENSING OF SPECIAL NUCLEAR MATERIAL Additional Requirements for Certain Licensees Authorized To Possess a Critical Mass of Special...

  4. 10 CFR 70.72 - Facility changes and change process.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 2 2013-01-01 2013-01-01 false Facility changes and change process. 70.72 Section 70.72 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) DOMESTIC LICENSING OF SPECIAL NUCLEAR MATERIAL Additional Requirements for Certain Licensees Authorized To Possess a Critical Mass of Special...

  5. PROCESS AND EQUIPMENT CHANGES FOR CLEANER PRODUCTION IN FEDERAL FACILITIES

    EPA Science Inventory

    The paper discusses process and equipment changes for cleaner production in federal facilities. During the 1990s, DoD and EPA conducted joint research and development, aimed at reducing the discharge of hazardous and toxic pollutants from military production and maintenance faci...

  6. Evaluation of mercury in the liquid waste processing facilities

    SciTech Connect

    Jain, Vijay; Shah, Hasmukh; Occhipinti, John E.; Wilmarth, William R.; Edwards, Richard E.

    2015-08-13

    This report provides a summary of Phase I activities conducted to support an Integrated Evaluation of Mercury in Liquid Waste System (LWS) Processing Facilities. Phase I activities included a review and assessment of the liquid waste inventory and chemical processing behavior of mercury using a system by system review methodology approach. Gaps in understanding mercury behavior as well as action items from the structured reviews are being tracked. 64% of the gaps and actions have been resolved.

  7. Unity connecting module in the Space Station Processing Facility

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Unity connecting module, part of the International Space Station, awaits processing in the Space Station Processing Facility (SSPF). On the end at the right can be seen the Pressurized Mating Adapter 2, which provides entry into the module. The Unity, scheduled to be launched on STS-88 in December 1998, will be mated to the Russian-built Zarya control module which will already be in orbit. STS-88 will be the first Space Shuttle launch for the International Space Station.

  8. Technical evaluation of proposed Ukrainian Central Radioactive Waste Processing Facility

    SciTech Connect

    Gates, R.; Glukhov, A.; Markowski, F.

    1996-06-01

    This technical report is a comprehensive evaluation of the proposal by the Ukrainian State Committee on Nuclear Power Utilization to create a central facility for radioactive waste (not spent fuel) processing. The central facility is intended to process liquid and solid radioactive wastes generated from all of the Ukrainian nuclear power plants and the waste generated as a result of Chernobyl 1, 2 and 3 decommissioning efforts. In addition, this report provides general information on the quantity and total activity of radioactive waste in the 30-km Zone and the Sarcophagus from the Chernobyl accident. Processing options are described that may ultimately be used in the long-term disposal of selected 30-km Zone and Sarcophagus wastes. A detailed report on the issues concerning the construction of a Ukrainian Central Radioactive Waste Processing Facility (CRWPF) from the Ukrainian Scientific Research and Design institute for Industrial Technology was obtained and incorporated into this report. This report outlines various processing options, their associated costs and construction schedules, which can be applied to solving the operating and decommissioning radioactive waste management problems in Ukraine. The costs and schedules are best estimates based upon the most current US industry practice and vendor information. This report focuses primarily on the handling and processing of what is defined in the US as low-level radioactive wastes.

  9. Lowering respirable dust exposures at mineral processing facilities

    SciTech Connect

    Cecala, A.B.; Timko, R.J.; Thimons, E.D.

    1999-07-01

    This article discusses three research projects performed by the National Institute for Occupational Safety and Health (formerly the Bureau of Mines), that reduce the respirable dust exposure of plant workers at mineral processing facilities. All three of these projects are very different but they all have same goal of reducing worker exposure to respirable dust at mineral processing facilities. The first project deals with a total mill ventilation system that reduces dust levels throughout an entire building and lowers the dust exposure of everyone working in the structure. The second project describes a bag and belt cleaner device that reduces the amount of dust on the outside of bags of product and primarily reduces the dust exposure of the bag stackers, as well as anyone handling the bags until their end use. The third project discusses how to reduce a worker's dust exposure from secondary dust sources through improved work practices. This area of research can potentially impact all workers at these facilities. All three of these research projects have been shown to significantly reduce the dust exposure of workers at mineral processing facilities.

  10. Facility Effluent Monitoring Plan for the Waste Receiving and Processing (WRAP) Facility

    SciTech Connect

    DAVIS, W.E.

    2000-03-08

    A facility effluent monitoring plan is required by the U.S. Department of Energy in Order 5400.1 for any operations that involve hazardous materials and radioactive substances that could impact employee public safety, or the environment. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether these systems are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements. This facility effluent monitoring plan ensures long-range integrity of the effluent monitoring systems by requiring an update whenever a new process or operation introduces new hazardous materials or significant radioactive materials. This document must be reviewed annually even if there are no operational changes, and must be updated, as a minimum, every 3 years.

  11. Control system for BCP processing facility at FNAL

    SciTech Connect

    Cristian Boffo et al.

    2003-09-11

    The surface processing is one of the key elements of superconducting RF cavity fabrication. Safety and reliability are the main requirements for the chemical surface treatment facility being developed at FNAL. Accepting the Buffered Chemical Polishing (BCP) as the baseline process, a ''gravity feed and open etching tank'' approach has been chosen at this stage. This choice resulted in the introduction of a control system with a strong automation since the number of elements to be controlled at different steps of the process is rather big. In order to allow for maximum flexibility, two operational modes were defined within the control system: semi-automatic, which requires an operator's decision to move from one stage to another, and manual. This paper describes the main features of the control system for the BCP facility that is under development at FNAL.

  12. APET methodology for Defense Waste Processing Facility: Mode C operation

    SciTech Connect

    Taylor, R.P. Jr.; Massey, W.M.

    1995-04-01

    Safe operation of SRS facilities continues to be the highest priority of the Savannah River Site (SRS). One of these facilities, the Defense Waste Processing Facility or DWPF, is currently undergoing cold chemical runs to verify the design and construction preparatory to hot startup in 1995. The DWPFF is a facility designed to convert the waste currently stored in tanks at the 200-Area tank farm into a form that is suitable for long term storage in engineered surface facilities and, ultimately, geologic isolation. As a part of the program to ensure safe operation of the DWPF, a probabilistic Safety Assessment of the DWPF has been completed. The results of this analysis are incorporated into the Safety Analysis Report (SAR) for DWPF. The usual practice in preparation of Safety Analysis Reports is to include only a conservative analysis of certain design basis accidents. A major part of a Probabilistic Safety Assessment is the development and quantification of an Accident Progression Event Tree or APET. The APET provides a probabilistic representation of potential sequences along which an accident may progress. The methodology used to determine the risk of operation of the DWPF borrows heavily from methods applied to the Probabilistic Safety Assessment of SRS reactors and to some commercial reactors. This report describes the Accident Progression Event Tree developed for the Probabilistic Safety Assessment of the DWPF.

  13. Design characteristics for facilities which process hazardous particulate

    SciTech Connect

    Abeln, S.P.; Creek, K.; Salisbury, S.

    1998-12-01

    Los Alamos National Laboratory is establishing a research and processing capability for beryllium. The unique properties of beryllium, including light weight, rigidity, thermal conductivity, heat capacity, and nuclear properties make it critical to a number of US defense and aerospace programs. Concomitant with the unique engineering properties are the health hazards associated with processing beryllium in a particulate form and the potential for worker inhalation of aerosolized beryllium. Beryllium has the lowest airborne standard for worker protection compared to all other nonradioactive metals by more than an order of magnitude. This paper describes the design characteristics of the new beryllium facility at Los Alamos as they relate to protection of the workforce. Design characteristics to be reviewed include; facility layout, support systems to minimize aerosol exposure and spread, and detailed review of the ventilation system design for general room air cleanliness and extraction of particulate at the source.

  14. Accident Fault Trees for Defense Waste Processing Facility

    SciTech Connect

    Sarrack, A.G.

    1999-06-22

    The purpose of this report is to document fault tree analyses which have been completed for the Defense Waste Processing Facility (DWPF) safety analysis. Logic models for equipment failures and human error combinations that could lead to flammable gas explosions in various process tanks, or failure of critical support systems were developed for internal initiating events and for earthquakes. These fault trees provide frequency estimates for support systems failures and accidents that could lead to radioactive and hazardous chemical releases both on-site and off-site. Top event frequency results from these fault trees will be used in further APET analyses to calculate accident risk associated with DWPF facility operations. This report lists and explains important underlying assumptions, provides references for failure data sources, and briefly describes the fault tree method used. Specific commitments from DWPF to provide new procedural/administrative controls or system design changes are listed in the ''Facility Commitments'' section. The purpose of the ''Assumptions'' section is to clarify the basis for fault tree modeling, and is not necessarily a list of items required to be protected by Technical Safety Requirements (TSRs).

  15. Operation of an industrial radiation processing facility in Mexico

    NASA Astrophysics Data System (ADS)

    Torres C., Gilberto

    A 10 years old JS-6500 industrial Cobalt 60 irradiator was installed in 1980 at the ININ Nuclear Center in Mexico with 960 kGy. The facility was commissioning in August with some minor changes with respect to the original AECL design, in order to give services to different industries and also to do research in several fields. During that year promotional activities were done to increase interest from industry in the use of radiation processing. In 1981, an interruption due to pool's leakage and its reparation, put the facility out of operation. During the next three years the demand increases but never reach more than 50% if the capacity. In that time, the potential users did not show confidence in the process, even knowing that health authorities approved with no restrictions radiation sterilization. Actually, there are 34 different companies irradiating 48 different products. Even those within the same grouping, require different minimum and maximum radiation doses, so the facility has been operated combining products and valumes. The experiences are presented in this paper. Also, maintenance of the irradiator is discussed and some modifications to the original programme have been done due to the necessity to use local spare parts instead of imported ones.

  16. Manufacturing Demonstration Facility: Roll-to-Roll Processing

    SciTech Connect

    Datskos, Panos G; Joshi, Pooran C; List III, Frederick Alyious; Duty, Chad E; Armstrong, Beth L; Ivanov, Ilia N; Jacobs, Christopher B; Graham, David E; Moon, Ji Won

    2015-08-01

    This Manufacturing Demonstration Facility (MDF)e roll-to-roll processing effort described in this report provided an excellent opportunity to investigate a number of advanced manufacturing approaches to achieve a path for low cost devices and sensors. Critical to this effort is the ability to deposit thin films at low temperatures using nanomaterials derived from nanofermentation. The overarching goal of this project was to develop roll-to-roll manufacturing processes of thin film deposition on low-cost flexible substrates for electronics and sensor applications. This project utilized ORNL s unique Pulse Thermal Processing (PTP) technologies coupled with non-vacuum low temperature deposition techniques, ORNL s clean room facility, slot dye coating, drop casting, spin coating, screen printing and several other equipment including a Dimatix ink jet printer and a large-scale Kyocera ink jet printer. The roll-to-roll processing project had three main tasks: 1) develop and demonstrate zinc-Zn based opto-electronic sensors using low cost nanoparticulate structures manufactured in a related MDF Project using nanofermentation techniques, 2) evaluate the use of silver based conductive inks developed by project partner NovaCentrix for electronic device fabrication, and 3) demonstrate a suite of low cost printed sensors developed using non-vacuum deposition techniques which involved the integration of metal and semiconductor layers to establish a diverse sensor platform technology.

  17. The Sodium Process Facility at Argonne National Laboratory-West

    SciTech Connect

    Michelbacher, J.A.; Henslee, S.P. McDermott, M.D.; Price, J.R.; Rosenberg, K.E.; Wells, P.B.

    1998-07-01

    Argonne National Laboratory-West (ANL-W) has approximately 680,000 liters of raw sodium stored in facilities on site. As mandated by the State of Idaho and the US Department of Energy (DOE), this sodium must be transformed into a stable condition for land disposal. To comply with this mandate, ANL-W designed and built the Sodium Process Facility (SPF) for the processing of this sodium into a dry, sodium carbonate powder. The major portion of the sodium stored at ANL-W is radioactively contaminated. The sodium will be processed in three separate and distinct campaigns: the 290,000 liters of Fermi-1 primary sodium, the 50,000 liters of the Experimental Breeder Reactor-II (EBR-II) secondary sodium, and the 330,000 liters of the EBR-II primary sodium. The Fermi-1 and the EBR-II secondary sodium contain only low-level of radiation, while the EBR-II primary sodium has radiation levels up to 0.5 mSv (50 mrem) per hour at 1 meter. The EBR-II primary sodium will be processed last, allowing the operating experience to be gained with the less radioactive sodium prior to reacting the most radioactive sodium. The sodium carbonate will be disposed of in 270 liter barrels, four to a pallet. These barrels are square in cross-section, allowing for maximum utilization of the space on a pallet, minimizing the required landfill space required for disposal.

  18. Decontamination and demolition of a former plutonium processing facility`s process exhaust system, firescreen, and filter plenum buildings

    SciTech Connect

    LaFrate, P.J. Jr.; Stout, D.S.; Elliott, J.W.

    1996-03-01

    The Los Alamos National Laboratory (LANL) Decommissioning Project has decontaminated, demolished, and decommissioned a process exhaust system, two filter plenum buildings, and a firescreen plenum structure at Technical Area 21 (TA-2 1). The project began in August 1995 and was completed in January 1996. These high-efficiency particulate air (HEPA) filter plenums and associated ventilation ductwork provided process exhaust to fume hoods and glove boxes in TA-21 Buildings 2 through 5 when these buildings were active plutonium and uranium processing and research facilities. This paper summarizes the history of TA-21 plutonium and uranium processing and research activities and provides a detailed discussion of integrated work process controls, characterize-as-you-go methodology, unique engineering controls, decontamination techniques, demolition methodology, waste minimization, and volume reduction. Also presented in detail are the challenges facing the LANL Decommissioning Project to safely and economically decontaminate and demolish surplus facilities and the unique solutions to tough problems. This paper also shows the effectiveness of the integrated work package concept to control work through all phases.

  19. Orbiter processing facility service platform failure and redesign

    NASA Technical Reports Server (NTRS)

    Harris, Jesse L.

    1988-01-01

    In a high bay of the Orbiter Processing Facility (OPF) at the Kennedy Space Center, technicians were preparing the space shuttle orbiter Discovery for rollout to the Vehicle Assembly Building (VAB). A service platform, commonly referred to as an OPF Bucket, was being retracted when it suddenly fell, striking a technician and impacting Discovery's payload bay door. A critical component in the OPF Bucket hoist system had failed, allowing the platform to fall. The incident was thoroughly investigated by both NASA and Lockheed, revealing many design deficiencies within the system. The deficiencies and the design changes made to correct them are reviewed.

  20. Hardware development process for Human Research facility applications

    NASA Astrophysics Data System (ADS)

    Bauer, Liz

    2000-01-01

    The simple goal of the Human Research Facility (HRF) is to conduct human research experiments on the International Space Station (ISS) astronauts during long-duration missions. This is accomplished by providing integration and operation of the necessary hardware and software capabilities. A typical hardware development flow consists of five stages: functional inputs and requirements definition, market research, design life cycle through hardware delivery, crew training, and mission support. The purpose of this presentation is to guide the audience through the early hardware development process: requirement definition through selecting a development path. Specific HRF equipment is used to illustrate the hardware development paths. .

  1. Operational readiness: an integral part of the facility planning process.

    PubMed

    Kidd, LeeAnne; Howe, Rob

    2014-01-01

    Large capital building projects benefit from an operational readiness strategy prior to new facility occupancy. St. Joseph's Healthcare used a structured approach for their readiness planning that included individual work plan meetings, tools for ensuring integration across programs and services and process improvement support to ensure a smooth transition. Over 1100 staff were oriented using a Train-the-Trainer model. Significant effort was required to co-ordinate the customized training, which involved "staffing up" to ensure sufficient resources for backfill. Operational readiness planning places additional demands on managers, requiring support and assistance from dedicated resources both prior to occupancy and several months post-move. PMID:25906468

  2. Tributylphosphate in the In-Tank Precipitation Process Facilities

    SciTech Connect

    Barnes, M.J.; Hobbs, D.T.; Swingle, R.F.

    1993-11-23

    A material balance investigation and evaluation of n- tributylphosphate (TBP) recycle throughout ITP and its carryover to Defense Waste Processing Facility (DWPF) was performed. Criticality and DWPF-related issues were determined to pose no adverse consequences due to TBP addition. Effects of decomposition products were also considered. Flammability of 1-butanol, a TBP decomposition product, in Tank 22 was investigated. Calculations show that Tank 22 would be ventilated with air at a rate sufficient to maintain a 1-butanol concentration (volume percent) well below 25 percent of the lower flammability limit (LFL) for 1-butanol.

  3. Standardization of DOE Disposal Facilities Waste Acceptance Processes

    SciTech Connect

    Shrader, T. A.; Macbeth, P. J.

    2002-02-26

    On February 25, 2000, the U.S. Department of Energy (DOE) issued the Record of Decision (ROD) for the Waste Management Programmatic Environmental Impact Statement (WM PEIS) for low-level and mixed low-level wastes (LLW/ MLLW) treatment and disposal. The ROD designated the disposal sites at Hanford and the Nevada Test Site (NTS) to dispose of LLW/MLLW from sites without their own disposal facilities. DOE's Richland Operations Office (RL) and the National Nuclear Security Administration's Nevada Operations Office (NV) have been charged with effectively implementing the ROD. To accomplish this task NV and RL, assisted by their operating contractors Bechtel Nevada (BN), Fluor Hanford (FH), and Bechtel Hanford (BH) assembled a task team to systematically map out and evaluate the current waste acceptance processes and develop an integrated, standardized process for the acceptance of LLW/MLLW. A structured, systematic, analytical process using the Six Sigma system identified dispos al process improvements and quantified the associated efficiency gains to guide changes to be implemented. The review concluded that a unified and integrated Hanford/NTS Waste Acceptance Process would be a benefit to the DOE Complex, particularly the waste generators. The Six Sigma review developed quantitative metrics to address waste acceptance process efficiency improvements, and provides an initial look at development of comparable waste disposal cost models between the two disposal sites to allow quantification of the proposed improvements.

  4. Standardization of DOE Disposal Facilities Waste Acceptance Process

    SciTech Connect

    SHRADER, T.; MACBETH, P.

    2002-01-01

    On February 25, 2000, the US. Department of Energy (DOE) issued the Record of Decision (ROD) for the Waste Management Programmatic Environmental Impact Statement (WM PEIS) for low-level and mixed low-level wastes (LLW/ MLLW) treatment and disposal. The ROD designated the disposal sites at Hanford and the Nevada Test Site (NTS) to dispose of LLWMLLW from sites without their own disposal facilities. DOE's Richland Operations Office (RL) and the National Nuclear Security Administration's Nevada Operations Office (NV) have been charged with effectively implementing the ROD. To accomplish this task NV and RL, assisted by their operating contractors Bechtel Nevada (BN), Fluor Hanford (FH), and Bechtel Hanford (BH) assembled a task team to systematically map out and evaluate the current waste acceptance processes and develop an integrated, standardized process for the acceptance of LLWMLLW. A structured, systematic, analytical process using the Six Sigma system identified disposal process improvements and quantified the associated efficiency gains to guide changes to be implemented. The review concluded that a unified and integrated Hanford/NTS Waste Acceptance Process would be a benefit to the DOE Complex, particularly the waste generators. The Six Sigma review developed quantitative metrics to address waste acceptance process efficiency improvements, and provides an initial look at development of comparable waste disposal cost models between the two disposal sites to allow quantification of the proposed improvements.

  5. Generator Certification Process for Envirocare's Containerized Class A Disposal Facility

    SciTech Connect

    Rogers, B. C.

    2002-02-25

    On October 19, 2001, the Utah Division of Radiation Control issued Amendment 12 to Radioactive Material License UT2300249 (RML) for Envirocare of Utah, Inc. (Envirocare) disposal operations. The license amendment provides the mechanism for Envirocare to receive and dispose of containerized Class A Low-Level Radioactive Waste (LLRW) at the newly constructed Containerized Waste Facility (CWF). Due to the increased radioactivity and external dose rates of waste that will be shipped to the CWF, a Generator Certification Program has been implemented that eliminates the requirement to sample incoming shipments, thus keeping worker doses to as low as reasonably achievable (ALARA). This paper presents the key elements of the Generator Certification Program and describes the review and approval process for certifying generators to ship waste to the CWF. Each phase of the program will be discussed to assist generators in gaining a better understanding of the certification process. Additionally, the paper will present unique differences between the CWF Waste Acceptance Criteria and the requirements from other commercial disposal facilities.

  6. Energy determination in industrial X-ray processing facilities

    NASA Astrophysics Data System (ADS)

    Cleland, M. R.; Gregoire, O.; Stichelbaut, F.; Gomola, I.; Galloway, R. A.; Schlecht, J.

    2005-12-01

    In industrial irradiation facilities, the determination of maximum photon or electron energy is important for regulated processes, such as food irradiation, and for assurance of treatment reproducibility. With electron beam irradiators, this has been done by measuring the depth-dose distribution in a homogeneous material. For X-ray irradiators, an analogous method has not yet been recommended. This paper describes a procedure suitable for typical industrial irradiation processes, which is based on common practice in the field of therapeutic X-ray treatment. It utilizes a measurement of the slope of the exponential attenuation curve of X-rays in a thick stack of polyethylene plates. Monte Carlo simulations and experimental tests have been performed to verify the suitability and accuracy of the method between 3 MeV and 8 MeV.

  7. Remote lighting systems for the defense waste processing facility

    SciTech Connect

    Heckendorn, F.M.; Divona, C.J.

    1986-01-01

    The Defense Waste Processing Facility (DWPF) is under construction at the Savannah River Plant. In DWPF, an immobilization process solidifies radioactive waste sludge by vitrification into a leach-resistant borosilicate glass. The mixture of waste and glass solidifies in stainless steel containers for eventual transportation to an off-site federal repository. The DWPF contains a number of hot cell canyons that are remotely maintained using only a crane and crane-held impact wrench for replacing the equipment. In general, viewing into these canyons is accomplished through shielded windows and by the use of closed-circuit television (CCTV). Demonstration of the prototype remote light fixtures for the DWPF canyon was completed in 1984, and the actual plant equipment is scheduled for completion this year.

  8. Tank 42 sludge-only process development for the Defense Waste Processing Facility (DWPF)

    SciTech Connect

    Lambert, D.P.

    2000-03-22

    Defense Waste Processing Facility (DWPF) requested the development of a sludge-only process for Tank 42 sludge since at the current processing rate, the Tank 51 sludge has been projected to be depleted as early as August 1998. Testing was completed using a non-radioactive Tank 42 sludge simulant. The testing was completed under a range of operating conditions, including worst case conditions, to develop the processing conditions for radioactive Tank 42 sludge. The existing Tank 51 sludge-only process is adequate with the exception that 10 percent additional acid is recommended during sludge receipt and adjustment tank (SRAT) processing to ensure adequate destruction of nitrite during the SRAT cycle.

  9. ANALYTICAL PLANS SUPPORTING THE SWPF GAP ANALYSIS BEING CONDUCTED WITH ENERGYSOLUTIONS AND THE VITREOUS STATE LABORATORY AT THE CUA

    SciTech Connect

    Edwards, T.; Peeler, D.

    2014-10-28

    EnergySolutions (ES) and its partner, the Vitreous State Laboratory (VSL) of The Catholic University of America (CUA), are to provide engineering and technical services support to Savannah River Remediation, LLC (SRR) for ongoing operation of the Defense Waste Processing Facility (DWPF) flowsheet as well as for modifications to improve overall plant performance. SRR has requested that the glass formulation team of Savannah River National Laboratory (SRNL) and ES-VSL develop a technical basis that validates the current Product Composition Control System models for use during the processing of the coupled flowsheet or that leads to the refinements of or modifications to the models that are needed so that they may be used during the processing of the coupled flowsheet. SRNL has developed a matrix of test glasses that are to be batched and fabricated by ES-VSL as part of this effort. This document provides two analytical plans for use by ES-VSL: one plan is to guide the measurement of the chemical composition of the study glasses while the second is to guide the measurement of the durability of the study glasses based upon the results of testing by ASTM’s Product Consistency Test (PCT) Method A.

  10. Personal dust exposures at a food processing facility.

    PubMed

    Lacey, Steven E; Conroy, Lorraine M; Forst, Linda S; Franke, John E; Wadden, Richard A; Hedeker, Donald R

    2006-01-01

    A field study was performed to quantify personal dust exposures at a food processing facility. A review of the literature shows very little exposure information in the food processing industry. The processing area consisted of a series of four rooms, connected by a closed-loop ventilation system, housed within a larger warehouse-type facility. Workers were exposed to various fruit and vegetable dusts during the grinding, sieving, mixing and packaging of freeze-dried or air-dried products. Eight two-hour periods were monitored over two days. Personal total suspended particulate samples were collected on 37 mm PVC filters with 5 microm pore size according to National Institute for Occupational Safety and Health (NIOSH) Method 0500. The filters were analyzed gravimetrically. The two-hour task sampling personal dust exposures ranged from 0.33-103 mg/m3. For each worker, an eight-hour time weighted average (TWA) concentration was calculated, and these ranged from 3.08-59.8 mg/m3. Although there are no directly appropriate occupational exposure limits that may be used for comparison, we selected the Threshold Limit Value (TLV) for particulates not otherwise classified (PNOC) of 10 mg/m3 for inhalable particles. Neglecting the respiratory protection used, five out of eight of the worker time-weighted averages exceeded the TLV. It should be noted that the TLV is based on the inhalable fraction and in this study total suspended particulate was measured; additionally, the TLV is applicable for dusts that are insoluble or poorly soluble, and have low toxicity, which may have limited protective ability in this case due to the irritant nature of certain dusts (e.g., jalapeno peppers, aloe vera). Sieving resulted in significantly higher exposure than grinding and blending. Measuring area concentrations alone in this environment is not a sufficient method of estimating personal exposures due to work practices for some operations. PMID:16893837

  11. [Design of an HACCP program for a cocoa processing facility].

    PubMed

    López D'Sola, Patrizia; Sandia, María Gabriela; Bou Rached, Lizet; Hernández Serrano, Pilar

    2012-12-01

    The HACCP plan is a food safety management tool used to control physical, chemical and biological hazards associated to food processing through all the processing chain. The aim of this work is to design a HACCP Plan for a Venezuelan cocoa processing facility.The production of safe food products requires that the HACCP system be built upon a solid foundation of prerequisite programs such as Good Manufacturing Practices (GMP) and Sanitation Standard Operating Procedures (SSOP). The existence and effectiveness of these prerequisite programs were previously assessed.Good Agriculture Practices (GAP) audit to cocoa nibs suppliers were performed. To develop the HACCP plan, the five preliminary tasks and the seven HACCP principles were accomplished according to Codex Alimentarius procedures. Three Critical Control Points (CCP) were identified using a decision tree: winnowing (control of ochratoxin A), roasting (Salmonella control) and metallic particles detection. For each CCP, Critical limits were established, the Monitoring procedures, Corrective actions, Procedures for Verification and Documentation concerning all procedures and records appropriate to these principles and their application was established. To implement and maintain a HACCP plan for this processing plant is suggested. Recently OchratoxinA (OTA) has been related to cocoa beans. Although the shell separation from the nib has been reported as an effective measure to control this chemical hazard, ochratoxin prevalence study in cocoa beans produced in the country is recommended, and validate the winnowing step as well PMID:24020255

  12. Waste receiving and processing facility module 1, detailed design report

    SciTech Connect

    Not Available

    1993-10-01

    WRAP 1 baseline documents which guided the technical development of the Title design included: (a) A/E Statement of Work (SOW) Revision 4C: This DOE-RL contractual document specified the workscope, deliverables, schedule, method of performance and reference criteria for the Title design preparation. (b) Functional Design Criteria (FDC) Revision 1: This DOE-RL technical criteria document specified the overall operational criteria for the facility. The document was a Revision 0 at the beginning of the design and advanced to Revision 1 during the tenure of the Title design. (c) Supplemental Design Requirements Document (SDRD) Revision 3: This baseline criteria document prepared by WHC for DOE-RL augments the FDC by providing further definition of the process, operational safety, and facility requirements to the A/E for guidance in preparing the design. The document was at a very preliminary stage at the onset of Title design and was revised in concert with the results of the engineering studies that were performed to resolve the numerous technical issues that the project faced when Title I was initiated, as well as, by requirements established during the course of the Title II design.

  13. Containerless Processing in Reduced Gravity Using the TEMPUS Facility

    NASA Technical Reports Server (NTRS)

    Roger, Jan R.; Robinson, Michael B.

    1996-01-01

    Containerless processing provides a high purity environment for the study of high-temperature, very reactive materials. It is an important method which provides access to the metastable state of an undercooled melt. In the absence of container walls, the nucleation rate is greatly reduced and undercooling up to (Tm-Tn)/Tm approx. 0.2 can be obtained, where Tm and Tn are the melting and nucleation temperatures, respectively. Electromagnetic levitation represents a method particularly well-suited for the study of metallic melts. The TEMPUS facility is a research instrument designed to perform electromagnetic levitation studies in reduced gravity. It provides temperatures up to 2600 C, levitation of several grams of material and access to the undercooled state for an extended period of time (up to hours).

  14. Recent National Transonic Facility Test Process Improvements (Invited)

    NASA Technical Reports Server (NTRS)

    Kilgore, W. A.; Balakrishna, S.; Bobbitt, C. W., Jr.; Adcock, J. B.

    2001-01-01

    This paper describes the results of two recent process improvements; drag feed-forward Mach number control and simultaneous force/moment and pressure testing, at the National Transonic Facility. These improvements have reduced the duration and cost of testing. The drag feedforward Mach number control reduces the Mach number settling time by using measured model drag in the Mach number control algorithm. Simultaneous force/moment and pressure testing allows simultaneous collection of force/moment and pressure data without sacrificing data quality thereby reducing the overall testing time. Both improvements can be implemented at any wind tunnel. Additionally the NTF is working to develop and implement continuous pitch as a testing option as an additional method to reduce costs and maintain data quality.

  15. Recent National Transonic Facility Test Process Improvements (Invited)

    NASA Technical Reports Server (NTRS)

    Kilgore, W. A.; Balakrishna, S.; Bobbitt, C. W., Jr.; Adcock, J. B.

    2001-01-01

    This paper describes the results of two recent process improvements; drag feed-forward Mach number control and simultaneous force/moment and pressure testing, at the National Transonic Facility. These improvements have reduced the duration and cost of testing. The drag feed-forward Mach number control reduces the Mach number settling time by using measured model drag in the Mach number control algorithm. Simultaneous force/moment and pressure testing allows simultaneous collection of force/moment and pressure data without sacrificing data quality thereby reducing the overall testing time. Both improvements can be implemented at any wind tunnel. Additionally the NTF is working to develop and implement continuous pitch as a testing option as an additional method to reduce costs and maintain data quality.

  16. OVERVIEW OF TESTING TO SUPPORT PROCESSING OF SLUDGE BATCH 4 IN THE DEFENSE WASTE PROCESSING FACILITY

    SciTech Connect

    Herman, C

    2006-09-20

    The Defense Waste Processing Facility (DWPF) at the Savannah River Site began processing of its third sludge batch in March 2004. To avoid a feed outage in the facility, the next sludge batch will have to be prepared and ready for transfer to the DWPF by the end of 2006. The next sludge batch, Sludge Batch 4 (SB4), will consist of a significant volume of HM-type sludge. HM-type sludge is very high in aluminum compared to the mostly Purex-type sludges that have been processed to date. The Savannah River National Laboratory (SRNL) has been working with Liquid Waste Operations to define the sludge preparation plans and to perform testing to support qualification and processing of SB4. Significant challenges have arisen during SB4 preparation and testing to include poor sludge settling behavior and lower than desired projected melt rates. An overview of the testing activities is provided.

  17. Spartan is moved for processing in the Multi-Payload Processing Facility

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The Spartan solar-observing deployable spacecraft is moved from a bridge in the Multi-Payload Processing Facility at KSC where it had been stored for protection from a hurricane threatening the area. Spartan is one of the payloads for the STS-95 mission, scheduled to launch Oct. 29. Other research payloads include the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as the SPACEHAB single module with experiments on space flight and the aging process.

  18. Spartan is moved for processing in the Multi-Payload Processing Facility

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The Spartan solar-observing deployable spacecraft is moved onto a workstand in the Multi-Payload Processing Facility at KSC. Spartan is one of the payloads for the STS-95 mission, scheduled to launch Oct. 29. Other research payloads include the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as the SPACEHAB single module with experiments on space flight and the aging process.

  19. A survey of decontamination processes applicable to DOE nuclear facilities

    SciTech Connect

    Chen, L.; Chamberlain, D.B.; Conner, C.; Vandegrift, G.F.

    1997-05-01

    The objective of this survey was to select an appropriate technology for in situ decontamination of equipment interiors as part of the decommissioning of U.S. Department of Energy nuclear facilities. This selection depends on knowledge of existing chemical decontamination methods. This report provides an up-to-date review of chemical decontamination methods. According to available information, aqueous systems are probably the most universally used method for decontaminating and cleaning metal surfaces. We have subdivided the technologies, on the basis of the types of chemical solvents, into acid, alkaline permanganate, highly oxidizing, peroxide, and miscellaneous systems. Two miscellaneous chemical decontamination methods (electrochemical processes and foam and gel systems) are also described. A concise technical description of various processes is given, and the report also outlines technical considerations in the choice of technologies, including decontamination effectiveness, waste handing, fields of application, and the advantages and limitations in application. On the basis of this survey, six processes were identified for further evaluation. 144 refs., 2 tabs.

  20. Defense Waste Processing Facility wasteform and canister description: Revision 2

    SciTech Connect

    Baxter, R.G.

    1988-12-01

    This document describes the reference wasteform and canister for the Defense Waste Processing Facility (DWPF). The principal changes include revised feed and glass product compositions, an estimate of glass product characteristics as a function of time after the start of vitrification, and additional data on glass leaching performance. The feed and glass product composition data are identical to that described in the DWPF Basic Data Report, Revision 90/91. The DWPF facility is located at the Savannah River Plant in Aiken, SC, and it is scheduled for construction completion during December 1989. The wasteform is borosilicate glass containing approximately 28 wt % sludge oxides, with the balance consisting of glass-forming chemicals, primarily glass frit. Borosilicate glass was chosen because of its stability toward reaction with potential repository groundwaters, its relatively high ability to incorporate nuclides found in the sludge into the solid matrix, and its reasonably low melting temperature. The glass frit contains approximately 71% SiO/sub 2/, 12% B/sub 2/O/sub 3/, and 10% Na/sub 2/O. Tests to quantify the stability of DWPF waste glass have been performed under a wide variety of conditions, including simulations of potential repository environments. Based on these tests, DWPF waste glass should easily meet repository criteria. The canister is filled with about 3700 lb of glass which occupies 85% of the free canister volume. The filled canister will generate approximately 690 watts when filled with oxides from 5-year-old sludge and precipitate from 15-year-old supernate. The radionuclide activity of the canister is about 233,000 curies, with an estimated radiation level of 5600 rad/hour at the canister surface. 14 figs., 28 tabs.

  1. New Waste Calcining Facility Non-Radioactive Process Decontamination

    SciTech Connect

    Swenson, Michael C.

    2001-09-30

    This report documents the results of a test of the New Calcining Facility (NWCF) process decontamination system. The decontamination system test occurred in December 1981, during non-radioactive testing of the NWCF. The purpose of the decontamination system test was to identify equipment whose design prevented effective calcine removal and decontamination. Effective equipment decontamination was essential to reduce radiation fields for in-cell work after radioactive processing began. The decontamination system test began with a pre-decontamination inspection of the equipment. The pre- decontamination inspection documented the initial condition and cleanliness of the equipment. It provided a basis for judging the effectiveness of the decontamination. The decontamination consisted of a series of equipment flushes using nitric acid and water. A post-decontamination equipment inspection determined the effectiveness of the decontamination. The pre-decontamination and post-decontamination equipment inspections were documented with photographs. The decontamination system was effective in removing calcine from most of the NWCF equipment as evidenced by little visible calcine residue in the equipment after decontamination. The decontamination test identified four areas where the decontamination system required improvement. These included the Calciner off-gas line, Cyclone off-gas line, fluidizing air line, and the Calciner baffle plates. Physical modifications to enhance decontamination were made to those areas, resulting in an effective NWCF decontamination system.

  2. New Waste Calcining Facility Non-radioactive Process Decontamination

    SciTech Connect

    Swenson, Michael Clair

    2001-09-01

    This report documents the results of a test of the New Calcining Facility (NWCF) process decontamination system. The decontamination system test occurred in December 1981, during non-radioactive testing of the NWCF. The purpose of the decontamination system test was to identify equipment whose design prevented effective calcine removal and decontamination. Effective equipment decontamination was essential to reduce radiation fields for in-cell work after radioactive processing began. The decontamination system test began with a pre-decontamination inspection of the equipment. The pre-decontamination inspection documented the initial condition and cleanliness of the equipment. It provided a basis for judging the effectiveness of the decontamination. The decontamination consisted of a series of equipment flushes using nitric acid and water. A post-decontamination equipment inspection determined the effectiveness of the decontamination. The pre-decontamination and post-decontamination equipment inspections were documented with hotographs. The decontamination system was effective in removing calcine from most of the NWCF equipment as evidenced by little visible calcine residue in the equipment after decontamination. The decontamination test identified four areas where the decontamination system required improvement. These included the Calciner off-gas line, Cyclone off-gas line, fluidizing air line, and the Calciner baffle plates. Physical modifications to enhance decontamination were made to those areas, resulting in an effective NWCF decontamination system.

  3. Estimating and bidding for the Space Station Processing Facility

    NASA Technical Reports Server (NTRS)

    Brown, Joseph A.

    1993-01-01

    This new, unique Cost Engineering Report introduces the 800-page, C-100 government estimate for the Space Station Processing Facility (SSPF) and Volume IV Aerospace Construction Price Book. At the January 23, 1991, bid opening for the SSPF, the government cost estimate was right on target. Metric, Inc., Prime Contractor, low bid was 1.2 percent below the government estimate. This project contains many different and complex systems. Volume IV is a summary of the cost associated with construction, activation and Ground Support Equipment (GSE) design, estimating, fabrication, installation, testing, termination, and verification of this project. Included are 13 reasons the government estimate was so accurate; abstract of bids, for 8 bidders and government estimate with additive alternates, special labor and materials, budget comparison and system summaries; and comments on the energy credit from local electrical utility. This report adds another project to our continuing study of 'How Does the Low Bidder Get Low and Make Money?' which was started in 1967, and first published in the 1973 AACE Transaction with 10 more ways the low bidder got low. The accuracy of this estimate proves the benefits of our Kennedy Space Center (KSC) teamwork efforts and KSC Cost Engineer Tools which are contributing toward our goals of the Space Station.

  4. ENGINEERED NEAR SURFACE DISPOSAL FACILITY OF THE INDUSTRIAL COMPLEX FOR SOLID RADWASTE MANAGEMENT AT CHERNOBYL NUCLEAR POWER PLANT

    SciTech Connect

    Ziehm, Ronny; Pichurin, Sergey Grigorevich

    2003-02-27

    As a part of the turnkey project ''Industrial Complex for Solid Radwaste Management (ICSRM) at the Chernobyl Nuclear Power Plant (ChNPP)'' an Engineered Near Surface Disposal Facility (ENSDF, LOT 3) will be built on the VEKTOR site within the 30 km Exclusion Zone of the ChNPP. This will be performed by RWE NUKEM GmbH, Germany, and it governs the design, licensing support, fabrication, assembly, testing, inspection, delivery, erection, installation and commissioning of the ENSDF. The ENSDF will receive low to intermediate level, short lived, processed/conditioned wastes from the ICSRM Solid Waste Processing Facility (SWPF, LOT 2), the ChNPP Liquid Radwaste Treatment Plant (LRTP) and the ChNPP Interim Storage Facility for RBMK Fuel Assemblies (ISF). The ENSDF has a capacity of 55,000 m{sup 3}. The primary functions of the ENSDF are: to receive, monitor and record waste packages, to load the waste packages into concrete disposal units, to enable capping and closure of the disposal unit s, to allow monitoring following closure. The ENSDF comprises the turnkey installation of a near surface repository in the form of an engineered facility for the final disposal of LILW-SL conditioned in the ICSRM SWPF and other sources of Chernobyl waste. The project has to deal with the challenges of the Chernobyl environment, the fulfillment of both Western and Ukrainian standards, and the installation and coordination of an international project team. It will be shown that proven technologies and processes can be assembled into a unique Management Concept dealing with all the necessary demands and requirements of a turnkey project. The paper emphasizes the proposed concepts for the ENSDF and their integration into existing infrastructure and installations of the VEKTOR site. Further, the paper will consider the integration of Western and Ukrainian Organizations into a cohesive project team and the requirement to guarantee the fulfillment of both Western standards and Ukrainian

  5. 75 FR 71733 - Requirements for Measurement Facilities Used for the Royalty Valuation of Processed Natural Gas

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-24

    ... Bureau of Ocean Energy Management, Regulation and Enforcement Requirements for Measurement Facilities... measurement equipment at gas plants and other processing facilities. SUMMARY: This notice provides information... measurement of Federal production at gas processing plants when royalty is reported and paid on processed...

  6. Chronic Beryllium Disease and Sensitization at a Beryllium Processing Facility

    PubMed Central

    Rosenman, Kenneth; Hertzberg, Vicki; Rice, Carol; Reilly, Mary Jo; Aronchick, Judith; Parker, John E.; Regovich, Jackie; Rossman, Milton

    2005-01-01

    We conducted a medical screening for beryllium disease of 577 former workers from a beryllium processing facility. The screening included a medical and work history questionnaire, a chest radiograph, and blood lymphocyte proliferation testing for beryllium. A task exposure and a job exposure matrix were constructed to examine the association between exposure to beryllium and the development of beryllium disease. More than 90% of the cohort completed the questionnaire, and 74% completed the blood and radiograph component of the screening. Forty-four (7.6%) individuals had definite or probable chronic beryllium disease (CBD), and another 40 (7.0%) were sensitized to beryllium. The prevalence of CBD and sensitization in our cohort was greater than the prevalence reported in studies of other beryllium-exposed cohorts. Various exposure measures evaluated included duration; first decade worked; last decade worked; cumulative, mean, and highest job; and highest task exposure to beryllium (to both soluble and nonsoluble forms). Soluble cumulative and mean exposure levels were lower in individuals with CBD. Sensitized individuals had shorter duration of exposure, began work later, last worked longer ago, and had lower cumulative and peak exposures and lower nonsoluble cumulative and mean exposures. A possible explanation for the exposure–response findings of our study may be an interaction between genetic predisposition and a decreased permanence of soluble beryllium in the body. Both CBD and sensitization occurred in former workers whose mean daily working lifetime average exposures were lower than the current allowable Occupational Safety and Health Administration workplace air level of 2 μg/m3 and the Department of Energy guideline of 0.2 μg/m3. PMID:16203248

  7. Plantwide Energy Assessment of a Sugarcane Farming and Processing Facility

    SciTech Connect

    Jakeway, L.A.; Turn, S.Q.; Keffer, V.I.; Kinoshita, C.M.

    2006-02-27

    A plantwide energy assessment was performed at Hawaiian Commercial & Sugar Co., an integrated sugarcane farming and processing facility on the island of Maui in the State of Hawaii. There were four main tasks performed for the plantwide energy assessment: 1) pump energy assessment in both field and factory operations, 2) steam generation assessment in the power production operations, 3) steam distribution assessment in the sugar manufacturing operation, and 4) electric power distribution assessment of the company system grid. The energy savings identified in each of these tasks were summarized in terms of fuel savings, electricity savings, or opportunity revenue that potentially exists mostly from increased electric power sales to the local electric utility. The results of this investigation revealed eight energy saving projects that can be implemented at HC&S. These eight projects were determined to have potential for $1.5 million in annual fuel savings or 22,337 MWh equivalent annual electricity savings. Most of the savings were derived from pump efficiency improvements and steam efficiency improvements both in generation and distribution. If all the energy saving projects were implemented and the energy savings were realized as less fuel consumed, there would be corresponding reductions in regulated air pollutants and carbon dioxide emissions from supplemental coal fuel. As HC&S is already a significant user of renewable biomass fuel for its operations, the projected reductions in air pollutants and emissions will not be as great compared to using only coal fuel for example. A classification of implementation priority into operations was performed for the identified energy saving projects based on payback period and ease of implementation.

  8. Overview of NORM and activities by a NORM licensed permanent decontamination and waste processing facility

    SciTech Connect

    Mirro, G.A.

    1997-02-01

    This paper presents an overview of issues related to handling NORM materials, and provides a description of a facility designed for the processing of NORM contaminated equipment. With regard to handling NORM materials the author discusses sources of NORM, problems, regulations and disposal options, potential hazards, safety equipment, and issues related to personnel protection. For the facility, the author discusses: description of the permanent facility; the operations of the facility; the license it has for handling specific radioactive material; operating and safety procedures; decontamination facilities on site; NORM waste processing capabilities; and offsite NORM services which are available.

  9. 10 CFR 70.64 - Requirements for new facilities or new processes at existing facilities.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... throughout the life of the facility. (2) Natural phenomena hazards. The design must provide for adequate protection against natural phenomena with consideration of the most severe documented historical events for... selection of engineered controls over administrative controls to increase overall system reliability; and...

  10. Process Control Manual for Aerobic Biological Wastewater Treatment Facilities.

    ERIC Educational Resources Information Center

    Environmental Protection Agency, Washington, DC. Office of Water Programs.

    This Environmental Protection Agency (EPA) publication is an operations manual for activated sludge and trickling filter wastewater treatment facilities. The stated purpose of the manual is to provide an on-the-job reference for operators of these two types of treatment plants. The overall objective of the manual is to aid the operator in…

  11. Integrating Sustainability Programs into the Facilities Capital Planning Process

    ERIC Educational Resources Information Center

    Buchanan, Susan

    2011-01-01

    With detailed information about the costs and benefits of potential green investments, educational facilities can effectively evaluate which initiatives will ultimately provide the greatest results over the short and long term. Based on its overall goals, every school, college, or university will have different values and therefore different…

  12. Hardware Development Process for Human Research Facility Applications

    NASA Technical Reports Server (NTRS)

    Bauer, Liz

    2000-01-01

    The simple goal of the Human Research Facility (HRF) is to conduct human research experiments on the International Space Station (ISS) astronauts during long-duration missions. This is accomplished by providing integration and operation of the necessary hardware and software capabilities. A typical hardware development flow consists of five stages: functional inputs and requirements definition, market research, design life cycle through hardware delivery, crew training, and mission support. The purpose of this presentation is to guide the audience through the early hardware development process: requirement definition through selecting a development path. Specific HRF equipment is used to illustrate the hardware development paths. The source of hardware requirements is the science community and HRF program. The HRF Science Working Group, consisting of SCientists from various medical disciplines, defined a basic set of equipment with functional requirements. This established the performance requirements of the hardware. HRF program requirements focus on making the hardware safe and operational in a space environment. This includes structural, thermal, human factors, and material requirements. Science and HRF program requirements are defined in a hardware requirements document which includes verification methods. Once the hardware is fabricated, requirements are verified by inspection, test, analysis, or demonstration. All data is compiled and reviewed to certify the hardware for flight. Obviously, the basis for all hardware development activities is requirement definition. Full and complete requirement definition is ideal prior to initiating the hardware development. However, this is generally not the case, but the hardware team typically has functional inputs as a guide. The first step is for engineers to conduct market research based on the functional inputs provided by scientists. CommerCially available products are evaluated against the science requirements as

  13. Overview of the Facility Safeguardability Analysis (FSA) Process

    SciTech Connect

    Bari, Robert A.; Hockert, John; Wonder, Edward F.; Johnson, Scott J.; Wigeland, Roald; Zentner, Michael D.

    2012-08-01

    Executive Summary The safeguards system of the International Atomic Energy Agency (IAEA) is intended to provide the international community with credible assurance that a State is fulfilling its safeguards obligations. Effective and cost-efficient IAEA safeguards at the facility level are, and will remain, an important element of IAEA safeguards as those safeguards evolve towards a “State-Level approach.” The Safeguards by Design (SBD) concept can facilitate the implementation of these effective and cost-efficient facility-level safeguards (Bjornard, et al. 2009a, 2009b; IAEA, 1998; Wonder & Hockert, 2011). This report, sponsored by the National Nuclear Security Administration’s Office of Nuclear Safeguards and Security, introduces a methodology intended to ensure that the diverse approaches to Safeguards by Design can be effectively integrated and consistently used to cost effectively enhance the application of international safeguards.

  14. Overview of Fiscal Year 2002 Research and Development for Savannah River Site's Salt Waste Processing Facility

    SciTech Connect

    H. D. Harmon, R. Leugemors, PNNL; S. Fink, M. Thompson, D. Walker, WSRC; P. Suggs, W. D. Clark, Jr

    2003-02-26

    The Department of Energy's (DOE) Savannah River Site (SRS) high-level waste program is responsible for storage, treatment, and immobilization of high-level waste for disposal. The Salt Processing Program (SPP) is the salt (soluble) waste treatment portion of the SRS high-level waste effort. The overall SPP encompasses the selection, design, construction and operation of treatment technologies to prepare the salt waste feed material for the site's grout facility (Saltstone) and vitrification facility (Defense Waste Processing Facility). Major constituents that must be removed from the salt waste and sent as feed to Defense Waste Processing Facility include actinides, strontium, cesium, and entrained sludge. In fiscal year 2002 (FY02), research and development (R&D) on the actinide and strontium removal and Caustic-Side Solvent Extraction (CSSX) processes transitioned from technology development for baseline process selection to providing input for conceptual design of the Salt Waste Processing Facility. The SPP R&D focused on advancing the technical maturity, risk reduction, engineering development, and design support for DOE's engineering, procurement, and construction (EPC) contractors for the Salt Waste Processing Facility. Thus, R&D in FY02 addressed the areas of actual waste performance, process chemistry, engineering tests of equipment, and chemical and physical properties relevant to safety. All of the testing, studies, and reports were summarized and provided to the DOE to support the Salt Waste Processing Facility, which began conceptual design in September 2002.

  15. Design and construction of the defense waste processing facility project at the Savannah River Plant

    SciTech Connect

    Baxter, R G

    1986-01-01

    The Du Pont Company is building for the Department of Energy a facility to vitrify high-level radioactive waste at the Savannah River Plant (SRP) near Aiken, South Carolina. The Defense Waste Processing Facility (DWPF) will solidify existing and future radioactive wastes by immobilizing the waste in Processing Facility (DWPF) will solidify existing and future radioactives wastes by immobilizing the waste in borosilicate glass contained in stainless steel canisters. The canisters will be sealed, decontaminated and stored, prior to emplacement in a federal repository. At the present time, engineering and design is 90% complete, construction is 25% complete, and radioactive processing in the $870 million facility is expected to begin by late 1989. This paper describes the SRP waste characteristics, the DWPF processing, building and equipment features, and construction progress of the facility.

  16. FRIT OPTIMIZATION FOR SLUDGE BATCH PROCESSING AT THE DEFENSE WASTE PROCESSING FACILITY

    SciTech Connect

    Fox, K.

    2009-01-28

    The Savannah River National Laboratory (SRNL) Frit Development Team recommends that the Defense Waste Processing Facility (DWPF) utilize Frit 418 for initial processing of high level waste (HLW) Sludge Batch 5 (SB5). The extended SB5 preparation time and need for DWPF feed have necessitated the use of a frit that is already included on the DWPF procurement specification. Frit 418 has been used previously in vitrification of Sludge Batches 3 and 4. Paper study assessments predict that Frit 418 will form an acceptable glass when combined with SB5 over a range of waste loadings (WLs), typically 30-41% based on nominal projected SB5 compositions. Frit 418 has a relatively high degree of robustness with regard to variation in the projected SB5 composition, particularly when the Na{sub 2}O concentration is varied. The acceptability (chemical durability) and model applicability of the Frit 418-SB5 system will be verified experimentally through a variability study, to be documented separately. Frit 418 has not been designed to provide an optimal melt rate with SB5, but is recommended for initial processing of SB5 until experimental testing to optimize a frit composition for melt rate can be completed. Melt rate performance can not be predicted at this time and must be determined experimentally. Note that melt rate testing may either identify an improved frit for SB5 processing (one which produces an acceptable glass at a faster rate than Frit 418) or confirm that Frit 418 is the best option.

  17. RECOMMENDED FRIT COMPOSITION FOR INITIAL SLUDGE BATCH 5 PROCESSING AT THE DEFENSE WASTE PROCESSING FACILITY

    SciTech Connect

    Fox, K; Tommy Edwards, T; David Peeler, D

    2008-06-25

    The Savannah River National Laboratory (SRNL) Frit Development Team recommends that the Defense Waste Processing Facility (DWPF) utilize Frit 418 for initial processing of high level waste (HLW) Sludge Batch 5 (SB5). The extended SB5 preparation time and need for DWPF feed have necessitated the use of a frit that is already included on the DWPF procurement specification. Frit 418 has been used previously in vitrification of Sludge Batches 3 and 4. Paper study assessments predict that Frit 418 will form an acceptable glass when combined with SB5 over a range of waste loadings (WLs), typically 30-41% based on nominal projected SB5 compositions. Frit 418 has a relatively high degree of robustness with regard to variation in the projected SB5 composition, particularly when the Na{sub 2}O concentration is varied. The acceptability (chemical durability) and model applicability of the Frit 418-SB5 system will be verified experimentally through a variability study, to be documented separately. Frit 418 has not been designed to provide an optimal melt rate with SB5, but is recommended for initial processing of SB5 until experimental testing to optimize a frit composition for melt rate can be completed. Melt rate performance can not be predicted at this time and must be determined experimentally. Note that melt rate testing may either identify an improved frit for SB5 processing (one which produces an acceptable glass at a faster rate than Frit 418) or confirm that Frit 418 is the best option.

  18. Alaska Synthetic Aperture Radar (SAR) Facility science data processing architecture

    NASA Technical Reports Server (NTRS)

    Hilland, Jeffrey E.; Bicknell, Thomas; Miller, Carol L.

    1991-01-01

    The paper describes the architecture of the Alaska SAR Facility (ASF) at Fairbanks, being developed to generate science data products for supporting research in sea ice motion, ice classification, sea-ice-ocean interaction, glacier behavior, ocean waves, and hydrological and geological study areas. Special attention is given to the individual substructures of the ASF: the Receiving Ground Station (RGS), the SAR Processor System, and the Interactive Image Analysis System. The SAR data will be linked to the RGS by the ESA ERS-1 and ERS-2, the Japanese ERS-1, and the Canadian Radarsat.

  19. Simulation of mass storage systems operating in a large data processing facility

    NASA Technical Reports Server (NTRS)

    Holmes, R.

    1972-01-01

    A mass storage simulation program was written to aid system designers in the design of a data processing facility. It acts as a tool for measuring the overall effect on the facility of on-line mass storage systems, and it provides the means of measuring and comparing the performance of competing mass storage systems. The performance of the simulation program is demonstrated.

  20. Safety and environmental process for the design and construction of the National Ignition Facility

    SciTech Connect

    Brereton, S.J., LLNL

    1998-05-27

    The National Ignition Facility (NIF) is a U.S. Department of Energy (DOE) laser fusion experimental facility currently under construction at the Lawrence Livermore National Laboratory (LLNL). This paper describes the safety and environmental processes followed by NIF during the design and construction activities.

  1. Seismic Qualification Program Plan for continued operation at DOE-SRS Nuclear Material Processing facilities

    SciTech Connect

    Talukdar, B.K.; Kennedy, W.N.

    1991-12-31

    The Savannah River Facilities for the most part were constructed and maintained to standards that were developed by Du Pont and are not rigorously in compliance with the current General Design Criteria (GDC); DOE Order 6430.1A requirements. In addition, any of the facilities were built more than 30 years ago, well before DOE standards for design were issued. The Westinghouse Savannah River Company (WSRC) has developed a program to address the evaluation of the Nuclear Material Processing (NMP) facilities to GDC requirements. The program includes a facility base-line review, assessment of areas that are not in compliance with the GDC requirements, planned corrective actions or exemptions to address the requirements, and a safety assessment. The authors from their direct involvement with the Program, describe the program plan for seismic qualification including other natural phenomena hazards for existing NMP facility structures to continue operation. Professionals involved in similar effort at other DOE facilities may find the program useful.

  2. Seismic Qualification Program Plan for continued operation at DOE-SRS Nuclear Material Processing facilities

    SciTech Connect

    Talukdar, B.K.; Kennedy, W.N.

    1991-01-01

    The Savannah River Facilities for the most part were constructed and maintained to standards that were developed by Du Pont and are not rigorously in compliance with the current General Design Criteria (GDC); DOE Order 6430.1A requirements. In addition, any of the facilities were built more than 30 years ago, well before DOE standards for design were issued. The Westinghouse Savannah River Company (WSRC) has developed a program to address the evaluation of the Nuclear Material Processing (NMP) facilities to GDC requirements. The program includes a facility base-line review, assessment of areas that are not in compliance with the GDC requirements, planned corrective actions or exemptions to address the requirements, and a safety assessment. The authors from their direct involvement with the Program, describe the program plan for seismic qualification including other natural phenomena hazards for existing NMP facility structures to continue operation. Professionals involved in similar effort at other DOE facilities may find the program useful.

  3. A new design concept for an automated peanut processing facility

    SciTech Connect

    Ertas, A.; Tanju, B.T.; Fair, W.T.; Butts, C.

    1996-12-31

    Peanut quality is a major concern in all phases of the peanut industry from production to manufacturing. Postharvest processing of peanuts can have profound effects on the quality and safety of peanut food products. Curing is a key step in postharvest processing. Curing peanuts improperly can significantly reduce quality, and result in significant losses to both farmers and processors. The conventional drying system designed in the 1960`s is still being used in the processing of the peanuts today. The objectives of this paper is to design and develop a new automated peanut drying system for dry climates capable of handling approximately 20 million lbm of peanuts per harvest season.

  4. Characterization of decontamination and decommissioning wastes expected from the major processing facilities in the 200 Areas

    SciTech Connect

    Amato, L.C.; Franklin, J.D.; Hyre, R.A.; Lowy, R.M.; Millar, J.S.; Pottmeyer, J.A.; Duncan, D.R.

    1994-08-01

    This study was intended to characterize and estimate the amounts of equipment and other materials that are candidates for removal and subsequent processing in a solid waste facility when the major processing and handling facilities in the 200 Areas of the Hanford Site are decontaminated and decommissioned. The facilities in this study were selected based on processing history and on the magnitude of the estimated decommissioning cost cited in the Surplus Facilities Program Plan; Fiscal Year 1993 (Winship and Hughes 1992). The facilities chosen for this study include B Plant (221-B), T Plant (221-T), U Plant (221-U), the Uranium Trioxide (UO{sub 3}) Plant (224-U and 224-UA), the Reduction Oxidation (REDOX) or S Plant (202-S), the Plutonium Concentration Facility for B Plant (224-B), and the Concentration Facility for the Plutonium Finishing Plant (PFP) and REDOX (233-S). This information is required to support planning activities for current and future solid waste treatment, storage, and disposal operations and facilities.

  5. Criticality Safety Evaluation Report for the Cold Vacuum Drying (CVD) Facilities Process Water Handling System

    SciTech Connect

    KESSLER, S.F.

    2000-08-10

    This report addresses the criticality concerns associated with process water handling in the Cold Vacuum Drying Facility. The controls and limitations on equipment design and operations to control potential criticality occurrences are identified.

  6. Criticality safety evaluation report for the cold vacuum drying facility's process water handling system

    SciTech Connect

    NELSON, J.V.

    1999-05-12

    This report addresses the criticality concerns associated with process water handling in the Cold Vacuum Drying Facility. The controls and limitations on equipment design and operations to control potential criticality occurrences are identified.

  7. Facility Siting as a Decision Process at the Savannah River Site

    SciTech Connect

    Wike, L.D.

    2001-07-24

    This document is based upon previous site selection exercises conducted for a variety of proposed facilities. It develops the logic and basis for the methods employed, and standardizes the process and terminology for future site selection efforts.

  8. REPORT ON TWO PROCESS EQUIPMENT CHANGES FOR FEDERAL PAINTING FACILITIES

    EPA Science Inventory

    EPA's National Risk Management Research Laboratory (NRMRL) has actively participated in the Strategic Environmental Research and Development Program (SERDP) to develop innovative technologies and processes for the reduction of environmental pollution. Technology developments fro...

  9. Plutonium production story at the Hanford site: processes and facilities history

    SciTech Connect

    Gerber, M.S., Westinghouse Hanford

    1996-06-20

    This document tells the history of the actual plutonium production process at the Hanford Site. It contains five major sections: Fuel Fabrication Processes, Irradiation of Nuclear Fuel, Spent Fuel Handling, Radiochemical Reprocessing of Irradiated Fuel, and Plutonium Finishing Operations. Within each section the story of the earliest operations is told, along with changes over time until the end of operations. Chemical and physical processes are described, along with the facilities where these processes were carried out. This document is a processes and facilities history. It does not deal with the waste products of plutonium production.

  10. Lax regulation of oil vessels and processing facilities continues

    SciTech Connect

    Sankovitch, N.

    1993-12-31

    Four years after the grounding of the Exxon Valdez on Bligh Reef in 1989, oil spills continue to occur with alarming frequency: In 1992 the Shoko Maru spilled more than 96,000 gallons of crude oil into the Texas City Channel and a leak at an offshore well in Louisiana spilled at least 30,000 gallons; in 1991 alone, there were 677 spills in the Port of New Orleans, 398 spills in New York Harbor, 239 spills in Port of Hampton Roads, 235 spills in Port of Philadelphia, 130 spills in Seattle, and 116 spills in Boston Harbor. The amount of oil spilled in these ports alone in one year exceeded 300,000 gallons. The recent huge spills off foreign coasts-the Shetland Islands, the coasts of Spain and Indonesia-reinforce the importance of regulation. The Oil Pollution Act, passed in August 1992 mandates that all vessels traveling in US waters and all oil transfer and storage facilities take measurable and enforceable actions to reduce spills. However, major problems remain, both with the act and with enforcing it. This article discusses both the problems and the solutions to pollution control of oil spills.

  11. Quality Assurance Program description, Defense Waste Processing Facility (DWPF)

    SciTech Connect

    Maslar, S.R.

    1992-11-02

    This document describes the Westinghouse Savannah River Company's (WSRC) Quality Assurance Program for Defense Waste Processing at the Savannah River Site (SRS). WSRC is the operating contractor for the US Department of Energy (DOE) at the SRS. The following objectives are achieved through developing and implementing the Quality Assurance Program: (1) Ensure that the attainment of quality (in accomplishing defense high-level waste processing objectives at the SRS) is at a level commensurate with the government's responsibility for protecting public health and safety, the environment, the public investment, and for efficiently and effectively using national resources. (2) Ensure that high-level waste from qualification and production activities conform to requirements defined by OCRWM. These activities include production processes, equipment, and services; and products that are planned, designed, procured, fabricated, installed, tested, operated, maintained, modified, or produced.

  12. Grout pump selection process for the Transportable Grout Facility

    SciTech Connect

    McCarthy, D.; Treat, R.L.

    1985-01-01

    Selected low-level radioactive liquid wastes at Hanford will be disposed by grouting. Grout is formed by mixing the liquid wastes with solid materials, including Portland cement, fly ash, and clay. The mixed grouts will be pumped to disposal sites (e.g., trenches and buried structures) where the grout will be allowed to harden and, thereby, immobilize the wastes. A Transportable Grout Facility (TGF) will be constructed and operated by Rockwell Hanford Operations to perform the grouting function. A critical component of the TGF is the grout pump. A preliminary review of pumping requirements identified reciprocating pumps and progressive cavity pumps as the two classes of pumps best suited for the application. The advantages and disadvantages of specific types of pumps within these two classes were subsequently investigated. As a result of this study, the single-screw, rotary positive displacement pump was identified as the best choice for the TGF application. This pump has a simple design, is easy to operate, is rugged, and is suitable for a radioactive environment. It produces a steady, uniform flow that simplifies suction and discharge piping requirements. This pump will likely require less maintenance than reciprocating pumps and can be disassembled rapidly and decontaminated easily. If the TGF should eventually require discharge pressures in excess of 500 psi, a double-acting duplex piston pump is recommended because it can operate at low speed, with only moderate flow rate fluctuations. However, the check valves, stuffing box, piston, suction, and discharge piping must be designed carefully to allow trouble-free operations.

  13. Attached Bacterial Cell Contamination of Shell Egg Processing Facilities

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sanitation is vital to providing safe, healthy food to consumers. Understanding the degree to which microorganisms persist on specific equipment or locations contributes to developing effective sanitation programs. Certain microbial populations may be used to determine areas within a processing pl...

  14. SSOPs and GMPs for commercial shell egg processing facilities

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Hazard analysis and critical control programs (HACCP) will eventually be required for commercial shell egg processing plants. Sanitation is an essential prerequisite program for HACCP and is based upon current Good Manufacturing Practices (cGMPs) as listed in the Code of Federal Regulations. Good ...

  15. Application of artificial intelligence to melter control: Realtime process advisor for the scale melter facility

    SciTech Connect

    Edwards, Jr, R E

    1988-01-01

    The Defense Waste Processing Facility (DWPF) at the Savannah River Plant (SRP) is currently under construction and when completed will process high-level radioactive waste into a borosilicate glass wasteform. This facility will consist of numerous batch chemical processing steps as well as the continuous operation of a joule-heated melter and its off-gas treatment system. A realtime process advisor system based on Artificial Intelligence (AI) techniques has been developed and is currently in use at the semiworks facility, which is operating a 2/3 scale of the DWPF joule-heated melter. The melter advisor system interfaces to the existing data collection and control system and monitors current operations of this facility. The advisor then provides advice to operators and engineers when it identifies process problems. The current system is capable of identifying process problems such as feed system pluggages and thermocouple failures and providing recommended actions. The system also provides facilities normally with distributed control systems. These include the ability to display process flowsheets, monitor alarm conditions, and check the status of process interlocks. 7 figs.

  16. Lessons learned from the Siting Process of an Interim Storage Facility in Spain - 12024

    SciTech Connect

    Lamolla, Meritxell Martell

    2012-07-01

    On 29 December 2009, the Spanish government launched a site selection process to host a centralised interim storage facility for spent fuel and high-level radioactive waste. It was an unprecedented call for voluntarism among Spanish municipalities to site a controversial facility. Two nuclear municipalities, amongst a total of thirteen municipalities from five different regions, presented their candidatures to host the facility in their territories. For two years the government did not make a decision. Only in November 30, 2011, the new government elected on 20 November 2011 officially selected a non-nuclear municipality, Villar de Canas, for hosting this facility. This paper focuses on analysing the factors facilitating and hindering the siting of controversial facilities, in particular the interim storage facility in Spain. It demonstrates that involving all stakeholders in the decision-making process should not be underestimated. In the case of Spain, all regional governments where there were candidate municipalities willing to host the centralised interim storage facility, publicly opposed to the siting of the facility. (author)

  17. Progress of the High Level Waste Program at the Defense Waste Processing Facility - 13178

    SciTech Connect

    Bricker, Jonathan M.; Fellinger, Terri L.; Staub, Aaron V.; Ray, Jeff W.; Iaukea, John F.

    2013-07-01

    The Defense Waste Processing Facility at the Savannah River Site treats and immobilizes High Level Waste into a durable borosilicate glass for safe, permanent storage. The High Level Waste program significantly reduces environmental risks associated with the storage of radioactive waste from legacy efforts to separate fissionable nuclear material from irradiated targets and fuels. In an effort to support the disposition of radioactive waste and accelerate tank closure at the Savannah River Site, the Defense Waste Processing Facility recently implemented facility and flowsheet modifications to improve production by 25%. These improvements, while low in cost, translated to record facility production in fiscal years 2011 and 2012. In addition, significant progress has been accomplished on longer term projects aimed at simplifying and expanding the flexibility of the existing flowsheet in order to accommodate future processing needs and goals. (authors)

  18. Statistical process control program at a ceramics vendor facility

    SciTech Connect

    Enke, G.M.

    1992-12-01

    Development of a statistical process control (SPC) program at a ceramics vendor location was deemed necessary to improve product quality, reduce manufacturing flowtime, and reduce quality costs borne by AlliedSignal Inc., Kansas City Division (KCD), and the vendor. Because of the lack of available KCD manpower and the required time schedule for the project, it was necessary for the SPC program to be implemented by an external contractor. Approximately a year after the program had been installed, the original baseline was reviewed so that the success of the project could be determined.

  19. Certification of U.S. instrumentation in Russian nuclear processing facilities

    SciTech Connect

    D.H. Powell; J.N. Sumner

    2000-07-12

    Agreements between the United States (U.S.) and the Russian Federation (R.F.) require the down-blending of highly enriched uranium (HEU) from dismantled Russian Federation nuclear weapons. The Blend Down Monitoring System (BDMS) was jointly developed by the Los Alamos National Laboratory (LANL) and the Oak Ridge National Laboratory (ORNL) to continuously monitor the enrichments and flow rates in the HEU blending operations at the R.F. facilities. A significant requirement of the implementation of the BDMS equipment in R.F. facilities concerned the certification of the BDMS equipment for use in a Russian nuclear facility. This paper discusses the certification of the BDMS for installation in R.F. facilities, and summarizes the lessons learned from the process that can be applied to the installation of other U.S. equipment in Russian nuclear facilities.

  20. Development of Advanced Multizone Facilities for Microgravity Processing

    NASA Technical Reports Server (NTRS)

    1998-01-01

    NASA has been interested in experimental ground based study to investigate the fundamental processes involved in phase transformation processes during growth of metallic, nonmetallic and electronic materials. Solidification, vapor growth and solution growth techniques of growing crystals are of special interest because of the inherent importance of convection in the nutrient solution. Convection enhances the mass transport through the nutrient and results in faster growth rates. Availability of low gravity environment of space has provided scientists a new variable to control the extent of convection and thus isolate the diffusive phenomena for their better understanding. The thermal gradient at the liquid-solid interface is determined by the alloy characteristics, the hot zone temperature, cold zone temperature and the width of the insulating zone. The thermal profiles get established by the existing material and geometrical constraints of the experimental set up. The major effort under this research was devoted to designing a programmable furnace which can be used to obtain thermal profiles along the length of the sample as per the demands of the scientists. The furnace did not have active cooling of the zones. Only active heating and passive cooling were utilized.

  1. Defense waste processing facility (DWPF) environmental dosimetry data

    SciTech Connect

    Marter, W.L.; Bauer, L.R.

    1990-04-09

    The original Environmental Impact Statement for the DWPF was issued in 1982. Since that time, estimated releases of radioactivity to the environment have changed because of the DWPF process. In addition, the methodology for calculating offsite doses from routine releases has changed. In anticipation of a potential supplement to the 1982 EIS, current dosimetry methodology has been used to estimate offsite doses from the current as-constructed estimate of radioactivity releases. Offsite doses have also been calculated for the radioactivity release data published in the 1982 EIS using current dosimetry methodology. The two data sets may therefore be used to compare the estimated original and current impacts. This memorandum documents the results of the offsite dose calculations for routine operation of the DWPF. Also included is a brief description of methodology and parameters used in the calculations. 8 refs., 2 figs., 10 tabs.

  2. Waste Receiving and Processing Facility Module 2A: Advanced Conceptual Design Report. Volume 1

    SciTech Connect

    Not Available

    1994-03-01

    This ACDR was performed following completed of the Conceptual Design Report in July 1992; the work encompassed August 1992 to January 1994. Mission of the WRAP Module 2A facility is to receive, process, package, certify, and ship for permanent burial at the Hanford site disposal facilities the Category 1 and 3 contact handled low-level radioactive mixed wastes that are currently in retrievable storage at Hanford and are forecast to be generated over the next 30 years by Hanford, and waste to be shipped to Hanford from about DOE sites. This volume provides an introduction to the ACDR process and the scope of the task along with a project summary of the facility, treatment technologies, cost, and schedule. Major areas of departure from the CDR are highlighted. Descriptions of the facility layout and operations are included.

  3. Implementation of the DYMAC system at the new Los Alamos Plutonium Processing Facility. Phase II report

    SciTech Connect

    Malanify, J.J.; Amsden, D.C.

    1982-08-01

    The DYnamic Materials ACcountability System - called DYMAC - performs accountability functions at the new Los Alamos Plutonium Processing Facility where it began operation when the facility opened in January 1978. A demonstration program, DYMAC was designed to collect and assess inventory information for safeguards purposes. It accomplishes 75% of its design goals. DYMAC collects information about the physical inventory through deployment of nondestructive assay instrumentation and video terminals throughout the facility. The information resides in a minicomputer where it can be immediately sorted and displayed on the video terminals or produced in printed form. Although the capability now exists to assess the collected data, this portion of the program is not yet implemented. DYMAC in its present form is an excellent tool for process and quality control. The facility operator relies on it exclusively for keeping track of the inventory and for complying with accountability requirements of the US Department of Energy.

  4. Preliminary technical data summary No. 3 for the Defense Waste Processing Facility

    SciTech Connect

    Landon, L.F.

    1980-05-01

    This document presents an update on the best information presently available for the purpose of establishing the basis for the design of a Defense Waste Processing Facility. Objective of this project is to provide a facility to fix the radionuclides present in Savannah River Plant (SRP) high-level liquid waste in a high-integrity form (glass). Flowsheets and material balances reflect the alternate CAB case including the incorporation of low-level supernate in concrete. (DLC)

  5. Radon Reduction Experience at a Former Uranium Processing Facility

    SciTech Connect

    Eger, K. J.; Rutherford, L.; Rickett, K.; Fellman, R.; Hungate, S.

    2004-02-29

    Approximately 6,200 cubic meters of waste containing about 2.0E8 MBq of radium-226 are stored in two large silos at the Fernald Site in southwest Ohio. The material is scheduled for retrieval, packaging, off site shipment and disposal by burial. Air in the silos above the stored material contained radon-222 at a concentration of 7.4 E5 Bq/L. Short-lived daughters formed by decay in these headspaces generated dose rates at contact with the top of the silos up to 1.05 mSv/hr and there complicate the process of retrieval. A Radon Control System (RCS) employing carbon adsorption beds has been designed under contract with the Fluor Fernald to remove most of the radon in the headspaces and maintain lower concentrations during periods when work on or above the domes is needed. Removing the radon also removes the short-lived daughters and reduces the dose rate near the domes to 20 to 30 {mu}Sv/hr. Failing to remove the radon would be costly, in the exposure of personnel needed to work extended periods at these moderate dose rates, or in dollars for the application of remote retrieval techniques. In addition, the RCS minimizes the potential for environmental releases. This paper describes the RCS, its mode of operation, and early experiences. The results of the test described herein and the experience gained from operation of the RCS during its first phase of continuous operation, will be used to determine the best air flow, and air flow distribution, the most desirable number and sequence number and sequence of adsorption beds to be used and the optimum application of air recycle within the RCS.

  6. Data reduction complex analog-to-digital data processing requirements for onsite test facilities

    NASA Technical Reports Server (NTRS)

    Debbrecht, J. D.

    1976-01-01

    The analog to digital processing requirements of onsite test facilities are described. The source and medium of all input data to the Data Reduction Complex (DRC) and the destination and medium of all output products of the analog-to-digital processing are identified. Additionally, preliminary input and output data formats are presented along with the planned use of the output products.

  7. 10 CFR 1016.8 - Approval for processing access permittees for security facility approval.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 4 2011-01-01 2011-01-01 false Approval for processing access permittees for security facility approval. 1016.8 Section 1016.8 Energy DEPARTMENT OF ENERGY (GENERAL PROVISIONS) SAFEGUARDING OF RESTRICTED DATA Physical Security § 1016.8 Approval for processing access permittees for security...

  8. 10 CFR 1016.8 - Approval for processing access permittees for security facility approval.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 4 2013-01-01 2013-01-01 false Approval for processing access permittees for security facility approval. 1016.8 Section 1016.8 Energy DEPARTMENT OF ENERGY (GENERAL PROVISIONS) SAFEGUARDING OF RESTRICTED DATA Physical Security § 1016.8 Approval for processing access permittees for security...

  9. 10 CFR 1016.8 - Approval for processing access permittees for security facility approval.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 4 2012-01-01 2012-01-01 false Approval for processing access permittees for security facility approval. 1016.8 Section 1016.8 Energy DEPARTMENT OF ENERGY (GENERAL PROVISIONS) SAFEGUARDING OF RESTRICTED DATA Physical Security § 1016.8 Approval for processing access permittees for security...

  10. 10 CFR 1016.8 - Approval for processing access permittees for security facility approval.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 4 2014-01-01 2014-01-01 false Approval for processing access permittees for security facility approval. 1016.8 Section 1016.8 Energy DEPARTMENT OF ENERGY (GENERAL PROVISIONS) SAFEGUARDING OF RESTRICTED DATA Physical Security § 1016.8 Approval for processing access permittees for security...

  11. ST. LOUIS DEMONSTRATION: REFUSE PROCESSING PLANT EQUIPMENT, FACILITIES, AND ENVIRONMENTAL EVALUATIONS

    EPA Science Inventory

    This report presents the results of processing plant evaluations of the St. Louis-Union Electric Refuse Fuel Project, including equipment and facilities as well as assessment of environmental emissions at both the processing and power plants. Data on plant material flows and oper...

  12. Enterobacteriaceae and related organisms isolated from nest run cart shelves in commercial shell egg processing facilities

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Enterobacteriaceae, including Salmonella may be recovered from foods and processing facilities. High levels of Enterobacteriaceae in the processing plant environment can be an indication of inadequate sanitation. This experiment was designed to determine if nest run egg carts serve as reservoirs ...

  13. 10 CFR 1016.8 - Approval for processing access permittees for security facility approval.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Approval for processing access permittees for security facility approval. 1016.8 Section 1016.8 Energy DEPARTMENT OF ENERGY (GENERAL PROVISIONS) SAFEGUARDING OF RESTRICTED DATA Physical Security § 1016.8 Approval for processing access permittees for security...

  14. Assessment of Microbial Contaminants Present on Vacuum Loaders in Shell Egg Processing Facilities

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Previous studies have shown vacuum loader cups in shell egg processing facilities to be a reservoir of high levels of bacteria. This study was conducted to determine the prevalence of pathogens on the surface of the vacuum loaders cups. An off-line and a mixed operation shell egg processing facili...

  15. Nuclear Solid Waste Processing Design at the Idaho Spent Fuels Facility

    SciTech Connect

    Dippre, M. A.

    2003-02-25

    A spent nuclear fuels (SNF) repackaging and storage facility was designed for the Idaho National Engineering and Environmental Laboratory (INEEL), with nuclear solid waste processing capability. Nuclear solid waste included contaminated or potentially contaminated spent fuel containers, associated hardware, machinery parts, light bulbs, tools, PPE, rags, swabs, tarps, weld rod, and HEPA filters. Design of the nuclear solid waste processing facilities included consideration of contractual, regulatory, ALARA (as low as reasonably achievable) exposure, economic, logistical, and space availability requirements. The design also included non-attended transfer methods between the fuel packaging area (FPA) (hot cell) and the waste processing area. A monitoring system was designed for use within the FPA of the facility, to pre-screen the most potentially contaminated fuel canister waste materials, according to contact- or non-contact-handled capability. Fuel canister waste materials which are not able to be contact-handled after attempted decontamination will be processed remotely and packaged within the FPA. Noncontact- handled materials processing includes size-reduction, as required to fit into INEEL permitted containers which will provide sufficient additional shielding to allow contact handling within the waste areas of the facility. The current design, which satisfied all of the requirements, employs mostly simple equipment and requires minimal use of customized components. The waste processing operation also minimizes operator exposure and operator attendance for equipment maintenance. Recently, discussions with the INEEL indicate that large canister waste materials can possibly be shipped to the burial facility without size-reduction. New waste containers would have to be designed to meet the drop tests required for transportation packages. The SNF waste processing facilities could then be highly simplified, resulting in capital equipment cost savings, operational

  16. Waste Receiving and Processing (WRAP) Facility Final Safety Analysis Report (FSAR)

    SciTech Connect

    TOMASZEWSKI, T.A.

    2000-04-25

    The Waste Receiving and Processing Facility (WRAP), 2336W Building, on the Hanford Site is designed to receive, confirm, repackage, certify, treat, store, and ship contact-handled transuranic and low-level radioactive waste from past and present U.S. Department of Energy activities. The WRAP facility is comprised of three buildings: 2336W, the main processing facility (also referred to generically as WRAP); 2740W, an administrative support building; and 2620W, a maintenance support building. The support buildings are subject to the normal hazards associated with industrial buildings (no radiological materials are handled) and are not part of this analysis except as they are impacted by operations in the processing building, 2336W. WRAP is designed to provide safer, more efficient methods of handling the waste than currently exist on the Hanford Site and contributes to the achievement of as low as reasonably achievable goals for Hanford Site waste management.

  17. Facility siting as a decision process at the Savannah River Site

    SciTech Connect

    Wike, L.D.

    1995-12-31

    Site selection for new facilities at Savannah River Site (SRS) historically has been a process dependent only upon specific requirements of the facility. While this approach is normally well suited to engineering and operational concerns, it can have serious deficiencies in the modern era of regulatory oversight and compliance requirements. There are many issues related to the site selection for a facility that are not directly related to engineering or operational requirements; such environmental concerns can cause large schedule delays and budget impact,s thereby slowing or stopping the progress of a project. Some of the many concerns in locating a facility include: waste site avoidance, National Environmental Policy Act requirements, Clean Water Act, Clean Air Act, wetlands conservation, US Army Corps of Engineers considerations, US Fish and Wildlife Service statutes including threatened and endangered species issues, and State of South Carolina regulations, especially those of the Department of Health and Environmental Control. In addition, there are SRS restrictions on research areas set aside for National Environmental Research Park (NERP), Savannah River Ecology Laboratory, Savannah River Forest Station, University of South Carolina Institute of Archaeology and Anthropology, Southeastern Forest Experimental Station, and Savannah River Technology Center (SRTC) programs. As with facility operational needs, all of these siting considerations do not have equal importance. The purpose of this document is to review recent site selection exercises conducted for a variety of proposed facilities, develop the logic and basis for the methods employed, and standardize the process and terminology for future site selection efforts.

  18. Onboard experiment data support facility. Task 2 report: Definition of onboard processing requirements

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The onboard experiment data support facility (OEDSF) will provide data processing support to various experiment payloads on board the space shuttle. The OEDSF study will define the conceptual design and generate specifications for an OEDSF which will meet the following objectives: (1) provide a cost-effective approach to end-to-end processing requirements, (2) service multiple disciplines (3) satisfy user needs, (4) reduce the amount and improve the quality of data collected, stored and processed, and (5) embody growth capacity.

  19. Waste Receiving and Processing Facility Module 2A: Advanced Conceptual Design Report. Volume 2

    SciTech Connect

    Not Available

    1994-03-01

    This volume presents the Total Estimated Cost (TEC) for the WRAP (Waste Receiving and Processing) 2A facility. The TEC is $81.9 million, including an overall project contingency of 25% and escalation of 13%, based on a 1997 construction midpoint. (The mission of WRAP 2A is to receive, process, package, certify, and ship for permanent burial at the Hanford site disposal facilities the Category 1 and 3 contact handled low-level radioactive mixed wastes that are currently in retrievable storage, and are forecast to be generated over the next 30 years by Hanford, and waste to be shipped to Hanford site from about 20 DOE sites.)

  20. A process for introducing computerized information systems into long-term care facilities.

    PubMed

    Pulliam, L; Boettcher, E

    1989-01-01

    By significantly decreasing the time spent on non-nursing tasks, computers have the potential to facilitate the productivity of nurses and also to increase their job satisfaction. Nurses working in long-term care facilities are beginning to realize the benefits of microcomputers and software geared to their specific needs. A process that may serve as a guide for introducing computer applications into long-term nursing facilities for the elderly is presented. This process consists of six phases: initiation, orientation, assessment, selection, implementation, and sustained-implementation. Detailed steps within each phase are suggested. PMID:2692789

  1. The Establishment of a New Friction Stir Welding Process Development Facility at NASA/MSFC

    NASA Technical Reports Server (NTRS)

    Carter, Robert W.

    2009-01-01

    Full-scale weld process development is being performed at MSFC to develop the tools, fixtures, and facilities necessary for Ares I production. Full scale development in-house at MSFC fosters technical acuity within the NASA engineering community, and allows engineers to identify and correct tooling and equipment shortcomings before they become problems on the production floor. Finally, while the new weld process development facility is currently being outfitted in support of Ares I development, it has been established to support all future Constellation Program needs. In particular, both the RWT and VWT were sized with the larger Ares V hardware in mind.

  2. Critical Protection Item classification for a waste processing facility at Savannah River Site

    SciTech Connect

    Ades, M.J.; Garrett, R.J.

    1993-10-01

    This paper describes the methodology for Critical Protection Item (CPI) classification and its application to the Structures, Systems and Components (SSC) of a waste processing facility at the Savannah River Site (SRS). The WSRC methodology for CPI classification includes the evaluation of the radiological and non-radiological consequences resulting from postulated accidents at the waste processing facility and comparison of these consequences with allowable limits. The types of accidents considered include explosions and fire in the facility and postulated accidents due to natural phenomena, including earthquakes, tornadoes, and high velocity straight winds. The radiological analysis results indicate that CPIs are not required at the waste processing facility to mitigate the consequences of radiological release. The non-radiological analysis, however, shows that the Waste Storage Tank (WST) and the dike spill containment structures around the formic acid tanks in the cold chemical feed area and waste treatment area of the facility should be identified as CPIs. Accident mitigation options are provided and discussed.

  3. Integrating real-time digital signal processing capability into a large research and development facility

    NASA Astrophysics Data System (ADS)

    Manges, W. W.; Mallinak-Glassell, J. T.; Breeding, J. E.; Jansen, J. M., Jr.; Tate, R. M.; Bentz, R. R.

    The Instrumentation and Controls Division at Oak Ridge National Laboratory recently developed and installed a large scale, real-time measurement system for the world's largest pressurized water tunnel. This water tunnel, the Large Cavitation Channel (LCC) provides a research and development facility for the study of acoustic phenomena to aid in model testing of new naval ship and submarine designs. The LCC design required the development of a near-field beamformer in addition to extending the range of real-time processing capability to frequencies unavailable at other facilities. The beamformer acquires and processes time-domain acoustic data at 9.5 MB/s from up to 45 hydrophones while performing 200 million floating-point operations per second, producing a time-integrated, spatially filtered, frequency-domain data set with improved signal-to-noise ratio. The acoustic processing software provides for the real-time analysis of acoustic data. Up to 128 facility sensors are sampled, time stamped, and stored at 600 kB/s. The system generates information for acoustic phenomena and facility measurements in real-time so that the operator can make facility adjustments to control the running equipment. This real-time control of facility conditions requires that the measurement system integrate facility and acoustic data for simultaneous display to the operator in engineering units via high-end workstations. A dual-host minicomputer configuration with high-end workstations connected via an Ethernet networking cluster controls and integrates measurement and display subsystems. The hardware and software architecture is described in this paper.

  4. Trial Application of the Facility Safeguardability Assessment Process to the NuScale SMR Design

    SciTech Connect

    Coles, Garill A.; Gitau, Ernest TN; Hockert, John; Zentner, Michael D.

    2012-11-09

    FSA is a screening process intended to focus a facility designer’s attention on the aspects of their facility or process design that would most benefit from application of SBD principles and practices. The process is meant to identify the most relevant guidance within the SBD tools for enhancing the safeguardability of the design. In fiscal year (FY) 2012, NNSA sponsored PNNL to evaluate the practical application of FSA by applying it to the NuScale small modular nuclear power plant. This report documents the application of the FSA process, presenting conclusions regarding its efficiency and robustness. It describes the NuScale safeguards design concept and presents functional "infrastructure" guidelines that were developed using the FSA process.

  5. Trial Application of the Facility Safeguardability Assessment Process to the NuScale SMR Design

    SciTech Connect

    Coles, Garill A.; Hockert, John; Gitau, Ernest TN; Zentner, Michael D.

    2013-01-26

    FSA is a screening process intended to focus a facility designer’s attention on the aspects of their facility or process design that would most benefit from application of SBD principles and practices. The process is meant to identify the most relevant guidance within the SBD tools for enhancing the safeguardability of the design. In fiscal year (FY) 2012, NNSA sponsored PNNL to evaluate the practical application of FSA by applying it to the NuScale small modular nuclear power plant. This report documents the application of the FSA process, presenting conclusions regarding its efficiency and robustness. It describes the NuScale safeguards design concept and presents functional "infrastructure" guidelines that were developed using the FSA process.

  6. Spent nuclear fuel project cold vacuum drying facility process water conditioning system design description

    SciTech Connect

    IRWIN, J.J.

    1998-11-30

    This document provides the System Design Description (SDD) for the Cold Vacuum Drying Facility (CVDF) Process Water Conditioning (PWC) System. The SDD was developed in conjunction with HNF-SD-SNF-SAR-002, Safety Analysis Report for the Cold Vacuum Drying Facility, Phase 2, Supporting Installation of Processing Systems (Garvin 1998), the HNF-SD-SNF-DRD-O02, 1998, Cold Vacuum Drying Facility Design Requirements, and the CVDF Design Summary Report. The SDD contains general descriptions of the PWC equipment, the system functions, requirements and interfaces. The SDD provides references for design and fabrication details, operation sequences and maintenance. This SDD has been developed for the SNFP Operations Organization and shall be updated, expanded, and revised in accordance with future design, construction and startup phases of the CVDF until the CVDF final ORR is approved.

  7. Assessment of nuclear safety and nuclear criticality potential in the Defense Waste Processing Facility. Revision 1

    SciTech Connect

    Ha, B.C.

    1993-07-20

    The S-Area Defense Waste Processing Facility (DWPF) will initially process Batch 1 sludge in the sludge-only processing mode, with simulated non-radioactive Precipitate Hydrolysis, Aqueous (PHA) product, without the risk of nuclear criticality. The dilute concentration of fissile material in the sludge combined with excess of neutron absorbers during normal operations make criticality throughout the whole process incredible. Subsequent batches of the DWPF involving radioactive precipitate slurry and PHA will require additional analysis. Any abnormal or upset process operations, which are not considered in this report and could potentially separate fissile material, must be individually evaluated. Scheduled maintenance operation procedures are not considered to be abnormal.

  8. Orbiter processing facility: Access platforms Kennedy Space Center, Florida, from challenge to achievement

    NASA Technical Reports Server (NTRS)

    Haratunian, M.

    1985-01-01

    A system of access platforms and equipment within the space shuttle orbiter processing facility at Kennedy Space Center is described. The design challenges of the platforms, including clearance envelopes, load criteria, and movement, are discussed. Various applications of moveable platforms are considered.

  9. 40 CFR 372.20 - Process for modifying covered chemicals and facilities.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... chemicals and facilities. 372.20 Section 372.20 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SUPERFUND, EMERGENCY PLANNING, AND COMMUNITY RIGHT-TO-KNOW PROGRAMS TOXIC CHEMICAL RELEASE REPORTING: COMMUNITY RIGHT-TO-KNOW Reporting Requirements § 372.20 Process for modifying covered...

  10. COMPARISON OF METHODS FOR SAMPLING BACTERIA AT SOLID WASTE PROCESSING FACILITIES

    EPA Science Inventory

    The report is an assessment of the field sampling methodologies used to measure concentrations of airborne bacteria and viruses in and around waste handling and processing facilities. The sampling methods are discussed as well as the problems encountered and subsequent changes ma...

  11. 40 CFR 80.513 - What provisions apply to transmix processing facilities?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 17 2012-07-01 2012-07-01 false What provisions apply to transmix processing facilities? 80.513 Section 80.513 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Motor Vehicle Diesel Fuel; Nonroad, Locomotive, and Marine Diesel Fuel;...

  12. Project management plan, Waste Receiving and Processing Facility, Module 1, Project W-026

    SciTech Connect

    Starkey, J.G.

    1993-05-01

    The Hanford Waste Receiving and Processing Facility Module 1 Project (WRAP 1) has been established to support the retrieval and final disposal of approximately 400K grams of plutonium and quantities of hazardous components currently stored in drums at the Hanford Site.

  13. Enterobacteriaceae and related organisms recovered from biofilms in a commercial shell egg processing facility.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    During six visits, biofilms from egg contact and non-contact surfaces in a commercial shell egg processing facility were sampled. Thirty-five different sample sites were selected: Pre-wash and wash tanks (lids, screens, tank interiors, nozzle guards), post-wash spindles, blower filters, belts (far...

  14. Skylab experiment performance evaluation manual. Appendix E: Experiment M512 Materials processing facility (MSFC)

    NASA Technical Reports Server (NTRS)

    Thomas, O. H., Jr.

    1973-01-01

    Analyses for Experiment M512, Materials Processing Facility (MSFC), to be used for evaluating the performance of the Skylab corollary experiments under preflight, inflight, and post-flight conditions are presented. Experiment contingency plan workaround procedure and malfunction analyses are presented in order to assist in making the experiment operationally successful.

  15. Measurements of methane emissions from natural gas gathering facilities and processing plants: measurement methods

    NASA Astrophysics Data System (ADS)

    Roscioli, J. R.; Yacovitch, T. I.; Floerchinger, C.; Mitchell, A. L.; Tkacik, D. S.; Subramanian, R.; Martinez, D. M.; Vaughn, T. L.; Williams, L.; Zimmerle, D.; Robinson, A. L.; Herndon, S. C.; Marchese, A. J.

    2015-05-01

    Increased natural gas production in recent years has spurred intense interest in methane (CH4) emissions associated with its production, gathering, processing, transmission, and distribution. Gathering and processing facilities (G&P facilities) are unique in that the wide range of gas sources (shale, coal-bed, tight gas, conventional, etc.) results in a wide range of gas compositions, which in turn requires an array of technologies to prepare the gas for pipeline transmission and distribution. We present an overview and detailed description of the measurement method and analysis approach used during a 20-week field campaign studying CH4 emissions from the natural gas G&P facilities between October 2013 and April 2014. Dual-tracer flux measurements and on-site observations were used to address the magnitude and origins of CH4 emissions from these facilities. The use of a second tracer as an internal standard revealed plume-specific uncertainties in the measured emission rates of 20-47%, depending upon plume classification. Combining downwind methane, ethane (C2H6), carbon monoxide (CO), carbon dioxide (CO2), and tracer gas measurements with on-site tracer gas release allows for quantification of facility emissions and in some cases a more detailed picture of source locations.

  16. Measurements of methane emissions from natural gas gathering facilities and processing plants: measurement methods

    NASA Astrophysics Data System (ADS)

    Roscioli, J. R.; Yacovitch, T. I.; Floerchinger, C.; Mitchell, A. L.; Tkacik, D. S.; Subramanian, R.; Martinez, D. M.; Vaughn, T. L.; Williams, L.; Zimmerle, D.; Robinson, A. L.; Herndon, S. C.; Marchese, A. J.

    2014-12-01

    Increased natural gas production in recent years has spurred intense interest in methane (CH4) emissions associated with its production, gathering, processing, transmission and distribution. Gathering and processing facilities (G&P facilities) are unique in that the wide range of gas sources (shale, coal-bed, tight gas, conventional, etc.) results in a wide range of gas compositions, which in turn requires an array of technologies to prepare the gas for pipeline transmission and distribution. We present an overview and detailed description of the measurement method and analysis approach used during a 20-week field campaign studying CH4 emissions from the natural gas G&P facilities between October 2013 and April 2014. Dual tracer flux measurements and onsite observations were used to address the magnitude and origins of CH4 emissions from these facilities. The use of a second tracer as an internal standard revealed plume-specific uncertainties in the measured emission rates of 20-47%, depending upon plume classification. Combining downwind methane, ethane (C2H6), carbon monoxide (CO), carbon dioxide (CO2), and tracer gas measurements with onsite tracer gas release allows for quantification of facility emissions, and in some cases a more detailed picture of source locations.

  17. Inline Monitors for Measuring Cs-137 in the SRS Caustic Side Solvent Extraction Process

    SciTech Connect

    Casella, V

    2006-04-24

    The Department of Energy (DOE) selected Caustic-Side Solvent Extraction (CSSX) as the preferred technology for the removal of radioactive cesium from High-Level Waste (HLW) at the Savannah River Site (SRS). Before the full-scale Salt Waste Processing Facility (SWPF) becomes operational, a portion of dissolved saltcake waste will be processed through a Modular CSSX Unit (MCU). The MCU employs the CSSX process, a continuous process that uses a novel solvent to extract cesium from waste and concentrate it in dilute nitric acid. Of primary concern is Cs-137 which makes the solution highly radioactive. Since the MCU does not have the capacity to wait for sample results while continuing to operate, the Waste Acceptance Strategy is to perform inline analyses. Gamma-ray monitors are used to: measure the Cs-137 concentration in the decontaminated salt solution (DSS) before entering the DSS Hold Tank; measure the Cs-137 concentration in the strip effluent (SE) before entering the SE Hold Tank; and verify proper operation of the solvent extraction system by verifying material balance within the process. Since this gamma ray monitoring system application is unique, specially designed shielding was developed and software was written and acceptance tested by Savannah River National Laboratory (SRNL) personnel. The software is a LabView-based application that serves as a unified interface for controlling the monitor hardware and communicating with the host Distributed Control System. This paper presents the design, fabrication and implementation of this monitoring system.

  18. Waste receiving and processing facility module 1 data management system software project management plan

    SciTech Connect

    Clark, R.E.

    1994-11-02

    This document provides the software development plan for the Waste Receiving and Processing (WRAP) Module 1 Data Management System (DMS). The DMS is one of the plant computer systems for the new WRAP 1 facility (Project W-026). The DMS will collect, store, and report data required to certify the low level waste (LLW) and transuranic (TRU) waste items processed at WRAP 1 as acceptable for shipment, storage, or disposal.

  19. Waste Receiving and Processing Facility Module 1 Data Management System Software Requirements Specification

    SciTech Connect

    Brann, E.C. II

    1994-09-09

    This document provides the software requirements for Waste Receiving and Processing (WRAP) Module 1 Data Management System (DMS). The DMS is one of the plant computer systems for the new WRAP 1 facility (Project W-026). The DMS will collect, store and report data required to certify the low level waste (LLW) and transuranic (TRU) waste items processed at WRAP 1 as acceptable for shipment, storage, or disposal.

  20. Waste Receiving and Processing Facility Module 1 Data Management System software requirements specification

    SciTech Connect

    Rosnick, C.K.

    1996-04-19

    This document provides the software requirements for Waste Receiving and Processing (WRAP) Module 1 Data Management System (DMS). The DMS is one of the plant computer systems for the new WRAP 1 facility (Project W-0126). The DMS will collect, store and report data required to certify the low level waste (LLW) and transuranic (TRU) waste items processed at WRAP 1 as acceptable for shipment, storage, or disposal.

  1. Waste Receiving and Processing (WRAP) Facility Weight Scale Analysis Fairbanks Weight Scale Evaluation Results

    SciTech Connect

    JOHNSON, M.D.

    2000-03-13

    Fairbanks Weight Scales are used at the Waste Receiving and Processing (WRAP) facility to determine the weight of waste drums as they are received, processed, and shipped. Due to recent problems, discovered during calibration, the WRAP Engineering Department has completed this document which outlines both the investigation of the infeed conveyor scale failure in September of 1999 and recommendations for calibration procedure modifications designed to correct deficiencies in the current procedures.

  2. Evaluation of Mercury in Liquid Waste Processing Facilities - Phase I Report

    SciTech Connect

    Jain, V.; Occhipinti, J.; Shah, H.; Wilmarth, B.; Edwards, R.

    2015-07-01

    This report provides a summary of Phase I activities conducted to support an Integrated Evaluation of Mercury in Liquid Waste System (LWS) Processing Facilities. Phase I activities included a review and assessment of the liquid waste inventory and chemical processing behavior of mercury using a system by system review methodology approach. Gaps in understanding mercury behavior as well as action items from the structured reviews are being tracked. 64% of the gaps and actions have been resolved.

  3. Evaluation of mercury in liquid waste processing facilities - Phase I report

    SciTech Connect

    Jain, V.; Occhipinti, J. E.; Shah, H.; Wilmarth, W. R.; Edwards, R. E.

    2015-07-01

    This report provides a summary of Phase I activities conducted to support an Integrated Evaluation of Mercury in Liquid Waste System (LWS) Processing Facilities. Phase I activities included a review and assessment of the liquid waste inventory and chemical processing behavior of mercury using a system by system review methodology approach. Gaps in understanding mercury behavior as well as action items from the structured reviews are being tracked. 64% of the gaps and actions have been resolved.

  4. Unity connecting module viewed from above in the Space Station Processing Facility

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The Unity connecting module is viewed from above while it awaits processing in the Space Station Processing Facility (SSPF). On the side can be seen the connecting hatch. The Unity, scheduled to be launched on STS-88 in December 1998, will be mated to the Russian-built Zarya control module which will already be in orbit. STS-88 will be the first Space Shuttle launch for the International Space Station.

  5. Process cost and facility considerations in the selection of primary cell culture clarification technology.

    PubMed

    Felo, Michael; Christensen, Brandon; Higgins, John

    2013-01-01

    The bioreactor volume delineating the selection of primary clarification technology is not always easily defined. Development of a commercial scale process for the manufacture of therapeutic proteins requires scale-up from a few liters to thousands of liters. While the separation techniques used for protein purification are largely conserved across scales, the separation techniques for primary cell culture clarification vary with scale. Process models were developed to compare monoclonal antibody production costs using two cell culture clarification technologies. One process model was created for cell culture clarification by disc stack centrifugation with depth filtration. A second process model was created for clarification by multi-stage depth filtration. Analyses were performed to examine the influence of bioreactor volume, product titer, depth filter capacity, and facility utilization on overall operating costs. At bioreactor volumes <1,000 L, clarification using multi-stage depth filtration offers cost savings compared to clarification using centrifugation. For bioreactor volumes >5,000 L, clarification using centrifugation followed by depth filtration offers significant cost savings. For bioreactor volumes of ∼ 2,000 L, clarification costs are similar between depth filtration and centrifugation. At this scale, factors including facility utilization, available capital, ease of process development, implementation timelines, and process performance characterization play an important role in clarification technology selection. In the case study presented, a multi-product facility selected multi-stage depth filtration for cell culture clarification at the 500 and 2,000 L scales of operation. Facility implementation timelines, process development activities, equipment commissioning and validation, scale-up effects, and process robustness are examined. PMID:23847160

  6. Checkout and start-up of the integrated DWPF (Defense Waste Processing Facility) melter system

    SciTech Connect

    Smith, M.E.; Hutson, N.D.; Miller, D.H.; Morrison, J.; Shah, H.; Shuford, J.A.; Glascock, J.; Wurzinger, F.H.; Zamecnik, J.R.

    1989-11-11

    The Integrated DWPF Melter System (IDMS) is a one-ninth-scale demonstration of the Defense Waste Processing Facility (DWPF) feed preparation, melter, and off-gas systems. The IDMS will be the first engineering-scale melter system at SRL to process mercury and flowsheet levels of halides and sulfates. This report includes a summary of the IDMS program objectives, system and equipment descriptions, and detailed discussions of the system checkout and start-up. 10 refs., 44 figs., 20 tabs.

  7. Safeguards design strategies: designing and constructing new uranium and plutonium processing facilities in the United States

    SciTech Connect

    Scherer, Carolynn P; Long, Jon D

    2010-09-28

    In the United States, the Department of Energy (DOE) is transforming its outdated and oversized complex of aging nuclear material facilities into a smaller, safer, and more secure National Security Enterprise (NSE). Environmental concerns, worker health and safety risks, material security, reducing the role of nuclear weapons in our national security strategy while maintaining the capability for an effective nuclear deterrence by the United States, are influencing this transformation. As part of the nation's Uranium Center of Excellence (UCE), the Uranium Processing Facility (UPF) at the Y-12 National Security Complex in Oak Ridge, Tennessee, will advance the U.S.'s capability to meet all concerns when processing uranium and is located adjacent to the Highly Enriched Uranium Materials Facility (HEUMF), designed for consolidated storage of enriched uranium. The HEUMF became operational in March 2010, and the UPF is currently entering its final design phase. The designs of both facilities are for meeting anticipated security challenges for the 21st century. For plutonium research, development, and manufacturing, the Chemistry and Metallurgy Research Replacement (CMRR) building at the Los Alamos National Laboratory (LANL) in Los Alamos, New Mexico is now under construction. The first phase of the CMRR Project is the design and construction of a Radiological Laboratory/Utility/Office Building. The second phase consists of the design and construction of the Nuclear Facility (NF). The National Nuclear Security Administration (NNSA) selected these two sites as part of the national plan to consolidate nuclear materials, provide for nuclear deterrence, and nonproliferation mission requirements. This work examines these two projects independent approaches to design requirements, and objectives for safeguards, security, and safety (3S) systems as well as the subsequent construction of these modern processing facilities. Emphasis is on the use of Safeguards-by-Design (SBD

  8. SEISMIC DESIGN REQUIREMENTS SELECTION METHODOLOGY FOR THE SLUDGE TREATMENT & M-91 SOLID WASTE PROCESSING FACILITIES PROJECTS

    SciTech Connect

    RYAN GW

    2008-04-25

    In complying with direction from the U.S. Department of Energy (DOE), Richland Operations Office (RL) (07-KBC-0055, 'Direction Associated with Implementation of DOE-STD-1189 for the Sludge Treatment Project,' and 08-SED-0063, 'RL Action on the Safety Design Strategy (SDS) for Obtaining Additional Solid Waste Processing Capabilities (M-91 Project) and Use of Draft DOE-STD-I 189-YR'), it has been determined that the seismic design requirements currently in the Project Hanford Management Contract (PHMC) will be modified by DOE-STD-1189, Integration of Safety into the Design Process (March 2007 draft), for these two key PHMC projects. Seismic design requirements for other PHMC facilities and projects will remain unchanged. Considering the current early Critical Decision (CD) phases of both the Sludge Treatment Project (STP) and the Solid Waste Processing Facilities (M-91) Project and a strong intent to avoid potentially costly re-work of both engineering and nuclear safety analyses, this document describes how Fluor Hanford, Inc. (FH) will maintain compliance with the PHMC by considering both the current seismic standards referenced by DOE 0 420.1 B, Facility Safety, and draft DOE-STD-1189 (i.e., ASCE/SEI 43-05, Seismic Design Criteria for Structures, Systems, and Components in Nuclear Facilities, and ANSI!ANS 2.26-2004, Categorization of Nuclear Facility Structures, Systems and Components for Seismic Design, as modified by draft DOE-STD-1189) to choose the criteria that will result in the most conservative seismic design categorization and engineering design. Following the process described in this document will result in a conservative seismic design categorization and design products. This approach is expected to resolve discrepancies between the existing and new requirements and reduce the risk that project designs and analyses will require revision when the draft DOE-STD-1189 is finalized.

  9. Metals Processing Laboratory Users (MPLUS) Facility Annual Report FY 2002 (October 1, 2001-September 30, 2002)

    SciTech Connect

    Angelini, P

    2004-04-27

    The Metals Processing Laboratory Users Facility (MPLUS) is a Department of Energy (DOE), Energy Efficiency and Renewable Energy, Industrial Technologies Program, user facility designated to assist researchers in key industries, universities, and federal laboratories in improving energy efficiency, improving environmental aspects, and increasing competitiveness. The goal of MPLUS is to provide access to the specialized technical expertise and equipment needed to solve metals processing issues that limit the development and implementation of emerging metals processing technologies. The scope of work can also extend to other types of materials. MPLUS has four primary user centers: (1) Processing--casting, powder metallurgy, deformation processing (including extrusion, forging, rolling), melting, thermomechanical processing, and high-density infrared processing; (2) Joining--welding, monitoring and control, solidification, brazing, and bonding; (3) Characterization--corrosion, mechanical properties, fracture mechanics, microstructure, nondestructive examination, computer-controlled dilatometry, and emissivity; and (4) Materials/Process Modeling--mathematical design and analyses, high-performance computing, process modeling, solidification/deformation, microstructure evolution, thermodynamic and kinetic, and materials databases A fully integrated approach provides researchers with unique opportunities to address technologically related issues to solve metals processing problems and probe new technologies. Access is also available to 16 additional Oak Ridge National Laboratory (ORNL) user facilities ranging from state-of-the-art materials characterization capabilities, and high-performance computing to manufacturing technologies. MPLUS can be accessed through a standardized user-submitted proposal and a user agreement. Nonproprietary (open) or proprietary proposals can be submitted. For open research and development, access to capabilities is provided free of charge

  10. Metals Processing Laboratory Users (MPLUS) Facility Annual Report: October 1, 2000 through September 30, 2001

    SciTech Connect

    Angelini, P

    2004-04-27

    The Metals Processing Laboratory Users Facility (MPLUS) is a Department of Energy (DOE), Energy Efficiency and Renewable Energy, Industrial Technologies Program user facility designated to assist researchers in key industries, universities, and federal laboratories in improving energy efficiency, improving environmental aspects, and increasing competitiveness. The goal of MPLUS is to provide access to the specialized technical expertise and equipment needed to solve metals processing issues that limit the development and implementation of emerging metals processing technologies. The scope of work can also extend to other types of materials. MPLUS has four primary User Centers including: (1) Processing--casting, powder metallurgy, deformation processing including (extrusion, forging, rolling), melting, thermomechanical processing, high density infrared processing; (2) Joining--welding, monitoring and control, solidification, brazing, bonding; (3) Characterization--corrosion, mechanical properties, fracture mechanics, microstructure, nondestructive examination, computer-controlled dilatometry, and emissivity; (4) Materials/Process Modeling--mathematical design and analyses, high performance computing, process modeling, solidification/deformation, microstructure evolution, thermodynamic and kinetic, and materials data bases. A fully integrated approach provides researchers with unique opportunities to address technologically related issues to solve metals processing problems and probe new technologies. Access is also available to 16 additional Oak Ridge National Laboratory (ORNL) user facilities ranging from state of the art materials characterization capabilities, high performance computing, to manufacturing technologies. MPLUS can be accessed through a standardized User-submitted Proposal and a User Agreement. Nonproprietary (open) or proprietary proposals can be submitted. For open research and development, access to capabilities is provides free of charge while

  11. Human Engineering Operations and Habitability Assessment: A Process for Advanced Life Support Ground Facility Testbeds

    NASA Technical Reports Server (NTRS)

    Connolly, Janis H.; Arch, M.; Elfezouaty, Eileen Schultz; Novak, Jennifer Blume; Bond, Robert L. (Technical Monitor)

    1999-01-01

    Design and Human Engineering (HE) processes strive to ensure that the human-machine interface is designed for optimal performance throughout the system life cycle. Each component can be tested and assessed independently to assure optimal performance, but it is not until full integration that the system and the inherent interactions between the system components can be assessed as a whole. HE processes (which are defining/app lying requirements for human interaction with missions/systems) are included in space flight activities, but also need to be included in ground activities and specifically, ground facility testbeds such as Bio-Plex. A unique aspect of the Bio-Plex Facility is the integral issue of Habitability which includes qualities of the environment that allow humans to work and live. HE is a process by which Habitability and system performance can be assessed.

  12. Electromagnetic containerless processing requirements and recommended facility concept and capabilities for space lab

    NASA Technical Reports Server (NTRS)

    Frost, R. T.; Bloom, H. L.; Napaluch, L. J.; Stockhoff, E. H.; Wouch, G.

    1974-01-01

    Containerless melting, reaction, and solidification experiments and processes which potentially can lead to new understanding of material science and production of new or improved materials in the weightless space environment are reviewed in terms of planning for spacelab. Most of the experiments and processes discussed are amenable to the employment of electromagnetic position control and electromagnetic induction or electron beam heating and melting. The spectrum of relevant properties of materials, which determine requirements for a space laboratory electromagnetic containerless processing facility are reviewed. Appropriate distributions and associated coil structures are analyzed and compared on the basis of efficiency, for providing the functions of position sensing, control, and induction heating. Several coil systems are found capable of providing these functions. Exchangeable modular coils in appropriate sizes are recommended to achieve the maximum power efficiencies, for a wide range of specimen sizes and resistivities, in order to conserve total facility power.

  13. A preliminary study on the safeguardability of a Korean advanced pyro-processing facility (KAPF)

    SciTech Connect

    Lee, S.Y.; Thomas, K.E.; Marlow, J.B.; Menlove, H.O.; Ko, W.I.; Yang, M.S.; Park, S.W.

    2007-07-01

    A preliminary study on the safeguardability of the Korean Advanced Pyro-processing Facility (KAPF) was performed. The main processes of the facility include voloxidation, electrolytic reduction, electrorefining, electrowinning, and salt recycling with a transuranic (TRU) recovery process. The subprocesses and material flow of the conceptually designed KAPF with a unit capacity of 100 tHM/year were analysed, and subsequently, the relevant material balance area (MBA) and key measurement point (KMP) were designed for material accounting. Uncertainty in material accounting was evaluated with designed MBA and KMP, together with measurement uncertainties of analytic methods identified for the KAPF. It was found that the major safeguards challenges were Pu input accountability and U/Pu inventory measurement at each subprocess. The continuous association of Pu with Cm presents measurement options in both cases. It was concluded that a safeguards system for the KAPF could be designed to meet the International Atomic Energy Agency's comprehensive safeguards objective. (authors)

  14. The environmental impact assessment process for nuclear facilities: An examination of the Indian experience

    SciTech Connect

    Ramana, M.V.; Rao, Divya Badami

    2010-07-15

    India plans to construct numerous nuclear plants and uranium mines across the country, which could have significant environmental, health, and social impacts. The national Environmental Impact Assessment process is supposed to regulate these impacts. This paper examines how effective this process has been, and the extent to which public inputs have been taken into account. In addition to generic problems associated with the EIA process for all kinds of projects in India, there are concerns that are specific to nuclear facilities. One is that some nuclear facilities are exempt from the environmental clearance process. The second is that data regarding radiation baseline levels and future releases, which is the principle environmental concern with respect to nuclear facilities, is controlled entirely by the nuclear establishment. The third is that members of the nuclear establishment take part in almost every level of the environmental clearance procedure. For these reasons and others, the EIA process with regard to nuclear projects in India is of dubious quality. We make a number of recommendations that could address these lacunae, and more generally the imbalance of power between the nuclear establishment on the one hand, and civil society and the regulatory agencies on the other.

  15. Bit error rate performance of Image Processing Facility high density tape recorders

    NASA Technical Reports Server (NTRS)

    Heffner, P.

    1981-01-01

    The Image Processing Facility at the NASA/Goddard Space Flight Center uses High Density Tape Recorders (HDTR's) to transfer high volume image data and ancillary information from one system to another. For ancillary information, it is required that very low bit error rates (BER's) accompany the transfers. The facility processes about 10 to the 11th bits of image data per day from many sensors, involving 15 independent processing systems requiring the use of HDTR's. When acquired, the 16 HDTR's offered state-of-the-art performance of 1 x 10 to the -6th BER as specified. The BER requirement was later upgraded in two steps: (1) incorporating data randomizing circuitry to yield a BER of 2 x 10 to the -7th and (2) further modifying to include a bit error correction capability to attain a BER of 2 x 10 to the -9th. The total improvement factor was 500 to 1. Attention is given here to the background, technical approach, and final results of these modifications. Also discussed are the format of the data recorded by the HDTR, the magnetic tape format, the magnetic tape dropout characteristics as experienced in the Image Processing Facility, the head life history, and the reliability of the HDTR's.

  16. Do high rates of OSCAR deficiencies prompt improved nursing facility processes and outcomes?

    PubMed

    Klopfenstein, Kristin; Lockhart, Charles; Giles-Sims, Jean

    2011-10-01

    Recently, some researchers have argued that high state rates of Centers for Medicare and Medicaid Services (CMS) Online Survey, Certification and Reporting (OSCAR) nursing facility deficiencies indicate stringent enforcement, leaving the impression of better-quality care soon to follow; others maintain that the rank ordering of states' quality of nursing facility care remains fairly constant, resting on deep-seated state characteristics that change slowly, so that short-term improvement in poor-quality care is unlikely. The authors examine change in the process and outcome quality of states' Medicare nursing facility long-term care programs across 1999 to 2005, using linear and two-stage least squares regression. They find that (1) nationally, process quality generally falls across this period while outcome quality generally increases; (2) neither a prominent enforcement stringency index nor state culture, a relatively stable state characteristic, exerts much influence on state process and outcome quality scores over time, but (3) the relative costs and benefits for CMS compliance appear to contribute to explaining change in states' quality of resident outcomes over time; and (4) states' process quality is much less stable than outcome quality, and outcome indices distinct from OSCAR deficiency data provide more reliable and possibly more valid measures of care quality. PMID:21985066

  17. Project C-018H, 242-A Evaporator/PUREX Plant Process Condensate Treatment Facility, functional design criteria. Revision 3

    SciTech Connect

    Sullivan, N.

    1995-05-02

    This document provides the Functional Design Criteria (FDC) for Project C-018H, the 242-A Evaporator and Plutonium-Uranium Extraction (PUREX) Plant Condensate Treatment Facility (Also referred to as the 200 Area Effluent Treatment Facility [ETF]). The project will provide the facilities to treat and dispose of the 242-A Evaporator process condensate (PC), the Plutonium-Uranium Extraction (PUREX) Plant process condensate (PDD), and the PUREX Plant ammonia scrubber distillate (ASD).

  18. Commercial Light Water Reactor -Tritium Extraction Facility Process Waste Assessment (Project S-6091)

    SciTech Connect

    Hsu, R.H.; Delley, A.O.; Alexander, G.J.; Clark, E.A.; Holder, J.S.; Lutz, R.N.; Malstrom, R.A.; Nobles, B.R.; Carson, S.D.; Peterson, P.K.

    1997-11-30

    The Savannah River Site (SRS) has been tasked by the Department of Energy (DOE) to design and construct a Tritium Extraction Facility (TEF) to process irradiated tritium producing burnable absorber rods (TPBARs) from a Commercial Light Water Reactor (CLWR). The plan is for the CLWR-TEF to provide tritium to the SRS Replacement Tritium Facility (RTF) in Building 233-H in support of DOE requirements. The CLWR-TEF is being designed to provide 3 kg of new tritium per year, from TPBARS and other sources of tritium (Ref. 1-4).The CLWR TPBAR concept is being developed by Pacific Northwest National Laboratory (PNNL). The TPBAR assemblies will be irradiated in a Commercial Utility light water nuclear reactor and transported to the SRS for tritium extraction and processing at the CLWR-TEF. A Conceptual Design Report for the CLWR-TEF Project was issued in July 1997 (Ref. 4).The scope of this Process Waste Assessment (PWA) will be limited to CLWR-TEF processing of CLWR irradiated TPBARs. Although the CLWR- TEF will also be designed to extract APT tritium-containing materials, they will be excluded at this time to facilitate timely development of this PWA. As with any process, CLWR-TEF waste stream characteristics will depend on process feedstock and contaminant sources. If irradiated APT tritium-containing materials are to be processed in the CLWR-TEF, this PWA should be revised to reflect the introduction of this contaminant source term.

  19. The Mixed Waste Management Facility: Technology selection and implementation plan, Part 2, Support processes

    SciTech Connect

    Streit, R.D.; Couture, S.A.

    1995-03-01

    The purpose of this document is to establish the foundation for the selection and implementation of technologies to be demonstrated in the Mixed Waste Management Facility, and to select the technologies for initial pilot-scale demonstration. Criteria are defined for judging demonstration technologies, and the framework for future technology selection is established. On the basis of these criteria, an initial suite of technologies was chosen, and the demonstration implementation scheme was developed. Part 1, previously released, addresses the selection of the primary processes. Part II addresses process support systems that are considered ``demonstration technologies.`` Other support technologies, e.g., facility off-gas, receiving and shipping, and water treatment, while part of the integrated demonstration, use best available commercial equipment and are not selected against the demonstration technology criteria.

  20. Payload/GSE/data system interface: Users guide for the VPF (Vertical Processing Facility)

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Payload/GSE/data system interface users guide for the Vertical Processing Facility is presented. The purpose of the document is three fold. First, the simulated Payload and Ground Support Equipment (GSE) Data System Interface, which is also known as the payload T-0 (T-Zero) System is described. This simulated system is located with the Cargo Integration Test Equipment (CITE) in the Vertical Processing Facility (VPF) that is located in the KSC Industrial Area. The actual Payload T-0 System consists of the Orbiter, Mobile Launch Platforms (MLPs), and Launch Complex (LC) 39A and B. This is referred to as the Pad Payload T-0 System (Refer to KSC-DL-116 for Pad Payload T-0 System description). Secondly, information is provided to the payload customer of differences between this simulated system and the actual system. Thirdly, a reference guide of the VPF Payload T-0 System for both KSC and payload customer personnel is provided.

  1. Phase Equilibrium Studies of Savannah River Tanks and Feed Streams for the Salt Waste Processing Facility

    SciTech Connect

    Weber, C.F.

    2001-06-19

    A chemical equilibrium model is developed and used to evaluate supersaturation of tanks and proposed feed streams to the Salt Waste Processing Facility. The model uses Pitzer's model for activity coefficients and is validated by comparison with a variety of thermodynamic data. The model assesses the supersaturation of 13 tanks at the Savannah River Site (SRS), indicating that small amounts of gibbsite and or aluminosilicate may form. The model is also used to evaluate proposed feed streams to the Salt Waste Processing Facility for 13 years of operation. Results indicate that dilutions using 3-4 M NaOH (about 0.3-0.4 L caustic per kg feed solution) should avoid precipitation and reduce the Na{sup +} ion concentration to 5.6 M.

  2. Payload/GSE/data system interface: Users guide for the VPF (Vertical Processing Facility)

    NASA Astrophysics Data System (ADS)

    1993-09-01

    Payload/GSE/data system interface users guide for the Vertical Processing Facility is presented. The purpose of the document is three fold. First, the simulated Payload and Ground Support Equipment (GSE) Data System Interface, which is also known as the payload T-0 (T-Zero) System is described. This simulated system is located with the Cargo Integration Test Equipment (CITE) in the Vertical Processing Facility (VPF) that is located in the KSC Industrial Area. The actual Payload T-0 System consists of the Orbiter, Mobile Launch Platforms (MLPs), and Launch Complex (LC) 39A and B. This is referred to as the Pad Payload T-0 System (Refer to KSC-DL-116 for Pad Payload T-0 System description). Secondly, information is provided to the payload customer of differences between this simulated system and the actual system. Thirdly, a reference guide of the VPF Payload T-0 System for both KSC and payload customer personnel is provided.

  3. Feasibility Study for a Plasma Dynamo Facility to Investigate Fundamental Processes in Plasma Astrophysics. Final report

    SciTech Connect

    Forest, Cary B.

    2013-09-19

    The scientific equipment purchased on this grant was used on the Plasma Dynamo Prototype Experiment as part of Professor Forest's feasibility study for determining if it would be worthwhile to propose building a larger plasma physics experiment to investigate various fundamental processes in plasma astrophysics. The initial research on the Plasma Dynamo Prototype Experiment was successful so Professor Forest and Professor Ellen Zweibel at UW-Madison submitted an NSF Major Research Instrumentation proposal titled "ARRA MRI: Development of a Plasma Dynamo Facility for Experimental Investigations of Fundamental Processes in Plasma Astrophysics." They received funding for this project and the Plasma Dynamo Facility also known as the "Madison Plasma Dynamo Experiment" was constructed. This experiment achieved its first plasma in the fall of 2012 and U.S. Dept. of Energy Grant No. DE-SC0008709 "Experimental Studies of Plasma Dynamos," now supports the research.

  4. STS-99 Payload Door Closure in Orbiter Processing Facility # 2, Endeavour, (SRTM)

    NASA Technical Reports Server (NTRS)

    1999-01-01

    The primary objective of the STS-99 mission was to complete high resolution mapping of large sections of the Earth's surface using the Shuttle Radar Topography Mission (SRTM), a specially modified radar system. This videotape shows the SRTM in Endeavour's payload bay, while the payload bay doors are being closed. There are some views of the Orbiter Processing Facility and technicians in the clean room environment.

  5. Ecological studies related to construction of the Defense Waste Processing Facility on the Savannah River Site

    SciTech Connect

    Scott, D.E.; Pechmann, J.H.K.; Knox, J.N.; Estes, R.A.; McGregor, J.H.; Bailey, K.

    1988-12-01

    The Savannah River Ecology Laboratory has completed 10 years of ecological studies related to the construction of the Defense Waste Processing Facility (DWPF) on the Savannah River Site. This progress report examines water quality studies on streams peripheral to the DWPF construction site and examines the effectiveness of refuge ponds'' in ameliorating the effects of construction on local amphibians. Individual papers on these topics are indexed separately. 93 refs., 15 figs., 15 tabs. (MHB)

  6. Foam testing of an alternative antifoam agent for the processing of radioactive sludge in the Defense Waste Processing Facility

    SciTech Connect

    Koopman, D.C.

    2000-01-26

    The Defense Waste Processing Facility (DWPF) at the Savannah River Site is responsible for immobilizing high level radioactive waste (HLW) as glass-filled steel canisters for permanent storage. In the DWPF facility, the HLW sludge undergoes chemical treatment to prepare it for vitrification in a melter. The generation of stable foams is possible during treatment. The current DWPF antifoam is ineffective in preventing and minimizing the formation of foam. The adverse consequences of excess foam can be severe enough to cause foam to exit the evaporator and collect in the condensate. A foamover will contaminate the relatively clean condensate with HLW solids. It can also potentially lead to the production of an unsuitable melter feed that would not make quality glass. Both of these consequences are costly and time consuming to correct. A new antifoam agent was developed by the Illinois Institute of Technology, IIT, for DWPF in an attempt to minimize or eliminate the frequency of these foamovers. This antifoam agent was demonstrated to be superior to the existing DWPF antifoam agent in laboratory scale experiments. However, the DWPF evaporation heat flux was not achievable in the laboratory scale equipment. A 1/240th-scale pilot facility was built to achieve this heat flux and determine whether the existing or new antifoam agent was superior. The pilot facility was built out of glass to allow observation of the foam formation during processing. The experiments used a non-radioactive simulant slurry similar to HLW. The IIT antifoam agent was found to be much more effective than the DWPF antifoam at the current conditions of maximum foam formation. The IIT antifoam agent was comparable or superior to the present DWPF antifoam under all conditions tested. This report summarizes the results of the antifoam agent comparison testing.

  7. Compressed Air System Renovation Project Improves Production at a Food Processing Facility (Mead-Johnson Nutritionals, Bristol-Myers Squib)

    SciTech Connect

    2001-06-01

    This case study is one in a series on industrial firms who are implementing energy efficient technologies and system improvements into their manufacturing processes. This case study documents the activities, savings, and lessons learned on the food processing facility project.

  8. Startup of Savannah River`s Defense Waste Processing Facility to produce radioactive glass

    SciTech Connect

    Bennett, W.M.

    1997-08-06

    The Savannah River Site (SRS) began production of radioactive glass in the Defense Waste Process Facility (DWPF) in 1996 following an extensive test program discussed earlier. Currently DWPF is operating in a `sludge only` mode to produce radioactive glass consisting of washed high-level waste sludge and glass frit. Future operations will produce radioactive glass consisting of washed high-level waste sludge, precipitated cesium, and glass frit. This paper provides an update of processing activities to date, operational problems encountered since entering radioactive operations, and the programs underway to solve them.

  9. A process for establishing a financial assurance plan for LLW disposal facilities

    SciTech Connect

    Smith, P.

    1993-04-01

    This document describes a process by which an effective financial assurance program can be developed for new low-level radioactive waste (LLW) disposal facilities. The report identifies examples of activities that might cause financial losses and the types of losses they might create, discusses mechanisms that could be used to quantify and ensure against the various types of potential losses identified and describes a decision process to formulate a financial assurance program that takes into account the characteristics of both the potential losses and available mechanisms. A sample application of the concepts described in the report is provided.

  10. Potential applications of fusion neutral beam facilities for advanced material processing

    SciTech Connect

    Williams, J.M.; Tsai, C.C.; Stirling, W.L.; Whealton, J.H.

    1994-01-01

    Surface processing techniques involving high energy ion implantation have achieved commercial success for semiconductors and biomaterials. However, wider use has been limited in good part by economic factors, some of which are related to the line-of-sight nature of the beam implantation process. Plasma source ion implantation is intended to remove some of the limitations imposed by directionality of beam systems and also to help provide economies of scale. The present paper will outline relevant technologies and areas of expertise that exist at Oak Ridge National Laboratory in relation to possible future needs in materials processing. Experience in generation of plasmas, control of ionization states, pulsed extraction, and sheath physics exists. Contributions to future technology can be made either for the immersion mode or for the extracted beam mode. Existing facilities include the High Power Test Facility, which could conservatively operate at 1 A of continuous current at 100 kV delivered to areas of about 1 m{sup 2}. Higher instantaneous voltages and currents are available with a reduced duty cycle. Another facility, the High Heat Flux Facility can supply a maximum of 60 kV and currents of up to 60 A for 2 s on a 10% duty cycle. Plasmas may be generated by use of microwaves, radio-frequency induction or other methods and plasma properties may be tailored to suit specific needs. In addition to ion implantation of large steel components, foreseeable applications include ion implantation of polymers, ion implantation of Ti alloys, Al alloys, or other reactive surfaces.

  11. Dynamics of Listeria monocytogenes colonisation in a newly-opened meat processing facility.

    PubMed

    Bolocan, Andrei Sorin; Nicolau, Anca Ioana; Alvarez-Ordóñez, Avelino; Borda, Daniela; Oniciuc, Elena Alexandra; Stessl, Beatrix; Gurgu, Leontina; Wagner, Martin; Jordan, Kieran

    2016-03-01

    This study determined the colonisation scenario of Listeria monocytogenes in a newly-opened ready-to-eat meat processing facility using a combination of classical microbiology and molecular biology techniques. Samples (n=183), including food contact surfaces, non-food contact surfaces, raw materials and food samples, collected on four sampling occasions, were analysed for L. monocytogenes by the ISO 11290:1996 standard method and by real-time PCR applied to the second enrichment broth from the ISO method. No L. monocytogenes were detected on the first sampling occasion, but by the second sampling occasion a persistent clone had colonised the facility. Analysis of the second enrichment of the ISO method by real-time PCR was more sensitive for the detection of L. monocytogenes than the ISO method alone. In order to reduce the risk of cross contamination and the public health risk, awareness and proactive measures are required to control L. monocytogenes from the first days of production in a newly opened meat processing facility. PMID:26599913

  12. DOE final report, phase one startup, Waste Receiving and Processing Facility (WRAP)

    SciTech Connect

    Jasen, W.G.

    1998-01-07

    This document is to validate that the WRAP facility is physically ready to start up phase 1, and that the managers and operators are prepared to safely manage and operate the facility when all pre-start findings have been satisfactorily corrected. The DOE Readiness Assessment (RA) team spent a week on-site at Waste Receiving and Processing Module 1 (WRAP-1) to validate the readiness for phase 1 start up of facility. The Contractor and DOE staff were exceptionally cooperative and contributed significantly to the overall success of the RA. The procedures and Conduct of Operations areas had significant discrepancies, many of which should have been found by the contractor review team. In addition the findings of the contractor review team should have led the WRAP-1 management team to correcting the root causes of the findings prior to the DOE RA team review. The findings and observations include many issues that the team believes should have been found by the contractor review and corrective actions taken. A significantly improved Operational Readiness Review (ORR) process and corrective actions of root causes must be fully implemented by the contractor prior to the performance of the contractor ORR for phase 2 operations. The pre-start findings as a result of this independent DOE Readiness Assessment are presented.

  13. A knowledge acquisition process to analyse operational problems in solid waste management facilities.

    PubMed

    Dokas, Ioannis M; Panagiotakopoulos, Demetrios C

    2006-08-01

    The available expertise on managing and operating solid waste management (SWM) facilities varies among countries and among types of facilities. Few experts are willing to record their experience, while few researchers systematically investigate the chains of events that could trigger operational failures in a facility; expertise acquisition and dissemination, in SWM, is neither popular nor easy, despite the great need for it. This paper presents a knowledge acquisition process aimed at capturing, codifying and expanding reliable expertise and propagating it to non-experts. The knowledge engineer (KE), the person performing the acquisition, must identify the events (or causes) that could trigger a failure, determine whether a specific event could trigger more than one failure, and establish how various events are related among themselves and how they are linked to specific operational problems. The proposed process, which utilizes logic diagrams (fault trees) widely used in system safety and reliability analyses, was used for the analysis of 24 common landfill operational problems. The acquired knowledge led to the development of a web-based expert system (Landfill Operation Management Advisor, http://loma.civil.duth.gr), which estimates the occurrence possibility of operational problems, provides advice and suggests solutions. PMID:16941992

  14. Containerless Processing in Reduced Gravity Using the TEMPUS Facility during MSL-1 and MSL-1R

    NASA Technical Reports Server (NTRS)

    Rogers, Jan R.

    1998-01-01

    Containerless processing provides a high purity environment for the study of high-temperature, very reactive materials. It is an important method which provides access to the metastable state of an undercooled melt. In the absence of container walls, the nucleation rate is greatly reduced and undercooling up to (Tm-Tn)/Tm approx. equal to 0.2 can be obtained, where Tm and Tn are the melting and nucleation temperatures, respectively. Electromagnetic levitation represents a method particularly well-suited for the study of metallic melts. The TEMPUS (Tiegelfreies ElektroMagnetisches Prozessieren Unter Schwerelosgkeit) facility is a research instrument designed to perform electromagnetic levitation studies in reduced gravity. TEMPUS is a joint undertaking between DARA, the German Space Agency, and the Microgravity Science and Applications Division of NASA. The George C. Marshall Space Flight Center provides the leadership for scientific and management efforts which support the four US PI teams which performed experiments in the TEMPUS facility. The facility is sensitive to accelerations in the 1-10 Hz range. This became evident during the MSL-1 mission. Analysis of accelerometer and video data indicated that loss of sample control occurred during crew exercise periods which created disturbances in this frequency range. Prior to the MSL-1R flight the TEMPUS team, the accelerometer support groups and the mission operations team developed a strategy to provide for the operation of the facility without such disturbances. The successful implementation of this plan led to the highly successful operation of this facility during MSL-1R.

  15. Data management in the cell therapy production facility: the batch process record (BPR).

    PubMed

    Janssen, We

    2008-01-01

    The activities of cell therapy establishments are associated with substantial amounts of information. For reasons of best practice, regulation and adherence to prevailing standards, the data generated in the course of cell therapy product processing must be recorded and retained in an organized manner. Because cell therapy products are functionally pharmaceuticals, the paradigm of the pharmaceutical manufacturing batch process record (BPR) is proposed as a unit for collecting the data resulting from processing. Considerations for cell-processing facilities for the design of BPR and possible selection of electronic data-recording tools are reviewed, including data to collect in response to regulatory or accreditation mandates and different types of electronic data management tools that may be employed. Additionally, considerations for selection, qualification and validation of computer software for maintenance of the BPR are addressed. PMID:18418768

  16. Waste Receiving and Processing (WRAP) Facility Public Address System Review Findings

    SciTech Connect

    HUMPHRYS, K.L.

    1999-11-03

    Public address system operation at the Waste Receiving and Processing (WRAP) facility was reviewed. The review was based on an Operational Readiness Review finding that public address performance was not adequate in parts of the WRAP facility. Several improvements were made to the WRAP Public Address (PA) system to correct the deficiencies noted. Speaker gain and position was optimized. A speech processor was installed to boost intelligibility in high noise areas. Additional speakers were added to improve coverage in the work areas. The results of this evaluation indicate that further PA system enhancements are not warranted. Additional speakers cannot compensate for the high background sound and high reverberation levels found in the work areas. Recommendations to improve PA system intelligibility include minor speaker adjustments, enhanced PA announcement techniques, and the use of sound reduction and abatement techniques where economically feasible.

  17. Tritium Facilities Modernization and Consolidation Project Process Waste Assessment (Project S-7726)

    SciTech Connect

    Hsu, R.H.; Oji, L.N.

    1997-11-14

    Under the Tritium Facility Modernization {ampersand} Consolidation (TFM{ampersand}C) Project (S-7726) at the Savannah River Site (SS), all tritium processing operations in Building 232-H, with the exception of extraction and obsolete/abandoned systems, will be reestablished in Building 233-H. These operations include hydrogen isotopic separation, loading and unloading of tritium shipping and storage containers, tritium recovery from zeolite beds, and stripping of nitrogen flush gas to remove tritium prior to stack discharge. The scope of the TFM{ampersand}C Project also provides for a new replacement R&D tritium test manifold in 233-H, upgrading of the 233- H Purge Stripper and 233-H/234-H building HVAC, a new 234-H motor control center equipment building and relocating 232-H Materials Test Facility metallurgical laboratories (met labs), flow tester and life storage program environment chambers to 234-H.

  18. The Chandra X-ray Observatory removed from its container in the Vertical Processing Facility

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Inside the Vertical Processing Facility (VPF), the overhead crane lifts Chandra X-ray Observatory completely out of its protective container. While in the VPF, the telescope will undergo final installation of associated electronic components; it will also be tested, fueled and mated with the Inertial Upper Stage booster. A set of integrated tests will follow. Chandra is scheduled for launch July 9 aboard Space Shuttle Columbia, on mission STS-93 . Formerly called the Advanced X-ray Astrophysics Facility, Chandra comprises three major elements: the spacecraft, the science instrument module (SIM), and the world's most powerful X-ray telescope. Chandra will allow scientists from around the world to see previously invisible black holes and high-temperature gas clouds, giving the observatory the potential to rewrite the books on the structure and evolution of our universe.

  19. The Chandra X-ray Observatory removed from its container in the Vertical Processing Facility

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Inside the Vertical Processing Facility (VPF), workers begin lifting the Chandra X-ray Observatory out of its protective container. While in the VPF, the telescope will undergo final installation of associated electronic components; it will also be tested, fueled and mated with the Inertial Upper Stage booster. A set of integrated tests will follow. Chandra is scheduled for launch July 9 aboard Space Shuttle Columbia, on mission STS-93 . Formerly called the Advanced X-ray Astrophysics Facility, Chandra comprises three major elements: the spacecraft, the science instrument module (SIM), and the world's most powerful X-ray telescope. Chandra will allow scientists from around the world to see previously invisible black holes and high-temperature gas clouds, giving the observatory the potential to rewrite the books on the structure and evolution of our universe.

  20. Fluids and Combustion Facility Acoustic Emissions Controlled by Aggressive Low-Noise Design Process

    NASA Technical Reports Server (NTRS)

    Cooper, Beth A.; Young, Judith A.

    2004-01-01

    The Fluids and Combustion Facility (FCF) is a dual-rack microgravity research facility that is being developed by Northrop Grumman Information Technology (NGIT) for the International Space Station (ISS) at the NASA Glenn Research Center. As an on-orbit test bed, FCF will host a succession of experiments in fluid and combustion physics. The Fluids Integrated Rack (FIR) and the Combustion Integrated Rack (CIR) must meet ISS acoustic emission requirements (ref. 1), which support speech communication and hearing-loss-prevention goals for ISS crew. To meet these requirements, the NGIT acoustics team implemented an aggressive low-noise design effort that incorporated frequent acoustic emission testing for all internal noise sources, larger-scale systems, and fully integrated racks (ref. 2). Glenn's Acoustical Testing Laboratory (ref. 3) provided acoustical testing services (see the following photograph) as well as specialized acoustical engineering support as part of the low-noise design process (ref. 4).

  1. Conceptual design of a solar cogeneration facility industrial process heat, category A. Executive summary

    NASA Astrophysics Data System (ADS)

    Joy, P.; Brzeczek, M.; Seilestad, H.; Silverman, C.; Yenetchi, G.

    1981-07-01

    The conceptual design of a central receiver solar cogeneration facility at a California oil field is described. The process of selecting the final cogeneration system configuration is described and the various system level and subsystem level tradeoff studies are presented, including the system configuration study, technology options, and system sizing. The facility is described, and the functional aspects, requirements operational characteristics, and performance are discussed. Capital and operating costs, safety, environmental, regulatory issues and potential limiting considerations for the design are included. Each subsystem is described in detail including a discussion of the functional requirements, design, operating characteristics performance estimates and a top level cost estimate. An economic assessment is performed to determine the near-term economic viability of the project and to examine the impact of variations in major economic parameters such as capital and operating and maintenance costs on economic viability. Two measures of economic viability used are levelized energy cost and net present value.

  2. FACILITY UPGRADES FOR RECEIPT FROM ACTINIDE REMOVAL AND MODULAR CAUSTIC SIDE SOLVENT EXTRACTION PROCESSES AT THE SAVANNAH RIVER SITE

    SciTech Connect

    Fellinger, T; Stephen Phillips, S; Benjamin Culbertson, B; Beverly02 Davis, B; Aaron Staub, A

    2007-02-13

    The Savannah River Site (SRS) is currently on an aggressive program to empty its High Level Waste (HLW) tanks and immobilize its radioactive waste into a durable borosilicate glass in the Defense Waste Processing Facility (DWPF). As a part of that program, two new processes will be brought on-line to assist in emptying the HLW tanks. These processes are in addition to the current sludge removal process and are called the Actinide Removal Process (ARP) and the Modular Caustic Side Solvent Extraction (MCU) Process. In order to accept and process the streams generated from these two new processes, several facility modifications are required and are broken down into several projects. These projects are handling the facility modifications required for the Tank Farm (241-96H), and DWPF vitrification facility (221-S), and DWPF ancillary facilities (511-S, and 512-S). Additional modifications to the 221-S building were required to address the flammability concern from the solvent carryover from the MCU process. This paper will describe a summary of the modifications impacting the 511-S, 512-S, and the 221-S facilities in order to receive the new streams from the ARP and MCU processes at the DWPF.

  3. Modelling of post-fragmentation waste stream processing within UK shredder facilities

    SciTech Connect

    Coates, Gareth Rahimifard, Shahin

    2009-01-15

    With the introduction of producer responsibility legislation within the UK (i.e., waste electrical and electronic equipment directive and end-of-life vehicles directive), specific recycling and recovery targets have been imposed to improve the sustainability of end-of-life products. With the introduction of these targets, and the increased investment in post-fragmentation facilities, automated material separation technologies are playing an integral role within the UK's end-of-life waste management strategy. Post-fragmentation facilities utilise a range of purification technologies that target certain material attributes (e.g., density, magnetism, volume) to isolate materials from the shredded waste stream. High ferrous prices have historically meant that UK facilities have been primarily interested in recovering iron and steel, establishing processing routes that are very effective at removing these material types, but as a consequence are extremely rigid and inflexible. With the proliferation of more exotic materials within end-of-life products, combined with more stringent recycling targets, there is therefore a need to optimise the current waste reclamation processes to better realise effort-to-value returns. This paper provides a background as to the current post-fragmentation processing adopted within the UK, and describes the development of a post-fragmentation modelling approach, capable of simulating the value-added processing that a piece of automated separation equipment can have on a fragmented waste stream. These include the modelling of the inefficiencies of the technology, the effects of material entanglement on separation, determination of typical material sizing and an appreciation for compositional value. The implementation of this approach within a software decision-support system is described, before the limitations, calibration and further validation of the approach are discussed.

  4. Examination of Listeria monocytogenes in Seafood Processing Facilities and Smoked Salmon in the Republic of Ireland.

    PubMed

    Leong, Dara; Alvarez-Ordóñez, Avelino; Zaouali, Sarah; Jordan, Kieran

    2015-12-01

    Listeria monocytogenes is a foodborne pathogen that causes listeriosis, a relatively rare but life-threatening disease primarily affecting immunocompromised individuals. The aim of this study was to determine the prevalence of L. monocytogenes in the seafood processing industry in the Republic of Ireland. The occurrence of L. monocytogenes was determined by regular sampling of both food samples and processing environment swabs at eight seafood processing facilities over two calendar years. All samples were analyzed by the International Organization for Standardization 11290-1 standard method, and the isolates were characterized by PCR, pulsed-field gel electrophoresis, serotyping, and the occurrence of some genes related to survival under stress (SSI-1, Tn6188, and bcrABC). A prevalence of 2.5% in 508 samples (433 environmental swabs and 75 food samples) was found. From the isolates obtained, eight different pulsed-field gel electrophoresis profiles were identified, two occurring in more than one facility and one occurring in food and the environment. Five of the eight pulsotypes identified contained at least one of the three stress survival-related genes tested. The tolerance of the isolates to benzalkonium chloride, a representative quaternary ammonium compound, was also examined and ranged from 5.5 ± 0.5 to 8.5 ± 0.5 ppm of benzalkonium chloride. To evaluate the ability of smoked salmon to support the growth of L. monocytogenes, including the T4 widespread pulsotype that was isolated, a challenge test was performed on cold-smoked salmon obtained from two separate producers. The results showed clearly that both types of smoked salmon supported the growth of L. monocytogenes. Although occurrence of L. monocytogenes on seafood was low, this study showed that the smoked salmon used in this study can support the growth of L. monocytogenes; therefore, vigilance is required in the processing facilities to reduce the associated risk. PMID:26613913

  5. Modelling of post-fragmentation waste stream processing within UK shredder facilities.

    PubMed

    Coates, Gareth; Rahimifard, Shahin

    2009-01-01

    With the introduction of producer responsibility legislation within the UK (i.e., waste electrical and electronic equipment directive and end-of-life vehicles directive), specific recycling and recovery targets have been imposed to improve the sustainability of end-of-life products. With the introduction of these targets, and the increased investment in post-fragmentation facilities, automated material separation technologies are playing an integral role within the UK's end-of-life waste management strategy. Post-fragmentation facilities utilise a range of purification technologies that target certain material attributes (e.g., density, magnetism, volume) to isolate materials from the shredded waste stream. High ferrous prices have historically meant that UK facilities have been primarily interested in recovering iron and steel, establishing processing routes that are very effective at removing these material types, but as a consequence are extremely rigid and inflexible. With the proliferation of more exotic materials within end-of-life products, combined with more stringent recycling targets, there is therefore a need to optimise the current waste reclamation processes to better realise effort-to-value returns. This paper provides a background as to the current post-fragmentation processing adopted within the UK, and describes the development of a post-fragmentation modelling approach, capable of simulating the value-added processing that a piece of automated separation equipment can have on a fragmented waste stream. These include the modelling of the inefficiencies of the technology, the effects of material entanglement on separation, determination of typical material sizing and an appreciation for compositional value. The implementation of this approach within a software decision-support system is described, before the limitations, calibration and further validation of the approach are discussed. PMID:18472415

  6. Review of Catalytic Hydrogen Generation in the Defense Waste Processing Facility (DWPF) Chemical Processing Cell

    SciTech Connect

    Koopman, D. C.

    2004-12-31

    This report was prepared to fulfill the Phase I deliverable for HLW/DWPF/TTR-98-0018, Rev. 2, ''Hydrogen Generation in the DWPF Chemical Processing Cell'', 6/4/2001. The primary objective for the preliminary phase of the hydrogen generation study was to complete a review of past data on hydrogen generation and to prepare a summary of the findings. The understanding was that the focus should be on catalytic hydrogen generation, not on hydrogen generation by radiolysis. The secondary objective was to develop scope for follow-up experimental and analytical work. The majority of this report provides a summary of past hydrogen generation work with radioactive and simulated Savannah River Site (SRS) waste sludges. The report also includes some work done with Hanford waste sludges and simulants. The review extends to idealized systems containing no sludge, such as solutions of sodium formate and formic acid doped with a noble metal catalyst. This includes general information from the literature, as well as the focused study done by the University of Georgia for the SRS. The various studies had a number of points of universal agreement. For example, noble metals, such as Pd, Rh, and Ru, catalyze hydrogen generation from formic acid and formate ions, and more acid leads to more hydrogen generation. There were also some points of disagreement between different sources on a few topics such as the impact of mercury on the noble metal catalysts and the identity of the most active catalyst species. Finally, there were some issues of potential interest to SRS that apparently have not been systematically studied, e.g. the role of nitrite ion in catalyst activation and reactivity. The review includes studies covering the period from about 1924-2002, or from before the discovery of hydrogen generation during simulant sludge processing in 1988 through the Shielded Cells qualification testing for Sludge Batch 2. The review of prior studies is followed by a discussion of proposed

  7. An MCNP model of glove boxes in a plutonium processing facility

    SciTech Connect

    Dooley, D.E.; Kornreich, D.E.

    1998-12-31

    Nuclear material processing usually occurs simultaneously in several glove boxes whose primary purpose is to contain radioactive materials and prevent inhalation or ingestion of radioactive materials by workers. A room in the plutonium facility at Los Alamos National Laboratory has been slated for installation of a glove box for storing plutonium metal in various shapes during processing. This storage glove box will be located in a room containing other glove boxes used daily by workers processing plutonium parts. An MCNP model of the room and glove boxes has been constructed to estimate the neutron flux at various locations in the room for two different locations of the storage glove box and to determine the effect of placing polyethylene shielding around the storage glove box. A neutron dose survey of the room with sources dispersed as during normal production operations was used as a benchmark to compare the neutron dose equivalent rates calculated by the MCNP model.

  8. A facile process to achieve hysteresis-free and fully stabilized graphene field-effect transistors.

    PubMed

    Kim, Yun Ji; Lee, Young Gon; Jung, Ukjin; Lee, Sangchul; Lee, Sang Kyung; Lee, Byoung Hun

    2015-03-01

    The operation of chemical vapor-deposited (CVD) graphene field-effect transistors (GFETs) is highly sensitive to environmental factors such as the substrate, polymer residues, ambient condition, and other species adsorbed on the graphene surface due to their high defect density. As a result, CVD GFETs often exhibit a large hysteresis and time-dependent instability. These problems become a major roadblock in the systematic study of graphene devices. We report a facile process to alleviate these problems, which can be used to fabricate stable high performance CVD GFETs with symmetrical current-voltage (I-V) characteristics and an effective carrier mobility over 6000 cm(2) V(-1) s(-1). This process combined a few steps of processes in sequence including pre-annealing in a vacuum, depositing a passivation layer, and the final annealing in a vacuum, and eliminated ∼50% of charging sources primarily originating from water reduction reactions. PMID:25672592

  9. 30 CFR 910.827 - Special performance standards-coal processing plants and support facilities not located at or...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... plants and support facilities not located at or near the minesite or not within the permit area for a... near the minesite or not within the permit area for a mine. Part 827 of this chapter, Special Permanent Program Performance Standards—Coal Processing Plants and Support Facilities Not Located at or Near...

  10. 30 CFR 922.827 - Special performance standards-coal processing plants and support facilities not located at or...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... plants and support facilities not located at or near the minesite or not within the permit area for a... near the minesite or not within the permit area for a mine. Part 827 of this chapter, Special Permanent Program Performance Standards—Coal Processing Plants and Support Facilities not Located at or near...