Science.gov

Sample records for production conditions crada

  1. Biochemical basis of drought tolerance in hybrid Populus grown under field production conditions. CRADA final report

    SciTech Connect

    Tschaplinski, T.J.; Tuskan, G.A.; Wierman, C.

    1997-04-01

    The purpose of this cooperative effort was to assess the use of osmotically active compounds as molecular selection criteria for drought tolerance in Populus in a large-scale field trial. It is known that some plant species, and individuals within a plant species, can tolerate increasing stress associated with reduced moisture availability by accumulating solutes. The biochemical matrix of such metabolites varies among species and among individuals. The ability of Populus clones to tolerate drought has equal value to other fiber producers, i.e., the wood products industry, where irrigation is used in combination with other cultural treatments to obtain high dry weight yields. The research initially involved an assessment of drought stress under field conditions and characterization of changes in osmotic constitution among the seven clones across the six moisture levels. The near-term goal was to provide a mechanistic basis for clonal differences in productivity under various irrigation treatments over time.

  2. CRADA Carbon Sequestration in Soils and Commercial Products

    SciTech Connect

    Jacobs, G.K.

    2002-01-31

    ORNL, through The Consortium for Research on Enhancing Carbon Sequestration in Terrestrial Ecosystems (CSiTE), collaborated with The Village Botanica, Inc. (VB) on a project investigating carbon sequestration in soils and commercial products from a new sustainable crop developed from perennial Hibiscus spp. Over 500 pre-treated samples were analyzed for soil carbon content. ORNL helped design a sampling scheme for soils during the planting phase of the project. Samples were collected and prepared by VB and analyzed for carbon content by ORNL. The project did not progress to a Phase II proposal because VB declined to prepare the required proposal.

  3. Integrated Biorefinery Project: Cooperative Research and Development Final Report, CRADA Number CRD-10-390

    SciTech Connect

    Chapeaux, A.; Schell, D.

    2013-06-01

    The Amyris-NREL CRADA is a sub-project of Amyris?s DOE-funded pilot-scale Integrated Biorefinery (IBR). The primary product of the Amyris IBR is Amyris Renewable Diesel. Secondary products will include lubricants, polymers and other petro-chemical substitutes. Amyris and its project partners will execute on a rapid project to integrate and leverage their collective expertise to enable the conversion of high-impact biomass feedstocks to these advanced, infrastructure-compatible products. The scope of the Amyris-NREL CRADA includes the laboratory development and pilot scale-up of bagasse pretreatment and enzymatic saccharification conditions by NREL for subsequent conversion of lignocellulosic sugar streams to Amyris Diesel and chemical products by Amyris. The CRADA scope also includes a techno-economic analysis of the overall production process of Amyris products from high-impact biomass feedstocks.

  4. CRADA with International Polyol Chemicals, Inc. (IPCI) and Pacific Northwest National Laboratory (PNL-053): Process Optimization for Polyols Production from Glucose

    SciTech Connect

    Elliott, D.C.

    1997-01-01

    The objective of this CRADA is to provide sufficient process development to allow a decision for commercialization of the International Polyol Chemicals, Inc. (IPCI) process for production of polyols from glucose. This cooperative research allowed Pacific Northwest National Laboratory (PNNL) to focus its aqueous processing systems expertise on the IPCI process to facilitate process optimization. The project was part of the Department of Energy's (DOE/EE-OIT) Alternative Feedstocks Program (AFP). The project was a demonstration of the cooperative effort between the AFP and the Department of Agriculture's Alternative Agriculture Research Center, which was also funding IPCI research.

  5. Scaleable production and separation of fermentation-derived acetic acid. Final CRADA report.

    SciTech Connect

    Snyder, S. W.; Energy Systems

    2010-02-08

    Half of U.S. acetic acid production is used in manufacturing vinyl acetate monomer (VAM) and is economical only in very large production plants. Nearly 80% of the VAM is produced by methanol carbonylation, which requires high temperatures and exotic construction materials and is energy intensive. Fermentation-derived acetic acid production allows for small-scale production at low temperatures, significantly reducing the energy requirement of the process. The goal of the project is to develop a scaleable production and separation process for fermentation-derived acetic acid. Synthesis gas (syngas) will be fermented to acetic acid, and the fermentation broth will be continuously neutralized with ammonia. The acetic acid product will be recovered from the ammonium acid broth using vapor-based membrane separation technology. The process is summarized in Figure 1. The two technical challenges to success are selecting and developing (1) microbial strains that efficiently ferment syngas to acetic acid in high salt environments and (2) membranes that efficiently separate ammonia from the acetic acid/water mixture and are stable at high enough temperature to facilitate high thermal cracking of the ammonium acetate salt. Fermentation - Microbial strains were procured from a variety of public culture collections (Table 1). Strains were incubated and grown in the presence of the ammonium acetate product and the fastest growing cultures were selected and incubated at higher product concentrations. An example of the performance of a selected culture is shown in Figure 2. Separations - Several membranes were considered. Testing was performed on a new product line produced by Sulzer Chemtech (Germany). These are tubular ceramic membranes with weak acid functionality (see Figure 3). The following results were observed: (1) The membranes were relatively fragile in a laboratory setting; (2) Thermally stable {at} 130 C in hot organic acids; (3) Acetic acid rejection > 99%; and (4

  6. CRADA No. NFE-10-02715 Assessment of AFA Stainless Steels for Tube Products in Chemical Processing and Energy Production Applications

    SciTech Connect

    Brady, Michael P; Yamamoto, Yukinori; Epler, Mario; Magee, John H

    2011-09-01

    Oak Ridge National Laboratory (ORNL) and Carpenter Technology Corporation (Carpenter) participated in an in-kind cost share cooperative research and development agreement (CRADA) effort under the auspices of the Energy Efficiency and Renewable Energy (EERE) Technology Maturation Program to assess material properties of several potential AFA family grades and explore the feasibility of producing alumina-forming austenitic (AFA) stainless steels in tubular form needed for many power generation and chemical process applications. Carpenter's Research Laboratory successfully vacuum melted 30 lb heats of seven candidate AFA alloy compositions representing a wide range of alloy content and intended application temperatures. These compositions were evaluated by ORNL and Carpenter R&D for microstructure, tensile properties, creep properties, and oxidation resistance. In parallel, additional work was directed toward an initial tube manufacture demonstration of a baseline AFA alloy. Carpenter successfully manufactured a 10,000 lb production heat and delivered appropriate billets to a partner for extrusion evaluation. Tube product was successfully manufactured from the baseline AFA alloy, indicating good potential for commercially produced AFA tubular form material.

  7. CRADA Final Report For CRADA NO. CR-12-006 [Operation and Testing of an SO{sub 2}-depolarized Electrolyzer (SDE) for the Purpose of Hydrogen and Sulfuric Acid Production

    SciTech Connect

    Summers, W. A.; Colon-Mercado, H. R.; Steimke, J. L.; Zahn, Steffen

    2014-02-24

    Over the past several years, Savannah River National Laboratory (SRNL) has led a team of collaborators under the Department of Energy’s (DOE) nuclear hydrogen production program to develop the Hybrid Sulfur (HyS) Process. HyS is a 2-step water-splitting process consisting of high temperature decomposition of sulfuric acid to generate SO{sub 2}, followed by the electrolysis of aqueous SO{sub 2} to generate hydrogen and sulfuric acid. The latter is fed back into the high temperature reactor. SRNL designed and built an SO{sub 2}-depolarized electrolyzer (SDE) and a test facility. Over 40 SDE’s were tested using different catalysts, membranes and other components. SRNL demonstrated that an SDE could be operated continuously for approximately 200 hours under certain conditions without buildup of sulfur at the SDE’s cathode, thus solving a key technical problem with SDE technology. Air Products and Chemicals, Inc. (APCI) is a major supplier of hydrogen production systems, and they have proprietary technology that could benefit from the SDE developed by SRNS, or some improved version thereof. However, to demonstrate that SRNL’s SDE is a truly viable approach to the electrolyzer design, continuous operation for far greater periods of time than 200 hours must be demonstrated, and the electrolyzer must be scaled up to greater hydrogen production capacities. SRNL and Air Products entered into a Cooperative Research and Development Agreement with the objective of demonstrating the effectiveness of the SDE for hydrogen and sulfuric acid production and to demonstrate long-term continuous operation so as to dramatically increase the confidence in the SDE design for commercial operation. SRNL prepared a detailed technical report documenting previous SDE development, including the current SDE design and operating conditions that led to the 200-hour sulfurfree testing. SRNL refurbished its single cell SDE test facility and qualified the equipment for continuous operation. A

  8. Microalgal Production of Jet Fuel: Cooperative Research and Development Final Report, CRADA Number CRD-07-208

    SciTech Connect

    Jarvis, E. E.; Pienkos, P. T.

    2012-06-01

    Microalgae are photosynthetic microorganisms that can use CO2 and sunlight to generate the complex biomolecules necessary for their survival. These biomolecules include energy-rich lipid compounds that can be converted using existing refinery equipment into valuable bio-derived fuels, including jet fuel for military and commercial use. Through a dedicated and thorough collaborative research, development and deployment program, the team of the National Renewable Energy Laboratory (NREL) and Chevron will identify a suitable algae strain that will surpass the per-acre biomass productivity of terrestrial plant crops.

  9. In-service testing of Ni{sub 3}Al coupons and trays in carburizing furnaces at Delphi Saginaw. CRADA final report

    SciTech Connect

    Sikka, V.K.; Santella, M.L.; Viswanathan, S.; Swindeman, R.W.; Chatterjee, M.

    1998-08-01

    This Cooperative Research and Development Agreement (CRADA) report deals with the development of nickel aluminide alloy for improved longer life heat-resistant fixture assemblies for batch and continuous pusher carburizing furnaces. The nickel aluminide development was compared in both coupon and component testing with the currently used Fe-Ni-Cr heat-resisting alloy known as HU. The specific goals of the CRADA were: (1) casting process development, (2) characterization and possible modification of the alloy composition to optimize its manufacturing ability and performance under typical furnace operating conditions, and (3) testing and evaluation of specimens and prototype fixtures. In support of the CRADA objectives, coupons of nickel aluminide and the HU alloy were installed in both batch and pusher furnaces. The coupons were taken from two silicon levels and contained welds made with two different filler compositions (IC-221LA and IC-221W). Both nickel-aluminide and HU coupons were removed from the batch and pusher carburizing furnace at time intervals ranging from one month to one year. The exposed coupons were cut and mounted for metallographic, hardness, and microprobe analysis. The results of the microstructural analysis have been transmitted to General Motors Corporation, Saginaw Division (Delphi Saginaw) through reports that were presented at periodic CRADA review meetings. Based on coupon testing and verification of the coupon results with the testing of trays, Delphi Saginaw moved forward with the use of six additional trays in a batch furnace and two assemblies in a pusher furnace. Fifty percent of the trays and fixtures are in the as-cast condition and the remaining trays and fixtures are in the preoxidized condition. The successful operating experience of two assemblies in the pusher furnace for nearly a year formed the basis for a production run of 63 more assemblies. The production run required melting of 94 heats weighing 500 lb. each. Twenty

  10. Science and Technology Development for Renewable Energy Applications: Cooperative Research and Development Final Report, CRADA Number CRD-03-00122

    SciTech Connect

    Musial, W.

    2010-07-01

    This CRADA PTS is a vital element of a larger GE effort to design and build higher-power next-generation wind turbine generators with a cost of energy production competitive or less than conventional fuel-based generation.

  11. SWAY/NREL Collaboration on Offshore Wind System Testing and Analysis: Cooperative Research and Development Final Report, CRADA Number CRD-11-459

    SciTech Connect

    Robertson, Amy

    2015-02-01

    This shared resources CRADA defines collaborations between the National Renewable Energy Laboratory and SWAY. Under the terms and conditions described in this CRADA agreement, NREL and SWAY will collaborate on the SWAY 1/5th-scale floating wind turbine demonstration project in Norway. NREL and SWAY will work together to obtain measurement data from the demonstration system to perform model validation.

  12. Surface Inspection Machine Infrared (SIMIR). Final CRADA report

    SciTech Connect

    Powell, G.L.; Neu, J.T.; Beecroft, M.

    1997-02-28

    This Cooperative Research and Development Agreement was a one year effort to make the surface inspection machine based on diffuse reflectance infrared spectroscopy (Surface Inspection Machine-Infrared, SIMIR), being developed by Surface Optics Corporation, perform to its highest potential as a practical, portable surface inspection machine. The design function of the SIMIR is to inspect metal surfaces for cleanliness (stains). The system is also capable of evaluating graphite-resin systems for cure and heat damage, and for measuring the effects of moisture exposure on lithium hydride, corrosion on uranium metal, and the constituents of and contamination on wood, paper, and fabrics. Over the period of the CRADA, extensive experience with the use of the SIMIR for surface cleanliness measurements have been achieved through collaborations with NASA and the Army. The SIMIR was made available to the AMTEX CRADA for Finish on Yarn where it made a very significant contribution. The SIMIR was the foundation of a Forest Products CRADA that was developed over the time interval of this CRADA. Surface Optics Corporation and the SIMIR have been introduced to the chemical spectroscopy on-line analysis market and have made staffing additions and arrangements for international marketing of the SIMIR as an on-line surface inspection device. LMES has been introduced to a wide range of aerospace applications, the research and fabrication skills of Surface Optics Corporation, has gained extensive experience in the areas of surface cleanliness from collaborations with NASA and the Army, and an extensive introduction to the textile and forest products industries. The SIMIR, marketed as the SOC-400, has filled an important new technology need in the DOE-DP Enhanced Surveillance Program with instruments delivered to or on order by LMES, LANL, LLNL, and Pantex, where extensive collaborations are underway to implement and improve this technology.

  13. Frito-Lay North America/NREL CRADA: Cooperative Research and Development Final Report, CRADA Number CRD-06-176

    SciTech Connect

    Walker, A.

    2013-06-01

    Frito Lay North America (FLNA) requires technical assistance for the evaluation and implementation of renewable energy and energy efficiency projects in production facilities and distribution centers across North America. Services provided by NREL do not compete with those available in the private sector, but rather provide FLNA with expertise to create opportunities for the private sector renewable/efficiency industries and to inform FLNA decision making regarding cost-effective projects. Services include: identifying the most cost-effective project locations based on renewable energy resource data, utility data, incentives and other parameters affecting projects; assistance with feasibility studies; procurement specifications; design reviews; and other services to support FNLA in improving resource efficiency at facilities. This Cooperative Research and Development Agreement (CRADA) establishes the terms and conditions under which FLNA may access capabilities unique to the laboratory and required by FLNA. Each subsequent task issued under this umbrella agreement would include a scope-of-work, budget, schedule, and provisions for intellectual property specific to that task.

  14. Imperium/Lanzatech Syngas Fermentation Project - Biomass Gasification and Syngas Conditioning for Fermentation Evaluation: Cooperative Research and Development Final Report, CRADA Number CRD-12-474

    SciTech Connect

    Wilcox, E.

    2014-09-01

    LanzaTech and NREL will investigate the integration between biomass gasification and LanzaTech's proprietary gas fermentation process to produce ethanol and 2,3-butanediol. Using three feed materials (woody biomass, agricultural residue and herbaceous grass) NREL will produce syngas via steam indirect gasification and syngas conditioning over a range of process relevant operating conditions. The gasification temperature, steam-to-biomass ratio of the biomass feed into the gasifier, and several levels of syngas conditioning (based on temperature) will be varied to produce multiple syngas streams that will be fed directly to 10 liter seed fermenters operating with the Lanzatech organism. The NREL gasification system will then be integrated with LanzaTech's laboratory pilot unit to produce large-scale samples of ethanol and 2,3-butanediol for conversion to fuels and chemicals.

  15. Advanced technology and manufacturing practices for machining and inspecting metal matrix composites. Final CRADA report for CRADA number Y-1292-0092

    SciTech Connect

    Fell, H.A.; Shelton, J.E.; LaMance, G.M.; Kennedy, C.R.

    1995-02-26

    Lockheed Martin Energy Systems, Inc. (Energy Systems) and the Lanxide Corporation (Lanxide) negotiated a Cooperative Research and Development Agreement (CRADA) to develop advanced technology and manufacturing practices for machining and inspecting metal matrix composites (MMC). The objective of this CRADA was to develop machining parameters to allow manufacturing of automotive components from MMCs. These parts exhibit a range of shapes and dimensional tolerances and require a large number of machining operations. The common characteristic of the components is the use of the light weight MMC materials to replace heavier materials. This allows smaller and lighter moving parts and supporting structural components thereby increasing fuel mileage. The CRADA was divided into three areas: basic investigation of cutting parameters, establishment of a mock production line for components, and optimization of parameters in the mock facility. This report covers the manufacturing of MMCs and preliminary Phase I testing for silicon carbide having various loading percentages and extensive Phase I testing of cutting parameters on 30% alumina loaded aluminum. On January 26, 1995, a letter from the vice president, technology at Lanxide was issued terminating the CRADA due to changes in business. 9 refs., 18 figs., 3 tabs.

  16. FFP/NREL Collaboration on Hydrokinetic River Turbine Testing: Cooperative Research and Development Final Report, CRADA Number CRD-12-00473

    SciTech Connect

    Driscoll, F.

    2013-04-01

    This shared resources CRADA defines collaborations between the National Renewable Energy Laboratory (NREL) and Free Flow Power (FFP) set forth in the following Joint Work Statement. Under the terms and conditions described in this CRADA, NREL and FFP will collaborate on the testing of FFP's hydrokinetic river turbine project on the Mississippi River (baseline location near Baton Rouge, LA; alternate location near Greenville, MS). NREL and FFP will work together to develop testing plans, instrumentation, and data acquisition systems; and perform field measurements.

  17. CRADA opportunities in pressurized combustion research

    SciTech Connect

    Maloney, D.J.; Norton, T.S.; Casleton, K.H.

    1995-06-01

    The Morgantown Energy Technology Center recently began operation of a Low Emissions Combustor Test and Research (LECTR) Facility. This facility was built to support the development of Advanced Gas Turbine Systems (ATS) by providing test facilities and engineering support to METC customers through the ATS University-Industry Consortium and through CRADA participation with industrial partners.

  18. Cost effective machining and inspection of structural ceramic components for advanced high temperature application. Final CRADA report for CRADA number Y-1292-0151

    SciTech Connect

    Abbatiello, L.A.; Haselkorn, M.

    1996-11-29

    This Cooperative Research and Development Agreement (CRADA) was a mutual research and development (R and D) effort among the participants to investigate a range of advanced manufacturing technologies for two silicon nitride (Si{sub 3}N{sub 4}) ceramic materials. The general objective was to identify the most cost-effective part manufacturing processes for the ceramic materials of interest. The focus was determining the relationship between material removal rates, surface quality, and the structural characteristics of each ceramic resulting from three innovative processes. These innovated machining processes were studied using silicon nitride advanced materials. The particular (Si{sub 3}N{sub 4}) materials of interest were sintered GS-44 from the Norton Company, and reaction-bonded Ceraloy 147-3. The processes studied included the following activities: (1) direct laser machining; (2) rotary ultrasonic machining; and (3) diamond abrasive grinding, including both resinoid and vitreous-bonded grinding wheels. Both friable and non-friable diamond types were included within the abrasive grinding study. The task also conducted a comprehensive survey of European experience in use of ceramic materials, principally aluminum oxide. Originally, the effort of this task was to extend through a prototype manufacturing demonstration of selected engine components. During the execution of this program, however changes were made to the scope of the project, altering the goals. The Program goal became only the development of assessment of their impacts on product strength and surface condition.

  19. CRADA Final Report for CRADA Number NFE-10-02991 "Development and Commercialization of Alternative Carbon Precursors and Conversion Technologies"

    SciTech Connect

    Norris, Rober; Paulauskas, Felix; Naskar, Amit; Kaufman, Michael; Yarborough, Ken; Derstine, Chris

    2013-10-01

    The overall objective of the collaborative research performed by the Oak Ridge National Laboratory (ORNL) and the Dow Chemical Company under this Cooperative Research And Development Agreement (CRADA NFE-10-02991) was to develop and establish pathways to commercialize new carbon fiber precursor and conversion technology. This technology is to produce alternative polymer fiber precursor formulations as well as scaled energy-efficient advanced conversion technology to enable continuous mode conversion to obtain carbonized fibers that are technically and economically viable in industrial markets such as transportation, wind energy, infrastructure and oil drilling applications. There have been efforts in the past to produce a low cost carbon fiber. These attempts have to be interpreted against the backdrop of the market needs at the time, which were strictly military aircraft and high-end aerospace components. In fact, manufacturing costs have been reduced from those days to current practice, where both process optimization and volume production have enabled carbon fiber to become available at prices below $20/lb. However, the requirements of the lucrative aerospace market limits further price reductions from current practice. This approach is different because specific industrial applications are targeted, most specifically wind turbine blade and light vehicle transportation, where aircraft grade carbon fiber is not required. As a result, researchers are free to adjust both manufacturing process and precursor chemistry to meet the relaxed physical specifications at a lower cost. This report documents the approach and findings of this cooperative research in alternative precursors and advanced conversion for production of cost-effective carbon fiber for energy missions. Due to export control, proprietary restrictions, and CRADA protected data considerations, specific design details and processing parameters are not included in this report.

  20. Enhanced control and sensing for the REMOTEC ANDROS Mk VI robot. CRADA final report

    SciTech Connect

    Spelt, P.F.; Harvey, H.W.

    1998-08-01

    This Cooperative Research and Development Agreement (CRADA) between Lockheed Martin Energy Systems, Inc., and REMOTEC, Inc., explored methods of providing operator feedback for various work actions of the ANDROS Mk VI teleoperated robot. In a hazardous environment, an extremely heavy workload seriously degrades the productivity of teleoperated robot operators. This CRADA involved the addition of computer power to the robot along with a variety of sensors and encoders to provide information about the robot`s performance in and relationship to its environment. Software was developed to integrate the sensor and encoder information and provide control input to the robot. ANDROS Mk VI robots are presently used by numerous electric utilities to perform tasks in reactors where substantial exposure to radiation exists, as well as in a variety of other hazardous environments. Further, this platform has potential for use in a number of environmental restoration tasks, such as site survey and detection of hazardous waste materials. The addition of sensors and encoders serves to make the robot easier to manage and permits tasks to be done more safely and inexpensively (due to time saved in the completion of complex remote tasks). Prior research on the automation of mobile platforms with manipulators at Oak Ridge National Laboratory`s Center for Engineering Systems Advanced Research (CESAR, B&R code KC0401030) Laboratory, a BES-supported facility, indicated that this type of enhancement is effective. This CRADA provided such enhancements to a successful working teleoperated robot for the first time. Performance of this CRADA used the CESAR laboratory facilities and expertise developed under BES funding.

  1. Geophysical tomography imaging system. Final CRADA report

    SciTech Connect

    Norton, S.J.; Won, I.J.

    1998-05-20

    The Cooperative Research and Development Agreement (CRADA) between Lockheed Martin Energy Systems, Inc., and Geophex, Ltd., was established to investigate high-resolution, shallow acoustic imaging of the subsurface. The primary objectives of the CRADA were accomplished, including the evaluation of a new tomographic imaging algorithm and the testing and comparison of two different acoustic sources, the hammer/plate source and an electromagnetic vibratory source. The imaging system was composed essentially of a linear array of geophones, a digital seismograph, and imaging software installed on a personal computer. Imaging was most successful using the hammer source, which was found to be less susceptible to ground roll (surface wave) interference. It is conjectured that the vibratory source will perform better for deeper targets for which ground roll is less troublesome. Potential applications of shallow acoustic imaging are numerous, including the detection and characterization of buried solid waste, unexploded ordnance, and clandestine man-made underground structures associated with treaty verification (e.g., tunnels, underground storage facilities, hidden bunkers).

  2. Cimstation/IM enhanced data verification, CRADA final report for CRADA number Y-1292-0162

    SciTech Connect

    Biddix, M.D.; Turner, J.

    1994-05-16

    This report discusses a CRADA code used to enhance the Cimstation in ramifaction of inspection part programs as they are being develop. This report briefly discussed the following topics and contains a code listing in the back: algorithm explanation; Cimstation CAD models; importing inspection point data; need for a new algorithm; details of the algorithms; formulas/mathematics used for the algorithm; algorithm software design diagram; and software function descriptions.

  3. CRADAs: They're Not Just for NCI Anymore | Poster

    Cancer.gov

    By Karen Surabian, Thomas Stackhouse, and Jeffrey Thomas, Contributing Writers, and Bruce Crise, Guest Writer Advancing scientific discovery is increasingly dependent on diverse and innovative partnerships, and the Cooperative Research and Development Agreement (CRADA) is an essential tool for establishing partnerships. CRADAs allow a federal laboratory to enter into collaborative research and development (R&D) projects with outside parties (commercial or nonprofit).

  4. Machining and inspection of structural ceramic components. CRADA final report for CRADA number Y-1292-0078

    SciTech Connect

    Counts, R.W.; Albright, S.; Ritland, M.

    1996-09-30

    This document is the final report of the Cooperative Research and Development Agreement (CRADA) between Lockheed Martin Energy Systems, Inc. (Energy Systems) and the Coors Ceramics Company (Coors). The purpose of this CRADA was to develop advanced technology and manufacturing practices for machining and inspecting ceramic components. Specific CRADA objectives were accomplished through the completion of six projects at four separate Coors facilities. The projects included the development of an analytical model to simulate the mechanics of a powder rolling process, development and testing of a microwave-based system for measuring the density of conveyed ceramic material, and the development and testing of four machine vision inspection systems. This CRADA benefited the U.S. Department of Energy (DOE) activities associated with advanced heat engines, enhanced critical manufacturing skills within the DOE complex for fabricating precision, high quality workpieces from difficult-to-machine materials, and enabled U.S. industry to maintain a position of leadership in the structural ceramics field.

  5. NREL Wind Turbine Blade Structural Testing of the Modular Wind Energy MW45 Blade: Cooperative Research and Development Final Report, CRADA Number CRD-09-354

    SciTech Connect

    Hughes, S.

    2012-05-01

    This CRADA was a purely funds-in CRADA with Modular Wind Energy (MWE). MWE had a need to perform full-scale testing of a 45-m wind turbine blade. NREL/NWTC provided the capabilities, facilities, and equipment to test this large-scale MWE wind turbine blade. Full-scale testing is required to demonstrate the ability of the wind turbine blade to withstand static design load cases and demonstrate the fatigue durability. Structural testing is also necessary to meet international blade testing certification requirements. Through this CRADA, MWE would obtain test results necessary for product development and certification, and NREL would benefit by working with an industrial partner to better understand the unique test requirements for wind turbine blades with advanced structural designs.

  6. CRADA Final Report for CRADA Number ORNL00-0605: Advanced Engine/Aftertreatment System R&D

    SciTech Connect

    Pihl, Josh A; West, Brian H; Toops, Todd J; Adelman, Brad; Derybowski, Edward

    2011-10-01

    Navistar and ORNL established this CRADA to develop diesel engine aftertreatment configurations and control strategies that could meet emissions regulations while maintaining or improving vehicle efficiency. The early years of the project focused on reducing the fuel penalty associated with lean NOx trap (LNT), also known as NOx adsorber catalyst regeneration and desulfation. While Navistar pursued engine-based (in-cylinder) approaches to LNT regeneration, complementary experiments at ORNL focused on in-exhaust fuel injection. ORNL developed a PC-based controller for transient electronic control of EGR valve position, intake throttle position, and actuation of fuel injectors in the exhaust system of a Navistar engine installed at Oak Ridge. Aftertreatment systems consisting of different diesel oxidation catalysts (DOCs) in conjunction with a diesel particle filter and LNT were evaluated under quasi-steady-state conditions. Hydrocarbon (HC) species were measured at multiple locations in the exhaust system with Gas chromatograph mass spectrometry (GC-MS) and Fourier transform infrared (FTIR) spectroscopy. Under full-load, rated speed conditions, injection of fuel upstream of the DOC reduced the fuel penalty for a given level of NOx reduction by 10-20%. GC-MS showed that fuel compounds were 'cracked' into smaller hydrocarbon species over the DOC, particularly light alkenes. GC-MS analysis of HC species entering and exiting the LNT showed high utilization of light alkenes, followed by mono-aromatics; branched alkanes passed through the LNT largely unreacted. Follow-on experiments at a 'road load' condition were conducted, revealing that the NOx reduction was better without the DOC at lower temperatures. The improved performance was attributed to the large swings in the NOx adsorber core temperature. Split-injection experiments were conducted with ultra-low sulfur diesel fuel and three pure HC compounds: 1-pentene, toluene, and iso-octane. The pure compound experiments

  7. Remote Environmental Monitoring System CRADA

    SciTech Connect

    Hensley, R.D.

    2000-03-30

    The goal of the project was to develop a wireless communications system, including communications, command, and control software, to remotely monitor the environmental state of a process or facility. Proof of performance would be tested and evaluated with a prototype demonstration in a functioning facility. AR Designs' participation provided access to software resources and products that enable network communications for real-time embedded systems to access remote workstation services such as Graphical User Interface (GUI), file I/O, Events, Video, Audio, etc. in a standardized manner. This industrial partner further provided knowledge and links with applications and current industry practices. FM and T's responsibility was primarily in hardware development in areas such as advanced sensors, wireless radios, communication interfaces, and monitoring and analysis of sensor data. This role included a capability to design, fabricate, and test prototypes and to provide a demonstration environment to test a proposed remote sensing system. A summary of technical accomplishments is given.

  8. Improved catalyst materials and emission control systems. CRADA final report for CRADA Number ORNL 92-0115

    SciTech Connect

    Kenik, E.A.; More, K.L.; Domingo, N.; Storey, J.M.; LaBarge, W.; Beckmeyer, R.F.; Theis, J.R.

    1996-09-01

    The overall goal of this CRADA was the improvement of performance and/or development of alternate systems for conventional fuel, flex-fuel, and alternate fuel vehicles in order to meet stringent future emission standards. The objectives had three major thrusts: (1) the characterization of the structural and chemical evolution of the precious metals and washcoat during aging under bench flow reactor, engine dynamometer, and vehicle conditions; (2) the correlation of measured catalyst performance and degradation over time with details of microstructural changes under bench flow reactor and engine dynamometer conditions; and (3) the simulation and testing of an in-cylinder catalyst system to determine the effect on emissions of a single-cylinder engine. Catalyst formulations for both gasoline and natural gas applications were studied. The emission testing and structural characterization were performed on alternate formulations and processing variables in order to evaluate the relative conversion efficiency, lifetime, and stability. The aging parameters were correlated with the evolving structure and properties of the tested catalytic converters. A major portion of the second thrust area was the construction and validation of both the bench flow reactor and engine dynamometer test facility and the identification of deactivation/regeneration mechanisms associated with alternative fuels relative to those for conventional fuel. A number of microstructural changes were identified that could contribute to the deactivation of the catalyst during aging. The stability of several catalyst formulations and alternate processing procedures relative to these microstructural changes and changes in conversion efficiency and lifetime were studied.

  9. Improved Battery Pack Thermal Management to Reduce Cost and Increase Energy Density: Cooperative Research and Development Final Report, CRADA Number CRD-12-499

    SciTech Connect

    Smith, K.

    2013-10-01

    Under this CRADA NREL will support Creare's project for the Department of Energy entitled 'Improved Battery Pack Thermal Management to Reduce Cost and Increase Energy Density' which involves the development of an air-flow based cooling product that increases energy density, safety, and reliability of hybrid electric vehicle battery packs.

  10. Solar Thermal Conversion of Biomass to Synthesis Gas: Cooperative Research and Development Final Report, CRADA Number CRD-09-00335

    SciTech Connect

    Netter, J.

    2013-08-01

    The CRADA is established to facilitate the development of solar thermal technology to efficiently and economically convert biomass into useful products (synthesis gas and derivatives) that can replace fossil fuels. NREL's High Flux Solar Furnace will be utilized to validate system modeling, evaluate candidate reactor materials, conduct on-sun testing of the process, and assist in the development of solar process control system. This work is part of a DOE-USDA 3-year, $1M grant.

  11. Prevention of iron-sulfide deposition in petroleum processing. Final CRADA report.

    SciTech Connect

    Doctor, R. D.; Panchal, C. B.; Energy Systems

    2010-03-25

    The purpose of this CRADA extension which effectively ended in 2003 was to quantify the effect of iron-sulfide formation on the fouling propensity of crude oil. The specific objectives are focused on fouling of the Crude Distillation Unit (CDU-1) at the Shell Refinery in Mobile, Alabama. The technical approach consists of analyzing the plant data, chemical analysis of crude oil to detect key precursors, performing refinery tests using the Argonne Field Fouling Unit, and verifying the effectiveness of a physical device of tube insert and enhanced tubes to change threshold conditions and thereby reducing fouling.

  12. DEDALOS NREL: Cooperative Research and Development Final Report, CRADA Number CRD-07-237

    SciTech Connect

    Friedman, D.

    2013-06-01

    Currently High Concentration Photovoltaic (HCPV) terrestrial modules are based on the combination of optic elements that concentrate the sunlight into much smaller GaAs space cells to produce electricity. GaAs cell technology has been well developed for space applications during the last two decades, but the use of GaAs cells under concentrated sunlight in terrestrial applications leaves unanswered questions about performance, durability and reliability. The work to be performed under this CRADA will set the basis for the design of high-performance, durable and reliable HCPV terrestrial modules that will bring down electricity production costs in the next five years.

  13. Advanced austenitic alloys for fossil power systems. CRADA final report

    SciTech Connect

    Swindeman, R.W.; Cole, N.C.; Canonico, D.A.; Henry, J.F.

    1998-08-01

    In 1993, a Cooperative Research and Development Agreement (CRADA) was undertaken between Oak Ridge National Laboratory and ABB Combustion Engineering t examine advanced alloys for fossil power systems. Specifically, the use of advanced austenitic stainless steels for superheater/reheater construction in supercritical boilers was examined. The strength of cold-worked austenitic stainless steels was reviewed and compared to the strength and ductility of advanced austenitic stainless steels. The advanced stainless steels were found to retain their strength to very long times at temperatures where cold-worked standard grades of austenitic stainless steels became weak. Further, the steels exhibited better long-time stability than the stabilized 300 series stainless steels in either the annealed or cold worked conditions. Type 304H mill-annealed tubing was provided to ORNL for testing of base metal and butt welds. The tubing was found to fall within range of expected strength for 304H stainless steel. The composite 304/308 stainless steel was found to be stronger than typical for the weldment. Boiler tubing was removed from a commercial boiler for replacement by newer steels, but restraints imposed by the boiler owners did not permit the installation of the advanced steels, so a standard 32 stainless steel was used as a replacement. The T91 removed from the boiler was characterized.

  14. [A variable frequency microwave furnace]. CRADA final report for CRADA Number ORNL91-0055

    SciTech Connect

    Lauf, R.J.

    1994-12-08

    The goals of this CRADA were to: (1) development and demonstrate a highly frequency-agile microwave furnace; (2) explore applications of the furnace for materials processing; and (3) develop control systems and packaging that are robust, user-friendly, and suitable for sale as a turnkey system. Microwave Laboratories, Inc. (MLI) designed, built, and successfully brought to market a benchtop Variable Frequency Microwave Furnace (VFMF). The concept has demonstrated advantages in polymer curing, waste remediation, and diamond (CVD). Through experimentation and modeling, the VFMF approach has gained credibility within the technical community.

  15. Composite material fabrication techniques. CRADA final report

    SciTech Connect

    Frame, B J; Paulauskas, F L; Miller, J; Parzych, W

    1996-09-30

    This report describes a low cost method of fabricating components for mockups and training simulators used in the transportation industry. This technology was developed jointly by the Oak Ridge National Laboratory (ORNL) and Metters Industries, Incorporated (MI) as part of a Cooperative Research and Development Agreement (CRADA) ORNL94-0288 sponsored by the Department of Energy (DOE) Office of Economic Impace and Diversity Minority Business Technology Transfer Consortium. The technology involves fabricating component replicas from fiberglass/epoxy composites using a resin transfer molding (RTM) process. The original components are used as masters to fabricate the molds. The molding process yields parts that duplicate the significant dimensional requirements of the original component while still parts that duplicate the significant dimensional requirements of the original component while still providing adequate strength and stiffness for use in training simulators. This technology permits MI to overcome an acute shortage in surplus military hardware available to them for use in manufacturing training simulators. In addition, the cost of the molded fiberglass components is expected to be less than that of procuring the original components from the military.

  16. Proximity sensor system development. CRADA final report

    SciTech Connect

    Haley, D.C.; Pigoski, T.M.

    1998-01-01

    Lockheed Martin Energy Research Corporation (LMERC) and Merritt Systems, Inc. (MSI) entered into a Cooperative Research and Development Agreement (CRADA) for the development and demonstration of a compact, modular proximity sensing system suitable for application to a wide class of manipulator systems operated in support of environmental restoration and waste management activities. In teleoperated modes, proximity sensing provides the manipulator operator continuous information regarding the proximity of the manipulator to objects in the workspace. In teleoperated and robotic modes, proximity sensing provides added safety through the implementation of active whole arm collision avoidance capabilities. Oak Ridge National Laboratory (ORNL), managed by LMERC for the United States Department of Energy (DOE), has developed an application specific integrated circuit (ASIC) design for the electronics required to support a modular whole arm proximity sensing system based on the use of capacitive sensors developed at Sandia National Laboratories. The use of ASIC technology greatly reduces the size of the electronics required to support the selected sensor types allowing deployment of many small sensor nodes over a large area of the manipulator surface to provide maximum sensor coverage. The ASIC design also provides a communication interface to support sensor commands from and sensor data transmission to a distributed processing system which allows modular implementation and operation of the sensor system. MSI is a commercial small business specializing in proximity sensing systems based upon infrared and acoustic sensors.

  17. CRADA Final Report: Process development for hybrid solar cells

    SciTech Connect

    Ager, Joel W

    2011-02-14

    TCF funding of a CRADA between LBNL and RSLE leveraged RSLE's original $1M investment in LBNL research and led to development of a solar cell fabrication process that will bring the high efficiency, high voltage hybrid tandem solar cell closer to commercialization. RSLE has already built a pilot line at its Phoenix, Arizona site.

  18. Britz-Heidbrink Inc. Mini-CRADA, Powder Coating of Animal Enclosures

    SciTech Connect

    Smith, M.D.

    2000-01-04

    The goal of this CRADA was to combine the powder coating material and application techniques and laboratory testing capabilities of FM and T with the manufacturing, real-world testing, and practical knowledge available to BHI in a limited study to determine if coated stainless steel would provide the durability needed to justify additional work in this area. The coating materials chosen had to have low reflectivity and be easily sanitized, non-toxic, pleasant in appearance, and durable for the lifetime of the stainless steel product. The materials also had to be capable of withstanding the daily abuse of animal contact, impact with walls or other hard surfaces, and exposure to a variety of lighting and climatic conditions. FM and T and BHI worked together to investigate coating materials that under normal conditions would be exposed, at least weekly, to 180 F to 260 F washing and sanitization procedures that include strong detergents and phosphoric acid. After a proper cleaning method for the bare panels was established, six different powder coatings were selected and tested. The coatings were selected for their known resistance to harsh chemicals. Sample panels of each coating passed 1000 hours of continuous salt fog exposure and 24-hour constant submersion in heated disinfectant solutions. Actual cage panels were then coated and installed in a high-pressure spray washer at a medical research facility for accelerated real-world testing. In the high-pressure spray washer, the panels received the equivalent of one year's exposure to harsh chemicals in one week. In addition to the exposure to the harsh sanitizing chemicals, the test panels never had a chance to get completely dry. In actual use, the panels would have been cleaned once a week and would have been essentially dry the rest of the time. Constant soak in wet conditions is one of the most difficult tests of paint durability. The accelerated aging indicated that five of the six coatings tested are able to

  19. CRADA Final Report for CRADA No. ORNL99-0544, Interfacial Properties of Electron Beam Cured Composites

    SciTech Connect

    Janke, C.J.

    2005-10-17

    Electron beam (EB) curing is a technology that promises, in certain applications, to deliver lower cost and higher performance polymer matrix composite (PMC) structures compared to conventional thermal curing processes. PMCs enhance performance by making products lighter, stronger, more durable, and less energy demanding. They are essential in weight- and performance-dominated applications. Affordable PMCs can enhance US economic prosperity and national security. US industry expects rapid implementation of electron beam cured composites in aircraft and aerospace applications as satisfactory properties are demonstrated, and implementation in lower performance applications will likely follow thereafter. In fact, at this time and partly because of discoveries made in this project, field demonstrations are underway that may result in the first fielded applications of electron beam cured composites. Serious obstacles preventing the widespread use of electron beam cured PMCs in many applications are their relatively poor interfacial properties and resin toughness. The composite shear strength and resin toughness of electron beam cured carbon fiber reinforced epoxy composites were about 25% and 50% lower, respectively, than those of thermally cured composites of similar formulations. The essential purpose of this project was to improve the mechanical properties of electron beam cured, carbon fiber reinforced epoxy composites, with a specific focus on composite shear properties for high performance aerospace applications. Many partners, sponsors, and subcontractors participated in this project. There were four government sponsors from three federal agencies, with the US Department of Energy (DOE) being the principal sponsor. The project was executed by Oak Ridge National Laboratory (ORNL), NASA and Department of Defense (DOD) participants, eleven private CRADA partners, and two subcontractors. A list of key project contacts is provided in Appendix A. In order to properly

  20. Accelerated deployment of nanostructured hydrotreating catalysts. Final CRADA Report.

    SciTech Connect

    Libera, J.A.; Snyder, S.W.; Mane, A.; Elam, J.W.; Cronauer, D.C.; Muntean, J.A.; Wu, T.; Miller, J.T.

    2012-08-27

    Nanomanufacturing offers an opportunity to create domestic jobs and facilitate economic growth. In response to this need, U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy issued a Research Call to develop nanomanufacturing capabilities at the National Laboratories. High performance catalysts represent a unique opportunity to deploy nanomanufacturing technologies. Re-refining of used lube oil offers an opportunity to create manufacturing jobs and decrease dependence on imported petroleum. Improved catalysts are required to produce a better quality product, decrease environmental impact, extend catalyst life, and improve overall economics of lube oil re-refining. Argonne National Laboratory (Argonne) in cooperation with Universal Lubricants, Inc. (ULI) and Chemical Engineering Partners (CEP) have carried out a Cooperative Research and Development Agreement (CRADA) to prepare nanostructured hydrotreating catalysts using atomic layer deposition (ALD) to exhibit superior performance for the re-refining of used lube oil. We investigated the upgrading of recycled lube oil by hydrogenation using commercial, synthetically-modified commercial catalysts, and synthesized catalysts. A down-flow (trickle bed) catalytic unit was used for the hydrogenation experiments. In addition to carrying out elemental analyses of the various feed and product fractions, characterization was undertaken using H{sup 1} and C{sup 13} NMR. Initially commercial were evaluated. Second these commercial catalysts were promoted with precious metals using atomic layer deposition (ALD). Performance improvements were observed that declined with catalyst aging. An alternate approach was undertaken to deeply upgrade ULI product oils. Using a synthesized catalyst, much lower hydrogenation temperatures were required than commercial catalysts. Other performance improvements were also observed. The resulting lube oil fractions were of high purity even at low reaction severity. The

  1. Modifying Yeast Tolerance to Inhibitory Conditions of Ethanol Production Processes

    PubMed Central

    Caspeta, Luis; Castillo, Tania; Nielsen, Jens

    2015-01-01

    Saccharomyces cerevisiae strains having a broad range of substrate utilization, rapid substrate consumption, and conversion to ethanol, as well as good tolerance to inhibitory conditions are ideal for cost-competitive ethanol production from lignocellulose. A major drawback to directly design S. cerevisiae tolerance to inhibitory conditions of lignocellulosic ethanol production processes is the lack of knowledge about basic aspects of its cellular signaling network in response to stress. Here, we highlight the inhibitory conditions found in ethanol production processes, the targeted cellular functions, the key contributions of integrated -omics analysis to reveal cellular stress responses according to these inhibitors, and current status on design-based engineering of tolerant and efficient S. cerevisiae strains for ethanol production from lignocellulose. PMID:26618154

  2. Characterization of soluble microbial products (SMP) under stressful conditions.

    PubMed

    Wang, Zhi-Ping; Zhang, Tong

    2010-10-01

    Soluble microbial products (SMP) in the wastewater treatment process not only cause fouling to the membrane, but also generate disinfection by-products (DBP) in the effluent, thus get increasing attention. In this study, SMP produced by activated sludge and isolates under different stressful conditions, i.e. starvation, salinity, heavy metals, low pH and high temperature, were characterized to investigate the effects of these conditions on the amount of SMP and their compositions. The analysis results using size exclusion chromatography (SEC), high pressure liquid chromatography (HPLC) and fluorescence excitation emission matrix (FEEM) showed that activated sludge and isolates suffered with the same stressful condition contained almost the same concentration and composition of SMP, indicating that the stressful condition instead of the microbial species played the crucial role in the production of SMP. Among of stressful conditions tested, high temperature had stimulated the production of polysaccharides and polycarboxylate-type humic acid with high hydrophilicity, which is in positive proportion to the foulants formation potential, thus should be avoided in membrane bioreactors. Low pH had promoted the generation of hydrophobic humic acid-like or protein-like organics, which had been proved as the main disinfection byproduct (DBP) precursor, thus should be avoided in the biological treatment. Starvation had less effect on SMP production as the seeding microbes had no substrates. PMID:20655085

  3. Dynamometer Testing of a NW2200 Drivetrain: Cooperative Research and Development Final Report, CRADA Number CRD-10-394

    SciTech Connect

    Wallen, R.

    2012-04-01

    Northern Power Systems specializes in direct drive wind turbine designs. CRADA CRD-10-394 involved testing the NW2200 wind turbine power train. Power train testing is important because it allows validation of the generator design and some control algorithms prior to installation on a tower, where this data would be more difficult and time consuming to collect. In an effort to keep the commercial product schedule on time, Northern Power requested testing support from the National Renewable Energy Laboratory for this testing. The test program was performed using NREL's 2.5 MW dynamometer test bed at the National Wind Technology Center near Boulder, CO.

  4. Manufacture of die casting dies by hot isostatic pressing. CRADA final report

    SciTech Connect

    Viswanathan, S.; Ren, W.; Luk, K.; Brucher, H.G.

    1998-09-01

    The reason for this Cooperative Research and Development Agreement (CRADA) between the Oak Ridge National Laboratory (ORNL) and Doehler-Jarvis was to investigate the manufacture die-casting dies with internal water-cooling lines by hot-isostatic pressing (HIPing) of H13 tool steel powder. The use of HIPing will allow the near-net-shape manufacture of dies and the strategic placement of water-cooling lines during manufacture. The production of near-net-shape dies by HIPing involves the generation of HIPing diagrams, the design of the can that can be used for HIPing a die with complex details, strategic placement of water-cooling lines in the die, computer modeling to predict movement of the water lines during HIPing, and the development of strategies for placing water lines in the appropriate locations. The results presented include a literature review, particle analysis and characterization of H13 tool steel powder, and modeling of the HIPing process.

  5. Final Report of a CRADA Between Pacific Northwest National Laboratory and the General Motors Company (CRADA No. PNNL/271): “Degradation Mechanisms of Urea Selective Catalytic Reduction Technology”

    SciTech Connect

    Kim, Do Heui; Lee, Jong H.; Peden, Charles HF; Howden, Ken; Kim, Chang H.; Oh, Se H.; Schmieg, Steven J.; Wiebenga, Michelle H.

    2011-12-13

    Diesel engines can offer substantially higher fuel efficiency, good driving performance characteristics, and reduced carbon dioxide (CO2) emission compared to stoichiometric gasoline engines. Despite the increasing public demand for higher fuel economy and reduced dependency on imported oil, however, meeting the stringent emission standards with affordable methods has been a major challenge for the wide application of these fuel-efficient engines in the US market. The selective catalytic reduction of NOx by urea (urea-SCR) is one of the most promising technologies for NOx emission control for diesel engine exhausts. To ensure successful NOx emission control in the urea-SCR technology, both a diesel oxidation catalyst (DOC) and a urea-SCR catalyst with high activity and durability are critical for the emission control system. Because the use of this technology for light-duty diesel vehicle applications is new, the relative lack of experience makes it especially challenging to satisfy the durability requirements. Of particular concern is being able to realistically simulate actual field aging of the catalyst systems under laboratory conditions, which is necessary both as a rapid assessment tool for verifying improved performance and certifiability of new catalyst formulations. In addition, it is imperative to develop a good understanding of deactivation mechanisms to help develop improved catalyst materials. In this CRADA program, General Motors Company and PNNL have investigated fresh, laboratory- and vehicle-aged DOC and SCR catalysts. The studies have led to a better understanding of various aging factors that impact the long-term performance of catalysts used in the urea-SCR technology, and have improved the correlation between laboratory and vehicle aging for reduced development time and cost. This Final Report briefly highlights many of the technical accomplishments and documents the productivity of the program in terms of peer-reviewed scientific publications

  6. Rubisco activase and wheat productivity under heat stress conditions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rubisco activase (RCA) constrains the photosynthetic potential of plants at high temperature (heat stress). We hypothesized that endogenous levels of RCA could serve as an important determinant of plant productivity under heat stress conditions. In this study, we investigated the possible relation...

  7. Electroweak matching conditions for top pair production at threshold

    SciTech Connect

    Hoang, Andre H.; Reisser, Christoph J.

    2006-08-01

    We determine the real parts of electroweak matching conditions relevant for top quark pair production close to threshold in e{sup +}e{sup -} annihilation at next-to-next-to-leading logarithmic (NNLL) order. Numerically the corrections are comparable to the NNLL QCD corrections.

  8. [Working conditions in the production of electron-tube glass].

    PubMed

    Dubeĭkovskaia, L S; Masliaeva, T N

    1989-01-01

    The data on evaluation of working conditions in electron-tube glass production are presented. Major unfavourable factors, such as components of glass dust and their mixture, have been described. Approaches to standardization of electron-tube glass dust are set forth. PMID:2529191

  9. Open and continuous fermentation: products, conditions and bioprocess economy.

    PubMed

    Li, Teng; Chen, Xiang-bin; Chen, Jin-chun; Wu, Qiong; Chen, Guo-Qiang

    2014-12-01

    Microbial fermentation is the key to industrial biotechnology. Most fermentation processes are sensitive to microbial contamination and require an energy intensive sterilization process. The majority of microbial fermentations can only be conducted over a short period of time in a batch or fed-batch culture, further increasing energy consumption and process complexity, and these factors contribute to the high costs of bio-products. In an effort to make bio-products more economically competitive, increased attention has been paid to developing open (unsterile) and continuous processes. If well conducted, continuous fermentation processes will lead to the reduced cost of industrial bio-products. To achieve cost-efficient open and continuous fermentations, the feeding of raw materials and the removal of products must be conducted in a continuous manner without the risk of contamination, even under 'open' conditions. Factors such as the stability of the biological system as a whole during long cultivations, as well as the yield and productivity of the process, are also important. Microorganisms that grow under extreme conditions such as high or low pH, high osmotic pressure, and high or low temperature, as well as under conditions of mixed culturing, cell immobilization, and solid state cultivation, are of interest for developing open and continuous fermentation processes. PMID:25476917

  10. Media and growth conditions for induction of secondary metabolite production.

    PubMed

    Frisvad, Jens C

    2012-01-01

    Growth media and incubation conditions have a very strong influence of secondary metabolite production. There is no consensus on which media are the optimal for metabolite production, but a series of useful and effective media and incubation conditions have been listed here. Chemically well-defined media are suited for biochemical studies, but in order to get chemical diversity expressed in filamentous fungi, sources rich in amino acids, vitamins, and trace metals have to be added, such as yeast extract and oatmeal. A battery of solid agar media is recommended for exploration of chemical diversity as agar plug samples are easily analyzed to get an optimal representation of the qualitative secondary metabolome. Standard incubation for a week at 25°C in darkness is recommended, but optimal conditions have to be modified depending on the ecology and physiology of different filamentous fungi. PMID:23065607

  11. Membranes for corrosive oxidations. Final CRADA report.

    SciTech Connect

    Snyder, S. W.; Energy Systems

    2010-02-01

    The objective of this project is to develop porous hydrophilic membranes that are highly resistant to oxidative and corrosive conditions and to deploy them for recovery and purification of high tonnage chemicals such as hydrogen peroxide and other oxychemicals. The research team patented a process for membrane-based separation of hydrogen peroxide (US Patent No. 5,662,878). The process is based on using a hydrophilic membrane to separate hydrogen peroxide from the organic working solution. To enable this process, a new method for producing hydrophilic membrane materials (Patent No.6,464,880) was reported. We investigated methods of producing these hydrophilic materials and evaluated separations performance in comparison to membrane stability. It was determined that at the required membrane flux, membrane stability was not sufficient to design a commercial process. This work was published (Hestekin et al., J. Membrane Science 2006). To meet the performance needs of the process, we developed a membrane contactor method to extract the hydrogen peroxide, then we surveyed several commercial and pre-commercial membrane materials. We identified pre-commercial hydrophilic membranes with the required selectivity, flux, and stability to meet the needs of the process. In addition, we invented a novel reaction/separations format that greatly increases the performance of the process. To test the performance of the membranes and the new formats we procured and integrated reactor/membrane separations unit that enables controlled mixing, flow, temperature control, pressure control, and sampling. The results were used to file a US non-provisional patent application (ANL-INV 03-12). Hydrogen peroxide is widely used in pulp and paper applications, environmental treatment, and other industries. Virtually all hydrogen peroxide production is now based on a process featuring catalytic hydrogenation followed by auto-oxidation of suitable organic carrier molecules. This process has several

  12. Fission product release from irradiated LWR fuel under accident conditions

    SciTech Connect

    Strain, R.V.; Sanecki, J.E.; Osborne, M.F.

    1984-01-01

    Fission product release from irradiated LWR fuel is being studied by heating fuel rod segments in flowing steam and an inert carrier gas to simulate accident conditions. Fuels with a range of irradiation histories are being subjected to several steam flow rates over a wide range of temperatures. Fission product release during each test is measured by gamma spectroscopy and by detailed examination of the collection apparatus after the test has been completed. These release results are complemented by a detailed posttest examination of samples of the fuel rod segment. Results of release measurements and fuel rod characterizations for tests at 1400 through 2000/sup 0/C are presented in this paper.

  13. Final Report on CRADA ORNL05-0703

    SciTech Connect

    Christen, D. K.

    2010-04-27

    The work of this CRADA has been focused on the development of Rolling-Assisted Biaxially Textured Substrate (RABiTS)-based high-temperature superconducting (HTS) coated conductor technology that is in the pre-commercial development stage. Metal-Oxide Technologies, Inc. (MetOx) is a Houston-based small business that is developing and manufacturing second-generation (2G) HTS wire using an all-Metallo-Organic Chemical Vapor Deposition (MOCVD) process, including the buffer layers and HTS coating. Advances toward commercialization were enabled by coordinated interactions that facilitated the synthesis, characterization, and iterative optimization of prototype 2G wire segments.

  14. Carotenoid Production by Halophilic Archaea Under Different Culture Conditions.

    PubMed

    Calegari-Santos, Rossana; Diogo, Ricardo Alexandre; Fontana, José Domingos; Bonfim, Tania Maria Bordin

    2016-05-01

    Carotenoids are pigments that may be used as colorants and antioxidants in food, pharmaceutical, and cosmetic industries. Since they also benefit human health, great efforts have been undertaken to search for natural sources of carotenoids, including microbial ones. The optimization of culture conditions to increase carotenoid yield is one of the strategies used to minimize the high cost of carotenoid production by microorganisms. Halophilic archaea are capable of producing carotenoids according to culture conditions. Their main carotenoid is bacterioruberin with 50 carbon atoms. In fact, the carotenoid has important biological functions since it acts as cell membrane reinforcement and it protects the microorganism against DNA damaging agents. Moreover, carotenoid extracts from halophilic archaea have shown high antioxidant capacity. Therefore, current review summarizes the effect of different culture conditions such as salt and carbon source concentrations in the medium, light incidence, and oxygen tension on carotenoid production by halophilic archaea and the strategies such as optimization methodology and two-stage cultivation already used to increase the carotenoid yield of these microorganisms. PMID:26750123

  15. Management and sperm production of boars under differing environmental conditions.

    PubMed

    Kunavongkrit, Annop; Suriyasomboon, Annop; Lundeheim, Nils; Heard, Terry W; Einarsson, Stig

    2005-01-15

    The management of boars to ensure good sperm production under differing environmental conditions is a major concern for pig keepers in both tropical countries and countries where there are extreme environmental changes. Such changes create stress in animals and influence the production of spermatozoa. High temperatures during hot summer months may result in lower feed consumption and create stresses that result in the inhibition of spermatogenesis. Although tropical countries do not have a problem with major variations in day length, this can cause problems such as decreased litter size and infertility in other regions of the world. Evaporative cooling systems built into boar accommodation are often used to reduce fluctuations in both temperature and humidity during the hot and humid months seen in tropical countries. The system has become popular in AI boar studs, where it is reported to reduce stress and improve feed consumption. Other management factors, such as housing comfort, social contact, mating conditions and the frequency of mating, are also very important boar management aids that assist good quality semen production; these will be covered briefly in this review. This review will consider primarily those management factors, for example, the management of temperature and humidity using evaporative cooling systems and other techniques that enable AI boar studs to maximize sperm fertility through adjustments to the environment. PMID:15626423

  16. Advanced Load Identification and Management for Buildings: Cooperative Research and Development Final Report, CRADA Number: CRD-11-422

    SciTech Connect

    Gentile-Polese, L.

    2014-05-01

    The goal of this CRADA work is to support Eaton Innovation Center (Eaton) efforts to develop advanced load identification, management technologies, and solutions to reduce building energy consumption by providing fine granular visibility of energy usage information and safety protection of miscellaneous electric loads (MELs) in commercial and residential buildings. MELs load identification and prediction technology will be employed in a novel 'Smart eOutlet*' to provide critical intelligence and information to improve the capability and functionality of building load analysis and design tools and building power management systems. The work scoped in this CRADA involves the following activities: development and validation of business value proposition for the proposed technologies through voice of customer investigation, market analysis, and third-party objective assessment; development and validation of energy saving impact as well as assessment of environmental and economic benefits; 'smart eOutlet' concept design, prototyping, and validation; field validation of the developed technologies in real building environments. (*Another name denoted as 'Smart Power Strip (SPS)' will be used as an alternative of the name 'Smart eOutlet' for a clearer definition of the product market position in future work.)

  17. [A discussion of production conditions among the peasantry].

    PubMed

    Salles, V A

    1984-01-01

    The immediate goal of rural production is to satisfy the consumption needs of the peasantry. The peasant enters the market either to acquire goods which he does not produce or to sell his goods or labor. In either case the peasant is forced to sell part of his product, thereby converting it into merchanise; this exchange represents an interaction between the peasant econmy and the capitalist system. In order to overcome the unfavorable conditions of this exchange, the peasantry has had to adopt a variety of strategies, such as intensifying family labor, diversifying the work, working outside its own land, or specializing in certain activites. It is by carrying out a wide range of activities that peasant families survive within a broader socioeconomic context. A number of macrosocial factors serve to control access to the land and other means of production; these in turn influence agricultural output and the peasants' economic behavior. These factors are: the delimitation of the rural area, the indispensable nature of land and its products, the inability to produce land, and the monopoly exercised by landowners. The peasantry is therefore forced to organize its agricultural production within the constraints imposed by the amount and quality of the available land. In addition, peasant agriculture is conditioned by the available labor (e.g.., the family) and by crop cycles and seasonal changes. Productivity will therefore vary widely vary widely from 1 farmer to the next. Prices, however, are established by the capitalist sector; this results in the pauperization of the peasantry who cannot compete in their market. Empirical data from Mexico show a 4-fold variation in agricultural output per unit of land. Peasants, who have the worst land and lack the technology to improve productivity, are at a disadvantage. Because the agricultural yield is often not enough to insure the survival of the domestic unit, peasant familirs diversify their work and either perform a

  18. A national laboratory/private industry cooperative research and development agreement (CRADA)

    SciTech Connect

    Pritchard, D.A.; MacEachin, J.

    1996-09-01

    This paper provides an overview of the history and process of establishing a cooperative research and development agreement (CRADA) between Sandia National Laboratories and Magnavox Electronic Systems Company for the design, development, and testing of a 360-degree scanning, imaging, intrusion detection sensor. The subject of the CRADA is the Advanced Exterior Sensor (AES). It is intended for exterior use at ranges from 50 to 1,500 meters and uses a combination of three sensing technologies (infrared, visible, and radar) and a new data processing method to provide low false-alarm intrusion detection and tracking combined with immediate visual assessment. The establishment of this CRADA represents a new paradigm in the cooperation between the Department of Defense, the Department of Energy, the National Laboratories and Private Industry. Although a formal document has now been executed, a CRADA is, nonetheless, primarily an agreement to work with each other to achieve goals that might otherwise be unattainable.

  19. Inverted Metamorphic Cell Development: Cooperative Research and Development Final Report, CRADA Number CRD-05-156

    SciTech Connect

    Wanlass, M.

    2012-05-01

    This CRADA targeted technology transfer of the inverted metamorphic multi-junction (IMM) solar cell innovation from NREL to Emcore Photovoltaics. The technology transfer was successfully completed. Additionally, NREL provided materials characterization of solar cell structures produced at Emcore.

  20. Optical Probe for Semiconductor: Cooperative Research and Development Final Report, CRADA Number CRD-06-206

    SciTech Connect

    Sopori, B.

    2011-02-01

    This CRADA involves development of a new semiconductor characterization tool, Optical Probe, which can be commercialized by GT Solar. GT Solar will participate in the design and testing of this instrument that will be developed under an IPP project.

  1. Ceramic production during changing environmental/climatic conditions

    NASA Astrophysics Data System (ADS)

    Oestreich, Daniela B.; Glasmacher, Ulrich A.

    2015-04-01

    Ceramics, with regard to their status as largely everlasting everyday object as well as on the basis of their chronological sensitivity, reflect despite their simplicity the technological level of a culture and therefore also, directly or indirectly, the adaptability of a culture with respect to environmental and/or climatic changes. For that reason the question arises, if it is possible to identify changes in production techniques and raw material sources for ceramic production, as a response to environmental change, e.g. climate change. This paper will present results of a research about Paracas Culture (800 - 200 BC), southern Peru. Through several investigations (e.g. Schittek et al., 2014; Eitel and Mächtle, 2009) it is well known that during Paracas period changes in climate and environmental conditions take place. As a consequence, settlement patterns shifted several times through the various stages of Paracas time. Ceramics from three different sites (Jauranga, Cutamalla, Collanco) and temporal phases of the Paracas period are detailed archaeometric, geochemical and mineralogical characterized, e.g. Raman spectroscopy, XRD, and ICP-MS analyses. The aim of this research is to resolve potential differences in the chemical composition of the Paracas ceramics in space and time and to compare the data with the data sets of pre-Columbian environmental conditions. Thus influences of changing environmental conditions on human societies and their cultural conditions will be discussed. References Eitel, B. and Mächtle, B. 2009. Man and Environment in the eastern Atacama Desert (Southern Peru): Holocene climate changes and their impact on pre-Columbian cultures. In: Reindel, M. & Wagner, G. A. (eds.) New Technologies for Archaeology. Berlin Heidelberg: Springer-Verlag. Schittek, K., Mächtle, B., Schäbitz, F., Forbriger, M., Wennrich, V., Reindel, M., and Eitel, B.. Holocene environmental changes in the highlands of the southern Peruvian Andes (14° S) and their

  2. Jupiter Oxygen Corporation/Albany Research Center Crada Progress Report, September

    SciTech Connect

    Turner, Paul C.; Schoenfield, Mark

    2004-09-13

    The Albany Research Center (ARC) has developed a new Integrated Pollutant Removal (IPR) process for fossil-fueled boilers. Pursuant to a cooperative research and development agreement (CRADA) with Jupiter Oxygen Corporation, ARC currently is studying the IPR process as applied to the oxygen fuel technology developed by Jupiter. As discussed further below, these two new technologies are complementary. This interim report summarizes the study results to date and outlines the potential activities under the next phase of the CRADA with Jupiter.

  3. Carotenoids production in different culture conditions by Sporidiobolus pararoseus.

    PubMed

    Han, Mei; He, Qian; Zhang, Wei-Guo

    2012-01-01

    Carotenoids produced by Sporidiobolus pararoseus were studied. It was found that biomass was connected with carbon source, temperature, and pH, but carotenoids proportion was seriously influenced by dissolved oxygen and nitrogen source. Different carotenoids could be obtained by using selected optimum conditions. In the end we established the strategies to produce β-carotene or torulene. Fed-batch fermentation in fermentor was used to prove the authenticity of our conclusions. The cell biomass, β-carotene content, and β-carotene proportion could reach 56.32 g/L, 18.92 mg/L and 60.43%, respectively, by using corn steep liquor at 0-5% of dissolved oxygen saturation. β-Carotene content was 271% higher than before this addition. The cell biomass, torulene content, and torulene proportion could reach 62.47 g/L, 31.74 mg/L, and 70.41%, respectively, by using yeast extract at 30-35% of dissolved oxygen saturation. Torulene content was 152% higher than before this addition. The strategy for enhancing specific carotenoid production by selected fermentation conditions may provide an alternative approach to enhance carotenoid production with other strains. PMID:22708808

  4. Adaptation of Cupriavidus necator to conditions favoring polyhydroxyalkanoate production.

    PubMed

    Cavalheiro, João M B T; de Almeida, M Catarina M D; da Fonseca, M Manuela R; de Carvalho, Carla C C R

    2012-12-15

    The fatty acid (FA) composition of the bacterial membrane of Cupriavidus necator DSM 545 was assessed during the time course of two-stage fed-batch cultivations for the production of short-chain polyhydroxyalkanoates (PHA). Changes in the relative proportion of straight, methyl and cyclopropyl saturated, unsaturated, hydroxy substituted and polyunsaturated FA were observed, depending on the C sources and cultivation conditions used to favor the synthesis of poly(3-hydroxybutyrate) (P(3HB)), poly(3-hydroxybutyrate-co-4-hydroxybutyrate) (P(3HB-co-4HB)) or poly(3-hydroxybutyrate-4-hydroxybutyrate-3-hydroxyvalerate) (P(3HB-4HB-3HV)), under N limiting conditions. The relative percentage of each FA class was studied using glucose or waste glycerol (GRP), as main C source for P(3HB) production. The FA profile was also assessed when GRP was used together with i) γ-butyrolactone (GBL) (precursor of 4HB monomers) for P(3HB-4HB) synthesis and ii) GBL and propionic acid (PA) (3HV precursor) to yield P(3HB-4HB-3HV). The effect of GBL and PA utilization as PHA monomer precursors on the FA profile of the cell membrane was studied under two different dissolved oxygen concentrations (DOC). PMID:23376842

  5. Methane as a product of chloroethene biodegradation under methanogenic conditions

    USGS Publications Warehouse

    Bradley, P.M.; Chapelle, F.H.

    1999-01-01

    Radiometric detection headspace analyses of microcosms containing bed sediments from two geographically distinct sites indicated that 10-39% of the radiolabeled carbon transformed during anaerobic biodegradation of [1,2- 14C]trichloroethene (TCE) or [1,2-14C]vinyl chloride (VC) under methanogenic conditions was ultimately incorporated into 14CH4. The results demonstrate that, in addition to ethene, ethane, and CO2, CH4 can be a significant product of chloroethene biodegradation in some methanogenic sediments.Radiometric detection headspace analyses of microcosms containing bed sediments from two geographically distinct sites indicated that 10-39% of the radiolabeled carbon transformed during anaerobic biodegradation of [1,2-14C]trichloroethene (TCE) or [1,2-14C]vinyl chloride (VC) under methanogenic conditions was ultimately incorporated into 14CH4. The results demonstrate that, in addition to ethene, ethane, and CO2, CH4 can be a significant product of chloroethene biodegradation in some methanogenic sediments.

  6. Production of chitin deacetylase by Aspergillus flavus in submerged conditions.

    PubMed

    Narayanan, Karthik; Parameswaran, Binod; Pandey, Ashok

    2016-07-01

    Chitosan is a biopolymer obtained by deacetylation of chitin and has been proven to have various applications in industry and biomedicine. Deacetylation of chitin using the enzyme chitin deacetylase (CDA) is favorable in comparison to the hazardous chemical method involving strong alkali and high temperature. A fungal strain producing CDA was isolated from environmental samples collected from coastal regions of South Kerala, India. It was identified as Aspergillus flavus by morphological characteristics and ITS DNA analysis. Nutritional requirement for maximum production of CDA under submerged condition was optimized using statistical methods including Plackett-Burman and response surface methodology central composite design. A 5.98-fold enhancement in CDA production was attained in shake flasks when the fermentation process parameters were used at their optimum levels. The highest CDA activity was 57.69 ± 1.68 U under optimized bioprocess conditions that included 30 g L(-1) glucose, 40 g L(-1) yeast extract, 15 g L(-1) peptone, and 7 g L(-1) MgCl2 at initial media pH of 7 and incubation temperature of 32°C after 48 hr of incubation, while the unoptimized basal medium yielded 9.64 ± 2.04 U. PMID:26474347

  7. 30 CFR 206.106 - What are my responsibilities to place production into marketable condition and to market production?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Federal Oil § 206.106 What are my responsibilities to place production into marketable condition and to market production? You must place oil in marketable condition and market the oil for the mutual benefit... production into marketable condition and to market production? 206.106 Section 206.106 Mineral...

  8. Behavior of fission product tellurium under severe accident conditions

    SciTech Connect

    Collins, J.L.; Osborne, M.F.; Lorenz, R.A.

    1986-01-01

    Fission product release tests at Oak Ridge National Laboratory (ORNL) have provided new experimental data that help characterize the behavior of tellurium under severe light-water reactor (LWR) accident conditions. The release of tellurium from the fuel rods is dependent upon the rate and extent of cladding oxidation. Tellurium has been found to be considerably retained by metallic Zircaloy cladding at test temperatures up to 1975/sup 0/C. The results indicate that the tellurium is bound by the Zircaloy cladding as zirconium telluride, but once the available zirconium metal is oxidized by the steam, tellurium is released in favor of continued zirconium oxide formation. The collection behavior of the released tellurium indicates that it is probably released from the fuel rods as SnTe and CsTe, rather than as elemental tellurium.

  9. ORNL studies of fission product release under LWR accident conditions

    SciTech Connect

    Osborne, M.F.; Lorenz, R.A.; Collins, J.L.

    1991-01-01

    High burnup Zircaloy-clad UO{sub 2} fuel specimens have been heated to study the release of fission products in tests simulating LWR accident conditions. The dominant variable was found to be temperature, with atmosphere, time, and burnup also being significant variables. Comparison of data from tests in steam and hydrogen, at temperatures of 2000 to 2700 K, have shown that the releases of the most volatile species (Kr, Xe, I, and Cs) are relatively insensitive to atmosphere. The releases of the less-volatile species (Sr, Mo, Ru, Sb, Te, Ba, and Eu), however, may vary by orders of magnitude depending on atmosphere. In addition, the atmosphere may drastically affect the mode and extent of fuel destruction.

  10. Alzeta porous radiant burner. CRADA final report

    SciTech Connect

    1995-12-01

    An Alzeta Pyrocore porous radiant burner was tested for the first time at elevated pressures and mass flows. Mapping of the burner`s stability limits (flashback, blowoff, and lean extinction limits) in an outward fired configuration and hot wall environment was carried out at pressures up to 18 atm, firing rates up to 180 kW, and excess air rates up to 100%. A central composite experimental design for parametric testing within the stability limits produced statistically sound correlations of dimensionless burner temperature and NO{sub x} emissions as functions of equivalence ratio, dimensionless firing rate, and reciprocal Reynolds number. The NO{sub x} emissions were below 4 ppmvd at 15% O{sub 2} for all conditions tested, and the CO and unburned hydrocarbon levels were simultaneously low. As a direct result of this cooperative research effort between METC and Alzeta, Solar Turbines has already expressed a strong interest in this novel technology.

  11. Bioremediation of PCBs. CRADA final report

    SciTech Connect

    Klasson, K.T.; Abramowicz, D.A.

    1996-06-01

    The Cooperative Research and Development Agreement was signed between Oak Ridge National Laboratory (ORNL) and General Electric Company (GE) on August 12, 1991. The objective was a collaborative venture between researchers at GE and ORNL to develop bioremediation of polychlorinated biphenyls (PCBs). The work was conducted over three years, and this report summarizes ORNL`s effort. It was found that the total concentration of PCBs decreased by 70% for sequential anaerobic-aerobic treatment compared with a 67% decrease for aerobic treatment alone. The sequential treatment resulted in PCB products with fewer chlorines and shorter halflives in humans compared with either anaerobic or aerobic treatment alone. The study was expected to lead to a technology applicable to a field experiment that would be performed on a DOE contaminated site.

  12. Increased root production in soybeans grown under space flight conditions.

    NASA Astrophysics Data System (ADS)

    Levine, H. G.; Piastuch, W. C.

    The GENEX ({Gen}e {Ex}pression) spaceflight experiment (flown on STS-87) was developed to investigate whether direct and/or indirect effects of microgravity are perceived as an external stimulus for soybean seedling response. Protocols were designed to optimize root and shoot formation, gas exchange and moisture uniformity. Six surface sterilized soybean seeds (Glycine max cv McCall) were inserted into each of 32 autoclaved plastic seed growth pouches containing an inner germination paper sleeve (for a total of 192 seeds). The pouches were stowed within a mid-deck locker until Mission Flight Day 10, at which time an astronaut added water to each pouch (thereby initiating the process of seed germination on-orbit), and subsequently transferred them to four passive, light-tight aluminum canisters called BRIC-60s (Biological Research In Canisters). We report here on the morphological characteristics of: (1) the recovered flight material, (2) the corresponding ground control population, plus (3) additional controls grown on the ground under clinostat conditions. No significant growth differences were found between the flight, ground control and clinorotated treatments for either the cotyledons or hypocotyls. There were, however, significantly longer primary roots produced in the flight population relative to the ground control population, which in turn had significantly longer primary roots than the clinorotated population. This same pattern was observed relative to the production of lateral roots (flight > control > clinorotated). Taken together with previous literature reports, we believe that there is now sufficient evidence to conclude that plants grown under conditions of microgravity will generally exhibit enhanced root production relative to their ground control counterparts. The mechanism underlying this phenomenon is open to speculation. Funded under NASA Contract NAS10-12180.

  13. The final technical report of the CRADA, 'Medical Accelerator Technology'

    SciTech Connect

    Chu, W.T.; Rawls, J.M.

    2000-06-12

    Under this CRADA, Berkeley Lab and the industry partner, General Atomics (GA), have cooperatively developed hadron therapy technologies for commercialization. Specifically, Berkeley Lab and GA jointly developed beam transport systems to bring the extracted protons from the accelerator to the treatment rooms, rotating gantries to aim the treatment beams precisely into patients from any angle, and patient positioners to align the patient accurately relative to the treatment beams. We have also jointly developed a patient treatment delivery system that controls the radiation doses in the patient, and hardware to improve the accelerator performances, including a radio-frequency ion source and its low-energy beam transport (LEBT) system. This project facilitated the commercialization of the DOE-developed technologies in hadron therapy by the private sector in order to improve the quality of life of the nation.

  14. Intermediate Temperature Carbon - Carbon Composite Structures. CRADA Final Report

    SciTech Connect

    Lara-Curzio, Edgar

    2007-06-01

    The objective of this Cooperative Research and Development Agreement (CRADA) between UT-Battelle, LLC (the "Contractor") and Synterials, Inc. (the "Participant") was to demonstrate promising processing methods, which can lead to producing Carbon-Carbon Composites (CCC), with tensile and interlaminar properties comparable to those of organic matrix composites and environmental stability at 1200 F for long periods of time. The participant synthesized carbon-carbon composites with two different fiber coatings and three different matrices. Both parties evaluated the tensile and interlaminar properties of these materials and characterized the microstructure of the matrices and interfaces. It was found that fiber coatings of carbon and boron carbide provided the best environmental protection and resulted in composites with high tensile strength.

  15. Final report for the Tera Computer TTI CRADA

    SciTech Connect

    Davidson, G.S.; Pavlakos, C.; Silva, C.

    1997-01-01

    Tera Computer and Sandia National Laboratories have completed a CRADA, which examined the Tera Multi-Threaded Architecture (MTA) for use with large codes of importance to industry and DOE. The MTA is an innovative architecture that uses parallelism to mask latency between memories and processors. The physical implementation is a parallel computer with high cross-section bandwidth and GaAs processors designed by Tera, which support many small computation threads and fast, lightweight context switches between them. When any thread blocks while waiting for memory accesses to complete, another thread immediately begins execution so that high CPU utilization is maintained. The Tera MTA parallel computer has a single, global address space, which is appealing when porting existing applications to a parallel computer. This ease of porting is further enabled by compiler technology that helps break computations into parallel threads. DOE and Sandia National Laboratories were interested in working with Tera to further develop this computing concept. While Tera Computer would continue the hardware development and compiler research, Sandia National Laboratories would work with Tera to ensure that their compilers worked well with important Sandia codes, most particularly CTH, a shock physics code used for weapon safety computations. In addition to that important code, Sandia National Laboratories would complete research on a robotic path planning code, SANDROS, which is important in manufacturing applications, and would evaluate the MTA performance on this code. Finally, Sandia would work directly with Tera to develop 3D visualization codes, which would be appropriate for use with the MTA. Each of these tasks has been completed to the extent possible, given that Tera has just completed the MTA hardware. All of the CRADA work had to be done on simulators.

  16. Hydrothermal carbonisation of sewage sludge: effect of process conditions on product characteristics and methane production.

    PubMed

    Danso-Boateng, E; Shama, G; Wheatley, A D; Martin, S J; Holdich, R G

    2015-02-01

    Hydrothermal carbonisation of primary sewage sludge was carried out using a batch reactor. The effect of temperature and reaction time on the characteristics of solid (hydrochar), liquid and gas products, and the conditions leading to optimal hydrochar characteristics were investigated. The amount of carbon retained in hydrochars decreased as temperature and time increased with carbon retentions of 64-77% at 140 and 160°C, and 50-62% at 180 and 200°C. Increasing temperature and treatment time increased the energy content of the hydrochar from 17 to 19 MJ/kg but reduced its energy yield from 88% to 68%. Maillard reaction products were identified in the liquid fractions following carbonisations at 180 and 200°C. Theoretical estimates of the methane yields resulting from the anaerobic digestion of the liquid by-products are also presented and optimal reaction conditions to maximise these identified. PMID:25496954

  17. HIP densification project. Final CRADA report

    SciTech Connect

    Franco-Ferreira, E.A.; Finkelstein, W.

    1997-08-29

    An investigation was conducted to evaluate the use of HIPed aluminum castings as near-net-shape blanks for large electrostatic focusing electrodes in ion lithography machines. The electrodes must have very smooth finishes which are free of pores and other defects. This has heretofore been achieved by rough-machining the blanks out of large forged aluminum billets and final diamond-turning. The use of a near-net-shape casting for the blank was expected to save a significant amount of money and time. The test was conducted on a single cast blank which was supplied by the Partner in the HIPed and stress relieved condition. Rough machining and diamond turning operations conducted by LMES/ER revealed that the casting contained unacceptably large defects. The conclusion was reached that HIPed aluminum castings in the large sizes and of the quality levels required would probably be unobtainable in a cost-effective manner. An alternative approach, using ring forgings assembled by electron beam welding was proposed and investigated by LMES/ER. Although an electrode blank was not obtained, the study indicated that this approach would be successful and cost-effective.

  18. Advanced aircraft ignition CRADA final report

    SciTech Connect

    Early, J.W.

    1997-03-01

    Conventional commercial and military turbo-jet aircraft engines use capacitive discharge ignition systems to initiate fuel combustion. The fuel-rich conditions required to ensure engine re-ignition during flight yield less than optimal engine performance, which in turn reduces fuel economy and generates considerable pollution in the exhaust. Los Alamos investigated two approaches to advanced ignition: laser based and microwave based. The laser based approach is fuel ignition via laser-spark breakdown and via photo-dissociation of fuel hydrocarbons and oxygen. The microwave approach involves modeling, and if necessary redesigning, a combustor shape to form a low-Q microwave cavity, which will ensure microwave breakdown of the air/fuel mixture just ahead of the nozzle with or without a catalyst coating. This approach will also conduct radio-frequency (RF) heating of ceramic elements that have large loss tangents. Replacing conventional systems with either of these two new systems should yield combustion in leaner jet fuel/air mixtures. As a result, the aircraft would operate with (1) considerable less exhaust pollution, (2) lower engine maintenance, and (3) significantly higher fuel economy.

  19. Telemedicine. Final report/project accomplishments summary CRADA number 95-KCP-1014

    SciTech Connect

    VanDeusen, A.L.

    1997-04-01

    This project was initiated to fill existing voids in the telemedicine equipment market. Currently, when a medical facility adds telemedicine capability to their video conference system, they must purchase expensive and bulky encoders and decoders in order to send information over the available data channel. Even with this expensive equipment, only one data type (stethoscope or ECG) can be sent at a time. In addition, since existing encoders and decoders are not designed specifically for telemedicine, special cables must be built to connect with this equipment. This project resulted in the design and construction of an encoder/decoder system that resolved these issues. The unit (referred to as the Telecoder) is designed specifically for the telemedicine market. The Telecoder is compact, handles two types of data (stethoscope and ECG) simultaneously, integrates with existing medical equipment, and is less expensive. In addition to the Telecoder module, a prototype was built that adds all the necessary logic and interfaces necessary to integrate the basic encoder design into additional Cardionics products. Although a complete integration into other Cardionics products was not in the scope of this CRADA, all the basic design work has been done to allow Cardionics to complete the work.

  20. Reduced dust emission industrial vacuum system. Final report/project accomplishments summary, CRADA Number KCP941001

    SciTech Connect

    Yerganian, S.; Wilson, S.

    1997-02-01

    The purpose of this project was to modify the design of a Billy Goat Industries VQ series industrial litter vacuum cleaner currently in production to allow it to be effective in a dusty environment. Other desired results were that the new design be easily and economically manufacturable, safe and easy for the operator to use and maintain, and easily adaptable to the rest of the Billy Goat Industries product line. To meet these objectives, the project plan was divided into four main phases. The first phase consisted of design overview and concept development. The second phase consisted of developing a detailed design based on the lessons learned from the prototype built in the first phase. The third phase consisted of refinement of the detailed design based on testing and marketing review. The fourth phase consisted of final reporting on the activities of the CRADA. The project has been terminated due to technical difficulties and a lack of confidence that practical, marketable solutions to these problems could be found.

  1. Cost effective machining and inspection of structural ceramics. CRADA final report for CRADA Number Y-1292-0088

    SciTech Connect

    Hensley, J.D.; Kalish, Y.

    1996-12-06

    This CRADA supports the objective of demonstrating feasibility and minimizing manufacturing costs associated with the use of ceramic components in a heavy duty diesel engine manufactured by Detroit Diesel Corporation (DDC). Studies were conducted to evaluate existing, known data for ceramic material, and to identify additional data needed to better characterize a valve of ceramic composition. Tests were conducted to provide important information required for redesign of existing metal valves and other engine head components. A vendor was selected by DDC to produce the valve shapes for testing and Lockheed Martin Energy Systems (LMES) provided design modeling/analysis support. The effort also included the development of a bench-test apparatus to simulate the environment of a valve in operation that provided material data and confirmation of analytical results.

  2. 30 CFR 206.362 - What are my responsibilities to place production into marketable condition and to market production?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... production into marketable condition and to market production? 206.362 Section 206.362 Mineral Resources MINERALS MANAGEMENT SERVICE, DEPARTMENT OF THE INTERIOR MINERALS REVENUE MANAGEMENT PRODUCT VALUATION... to market production? You must place geothermal resources and byproducts in marketable condition...

  3. Electrochemical oxygen pumps. Final CRADA report.

    SciTech Connect

    Carter, J. D. Noble, J.

    2009-10-01

    All tasks of the Work Plan of ISTC Project 2277p have been completed, thus: (1) techniques of chemical synthesis were developed for more than ten recipes of electrolyte based on cerium oxide doped with 20 mole% of gadolinium (CeGd)O{sub 2}, doped by more than 10 oxide systems including 6 recipes in addition to the Work Plan; (2) electric conductivity and mechanical strength of CeGd specimens with additions of oxide systems were performed, two candidate materials for the electrolyte of electrochemical oxygen pump (pure CeGd and CeGd doped by 0.2 wt% of a transition metal) were chosen; (3) extended studies of mechanical strength of candidate material specimens were performed at room temperature and at 400, 600, 800 C; (4) fixtures for determination of mechanical strength of tubes by external pressure above 40 atmospheres at temperature up to 700 C were developed and fabricated; and (5) technology of slip casting of tubes from pure (Ce,Gd)O{sub 2} and of (Ce,Gd)O{sub 2} doped by 0.2 wt% of a transition metal, withstanding external pressure of minimum 40 atmospheres at temperature up to 700 C was developed, a batch of tubes was sent for testing to Argonne National Laboratory; (6) technology of making nanopowder from pure (Ce,Gd)O{sub 2} was developed based on chemical synthesis and laser ablation techniques, a batch of nanopowder with the weight 1 kg was sent for testing to Argonne National Laboratory; (7) a business plan for establishing a company for making powders of materials for electrochemical oxygen pump was developed; and (8) major results obtained within the Project were reported at international conferences and published in the Russian journal Electrochemistry. In accordance with the Work Plan a business trip of the following project participants was scheduled for April 22-29, 2006, to Tonawanda, NY, USA: Manager Victor Borisov; Leader of technology development Gennady Studenikin; Leader of business planning Elena Zadorozhnaya; Leader of production Vasily

  4. Productivity of local chickens under village management conditions.

    PubMed

    Mwalusanya, N A; Katule, A M; Mutayoba, S K; Mtambo, M M A; Olsen, J E; Minga, U M

    2002-09-01

    The productivity of local chickens under village management conditions was studied in six villages situated in three climatic zones within Morogoro District in Tanzania. Two villages were picked in each climatic zone (warm and wet, warm and dry, cool and wet) for the study. The data were obtained by actual measurement, qualitative observations and interview of members of the households directly responsible for the care of chickens. In addition, data sheets were given to selected farmers to record the performance of their chickens. The mean flock size for the three zones was 16.2, with a range of 2 to 58. The overall mean clutch size, egg weight and hatchability were 11.8, 44.1 g and 83.6%, respectively. The overall mean chick survival rate to 10 weeks of age was 59.7%. The mean live weights for cocks and hens were 1948 g and 1348 g, respectively. The mean growth rates to the age of 10 weeks were 4.6 g/day and 5.4 g/day, while those from 10 to 14 weeks of age were 8.4 g/day and 10.2 g/day for female and male birds, respectively. The age at first lay ranged between 6 and 8 months, and the average hen had three laying cycles per year. Most of the chickens were left to scavenge during the day and were provided with simple housing at night (95.2% of the owners). Only small amounts of supplementary feeds were occasionally given and minimal health care was provided. It was concluded that the low productivity of chickens was partly due to the prevailing poor management practices, in particular the lack of proper health care, poor nutrition and housing. PMID:12379059

  5. AIST-NREL Concentrator Photovoltaic (CPV) Demonstration. Cooperative Research and Development Final Report, CRADA Number CRD-10-402

    SciTech Connect

    Kurtz, Sarah

    2015-05-11

    The purpose of the project is to demonstrate and quantitatively compare performance of CPV systems installed in Japan and in the United States. The deployment conditions (e.g. spectrum and temperature) are site dependent and the optimal design of the system may vary with location. The CPV systems will use multi-junction concentrator cells for the conversion of sunlight into electricity. The optimal design of the cell may depend on the location at which a CPV system is installed. Thus, the systems in Japan and in the U.S. will all use a combination of concentrator cells obtained from three different vendors. This CRADA pertains only to the equipment that will be installed in the U.S. This effort is a collaborative project between AIST and NREL.

  6. Micro-toughened titanium-based intermetallics for high-temperature service. CRADA final report

    SciTech Connect

    Sikka, V.K.; Liu, C.T.; Blue, C.A.

    1997-11-01

    This Cooperative Research and Development Agreement (CRADA) report deals with the composition development, processing parameter development, microstructural evaluation, and mechanical properties development of the {beta} TiAl alloys. Two series of alloy compositions were identified. The first series consisted of four alloys, and the second series consisted of three alloys. The powders were packed in titanium cans, evacuated, and sealed. The titanium cans were hot extruded at 1150, 1250, and 1400{degrees}C to an area reduction ratio of 16:1. The extruded bars were heat treated between 800 and 1320{degrees}C, and their microstructure characterized in the extended and heat-treated condition by optical, scanning, and transmission electron microscopy (TEM). The microstructural features such as colony size, width of colony boundary {beta} layer, interlamellar spacing, {alpha}{sub 2}-{alpha}{sub 2} spacing, {beta}lamellar width, and {alpha}{sub 2}-{beta} layer ratio were quantified. Tensile bars were prepared from the extruded bars by electrodischarge machining followed by grinding. Tensile tests were conducted from room temperature to 1000{degrees}C. Three-point-bend tests were used to measure the fracture toughness at both room temperature and 800{degrees}C. The effect of long-term annealing at 800 and 1000{degrees}C on one of the alloys was measured at room temperature. Tensile properties of the alloys of this study were compared with the data reported in literature.

  7. 19 CFR 113.68 - Wool and fur products labeling acts and fiber products identification act bond conditions.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 19 Customs Duties 1 2011-04-01 2011-04-01 false Wool and fur products labeling acts and fiber... § 113.68 Wool and fur products labeling acts and fiber products identification act bond conditions. A bond to comply with wool and fur products labeling acts and fiber products identification act...

  8. 19 CFR 113.68 - Wool and fur products labeling acts and fiber products identification act bond conditions.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 19 Customs Duties 1 2010-04-01 2010-04-01 false Wool and fur products labeling acts and fiber... § 113.68 Wool and fur products labeling acts and fiber products identification act bond conditions. A bond to comply with wool and fur products labeling acts and fiber products identification act...

  9. 19 CFR 113.68 - Wool and fur products labeling acts and fiber products identification act bond conditions.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 19 Customs Duties 1 2013-04-01 2013-04-01 false Wool and fur products labeling acts and fiber... § 113.68 Wool and fur products labeling acts and fiber products identification act bond conditions. A bond to comply with wool and fur products labeling acts and fiber products identification act...

  10. 19 CFR 113.68 - Wool and fur products labeling acts and fiber products identification act bond conditions.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 19 Customs Duties 1 2012-04-01 2012-04-01 false Wool and fur products labeling acts and fiber... § 113.68 Wool and fur products labeling acts and fiber products identification act bond conditions. A bond to comply with wool and fur products labeling acts and fiber products identification act...

  11. 19 CFR 113.68 - Wool and fur products labeling acts and fiber products identification act bond conditions.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 19 Customs Duties 1 2014-04-01 2014-04-01 false Wool and fur products labeling acts and fiber... § 113.68 Wool and fur products labeling acts and fiber products identification act bond conditions. A bond to comply with wool and fur products labeling acts and fiber products identification act...

  12. Molecular engineering of polymer alloys: A final report of results obtained on CRADA No. 1078

    SciTech Connect

    Curro, J.G.; Schweizer, K.S.; Honeycutt, J.D.

    1995-12-01

    This report summarizes the technical progress made in the past three years on CRADA No. 1078, Molecular Engineering of Polymer Alloys. The thrust of this CRADA was to start with the basic ideas of PRISM theory and develop it to the point where it could be applied to modeling of polymer alloys. In this program, BIOSYM, Sandia and the University of Illinois worked jointly to develop the theoretical techniques and numerical formalisms necessary to implement the theoretical ideas into commercial software aimed at molecular engineering of polymer alloys. This CRADA focused on developing the techniques required to make the transition from theory to practice. These techniques were then used by BIOSYM to incorporate PRISM theory and other new developments into their commercial software.

  13. WindFloat Feasibility Study Support. Cooperative Research and Development Final Report, CRADA Number CRD-11-419

    SciTech Connect

    Sirnivas, Senu

    2015-05-07

    This shared resource CRADA defines research collaborations between the National Renewable Energy Laboratory and Principle Power, Inc. and its subsidiaries (“Principle Power”). Under the terms and conditions described in this CRADA agreement, NREL and Principle Power will collaborate on the DEMOWFLOAT project, a full-scale 2-MW demonstration project of a novel floating support structure for large offshore wind turbines, called WindFloat. The purpose of the project is to demonstrate the longterm field performance of the WindFloat design, thus enabling the future commercialized deployment of floating deepwater offshore wind power plants. NREL is the leading U.S. Department of Energy (DOE) laboratory for the development and advancement of renewable energy and has a strong interest in offshore wind and the development of deepwater offshore wind systems. NREL will provide expertise and resources to the DEMOWFLOAT project in assessing the environmental impacts, independent technical performance validation, and engineering analysis. Principle Power is a Seattle, Washington-based renewable energy company that owns all the intellectual property associated with the WindFloat. In return for NREL’s support of the DEMOWFLOAT project, Principle Power will provide NREL with valuable test data from the project that will be used to validate the numerical tools developed by NREL for analyzing offshore wind turbines. In addition, NREL will gain experience and knowledge in offshore wind designs and testing methods through this collaboration. 2 This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications. NREL and Principle Power will work together to advance floating offshore wind technology, and demonstrate its viability for supplying the world with a new clean energy source.

  14. 30 CFR 1206.106 - What are my responsibilities to place production into marketable condition and to market production?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... production into marketable condition and to market production? 1206.106 Section 1206.106 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR Natural Resources Revenue PRODUCT VALUATION Federal Oil § 1206.106 What are my responsibilities to place production...

  15. Chemistry of fission product iodine under nuclear reactor accident conditions

    SciTech Connect

    Malinauskas, A.P.; Bell, J.T.

    1986-01-01

    The radioisotopes of iodine are generally acknowledged to be the species whose release into the biosphere as a result of a nuclear reactor accident is of the greatest concern. In the course of its release, the fission product is subjected to differing chemical environments; these can alter the physicochemical form of the fission product and thus modify the manner and extent to which release occurs. Both the chemical environments which are characteristic of reactor accidents and their effect in determining physical and chemical form of fission product iodine have been studied extensively, and are reviewed in this report. 76 refs.

  16. Biomass and energy productivity of Leucaena under humid subtropical conditions

    SciTech Connect

    Othman, A.B.; Prine, G.M.

    1984-01-01

    A table shows the amount and energy content of above-ground biomass produced in 1982 and 1983 by the 12 most productive of 62 accessions of Leucanena spp. established in 1979 at the University of Florida. Mean annual biomass production of the 12 accessions was 29.3 and 24.7 Mg/ha, with energy contents of 19,690 and 19,820 J/g, in 1982 and 1983 respectively.

  17. Development of a High Volume Capable Process to Manufacture High Performance Photovoltaic Cells: Cooperative Research and Development Final Report, CRADA Number CRD-08-322

    SciTech Connect

    Geisz, J. F.

    2012-11-01

    The intent of the work is for RFMD and NREL to cooperate in the development of a commercially viable and high volume capable process to manufacture high performance photovoltaic cells, based on inverted metamorphic (IMM) GaAs technology. The successful execution of the agreement will result in the production of a PV cell using technology that is capable of conversion efficiency at par with the market at the time of release (reference 2009: 37-38%), using RFMD's production facilities. The CRADA work has been divided into three phases: (1) a foundation phase where the teams will demonstrate the manufacturing of a basic PV cell at RFMD's production facilities; (2) a technology demonstration phase where the teams will demonstrate the manufacturing of prototype PV cells using IMM technology at RFMD's production facilities, and; (3) a production readiness phase where the teams will demonstrate the capability to manufacture PV cells using IMM technology with high yields, high reliability, high reproducibility and low cost.

  18. Atmospheric production of glycolaldehyde under hazy prebiotic conditions.

    PubMed

    Harman, Chester E; Kasting, James F; Wolf, Eric T

    2013-04-01

    The early Earth's atmosphere, with extremely low levels of molecular oxygen and an appreciable abiotic flux of methane, could have been a source of organic compounds necessary for prebiotic chemistry. Here, we investigate the formation of a key RNA precursor, glycolaldehyde (2-hydroxyacetaldehyde, or GA) using a 1-dimensional photochemical model. Maximum atmospheric production of GA occurs when the CH4:CO2 ratio is close to 0.02. The total atmospheric production rate of GA remains small, only 1 × 10(7) mol yr(-1). Somewhat greater amounts of GA production, up to 2 × 10(8) mol yr(-1), could have been provided by the formose reaction or by direct delivery from space. Even with these additional production mechanisms, open ocean GA concentrations would have remained at or below ~1 μM, much smaller than the 1-2 M concentrations required for prebiotic synthesis routes like those proposed by Powner et al. (Nature 459:239-242, 2009). Additional production or concentration mechanisms for GA, or alternative formation mechanisms for RNA, are needed, if this was indeed how life originated on the early Earth. PMID:23695543

  19. Drying and reconstitution of subbituminous coal - CRADA 90-004. Final report

    SciTech Connect

    Wen, W.W.; Nowak, M.A.; Killmeyer, R.P. |

    1991-10-30

    AMAX Coal Company (AMAX) has built a 200 tph, demonstration scale fluidized-bed drying process at their Belle Ayr Mine in Wyoming to dry the subbituminous coal of Wyodak seam from an average moisture content of 25-30 wt% to about 10 wt%. Currently, the dryer generates too many fines for proper transportation and handling. Though the raw coal is about 2-inch top size, about 80 wt% of the dryer product ends up finer than 28 mesh, and about 10 wt% of the dried coal is collected in the dryer bag house (minus 200 mesh). Paul Woessner, Director of Research and Development of AMAX, met with personnel from PETC Coal Preparation Division and expressed an interest in an investigation of the feasibility of applying the PETC`s humic acid binder to reconstitute the bag house fines from the dryer. This was an area in which PETC had been doing some research and had some expertise. As a result, AMAX and the U.S. Department of Energy`s Pittsburgh Energy Technology Center (PETC) signed a Cooperative Research and Development Agreement (CRADA, see appendix A) in June 1990 to produce, from fine subbituminous coal, economic low moisture reconstituted solid fuel forms that have suitable storage, handling, transportation, and combustion properties. PETC`s task in this agreement was to conduct broad, baseline studies in three areas: (1) to develop a humic acid binder from AMAX subbituminous coal using the PETC-developed Humic Acid Binder Process, (2) to reconstitute AMAX`s dried subbituminous coal fines from the bag house and the fluidized bed dryer product with humic acid binder, and (3) to produce low moisture, water-resistant pellets from raw subbituminous coal by the PETC-developed Lignipel Process. AMAX, on the other hand, agreed to produce 1-2 tons of reconstituted solid fuel for handleability and combustion tests and partially funded PETC`s efforts.

  20. Prosodically-Conditioned Variability in Children's Production of French Determiners

    ERIC Educational Resources Information Center

    Demuth, Katherine; Tremblay, Annie

    2008-01-01

    Researchers have long noted that children's grammatical morphemes are variably produced, raising questions about when and how grammatical competence is acquired. This study examined the spontaneous production of determiners by two French-speaking children aged 1 ; 5-2 ; 5. It found that determiners were produced earlier with monosyllabic words,…

  1. 75 FR 35805 - Pesticide Product Registrations; Conditional Approvals

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-23

    ... products (EPA File Symbols 524-LTL and 524-LTA) containing the active ingredients, Bacillus thuringiensis... with the proposed use of the Bacillus thuringiensis Cry1A.105 and Cry2Ab2 proteins and the genetic... use of the Bacillus thuringiensis Cry1A.105 and Cry2Ab2 proteins and the genetic material...

  2. 75 FR 57019 - Pesticide Product Registrations; Conditional Approval

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-17

    ... Form EPA issued a notice, published in the Federal Register of November 18, 2009 (74 FR 59536) (FRL... products for use on apples and soybeans. 2. TOPGUARD Fungicide (EPA registration number 4787-55) was... leaf spot, leaf spot, powdery mildew, and soybean rust, and on apples to control cedar apple...

  3. Development of lifetime test procedure for powder evacuated panel insulation. CRADA final report

    SciTech Connect

    Wilkes, K E; Graves, R S; Childs, K W

    1996-03-01

    This CRADA is between Appliance Research Consortium (ARC) of the Association of Home Appliance Manufacturers (AHAM) and the Lockheed Martin Energy Research Corp. A Powder Evacuated Panel (PEP) is a "super" thermal insulation, having a thermal resistivity (R) substantially above that of existing insulation without the environmental problems of some insulations such as Chlorofluorocarbon (CFC) blown foam.

  4. 77 FR 48165 - Cooperative Research and Development Agreement (CRADA) Opportunity With the Department of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-13

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF HOMELAND SECURITY Cooperative Research and Development Agreement (CRADA) Opportunity With the Department of Homeland Security for the Efficacy Testing of Vaporous Hydrogen Peroxide (VHP) and Chlorine Dioxide (ClO 2 )...

  5. Supply of purified Th228 for Ra224 generators. Final CRADA Report .

    SciTech Connect

    Ehst, D. A.; Nuclear Engineering Division

    2009-10-02

    CRADA was terminated when it was determined that the Russians could not perform the terms of the subcontract. It became apparent that the Russians would not be a reliable source of Th228, as a precursor in the decay chain which leads to Ra224. Their government policies will prohibit the export of Th228 in quantities needed for commercial cancer therapy.

  6. Decomposition of organic waste products under aerobic and anaerobic conditions

    SciTech Connect

    Gale, P.M.

    1988-01-01

    The objectives of this research were to determine the kinetics of C and N mineralization under aerobic and anaerobic conditions. These parameters were then used to verify the simulation model, DECOMPOSITION, for the anaerobic system. Incubation experiments were conducted to compare the aerobic and anaerobic decomposition of alfalfa (Medicago sativa L.), a substrate with a low C:N ratio. Under anaerobic conditions the net mineralization of N occurred more rapidly than that under aerobic conditions. However, the rate of C mineralization as measured by CO{sub 2} evolution was much lower. For the anaerobic decomposition of alfalfa, C mineralization was best described as the sum of the CO{sub 2} and CH{sub 4} evolved plus the water soluble organic C formed. The kinetics of C mineralization, as determined by this approach, were used to successfully predict the rate and amount of N mineralization from alfalfa undergoing anaerobic decomposition. The decomposition of paper mill sludge, a high C:N ratio substrate, was also evaluated.

  7. Enhanced root production in Haplopappus gracilis grown under spaceflight conditions

    NASA Technical Reports Server (NTRS)

    Levine, H. G.; Krikorian, A. D.

    1996-01-01

    The production and growth of roots in two aseptically maintained clonal populations of Haplopappus gracilis (family Compositae), each with a distinctive pattern of root production, were studied after they had been exposed to space for 5 days aboard a NASA Space Shuttle. Total root production of both populations was 67-95% greater when compared with their Earth-grown controls. Roots were generated: (1) laterally from pre-formed roots, the tips of which had been severed at the time of plantlet insertion into a "horticultural foam" substrate supplied with a nutrient solution; (2) adventitiously from the basal or cut-end portion of shoots; (3) de novo, i.e. from primordial which were non-existent at the outset of the experiment. Roots grew in all directions in space but were uniformly positively gravitropic in ground controls. In space and on Earth, both clonal populations maintained their clone-specific root formation and growth characteristics and produced an equivalent amount of tissue when compared to each other. As on Earth, and as expected, there were fewer and shorter roots on plantlets that formed floral buds. The significance of altered moisture distribution in the "horticultural foam" substrate in space for root growth and the significance of our findings for growing plants in altered gravity environments are discussed.

  8. Examination of Incubation Conditions for Production of HERICIUM ERINACEUM

    NASA Astrophysics Data System (ADS)

    Okumura, Ryosuke; Sasaki, Chizuru; Asada, Chikako; Nakamura, Yoshitoshi

    Basidiomycetes has recently attracted considerable attention for its various physiological activities, such as antitumor, antioxidant and immunostimulating activities. Compounds isolated from fruit body of Hericium erinaceum, commonly called Yamabushitake in Japan, have interesting biological activities such as cytotoxic effectors on cancer cell (HeLa cells) and stimulators of synthesis of nerve growth factor. It is necessary for the cultivation of the fruit body of mushroom to control light, temperature, humidity. Otherwise, mycelia cultivation needs only temperature control. H. erinaceum cultivated by submerged culture have similar physiological activities to the fruit body of H. erinaceum, which suggests cultured mycelia can potentially become a promoter of synthesis of nerve growth factor. In this study, we used whey which is by-products of cheese-making process as an alternative nitrogen source in submerged cultivation of H. erinaceum mycelia, and then dry cell weight (DCW) and DCW productivity of whey medium were compared with those of chemical nutrient medium. When whey was used as a nitrogen source, DCW and DCW productivity are 1.5 times higher than those of chemical nutrient medium, 5.99 g/L and 0.60 g/L/day, respectively. It was suggested that whey could be used as an alternative nitrogen source and a growth promoting factor in H. erinaceum mycelia cultivation.

  9. Bioethanol production from Scenedesmus obliquus sugars: the influence of photobioreactors and culture conditions on biomass production.

    PubMed

    Miranda, J R; Passarinho, P C; Gouveia, L

    2012-10-01

    A closed-loop vertical tubular photobioreactor (PBR), specially designed to operate under conditions of scarce flat land availability and irregular solar irradiance conditions, was used to study the potential of Scenedesmus obliquus biomass/sugar production. The results obtained were compared to those from an open-raceway pond and a closed-bubble column. The influence of the type of light source and the regime (natural vs artificial and continuous vs light/dark cycles) on the growth of the microalga and the extent of the sugar accumulation was studied in both PBRs. The best type of reactor studied was a closed-loop PBR illuminated with natural light/dark cycles. In all the cases, the relationship between the nitrate depletion and the sugar accumulation was observed. The microalga Scenedesmus was cultivated for 53 days in a raceway pond (4,500 L) and accumulated a maximum sugar content of 29 % g/g. It was pre-treated for carrying out ethanol fermentation assays, and the highest ethanol concentration obtained in the hydrolysate fermented by Kluyveromyces marxianus was 11.7 g/L. PMID:22899495

  10. 30 CFR 1206.362 - What are my responsibilities to place production into marketable condition and to market production?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... production into marketable condition and to market production? 1206.362 Section 1206.362 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR Natural Resources Revenue PRODUCT VALUATION Geothermal Resources § 1206.362 What are my responsibilities to place...

  11. 17 CFR 41.25 - Additional conditions for trading for security futures products.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... trading for security futures products. 41.25 Section 41.25 Commodity and Securities Exchanges COMMODITY FUTURES TRADING COMMISSION SECURITY FUTURES PRODUCTS Requirements and Standards for Listing Security Futures Products § 41.25 Additional conditions for trading for security futures products. (a)...

  12. 27 CFR 11.23 - Sales conditioned on the acquisition of other products.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... trade buyer is prohibited. (b) Exchange. The exchange of one product for another is prohibited as a sales transaction conditioned on the acquisition of other products. However, the exchange of a product for equal quantities (case for case) of the same type and brand of product, in containers of...

  13. Development of YBCO Superconductor for Electric Systems: Cooperative Research and Development Final Report, CRADA Number CRD-04-150

    SciTech Connect

    Bhattacharya, R.

    2013-03-01

    The proposed project will be collaborative in exploration of high temperature superconductor oxide films between SuperPower, Inc. and the National Renewable Energy Laboratory. This CRADA will attempt to develop YBCO based high temperature oxide technology.

  14. An evaluation of optical tool inspection and compensation technologies. CRADA final report for CRADA Number Y-1291-0052

    SciTech Connect

    Babelay, E.F.; Centola, J.; Zorger, W.; Serafin, W.

    1994-05-15

    A Cooperative Research And Development Agreement (CRADA) was established April 1992 between Martin Marietta Energy Systems, Inc. and United Technologies Corporation, Pratt and Whitney Division to evaluate the existing applicability of the Energy Systems optical tool inspection and compensation system (OTICS) for use at Pratt and Whitney`s East Hartford Plant. The OTICS was developed at the Oak Ridge Y-12 Plant and optically measures the shape of a single point cutting tool. The tool shape inspection provides process information relating to tool wear and if desired the tool shape geometry can be used to generate a new numerical control machining program that is compensated for the tool forms errors. The tool wear measurement capability of OTICS was successfully evaluated in the Phase-1 testing. The testing verified that OTICS can easily detect tool wear and the {+-} 0.0001 inch resolution obtained was sufficient for the larger cutter inserts used by Pratt and Whitney (P and W). During the tool wear experiments at P and W, a second potential use identified for OTICS was the accurate on-machine dimensional verification of special ground contour forming tools. The OTICS tool path compensation experiment demonstrated the varied technologies that are integrated in the tool path compensation process. The OTICS system was successful at inspecting the 0.125 in. radius tool and compensating the tool path for tool form errors. The need for automated interfaces between the OTICS computer and controller along with the part program requirements and the overall compensation methodology were highlighted in the demonstration.

  15. Impact of environmental production conditions on productivity and efficiency: a case study of wheat farmers in Bangladesh.

    PubMed

    Rahman, Sanzidur; Hasan, M Kamrul

    2008-09-01

    Environmental conditions significantly affect production, but are often ignored in studies analysing productivity and efficiency leading to biased results. In this study, we examine the influence of selected environmental factors on productivity and efficiency in wheat farming in Bangladesh. Results reveal that environmental production conditions significantly affect the parameters of the production function and technical efficiency, as well as correlates of inefficiency. Controlling for environmental production conditions improves technical efficiency by 4 points (p<0.01) from 86% to 90%. Large farms are more efficient relative to small and medium sized farms (p<0.01 and 0.05), with no variation among regions. Policy implications include soil fertility improvement through soil conservation and crop rotation, improvement in managerial practices through extension services and adoption of modern technologies, promotion of education, strengthening the research-extension link, and development of new varieties that have higher yield potential and are also suitable for marginal areas. PMID:17764818

  16. Sediment Production from Forest Roads During Different Rainfall Conditions

    NASA Astrophysics Data System (ADS)

    Kunz, M. J.; Sullivan, K.; Dhakal, A. S.

    2004-12-01

    Sediment productions from storm-proofed forest roads were investigated at four locations in the managed forested land of Northwestern California (annual rainfall @1000 mm), where rocks have been characterized as Wildcat group consisting of mudstone, siltstone, claystone, and minor conglomerate. Rocked road (storm-proofed road) constitutes a part of the effective road management practices in the study area where other management practices include disconnection of roads from watercourses, reduction in distance between culverts, frequent road maintenance, and seasonal (or during rainfall) restrictions of log traffic. Specifically, this study examines the influence of rainstorm and road characteristics on sediment production from storm-proofed road in the context of varieties of road management practices in place. Continuous ditch flow during the rainstorm events was monitored using an UNIDATA float device and data logger. An ISCO sampler collected suspended sediment at temporal resolution of 2-h during the rainstorm events, and collected sediment samples were analyzed for turbidity and suspended sediment concentration in the laboratory. Sediment samples were also collected for particle size distribution analysis. Two tipping bucket rain gages located in the vicinity of road sites collected rainfall. Using an electronic total station, road surface was surveyed in detail, and a road Digital Elevation Model (DEM) was generated. Thus produced DEM was processed to delineate the road surface area contributing to ditch flow. The analysis of collected data for rainstorm events of hydrological year 2003/2004 reveals that the suspended sediment concentration conforms closely to rainfall hyetograph and ditch flow hydrograph with rapid flushing of road sediments for about 15-h following the onset of rainstorm. In general, ditch flow and suspended sediment concentration relation illustrates that the sediment transport is evidently "supply limited". For this reason, suspended

  17. A strategy for clone selection under different production conditions.

    PubMed

    Legmann, Rachel; Benoit, Brian; Fedechko, Ronald W; Deppeler, Cynthia L; Srinivasan, Sriram; Robins, Russell H; McCormick, Ellen L; Ferrick, David A; Rodgers, Seth T; Russo, A Peter

    2011-01-01

    Top performing clones have failed at the manufacturing scale while the true best performer may have been rejected early in the screening process. Therefore, the ability to screen multiple clones in complex fed-batch processes using multiple process variations can be used to assess robustness and to identify critical factors. This dynamic ranking of clones' strategy requires the execution of many parallel experiments than traditional approaches. Therefore, this approach is best suited for micro-bioreactor models which can perform hundreds of experiments quickly and efficiently. In this study, a fully monitored and controlled small scale platform was used to screen eight CHO clones producing a recombinant monoclonal antibody across several process variations, including different feeding strategies, temperature shifts and pH control profiles. The first screen utilized 240 micro-bioreactors were run for two weeks for this assessment of the scale-down model as a high-throughput tool for clone evaluation. The richness of the outcome data enable to clearly identify the best and worst clone as well as process in term of maximum monoclonal antibody titer. The follow-up comparison study utilized 180 micro-bioreactors in a full factorial design and a subset of 12 clone/process combinations was selected to be run parallel in duplicate shake flasks. Good correlation between the micro-bioreactor predictions and those made in shake flasks with a Pearson correlation value of 0.94. The results also demonstrate that this micro-scale system can perform clone screening and process optimization for gaining significant titer improvements simultaneously. This dynamic ranking strategy can support better choices of production clones. PMID:21448991

  18. 19 CFR 113.69 - Production of bills of lading bond conditions.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 19 Customs Duties 1 2010-04-01 2010-04-01 false Production of bills of lading bond conditions. 113.69 Section 113.69 Customs Duties U.S. CUSTOMS AND BORDER PROTECTION, DEPARTMENT OF HOMELAND SECURITY; DEPARTMENT OF THE TREASURY CUSTOMS BONDS Customs Bond Conditions § 113.69 Production of bills of lading...

  19. Short-term variability of microphytobenthic primary production associated with in situ diel and tidal conditions

    NASA Astrophysics Data System (ADS)

    Kwon, Bong-Oh; Khim, Jong Seong; Park, Jinsoon; Ryu, Jongseong; Kang, Seong-Gil; Koh, Chul-Hwan

    2012-10-01

    The short-term variability in microphytobenthos (MPB) production, measured by the oxygen microprofiling method, found under different experimental conditions indicated an endogenous production response reflecting in situ diel and tidal conditions. MPB production was measured for submerged core samples (collected from Daebu mudflat, Korea) at a fixed irradiance and temperature in the laboratory under the conditions of (1) constant light (data-I), (2) light-dark incubation (data-II), and (3) in situ reflected (data-III). The experimental design aimed to characterize within-day, across-day, and long term changes in MPB production. Our results showed that, under constant light conditions for 72 h, temporal fluctuations in MPB production (day:night = 2.4:1) were clearly present for three consecutive days (data-I), indicating a diel rhythm in production. Production increased at the beginning of light exposure, and dramatically decreased at the time of submersion, indicating tide-dependent rhythm in production. Furthermore, over a 10 d period under the same light and temperature conditions, a weakening (declining) trend in production was observed, which was logarithmic with diel fluctuation (r2 = 0.995, p < 0.01). This diel rhythm in production was also observed under an alternating light-dark (L14 h/D10 h) incubation period across an additional 18 d of measurement (data-II). The decline in production was slower, and more linear (r2 = 0.930, p < 0.01) under this condition, as the period of dark incubation (D10 h) seemed to allow the community to recover to a certain level of production. Finally, the effects of tidal condition (spring tide vs. neap tide) and biomass (dense vs. lesser dense) on the short-term (production (data-III) appeared to be negligible when time integrated the production.

  20. [Hygienic characteristics of work conditions for main occupations in asbestos cement production of Ukraine].

    PubMed

    Kundiev, Iu I; Cherniuk, V I; Karakashian, A N; Kucheruk, T K; Martynovskaia, T Iu; Demetskaia, A V; Sal'nikova, N A; Chuĭ, T S; Piatnitsa-Gorpinchenko, N K

    2008-01-01

    Studies covered of work conditions for main occupations in asbestos cement production of Ukraine. Studies covered work conditions and occupational features of workers engaged into main occupations in asbestos cement enterprises of Ukraine. Parameters presented characterize ambient air state, microclimate conditions, levels of noise and vibration, work intensity and hardness. PMID:18461799

  1. 30 CFR 1206.362 - What are my responsibilities to place production into marketable condition and to market production?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 3 2012-07-01 2012-07-01 false What are my responsibilities to place production into marketable condition and to market production? 1206.362 Section 1206.362 Mineral Resources OFFICE OF NATURAL RESOURCES REVENUE, DEPARTMENT OF THE INTERIOR NATURAL RESOURCES REVENUE...

  2. 30 CFR 1206.106 - What are my responsibilities to place production into marketable condition and to market production?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 3 2014-07-01 2014-07-01 false What are my responsibilities to place production into marketable condition and to market production? 1206.106 Section 1206.106 Mineral Resources OFFICE OF NATURAL RESOURCES REVENUE, DEPARTMENT OF THE INTERIOR NATURAL RESOURCES REVENUE...

  3. 30 CFR 1206.106 - What are my responsibilities to place production into marketable condition and to market production?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 3 2012-07-01 2012-07-01 false What are my responsibilities to place production into marketable condition and to market production? 1206.106 Section 1206.106 Mineral Resources OFFICE OF NATURAL RESOURCES REVENUE, DEPARTMENT OF THE INTERIOR NATURAL RESOURCES REVENUE...

  4. 30 CFR 1206.362 - What are my responsibilities to place production into marketable condition and to market production?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 3 2013-07-01 2013-07-01 false What are my responsibilities to place production into marketable condition and to market production? 1206.362 Section 1206.362 Mineral Resources OFFICE OF NATURAL RESOURCES REVENUE, DEPARTMENT OF THE INTERIOR NATURAL RESOURCES REVENUE...

  5. 30 CFR 1206.106 - What are my responsibilities to place production into marketable condition and to market production?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 3 2013-07-01 2013-07-01 false What are my responsibilities to place production into marketable condition and to market production? 1206.106 Section 1206.106 Mineral Resources OFFICE OF NATURAL RESOURCES REVENUE, DEPARTMENT OF THE INTERIOR NATURAL RESOURCES REVENUE...

  6. 30 CFR 1206.362 - What are my responsibilities to place production into marketable condition and to market production?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 3 2014-07-01 2014-07-01 false What are my responsibilities to place production into marketable condition and to market production? 1206.362 Section 1206.362 Mineral Resources OFFICE OF NATURAL RESOURCES REVENUE, DEPARTMENT OF THE INTERIOR NATURAL RESOURCES REVENUE...

  7. Centralized Cryptographic Key Management and Critical Risk Assessment - CRADA Final Report For CRADA Number NFE-11-03562

    SciTech Connect

    Abercrombie, R. K.; Peters, Scott

    2014-05-28

    The Department of Energy Office of Electricity Delivery and Energy Reliability (DOE-OE) Cyber Security for Energy Delivery Systems (CSEDS) industry led program (DE-FOA-0000359) entitled "Innovation for Increasing Cyber Security for Energy Delivery Systems (12CSEDS)," awarded a contract to Sypris Electronics LLC to develop a Cryptographic Key Management System for the smart grid (Scalable Key Management Solutions for Critical Infrastructure Protection). Oak Ridge National Laboratory (ORNL) and Sypris Electronics, LLC as a result of that award entered into a CRADA (NFE-11-03562) between ORNL and Sypris Electronics, LLC. ORNL provided its Cyber Security Econometrics System (CSES) as a tool to be modified and used as a metric to address risks and vulnerabilities in the management of cryptographic keys within the Advanced Metering Infrastructure (AMI) domain of the electric sector. ORNL concentrated our analysis on the AMI domain of which the National Electric Sector Cyber security Organization Resource (NESCOR) Working Group 1 (WG1) has documented 29 failure scenarios. The computational infrastructure of this metric involves system stakeholders, security requirements, system components and security threats. To compute this metric, we estimated the stakes that each stakeholder associates with each security requirement, as well as stochastic matrices that represent the probability of a threat to cause a component failure and the probability of a component failure to cause a security requirement violation. We applied this model to estimate the security of the AMI, by leveraging the recently established National Institute of Standards and Technology Interagency Report (NISTIR) 7628 guidelines for smart grid security and the International Electrotechnical Commission (IEC) 63351, Part 9 to identify the life cycle for cryptographic key management, resulting in a vector that assigned to each stakeholder an estimate of their average loss in terms of dollars per day of system

  8. CRADA 2009S001: Investigation of the Supercondcuting RF Properties of Large Grain Ingot Niobium

    SciTech Connect

    Grimm, Terry; Hollister, Jerry L.; Kolka, Ahren; Myneni, Ganapati Rao

    2012-12-18

    This CRADA intended to explore the properties of large grain ingot niobium by fabricating four single cell TESLA shaped accelerating cavities. Once the cavities were fabricated, SRF performance would be measured. Niowave received four discs of large grain ingot niobium from JLAB in February 2009. Niowave cut samples from each disc and tested the RRR. After the RRR was measured with disappointing results, the project lost interest. A no cost extension was signed in July 2009 to allow progress until June 2010, but ultimately no further work was accomplished by either party. No firm conclusions were drawn, as further investigations were not made. Large grain ingot niobium has shown real potential for high accelerating gradient superconducting cavities. However, this particular CRADA did not gather enough data to reach any conclusions in this regard.

  9. Advanced variable speed air source integrated heat pump (AS-IHP) development - CRADA final report

    SciTech Connect

    Baxter, Van D.; Rice, C. Keith; Munk, Jeffrey D.; Ally, Moonis Raza; Shen, Bo

    2015-09-30

    Between August 2011 and September 2015, Oak Ridge National Laboratory (ORNL) and Nordyne, LLC (now Nortek Global HVAC LLC, NGHVAC) engaged in a Cooperative Research and Development Agreement (CRADA) to develop an air-source integrated heat pump (AS-IHP) system for the US residential market. Two generations of laboratory prototype systems were designed, fabricated, and lab-tested during 2011-2013. Performance maps for the system were developed using the latest research version of the DOE/ORNL Heat Pump Design Model, or HPDM, (Rice 1991; Rice and Jackson 2005; Shen et al 2012) as calibrated against the lab test data. These maps were the input to the TRNSYS (SOLAR Energy Laboratory, et al, 2010) system to predict annual performance relative to a baseline suite of equipment meeting minimum efficiency standards in effect in 2006 (combination of 13 SEER air-source heat pump (ASHP) and resistance water heater with Energy Factor (EF) of 0.9). Predicted total annual energy savings, while providing space conditioning and water heating for a tight, well insulated 2600 ft2 (242 m2) house at 5 U.S. locations, ranged from 46 to 61%, averaging 52%, relative to the baseline system (lowest savings at the cold-climate Chicago location). Predicted energy use for water heating was reduced 62 to 76% relative to resistance WH. Based on these lab prototype test and analyses results a field test prototype was designed and fabricated by NGHVAC. The unit was installed in a 2400 ft2 (223 m2) research house in Knoxville, TN and field tested from May 2014 to April 2015. Based on the demonstrated field performance of the AS-IHP prototype and estimated performance of a baseline system operating under the same loads and weather conditions, it was estimated that the prototype would achieve ~40% energy savings relative to the minimum efficiency suite. The estimated WH savings were >60% and SC mode savings were >50%. But estimated SH savings were only about 20%. It is believed that had the test

  10. Final CRADA Report ORNL-00-0609, Real-Time Control of Diesel Combustion Quality

    SciTech Connect

    Wagner, Robert M

    2010-07-01

    Detroit Diesel Corporation (DDC) and ORNL established this CRADA to improve heavy-duty engine efficiency with reduced emissions at relatively extreme operating regimes such has high EGR, low-load, and cold-start, with an emphasis on the application of advanced control strategies. The approach used in this collaborative effort was to include the application of novel analysis and modeling techniques developed from the application of nonlinear dynamics and chaos theory. More specifically, analytical techniques derived from these theories were to used to detect, characterize, and control the combustion instabilities that are responsible for poor combustion performance and corresponding high emissions. The foundation of this CRADA was established based on ORNL expertise on the fundamentals of advanced combustion operation and experience with nonlinear dynamics and controls in combustion systems. The initial plan was all data generation would be performed at DDC with an agreed upon experimental plan formed by both organizations. While numerous experiments were performed at DDC and the data was exchanged with ORNL researchers, the team decided to transfer an engine to ORNL to allow more flexibility and data generation opportunities. A prototype DDC Series 60 with a common rail fuel system was selected and installed at ORNL. DDC and ORNL maintained a strong collaboration throughout much of this project. Direct funding from DOE ended in 2004 and DDC continued to fund at a reduced amount through 2007. This CRADA has not been funded in more recent years but has been maintained active in anticipation of restored funding. This CRADA has led to additional collaborations between DDC and ORNL. The objectives are to: (1) Explore and establish boundaries of high efficiency clean combustion (HECC) modes on a DDC heavy-duty diesel engine; (2) Improve fundamental understanding of combustion instabilities for use in the development of predictive controls and diagnostics; and (3) Develop

  11. Agreement Execution Process Study: CRADAs and NF-WFO Agreements and the Speed of Business

    SciTech Connect

    Harrer, Bruce J.; Cejka, Cheryl L.; Macklin, Richard; Miksovic, Ann

    2011-02-01

    This report summarizes the findings of a study on the execution of Cooperative Research and Development Agreements (CRADAs) and Non-Federal Work for Others (NF-WFO) agreements across the U.S. Department of Energy (DOE) laboratory complex. The study provides quantitiative estimates of times required to negotiate and execute these agreements across the DOE complex. It identifies factors impacting on cycle times and describes best practicies used at various laboratories and site offices that reduce cycle times.

  12. Machine tool evaluation (development of environmentally conscious machining fluids and systems). CRADA final report

    SciTech Connect

    Buchanan, A.C. III; Sigman, M.E.; Yang, C.L.

    1998-08-01

    The overall purpose of this CRADA is to select or develop as required a group of cutting fluids, for use with metals and/or ceramic materials, which are more environmentally benign and which will reduce or eliminate the environmental problems associated with management and disposal of these cutting fluids. This CRADA was initially funded by DOE/DP, and was expanded to include DOE/ER funding with an added focus on environmental issues related to synthetic cutting fluids. The specific objective of this DOE-ER funded project (one of ten technical tasks within the CRADA) is to determine and demonstrate chemical methods of degrading and/or improving the disposability of synthetic cutting fluids. Photochemical advanced oxidation processes were developed and demonstrated to successfully remove all carbon from new and used cutting fluids, and from surrogate solutions containing up to 15,000 ppm of total organic carbon in the initial solutions. Chemical and energy costs for the process were evaluated. Commercial providers of advanced oxidation process technologies were consulted concerning scale-up, and associated costs in industrial systems were estimated to be well represented by the laboratory bench-scale measured values. Engineering aspects and alternative oxidation methodologies were explored through consultation with an internationally recognized chemical engineer, and it was concluded that no clear alternatives were available for treating aqueous fluids with extremely high initial carbon content (i.e., 15,000 popm total organic carbon).

  13. Ethanol production from glycerol-containing biodiesel waste by Klebsiella variicola shows maximum productivity under alkaline conditions.

    PubMed

    Suzuki, Toshihiro; Nishikawa, Chiaki; Seta, Kohei; Shigeno, Toshiya; Nakajima-Kambe, Toshiaki

    2014-05-25

    Biodiesel fuel (BDF) waste contains large amounts of crude glycerol as a by-product, and has a high alkaline pH. With regard to microbial conversion of ethanol from BDF-derived glycerol, bacteria that can produce ethanol at alkaline pH have not been reported to date. Isolation of bacteria that shows maximum productivity under alkaline conditions is essential to effective production of ethanol from BDF-derived glycerol. In this study, we isolated the Klebsiella variicola TB-83 strain, which demonstrated maximum ethanol productivity at alkaline pH. Strain TB-83 showed effective usage of crude glycerol with maximum ethanol production at pH 8.0-9.0, and the culture pH was finally neutralized by formate, a by-product. In addition, the ethanol productivity of strain TB-83 under various culture conditions was investigated. Ethanol production was more efficient with the addition of yeast extract. Strain TB-83 produced 9.8 g/L ethanol (0.86 mol/mol glycerol) from cooking oil-derived BDF waste. Ethanol production from cooking oil-derived BDF waste was higher than that of new frying oil-derived BDF and pure-glycerol. This is the first report to demonstrate that the K. variicola strain TB-83 has the ability to produce ethanol from glycerol at alkaline pH. PMID:24681408

  14. 30 CFR 206.55 - What are my responsibilities to place production into marketable condition and to market the...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Indian Oil § 206.55 What are my responsibilities to place production into marketable condition and to market the production? You must place oil in marketable condition and market the oil for the mutual... production into marketable condition and to market the production? 206.55 Section 206.55 Mineral...

  15. CRADA NFE-08-01456 Evaluation of Alumina-Forming Austenitic Stainless Steel Alloys in Industrial Gas Turbines

    SciTech Connect

    Brady, Michael P; Pint, Bruce A; Unocic, Kinga A; Yamamoto, Yukinori; Kumar, Deepak; Lipschutz, Mark D.

    2011-09-01

    Oak Ridge National Laboratory (ORNL) and Solar Turbines Incorporated (Solar) participated in an in-kind cost share cooperative research and development agreement (CRADA) effort under the auspices of the Energy Efficiency and Renewable Energy (EERE) Technology Maturation Program to explore the feasibility for use of developmental ORNL alumina-forming austenitic (AFA) stainless steels as a material of construction for industrial gas turbine recuperator components. ORNL manufactured lab scale foil of three different AFA alloy compositions and delivered them to Solar for creep properties evaluation. One AFA composition was selected for a commercial trial foil batch. Both lab scale and the commercial trial scale foils were evaluated for oxidation and creep behavior. The AFA foil exhibited a promising combination of properties and is of interest for future scale up activities for turbine recuperators. Some issues were identified in the processing parameters used for the first trial commercial batch. This understanding will be used to guide process optimization of future AFA foil material production.

  16. New N-Type Polymers for Organic Photovoltaics: Cooperative Research and Development Final Report, CRADA Number CRD-06-177

    SciTech Connect

    Olson, D.

    2014-08-01

    This CRADA will develop improved thin film organic solar cells using a new n-type semiconducting polymer. High efficiency photovoltaics (PVs) based on inorganic semiconductors have good efficiencies (up to 30%) but are extremely expensive to manufacture. Organic PV technology has the potential to overcome this problem through the use of high-throughput production methods like reel-to-reel printing on flexible substrates. Unfortunately, today's best organic PVs have only a few percent efficiency, a number that is insufficient for virtually all commercial applications. The limited choice of stable n-type (acceptor) organic semiconductor materials is one of the key factors that prevent the further improvement of organic PVs. TDA Research, Inc. (TDA) previously developed a new class of electron-deficient (n-type) conjugated polymers for use in organic light emitting diodes (OLEDs). During this project TDA in collaboration with the National Renewable Energy Laboratory (NREL) will incorporate these electron-deficient polymers into organic photovoltaics and investigate their performance. TDA Research, Inc. (TDA) is developing new materials and polymers to improve the performance of organic solar cells. Materials being developed at TDA include spin coated transparent conductors, charge injection layers, fullerene derivatives, electron-deficient polymers, and three-phase (fullerene/polythiophene/dye) active layer inks.

  17. 7 CFR 735.110 - Conditions for delivery of agricultural products.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... product stored or handled in the warehouse on a demand made by: (1) The holder of the warehouse receipt... 7 Agriculture 7 2013-01-01 2013-01-01 false Conditions for delivery of agricultural products. 735.110 Section 735.110 Agriculture Regulations of the Department of Agriculture (Continued) FARM...

  18. 7 CFR 735.110 - Conditions for delivery of agricultural products.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... product stored or handled in the warehouse on a demand made by: (1) The holder of the warehouse receipt... 7 Agriculture 7 2012-01-01 2012-01-01 false Conditions for delivery of agricultural products. 735.110 Section 735.110 Agriculture Regulations of the Department of Agriculture (Continued) FARM...

  19. 7 CFR 735.110 - Conditions for delivery of agricultural products.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... product stored or handled in the warehouse on a demand made by: (1) The holder of the warehouse receipt... 7 Agriculture 7 2014-01-01 2014-01-01 false Conditions for delivery of agricultural products. 735.110 Section 735.110 Agriculture Regulations of the Department of Agriculture (Continued) FARM...

  20. 7 CFR 735.110 - Conditions for delivery of agricultural products.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... product stored or handled in the warehouse on a demand made by: (1) The holder of the warehouse receipt... 7 Agriculture 7 2011-01-01 2011-01-01 false Conditions for delivery of agricultural products. 735.110 Section 735.110 Agriculture Regulations of the Department of Agriculture (Continued) FARM...

  1. Optimization of culture conditions for flexirubin production by Chryseobacterium artocarpi CECT 8497 using response surface methodology.

    PubMed

    Venil, Chidambaram Kulandaisamy; Zakaria, Zainul Akmar; Ahmad, Wan Azlina

    2015-01-01

    Flexirubins are the unique type of bacterial pigments produced by the bacteria from the genus Chryseobacterium, which are used in the treatment of chronic skin disease, eczema etc. and may serve as a chemotaxonomic marker. Chryseobacterium artocarpi CECT 8497, an yellowish-orange pigment producing strain was investigated for maximum production of pigment by optimizing medium composition employing response surface methodology (RSM). Culture conditions affecting pigment production were optimized statistically in shake flask experiments. Lactose, l-tryptophan and KH2PO4 were the most significant variables affecting pigment production. Box Behnken design (BBD) and RSM analysis were adopted to investigate the interactions between variables and determine the optimal values for maximum pigment production. Evaluation of the experimental results signified that the optimum conditions for maximum production of pigment (521.64 mg/L) in 50 L bioreactor were lactose 11.25 g/L, l-tryptophan 6 g/L and KH2PO4 650 ppm. Production under optimized conditions increased to 7.23 fold comparing to its production prior to optimization. Results of this study showed that statistical optimization of medium composition and their interaction effects enable short listing of the significant factors influencing maximum pigment production from Chryseobacterium artocarpi CECT 8497. In addition, this is the first report optimizing the process parameters for flexirubin type pigment production from Chryseobacterium artocarpi CECT 8497. PMID:25979288

  2. Cultural and environmental factors governing tomato production: Local food production under elevated temperature conditions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Long-term fresh tomato (Solanum lycopersicum L.) production data was used to estimate cultural and environmental impacts on marketable tomato yields in eastern Oklahoma. Quantifying the interactive effects of planting date and growing season duration and the effects of cumulative heat units and heat...

  3. Enhanced photo-H₂ production by unsaturated flow condition in continuous culture.

    PubMed

    Guo, Cheng-Long; Cao, Hong-Xia; Guo, Fei-Qiang; Huang, Cong-Liang; Wang, Huan-Guang; Rao, Zhong-Hao

    2015-02-01

    A biofilm photobioreactor under unsaturated flow condition (BFPBR-U) is proposed using a polished optical fiber as the internal light source for photo-H2 production in continuous culture. The main chamber was filled with spherical glass beads to create the reaction bed and the cells were immobilized to form a biofilm under unsaturated flow condition obtained by pumping substrate solution over a packing bed at a rate to create a thin fluid film and injecting the argon to maintain the gas phase space. The effects of operational conditions, including flow rate and influent substrate concentration, on the photo-H2 production performance were investigated. The unsaturated flow conditions eliminated the inhibition caused by high organic loading rate and enhanced light transmission efficiency, leading to an improvement in the photo-H2 production performance. PMID:25257592

  4. The Influence of Atmospheric Conditions on the Production of Ozone during VOC Oxidation

    NASA Astrophysics Data System (ADS)

    Coates, J.; Butler, T. M.

    2015-12-01

    Tropospheric ozone is a short-lived climate forcing pollutant that is detrimental to human health and crop growth. Reactions involving volatile organic compounds (VOC) and nitrogen oxides (NOx) in the presence of sunlight produce ozone. Ozone production is a non-linear function of the concentrations of both NOx and VOC, with VOC acting as the "fuel" for ozone production and NOx as the "catalyst". Different VOC, due to their differing structure and carbon content, have different maximum potential to produce ozone. Due to different degrees of reactivity, VOC also differ in the time taken to reach this maximum ozone production potential under ideal conditions. Ozone production is also influenced by meteorological factors such as radiation, temperature, advection and mixing, which may alter the rate of ozone production, and the degree to which VOC are able to reach their maximum ozone production potential. Identifying the chemical and meteorological processes responsible for controlling the degree to which VOC are able to reach their maximum ozone production potential could inform decisions on emission control to efficiently tackle high levels of tropospheric ozone. In this study we use a boxmodel to determine the chemical processes affecting ozone production under different meteorological and chemical conditions. The chemistry scheme used by the boxmodel is "tagged" for each initial VOC enabling attribution of ozone production to its VOC source. We systematically vary a number of meteorological parameters along with the source of NOx within the box model to simulate a range of atmospheric conditions. These simulations are compared with a control simulation done under conditions of maximum ozone formation to determine which parameters affect the rate at which VOC produce ozone and the extent to which they reach their maximum potential to produce ozone. We perform multi-day simulations in order to examine whether these processes can influence ozone production over

  5. Application of a Barrier Filter at a High Purity Synthetic Graphite Plant, CRADA 99-F035, Final Report

    SciTech Connect

    National Energy Technology Laboratory

    2000-08-31

    Superior Graphite Company and the US Department of Energy have entered into a Cooperative Research and Development Agreement (CRADA) to study the application of ceramic barrier filters at its Hopkinsville, Kentucky graphite plant. Superior Graphite Company is a worldwide leader in the application of advanced thermal processing technology to produce high purity graphite and carbons. The objective of the CRADA is to determine the technical and economic feasibility of incorporating the use of high-temperature filters to improve the performance of the offgas treatment system. A conceptual design was developed incorporating the ceramic filters into the offgas treatment system to be used for the development of a capital cost estimate and economic feasibility assessment of this technology for improving particulate removal. This CRADA is a joint effort of Superior Graphite Company, Parsons Infrastructure and Technology Group, and the National Energy Technology Laboratory (NETL) of the US Department of Energy (DOE).

  6. Diffusion Resistant, High-Purity Wafer Carriers For SI Semiconductor Production

    SciTech Connect

    Tiegs, T.N.; Leaskey, L.

    2000-10-01

    The Cooperative Research and Development Agreement (CRADA) was directed towards development of diffusion resistant, high-purity wafer carriers for Si semiconductor production with improved properties compared to current materials. The determination of the infiltration behavior is important for controlling the fabrication process to. obtain consistent high-quality products. Ammonium molybdate or molybdenum carbide were found to be suitable as a precursor to produce SiC-MoSi{sub 2}-Si composites by Si infiltration into carbon preforms. Experiments on the pyrolysis of the preforms showed variable infiltration behavior by the molten Si (within the range of conditions in the present study). Further research is required to reproducibly and consistently fabricate flaw-free articles. The strength of the composites fabricated to-date was 325{+-}124 MPa, which is higher than current commercial products. Better process control should result in higher average strengths and reduce the variability.

  7. Phase II CRADA ORNL99-0568 Report : Developing Transmission-Less Inverter Drive Systems for Axial-Gap Permanent magnet Accessory and Traction Motors and Generators

    SciTech Connect

    McKeever, J.W.

    2001-08-06

    Researchers of the Oak Ridge National Laboratory's (ORNLs) Power Electronics and Electric Machine Research Center (PEEMRC) collaborated with Visual Computing Systems (VCS) to develop an electric axial-gap permanent magnet (PM) motor controlled by a self-sensing inverter for driving vehicle accessories such as power steering, air conditioning, and brakes. VCS designed an 8 kW motor based on their Segmented Electromagnetic Array (SEMA) technology. ORNL designed a 10 kW inverter to fit within the volume of a housing, which had been integrated with the motor. This modular design was pursued so that multiple modules could be used for higher power applications. ORNL built the first inverter under the cooperative research and development agreement (CRADA) ORNL 98-0514 and drove a refurbished Delta motor with no load during the Merit Review at ORNL on Monday, May 17, 1999. Inverter circuitry and instructions for assembling the inverters were sent to VCS. A report was prepared and delivered during the Future Car Congress in April 2000, at Arlington, Virginia. Collaboration continued under CRADA ORNL 99-0568 as VCS designed and built a SEMA motor with a dual coil platter to be the traction motor for an electric truck. VCS and ORNL assembled two 45 kW inverters. Each inverter drove one coil, which was designed to deliver 15 kW continuous power and 45 kW peak power for 90 s. The vehicle was road tested as part of the Future Truck Competition. A report was prepared and delivered during the PCIM in October 2000, at Boston, Massachusetts.

  8. Production of Retrovirus-Based Vectors in Mildly Acidic pH Conditions.

    PubMed

    Holic, Nathalie; Fenard, David

    2016-01-01

    Gene transfer vectors based on retroviridae are increasingly becoming a tool of choice for biomedical research and for the development of biotherapies in rare diseases or cancers. To meet the challenges of preclinical and clinical production, different steps of the production process of self-inactivating γ-retroviral (RVs) and lentiviral vectors (LVs) have been improved (e.g., transfection, media optimization, cell culture conditions). However, the increasing need for mass production of such vectors is still a challenge and could hamper their availability for therapeutic use. Recently, we observed that the use of a neutral pH during vector production is not optimal. The use of mildly acidic pH conditions (pH 6) can increase by two- to threefold the production of RVs and LVs pseudotyped with the vesicular stomatitis virus G (VSV-G) or gibbon ape leukemia virus (GALV) glycoproteins. Here, we describe the production protocol in mildly acidic pH conditions of GALVTR- and VSV-G-pseudotyped LVs using the transient transfection of HEK293T cells and the production protocol of GALV-pseudotyped RVs produced from a murine producer cell line. These protocols should help to achieve higher titers of vectors, thereby facilitating experimental research and therapeutic applications. PMID:27317171

  9. Optimization of cultural conditions for biosurfactant production by Pleurotus djamor in solid state fermentation.

    PubMed

    Velioglu, Zulfiye; Ozturk Urek, Raziye

    2015-11-01

    Being eco-friendly, less toxic, more biodegradable and biocompatible, biological surfactants have higher activity and stability compared to synthetic ones. In spite of the fact that there are abundant benefits of biosurfactants over the synthetic congeners, the problem related with the economical and large scale production proceeds. The utilization of several industrial wastes in the production media as substrates reduces the production cost. This current study aims optimization of biosurfactant production conditions by Pleurotus djamor, grown on sunflower seed shell, grape wastes or potato peels as renewable cheap substrates in solid state fermentation. After determination of the best substrate for biosurfactant production, we indicate optimum size and amount of solid substrate, volume of medium, temperature, pH and Fe(2+) concentrations on biosurfactant production. In optimum conditions, by reducing water surface tension to 28.82 ± 0.3 mN/m and having oil displacement diameter of 3.9 ± 0.3 cm, 10.205 ± 0.5 g/l biosurfactant was produced. Moreover, chemical composition of biosurfactant produced in optimum condition was determined by FTIR. Lastly, laboratory's large-scale production was carried out in optimum conditions in a tray bioreactor designed by us and 8.9 ± 0.5 g/l biosurfactant was produced with a significant surface activity (37.74 ± 0.3 mN/m). With its economical suggestions and applicability of laboratory's large-scale production, this work indicates the possibility of using low cost agro-industrial wastes as renewable substrates for biosurfactant production. Therefore, using economically produced biosurfactant will reduce cost in several applications such as bioremediation, oil recovery and biodegradation of toxic chemicals. PMID:25865657

  10. Life cycle assessment of biofuel production from brown seaweed in Nordic conditions.

    PubMed

    Alvarado-Morales, Merlin; Boldrin, Alessio; Karakashev, Dimitar B; Holdt, Susan L; Angelidaki, Irini; Astrup, Thomas

    2013-02-01

    The use of algae for biofuel production is expected to play an important role in securing energy supply in the next decades. A consequential life cycle assessment (LCA) and an energy analysis of seaweed-based biofuel production were carried out in Nordic conditions to document and improve the sustainability of the process. Two scenarios were analyzed for the brown seaweed (Laminaria digitata), namely, biogas production (scenario 1) and bioethanol+biogas production (scenario 2). Potential environmental impact categories under investigation were Global Warming, Acidification and Terrestrial Eutrophication. The production of seaweed was identified to be the most energy intensive step. Scenario 1 showed better performance compared to scenario 2 for all impact categories, partly because of the energy intensive bioethanol separation process and the consequently lower overall efficiency of the system. For improved environmental performance, focus should be on optimization of seaweed production, bioethanol distillation, and management of digestate on land. PMID:23238340

  11. Degradation of the pharmaceuticals diclofenac and sulfamethoxazole and their transformation products under controlled environmental conditions.

    PubMed

    Poirier-Larabie, S; Segura, P A; Gagnon, C

    2016-07-01

    Contamination of the aquatic environment by pharmaceuticals via urban effluents is well known. Several classes of drugs have been identified in waterways surrounding these effluents in the last 15years. To better understand the fate of pharmaceuticals in ecosystems, degradation processes need to be investigated and transformation products must be identified. Thus, this study presents the first comparative study between three different natural environmental conditions: photolysis and biodegradation in aerobic and anaerobic conditions both in the dark of diclofenac and sulfamethoxazole, two common drugs present in significant amounts in impacted surface waters. Results indicated that degradation kinetics differed depending on the process and the type of drug and the observed transformation products also differed among these exposure conditions. Diclofenac was nearly degraded by photolysis after 4days, while its concentration only decreased by 42% after 57days of exposure to bacteria in aerobic media and barely 1% in anaerobic media. For sulfamethoxazole, 84% of the initial concentration was still present after 11days of exposure to light, while biodegradation decreased its concentration by 33% after 58days of exposure under aerobic conditions and 5% after 70days of anaerobic exposure. In addition, several transformation products were observed and persisted over time while others degraded in turn. For diclofenac, chlorine atoms were lost primarily in the photolysis, while a redox reaction was promoted by biodegradation under aerobic conditions. For sulfamethoxazole, isomerization was favored by photolysis while a redox reaction was also favored by the biodegradation under aerobic conditions. To summarize this study points out the occurrence of different transformation products under variable degradation conditions and demonstrates that specific functional groups are involved in the tested natural attenuation processes. Given the complexity of environmental samples

  12. Ethanol production with saccharomyces cerevisiae under aerobic conditions at different potassium concentrations

    SciTech Connect

    Wiimpelmann, M.; Joergensen, B.; Kjaergaard, L.

    1984-04-01

    The specific ethanol productivity with Saccharomyces cerevisiae grown in a chemostat was found to be highly dependent on the ratio of intracellular to extracellular potassium concentration through variations in the energy consumption used for maintenance of the concentration gradient of potassium across the cell membrane. The specific ethanol productivity progressively rose from 0 to 20 mmol h/sup -1/ g/sup -1/ cell dry matter at a growth rate of 0.17 h/sup -1/ when the ratio of intracellular to extracellular potassium concentration was increased from 10 to 80. The ethanol production under potassium limited growth conditions was caused neither by a reduction in the specific respiratory activity nor by variations in the potassium content in cell dry matter. Results which strongly suggest that ethanol production under potassium limited growth conditions is brought about by changes in the ratio of pyruvate oxidase to pyruvate decarboxylase activity through changes in the intracellular pyruvate concentration are presented.

  13. Ethanol production with Saccharomyces cerevisiae under aerobic conditions at different potassium concentrations

    SciTech Connect

    Wuempelmann, M.; Kjaergaard, L.; Joergensen, B.B.

    1984-01-01

    The specific ethanol productivity with Saccharomyces cerevisiae grown aerobicly in a chemostat was found to be highly dependent on the ratio of intracellular to extracellular potassium concentration through variations in the energy consumption used for maintenance of the concentration gradient of potassium across the cell membrane. The specific ethanol productivity progressively rose from 0 to 20 mmol h/sup -1/g/sup -1/ cell dry matter at a growth rate of 0.17 h/sup -1/ when the ratio of intracellular to extracellular potassium concentration was increased from 10 to 80. The ethanol production under potassium limited growth conditions was caused neither by a reduction in the specific respiratory activity nor by variations in the potassium content in cell dry matter. Results which strongly suggest that ethanol production under potassium limited growth conditions is brought about by changes in the ratio of pyruvate oxidase to pyruvate decarboxylase activity through changes in the intracellular pyruvate concentration are presented.

  14. Nitrous oxide production by Alcaligenes faecalis under transient and dynamic aerobic and anaerobic conditions

    SciTech Connect

    Otte, S.; Grobben, N.G.; Robertson, L.A.; Jetten, M.S.M.; Kuenen, J.G.

    1996-07-01

    Nitrous oxide production contributes to both greenhouse effect and ozone depletion in the stratosphere. A significant part of the global N2O emission can be attributed to microbial processes, especially nitrification and denitrification, used in biological wastewater treatment systems. This study looks at the efficiency of denitrification and the enzymes involved, with the emphasis on N2O production during the transient phase from aerobic to anaerobic conditions and vice versa. The effect of repetitive changing aerobic-anaerobic conditions on N2O was also studied. Alcaligenes faecalis was used as the model denitrofing organism. 35 refs., 3 figs., 1 tab.

  15. Significantly enhanced production of recombinant nitrilase by optimization of culture conditions and glycerol feeding.

    PubMed

    Liu, Jun-Feng; Zhang, Zhi-Jun; Li, Ai-Tao; Pan, Jiang; Xu, Jian-He

    2011-02-01

    The production of a recombinant nitrilase expressed in Escherichia coli JM109/pNLE was optimized in the present work. Various culture conditions and process parameters, including medium composition, inducer, induction condition, pH and temperature, were systematically examined. The results showed that nitrilase production in E. coli JM109/pNLE was greatly affected by the pH condition and the temperature in batch culture, and the highest nitrilase production was obtained when the fermentation was carried out at 37°C, initial pH 7.0 without control and E. coli was induced with 0.2 mM isopropyl-β-D-thiogalactoside at 4.0 h. Furthermore, enzyme production could be significantly enhanced by adopting the glycerol feeding strategy with lower flow rate. The enzyme expression was also authenticated by sodium dodecyl phosphate polyacrylamide gel electrophoresis analysis. Finally, under the optimized conditions for fed-batch culture, cell growth, specific activity and nitrilase production of the recombinant E. coli were increased by 9.0-, 5.5-, and 50-fold, respectively. PMID:20862583

  16. Enhanced production of bacterial cellulose by using Gluconacetobacter hansenii NCIM 2529 strain under shaking conditions.

    PubMed

    Mohite, Bhavna V; Salunke, Bipinchandra K; Patil, Satish V

    2013-03-01

    Bacterial cellulose (BC), a biopolymer, due to its unique properties is valuable for production of vital products in food, textile, medicine, and agriculture. In the present study, the optimal fermentation conditions for enhanced BC production by Gluconacetobacter hansenii NCIM 2529 were investigated under shaking conditions. The investigation on media components and culture parameters revealed that 2 % (w/v) sucrose as carbon source, 0.5 % (w/v) potassium nitrate as nitrogen source, 0.4 % (w/v) disodium phosphate as phosphate source, 0.04 % (w/v) magnesium sulfate, and 0.8 % (w/v) calcium chloride as trace elements, pH5.0, temperature 25 °C, and agitation speed 170 rpm with 6 days of fermentation period are optimal for maximum BC production. Production of BC using optimized media components and culture parameters was 1.66 times higher (5.0 g/l) than initial non optimized media (3.0 g/l). Fourier transform infrared spectroscopy spectrum and comparison with the available literature suggests that the produced component by G. hansenii in the present study is pure bacterial cellulose. The specific action of cellulase out of the investigated hydrolytic enzymes (cellulase, amylase, and protease) further confirmed purity of the produced BC. These findings give insight into conditions necessary for enhanced production of bacterial cellulose, which can be used for a variety of applications. PMID:23319186

  17. Strategies for gas production from hydrate accumulations under various geologic conditions

    SciTech Connect

    Moridis, G.; Collett, T.

    2003-04-29

    In this paper we classify hydrate deposits in three classes according to their geologic and reservoir conditions, and discuss the corresponding production strategies. Simple depressurization appears promising in Class 1 hydrates, but its appeal decreases in Class 2 and Class 3 hydrates. The most promising production strategy in Class 2 hydrates involves combinations of depressurization and thermal stimulation, and is clearly enhanced by multi-well production-injection systems. The effectiveness of simple depressurization in Class 3 hydrates is limited, and thermal stimulation (alone or in combination with depressurization) through single well systems seems to be the strategy of choice in such deposits.

  18. Effect of exposure to adverse climatic conditions on production in Manchega dairy sheep.

    PubMed

    Ramón, M; Díaz, C; Pérez-Guzman, M D; Carabaño, M J

    2016-07-01

    The present study aimed to examine the effects of exposure to adverse weather conditions on milk production to assess the thermotolerance capability of the Manchega breed, a dairy sheep reared in the Mediterranean area, and the extent of decline in production outside the thermal comfort zone. To achieve this purpose, we merged data from the official milk recording of the breed with weather information and used to describe the cold and heat stress response for production traits. Production data consisted of 1,094,804 test-day records from the first 3 lactations of 177,605 ewes gathered between years 2000 to 2010. For each production trait and climate variable, the thermal load production response was characterized by the estimation of cold and heat stress thresholds that define a thermoneutral zone and the slopes of production decay outside this thermoneutral zone. Overall, we observed a comfort region between 10 and 22°C for daily average temperature, 18 and 30°C for daily maximum temperature, and from 9 to 18 units for a temperature-humidity index (THI) for all traits. Decline in production due to cold stress effects was of a greater magnitude than heat stress effects, especially for milk yield. Production losses ranged between 7 and 16 and from 0.2 to 0.6g/d per °C (or THI unit) for milk and for fat and protein yields, respectively. For heat stress, the observed decline in production was of 1 to 5 and 0.1 to 0.3g/d per °C (or THI unit) above the threshold for milk yield and for fat and protein yields, respectively. Highly productive animals showed a narrower comfort zone and higher slopes of decay. The study of lagged effects of thermal load showed how consequences of cold and heat stress are already visible in the first hours after exposure. Thus, production losses were due mainly to climate conditions on the day of control and the day before, with conditions on the previous days having a smaller effect. Annual economic losses due to thermal (cold and heat

  19. Rhenium labeled peptides and antibodies for cancer therapy. CRADA final report

    SciTech Connect

    Knapp, Jr., F. F.; Rhodes, B. A.

    1996-08-12

    This CRADA involved development of optimal methods for attachment of rhenium radioisotopes to antibodies and peptides which can be used for cancer treatment. Rhenium-186 and the tungsten-188/rhenium-188 generators were provided from ORNL to RhoMed for peptide labeling studies. The rhenium-186 and carrier-free rhenium-188 were then used to optimize the labeling of various small peptides....A system has been developed at ORNL which provides the rhenium-188 radioisotope, which has excellent therapeutic properties for cancer treatment.

  20. The characterization of coal liquefaction products obtained under an inert atmosphere and catalytic conditions. Part II: Soluble products

    SciTech Connect

    Karaca, H.

    2006-03-15

    Beypazari and Tuncbilek lignite were liquefied using two different catalyst methods physically mixing and impregnation. The liquefaction occurred under conditions of inert atmosphere and various process parameters. Solvent to coal ratio, pressure, catalyst type, catalyst concentration, temperature, and time were examined as process parameters. The most appropriate parameters for the total soluble products obtained by liquefaction of both lignites and for elemental analysis of preasphaltenes were determined as follows: 2/1 solvent to coal ratio; from 1.25 MPa to 2.50 MPa initial nitrogen pressure; Fe{sub 2}O{sub 3} and Mo(CO){sub 6} as catalyst types; 3% as catalyst concentration; 400{sup o}C as reaction temperature; and 60 min as reaction time. In general, fuel quality of both preasphaltene and total soluble products decreased as temperature increased above 400{sup o}C and reaction time exceeded 60 min. The fuel quality of the preasphaltenes and the total soluble products obtained under the catalytic conditions and in the state of impregnation of catalyst onto coal is higher than under the noncatalytic conditions and in the state of physically mixing of catalyst.

  1. The Comparative Effect of Single and Multiple Gloss Conditions on EFL Learners' Vocabulary Retention and Production

    ERIC Educational Resources Information Center

    Khabiri, Mona; Akbarpour, Raheleh

    2011-01-01

    Vocabulary glosses are considered effective learning tools since they decrease incorrect meaning inferences from context while keeping reading uninterrupted. The purpose of the present study was to examine the impact of different gloss conditions on intermediate EFL learners' vocabulary retention and production. The participants were 101 EFL…

  2. HYDROLOGIC CONDITIONS AFFECTING THE TROPOSPHERIC FLUX OF VINCLOZOLIN AND ITS DEGRADATION PRODUCTS

    EPA Science Inventory

    A laboratory chamber was used to determine hydrologic conditions that lead to the tropospheric flux of a suspected anti-androgenic dicarboximide fungicide, vinclozolin (3-(3,5-dichlorophenyl)-5-methyl-5-vinyl-oxzoli-dine-2,4-dione) and three degradation products from sterilized...

  3. Optimization of culture conditions of Fusarium solani for the production of neoN-methylsansalvamide.

    PubMed

    Lee, Hee-Seok; Phat, Chanvorleak; Nam, Woo-Seon; Lee, Chan

    2014-01-01

    The aim of this study was to optimize the culture conditions of Fusarium solani KCCM90040 on cereal grain for the production of neoN-methylsansalvamide, a novel low-molecular-weight cyclic pentadepsipeptide exhibiting cytotoxic and multidrug resistance reversal effects. From the analysis of variance results using response surface methodology, temperature, initial moisture content, and growth time were shown to be important parameters for the production of neoN-methylsansalvamide on cereal grain. A model was established in the present study to describe the relationship between environmental conditions and the production of neoN-methylsansalvamide on rice, the selected cereal grain. The optimal culture conditions were determined at 25.79 °C with the initial moisture content of 40.79%, and 16.19 days of growth time. This report will give important information concerning the optimization of environmental conditions using statistic methodology for the production of a new cyclic pentadepsipeptide from fungi. PMID:25130748

  4. Biomass and cellulosic ethanol production of forage sorghum under limited water conditions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A two year field study was conducted to evaluate biofuel production potential of two forage sorghum cultivars differing in brown midrib trait under non-irrigated and deficit irrigation conditions in the semiarid Southern High Plains of the U.S. Cultivar SP1990 (non-bmr = conventional cell wall comp...

  5. 50 CFR 260.97 - Conditions for providing fishery products inspection service at official establishments.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 11 2012-10-01 2012-10-01 false Conditions for providing fishery products inspection service at official establishments. 260.97 Section 260.97 Wildlife and Fisheries NATIONAL MARINE FISHERIES SERVICE, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE PROCESSED...

  6. Optimization of production conditions and material characteristics of tubular stabilizer bars

    NASA Astrophysics Data System (ADS)

    Muhr, R.

    1983-08-01

    Weight reduction of car tubular stabilizer bars is studied. Optimization of prematerial, forming and tempering procedures, and surface treatment are discussed. Steel qualities and production conditions were examined for feasibility with sample stabilizer bars. It is concluded that tubular stabilizer bars can be manufactured and practically used in cars. Tube diameters must not be too small, otherwise the weight saving is minimal.

  7. 50 CFR 260.97 - Conditions for providing fishery products inspection service at official establishments.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 7 2010-10-01 2010-10-01 false Conditions for providing fishery products inspection service at official establishments. 260.97 Section 260.97 Wildlife and Fisheries NATIONAL MARINE FISHERIES SERVICE, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE PROCESSED...

  8. 50 CFR Table 1a to Part 679 - Delivery Condition* and Product Codes

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 13 2012-10-01 2012-10-01 false Delivery Condition* and Product Codes 1a Table 1a to Part 679 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE (CONTINUED) FISHERIES OF THE EXCLUSIVE ECONOMIC ZONE...

  9. 50 CFR Table 1a to Part 679 - Delivery Condition* and Product Codes

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 11 2011-10-01 2011-10-01 false Delivery Condition* and Product Codes 1a Table 1a to Part 679 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE (CONTINUED) FISHERIES OF THE EXCLUSIVE ECONOMIC ZONE...

  10. 50 CFR Table 1a to Part 679 - Delivery Condition* and Product Codes

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 13 2013-10-01 2013-10-01 false Delivery Condition* and Product Codes 1a Table 1a to Part 679 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE (CONTINUED) FISHERIES OF THE EXCLUSIVE ECONOMIC ZONE OFF ALASKA Pt. 679, Table 1a Table 1a...

  11. PIC (PRODUCTS OF INCOMPLETE COMBUSTION) FORMATION UNDER PYROLYTIC AND STARVED AIR CONDITIONS

    EPA Science Inventory

    A comprehensive program of laboratory studies based on the non-flame mode of thermal decomposition produced much data on PIC (Products of Incomplete Combustion) formation, primarily under pyrolytic and starved air conditions. Most significantly, laboratory results from non-flame ...

  12. 50 CFR 260.97 - Conditions for providing fishery products inspection service at official establishments.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 11 2013-10-01 2013-10-01 false Conditions for providing fishery products inspection service at official establishments. 260.97 Section 260.97 Wildlife and Fisheries NATIONAL MARINE FISHERIES SERVICE, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE PROCESSED...

  13. 50 CFR 260.97 - Conditions for providing fishery products inspection service at official establishments.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 9 2011-10-01 2011-10-01 false Conditions for providing fishery products inspection service at official establishments. 260.97 Section 260.97 Wildlife and Fisheries NATIONAL MARINE FISHERIES SERVICE, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE PROCESSED...

  14. 7 CFR 735.110 - Conditions for delivery of agricultural products.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... AGENCY, DEPARTMENT OF AGRICULTURE REGULATIONS FOR WAREHOUSES REGULATIONS FOR THE UNITED STATES WAREHOUSE ACT Warehouse Licensing § 735.110 Conditions for delivery of agricultural products. (a) In the absence of a lawful excuse, a warehouse operator will, without unnecessary delay, deliver the...

  15. Heating, Ventilation, and Air Conditioning Design Strategy for a Hot-Humid Production Builder

    SciTech Connect

    Kerrigan, P.

    2014-03-01

    BSC worked directly with the David Weekley Homes - Houston division to redesign three floor plans in order to locate the HVAC system in conditioned space. The purpose of this project is to develop a cost effective design for moving the HVAC system into conditioned space. In addition, BSC conducted energy analysis to calculate the most economical strategy for increasing the energy performance of future production houses. This is in preparation for the upcoming code changes in 2015. The builder wishes to develop an upgrade package that will allow for a seamless transition to the new code mandate. The following research questions were addressed by this research project: 1. What is the most cost effective, best performing and most easily replicable method of locating ducts inside conditioned space for a hot-humid production home builder that constructs one and two story single family detached residences? 2. What is a cost effective and practical method of achieving 50% source energy savings vs. the 2006 International Energy Conservation Code for a hot-humid production builder? 3. How accurate are the pre-construction whole house cost estimates compared to confirmed post construction actual cost? BSC and the builder developed a duct design strategy that employs a system of dropped ceilings and attic coffers for moving the ductwork from the vented attic to conditioned space. The furnace has been moved to either a mechanical closet in the conditioned living space or a coffered space in the attic.

  16. Optimization of fermentation condition favoring butanol production from glycerol by Clostridium pasteurianum DSM 525.

    PubMed

    Sarchami, Tahereh; Johnson, Erin; Rehmann, Lars

    2016-05-01

    Butanol is a promising biofuel and valuable platform chemical that can be produced through fermentative conversion of glycerol. The initial fermentation conditions for butanol production from pure glycerol by Clostridium pasteurianum DSM 525 were optimized via a central composite design. The effect of inoculum age, initial cell density, initial pH of medium and temperature were quantified and a quadratic model was able to predict butanol yield as a function of all four investigated factors. The model was confirmed through additional experiments and via analysis of variance (ANOVA). Subsequently, numerical optimization was used to maximize the butanol yield within the experimental range. Based on these results, batch fermentations in a 7 L bioreactor were performed using pure and crude (residue from biodiesel production) glycerol as substrates at optimized conditions. A butanol yield of 0.34 mole(butanol) mole(-1)(glycerol) was obtained indicating the suitability of this feedstock for fermentative butanol production. PMID:26922315

  17. Heating, Ventilation, and Air Conditioning Design Strategy for a Hot-Humid Production Builder

    SciTech Connect

    Kerrigan, P.

    2014-03-01

    Building Science Corporation (BSC) worked directly with the David Weekley Homes - Houston division to develop a cost-effective design for moving the HVAC system into conditioned space. In addition, BSC conducted energy analysis to calculate the most economical strategy for increasing the energy performance of future production houses in preparation for the upcoming code changes in 2015. This research project addressed the following questions: 1. What is the most cost effective, best performing and most easily replicable method of locating ducts inside conditioned space for a hot-humid production home builder that constructs one and two story single family detached residences? 2. What is a cost effective and practical method of achieving 50% source energy savings vs. the 2006 International Energy Conservation Code for a hot-humid production builder? 3. How accurate are the pre-construction whole house cost estimates compared to confirmed post construction actual cost?

  18. Effect of environmental conditions on extracellular lipases production and fungal morphology from Aspergillus niger MYA 135.

    PubMed

    Colin, Veronica Leticia; Baigori, Mario Domingo; Pera, Licia Maria

    2010-02-01

    Under the current assay conditions, lipase production in mineral medium was only detected in the presence of vegetable oils, reaching the highest specific activity with olive oil. In this way, effect of different environmental conditions on fungal morphology and olive oil-induced extracellular lipases production from Aspergillus niger MYA 135 was studied. It was observed that addition of 1.0 g l(-1) FeCl(3)to the medium encouraged filamentous growth and increased the specific activity 6.6 fold after 4 days of incubation compared to the control. However, major novelty of this study was the satisfactory production of an acidic lipase at initial pH 3 of the culture medium (1.74 +/- 0.06 mU microg(-1)), since its potencial applications in food and pharmaceutical industry are highly promising. PMID:20082373

  19. Relationship between fumonisin production and FUM gene expression in Fusarium verticillioides under different environmental conditions.

    PubMed

    Fanelli, Francesca; Iversen, Anita; Logrieco, Antonio F; Mulè, Giuseppina

    2013-01-01

    Fusarium verticillioides is the main source of fumonisins, a group of mycotoxins that can contaminate maize-based food and feed and cause diseases in humans and animals. The study of the effect of different environmental conditions on toxin production should provide information that can be used to develop strategies to minimize the risk. This study analysed the effect of temperature (15°C-35°C), water activity (a(w): 0.999-0.93), salinity (0-125 g l(-1) NaCl) and pH (5-8) on the growth and production of fumonisins B(1) (FB1), B(2) (FB2) and B(3) (FB3) and the expression of FUM1 and FUM21 in F. verticillioides. The highest growth rate was measured at 25°C, a(w) of 0.998-0.99 and 0-25 g l(-1) of NaCl. Optimal conditions for fumonisin production were 30°C, a(w) of 0.99, 25 g l(-1) of NaCl and pH 5; nevertheless, the strain showed a good adaptability and was able to produce moderate levels of fumonisins under a wide range of conditions. Gene expression mirrored fumonisin production profile under all conditions with the exception of temperature: FUM1 and FUM21 expression was highest at 15°C, while maximum fumonisin production was at 30°C. These data indicate that a post-transcriptional regulation mechanism could account for the different optimal temperatures for FUM gene expression and fumonisin production. PMID:23167929

  20. Assessment of production risks for winter wheat in different German regions under climate change conditions

    NASA Astrophysics Data System (ADS)

    Kersebaum, K. C.; Gandorfer, M.; Wegehenkel, M.

    2012-04-01

    The study shows climate change impacts on wheat production in selected regions across Germany. To estimate yield and economic effects the agro-ecosystem model HERMES was used. The model performed runs using 2 different releases of the model WETTREG providing statistically downscaled climate change scenarios for the weather station network of the German Weather Service. Simulations were done using intersected GIS information on soil types and land use identifying the most relevant sites for wheat production. The production risks for wheat yields at the middle of this century were compared to a reference of the present climate. The irrigation demand was determined by the model using an automatic irrigation mode. Production risks with and without irrigation were assessed and the economic feasibility to reduce production risks by irrigation was evaluated. Costs and benefits were compared. Additionally, environmental effects, e.g. groundwater recharge and nitrogen emissions were assessed for irrigated and rain fed systems. Results show that positive and negative effects of climate change occur within most regions depending on the site conditions. Water holding capacity and groundwater distance were the most important factors which determined the vulnerability of sites. Under climate change condition in the middle of the next century we can expect especially at sites with low water holding capacity decreasing average gross margins, higher production risks and a reduced nitrogen use efficiency under rainfed conditions. Irrigation seems to be profitable and risk reducing at those sites, provided that water for irrigation is available. Additionally, the use of irrigation can also increase nitrogen use efficiency which reduced emissions by leaching. Despite the site conditions results depend strongly on the used regional climate scenario and the model approach to consider the effect of elevated CO2 in the atmosphere.

  1. Effects of climate on the productivity of desert truffles beneath hyper-arid conditions.

    PubMed

    Bradai, Lyès; Bissati, Samia; Chenchouni, Haroun; Amrani, Khaled

    2015-07-01

    Desert truffles are edible hypogenous fungi that are very well adapted to conditions of aridity in arid and semi-arid regions. This study aims to highlight the influence of climatic factors on the productivity of desert truffles under hyper-arid climatic conditions of the Sahara Desert in Algeria, with assumptions that the more varying climatic factors, mainly rainfall, are more crucial for the development and production of desert truffles. At seven separate sites, desert truffles were collected by systematic sampling between 2006 and 2012. The effects of climate parameters of each site on the productivities (g/ha/year) of desert truffle species were tested using generalized linear models (GLMs). The annual mean of the total production recorded for all three harvested species (Terfezia arenaria, Terfezia claveryi, and Tirmania nivea) was 785.43 ± 743.39 g/ha. Tirmania nivea was commonly present over the sampled sites with an occurrence of 70 ± 10.1%. GLMs revealed that total and specific productivities were closely positively related to autumnal precipitations occurring during October-December, which is the critical pre-breeding period for both desert truffles and host plant species. The other climatic parameters have statistically no effect on the annual variation of desert truffle productivity. PMID:25164975

  2. Effects of climate on the productivity of desert truffles beneath hyper-arid conditions

    NASA Astrophysics Data System (ADS)

    Bradai, Lyès; Bissati, Samia; Chenchouni, Haroun; Amrani, Khaled

    2015-07-01

    Desert truffles are edible hypogenous fungi that are very well adapted to conditions of aridity in arid and semi-arid regions. This study aims to highlight the influence of climatic factors on the productivity of desert truffles under hyper-arid climatic conditions of the Sahara Desert in Algeria, with assumptions that the more varying climatic factors, mainly rainfall, are more crucial for the development and production of desert truffles. At seven separate sites, desert truffles were collected by systematic sampling between 2006 and 2012. The effects of climate parameters of each site on the productivities (g/ha/year) of desert truffle species were tested using generalized linear models (GLMs). The annual mean of the total production recorded for all three harvested species ( Terfezia arenaria, Terfezia claveryi, and Tirmania nivea) was 785.43 ± 743.39 g/ha. Tirmania nivea was commonly present over the sampled sites with an occurrence of 70 ± 10.1 %. GLMs revealed that total and specific productivities were closely positively related to autumnal precipitations occurring during October-December, which is the critical pre-breeding period for both desert truffles and host plant species. The other climatic parameters have statistically no effect on the annual variation of desert truffle productivity.

  3. Metallization for Self Aligned Technology: Cooperative Research and Development Final Report, CRADA Number CRD-08-295

    SciTech Connect

    Ginley, D.

    2012-04-01

    In this CRADA NREL will modify/develop metallization inks that are compatible with 1366 Technologies technology. Various methods of deposition will be used to apply the inks to the textured silicon substrates. The goal of the project is to minimize the contact resistance while maximizing the cell efficiency.

  4. High Performance Photovoltaic Solar Cells: Cooperative Research and Development Final Report, CRADA Number CRD-05-169

    SciTech Connect

    Steiner, M.

    2012-07-01

    NREL will provide certified measurements of the conversion efficiency at high concentration for several multijunction solar cells that were fabricated by Cyrium Technologies. In an earlier phase of the CRADA, Cyrium provided epitaxially-grown material and NREL processed the samples into devices and measured the performance.

  5. Ink Jet Printing for Silicon Photovoltaics: Cooperative Research and Development Final Report, CRADA Number CRD-04-00139

    SciTech Connect

    Ginley, D. S.

    2010-08-01

    The purpose of this CRADA was to combine the strengths of NREL and Evergreen Solar in the area of ink jet printing to develop a new manufacturing technology necessary to produce Si solar cells based on ribbon technology comparable to or exceeding current technologies.

  6. Electrical Characterization of Printed Nanocrystalline Silicon Films, Cooperative Research and Development Final Report, CRADA Number CRD-07-00241

    SciTech Connect

    Young, D.

    2011-05-01

    This CRADA helped Innovalight characterize and quantify their ink-based selective emitter technology. Controlled localized doping of selective emitter structures via Innovalight Silicon Ink technology was demonstrated. Both secondary ion mass spectrometry and scanning capacitance microscopy revealed; abrupt lateral dopant profiles at ink-printed boundaries. Uniform doping of iso- and pyramidal surfaces was also verified using scanning electron microscopy dopant contrast imaging.

  7. Influence of sound-conditioning on noise-induced susceptibility of distortion-product otoacoustic emissions.

    PubMed

    Luebke, Anne E; Stagner, Barden B; Martin, Glen K; Lonsbury-Martin, Brenda L

    2015-07-01

    Cochlear damage caused by loud sounds can be attenuated by "sound-conditioning" methods. The amount of adaptation for distortion product otoacoustic emissions (DPOAEs) measured in alert rabbits previously predicted an ear's susceptibility to a subsequent noise exposure. The present study investigated if sound-conditioning influenced the robustness of such DPOAE adaptation, and if such conditioning elicited more protection by increasing the amount of DPOAE adaptation. Toward this end, rabbits were divided into two study groups: (1) experimental animals exposed to a sound-conditioning protocol, and (2) unconditioned control animals. After base-line measures, all rabbits were exposed to an overstimulation paradigm consisting of an octave band noise, and then re-assessed 3 weeks post-exposure to determine permanent changes in DPOAEs. A major result was that prior sound-conditioning protected reductions in DPOAE levels by an average of 10-15 dB. However, DPOAE adaptation decreased with sound-conditioning, so that such conditioning was no longer related to noise-induced reductions in DPOAEs. Together, these findings suggest that sound-conditioning affected neural pathways other than those that likely mediate DPOAE adaptation (e.g., medial olivocochlear efferent and/or middle-ear muscle reflexes). PMID:26233006

  8. Mechanisms of hydroxyl radical production from abiotic oxidation of pyrite under acidic conditions

    NASA Astrophysics Data System (ADS)

    Zhang, Peng; Yuan, Songhu; Liao, Peng

    2016-01-01

    Hydroxyl radicals (radOH) produced from pyrite oxidation by O2 have been recognized, but mechanisms regarding the production under anoxic and oxic conditions are not well understood. In this study, the mechanisms of radOH production from pyrite oxidation under anoxic and oxic conditions were explored using benzoic acid (BA) as an radOH probe. Batch experiments were conducted at pH 2.6 to explore radOH production under anoxic and oxic conditions. The cumulative radOH concentrations produced under anoxic and oxic conditions increased linearly to 7.5 and 52.2 μM, respectively within 10 h at 10 g/L pyrite. Under anoxic conditions, radOH was produced from the oxidation of H2O on the sulfur-deficient sites on pyrite surface, showing an increased production with the increase of pyrite surface exposure due to oxidation. Under oxic conditions, the formation of radOH proceeds predominantly via the two-electron reduction of O2 on pyrite surface along with a minor contribution from the oxidation of H2O on surface sulfur-defects and the reactions of Fe2+/sulfur intermediates with O2. For both O2 reduction and H2O oxidation on the surface sulfur-defects, H2O2 was the predominant intermediate, which subsequently transformed to radOH through Fenton mechanism. The radOH produced had a significant impact on the transformation of contaminants in the environment. Anoxic pyrite suspensions oxidized 13.9% As(III) (C0 = 6.67 μM) and 17.6% sulfanilamide (C0 = 2.91 μM) within 10 h at pH 2.6 and 10 g/L pyrite, while oxic pyrite suspensions improved the oxidation percentages to 55.4% for As(III) and 51.9% for sulfanilamide. The ratios of anoxic to oxic oxidation are consistent with the relative contribution of surface sulfur-defects to radOH production. However, Fe2+ produced from pyrite oxidation competed with the contaminants for radOH, which is of particular significance with the increase of time in a static environment. We conclude that radOH can be produced from abiotic oxidation of

  9. Non-limiting food conditions for growth and production of the copepod community in a highly productive upwelling zone

    NASA Astrophysics Data System (ADS)

    Escribano, Rubén; Bustos-Ríos, Evelyn; Hidalgo, Pamela; Morales, Carmen E.

    2016-09-01

    Zooplankton production is critical for understanding marine ecosystem dynamics. This work estimates copepod growth and production in the coastal upwelling and coastal transition zones off central-southern Chile (~35 to 37°S) during a 3-year time series (2004, 2005, and 2006) at a fixed shelf station, and from spring-summer spatial surveys during the same period. To estimate copepod production (CP), we used species-biomasses and associated C-specific growth rates from temperature dependent equations (food-saturated) for the dominant species, which we assumed were maximal growth rates (gmax). Using chlorophyll-a concentrations as a proxy for food conditions, we determined a size-dependent half-saturation constant with the Michaelis-Menten equation to derive growth rates (g) under the effect of food limitation. These food-dependent C-specific growth rates were much lower (<0.1 d-1) than those observed in the field for the dominant species, while gmax for same species, in the range of 0.19-0.23 d-1 better represented the necessary growth to attain observed adult sizes of at least two copepods, Paracalanus cf. indicus and Calanus chilensis. Copepod biomass (CB) and rates of maximal copepod production (CPmax) obtained with gmax were higher in the coastal upwelling zone (<50 km from shore), and correlated significantly to oceanographic variables associated with upwelling conditions. Both CPmax and gmax exhibited negative trends at the fixed station from 2004 to 2006 in association with increased duration of upwelling in the latter year. Annual CPmax ranged between 24 and 52 g C m-2 y-1 with a mean annual P/B ratio of 7.3. We concluded that interannual variation in copepod production resulted from factors and processes regulating copepod abundance and biomass in the absence of bottom-up control, allowing copepods to grow without limitation due to food resources.

  10. Fate of plasticised PVC products under landfill conditions: a laboratory-scale landfill simulation reactor study.

    PubMed

    Mersiowsky, I; Weller, M; Ejlertsson, J

    2001-09-01

    The long-term behaviour of plasticised PVC products was investigated in laboratory-scale landfill simulation reactors. The examined products included a cable material and a flooring with different combinations of plasticisers. The objective of the study was to assess whether a degradation of the PVC polymer or a loss of plasticisers occurred under landfill conditions. A degradation of the polymer matrix was not observed. The contents of plasticisers in aged samples was determined and compared to the respective original products. The behaviour of the various plasticisers was found to differ significantly. Losses of DEHP and BBP from the flooring were too low for analytical quantification. No loss of DIDP from the cable was detectable, whereas DINA in the same product showed considerable losses of up to 70% compared to the original contents. These deficits were attributable to biodegradation rather than leaching. There was no equivalent release of plasticisers into the leachate. PMID:11487101

  11. The effect of particle inlet conditions on FCC riser hydrodynamics and product yields.

    SciTech Connect

    Chang, S. L.; Golchert, B.; Lottes, S. A.; Zhou, C. Q.; Huntsinger, A.; Petrick, M.

    1999-10-11

    Essential to today's modern refineries and the gasoline production process are fluidized catalytic cracking units. By using a computational fluid dynamics (CFD) code developed at Argonne National Laboratory to simulate the riser, parametric and sensitivity studies were performed to determine the effect of catalyst inlet conditions on the riser hydrodynamics and on the product yields. Simulations were created on the basis of a general riser configuration and operating conditions. The results of this work are indications of riser operating conditions that will maximize specific product yields. The CFD code is a three-dimensional, multiphase, turbulent, reacting flow code with phenomenological models for particle-solid interactions, droplet evaporation, and chemical kinetics. The code has been validated against pressure, particle loading, and product yield measurements. After validation of the code, parametric studies were performed on various parameters such as the injection velocity of the catalyst, the angle of injection, and the particle size distribution. The results indicate that good mixing of the catalyst particles with the oil droplets produces a high degree of cracking in the riser.

  12. Converting poultry litter to activated carbon: optimal carbonization conditions and product sorption for benzene.

    PubMed

    Guo, Mingxin; Song, Weiping

    2011-12-01

    To promote utilization of poultry litter as a source material for manufacturing low-cost activated carbon (AC) that can be used in wastewater treatment, this study investigated optimal production conditions and water-borne organic sorption potential of poultry litter-based AC. Pelletized broiler litter was carbonized at different temperatures for varied time periods and activated with steam at a range of flow rate and time. The AC products were examined for quality characteristics using standard methods and for organic sorption potentials using batch benzene sorption techniques. The study shows that the yield and quality of litter AC varied with production conditions. The optimal production conditions for poultry litter-based AC were carbonization at 700 degrees C for 45 min followed by activation with 2.5 ml min(-1) steam for another 45 min. The resulting AC possessed an iodine number of 454 mg g(-1) and a specific surface area of 403 m2 g(-1). It sorbed benzene in water following sigmoidal kinetic and isothermal patterns. The sorption capacity for benzene was 23.70 mg g(-1), lower than that of top-class commercial AC. The results, together with other reported research findings, suggest that poultry litter is a reasonable feedstock for low-cost AC applicable to pre-treat wastewater contaminated by organic pollutants and heavy metals. PMID:22439566

  13. Shear conditions in clavulanic acid production by Streptomyces clavuligerus in stirred tank and airlift bioreactors.

    PubMed

    Cerri, M O; Badino, A C

    2012-08-01

    In biochemical processes involving filamentous microorganisms, the high shear rate may damage suspended cells leading to viability loss and cell disruption. In this work, the influence of the shear conditions in clavulanic acid (CA) production by Streptomyces clavuligerus was evaluated in a 4-dm(3) conventional stirred tank (STB) and in 6-dm(3) concentric-tube airlift (ALB) bioreactors. Batch cultivations were performed in a STB at 600 and 800 rpm and 0.5 vvm (cultivations B1 and B2) and in ALB at 3.0 and 4.1 vvm (cultivations A1 and A2) to define two initial oxygen transfer conditions in both bioreactors. The average shear rate ([Formula: see text]) of the cultivations was estimated using correlations of recent literature based on experimental data of rheological properties of the broth (consistency index, K, and flow index, n) and operating conditions, impeller speed (N) for STB and superficial gas velocity in the riser (UGR) for ALB. In the same oxygen transfer condition, the [Formula: see text] values for ALB were higher than those obtained in STB. The maximum [Formula: see text] presented a strong correlation with a maximum consistency index (K (max)) of the broth. Close values of maximum CA production were obtained in cultivations A1 and A2 (454 and 442 mg L(-1)) with similar maximum [Formula: see text] values of 4,247 and 4,225 s(-1). In cultivations B1 and B2, the maximum CA production of 269 and 402 mg L(-1) were reached with a maximum [Formula: see text] of 904 and 1,786 s(-1). The results show that high values of average shear rate increase the CA production regardless of the oxygen transfer condition and bioreactor model. PMID:22271253

  14. Application of powder metallurgy techniques for the development of non-toxic ammunition. Final CRADA report

    SciTech Connect

    Lowden, R.; Kelly, R.

    1997-05-30

    The purpose of the Cooperative Research and Development Agreement (CRADA) between Martin Marietta Energy Systems, Inc., and Delta Frangible Ammunition (DFA), was to identify and evaluate composite materials for the development of small arms ammunition. Currently available small arms ammunition utilizes lead as the major component of the projectile. The introduction of lead into the environment by these projectiles when they are expended is a rapidly increasing environmental problem. At certain levels, lead is a toxic metal to the environment and a continual health and safety concern for firearm users as well as those who must conduct lead recovery operations from the environment. DFA is a leading supplier of high-density mixtures, which will be used to replace lead-based ammunition in specific applications. Current non-lead ammunition has several limitations that prevent it from replacing lead-based ammunition in many applications (such as applications that require ballistics, weapon recoil, and weapon function identical to that of lead-based ammunition). The purpose of the CRADA was to perform the research and development to identify cost-effective materials to be used in small arms ammunition that eventually will be used in commercially viable, environmentally conscious, non-lead, frangible and/or non-frangible, ammunition.

  15. Formation Sequences of Iron Minerals in the Acidic Alteration Products and Variation of Hydrothermal Fluid Conditions

    NASA Astrophysics Data System (ADS)

    Isobe, H.; Yoshizawa, M.

    2008-12-01

    Iron minerals have important role in environmental issues not only on the Earth but also other terrestrial planets. Iron mineral species related to alteration products of primary minerals with surface or subsurface fluids are characterized by temperature, acidity and redox conditions of the fluids. We can see various iron- bearing alteration products in alteration products around fumaroles in geothermal/volcanic areas. In this study, zonal structures of iron minerals in alteration products of the geothermal area are observed to elucidate temporal and spatial variation of hydrothermal fluids. Alteration of the pyroxene-amphibole andesite of Garan-dake volcano, Oita, Japan occurs by the acidic hydrothermal fluid to form cristobalite leaching out elements other than Si. Hand specimens with unaltered or weakly altered core and cristobalite crust show various sequences of layers. XRD analysis revealed that the alteration degree is represented by abundance of cristobalite. Intermediately altered layers are characterized by occurrence including alunite, pyrite, kaolinite, goethite and hematite. A specimen with reddish brown core surrounded by cristobalite-rich white crust has brown colored layers at the boundary of core and the crust. Reddish core is characterized by occurrence of crystalline hematite by XRD. Another hand specimen has light gray core, which represents reduced conditions, and white cristobalite crust with light brown and reddish brown layers of ferric iron minerals between the core and the crust. On the other hand, hornblende crystals, typical ferrous iron-bearing mineral of the host rock, are well preserved in some samples with strongly decolorized cristobalite-rich groundmass. Hydrothermal alteration experiments of iron-rich basaltic material shows iron mineral species depend on acidity and temperature of the fluid. Oxidation states of the iron-bearing mineral species are strongly influenced by the acidity and redox conditions. Variations of alteration

  16. Hierarchical Satellite-based Approach to Global Monitoring of Crop Condition and Food Production

    NASA Astrophysics Data System (ADS)

    Zheng, Y.; Wu, B.; Gommes, R.; Zhang, M.; Zhang, N.; Zeng, H.; Zou, W.; Yan, N.

    2014-12-01

    The assessment of global food security goes beyond the mere estimate of crop production: It needs to take into account the spatial and temporal patterns of food availability, as well as physical and economic access. Accurate and timely information is essential to both food producers and consumers. Taking advantage of multiple new remote sensing data sources, especially from Chinese satellites, such as FY-2/3A, HJ-1 CCD, CropWatch has expanded the scope of its international analyses through the development of new indicators and an upgraded operational methodology. The new monitoring approach adopts a hierarchical system covering four spatial levels of detail: global (sixty-five Monitoring and Reporting Units, MRU), seven major production zones (MPZ), thirty-one key countries (including China) and "sub- countries." The thirty-one countries encompass more that 80% of both global exports and production of four major crops (maize, rice, soybean and wheat). The methodology resorts to climatic and remote sensing indicators at different scales, using the integrated information to assess global, regional, and national (as well as sub-national) crop environmental condition, crop condition, drought, production, and agricultural trends. The climatic indicators for rainfall, temperature, photosynthetically active radiation (PAR) as well as potential biomass are first analysed at global scale to describe overall crop growing conditions. At MPZ scale, the key indicators pay more attention to crops and include Vegetation health index (VHI), Vegetation condition index (VCI), Cropped arable land fraction (CALF) as well as Cropping intensity (CI). Together, they characterise agricultural patterns, farming intensity and stress. CropWatch carries out detailed crop condition analyses for thirty one individual countries at the national scale with a comprehensive array of variables and indicators. The Normalized difference vegetation index (NDVI), cropped areas and crop condition are

  17. A Cuvette Design for Measurement of Ethylene Production and Carbon Dioxide Exchange by Intact Shoots under Controlled Environmental Conditions 1

    PubMed Central

    Bassi, Pawan K.; Spencer, Mary S.

    1979-01-01

    A cuvette is described for simultaneous measurement of ethylene production and CO2 fixation by intact shoots under controlled environmental conditions. This design overcomes potential problems associated with closed systems conventionally used for studies on ethylene production, allowing accurate determination of rates of ethylene production in plants exposed to different environmental conditions. PMID:16660994

  18. Robust Technique for Measuring and Simulating Silicon Wafer Quality Characteristics that Enable the Prediction of Solar Cell Electrical Performance of MEMC Silicon Wafer. Cooperative Research and Development Final Report, CRADA Number CRD-11-438

    SciTech Connect

    Sopori, Bhushan

    2015-12-01

    NREL and MEMC Electronic Materials are interested in developing a robust technique for monitoring material quality of mc-Si and mono-Si wafers -- a technique that can provide relevant data to accurately predict the performance of solar cells fabricated on them. Previous work, performed under two TSAs between NREL and MEMC, has established that dislocation clusters are the dominant performance-limiting factor in MEMC mc-Si solar cells. The work under this CRADA will go further in verifying these results on a larger data set, evaluate possibilities of faster method(s) for mapping dislocations in wafers/ingots, understanding dislocation generation during ingot casting, and helping MEMC to have an internal capability for basic characterization that will provide feedback needed for more accurate crystallization simulations. NREL has already developed dislocation mapping technique and developed a basic electronic model (called Network Model) that uses spatial distribution of dislocations to predict the cell performance. In this CRADA work, we will use these techniques to: (i) establish dislocation, grain size, and grain orientation distributions of the entire ingots (through appropriate DOE) and compare these with theoretical models developed by MEMC, (ii) determine concentrations of some relevant impurities in selected wafers, (iii) evaluate potential of using photoluminescence for dislocation mapping and identification of recombination centers, (iv) evaluate use of diode array analysis as a detailed characterization tool, and (v) establish dislocation mapping as a wafer-quality monitoring tool for commercial mc-Si production.

  19. Optimization of culture medium and conditions for penicillin acylase production by Streptomyces lavendulae ATCC 13664.

    PubMed

    Torres-Bacete, Jesús; Arroyo, Miguel; Torres-Guzmán, Raquel; De La Mata, Isabel; Acebal, Carmen; Castillón, M Pilar

    2005-08-01

    The culture medium for Streptomyces lavendulae ATCC 13664 was optimized on a shake-flask scale by using a statistical factorial design for enhanced production of penicillin acylase. This extracellular enzyme recently has been reported to be a penicillin K acylase, presenting also high hydrolytic activity against penicillin V and other natural aliphatic penicillins such as penicillin K, penicillin F, and penicillin dihydroF. The factorial design indicated that the main factors that positively affect penicillin acylase production by S. lavendulae were the concentration of yeast extract and the presence of oligoelements in the fermentation medium, whereas the presence of olive oil in the medium had no effect on enzyme production. An initial concentration of 2.5% (w/v) yeast extract and 3 microg/mL of CuSO4 x 5H2O was found to be best for acylase production. In such optimized culture medium, fermentation of the microorganism yielded 289 IU/L of enzyme in 72 h when employing a volume medium/volume flask ratio of 0.4 and a 300-rpm shaking speed. The presence of copper, alone and in combination with other metals, stimulated biomass as well as penicillin acylase production. The time course of penicillin acylase production was also studied in the optimized medium and conditions. Enzyme production showed catabolite repression by different carbon sources such as glucose, lactose, citrate, glycerol, and glycine. PMID:16118466

  20. Efficiency Improvement of Nitride-Based Solid State Light Emitting Materials -- CRADA Final Report

    SciTech Connect

    Kisielowski, Christian; Weber, Eicke

    2010-05-13

    The development of In{sub x}Ga{sub 1-x} N/GaN thin film growth by Molecular Beam Epitaxy has opened a new route towards energy efficient solid-state lighting. Blue and green LED's became available that can be used to match the whole color spectrum of visible light with the potential to match the eye response curve. Moreover, the efficiency of such devices largely exceeds that of incandescent light sources (tungsten filaments) and even competes favorably with lighting by fluorescent lamps. It is, however, also seen in Figure 1 that it is essential to improve on the luminous performance of green LED's in order to mimic the eye response curve. This lack of sufficiently efficient green LED's relates to particularities of the In{sub x}Ga{sub 1-x}N materials system. This ternary alloy system is polar and large strain is generated during a lattice mismatched thin film growth because of the significantly different lattice parameters between GaN and InN and common substrates such as sapphire. Moreover, it is challenging to incorporate indium into GaN at typical growth temperatures because a miscibility gap exists that can be modified by strain effects. As a result a large parameter space needs exploration to optimize the growth of In{sub x}Ga{sub 1-x}N and to date it is unclear what the detailed physical processes are that affect device efficiencies. In particular, an inhomogeneous distribution indium in GaN modifies the device performance in an unpredictable manner. As a result technology is pushed forward on a trial and error basis in particular in Asian countries such as Japan and Korea, which dominate the market and it is desirable to strengthen the competitiveness of the US industry. This CRADA was initiated to help Lumileds Lighting/USA boosting the performance of their green LED's. The tasks address the distribution of the indium atoms in the active area of their blue and green LED's and its relation to internal and external quantum efficiencies. Procedures to

  1. Influence of culture conditions on thermostable lipase production by a thermophilic alkalitolerant strain of Bacillus sp.

    PubMed

    Kambourova, M; Emanuilova, E; Dimitrov, P

    1996-01-01

    The effect of different culture conditions on thermostable lipase production by Bacillus sp. was studied in shake flasks. A maximum enzyme activity of 67-75 nkat/mL was observed in a medium consisting of 0.5% soybean flour and 0.1% stearyl glycerol esters or natural fats. A lipase activity of about 117 nkat/mL was established when the cultivation was carried out in a laboratory fermentor at 20% minimal dissolved oxygen level, the enzyme production being increased 1.5 fold compared to that in a flask culture. PMID:9138309

  2. Characterization and chemistry of fission products released from LWR fuel under accident conditions

    SciTech Connect

    Norwood, K.S.; Collins, J.L.; Osborne, M.F.; Lorenz, R.A.; Wichner, R.P.

    1984-01-01

    Segments from commercial LWR fuel rods have been tested at temperatures between 1400 and 2000/sup 0/C in a flowing steam-helium atmosphere to simulate severe accident conditions. The primary goals of the tests were to determine the rate of fission product release and to characterize the chemical behavior. This paper is concerned primarily with the identification and chemical behavior of the released fission products with emphasis on antimony, cesium, iodine, and silver. The iodine appeared to behave primarily as cesium iodide and the antimony and silver as elements, while cesium behavior was much more complex. 17 refs., 7 figs., 1 tab.

  3. Comparison of biotin production by recombinant Sphingomonas sp. under various agitation conditions.

    PubMed

    Saito; Honda; Kawabe; Mukumoto; Shimizu; Kobayashi

    2000-06-01

    Biotin production by fermentation of recombinant Sphingomonas sp./pSP304 was investigated. A complex medium containing 60g/l of glycerol and 30g/l of yeast extract was suitable for biotin production. Biotin was produced in the late logarithmic or stationary phase after glycerol starvation. The optimum pH value for biotin production was 7.0. When the dissolved oxygen concentration (DO) was controlled at a constant level, the biotin concentration produced after 120h was significantly lower than that obtained in a test tube culture. Therefore, a batchwise jar-fermentor culture with a constant agitation speed and without DO control was conducted for investigating the effect of agitation conditions on biotin production. Six types of impeller were tested: turbine-blade type, turbo-lift type, rotating mesh type (EGSTAR((R))), screw with draft tube type, Maxblend((R))type, and anchor type. With some impellers, agitation speed was also changed. Both the maximum cell concentration and biotin production varied depending on agitation conditions. Relatively high cell concentrations were attained with four of the impeller types, turbine-blade type, rotating mesh type, Maxblend((R)) type, and anchor type. Among these impellers, the turbine-blade impeller with sintered sparger was suitable for biotin production. After 120h, the cell concentration reached an OD(660) of 43 and a biotin concentration of 66mg/l was obtained, which was comparable with the results from the test tube culture. Morphological variation was also observed depending on the agitation conditions: oval-shaped, rod-shaped, and elongated-shaped cells. Biotin production was relatively high in slightly long rod-shape cells but low in elongated cells. The difference in morphology appeared to depend on the shear stress. It was found that biotin production was strongly correlated with cell length and the oxygen transfer coefficient (k(L)a); cell lengths in the range 4-7µm and k(L)a values in the range 1.5-2.0/min were

  4. Force production during squats performed with a rotational resistance device under stable versus unstable conditions.

    PubMed

    Moras, Gerard; Vázquez-Guerrero, Jairo

    2015-11-01

    [Purpose] Force production during a squat action on a rotational resistance device (RRD) under stable and unstable conditions. [Subjects and Methods] Twenty-one healthy males were asked to perform six sets of six repetitions of squats on an RRD on either stable or unstable surfaces. The stable and unstable sets were performed on different days. Muscular outputs were obtained from a linear encoder and a strain gauge fixed to a vest. [Results] Overall, the results showed no significant differences for any of the dependent variables across exercise modes. Forcemean outputs were higher in the concentric phase than in the eccentric phase for each condition, but there were no differences in velocity, time or displacement. The forcepeak was similar in the eccentric and concentric phases of movement under both stable and unstable conditions. There were no significant differences in forcemean between sets per condition or between conditions. [Conclusion] These results suggest that performing squats with a RRD achieves similar forcemean and forcepeak under stable and unstable conditions. The forcepeak produced is also similar in concentric and eccentric phases. PMID:26696707

  5. Force production during squats performed with a rotational resistance device under stable versus unstable conditions

    PubMed Central

    Moras, Gerard; Vázquez-Guerrero, Jairo

    2015-01-01

    [Purpose] Force production during a squat action on a rotational resistance device (RRD) under stable and unstable conditions. [Subjects and Methods] Twenty-one healthy males were asked to perform six sets of six repetitions of squats on an RRD on either stable or unstable surfaces. The stable and unstable sets were performed on different days. Muscular outputs were obtained from a linear encoder and a strain gauge fixed to a vest. [Results] Overall, the results showed no significant differences for any of the dependent variables across exercise modes. Forcemean outputs were higher in the concentric phase than in the eccentric phase for each condition, but there were no differences in velocity, time or displacement. The forcepeak was similar in the eccentric and concentric phases of movement under both stable and unstable conditions. There were no significant differences in forcemean between sets per condition or between conditions. [Conclusion] These results suggest that performing squats with a RRD achieves similar forcemean and forcepeak under stable and unstable conditions. The forcepeak produced is also similar in concentric and eccentric phases. PMID:26696707

  6. Petunia × hybrida floral scent production is negatively affected by high-temperature growth conditions.

    PubMed

    Cna'ani, Alon; Mühlemann, Joelle K; Ravid, Jasmin; Masci, Tania; Klempien, Antje; Nguyen, Thuong T H; Dudareva, Natalia; Pichersky, Eran; Vainstein, Alexander

    2015-07-01

    Increasing temperatures due to changing global climate are interfering with plant-pollinator mutualism, an interaction facilitated mainly by floral colour and scent. Gas chromatography-mass spectroscopy analyses revealed that increasing ambient temperature leads to a decrease in phenylpropanoid-based floral scent production in two Petunia × hybrida varieties, P720 and Blue Spark, acclimated at 22/16 or 28/22 °C (day/night). This decrease could be attributed to down-regulation of scent-related structural gene expression from both phenylpropanoid and shikimate pathways, and up-regulation of a negative regulator of scent production, emission of benzenoids V (EOBV). To test whether the negative effect of increased temperature on scent production can be reduced in flowers with enhanced metabolic flow in the phenylpropanoid pathway, we analysed floral volatile production by transgenic 'Blue Spark' plants overexpressing CaMV 35S-driven Arabidopsis thaliana production of anthocyanin pigments 1 (PAP1) under elevated versus standard temperature conditions. Flowers of 35S:PAP1 transgenic plants produced the same or even higher levels of volatiles when exposed to a long-term high-temperature regime. This phenotype was also evident when analysing relevant gene expression as inferred from sequencing the transcriptome of 35S:PAP1 transgenic flowers under the two temperature regimes. Thus, up-regulation of transcription might negate the adverse effects of temperature on scent production. PMID:25402319

  7. Poly[(R)-3-hydroxybutyrate] production under different salinity conditions by a novel Bacillus megaterium strain.

    PubMed

    Rodríguez-Contreras, Alejandra; Koller, Martin; Braunegg, Gerhart; Marqués-Calvo, María Soledad

    2016-01-25

    Bacillus megaterium uyuni S29, isolated from the Bolivian salt lake Uyuni, displays a high capability to produce poly[(R)-3-hydroxybutyrate] (PHB) in industrial culture media. In order to analyze the influence of salt on biomass formation and PHB production, cultivations at different NaCl concentrations were carried out according to the salinity conditions of the habitats of the strain's original isolation. In this preliminary report, the strain showed considerable adaptability to media of different salinity, obtaining the best results for both cellular growth and PHB production in media containing 45 g/L NaCl. The strain grew at 100 g/L NaCl and PHB production was observed even at high salt levels of 250 g/L without unwanted concurrent spore formation. Its tolerance to high salt concentrations together with auspicious PHB productivity makes this strain appealing not only for PHB production, but also for other biotechnological applications such as the treatment of salty wastewater; additional studies will be needed to further increase PHB productivity. PMID:26344348

  8. Mycelial mass production of fungi Duddingtonia flagrans and Monacrosporium thaumasium under different culture conditions

    PubMed Central

    2013-01-01

    Background Duddingtonia flagrans and Monacrosporium thaumasium are promising fungus species in veterinary biological control of gastrointestinal nematodes because of their production capacity of fungal structures (conidia and/or chlamydospores), growth efficiency in laboratory solid media and especially their predatory capacity. However, their large-scale production remains a challenge. This work aimed at evaluating the mycelial mass production of D. flagrans (AC001 and CG722) and M. thaumasium (NF34A) nematophagous fungi under different culture conditions. Results The results did not present significant differences (p > 0.05) in mycelia mass production between the isolates cultured under pH 4.0. Furthermore, after 168 hrs., the isolate CG722 presented a lower production of mycelial mass in medium CM (corn meal) (p < 0.05). Conclusion We therefore concluded the use of culture media SD (soy dextrose) and CG (corn grits) at pH values between 6.0 and 7.0 is suitable for high mycelial mass production of D. flagrans and M. thaumasium. PMID:23985336

  9. Mathematical model of Chlorella minutissima UTEX2341 growth and lipid production under photoheterotrophic fermentation conditions

    PubMed Central

    Yang, JinShui; Rasa, Ehsan; Tantayotai, Prapakorn; Scow, Kate M.; Yuan, HongLi; Hristova, Krassimira R.

    2012-01-01

    To reduce the cost of algal biomass production, mathematical model was developed for the first time to describe microalgae growth, lipid production and glycerin consumption under photoheterotrophic conditions based on logistic, Luedeking–Piret and Luedeking–Piret-like equations. All experiments were conducted in a 2 L batch reactor without considering CO2 effect on algae’s growth and lipid production. Biomass and lipid production increased with glycerin as carbon source and were well described by the logistic and Luedeking–Piret equations respectively. Model predictions were in satisfactory agreement with measured data and the mode of lipid production was growth-associated. Sensitivity analysis was applied to examine the effects of certain important parameters on model performance. Results showed that S0, the initial concentration of glycerin, was the most significant factor for algae growth and lipid production. This model is applicable for prediction of other single cell algal species but model testing is recommended before scaling up the fermentation of process. PMID:21115343

  10. An Expert Fault Diagnosis System for Vehicle Air Conditioning Product Development

    NASA Astrophysics Data System (ADS)

    Tan, C. F.; Tee, B. T.; Khalil, S. N.; Chen, W.; Rauterberg, G. W. M.

    2015-09-01

    The paper describes the development of the vehicle air-conditioning fault diagnosis system in automotive industries with expert system shell. The main aim of the research is to diagnose the problem of new vehicle air-conditioning system development process and select the most suitable solution to the problems. In the vehicle air-conditioning manufacturing industry, process can be very costly where an expert and experience personnel needed in certain circumstances. The expert of in the industry will retire or resign from time to time. When the expert is absent, their experience and knowledge is difficult to retrieve or lost forever. Expert system is a convenient method to replace expert. By replacing the expert with expert system, the accuracy of the processes will be increased compared to the conventional way. Therefore, the quality of product services that are produced will be finer and better. The inputs for the fault diagnosis are based on design data and experience of the engineer.

  11. Increased performance of hydrogen production in microbial electrolysis cells under alkaline conditions.

    PubMed

    Rago, Laura; Baeza, Juan A; Guisasola, Albert

    2016-06-01

    This work reports the first successful enrichment and operation of alkaline bioelectrochemical systems (microbial fuel cells, MFC, and microbial electrolysis cells, MEC). Alkaline (pH=9.3) bioelectrochemical hydrogen production presented better performance (+117%) compared to conventional neutral conditions (2.6 vs 1.2 litres of hydrogen gas per litre of reactor per day, LH2·L(-1)REACTOR·d(-1)). Pyrosequencing results of the anodic biofilm showed that while Geobacter was mainly detected under conventional neutral conditions, Geoalkalibacter sp. was highly detected in the alkaline MFC (21%) and MEC (48%). This is the first report of a high enrichment of Geoalkalibacter from an anaerobic mixed culture using alkaline conditions in an MEC. Moreover, Alkalibacter sp. was highly present in the anodic biofilm of the alkaline MFC (37%), which would indicate its potentiality as a new exoelectrogen. PMID:26855359

  12. Diffusion modeling of fission product release during depressurized core conduction cooldown conditions

    SciTech Connect

    Martin, R.C.

    1990-01-01

    A simple model for diffusion through the silicon carbide layer of TRISO particles is applied to the data for accident condition testing of fuel spheres for the High-Temperature Reactor program of the Federal Republic of Germany (FRG). Categorization of sphere release of {sup 137}Cs based on fast neutron fluence permits predictions of release with an accuracy comparable to that of the US/FRG accident condition fuel performance model. Calculations are also performed for {sup 85}Kr, {sup 90}Sr, and {sup 110m}Ag. Diffusion of cesium through SiC suggests that models of fuel failure should consider fuel performance during repeated accident condition thermal cycling. Microstructural considerations in models in fission product release are discussed. The neutron-induced segregation of silicon within the SiC structure is postulated as a mechanism for enhanced fission product release during accident conditions. An oxygen-enhanced SiC decomposition mechanism is also discussed. 12 refs., 11 figs., 2 tabs.

  13. Lean production tools and decision latitude enable conditions for innovative learning in organizations: a multilevel analysis.

    PubMed

    Fagerlind Ståhl, Anna-Carin; Gustavsson, Maria; Karlsson, Nadine; Johansson, Gun; Ekberg, Kerstin

    2015-03-01

    The effect of lean production on conditions for learning is debated. This study aimed to investigate how tools inspired by lean production (standardization, resource reduction, visual monitoring, housekeeping, value flow analysis) were associated with an innovative learning climate and with collective dispersion of ideas in organizations, and whether decision latitude contributed to these associations. A questionnaire was sent out to employees in public, private, production and service organizations (n = 4442). Multilevel linear regression analyses were used. Use of lean tools and decision latitude were positively associated with an innovative learning climate and collective dispersion of ideas. A low degree of decision latitude was a modifier in the association to collective dispersion of ideas. Lean tools can enable shared understanding and collective spreading of ideas, needed for the development of work processes, especially when decision latitude is low. Value flow analysis played a pivotal role in the associations. PMID:25479999

  14. Biomass and lipid production of a local isolate Chlorella sorokiniana under mixotrophic growth conditions.

    PubMed

    Juntila, D J; Bautista, M A; Monotilla, W

    2015-09-01

    A local Chlorella sp. isolate with 97% rbcL sequence identity to Chlorella sorokiniana was evaluated in terms of its biomass and lipid production under mixotrophic growth conditions. Glucose-supplemented cultures exhibited increasing growth rate and biomass yield with increasing glucose concentration. Highest growth rate and biomass yield of 1.602 day(-1) and 687.5 mg L(-1), respectively, were achieved under 2 g L(-1) glucose. Nitrogen starvation up to 75% in the 1.0 g L(-1) glucose-supplemented culture was done to induce lipid accumulation and did not significantly affect the growth. Lipid content ranges from 20% to 27% dry weight. Nile Red staining showed more prominent neutral lipid bodies in starved mixotrophic cultures. C. sorokiniana exhibited enhanced biomass production under mixotrophy and more prominent neutral lipid accumulation under nitrogen starvation with no significant decrease in growth; hence, this isolate could be further studied to establish its potential for biodiesel production. PMID:25847795

  15. Effect of fermentation conditions on biohydrogen production from cassava starch by anaerobic mixed cultures

    NASA Astrophysics Data System (ADS)

    Tien, Hai M.; Le, Kien A.; Tran, An T.; Le, Phung K.

    2016-06-01

    In this work, a series of batch tests were conducted to investigate the effect of pH, temperature, fermentation time, and inoculums ratio to hydrogen production using cassava starch as a substrate. The statistical analysis of the experiment indicated that the significant effects for the fermentation yield were the main effect of temperature, pH and inoculums ratio. It was fouund that the suitable fermentation conditions of biohydrogen production should be at temperature 40 ° C; pH 6.5, inoculums to medium ratio 10 % and COD operation at 4800 g/mL. The maximum value of hydrogen volume produced was 76.22 mL. These affected has been evaluated and the result can be used as an reference for the pilot or industrial biohydrogen production.

  16. Lipid production on free fatty acids by oleaginous yeasts under non-growth conditions.

    PubMed

    Yang, Xiaobing; Jin, Guojie; Wang, Yandan; Shen, Hongwei; Zhao, Zongbao K

    2015-10-01

    Microbial lipids produced by oleaginous yeasts serve as promising alternatives to traditional oils and fats for the production of biodiesel and oleochemicals. To improve its techno-economics, it is pivotal to use wastes and produce high quality lipids of special fatty acid composition. In the present study, four oleaginous yeasts were tested to use free fatty acids for lipid production under non-growth conditions. Microbial lipids of exceptionally high fatty acid relative contents, e.g. those contained over 70% myristic acid or 80% oleic acid, were produced that may be otherwise inaccessible by growing cells on various carbon sources. It was found that Cryptococcus curvatus is a robust strain that can efficiently use oleic acid as well as even-numbered saturated fatty acids with carbon atoms ranging from 10 to 20. Our results provided new opportunity for the production of functional lipids and for the exploitation of organic wastes rich in free fatty acids. PMID:26159379

  17. Extracellular xylanase production by Pleurotus species on lignocellulosic wastes under in vivo condition using novel pretreatment.

    PubMed

    Singh, M P; Pandey, A K; Vishwakarma, S K; Srivastava, A K; Pandey, V K

    2012-01-01

    The production of extracellular xylanase by three species of Pleurotus species i.e. P. florida, P. flabellatus and P. sajor caju was studied under in vivo condition during their cultivation on pretreated lignocellulosic wastes. Neem (Azadirachta indica) oil and ashoka (Saraca indica) leaves extract were used for pretreatment of paddy straw and wheat straw. Between these two wastes, paddy straw pretreated with neem oil, supported better xylanase production than wheat straw. Initially, xylanase production was low but it increased in subsequent days and reached at peak on 25th day of cultivation of Pleurotus species. Thereafter, there was decrease in the activity of the enzyme. On 25th day of incubation P. florida produced maximum xylanase on neem oil pretreated paddy straw i.e. 10.59 Uh—1ml—1. Among the three species, P. florida showed maximum enzyme activity followed by P. flabellatus and P. sajor caju. PMID:23273208

  18. Silicification-induced cell aggregation for the sustainable production of H2 under aerobic conditions.

    PubMed

    Xiong, Wei; Zhao, Xiaohong; Zhu, Genxing; Shao, Changyu; Li, Yaling; Ma, Weimin; Xu, Xurong; Tang, Ruikang

    2015-10-01

    Photobiological hydrogen production is of great importance because of its promise for generating clean renewable energy. In nature, green algae cannot produce hydrogen as a result of the extreme sensitivity of hydrogenase to oxygen. However, we find that silicification-induced green algae aggregates can achieve sustainable photobiological hydrogen production even under natural aerobic conditions. The core-shell structure of the green algae aggregates creates a balance between photosynthetic electron generation and hydrogenase activity, thus allowing the production of hydrogen. This finding provides a viable pathway for the solar-driven splitting of water into hydrogen and oxygen to develop green energy alternatives by using rationally designed cell-material complexes. PMID:26302695

  19. Compactin production studies using Penicillium brevicompactum under solid-state fermentation conditions.

    PubMed

    Shaligram, N S; Singh, S K; Singhal, R S; Pandey, A; Szakacs, G

    2009-11-01

    In the present study, compactin production by Penicillium brevicompactum WA 2315 was optimized using solid-state fermentation. The initial one factor at a time approach resulted in improved compactin production of 905 microg gds(-1) compared to initial 450 microg gds(-1). Subsequently, nutritional, physiological, and biological parameters were screened using fractional factorial and Box-Behnken design. The fractional factorial design studied inoculum age, inoculum volume, pH, NaCl, NH(4)NO(3), MgSO(4), and KH(2)PO(4). All parameters were found to be significant except pH and KH(2)PO(4). The Box-Behnken design studied inoculum volume, inoculum age, glycerol, and NH(4)NO(3) at three different levels. Inoculum volume (p = 0.0013) and glycerol (p = 0.0001) were significant factors with greater effect on response. The interaction effects were not significant. The validation study using model-defined conditions resulted in an improved yield of 1,250 microg gds(-1) compactin. Further improvement in yield was obtained using fed batch mode of carbon supplementation. The feeding of glycerol (20% v/v) on day 3 resulted in further improved compactin yield of 1,406 microg gds(-1). The present study demonstrates that agro-industrial residues can be successfully used for compactin production, and statistical experiment designs provide an easy tool to improve the process conditions for secondary metabolite production. PMID:19099208

  20. Optimization of fermentation conditions of pectin production from Aspergillus terreus and its partial characterization.

    PubMed

    Liu, Zhanmin; Yao, Lifeng; Fan, Chuanhui

    2015-12-10

    Figures of persimmons for the world's top ten persimmon producing countries are about 4000,000 tons in 2011 and are increasing every year according to FAO statistics. However, there is not any report on pectin production by microbial with persimmon peel as the source. Optimization of fermentation conditions of pectin production from Aspergillus terreus in submerged culture and partial characterization of pectin were carried out in the work. An optimum fermentation condition for pectin production was obtained through a central composite rotatable design in response surface methodology as follows: fermentation time, 30.09 h, temperature, 25.00 °C and the initial pH in the fermentation medium, 6.90, respectively and the pectin yield reached the maximal value 0.449 g/g. Persimmon peel pectin had highly methoxylated (62.51%), high galacturonic acid content (82.28%) than citrus pectin, and was classified as the highly methoxylated pectin, the results indicated that persimmon peel had potential good resources for pectin production. The investigation can make it available to utilize persimmon peel to produce high methoxyl pectin for food industry, pharmacy and cosmetic manufacture. PMID:26428166

  1. Influence of food system conditions on N-acyl-L-homoserine lactones production by Aeromonas spp.

    PubMed

    Medina-Martínez, M S; Uyttendaele, M; Demolder, V; Debevere, J

    2006-12-01

    Eleven of 13 Aeromonas strains were shown to produce AHLs. Results of TLC showed that N-butanoyl-L-homoserine lactone (C4-HSL) was the main AHL produced in LB medium at 30 degrees C. The influence of different carbon sources, temperature, pH values and salt concentrations on AHL production was determined in eight A. hydrophila and one A. caviae strain. Additionally a quantitative study of C4-HSL production by A. hydrophila strain 519 under different conditions was performed. Positive results were found in the AHL induction assay for some Aeromonas strains in cultures in LB agar incubated at 12 degrees C after 72-96 h. The induction of the sensor strains by Aeromonas spp. occurred in LB medium supplemented with all carbon sources in a concentration of 0.5%. The production of C4-HSL by A. hydrophila 519 was found until 3.5% (w/v) of NaCl. For pHs close to the neutrality the C4-HSL production by A. hydrophila was evident after 24-48 h of incubation. A. hydrophila 519 produced C4-HSL under anaerobic conditions. Also, the AHL production by Aeromonas strains was studied in simulate agar of shrimp, fish and some vegetables. The production of AHLs was evident by almost all the test strains in shrimp simulated agar. In fish agar only for one of three fish species tested, positive results were found. Induction assay in vegetables simulated agar showed principally negative results, probably because of the presence of inhibitory compounds in these vegetables. PMID:16797762

  2. Sewage sludge hydrochars: properties and agronomic impact as related to different production conditions

    NASA Astrophysics Data System (ADS)

    Paneque, Marina; María De la Rosa, José; Aragón, Carlos; Kern, Jürgen; Conte, Pellegrino; Knicker, Heike

    2015-04-01

    The huge amount of sewage sludge (SS) generated in wastewater treatment plants all over the world represents an environmental problem. Due to the high concentration of phosphorus and nitrogen in SS as well as other macro and micro nutrients it has been considered a suitable soil amendment. However, before being applied to soil a complete sterilization and elimination of pollutants should be carried out [1]. In this context, thermal treatments appear as a convenient methodology for producing SS byproducts useful for agronomic purposes. Hydrothermal carbonization (HTC) is a kind of pyrolysis characterized by the heating of the biomass in presence of water. This process shows an advantage compared to other thermal treatments for wet residues since dryness of the biomass prior to the thermal transformation is not necessary. The solid product which results from HTC is called hydrochar and it has been suggested to increase soil productivity [2]. However, the agronomic potential of hydrochars depends on the feedstock and production conditions. Additionally, possible toxic and risks have to be carefully evaluated. Thus, SS hydrochars appear as a potential soil amendment but further scientific research is needed to find its real capacity, optimal production conditions as well as possible environmental harmful effects. The aim of this study was to evaluate which are the most suitable production conditions, to transform SS into hydrochar. An additional goal of this work was to relate the hydrochars properties to its agronomic response. Therefore, hydrochars were produced from SS collected from the Experimental Wastewater Treatment plant of CENTA (http://www.centa.es/), located in Carrion de los Cespedes (Seville), under two different temperatures (200 and 260˚C) and residence times (30 min and 1h). With the hydrochars obtained, a greenhouse pot incubation study was carried out for 80 days. The pots contained 250 g of a Calcic Cambisol (IUSS Working Group WRB, 2007) and an

  3. 30 CFR 1206.55 - What are my responsibilities to place production into marketable condition and to market the...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... production into marketable condition and to market the production? 1206.55 Section 1206.55 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR Natural Resources Revenue PRODUCT VALUATION Indian Oil § 1206.55 What are my responsibilities to place production...

  4. Isolation, Preliminary Characterization and Preliminary Assessment of Scale-Up Potential of Photosynthetic Microalgae for the Production of Both Biofuels and Bio-Active Molecules in the U.S. and Canada: Cooperative Research and Development Final Report, CRADA Number CRD-10-372

    SciTech Connect

    Pienkos, P.

    2012-09-01

    Combustion flue gases are a major contributor to carbon dioxide emissions into the Earth's atmosphere, a factor that has been linked to the possible global climate change. It is, therefore, critical to begin thinking seriously about ways to reduce this influx into the atmosphere. Using carbon dioxide from fossil fuel combustion as a feedstock for the growth, photosynthetic microorganisms can provide a large sink for carbon assimilation as well as a feedstock for the production of significant levels of biofuels. Combining microalgal farming with fossil fuel energy production has great potential to diminish carbon dioxide releases into the atmosphere, as well as contribute to the production of biofuels (e.g., biodiesel, renewable diesel and gasoline and jet fuel) as well as valuable co-products such as animal feeds and green chemicals. CO2 capture may be a regulatory requirement in future new coal or natural gas power plants and will almost certainly become an opportunity for commerce, the results of such studies may provide industries in the US and Canada with both regulatory relief and business opportunities as well as the ability to meet environmental and regulatory requirements, and to produce large volumes of fuels and co-products.

  5. Electron Beam Curing of Polymer Matrix Composites - CRADA Final Report

    SciTech Connect

    Janke, C. J.; Howell, Dave; Norris, Robert E.

    1997-05-01

    The major cost driver in manufacturing polymer matrix composite (PMC) parts and structures, and one of the elements having the greatest effect on their quality and performance, is the standard thermal cure process. Thermal curing of PMCs requires long cure times and high energy consumption, creates residual thermal stresses in the part, produces volatile toxic by-products, and requires expensive tooling that is tolerant of the high cure temperatures.

  6. Crossing Methods and Cultivation Conditions for Rapid Production of Segregating Populations in Three Grain Amaranth Species

    PubMed Central

    Stetter, Markus G.; Zeitler, Leo; Steinhaus, Adrian; Kroener, Karoline; Biljecki, Michelle; Schmid, Karl J.

    2016-01-01

    Grain amaranths (Amaranthus spp.) have been cultivated for thousands of years in Central and South America. Their grains are of high nutritional value, but the low yield needs to be increased by selection of superior genotypes from genetically diverse breeding populations. Amaranths are adapted to harsh conditions and can be cultivated on marginal lands although little is known about their physiology. The development of controlled growing conditions and efficient crossing methods is important for research on and improvement of this ancient crop. Grain amaranth was domesticated in the Americas and is highly self-fertilizing with a large inflorescence consisting of thousands of very small flowers. We evaluated three different crossing methods (open pollination, hot water emasculation and hand emasculation) for their efficiency in amaranth and validated them with genetic markers. We identified cultivation conditions that allow an easy control of flowering time by day length manipulation and achieved flowering times of 4 weeks and generation times of 2 months. All three different crossing methods successfully produced hybrid F1 offspring, but with different success rates. Open pollination had the lowest (10%) and hand emasculation the highest success rate (74%). Hot water emasculation showed an intermediate success rate (26%) with a maximum of 94% success. It is simple to perform and suitable for a more large-scale production of hybrids. We further evaluated 11 single nucleotide polymorphism (SNP) markers and found that they were sufficient to validate all crosses of the genotypes used in this study for intra- and interspecific hybridizations. Despite its very small flowers, crosses in amaranth can be carried out efficiently and evaluated with inexpensive SNP markers. Suitable growth conditions strongly reduce the generation time and allow the control of plant height, flowering time, and seed production. In combination, this enables the rapid production of segregating

  7. Crossing Methods and Cultivation Conditions for Rapid Production of Segregating Populations in Three Grain Amaranth Species.

    PubMed

    Stetter, Markus G; Zeitler, Leo; Steinhaus, Adrian; Kroener, Karoline; Biljecki, Michelle; Schmid, Karl J

    2016-01-01

    Grain amaranths (Amaranthus spp.) have been cultivated for thousands of years in Central and South America. Their grains are of high nutritional value, but the low yield needs to be increased by selection of superior genotypes from genetically diverse breeding populations. Amaranths are adapted to harsh conditions and can be cultivated on marginal lands although little is known about their physiology. The development of controlled growing conditions and efficient crossing methods is important for research on and improvement of this ancient crop. Grain amaranth was domesticated in the Americas and is highly self-fertilizing with a large inflorescence consisting of thousands of very small flowers. We evaluated three different crossing methods (open pollination, hot water emasculation and hand emasculation) for their efficiency in amaranth and validated them with genetic markers. We identified cultivation conditions that allow an easy control of flowering time by day length manipulation and achieved flowering times of 4 weeks and generation times of 2 months. All three different crossing methods successfully produced hybrid F1 offspring, but with different success rates. Open pollination had the lowest (10%) and hand emasculation the highest success rate (74%). Hot water emasculation showed an intermediate success rate (26%) with a maximum of 94% success. It is simple to perform and suitable for a more large-scale production of hybrids. We further evaluated 11 single nucleotide polymorphism (SNP) markers and found that they were sufficient to validate all crosses of the genotypes used in this study for intra- and interspecific hybridizations. Despite its very small flowers, crosses in amaranth can be carried out efficiently and evaluated with inexpensive SNP markers. Suitable growth conditions strongly reduce the generation time and allow the control of plant height, flowering time, and seed production. In combination, this enables the rapid production of segregating

  8. Herbicides and herbicide degradation products in upper midwest agricultural streams during august base-flow conditions

    USGS Publications Warehouse

    Kalkhoff, S.J.; Lee, K.E.; Porter, S.D.; Terrio, P.J.; Thurman, E.M.

    2003-01-01

    Herbicide concentrations in streams of the U.S. Midwest have been shown to decrease through the growing season due to a variety of chemical and physical factors. The occurrence of herbicide degradation products at the end of the growing season is not well known. This study was conducted to document the occurrence of commonly used herbicides and their degradation products in Illinois, Iowa, and Minnesota streams during base-flow conditions in August 1997. Atrazine, the most frequently detected herbicide (94%), was present at relatively low concentrations (median 0.17 μg L−1). Metolachlor was detected in 59% and cyanazine in 37% of the samples. Seven of nine compounds detected in more than 50% of the samples were degradation products. The total concentration of the degradation products (median of 4.4 μg L−1) was significantly greater than the total concentration of parent compounds (median of 0.26 μg L−1). Atrazine compounds were present less frequently and in significantly smaller concentrations in streams draining watersheds with soils developed on less permeable tills than in watersheds with soils developed on more permeable loess. The detection and concentration of triazine compounds was negatively correlated with antecedent rainfall (April–July). In contrast, acetanalide compounds were positively correlated with antecedant rainfall in late spring and early summer that may transport the acetanalide degradates into ground water and subsequently into nearby streams. The distribution of atrazine degradation products suggests regional differences in atrazine degradation processes.

  9. Tire Development for Effective Transportation and Utilization of Used Tires, CRADA 01-N044, Final Report

    SciTech Connect

    Susan M. Maley

    2004-03-31

    Scrap tires represent a significant disposal and recycling challenge for the United States. Over 280 million tires are generated on an annual basis, and several states have large stockpiles or abandoned tire piles that are slated for remediation. While most states have programs to address the accumulation and generation of scrap tires, most of these states struggle with creating and sustaining recycling or beneficial end use markets. One of the major issues with market development has been the costs associated with transporting and processing the tires into material for recycling or disposal. According to a report by the Rubber Manufactures Association tire-derived fuel (TDF) represents the largest market for scrap tires, and approximately 115 million tires were consumed in 2001 as TDF (U.S. Scrap Tire Markets, 2001, December 2002, www.rma.org/scraptires). This market is supported primarily by cement kilns, followed by various industries including companies that operate utility and industrial boilers. However the use of TDF has not increased and the amount of TDF used by boiler operators has declined. The work completed through this cooperative research and development agreement (CRADA) has shown the potential of a mobile tire shredding unit to economically produce TDF and to provide an alterative low cost fuel to suitable coal-fired power systems. This novel system addresses the economic barriers by processing the tires at the retailer, thereby eliminating the costs associated with hauling whole tires. The equipment incorporated into the design allow for small 1-inch chunks of TDF to be produced in a timely fashion. The TDF can then be co-fired with coal in suitable combustion systems, such as a fluidized bed. Proper use of TDF has been shown to boost efficiency and reduce emissions from power generation systems, which is beneficial to coal utilization in existing power plants. Since the original scope of work outlined in the CRADA could not be completed because

  10. High methylmercury production under ferruginous conditions in sediments impacted by sewage treatment plant discharges.

    PubMed

    Bravo, Andrea G; Bouchet, Sylvain; Guédron, Stéphane; Amouroux, David; Dominik, Janusz; Zopfi, Jakob

    2015-09-01

    Sewage treatment plants (STPs) are important point sources of mercury (Hg) to the environment. STPs are also significant sources of iron when hydrated ferric oxide (HFO) is used as a dephosphatation agent during water purification. In this study, we combined geochemical and microbiological characterization with Hg speciation and sediment amendments to evaluate the impact of STP's effluents on monomethylmercury (MMHg) production. The highest in-situ Hg methylation was found close to the discharge pipe in subsurface sediments enriched with Hg, organic matter, and iron. There, ferruginous conditions were prevailing with high concentrations of dissolved Fe(2+) and virtually no free sulfide in the porewater. Sediment incubations demonstrated that the high MMHg production close to the discharge was controlled by low demethylation yields. Inhibition of dissimilatory sulfate reduction with molybdate led to increased iron reduction rates and Hg-methylation, suggesting that sulfate-reducing bacteria (SRB) may not have been the main Hg methylators under these conditions. However, Hg methylation in sediments amended with amorphous Fe(III)-oxides was only slightly higher than control conditions. Thus, in addition to iron-reducing bacteria, other non-SRB most likely contributed to Hg methylation. Overall, this study highlights that sediments impacted by STP discharges can become local hot-spots for Hg methylation due to the combined inputs of i) Hg, ii) organic matter, which fuels bacterial activities and iii) iron, which keeps porewater sulfide concentration low and hence Hg bioavailable. PMID:26005785

  11. Unfolded protein response is required for Aspergillus oryzae growth under conditions inducing secretory hydrolytic enzyme production.

    PubMed

    Tanaka, Mizuki; Shintani, Takahiro; Gomi, Katsuya

    2015-12-01

    Unfolded protein response (UPR) is an intracellular signaling pathway for adaptation to endoplasmic reticulum (ER) stress. In yeast UPR, Ire1 cleaves the unconventional intron of HAC1 mRNA, and the functional Hac1 protein translated from the spliced HAC1 mRNA induces the expression of ER chaperone genes and ER-associated degradation genes for the refolding or degradation of unfolded proteins. In this study, we constructed an ireA (IRE1 ortholog) conditionally expressing strain of Aspergillus oryzae, a filamentous fungus producing a large amount of amylolytic enzymes, and examined the contribution of UPR to ER stress adaptation under physiological conditions. Repression of ireA completely blocked A. oryzae growth under conditions inducing the production of hydrolytic enzymes, such as amylases and proteases. This growth defect was restored by the introduction of unconventional intronless hacA (hacA-i). Furthermore, UPR was observed to be induced by amylolytic gene expression, and the disruption of the transcriptional activator for amylolytic genes resulted in partial growth restoration of the ireA-repressing strain. In addition, a homokaryotic ireA disruption mutant was successfully generated using the strain harboring hacA-i as a parental host. These results indicated that UPR is required for A. oryzae growth to alleviate ER stress induced by excessive production of hydrolytic enzymes. PMID:26496881

  12. Ground penetrating radar mini-CRADA final report

    SciTech Connect

    Swanson, R.; Stump, G.; Weil, G.

    1996-09-01

    The purpose of this project was to determine the feasibility of using ground penetrating radar (GPR) to assess the ease of excavability prior to and during trenching operations. The project partners were EnTech Engineering Inc., Vermeer Manufacturing Co., and AlliedSignal Federal Manufacturing & Technology (FM&T)/Kansas City Plant (KCP). Commercial GPRs were field tested as well as a system developed at AlliedSignal FM&T. The AlliedSignal GPR was centered around a HP8753 Network Analyzer instrument. Commercial GPR antennas were connected to the analyzer and data was collected under control of software written for a notebook PC. Images of sub-surface features were generated for varied system parameters including: frequency, bandwidth, FFT windowing, gain, antenna orientation, and surface roughness conditions. Depths to 10 feet were of primary interest in this project. Although further development is required, this project has demonstrated that GPR can be used to identify transitions between different sub-surface conditions, as in going from one rock type to another. Additionally, the average relative dielectric constant of the material can be estimated which can be used to help identify the material. This information can be used to characterize an excavation site for use in budgeting a job. A real-time GPR would provide the operator with sub-surface images that could help with setting the optimum feed and speed rates of the trenching machine.

  13. Inflammatory bowel disease gene discovery. CRADA final report

    SciTech Connect

    1997-09-09

    The ultimate goal of this project is to identify the human gene(s) responsible for the disorder known as IBD. The work was planned in two phases. The desired products resulting from Phase 1 were BAC clone(s) containing the genetic marker(s) identified by gene/Networks, Inc. as potentially linked to IBD, plasmid subclones of those BAC(s), and new genetic markers developed from these plasmid subclones. The newly developed markers would be genotyped by gene/Networks, Inc. to ascertain evidence for linkage or non-linkage of IBD to this region. If non-linkage was indicated, the project would move to investigation of other candidate chromosomal regions. Where linkage was indicated, the project would move to Phase 2, in which a physical map of the candidate region(s) would be developed. The products of this phase would be contig(s) of BAC clones in the region exhibiting linkage to IBD, as well as plasmic subclones of the BACs and further genetic marker development. There would also be continued genotyping with new polymorphic markers during this phase. It was anticipated that clones identified and developed during these two phases would provide the physical resources for eventual disease gene discovery.

  14. Investigating the influence of production conditions on the energy distribution between the solid, liquid and gaseous products of slow pyrolysis

    NASA Astrophysics Data System (ADS)

    Crombie, Kyle; Masek, Ondrej

    2013-04-01

    Slow pyrolysis is a well established technology for converting biomass into a more stable form of carbon (biochar) while also producing energy rich by-products of bio-oil and syngas. Biochar is the porous, carbonaceous material produced by thermo-chemical treatment of organic materials in an oxygen-limited environment. Biochar can be incorporated into soils to improve soil fertility, reduce greenhouse gas emissions as well as provide long term storage of carbon or alternatively it can also provide additional energy to a pyrolysis system through combustion. Biochar production conditions have a significant influence on the yield as well as physiochemical and functional properties of the final pyrolysis products, resulting in a selection process aimed towards either agricultural benefits and carbon mitigation or heat/energy generation. This work aimed to investigate the effect of temperature, residence time and gas flow rate on the product energy distribution as well as the physical, chemical and soil functional properties of biochar, in order to optimise conditions best suited to maximise both energy value and agronomic benefit. Biochar samples were produced from wood pellets (WP) and straw pellets (SP) at two temperatures (350 and 650oC), with three residence times (10, 20 and 40 minutes) and three carrier gas flow rates (0, 0.3 and 0.6 L min-1). The energy balance of the system was determined through the calorimetric analysis of biochar and bio-oil, while the higher heating value for the syngas was calculated from the gas composition measured via mass spectroscopy. Biochar was also analysed for the physiochemical properties of proximate analysis and ultimate analysis as well as the functional property of environmentally stable carbon (C) content. As expected the yield of biochar decreased with increasing temperature resulting in elevated yields of liquid and gas fractions. Increased temperature also resulted in higher values of fixed C, total C, stable C and

  15. Advanced membrane separation technology for biosolvents. Final CRADA report.

    SciTech Connect

    Snyder, S. W.; Energy Systems

    2010-02-08

    Argonne and Vertec Biosolvents investigated the stability and perfonnance for a number of membrane systems to drive the 'direct process' for pervaporation-assisted esterification to produce lactate esters. As outlined in Figure 1, the target is to produce ammonium lactate by fennentation. After purification and concentration, ammonium lactate is reacted with ethanol to produce the ester. Esterification is a reversible reaction so to drive the reaction forward, the produced ammonia and water must be rapidly separated from the product. The project focused on selecting pervaporation membranes with (1) acid functionality to facilitate ammonia separation and (2) temperature stability to be able to perform that reaction at as high a temperature as possible (Figure 2). Several classes of commercial membrane materials and functionalized membrane materials were surveyed. The most promising materials were evaluated for scale-up to a pre-commercial application. Over 4 million metric tons per year of solvents are consumed in the U.S. for a wide variety of applications. Worldwide the usage exceeds 10 million metric tons per year. Many of these, such as the chlorinated solvents, are environmentally unfriendly; others, such as the ethylene glycol ethers and N Methyl Pyrrolidone (NMP), are toxic or teratogenic, and many other petroleum-derived solvents are coming under increasing regulatory restrictions. High performance, environmentally friendly solvents derived from renewable biological resources have the potential to replace many of the chlorinated and petrochemical derived solvents. Some of these solvents, such as ethyl lactate; d-limonene, soy methyl esters, and blends ofthese, can give excellent price/perfonnance in addition to the environmental and regulatory compliance benefits. Advancement of membrane technologies, particularly those based on pervaporation and electrodialysis, will lead to very efficient, non-waste producing, and economical manufacturing technologies for

  16. Reconstruction of Redox Conditions and Productivity in Coastal Waters of the Bothnian Sea during the Holocene

    NASA Astrophysics Data System (ADS)

    Dijkstra, N.; Quintana Krupinski, N. B.; Slomp, C. P.

    2014-12-01

    Hypoxia is a growing problem in coastal waters worldwide, and is a well-known cause of benthic mortality. The semi-enclosed Baltic Sea is currently the world's largest human-induced dead zone. During the early Holocene, it experienced several periods of natural hypoxia following the intrusion of seawater into the previous freshwater lake. Recent studies suggest that at that time, the hypoxia expanded north to include the deep basin of the Bothnian Sea. In this study, we assess whether the coastal zone of the Bothnian Sea was also hypoxic during the early Holocene. We analysed a unique sediment record (0 - 30 mbsf) from the Ångermanälven estuary, which was retrieved during the International Ocean Discovery Programme (IODP) Baltic Sea Paleoenvironment Expedition 347 in 2013. Using geochemical proxies and foraminifera abundances, we reconstruct the changes in redox conditions, salinity and productivity in the estuary. Our preliminary results suggest that bottom waters in this coastal basin became anoxic upon the intrusion of brackish seawater in the early Holocene and that the productivity was elevated. The presence of benthic foraminifera in this estuary during the mid-Holocene suggests more saline conditions in the Bothnian Sea than today. Due to isostatic uplift, the estuary likely gradually became more isolated from the Bothnian Sea, which itself became more isolated from the Baltic Sea. Both factors likely explain the subsequent re-oxygenation of bottom waters and gradual refreshening of the estuary as recorded in the sediments. Interestingly, the upper meters of sediment are enriched in minerals that contain iron, phosphorus and manganese. We postulate that the refreshening of the estuary triggered the formation of these minerals, thereby increasing the phosphorus retention in these sediments and further reducing primary productivity. This enhanced retention linked to refreshening may contribute to the current oligotrophic conditions in the Bothnian Sea.

  17. Condition-dependent ejaculate production affects male mating behavior in the common bedbug Cimex lectularius.

    PubMed

    Kaldun, Bettina; Otti, Oliver

    2016-04-01

    Food availability in the environment is often low and variable, constraining organisms in their resource allocation to different life-history traits. For example, variation in food availability is likely to induce condition-dependent investment in reproduction. Further, diet has been shown to affect ejaculate size, composition and quality. How these effects translate into male reproductive success or change male mating behavior is still largely unknown. Here, we concentrated on the effect of meal size on ejaculate production, male reproductive success and mating behavior in the common bedbug Cimex lectularius. We analyzed the production of sperm and seminal fluid within three different feeding regimes in six different populations. Males receiving large meals produced significantly more sperm and seminal fluid than males receiving small meals or no meals at all. While such condition-dependent ejaculate production did not affect the number of offspring produced after a single mating, food-restricted males could perform significantly fewer matings than fully fed males. Therefore, in a multiple mating context food-restricted males paid a fitness cost and might have to adjust their mating strategy according to the ejaculate available to them. Our results indicate that meal size has no direct effect on ejaculate quality, but food availability forces a condition-dependent mating rate on males. Environmental variation translating into variation in male reproductive traits reveals that natural selection can interact with sexual selection and shape reproductive traits. As males can modulate their ejaculate size depending on the mating situation, future studies are needed to elucidate whether environmental variation affecting the amount of ejaculate available might induce different mating strategies. PMID:27066237

  18. Anaerobic digestion of the microalga Spirulina at extreme alkaline conditions: biogas production, metagenome, and metatranscriptome.

    PubMed

    Nolla-Ardèvol, Vímac; Strous, Marc; Tegetmeyer, Halina E

    2015-01-01

    A haloalkaline anaerobic microbial community obtained from soda lake sediments was used to inoculate anaerobic reactors for the production of methane rich biogas. The microalga Spirulina was successfully digested by the haloalkaline microbial consortium at alkaline conditions (pH 10, 2.0 M Na(+)). Continuous biogas production was observed and the obtained biogas was rich in methane, up to 96%. Alkaline medium acted as a CO2 scrubber which resulted in low amounts of CO2 and no traces of H2S in the produced biogas. A hydraulic retention time (HRT) of 15 days and 0.25 g Spirulina L(-1) day(-1) organic loading rate (OLR) were identified as the optimal operational parameters. Metagenomic and metatranscriptomic analysis showed that the hydrolysis of the supplied substrate was mainly carried out by Bacteroidetes of the "ML635J-40 aquatic group" while the hydrogenotrophic pathway was the main producer of methane in a methanogenic community dominated by Methanocalculus. PMID:26157422

  19. Effect of culture conditions on tremorgen production by some Penicillium species.

    PubMed Central

    di Menna, M E; Lauren, D R; Wyatt, P A

    1986-01-01

    Four strains each of seven tremorgenic Penicillium species were grown under various conditions and tested for tremorgen production by intraperitoneal injection of mice and by chemical analysis. Half of the strains had previously been found to be tremorgenic on bioassay after growth on Czapek Dox yeast extract broth or potato-milk-sucrose broth for 3 weeks at 26 degrees C. In the tests reported here nearly all previously nontremorgenic strains were either tremorgenic to mice or produced tremorgens detectable by chemical analysis but did so after longer incubation periods than used in the original screening. Bioassay was not suitable for the estimation of absolute levels but was preferable to chemical analysis when the identity of the tremorgens was not known. Species and strains within species gave different responses to changes in culture medium, incubation temperature, light irradiation, and shaking. Overall, tremorgen production was maximal at 20 or 26 degrees C, increased with time, and was reduced in shaken culture. PMID:3707124

  20. Effect of culture conditions on tremorgen production by some Penicillium species.

    PubMed

    di Menna, M E; Lauren, D R; Wyatt, P A

    1986-04-01

    Four strains each of seven tremorgenic Penicillium species were grown under various conditions and tested for tremorgen production by intraperitoneal injection of mice and by chemical analysis. Half of the strains had previously been found to be tremorgenic on bioassay after growth on Czapek Dox yeast extract broth or potato-milk-sucrose broth for 3 weeks at 26 degrees C. In the tests reported here nearly all previously nontremorgenic strains were either tremorgenic to mice or produced tremorgens detectable by chemical analysis but did so after longer incubation periods than used in the original screening. Bioassay was not suitable for the estimation of absolute levels but was preferable to chemical analysis when the identity of the tremorgens was not known. Species and strains within species gave different responses to changes in culture medium, incubation temperature, light irradiation, and shaking. Overall, tremorgen production was maximal at 20 or 26 degrees C, increased with time, and was reduced in shaken culture. PMID:3707124

  1. Fission products behaviour in UO2 submitted to nuclear severe accident conditions

    NASA Astrophysics Data System (ADS)

    Geiger, E.; Bès, R.; Martin, P.; Pontillon, Y.; Solari, P. L.; Salome, M.

    2016-05-01

    The objective of this work was to study the molybdenum chemistry in UO2 based materials, known as SIMFUELS. These materials could be used as an alternative to irradiated nuclear fuels in the study of fission products behaviour during a nuclear severe accident. UO2 samples doped with 12 stable isotopes of fission products were submitted to annealing tests in conditions representative to intermediate steps of severe accidents. Samples were characterized by SEM-EDS and XAS. It was found that Mo chemistry seems to be more complex than what is normally estimated by thermodynamic calculations: XAS spectra indicate the presence of Mo species such as metallic Mo, MoO2, MoO3 and Cs2MoO4.

  2. Screening and characterization of Isochrysis strains and optimization of culture conditions for docosahexaenoic acid production.

    PubMed

    Liu, Jin; Sommerfeld, Milton; Hu, Qiang

    2013-06-01

    Isochrysis is a genus of marine unicellular microalgae that produces docosahexaenoic acid (DHA, C22:6), a very long chain polyunsaturated fatty acid (PUFA) of significant health and nutritional value. Mass cultivation of Isochrysis for DHA production for human consumption has not been established due to disappointing low DHA productivity obtained from commonly used Isochrysis strains. In this study, 19 natural Isochrysis strains were screened for DHA yields and the results showed that the cellular DHA content ranged from 6.8 to 17.0 % of total fatty acids with the highest DHA content occurring in the exponential growth phase. Isochrysis galbana #153180 exhibited the greatest DHA production potential and was selected for further investigation. The effects of different light intensities, forms, and concentrations of nitrogen, phosphorus, and salinity on growth and DHA production of I. galbana #153180 were studied in a bubble column photobioreactor (PBR). Under favorable culture conditions, I. galbana #153180 contained DHA up to 17.5 % of total fatty acids or 1.7 % of cell dry weight. I. galbana #153180 was further tested in outdoor flat-plate PBRs varying in light path length, starting cell density (SCD), and culture mode (batch versus semicontinuous). When optimized, record high biomass and DHA productivity of I. galbana #153180 of 0.72 g L(-1) day(-1) and 13.6 mg L(-1) day(-1), or 26.4 g m(-2) day(-1) and 547.7 mg m(-2) day(-1), respectively, were obtained, suggesting that I. galbana #153180 may be a desirable strain for commercial production of DHA. PMID:23423326

  3. Gelcasting of CRYSTAR{reg_sign} silicon carbide ceramics. CRADA final report

    SciTech Connect

    Nunn, S.D.; Willkens, C.A.

    1998-12-31

    This Cooperative Research and Development Agreement (CRADA) was undertaken to assess the applicability the gelcasting process for forming ceramic green bodies using Saint-Gobain/Norton Industrial Ceramics Corporation`s proprietary CRYSTAR{reg_sign} silicon carbide powder. A gelcasting process, specifically tailored to Saint-Gobain/Norton`s powder composition, was developed and used successfully to form green bodies for property evaluation. This preliminary evaluation showed that the gelcast material had characteristics and properties comparable to Norton`s baseline material. Wafer carrier molds were received from Norton for gelcasting a complex-shaped configuration with CRYSTAR{reg_sign} silicon carbide. Gelcasting experiments showed that Norton`s standard plaster of paris molds were incompatible with the gelcasting process. Mold surface treatments and the use of alternative castable mold materials were investigated, however, a successful process was not identified. The highest quality parts were cast in either glass or aluminum molds.

  4. Multiphase Flow Modeling - Validation and Application CRADA MC94-019, Final Report

    SciTech Connect

    Madhava Syamlal; Philip A. Nicoletti

    1995-08-31

    For the development and validation of multiphase flow modeling capability, a cooperative research and development agreement (CRADA) is in effect between Morgantown Energy Technology Center (METC) and Fluent Inc. To validate the Fluent multiphase model, several simulations were conducted at METC and the results were compared with the results of MFIX, a multiphase flow code developed at METC, and with experimental data. The results of these validation studies will be presented. In addition, the application of multiphase flow modeling will be illustrated by presenting the results of simulations of a filter back- flushing and a fluidized bed coal gasifier. These simulations were conducted only with MFIX, since certain features needed in these simulations will be available only in the next release of Fluent.

  5. CRADA ORNL 91-0046B final report: Assessment of IBM advanced computing architectures

    SciTech Connect

    Geist, G.A.

    1996-02-01

    This was a Cooperative Research and Development Agreement (CRADA) with IBM to assess their advanced computer architectures. Over the course of this project three different architectures were evaluated. The POWER/4 RIOS1 based shared memory multiprocessor, the POWER/2 RIOS2 based high performance workstation, and the J30 PowerPC based shared memory multiprocessor. In addition to this hardware several software packages where beta tested for IBM including: ESSO scientific computing library, nv video-conferencing package, Ultimedia multimedia display environment, FORTRAN 90 and C++ compilers, and the AIX 4.1 operating system. Both IBM and ORNL benefited from the research performed in this project and even though access to the POWER/4 computer was delayed several months, all milestones were met.

  6. Techno-economic evaluation of conditioning with sodium sulfite for bioethanol production from softwood.

    PubMed

    Cavka, Adnan; Martín, Carlos; Alriksson, Björn; Mörtsell, Marlene; Jönsson, Leif J

    2015-11-01

    Conditioning with reducing agents allows alleviation of inhibition of biocatalytic processes by toxic by-products generated during biomass pretreatment, without necessitating the introduction of a separate process step. In this work, conditioning of steam-pretreated spruce with sodium sulfite made it possible to lower the yeast and enzyme dosages in simultaneous saccharification and fermentation (SSF) to 1g/L and 5FPU/g WIS, respectively. Techno-economic evaluation indicates that the cost of sodium sulfite can be offset by benefits resulting from a reduction of either the yeast load by 0.68g/L or the enzyme load by 1FPU/g WIS. As those thresholds were surpassed, inclusion of conditioning can be justified. Another potential benefit results from shortening the SSF time, which would allow reducing the bioreactor volume and result in capital savings. Sodium sulfite conditioning emerges as an opportunity to lower the financial uncertainty and compensate the overall investment risk for commercializing a softwood-to-ethanol process. PMID:26232771

  7. Chitosan production by psychrotolerant Rhizopus oryzae in non-sterile open fermentation conditions.

    PubMed

    Tasar, Ozden Canli; Erdal, Serkan; Taskin, Mesut

    2016-08-01

    A new chitosan producing fungus was locally isolated from soil samples collected around Erzurum, Turkey and identified as Rhizopus oryzae PAS 17 (GenBank accession number KU318422.1). Cultivation in low cost non-sterile conditions was achieved by exploiting its ability to grow at low temperature and pH, thus, undesired microbial contamination could be eliminated when appropriate culture conditions (incubation temperature as 15°C and initial pH of the medium as 4.5) were selected. Medium composition and culture conditions were optimized using Taguchi orthogonal array (OA) design of experiment (DOE). An OA layout of L16 (4(5)) was constructed with five most influensive factors at four levels on chitosan production like, carbon source (molasses), metal ion (Mg(2+)), inoculum amount, agitation speed and incubation time. The optimal combinations of factors (molasses, 70ml/l; MgSO4·7H2O, 0.5g/l; inoculum, 6.7×10(6) spores/disc; agitation speed, 150rpm and incubation time, 8days) obtained from the proposed DOE methodology was further validated by analysis of variance (ANOVA) test and the results revealed the increment of chitosan and biomass yields of 14.45 and 8.58 folds from its unoptimized condition, respectively. PMID:27154516

  8. A Review on the Assessment of Stress Conditions for Simultaneous Production of Microalgal Lipids and Carotenoids

    PubMed Central

    Minhas, Amritpreet K.; Hodgson, Peter; Barrow, Colin J.; Adholeya, Alok

    2016-01-01

    Microalgal species are potential resource of both biofuels and high-value metabolites, and their production is growth dependent. Growth parameters can be screened for the selection of novel microalgal species that produce molecules of interest. In this context our review confirms that, autotrophic and heterotrophic organisms have demonstrated a dual potential, namely the ability to produce lipids as well as value-added products (particularly carotenoids) under influence of various physico-chemical stresses on microalgae. Some species of microalgae can synthesize, besides some pigments, very-long-chain polyunsaturated fatty acids (VL-PUFA,>20C) such as docosahexaenoic acid and eicosapentaenoic acid, those have significant applications in food and health. Producing value-added by-products in addition to biofuels, fatty acid methyl esters (FAME), and lipids has the potential to improve microalgae-based biorefineries by employing either the autotrophic or the heterotrophic mode, which could be an offshoot of biotechnology. The review considers the potential of microalgae to produce a range of products and indicates future directions for developing suitable criteria for choosing novel isolates through bioprospecting large gene pool of microalga obtained from various habitats and climatic conditions. PMID:27199903

  9. Functional significance of dinitrogen fixation in sustaining coral productivity under oligotrophic conditions.

    PubMed

    Cardini, Ulisse; Bednarz, Vanessa N; Naumann, Malik S; van Hoytema, Nanne; Rix, Laura; Foster, Rachel A; Al-Rshaidat, Mamoon M D; Wild, Christian

    2015-11-01

    Functional traits define species by their ecological role in the ecosystem. Animals themselves are host-microbe ecosystems (holobionts), and the application of ecophysiological approaches can help to understand their functioning. In hard coral holobionts, communities of dinitrogen (N2)-fixing prokaryotes (diazotrophs) may contribute a functional trait by providing bioavailable nitrogen (N) that could sustain coral productivity under oligotrophic conditions. This study quantified N2 fixation by diazotrophs associated with four genera of hermatypic corals on a northern Red Sea fringing reef exposed to high seasonality. We found N2 fixation activity to be 5- to 10-fold higher in summer, when inorganic nutrient concentrations were lowest and water temperature and light availability highest. Concurrently, coral gross primary productivity remained stable despite lower Symbiodinium densities and tissue chlorophyll a contents. In contrast, chlorophyll a content per Symbiodinium cell increased from spring to summer, suggesting that algal cells overcame limitation of N, an essential element for chlorophyll synthesis. In fact, N2 fixation was positively correlated with coral productivity in summer, when its contribution was estimated to meet 11% of the Symbiodinium N requirements. These results provide evidence of an important functional role of diazotrophs in sustaining coral productivity when alternative external N sources are scarce. PMID:26511052

  10. Effects of culture conditions on growth and docosahexaenoic acid production from Schizochytrium limacinum

    NASA Astrophysics Data System (ADS)

    Zhu, Luying; Zhang, Xuecheng; Ren, Xueying; Zhu, Qinghua

    2008-02-01

    The effects of temperature, initial pH, salinity of culture medium, and carbon and nitrogen sources on growth and docosahexaenoic acid (C22: 6 n-3, DHA) production from Schizochytrium limacinum OUC88 were investigated in the present study. The results revealed that the optimal temperature, initial pH and salinity level of the medium for DHA production were 23°C, 7.0 and 18, respectively. Glucose was proved the best carbon source for the growth and DHA production from S. limacinum. Among the nitrogen sources tested, soybean cake hydrolysate, a cheap by-product, was found to be effective for the accumulation of DHA in S. limacinum cells. In addition, increasing the concentration of carbon sources in the medium caused a significant increase in cell biomass; however, accumulation of DHA in cells was mainly stimulated by the ratio of C/N in the medium. Under the optimal culture conditions, the maximum DHA yield achieved in flasks was 4.08 g L-1 after 5 d of cultivation.