Sample records for production determine arctic

  1. Reduced North American terrestrial primary productivity linked to anomalous Arctic warming

    DOE PAGES

    Kim, Jin-Soo; Kug, Jong-Seong; Jeong, Su-Jong; ...

    2017-07-10

    Warming temperatures in the Northern Hemisphere have enhanced terrestrial productivity. Despite the warming trend, North America has experienced more frequent and more intense cold weather events during winters and springs. These events have been linked to anomalous Arctic warming since 1990, and may affect terrestrial processes. Here we analyse many observation data sets and numerical model simulations to evaluate links between Arctic temperatures and primary productivity in North America. We find that positive springtime temperature anomalies in the Arctic have led to negative anomalies in gross primary productivity over most of North America during the last three decades, which amountmore » to a net productivity decline of 0.31 PgC yr -1 across the continent. This decline is mainly explained by two factors: severe cold conditions in northern North America and lower precipitation in the South Central United States. In addition, United States crop-yield data reveal that during years experiencing anomalous warming in the Arctic, yields declined by approximately 1 to 4% on average, with individual states experiencing declines of up to 20%. We conclude that the strengthening of Arctic warming anomalies in the past decades has remotely reduced productivity over North America.« less

  2. Reduced North American terrestrial primary productivity linked to anomalous Arctic warming

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Jin-Soo; Kug, Jong-Seong; Jeong, Su-Jong

    Warming temperatures in the Northern Hemisphere have enhanced terrestrial productivity. Despite the warming trend, North America has experienced more frequent and more intense cold weather events during winters and springs. These events have been linked to anomalous Arctic warming since 1990, and may affect terrestrial processes. Here we analyse many observation data sets and numerical model simulations to evaluate links between Arctic temperatures and primary productivity in North America. We find that positive springtime temperature anomalies in the Arctic have led to negative anomalies in gross primary productivity over most of North America during the last three decades, which amountmore » to a net productivity decline of 0.31 PgC yr -1 across the continent. This decline is mainly explained by two factors: severe cold conditions in northern North America and lower precipitation in the South Central United States. In addition, United States crop-yield data reveal that during years experiencing anomalous warming in the Arctic, yields declined by approximately 1 to 4% on average, with individual states experiencing declines of up to 20%. We conclude that the strengthening of Arctic warming anomalies in the past decades has remotely reduced productivity over North America.« less

  3. Production and Cycling of Methylmercury in High Arctic Wetland Ponds

    NASA Astrophysics Data System (ADS)

    Lehnherr, I.; St. Louis, V. L.

    2010-12-01

    Some species of freshwater fish in the Canadian high Arctic contain levels of methylmercury (MeHg) that pose health risks to the northern Inuit peoples that harvest these species as a traditional food source. In temperate regions, wetlands are known natural sites of MeHg production and hence significant MeHg sources to downstream ecosystems. However, the importance of wetlands to Hg methylation in the Arctic is unclear and the sources of MeHg to arctic freshwater ecosystems are still largely unidentified. Our research is demonstrating that some shallow and warm wetland ponds on the Arctic landscape contain high MeHg concentrations compared to nearby deep and cold lakes. We used a mass-balance approach to measure the net in-pond production of MeHg in two warm wetland ponds (Ponds 1 and 2) near Lake Hazen, Ellesmere Island, Nunavut (81° N latitude). We quantified external inputs and outputs of MeHg to and from the ponds, as well as the accumulation of MeHg in the water column during the summers of 2005 and 2008. Any changes in water column MeHg concentrations that could not be accounted for by external inputs or sinks were attributed to in-pond production. The principal external input and sink of MeHg was, respectively, wet atmospheric deposition and water-column MeHg photodemethylation. For 2005, we estimate that the net flux of MeHg from sediments into the water column was 0.015 μg m-2 d-1 in Pond 1 and 0.0016 μg m-2 d-1 in Pond 2. Compared to sediment-water MeHg fluxes measured in Alaskan tundra lakes (0.0015-0.0045 μg m-2 d-1), Pond 1 sediments are a greater source of MeHg while Pond 2 is similar to the Alaskan lakes. Furthermore, the accumulation of MeHg in the water column of Pond 1 (0.0061 μg m-2 d-1) was similar to the net yield of MeHg from temperate boreal wetlands (0.0005-0.006 μg m-2 d-1), demonstrating that these Arctic wetlands are important sites of MeHg production. In addition, we used mercury stable-isotope tracers to quantify methylation and

  4. Possible causes of Arctic Tundra Vegetation Productivity Declines

    NASA Astrophysics Data System (ADS)

    Bhatt, U. S.; Walker, D. A.; Raynolds, M. K.; Bieniek, P.; Epstein, H. E.; Comiso, J. C.; Pinzon, J. E.; Tucker, C. J.

    2017-12-01

    Three decades of remotely sensed Normalized Difference Vegetation Index (NDVI) data document an overall increase in Arctic tundra vegetation greenness but the trends display considerable spatial variability. Pan-Arctic tundra vegetation greening is associated with increases in summer warmth that are, in large-part, driven by summer sea-ice retreat along Arctic coasts. Trends covering the period 1982-2016 are overall positive for summer open water, Summer Warmth Index (SWI, the sum of the degree months above zero from May-August), MaxNDVI (peak NDVI) and time integrated NDVI (TI-NDVI, sum of biweekly NDVI above 0.05 from May-September). Upon closer examination, it is clear that not all regions have positive trends, for example, there is an area of cooling in western Eurasia, which is broadly co-located with maxNDVI and TI-NDVI declines. While sea ice decline has continued over the satellite record, summer landsurface temperatures and vegetation productivity measures have not simply increased. Regional differences between warming and greening trends suggest that it is likely that multiple processes influence vegetation productivity beyond secular greening with increased summer warmth. This paper will present Pan-Arctic and regional analyses of the NDVI data in the context of climate drivers. Other possible drivers of vegetation productivity decline will be discussed such as increased standing water, delayed spring snow-melt, and winter thaw events. The status and limitations of data sets and modeling needed to advance our understanding of tundra vegetation productivity will be summarized and will serve as a starting point for planning the next steps in this topic. Methodical multi-disciplinary synthesis research that jointly considers vegetation type, permafrost conditions, altitude, as well as climate factors such as temperature, heat and moisture transport, and timing of snowfall and spring snowmelt is needed to better understand recent tundra vegetation

  5. Warming increases methylmercury production in an Arctic soil

    DOE PAGES

    Yang, Ziming; Fang, Wei; Lu, Xia; ...

    2016-04-29

    The rapid temperature rise in Arctic permafrost concerns not only the degradation of stored soil organic carbon (SOC) and climate feedback, but also the production and bioaccumulation of methylmercury (MeHg) that may endanger humans, as well as wildlife in terrestrial, aquatic, and marine ecosystems. Decomposition of SOC provides an energy source for microbial methylation, although little is known how rapid permafrost thaw affects Hg methylation and how SOC degradation is coupled to MeHg biosynthesis. We describe rates of MeHg production in Arctic soils from an 8-month warming microcosm experiment under anoxic conditions. MeHg production increased >10 fold in both organic-more » and the mineral-rich soil layers at a warmer temperature (8 C) compared to a sub-zero temperature ( 2 C). MeHg production was positively correlated to methane and ferrous ion concentrations, suggesting that Hg methylation is coupled with methanogenesis and iron reduction. Labile SOC, such as reducing sugars and alcohol, were particularly effective in fueling the initial rapid biosynthesis of MeHg. In freshly amended Hg we found that there was more bioavailable than existing Hg in the mineral soil. Finally, the data indicate that climate warming and permafrost thaw could greatly enhance MeHg production, thereby impacting Arctic aquatic and marine ecosystems through biomagnification in the food web.« less

  6. Future change in ocean productivity: Is the Arctic the new Atlantic?

    NASA Astrophysics Data System (ADS)

    Yool, A.; Popova, E. E.; Coward, A. C.

    2015-12-01

    One of the most characteristic features in ocean productivity is the North Atlantic spring bloom. Responding to seasonal increases in irradiance and stratification, surface phytopopulations rise significantly, a pattern that visibly tracks poleward into summer. While blooms also occur in the Arctic Ocean, they are constrained by the sea-ice and strong vertical stratification that characterize this region. However, Arctic sea-ice is currently declining, and forecasts suggest this may lead to completely ice-free summers by the mid-21st century. Such change may open the Arctic up to Atlantic-style spring blooms, and do so at the same time as Atlantic productivity is threatened by climate change-driven ocean stratification. Here we use low and high-resolution instances of a coupled ocean-biogeochemistry model, NEMO-MEDUSA, to investigate productivity. Drivers of present-day patterns are identified, and changes in these across a climate change scenario (IPCC RCP 8.5) are analyzed. We find a globally significant decline in North Atlantic productivity (> -20%) by 2100, and a correspondingly significant rise in the Arctic (> +50%). However, rather than the future Arctic coming to resemble the current Atlantic, both regions are instead transitioning to a common, low nutrient regime. The North Pacific provides a counterexample where nutrients remain high and productivity increases with elevated temperature. These responses to climate change in the Atlantic and Arctic are common between model resolutions, suggesting an independence from resolution for key impacts. However, some responses, such as those in the North Pacific, differ between the simulations, suggesting the reverse and supporting the drive to more fine-scale resolutions. This article was corrected on 5 JAN 2016. See the end of the full text for details.

  7. Determination of monomethylmercury and dimethylmercury in the Arctic marine boundary layer.

    PubMed

    Baya, Pascale A; Gosselin, Michel; Lehnherr, Igor; St Louis, Vincent L; Hintelmann, Holger

    2015-01-06

    Our understanding of the biogeochemical cycling of monomethylmercury (MMHg) in the Arctic is incomplete because atmospheric sources and sinks of MMHg are still unclear. We sampled air in the Canadian Arctic marine boundary layer to quantify, for the first time, atmospheric concentrations of methylated Hg species (both MMHg and dimethylmercury (DMHg)), and, estimate the importance of atmospheric deposition as a source of MMHg to Arctic land- and sea-scapes. Overall atmospheric MMHg and DMHg concentrations (mean ± SD) were 2.9 ± 3.6 and 3.8 ± 3.1 (n = 37) pg m(-3), respectively. Concentrations of methylated Hg species in the marine boundary layer varied significantly among our sites, with a predominance of MMHg over Hudson Bay (HB), and DMHg over Canadian Arctic Archipelago (CAA) waters. We concluded that DMHg is of marine origin and that primary production rate and sea-ice cover are major drivers of its concentration in the Canadian Arctic marine boundary layer. Summer wet deposition rates of atmospheric MMHg, likely to be the product of DMHg degradation in the atmosphere, were estimated at 188 ± 117.5 ng m(-2) and 37 ± 21.7 ng m(-2) for HB and CAA, respectively, sustaining MMHg concentrations available for biomagnification in the pelagic food web.

  8. Modeling seasonality of ice and ocean carbon production in the Arctic

    NASA Astrophysics Data System (ADS)

    Jin, M.; Deal, C. M.; Ji, R.

    2011-12-01

    In the Arctic Ocean, both phytoplankton and sea ice algae are important contributors to the primary production and the arctic food web. Copepod in the arctic regions have developed their feeding habit depending on the timing between the ice algal bloom and the subsequent phytoplankton bloom. A mismatch of the timing due to climate changes could have dramatic consequences on the food web as shown by some regional observations. In this study, a global coupled ice-ocean-ecosystem model was used to assess the seasonality of the ice algal and phytoplankton blooms in the arctic. The ice-ocean ecosystem modules are fully coupled in the physical model POP-CICE (Parallel Ocean Program- Los Alamos Sea Ice Model). The model results are compared with various observations. The modeled ice and ocean carbon production were analyzed by regions and their linkage to the physical environment changes (such as changes of ice concentration and water temperature, and light intensity etc.) between low- and high-ice years.

  9. Shallow methylmercury production in the marginal sea ice zone of the central Arctic Ocean

    PubMed Central

    Heimbürger, Lars-Eric; Sonke, Jeroen E.; Cossa, Daniel; Point, David; Lagane, Christelle; Laffont, Laure; Galfond, Benjamin T.; Nicolaus, Marcel; Rabe, Benjamin; van der Loeff, Michiel Rutgers

    2015-01-01

    Methylmercury (MeHg) is a neurotoxic compound that threatens wildlife and human health across the Arctic region. Though much is known about the source and dynamics of its inorganic mercury (Hg) precursor, the exact origin of the high MeHg concentrations in Arctic biota remains uncertain. Arctic coastal sediments, coastal marine waters and surface snow are known sites for MeHg production. Observations on marine Hg dynamics, however, have been restricted to the Canadian Archipelago and the Beaufort Sea (<79°N). Here we present the first central Arctic Ocean (79–90°N) profiles for total mercury (tHg) and MeHg. We find elevated tHg and MeHg concentrations in the marginal sea ice zone (81–85°N). Similar to other open ocean basins, Arctic MeHg concentration maxima also occur in the pycnocline waters, but at much shallower depths (150–200 m). The shallow MeHg maxima just below the productive surface layer possibly result in enhanced biological uptake at the base of the Arctic marine food web and may explain the elevated MeHg concentrations in Arctic biota. We suggest that Arctic warming, through thinning sea ice, extension of the seasonal sea ice zone, intensified surface ocean stratification and shifts in plankton ecodynamics, will likely lead to higher marine MeHg production. PMID:25993348

  10. Shallow methylmercury production in the marginal sea ice zone of the central Arctic Ocean.

    PubMed

    Heimbürger, Lars-Eric; Sonke, Jeroen E; Cossa, Daniel; Point, David; Lagane, Christelle; Laffont, Laure; Galfond, Benjamin T; Nicolaus, Marcel; Rabe, Benjamin; van der Loeff, Michiel Rutgers

    2015-05-20

    Methylmercury (MeHg) is a neurotoxic compound that threatens wildlife and human health across the Arctic region. Though much is known about the source and dynamics of its inorganic mercury (Hg) precursor, the exact origin of the high MeHg concentrations in Arctic biota remains uncertain. Arctic coastal sediments, coastal marine waters and surface snow are known sites for MeHg production. Observations on marine Hg dynamics, however, have been restricted to the Canadian Archipelago and the Beaufort Sea (<79 °N). Here we present the first central Arctic Ocean (79-90 °N) profiles for total mercury (tHg) and MeHg. We find elevated tHg and MeHg concentrations in the marginal sea ice zone (81-85 °N). Similar to other open ocean basins, Arctic MeHg concentration maxima also occur in the pycnocline waters, but at much shallower depths (150-200 m). The shallow MeHg maxima just below the productive surface layer possibly result in enhanced biological uptake at the base of the Arctic marine food web and may explain the elevated MeHg concentrations in Arctic biota. We suggest that Arctic warming, through thinning sea ice, extension of the seasonal sea ice zone, intensified surface ocean stratification and shifts in plankton ecodynamics, will likely lead to higher marine MeHg production.

  11. Physiological and ecological effects of increasing temperature on fish production in lakes of Arctic Alaska

    USGS Publications Warehouse

    Carey, Michael P.; Zimmerman, Christian E.

    2014-01-01

    Lake ecosystems in the Arctic are changing rapidly due to climate warming. Lakes are sensitive integrators of climate-induced changes and prominent features across the Arctic landscape, especially in lowland permafrost regions such as the Arctic Coastal Plain of Alaska. Despite many studies on the implications of climate warming, how fish populations will respond to lake changes is uncertain for Arctic ecosystems. Least Cisco (Coregonus sardinella) is a bellwether for Arctic lakes as an important consumer and prey resource. To explore the consequences of climate warming, we used a bioenergetics model to simulate changes in Least Cisco production under future climate scenarios for lakes on the Arctic Coastal Plain. First, we used current temperatures to fit Least Cisco consumption to observed annual growth. We then estimated growth, holding food availability, and then feeding rate constant, for future projections of temperature. Projected warmer water temperatures resulted in reduced Least Cisco production, especially for larger size classes, when food availability was held constant. While holding feeding rate constant, production of Least Cisco increased under all future scenarios with progressively more growth in warmer temperatures. Higher variability occurred with longer projections of time mirroring the expanding uncertainty in climate predictions further into the future. In addition to direct temperature effects on Least Cisco growth, we also considered changes in lake ice phenology and prey resources for Least Cisco. A shorter period of ice cover resulted in increased production, similar to warming temperatures. Altering prey quality had a larger effect on fish production in summer than winter and increased relative growth of younger rather than older age classes of Least Cisco. Overall, we predicted increased production of Least Cisco due to climate warming in lakes of Arctic Alaska. Understanding the implications of increased production of Least Cisco to

  12. Physiological and ecological effects of increasing temperature on fish production in lakes of Arctic Alaska.

    PubMed

    Carey, Michael P; Zimmerman, Christian E

    2014-05-01

    Lake ecosystems in the Arctic are changing rapidly due to climate warming. Lakes are sensitive integrators of climate-induced changes and prominent features across the Arctic landscape, especially in lowland permafrost regions such as the Arctic Coastal Plain of Alaska. Despite many studies on the implications of climate warming, how fish populations will respond to lake changes is uncertain for Arctic ecosystems. Least Cisco (Coregonus sardinella) is a bellwether for Arctic lakes as an important consumer and prey resource. To explore the consequences of climate warming, we used a bioenergetics model to simulate changes in Least Cisco production under future climate scenarios for lakes on the Arctic Coastal Plain. First, we used current temperatures to fit Least Cisco consumption to observed annual growth. We then estimated growth, holding food availability, and then feeding rate constant, for future projections of temperature. Projected warmer water temperatures resulted in reduced Least Cisco production, especially for larger size classes, when food availability was held constant. While holding feeding rate constant, production of Least Cisco increased under all future scenarios with progressively more growth in warmer temperatures. Higher variability occurred with longer projections of time mirroring the expanding uncertainty in climate predictions further into the future. In addition to direct temperature effects on Least Cisco growth, we also considered changes in lake ice phenology and prey resources for Least Cisco. A shorter period of ice cover resulted in increased production, similar to warming temperatures. Altering prey quality had a larger effect on fish production in summer than winter and increased relative growth of younger rather than older age classes of Least Cisco. Overall, we predicted increased production of Least Cisco due to climate warming in lakes of Arctic Alaska. Understanding the implications of increased production of Least Cisco to

  13. Seasonality of primary and secondary production in an Arctic river

    NASA Astrophysics Data System (ADS)

    Kendrick, M.; Huryn, A.; Deegan, L.

    2011-12-01

    Rivers and streams that freeze solid for 8-9 months each year provide excellent examples of the extreme seasonality of arctic habitats. The communities of organisms inhabiting these rivers must complete growth and development during summer, resulting in a rapid ramp-up and down of production over the short ice-free period. The effects of recent shifts in the timing of the spring thaw and autumn freeze-up on the duration and pattern of the period of active production are poorly understood. We are currently investigating: 1) the response of the biotic community of the Kuparuk River (Arctic Alaska) to shifts in the seasonality of the ice-free period, and 2) the community response to increases in phosphorous (P) supply anticipated as the volume of the permafrost active-layer increases in response to climate warming. Here algal production supports a 2-tier web of consumers. We tracked primary and secondary production from the spring thaw through mid-August in a reference reach and one receiving low-level P fertilization. Gross primary production/community respiration (GPP/R) ratios for both reaches were increasing through mid-July, with higher GPP/R in response to the P addition. Understanding the degree of synchrony between primary and secondary production in this Arctic river system will enhance further understanding of how shifts in seasonality affect trophic dynamics.

  14. 76 FR 5236 - Culturally Significant Objects Imported for Exhibition Determinations: “Upside Down Arctic...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-28

    ... DEPARTMENT OF STATE [Public Notice: 7314] Culturally Significant Objects Imported for Exhibition Determinations: ``Upside Down Arctic Realities'' SUMMARY: Notice is hereby given of the following determinations... the exhibition ``Upside Down Arctic Realities,'' imported from abroad for temporary exhibition within...

  15. Historical and ecological determinants of genetic structure in arctic canids.

    PubMed

    Carmichael, L E; Krizan, J; Nagy, J A; Fuglei, E; Dumond, M; Johnson, D; Veitch, A; Berteaux, D; Strobeck, C

    2007-08-01

    Wolves (Canis lupus) and arctic foxes (Alopex lagopus) are the only canid species found throughout the mainland tundra and arctic islands of North America. Contrasting evolutionary histories, and the contemporary ecology of each species, have combined to produce their divergent population genetic characteristics. Arctic foxes are more variable than wolves, and both island and mainland fox populations possess similarly high microsatellite variation. These differences result from larger effective population sizes in arctic foxes, and the fact that, unlike wolves, foxes were not isolated in discrete refugia during the Pleistocene. Despite the large physical distances and distinct ecotypes represented, a single, panmictic population of arctic foxes was found which spans the Svalbard Archipelago and the North American range of the species. This pattern likely reflects both the absence of historical population bottlenecks and current, high levels of gene flow following frequent long-distance foraging movements. In contrast, genetic structure in wolves correlates strongly to transitions in habitat type, and is probably determined by natal habitat-biased dispersal. Nonrandom dispersal may be cued by relative levels of vegetation cover between tundra and forest habitats, but especially by wolf prey specialization on ungulate species of familiar type and behaviour (sedentary or migratory). Results presented here suggest that, through its influence on sea ice, vegetation, prey dynamics and distribution, continued arctic climate change may have effects as dramatic as those of the Pleistocene on the genetic structure of arctic canid species.

  16. Vole abundance and reindeer carcasses determine breeding activity of Arctic foxes in low Arctic Yamal, Russia.

    PubMed

    Ehrich, Dorothee; Cerezo, Maite; Rodnikova, Anna Y; Sokolova, Natalya A; Fuglei, Eva; Shtro, Victor G; Sokolov, Aleksandr A

    2017-09-16

    High latitude ecosystems are at present changing rapidly under the influence of climate warming, and specialized Arctic species at the southern margin of the Arctic may be particularly affected. The Arctic fox (Vulpes lagopus), a small mammalian predator endemic to northern tundra areas, is able to exploit different resources in the context of varying tundra ecosystems. Although generally widespread, it is critically endangered in subarctic Fennoscandia, where a fading out of the characteristic lemming cycles and competition with abundant red foxes have been identified as main threats. We studied an Arctic fox population at the Erkuta Tundra Monitoring site in low Arctic Yamal (Russia) during 10 years in order to determine which resources support the breeding activity in this population. In the study area, lemmings have been rare during the last 15 years and red foxes are nearly absent, creating an interesting contrast to the situation in Fennoscandia. Arctic fox was breeding in nine of the 10 years of the study. The number of active dens was on average 2.6 (range 0-6) per 100 km 2 and increased with small rodent abundance. It was also higher after winters with many reindeer carcasses, which occurred when mortality was unusually high due to icy pastures following rain-on-snow events. Average litter size was 5.2 (SD = 2.1). Scat dissection suggested that small rodents (mostly Microtus spp.) were the most important prey category. Prey remains observed at dens show that birds, notably waterfowl, were also an important resource in summer. The Arctic fox in southern Yamal, which is part of a species-rich low Arctic food web, seems at present able to cope with a state shift of the small rodent community from high amplitude cyclicity with lemming dominated peaks, to a vole community with low amplitude fluctuations. The estimated breeding parameters characterized the population as intermediate between the lemming fox and the coastal fox ecotype. Only continued

  17. Physiological and ecological effects of increasing temperature on fish production in lakes of Arctic Alaska

    PubMed Central

    Carey, Michael P; Zimmerman, Christian E

    2014-01-01

    Lake ecosystems in the Arctic are changing rapidly due to climate warming. Lakes are sensitive integrators of climate-induced changes and prominent features across the Arctic landscape, especially in lowland permafrost regions such as the Arctic Coastal Plain of Alaska. Despite many studies on the implications of climate warming, how fish populations will respond to lake changes is uncertain for Arctic ecosystems. Least Cisco (Coregonus sardinella) is a bellwether for Arctic lakes as an important consumer and prey resource. To explore the consequences of climate warming, we used a bioenergetics model to simulate changes in Least Cisco production under future climate scenarios for lakes on the Arctic Coastal Plain. First, we used current temperatures to fit Least Cisco consumption to observed annual growth. We then estimated growth, holding food availability, and then feeding rate constant, for future projections of temperature. Projected warmer water temperatures resulted in reduced Least Cisco production, especially for larger size classes, when food availability was held constant. While holding feeding rate constant, production of Least Cisco increased under all future scenarios with progressively more growth in warmer temperatures. Higher variability occurred with longer projections of time mirroring the expanding uncertainty in climate predictions further into the future. In addition to direct temperature effects on Least Cisco growth, we also considered changes in lake ice phenology and prey resources for Least Cisco. A shorter period of ice cover resulted in increased production, similar to warming temperatures. Altering prey quality had a larger effect on fish production in summer than winter and increased relative growth of younger rather than older age classes of Least Cisco. Overall, we predicted increased production of Least Cisco due to climate warming in lakes of Arctic Alaska. Understanding the implications of increased production of Least Cisco to

  18. Leptin and leptin receptor gene polymorphisms are correlated with production performance in the Arctic fox.

    PubMed

    Zhang, M; Bai, X J

    2015-05-25

    The polymerase chain reaction-single-strand conformation polymorphism technique was employed to measure mononucleotide diversity in the coding region of the leptin and leptin receptor genes in the Arctic fox. The relationships between specific genetic mutations and reproductive performance in Arctic foxes were determined to im-prove breeding strategies. We found that a leptin gene polymorphism was significantly associated with body weight (P < 0.01), abdominal circumference (P < 0.01), and fur length (P < 0.01). Furthermore, a polymorphism in the leptin receptor gene was associated with carcass weight and guard hair length (P < 0.01). Leptin and leptin receptor gene combinatorial genotypes were significantly associated with abdominal circumference, fur length (P < 0.01), and body weight (P < 0.05). The leptin gene is thus a key gene affecting body weight, abdominal circumference, and fur length in Arctic foxes, whereas variations in the leptin receptor mainly affect carcass weight and guard hair. The marker loci identified in this study can be used to assist in the selection of Arctic foxes for breeding to raise the production performance of this species.

  19. Microbial community structure and soil pH correspond to methane production in Arctic Alaska soils.

    PubMed

    Wagner, Robert; Zona, Donatella; Oechel, Walter; Lipson, David

    2017-08-01

    While there is no doubt that biogenic methane production in the Arctic is an important aspect of global methane emissions, the relative roles of microbial community characteristics and soil environmental conditions in controlling Arctic methane emissions remains uncertain. Here, relevant methane-cycling microbial groups were investigated at two remote Arctic sites with respect to soil potential methane production (PMP). Percent abundances of methanogens and iron-reducing bacteria correlated with increased PMP, while methanotrophs correlated with decreased PMP. Interestingly, α-diversity of the methanogens was positively correlated with PMP, while β-diversity was unrelated to PMP. The β-diversity of the entire microbial community, however, was related to PMP. Shannon diversity was a better correlate of PMP than Simpson diversity across analyses, while rarefied species richness was a weak correlate of PMP. These results demonstrate the following: first, soil pH and microbial community structure both probably control methane production in Arctic soils. Second, there may be high functional redundancy in the methanogens with regard to methane production. Third, iron-reducing bacteria co-occur with methanogens in Arctic soils, and iron-reduction-mediated effects on methanogenesis may be controlled by α- and β-diversity. And finally, species evenness and rare species abundances may be driving relationships between microbial groups, influencing Arctic methane production. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  20. Pan-Arctic Distribution of Bioavailable Dissolved Organic Matter and Linkages With Productivity in Ocean Margins

    NASA Astrophysics Data System (ADS)

    Shen, Yuan; Benner, Ronald; Kaiser, Karl; Fichot, Cédric G.; Whitledge, Terry E.

    2018-02-01

    Rapid environmental changes in the Arctic Ocean affect plankton productivity and the bioavailability of dissolved organic matter (DOM) that supports microbial food webs. We report concentrations of dissolved organic carbon (DOC) and yields of amino acids (indicators of labile DOM) in surface waters across major Arctic margins. Concentrations of DOC and bioavailability of DOM showed large pan-Arctic variability that corresponded to varying hydrological conditions and ecosystem productivity, respectively. Widespread hot spots of labile DOM were observed over productive inflow shelves (Chukchi and Barents Seas), in contrast to oligotrophic interior margins (Kara, Laptev, East Siberian, and Beaufort Seas). Amino acid yields in outflow gateways (Canadian Archipelago and Baffin Bay) indicated the prevalence of semilabile DOM in sea ice covered regions and sporadic production of labile DOM in ice-free waters. Comparing these observations with surface circulation patterns indicated varying shelf subsidies of bioavailable DOM to Arctic deep basins.

  1. Arctic Climate Systems Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ivey, Mark D.; Robinson, David G.; Boslough, Mark B.

    2015-03-01

    This study began with a challenge from program area managers at Sandia National Laboratories to technical staff in the energy, climate, and infrastructure security areas: apply a systems-level perspective to existing science and technology program areas in order to determine technology gaps, identify new technical capabilities at Sandia that could be applied to these areas, and identify opportunities for innovation. The Arctic was selected as one of these areas for systems level analyses, and this report documents the results. In this study, an emphasis was placed on the arctic atmosphere since Sandia has been active in atmospheric research in themore » Arctic since 1997. This study begins with a discussion of the challenges and benefits of analyzing the Arctic as a system. It goes on to discuss current and future needs of the defense, scientific, energy, and intelligence communities for more comprehensive data products related to the Arctic; assess the current state of atmospheric measurement resources available for the Arctic; and explain how the capabilities at Sandia National Laboratories can be used to address the identified technological, data, and modeling needs of the defense, scientific, energy, and intelligence communities for Arctic support.« less

  2. Methane and Carbon Dioxide Production Rates in Lake Sediments from Sub-Arctic Sweden

    NASA Astrophysics Data System (ADS)

    DeStasio, J.; Halloran, M.; Erickson, L. M.; Varner, R. K.; Johnson, J. E.; Setera, J.; Prado, M. F.; Wik, M.; Crill, P. M.

    2013-12-01

    Ecosystems at high latitudes are undergoing rapid change due to amplified arctic warming. Lakes in these regions are sources of both methane (CH4) and carbon dioxide (CO2) to the atmosphere and will likely be impacted by elevated temperatures. Because of the potential increase in the release of organic carbon due to thawing permafrost, it is believed that methanogenesis rates within neighboring fresh water sediments will display a positive feedback response, by increasing CH4 emission to the atmosphere. We studied CH4 production potential of sediments using cores from three lakes in the Stordalen Mire complex in sub-Arctic, Sweden: Inre Harrsjön, Mellan Harrsjön, and Villasjön. Sediment cores were incubated to determine CO2 and CH4 production rates and were analyzed for CH4 concentrations, dissolved inorganic carbon (DIC) concentrations, total organic carbon (TOC) concentrations, as well as carbon, nitrogen and sulfur content. Our results from the Villasjön cores indicate that CH4 production rates were highest at the same sediment depths as peak dissolved CH4 concentrations, with maximum values between depths of approximately 10cm and 30cm. Additionally, the highest observed CH4 production rates were in sediments from areas within Villasjön known to have the highest rates of CH4 ebullition. CO2 production rates were generally highest within surface sediments ranging from about 4cm to 11cm in depth, with production rates displaying a steady decrease below 11cm. Additionally, observed CO2 production rates correlated with total organic carbon (TOC) concentrations with respect to sediment depth, but displayed no relationship with dissolved inorganic carbon (DIC). Further analysis will be conducted to determine how CH4 and CO2 production characteristics vary between sediment core samples, as well as isotopic analysis of select samples taken from each lake.

  3. Arctic foxes as ecosystem engineers: increased soil nutrients lead to increased plant productivity on fox dens

    NASA Astrophysics Data System (ADS)

    Gharajehdaghipour, Tazarve; Roth, James D.; Fafard, Paul M.; Markham, John H.

    2016-04-01

    Top predators can provide fundamental ecosystem services such as nutrient cycling, and their impact can be even greater in environments with low nutrients and productivity, such as Arctic tundra. We estimated the effects of Arctic fox (Vulpes lagopus) denning on soil nutrient dynamics and vegetation production near Churchill, Manitoba in June and August 2014. Soils from fox dens contained higher nutrient levels in June (71% more inorganic nitrogen, 1195% more extractable phosphorous) and in August (242% more inorganic nitrogen, 191% more extractable phosphorous) than adjacent control sites. Inorganic nitrogen levels decreased from June to August on both dens and controls, whereas extractable phosphorous increased. Pup production the previous year, which should enhance nutrient deposition (from urine, feces, and decomposing prey), did not affect soil nutrient concentrations, suggesting the impact of Arctic foxes persists >1 year. Dens supported 2.8 times greater vegetation biomass in August, but δ15N values in sea lyme grass (Leymus mollis) were unaffected by denning. By concentrating nutrients on dens Arctic foxes enhance nutrient cycling as an ecosystem service and thus engineer Arctic ecosystems on local scales. The enhanced productivity in patches on the landscape could subsequently affect plant diversity and the dispersion of herbivores on the tundra.

  4. Arctic foxes as ecosystem engineers: increased soil nutrients lead to increased plant productivity on fox dens

    PubMed Central

    Gharajehdaghipour, Tazarve; Roth, James D.; Fafard, Paul M.; Markham, John H.

    2016-01-01

    Top predators can provide fundamental ecosystem services such as nutrient cycling, and their impact can be even greater in environments with low nutrients and productivity, such as Arctic tundra. We estimated the effects of Arctic fox (Vulpes lagopus) denning on soil nutrient dynamics and vegetation production near Churchill, Manitoba in June and August 2014. Soils from fox dens contained higher nutrient levels in June (71% more inorganic nitrogen, 1195% more extractable phosphorous) and in August (242% more inorganic nitrogen, 191% more extractable phosphorous) than adjacent control sites. Inorganic nitrogen levels decreased from June to August on both dens and controls, whereas extractable phosphorous increased. Pup production the previous year, which should enhance nutrient deposition (from urine, feces, and decomposing prey), did not affect soil nutrient concentrations, suggesting the impact of Arctic foxes persists >1 year. Dens supported 2.8 times greater vegetation biomass in August, but δ15N values in sea lyme grass (Leymus mollis) were unaffected by denning. By concentrating nutrients on dens Arctic foxes enhance nutrient cycling as an ecosystem service and thus engineer Arctic ecosystems on local scales. The enhanced productivity in patches on the landscape could subsequently affect plant diversity and the dispersion of herbivores on the tundra. PMID:27045973

  5. Arctic foxes as ecosystem engineers: increased soil nutrients lead to increased plant productivity on fox dens.

    PubMed

    Gharajehdaghipour, Tazarve; Roth, James D; Fafard, Paul M; Markham, John H

    2016-04-05

    Top predators can provide fundamental ecosystem services such as nutrient cycling, and their impact can be even greater in environments with low nutrients and productivity, such as Arctic tundra. We estimated the effects of Arctic fox (Vulpes lagopus) denning on soil nutrient dynamics and vegetation production near Churchill, Manitoba in June and August 2014. Soils from fox dens contained higher nutrient levels in June (71% more inorganic nitrogen, 1195% more extractable phosphorous) and in August (242% more inorganic nitrogen, 191% more extractable phosphorous) than adjacent control sites. Inorganic nitrogen levels decreased from June to August on both dens and controls, whereas extractable phosphorous increased. Pup production the previous year, which should enhance nutrient deposition (from urine, feces, and decomposing prey), did not affect soil nutrient concentrations, suggesting the impact of Arctic foxes persists >1 year. Dens supported 2.8 times greater vegetation biomass in August, but δ(15)N values in sea lyme grass (Leymus mollis) were unaffected by denning. By concentrating nutrients on dens Arctic foxes enhance nutrient cycling as an ecosystem service and thus engineer Arctic ecosystems on local scales. The enhanced productivity in patches on the landscape could subsequently affect plant diversity and the dispersion of herbivores on the tundra.

  6. Pan-Arctic distributions of continental runoff in the Arctic Ocean

    PubMed Central

    Fichot, Cédric G.; Kaiser, Karl; Hooker, Stanford B.; Amon, Rainer M. W.; Babin, Marcel; Bélanger, Simon; Walker, Sally A.; Benner, Ronald

    2013-01-01

    Continental runoff is a major source of freshwater, nutrients and terrigenous material to the Arctic Ocean. As such, it influences water column stratification, light attenuation, surface heating, gas exchange, biological productivity and carbon sequestration. Increasing river discharge and thawing permafrost suggest that the impacts of continental runoff on these processes are changing. Here, a new optical proxy was developed and implemented with remote sensing to determine the first pan-Arctic distribution of terrigenous dissolved organic matter (tDOM) and continental runoff in the surface Arctic Ocean. Retrospective analyses revealed connections between the routing of North American runoff and the recent freshening of the Canada Basin, and indicated a correspondence between climate-driven changes in river discharge and tDOM inventories in the Kara Sea. By facilitating the real-time, synoptic monitoring of tDOM and freshwater runoff in surface polar waters, this novel approach will help understand the manifestations of climate change in this remote region. PMID:23316278

  7. Pan-Arctic distributions of continental runoff in the Arctic Ocean.

    PubMed

    Fichot, Cédric G; Kaiser, Karl; Hooker, Stanford B; Amon, Rainer M W; Babin, Marcel; Bélanger, Simon; Walker, Sally A; Benner, Ronald

    2013-01-01

    Continental runoff is a major source of freshwater, nutrients and terrigenous material to the Arctic Ocean. As such, it influences water column stratification, light attenuation, surface heating, gas exchange, biological productivity and carbon sequestration. Increasing river discharge and thawing permafrost suggest that the impacts of continental runoff on these processes are changing. Here, a new optical proxy was developed and implemented with remote sensing to determine the first pan-Arctic distribution of terrigenous dissolved organic matter (tDOM) and continental runoff in the surface Arctic Ocean. Retrospective analyses revealed connections between the routing of North American runoff and the recent freshening of the Canada Basin, and indicated a correspondence between climate-driven changes in river discharge and tDOM inventories in the Kara Sea. By facilitating the real-time, synoptic monitoring of tDOM and freshwater runoff in surface polar waters, this novel approach will help understand the manifestations of climate change in this remote region.

  8. Monitoring arctic habitat and goose production by satellite imagery

    USGS Publications Warehouse

    Reeves, H.M.; Cooch, F.G.; Munro, R.E.

    1976-01-01

    Spacecraft imagery, especially from the National Atmospheric and Oceanic Administration's Improved TIROS (Television Infra-Red Observational Satellite) Operational Satellites, permits timely evaluations of snow and ice conditions encountered by arctic nesting geese. Imagery from the TIROS satellite for 5 wide]y scattered locations in arctic North America was obtained for three 3-day intervals in June 1973 and 1974. These pictures were used to expand fragmentary habitat data available from ground observations. Late disappearance of snow and ice may prevent or retard nesting effort and reproductive success. Our immediate aim is to recognize years of catastrophic or very good production; however, supporting information from ground studies, LANDSAT imagery, analyses of banding data, and studies of age ratios in popu]ations and harvests eventua

  9. Bathymetric controls on Pliocene North Atlantic and Arctic sea surface temperature and deepwater production

    USGS Publications Warehouse

    Robinson, M.M.; Valdes, P.J.; Haywood, A.M.; Dowsett, H.J.; Hill, D.J.; Jones, S.M.

    2011-01-01

    The mid-Pliocene warm period (MPWP; ~. 3.3 to 3.0. Ma) is the most recent interval in Earth's history in which global temperatures reached and remained at levels similar to those projected for the near future. The distribution of global warmth, however, was different than today in that the high latitudes warmed more than the tropics. Multiple temperature proxies indicate significant sea surface warming in the North Atlantic and Arctic Oceans during the MPWP, but predictions from a fully coupled ocean-atmosphere model (HadCM3) have so far been unable to fully predict the large scale of sea surface warming in the high latitudes. If climate proxies accurately represent Pliocene conditions, and if no weakness exists in the physics of the model, then model boundary conditions may be in error. Here we alter a single boundary condition (bathymetry) to examine if Pliocene high latitude warming was aided by an increase in poleward heat transport due to changes in the subsidence of North Atlantic Ocean ridges. We find an increase in both Arctic sea surface temperature and deepwater production in model experiments that incorporate a deepened Greenland-Scotland Ridge. These results offer both a mechanism for the warming in the North Atlantic and Arctic Oceans indicated by numerous proxies and an explanation for the apparent disparity between proxy data and model simulations of Pliocene northern North Atlantic and Arctic Ocean conditions. Determining the causes of Pliocene warmth remains critical to fully understanding comparisons of the Pliocene warm period to possible future climate change scenarios. ?? 2011.

  10. JPSS Support to the Arctic Testbed

    NASA Astrophysics Data System (ADS)

    Layns, A. L.

    2017-12-01

    The Joint Polar Satellite System (JPSS) Proving Ground and Risk Reduction (PGRR) program facilitates initiatives to increase or improve the use and value of JPSS data products in user products, services, and application or service areas. Building on the success of the Fire and Smoke, River Ice and Flooding, and Sounding initiatives, the JPSS Arctic Initiative is the latest endeavor of the JPSS PGRR program to increase of the use of JPSS atmospheric and cryosphere products to improve NOAA's products and services in the Arctic. The major participants in the Arctic Initiative to date are the JPSS program office, National Ice Center (NIC), National Weather Service (NWS) Alaska Sea Ice Program (ASIP), and the National Environmental Satellite, Data, and Information Service (NESDIS) Center for Satellite Applications and Research (STAR). This paper will outline the initiative, the potential benefits of the JPSS data products in the Arctic, and the plans for a product demonstration in 2018 within the NOAA Arctic Testbed.

  11. Increasing cloudiness in Arctic damps the increase in phytoplankton primary production due to sea ice receding

    NASA Astrophysics Data System (ADS)

    Bélanger, S.; Babin, M.; Tremblay, J.-É.

    2013-06-01

    The Arctic Ocean and its marginal seas are among the marine regions most affected by climate change. Here we present the results of a diagnostic model used to assess the primary production (PP) trends over the 1998-2010 period at pan-Arctic, regional and local (i.e. 9.28 km resolution) scales. Photosynthetically active radiation (PAR) above and below the sea surface was estimated using precomputed look-up tables of spectral irradiance, taking as input satellite-derived cloud optical thickness and cloud fraction parameters from the International Satellite Cloud Climatology Project (ISCCP) and sea ice concentration from passive microwaves data. A spectrally resolved PP model, designed for optically complex waters, was then used to assess the PP trends at high spatial resolution. Results show that PP is rising at a rate of +2.8 TgC yr-1 (or +14% decade-1) in the circum-Arctic and +5.1 TgC yr-1 when sub-Arctic seas are considered. In contrast, incident PAR above the sea surface (PAR(0+)) has significantly decreased over the whole Arctic and sub-Arctic Seas, except over the perennially sea-ice covered waters of the Central Arctic Ocean. This fading of PAR(0+) (-8% decade-1) was caused by increasing cloudiness during summer. Meanwhile, PAR penetrating the ocean (PAR(0-)) increased only along the sea ice margin over the large Arctic continental shelf where sea ice concentration declined sharply since 1998. Overall, PAR(0-) slightly increased in the circum-Arctic (+3.4% decade-1), while it decreased when considering both Arctic and sub-Arctic Seas (-3% decade-1). We showed that rising phytoplankton biomass (i.e. chlorophyll a) normalized by the diffuse attenuation of photosynthetically usable radiation (PUR), accounted for a larger proportion of the rise in PP than did the increase in light availability due to sea-ice loss in several sectors, and particularly in perennially and seasonally open waters. Against a general backdrop of rising productivity over Arctic shelves

  12. Effects of sea ice cover on satellite-detected primary production in the Arctic Ocean

    PubMed Central

    Lee, Zhongping; Mitchell, B. Greg; Nevison, Cynthia D.

    2016-01-01

    The influence of decreasing Arctic sea ice on net primary production (NPP) in the Arctic Ocean has been considered in multiple publications but is not well constrained owing to the potentially large errors in satellite algorithms. In particular, the Arctic Ocean is rich in coloured dissolved organic matter (CDOM) that interferes in the detection of chlorophyll a concentration of the standard algorithm, which is the primary input to NPP models. We used the quasi-analytic algorithm (Lee et al. 2002 Appl. Opti. 41, 5755−5772. (doi:10.1364/AO.41.005755)) that separates absorption by phytoplankton from absorption by CDOM and detrital matter. We merged satellite data from multiple satellite sensors and created a 19 year time series (1997–2015) of NPP. During this period, both the estimated annual total and the summer monthly maximum pan-Arctic NPP increased by about 47%. Positive monthly anomalies in NPP are highly correlated with positive anomalies in open water area during the summer months. Following the earlier ice retreat, the start of the high-productivity season has become earlier, e.g. at a mean rate of −3.0 d yr−1 in the northern Barents Sea, and the length of the high-productivity period has increased from 15 days in 1998 to 62 days in 2015. While in some areas, the termination of the productive season has been extended, owing to delayed ice formation, the termination has also become earlier in other areas, likely owing to limited nutrients. PMID:27881759

  13. Effects of sea ice cover on satellite-detected primary production in the Arctic Ocean.

    PubMed

    Kahru, Mati; Lee, Zhongping; Mitchell, B Greg; Nevison, Cynthia D

    2016-11-01

    The influence of decreasing Arctic sea ice on net primary production (NPP) in the Arctic Ocean has been considered in multiple publications but is not well constrained owing to the potentially large errors in satellite algorithms. In particular, the Arctic Ocean is rich in coloured dissolved organic matter (CDOM) that interferes in the detection of chlorophyll a concentration of the standard algorithm, which is the primary input to NPP models. We used the quasi-analytic algorithm (Lee et al 2002 Appl. Opti. 41, 5755-5772. (doi:10.1364/AO.41.005755)) that separates absorption by phytoplankton from absorption by CDOM and detrital matter. We merged satellite data from multiple satellite sensors and created a 19 year time series (1997-2015) of NPP. During this period, both the estimated annual total and the summer monthly maximum pan-Arctic NPP increased by about 47%. Positive monthly anomalies in NPP are highly correlated with positive anomalies in open water area during the summer months. Following the earlier ice retreat, the start of the high-productivity season has become earlier, e.g. at a mean rate of -3.0 d yr -1 in the northern Barents Sea, and the length of the high-productivity period has increased from 15 days in 1998 to 62 days in 2015. While in some areas, the termination of the productive season has been extended, owing to delayed ice formation, the termination has also become earlier in other areas, likely owing to limited nutrients. © 2016 The Author(s).

  14. Reduced arctic tundra productivity linked with landform and climate change interactions.

    PubMed

    Lara, Mark J; Nitze, Ingmar; Grosse, Guido; Martin, Philip; McGuire, A David

    2018-02-05

    Arctic tundra ecosystems have experienced unprecedented change associated with climate warming over recent decades. Across the Pan-Arctic, vegetation productivity and surface greenness have trended positively over the period of satellite observation. However, since 2011 these trends have slowed considerably, showing signs of browning in many regions. It is unclear what factors are driving this change and which regions/landforms will be most sensitive to future browning. Here we provide evidence linking decadal patterns in arctic greening and browning with regional climate change and local permafrost-driven landscape heterogeneity. We analyzed the spatial variability of decadal-scale trends in surface greenness across the Arctic Coastal Plain of northern Alaska (~60,000 km²) using the Landsat archive (1999-2014), in combination with novel 30 m classifications of polygonal tundra and regional watersheds, finding landscape heterogeneity and regional climate change to be the most important factors controlling historical greenness trends. Browning was linked to increased temperature and precipitation, with the exception of young landforms (developed following lake drainage), which will likely continue to green. Spatiotemporal model forecasting suggests carbon uptake potential to be reduced in response to warmer and/or wetter climatic conditions, potentially increasing the net loss of carbon to the atmosphere, at a greater degree than previously expected.

  15. Reduced arctic tundra productivity linked with landform and climate change interactions

    USGS Publications Warehouse

    Lara, Mark J.; Nitze, Ingmar; Grosse, Guido; Martin, Philip; McGuire, A. David

    2018-01-01

    Arctic tundra ecosystems have experienced unprecedented change associated with climate warming over recent decades. Across the Pan-Arctic, vegetation productivity and surface greenness have trended positively over the period of satellite observation. However, since 2011 these trends have slowed considerably, showing signs of browning in many regions. It is unclear what factors are driving this change and which regions/landforms will be most sensitive to future browning. Here we provide evidence linking decadal patterns in arctic greening and browning with regional climate change and local permafrost-driven landscape heterogeneity. We analyzed the spatial variability of decadal-scale trends in surface greenness across the Arctic Coastal Plain of northern Alaska (~60,000 km²) using the Landsat archive (1999–2014), in combination with novel 30 m classifications of polygonal tundra and regional watersheds, finding landscape heterogeneity and regional climate change to be the most important factors controlling historical greenness trends. Browning was linked to increased temperature and precipitation, with the exception of young landforms (developed following lake drainage), which will likely continue to green. Spatiotemporal model forecasting suggests carbon uptake potential to be reduced in response to warmer and/or wetter climatic conditions, potentially increasing the net loss of carbon to the atmosphere, at a greater degree than previously expected.

  16. Production and Cycling of Methylated Mercury Species in Arctic Marine Waters

    NASA Astrophysics Data System (ADS)

    Lehnherr, I.; St. Louis, V. L.; Hintelmann, H.

    2009-12-01

    Monomethyl mercury (MMHg), a vertebrate neurotoxin which bioaccumulates through foodwebs, is found in some Arctic marine mammals at levels that may be harmful to northern peoples consuming them as food. Unfortunately, sources of MMHg to polar marine food webs remain unknown, in part due to the complex nature of Hg cycling in polar marine waters. Since 2005, we have been sampling the marine waters of the Canadian Arctic Archipelago from the Canadian Coast Guard research icebreaker CCGS Amundsen. Early results demonstrated that elevated concentrations of both MMHg and dimethyl mercury (DMHg, a toxic, gaseous Hg species) are found in sub-surface Arctic marine waters (89±36 pg L-1 and 73±37 pg L-1, respectively) despite low total Hg (THg) concentrations (290±220 pg L-1), suggesting an internal source of methylated Hg. We tested the hypothesis that methylated Hg species are produced directly in the marine water column using stable-isotope Hg tracers. Seawater samples were amended with 198Hg(II) and incubated for 0, 8, 16 or 24 hours to measure the production of MM198Hg, DM198Hg and gaseous elemental 198Hg(0) (GEM) over time. A second tracer, MM199Hg, was also added to quantify MMHg methylation (formation of DM199Hg), demethylation (loss of MM199Hg) and reduction (formation of 199Hg(0)). Preliminary analysis of the data indicates that Hg(II) is methylated in polar marine waters to form both MMHg (first order rate-constant km1 ~6x10-4 d-1) and DMHg (km2 ~5x10-6 d-1). We also found that DMHg production from MMHg is ~50x faster than with Hg(II) as the substrate. Furthermore, at a small number of sites, we measured methylation rates that were elevated by almost a full order of magnitude compared to the average, suggesting that methylation hotspots may exist in Arctic marine waters. However, during the less productive fall season when the CCGS Amundsen cruises were conducted, demethylation of MMHg generally appears to dominate in the water column and can occur via a number

  17. Relative sensitivity of Arctic species to physically and chemically dispersed oil determined from three hydrocarbon measures of aquatic toxicity.

    PubMed

    Bejarano, Adriana C; Gardiner, William W; Barron, Mace G; Word, Jack Q

    2017-09-15

    The risks to Arctic species from oil releases is a global concern, but their sensitivity to chemically dispersed oil has not been assessed using a curated and standardized dataset from spiked declining tests. Species sensitivity to dispersed oil was determined by their position within species sensitivity distributions (SSDs) using three measures of hydrocarbon toxicity: total petroleum hydrocarbons (TPH), polycyclic aromatic hydrocarbon (PAHs), and naphthalenes. Comparisons of SSDs with Arctic/sub-Arctic versus non-Arctic species, and across SSDs of compositionally similar oils, showed that Arctic and non-Arctic species have comparable sensitivities even with the variability introduced by combining data across studies and oils. Regardless of hydrocarbon measure, hazard concentrations across SSDs were protective of sensitive Arctic species. While the sensitivities of Arctic species to oil exposures resemble those of commonly tested species, PAH-based toxicity data are needed for a greater species diversity including sensitive Arctic species. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Vegetation, plant biomass, and net primary productivity patterns in the Canadian Arctic

    NASA Astrophysics Data System (ADS)

    Gould, W. A.; Raynolds, M.; Walker, D. A.

    2003-01-01

    We have developed maps of dominant vegetation types, plant functional types, percent vegetation cover, aboveground plant biomass, and above and belowground annual net primary productivity for Canada north of the northern limit of trees. The area mapped covers 2.5 million km2 including glaciers. Ice-free land covers 2.3 million km2 and represents 42% of all ice-free land in the Circumpolar Arctic. The maps combine information on climate, soils, geology, hydrology, remotely sensed vegetation classifications, previous vegetation studies, and regional expertise to define polygons drawn using photo-interpretation of a 1:4,000,000 scale advanced very high resolution radiometer (AVHRR) color infrared image basemap. Polygons are linked to vegetation description, associated properties, and descriptive literature through a series of lookup tables in a graphic information systems (GIS) database developed as a component of the Circumpolar Arctic Vegetation Map (CAVM) project. Polygons are classified into 20 landcover types including 17 vegetation types. Half of the region is sparsely vegetated (<50% vegetation cover), primarily in the High Arctic (bioclimatic subzones A-C). Whereas most (86%) of the estimated aboveground plant biomass (1.5 × 1015 g) and 87% of the estimated above and belowground annual net primary productivity (2.28 × 1014 g yr-1) are concentrated in the Low Arctic (subzones D and E). The maps present more explicit spatial patterns of vegetation and ecosystem attributes than have been previously available, the GIS database is useful in summarizing ecosystem properties and can be easily updated and integrated into circumpolar mapping efforts, and the derived estimates fall within the range of current published estimates.

  19. Towards transdisciplinarity in Arctic sustainability knowledge co-production: Socially-Oriented Observations as a participatory integrated activity

    NASA Astrophysics Data System (ADS)

    Vlasova, Tatiana; Volkov, Sergey

    2016-09-01

    The paper is an attempt to tie together main biogeophysical and social science projects under the auspice of interdisciplinary sustainability science development. Special attention is put to the necessity of the transdisciplinary knowledge co-production based on activities and problem-solutions approaches. It puts attention to the role of monitoring activities in sustainability interdisciplinary science and transdisciplinary knowledge evolution in the Arctic. Socially focused monitoring named Socially-Oriented Observations creating a transdisciplinary space is viewed as one of sources of learning and transformations towards sustainability making possible to shape rapid changes happening in the Arctic based on sustainability knowledge co-production. Continuous Socially-Oriented Observations integrating scientific, education and monitoring methods enables to define adaptation and transformation pathways in the Arctic - the most rapidly changing region of our planet. Socially-Oriented Observations are based on the existing and developing interdisciplinary scientific approaches emerged within natural science and social science projects, sustainable development and resilience concepts putting principle attention to building sustainable and resilient socio-ecological systems. It is argued that the Arctic sustainability science is a valuable component of the whole and broader system of the Arctic Sustainability knowledge co-produced with the help of transdisciplinary approaches integrating science, local/traditional knowledge, entrepreneurship, education, decision-making. Socially-Oriented Observations are designed to be a transdisciplinary interactive continuous participatory process empowering deliberate choices of people that can shape the changes and enable transformation towards sustainability. Approaches of Socially-Oriented Observations and methods of implementation that have been developed since the IPY 2007/2008 and being practiced in different regions of the

  20. Observational determination of albedo decrease caused by vanishing Arctic sea ice

    PubMed Central

    Pistone, Kristina; Eisenman, Ian; Ramanathan, V.

    2014-01-01

    The decline of Arctic sea ice has been documented in over 30 y of satellite passive microwave observations. The resulting darkening of the Arctic and its amplification of global warming was hypothesized almost 50 y ago but has yet to be verified with direct observations. This study uses satellite radiation budget measurements along with satellite microwave sea ice data to document the Arctic-wide decrease in planetary albedo and its amplifying effect on the warming. The analysis reveals a striking relationship between planetary albedo and sea ice cover, quantities inferred from two independent satellite instruments. We find that the Arctic planetary albedo has decreased from 0.52 to 0.48 between 1979 and 2011, corresponding to an additional 6.4 ± 0.9 W/m2 of solar energy input into the Arctic Ocean region since 1979. Averaged over the globe, this albedo decrease corresponds to a forcing that is 25% as large as that due to the change in CO2 during this period, considerably larger than expectations from models and other less direct recent estimates. Changes in cloudiness appear to play a negligible role in observed Arctic darkening, thus reducing the possibility of Arctic cloud albedo feedbacks mitigating future Arctic warming. PMID:24550469

  1. Observational determination of albedo decrease caused by vanishing Arctic sea ice.

    PubMed

    Pistone, Kristina; Eisenman, Ian; Ramanathan, V

    2014-03-04

    The decline of Arctic sea ice has been documented in over 30 y of satellite passive microwave observations. The resulting darkening of the Arctic and its amplification of global warming was hypothesized almost 50 y ago but has yet to be verified with direct observations. This study uses satellite radiation budget measurements along with satellite microwave sea ice data to document the Arctic-wide decrease in planetary albedo and its amplifying effect on the warming. The analysis reveals a striking relationship between planetary albedo and sea ice cover, quantities inferred from two independent satellite instruments. We find that the Arctic planetary albedo has decreased from 0.52 to 0.48 between 1979 and 2011, corresponding to an additional 6.4 ± 0.9 W/m(2) of solar energy input into the Arctic Ocean region since 1979. Averaged over the globe, this albedo decrease corresponds to a forcing that is 25% as large as that due to the change in CO2 during this period, considerably larger than expectations from models and other less direct recent estimates. Changes in cloudiness appear to play a negligible role in observed Arctic darkening, thus reducing the possibility of Arctic cloud albedo feedbacks mitigating future Arctic warming.

  2. Reactive nitrogen, ozone and ozone production in the Arctic troposphere and the impact of stratosphere-troposphere exchange

    NASA Astrophysics Data System (ADS)

    Liang, Q.; Rodriguez, J. M.; Douglass, A. R.; Crawford, J. H.; Olson, J. R.; Apel, E.; Bian, H.; Blake, D. R.; Brune, W.; Chin, M.; Colarco, P. R.; da Silva, A.; Diskin, G. S.; Duncan, B. N.; Huey, L. G.; Knapp, D. J.; Montzka, D. D.; Nielsen, J. E.; Pawson, S.; Riemer, D. D.; Weinheimer, A. J.; Wisthaler, A.

    2011-12-01

    We use aircraft observations obtained during the Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) mission to examine the distributions and source attributions of O3 and NOy in the Arctic and sub-Arctic region. Using a number of marker tracers, we distinguish various air masses from the background troposphere and examine their contributions to NOx, O3, and O3 production in the Arctic troposphere. The background Arctic troposphere has a mean O3 of ~60 ppbv and NOx of ~25 pptv throughout spring and summer with CO decreasing from ~145 ppbv in spring to ~100 ppbv in summer. These observed mixing ratios are not notably different from the values measured during the 1988 ABLE-3A and the 2002 TOPSE field campaigns despite the significant changes in emissions and stratospheric ozone layer in the past two decades that influence Arctic tropospheric composition. Air masses associated with stratosphere-troposphere exchange are present throughout the mid and upper troposphere during spring and summer. These air masses, with mean O3 concentrations of 140-160 ppbv, are significant direct sources of O3 in the Arctic troposphere. In addition, air of stratospheric origin displays net O3 formation in the Arctic due to its sustainable, high NOx (75 pptv in spring and 110 pptv in summer) and NOy (~800 pptv in spring and ~1100 pptv in summer). The air masses influenced by the stratosphere sampled during ARCTAS-B also show conversion of HNO3 to PAN. This active production of PAN is the result of increased degradation of ethane in the stratosphere-troposphere mixed air mass to form CH3CHO, followed by subsequent formation of PAN under high NOx conditions. These findings imply that an adequate representation of stratospheric NOy input, in addition to stratospheric O3 influx, is essential to accurately simulate tropospheric Arctic O3, NOx and PAN in chemistry transport models. Plumes influenced by recent anthropogenic and biomass burning emissions

  3. Biological response to climate change in the Arctic Ocean: The view from the past

    USGS Publications Warehouse

    Cronin, Thomas M.; Cronin, Matthew A.

    2017-01-01

    The Arctic Ocean is undergoing rapid climatic changes including higher ocean temperatures, reduced sea ice, glacier and Greenland Ice Sheet melting, greater marine productivity, and altered carbon cycling. Until recently, the relationship between climate and Arctic biological systems was poorly known, but this has changed substantially as advances in paleoclimatology, micropaleontology, vertebrate paleontology, and molecular genetics show that Arctic ecosystem history reflects global and regional climatic changes over all timescales and climate states (103–107 years). Arctic climatic extremes include 25°C hyperthermal periods during the Paleocene-Eocene (56–46 million years ago, Ma), Quaternary glacial periods when thick ice shelves and sea ice cover rendered the Arctic Ocean nearly uninhabitable, seasonally sea-ice-free interglacials and abrupt climate reversals. Climate-driven biological impacts included large changes in species diversity, primary productivity, species’ geographic range shifts into and out of the Arctic, community restructuring, and possible hybridization, but evidence is not sufficient to determine whether or when major episodes of extinction occurred.

  4. Satellite surface salinity maps to determine fresh water fluxes in the Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Gabarro, Carolina; Estrella, Olmedo; Emelianov, Mikhail; Ballabrera, Joaquim; Turiel, Antonio

    2017-04-01

    , results make you think that assimilating SMOS Arctic SSS data could be beneficial for the TOPAZ Arctic Ocean Prediction system. Therefore, SMOS shows great potential to routinely monitor the extension of the surface freshwater fluxes also in the Arctic Ocean. The new SMOS Arctic products can therefore substantially contribute to increase our knowledge of the critical processes that are taking place in the Arctic. [1] Haine, T. et al. (2015), 'Arctic freshwater export: Status, mechanisms, and prospects', Global and Planetary Change, 125, 2015. [2] Peterson, B., et al. (2002), 'Increasing river discharge to the arctic ocean', Science, 298, 21712173. [3] Font, J. et al. (2010), 'The Challenging Sea Surface Salinity Measurement From Space'. Proceed. IEEE, 98, 649 -665 [4] Swift, C. (1980). Boundary-layer Meteorology, 18:25-54. [5] McMullan, K. et al. (2008), 'SMOS: The payload', IEEE T. Geosci. Remote, 46. [6] Olmedo, E., et al. (2017) 'Debiased Non-Bayesian retrieval: a novel approach to SMOS Sea Surface Salinity', Remote Sensing of Environment, under review.

  5. Humidification of the Arctic: Effects of more open ocean water on land temperatures and tundra productivity along continental and maritime bioclimate transects

    NASA Astrophysics Data System (ADS)

    Bhatt, U. S.; Walker, D. A.; Raynolds, M. K.; Epstein, H. E.

    2017-12-01

    Amplified Arctic warming linked to declining sea-ice extent led to generally enhanced productivity of the tundra biome during the period 1982-2008. After about 2002, coinciding with a recent precipitous decline in sea ice, large areas of the Arctic began showing reversals of previous positive productivity trends. To better understand these recent vegetation productivity declines and whether they are associated with differences in a general humidification of portions of the Arctic, we focus analysis on two transects with ground information: the more continental North America Arctic Transect (NAAT) and the more maritime Eurasia Arctic Transect (EAT). We compare ground information with satellite-derived trends in open water, summer terrestrial temperatures, and vegetation greenness and changes in continentality of the two transects, as indicated by the differences in the annual maximum and minimum mean monthly temperatures. Areas adjacent to perennial sea ice along in the northern parts of the NAAT exhibit climates with positive trends in summer warmth, but negative greening trends, possibly due to soil drying. Southern parts of the NAAT in the vicinity of more open water show positive greenness trends. Along the EAT, cooling midsummer conditions and reduced greenness appear to be caused by cloudier conditions, and possibly later snow melt during the period of maximum potential photosynthesis. Ground-based environmental and vegetation data indicate that biomass, particularly moss biomass is much greater along the more maritime EAT, indicating a buffering effect of the vegetation that will act to damp productivity as humidification of the Arctic proceeds. This multi-scale analysis is one step in the direction of understanding the drivers of tundra vegetation productivity in the Arctic.

  6. Food and disturbance effects on Arctic benthic biomass and production size spectra

    NASA Astrophysics Data System (ADS)

    Górska, Barbara; Włodarska-Kowalczuk, Maria

    2017-03-01

    Body size is a fundamental biological unit that is closely coupled to key ecological properties and processes. At the community level, changes in size distributions may influence energy transfer pathways in benthic food webs and ecosystem carbon cycling; nevertheless they remain poorly explored in benthic systems, particularly in the polar regions. Here, we present the first assessment of the patterns of benthic biomass size spectra in Arctic coastal sediments and explore the effects of glacial disturbance and food availability on the partitioning of biomass and secondary productivity among size-defined components of benthic communities. The samples were collected in two Arctic fjords off west Spitsbergen (76 and 79°N), at 6 stations that represent three regimes of varying food availability (indicated by chlorophyll a concentration in the sediments) and glacial sedimentation disturbance intensity (indicated by sediment accumulation rates). The organisms were measured using image analysis to assess the biovolume, biomass and the annual production of each individual. The shape of benthic biomass size spectra at most stations was bimodal, with the location of a trough and peaks similar to those previously reported in lower latitudes. In undisturbed sediments macrofauna comprised 89% of the total benthic biomass and 56% of the total production. The lower availability of food resources seemed to suppress the biomass and secondary production across the whole size spectra (a 6-fold decrease in biomass and a 4-fold decrease in production in total) rather than reshape the spectrum. At locations where poor nutritional conditions were coupled with disturbance, the biomass was strongly reduced in selected macrofaunal size classes (class 10 and 11), while meiofaunal biomass and production were much higher, most likely due to a release from macrofaunal predation and competition pressure. As a result, the partitioning of benthic biomass and production shifted towards meiofauna

  7. The great 2012 Arctic Ocean summer cyclone enhanced biological productivity on the shelves

    PubMed Central

    Zhang, Jinlun; Ashjian, Carin; Campbell, Robert; Hill, Victoria; Spitz, Yvette H; Steele, Michael

    2014-01-01

    [1] A coupled biophysical model is used to examine the impact of the great Arctic cyclone of early August 2012 on the marine planktonic ecosystem in the Pacific sector of the Arctic Ocean (PSA). Model results indicate that the cyclone influences the marine planktonic ecosystem by enhancing productivity on the shelves of the Chukchi, East Siberian, and Laptev seas during the storm. Although the cyclone's passage in the PSA lasted only a few days, the simulated biological effects on the shelves last 1 month or longer. At some locations on the shelves, primary productivity (PP) increases by up to 90% and phytoplankton biomass by up to 40% in the wake of the cyclone. The increase in zooplankton biomass is up to 18% on 31 August and remains 10% on 15 September, more than 1 month after the storm. In the central PSA, however, model simulations indicate a decrease in PP and plankton biomass. The biological gain on the shelves and loss in the central PSA are linked to two factors. (1) The cyclone enhances mixing in the upper ocean, which increases nutrient availability in the surface waters of the shelves; enhanced mixing in the central PSA does not increase productivity because nutrients there are mostly depleted through summer draw down by the time of the cyclone's passage. (2) The cyclone also induces divergence, resulting from the cyclone's low-pressure system that drives cyclonic sea ice and upper ocean circulation, which transports more plankton biomass onto the shelves from the central PSA. The simulated biological gain on the shelves is greater than the loss in the central PSA, and therefore, the production on average over the entire PSA is increased by the cyclone. Because the gain on the shelves is offset by the loss in the central PSA, the average increase over the entire PSA is moderate and lasts only about 10 days. The generally positive impact of cyclones on the marine ecosystem in the Arctic, particularly on the shelves, is likely to grow with increasing

  8. The great 2012 Arctic Ocean summer cyclone enhanced biological productivity on the shelves.

    PubMed

    Zhang, Jinlun; Ashjian, Carin; Campbell, Robert; Hill, Victoria; Spitz, Yvette H; Steele, Michael

    2014-01-01

    [1] A coupled biophysical model is used to examine the impact of the great Arctic cyclone of early August 2012 on the marine planktonic ecosystem in the Pacific sector of the Arctic Ocean (PSA). Model results indicate that the cyclone influences the marine planktonic ecosystem by enhancing productivity on the shelves of the Chukchi, East Siberian, and Laptev seas during the storm. Although the cyclone's passage in the PSA lasted only a few days, the simulated biological effects on the shelves last 1 month or longer. At some locations on the shelves, primary productivity (PP) increases by up to 90% and phytoplankton biomass by up to 40% in the wake of the cyclone. The increase in zooplankton biomass is up to 18% on 31 August and remains 10% on 15 September, more than 1 month after the storm. In the central PSA, however, model simulations indicate a decrease in PP and plankton biomass. The biological gain on the shelves and loss in the central PSA are linked to two factors. (1) The cyclone enhances mixing in the upper ocean, which increases nutrient availability in the surface waters of the shelves; enhanced mixing in the central PSA does not increase productivity because nutrients there are mostly depleted through summer draw down by the time of the cyclone's passage. (2) The cyclone also induces divergence, resulting from the cyclone's low-pressure system that drives cyclonic sea ice and upper ocean circulation, which transports more plankton biomass onto the shelves from the central PSA. The simulated biological gain on the shelves is greater than the loss in the central PSA, and therefore, the production on average over the entire PSA is increased by the cyclone. Because the gain on the shelves is offset by the loss in the central PSA, the average increase over the entire PSA is moderate and lasts only about 10 days. The generally positive impact of cyclones on the marine ecosystem in the Arctic, particularly on the shelves, is likely to grow with increasing

  9. Mercury genomics in the Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Bowman, K.; Lamborg, C. H.; Collins, E.; Hammerschmidt, C. R.; Agather, A. M.

    2017-12-01

    Methyl-mercury production in the ocean is likely dependent on microbial activity, however, methylation pathways remain elusive. In the Arctic, high concentrations of methyl-mercury are found in top predator marine mammals and seabirds. As a result of seafood consumption, pregnant women and women of child-bearing age in the Arctic often have blood Hg concentrations that exceed U.S. and Canadian safety guidelines. To understand the chemical cycling of mercury in the Arctic Ocean we participated in the 2015 U.S. GEOTRACES Arctic expedition (GN01) to measure Hg speciation in the water column of the Bering Sea, Makarov basin, and Canada basin between Dutch Harbor, Alaska and the North Pole. At select stations, seawater was filtered through 0.22 µm Sterivex filters and genomic DNA was collected using a phenol-chloroform extraction. Broad-range degenerate PCR primers were used to detect the presence of hgcAB, and clade-specific degenerate quantitative PCR primers were used to determine the abundance of hgcA. Metagenomic sequencing was done at three stations to identify taxonomic and functional groups, and to search for hgcA-like genes that the PCR primers may have missed.

  10. Arctic Collaborative Environment: A New Multi-National Partnership for Arctic Science and Decision Support

    NASA Technical Reports Server (NTRS)

    Laymon, Charles A,; Kress, Martin P.; McCracken, Jeff E.; Spehn, Stephen L.; Tanner, Steve

    2011-01-01

    The Arctic Collaborative Environment (ACE) project is a new international partnership for information sharing to meet the challenges of addressing Arctic. The goal of ACE is to create an open source, web-based, multi-national monitoring, analysis, and visualization decision-support system for Arctic environmental assessment, management, and sustainability. This paper will describe the concept, system architecture, and data products that are being developed and disseminated among partners and independent users through remote access.

  11. Arctic Sea ice studies with passive microwave satellite observations

    NASA Technical Reports Server (NTRS)

    Cavalieri, D. J.

    1988-01-01

    The objectives of this research are: (1) to improve sea ice concentration determinations from passive microwave space observations; (2) to study the role of Arctic polynyas in the production of sea ice and the associated salinization of Arctic shelf water; and (3) to study large scale sea ice variability in the polar oceans. The strategy is to analyze existing data sets and data acquired from both the DMSP SSM/I and recently completed aircraft underflights. Special attention will be given the high resolution 85.5 GHz SSM/I channels for application to thin ice algorithms and processes studies. Analysis of aircraft and satellite data sets is expected to provide a basis for determining the potential of the SSM/I high frequency channels for improving sea ice algorithms and for investigating oceanic processes. Improved sea ice algorithms will aid the study of Arctic coastal polynyas which in turn will provide a better understanding of the role of these polynyas in maintaining the Arctic watermass structure. Analysis of satellite and archived meteorological data sets will provide improved estimates of annual, seasonal and shorter-term sea ice variability.

  12. The role of iron and reactive oxygen species in the production of CO2 in arctic soil waters

    NASA Astrophysics Data System (ADS)

    Trusiak, Adrianna; Treibergs, Lija A.; Kling, George W.; Cory, Rose M.

    2018-03-01

    Hydroxyl radical (radOH) is a highly reactive oxidant of dissolved organic carbon (DOC) in the environment. radOH production in the dark was observed through iron and DOC mediated Fenton reactions in natural environments. Specifically, when dissolved oxygen (O2) was added to low oxygen and anoxic soil waters in arctic Alaska, radOH was produced in proportion to the concentrations of reduced iron (Fe(II)) and DOC. Here we demonstrate that Fe(II) was the main electron donor to O2 to produce radOH. In addition to quantifying radOH production, hydrogen peroxide (H2O2) was detected in soil waters as a likely intermediate in radOH production from oxidation of Fe(II). For the first time in natural systems we detected carbon dioxide (CO2) production from radOH oxidation of DOC. More than half of the arctic soil waters tested showed production of CO2 under conditions conducive for production of radOH. Findings from this study strongly suggest that DOC is the main sink for radOH, and that radOH can oxidize DOC to yield CO2. Thus, this iron-mediated, dark chemical oxidation of DOC may be an important component of the arctic carbon cycle.

  13. Determining Regional Arctic Tundra Carbon Exchange: A Bottom-Up Approach

    NASA Technical Reports Server (NTRS)

    Huemmrich, Fred

    2006-01-01

    This viewgraph presentation reviews the carbon atmospheric exchange with Arctic tundra. In the Arctic the ecosystem has been a net carbon sink. The project investigates the question of how might climate warming effect high latitude ecosystems and the Earth ecosystems and how to measure the changes.

  14. Tundra landform and vegetation productivity trend maps for the Arctic Coastal Plain of northern Alaska

    NASA Astrophysics Data System (ADS)

    Lara, Mark J.; Nitze, Ingmar; Grosse, Guido; McGuire, A. David

    2018-04-01

    Arctic tundra landscapes are composed of a complex mosaic of patterned ground features, varying in soil moisture, vegetation composition, and surface hydrology over small spatial scales (10-100 m). The importance of microtopography and associated geomorphic landforms in influencing ecosystem structure and function is well founded, however, spatial data products describing local to regional scale distribution of patterned ground or polygonal tundra geomorphology are largely unavailable. Thus, our understanding of local impacts on regional scale processes (e.g., carbon dynamics) may be limited. We produced two key spatiotemporal datasets spanning the Arctic Coastal Plain of northern Alaska (~60,000 km2) to evaluate climate-geomorphological controls on arctic tundra productivity change, using (1) a novel 30 m classification of polygonal tundra geomorphology and (2) decadal-trends in surface greenness using the Landsat archive (1999-2014). These datasets can be easily integrated and adapted in an array of local to regional applications such as (1) upscaling plot-level measurements (e.g., carbon/energy fluxes), (2) mapping of soils, vegetation, or permafrost, and/or (3) initializing ecosystem biogeochemistry, hydrology, and/or habitat modeling.

  15. Tundra landform and vegetation productivity trend maps for the Arctic Coastal Plain of northern Alaska

    PubMed Central

    Lara, Mark J.; Nitze, Ingmar; Grosse, Guido; McGuire, A. David

    2018-01-01

    Arctic tundra landscapes are composed of a complex mosaic of patterned ground features, varying in soil moisture, vegetation composition, and surface hydrology over small spatial scales (10–100 m). The importance of microtopography and associated geomorphic landforms in influencing ecosystem structure and function is well founded, however, spatial data products describing local to regional scale distribution of patterned ground or polygonal tundra geomorphology are largely unavailable. Thus, our understanding of local impacts on regional scale processes (e.g., carbon dynamics) may be limited. We produced two key spatiotemporal datasets spanning the Arctic Coastal Plain of northern Alaska (~60,000 km2) to evaluate climate-geomorphological controls on arctic tundra productivity change, using (1) a novel 30 m classification of polygonal tundra geomorphology and (2) decadal-trends in surface greenness using the Landsat archive (1999–2014). These datasets can be easily integrated and adapted in an array of local to regional applications such as (1) upscaling plot-level measurements (e.g., carbon/energy fluxes), (2) mapping of soils, vegetation, or permafrost, and/or (3) initializing ecosystem biogeochemistry, hydrology, and/or habitat modeling. PMID:29633984

  16. Tundra landform and vegetation productivity trend maps for the Arctic Coastal Plain of northern Alaska.

    PubMed

    Lara, Mark J; Nitze, Ingmar; Grosse, Guido; McGuire, A David

    2018-04-10

    Arctic tundra landscapes are composed of a complex mosaic of patterned ground features, varying in soil moisture, vegetation composition, and surface hydrology over small spatial scales (10-100 m). The importance of microtopography and associated geomorphic landforms in influencing ecosystem structure and function is well founded, however, spatial data products describing local to regional scale distribution of patterned ground or polygonal tundra geomorphology are largely unavailable. Thus, our understanding of local impacts on regional scale processes (e.g., carbon dynamics) may be limited. We produced two key spatiotemporal datasets spanning the Arctic Coastal Plain of northern Alaska (~60,000 km 2 ) to evaluate climate-geomorphological controls on arctic tundra productivity change, using (1) a novel 30 m classification of polygonal tundra geomorphology and (2) decadal-trends in surface greenness using the Landsat archive (1999-2014). These datasets can be easily integrated and adapted in an array of local to regional applications such as (1) upscaling plot-level measurements (e.g., carbon/energy fluxes), (2) mapping of soils, vegetation, or permafrost, and/or (3) initializing ecosystem biogeochemistry, hydrology, and/or habitat modeling.

  17. Tundra landform and vegetation productivity trend maps for the Arctic Coastal Plain of northern Alaska

    USGS Publications Warehouse

    Lara, Mark J.; Nitze, Ingmar; Grosse, Guido; McGuire, A. David

    2018-01-01

    Arctic tundra landscapes are composed of a complex mosaic of patterned ground features, varying in soil moisture, vegetation composition, and surface hydrology over small spatial scales (10–100 m). The importance of microtopography and associated geomorphic landforms in influencing ecosystem structure and function is well founded, however, spatial data products describing local to regional scale distribution of patterned ground or polygonal tundra geomorphology are largely unavailable. Thus, our understanding of local impacts on regional scale processes (e.g., carbon dynamics) may be limited. We produced two key spatiotemporal datasets spanning the Arctic Coastal Plain of northern Alaska (~60,000 km2) to evaluate climate-geomorphological controls on arctic tundra productivity change, using (1) a novel 30 m classification of polygonal tundra geomorphology and (2) decadal-trends in surface greenness using the Landsat archive (1999–2014). These datasets can be easily integrated and adapted in an array of local to regional applications such as (1) upscaling plot-level measurements (e.g., carbon/energy fluxes), (2) mapping of soils, vegetation, or permafrost, and/or (3) initializing ecosystem biogeochemistry, hydrology, and/or habitat modeling.

  18. Calcareous microfossil-based orbital cyclostratigraphy in the Arctic Ocean

    USGS Publications Warehouse

    Marzen, Rachel; DeNinno, Lauren H.; Cronin, Thomas M.

    2016-01-01

    Microfaunal and geochemical proxies from marine sediment records from central Arctic Ocean (CAO) submarine ridges suggest a close relationship over the last 550 thousand years (kyr) between orbital-scale climatic oscillations, sea-ice cover, marine biological productivity and other parameters. Multiple paleoclimate proxies record glacial to interglacial cycles. To understand the climate-cryosphere-productivity relationship, we examined the cyclostratigraphy of calcareous microfossils and constructed a composite Arctic Paleoclimate Index (API) "stack" from benthic foraminiferal and ostracode density from 14 sediment cores. Following the hypothesis that API is driven mainly by changes in sea-ice related productivity, the API stack shows the Arctic experienced a series of highly productive interglacials and interstadials every ∼20 kyr. These periods signify minimal ice shelf and sea-ice cover and maximum marine productivity. Rapid transitions in productivity are seen during shifts from interglacial to glacial climate states. Discrepancies between the Arctic API curves and various global climatic, sea-level and ice-volume curves suggest abrupt growth and decay of Arctic ice shelves related to climatic and sea level oscillations.

  19. The Eocene Arctic Azolla bloom: environmental conditions, productivity and carbon drawdown.

    PubMed

    Speelman, E N; Van Kempen, M M L; Barke, J; Brinkhuis, H; Reichart, G J; Smolders, A J P; Roelofs, J G M; Sangiorgi, F; de Leeuw, J W; Lotter, A F; Sinninghe Damsté, J S

    2009-03-01

    Enormous quantities of the free-floating freshwater fern Azolla grew and reproduced in situ in the Arctic Ocean during the middle Eocene, as was demonstrated by microscopic analysis of microlaminated sediments recovered from the Lomonosov Ridge during Integrated Ocean Drilling Program (IODP) Expedition 302. The timing of the Azolla phase (approximately 48.5 Ma) coincides with the earliest signs of onset of the transition from a greenhouse towards the modern icehouse Earth. The sustained growth of Azolla, currently ranking among the fastest growing plants on Earth, in a major anoxic oceanic basin may have contributed to decreasing atmospheric pCO2 levels via burial of Azolla-derived organic matter. The consequences of these enormous Azolla blooms for regional and global nutrient and carbon cycles are still largely unknown. Cultivation experiments have been set up to investigate the influence of elevated pCO2 on Azolla growth, showing a marked increase in Azolla productivity under elevated (760 and 1910 ppm) pCO2 conditions. The combined results of organic carbon, sulphur, nitrogen content and 15N and 13C measurements of sediments from the Azolla interval illustrate the potential contribution of nitrogen fixation in a euxinic stratified Eocene Arctic. Flux calculations were used to quantitatively reconstruct the potential storage of carbon (0.9-3.5 10(18) gC) in the Arctic during the Azolla interval. It is estimated that storing 0.9 10(18) to 3.5 10(18) g carbon would result in a 55 to 470 ppm drawdown of pCO2 under Eocene conditions, indicating that the Arctic Azolla blooms may have had a significant effect on global atmospheric pCO2 levels through enhanced burial of organic matter.

  20. Mapping the future expansion of Arctic open water

    NASA Astrophysics Data System (ADS)

    Barnhart, Katherine R.; Miller, Christopher R.; Overeem, Irina; Kay, Jennifer E.

    2016-03-01

    Sea ice impacts most of the Arctic environment, from ocean circulation and marine ecosystems to animal migration and marine transportation. Sea ice has thinned and decreased in age over the observational record. Ice extent has decreased. Reduced ice cover has warmed the surface ocean, accelerated coastal erosion and impacted biological productivity. Declines in Arctic sea-ice extent cannot be explained by internal climate variability alone and can be attributed to anthropogenic effects. However, extent is a poor measure of ice decline at specific locations as it integrates over the entire Arctic basin and thus contains no spatial information. The open water season, in contrast, is a metric that represents the duration of open water over a year at an individual location. Here we present maps of the open water season over the period 1920-2100 using daily output from a 30-member initial-condition ensemble of business-as-usual climate simulations that characterize the expansion of Arctic open water, determine when the open water season will move away from pre-industrial conditions (`shift’ time) and identify when human forcing will take the Arctic sea-ice system outside its normal bounds (`emergence’ time). The majority of the Arctic nearshore regions began shifting in 1990 and will begin leaving the range of internal variability in 2040. Models suggest that ice will cover coastal regions for only half of the year by 2070.

  1. Short commentary on marine productivity at Arctic shelf breaks: upwelling, advection and vertical mixing

    NASA Astrophysics Data System (ADS)

    Randelhoff, Achim; Sundfjord, Arild

    2018-04-01

    The future of Arctic marine ecosystems has received increasing attention in recent years as the extent of the sea ice cover is dwindling. Although the Pacific and Atlantic inflows both import huge quantities of nutrients and plankton, they feed into the Arctic Ocean in quite diverse regions. The strongly stratified Pacific sector has a historically heavy ice cover, a shallow shelf and dominant upwelling-favourable winds, while the Atlantic sector is weakly stratified, with a dynamic ice edge and a complex bathymetry. We argue that shelf break upwelling is likely not a universal but rather a regional, albeit recurring, feature of the new Arctic. It is the regional oceanography that decides its importance through a range of diverse factors such as stratification, bathymetry and wind forcing. Teasing apart their individual contributions in different regions can only be achieved by spatially resolved time series and dedicated modelling efforts. The Northern Barents Sea shelf is an example of a region where shelf break upwelling likely does not play a dominant role, in contrast to the shallower shelves north of Alaska where ample evidence for its importance has already accumulated. Still, other factors can contribute to marked future increases in biological productivity along the Arctic shelf break. A warming inflow of nutrient-rich Atlantic Water feeds plankton at the same time as it melts the sea ice, permitting increased photosynthesis. Concurrent changes in sea ice cover and zooplankton communities advected with the boundary currents make for a complex mosaic of regulating factors that do not allow for Arctic-wide generalizations.

  2. Determination of a Critical Sea Ice Thickness Threshold for the Central Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Ford, V.; Frauenfeld, O. W.; Nowotarski, C. J.

    2017-12-01

    While sea ice extent is readily measurable from satellite observations and can be used to assess the overall survivability of the Arctic sea ice pack, determining the spatial variability of sea ice thickness remains a challenge. Turbulent and conductive heat fluxes are extremely sensitive to ice thickness but are dominated by the sensible heat flux, with energy exchange expected to increase with thinner ice cover. Fluxes over open water are strongest and have the greatest influence on the atmosphere, while fluxes over thick sea ice are minimal as heat conduction from the ocean through thick ice cannot reach the atmosphere. We know that turbulent energy fluxes are strongest over open ocean, but is there a "critical thickness of ice" where fluxes are considered non-negligible? Through polar-optimized Weather Research and Forecasting model simulations, this study assesses how the wintertime Arctic surface boundary layer, via sensible heat flux exchange and surface air temperature, responds to sea ice thinning. The region immediately north of Franz Josef Land is characterized by a thickness gradient where sea ice transitions from the thickest multi-year ice to the very thin marginal ice seas. This provides an ideal location to simulate how the diminishing Arctic sea ice interacts with a warming atmosphere. Scenarios include both fixed sea surface temperature domains for idealized thickness variability, and fixed ice fields to detect changes in the ocean-ice-atmosphere energy exchange. Results indicate that a critical thickness threshold exists below 1 meter. The threshold is between 0.4-1 meters thinner than the critical thickness for melt season survival - the difference between first year and multi-year ice. Turbulent heat fluxes and surface air temperature increase as sea ice thickness transitions from perennial ice to seasonal ice. While models predict a sea ice free Arctic at the end of the warm season in future decades, sea ice will continue to transform

  3. ArcticDEM; A Publically Available, High Resolution Elevation Model of the Arctic

    NASA Astrophysics Data System (ADS)

    Morin, Paul; Porter, Claire; Cloutier, Michael; Howat, Ian; Noh, Myoung-Jong; Willis, Michael; Bates, Brian; Willamson, Cathleen; Peterman, Kennith

    2016-04-01

    A Digital Elevation Model (DEM) of the Arctic is needed for a large number of reasons, including: measuring and understanding rapid, ongoing changes to the Arctic landscape resulting from climate change and human use and mitigation and adaptation planning for Arctic communities. The topography of the Arctic is more poorly mapped than most other regions of Earth due to logistical costs and the limits of satellite missions with low-latitude inclinations. A convergence of civilian, high-quality sub-meter stereo imagery; petascale computing and open source photogrammetry software has made it possible to produce a complete, very high resolution (2 to 8-meter posting), elevation model of the Arctic. A partnership between the US National Geospatial-intelligence Agency and a team led by the US National Science Foundation funded Polar Geospatial Center is using stereo imagery from DigitalGlobe's Worldview-1, 2 and 3 satellites and the Ohio State University's Surface Extraction with TIN-based Search-space Minimization (SETSM) software running on the University of Illinois's Blue Water supercomputer to address this challenge. The final product will be a seemless, 2-m posting digital surface model mosaic of the entire Arctic above 60 North including all of Alaska, Greenland and Kamchatka. We will also make available the more than 300,000 individual time-stamped DSM strip pairs that were used to assemble the mosaic. The Arctic DEM will have a vertical precision of better than 0.5m and can be used to examine changes in land surfaces such as those caused by permafrost degradation or the evolution of arctic rivers and floodplains. The data set can also be used to highlight changing geomorphology due to Earth surface mass transport processes occurring in active volcanic and glacial environments. When complete the ArcticDEM will catapult the Arctic from the worst to among the best mapped regions on Earth.

  4. Seasonal dynamics of bacterial biomass and production in a coastal arctic ecosystem: Franklin Bay, western Canadian Arctic

    NASA Astrophysics Data System (ADS)

    Garneau, Marie-Ã. Ve; Roy, SéBastien; Lovejoy, Connie; Gratton, Yves; Vincent, Warwick F.

    2008-07-01

    The Canadian Arctic Shelf Exchange Study (CASES) included the overwintering deployment of a research platform in Franklin Bay (70°N, 126°W) and provided a unique seasonal record of bacterial dynamics in a coastal region of the Arctic Ocean. Our objectives were (1) to relate seasonal bacterial abundance (BA) and production (BP) to physico-chemical characteristics and (2) to quantify the annual bacterial carbon flux. BA was estimated by epifluorescence microscopy and BP was estimated from 3H-leucine and 3H-thymidine assays. Mean BA values for the water column ranged from 1.0 (December) to 6.8 × 105 cells mL-1 (July). Integral BP varied from 1 (February) to 80 mg C m-2 d-1 (July). During winter-spring, BP was uncorrelated with chlorophyll a (Chl a), but these variables were significantly correlated during summer-autumn (rs = 0.68, p < 0.001, N = 38), suggesting that BP was subject to bottom-up control by carbon supply. Integrated BP data showed three distinct periods: fall-winter, late winter-late spring, and summer. A baseline level of BB and BP was maintained throughout late winter-late spring despite the persistent cold and darkness, with irregular fluctuations that may be related to hydrodynamic events. During this period, BP rates were correlated with colored dissolved organic matter (CDOM) but not Chl a (rs BP.CDOM∣Chl a = 0.20, p < 0.05, N = 176). Annual BP was estimated as 6 g C m-2 a-1, implying a total BP of 4.8 × 1010 g C a-1 for the Franklin Bay region. These results show that bacterial processes continue throughout all seasons and make a large contribution to the total biological carbon flux in this coastal arctic ecosystem.

  5. Circumpolar Arctic vegetation mapping workshop

    USGS Publications Warehouse

    Walker, D. A.; Markon, C.J.

    1996-01-01

    The first Circumpolar Arctic Vegetation Mapping Workshop was held in the historic village of Lakta on the outskirts of St. Petersburg, Russia, March 21-25, 1994. The primary goals of the workshop were to: (1) review the status of arctic vegetation mapping in the circumpolar countries and (2) develop a strategy for synthesizing and updating the existing information into a new series of maps that portray the current state of knowledge. Such products are important for a number of purposes, such as the international effort to understand the consequences of global change in Arctic regions, to predict the direction of future changes, and for informed planning of resource development in the Arctic.

  6. Observations of Recent Arctic Sea Ice Volume Loss and Its Impact on Ocean-Atmosphere Energy Exchange and Ice Production

    NASA Technical Reports Server (NTRS)

    Kurtz, N. T.; Markus, T.; Farrell, S. L.; Worthen, D. L.; Boisvert, L. N.

    2011-01-01

    Using recently developed techniques we estimate snow and sea ice thickness distributions for the Arctic basin through the combination of freeboard data from the Ice, Cloud, and land Elevation Satellite (ICESat) and a snow depth model. These data are used with meteorological data and a thermodynamic sea ice model to calculate ocean-atmosphere heat exchange and ice volume production during the 2003-2008 fall and winter seasons. The calculated heat fluxes and ice growth rates are in agreement with previous observations over multiyear ice. In this study, we calculate heat fluxes and ice growth rates for the full distribution of ice thicknesses covering the Arctic basin and determine the impact of ice thickness change on the calculated values. Thinning of the sea ice is observed which greatly increases the 2005-2007 fall period ocean-atmosphere heat fluxes compared to those observed in 2003. Although there was also a decline in sea ice thickness for the winter periods, the winter time heat flux was found to be less impacted by the observed changes in ice thickness. A large increase in the net Arctic ocean-atmosphere heat output is also observed in the fall periods due to changes in the areal coverage of sea ice. The anomalously low sea ice coverage in 2007 led to a net ocean-atmosphere heat output approximately 3 times greater than was observed in previous years and suggests that sea ice losses are now playing a role in increasing surface air temperatures in the Arctic.

  7. Current use pesticides in Arctic media; 2000-2007.

    PubMed

    Hoferkamp, Lisa; Hermanson, Mark H; Muir, Derek C G

    2010-07-01

    This review will summarize the levels of selected current use pesticides (CUPs) that have been identified and reported in Arctic media (i.e. air, water, sediment, and biota) since the year 2000. Almost all of the 10 CUPs (chlorothalonil, chlorpyrifos, dacthal, diazinon, dicofol, lindane, methoxychlor, pentachloronitrobenzene (PCNB), pentachlorophenol, and trifluralin) examined in the review currently are, or have been, high production volume chemicals i.e. >1M lbs/y in USA or >1000 t/y globally. Characteristic travel distances for the 10 chemicals range from 55 km (methoxychlor) to 12,100 km (PCNB). Surveys and long-term monitoring studies have demonstrated the presence of 9 of the 10 CUPs included in this review in the Arctic environment. Only dicofol has not been reported. The presence of these chemicals has mainly been reported in high volume air samples and in snow from Arctic ice caps and lake catchments. There are many other CUPs registered for use which have not been determined in Arctic environments. The discovery of the CUPs currently measured in the Arctic has been mainly serendipitous, a result of analyzing some samples using the same suite of analytes as used for studies in mid-latitude locations. A more systematic approach is needed to assess whether other CUPs might be accumulating in the arctic and ultimately to assess whether their presence has any significance biologically or results in risks for human consumers. Copyright 2009 Elsevier B.V. All rights reserved.

  8. Climate change, future Arctic Sea ice, and the competitiveness of European Arctic offshore oil and gas production on world markets.

    PubMed

    Petrick, Sebastian; Riemann-Campe, Kathrin; Hoog, Sven; Growitsch, Christian; Schwind, Hannah; Gerdes, Rüdiger; Rehdanz, Katrin

    2017-12-01

    A significant share of the world's undiscovered oil and natural gas resources are assumed to lie under the seabed of the Arctic Ocean. Up until now, the exploitation of the resources especially under the European Arctic has largely been prevented by the challenges posed by sea ice coverage, harsh weather conditions, darkness, remoteness of the fields, and lack of infrastructure. Gradual warming has, however, improved the accessibility of the Arctic Ocean. We show for the most resource-abundant European Arctic Seas whether and how a climate induced reduction in sea ice might impact future accessibility of offshore natural gas and crude oil resources. Based on this analysis we show for a number of illustrative but representative locations which technology options exist based on a cost-minimization assessment. We find that under current hydrocarbon prices, oil and gas from the European offshore Arctic is not competitive on world markets.

  9. Soluble trace elements and total mercury in Arctic Alaskan snow

    USGS Publications Warehouse

    Snyder-Conn, E.; Garbarino, J.R.; Hoffman, G.L.; Oelkers, A.

    1997-01-01

    Ultraclean field and laboratory procedures were used to examine trace element concentrations in northern Alaskan snow. Sixteen soluble trace elements and total mercury were determined in snow core samples representing the annual snowfall deposited during the 1993-94 season at two sites in the Prudhoe Bay oil field and nine sites in the Arctic National Wildlife Refuge (Arctic NWR). Results indicate there were two distinct point sources for trace elements in the Prudhoe Bay oil field - a source associated with oil and gas production and a source associated with municipal solid-waste incineration. Soluble trace element concentrations measured in snow from the Arctic NWR resembled concentrations of trace elements measured elsewhere in the Arctic using clean sample-collection and processing techniques and were consistent with deposition resulting from widespread arctic atmospheric contamination. With the exception of elements associated with sea salts, there were no orographic or east-west trends observed in the Arctic NWR data, nor were there any detectable influences from the Prudhoe Bay oil field, probably because of the predominant easterly and northeasterly winds on the North Slope of Alaska. However, regression analysis on latitude suggested significant south-to-north increases in selected trace element concentrations, many of which appear unrelated to the sea salt contribution.

  10. Arctic Carbon Sinks: Present and Future.

    DTIC Science & Technology

    1989-12-01

    17 With past ONR support from Grant N00014-87-J-1218, we had successfully coupled simple biological models of phytoplankton production (light and...release of "greenhouse" primary productions of >200 g C m2 yr-1 , gases, C0 2 , N2 0, CH4, and freons, to the tenfold that of other high Arctic shelves...enhancemcnt of primary during previous glacial periods, resulting production in the Arctic and Antarctic in about a 3% increase of today’s ocean Seas

  11. Metabolic and trophic interactions modulate methane production by Arctic peat microbiota in response to warming

    PubMed Central

    Tveit, Alexander Tøsdal; Urich, Tim; Frenzel, Peter; Svenning, Mette Marianne

    2015-01-01

    Arctic permafrost soils store large amounts of soil organic carbon (SOC) that could be released into the atmosphere as methane (CH4) in a future warmer climate. How warming affects the complex microbial network decomposing SOC is not understood. We studied CH4 production of Arctic peat soil microbiota in anoxic microcosms over a temperature gradient from 1 to 30 °C, combining metatranscriptomic, metagenomic, and targeted metabolic profiling. The CH4 production rate at 4 °C was 25% of that at 25 °C and increased rapidly with temperature, driven by fast adaptations of microbial community structure, metabolic network of SOC decomposition, and trophic interactions. Below 7 °C, syntrophic propionate oxidation was the rate-limiting step for CH4 production; above this threshold temperature, polysaccharide hydrolysis became rate limiting. This change was associated with a shift within the functional guild for syntrophic propionate oxidation, with Firmicutes being replaced by Bacteroidetes. Correspondingly, there was a shift from the formate- and H2-using Methanobacteriales to Methanomicrobiales and from the acetotrophic Methanosarcinaceae to Methanosaetaceae. Methanogenesis from methylamines, probably stemming from degradation of bacterial cells, became more important with increasing temperature and corresponded with an increased relative abundance of predatory protists of the phylum Cercozoa. We concluded that Arctic peat microbiota responds rapidly to increased temperatures by modulating metabolic and trophic interactions so that CH4 is always highly produced: The microbial community adapts through taxonomic shifts, and cascade effects of substrate availability cause replacement of functional guilds and functional changes within taxa. PMID:25918393

  12. Nutrient Limitation of Microbial Mediated Decomposition and Arctic Soil Chronology

    NASA Astrophysics Data System (ADS)

    Melle, C. J.; Darrouzet-Nardi, A.; Wallenstein, M. D.

    2012-12-01

    effective soil age. My research is focused on addressing the questions of the extent of microbial N limitation in arctic tundra soils, the potential for co-limitation of labile C despite a high SOC environment, and the dependence, if any, nutrient limitation may have on the effective age of the soil. I have addressed these questions by conducting a laboratory soil incubation of factorial design with treatments of amended glucose, amended ammonium nitrate, and a control consisting of an addition of an equivalent volume of deionized water. Moist acid tundra soils possessing similar soil properties from two arctic sites of close proximity yet with varying deglaciation chronologies were utilized in my study. Soil properties of C-mineralization via respiration, microbial biomass, and nitrogen content in the forms of ammonium, nitrate, and total free amino acids and microbial extra-cellular enzyme production were assayed to determine the microbial response to the experimental treatments. Through the results of this work, I hope to better our understanding of biogeochemical cycling within arctic tundra ecosystems and the response to climate change by contributing to existing knowledge of nutrient limitation on microbial mediated decomposition of SOC in the arctic and how this may differ in soils of varying effective age.

  13. Technology for Subsea 3D Printing Structures for Oil and Gas Production in Arctic Region

    NASA Astrophysics Data System (ADS)

    Musipov, H. N.; Nikitin, V. S.; Bakanovskaya, L. N.

    2017-11-01

    The article considers an unconventional technology of offshore oil production and the prospects for its further development. The complexity of Arctic shelf development and the use of subsea production units have been analyzed. An issue of the subsea drilling unit construction technology with the help of 3D printers has been considered. An approximate economic efficiency calculation of the 3D printer technology introduction has been given.

  14. Late Cretaceous seasonal ocean variability from the Arctic.

    PubMed

    Davies, Andrew; Kemp, Alan E S; Pike, Jennifer

    2009-07-09

    The modern Arctic Ocean is regarded as a barometer of global change and amplifier of global warming and therefore records of past Arctic change are critical for palaeoclimate reconstruction. Little is known of the state of the Arctic Ocean in the greenhouse period of the Late Cretaceous epoch (65-99 million years ago), yet records from such times may yield important clues to Arctic Ocean behaviour in near-future warmer climates. Here we present a seasonally resolved Cretaceous sedimentary record from the Alpha ridge of the Arctic Ocean. This palaeo-sediment trap provides new insight into the workings of the Cretaceous marine biological carbon pump. Seasonal primary production was dominated by diatom algae but was not related to upwelling as was previously hypothesized. Rather, production occurred within a stratified water column, involving specially adapted species in blooms resembling those of the modern North Pacific subtropical gyre, or those indicated for the Mediterranean sapropels. With increased CO(2) levels and warming currently driving increased stratification in the global ocean, this style of production that is adapted to stratification may become more widespread. Our evidence for seasonal diatom production and flux testify to an ice-free summer, but thin accumulations of terrigenous sediment within the diatom ooze are consistent with the presence of intermittent sea ice in the winter, supporting a wide body of evidence for low temperatures in the Late Cretaceous Arctic Ocean, rather than recent suggestions of a 15 degrees C mean annual temperature at this time.

  15. Connecting Arctic Research Across Boundaries through the Arctic Research Consortium of the United States (ARCUS)

    NASA Astrophysics Data System (ADS)

    Rich, R. H.; Myers, B.; Wiggins, H. V.; Zolkos, J.

    2017-12-01

    The complexities inherent in Arctic research demand a unique focus on making connections across the boundaries of discipline, institution, sector, geography, knowledge system, and culture. Since 1988, ARCUS has been working to bridge these gaps through communication, coordination, and collaboration. Recently, we have worked with partners to create a synthesis of the Arctic system, to explore the connectivity across the Arctic research community and how to strengthen it, to enable the community to have an effective voice in research funding policy, to implement a system for Arctic research community knowledge management, to bridge between global Sea Ice Prediction Network researchers and the science needs of coastal Alaska communities through the Sea Ice for Walrus Outlook, to strengthen ties between Polar researchers and educators, and to provide essential intangible infrastructure that enables cost-effective and productive research across boundaries. Employing expertise in managing for collaboration and interdisciplinarity, ARCUS complements and enables the work of its members, who constitute the Arctic research community and its key stakeholders. As a member-driven organization, everything that ARCUS does is achieved through partnership, with strong volunteer leadership of each activity. Key organizational partners in the United States include the U.S. Arctic Research Commission, Interagency Arctic Research Policy Committee, National Academy of Sciences Polar Research Board, and the North Slope Science Initiative. Internationally, ARCUS maintains strong bilateral connections with similarly focused groups in each Arctic country (and those interested in the Arctic), as well as with multinational organizations including the International Arctic Science Committee, the Association of Polar Early Career Educators, the University of the Arctic, and the Arctic Institute of North America. Currently, ARCUS is applying the best practices of the science of team science

  16. Reactive Nitrogen, Ozone and Ozone Production in the Arctic Troposphere and the Impact of Stratosphere-Troposphere Exchange

    NASA Technical Reports Server (NTRS)

    Liang, Q.; Rodriquez, J. M.; Douglass, A. R.; Crawford, J. H.; Apel, E.; Bian, H.; Blake, D. R.; Brune, W.; Chin, M.; Colarco, P. R.; hide

    2011-01-01

    We analyze the aircraft observations obtained during the Arctic Research of the Composition of the Troposphere from Aircraft and Satellite (ARCTAS) mission together with the GEOS-5 CO simulation to examine O3 and NOy in the Arctic and sub-Arctic region and their source attribution. Using a number of marker tracers and their probability density distributions, we distinguish various air masses from the background troposphere and examine their contribution to NOx, O3, and O3 production in the Arctic troposphere. The background Arctic troposphere has mean O3 of approximately 60 ppbv and NOx of approximately 25 pptv throughout spring and summer with CO decreases from approximately 145 ppbv in spring to approximately 100 ppbv in summer. These observed CO, NOx and O3 mixing ratios are not notably different from the values measured during the 1988 ABLE-3A and the 2002 TOPSE field campaigns despite the significant changes in the past two decades in processes that could have changed the Arctic tropospheric composition. Air masses associated with stratosphere-troposphere exchange are present throughout the mid and upper troposphere during spring and summer. These air masses with mean O3 concentration of 140-160 ppbv are the most important direct sources of O3 in the Arctic troposphere. In addition, air of stratospheric origin is the only notable driver of net O3 formation in the Arctic due to its sustainable high NOx (75 pptv in spring and 110 pptv in summer) and NOy (approximately 800 pptv in spring and approximately 1100 pptv in summer) levels. The ARCTAS measurements present observational evidence suggesting significant conversion of nitrogen from HNO3 to NOx and then to PAN (a net formation of approximately 120 pptv PAN) in summer when air of stratospheric origin is mixed with tropospheric background during stratosphere-to-troposphere transport. These findings imply that an adequate representation of stratospheric O3 and NOy input are essential in accurately simulating O3

  17. Determination of Arctic sea ice variability modes on interannual timescales via nonhierarchical clustering

    NASA Astrophysics Data System (ADS)

    Fučkar, Neven-Stjepan; Guemas, Virginie; Massonnet, François; Doblas-Reyes, Francisco

    2015-04-01

    Over the modern observational era, the northern hemisphere sea ice concentration, age and thickness have experienced a sharp long-term decline superimposed with strong internal variability. Hence, there is a crucial need to identify robust patterns of Arctic sea ice variability on interannual timescales and disentangle them from the long-term trend in noisy datasets. The principal component analysis (PCA) is a versatile and broadly used method for the study of climate variability. However, the PCA has several limiting aspects because it assumes that all modes of variability have symmetry between positive and negative phases, and suppresses nonlinearities by using a linear covariance matrix. Clustering methods offer an alternative set of dimension reduction tools that are more robust and capable of taking into account possible nonlinear characteristics of a climate field. Cluster analysis aggregates data into groups or clusters based on their distance, to simultaneously minimize the distance between data points in a given cluster and maximize the distance between the centers of the clusters. We extract modes of Arctic interannual sea-ice variability with nonhierarchical K-means cluster analysis and investigate the mechanisms leading to these modes. Our focus is on the sea ice thickness (SIT) as the base variable for clustering because SIT holds most of the climate memory for variability and predictability on interannual timescales. We primarily use global reconstructions of sea ice fields with a state-of-the-art ocean-sea-ice model, but we also verify the robustness of determined clusters in other Arctic sea ice datasets. Applied cluster analysis over the 1958-2013 period shows that the optimal number of detrended SIT clusters is K=3. Determined SIT cluster patterns and their time series of occurrence are rather similar between different seasons and months. Two opposite thermodynamic modes are characterized with prevailing negative or positive SIT anomalies over the

  18. Global warming and effects on the Arctic fox.

    PubMed

    Fuglei, Eva; Ims, Rolf Anker

    2008-01-01

    We predict the effect of global warming on the arctic fox, the only endemic terrestrial predatory mammals in the arctic region. We emphasize the difference between coastal and inland arctic fox populations. Inland foxes rely on peak abundance of lemming prey to sustain viable populations. In the short-term, warmer winters result in missed lemming peak years and reduced opportunities for successful arctic fox breeding. In the long-term, however, warmer climate will increase plant productivity and more herbivore prey for competitive dominant predators moving in from the south. The red fox has already intruded the arctic region and caused a retreat of the southern limit of arctic fox distribution range. Coastal arctic foxes, which rely on the richer and temporally stable marine subsidies, will be less prone to climate-induced resource limitations. Indeed, arctic islands, becoming protected from southern species invasions as the extent of sea ice is decreasing, may become the last refuges for coastal populations of Arctic foxes.

  19. Communicating Climate and Ecosystem Change in the Arctic

    NASA Astrophysics Data System (ADS)

    Soreide, N. N.; Overland, J. E.; Calder, J. A.; Rodionov, S.

    2005-12-01

    There is an explosion of interest in Northern Hemisphere climate, highlighting the importance of recent changes in the Arctic on mid-latitude climate and its impact on marine and terrestrial ecosystems. Traditional sea ice and tundra dominated arctic ecosystems are being reorganizing into warmer sub-arctic ecosystem types. Over the previous two years we have developed a comprehensive, near real-time arctic change detection protocol to track physical and biological changes for presentation on the web: http://www.arctic.noaa.gov/detect. The effort provides a continuous update to the Arctic Climate Impact Assessment (ACIA) Report, released in November 2004. Principles for the protocol include an accessible narrative style, scientifically credible and objective indicators, notes multiple uses for the information, acknowledges uncertainties, and balances having too many indicators-which leads to information overload-and too few-which does not capture the complexity of the system. Screening criteria include concreteness, public awareness, being understandable, availability of historical time series, and sensitivity. The site provides sufficient information for an individual to make their own assessment regarding the balance of the evidence for tracking change. The product provides an overview, recent news, links to many arctic websites, and highlights climate, global impacts, land and marine ecosystems, and human consequences. Since its inception a year ago, it has averaged about 9000 hits an day on the web, and is a major information source as determined by Google search. The future direction focuses on understanding the causes for change. In spring 2005 we also presented a near real-time ecological and climatic surveillance website for the Bering Sea: www.beringclimate.noaa.gov. The site provides up-to-date information which ties northward shifts of fish, invertebrate and marine mammal populations to physical changes in the Arctic. This site is more technical than the

  20. Determining diatom ecotones and their relationship to terrestrial ecoregion designations in the central Canadian Arctic Islands.

    PubMed

    Antoniades, Dermot; Douglas, Marianne S V; Michelutti, Neal; Smol, John P

    2014-08-01

    Ecotones are key areas for the detection of global change because many are predicted to move with shifts in climate. Prince of Wales Island, in the Canadian Arctic Archipelago, spans the transition between mid- to high-Arctic ecoregions. We analyzed limnological variables and recent diatom assemblages from its lakes and ponds to determine if assemblages reflected this ecotone. Limnological gradients were short, and water chemistry explained 20.0% of diatom variance in a redundancy analysis (RDA), driven primarily by dissolved organic carbon, Ca and SO4 . Most taxa were small, benthic forms; key taxa such as planktonic Cyclotella species were restricted to the warmer, southern portion of the study area, while benthic Staurosirella were associated with larger, ice-dominated lakes. Nonetheless, there were no significant changes in diatom assemblages across the mid- to high-Arctic ecoregion boundary. We combined our data set with one from nearby Cornwallis Island to expand the study area and lengthen its environmental gradients. Within this expanded data set, 40.6% of the diatom variance was explained by a combination of water chemistry and geographic variables, and significant relationships were revealed between diatom distributions and key limnological variables, including pH, specific conductivity, and chl-a. Using principal coordinates analysis, we estimated community turnover with latitude and applied piecewise linear regression to determine diatom ecotone positions. A pronounced transition was present between Prince of Wales Island and the colder, more northerly Cornwallis Island. These data will be important in detecting any future northward ecotone movement in response to predicted Arctic climate warming in this highly sensitive region. © 2014 Phycological Society of America.

  1. Bromine atom production and chain propagation during springtime Arctic ozone depletion events in Barrow, Alaska

    NASA Astrophysics Data System (ADS)

    Thompson, Chelsea R.; Shepson, Paul B.; Liao, Jin; Huey, L. Greg; Cantrell, Chris; Flocke, Frank; Orlando, John

    2017-03-01

    Ozone depletion events (ODEs) in the Arctic are primarily controlled by a bromine radical-catalyzed destruction mechanism that depends on the efficient production and recycling of Br atoms. Numerous laboratory and modeling studies have suggested the importance of heterogeneous recycling of Br through HOBr reaction with bromide on saline surfaces. On the other hand, the gas-phase regeneration of bromine atoms through BrO-BrO radical reactions has been assumed to be an efficient, if not dominant, pathway for Br reformation and thus ozone destruction. Indeed, it has been estimated that the rate of ozone depletion is approximately equal to twice the rate of the BrO self-reaction. Here, we use a zero-dimensional, photochemical model, largely constrained to observations of stable atmospheric species from the 2009 Ocean-Atmosphere-Sea Ice-Snowpack (OASIS) campaign in Barrow, Alaska, to investigate gas-phase bromine radical propagation and recycling mechanisms of bromine atoms for a 7-day period during late March. This work is a continuation of that presented in Thompson et al. (2015) and utilizes the same model construct. Here, we use the gas-phase radical chain length as a metric for objectively quantifying the efficiency of gas-phase recycling of bromine atoms. The gas-phase bromine chain length is determined to be quite small, at < 1.5, and highly dependent on ambient O3 concentrations. Furthermore, we find that Br atom production from photolysis of Br2 and BrCl, which is predominately emitted from snow and/or aerosol surfaces, can account for between 30 and 90 % of total Br atom production. This analysis suggests that condensed-phase production of bromine is at least as important as, and at times greater than, gas-phase recycling for the occurrence of Arctic ODEs. Therefore, the rate of the BrO self-reaction is not a sufficient estimate for the rate of O3 depletion.

  2. Synthesis of integrated primary production in the Arctic Ocean: II. In situ and remotely sensed estimates

    NASA Astrophysics Data System (ADS)

    Hill, Victoria J.; Matrai, Patricia A.; Olson, Elise; Suttles, S.; Steele, Mike; Codispoti, L. A.; Zimmerman, Richard C.

    2013-03-01

    Recent warming of surface waters, accompanied by reduced ice thickness and extent may have significant consequences for climate-driven changes of primary production (PP) in the Arctic Ocean (AO). However, it has been difficult to obtain a robust benchmark estimate of pan-Arctic PP necessary for evaluating change. This paper provides an estimate of pan-Arctic PP prior to significant warming from a synthetic analysis of the ARCSS-PP database of in situ measurements collected from 1954 to 2007 and estimates derived from satellite-based observations from 1998 to 2007. Vertical profiles of in situ chlorophyll a (Chl a) and PP revealed persistent subsurface peaks in biomass and PP throughout the AO during most of the summer period. This was contradictory with the commonly assumed exponential decrease in PP with depth on which prior satellite-derived estimates were based. As remotely sensed Chl a was not a good predictor of integrated water column Chl a, accurate satellite-based modeling of vertically integrated primary production (IPPsat), requires knowledge of the subsurface distribution of phytoplankton, coincident with the remotely sensed ocean color measurements. We developed an alternative approach to modeling PP from satellite observations by incorporating climatological information on the depths of the euphotic zone and the mixed layer that control the distribution of phytoplankton that significantly improved the fidelity of satellite derived PP to in situ observations. The annual IPP of the Arctic Ocean combining both in situ and satellite based estimates was calculated here to be a minimum of 466 ± 94 Tg C yr-1 and a maximum of 993 ± 94 Tg C yr-1, when corrected for subsurface production. Inflow shelf seas account for 75% of annual IPP, while the central basin and Beaufort northern sea were the regions with the lowest annual integrated productivity, due to persistently stratified, oligotrophic and ice-covered conditions. Although the expansion of summertime

  3. Determining Sea-Level Rise and Coastal Subsidence in the Canadian Arctic Using a Dense GPS Velocity Field for North America

    NASA Astrophysics Data System (ADS)

    Craymer, M.; Forbes, D.; Henton, J.; Lapelle, E.; Piraszewski, M.; Solomon, S.

    2005-12-01

    With observed climate warming in the western Canadian Arctic and potential increases in regional sea level, we anticipate expansion of the coastal region subject to rising relative sea level and increased flooding risk. This is a concern for coastal communities such as Tuktoyaktuk and Sachs Harbour and for the design and safety of hydrocarbon production facilities on the Mackenzie Delta. To provide a framework in which to monitor these changes, a consistent velocity field has been determined from GPS observations throughout North America, including the Canadian Arctic Archipelago and the Mackenzie Delta region. An expanded network of continuous GPS sites and multi-epoch (episodic) sites has enabled an increased density that enhances the application to geophysical studies including the discrimination of crustal motion, other components of coastal subsidence, and sea-level rise. To obtain a dense velocity field consistent at all scales, we have combined weekly solutions of continuous GPS sites from different agencies in Canada and the USA, together with the global reference frame under the North American Reference Frame initiative. Although there is already a high density of continuous GPS sites in the conterminous United States, there are many fewer such sites in Canada. To make up for this lack of density, we have incorporated high-accuracy episodic GPS observations on stable monuments distributed throughout Canada. By combining up to ten years of repeated, episodic GPS observations at such sites, together with weekly solutions from the continuous sites, we have obtained a highly consistent velocity field with a significantly increased spatial sampling of crustal deformation throughout Canada. This exhibits a spatially coherent pattern of uplift and subsidence in Canada that is consistent with the expected rates of glacial isostatic adjustment. To determine the contribution of vertical motion to sea-level rise under climate warming in the Canadian Arctic, we have

  4. Determination of Arctic sea ice thickness in the winter of 2007

    NASA Astrophysics Data System (ADS)

    Calvao, J.; Wadhams, P.; Rodrigues, J.

    2009-04-01

    The L3H phase of operation of ICESat's laser in the winter of 2007 coincided for about two weeks with the cruise of the British submarine Tireless where upward-looking and multibeam sonar systems were mounted, thus providing the first opportunity for a simultaneous determination of the sea ice freeboard and draft in the Arctic Ocean. ICESat satellite carries a laser altimeter dedicated to the observation of polar regions, generating accurate profiles of surface topography along the tracks (footprint diameter 70m), which can be inverted to determine sea-ice freeboard heights using a "lowest level" filtering scheme. The procedure applied to obtain the ice freeboard F=h-N-MDT (where h is the ICESat ellipsoidal height estimate, N is the geoid undulation and MDT is the ocean mean dynamic topography) for the whole Arctic basin (with the exception of points beyond 86N) consisted of a high-pass filtering of the satellite data to remove low frequency effects due to the geoid and ocean dynamics (the geoid model ArcGP with sufficient accuracy to allow the computation of the freeboard was very recently made available). The original tide model was replaced by the tide model AOTIM5 and the tide loading model TPXO6.2. The inverse barometer correction was computed. As there are no MDT models with enough accuracy, it is necessary to identify leads of open water or thin ice to allow the interpolation of the ocean surface, using surface reflectivity and waveform shape. Several solutions were tested to define the ocean surface and the computed freeboard values were interpolated on a 5x5 minute grid, where the submarine track was interpolated. At the same time, along-track single beam upward-looking sonar data were recorded using an Admiralty pattern 780 echo sounder carried by the Tireless, from where we have generated an ice draft profile of about 8,000km between Fram Strait and the North coast of Alaska and back. The merging of the two data sets provides a new insight into the

  5. Relating Radiative Fluxes on Arctic Sea Ice Area Using Arctic Observation and Reanalysis Integrated System (ArORIS)

    NASA Astrophysics Data System (ADS)

    Sledd, A.; L'Ecuyer, T. S.

    2017-12-01

    With Arctic sea ice declining rapidly and Arctic temperatures rising faster than the rest of the globe, a better understanding of the Arctic climate, and ice cover-radiation feedbacks in particular, is needed. Here we present the Arctic Observation and Reanalysis Integrated System (ArORIS), a dataset of integrated products to facilitate studying the Arctic using satellite, reanalysis, and in-situ datasets. The data include cloud properties, radiative fluxes, aerosols, meteorology, precipitation, and surface properties, to name just a few. Each dataset has uniform grid-spacing, time-averaging and naming conventions for ease of use between products. One intended use of ArORIS is to assess Arctic radiation and moisture budgets. Following that goal, we use observations from ArORIS - CERES-EBAF radiative fluxes and NSIDC sea ice fraction and area to quantify relationships between the Arctic energy balance and surface properties. We find a discernable difference between energy budgets for years with high and low September sea ice areas. Surface fluxes are especially responsive to the September sea ice minimum in months both leading up to September and the months following. In particular, longwave fluxes at the surface show increased sensitivity in the months preceding September. Using a single-layer model of solar radiation we also investigate the individual responses of surface and planetary albedos to changes in sea ice area. By partitioning the planetary albedo into surface and atmospheric contributions, we find that the atmospheric contribution to planetary albedo is less sensitive to changes in sea ice area than the surface contribution. Further comparisons between observations and reanalyses can be made using the available datasets in ArORIS.

  6. Arctic Browning: vegetation damage and implications for carbon balance.

    NASA Astrophysics Data System (ADS)

    Treharne, Rachael; Bjerke, Jarle; Emberson, Lisa; Tømmervik, Hans; Phoenix, Gareth

    2016-04-01

    'Arctic browning' is the loss of biomass and canopy in Arctic ecosystems. This process is often driven by climatic and biological extreme events - notably extreme winter warm periods, winter frost-drought and severe outbreaks of defoliating insects. Evidence suggests that browning is becoming increasingly frequent and severe at the pan-arctic scale, a view supported by observations from more intensely observed regions, with major and unprecedented vegetation damage reported at landscape (>1000km2) and regional (Nordic Arctic Region) scales in recent years. Critically, the damage caused by these extreme events is in direct opposition to 'Arctic greening', the well-established increase in productivity and shrub abundance observed at high latitudes in response to long-term warming. This opposition creates uncertainty as to future anticipated vegetation change in the Arctic, with implications for Arctic carbon balance. As high latitude ecosystems store around twice as much carbon as the atmosphere, and vegetation impacts are key to determining rates of loss or gain of ecosystem carbon stocks, Arctic browning has the potential to influence the role of these ecosystems in global climate. There is therefore a clear need for a quantitative understanding of the impacts of browning events on key ecosystem carbon fluxes. To address this, field sites were chosen in central and northern Norway and in Svalbard, in areas known to have been affected by either climatic extremes or insect outbreak and subsequent browning in the past four years. Sites were chosen along a latitudinal gradient to capture both conditions already causing vegetation browning throughout the Norwegian Arctic, and conditions currently common at lower latitudes which are likely to become more damaging further North as climate change progresses. At each site the response of Net Ecosystem CO2 Exchange to light was measured using a LiCor LI6400 Portable Photosynthesis system and a custom vegetation chamber with

  7. Arctic and Arctic-like rabies viruses: distribution, phylogeny and evolutionary history

    PubMed Central

    KUZMIN, I. V.; HUGHES, G. J.; BOTVINKIN, A. D.; GRIBENCHA, S. G.; RUPPRECHT, C. E.

    2008-01-01

    SUMMARY Forty-one newly sequenced isolates of Arctic and Arctic-like rabies viruses, were genetically compared to each other and to those available from GenBank. Four phylogenetic lineages of Arctic viruses were identified. Arctic-1 viruses circulate in Ontario, Arctic-2 viruses circulate in Siberia and Alaska, Arctic-3 viruses circulate circumpolarly, and a newly described lineage Arctic-4 circulates locally in Alaska. The oldest available isolates from Siberia (between 1950 and 1960) belong to the Arctic-2 and Arctic-3 lineages and share 98·6–99·2% N gene identity with contemporary viruses. Two lineages of Arctic-like viruses were identified in southern Asia and the Middle East (Arctic-like-1) and eastern Asia (Arctic-like-2). A time-scaled tree demonstrates that the time of the most recent common ancestor (TMRCA) of Arctic and Arctic-like viruses is dated between 1255 and 1786. Evolution of the Arctic viruses has occurred through a northerly spread. The Arctic-like-2 lineage diverged first, whereas Arctic viruses share a TMRCA with Arctic-like-1 viruses. PMID:17599781

  8. Arctic and Arctic-like rabies viruses: distribution, phylogeny and evolutionary history.

    PubMed

    Kuzmin, I V; Hughes, G J; Botvinkin, A D; Gribencha, S G; Rupprecht, C E

    2008-04-01

    Forty-one newly sequenced isolates of Arctic and Arctic-like rabies viruses, were genetically compared to each other and to those available from GenBank. Four phylogenetic lineages of Arctic viruses were identified. Arctic-1 viruses circulate in Ontario, Arctic-2 viruses circulate in Siberia and Alaska, Arctic-3 viruses circulate circumpolarly, and a newly described lineage Arctic-4 circulates locally in Alaska. The oldest available isolates from Siberia (between 1950 and 1960) belong to the Arctic-2 and Arctic-3 lineages and share 98.6-99.2% N gene identity with contemporary viruses. Two lineages of Arctic-like viruses were identified in southern Asia and the Middle East (Arctic-like-1) and eastern Asia (Arctic-like-2). A time-scaled tree demonstrates that the time of the most recent common ancestor (TMRCA) of Arctic and Arctic-like viruses is dated between 1255 and 1786. Evolution of the Arctic viruses has occurred through a northerly spread. The Arctic-like-2 lineage diverged first, whereas Arctic viruses share a TMRCA with Arctic-like-1 viruses.

  9. Linking the Modern Distribution of Biogenic Proxies in High Arctic Greenland Shelf Sediments to Sea Ice, Primary Production, and Arctic-Atlantic Inflow

    NASA Astrophysics Data System (ADS)

    Limoges, Audrey; Ribeiro, Sofia; Weckström, Kaarina; Heikkilä, Maija; Zamelczyk, Katarzyna; Andersen, Thorbjørn J.; Tallberg, Petra; Massé, Guillaume; Rysgaard, Søren; Nørgaard-Pedersen, Niels; Seidenkrantz, Marit-Solveig

    2018-03-01

    The eastern north coast of Greenland is considered to be highly sensitive to the ongoing Arctic warming, but there is a general lack of data on modern conditions and in particular on the modern distribution of climate and environmental proxies to provide a baseline and context for studies on past variability. Here we present a detailed investigation of 11 biogenic proxies preserved in surface sediments from the remote High Arctic Wandel Sea shelf, the entrance to the Independence, Hagen, and Danmark fjords. The composition of organic matter (organic carbon, C:N ratios, δ13C, δ15N, biogenic silica, and IP25) and microfossil assemblages revealed an overall low primary production dominated by benthic diatoms, especially at the shallow sites. While the benthic and planktic foraminiferal assemblages underline the intrusion of chilled Atlantic waters into the deeper parts of the study area, the distribution of organic-walled dinoflagellate cysts is controlled by the local bathymetry and sea ice conditions. The distribution of the dinoflagellate cyst Polarella glacialis matches that of seasonal sea ice and the specific biomarker IP25, highlighting the potential of this species for paleo sea ice studies. The information inferred from our multiproxy study has important implications for the interpretation of the biogenic-proxy signal preserved in sediments from circum-Arctic fjords and shelf regions and can serve as a baseline for future studies. This is the first study of its kind in this area.

  10. Fourth international circumpolar arctic vegetation mapping workshop

    USGS Publications Warehouse

    Raynolds, Martha K.; Markon, C.J.

    2002-01-01

    During the week of April 10, 2001, the Fourth International Circumpolar Arctic Vegetation Mapping Workshop was held in Moscow, Russia. The purpose of this meeting was to bring together the vegetation scientists working on the Circumpolar Arctic Vegetation Map (CAVM) to (1) review the progress of current mapping activities, (2) discuss and agree upon a standard set of arctic tundra subzones, (3) plan for the production and dissemination of a draft map, and (4) begin work on a legend for the final map.

  11. SAR Altimetry for Mean Sea Surface Determination in the Arctic DTU15MSS

    NASA Astrophysics Data System (ADS)

    Piccioni, G.; Andersen, O. B.; Stenseng, L.

    2015-12-01

    A reliable MSS that includes high-latitude regions within the 82 degree parallel is required for the Sentinel-3 data processing. In this paper we present the new DTU15MSS which is an update of the DTU13MSS with more years of CryoSat-2. CryoSat-2 offers a unique dataset in the Arctic Ocean for testing SAR altimetry with nearly five years of high-resolution SAR altimetry. In the Arctic Ocean older conventional altimetry satellites (ERS-1/ERS-2/Envisat) have only been able to provide sparse data for the past 20 years. Here we present the development of the DTU13MSS in the Arctic being the latest release of the global high resolution mean sea surface from DTU Space based on 4 years/repeat of Cryostat-2. The analysis shows that Laser Altimetry from the ICESat satellite being the basis of DTU10 and DTU13MSS between 82 and 86N is now obsolete for mean sea surface determination. The study also highlight the problems of integrating altimetry from various modes (LRM, SAR and SAR-in) as well as the problems relating to the fact that the averaging period of CryoSat-2 is adjacent to the 20 years (1993-2012) period used to develop DTU13MSS. Evaluation of the new MSS is performed and comparison with existing MSS models is performed to evaluate the impact of these updates into MSS computation.

  12. The Arctic Grand Challenge: Abrupt Climate Change

    NASA Astrophysics Data System (ADS)

    Wilkniss, P. E.

    2003-12-01

    Trouble in polar paradise (Science, 08/30/02), significant changes in the Arctic environment are scientifically documented (R.E. Moritz et al. ibid.). More trouble, lots more, "abrupt climate change," (R. B. Alley, et al. Science 03/28/03). R. Corell, Arctic Climate Impact Assessment team (ACIA), "If you want to see what will happen in the rest of the world 25 years from now just look what's happening in the Arctic," (Arctic Council meeting, Iceland, 08/03). What to do? Make abrupt Arctic climate change a grand challenge for the IPY-4 and beyond! Scientifically:Describe the "state" of the Arctic climate system as succinctly as possible and accept it as the point of departure.Develop a hypothesis and criteria what constitutes "abrupt climate change," in the Arctic that can be tested with observations. Observations: Bring to bear existing observations and coordinate new investments in observations through an IPY-4 scientific management committee. Make the new Barrow, Alaska, Global Climate Change Research Facility a major U.S. contribution and focal point for the IPY-4 in the U.S Arctic. Arctic populations, Native peoples: The people of the North are living already, daily, with wrenching change, encroaching on their habitats and cultures. For them "the earth is faster now," (I. Krupnik and D. Jolly, ARCUS, 2002). From a political, economic, social and entirely realistic perspective, an Arctic grand challenge without the total integration of the Native peoples in this effort cannot succeed. Therefore: Communications must be established, and the respective Native entities must be approached with the determination to create well founded, well functioning, enduring partnerships. In the U.S. Arctic, Barrow with its long history of involvement and active support of science and with the new global climate change research facility should be the focal point of choice Private industry: Resource extraction in the Arctic followed by oil and gas consumption, return the combustion

  13. Temperature effects on net greenhouse gas production and bacterial communities in arctic thaw ponds.

    PubMed

    Negandhi, Karita; Laurion, Isabelle; Lovejoy, Connie

    2016-08-01

    One consequence of High Arctic permafrost thawing is the formation of small ponds, which release greenhouse gases (GHG) from stored carbon through microbial activity. Under a climate with higher summer air temperatures and longer ice-free seasons, sediments of shallow ponds are likely to become warmer, which could influence enzyme kinetics or select for less cryophilic microbes. There is little data on the direct temperature effects on GHG production and consumption or on microbial communities' composition in Arctic ponds. We investigated GHG production over 16 days at 4°C and 9°C in sediments collected from four thaw ponds. Consistent with an enzymatic response, production rates of CO2 and CH4 were significantly greater at higher temperatures, with Q10 varying from 1.2 to 2.5. The bacterial community composition from one pond was followed through the incubation by targeting the V6-V8 variable regions of the 16S rRNA gene and 16S rRNA. Several rare taxa detected from rRNA accounted for significant community compositional changes. At the higher temperature, the relative community contribution from Bacteroidetes decreased by 15% with compensating increases in Betaproteobacteria, Alphaproteobacteria, Firmicutes, Acidobacteria, Verrucomicrobia and Actinobacteria. The increase in experimental GHG production accompanied by changes in community indicates an additional factor to consider in sediment environments when evaluating future climate scenarios. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  14. The central arctic caribou herd

    USGS Publications Warehouse

    Cameron, Raymond D.; Smith, Walter T.; White, Robert G.; Griffith, Brad; Douglas, David C.; Reynolds, Patricia E.; Rhode, E.B.

    2002-01-01

    From the mid-1970s through the mid-1980s, use of calving and summer habitats by Central Arctic herd caribou (Rangifer tarandus granti) declined near petroleum development infrastructure on Alaska's arctic coastal plain (Cameron et al. 1979; Cameron and Whitten 1980, Smith and Cameron 1983. Whitten and Cameron 1983a, 1985: Dau and Cameron 1986).With surface development continuing to expand westward from the Prudhoe Bay petroleum development area (Fig. 4.1), concerns arose that the resultant cumulative losses of habitat would eventually reduce productivity of the caribou herd. Specifically, reduced access of adult females to preferred foraging areas might adversely affect growth and fattening (Elison et al. 1986. Clough et al. 1987), in turn depressing calf production (Dauphiné 1976, Thomas 1982, Reimers 1983, White 1983, Eloranta and Nieminen 1986. Lenvik et al. 1988, Thomas and Kiliaan 1991) and survival (Haukioja and Salovaara 1978, Rognmo et al. 1983, Skogland 1984, Eloranta and Nieminen 1986, Adamczewski et al. 1987).Those concerns, though justified in theory, lacked empirical support. With industrial development in arctic Alaska virtually unprecedented, there was little basis for predicting the extent and duration of habitat loss, much less the secondary short- and long-term effects on the well-being of a particular caribou herd.Furthermore, despite a general acceptance that body condition and fecundity of the females are functionally related for reindeer and caribou, it seemed unlikely that any single model would apply to all subspecies of Rangifer, and perhaps not even within a subspecies in different geographic regions. We therefore lacked a complete understanding of the behavioral responses of arctic caribou to industrial development, the manner in which access to habitats might be affected, and how changes in habitat use might translate into measurable effects on fecundity and herd growth rate.Our study addressed the following objectives: 1) estimate

  15. Millennial-scale variability in Holocene aquatic productivity from Burial Lake, Arctic Alaska

    NASA Astrophysics Data System (ADS)

    Finkenbinder, Matthew S.; Abbott, Mark B.; Stoner, Joseph S.; Ortiz, Joseph D.; Finney, Bruce P.; Dorfman, Jason M.; Stansell, Nathan D.

    2018-05-01

    Holocene records of lacustrine primary production are commonly used to reconstruct past changes in environmental and climatic conditions. While several methods exist to infer paleoproductivity trends, few studies to date have applied multiple geochemical indices in the same core sequence from Arctic lakes to evaluate their fidelity and sensitivity to specific climate variables over long (Holocene length) timescales. In this study, we evaluate sub-century to millennial-scale fluctuations in paleoproductivity over the Holocene using geochemical (biogenic opal and sedimentary chlorin) analyses of sediments from Burial Lake in the western Brooks Range, Alaska. Large fluctuations in opal and related proxies occur at millennial timescales over the last 10,000 years. We interpret the changes in opal to result from variability in diatom productivity, which is indirectly mediated by climate primarily through changes in the duration of the ice-free growing season and the availability of limiting nutrients at this oligotrophic, tundra lake. Comparison of the opal and sedimentary chlorin record, which is correlated with TOC, shows contrasting patterns on both short (century to multi-century) and relatively long (millennial) time scales. The concentration of opal far exceeds that of TOC and variations in sediment dry bulk density, driven by changes in the accumulation of opal, are likely responsible in part for the variations in sedimentary chlorin. Further, C/N ratio values indicate a mixed algal-terrestrial source of sedimentary organic matter. This result highlights the complexity in the climatic interpretation of sedimentary chlorin as an index of whole lake production, because the signal is prone to dilution/concentration from opal and also reflects a combination of aquatic and terrestrial production. Time series analysis of the productivity records indicates the presence of a significant ∼1500-yr oscillation in opal concentration, which has been found in North Atlantic

  16. Arctic-COLORS (Coastal Land Ocean Interactions in the Arctic) - a NASA field campaign scoping study to examine land-ocean interactions in the Arctic

    NASA Astrophysics Data System (ADS)

    Hernes, P.; Tzortziou, M.; Salisbury, J.; Mannino, A.; Matrai, P.; Friedrichs, M. A.; Del Castillo, C. E.

    2014-12-01

    The Arctic region is warming faster than anywhere else on the planet, triggering rapid social and economic changes and impacting both terrestrial and marine ecosystems. Yet our understanding of critical processes and interactions along the Arctic land-ocean interface is limited. Arctic-COLORS is a Field Campaign Scoping Study funded by NASA's Ocean Biology and Biogeochemistry Program that aims to improve understanding and prediction of land-ocean interactions in a rapidly changing Arctic coastal zone, and assess vulnerability, response, feedbacks and resilience of coastal ecosystems, communities and natural resources to current and future pressures. Specific science objectives include: - Quantify lateral fluxes to the arctic inner shelf from (i) rivers and (ii) the outer shelf/basin that affect biology, biodiversity, biogeochemistry (i.e. organic matter, nutrients, suspended sediment), and the processing rates of these constituents in coastal waters. - Evaluate the impact of the thawing of Arctic permafrost within the river basins on coastal biology, biodiversity and biogeochemistry, including various rates of community production and the role these may play in the health of regional economies. - Assess the impact of changing Arctic landfast ice and coastal sea ice dynamics. - Establish a baseline for comparison to future change, and use state-of-the-art models to assess impacts of environmental change on coastal biology, biodiversity and biogeochemistry. A key component of Arctic-COLORS will be the integration of satellite and field observations with coupled physical-biogeochemical models for predicting impacts of future pressures on Arctic, coastal ocean, biological processes and biogeochemical cycles. Through interagency and international collaborations, and through the organization of dedicated workshops, town hall meetings and presentations at international conferences, the scoping study engages the broader scientific community and invites participation of

  17. Critical review of mercury fates and contamination in the Arctic tundra ecosystem.

    PubMed

    Poissant, Laurier; Zhang, Hong H; Canário, João; Constant, Philippe

    2008-08-01

    Mercury (Hg) contamination in tundra region has raised substantial concerns, especially since the first report of atmospheric mercury depletion events (AMDEs) in the Polar Regions. During the past decade, steady progress has been made in the research of Hg cycling in the Polar Regions. This has generated a unique opportunity to survey the whole Arctic in respect to Hg issue and to find out new discoveries. However, there are still considerable knowledge gaps and debates on the fate of Hg in the Arctic and Antarctica, especially regarding the importance and significance of AMDEs vs. net Hg loadings and other processes that burden Hg in the Arctic. Some studies argued that climate warming since the last century has exerted profound effects on the limnology of High Arctic lakes, including substantial increases in autochthonous primary productivity which increased in sedimentary Hg, whereas some others pointed out the importance of the formation and postdeposition crystallographic history of the snow and ice crystals in determining the fate and concentration of mercury in the cryosphere in addition to AMDEs. Is mercury re-emitted back to the atmosphere after AMDEs? Is Hg methylation effective in the Arctic tundra? Where the sources of MeHg are? What is its fate? Is this stimulated by human made? This paper presents a critical review about the fate of Hg in the Arctic tundra, such as pathways and process of Hg delivery into the Arctic ecosystem; Hg concentrations in freshwater and marine ecosystems; Hg concentrations in terrestrial biota; trophic transfer of Hg and bioaccumulation of Hg through food chain. This critical review of mercury fates and contamination in the Arctic tundra ecosystem is assessing the impacts and potential risks of Hg contamination on the health of Arctic people and the global northern environment by highlighting and "perspectiving" the various mercury processes and concentrations found in the Arctic tundra.

  18. Genomics of Arctic cod

    USGS Publications Warehouse

    Wilson, Robert E.; Sage, George K.; Sonsthagen, Sarah A.; Gravley, Megan C.; Menning, Damian; Talbot, Sandra L.

    2017-01-01

    The Arctic cod (Boreogadus saida) is an abundant marine fish that plays a vital role in the marine food web. To better understand the population genetic structure and the role of natural selection acting on the maternally-inherited mitochondrial genome (mitogenome), a molecule often associated with adaptations to temperature, we analyzed genetic data collected from 11 biparentally-inherited nuclear microsatellite DNA loci and nucleotide sequence data from from the mitochondrial DNA (mtDNA) cytochrome b (cytb) gene and, for a subset of individuals, the entire mitogenome. In addition, due to potential of species misidentification with morphologically similar Polar cod (Arctogadus glacialis), we used ddRAD-Seq data to determine the level of divergence between species and identify species-specific markers. Based on the findings presented here, Arctic cod across the Pacific Arctic (Bering, Chukchi, and Beaufort Seas) comprise a single panmictic population with high genetic diversity compared to other gadids. High genetic diversity was indicated across all 13 protein-coding genes in the mitogenome. In addition, we found moderate levels of genetic diversity in the nuclear microsatellite loci, with highest diversity found in the Chukchi Sea. Our analyses of markers from both marker classes (nuclear microsatellite fragment data and mtDNA cytb sequence data) failed to uncover a signal of microgeographic genetic structure within Arctic cod across the three regions, within the Alaskan Beaufort Sea, or between near-shore or offshore habitats. Further, data from a subset of mitogenomes revealed no genetic differentiation between Bering, Chukchi, and Beaufort seas populations for Arctic cod, Saffron cod (Eleginus gracilis), or Walleye pollock (Gadus chalcogrammus). However, we uncovered significant differences in the distribution of microsatellite alleles between the southern Chukchi and central and eastern Beaufort Sea samples of Arctic cod. Finally, using ddRAD-Seq data, we

  19. Concept Study: Exploration and Production in Environmentally Sensitive Arctic Areas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shirish Patil; Rich Haut; Tom Williams

    2008-12-31

    The Alaska North Slope offers one of the best prospects for increasing U.S. domestic oil and gas production. However, this region faces some of the greatest environmental and logistical challenges to oil and gas production in the world. A number of studies have shown that weather patterns in this region are warming, and the number of days the tundra surface is adequately frozen for tundra travel each year has declined. Operators are not allowed to explore in undeveloped areas until the tundra is sufficiently frozen and adequate snow cover is present. Spring breakup then forces rapid evacuation of the areamore » prior to snowmelt. Using the best available methods, exploration in remote arctic areas can take up to three years to identify a commercial discovery, and then years to build the infrastructure to develop and produce. This makes new exploration costly. It also increases the costs of maintaining field infrastructure, pipeline inspections, and environmental restoration efforts. New technologies are needed, or oil and gas resources may never be developed outside limited exploration stepouts from existing infrastructure. Industry has identified certain low-impact technologies suitable for operations, and has made improvements to reduce the footprint and impact on the environment. Additional improvements are needed for exploration and economic field development and end-of-field restoration. One operator-Anadarko Petroleum Corporation-built a prototype platform for drilling wells in the Arctic that is elevated, modular, and mobile. The system was tested while drilling one of the first hydrate exploration wells in Alaska during 2003-2004. This technology was identified as a potentially enabling technology by the ongoing Joint Industry Program (JIP) Environmentally Friendly Drilling (EFD) program. The EFD is headed by Texas A&M University and the Houston Advanced Research Center (HARC), and is co-funded by the National Energy Technology Laboratory (NETL). The EFD

  20. The Arctic Marine Pulses Model: Linking Contiguous Domains in the Pacific Arctic Region

    NASA Astrophysics Data System (ADS)

    Moore, S. E.; Stabeno, P. J.

    2016-02-01

    The Pacific Arctic marine ecosystem extends from the northern Bering Sea, across the Chukchi and into the East Siberian and Beaufort seas. Food webs in this domain are short, a simplicity that belies the biophysical complexity underlying trophic linkages from primary production to humans. Existing biophysical models, such as pelagic-benthic coupling and advective processes, provide frameworks for connecting certain aspects of the marine food web, but do not offer a full accounting of events that occur seasonally across the Pacific Arctic. In the course of the Synthesis of Arctic Research (SOAR) project, a holistic Arctic Marine Pulses (AMP) model was developed that depicts seasonal biophysical `pulses' across a latitudinal gradient, and linking four previously-described contiguous domains, including the: (i) Pacific-Arctic domain = the focal region; (ii) seasonal ice zone domain; (iii) Pacific marginal domain; and (iv) riverine coastal domain. The AMP model provides a spatial-temporal framework to guide research on dynamic ecosystem processes during this period of rapid biophysical changes in the Pacific Arctic. Some of the processes included in the model, such as pelagic-benthic coupling in the Northern Bering and Chukchi seas, and advection and upwelling along the Beaufort shelf, are already the focus of sampling via the Distributed Biological Observatory (DBO) and other research programs. Other aspects such as biological processes associated with the seasonal ice zone and trophic responses to riverine outflow have received less attention. The AMP model could be enhanced by the application of visualization tools to provide a means to watch a season unfold in space and time. The capability to track sea ice dynamics and water masses and to move nutrients, prey and upper-trophic predators in space and time would provide a strong foundation for the development of predictive human-inclusive ecosystem models for the Pacific Arctic.

  1. Arctic sea ice thickness loss determined using subsurface, aircraft, and satellite observations

    NASA Astrophysics Data System (ADS)

    Lindsay, R.; Schweiger, A.

    2014-08-01

    Sea ice thickness is a fundamental climate state variable that provides an integrated measure of changes in the high-latitude energy balance. However, observations of ice thickness have been sparse in time and space making the construction of observation-based time series difficult. Moreover, different groups use a variety of methods and processing procedures to measure ice thickness and each observational source likely has different and poorly characterized measurement and sampling biases. Observational sources include upward looking sonars mounted on submarines or moorings, electromagnetic sensors on helicopters or aircraft, and lidar or radar altimeters on airplanes or satellites. Here we use a curve-fitting approach to evaluate the systematic differences between eight different observation systems in the Arctic Basin. The approach determines the large-scale spatial and temporal variability of the ice thickness as well as the mean differences between the observation systems using over 3000 estimates of the ice thickness. The thickness estimates are measured over spatial scales of approximately 50 km or time scales of 1 month and the primary time period analyzed is 2000-2013 when the modern mix of observations is available. Good agreement is found between five of the systems, within 0.15 m, while systematic differences of up to 0.5 m are found for three others compared to the five. The trend in annual mean ice thickness over the Arctic Basin is -0.58 ± 0.07 m decade-1 over the period 2000-2013, while the annual mean ice thickness for the central Arctic Basin alone (the SCICEX Box) has decreased from 3.45 m in 1975 to 1.11 m in 2013, a 68% reduction. This is nearly double the 36% decline reported by an earlier study. These results provide additional direct observational confirmation of substantial sea ice losses found in model analyses.

  2. Ground measurements of the hemispherical-directional reflectance of Arctic snow covered tundra for the validation of satellite remote sensing products

    NASA Astrophysics Data System (ADS)

    Ball, C. P.; Marks, A. A.; Green, P.; Mac Arthur, A.; Fox, N.; King, M. D.

    2013-12-01

    Surface albedo is the hemispherical and wavelength integrated reflectance over the visible, near infrared and shortwave infrared regions of the solar spectrum. The albedo of Arctic snow can be in excess of 0.8 and it is a critical component in the global radiation budget because it determines the proportion of solar radiation absorbed, and reflected, over a large part of the Earth's surface. We present here our first results of the angularly resolved surface reflectance of Arctic snow at high solar zenith angles (~80°) suitable for the validation of satellite remote sensing products. The hemispherical directional reflectance factor (HDRF) of Arctic snow covered tundra was measured using the GonioRAdiometric Spectrometer System (GRASS) during a three-week field campaign in Ny-Ålesund, Svalbard, in March/April 2013. The measurements provide one of few existing HDRF datasets at high solar zenith angles for wind-blown Arctic snow covered tundra (conditions typical of the Arctic region), and the first ground-based measure of HDRF at Ny-Ålesund. The HDRF was recorded under clear sky conditions with 10° intervals in view zenith, and 30° intervals in view azimuth, for several typical sites over a wavelength range of 400-1500 nm at 1 nm resolution. Satellite sensors such as MODIS, AVHRR and VIIRS offer a method to monitor the surface albedo with high spatial and temporal resolution. However, snow reflectance is anisotropic and is dependent on view and illumination angle and the wavelength of the incident light. Spaceborne sensors subtend a discrete angle to the target surface and measure radiance over a limited number of narrow spectral bands. Therefore, the derivation of the surface albedo requires accurate knowledge of the surfaces bidirectional reflectance as a function of wavelength. The ultimate accuracy to which satellite sensors are able to measure snow surface properties such as albedo is dependant on the accuracy of the BRDF model, which can only be assessed

  3. Anoxia and high primary production in the Paleogene central Arctic Ocean: First detailed records from Lomonosov Ridge

    NASA Astrophysics Data System (ADS)

    Stein, Ruediger; Boucsein, Bettina; Meyer, Hanno

    2006-09-01

    Except for a few discontinuous fragments of the Late Cretaceous/Early Cenozoic climate history and depositional environment, the paleoenvironmental evolution of the pre-Neogene central Arctic Ocean was virtually unknown prior to the IODP Expedition 302 (Arctic Ocean Coring Expedition-ACEX) drilling campaign on Lomonosov Ridge in 2004. Here we present detailed organic carbon (OC) records from the entire ca. 200 m thick Paleogene OC-rich section of the ACEX drill sites. These records indicate euxinic "Black Sea-type" conditions favorable for the preservation of labile aquatic (marine algae-type) OC occur throughout the upper part of the early Eocene and the middle Eocene, explained by salinity stratification due to freshwater discharge. The superimposed short-term ("Milankovitch-type") variability in amount and composition of OC is related to changes in primary production and terrigenous input. Prominent early Eocene events of algae-type OC preservation coincide with global δ13C events such as the PETM and Elmo events. The Elmo δ13C Event has been identified in the Arctic Ocean for the first time.

  4. How will Shrub Expansion Impact Soil Carbon Sequestration in Arctic Tundra?

    NASA Astrophysics Data System (ADS)

    Czimczik, C. I.; Holden, S. R.; He, Y.; Randerson, J. T.

    2015-12-01

    Multiple lines of evidence suggest that plant productivity, and especially shrub abundance, is increasing in the Arctic in response to climate change. This greening is substantiated by increases in the Normalized Difference Vegetation Index, repeat photography and field observations. The implications of a greener Arctic on carbon sequestration by tundra ecosystems remain poorly understood. Here, we explore existing datasets of plant productivity and soil carbon stocks to quantify how greening, and in particular an expansion of woody shrubs, may translate to the sequestration of carbon in arctic soils. As an estimate of carbon storage in arctic tundra soils, we used the Northern Circumpolar Soil Carbon Database v2. As estimates of tundra type and productivity, we used the Circumpolar Arctic Vegetation map as well as the MODIS and Landsat Vegetation Continuous Fields, and MODIS GPP/NPP (MOD17) products. Preliminary findings suggest that in graminoid tundra and erect-shrub tundra higher shrub abundance is associated with greater soil carbon stocks. However, this relationship between shrub abundance and soil carbon is not apparent in prostrate-shrub tundra, or when comparing across graminoid tundra, erect-shrub tundra and prostrate-shrub tundra. Uncertainties originate from the extreme spatial (vertical and horizontal) heterogeneity of organic matter distribution in cryoturbated soils, the fact that (some) permafrost carbon stocks, e.g. yedoma, reflect previous rather than current vegetative cover, and small sample sizes, esp. in the High Arctic. Using Vegetation Continuous Fields and MODIS GPP/NPP (MOD17), we develop quantitative trajectories of soil carbon storage as a function of shrub cover and plant productivity in the Arctic (>60°N). We then compare our greening-derived carbon sequestration estimates to projected losses of carbon from thawing permafrost. Our findings will reduce uncertainties in the magnitude and timing of the carbon-climate feedback from the

  5. The Summertime Arctic Atmosphere: Meteorological Measurements during the Arctic Ocean Experiment 2001.

    NASA Astrophysics Data System (ADS)

    Tjernström, Michael; Leck, Caroline; Persson, P. Ola G.; Jensen, Michael L.; Oncley, Steven P.; Targino, Admir

    2004-09-01

    An atmospheric boundary layer experiment into the high Arctic was carried out on the Swedish ice-breaker Oden during the summer of 2001, with the primary boundary layer observations obtained while the icebreaker drifted with the ice near 89°N during 3 weeks in August. The purposes of the experiment were to gain an understanding of atmospheric boundary layer structure and transient mixing mechanisms, in addition to their relationships to boundary layer clouds and aerosol production. Using a combination of in situ and remote sensing instruments, with temporal and spatial resolutions previously not deployed in the Arctic, continuous measurements of the lower-troposphere structure and boundary layer turbulence were taken concurrently with atmospheric gas and particulate chemistry, and marine biology measurements.The boundary layer was strongly controlled by ice thermodynamics and local turbulent mixing. Near-surface temperatures mostly remained between near the melting points of the sea- and freshwater, and near-surface relative humidity was high. Low clouds prevailed and fog appeared frequently. Visibility outside of fog was surprisingly good even with very low clouds, probably due to a lack of aerosol particles preventing the formation of haze. The boundary layer was shallow but remained well mixed, capped by an occasionally very strong inversion. Specific humidity often increased with height across the capping inversion.In contrast to the boundary layer, the free troposphere often retained its characteristics from well beyond the Arctic. Elevated intrusions of warm, moist air from open seas to the south were frequent. The picture that the Arctic atmosphere is less affected by transport from lower latitudes in summer than the winter may, thus, be an artifact of analyzing only surface measurements. The transport of air from lower latitudes at heights above the boundary layer has a major impact on the Arctic boundary layer, even very close to the North Pole. During a

  6. Role of Atmospheric Transport on the Arctic Amplification: Adjusting Role

    NASA Astrophysics Data System (ADS)

    KUG, J.; Yim, B.; Jin, F.

    2013-12-01

    It is controversial whether the atmospheric transport plays a role in arctic amplification. Recently, Hwang et al. (2011) showed that the magnitude of the arctic amplification is negatively correlated with anomalous poleward atmospheric transport. That is, when the arctic amplification is strong (weak), the atmospheric transport plays a negative (positive) role in the arctic amplification. In this study, it is discussed what is a physical mechanism to determine the role of atmospheric transport and relation with the arctic amplification. Here, we suggest adjusting roles of atmospheric transport. The strength of local feedback over the Arctic determines zonal wind changes. The zonal wind changes are determined by two factors. The first one is polar cap cooling, and second is surface warming. They play opposite roles. So, there will be two different zonal wind responses in high-latitude to the greenhouse warming. Depending on the zonal wind response, the atmospheric transport can play a different role because the zonal wind changes can organize synoptic eddy feedbacks including heat flux, which largely contributes to poleward energy transport. We show here that when polar cap cooling is strong, and surface warming over Arctic is relatively weak, the Jet stream tends to be shifted poleward, so it leads to poleward atmospheric transport. On the other hand, when the surface warming is too strong, it lead to southward shift of Jet stream and equatorward atmospheric transport, which paly a negative role in the Arctic amplification.

  7. Export of algal biomass from the melting Arctic sea ice.

    PubMed

    Boetius, Antje; Albrecht, Sebastian; Bakker, Karel; Bienhold, Christina; Felden, Janine; Fernández-Méndez, Mar; Hendricks, Stefan; Katlein, Christian; Lalande, Catherine; Krumpen, Thomas; Nicolaus, Marcel; Peeken, Ilka; Rabe, Benjamin; Rogacheva, Antonina; Rybakova, Elena; Somavilla, Raquel; Wenzhöfer, Frank

    2013-03-22

    In the Arctic, under-ice primary production is limited to summer months and is restricted not only by ice thickness and snow cover but also by the stratification of the water column, which constrains nutrient supply for algal growth. Research Vessel Polarstern visited the ice-covered eastern-central basins between 82° to 89°N and 30° to 130°E in summer 2012, when Arctic sea ice declined to a record minimum. During this cruise, we observed a widespread deposition of ice algal biomass of on average 9 grams of carbon per square meter to the deep-sea floor of the central Arctic basins. Data from this cruise will contribute to assessing the effect of current climate change on Arctic productivity, biodiversity, and ecological function.

  8. Subsurface phytoplankton layers in the Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Tremblay, J. E.

    2016-02-01

    Recent observations underscored the near-ubiquitous presence of subsurface chlorophyll maxima (SCM) and their potential importance for total primary production (PP) and pelagic food webs in perennially stratified waters of the Arctic Ocean. The contribution of SCM layers to annual PP is particularly important in oligotrophic areas, where modest nutrient supply to the upper euphotic zone results in weak or short-lived phytoplankton blooms near the surface. The large amount of nutrients present in the Pacific halocline relative to comparable depths in the Atlantic sector of the Arctic may also foster particularly productive SCM along the path of Pacific water. The association between strongly stratified conditions and the SCM in today's Arctic Ocean has broad relevance in providing a glimpse into the future of other oceans whose vertical stratification progressively rises with water temperature and freshwater content. In this regard, there is much to learn on the photosynthetic and nutritive ecology of SCM layers, whose biogeochemical significance depends on the extent to which they rely on allochthonous nitrogen (new production), their contribution to carbon biomass and their ability to influence air-sea CO2 exchange. Here we report on several years of eco-physiological investigations of SCM across the Arctic Ocean, with an aim to provide a basis of comparison with the ecology of SCM in other ocean areas.

  9. Leads in Arctic pack ice enable early phytoplankton blooms below snow-covered sea ice

    PubMed Central

    Assmy, Philipp; Fernández-Méndez, Mar; Duarte, Pedro; Meyer, Amelie; Randelhoff, Achim; Mundy, Christopher J.; Olsen, Lasse M.; Kauko, Hanna M.; Bailey, Allison; Chierici, Melissa; Cohen, Lana; Doulgeris, Anthony P.; Ehn, Jens K.; Fransson, Agneta; Gerland, Sebastian; Hop, Haakon; Hudson, Stephen R.; Hughes, Nick; Itkin, Polona; Johnsen, Geir; King, Jennifer A.; Koch, Boris P.; Koenig, Zoe; Kwasniewski, Slawomir; Laney, Samuel R.; Nicolaus, Marcel; Pavlov, Alexey K.; Polashenski, Christopher M.; Provost, Christine; Rösel, Anja; Sandbu, Marthe; Spreen, Gunnar; Smedsrud, Lars H.; Sundfjord, Arild; Taskjelle, Torbjørn; Tatarek, Agnieszka; Wiktor, Jozef; Wagner, Penelope M.; Wold, Anette; Steen, Harald; Granskog, Mats A.

    2017-01-01

    The Arctic icescape is rapidly transforming from a thicker multiyear ice cover to a thinner and largely seasonal first-year ice cover with significant consequences for Arctic primary production. One critical challenge is to understand how productivity will change within the next decades. Recent studies have reported extensive phytoplankton blooms beneath ponded sea ice during summer, indicating that satellite-based Arctic annual primary production estimates may be significantly underestimated. Here we present a unique time-series of a phytoplankton spring bloom observed beneath snow-covered Arctic pack ice. The bloom, dominated by the haptophyte algae Phaeocystis pouchetii, caused near depletion of the surface nitrate inventory and a decline in dissolved inorganic carbon by 16 ± 6 g C m−2. Ocean circulation characteristics in the area indicated that the bloom developed in situ despite the snow-covered sea ice. Leads in the dynamic ice cover provided added sunlight necessary to initiate and sustain the bloom. Phytoplankton blooms beneath snow-covered ice might become more common and widespread in the future Arctic Ocean with frequent lead formation due to thinner and more dynamic sea ice despite projected increases in high-Arctic snowfall. This could alter productivity, marine food webs and carbon sequestration in the Arctic Ocean. PMID:28102329

  10. Arctic Climate Change: A Tale of Two Cod Species

    EPA Science Inventory

    Arctic cod play an important role in the Arctic trophic hierarchy as the consumer of primary productivity and a food source for many marine fish and mammals. Shifts in their distribution and abundance could have cascading affects in the marine environment. This paper investigates...

  11. Advancing NOAA NWS Arctic Program Development

    NASA Astrophysics Data System (ADS)

    Timofeyeva-Livezey, M. M.; Horsfall, F. M. C.; Meyers, J. C.; Churma, M.; Thoman, R.

    2016-12-01

    Environmental changes in the Arctic require changes in the way the National Oceanic and Atmospheric Administration (NOAA) delivers hydrological and meteorological information to prepare the region's societies and indigenous population for emerging challenges. These challenges include changing weather patterns, changes in the timing and extent of sea ice, accelerated soil erosion due to permafrost decline, increasing coastal vulnerably, and changes in the traditional food supply. The decline in Arctic sea ice is opening new opportunities for exploitation of natural resources, commerce, tourism, and military interest. These societal challenges and economic opportunities call for a NOAA integrated approach for delivery of environmental information including climate, water, and weather data, forecasts, and warnings. Presently the NOAA Arctic Task Force provides leadership in programmatic coordination across NOAA line offices. National Weather Service (NWS) Alaska Region and the National Centers for Environmental Prediction (NCEP) provide the foundational operational hydro-meteorological products and services in the Arctic. Starting in 2016, NOAA's NWS will work toward improving its role in programmatic coordination and development through assembling an NWS Arctic Task Team. The team will foster ties in the Arctic between the 11 NWS national service programs in climate, water, and weather information, as well as between Arctic programs in NWS and other NOAA line offices and external partners. One of the team outcomes is improving decision support tools for the Arctic. The Local Climate Analysis Tool (LCAT) currently has more than 1100 registered users, including NOAA staff and technical partners. The tool has been available online since 2013 (http://nws.weather.gov/lcat/ ). The tool links trusted, recommended NOAA data and analytical capabilities to assess impacts of climate variability and climate change at local levels. A new capability currently being developed will

  12. Physical and Optical/Radiative Properties of Arctic Aerosols: Potential Effects on Arctic Climate

    NASA Technical Reports Server (NTRS)

    Pueschel, R. F.; Kinne, S. A.; Gore, Warren J. (Technical Monitor)

    1994-01-01

    We have determined the abundance of light-scattering sulfuric acid (H2SO4/H2O) and light-absorbing black carbon aerosol (BCA) in Spring 1992 in the Arctic atmosphere by airborne in situ sampling with impactors, and measured particle sizes and morphologies by scanning electron microscopy. The mass of BCA in the Arctic troposphere is one percent of the total aerosol, reduced to one part in 104 in the stratosphere. A Mie algorithm permits the calculation of the optical properties of the various aerosol components, and an algorithm developed by Ackerman and Toon and modified to serve our needs lets us calculate the optical effects of the black carbon aerosol that is mixed internally with the sulfuric acid aerosol. It follows that the effect of internally-mixed BCA on the aerosol scattering and absorption properties depends on its location within the droplet. BCA concentrated near the droplet surface has a greater effect on absorption of solar radiation than does the same amount of BCA located near its center. Single scatter albedos of the combined system are omega(sub 0)=1.0 in the post-Pinatubo Arctic stratosphere, and as low as 0.94 in the troposphere. The aerosol has the potential to regionally warm the Arctic earth-atmosphere system, because of the high surface albedo of the snow-covered Arctic.

  13. The changing Arctic carbon cycle: using the past to understand terrestrial-aquatic linkages

    NASA Astrophysics Data System (ADS)

    Anderson, N. J.; van Hardenbroek, M.; Jones, V.; McGowan, S.; Langdon, P. G.; Whiteford, E.; Turner, S.; Edwards, M. E.

    2016-12-01

    Predicted shifts in terrestrial vegetation cover associated with Arctic warming are altering the delivery and processing of carbon to aquatic ecosystems. This process could determine whether lakes are net carbon sources or sinks and, because lake density is high in many Arctic areas, may alter regional carbon budgets. Lake sediment records integrate information from within the lake and its catchment and can be used quantify past vegetation shifts associated with known climatic episodes of warmer (Holocene Thermal Maximum) and cooler (Neoglacial) conditions. We analysed sediment cores located in different Arctic vegetation biomes (tundra, shrub, forested) in Greenland, Norway and Alaska and used biochemical (algal pigments, stable isotopes) remains to evaluate whether past vegetation shifts were associated with changes in ecosystem carbon processing and biodiversity. When lake catchments were sparsely vegetated and soil vegetation was limited ultra-violet radiation (UVR) screening pigments indicate clear lake waters, scarce dissolved organic carbon/ matter (DOC/M). Moderate vegetation development (birch scrub in Norway; herb tundra in Greenland) appears to enhance delivery of DOM to lakes, and to stimulate algal production which is apparently linked to heterotrophic carbon processing pathways (e.g. algal mixotrophy, nutrient release via the microbial loop). Mature forest cover (in Alaska and Norway) supressed lake autotrophic production, most likely because coloured DOM delivered from catchment vegetation limited light availability. During wetter periods when mires developed lake carbon processing also changed, indicating that hydrological delivery of terrestrial DOM is also important. Therefore, future changes in Arctic vegetation and precipitation patterns are highly likely to alter the way that arctic ecosystems process carbon. Our approach provides an understanding of how ecosystem diversity and carbon processing respond to past climate change and the difficulty

  14. Review of technology for Arctic offshore oil and gas recovery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sackinger, W. M.

    1980-08-01

    The technical background briefing report is the first step in the preparation of a plan for engineering research oriented toward Arctic offshore oil and gas recovery. A five-year leasing schedule for the ice-prone waters of the Arctic offshore is presented, which also shows the projected dates of the lease sale for each area. The estimated peak production rates for these areas are given. There is considerable uncertainty for all these production estimates, since no exploratory drilling has yet taken place. A flow chart is presented which relates the special Arctic factors, such as ice and permafrost, to the normal petroleummore » production sequence. Some highlights from the chart and from the technical review are: (1) in many Arctic offshore locations the movement of sea ice causes major lateral forces on offshore structures, which are much greater than wave forces; (2) spray ice buildup on structures, ships and aircraft will be considerable, and must be prevented or accommodated with special designs; (3) the time available for summer exploratory drilling, and for deployment of permanent production structures, is limited by the return of the pack ice. This time may be extended by ice-breaking vessels in some cases; (4) during production, icebreaking workboats will service the offshore platforms in most areas throughout the year; (5) transportation of petroleum by icebreaking tankers from offshore tanker loading points is a highly probable situation, except in the Alaskan Beaufort; and (6) Arctic pipelines must contend with permafrost, making instrumentation necessary to detect subtle changes of the pipe before rupture occurs.« less

  15. Beyond Thin Ice: Co-Communicating the Many Arctics

    NASA Astrophysics Data System (ADS)

    Druckenmiller, M. L.; Francis, J. A.; Huntington, H.

    2015-12-01

    Science communication, typically defined as informing non-expert communities of societally relevant science, is persuaded by the magnitude and pace of scientific discoveries, as well as the urgency of societal issues wherein science may inform decisions. Perhaps nowhere is the connection between these facets stronger than in the marine and coastal Arctic where environmental change is driving advancements in our understanding of natural and socio-ecological systems while paving the way for a new assortment of arctic stakeholders, who generally lack adequate operational knowledge. As such, the Arctic provides opportunity to advance the role of science communication into a collaborative process of engagement and co-communication. To date, the communication of arctic change falls within four primary genres, each with particular audiences in mind. The New Arctic communicates an arctic of new stakeholders scampering to take advantage of unprecedented access. The Global Arctic conveys the Arctic's importance to the rest of the world, primarily as a regulator of lower-latitude climate and weather. The Intra-connected Arctic emphasizes the increasing awareness of the interplay between system components, such as between sea ice loss and marine food webs. The Transforming Arctic communicates the region's trajectory relative to the historical Arctic, acknowledging the impacts on indigenous peoples. The broad societal consensus on climate change in the Arctic as compared to other regions in the world underscores the opportunity for co-communication. Seizing this opportunity requires the science community's engagement with stakeholders and indigenous peoples to construct environmental change narratives that are meaningful to climate responses relative to non-ecological priorities (e.g., infrastructure, food availability, employment, or language). Co-communication fosters opportunities for new methods of and audiences for communication, the co-production of new interdisciplinary

  16. Changing Arctic ecosystems--research to understand and project changes in marine and terrestrial ecosystems of the Arctic

    USGS Publications Warehouse

    Geiselman, Joy; DeGange, Anthony R.; Oakley, Karen; Derksen, Dirk; Whalen, Mary

    2012-01-01

    Ecosystems and their wildlife communities are not static; they change and evolve over time due to numerous intrinsic and extrinsic factors. A period of rapid change is occurring in the Arctic for which our current understanding of potential ecosystem and wildlife responses is limited. Changes to the physical environment include warming temperatures, diminishing sea ice, increasing coastal erosion, deteriorating permafrost, and changing water regimes. These changes influence biological communities and the ways in which human communities interact with them. Through the new initiative Changing Arctic Ecosystems (CAE) the U.S. Geological Survey (USGS) strives to (1) understand the potential suite of wildlife population responses to these physical changes to inform key resource management decisions such as those related to the Endangered Species Act, and (2) provide unique insights into how Arctic ecosystems are responding under new stressors. Our studies examine how and why changes in the ice-dominated ecosystems of the Arctic are affecting wildlife and will provide a better foundation for understanding the degree and manner in which wildlife species respond and adapt to rapid environmental change. Changes to Arctic ecosystems will be felt broadly because the Arctic is a production zone for hundreds of species that migrate south for the winter. The CAE initiative includes three major research themes that span Arctic ice-dominated ecosystems and that are structured to identify and understand the linkages between physical processes, ecosystems, and wildlife populations. The USGS is applying knowledge-based modeling structures such as Bayesian Networks to integrate the work.

  17. Research Applications of Data from Arctic Ocean Drifting Platforms: The Arctic Buoy Program and the Environmental Working Group CD's.

    NASA Astrophysics Data System (ADS)

    Moritz, R. E.; Rigor, I.

    2006-12-01

    ABSTRACT: The Arctic Buoy Program was initiated in 1978 to measure surface air pressure, surface temperature and sea-ice motion in the Arctic Ocean, on the space and time scales of synoptic weather systems, and to make the data available for research, forecasting and operations. The program, subsequently renamed the International Arctic Buoy Programme (IABP), has endured and expanded over the past 28 years. A hallmark of the IABP is the production, dissemination and archival of research-quality datasets and analyses. These datasets have been used by the authors of over 500 papers on meteorolgy, sea-ice physics, oceanography, air-sea interactions, climate, remote sensing and other topics. Elements of the IABP are described briefly, including measurements, analysis, data dissemination and data archival. Selected highlights of the research applications are reviewed, including ice dynamics, ocean-ice modeling, low-frequency variability of Arctic air-sea-ice circulation, and recent changes in the age, thickness and extent of Arctic Sea-ice. The extended temporal coverage of the data disseminated on the Environmental Working Group CD's is important for interpreting results in the context of climate.

  18. Impacts of Organic Macromolecules, Chlorophyll and Soot on Arctic Sea Ice

    NASA Astrophysics Data System (ADS)

    Ogunro, O. O.; Wingenter, O. W.; Elliott, S.; Flanner, M.; Dubey, M. K.

    2014-12-01

    Recent intensification of Arctic amplification can be strongly connected to positive feedback relating black carbon deposition to sea ice surface albedo. In addition to soot deposition on the ice and snow pack, ice algal chlorophyll is likely to compete as an absorber and redistributor of energy. Hence, solar radiation absorption by chlorophyll and some components of organic macromolecules in/under the ice column is currently being examined to determine the level of influence on predicted rate of ice loss. High amounts of organic macromolecules and chlorophyll are produced in global sea ice by the bottom microbial community and also in vertically distributed layers where substantial biological activities take place. Brine channeling in columnar ice can allow for upward flow of nutrients which leads to greater primary production in the presence of moderate light. Modeling of the sea-ice processes in tandem with experiments and field observations promises rapid progress in enhancing Arctic ice predictions. We are designing and conducting global climate model experiments to determine the impact of organic macromolecules and chlorophyll on Arctic sea ice. Influences on brine network permeability and radiation/albedo will be considered in this exercise. Absorption by anthropogenic materials such as soot and black carbon will be compared with that of natural pigments. We will indicate areas of soot and biological absorption dominance in the sense of single scattering, then couple into a full radiation transfer scheme to attribute the various contributions to polar climate change amplification. The work prepares us to study more traditional issues such as chlorophyll warming of the pack periphery and chemical effects of the flow of organics from ice internal communities. The experiments started in the Arctic will broaden to include Antarctic sea ice and shelves. Results from the Arctic simulations will be presented.

  19. Isotopic insights into methane production, oxidation, and emissions in Arctic polygon tundra.

    PubMed

    Vaughn, Lydia J S; Conrad, Mark E; Bill, Markus; Torn, Margaret S

    2016-10-01

    Arctic wetlands are currently net sources of atmospheric CH4 . Due to their complex biogeochemical controls and high spatial and temporal variability, current net CH4 emissions and gross CH4 processes have been difficult to quantify, and their predicted responses to climate change remain uncertain. We investigated CH4 production, oxidation, and surface emissions in Arctic polygon tundra, across a wet-to-dry permafrost degradation gradient from low-centered (intact) to flat- and high-centered (degraded) polygons. From 3 microtopographic positions (polygon centers, rims, and troughs) along the permafrost degradation gradient, we measured surface CH4 and CO2 fluxes, concentrations and stable isotope compositions of CH4 and DIC at three depths in the soil, and soil moisture and temperature. More degraded sites had lower CH4 emissions, a different primary methanogenic pathway, and greater CH4 oxidation than did intact permafrost sites, to a greater degree than soil moisture or temperature could explain. Surface CH4 flux decreased from 64 nmol m(-2)  s(-1) in intact polygons to 7 nmol m(-2)  s(-1) in degraded polygons, and stable isotope signatures of CH4 and DIC showed that acetate cleavage dominated CH4 production in low-centered polygons, while CO2 reduction was the primary pathway in degraded polygons. We see evidence that differences in water flow and vegetation between intact and degraded polygons contributed to these observations. In contrast to many previous studies, these findings document a mechanism whereby permafrost degradation can lead to local decreases in tundra CH4 emissions. © 2016 John Wiley & Sons Ltd.

  20. Scenarios Creation and Use in the Arctic Council's Arctic Marine Shipping Assessment

    NASA Astrophysics Data System (ADS)

    Brigham, L. W.

    2016-12-01

    The Arctic Council's Arctic Marine Shipping Assessment (AMSA), conducted 2004-2009, used a scenarios-based approach to reveal the complexity of future Arctic marine navigation and to develop a set of plausible futures. The initial task was to use experts and stakeholders in brainstorming sessions to identify the key drivers and uncertainties for Arctic marine navigation. AMSA scenario participants identified 120 driving forces or factors that may influence future levels of marine activity. This effort illustrated the broad, global connections that can impact future use of the Arctic Ocean. Two primary factors were selected to anchor, as axes of uncertainty, the scenarios matrix: resources and trade (the level of demand for Arctic natural resources and trade); and, governance (the degree of relative stability of rules and standards for marine use both within the Arctic and internationally). Four scenarios were created by crossing the two primary drivers: a Polar Lows scenario (low demand and unstable governance); an Arctic Race scenario (high demand and unstable governance); a Polar Preserve scenario (low demand and stable governance); and, an Arctic Saga scenario (high demand and stable governance). The AMSA scenarios effort proved to be an effective and powerful way to communicate to the Arctic Council diplomats, Arctic indigenous peoples, maritime stakeholders and many other actors in the global community the complexities influencing the future of Arctic shipping and marine operations. The scenarios approach facilitated unconstrained thinking and identified the many plausible linkages of the Arctic to the global economic system. The AMSA scenarios work was influential in the Arctic ministers' approval of the framework set of AMSA recommendations that are being implemented today to enhance Arctic marine safety and environmental protection.

  1. Arctic tundra greening and browning (2007-2013) based on satellite-observed solar-induced fluorescence data

    NASA Astrophysics Data System (ADS)

    Fu, D.; Su, F.; Wang, J.

    2017-12-01

    More accurate evaluation of the state of Arctic tundra vegetation is important for our understanding of Arctic and global systems. Arctic tundra greening has been reported, increasing vegetation cover and productivity in many regions, but browning has been also reported, based on satellite-observed Normalized Difference Vegetation Index (NDVI) from 2011 until recently. Here we demonstrate a satellite-based method of estimating tundra greenness trend. A more direct indicator of greenness (spatially downscaling solar-induced fluorescence, SIF) was used to analyze the spatial and temporal patterns of Arctic tundra greenness trends based on ordinary least square regression (2007-2013). Meanwhile, two other greenness indices were used for the comparison, which were two NDVI products: GIMMS NDVI3g, and MOD13Q1 Collection 6. Generally, the Arctic tundra was not consistently greening, browning also existed. For the spatial trends, the results showed that most parts of the Arctic tundra below 75ºN was browning (-0.0098 mW/m2/sr/nm/year) using SIF, whereas spatially heterogeneous trends (greening or browning) were obtained based on the two NDVI products. For the temporal trends, the greenness value of Eurasia Arctic tundra is higher than Northern America and the whole Arctic tundra for the three greenness indices. From 2010, the Arctic tundra was greening based on MOD13Q1, whereas is browning using GIMMS NDVI3g. However, the Arctic tundra was obviously browning using SIF data. This study demonstrates a way of investigating the variation of Arctic tundra vegetation via new satellite-observed data.

  2. Arctic Climate and Atmospheric Planetary Waves

    NASA Technical Reports Server (NTRS)

    Cavalieri, D. J.; Haekkinen, S.

    2000-01-01

    Analysis of a fifty-year record (1946-1995) of monthly-averaged sea level pressure data provides a link between the phases of planetary-scale sea level pressure waves and Arctic Ocean and ice variability. Results of this analysis show: (1) a breakdown of the dominant wave I pattern in the late 1960's, (2) shifts in the mean phase of waves 1 and 2 since this breakdown, (3) an eastward shift in the phases of both waves 1 and 2 during the years of simulated cyclonic Arctic Ocean circulation relative to their phases during the years of anticyclonic circulation, (4) a strong decadal variability of wave phase associated with simulated Arctic Ocean circulation changes. Finally, the Arctic atmospheric circulation patterns that emerge when waves 1 and 2 are in their extreme eastern and western positions suggest an alternative approach to determine significant forcing patterns of sea ice and high-latitude variability.

  3. Studies of Arctic Tropospheric Ozone Depletion Events Through Buoy-Borne Observations and Laboratory Studies

    NASA Astrophysics Data System (ADS)

    Halfacre, John W.

    responsible chemical mechanisms are lacking, ODEs are observed primarily due to air mass transport (even in the Arctic Ocean), or some combination of both. Air mass trajectory modeling was also used in tandem with remote sensing observations of sea ice to determine the types of surfaces air masses were exposed to before arriving at O-Buoys. The impact of surface exposure was subsequently compared with local meteorology to assess which variables had the most effect on O 3 variability. For two observation sites, the impact of local meteorology was significantly stronger than air mass history, while a third was inconclusive. Finally, this work tests the viability of the hypothesis that initial production of molecular halogens from frozen saline surfaces results from photolytic production of the hydroxyl radical, and could be enhanced in the presence of O3. This investigation was enabled by a custom frozen-walled flow reactor coupled with chemical ionization spectrometry. It was found that hydroxyl radical could indeed promote the production and release of iodine, bromine, and chlorine, and that this production could be enhanced in the presence of ozone.

  4. The Arctic Research Consortium of the United States (ARCUS): Connecting Arctic Research

    NASA Astrophysics Data System (ADS)

    Rich, R. H.; Wiggins, H. V.; Creek, K. R.; Sheffield Guy, L.

    2015-12-01

    This presentation will highlight the recent activities of the Arctic Research Consortium of the United States (ARCUS) to connect Arctic research. ARCUS is a nonprofit membership organization of universities and institutions that have a substantial commitment to research in the Arctic. ARCUS was formed in 1988 to serve as a forum for planning, facilitating, coordinating, and implementing interdisciplinary studies of the Arctic; to act as a synthesizer and disseminator of scientific information on arctic research; and to educate scientists and the general public about the needs and opportunities for research in the Arctic. ARCUS, in collaboration with the broader science community, relevant agencies and organizations, and other stakeholders, coordinates science planning and educational activities across disciplinary and organizational boundaries. Examples of ARCUS projects include: Arctic Sea Ice Outlook - an international effort that provides monthly summer reports synthesizing community estimates of the expected sea ice minimum. Sea Ice for Walrus Outlook - a resource for Alaska Native subsistence hunters, coastal communities, and others that provides weekly reports with information on sea ice conditions relevant to walrus in Alaska waters. PolarTREC (Teachers and Researchers Exploring and Collaborating) - a program whereby K-12 educators and researchers work together in hands-on field experiences in the Arctic and Antarctic to advance polar science education. ArcticInfo mailing list, Witness the Arctic newsletter, and the Arctic Calendar - communication tools for the arctic science community to keep apprised of relevant news, meetings, and announcements. Coordination for the Study of Environmental Arctic Change (SEARCH) program, which aims to provide scientific understanding of arctic environmental change to help society understand and respond to a rapidly changing Arctic. More information about these and other ARCUS activities can be found at the ARCUS website at

  5. Implications of sea-ice biogeochemistry for oceanic production and emissions of dimethyl sulfide in the Arctic

    NASA Astrophysics Data System (ADS)

    Hayashida, Hakase; Steiner, Nadja; Monahan, Adam; Galindo, Virginie; Lizotte, Martine; Levasseur, Maurice

    2017-06-01

    Sea ice represents an additional oceanic source of the climatically active gas dimethyl sulfide (DMS) for the Arctic atmosphere. To what extent this source contributes to the dynamics of summertime Arctic clouds is, however, not known due to scarcity of field measurements. In this study, we developed a coupled sea ice-ocean ecosystem-sulfur cycle model to investigate the potential impact of bottom-ice DMS and its precursor dimethylsulfoniopropionate (DMSP) on the oceanic production and emissions of DMS in the Arctic. The results of the 1-D model simulation were compared with field data collected during May and June of 2010 in Resolute Passage. Our results reproduced the accumulation of DMS and DMSP in the bottom ice during the development of an ice algal bloom. The release of these sulfur species took place predominantly during the earlier phase of the melt period, resulting in an increase of DMS and DMSP in the underlying water column prior to the onset of an under-ice phytoplankton bloom. Production and removal rates of processes considered in the model are analyzed to identify the processes dominating the budgets of DMS and DMSP both in the bottom ice and the underlying water column. When openings in the ice were taken into account, the simulated sea-air DMS flux during the melt period was dominated by episodic spikes of up to 8.1 µmol m-2 d-1. Further model simulations were conducted to assess the effects of the incorporation of sea-ice biogeochemistry on DMS production and emissions, as well as the sensitivity of our results to changes of uncertain model parameters of the sea-ice sulfur cycle. The results highlight the importance of taking into account both the sea-ice sulfur cycle and ecosystem in the flux estimates of oceanic DMS near the ice margins and identify key uncertainties in processes and rates that should be better constrained by new observations.

  6. Explore Arctic Health.

    PubMed

    Lebow, Mahria

    2014-04-01

    The Arctic Health web site is a portal to Arctic-specific, health related content. The site provides expertly organized and annotated resources pertinent to northern peoples and places, including health information, research publications and environmental information. This site also features the Arctic Health Publications Database, which indexes an array of Arctic-related resources.

  7. Determination of sperm acrosin activity in the arctic fox (Alopex lagopus L.)--using method developed for human spermatozoa.

    PubMed

    Stasiak, K; Janicki, B; Glogowski, J

    2012-01-01

    The aim of the study was to adapt a method to determine acrosin activity of human spermatozoa to arctic fox (Alopex lagopus L.) spermatozoa. We modified this method by reducing sperm count per sample from 1 divided by 10 x 10(6) to 25 divided by 200 x 10(3), incubation time from 180 minutes to 60 minutes, and Triton X-100 concentration in the reaction mixture from 0.01% to 0.005% per 100 cm3. It has also confirmed that arctic fox seminal plasma is rich in proteinases and their inhibitors. To completely abolish the inhibitory effect of seminal plasma on acrosin activity it is recommended to wash the spermatozoa four times. Benzamidine served an inhibitor of acrosin activity.

  8. Ecotoxicological risk assessment of environmental pollutants in the Arctic.

    PubMed

    Brunström, B; Halldin, K

    2000-03-15

    Concentrations of such persistent organic pollutants (POPs) as polychlorinated biphenyls (PCBs) are high in certain Arctic animal species. The polar bear, Arctic fox, and glaucous gull may be exposed to PCB levels above lowest-observed-adverse-effect-level (LOAEL) values for adverse effects on reproduction in mammals and birds. However, the dioxin-like congeners seem to be major contributors to the reproductive effects of PCBs and the relative concentrations of these congeners are low in polar bears. Temporal trends for POPs in Arctic wildlife and the sensitivities of Arctic species to these compounds determine the risk for future adverse health effects.

  9. Measurements of condensation nuclei in the Airborne Arctic Stratospheric Expedition - Observations of particle production in the polar vortex

    NASA Technical Reports Server (NTRS)

    Wilson, J. C.; Stolzenburg, M. R.; Clark, W. E.; Loewenstein, M.; Ferry, G. V.; Chan, K. R.

    1990-01-01

    The ER-2 Condensation Nucleus Counter (ER-2 CNC) was operated in the Airborne Arctic Stratospheric Expedition (AASE) in January and February 1989. The ER-2 CNC measures the mixing ratio of particles, CN, with diameters from approximately 0.02 to approximately 1 micron. The spatial distribution of CN in the Arctic polar vortex was found to resemble that measured in the Antarctic in the Spring of 1987. The vertical profile of CN in the vortex was lowered by subsidence. At altitudes above the minimum in the CN mixing ratio profile, CN mixing ratios correlated negatively with that of N2O, demonstrating new particle production. CN serve as nuclei in the formation of Polar Stratospheric Clouds (PSCs) and the concentration of CN can affect PSC properties.

  10. Remote sensing of ocean color in the Arctic

    NASA Technical Reports Server (NTRS)

    Maynard, N. G.

    1988-01-01

    The main objectives of the research are: to increase the understanding of biological production (and carbon fluxes) along the ice edge, in frontal regions, and in open water areas of the Arctic and the physical factors controlling that production through the use of satellite and aircraft remote sensing techniques; and to develop relationships between measured radiances from the Multichannel Aircraft Radiometer System (MARS) and the bio-optical properties of the water in the Arctic and adjacent seas. Several recent Coastal Zone Color Scanner (CZCS) studies in the Arctic have shown that, despite constraints imposed by cloud cover, satellite ocean color is a useful means of studying mesoscale physical and biological oceanographic phenomena at high latitudes. The imagery has provided detailed information on ice edge and frontal processes such as spring breakup and retreat of the ice edge, influence of ice on ice effects of stratification on phytoplankton production, river sediment transport, effects of spring runoff, water mass boundaries, circulation patterns, and eddy formation in Icelandic waters and in the Greenland, Barents, Norwegian, and Bering Seas.

  11. Arctic circulation regimes

    PubMed Central

    Proshutinsky, Andrey; Dukhovskoy, Dmitry; Timmermans, Mary-Louise; Krishfield, Richard; Bamber, Jonathan L.

    2015-01-01

    Between 1948 and 1996, mean annual environmental parameters in the Arctic experienced a well-pronounced decadal variability with two basic circulation patterns: cyclonic and anticyclonic alternating at 5 to 7 year intervals. During cyclonic regimes, low sea-level atmospheric pressure (SLP) dominated over the Arctic Ocean driving sea ice and the upper ocean counterclockwise; the Arctic atmosphere was relatively warm and humid, and freshwater flux from the Arctic Ocean towards the subarctic seas was intensified. By contrast, during anticylonic circulation regimes, high SLP dominated driving sea ice and the upper ocean clockwise. Meanwhile, the atmosphere was cold and dry and the freshwater flux from the Arctic to the subarctic seas was reduced. Since 1997, however, the Arctic system has been under the influence of an anticyclonic circulation regime (17 years) with a set of environmental parameters that are atypical for this regime. We discuss a hypothesis explaining the causes and mechanisms regulating the intensity and duration of Arctic circulation regimes, and speculate how changes in freshwater fluxes from the Arctic Ocean and Greenland impact environmental conditions and interrupt their decadal variability. PMID:26347536

  12. Active cycling of organic carbon in the central Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Wheeler, Patricia A.; Gosselin, Michel; Sherr, Evelyn; Thibaultc, Delphine; Kirchman, David L.; Benner, Ronald; Whitledge, Terry E.

    1996-04-01

    THE notion of a barren central Arctic Ocean has been accepted since English's pioneering work1 on drifting ice-islands. The year-round presence of ice, a short photosynthetic season and low temperatures were thought to severely limit biological production1,2, although the paucity of data was often noted. Because primary production appeared to be low1,2, subsequent studies assumed that most organic carbon was either derived from river inputs or imported from adjacent continental-shelf regions3,4. Here we present shipboard measurements of biological produc-tion, biomass and organic carbon standing-stocks made during a cruise through the ice covering the central Arctic Ocean. Our results indicate that the central Arctic region is not a biological desert. Although it is less productive than oligotrophic ocean regions not covered by ice, it supports an active biological community which contributes to the cycling of organic carbon through dissolved and particulate pools.

  13. The Relationship Between Environment and Nutritional Condition of Arctic Forage Fish

    NASA Astrophysics Data System (ADS)

    Vollenweider, J.; Heintz, R.; Callahan, M.; Barton, M. B.; Sousa, L.; Danielson, S. L.; Meuter, F.; Moran, J.; Boswell, K. M.

    2016-02-01

    We describe how marine environmental conditions influence the body condition of forage fish in the Alaskan Arctic. Body condition of fish is a sensitive predictor of fish productivity, with consequences particularly for juvenile survival as well as adult reproduction. For example, body condition of juvenile walleye pollock (Theragra chalcogramma) in the Bering Sea is a significant predictor of survival to recruitment, and a better index than sheer abundance of juveniles. Body condition of fish generally varies with interannual fluctuations in oceanographic conditions such as temperature and wind mixing, which may have cascading effects on food quality and availability, and ultimately fish survival. We use these underlying principles to examine how interannual and spatial variation in environmental conditions affect fish condition of various Arctic species. Specifically, we measured the energy content of some of the most abundant Arctic forage species including Arctic cod (Boreogadus saida), capelin (Mallotus villosus), fourhorn sculpin (Myoxocephalus quadricornis), and saffron cod (Eleginus gracilis) over multiple years and habitats. Fish were sampled from multiple projects (ACES, SHELFZ, Arctic Eis) from three physically distinct waterbodies: the Chukchi and Beaufort Seas, and Elson Lagoon, an extensive, shallow estuary characteristic of the Arctic coastline. Fish condition of the various species responded differently to interannual changes and amongst water bodies. For example, Arctic Cod had energy density in 2014 compared with other years while fourhorn sculpin were unperturbed. These findings will help identify favorable habitats for Arctic species, identify locations and condition contributing the most to fish productivity, and will help predict how Arctic fish and their predators may fare in the face of climate change.

  14. Relative Sensitivity of Arctic Species to Physically and Chemically Dispersed Oil Determined from Three Hydrocarbon Measures of Aquatic Toxicity

    EPA Science Inventory

    The risks to Arctic species from oil releases is a global concern, but their sensitivity to chemically dispersed oil has not been assessed using a curated and standardized dataset from spiked declining tests. Species sensitivity to dispersed oil was determined by their position w...

  15. Improving coordination and integration of observations of Arctic change

    NASA Astrophysics Data System (ADS)

    Perovich, Donald; Payne, John; Eicken, Hajo

    2012-10-01

    U.S. Arctic Observing Coordination Workshop;Anchorage, Alaska, 20-22 March 2012 The Arctic is undergoing tremendous changes. Permafrost is thawing, ice sheets are melting, and sea ice is thinning and retreating. These changes are impacting ecosystems and human activities. Observing, understanding, and responding to these changes are the central themes of the U.S. Interagency Study of Environmental Arctic Change (SEARCH, http://www.arcus.org/search/index.php). SEARCH brings together academic and government agency scientists and stakeholders to prioritize, plan, conduct, and synthesize research focused on Arctic environmental change. The U.S. Arctic Observing Coordination Workshop (http://www.arcus.org/search/meetings/2012/coordination-workshop/) focused on two key themes for cross-disciplinary and cross-agency collaboration: (1) understanding and predicting sea ice changes and their consequences for ecosystems, human activities, and climate and (2) determining consequences of loss and warming of shallow permafrost on Arctic and global systems.

  16. Determining the Diversity and Species Abundance Patterns in Arctic Soils using Rational Methods for Exploring Microbial Diversity

    NASA Astrophysics Data System (ADS)

    Ovreas, L.; Quince, C.; Sloan, W.; Lanzen, A.; Davenport, R.; Green, J.; Coulson, S.; Curtis, T.

    2012-12-01

    Arctic microbial soil communities are intrinsically interesting and poorly characterised. We have inferred the diversity and species abundance distribution of 6 Arctic soils: new and mature soil at the foot of a receding glacier, Arctic Semi Desert, the foot of bird cliffs and soil underlying Arctic Tundra Heath: all near Ny-Ålesund, Spitsbergen. Diversity, distribution and sample sizes were estimated using the rational method of Quince et al., (Isme Journal 2 2008:997-1006) to determine the most plausible underlying species abundance distribution. A log-normal species abundance curve was found to give a slightly better fit than an inverse Gaussian curve if, and only if, sequencing error was removed. The median estimates of diversity of operational taxonomic units (at the 3% level) were 3600-5600 (lognormal assumed) and 2825-4100 (inverse Gaussian assumed). The nature and origins of species abundance distributions are poorly understood but may yet be grasped by observing and analysing such distributions in the microbial world. The sample size required to observe the distribution (by sequencing 90% of the taxa) varied between ~ 106 and ~105 for the lognormal and inverse Gaussian respectively. We infer that between 5 and 50 GB of sequencing would be required to capture 90% or the metagenome. Though a principle components analysis clearly divided the sites into three groups there was a high (20-45%) degree of overlap in between locations irrespective of geographical proximity. Interestingly, the nearest relatives of the most abundant taxa at a number of most sites were of alpine or polar origin. Samples plotted on first two principal components together with arbitrary discriminatory OTUs

  17. Assessment of undiscovered oil and gas in the arctic

    USGS Publications Warehouse

    Gautier, Donald L.; Bird, Kenneth J.; Charpentier, Ronald R.; Grantz, Arthur; Houseknecht, David W.; Klett, Timothy R.; Moore, Thomas E.; Pitman, Janet K.; Schenk, Christopher J.; Schuenemeyer, John H.; Sorensen, Kai; Tennyson, Marilyn E.; Valin, Zenon C.; Wandrey, Craig J.

    2009-01-01

    Among the greatest uncertainties in future energy supply and a subject of considerable environmental concern is the amount of oil and gas yet to be found in the Arctic. By using a probabilistic geology-based methodology, the United States Geological Survey has assessed the area north of the Arctic Circle and concluded that about 30% of the world’s undiscovered gas and 13% of the world’s undiscovered oil may be found there, mostly offshore under less than 500 meters of water. Undiscovered natural gas is three times more abundant than oil in the Arctic and is largely concentrated in Russia. Oil resources, although important to the interests of Arctic countries, are probably not sufficient to substantially shift the current geographic pattern of world oil production.

  18. White Arctic vs. Blue Arctic: Making Choices

    NASA Astrophysics Data System (ADS)

    Pfirman, S. L.; Newton, R.; Schlosser, P.; Pomerance, R.; Tremblay, B.; Murray, M. S.; Gerrard, M.

    2015-12-01

    As the Arctic warms and shifts from icy white to watery blue and resource-rich, tension is arising between the desire to restore and sustain an ice-covered Arctic and stakeholder communities that hope to benefit from an open Arctic Ocean. If emissions of greenhouse gases to the atmosphere continue on their present trend, most of the summer sea ice cover is projected to be gone by mid-century, i.e., by the time that few if any interventions could be in place to restore it. There are many local as well as global reasons for ice restoration, including for example, preserving the Arctic's reflectivity, sustaining critical habitat, and maintaining cultural traditions. However, due to challenges in implementing interventions, it may take decades before summer sea ice would begin to return. This means that future generations would be faced with bringing sea ice back into regions where they have not experienced it before. While there is likely to be interest in taking action to restore ice for the local, regional, and global services it provides, there is also interest in the economic advancement that open access brings. Dealing with these emerging issues and new combinations of stakeholders needs new approaches - yet environmental change in the Arctic is proceeding quickly and will force the issues sooner rather than later. In this contribution we examine challenges, opportunities, and responsibilities related to exploring options for restoring Arctic sea ice and potential pathways for their implementation. Negotiating responses involves international strategic considerations including security and governance, meaning that along with local communities, state decision-makers, and commercial interests, national governments will have to play central roles. While these issues are currently playing out in the Arctic, similar tensions are also emerging in other regions.

  19. The future of Arctic benthos: Expansion, invasion, and biodiversity

    NASA Astrophysics Data System (ADS)

    Renaud, Paul E.; Sejr, Mikael K.; Bluhm, Bodil A.; Sirenko, Boris; Ellingsen, Ingrid H.

    2015-12-01

    One of the logical predictions for a future Arctic characterized by warmer waters and reduced sea-ice is that new taxa will expand or invade Arctic seafloor habitats. Specific predictions regarding where this will occur and which taxa are most likely to become established or excluded are lacking, however. We synthesize recent studies and conduct new analyses in the context of climate forecasts and a paleontological perspective to make concrete predictions as to relevant mechanisms, regions, and functional traits contributing to future biodiversity changes. Historically, a warmer Arctic is more readily invaded or transited by boreal taxa than it is during cold periods. Oceanography of an ice-free Arctic Ocean, combined with life-history traits of invading taxa and availability of suitable habitat, determine expansion success. It is difficult to generalize as to which taxonomic groups or locations are likely to experience expansion, however, since species-specific, and perhaps population-specific autecologies, will determine success or failure. Several examples of expansion into the Arctic have been noted, and along with the results from the relatively few Arctic biological time-series suggest inflow shelves (Barents and Chukchi Seas), as well as West Greenland and the western Kara Sea, are most likely locations for expansion. Apparent temperature thresholds were identified for characteristic Arctic and boreal benthic fauna suggesting strong potential for range constrictions of Arctic, and expansions of boreal, fauna in the near future. Increasing human activities in the region could speed introductions of boreal fauna and reduce the value of a planktonic dispersal stage. Finally, shelf regions are likely to experience a greater impact, and also one with greater potential consequences, than the deep Arctic basin. Future research strategies should focus on monitoring as well as compiling basic physiological and life-history information of Arctic and boreal taxa, and

  20. AROME-Arctic: New operational NWP model for the Arctic region

    NASA Astrophysics Data System (ADS)

    Süld, Jakob; Dale, Knut S.; Myrland, Espen; Batrak, Yurii; Homleid, Mariken; Valkonen, Teresa; Seierstad, Ivar A.; Randriamampianina, Roger

    2016-04-01

    In the frame of the EU-funded project ACCESS (Arctic Climate Change, Economy and Society), MET Norway aimed 1) to describe the present monitoring and forecasting capabilities in the Arctic; and 2) to identify the key factors limiting the forecasting capabilities and to give recommendations on key areas to improve the forecasting capabilities in the Arctic. We have observed that the NWP forecast quality is lower in the Arctic than in the regions further south. Earlier research indicated that one of the factors behind this is the composition of the observing system in the Arctic, in particular the scarceness of conventional observations. To further assess possible strategies for alleviating the situation and propose scenarios for a future Arctic observing system, we have performed a set of experiments to gain a more detailed insight in the contribution of the components of the present observing system in a regional state-of-the-art non-hydrostatic NWP model using the AROME physics (Seity et al, 2011) at 2.5 km horizontal resolution - AROME-Arctic. Our observing system experiment studies showed that conventional observations (Synop, Buoys) can play an important role in correcting the surface state of the model, but prove that the present upper-air conventional (Radiosondes, Aircraft) observations in the area are too scarce to have a significant effect on forecasts. We demonstrate that satellite sounding data play an important role in improving forecast quality. This is the case with satellite temperature sounding data (AMSU-A, IASI), as well as with the satellite moisture sounding data (AMSU-B/MHS, IASI). With these sets of observations, the AROME-Arctic clearly performs better in forecasting extreme events, like for example polar lows. For more details see presentation by Randriamampianina et al. in this session. The encouraging performance of AROME-Arctic lead us to implement it with more observations and improved settings into daily runs with the objective to

  1. U.S. Geological Survey circum-arctic resource appraisal

    USGS Publications Warehouse

    Gautier, D.L.

    2011-01-01

    Among the greatest uncertainties in future energy supply is the amount of oil and gas yet to be found in the Arctic. Using a probabilistic geology-based methodology, the U.S. Geological Survey has assessed the area north of the Arctic Circle. The Circum-Arctic Resource Appraisal (CARA) consists of three parts: (1) Mapping the sedimentary sequences of the Arctic (Grantz and others 2009), (2) Geologically based estimation of undiscovered technically recoverable petroleum (Gautier and others 2009, discussed in this presentation) and (3) Economic appraisal of the cost of delivering the undiscovered resources to major markets (also reported at this conference by White and others). We estimate that about 30% of the world's undiscovered gas and about 13% of the world's undiscovered oil may be present in the Arctic, mostly offshore under less than 500m of water. Billion BOE-plus accumulations of gas and oil are predicted at a 50% probability in the Kara Sea, Barents Sea, offshore East and West Greenland, Canada, and Alaska. On a BOE basis, undiscovered natural gas is three times more abundant than oil in the Arctic and is concentrated in Russian territory. Oil resources, while critically important to the interests of Arctic countries, are probably not sufficient to significantly shift the current geographic patterns of world oil production. Copyright 2011, Offshore Technology Conference.

  2. Decision Making For Sustainable Futures In A Rapidly Changing Arctic

    NASA Astrophysics Data System (ADS)

    Chabay, I.

    2016-12-01

    Observing, understanding, and predicting effects of rapid climate change in the Arctic are crucial as the circumpolar region becomes more accessible and demand grows for commercial development and resource extraction. Climate change effects - including changes in ocean ice coverage, Arctic weather patterns, permafrost conditions, and coastal erosion - are a consequence of fossil fuel use outside the Arctic, while at the same time the changes open greater access to the Arctic's rich resources, including oil and gas. This offers new opportunities for livelihoods and development of Arctic communities, but inevitably also introduces substantially increased environmental, social, and economic risks. I will outline the rationale for and the process of our transdisciplinary project in engaging with a wide range of actors in the Arctic and beyond. The purpose of the project is to support informed and effective decision making for sustainable futures that is contextually appropriate through co-design and co-production of knowledge with rights-holders and stakeholders.

  3. Role of Greenland meltwater in the changing Arctic

    NASA Astrophysics Data System (ADS)

    Dukhovskoy, Dmitry; Proshutinsky, Andrey; Timmermans, Mary-Louise; Myers, Paul; Platov, Gennady; Bamber, Jonathan; Curry, Beth; Somavilla, Raquel

    2016-04-01

    Observational data show that the Arctic ocean-ice-atmosphere system has been changing over the last two decades. Arctic change is manifest in the atypical behavior of the climate indices in the 21st century. Before the 2000s, these indices characterized the quasi-decadal variability of the Arctic climate related to different circulation regimes. Between 1948 and 1996, the Arctic atmospheric circulation alternated between anticyclonic circulation regimes and cyclonic circulation regimes with a period of 10-15 years. Since 1997, however, the Arctic has been dominated by an anticyclonic regime. Previous studies indicate that in the 20th century, freshwater and heat exchange between the Arctic Ocean and the sub-Arctic seas were self-regulated and their interactions were realized via quasi-decadal climate oscillations. What physical processes in the Arctic Ocean - sub-Arctic ocean-ice-atmosphere system are responsible for the observed changes in Arctic climate variability? The presented work is motivated by our hypothesis that in the 21st century, these quasi-decadal oscillations have been interrupted as a result of an additional freshwater source associated with Greenland Ice Sheet melt. Accelerating since the early 1990s, the Greenland Ice Sheet mass loss exerts a significant impact on thermohaline processes in the sub-Arctic seas. Surplus Greenland freshwater, the amount of which is about a third of the freshwater volume fluxed into the region during the 1970s Great Salinity Anomaly event, can spread and accumulate in the sub-Arctic seas influencing convective processes there. It is not clear, however, whether Greenland freshwater can propagate into the interior convective regions in the Labrador Sea and the Nordic Seas. In order to investigate the fate and pathways of Greenland freshwater in the sub-Arctic seas and to determine how and at what rate Greenland freshwater propagates into the convective regions, several numerical experiments using a passive tracer to

  4. Collaborative Research: Improving Decadal Prediction of Arctic Climate Variability and Change Using a Regional Arctic

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gutowski, William J.

    This project developed and applied a regional Arctic System model for enhanced decadal predictions. It built on successful research by four of the current PIs with support from the DOE Climate Change Prediction Program, which has resulted in the development of a fully coupled Regional Arctic Climate Model (RACM) consisting of atmosphere, land-hydrology, ocean and sea ice components. An expanded RACM, a Regional Arctic System Model (RASM), has been set up to include ice sheets, ice caps, mountain glaciers, and dynamic vegetation to allow investigation of coupled physical processes responsible for decadal-scale climate change and variability in the Arctic. RASMmore » can have high spatial resolution (~4-20 times higher than currently practical in global models) to advance modeling of critical processes and determine the need for their explicit representation in Global Earth System Models (GESMs). The pan-Arctic region is a key indicator of the state of global climate through polar amplification. However, a system-level understanding of critical arctic processes and feedbacks needs further development. Rapid climate change has occurred in a number of Arctic System components during the past few decades, including retreat of the perennial sea ice cover, increased surface melting of the Greenland ice sheet, acceleration and thinning of outlet glaciers, reduced snow cover, thawing permafrost, and shifts in vegetation. Such changes could have significant ramifications for global sea level, the ocean thermohaline circulation and heat budget, ecosystems, native communities, natural resource exploration, and commercial transportation. The overarching goal of the RASM project has been to advance understanding of past and present states of arctic climate and to improve seasonal to decadal predictions. To do this the project has focused on variability and long-term change of energy and freshwater flows through the arctic climate system. The three foci of this research are

  5. Recovery and archiving key Arctic Alaska vegetation map and plot data for the Arctic-Boreal Vulnerability Field Experiment (ABoVE)

    NASA Astrophysics Data System (ADS)

    Walker, D. A.; Breen, A. L.; Broderson, D.; Epstein, H. E.; Fisher, W.; Grunblatt, J.; Heinrichs, T.; Raynolds, M. K.; Walker, M. D.; Wirth, L.

    2013-12-01

    Abundant ground-based information will be needed to inform remote-sensing and modeling studies of NASA's Arctic-Boreal Vulnerability Experiment (ABoVE). A large body of plot and map data collected by the Alaska Geobotany Center (AGC) and collaborators from the Arctic regions of Alaska and the circumpolar Arctic over the past several decades is being archived and made accessible to scientists and the public via the Geographic Information Network of Alaska's (GINA's) 'Catalog' display and portal system. We are building two main types of data archives: Vegetation Plot Archive: For the plot information we use a Turboveg database to construct the Alaska portion of the international Arctic Vegetation Archive (AVA) http://www.geobotany.uaf.edu/ava/. High quality plot data and non-digital legacy datasets in danger of being lost have highest priority for entry into the archive. A key aspect of the database is the PanArctic Species List (PASL-1), developed specifically for the AVA to provide a standard of species nomenclature for the entire Arctic biome. A wide variety of reports, documents, and ancillary data are linked to each plot's geographic location. Geoecological Map Archive: This database includes maps and remote sensing products and links to other relevant data associated with the maps, mainly those produced by the Alaska Geobotany Center. Map data include GIS shape files of vegetation, land-cover, soils, landforms and other categorical variables and digital raster data of elevation, multispectral satellite-derived data, and data products and metadata associated with these. The map archive will contain all the information that is currently in the hierarchical Toolik-Arctic Geobotanical Atlas (T-AGA) in Alaska http://www.arcticatlas.org, plus several additions that are in the process of development and will be combined with GINA's already substantial holdings of spatial data from northern Alaska. The Geoecological Atlas Portal uses GINA's Catalog tool to develop a

  6. Arctic ice islands

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sackinger, W.M.; Jeffries, M.O.; Lu, M.C.

    1988-01-01

    The development of offshore oil and gas resources in the Arctic waters of Alaska requires offshore structures which successfully resist the lateral forces due to moving, drifting ice. Ice islands are floating, a tabular icebergs, up to 60 meters thick, of solid ice throughout their thickness. The ice islands are thus regarded as the strongest ice features in the Arctic; fixed offshore structures which can directly withstand the impact of ice islands are possible but in some locations may be so expensive as to make oilfield development uneconomic. The resolution of the ice island problem requires two research steps: (1)more » calculation of the probability of interaction between an ice island and an offshore structure in a given region; and (2) if the probability if sufficiently large, then the study of possible interactions between ice island and structure, to discover mitigative measures to deal with the moving ice island. The ice island research conducted during the 1983-1988 interval, which is summarized in this report, was concerned with the first step. Monte Carlo simulations of ice island generation and movement suggest that ice island lifetimes range from 0 to 70 years, and that 85% of the lifetimes are less then 35 years. The simulation shows a mean value of 18 ice islands present at any time in the Arctic Ocean, with a 90% probability of less than 30 ice islands. At this time, approximately 34 ice islands are known, from observations, to exist in the Arctic Ocean, not including the 10-meter thick class of ice islands. Return interval plots from the simulation show that coastal zones of the Beaufort and Chukchi Seas, already leased for oil development, have ice island recurrences of 10 to 100 years. This implies that the ice island hazard must be considered thoroughly, and appropriate safety measures adopted, when offshore oil production plans are formulated for the Alaskan Arctic offshore. 132 refs., 161 figs., 17 tabs.« less

  7. Enabling Arctic Research Through Science and Engineering Partnerships

    NASA Astrophysics Data System (ADS)

    Kendall, E. A.; Valentic, T. A.; Stehle, R. H.

    2014-12-01

    Under an Arctic Research Support and Logistics contract from NSF (GEO/PLR), SRI International, as part of the CH2M HILL Polar Services (CPS) program, forms partnerships with Arctic research teams to provide data transfer, remote operations, and safety/operations communications. This teamwork is integral to the success of real-time science results and often allows for unmanned operations which are both cost-effective and safer. The CPS program utilizes a variety of communications networks, services and technologies to support researchers and instruments throughout the Arctic, including Iridium, VSAT, Inmarsat BGAN, HughesNet, TeleGreenland, radios, and personal locator beacons. Program-wide IT and communications limitations are due to the broad categories of bandwidth, availability, and power. At these sites it is essential to conserve bandwidth and power through using efficient software, coding and scheduling techniques. There are interesting new products and services on the horizon that the program may be able to take advantage of in the future such as Iridium NEXT, Inmarsat Xpress, and Omnispace mobile satellite services. Additionally, there are engineering and computer software opportunities to develop more efficient products. We will present an overview of science/engineering partnerships formed by the CPS program, discuss current limitations and identify future technological possibilities that could further advance Arctic science goals.

  8. Paleogene blackshales in the central Arctic Ocean and paleoenvironment: Anoxia vs. high primary production vs. terrigenous input

    NASA Astrophysics Data System (ADS)

    Stein, R.; Weller, P.; Boucsein, B.

    2006-12-01

    During IODP Expedition 302 (Arctic Ocean Coring Experiment ACEX), the first scientific drilling campaign in the permantly ice-covered central Arctic Ocean on Lomonosov Ridge, a 430 m thick sequence of upper Cretaceaous to Quaternary sediments has been drilled. Here we present detailed organic carbon (OC) records from the entire ca. 200 m thick, upper Paleocene to middle Eocene blackshale-type section of the ACEX drill sites, characterized by OC contents of about 1 to 6%. Based on a multi-proxy organic geochemical approach (hydrogen indices, C/N and C/S ratios, stable carbon isotopes, biomarkers, and maceral composition), organic-carbon sources and paleoenvironmental conditions were reconstructed. The late Paleocene interval is characterized by oxic conditions and a predominance of reworked terrigenous OC. In contrast, euxinic "Black Sea-type" conditions favorable for the preservation of labile aquatic (marine algae-type) OC occur throughout the upper part of the early Eocene and the middle Eocene, explained by salinity stratification due to freshwater discharge. The superimposed short-term ("Milankovitch-type") variability in amount and composition of OC is related to changes in primary production and terrigenous input. Prominent early Eocene events of algae-type OC preservation coincide with global 13C events such as the Paleocene- Eocece Thermal Maximum (PETM) and Elmo events. During Eocene times of anoxia, OC accumulation rates were 5-20 times higher than modern ones. Whereas very low organic carbon accumulation rates of about 0.005 gC cm-2 ky-1 are typical for the modern (Holocene) central Arctic Ocean on Lomonosov Ridge, values of up to 0.1-0.15 gC cm-2 ky-1 were calculated for the Eocene ACEX section. Because major part of the OC deposited during Eocene times is of aquatic (marine) origin and the OC deposited during Holocene times is almost entirely of terrigenous origin, the difference between the modern and Eocene situation becomes even more drastic when

  9. Production of Arctic Sea-ice Albedo by fusion of MISR and MODIS data

    NASA Astrophysics Data System (ADS)

    Kharbouche, Said; Muller, Jan-Peter

    2017-04-01

    We have combined data from the NASA MISR and MODIS spectro-radiometers to create a cloud-free albedo dataset specifically for sea-ice. The MISR (Multi-Angular Spectro-Radiometer) instrument on board Terra satellite has a unique ability to create high-quality Bidirectional Reflectance (BRF) over a 7 minute time interval per single overpass, thanks to its 9 cameras of different view angles (±70°,±60°,±45°,±26°). However, as MISR is limited to narrow spectral bands (443nm, 555nm, 670nm, 865nm), which is not sufficient to mask cloud effectively and robustly, we have used the sea-ice mask MOD09 product (Collection 6) from MODIS (Moderate resolution Imaging Spectoradiometer) instrument, which is also on board Terra satellite and acquiring data simultaneously. Only We have created a new and consistent sea-ice (for Arctic) albedo product that is daily, from 1st March to 22nd September for each and every year between 2000 to 2016 at two spatial grids, 1km x 1km and 5km x 5km in polar stereographic projection. Their analysis is described in a separate report [1]. References [1] Muller & Kharbouche, Variation of Arctic's Sea-ice Albedo between 2000 and 2016 by fusion of MISR and MODIS data. This conference. Acknowledgements This work was supported by www.QA4ECV.eu, a project of European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement no. 607405. We thank our colleagues at JPL and NASA LaRC for processing these data, especially Sebastian Val and Steve Protack.

  10. Assessing performance of gravity models in the Arctic and the implications for polar oceanography

    NASA Astrophysics Data System (ADS)

    Thomas, S. F.; McAdoo, D. C.; Farrell, S. L.; Brozena, J. M.; Childers, V. A.; Ziebart, M. K.; Shepherd, A.

    2014-12-01

    The circulation of the Arctic Ocean is of great interest to both the oceanographic and cryospheric communities. Understanding both the steady state and variations of this circulation is essential to building our knowledge of Arctic climate. With the advent of high inclination altimeter missions such as CryoSat and ICESat, it is now feasible to produce Mean Dynamic Topography (MDT) products for the region, which allow a comprehensive investigation of geostrophic currents. However, the accuracy of these products is largely limited by our knowledge of the marine geoid in the Arctic. There are a number of publicly available gravity models commonly used to derive the geoid. These use different combinations of available data (satellite gravimetry, altimetry, laser ranging, and in-situ) and are calculated using different mathematical techniques. However, the effect of these differences on the real world performance of these models when used for oceanographic studies in the Arctic is not well known. Given the unique problems for gravimetry in the region (especially data gaps) and their potential impact on MDT products, it is especially important that the relative performance of these models be assessed We consider the needs of the "end user" satellite oceanographer in the Arctic with respect to gravimetry, and the relationship between the precision of gravity data and the accuracy of a final MDT/current velocity product. Using high-precision aerogravity data collected over 3 years of campaigns by NASA's Operation IceBridge we inter-compare 10 of the leading gravity models and assess their performance in the Arctic. We also use historical data from campaigns flown by the US Naval Research Laboratory (NRL) to demonstrate the impact of gravity errors on MDT products. We describe how gravity models for the region might be improved in the future, in an effort to maximize the level at which Arctic currents may be resolved.

  11. Arctic rabies--a review.

    PubMed

    Mørk, Torill; Prestrud, Pål

    2004-01-01

    Rabies seems to persist throughout most arctic regions, and the northern parts of Norway, Sweden and Finland, is the only part of the Arctic where rabies has not been diagnosed in recent time. The arctic fox is the main host, and the same arctic virus variant seems to infect the arctic fox throughout the range of this species. The epidemiology of rabies seems to have certain common characteristics in arctic regions, but main questions such as the maintenance and spread of the disease remains largely unknown. The virus has spread and initiated new epidemics also in other species such as the red fox and the racoon dog. Large land areas and cold climate complicate the control of the disease, but experimental oral vaccination of arctic foxes has been successful. This article summarises the current knowledge and the typical characteristics of arctic rabies including its distribution and epidemiology.

  12. Arctic Haze Analysis

    NASA Astrophysics Data System (ADS)

    Mei, Linlu; Xue, Yong

    2013-04-01

    The Arctic atmosphere is perturbed by nature/anthropogenic aerosol sources known as the Arctic haze, was firstly observed in 1956 by J. Murray Mitchell in Alaska (Mitchell, 1956). Pacyna and Shaw (1992) summarized that Arctic haze is a mixture of anthropogenic and natural pollutants from a variety of sources in different geographical areas at altitudes from 2 to 4 or 5 km while the source for layers of polluted air at altitudes below 2.5 km mainly comes from episodic transportation of anthropogenic sources situated closer to the Arctic. Arctic haze of low troposphere was found to be of a very strong seasonal variation characterized by a summer minimum and a winter maximum in Alaskan (Barrie, 1986; Shaw, 1995) and other Arctic region (Xie and Hopke, 1999). An anthropogenic factor dominated by together with metallic species like Pb, Zn, V, As, Sb, In, etc. and nature source such as sea salt factor consisting mainly of Cl, Na, and K (Xie and Hopke, 1999), dust containing Fe, Al and so on (Rahn et al.,1977). Black carbon and soot can also be included during summer time because of the mix of smoke from wildfires. The Arctic air mass is a unique meteorological feature of the troposphere characterized by sub-zero temperatures, little precipitation, stable stratification that prevents strong vertical mixing and low levels of solar radiations (Barrie, 1986), causing less pollutants was scavenged, the major revival pathway for particulates from the atmosphere in Arctic (Shaw, 1981, 1995; Heintzenberg and Larssen, 1983). Due to the special meteorological condition mentioned above, we can conclude that Eurasian is the main contributor of the Arctic pollutants and the strong transport into the Arctic from Eurasia during winter caused by the high pressure of the climatologically persistent Siberian high pressure region (Barrie, 1986). The paper intends to address the atmospheric characteristics of Arctic haze by comparing the clear day and haze day using different dataset

  13. SWIFT Observations in the Arctic Sea State DRI

    DTIC Science & Technology

    2015-09-30

    to understand the role of waves and sea state in the Arctic Ocean, such that forecast models are improved and a robust climatology is defined...OBJECTIVES The objectives are to: develop a sea state climatology for the Arctic Ocean, improve wave forecasting in the presence of sea ice, improve...experiment, coordination of remote sensing products, and analysis of climatology . A detailed cruise plan has been written, including a table of the remote

  14. Variability of Arctic Sea Ice as Determined from Satellite Observations

    NASA Technical Reports Server (NTRS)

    Parkinson, Claire L.

    1999-01-01

    The compiled, quality-controlled satellite multichannel passive-microwave record of polar sea ice now spans over 18 years, from November 1978 through December 1996, and is revealing considerable information about the Arctic sea ice cover and its variability. The information includes data on ice concentrations (percent areal coverages of ice), ice extents, ice melt, ice velocities, the seasonal cycle of the ice, the interannual variability of the ice, the frequency of ice coverage, and the length of the sea ice season. The data reveal marked regional and interannual variabilities, as well as some statistically significant trends. For the north polar ice cover as a whole, maximum ice extents varied over a range of 14,700,000 - 15,900,000 sq km, while individual regions experienced much greater percent variations, for instance, with the Greenland Sea having a range of 740,000 - 1,110,000 sq km in its yearly maximum ice coverage. In spite of the large variations from year to year and region to region, overall the Arctic ice extents showed a statistically significant, 2.80% / decade negative trend over the 18.2-year period. Ice season lengths, which vary from only a few weeks near the ice margins to the full year in the large region of perennial ice coverage, also experienced interannual variability, along with spatially coherent overall trends. Linear least squares trends show the sea ice season to have lengthened in much of the Bering Sea, Baffin Bay, the Davis Strait, and the Labrador Sea, but to have shortened over a much larger area, including the Sea of Okhotsk, the Greenland Sea, the Barents Sea, and the southeastern Arctic.

  15. Reconstruction of Arctic surface temperature in past 100 years using DINEOF

    NASA Astrophysics Data System (ADS)

    Zhang, Qiyi; Huang, Jianbin; Luo, Yong

    2015-04-01

    Global annual mean surface temperature has not risen apparently since 1998, which is described as global warming hiatus in recent years. However, measuring of temperature variability in Arctic is difficult because of large gaps in coverage of Arctic region in most observed gridded datasets. Since Arctic has experienced a rapid temperature change in recent years that called polar amplification, and temperature risen in Arctic is faster than global mean, the unobserved temperature in central Arctic will result in cold bias in both global and Arctic temperature measurement compared with model simulations and reanalysis datasets. Moreover, some datasets that have complete coverage in Arctic but short temporal scale cannot show Arctic temperature variability for long time. Data Interpolating Empirical Orthogonal Function (DINEOF) were applied to fill the coverage gap of NASA's Goddard Institute for Space Studies Surface Temperature Analysis (GISTEMP 250km smooth) product in Arctic with IABP dataset which covers entire Arctic region between 1979 and 1998, and to reconstruct Arctic temperature in 1900-2012. This method provided temperature reconstruction in central Arctic and precise estimation of both global and Arctic temperature variability with a long temporal scale. Results have been verified by extra independent station records in Arctic by statistical analysis, such as variance and standard deviation. The result of reconstruction shows significant warming trend in Arctic in recent 30 years, as the temperature trend in Arctic since 1997 is 0.76°C per decade, compared with 0.48°C and 0.67°C per decade from 250km smooth and 1200km smooth of GISTEMP. And global temperature trend is two times greater after using DINEOF. The discrepancies above stress the importance of fully consideration of temperature variance in Arctic because gaps of coverage in Arctic cause apparent cold bias in temperature estimation. The result of global surface temperature also proves that

  16. EOS Aqua AMSR-E Arctic Sea Ice Validation Program: Arctic2003 Aircraft Campaign Flight Report

    NASA Technical Reports Server (NTRS)

    Cavalieri, D. J.; Markus,T.

    2003-01-01

    In March 2003 a coordinated Arctic sea ice validation field campaign using the NASA Wallops P-3B aircraft was successfully completed. This campaign was part of the program for validating the Earth Observing System (EOS) Aqua Advanced Microwave Scanning Radiometer (AMSR-E) sea ice products. The AMSR-E, designed and built by the Japanese National Space Development Agency for NASA, was launched May 4, 2002 on the EOS Aqua spacecraft. The AMSR-E sea ice products to be validated include sea ice concentration, sea ice temperature, and snow depth on sea ice. This flight report describes the suite of instruments flown on the P-3, the objectives of each of the seven flights, the Arctic regions overflown, and the coordination among satellite, aircraft, and surface-based measurements. Two of the seven aircraft flights were coordinated with scientists making surface measurements of snow and ice properties including sea ice temperature and snow depth on sea ice at a study area near Barrow, AK and at a Navy ice camp located in the Beaufort Sea. Two additional flights were dedicated to making heat and moisture flux measurements over the St. Lawrence Island polynya to support ongoing air-sea-ice processes studies of Arctic coastal polynyas. The remaining flights covered portions of the Bering Sea ice edge, the Chukchi Sea, and Norton Sound.

  17. Circumpolar Arctic vegetation: a hierarchic review and roadmap toward an internationally consistent approach to survey, archive and classify tundra plot data

    Treesearch

    D A Walker; F J A Daniels; I Alsos; U S Bhatt; A L Breen; M Buchhorn; H Bultmann; L A Druckenmiller; M E Edwards; D Ehrich; H E Epstein; William Gould; R A Ims; H Meltofte; M K Raynolds; J Sibik; S S Talbot; P J Webber

    2016-01-01

    Satellite-derived remote-sensing products are providing a modern circumpolar perspective of Arctic vegetation and its changes, but this new view is dependent on a long heritage of ground-based observations in the Arctic. Several products of the Conservation of Arctic Flora and Fauna are key to our current understanding.Wereview aspects of the PanArctic Flora, the...

  18. Arctic River Discharge and Sediment Loads --- an Overview

    NASA Astrophysics Data System (ADS)

    Syvitski, J. P.; Overeem, I.; Brakenridge, G. R.; Hudson, B.; Cohen, S.

    2014-12-01

    Evidence suggests that river discharge has been increasing (+10%) over the last 30 years (1977-2007) for most arctic rivers. The peak melt month occurs earlier in the season in 66% of the studied rivers. Cold season flow is also increasing. Satellite discharge estimates, daily, based on microwave radiometry, are now possible from 1998 onwards. Daily river discharge hindcasts over the last 60 years using the water balance model WBMsed at a 10km spatial resolution are now available. The WBMsed model can be used in forecast mode assuming valid input climatology. The challenge here has been the accuracy of sub-polar precipitation grids. While each of these three methods (gauging, orbital sensing, modeling) has temporal and spatial coverage limitations, the combination of all three methods provides for a realistic way forward for estimating local discharge across the pan arctic. Flood inundation products are routinely produced for the pan-arctic using automated mapping algorithms developed by the Dartmouth Flood Observatory. The determination of artic river sediment loads is less than ideal. Some rivers have only been monitored for a short number of years, and many have not been monitored at all. The WBMsed model is perhaps the best method of estimating the daily sediment flux to the Arctic Ocean, at least for rivers where the mean discharge is greater than 30 m3/s. Additionally there is limited-duration field monitoring by national surveys. New methods are being explored, including back calculating the delivery of sediment to the coastal ocean by plume dimensions observed from space (MODIS, LandSat). These methods have had moderate success when applied to plumes extending in the Greenland fjords. Canada maintains an active circa 7-y satellite program (ArcticNet) to track the Mackenzie discharge during the spring-summer runoff period when turbid river water is apt to flow under and over marginal sea ice in the Beaufort Sea.

  19. Effects of Climate Warming on Organic Carbon Degradation and Methylmercury Production in an Arctic Tundra Soil

    NASA Astrophysics Data System (ADS)

    Gu, B.; Yang, Z.; Lu, X.; Liang, L.; Graham, D. E.; Wullschleger, S. D.

    2016-12-01

    Climate warming increases microbial activity and stimulates the degradation of stored soil organic carbon (SOC) in Arctic tundra. Studies have shown that the rates of SOC degradation are affected by the substrate quality or chemical composition of SOC, but it remains unclear which pools of SOC are the most vulnerable to rapid breakdown and what mechanisms are involved. Additionally, little is known concerning the effects of warming on microbial mercury methylation and how it is coupled to SOC degradation. Using a suite of analytical techniques, we examined the dynamic consumption and production of labile SOC compounds, including reducing sugars, alcohols, and low-molecular-weight organic acids during an 8-month anoxic incubation with a high-centered polygon trough tundra soil from Barrow, Alaska. We show that reducing sugars and alcohols in thawed permafrost largely account for the initial rapid release of CO2 and CH4 through anaerobic fermentation, whereas the fermentation products such as acetate and formate are subsequently utilized as primary substrates for methanogenesis. Degradation of labile SOC is also found to rapidly fueling the biosynthesis of methylmercury, a potent neurotoxin in tundra soil. Mercury methylation is positively correlated to the production of CH4 and ferrous ion, suggesting the linkages among microbial pathways of methanogenesis, iron reduction, and mercury methylation. Additionally, we found that freshly amended mercury is more bioavailable and susceptible to microbial methylation than preexisting Hg, particularly in the deep mineral soil. These observations suggest that climate warming and permafrost thaw not only impact on the decomposition of stored SOC and emission of greenhouse gases but also increase production of toxic methylmercury in Arctic tundra.

  20. Does Arctic governance hold the key to achieving climate policy targets?

    NASA Astrophysics Data System (ADS)

    Forbis, Robert, Jr.; Hayhoe, Katharine

    2018-02-01

    Arctic feedbacks are increasingly viewed as the wild card in the climate system; but their most unpredictable and potentially dangerous aspect may lie in the human, rather than the physical, response to a warming climate. If Arctic policy is driven by agendas based on domestic resource development, the ensuing oil and gas extraction will ensure the failure of the Paris Agreement. If Arctic energy policy can be framed by the Arctic Council, however, its environmental agenda and fragmented governance structure offers the scientific community a fighting chance to determine the region’s energy future. Connecting Arctic climate science to resource economics via its unique governance structure is one of the most powerful ways the scientific community can protect the Arctic region’s environmental, cultural, and scientific resources, and influence international energy and climate policy.

  1. Arctic potential - Could more structured view improve the understanding of Arctic business opportunities?

    NASA Astrophysics Data System (ADS)

    Hintsala, Henna; Niemelä, Sami; Tervonen, Pekka

    2016-09-01

    The increasing interest towards the Arctic has been witnessed during the past decades. However, the commonly shared definitions of the Arctic key concepts have not yet penetrated national and international arenas for political and economic decision making. The lack of jointly defined framework has made different analyses related to the Arctic quite limited considering the magnitude of economic potential embedded in Arctic. This paper is built on the key findings of two separate, yet connected projects carried out in the Oulu region, Finland. In this paper's approach, the Arctic context has been defined as a composition of three overlapping layers. The first layer is the phenomenological approach to define the Arctic region. The second layer is the strategy-level analysis to define different Arctic paths as well as a national level description of a roadmap to Arctic specialization. The third layer is the operationalization of the first two layers to define the Arctic business context and business opportunities. The studied case from Oulu region indicates that alternative futures for the Arctic competences and business activities are in resemblance with only two of the four identified strategic pathways. Introduction of other pathways to regional level actors as credible and attractive options would require additional, systematic efforts.

  2. Promoting Knowledge to Action through the Study of Environmental Arctic Change (SEARCH) Program

    NASA Astrophysics Data System (ADS)

    Myers, B.; Wiggins, H. V.

    2016-12-01

    The Study of Environmental Arctic Change (SEARCH) is a multi-institutional collaborative U.S. program that advances scientific knowledge to inform societal responses to Arctic change. Currently, SEARCH focuses on how diminishing Arctic sea ice, thawing permafrost, and shrinking land ice impact both Arctic and global systems. Emphasizing "knowledge to action", SEARCH promotes collaborative research, synthesizes research findings, and broadly communicates the resulting knowledge to Arctic researchers, stakeholders, policy-makers, and the public. This poster presentation will highlight recent program products and findings; best practices and challenges for managing a distributed, interdisciplinary program; and plans for cross-disciplinary working groups focused on Arctic coastal erosion, synthesis of methane budgets, and development of Arctic scenarios. A specific focus will include how members of the broader research community can participate in SEARCH activities. http://www.arcus.org/search

  3. Squaring the Arctic Circle: connecting Arctic knowledge with societal needs

    NASA Astrophysics Data System (ADS)

    Wilkinson, J.

    2017-12-01

    Over the coming years the landscape of the Arctic will change substantially- environmentally, politically, and economically. Furthermore, Arctic change has the potential to significantly impact Arctic and non-Arctic countries alike. Thus, our science is in-demand by local communities, politicians, industry leaders and the public. During these times of transition it is essential that the links between science and society be strengthened further. Strong links between science and society is exactly what is needed for the development of better decision-making tools to support sustainable development, enable adaptation to climate change, provide the information necessary for improved management of assets and operations in the Arctic region, and and to inform scientific, economic, environmental and societal policies. By doing so tangible benefits will flow to Arctic societies, as well as for non-Arctic countries that will be significantly affected by climate change. Past experience has shown that the engagement with a broad range of stakeholders is not always an easy process. Consequently, we need to improve collaborative opportunities between scientists, indigenous/local communities, private sector, policy makers, NGOs, and other relevant stakeholders. The development of best practices in this area must build on the collective experiences of successful cross-sectorial programmes. Within this session we present some of the outreach work we have performed within the EU programme ICE-ARC, from community meetings in NW Greenland through to sessions at the United Nations Framework Convention on Climate Change COP Conferences, industry round tables, and an Arctic side event at the World Economic Forum in Davos.

  4. International student Arctic Field School on Permafrost and urban areas study

    NASA Astrophysics Data System (ADS)

    Suter, L.; Tolmanov, V. A.; Grebenets, V. I.; Streletskiy, D. A.; Shiklomanov, N. I.

    2017-12-01

    Arctic regions are experiencing drastic climatic and environmental changes. These changes are exacerbated in the Russian Arctic, where active resource development resulted in further land cover transformations, especially near large settlements. There is a growing need in multidisciplinary studies of climate and human- induced changes in the Arctic cities. In order to fill this gap, International Arctic Field Course on Permafrostand Northern Studies was organized in July 2017 to the Russian Arctic. The course was organized under the umbrella of the Arctic PIRE project in cooperation between the George Washington University, Moscow State University, and the Russian Center for Arctic Development. The course attracted twenty undergraduate and graduate students from Russia, USA, and EU countries and involved instructors specializing in Arctic system science, geocryology, permafrost engineering, and urban sustainability. The field course was focused on studying typical natural Arctic landscapes of tundra and forest tundra; transformations of natural landscapes in urban and industrial areas around Vorkuta and Salekhard; construction and planning on permafrost and field methods and techniques, including permafrost and soil temperature monitoring, active layer thickness (ALT) measurements, studying of cryogenic processes, stratigraphic and soil investigations, vegetation and microclimate studies. The students were also engaged in a discussion of climatic change and historical development of urban areas on permafrost,and were exposed to examples of both active and passive construction principles while conducting a field survey of permafrost related building deformations. During the course, students collected more than 800 ALT and soil temperature measurements in typical landscapes around Vorkuta and Salekhard to determine effects of soil and vegetation factors on ground thermal regime; surveyed several hundreds of buildings to determine locations with most deformation

  5. Genetic stock assessment of spawning arctic cisco (Coregonus autumnalis) populations by flow cytometric determination of DNA content.

    PubMed

    Lockwood, S F; Bickham, J W

    1991-01-01

    Intraspecific variation in cellular DNA content was measured in five Coregonus autumnalis spawning populations from the Mackenzie River drainage, Canada, using flow cytometry. The rivers assayed were the Peel, Arctic Red, Mountain, Carcajou, and Liard rivers. DNA content was determined from whole blood preparations of fish from all rivers except the Carcajou, for which kidney tissue was used. DNA content measurements of kidney and blood preparations of the same fish from the Mountain River revealed statistically indistinguishable results. Mosaicism was found in blood preparations from the Peel, Arctic Red, Mountain, and Liard rivers, but was not observed in kidney tissue preparations from the Mountain or Carcajou rivers. The Liard River sample had significantly elevated mean DNA content relative to the other four samples; all other samples were statistically indistinguishable. Significant differences in mean DNA content among spawning stocks of a single species reinforces the need for adequate sample sizes of both individuals and populations when reporting "C" values for a particular species.

  6. Coordinating for Arctic Conservation: Implementing Integrated Arctic Biodiversity Monitoring, Data Management and Reporting

    NASA Astrophysics Data System (ADS)

    Gill, M.; Svoboda, M.

    2012-12-01

    Arctic ecosystems and the biodiversity they support are experiencing growing pressure from various stressors (e.g. development, climate change, contaminants, etc.) while established research and monitoring programs remain largely uncoordinated, lacking the ability to effectively monitor, understand and report on biodiversity trends at the circumpolar scale. The maintenance of healthy arctic ecosystems is a global imperative as the Arctic plays a critical role in the Earth's physical, chemical and biological balance. A coordinated and comprehensive effort for monitoring arctic ecosystems is needed to facilitate effective and timely conservation and adaptation actions. The Arctic's size and complexity represents a significant challenge towards detecting and attributing important biodiversity trends. This demands a scaled, pan-arctic, ecosystem-based approach that not only identifies trends in biodiversity, but also identifies underlying causes. It is critical that this information be made available to generate effective strategies for adapting to changes now taking place in the Arctic—a process that ultimately depends on rigorous, integrated, and efficient monitoring programs that have the power to detect change within a "management" time frame. To meet these challenges and in response to the Arctic Climate Impact Assessment's recommendation to expand and enhance arctic biodiversity monitoring, the Conservation of Arctic Flora and Fauna (CAFF) Working Group of the Arctic Council launched the Circumpolar Biodiversity Monitoring Program (CBMP). The CBMP is led by Environment Canada on behalf of Canada and the Arctic Council. The CBMP is working with over 60 global partners to expand, integrate and enhance existing arctic biodiversity research and monitoring efforts to facilitate more rapid detection, communication and response to significant trends and pressures. Towards this end, the CBMP has established three Expert Monitoring Groups representing major Arctic

  7. Ice-Free Arctic Ocean?

    ERIC Educational Resources Information Center

    Science Teacher, 2005

    2005-01-01

    The current warming trends in the Arctic may shove the Arctic system into a seasonally ice-free state not seen for more than one million years, according to a new report. The melting is accelerating, and researchers were unable to identify any natural processes that might slow the deicing of the Arctic. "What really makes the Arctic different…

  8. Arctic Amplification and Potential Mid-Latitude Weather Linkages

    NASA Astrophysics Data System (ADS)

    Overland, J. E.

    2014-12-01

    Increasing temperatures and other changes continued in the Arctic over the last decade, even though the rate of global warming has decreased in part due to a cool Pacific Ocean. Thus Arctic temperatures have increased at least 3 times the rate of mid-latitude temperatures. Credibility for persistent Arctic change comes from multiple indicators which are now available for multiple decades. Further, the spatial pattern of Arctic Amplification differs from patterns of natural variability. The role of the Arctic in the global climate system is based on multiple interacting feedbacks represented by these indicators as a causal basis for Arctic Amplification driven by modest global change. Many of these processes act on a regional basis and their non-linear interactions are not well captured by climate models. For example, future loss of sea ice due to increases in CO2 are demonstrated by these models but the rates of loss appear slow. It is reasonable to suspect that Arctic change which can produce the largest temperature anomalies on the planet and demonstrate recent extremes in the polar vortex could be linked to mid-latitude weather, especially as Arctic change will continue over the next decades. The meteorological community remains skeptical, however, in the sense of "not proven." Natural variability in chaotic atmospheric flow remains the main dynamic process, and it is difficult to determine whether Arctic forcing of a north-south linkage is emerging from the most recent period of Arctic change since 2007. Nonetheless, such a hypothesis is worthy of investigation, given the need to further understand Arctic dynamic atmospheric processes, and the potential for improving mid-latitude seasonal forecasts base on high-latitude forcing. Several AGU sessions and other forums over the next year (WWRP, IASC,CliC) address this issue, but the topic is not ready for a firm answer. The very level of controversy indicates the state of the science.

  9. Increased fluxes of shelf-derived materials to the central Arctic Ocean

    PubMed Central

    Kipp, Lauren E.; Charette, Matthew A.; Moore, Willard S.; Henderson, Paul B.; Rigor, Ignatius G.

    2018-01-01

    Rising temperatures in the Arctic Ocean region are responsible for changes such as reduced ice cover, permafrost thawing, and increased river discharge, which, together, alter nutrient and carbon cycles over the vast Arctic continental shelf. We show that the concentration of radium-228, sourced to seawater through sediment-water exchange processes, has increased substantially in surface waters of the central Arctic Ocean over the past decade. A mass balance model for 228Ra suggests that this increase is due to an intensification of shelf-derived material inputs to the central basin, a source that would also carry elevated concentrations of dissolved organic carbon and nutrients. Therefore, we suggest that significant changes in the nutrient, carbon, and trace metal balances of the Arctic Ocean are underway, with the potential to affect biological productivity and species assemblages in Arctic surface waters. PMID:29326980

  10. Arctic climate tipping points.

    PubMed

    Lenton, Timothy M

    2012-02-01

    There is widespread concern that anthropogenic global warming will trigger Arctic climate tipping points. The Arctic has a long history of natural, abrupt climate changes, which together with current observations and model projections, can help us to identify which parts of the Arctic climate system might pass future tipping points. Here the climate tipping points are defined, noting that not all of them involve bifurcations leading to irreversible change. Past abrupt climate changes in the Arctic are briefly reviewed. Then, the current behaviour of a range of Arctic systems is summarised. Looking ahead, a range of potential tipping phenomena are described. This leads to a revised and expanded list of potential Arctic climate tipping elements, whose likelihood is assessed, in terms of how much warming will be required to tip them. Finally, the available responses are considered, especially the prospects for avoiding Arctic climate tipping points.

  11. Arctic Refuge

    Atmospheric Science Data Center

    2014-05-15

    article title:  Summer in the Arctic National Wildlife Refuge     View Larger Image This colorful image of the Arctic National Wildlife Refuge and the Beaufort Sea was acquired by the Multi-angle Imaging ...

  12. Ecological dynamics across the Arctic associated with recent climate change.

    PubMed

    Post, Eric; Forchhammer, Mads C; Bret-Harte, M Syndonia; Callaghan, Terry V; Christensen, Torben R; Elberling, Bo; Fox, Anthony D; Gilg, Olivier; Hik, David S; Høye, Toke T; Ims, Rolf A; Jeppesen, Erik; Klein, David R; Madsen, Jesper; McGuire, A David; Rysgaard, Søren; Schindler, Daniel E; Stirling, Ian; Tamstorf, Mikkel P; Tyler, Nicholas J C; van der Wal, Rene; Welker, Jeffrey; Wookey, Philip A; Schmidt, Niels Martin; Aastrup, Peter

    2009-09-11

    At the close of the Fourth International Polar Year, we take stock of the ecological consequences of recent climate change in the Arctic, focusing on effects at population, community, and ecosystem scales. Despite the buffering effect of landscape heterogeneity, Arctic ecosystems and the trophic relationships that structure them have been severely perturbed. These rapid changes may be a bellwether of changes to come at lower latitudes and have the potential to affect ecosystem services related to natural resources, food production, climate regulation, and cultural integrity. We highlight areas of ecological research that deserve priority as the Arctic continues to warm.

  13. The Arctic Visiting Speakers Program

    NASA Astrophysics Data System (ADS)

    Wiggins, H. V.; Fahnestock, J.

    2013-12-01

    The Arctic Visiting Speakers Program (AVS) is a program of the Arctic Research Consortium of the U.S. (ARCUS) and funded by the National Science Foundation. AVS provides small grants to researchers and other Arctic experts to travel and share their knowledge in communities where they might not otherwise connect. The program aims to: initiate and encourage arctic science education in communities with little exposure to arctic research; increase collaboration among the arctic research community; nurture communication between arctic researchers and community residents; and foster arctic science education at the local level. Individuals, community organizations, and academic organizations can apply to host a speaker. Speakers cover a wide range of arctic topics and can address a variety of audiences including K-12 students, graduate and undergraduate students, and the general public. Preference is given to tours that reach broad and varied audiences, especially those targeted to underserved populations. Between October 2000 and July 2013, AVS supported 114 tours spanning 9 different countries, including tours in 23 U.S. states. Tours over the past three and a half years have connected Arctic experts with over 6,600 audience members. Post-tour evaluations show that AVS consistently rates high for broadening interest and understanding of arctic issues. AVS provides a case study for how face-to-face interactions between arctic scientists and general audiences can produce high-impact results. Further information can be found at: http://www.arcus.org/arctic-visiting-speakers.

  14. Circumpolar arctic tundra biomass and productivity dynamics in response to projected climate change and herbivory.

    PubMed

    Yu, Qin; Epstein, Howard; Engstrom, Ryan; Walker, Donald

    2017-09-01

    Satellite remote sensing data have indicated a general 'greening' trend in the arctic tundra biome. However, the observed changes based on remote sensing are the result of multiple environmental drivers, and the effects of individual controls such as warming, herbivory, and other disturbances on changes in vegetation biomass, community structure, and ecosystem function remain unclear. We apply ArcVeg, an arctic tundra vegetation dynamics model, to estimate potential changes in vegetation biomass and net primary production (NPP) at the plant community and functional type levels. ArcVeg is driven by soil nitrogen output from the Terrestrial Ecosystem Model, existing densities of Rangifer populations, and projected summer temperature changes by the NCAR CCSM4.0 general circulation model across the Arctic. We quantified the changes in aboveground biomass and NPP resulting from (i) observed herbivory only; (ii) projected climate change only; and (iii) coupled effects of projected climate change and herbivory. We evaluated model outputs of the absolute and relative differences in biomass and NPP by country, bioclimate subzone, and floristic province. Estimated potential biomass increases resulting from temperature increase only are approximately 5% greater than the biomass modeled due to coupled warming and herbivory. Such potential increases are greater in areas currently occupied by large or dense Rangifer herds such as the Nenets-occupied regions in Russia (27% greater vegetation increase without herbivores). In addition, herbivory modulates shifts in plant community structure caused by warming. Plant functional types such as shrubs and mosses were affected to a greater degree than other functional types by either warming or herbivory or coupled effects of the two. © 2017 John Wiley & Sons Ltd.

  15. Nitrate and Moisture Content of Broad Permafrost Landscape Features in the Barrow Peninsula: Predicting Evolving NO3 Concentrations in a Changing Arctic

    NASA Astrophysics Data System (ADS)

    Arendt, C. A.; Heikoop, J. M.; Newman, B. D.; Wales, N. A.; McCaully, R. E.; Wilson, C. J.; Wullschleger, S.

    2017-12-01

    The geochemical evolution of Arctic regions as permafrost degrades, significantly impacts nutrient availability. The release of nitrogen compounds from permafrost degradation fertilizes both microbial decomposition and plant productivity. Arctic warming promotes permafrost degradation, causing geomorphic and hydrologic transitions that have the potential to convert saturated zones to unsaturated zones and subsequently alter the nitrate production capacity of permafrost regions. Changes in Nitrate (NO3-) content associated with shifting moisture regimes are a primary factor determining Arctic fertilization and subsequent primary productivity, and have direct feedbacks to carbon cycling. We have documented a broad survey of co-located soil moisture and nitrate concentration measurements in shallow active layer regions across a variety of topographic features in the expansive continuous permafrost region encompassing the Barrow Peninsula of Alaska. Topographic features of interest are slightly higher relative to surrounding landscapes with drier soils and elevated nitrate, including the rims of low centered polygons, the centers of flat and high centered polygons, the rims of young, old and ancient drain thaw lake basins and drainage slopes that exist across the landscape. With this information, we model the nitrate inventory of the Barrow Peninsula using multiple geospatial approaches to estimate total area cover by unsaturated features of interest and further predict how various drying scenarios increase the magnitude of nitrate produced in degrading permafrost regions across the Arctic. This work is supported by the US Department of Energy Next Generation Ecosystem Experiment, NGEE-Arctic.

  16. Active molecular iodine photochemistry in the Arctic

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raso, Angela R. W.; Custard, Kyle D.; May, Nathaniel W.

    During springtime, the Arctic atmospheric boundary layer undergoes frequent rapid depletions in ozone and gaseous elemental mercury due to reactions with halogen atoms, influencing atmospheric composition and pollutant fate. Although bromine chemistry has been shown to initiate ozone depletion events, and it has long been hypothesized that iodine chemistry may contribute, no previous measurements of molecular iodine (I 2) have been reported in the Arctic. Iodine chemistry also contributes to atmospheric new particle formation and therefore cloud properties and radiative forcing. Here we present Arctic atmospheric I2 and snowpack iodide (I-) measurements, which were conducted near Utqiagvik, AK, in Februarymore » 2014. Using chemical ionization mass spectrometry, I2 was observed in the atmosphere at mole ratios of 0.3–1.0 ppt, and in the snowpack interstitial air at mole ratios up to 22 ppt under natural sunlit conditions and up to 35 ppt when the snowpack surface was artificially irradiated, suggesting a photochemical production mechanism. Further, snow meltwater I-measurements showed enrichments of up to ~1,900 times above the seawater ratio of I-/Na+, consistent with iodine activation and recycling. Modeling shows that observed I 2 levels are able to significantly increase ozone depletion rates, while also producing iodine monoxide (IO) at levels recently observed in the Arctic. These results emphasize the significance of iodine chemistry and the role of snowpack photochemistry in Arctic atmospheric composition, and imply that I 2 is likely a dominant source of iodine atoms in the Arctic.« less

  17. Active molecular iodine photochemistry in the Arctic

    DOE PAGES

    Raso, Angela R. W.; Custard, Kyle D.; May, Nathaniel W.; ...

    2017-09-05

    During springtime, the Arctic atmospheric boundary layer undergoes frequent rapid depletions in ozone and gaseous elemental mercury due to reactions with halogen atoms, influencing atmospheric composition and pollutant fate. Although bromine chemistry has been shown to initiate ozone depletion events, and it has long been hypothesized that iodine chemistry may contribute, no previous measurements of molecular iodine (I 2) have been reported in the Arctic. Iodine chemistry also contributes to atmospheric new particle formation and therefore cloud properties and radiative forcing. Here we present Arctic atmospheric I 2 and snowpack iodide (I -) measurements, which were conducted near Utqiagvik, AK,more » in February 2014. Using chemical ionization mass spectrometry, I 2 was observed in the atmosphere at mole ratios of 0.3–1.0 ppt, and in the snowpack interstitial air at mole ratios up to 22 ppt under natural sunlit conditions and up to 35 ppt when the snowpack surface was artificially irradiated, suggesting a photochemical production mechanism. Further, snow meltwater I-measurements showed enrichments of up to ~1,900 times above the seawater ratio of I-/Na +, consistent with iodine activation and recycling. Modeling shows that observed I 2 levels are able to significantly increase ozone depletion rates, while also producing iodine monoxide (IO) at levels recently observed in the Arctic. Furthermore, these results emphasize the significance of iodine chemistry and the role of snowpack photochemistry in Arctic atmospheric composition, and imply that I 2 is likely a dominant source of iodine atoms in the Arctic.« less

  18. Active molecular iodine photochemistry in the Arctic

    NASA Astrophysics Data System (ADS)

    Raso, Angela R. W.; Custard, Kyle D.; May, Nathaniel W.; Tanner, David; Newburn, Matt K.; Walker, Lawrence; Moore, Ronald J.; Huey, L. G.; Alexander, Liz; Shepson, Paul B.; Pratt, Kerri A.

    2017-09-01

    During springtime, the Arctic atmospheric boundary layer undergoes frequent rapid depletions in ozone and gaseous elemental mercury due to reactions with halogen atoms, influencing atmospheric composition and pollutant fate. Although bromine chemistry has been shown to initiate ozone depletion events, and it has long been hypothesized that iodine chemistry may contribute, no previous measurements of molecular iodine (I2) have been reported in the Arctic. Iodine chemistry also contributes to atmospheric new particle formation and therefore cloud properties and radiative forcing. Here we present Arctic atmospheric I2 and snowpack iodide (I-) measurements, which were conducted near Utqiaġvik, AK, in February 2014. Using chemical ionization mass spectrometry, I2 was observed in the atmosphere at mole ratios of 0.3-1.0 ppt, and in the snowpack interstitial air at mole ratios up to 22 ppt under natural sunlit conditions and up to 35 ppt when the snowpack surface was artificially irradiated, suggesting a photochemical production mechanism. Further, snow meltwater I- measurements showed enrichments of up to ˜1,900 times above the seawater ratio of I-/Na+, consistent with iodine activation and recycling. Modeling shows that observed I2 levels are able to significantly increase ozone depletion rates, while also producing iodine monoxide (IO) at levels recently observed in the Arctic. These results emphasize the significance of iodine chemistry and the role of snowpack photochemistry in Arctic atmospheric composition, and imply that I2 is likely a dominant source of iodine atoms in the Arctic.

  19. Active Molecular Iodine Photochemistry in the Arctic

    NASA Astrophysics Data System (ADS)

    Raso, A. R. W.; Custard, K. D.; May, N.; Tanner, D.; Newburn, M. K.; Walker, L. R.; Moore, R.; Huey, L. G.; Alexander, M. L. L.; Shepson, P. B.; Pratt, K.

    2017-12-01

    During springtime, the Arctic atmospheric boundary layer undergoes frequent rapid depletions in ozone and gaseous elemental mercury due to reactions with halogen atoms, influencing atmospheric composition, and pollutant fate. While bromine chemistry has been shown to initiate ozone depletion events, and it has long been hypothesized that iodine chemistry may contribute, no previous measurements of molecular iodine (I2) have been reported in the Arctic. The presence of iodine chemistry is also expected to impact atmospheric new particle formation and therefore cloud properties and radiative forcing. Here we present the first Arctic I2 and snowpack iodide (I-) measurements, which were conducted near Utqiaġvik, AK in January and February 2014. Using chemical ionization mass spectrometry, I2 was observed in the boundary layer at molar ratios of 0.3 ppt and in the snowpack interstitial air at molar ratios up to 22 ppt under natural sunlit conditions and up to 35 ppt when the snowpack surface was artificially irradiated. I2 was not observed in the dark, suggesting a photochemical production mechanism. This is supported by our snowpack measurements of I-, which showed enrichment of up to 1900 times above the seawater ratio of I-/Na+. Simulations show even these low concentrations of I2 observed significantly increases ozone depletion rates, while also producing iodine monoxide at levels recently observed in the Arctic. These results emphasize the significance of iodine chemistry and the role of snowpack photochemistry in Arctic atmospheric composition, and imply that I2 is likely a dominant source of iodine atoms in the Arctic.

  20. Active molecular iodine photochemistry in the Arctic.

    PubMed

    Raso, Angela R W; Custard, Kyle D; May, Nathaniel W; Tanner, David; Newburn, Matt K; Walker, Lawrence; Moore, Ronald J; Huey, L G; Alexander, Liz; Shepson, Paul B; Pratt, Kerri A

    2017-09-19

    During springtime, the Arctic atmospheric boundary layer undergoes frequent rapid depletions in ozone and gaseous elemental mercury due to reactions with halogen atoms, influencing atmospheric composition and pollutant fate. Although bromine chemistry has been shown to initiate ozone depletion events, and it has long been hypothesized that iodine chemistry may contribute, no previous measurements of molecular iodine (I 2 ) have been reported in the Arctic. Iodine chemistry also contributes to atmospheric new particle formation and therefore cloud properties and radiative forcing. Here we present Arctic atmospheric I 2 and snowpack iodide (I - ) measurements, which were conducted near Utqiaġvik, AK, in February 2014. Using chemical ionization mass spectrometry, I 2 was observed in the atmosphere at mole ratios of 0.3-1.0 ppt, and in the snowpack interstitial air at mole ratios up to 22 ppt under natural sunlit conditions and up to 35 ppt when the snowpack surface was artificially irradiated, suggesting a photochemical production mechanism. Further, snow meltwater I - measurements showed enrichments of up to ∼1,900 times above the seawater ratio of I - /Na + , consistent with iodine activation and recycling. Modeling shows that observed I 2 levels are able to significantly increase ozone depletion rates, while also producing iodine monoxide (IO) at levels recently observed in the Arctic. These results emphasize the significance of iodine chemistry and the role of snowpack photochemistry in Arctic atmospheric composition, and imply that I 2 is likely a dominant source of iodine atoms in the Arctic.

  1. A new Arctic 25-year Altimetric Sea-level Record (1992-2016) and Initial look at Arctic Sea Level Budget Closure

    NASA Astrophysics Data System (ADS)

    Andersen, O. B.; Passaro, M.; Benveniste, J.; Piccioni, G.

    2016-12-01

    A new initiative within the ESA Sea Level Climate Change initiative (SL-cci) framework to improve the Arctic sea level record has been initiated as a combined effort to reprocess and retrack past altimetry to create a 25-year combined sea level record for sea level research studies. One of the objectives is to retracked ERS-2 dataset for the high latitudes based on the ALES retracking algorithm through adapting the ALES retracker for retracking of specular surfaces (leads). Secondly a reprocessing using tailored editing to Arctic Conditions will be carried out also focusing on the merging of the multi-mission data. Finally an effort is to combine physical and empirical retracked sea surface height information to derive an experimental spatio-temporal enhanced sea level product for high latitude. The first results in analysing Arctic Sea level variations on annual inter-annual scales for the 1992-2015 from a preliminar version of this dataset is presented. By including the GRACE water storage estimates and NOAA halo- and thermo-steric sea level variatios since 2002 a preliminary attempt to close the Arctic Sea level budget is presented here. Closing the Arctic sea level budget is by no mean trivial as both steric data and satellite altimetry is both sparse temporally and limited geographically.

  2. Patterns and controlling factors of species diversity in the Arctic Ocean

    USGS Publications Warehouse

    Yasuhara, Moriaki; Hunt, Gene; van Dijken, Gert; Arrigo, Kevin R.; Cronin, Thomas M.; Wollenburg, Jutta E.

    2012-01-01

    Aim  The Arctic Ocean is one of the last near-pristine regions on Earth, and, although human activities are expected to impact on Arctic ecosystems, we know very little about baseline patterns of Arctic Ocean biodiversity. This paper aims to describe Arctic Ocean-wide patterns of benthic biodiversity and to explore factors related to the large-scale species diversity patterns.Location  Arctic Ocean.Methods  We used large ostracode and foraminiferal datasets to describe the biodiversity patterns and applied comprehensive ecological modelling to test the degree to which these patterns are potentially governed by environmental factors, such as temperature, productivity, seasonality, ice cover and others. To test environmental control of the observed diversity patterns, subsets of samples for which all environmental parameters were available were analysed with multiple regression and model averaging.Results  Well-known negative latitudinal species diversity gradients (LSDGs) were found in metazoan Ostracoda, but the LSDGs were unimodal with an intermediate maximum with respect to latitude in protozoan foraminifera. Depth species diversity gradients were unimodal, with peaks in diversity shallower than those in other oceans. Our modelling results showed that several factors are significant predictors of diversity, but the significant predictors were different among shallow marine ostracodes, deep-sea ostracodes and deep-sea foraminifera.Main conclusions  On the basis of these Arctic Ocean-wide comprehensive datasets, we document large-scale diversity patterns with respect to latitude and depth. Our modelling results suggest that the underlying mechanisms causing these species diversity patterns are unexpectedly complex. The environmental parameters of temperature, surface productivity, seasonality of productivity, salinity and ice cover can all play a role in shaping large-scale diversity patterns, but their relative importance may depend on the ecological

  3. Arctic Change Detection: Multiple Observations and Recent Explanations

    NASA Astrophysics Data System (ADS)

    Soreide, N. N.; Overland, J. E.; Calder, J.

    2004-12-01

    is a comprehensive Arctic Change Detection product which builds upon the ACIA report with regularly updated information. Credibility is based on multiple lines of evidence and cooperation of scientists. The Arctic Change Detection project provides a near-realtime suite of indicators, their potential impacts, recent events, news items, and scientific publications, in an understandable format at www.arctic.noaa.gov. This website makes information about the current status of the Arctic available to a wide audience.

  4. Environmental impact of exhaust emissions by Arctic shipping.

    PubMed

    Schröder, Christian; Reimer, Nils; Jochmann, Peter

    2017-12-01

    Since 2005, a dramatic decline of the Arctic sea-ice extent is observed which results in an increase of shipping activities. Even though this provides commercial and social development opportunities, the resulting environmental impacts need to be investigated and monitored. In order to understand the impact of shipping in arctic areas, the method described in this paper determines the travel time, fuel consumption and resulting exhaust emissions of ships navigating in arctic waters. The investigated case studies are considering ship particulars as well as environmental conditions with special focus on ice scenarios. Travel time, fuel consumption and exhaust gas emission were investigated for three different vessels, using different passages of the Northern Sea Route (NSR) in different seasons of years 1960, 2000 and 2040. The presented results show the sensitivity of vessel performance and amount of exhaust emissions to optimize arctic traffic with respect to efficiency, safety and environmental impact.

  5. Live from the Arctic

    NASA Astrophysics Data System (ADS)

    Warnick, W. K.; Haines-Stiles, G.; Warburton, J.; Sunwood, K.

    2003-12-01

    For reasons of geography and geophysics, the poles of our planet, the Arctic and Antarctica, are places where climate change appears first: they are global canaries in the mine shaft. But while Antarctica (its penguins and ozone hole, for example) has been relatively well-documented in recent books, TV programs and journalism, the far North has received somewhat less attention. This project builds on and advances what has been done to date to share the people, places, and stories of the North with all Americans through multiple media, over several years. In a collaborative project between the Arctic Research Consortium of the United States (ARCUS) and PASSPORT TO KNOWLEDGE, Live from the Arctic will bring the Arctic environment to the public through a series of primetime broadcasts, live and taped programming, interactive virtual field trips, and webcasts. The five-year project will culminate during the 2007-2008 International Polar Year (IPY). Live from the Arctic will: A. Promote global understanding about the value and world -wide significance of the Arctic, B. Bring cutting-edge research to both non-formal and formal education communities, C. Provide opportunities for collaboration between arctic scientists, arctic communities, and the general public. Content will focus on the following four themes. 1. Pan-Arctic Changes and Impacts on Land (i.e. snow cover; permafrost; glaciers; hydrology; species composition, distribution, and abundance; subsistence harvesting) 2. Pan-Arctic Changes and Impacts in the Sea (i.e. salinity, temperature, currents, nutrients, sea ice, marine ecosystems (including people, marine mammals and fisheries) 3. Pan-Arctic Changes and Impacts in the Atmosphere (i.e. precipitation and evaporation; effects on humans and their communities) 4. Global Perspectives (i.e. effects on humans and communities, impacts to rest of the world) In The Earth is Faster Now, a recent collection of comments by members of indigenous arctic peoples, arctic

  6. Interactions among shrub cover and the soil microclimate may determine future Arctic carbon budgets.

    PubMed

    Cahoon, Sean M P; Sullivan, Patrick F; Shaver, Gaius R; Welker, Jeffrey M; Post, Eric; Holyoak, Marcel

    2012-12-01

    Arctic and Boreal terrestrial ecosystems are important components of the climate system because they contain vast amounts of soil carbon (C). Evidence suggests that deciduous shrubs are increasing in abundance, but the implications for ecosystem C budgets remain uncertain. Using midsummer CO(2) flux data from 21 sites spanning 16° of latitude in the Arctic and Boreal biomes, we show that air temperature explains c. one-half of the variation in ecosystem respiration (ER) and that ER drives the pattern in net ecosystem CO(2) exchange across ecosystems. Woody sites were slightly stronger C sinks compared with herbaceous communities. However, woody sites with warm soils (> 10 °C) were net sources of CO(2) , whereas woody sites with cold soils (< 10 °C) were strong sinks. Our results indicate that transition to a shrub-dominated Arctic will increase the rate of C cycling, and may lead to net C loss if soil temperatures rise. © 2012 Blackwell Publishing Ltd/CNRS.

  7. Population viability of Arctic grayling in the Gibbon River, Yellowstone National Park

    USGS Publications Warehouse

    Steed, Amber C.; Zale, Alexander V.; Koel, Todd M.; Kalinowski, Steven T.

    2010-01-01

    The fluvial Arctic grayling Thymallus arcticus is restricted to less than 5% of its native range in the contiguous United States and was relisted as a category 3 candidate species under the U.S. Endangered Species Act in 2010. Although fluvial Arctic grayling of the lower Gibbon River, Yellowstone National Park, Wyoming, were considered to have been extirpated by 1935, anglers and biologists have continued to report catching low numbers of Arctic grayling in the river. Our goal was to determine whether a viable population of fluvial Arctic grayling persisted in the Gibbon River or whether the fish caught in the river were downstream emigrants from lacustrine populations in headwater lakes. We addressed this goal by determining relative abundances, sources, and evidence for successful spawning of Arctic grayling in the Gibbon River. During 2005 and 2006, Arctic grayling comprised between 0% and 3% of the salmonid catch in riverwide electrofishing (mean < 1%; SE < 1%) and snorkeling (mean = 1%; SE = 1%) surveys; Arctic grayling constituted 0–14% of the salmonid catch obtained by targeted angling (3 of 22 fish; mean = 4%; SE = 5%). Low values of the genetic differentiation index (F ST = 0.0021 ± 0.002 [mean ± 95% confidence interval]) between headwater lake and river Arctic grayling indicated that fish from throughout the Gibbon River system probably belonged to the same population. Back-calculated lengths at most ages were similar among all fish, and successful spawning within the Gibbon River below the headwater lakes was not documented. Few Arctic grayling adults and no fry were detected in the Gibbon River, implying that a reproducing fluvial population does not exist there. These findings have implications for future Endangered Species Act considerations and management of fluvial Arctic grayling within and outside of Yellowstone National Park. Our comprehensive approach is broadly applicable to the management of sparsely detected aquatic species worldwide.

  8. The Age of the Arctic.

    ERIC Educational Resources Information Center

    Young, Oran R.

    1986-01-01

    Examines trends related to exploration in the Arctic by considering: (1) technology and military strategies; (2) foreign policy and the Arctic; (3) Arctic industrialization; (4) the Arctic policy agenda; and (5) recent United States initiatives in this region. (JN)

  9. Oceanographic Aspects of Recent Changes in the Arctic

    NASA Astrophysics Data System (ADS)

    Morison, J. H.

    2002-12-01

    climate feedback is that the changes in ocean circulation and ice production have increased the amount of relatively fresh surface water exported to the sub-Arctic Seas, increasing stratification there, and arguably reducing the strength of the global thermohaline circulation. Since the mid-1990s the strength of the Polar Vortex (AO) has relaxed partially toward earlier levels. Recent observations show that Arctic Ocean water mass structure has relaxed somewhat towards climatology near the surface but is still changing at depth. The cold halocline has recovered in some areas. This reinforces the notion that the changes in the Arctic are tied to the atmospheric circulation of the whole northern hemisphere. The events of the last 10-15 years suggest ways the Arctic environment may be an indicator and agent of climate change and highlight the importance of a systematic program to observe the changing Arctic. References Parkinson C. L., D. J. Cavalieri, P. Gloersen, H. J. Zwally, and J. C. Comiso, 1999, Arctic sea ice extents, areas, and trends, 1978-1996, J. Geophys. Res., 104, 20,387-20,856. Rothrock, D. A., Y. Yu, and G. A. Maykut, 1999, Thinning of the Arctic sea-ice cover, Geophys. Res. Lett., 26(23), 3469-3472. Steele, M., and T. Boyd, 1998, Retreat of the cold halocline layer in the Arctic Ocean, J. Geophys. Res., 103, 10,419-10,435.

  10. Arctic science input wanted

    NASA Astrophysics Data System (ADS)

    The Arctic Research and Policy Act (Eos, June 26, 1984, p. 412) was signed into law by President Ronald Reagan this past July. One of its objectives is to develop a 5-year research plan for the Arctic. A request for input to this plan is being issued this week to nearly 500 people in science, engineering, and industry.To promote Arctic research and to recommend research policy in the Arctic, the new law establishes a five-member Arctic Research Commission, to be appointed by the President, and establishes an Interagency Arctic Research Policy Committee, to be composed of representatives from nearly a dozen agencies having interests in the region. The commission will make policy recommendations, and the interagency committee will implement those recommendations. The National Science Foundation (NSF) has been designated as the lead agency of the interagency committee.

  11. Arctic Rabies – A Review

    PubMed Central

    Mørk, Torill; Prestrud, Pål

    2004-01-01

    Rabies seems to persist throughout most arctic regions, and the northern parts of Norway, Sweden and Finland, is the only part of the Arctic where rabies has not been diagnosed in recent time. The arctic fox is the main host, and the same arctic virus variant seems to infect the arctic fox throughout the range of this species. The epidemiology of rabies seems to have certain common characteristics in arctic regions, but main questions such as the maintenance and spread of the disease remains largely unknown. The virus has spread and initiated new epidemics also in other species such as the red fox and the racoon dog. Large land areas and cold climate complicate the control of the disease, but experimental oral vaccination of arctic foxes has been successful. This article summarises the current knowledge and the typical characteristics of arctic rabies including its distribution and epidemiology. PMID:15535081

  12. Pharmaceuticals and personal care products (PPCPs) in Arctic environments: indicator contaminants for assessing local and remote anthropogenic sources in a pristine ecosystem in change.

    PubMed

    Kallenborn, Roland; Brorström-Lundén, Eva; Reiersen, Lars-Otto; Wilson, Simon

    2017-07-31

    A first review on occurrence and distribution of pharmaceuticals and personal care products (PPCPs) is presented. The literature survey conducted here was initiated by the current Assessment of the Arctic Monitoring and Assessment Programme (AMAP). This first review on the occurrence and environmental profile of PPCPs in the Arctic identified the presence of 110 related substances in the Arctic environment based on the reports from scientific publications, national and regional assessments and surveys, as well as academic research studies (i.e., PhD theses). PPCP residues were reported in virtually all environmental compartments from coastal seawater to high trophic level biota. For Arctic environments, domestic and municipal wastes as well as sewage are identified as primary release sources. However, the absence of modern waste water treatment plants (WWTPs), even in larger settlements in the Arctic, is resulting in relatively high release rates for selected PPCPs into the receiving Arctic (mainly) aquatic environment. Pharmaceuticals are designed with specific biochemical functions as a part of an integrated therapeutically procedure. This biochemical effect may cause unwanted environmental toxicological effects on non-target organisms when the compound is released into the environment. In the Arctic environments, pharmaceutical residues are released into low to very low ambient temperatures mainly into aqueous environments. Low biodegradability and, thus, prolonged residence time must be expected for the majority of the pharmaceuticals entering the aquatic system. The environmental toxicological consequence of the continuous PPCP release is, thus, expected to be different in the Arctic compared to the temperate regions of the globe. Exposure risks for Arctic human populations due to consumption of contaminated local fish and invertebrates or through exposure to resistant microbial communities cannot be excluded. However, the scientific results reported and

  13. Development of provisions for oil contaminated soil neutralizing in the conditions of Siberia and the Arctic

    NASA Astrophysics Data System (ADS)

    Shtripling, L. O.; Kholkin, E. G.

    2017-08-01

    Siberia and the Arctic zone of the Russian Federation occupy a large area of the country and they differ from other regions in special climatic conditions, in particular, a long period of freezing temperatures and relatively poor infrastructure. The main problem of neutralizing soils contaminated with oil products in conditions of negative ambient temperature is that the contaminated soil is in a frozen state, and it prevents the normal course of neutralization process, so additional energy is required for preparing the soil. There is proposed a technology adapted to the conditions of Siberia and the Arctic for the operational elimination of emergency situations consequences accompanied with oil spills. The technology for neutralizing soils contaminated with petroleum products is based on the encapsulation of a pollutant (reagent capsulation technology) using an alkaline calcium-based reagent. Powdered building quicklime is used as a reagent, and it is a product of roasting carbonate rocks or a mixture of this product with mineral additives (calcium oxide). The encapsulated material obtained as a result of neutralizing soils contaminated with petroleum products is resistant to natural and man-made factors such as moisture, temperature fluctuations, acid rain and high pressure. Energy use from the chemical detoxification exothermic process of soils contaminated with petroleum products in combination with the forced supply of carbon dioxide to the neutralization zone during the formation of a shell from calcium carbonate on the surface of the pollutant makes it possible to neutralize soils contaminated with oil products in the extreme climatic conditions of the Arctic using reagent Encapsulation. The principle of equipment operation that allows neutralizing soils contaminated with petroleum products in the natural and climatic conditions of the Arctic using reagent capsulation technology has been described. The results of experimental studies have been presented that

  14. Trophic pathways supporting Arctic grayling in a small stream on the Arctic Coastal Plain, Alaska

    USGS Publications Warehouse

    McFarland, Jason J.; Wipfli, Mark S.; Whitman, Matthew S.

    2018-01-01

    Beaded streams are prominent across the Arctic Coastal Plain (ACP) of Alaska, yet prey flow and food web dynamics supporting fish inhabiting these streams are poorly understood. Arctic grayling (Thymallus arcticus) are a widely distributed upper-level consumer on the ACP and migrate into beaded streams to forage during the short 3-month open-water season. We investigated energy pathways and key prey resources that support grayling in a representative beaded stream, Crea Creek. We measured terrestrial invertebrates entering the stream from predominant riparian vegetation types, prey types supporting a range of fish size classes, and how riparian plants and fish size influenced foraging habits. We found that riparian plants influenced the quantity of terrestrial invertebrates entering Crea Creek; however, these differences were not reflected in fish diets. Prey type and size ingested varied with grayling size and season. Small grayling (<15 cm fork length (FL)) consumed mostly aquatic invertebrates early in the summer, and terrestrial invertebrates later in summer, while larger fish (>15 cm FL) foraged most heavily on ninespine stickleback (Pungitius pungitius) throughout the summer, indicating that grayling can be insectivorous and piscivorous, depending on size. These findings underscore the potential importance of small streams in Arctic ecosystems as key summer foraging habitats for fish. Understanding trophic pathways supporting stream fishes in these systems will help interpret whether and how petroleum development and climate change may affect energy flow and stream productivity, terrestrial–aquatic linkages and fishes in Arctic ecosystems.

  15. The Arctic Observing Viewer: A Web-mapping Application for U.S. Arctic Observing Activities

    NASA Astrophysics Data System (ADS)

    Cody, R. P.; Manley, W. F.; Gaylord, A. G.; Kassin, A.; Villarreal, S.; Barba, M.; Dover, M.; Escarzaga, S. M.; Habermann, T.; Kozimor, J.; Score, R.; Tweedie, C. E.

    2015-12-01

    interoperable resources in this way will help to ensure improved capacities for conducting activities such as assessing the status of arctic observing efforts, optimizing logistic operations, and for quickly accessing external and project-focused web resources for more detailed information and access to scientific data and derived products.

  16. The 1994 Arctic Ocean Section. The First Major Scientific Crossing of the Arctic Ocean,

    DTIC Science & Technology

    1996-09-01

    contribute to the international effort to better understand the role of the Arctic Ocean in the global carbon cycle and climate change. Summar...Barium Distributions in the Arctic Ocean ? ........................ 32 Biology and the Carbon Cycle Cycling of Organic Carbon in the Central Arctic...of Heterotrophic Bacteria and Protists in the Arctic Ocean Carbon Cycle............. 40

  17. Rough-legged buzzards, Arctic foxes and red foxes in a tundra ecosystem without rodents.

    PubMed

    Pokrovsky, Ivan; Ehrich, Dorothée; Ims, Rolf A; Kondratyev, Alexander V; Kruckenberg, Helmut; Kulikova, Olga; Mihnevich, Julia; Pokrovskaya, Liya; Shienok, Alexander

    2015-01-01

    Small rodents with multi-annual population cycles strongly influence the dynamics of food webs, and in particular predator-prey interactions, across most of the tundra biome. Rodents are however absent from some arctic islands, and studies on performance of arctic predators under such circumstances may be very instructive since rodent cycles have been predicted to collapse in a warming Arctic. Here we document for the first time how three normally rodent-dependent predator species-rough-legged buzzard, arctic fox and red fox - perform in a low-arctic ecosystem with no rodents. During six years (in 2006-2008 and 2011-2013) we studied diet and breeding performance of these predators in the rodent-free Kolguev Island in Arctic Russia. The rough-legged buzzards, previously known to be a small rodent specialist, have only during the last two decades become established on Kolguev Island. The buzzards successfully breed on the island at stable low density, but with high productivity based on goslings and willow ptarmigan as their main prey - altogether representing a novel ecological situation for this species. Breeding density of arctic fox varied from year to year, but with stable productivity based on mainly geese as prey. The density dynamic of the arctic fox appeared to be correlated with the date of spring arrival of the geese. Red foxes breed regularly on the island but in very low numbers that appear to have been unchanged over a long period - a situation that resemble what has been recently documented from Arctic America. Our study suggests that the three predators found breeding on Kolguev Island possess capacities for shifting to changing circumstances in low-arctic ecosystem as long as other small - medium sized terrestrial herbivores are present in good numbers.

  18. Rough-Legged Buzzards, Arctic Foxes and Red Foxes in a Tundra Ecosystem without Rodents

    PubMed Central

    Pokrovsky, Ivan; Ehrich, Dorothée; Ims, Rolf A.; Kondratyev, Alexander V.; Kruckenberg, Helmut; Kulikova, Olga; Mihnevich, Julia; Pokrovskaya, Liya; Shienok, Alexander

    2015-01-01

    Small rodents with multi-annual population cycles strongly influence the dynamics of food webs, and in particular predator-prey interactions, across most of the tundra biome. Rodents are however absent from some arctic islands, and studies on performance of arctic predators under such circumstances may be very instructive since rodent cycles have been predicted to collapse in a warming Arctic. Here we document for the first time how three normally rodent-dependent predator species—rough-legged buzzard, arctic fox and red fox – perform in a low-arctic ecosystem with no rodents. During six years (in 2006-2008 and 2011-2013) we studied diet and breeding performance of these predators in the rodent-free Kolguev Island in Arctic Russia. The rough-legged buzzards, previously known to be a small rodent specialist, have only during the last two decades become established on Kolguev Island. The buzzards successfully breed on the island at stable low density, but with high productivity based on goslings and willow ptarmigan as their main prey – altogether representing a novel ecological situation for this species. Breeding density of arctic fox varied from year to year, but with stable productivity based on mainly geese as prey. The density dynamic of the arctic fox appeared to be correlated with the date of spring arrival of the geese. Red foxes breed regularly on the island but in very low numbers that appear to have been unchanged over a long period – a situation that resemble what has been recently documented from Arctic America. Our study suggests that the three predators found breeding on Kolguev Island possess capacities for shifting to changing circumstances in low-arctic ecosystem as long as other small - medium sized terrestrial herbivores are present in good numbers. PMID:25692786

  19. SEARCH: Study of Environmental Arctic Change-A System-scale, Cross-disciplinary Arctic Research Program

    NASA Astrophysics Data System (ADS)

    Wiggins, H. V.; Eicken, H.; Fox, S. E.; Search Science Steering Committee

    2011-12-01

    SEARCH is an interdisciplinary and interagency program that works with academic and government agency scientists to plan, conduct, and synthesize studies of arctic change. The vision of SEARCH is to provide scientific understanding of arctic environmental change to help society understand and respond to a rapidly changing Arctic. Towards this end, SEARCH: (1) Generates and synthesizes research findings and promotes arctic science and scientific discovery across disciplines and among agencies. (2) Identifies emerging issues in arctic environmental change. (3) Provides information resources to arctic stakeholders, policy-makers, and the public to help them respond to arctic environmental change. (4) Coordinates with national arctic science programs integral to SEARCH goals. (5) Facilitates research activities across local-to-global scales with stakeholder concerns incorporated from the start of the planning process. (6) Represents the U.S. arctic environmental change science community in international and global change research initiatives. Examples of specific SEARCH activities include: (1) Arctic Observing Network (AON) - a system of atmospheric, land- and ocean-based environmental monitoring capabilities that will significantly advance our observations of arctic environmental conditions. (2) Arctic Sea Ice Outlook - an international effort that provides monthly summer reports synthesizing community estimates of the expected sea ice minimum. (3) Sea Ice for Walrus Outlook - a resource for Alaska Native subsistence hunters, coastal communities, and others that provides weekly reports with information on sea ice conditions relevant to walrus in Alaska waters. (4) Developing recommendations for an interagency "Understanding Arctic Change" program. In addition to the above activities, SEARCH is also currently undertaking a strategic planning process to define priority goals and objectives for the next 3-5 years. SEARCH is guided by a Science Steering Committee and

  20. Seasonal Clear-Sky Flux and Cloud Radiative Effect Anomalies in the Arctic Atmospheric Column Associated with the Arctic Oscillation and Arctic Dipole

    NASA Technical Reports Server (NTRS)

    Hegyi, Bradley M.; Taylor, Patrick C.

    2017-01-01

    The impact of the Arctic Oscillation (AO) and Arctic Dipole (AD) on the radiative flux into the Arctic mean atmospheric column is quantified. 3-month-averaged AO and AD indices are regressed with corresponding surface and top-of-atmosphere (TOA) fluxes from the CERES-SFC and CERES-TOA EBAF datasets over the period 2000-2014. An increase in clear-sky fluxes into the Arctic mean atmospheric column during fall is the largest net flux anomaly associated with AO, primarily driven by a positive net longwave flux anomaly (i.e. increase of net flux into the atmospheric column) at the surface. A decrease in the Arctic mean atmospheric column cloud radiative effect during winter and spring is the largest flux anomaly associated with AD, primarily driven by a change in the longwave cloud radiative effect at the surface. These prominent responses to AO and AD are widely distributed across the ice-covered Arctic, suggesting that the physical process or processes that bring about the flux change associated with AO and AD are distributed throughout the Arctic.

  1. SAR processing in the cloud for oil detection in the Arctic

    NASA Astrophysics Data System (ADS)

    Garron, J.; Stoner, C.; Meyer, F. J.

    2016-12-01

    A new world of opportunity is being thawed from the ice of the Arctic, driven by decreased persistent Arctic sea-ice cover, increases in shipping, tourism, natural resource development. Tools that can automatically monitor key sea ice characteristics and potential oil spills are essential for safe passage in these changing waters. Synthetic aperture radar (SAR) data can be used to discriminate sea ice types and oil on the ocean surface and also for feature tracking. Additionally, SAR can image the earth through the night and most weather conditions. SAR data is volumetrically large and requires significant computing power to manipulate. Algorithms designed to identify key environmental features, like oil spills, in SAR imagery require secondary processing, and are computationally intensive, which can functionally limit their application in a real-time setting. Cloud processing is designed to manage big data and big data processing jobs by means of small cycles of off-site computations, eliminating up-front hardware costs. Pairing SAR data with cloud processing has allowed us to create and solidify a processing pipeline for SAR data products in the cloud to compare operational algorithms efficiency and effectiveness when run using an Alaska Satellite Facility (ASF) defined Amazon Machine Image (AMI). The products created from this secondary processing, were compared to determine which algorithm was most accurate in Arctic feature identification, and what operational conditions were required to produce the results on the ASF defined AMI. Results will be used to inform a series of recommendations to oil-spill response data managers and SAR users interested in expanding their analytical computing power.

  2. SEARCH: Study of Environmental Arctic Change—A System-scale, Cross-disciplinary Arctic Research Program

    NASA Astrophysics Data System (ADS)

    Wiggins, H. V.; Eicken, H.; Fox, S. E.

    2012-12-01

    SEARCH is an interdisciplinary and interagency program that works with academic and government agency scientists to plan, conduct, and synthesize studies of arctic change. The vision of SEARCH is to provide scientific understanding of arctic environmental change to help society understand and respond to a rapidly changing Arctic. Towards this end, SEARCH: 1. Generates and synthesizes research findings and promotes arctic science and scientific discovery across disciplines and among agencies. 2. Identifies emerging issues in arctic environmental change. 3. Provides information resources to arctic stakeholders, policy-makers, and the public to help them respond to arctic environmental change. 4. Coordinates with national arctic science programs integral to SEARCH goals. 5. Facilitates research activities across local-to-global scales with stakeholder concerns incorporated from the start of the planning process. 6. Represents the U.S. arctic environmental change science community in international and global change research initiatives. Specific current activities include: Arctic Observing Network (AON) - coordinating a system of atmospheric, land- and ocean-based environmental monitoring capabilities that will significantly advance our observations of arctic environmental conditions. Arctic Sea Ice Outlook ¬- an international effort that provides monthly summer reports synthesizing community estimates of the expected sea ice minimum. Sea Ice for Walrus Outlook - a resource for Alaska Native subsistence hunters, coastal communities, and others that provides weekly reports with information on sea ice conditions relevant to walrus in Alaska waters. In April, the SEARCH Science Steering Committee (SSC) released a set of draft 5-year goals and objectives for review by the broader arctic science community. The goals and objectives will direct the SEARCH program in the next five years. The draft SEARCH goals focus on four areas: ice-diminished Arctic Ocean, warming

  3. Collapsing permafrost coasts in the Arctic

    NASA Astrophysics Data System (ADS)

    Fritz, Michael; Lantuit, Hugues

    2017-04-01

    Arctic warming is exposing permafrost coastlines, which account for 34% of the Earth's coasts, to rapid thaw and erosion. Coastal erosion rates as high as 25 m yr-1 together with the large amount of organic matter frozen in permafrost are resulting in an annual release of 14.0 Tg (1012 gram) particulate organic carbon into the nearshore zone. The nearshore zone is the primary recipient of higher fluxes of carbon and nutrients from thawing permafrost. We highlight the crucial role the nearshore zone plays in Arctic biogeochemical cycling, as here the fate of the released material is determined to: (1) degrade into greenhouse gases, (2) fuel marine primary production, (3) be buried in nearshore sediments or (4) be transported offshore. With Arctic warming, coastal erosion fluxes have the potential to increase by an order of magnitude until 2100. Such increases would result in drastic impacts on global carbon fluxes and their climate feedbacks, on nearshore food webs and on local communities, whose survival still relies on marine biological resources. Quantifying the potential impacts of increasing erosion on coastal ecosystems is crucial for food security of northern residents living in Arctic coastal communities. We need to know how the traditional hunting and fishing grounds might be impacted by high loads of sediment and nutrients released from eroding coasts, and to what extent coastal retreat will lead to a loss of natural habitat. Quantifying fluxes of organic carbon and nutrients is required, both in nearshore deposits and in the water column by sediment coring and systematic oceanographic monitoring. Ultimately, this will allow us to assess the transport and degradation pathways of sediment and organic matter derived from erosion. We need to follow the complete pathway, which is multi-directional including atmospheric release, lateral transport, transitional retention in the food web, and ultimate burial in seafloor sediments. We present numbers of multi

  4. Study of Environmental Arctic Change (SEARCH): Scientific Understanding of Arctic Environmental Change to Help Society Understand and Respond to a Rapidly Changing Arctic.

    NASA Astrophysics Data System (ADS)

    Wiggins, H. V.; Myers, B.

    2015-12-01

    The Study of Environmental Arctic Change (SEARCH) is a U.S. program with a mission to provide a foundation of Arctic change science through collaboration with the research community, funding agencies, and other stakeholders. To achieve this mission, SEARCH: Generates and synthesizes research findings and promotes Arctic science and scientific discovery across disciplines and among agencies. Identifies emerging issues in Arctic environmental change. Provides scientific information to Arctic stakeholders, policy-makers, and the public to help them understand and respond to arctic environmental change. Facilitates research activities across local-to-global scales, with an emphasis on addressing needs of decision-makers. Collaborates with national and international science programs integral to SEARCH goals. This poster presentation will present SEARCH activities and plans, highlighting those focused on providing information for decision-makers. http://www.arcus.org/search

  5. Lipid Content in Arctic Calanus: a Matter of Season and Size

    NASA Astrophysics Data System (ADS)

    Daase, M.; Søreide, J.; Freese, D.; Hatlebakk, M. K.; Jørgen, B.; Renaud, P.; Gabrielsen, T. M.; Vogedes, D.

    2016-02-01

    Copepods of the genus Calanus are considered key elements of the marine food chain of the Arctic and North Atlantic. They convert low-energy carbohydrates and proteins of their algae diet into high-energy wax ester lipids. These lipids are accumulated over the productive season and stored in a lipid sac which sustains the organism over long periods without algal food supply, and which makes Calanus spp. an important prey item. Here we investigated what determines the variability in lipid content of overwintering stages and adults of Arctic and North Atlantic Calanus species. Using image analysis of lipid sac area, we have estimated individual lipid content of Calanus species in the waters and fjords of Svalbard (78-81oN). Data were collected all year round, at surface and deep waters and in locations under the influence of either Atlantic or Arctic hydrographic conditions. Lipid content showed stage specific seasonal variability which can be related to life history strategies and the phenology of algae blooms. Depth specific differences in lipid content were only observed at the start of the overwintering period. Our data also demonstrate that species specific differences in lipid content were not as fundamentally different as previously assumed. Rather, based on molecular identification of the species, we show that the lipid content of the Arctic C. glacialis and the Atlantic C. finmarchicus is dependent on size alone, challenging the classical understanding of these two species yielding two distinctly different ecosystem services based upon a difference in lipid content.

  6. Aerosol-cloud interactions in Arctic mixed-phase stratocumulus

    NASA Astrophysics Data System (ADS)

    Solomon, A.

    2017-12-01

    Reliable climate projections require realistic simulations of Arctic cloud feedbacks. Of particular importance is accurately simulating Arctic mixed-phase stratocumuli (AMPS), which are ubiquitous and play an important role in regional climate due to their impact on the surface energy budget and atmospheric boundary layer structure through cloud-driven turbulence, radiative forcing, and precipitation. AMPS are challenging to model due to uncertainties in ice microphysical processes that determine phase partitioning between ice and radiatively important cloud liquid water. Since temperatures in AMPS are too warm for homogenous ice nucleation, ice must form through heterogeneous nucleation. In this presentation we discuss a relatively unexplored source of ice production-recycling of ice nuclei in regions of ice subsaturation. AMPS frequently have ice-subsaturated air near the cloud-driven mixed-layer base where falling ice crystals can sublimate, leaving behind IN. This study provides an idealized framework to understand feedbacks between dynamics and microphysics that maintain phase-partitioning in AMPS. In addition, the results of this study provide insight into the mechanisms and feedbacks that may maintain cloud ice in AMPS even when entrainment of IN at the mixed-layer boundaries is weak.

  7. Photosynthesis, Earth System Models and the Arctic

    NASA Astrophysics Data System (ADS)

    Rogers, A.; Sloan, V. L.; Xu, C.; Wullschleger, S. D.

    2013-12-01

    The primary goal of Earth System Models (ESMs) is to improve understanding and projection of future global change. In order to do this they must accurately represent the huge carbon fluxes associated with the terrestrial carbon cycle. Photosynthetic CO2 uptake is the largest of these fluxes, and is well described by the Farquhar, von Caemmerer and Berry (FvCB) model of photosynthesis. Most ESMs use a derivation of the FvCB model to calculate gross primary productivity (GPP). One of the key parameters required by the FvCB model is an estimate of the maximum rate of carboxylation by the enzyme Rubisco (Vc,max). In ESMs the parameter Vc,max is usually fixed for a given plant functional type (PFT). Although Arctic GPP a small flux relative to global GPP, uncertainty is large. Only four ESMs currently have an explicit Arctic PFT and the data used to derive Vc,max for the Arctic PFT in these models relies on small data sets and unjustified assumptions. As part of a multidisciplinary project to improve the representation of the Arctic in ESMs (Next Generation Ecosystem Experiments - Arctic) we examined the derivation of Vc,max in current Arctic PFTs and estimated Vc,max for 12 species representing both dominant vegetation and key PFTs growing on the Barrow Environmental Observatory, Barrow, AK. The values of Vc,max currently used to represent Arctic PFTs in ESMs are 70% lower than the values we measured in these species. Separate measurements of CO2 assimilation (A) made at ambient conditions were compared with A modeled using the Vc,max values we measured in Barrow and those used by the ESMs. The A modeled with the Vc,max values used by the ESMs was 80% lower than the observed A. When our measured Vc,max values were used, modeled A was within 5% of observed A. Examination of the derivation of Vc,max in ESMs identified that the cause of the relatively low Vc,max value was the result of underestimating both the leaf N content and the investment of that N in Rubisco. Here

  8. Does Arctic sea ice reduction foster shelf-basin exchange?

    PubMed

    Ivanov, Vladimir; Watanabe, Eiji

    2013-12-01

    The recent shift in Arctic ice conditions from prevailing multi-year ice to first-year ice will presumably intensify fall-winter sea ice freezing and the associated salt flux to the underlying water column. Here, we conduct a dual modeling study whose results suggest that the predicted catastrophic consequences for the global thermohaline circulation (THC), as a result of the disappearance of Arctic sea ice, may not necessarily occur. In a warmer climate, the substantial fraction of dense water feeding the Greenland-Scotland overflow may form on Arctic shelves and cascade to the deep basin, thus replenishing dense water, which currently forms through open ocean convection in the sub-Arctic seas. We have used a simplified model for estimating how increased ice production influences shelf-basin exchange associated with dense water cascading. We have carried out case studies in two regions of the Arctic Ocean where cascading was observed in the past. The baseline range of buoyancy-forcing derived from the columnar ice formation was calculated as part of a 30-year experiment of the pan-Arctic coupled ice-ocean general circulation model (GCM). The GCM results indicate that mechanical sea ice divergence associated with lateral advection accounts for a significant part of the interannual variations in sea ice thermal production in the coastal polynya regions. This forcing was then rectified by taking into account sub-grid processes and used in a regional model with analytically prescribed bottom topography and vertical stratification in order to examine specific cascading conditions in the Pacific and Atlantic sectors of the Arctic Ocean. Our results demonstrate that the consequences of enhanced ice formation depend on geographical location and shelf-basin bathymetry. In the Pacific sector, strong density stratification in slope waters impedes noticeable deepening of shelf-origin water, even for the strongest forcing applied. In the Atlantic sector, a 1.5x increase of

  9. SEARCH: Study of Environmental Arctic Change--A System-scale, Cross-disciplinary Arctic Research Program

    NASA Astrophysics Data System (ADS)

    Shnoro, R. S.; Eicken, H.; Francis, J. A.; Scambos, T. A.; Schuur, E. A.; Straneo, F.; Wiggins, H. V.

    2013-12-01

    SEARCH is an interdisciplinary, interagency program that works with academic and government agency scientists and stakeholders to plan, conduct, and synthesize studies of Arctic change. Over the past three years, SEARCH has developed a new vision and mission, a set of prioritized cross-disciplinary 5-year goals, an integrated set of activities, and an organizational structure. The vision of SEARCH is to provide scientific understanding of arctic environmental change to help society understand and respond to a rapidly changing Arctic. SEARCH's 5-year science goals include: 1. Improve understanding, advance prediction, and explore consequences of changing Arctic sea ice. 2. Document and understand how degradation of near-surface permafrost will affect Arctic and global systems. 3. Improve predictions of future land-ice loss and impacts on sea level. 4. Analyze societal and policy implications of Arctic environmental change. Action Teams organized around each of the 5-year goals will serve as standing groups responsible for implementing specific goal activities. Members will be drawn from academia, different agencies and stakeholders, with a range of disciplinary backgrounds and perspectives. 'Arctic Futures 2050' scenarios tasks will describe plausible future states of the arctic system based on recent trajectories and projected changes. These scenarios will combine a range of data including climate model output, paleo-data, results from data synthesis and systems modeling, as well as expert scientific and traditional knowledge. Current activities include: - Arctic Observing Network (AON) - coordinating a system of atmospheric, land- and ocean-based environmental monitoring capabilities that will significantly advance our observations of arctic environmental conditions. - Arctic Sea Ice Outlook - an international effort that provides monthly summer reports synthesizing community estimates of the expected sea ice minimum. A newly-launched Sea Ice Prediction Network

  10. Biological Chlorine Cycling in Arctic Peat Soils

    NASA Astrophysics Data System (ADS)

    Zlamal, J. E.; Raab, T. K.; Lipson, D.

    2014-12-01

    . Incubations were conducted in the laboratory providing arctic soils with Clorg, and measurements taken to assess rates of organohalide respiration show an increase in chloride production due to microbial activity. Investigating these soils with diverse techniques affirms the importance of Cl-cycling in a pristine arctic tundra ecosystem.

  11. The Northern Bering Sea: An Arctic Ecosystem in Change

    NASA Astrophysics Data System (ADS)

    Grebmeier, J. M.; Cooper, L. W.

    2004-12-01

    Arctic systems can be rich and diverse habitats for marine life in spite of the extreme cold environment. Benthic faunal populations and associated biogeochemical cycling processes are influenced by sea-ice extent, seawater hydrography (nutrients, salinity, temperature, currents), and water column production. Benthic organisms on the Arctic shelves and margins are long-term integrators of overlying water column processes. Because these organisms have adapted to living at cold extremes, it is reasonable to expect that these communities will be among the most susceptible to climate warming. Recent observations show that Arctic sea ice in the North American Arctic is melting and retreating northward earlier in the season and the timing of these events can have dramatic impacts on the biological system. Changes in overlying primary production, pelagic-benthic coupling, and benthic production and community structure can have cascading effects to higher trophic levels, particularly benthic feeders such as walruses, gray whales, and diving seaducks. Recent indicators of contemporary Arctic change in the northern Bering Sea include seawater warming and reduction in ice extent that coincide with our time-series studies of benthic clam population declines in the shallow northern Bering shelf in the 1990's. In addition, declines in benthic amphipod populations have also likely influenced the movement of feeding gray whales to areas north of Bering Strait during this same time period. Finally a potential consequence of seawater warming and reduced ice extent in the northern Bering Sea could be the northward movement of bottom feeding fish currently in the southern Bering Sea that prey on benthic fauna. This would increase the feeding pressure on the benthic prey base and enhance competition for this food source for benthic-feeding marine mammals and seabirds. This presentation will outline recent biological changes observed in the northern Bering Sea ecosystem as documented in

  12. Dynamical mechanisms of Arctic amplification.

    PubMed

    Dethloff, Klaus; Handorf, Dörthe; Jaiser, Ralf; Rinke, Annette; Klinghammer, Pia

    2018-05-12

    The Arctic has become a hot spot of climate change, but the nonlinear interactions between regional and global scales in the coupled climate system responsible for Arctic amplification are not well understood and insufficiently described in climate models. Here, we compare reanalysis data with model simulations for low and high Arctic sea ice conditions to identify model biases with respect to atmospheric Arctic-mid-latitude linkages. We show that an appropriate description of Arctic sea ice forcing is able to reproduce the observed winter cooling in mid-latitudes as result of improved tropospheric-stratospheric planetary wave propagation triggering a negative phase of the Arctic Oscillation/North Atlantic Oscillation in late winter. © 2018 New York Academy of Sciences.

  13. Arctic biogeography: The paradox of the marine benthic fauna and flora.

    PubMed

    Dunton, K

    1992-06-01

    The marine benthic fauna and flora that inhabit the shallow arctic sublittoral zone comprise a relatively young marine assemblage characterized by species of either Pacific or Atlantic affinity and notably few endemics. The young character of nearshore arctic communities, as well as their biogeographical composition, is largely a product of the Pleistocene glaciation. However, analysis of more recent collections and comparison between the origins of the benthic fauna and flora present some interesting paradoxes to biogeographers. One enigma is the low frequency of algal species with Pacific affinities in the Arctic, especially in the Chukchi, Beaufort and East Siberian Seas of the Eastern Arctic, which receive direct inputs of northward-flowing Pacific waters. In contrast, animal species with Pacific affinities are found throughout the nearshore regions of the Arctic, reaching their highest frequency in the marginal seas between the New Siberian Islands and the Canadian Archipelago. Organization of published and unpublished data, additional field collections, and the use of cladistics and molecular DNA techniques by systematists are a high priority for future research in reconstructing the evolution of the arctic biotic assemblage. Copyright © 1992. Published by Elsevier Ltd.

  14. Analysis of Crude Oil Production in the Arctic National Wildlife Refuge

    EIA Publications

    2008-01-01

    This report responds to a request from Senator Ted Stevens that the Energy Information Administration provide an assessment of federal oil and natural gas leasing in the coastal plain of the Arctic National Wildlife Refuge (ANWR) in Alaska.

  15. A Regional, Integrated Monitoring System for the Hydrology of the Pan-Arctic Land Mass

    NASA Technical Reports Server (NTRS)

    Serreze, Mark; Barry, Roger; Nolin, Anne; Armstrong, Richard; Zhang, Ting-Jung; Vorosmarty, Charles; Lammers, Richard; Frolking, Steven; Bromwich, David; McDonald, Kyle

    2005-01-01

    Work under this NASA contract developed a system for monitoring and historical analysis of the major components of the pan-Arctic terrestrial water cycle. It is known as Arctic-RIMS (Regional Integrated Hydrological Monitoring System for the Pan-Arctic Landmass). The system uses products from EOS-era satellites, numerical weather prediction models, station records and other data sets in conjunction with an atmosphere-land surface water budgeting scheme. The intent was to compile operational (at 1-2 month time lags) gridded fields of precipitation (P), evapotranspiration (ET), P-ET, soil moisture, soil freeze/thaw state, active layer thickness, snow extent and its water equivalent, soil water storage, runoff and simulated discharge along with estimates of non-closure in the water budget. Using "baseline" water budgeting schemes in conjunction with atmospheric reanalyses and pre-EOS satellite data, water budget fields were conjunction with atmospheric reanalyses and pre-EOS satellite data, water budget fields were compiled to provide historical time series. The goals as outlined in the original proposal can be summarized as follows: 1) Use EOS data to compile hydrologic products for the pan-Arctic terrestrial regions including snowcover/snow water equivalent (SSM/A MODIS, AMSR) and near-surface freeze/thaw dynamics (Sea Winds on QuikSCAT and ADEOS I4 SSMI and AMSR). 2) Implement Arctic-RIMS to use EOS data streams, allied fields and hydrologic models to produce allied outputs that fully characterize pan-Arctic terrestrial and aerological water budgets. 3) Compile hydrologically-based historical products providing a long-term baseline of spatial and temporal variability in the water cycle.

  16. Arctic terrestrial ecosystem contamination.

    PubMed

    Thomas, D J; Tracey, B; Marshall, H; Norstrom, R J

    1992-07-15

    Limited data have been collected on the presence of contaminants in the Arctic terrestrial ecosystem, with the exception of radioactive fallout from atmospheric weapons testing. Although southern and temperate biological systems have largely cleansed themselves of radioactive fallout deposited during the 1950s and 1960s, Arctic environments have not. Lichens accumulate radioactivity more than many other plants because of their large surface area and long life span; the presence and persistence of radioisotopes in the Arctic is of concern because of the lichen----reindeer----human ecosystem. Effective biological half-life of cesium 137 is reckoned to be substantially less than its physical half-life. The database on organochlorines in Canadian Arctic terrestrial mammals and birds is very limited, but indications are that the air/plant/animal contaminant pathway is the major route of these compounds into the terrestrial food chain. For terrestrial herbivores, the most abundant organochlorine is usually hexachlorobenzene followed by hexachlorocyclohexane isomers. PCB accumulation favours the hexachlorobiphenyl, pentachlorobiphenyl and heptachlorobiphenyl homologous series. The concentrations of the various classes of organochlorine compounds are substantially lower in terrestrial herbivore tissues than in marine mammal tissues. PCBs and DDT are the most abundant residues in peregrine falcons (a terrestrial carnivore) reaching average levels of 9.2 and 10.4 micrograms.g-1, respectively, more than 10 times higher than other organochlorines and higher than in marine mammals, including the polar bear. Contaminants from local sources include metals from mining activities, hydrocarbons and waste drilling fluids from oil and gas exploration and production, wastes from DEW line sites, naturally occurring radionuclides associated with uranium mineralization, and smoke containing SO2 and H2SO4 aerosol from the Smoking Hills at Cape Bathurst, N.W.T.

  17. Pan-Arctic observations in GRENE Arctic Climate Change Research Project and its successor

    NASA Astrophysics Data System (ADS)

    Yamanouchi, Takashi

    2016-04-01

    We started a Japanese initiative - "Arctic Climate Change Research Project" - within the framework of the Green Network of Excellence (GRENE) Program, funded by the Ministry of Education, Culture, Sports, Science and Technology, Japan (MEXT), in 2011. This Project targeted understanding and forecasting "Rapid Change of the Arctic Climate System and its Global Influences." Four strategic research targets are set by the Ministry: 1. Understanding the mechanism of warming amplification in the Arctic; 2. Understanding the Arctic climate system for global climate and future change; 3. Evaluation of the impacts of Arctic change on the weather and climate in Japan, marine ecosystems and fisheries; 4. Projection of sea ice distribution and Arctic sea routes. Through a network of universities and institutions in Japan, this 5-year Project involves more than 300 scientists from 39 institutions and universities. The National Institute of Polar Research (NIPR) works as the core institute and The Japan Agency for Marine- Earth Science and Technology (JAMSTEC) joins as the supporting institute. There are 7 bottom up research themes approved: the atmosphere, terrestrial ecosystems, cryosphere, greenhouse gases, marine ecology and fisheries, sea ice and Arctic sea routes and climate modeling, among 22 applications. The Project will realize multi-disciplinal study of the Arctic region and connect to the projection of future Arctic and global climatic change by modeling. The project has been running since the beginning of 2011 and in those 5 years pan-Arctic observations have been carried out in many locations, such as Svalbard, Russian Siberia, Alaska, Canada, Greenland and the Arctic Ocean. In particular, 95 GHz cloud profiling radar in high precision was established at Ny-Ålesund, Svalbard, and intensive atmospheric observations were carried out in 2014 and 2015. In addition, the Arctic Ocean cruises by R/V "Mirai" (belonging to JAMSTEC) and other icebreakers belonging to other

  18. Potential for an Arctic-breeding migratory bird to adjust spring migration phenology to Arctic amplification.

    PubMed

    Lameris, Thomas K; Scholten, Ilse; Bauer, Silke; Cobben, Marleen M P; Ens, Bruno J; Nolet, Bart A

    2017-10-01

    Arctic amplification, the accelerated climate warming in the polar regions, is causing a more rapid advancement of the onset of spring in the Arctic than in temperate regions. Consequently, the arrival of many migratory birds in the Arctic is thought to become increasingly mismatched with the onset of local spring, consequently reducing individual fitness and potentially even population levels. We used a dynamic state variable model to study whether Arctic long-distance migrants can advance their migratory schedules under climate warming scenarios which include Arctic amplification, and whether such an advancement is constrained by fuel accumulation or the ability to anticipate climatic changes. Our model predicts that barnacle geese Branta leucopsis suffer from considerably reduced reproductive success with increasing Arctic amplification through mistimed arrival, when they cannot anticipate a more rapid progress of Arctic spring from their wintering grounds. When geese are able to anticipate a more rapid progress of Arctic spring, they are predicted to advance their spring arrival under Arctic amplification up to 44 days without any reproductive costs in terms of optimal condition or timing of breeding. Negative effects of mistimed arrival on reproduction are predicted to be somewhat mitigated by increasing summer length under warming in the Arctic, as late arriving geese can still breed successfully. We conclude that adaptation to Arctic amplification may rather be constrained by the (un)predictability of changes in the Arctic spring than by the time available for fuel accumulation. Social migrants like geese tend to have a high behavioural plasticity regarding stopover site choice and migration schedule, giving them the potential to adapt to future climate changes on their flyway. © 2017 The Authors. Global Change Biology Published by John Wiley & Sons Ltd.

  19. Arctic indigenous peoples as representations and representatives of climate change.

    PubMed

    Martello, Marybeth Long

    2008-06-01

    Recent scientific findings, as presented in the Arctic Climate Impact Assessment (ACIA), indicate that climate change in the Arctic is happening now, at a faster rate than elsewhere in the world, and with major implications for peoples of the Arctic (especially indigenous peoples) and the rest of the planet. This paper examines scientific and political representations of Arctic indigenous peoples that have been central to the production and articulation of these claims. ACIA employs novel forms and strategies of representation that reflect changing conceptual models and practices of global change science and depict indigenous peoples as expert, exotic, and at-risk. These portrayals emerge alongside the growing political activism of Arctic indigenous peoples who present themselves as representatives or embodiments of climate change itself as they advocate for climate change mitigation policies. These mutually constitutive forms of representation suggest that scientific ways of seeing the global environment shape and are shaped by the public image and voice of global citizens. Likewise, the authority, credibility, and visibility of Arctic indigenous activists derive, in part, from their status as at-risk experts, a status buttressed by new scientific frameworks and methods that recognize and rely on the local experiences and knowledges of indigenous peoples. Analyses of these relationships linking scientific and political representations of Arctic climate change build upon science and technology studies (STS) scholarship on visualization, challenge conventional notions of globalization, and raise questions about power and accountability in global climate change research.

  20. Arctic sea ice thickness loss determined using subsurface, aircraft, and satellite observations

    NASA Astrophysics Data System (ADS)

    Lindsay, R.; Schweiger, A.

    2015-02-01

    Sea ice thickness is a fundamental climate state variable that provides an integrated measure of changes in the high-latitude energy balance. However, observations of mean ice thickness have been sparse in time and space, making the construction of observation-based time series difficult. Moreover, different groups use a variety of methods and processing procedures to measure ice thickness, and each observational source likely has different and poorly characterized measurement and sampling errors. Observational sources used in this study include upward-looking sonars mounted on submarines or moorings, electromagnetic sensors on helicopters or aircraft, and lidar or radar altimeters on airplanes or satellites. Here we use a curve-fitting approach to determine the large-scale spatial and temporal variability of the ice thickness as well as the mean differences between the observation systems, using over 3000 estimates of the ice thickness. The thickness estimates are measured over spatial scales of approximately 50 km or time scales of 1 month, and the primary time period analyzed is 2000-2012 when the modern mix of observations is available. Good agreement is found between five of the systems, within 0.15 m, while systematic differences of up to 0.5 m are found for three others compared to the five. The trend in annual mean ice thickness over the Arctic Basin is -0.58 ± 0.07 m decade-1 over the period 2000-2012. Applying our method to the period 1975-2012 for the central Arctic Basin where we have sufficient data (the SCICEX box), we find that the annual mean ice thickness has decreased from 3.59 m in 1975 to 1.25 m in 2012, a 65% reduction. This is nearly double the 36% decline reported by an earlier study. These results provide additional direct observational evidence of substantial sea ice losses found in model analyses.

  1. Contemporary Arctic Sea Level

    NASA Astrophysics Data System (ADS)

    Cazenave, A. A.

    2017-12-01

    During recent decades, the Arctic region has warmed at a rate about twice the rest of the globe. Sea ice melting is increasing and the Greenland ice sheet is losing mass at an accelerated rate. Arctic warming, decrease in the sea ice cover and fresh water input to the Arctic ocean may eventually impact the Arctic sea level. In this presentation, we review our current knowledge of contemporary Arctic sea level changes. Until the beginning of the 1990s, Arctic sea level variations were essentially deduced from tide gauges located along the Russian and Norwegian coastlines. Since then, high inclination satellite altimetry missions have allowed measuring sea level over a large portion of the Arctic Ocean (up to 80 degree north). Measuring sea level in the Arctic by satellite altimetry is challenging because the presence of sea ice cover limits the full capacity of this technique. However adapted processing of raw altimetric measurements significantly increases the number of valid data, hence the data coverage, from which regional sea level variations can be extracted. Over the altimetry era, positive trend patterns are observed over the Beaufort Gyre and along the east coast of Greenland, while negative trends are reported along the Siberian shelf. On average over the Arctic region covered by satellite altimetry, the rate of sea level rise since 1992 is slightly less than the global mea sea level rate (of about 3 mm per year). On the other hand, the interannual variability is quite significant. Space gravimetry data from the GRACE mission and ocean reanalyses provide information on the mass and steric contributions to sea level, hence on the sea level budget. Budget studies show that regional sea level trends over the Beaufort Gyre and along the eastern coast of Greenland, are essentially due to salinity changes. However, in terms of regional average, the net steric component contributes little to the observed sea level trend. The sea level budget in the Arctic

  2. Results of an Arctic Council survey on water and sanitation services in the Arctic.

    PubMed

    Bressler, Jonathan M; Hennessy, Thomas W

    2018-12-01

    As part of a project endorsed by the Arctic Council's Sustainable Development Working Group (SDWG), a survey was conducted to describe the current status of water, sanitation and hygiene (WASH) services in the Arctic region. The English language internet-based survey was open from April to September, 2016 and drew 142 respondents from seven Arctic nations. Respondents provided information on access to WASH services, notification requirements for water-related infectious diseases, and examples of environmental- or climate-change related events that impact the provision of WASH services. Many remote Arctic and sub-Arctic residents lack WASH services, and these disparities are often not reflected in national summary data. Environmental changes impacting WASH services were reported by respondents in every Arctic nation. Participants at an international conference co-sponsored by SDWG reviewed these results and provided suggestions for next steps to improve health of Arctic residents through improved access to water and sanitation services. Suggestions included ongoing reporting on WASH service availability in underserved populations to measure progress towards UN Sustainable Development Goal #6; evaluations of the health and economic consequences of disparities in WASH services; and Arctic-specific forums to share innovations in WASH technology, improved management and operations, and adaptation strategies for environmental or climate change.

  3. Results of an Arctic Council survey on water and sanitation services in the Arctic

    PubMed Central

    Bressler, Jonathan M.; Hennessy, Thomas W.

    2018-01-01

    ABSTRACT As part of a project endorsed by the Arctic Council’s Sustainable Development Working Group (SDWG), a survey was conducted to describe the current status of water, sanitation and hygiene (WASH) services in the Arctic region. The English language internet-based survey was open from April to September, 2016 and drew 142 respondents from seven Arctic nations. Respondents provided information on access to WASH services, notification requirements for water-related infectious diseases, and examples of environmental- or climate-change related events that impact the provision of WASH services. Many remote Arctic and sub-Arctic residents lack WASH services, and these disparities are often not reflected in national summary data. Environmental changes impacting WASH services were reported by respondents in every Arctic nation. Participants at an international conference co-sponsored by SDWG reviewed these results and provided suggestions for next steps to improve health of Arctic residents through improved access to water and sanitation services. Suggestions included ongoing reporting on WASH service availability in underserved populations to measure progress towards UN Sustainable Development Goal #6; evaluations of the health and economic consequences of disparities in WASH services; and Arctic-specific forums to share innovations in WASH technology, improved management and operations, and adaptation strategies for environmental or climate change. PMID:29383987

  4. Sea-ice, clouds and atmospheric conditions in the arctic and their interactions as derived from a merged C3M data product

    NASA Astrophysics Data System (ADS)

    Nag, Bappaditya

    The polar regions of the world constitute an important sector in the global energy balance. Among other effects responsible for the change in the sea-ice cover like ocean circulation and ice-albedo feedback, the cloud-radiation feedback also plays a vital role in modulation of the Arctic environment. However the annual cycle of the clouds is very poorly represented in current global circulation models. This study aimed to explore the atmospheric conditions in the Arctic on an unprecedented spatial coverage spanning 70°N to 80°N through the use of a merged data product, C3MData (derived from NASA's A-Train Series). The following three topics provide outline on how this dataset can be used to accomplish a detailed analysis of the Arctic environment and provide the modelling community with first information to update their models aimed at better forecasts. (1)The three properties of the Arctic climate system to be studied using the C3MData are sea-ice, clouds, and the atmospheric conditions. The first topic is to document the present states of the three properties and also their time evolutions or their seasonal cycles. (2)The second topic is aimed at the interactions or the feedbacks processes among the three properties. For example, the immediate alteration in the fluxes and the feedbacks arising from the change in the sea-ice cover is investigated. Seasonal and regional variations are also studied. (3)The third topics is aimed at the processes in native spatial resolution that drive or accompany with sea ice melting and sea ice growth. Using a composite approach based on a classification due to surface type, it is found that limitation of the water vapour influx from the surface due to change in phase at the surface featuring open oceans or marginal sea-ice cover to complete sea-ice cover is a major determinant in the modulation of the atmospheric moisture. The impact of the cloud-radiative effects in the Arctic is found to vary with sea-ice cover and seasonally

  5. Redefining U.S. Arctic Strategy

    DTIC Science & Technology

    2015-05-15

    responsibility shifts 21 Barno, David and Nora Bensahel. The Anti-Access Challenge you’re not thinking...International Affairs 85, no. 6 (2009). 38 Barno, David and Nora Bensahel. THE ANTI-ACCESS CHALLENGE YOU’RE NOT THINKING ABOUT, 05 May 2015...and Rescue in the Arctic, 22 June 2011. Arctic Council Secretariat. About the Arctic Council, Arctic Council, 2011. Barno, David and Nora

  6. Seasonal cues of Arctic grayling movement in a small Arctic stream: the importance of surface water connectivity

    USGS Publications Warehouse

    Heim, Kurt C.; Wipfli, Mark S.; Whitman, Matthew S.; Arp, Christopher D.; Adams, Jeff; Falke, Jeffrey A.

    2015-01-01

    In Arctic ecosystems, freshwater fish migrate seasonally between productive shallow water habitats that freeze in winter and deep overwinter refuge in rivers and lakes. How these movements relate to seasonal hydrology is not well understood. We used passive integrated transponder tags and stream wide antennae to track 1035 Arctic grayling in Crea Creek, a seasonally flowing beaded stream on the Arctic Coastal Plain, Alaska. Migration of juvenile and adult fish into Crea Creek peaked in June immediately after ice break-up in the stream. Fish that entered the stream during periods of high flow and cold stream temperature traveled farther upstream than those entering during periods of lower flow and warmer temperature. We used generalized linear models to relate migration of adult and juvenile fish out of Crea Creek to hydrology. Most adults migrated in late June – early July, and there was best support (Akaike weight = 0.46; w i ) for a model indicating that the rate of migration increased with decreasing discharge. Juvenile migration occurred in two peaks; the early peak consisted of larger juveniles and coincided with adult migration, while the later peak occurred shortly before freeze-up in September and included smaller juveniles. A model that included discharge, minimum stream temperature, year, season, and mean size of potential migrants was most strongly supported (w i  = 0.86). Juvenile migration rate increased sharply as daily minimum stream temperature decreased, suggesting fish respond to impending freeze-up. We found fish movements to be intimately tied to the strong seasonality of discharge and temperature, and demonstrate the importance of small stream connectivity for migratory Arctic grayling during the entire open-water period. The ongoing and anticipated effects of climate change and petroleum development on Arctic hydrology (e.g. reduced stream connectivity, earlier peak flows, increased evapotranspiration) have important implications

  7. USGS Arctic Science Strategy

    USGS Publications Warehouse

    Shasby, Mark; Smith, Durelle

    2015-07-17

    The United States is one of eight Arctic nations responsible for the stewardship of a polar region undergoing dramatic environmental, social, and economic changes. Although warming and cooling cycles have occurred over millennia in the Arctic region, the current warming trend is unlike anything recorded previously and is affecting the region faster than any other place on Earth, bringing dramatic reductions in sea ice extent, altered weather, and thawing permafrost. Implications of these changes include rapid coastal erosion threatening villages and critical infrastructure, potentially significant effects on subsistence activities and cultural resources, changes to wildlife habitat, increased greenhouse-gas emissions from thawing permafrost, threat of invasive species, and opening of the Arctic Ocean to oil and gas exploration and increased shipping. The Arctic science portfolio of the U.S. Geological Survey (USGS) and its response to climate-related changes focuses on landscapescale ecosystem and natural resource issues and provides scientific underpinning for understanding the physical processes that shape the Arctic. The science conducted by the USGS informs the Nation's resource management policies and improves the stewardship of the Arctic Region.

  8. Arctic shorebirds in North America: A decade of monitoring

    USGS Publications Warehouse

    Bart, Jonathan R.; Johnston, Victoria H.

    2012-01-01

    Each year shorebirds from North and South America migrate thousands of miles to spend the summer in the Arctic. There they feed in shoreline marshes and estuaries along some of the most productive and pristine coasts anywhere. With so much available food they are able to reproduce almost explosively; and as winter approaches, they retreat south along with their offspring, to return to the Arctic the following spring. This remarkable pattern of movement and activity has been the object of intensive study by an international team of ornithologists who have spent a decade counting, surveying, and observing these shorebirds. In this important synthetic work, they address multiple questions about these migratory bird populations. How many birds occupy Arctic ecosystems each summer? How long do visiting shorebirds linger before heading south? How fecund are these birds? Where exactly do they migrate and where exactly do they return? Are their populations growing or shrinking? The results of this study are crucial for better understanding how environmental policies will influence Arctic habitats as well as the far-ranging winter habitats used by migratory shorebirds.

  9. Comparing the Accuracy of AMSRE, AMSR2, SSMI and SSMIS Satellite Radiometer Ice Concentration Products with One-Meter Resolution Visible Imagery in the Arctic

    NASA Astrophysics Data System (ADS)

    Peterson, E. R.; Stanton, T. P.

    2016-12-01

    Determining ice concentration in the Arctic is necessary to track significant changes in sea ice edge extent. Sea ice concentrations are also needed to interpret data collected by in-situ instruments like buoys, as the amount of ice versus water in a given area determines local solar heating. Ice concentration products are now routinely derived from satellite radiometers including the Advanced Microwave Scanning Radiometer for the Earth Observing System (AMSR-E), the Advanced Microwave Scanning Radiometer 2 (AMSR2), the Special Sensor Microwave Imager (SSMI), and the Special Sensor Microwave Imager/Sounder (SSMIS). While these radiometers are viewed as reliable to monitor long-term changes in sea ice extent, their accuracy should be analyzed, and compared to determine which radiometer performs best over smaller features such as melt ponds, and how seasonal conditions affect accuracy. Knowledge of the accuracy of radiometers at high resolution can help future researchers determine which radiometer to use, and be aware of radiometer shortcomings in different ice conditions. This will be especially useful when interpreting data from in-situ instruments which deal with small scale measurements. In order to compare these passive microwave radiometers, selected high spatial resolution one-meter resolution Medea images, archived at the Unites States Geological Survey, are used for ground truth comparison. Sea ice concentrations are derived from these images in an interactive process, although estimates are not perfect ground truth due to exposure of images, shadowing and cloud cover. 68 images are retrieved from the USGS website and compared with 9 useable, collocated SSMI, 33 SSMIS, 36 AMSRE, and 14 AMSR2 ice concentrations in the Arctic Ocean. We analyze and compare the accuracy of radiometer instrumentation in differing ice conditions.

  10. Arctic Deep Water Ferromanganese-Oxide Deposits Reflect the Unique Characteristics of the Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Hein, James R.; Konstantinova, Natalia; Mikesell, Mariah; Mizell, Kira; Fitzsimmons, Jessica N.; Lam, Phoebe J.; Jensen, Laramie T.; Xiang, Yang; Gartman, Amy; Cherkashov, Georgy; Hutchinson, Deborah R.; Till, Claire P.

    2017-11-01

    Little is known about marine mineral deposits in the Arctic Ocean, an ocean dominated by continental shelf and basins semi-closed to deep-water circulation. Here, we present data for ferromanganese crusts and nodules collected from the Amerasia Arctic Ocean in 2008, 2009, and 2012 (HLY0805, HLY0905, and HLY1202). We determined mineral and chemical compositions of the crusts and nodules and the onset of their formation. Water column samples from the GEOTRACES program were analyzed for dissolved and particulate scandium concentrations, an element uniquely enriched in these deposits. The Arctic crusts and nodules are characterized by unique mineral and chemical compositions with atypically high growth rates, detrital contents, Fe/Mn ratios, and low Si/Al ratios, compared to deposits found elsewhere. High detritus reflects erosion of submarine outcrops and North America and Siberia cratons, transport by rivers and glaciers to the sea, and distribution by sea ice, brines, and currents. Uniquely high Fe/Mn ratios are attributed to expansive continental shelves, where diagenetic cycling releases Fe to bottom waters, and density flows transport shelf bottom water to the open Arctic Ocean. Low Mn contents reflect the lack of a mid-water oxygen minimum zone that would act as a reservoir for dissolved Mn. The potential host phases and sources for elements with uniquely high contents are discussed with an emphasis on scandium. Scandium sorption onto Fe oxyhydroxides and Sc-rich detritus account for atypically high scandium contents. The opening of Fram Strait in the Miocene and ventilation of the deep basins initiated Fe-Mn crust growth ˜15 Myr ago.

  11. Arctic deep-water ferromanganese-oxide deposits reflect the unique characteristics of the Arctic Ocean

    USGS Publications Warehouse

    Hein, James; Konstantinova, Natalia; Mikesell, Mariah; Mizell, Kira; Fitzsimmons, Jessica N.; Lam, Phoebe; Jensen, Laramie T.; Xiang, Yang; Gartman, Amy; Cherkashov, Georgy; Hutchinson, Deborah; Till, Claire P.

    2017-01-01

    Little is known about marine mineral deposits in the Arctic Ocean, an ocean dominated by continental shelf and basins semi-closed to deep-water circulation. Here, we present data for ferromanganese crusts and nodules collected from the Amerasia Arctic Ocean in 2008, 2009, and 2012 (HLY0805, HLY0905, HLY1202). We determined mineral and chemical compositions of the crusts and nodules and the onset of their formation. Water column samples from the GEOTRACES program were analyzed for dissolved and particulate scandium concentrations, an element uniquely enriched in these deposits.The Arctic crusts and nodules are characterized by unique mineral and chemical compositions with atypically high growth rates, detrital contents, Fe/Mn ratios, and low Si/Al ratios, compared to deposits found elsewhere. High detritus reflects erosion of submarine outcrops and North America and Siberia cratons, transport by rivers and glaciers to the sea, and distribution by sea ice, brines, and currents. Uniquely high Fe/Mn ratios are attributed to expansive continental shelves, where diagenetic cycling releases Fe to bottom waters, and density flows transport shelf bottom water to the open Arctic Ocean. Low Mn contents reflect the lack of a mid-water oxygen minimum zone that would act as a reservoir for dissolved Mn. The potential host phases and sources for elements with uniquely high contents are discussed with an emphasis on scandium. Scandium sorption onto Fe oxyhydroxides and Sc-rich detritus account for atypically high scandium contents. The opening of Fram Strait in the Miocene and ventilation of the deep basins initiated Fe-Mn crust growth ∼15 Myr ago.

  12. The Regional Influence of the Arctic Oscillation and Arctic Dipole on the Wintertime Arctic Surface Radiation Budget and Sea Ice Growth

    NASA Technical Reports Server (NTRS)

    Hegyi, Bradley M.; Taylor, Patrick C.

    2017-01-01

    An analysis of 2000-2015 monthly Clouds and the Earth's Radiant Energy System-Energy Balanced and Filled (CERES-EBAF) and Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA2) data reveals statistically significant fall and wintertime relationships between Arctic surface longwave (LW) radiative flux anomalies and the Arctic Oscillation (AO) and Arctic Dipole (AD). Signifying a substantial regional imprint, a negative AD index corresponds with positive downwelling clear-sky LW flux anomalies (greater than10W m(exp -2)) north of western Eurasia (0 deg E-120 deg E) and reduced sea ice growth in the Barents and Kara Seas in November-February. Conversely, a positive AO index coincides with negative clear-sky LW flux anomalies and minimal sea ice growth change in October-November across the Arctic. Increased (decreased) atmospheric temperature and water vapor coincide with the largest positive (negative) clear-sky flux anomalies. Positive surface LW cloud radiative effect anomalies also accompany the negative AD index in December-February. The results highlight a potential pathway by which Arctic atmospheric variability influences the regional surface radiation budget over areas of Arctic sea ice growth.

  13. Biological Environmental Arctic Project (BEAP) Preliminary Data (Arctic West Summer 1986 Cruise).

    DTIC Science & Technology

    1986-11-01

    predictive model of bioluminescence in near-surface arctic waters . Data were collected during Arctic West Summer 1986 from USCG POLAR STAR (WAGB 10). . %. J...2 20ODISTRIBUTION AVAILABILIT "Y OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION C]UNCLASSIFIED UNLIMITED SAME AS RPT C] DTIC USERS UNCLASSIFIED David...correlates for a predictive model of bioluminescence in near-surface arctic waters . - In previous years, these measurements were conducted from the USCG

  14. Arctic Ocean circulation during the anoxic Eocene Azolla event

    NASA Astrophysics Data System (ADS)

    Speelman, Eveline; Sinninghe Damsté, Jaap; März, Christian; Brumsack, Hans; Reichart, Gert-Jan

    2010-05-01

    The Azolla interval, as encountered in Eocene sediments from the Arctic Ocean, is characterized by organic rich sediments ( 4wt% Corg). In general, high levels of organic matter may be caused by increased productivity, i.e. extensive growth of Azolla, and/or enhanced preservation of organic matter, or a combination of both. Anoxic (bottom) water conditions, expanded oxygen minimum zones, or increased sedimentation rates all potentially increase organic matter preservation. According to plate tectonic, bathymetric, and paleogeographic reconstructions, the Arctic Ocean was a virtually isolated shallow basin, with one possible deeper connection to the Nordic Seas represented by a still shallow Fram Strait (Jakobsson et al., 2007), hampering ventilation of the Arctic Basin. During the Azolla interval surface waters freshened, while at the same time bottom waters appear to have remained saline, indicating that the Arctic was highly stratified. The restricted ventilation and stratification in concert with ongoing export of organic matter most likely resulted in the development of anoxic conditions in the lower part of the water column. Whereas the excess precipitation over evaporation maintained the freshwater lid, sustained input of Nordic Sea water is needed to keep the deeper waters saline. To which degree the Arctic Ocean exchanged with the Nordic Seas is, however, still largely unknown. Here we present a high-resolution trace metal record (ICP-MS and ICP-OES) for the expanded Early/Middle Eocene section capturing the Azolla interval from Integrated Ocean Drilling Program (IODP) Expedition 302 (ACEX) drilled on the Lomonosov Ridge, central Arctic Ocean. Euxinic conditions throughout the interval resulted in the efficient removal of redox sensitive trace metals from the water column. Using the sedimentary trace metal record we also constrained circulation in the Arctic Ocean by assessing the relative importance of trace metal input sources (i.e. fluvial, eolian, and

  15. A First Look at Surface Meteorology in the Arctic System Reanalysis

    NASA Astrophysics Data System (ADS)

    Slater, A. G.; Serreze, M. C.; Asr-Team, A.

    2010-12-01

    The Arctic System Reanalysis (ASR) is a joint venture between several universities (Ohio-State Uni., Uni. Colorado, Uni. Illinois UC, Uni. Alaska) and NCAR. It is a regional reanalysis that will span the period 2000-2010, possibly continuing into the future. Compared to current regional or global reanalyses it will have a spatial resolution twice that of prior efforts; a final product is expected to be an equal area projection of 15km grid boxes. The domain encompasses all the Arctic Ocean drainage areas. Several new reanalysis applications have been implemented, with some being Arctic specific - for example satellite derived sea ice age is translated into thickness and MODIS surface albedo is to be ingested. A preliminary ASR run has been performed for the period June 2007 - December 2008 at a reduced resolution of 30km. Here we make a comparison of all recent reanalysis products (NARR, MERRA, ERA-I, CFSRR) to both the ASR and observations at 350 surface stations in the Western Arctic; there is a major focus on Alaska. An intercomparison of surface variables (which are perhaps the most used reanalysis data) has been undertaken including temperature, humidity and solar radiation. Results indicate that the level of discrepancy between reanalysis data and observations is of similar magnitude as it is between all the reanalysis products; possibly suggesting that we have reached the limit of repersentativeness when comparing grid boxes to point measurements.

  16. Arctic: A Friend Acting Strangely

    Science.gov Websites

    frequent. Explore the Arctic's changing climate. Discover what these changes mean for the Arctic, its warming in the Arctic by exploring how changes have been observed and documented by scientists and polar

  17. The Importance of Earth Observations and Data Collaboration within Environmental Intelligence Supporting Arctic Research

    NASA Technical Reports Server (NTRS)

    Casas, Joseph

    2017-01-01

    Within the IARPC Collaboration Team activities of 2016, Arctic in-situ and remote earth observations advanced topics such as :1) exploring the role for new and innovative autonomous observing technologies in the Arctic; 2) advancing catalytic national and international community based observing efforts in support of the National Strategy for the Arctic Region; and 3) enhancing the use of discovery tools for observing system collaboration such as the U.S. National Oceanic and Atmospheric Administration (NOAA) Arctic Environmental Response Management Application (ERMA) and the U.S. National Aeronautics and Space Administration (NASA) Arctic Collaborative Environment (ACE) project geo reference visualization decision support and exploitation internet based tools. Critical to the success of these earth observations for both in-situ and remote systems is the emerging of new and innovative data collection technologies and comprehensive modeling as well as enhanced communications and cyber infrastructure capabilities which effectively assimilate and dissemination many environmental intelligence products in a timely manner. The Arctic Collaborative Environment (ACE) project is well positioned to greatly enhance user capabilities for accessing, organizing, visualizing, sharing and producing collaborative knowledge for the Arctic.

  18. Synthesizing International Understanding of Changes in the Arctic Hydrological System

    NASA Astrophysics Data System (ADS)

    Pundsack, J. W.; Vorosmarty, C. J.; Hinzman, L. D.

    2009-12-01

    internationally). The workshop brought together approximately 40 participants, with roughly equal numbers from North America and Europe/Scandinavia, and included representatives from Canada, Russia, Germany, Iceland, Sweden, Norway, Finland, Denmark/Greenland, and the US. This talk will focus on findings of the workshop, highlighting advances in Arctic research that have taken flight over the last decade, specifically stimulated by considering the hydrologic cycle as an integrating force and fundamental building block uniting atmospheric, oceanic, cryospheric and terrestrial domains of the pan-Arctic system. The authors will present a future vision for systems-level science of Arctic hydrology and affiliated energy and carbon cycles. A scientific roadmap will be introduced, outlining the main research priorities, robust global and regional geo-information data products, improved models and effective data assimilation systems to forward the science of water in the Arctic.

  19. Zooplankton in the Arctic outflow

    NASA Astrophysics Data System (ADS)

    Soloviev, K. A.; Dritz, A. V.; Nikishina, A. B.

    2009-04-01

    Climate changes in the Arctic cause the changes in the current system that may have cascading effect on the structure of plankton community and consequently on the interlinked and delicately balanced food web. Zooplankton species are by definition incapable to perform horizontal moving. Their transport is connected with flowing water. There are zooplankton species specific for the definite water masses and they can be used as markers for the different currents. That allows us to consider zooplankton community composition as a result of water mixing in the studied area. Little is known however about the mechanisms by which spatial and temporal variability in advection affect dynamics of local populations. Ice conditions are also very important in the function of pelagic communities. Melting time is the trigger to all "plankton blooming" processes, and the duration of ice-free conditions determines the food web development in the future. Fram Strait is one of the key regions for the Arctic: the cold water outflow comes through it with the East Greenland Current and meets warm Atlantic water, the West Spitsbergen Current, producing complicated hydrological situation. During 2007 and 2008 we investigated the structure functional characteristics of zooplankton community in the Fram Strait region onboard KV "Svalbard" (April 2007, April and May 2008) and RV "Jan Mayen" (May 2007, August 2008). This study was conducted in frame of iAOOS Norway project "Closing the loop", which, in turn, was a part of IPY. During this cruises multidisciplinary investigations were performed, including sea-ice observations, CTD and ADCP profiling, carbon flux, nutrients and primary production measurements, phytoplankton sampling. Zooplankton was collected with the Hydro-Bios WP2 net and MultiNet Zooplankton Sampler, (mouth area 0.25 m2, mesh size 180 um).Samples were taken from the depth strata of 2000-1500, 1500-1000, 1000-500,500-200, 200-100, 100-60, 60-30, 30-0 m. Gut fluorescence

  20. Improving Arctic Sea Ice Observations and Data Access to Support Advances in Sea Ice Forecasting

    NASA Astrophysics Data System (ADS)

    Farrell, S. L.

    2017-12-01

    The economic and strategic importance of the Arctic region is becoming apparent. One of the most striking and widely publicized changes underway is the declining sea ice cover. Since sea ice is a key component of the climate system, its ongoing loss has serious, and wide-ranging, socio-economic implications. Increasing year-to-year variability in the geographic location, concentration, and thickness of the Arctic ice cover will pose both challenges and opportunities. The sea ice research community must be engaged in sustained Arctic Observing Network (AON) initiatives so as to deliver fit-for-purpose remote sensing data products to a variety of stakeholders including Arctic communities, the weather forecasting and climate modeling communities, industry, local, regional and national governments, and policy makers. An example of engagement is the work currently underway to improve research collaborations between scientists engaged in obtaining and assessing sea ice observational data and those conducting numerical modeling studies and forecasting ice conditions. As part of the US AON, in collaboration with the Interagency Arctic Research Policy Committee (IARPC), we are developing a strategic framework within which observers and modelers can work towards the common goal of improved sea ice forecasting. Here, we focus on sea ice thickness, a key varaible of the Arctic ice cover. We describe multi-sensor, and blended, sea ice thickness data products under development that can be leveraged to improve model initialization and validation, as well as support data assimilation exercises. We will also present the new PolarWatch initiative (polarwatch.noaa.gov) and discuss efforts to advance access to remote sensing satellite observations and improve communication with Arctic stakeholders, so as to deliver data products that best address societal needs.

  1. Reduced complexity modeling of Arctic delta dynamics

    NASA Astrophysics Data System (ADS)

    Piliouras, A.; Lauzon, R.; Rowland, J. C.

    2017-12-01

    How water and sediment are routed through deltas has important implications for our understanding of nutrient and sediment fluxes to the coastal ocean. These fluxes may be especially important in Arctic environments, because the Arctic ocean receives a disproportionately large amount of river discharge and high latitude regions are expected to be particularly vulnerable to climate change. The Arctic has some of the world's largest but least studied deltas. This lack of data is due to remote and hazardous conditions, sparse human populations, and limited remote sensing resources. In the absence of data, complex models may be of limited scientific utility in understanding Arctic delta dynamics. To overcome this challenge, we adapt the reduced complexity delta-building model DeltaRCM for Arctic environments to explore the influence of sea ice and permafrost on delta morphology and dynamics. We represent permafrost by increasing the threshold for sediment erosion, as permafrost has been found to increase cohesion and reduce channel migration rates. The presence of permafrost in the model results in the creation of more elongate channels, fewer active channels, and a rougher shoreline. We consider several effects of sea ice, including introducing friction which increases flow resistance, constriction of flow by landfast ice, and changes in effective water surface elevation. Flow constriction and increased friction from ice results in a rougher shoreline, more frequent channel switching, decreased channel migration rates, and enhanced deposition offshore of channel mouths. The reduced complexity nature of the model is ideal for generating a basic understanding of which processes unique to Arctic environments may have important effects on delta evolution, and it allows us to explore a variety of rules for incorporating those processes into the model to inform future Arctic delta modelling efforts. Finally, we plan to use the modeling results to determine how the presence

  2. Enhanced sea-ice export from the Arctic during the Younger Dryas.

    PubMed

    Not, Christelle; Hillaire-Marcel, Claude

    2012-01-31

    The Younger Dryas cold spell of the last deglaciation and related slowing of the Atlantic meridional overturning circulation have been linked to a large array of processes, notably an influx of fresh water into the North Atlantic related to partial drainage of glacial Lake Agassiz. Here we observe a major drainage event, in marine sediment cores raised from the Lomonosov Ridge, in the central Arctic Ocean marked by a pulse in detrital dolomitic-limestones. This points to an Arctic-Canadian sediment source area with about fivefold higher Younger Dryas ice-rafting deposition rate, in comparison with the Holocene. Our findings thus support the hypothesis of a glacial drainage event in the Canadian Arctic area, at the onset of the Younger Dryas, enhancing sea-ice production and drifting through the Arctic, then export through Fram Strait, towards Atlantic meridional overturning circulation sites of the northern North Atlantic.

  3. Seismic and Thermal Structure of the Arctic Lithosphere, From Waveform Tomography and Thermodynamic Modelling

    NASA Astrophysics Data System (ADS)

    Lebedev, S.; Schaeffer, A. J.; Fullea, J.; Pease, V.

    2015-12-01

    Thermal structure of the lithosphere is reflected in the values of seismic velocities within it. Our new tomographic models of the crust and upper mantle of the Arctic are constrained by an unprecedentedly large global waveform dataset and provide substantially improved resolution, compared to previous models. The new tomography reveals lateral variations in the temperature and thickness of the lithosphere and defines deep boundaries between tectonic blocks with different lithospheric properties and age. The shape and evolution of the geotherm beneath a tectonic unit depends on both crustal and mantle-lithosphere structure beneath it: the lithospheric thickness and its changes with time (these determine the supply of heat from the deep Earth), the crustal thickness and heat production (the supply of heat from within the crust), and the thickness and thermal conductivity of the sedimentary cover (the insulation). Detailed thermal structure of the basins can be modelled by combining seismic velocities from tomography with data on the crustal structure and heat production, in the framework of computational petrological modelling. The most prominent lateral contrasts across the Arctic are between the cold, thick lithospheres of the cratons (in North America, Greenland and Eurasia) and the warmer, non-cratonic blocks. The lithosphere of the Canada Basin is cold and thick, similar to old oceanic lithosphere elsewhere around the world; its thermal structure offers evidence on its lithospheric age and formation mechanism. At 150-250 km depth, the central Arctic region shows a moderate low-velocity anomaly, cooler than that beneath Iceland and N Atlantic. An extension of N Atlantic low-velocity anomaly into the Arctic through the Fram Strait may indicate an influx of N Atlantic asthenosphere under the currently opening Eurasia Basin.

  4. Coordination and Convening of the 2016 Arctic Science Summit Week

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hinzman, Larry D.

    The Arctic Science Summit Week, Arctic Observing Summit, Arctic Council Senior Arctic Officials, Model Arctic Council, and International Arctic Assembly were convened on the campus of the University of Alaska Fairbanks with great productivity and satisfaction of the participants. We were pleased to welcome over 1000 participants from 30 different nations and over 130 different institutions. The organization and execution of these meetings was extensive and complex involving more than 250 coordinators, volunteers and contributors from across Alaska. The participants were enthusiastic in their praise of the content and accomplishments of the meeting, but they were equally happy about themore » genuine welcome offered to our guests by the people of Alaska. Hosting a complex event such as this summit required an army of supporting services and we were blessed to have volunteers from Fairbanks, North Pole, Anchorage and other communities throughout Alaska helping us meet these needs. This truly was an event hosted by the people of Alaska. The significance of these events cannot be overstated. The US and global communities are finally coming to the realization of the important role that the Arctic plays in international politics, economics, and science. The Arctic has experienced tremendous changes in recent years, offering new opportunities that may be addressed through international collaborations, and serious challenges that must be addressed through active investment, adaptation and national and international coordination. Over 10% of the meeting participants were indigenous peoples, from indigenous organizations or hailed from small remote communities. This is still lower than we had hoped, but it is greater participation than similar meetings have experienced in the past. It is through such engagement that we can attack problems related to the changing environment, stagnant economies, and social ills.« less

  5. Sources and Variability of Aerosols and Aerosol-Cloud Interactions in the Arctic

    NASA Astrophysics Data System (ADS)

    Liu, H.; Zhang, B.; Taylor, P. C.; Moore, R.; Barahona, D.; Fairlie, T. D.; Chen, G.; Ham, S. H.; Kato, S.

    2017-12-01

    Arctic sea ice in recent decades has significantly declined. This requires understanding of the Arctic surface energy balance, of which clouds are a major driver. However, the mechanisms for the formation and evolution of clouds in the Arctic and the roles of aerosols therein are highly uncertain. Here we conduct data analysis and global model simulations to examine the sources and variability of aerosols and aerosol-cloud interactions in the Arctic. We use the MERRA-2 reanalysis data (2006-present) from the NASA Global Modeling and Assimilation Office (GMAO) to (1) quantify contributions of different aerosol types to the aerosol budget and aerosol optical depths in the Arctic, (2) ­examine aerosol distributions and variability and diagnose the major pathways for mid-latitude pollution transport to the Arctic, including their seasonal and interannual variability, and (3) characterize the distribution and variability of clouds (cloud optical depth, cloud fraction, cloud liquid and ice water path, cloud top height) in the Arctic. We compare MERRA-2 aerosol and cloud properties with those from C3M, a 3-D aerosol and cloud data product developed at NASA Langley Research Center and merged from multiple A-Train satellite (CERES, CloudSat, CALIPSO, and MODIS) observations. We also conduct perturbation experiments using the NASA GEOS-5 chemistry-climate model (with GOCART aerosol module coupled with two-moment cloud microphysics), and discuss the roles of various types of aerosols in the formation and evolution of clouds in the Arctic.

  6. Improving the representation of Arctic photosynthesis in Earth system models

    NASA Astrophysics Data System (ADS)

    Rogers, A.; Serbin, S.; Ely, K.; Sloan, V. L.; Wyatt, R. A.; Kubien, D. S.; Ali, A. A.; Xu, C.; Wullschleger, S. D.

    2015-12-01

    The primary goal of Earth System Models (ESMs) is to improve understanding and projection of future global change. In order to do this they must accurately represent the carbon fluxes associated with the terrestrial carbon cycle. Although Arctic carbon fluxes are small - relative to global carbon fluxes - uncertainty is large. As part of a multidisciplinary project to improve the representation of the Arctic in ESMs (Next Generation Ecosystem Experiments - Arctic) we are examining the photosynthetic parameterization of the Arctic plant functional type (PFT) in ESMs. Photosynthetic CO2 uptake is well described by the Farquhar, von Caemmerer and Berry (FvCB) model of photosynthesis. Most ESMs use a derivation of the FvCB model to calculate gross primary productivity. Two key parameters required by the FvCB model are an estimate of the maximum rate of carboxylation by the enzyme Rubisco (Vc,max) and the maximum rate of electron transport (Jmax). In ESMs the parameter Vc,max is usually fixed for a given PFT. Only four ESMs currently have an explicit Arctic PFT and the data used to derive Vc,max for the Arctic PFT in these models relies on small data sets and unjustified assumptions. We examined the derivation of Vc,max and Jmax in current Arctic PFTs and estimated Vc,max and Jmax for 7 species representing both dominant vegetation and key Arctic PFTs growing on the Barrow Environmental Observatory, Barrow, AK. The values of Vc,max currently used to represent Arctic PFTs in ESMs are 70% lower than the values we measured in these species. Examination of the derivation of Vc,max in ESMs identified that the cause of the relatively low Vc,max value was the result of underestimating both the leaf N content and the investment of that N in Rubisco. Contemporary temperature response functions for Vc,max also appear to underestimate Vc,max at low temperature. ESMs typically use a single multiplier (JVratio) to convert Vc,max to Jmax for all PFTs. We found that the JVratio of

  7. State of the Arctic Coast 2010: Scientific Review and Outlook

    NASA Astrophysics Data System (ADS)

    Rachold, V.; Forbes, D. L.; Kremer, H.; Lantuit, H.

    2010-12-01

    The coast is a key interface in the Arctic environment. It is a locus of human activity, a rich band of biodiversity, critical habitat, and high productivity, and among the most dynamic components of the circumpolar landscape. The Arctic coastal interface is a sensitive and important zone of interaction between land and sea, a region that provides essential ecosystem services and supports indigenous human lifestyles; a zone of expanding infrastructure investment and growing security concerns; and an area in which climate warming is expected to trigger landscape instability, rapid responses to change, and increased hazard exposure. Starting with a collaborative workshop in October 2007, the International Arctic Science Committee (IASC), the Land-Ocean Interactions in the Coastal Zone (LOICZ) Project and the International Permafrost Association (IPA) decided to jointly initiate an assessment of the state of the Arctic coast. The goal of this report is to draw on initial findings regarding climate change and human dimensions for the Arctic as a whole provided by the Arctic Climate Impact Assessment (ACIA) and Arctic Human Development Report (AHDR) to develop a comprehensive picture of status and current and anticipated change in the most sensitive Arctic coastal areas. Underlying is the concept of a social ecological system perspective that explores the implications of change for the interaction of humans with nature. The report is aimed to be a first step towards a continuously updated coastal assessment and to identify key issues seeking future scientific concern in an international Earth system research agenda. The report titled “State of the Arctic Coast 2010: Scientific Review and Outlook” is the outcome of this collaborative effort. It is organized in three parts: the first provides an assessment of the state of Arctic coastal systems under three broad disciplinary themes - physical systems, ecological systems, and human concerns in the coastal zone; the

  8. Arctic Research Plan: FY2017-2021

    USGS Publications Warehouse

    Starkweather, Sandy; Jeffries, Martin O; Stephenson, Simon; Anderson, Rebecca D.; Jones, Benjamin M.; Loehman, Rachel A.; von Biela, Vanessa R.

    2016-01-01

    The United States is an Arctic nation—Americans depend on the Arctic for biodiversity and climate regulation and for natural resources. America’s Arctic—Alaska—is at the forefront of rapid climate, environmental, and socio-economic changes that are testing the resilience and sustainability of communities and ecosystems. Research to increase fundamental understanding of these changes is needed to inform sound, science-based decision- and policy-making and to develop appropriate solutions for Alaska and the Arctic region as a whole. Created by an Act of Congress in 1984, and since 2010 a subcommittee of the National Science and Technology Council (NSTC) in the Executive Office of the President, the Interagency Arctic Research Policy Committee (IARPC) plays a critical role in advancing scientific knowledge and understanding of the changing Arctic and its impacts far beyond the boundaries of the Arctic. Comprising 14 Federal agencies, offices, and departments, IARPC is responsible for the implementation of a 5-year Arctic Research Plan in consultation with the U.S. Arctic Research Commission, the Governor of the State of Alaska, residents of the Arctic, the private sector, and public interest groups.

  9. The Immediacy of Arctic Change

    NASA Astrophysics Data System (ADS)

    Overland, J. E.; Wang, M.; Soreide, N. N.

    2015-12-01

    Ongoing temperature changes in the Arctic are large relative to lower latitudes; a process known as Arctic Amplification. Arctic temperatures have increased at least 3 times the rate of mid-latitude temperatures relative to the late 20th century, due to multiple interacting feedbacks driven by modest global change. Even if global temperature increases are contained to +2° C by 2040, Arctic (North of 60° N) monthly mean temperatures in fall will increase by +5° C. The Arctic is very likely to be sea ice free during summer before 2040, with the sea ice free duration limited to <5 months. Snow cover will be absent in May and June on most land masses. Whether these changes impact mid-latitude weather events is complex and controversial, as the time period for observing such linkages is short [<10 years] and involves understanding direct forcing by Arctic changes on a chaotic climatic system. Although chaotic internal variability dominates the dynamics of atmospheric circulation, Arctic thermodynamic influences can reinforce regional weather patterns. Extreme Arctic temperature events, as a combination of mean temperature increases combined with natural variability, will become common, nearing and exceeding previous thresholds. Such an event as an analog for the future was the +4° C anomalies for Alaska in November-December 2014 related to recent warm Pacific sea surface temperatures. Thus for the next few decades out to 2040, continuing rapid environmental changes in the Arctic are very likely, despite any mitigation activities, and the appropriate response is to plan for adaptation to meet these mean and extreme event changes. Mitigation is essential to forestall further disasters in the second half of the century. It is important to note such future rapid Arctic amplification, and the potential for environmental surprises, to support those making planning decisions and encourage action.

  10. 800,000 Years of Arctic Climate Variability: Insights from Lake El'gygytgyn, Far East Russia

    NASA Astrophysics Data System (ADS)

    Castañeda, I. S.; Habicht, H.; Patterson, M. O.; Burns, S. J.; Deconto, R. M.; Brigham-Grette, J.

    2017-12-01

    The regional response of the high Arctic to past climate variability is little known prior to 100,000 years ago. In 2009, a 3.6 Ma sediment core was recovered from Lake El'gygytgyn (Russia), the largest and oldest unglaciated Arctic lake basin. These sediments offer a unique opportunity to examine Plio-Pleistocene high-latitude continental climate variability. Determining the magnitude of past Arctic temperature and precipitation variability is especially relevant to understanding the mechanisms and feedbacks contributing to arctic amplification. Here we present results of ongoing organic geochemical analyses of Lake El'gygytgyn sediments focusing on the past 800,000 years. We use the methylation and cyclization index of branched tetraethers (MBT'/CBT) to reconstruct past temperature (Weijers et al., 2007; Peterse et al., 2012; De Jonge et al., 2014) and ratios of plant leaf waxes to examine vegetation variability within the lake catchment. In addition, algal biomarkers and bulk carbon isotopes provide insights into past changes in primary productivity. Trends noted in the MBT'/CBT record are in close agreement with pollen-based temperature estimates throughout the entire core and reveal a strong response to interglacial-glacial variability as well as local summer insolation. Our temperature reconstructions indicate the terrestrial Arctic experienced both warm interglacials and mild glacial periods during the Mid-Pleistocene but transitioned to more extreme temperature fluctuations in the more recent part of the record. Plant leaf wax average chain lengths suggest that glacial intervals were marked by increased aridity, while interglacial periods were wetter at Lake El'gygytgyn. Time-series analysis of the organic geochemical temperature and vegetation reconstructions records revealed variability at precession and obliquity frequencies, respectively. We also find a signal of the Mid-Brunhes Event (MBE) recorded in numerous Lake El'gygytgyn proxy records. Pre- and

  11. Streptomyces artemisiae MCCB 248 isolated from Arctic fjord sediments has unique PKS and NRPS biosynthetic genes and produces potential new anticancer natural products.

    PubMed

    Dhaneesha, M; Benjamin Naman, C; Krishnan, K P; Sinha, Rupesh Kumar; Jayesh, P; Joseph, Valsamma; Bright Singh, I S; Gerwick, William H; Sajeevan, T P

    2017-05-01

    After screening marine actinomycetes isolated from sediment samples collected from the Arctic fjord Kongsfjorden for potential anticancer activity, an isolate identified as Streptomyces artemisiae MCCB 248 exhibited promising results against the NCI-H460 human lung cancer cell line. H460 cells treated with the ethyl acetate extract of strain MCCB 248 and stained with Hoechst 33342 showed clear signs of apoptosis, including shrinkage of the cell nucleus, DNA fragmentation and chromatin condensation. Further to this treated cells showed indications of early apoptotic cell death, including a significant proportion of Annexin V positive staining and evidence of DNA damage as observed in the TUNEL assay. Amplified PKS 1 and NRPS genes involved in secondary metabolite production showed only 82% similarity to known biosynthetic genes of Streptomyces, indicating the likely production of a novel secondary metabolite in this extract. Additionally, chemical dereplication efforts using LC-MS/MS molecular networking suggested the presence of a series of undescribed tetraene polyols. Taken together, these results revealed that this Arctic S. artemisiae strain MCCB 248 is a promising candidate for natural products drug discovery and genome mining for potential anticancer agents.

  12. Artificial Warming of Arctic Meadow under Pollution Stress: Experimental design

    NASA Astrophysics Data System (ADS)

    Moni, Christophe; Silvennoinen, Hanna; Fjelldal, Erling; Brenden, Marius; Kimball, Bruce; Rasse, Daniel

    2014-05-01

    Boreal and arctic terrestrial ecosystems are central to the climate change debate, notably because future warming is expected to be disproportionate as compared to world averages. Likewise, greenhouse gas (GHG) release from terrestrial ecosystems exposed to climate warming is expected to be the largest in the arctic. Artic agriculture, in the form of cultivated grasslands, is a unique and economically relevant feature of Northern Norway (e.g. Finnmark Province). In Eastern Finnmark, these agro-ecosystems are under the additional stressor of heavy metal and sulfur pollution generated by metal smelters of NW Russia. Warming and its interaction with heavy metal dynamics will influence meadow productivity, species composition and GHG emissions, as mediated by responses of soil microbial communities. Adaptation and mitigation measurements will be needed. Biochar application, which immobilizes heavy metal, is a promising adaptation method to promote positive growth response in arctic meadows exposed to a warming climate. In the MeadoWarm project we conduct an ecosystem warming experiment combined to biochar adaptation treatments in the heavy-metal polluted meadows of Eastern Finnmark. In summary, the general objective of this study is twofold: 1) to determine the response of arctic agricultural ecosystems under environmental stress to increased temperatures, both in terms of plant growth, soil organisms and GHG emissions, and 2) to determine if biochar application can serve as a positive adaptation (plant growth) and mitigation (GHG emission) strategy for these ecosystems under warming conditions. Here, we present the experimental site and the designed open-field warming facility. The selected site is an arctic meadow located at the Svanhovd Research station less than 10km west from the Russian mining city of Nikel. A splitplot design with 5 replicates for each treatment is used to test the effect of biochar amendment and a 3oC warming on the Arctic meadow. Ten circular

  13. Freshwater and its role in the Arctic Marine System: Sources, disposition, storage, export, and physical and biogeochemical consequences in the Arctic and global oceans

    NASA Astrophysics Data System (ADS)

    Carmack, E. C.; Yamamoto-Kawai, M.; Haine, T. W. N.; Bacon, S.; Bluhm, B. A.; Lique, C.; Melling, H.; Polyakov, I. V.; Straneo, F.; Timmermans, M.-L.; Williams, W. J.

    2016-03-01

    The Arctic Ocean is a fundamental node in the global hydrological cycle and the ocean's thermohaline circulation. We here assess the system's key functions and processes: (1) the delivery of fresh and low-salinity waters to the Arctic Ocean by river inflow, net precipitation, distillation during the freeze/thaw cycle, and Pacific Ocean inflows; (2) the disposition (e.g., sources, pathways, and storage) of freshwater components within the Arctic Ocean; and (3) the release and export of freshwater components into the bordering convective domains of the North Atlantic. We then examine physical, chemical, or biological processes which are influenced or constrained by the local quantities and geochemical qualities of freshwater; these include stratification and vertical mixing, ocean heat flux, nutrient supply, primary production, ocean acidification, and biogeochemical cycling. Internal to the Arctic the joint effects of sea ice decline and hydrological cycle intensification have strengthened coupling between the ocean and the atmosphere (e.g., wind and ice drift stresses, solar radiation, and heat and moisture exchange), the bordering drainage basins (e.g., river discharge, sediment transport, and erosion), and terrestrial ecosystems (e.g., Arctic greening, dissolved and particulate carbon loading, and altered phenology of biotic components). External to the Arctic freshwater export acts as both a constraint to and a necessary ingredient for deep convection in the bordering subarctic gyres and thus affects the global thermohaline circulation. Geochemical fingerprints attained within the Arctic Ocean are likewise exported into the neighboring subarctic systems and beyond. Finally, we discuss observed and modeled functions and changes in this system on seasonal, annual, and decadal time scales and discuss mechanisms that link the marine system to atmospheric, terrestrial, and cryospheric systems.

  14. FIRE Arctic Clouds Experiment

    NASA Technical Reports Server (NTRS)

    Curry, J. A.; Hobbs, P. V.; King, M. D.; Randall, D. A.; Minnis, P.; Issac, G. A.; Pinto, J. O.; Uttal, T.; Bucholtz, A.; Cripe, D. G.; hide

    1998-01-01

    An overview is given of the First ISCCP Regional Experiment (FIRE) Arctic Clouds Experiment that was conducted in the Arctic during April through July, 1998. The principal goal of the field experiment was to gather the data needed to examine the impact of arctic clouds on the radiation exchange between the surface, atmosphere, and space, and to study how the surface influences the evolution of boundary layer clouds. The observations will be used to evaluate and improve climate model parameterizations of cloud and radiation processes, satellite remote sensing of cloud and surface characteristics, and understanding of cloud-radiation feedbacks in the Arctic. The experiment utilized four research aircraft that flew over surface-based observational sites in the Arctic Ocean and Barrow, Alaska. In this paper we describe the programmatic and science objectives of the project, the experimental design (including research platforms and instrumentation), conditions that were encountered during the field experiment, and some highlights of preliminary observations, modelling, and satellite remote sensing studies.

  15. The role of ice nuclei recycling in the maintenance of cloud ice in Arctic mixed-phase stratocumulus

    DOE PAGES

    Solomon, Amy; Feingold, G.; Shupe, M. D.

    2015-09-25

    This study investigates the maintenance of cloud ice production in Arctic mixed-phase stratocumulus in large eddy simulations that include a prognostic ice nuclei (IN) formulation and a diurnal cycle. Balances derived from a mixed-layer model and phase analyses are used to provide insight into buffering mechanisms that maintain ice in these cloud systems. We find that, for the case under investigation, IN recycling through subcloud sublimation considerably prolongs ice production over a multi-day integration. This effective source of IN to the cloud dominates over mixing sources from above or below the cloud-driven mixed layer. Competing feedbacks between dynamical mixing andmore » recycling are found to slow the rate of ice lost from the mixed layer when a diurnal cycle is simulated. Furthermore, the results of this study have important implications for maintaining phase partitioning of cloud ice and liquid that determine the radiative forcing of Arctic mixed-phase clouds.« less

  16. The role of ice nuclei recycling in the maintenance of cloud ice in Arctic mixed-phase stratocumulus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Solomon, Amy; Feingold, G.; Shupe, M. D.

    This study investigates the maintenance of cloud ice production in Arctic mixed-phase stratocumulus in large eddy simulations that include a prognostic ice nuclei (IN) formulation and a diurnal cycle. Balances derived from a mixed-layer model and phase analyses are used to provide insight into buffering mechanisms that maintain ice in these cloud systems. We find that, for the case under investigation, IN recycling through subcloud sublimation considerably prolongs ice production over a multi-day integration. This effective source of IN to the cloud dominates over mixing sources from above or below the cloud-driven mixed layer. Competing feedbacks between dynamical mixing andmore » recycling are found to slow the rate of ice lost from the mixed layer when a diurnal cycle is simulated. Furthermore, the results of this study have important implications for maintaining phase partitioning of cloud ice and liquid that determine the radiative forcing of Arctic mixed-phase clouds.« less

  17. Mapping the Delivery of Societal Benefit through the International Arctic Observations Assessment Framework

    NASA Astrophysics Data System (ADS)

    Lev, S. M.; Gallo, J.

    2017-12-01

    The international Arctic scientific community has identified the need for a sustained and integrated portfolio of pan-Arctic Earth-observing systems. In 2017, an international effort was undertaken to develop the first ever Value Tree framework for identifying common research and operational objectives that rely on Earth observation data derived from Earth-observing systems, sensors, surveys, networks, models, and databases to deliver societal benefits in the Arctic. A Value Tree Analysis is a common tool used to support decision making processes and is useful for defining concepts, identifying objectives, and creating a hierarchical framework of objectives. A multi-level societal benefit area value tree establishes the connection from societal benefits to the set of observation inputs that contribute to delivering those benefits. A Value Tree that relies on expert domain knowledge from Arctic and non-Arctic nations, international researchers, Indigenous knowledge holders, and other experts to develop a framework to serve as a logical and interdependent decision support tool will be presented. Value tree examples that map the contribution of Earth observations in the Arctic to achieving societal benefits will be presented in the context of the 2017 International Arctic Observations Assessment Framework. These case studies will highlight specific observing products and capability groups where investment is needed to contribute to the development of a sustained portfolio of Arctic observing systems.

  18. Arctic Research NASA's Cryospheric Sciences Program

    NASA Technical Reports Server (NTRS)

    Waleed, Abdalati; Zukor, Dorothy J. (Technical Monitor)

    2001-01-01

    Much of NASA's Arctic Research is run through its Cryospheric Sciences Program. Arctic research efforts to date have focused primarily on investigations of the mass balance of the largest Arctic land-ice masses and the mechanisms that control it, interactions among sea ice, polar oceans, and the polar atmosphere, atmospheric processes in the polar regions, energy exchanges in the Arctic. All of these efforts have been focused on characterizing, understanding, and predicting, changes in the Arctic. NASA's unique vantage from space provides an important perspective for the study of these large scale processes, while detailed process information is obtained through targeted in situ field and airborne campaigns and models. An overview of NASA investigations in the Arctic will be presented demonstrating how the synthesis of space-based technology, and these complementary components have advanced our understanding of physical processes in the Arctic.

  19. Arctic Ocean Freshwater Content and Its Decadal Memory of Sea-Level Pressure

    NASA Astrophysics Data System (ADS)

    Johnson, Helen L.; Cornish, Sam B.; Kostov, Yavor; Beer, Emma; Lique, Camille

    2018-05-01

    Arctic freshwater content (FWC) has increased significantly over the last two decades, with potential future implications for the Atlantic meridional overturning circulation downstream. We investigate the relationship between Arctic FWC and atmospheric circulation in the control run of a coupled climate model. Multiple linear lagged regression is used to extract the response of total Arctic FWC to a hypothetical step increase in the principal components of sea-level pressure. The results demonstrate that the FWC adjusts on a decadal timescale, consistent with the idea that wind-driven ocean dynamics and eddies determine the response of Arctic Ocean circulation and properties to a change in surface forcing, as suggested by idealized models and theory. Convolving the response of FWC to a change in sea-level pressure with historical sea-level pressure variations reveals that the recent observed increase in Arctic FWC is related to natural variations in sea-level pressure.

  20. Weaving Arctic Networks of Support and Engaged Accountability

    NASA Astrophysics Data System (ADS)

    Warnick, W. K.

    2003-12-01

    This presentation will provide a preview of a new project which explores the potential of applying emerging educational research in conjunction with the latest polar research through a multifaceted approach designed to weave networks of support and engaged accountability between Arctic researchers, teachers, and learners. This presentation will outline how Sunwood's (2002) WoSEA educational model might be utilized to facilitate and study methods of engaging and supporting teachers and scientists in collaborative Arctic research and pedagogy. The model we are proposing employs action research methodology to provide educators and scientists the opportunity to engage in reflection on their own practice, and enhancement of their own practice through extensive connection and collaboration between education and scientific professionals, thus contributing to the cumulative development of a lifelong learning continuum. Our Weaving the Arctic project will amplify and enhance the voice, knowledge and expertise of Arctic researchers and teachers as each participant explores, shares, and showcases their experience, knowledge, and the products of their practice. Weaving thus holds great promise for addressing science education needs, particularly the critical needs surrounding enhancement and retention of STEM teachers in K-12 (especially rural) schools. This presentation will share the promise of our Weaving model.

  1. Faltering lemming cycles reduce productivity and population size of a migratory Arctic goose species

    PubMed Central

    Nolet, Bart A; Bauer, Silke; Feige, Nicole; Kokorev, Yakov I; Popov, Igor Yu; Ebbinge, Barwolt S

    2013-01-01

    1. The huge changes in population sizes of Arctic-nesting geese offer a great opportunity to study population limitation in migratory animals. In geese, population limitation seems to have shifted from wintering to summering grounds. There, in the Arctic, climate is rapidly changing, and this may impact reproductive performance, and perhaps population size of geese, both directly (e.g. by changes in snow melt) or indirectly (e.g. by changes in trophic interactions). 2. Dark-bellied brent geese (Branta bernicla bernicla L.) increased 20-fold since the 1950s. Its reproduction fluctuates strongly in concert with the 3-year lemming cycle. An earlier analysis, covering the growth period until 1988, did not find evidence for density dependence, but thereafter the population levelled off and even decreased. The question is whether this is caused by changes in lemming cycles, population density or other factors like carry-over effects. 3. Breeding success was derived from proportions of juveniles. We used an information-theoretical approach to investigate which environmental factors best explained the variation in breeding success over nearly 50 years (1960–2008). We subsequently combined GLM predictions of breeding success with published survival estimates to project the population trajectory since 1991 (year of maximum population size). In this way, we separated the effects of lemming abundance and population density on population development. 4. Breeding success was mainly dependent on lemming abundance, the onset of spring at the breeding grounds, and the population size of brent goose. No evidence was found for carry-over effects (i.e. effects of conditions at main spring staging site). Negative density dependence was operating at a population size above c. 200 000 individuals, but the levelling off of the population could be explained by faltering lemming cycles alone. 5. Lemmings have long been known to affect population productivity of Arctic-nesting migratory

  2. Faltering lemming cycles reduce productivity and population size of a migratory Arctic goose species.

    PubMed

    Nolet, Bart A; Bauer, Silke; Feige, Nicole; Kokorev, Yakov I; Popov, Igor Yu; Ebbinge, Barwolt S

    2013-07-01

    The huge changes in population sizes of Arctic-nesting geese offer a great opportunity to study population limitation in migratory animals. In geese, population limitation seems to have shifted from wintering to summering grounds. There, in the Arctic, climate is rapidly changing, and this may impact reproductive performance, and perhaps population size of geese, both directly (e.g. by changes in snow melt) or indirectly (e.g. by changes in trophic interactions). Dark-bellied brent geese (Branta bernicla bernicla L.) increased 20-fold since the 1950s. Its reproduction fluctuates strongly in concert with the 3-year lemming cycle. An earlier analysis, covering the growth period until 1988, did not find evidence for density dependence, but thereafter the population levelled off and even decreased. The question is whether this is caused by changes in lemming cycles, population density or other factors like carry-over effects. Breeding success was derived from proportions of juveniles. We used an information-theoretical approach to investigate which environmental factors best explained the variation in breeding success over nearly 50 years (1960-2008). We subsequently combined GLM predictions of breeding success with published survival estimates to project the population trajectory since 1991 (year of maximum population size). In this way, we separated the effects of lemming abundance and population density on population development. Breeding success was mainly dependent on lemming abundance, the onset of spring at the breeding grounds, and the population size of brent goose. No evidence was found for carry-over effects (i.e. effects of conditions at main spring staging site). Negative density dependence was operating at a population size above c. 200 000 individuals, but the levelling off of the population could be explained by faltering lemming cycles alone. Lemmings have long been known to affect population productivity of Arctic-nesting migratory birds and, more

  3. Molecular epidemiological study of Arctic rabies virus isolates from Greenland and comparison with isolates from throughout the Arctic and Baltic regions.

    PubMed

    Mansfield, K L; Racloz, V; McElhinney, L M; Marston, D A; Johnson, N; Rønsholt, L; Christensen, L S; Neuvonen, E; Botvinkin, A D; Rupprecht, C E; Fooks, A R

    2006-03-01

    We report a molecular epidemiological study of rabies in Arctic countries by comparing a panel of novel Greenland isolates to a larger cohort of viral sequences from both Arctic and Baltic regions. Rabies virus isolates originating from wildlife (Arctic/red foxes, raccoon-dogs and reindeer), from domestic animals (dogs/cats) and from two human cases were investigated. The resulting 400 bp N-gene sequences were compared with isolates representing neighbouring Arctic or Baltic countries from North America, the former Soviet Union and Europe. Phylogenetic analysis demonstrated similarities between sequences from the Arctic and Arctic-like viruses, which were distinct from rabies isolates originating in the Baltic region of Europe, the Steppes in Russia and from North America. The Arctic-like group consist of isolates from India, Pakistan, southeast Siberia and Japan. The Arctic group was differentiated into two lineages, Arctic 1 and Arctic 2, with good bootstrap support. Arctic 1 is mainly comprised of Canadian isolates with a single fox isolate from Maine in the USA. Arctic 2 was further divided into sub-lineages: 2a/2b. Arctic 2a comprises isolates from the Arctic regions of Yakutia in northeast Siberia and Alaska. Arctic 2b isolates represent a biotype, which is dispersed throughout the Arctic region. The broad distribution of rabies in the Arctic regions including Greenland, Canada and Alaska provides evidence for the movement of rabies across borders.

  4. Selected physical, biological and biogeochemical implications of a rapidly changing Arctic Marginal Ice Zone

    NASA Astrophysics Data System (ADS)

    Barber, David G.; Hop, Haakon; Mundy, Christopher J.; Else, Brent; Dmitrenko, Igor A.; Tremblay, Jean-Eric; Ehn, Jens K.; Assmy, Philipp; Daase, Malin; Candlish, Lauren M.; Rysgaard, Søren

    2015-12-01

    The Marginal Ice Zone (MIZ) of the Arctic Ocean is changing rapidly due to a warming Arctic climate with commensurate reductions in sea ice extent and thickness. This Pan-Arctic review summarizes the main changes in the Arctic ocean-sea ice-atmosphere (OSA) interface, with implications for primary- and secondary producers in the ice and the underlying water column. Changes in the Arctic MIZ were interpreted for the period 1979-2010, based on best-fit regressions for each month. Trends of increasingly open water were statistically significant for each month, with quadratic fit for August-November, illustrating particularly strong seasonal feedbacks in sea-ice formation and decay. Geographic interpretations of physical and biological changes were based on comparison of regions with significant changes in sea ice: (1) The Pacific Sector of the Arctic Ocean including the Canada Basin and the Beaufort, Chukchi and East Siberian seas; (2) The Canadian Arctic Archipelago; (3) Baffin Bay and Hudson Bay; and (4) the Barents and Kara seas. Changes in ice conditions in the Barents sea/Kara sea region appear to be primarily forced by ocean heat fluxes during winter, whereas changes in the other sectors appear to be more summer-autumn related and primarily atmospherically forced. Effects of seasonal and regional changes in OSA-system with regard to increased open water were summarized for photosynthetically available radiation, nutrient delivery to the euphotic zone, primary production of ice algae and phytoplankton, ice-associated fauna and zooplankton, and gas exchange of CO2. Changes in the physical factors varied amongst regions, and showed direct effects on organisms linked to sea ice. Zooplankton species appear to be more flexible and likely able to adapt to variability in the onset of primary production. The major changes identified for the ice-associated ecosystem are with regard to production timing and abundance or biomass of ice flora and fauna, which are related to

  5. Arctic freshwater synthesis: Introduction

    NASA Astrophysics Data System (ADS)

    Prowse, T.; Bring, A.; Mârd, J.; Carmack, E.

    2015-11-01

    In response to a joint request from the World Climate Research Program's Climate and Cryosphere Project, the International Arctic Science Committee, and the Arctic Council's Arctic Monitoring and Assessment Program, an updated scientific assessment has been conducted of the Arctic Freshwater System (AFS), entitled the Arctic Freshwater Synthesis (AFSΣ). The major reason for joint request was an increasing concern that changes to the AFS have produced, and could produce even greater, changes to biogeophysical and socioeconomic systems of special importance to northern residents and also produce extra-Arctic climatic effects that will have global consequences. Hence, the key objective of the AFSΣ was to produce an updated, comprehensive, and integrated review of the structure and function of the entire AFS. The AFSΣ was organized around six key thematic areas: atmosphere, oceans, terrestrial hydrology, terrestrial ecology, resources and modeling, and the review of each coauthored by an international group of scientists and published as separate manuscripts in this special issue of Journal of Geophysical Research-Biogeosciences. This AFSΣ—Introduction reviews the motivations for, and foci of, previous studies of the AFS, discusses criteria used to define the domain of the AFS, and details key characteristics of the definition adopted for the AFSΣ.

  6. Impacts of large-scale atmospheric circulation changes in winter on black carbon transport and deposition to the Arctic

    NASA Astrophysics Data System (ADS)

    Pozzoli, Luca; Dobricic, Srdan; Russo, Simone; Vignati, Elisabetta

    2017-10-01

    Winter warming and sea-ice retreat observed in the Arctic in the last decades may be related to changes of large-scale atmospheric circulation pattern, which may impact the transport of black carbon (BC) to the Arctic and its deposition on the sea ice, with possible feedbacks on the regional and global climate forcing. In this study we developed and applied a statistical algorithm, based on the maximum likelihood estimate approach, to determine how the changes of three large-scale weather patterns associated with increasing temperatures in winter and sea-ice retreat in the Arctic impact the transport of BC to the Arctic and its deposition. We found that two atmospheric patterns together determine a decreasing winter deposition trend of BC between 1980 and 2015 in the eastern Arctic while they increase BC deposition in the western Arctic. The increasing BC trend is mainly due to a pattern characterized by a high-pressure anomaly near Scandinavia favouring the transport in the lower troposphere of BC from Europe and North Atlantic directly into to the Arctic. Another pattern with a high-pressure anomaly over the Arctic and low-pressure anomaly over the North Atlantic Ocean has a smaller impact on BC deposition but determines an increasing BC atmospheric load over the entire Arctic Ocean with increasing BC concentrations in the upper troposphere. The results show that changes in atmospheric circulation due to polar atmospheric warming and reduced winter sea ice significantly impacted BC transport and deposition. The anthropogenic emission reductions applied in the last decades were, therefore, crucial to counterbalance the most likely trend of increasing BC pollution in the Arctic.

  7. Predicted responses of arctic and alpine ecosystems to altered seasonality under climate change.

    PubMed

    Ernakovich, Jessica G; Hopping, Kelly A; Berdanier, Aaron B; Simpson, Rodney T; Kachergis, Emily J; Steltzer, Heidi; Wallenstein, Matthew D

    2014-10-01

    Global climate change is already having significant impacts on arctic and alpine ecosystems, and ongoing increases in temperature and altered precipitation patterns will affect the strong seasonal patterns that characterize these temperature-limited systems. The length of the potential growing season in these tundra environments is increasing due to warmer temperatures and earlier spring snow melt. Here, we compare current and projected climate and ecological data from 20 Northern Hemisphere sites to identify how seasonal changes in the physical environment due to climate change will alter the seasonality of arctic and alpine ecosystems. We find that although arctic and alpine ecosystems appear similar under historical climate conditions, climate change will lead to divergent responses, particularly in the spring and fall shoulder seasons. As seasonality changes in the Arctic, plants will advance the timing of spring phenological events, which could increase plant nutrient uptake, production, and ecosystem carbon (C) gain. In alpine regions, photoperiod will constrain spring plant phenology, limiting the extent to which the growing season can lengthen, especially if decreased water availability from earlier snow melt and warmer summer temperatures lead to earlier senescence. The result could be a shorter growing season with decreased production and increased nutrient loss. These contrasting alpine and arctic ecosystem responses will have cascading effects on ecosystems, affecting community structure, biotic interactions, and biogeochemistry. © 2014 John Wiley & Sons Ltd.

  8. Changing Arctic ecosystems: ecology of loons in a changing Arctic

    USGS Publications Warehouse

    Uher-Koch, Brian; Schmutz, Joel; Whalen, Mary; Pearce, John M.

    2014-01-01

    The U.S. Geological Survey (USGS) Changing Arctic Ecosystems (CAE) initiative informs key resource management decisions for Arctic Alaska by providing scientific information on current and future ecosystem response to a changing climate. From 2010 to 2014, a key study area for the USGS CAE initiative has been the Arctic Coastal Plain of northern Alaska. This region has experienced rapid warming during the past 30 years, leading to the thawing of permafrost and changes to lake and river systems. These changes, and projections of continued change, have raised questions about effects on wildlife populations that rely on northern lake ecosystems, such as loons. Loons rely on freshwater lakes for nesting habitat and the fish and invertebrates inhabiting the lakes for food. Loons live within the National Petroleum Reserve-Alaska (NPR-A) on Alaska’s northern coast, where oil and gas development is expected to increase. Research by the USGS examines how breeding loons use the Arctic lake ecosystem and the capacity of loons to adapt to future landscape change.

  9. Effect of warming on the degradation and production of low-molecular-weight labile organic carbon in an Arctic tundra soil

    DOE PAGES

    Yang, Ziming; Wullschleger, Stan D.; Liang, Liyuan; ...

    2016-01-16

    The fate of soil organic carbon (SOC) stored in the Arctic permafrost is a key concern as temperatures continue to rise in the northern hemisphere. Studies and conceptual models suggest that SOC degradation is affected by the composition of SOC, but it is unclear exactly what portions of SOC are vulnerable to rapid breakdown and what mechanisms may be controlling SOC degradation upon permafrost thaw. Here, we examine the dynamic consumption and production of labile SOC in an anoxic incubation experiment using soil samples from the active layer at the Barrow Environmental Observatory, Barrow, Alaska, USA. Free-reducing sugars, alcohols, andmore » low-molecular-weight (LMW) organic acids were analyzed during incubation at either –2 or 8 °C for up to 240 days. Results show that simple sugar and alcohol SOC largely account for the initial rapid release of CO 2 and CH 4 through anaerobic fermentation, whereas the fermentation products, acetate and formate, are subsequently utilized as primary substrates for methanogenesis. Iron(III) reduction is correlated to acetate production and methanogenesis, suggesting its important role as an electron acceptor in tundra SOC respiration. These observations are further supported in a glucose addition experiment, in which rapid CO 2 and CH 4 production occurred concurrently with rapid production and consumption of labile organics such as acetate. However, addition of tannic acid, as a more complex organic substrate, showed little influence on the overall production of CO 2 and CH 4 and organic acids. Together our study shows that LMW labile organics in SOC control the initial rapid release of green-house gases upon warming. We thus present a conceptual framework for the labile SOC transformations and their relations to fermentation, iron reduction and methanogenesis, thereby providing the basis for improved model prediction of climate feedbacks in the Arctic.« less

  10. Toward an Arctic Strategy

    DTIC Science & Technology

    2009-02-01

    Arctic Sea Ice Extent6 Reduced ice pack area translates to less reflected solar energy, which further accelerates the ongoing melting process . Light... process , creating a vicious cycle where melting ice causes the remaining ice to melt faster.7 Modelers previously agreed that the Arctic Ocean could be...freight ports stand to benefit by shipping through the Arctic region.10 For example, an ocean voyage from Yokohama, Japan, to Hamburg, Germany via the

  11. Survival of ship biofouling assemblages during and after voyages to the Canadian Arctic.

    PubMed

    Chan, Farrah T; MacIsaac, Hugh J; Bailey, Sarah A

    2016-01-01

    Human-mediated vectors often inadvertently translocate species assemblages to new environments. Examining the dynamics of entrained species assemblages during transport can provide insights into the introduction risk associated with these vectors. Ship biofouling is a major transport vector of nonindigenous species in coastal ecosystems globally, yet its magnitude in the Arctic is poorly understood. To determine whether biofouling organisms on ships can survive passages in Arctic waters, we examined how biofouling assemblage structure changed before, during, and after eight round-trip military voyages from temperate to Arctic ports in Canada. Species richness first decreased (~70% loss) and then recovered (~27% loss compared to the original assemblages), as ships travelled to and from the Arctic, respectively, whereas total abundance typically declined over time (~55% total loss). Biofouling community structure differed significantly before and during Arctic transits as well as between those sampled during and after voyages. Assemblage structure varied across different parts of the hull; however, temporal changes were independent of hull location, suggesting that niche areas did not provide protection for biofouling organisms against adverse conditions in the Arctic. Biofouling algae appear to be more tolerant of transport conditions during Arctic voyages than are mobile, sessile, and sedentary invertebrates. Our results suggest that biofouling assemblages on ships generally have poor survivorship during Arctic voyages. Nonetheless, some potential for transporting nonindigenous species to the Arctic via ship biofouling remains, as at least six taxa new to the Canadian Arctic, including a nonindigenous cirripede, appeared to have survived transits from temperate to Arctic ports.

  12. 77 FR 31677 - Request for Public Comment on Interagency Arctic Research Policy Committee (IARPC) Arctic...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-29

    ... OFFICE OF SCIENCE AND TECHNOLOGY POLICY Request for Public Comment on Interagency Arctic Research Policy Committee (IARPC) Arctic Research Plan: FY2013-2017 May 22, 2012. ACTION: Request for public comment. SUMMARY: The Arctic Research and Policy Act of 1984 (ARPA), Public Law 98-373, established the...

  13. An assessment of net primary productivity estimates using coupled physical-biogeochemical/earth system models in the Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Lee, Y. J.; Matrai, P.; Friedrichs, M. A.; Saba, V. S.

    2016-02-01

    Net primary production (NPP) is the major source of energy for the Arctic Ocean (AO) ecosystem, as in most ecosystems. Reproducing current patterns of NPP is essential to understand the physical and biogeochemical controls in the present and the future AO. The Primary Productivity Algorithm Round Robin (PPARR) activity provides a framework to evaluate the skill and sensitivity of NPP as estimated by coupled global/regional climate models and earth system models in the AO. Here we compare results generated from 18 global/regional climate models and three earth system models with observations from a unique pan-Arctic data set (1959-2011) that includes in situ NPP (N=928 stations) and nitrate (N=678 stations). Models results showed a distribution similar to the in situ data distribution, except for the high values of integrated NPP data. Model skill of integrated NPP exhibited little difference as a function of sea ice condition (ice-free vs. ice-covered) and depth (shallow vs. deep), but performance of models varied significantly as a function of seasons. For example, simulated integrated NPP was underestimated in the beginning of the production season (April-June) compared to mid-summer (July and August) and had the highest variability in late summer and early fall (September-October). While models typically underestimated mean NPP, nitrate concentrations were overestimated. Overall, models performed better in reproducing nitrate than NPP in terms of differences in variability. The model performance was similar at all depths within the top 100 m, both in NPP and nitrate. Continual feedback, modification and improvement of the participating models and the resulting increase in model skill are the primary goals of the PPARR-5 AO exercise.

  14. CO2 dynamics of tundra ponds in the low-Arctic, Northwest Territories, Canada

    NASA Astrophysics Data System (ADS)

    Buell, Mary-Claire

    Extensive research has gone into measuring changes to the carbon storage capacity of Arctic terrestrial environments as well as large water bodies in order to determine a carbon budget for many regions across the Arctic. Inland Arctic waters such as small lakes and ponds are often excluded from these carbon budgets, however a handful of studies have demonstrated that they can often be significant sources of carbon to the atmosphere. This study investigated the CO2 cycling of tundra ponds in the Daring Lake area, Northwest Territories, Canada (64°52'N, 111°35'W), to determine the role ponds have in the local carbon cycle. Floating chambers, nondispersive infrared (NDIR) sensors and headspace samples were used to estimate carbon fluxes from four selected local ponds. Multiple environmental, chemical and meteorological parameters were also monitored for the duration of the study, which took place during the snow free season of 2013. Average CO2 emissions for the two-month growing season ranged from approximately -0.0035 g CO2-C m-2 d -1 to 0.12 g CO2-C m-2 d-1. The losses of CO2 from the water bodies in the Daring Lake area were approximately 2-7% of the CO2 uptake over vegetated terrestrial tundra during the same two-month period. Results from this study indicated that the production of CO2 in tundra ponds was positively influenced by both increases in air temperature, and the delivery of carbon from their catchments. The relationship found between temperature and carbon emissions suggests that warming Arctic temperatures have the potential to increase carbon emissions from ponds in the future. The findings in this study did not include ebullition gas emissions nor plant mediated transport, therefore these findings are likely underestimates of the total carbon emissions from water bodies in the Daring Lake area. This study emphasizes the need for more research on inland waters in order to improve our understanding of the total impact these waters may have on the

  15. The International Arctic Buoy Programme (IABP): A Cornerstone of the Arctic Observing Network

    DTIC Science & Technology

    2008-09-01

    SEP 2008 2. REPORT TYPE 3. DATES COVERED 00-00-2008 to 00-00-2008 4. TITLE AND SUBTITLE The International Arctic Buoy Programme ( IABP ): A...Prescribed by ANSI Std Z39-18 The International Arctic Buoy Programme ( IABP ): A Cornerstone of the Arctic Observing Network Ignatius G. Rigor...changes in weather, climate and environment. It should be noted that many of these changes were first observed and studied using data from the IABP (http

  16. Optimizing Communications Between Arctic Residents and IPY Scientific Researchers

    NASA Astrophysics Data System (ADS)

    Stapleton, M.; Carpenter, L.

    2007-12-01

    in San Francisco on December 10 to 14, 2007. One component of this conference is entitled « Education, Outreach and Communications During IPY and Beyond ». ACIC proposes to present a discussion paper, « Optimizing Communications Between Arctic Residents and IPY Scientific Researchers », describing the status of IPY outreach and communications in the Arctic at this time. The paper will be complemented by photographs which illustrate the context of communication activity in these regions. ACIC has an existing international network of indigenous northern communicators. The IPY Northern Coordination Offices in Canada, and key informants in Alaska, RAIPON in the Russian Federation, and the Association of Sami Journalists, will be interviewed to determine involvement in IPY activities planned and/or undertaken. The level of community and professional awareness will be surveyed through interviews with community radio personnel. Aspirations and expectations for further cooperation with IPY reseearchers will be determined. Barriers and shortfalls will be identified. The usability and potential of current communications will be assessed. Endorsed IPY projects will be contacted to determine their Arctic communication plans and activities, barriers and opportunities. Information gained from the Joint Committee Assessment in October will be considered in the context of northern informant input. Conclusions and recommendations will reported, with the goal of optimizing opportunities to connect indigenous Arctic residents and IPY scientific research centres.

  17. Seasonality of global and Arctic black carbon processes in the Arctic Monitoring and Assessment Programme models: Global and Arctic Black Carbon Processes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mahmood, Rashed; von Salzen, Knut; Flanner, Mark

    2016-06-22

    This study quantifies black carbon (BC) processes in three global climate models and one chemistry transport model, with focus on the seasonality of BC transport, emissions, wet and dry deposition in the Arctic. In the models, transport of BC to the Arctic from lower latitudes is the major BC source for this region while Arctic emissions are very small. All models simulated a similar annual cycle of BC transport from lower latitudes to the Arctic, with maximum transport occurring in July. Substantial differences were found in simulated BC burdens and vertical distributions, with CanAM (NorESM) producing the strongest (weakest) seasonalmore » cycle. CanAM also has the shortest annual mean residence time for BC in the Arctic followed by SMHI-MATCH, CESM and NorESM. The relative contribution of wet and dry deposition rates in removing BC varies seasonally and is one of the major factors causing seasonal variations in BC burdens in the Arctic. Overall, considerable differences in wet deposition efficiencies in the models exist and are a leading cause of differences in simulated BC burdens. Results from model sensitivity experiments indicate that scavenging of BC in convective clouds acts to substantially increase the overall efficiency of BC wet deposition in the Arctic, which leads to low BC burdens and a more pronounced seasonal cycle compared to simulations without convective BC scavenging. In contrast, the simulated seasonality of BC concentrations in the upper troposphere is only weakly influenced by wet deposition in stratiform (layer) clouds whereas lower tropospheric concentrations are highly sensitive.« less

  18. High interannual variability of sea ice thickness in the Arctic region.

    PubMed

    Laxon, Seymour; Peacock, Neil; Smith, Doug

    2003-10-30

    Possible future changes in Arctic sea ice cover and thickness, and consequent changes in the ice-albedo feedback, represent one of the largest uncertainties in the prediction of future temperature rise. Knowledge of the natural variability of sea ice thickness is therefore critical for its representation in global climate models. Numerical simulations suggest that Arctic ice thickness varies primarily on decadal timescales owing to changes in wind and ocean stresses on the ice, but observations have been unable to provide a synoptic view of sea ice thickness, which is required to validate the model results. Here we use an eight-year time-series of Arctic ice thickness, derived from satellite altimeter measurements of ice freeboard, to determine the mean thickness field and its variability from 65 degrees N to 81.5 degrees N. Our data reveal a high-frequency interannual variability in mean Arctic ice thickness that is dominated by changes in the amount of summer melt, rather than by changes in circulation. Our results suggest that a continued increase in melt season length would lead to further thinning of Arctic sea ice.

  19. Svalbard Integrated Arctic Earth Observing System (sios): Facilitating Easy Access to Multidisciplinary Arctic Data Through the Brokering Approach.

    NASA Astrophysics Data System (ADS)

    Bye, B. L.; Godøy, Ø.

    2014-12-01

    Environmental and climate changes are important elements of our global challenges. They are observed at a global scale and in particular in the Arctic. In order to give better estimates of the future changes, the Arctic has to be monitored and analyzed by a multi-disciplinary observation system that will improve Earth System Models. The best chance to achieve significant results within a relatively short time frame is found in regions with a large natural climate gradient, and where processes sensitive to the expected changes are particularly important. Svalbard and the surrounding ocean areas fulfil all these criteria. The vision for SIOS is to be a regional observational system for long term acquisition and proliferation of fundamental knowledge on global environmental change within an Earth System Science perspective in and around Svalbard. SIOS will systematically develop and implement methods for how observational networks are to be construed. The distributed SIOS data management system (SDMS) will be implemented through a combination of technologies tailored to the multi-disciplinary nature of the Arctic data. One of these technologies is The Brokering approach or "Framework". The Brokering approach provides a series of services such as discovery, access, transformation and semantics support to enable translation from one discipline/culture to another. This is exactly the challenges the SDMS will have to handle and thus the Brokering approach is integrated in the design of the system. A description of the design strategy for the SDMS that includes The Brokering approach will be presented. The design and implementation plans for the SDMS are based on research done in the EU funded ESFRI project SIOS and examples of solutions for interoperable systems producing Arctic datasets and products coordinated through SIOS will be showcased. The reported experience from SIOS brokering approach will feed into the process of developing a sustainable brokering governance

  20. Arctic sea ice a major determinant in Mandt's black guillemot movement and distribution during non-breeding season

    USGS Publications Warehouse

    Divoky, G.J.; Douglas, David C.; Stenhouse, I. J.

    2016-01-01

    Mandt's black guillemot (Cepphus grylle mandtii) is one of the few seabirds associated in all seasons with Arctic sea ice, a habitat that is changing rapidly. Recent decreases in summer ice have reduced breeding success and colony size of this species in Arctic Alaska. Little is known about the species' movements and distribution during the nine month non-breeding period (September–May), when changes in sea ice extent and composition are also occurring and predicted to continue. To examine bird movements and the seasonal role of sea ice to non-breeding Mandt's black guillemots, we deployed and recovered (n = 45) geolocators on individuals at a breeding colony in Arctic Alaska during 2011–2015. Black guillemots moved north to the marginal ice zone (MIZ) in the Beaufort and Chukchi seas immediately after breeding, moved south to the Bering Sea during freeze-up in December, and wintered in the Bering Sea January–April. Most birds occupied the MIZ in regions averaging 30–60% sea ice concentration, with little seasonal variation. Birds regularly roosted on ice in all seasons averaging 5 h d−1, primarily at night. By using the MIZ, with its roosting opportunities and associated prey, black guillemots can remain in the Arctic during winter when littoral waters are completely covered by ice.

  1. Quantifying Direct and Indirect Impact of Future Climate on Sub-Arctic Hydrology

    NASA Astrophysics Data System (ADS)

    Endalamaw, A. M.; Bolton, W. R.; Young-Robertson, J. M.; Morton, D.; Hinzman, L. D.

    2016-12-01

    Projected future climate will have a significant impact on the hydrology of interior Alaskan sub-arctic watersheds, directly though the changes in precipitation and temperature patterns, and indirectly through the cryospheric and ecological impacts. Although the latter is the dominant factor controlling the hydrological processes in the interior Alaska sub-arctic, it is often overlooked in many climate change impact studies. In this study, we aim to quantify and compare the direct and indirect impact of the projected future climate on the hydrology of the interior Alaskan sub-arctic watersheds. The Variable Infiltration Capacity (VIC) meso-scale hydrological model will be implemented to simulate the hydrological processes, including runoff, evapotranspiration, and soil moisture dynamics in the Chena River Basin (area = 5400km2), located in the interior Alaska sub-arctic region. Permafrost and vegetation distribution will be derived from the Geophysical Institute Permafrost Lab (GIPL) model and the Lund-Potsdam-Jena Dynamic Global Model (LPJ) model, respectively. All models will be calibrated and validated using historical data. The Scenario Network for Alaskan and Arctic Planning (SNAP) 5-model average projected climate data products will be used as forcing data for each of these models. The direct impact of climate change on hydrology is estimated using surface parameterization derived from the present day permafrost and vegetation distribution, and future climate forcing from SNAP projected climate data products. Along with the projected future climate, outputs of GIPL and LPJ will be incorporated into the VIC model to estimate the indirect and overall impact of future climate on the hydrology processes in the interior Alaskan sub-arctic watersheds. Finally, we will present the potential hydrological and ecological changes by the end of the 21st century.

  2. Phytoplankton Productivity in an Arctic Fjord (West Greenland): Estimating Electron Requirements for Carbon Fixation and Oxygen Production

    PubMed Central

    Hancke, Kasper; Dalsgaard, Tage; Sejr, Mikael Kristian; Markager, Stiig; Glud, Ronnie Nøhr

    2015-01-01

    Accurate quantification of pelagic primary production is essential for quantifying the marine carbon turnover and the energy supply to the food web. Knowing the electron requirement (Κ) for carbon (C) fixation (Κ C) and oxygen (O2) production (Κ O2), variable fluorescence has the potential to quantify primary production in microalgae, and hereby increasing spatial and temporal resolution of measurements compared to traditional methods. Here we quantify Κ C and Κ O2 through measures of Pulse Amplitude Modulated (PAM) fluorometry, C fixation and O2 production in an Arctic fjord (Godthåbsfjorden, W Greenland). Through short- (2h) and long-term (24h) experiments, rates of electron transfer (ETRPSII), C fixation and/or O2 production were quantified and compared. Absolute rates of ETR were derived by accounting for Photosystem II light absorption and spectral light composition. Two-hour incubations revealed a linear relationship between ETRPSII and gross 14C fixation (R2 = 0.81) during light-limited photosynthesis, giving a Κ C of 7.6 ± 0.6 (mean ± S.E.) mol é (mol C)−1. Diel net rates also demonstrated a linear relationship between ETRPSII and C fixation giving a Κ C of 11.2 ± 1.3 mol é (mol C)−1 (R2 = 0.86). For net O2 production the electron requirement was lower than for net C fixation giving 6.5 ± 0.9 mol é (mol O2)−1 (R2 = 0.94). This, however, still is an electron requirement 1.6 times higher than the theoretical minimum for O2 production [i.e. 4 mol é (mol O2)−1]. The discrepancy is explained by respiratory activity and non-photochemical electron requirements and the variability is discussed. In conclusion, the bio-optical method and derived electron requirement support conversion of ETR to units of C or O2, paving the road for improved spatial and temporal resolution of primary production estimates. PMID:26218096

  3. SEARCH: Study of Environmental Arctic Change—A System-scale, Cross-disciplinary Arctic Research Program

    NASA Astrophysics Data System (ADS)

    Wiggins, H. V.; Eicken, H.; Fox, S. E.; Search Science Steering Committee

    2010-12-01

    The Study of Environmental Arctic Change (SEARCH) is a multi-agency effort to understand system-scale arctic change. Interrelated environmental changes in the Arctic are affecting ecosystems and living resources and are impacting local and global communities. The SEARCH program is guided by the Science Steering Committee (SSC), the Interagency Program Management Committee (IPMC), and focused panels. Over 150 projects and activities contribute to SEARCH implementation. The Observing Change component is underway through the National Science Foundation’s (NSF) Arctic Observing Network (AON), NOAA-sponsored atmospheric and sea ice observations, and other relevant national and international efforts. The Understanding Change component of SEARCH consists of modeling and analysis efforts, with strong linkages to relevant programs such as NSF’s Arctic System Science (ARCSS) Program. The SEARCH Sea Ice Outlook (http://www.arcus.org/search/seaiceoutlook/index.php) is an "Understanding Change" synthesis effort that aims to advance our understanding of the arctic sea ice system. The Responding to Change element currently includes initial planning efforts by the International Study of Arctic Change (ISAC) program as well as a newly-launched "Sea Ice for Walrus Outlook," which is a weekly report of sea ice conditions geared to Alaska Native walrus subsistence hunters, coastal communities, and others interested in sea ice and walrus (http://www.arcus.org/search/siwo). SEARCH is sponsored by eight U.S. agencies, including: the National Science Foundation (NSF), the National Oceanic and Atmospheric Administration (NOAA), the National Aeronautics and Space Administration (NASA), the Department of Defense (DOD), the Department of Energy (DOE), the Department of the Interior (DOI), the Smithsonian Institution, and the U.S. Department of Agriculture (USDA). The U.S. Arctic Research Commission participates as an IPMC observer. For further information, please visit the website: http

  4. ArcticDEM Year 3; Improving Coverage, Repetition and Resolution

    NASA Astrophysics Data System (ADS)

    Morin, P. J.; Porter, C. C.; Cloutier, M.; Howat, I.; Noh, M. J.; Willis, M. J.; Candela, S. G.; Bauer, G.; Kramer, W.; Bates, B.; Williamson, C.

    2017-12-01

    Surface topography is among the most fundamental data sets for geosciences, essential for disciplines ranging from glaciology to geodynamics. The ArcticDEM project is using sub-meter, commercial imagery licensed by the National Geospatial-Intelligence Agency, petascale computing, and open source photogrammetry software to produce a time-tagged 2m posting elevation model and a 5m posting mosaic of the entire Arctic region. As ArcticDEM enters its third year, the region has gone from having some of the sparsest and poorest elevation data to some of the most precise and complete data of any region on the globe. To date, we have produced and released over 80,000,000 km2 as 57,000 - 2m posting, time-stamped DEMs. The Arctic, on average, is covered four times though there are hotspots with more than 100 DEMs. In addition, the version 1 release includes a 5m posting mosaic covering the entire 20,000,000 km2 region. All products are publically available through arctidem.org, ESRI web services, and a web viewer. The final year of the project will consist of a complete refiltering of clouds/water and re-mosaicing of all elevation data. Since inception of the project, post-processing techniques have improved significantly, resulting in fewer voids, better registration, sharper coastlines, and fewer inaccuracies due to clouds. All ArcticDEM data will be released in 2018. Data, documentation, web services and web viewer are available at arcticdem.org

  5. Emergent Behavior of Arctic Precipitation in Response to Enhanced Arctic Warming

    NASA Astrophysics Data System (ADS)

    Anderson, Bruce T.; Feldl, Nicole; Lintner, Benjamin R.

    2018-03-01

    Amplified warming of the high latitudes in response to human-induced emissions of greenhouse gases has already been observed in the historical record and is a robust feature evident across a hierarchy of model systems, including the models of the Coupled Model Intercomparison Project Phase 5 (CMIP5). The main aims of this analysis are to quantify intermodel differences in the Arctic amplification (AA) of the global warming signal in CMIP5 RCP8.5 (Representative Concentration Pathway 8.5) simulations and to diagnose these differences in the context of the energy and water cycles of the region. This diagnosis reveals an emergent behavior between the energetic and hydrometeorological responses of the Arctic to warming: in particular, enhanced AA and its associated reduction in dry static energy convergence is balanced to first order by latent heating via enhanced precipitation. This balance necessitates increasing Arctic precipitation with increasing AA while at the same time constraining the magnitude of that precipitation increase. The sensitivity of the increase, 1.25 (W/m2)/K ( 240 (km3/yr)/K), is evident across a broad range of historical and projected AA values. Accounting for the energetic constraint on Arctic precipitation, as a function of AA, in turn informs understanding of both the sign and magnitude of hydrologic cycle changes that the Arctic may experience.

  6. Morphology-dependent water budgets and nutrient fluxes in arctic thaw ponds

    USGS Publications Warehouse

    Koch, Joshua C.; Gurney, Kirsty; Wipfli, Mark S.

    2014-01-01

    Thaw ponds on the Arctic Coastal Plain of Alaska are productive ecosystems, providing habitat and food resources for many fish and bird species. Permafrost in this region creates unique pond morphologies: deep troughs, shallow low-centred polygons (LCPs) and larger coalescent ponds. By monitoring seasonal trends in pond volume and chemistry, we evaluated whether pond morphology and size affect water temperature and desiccation, and nitrogen (N) and phosphorus (P) fluxes. Evaporation was the largest early-summer water flux in all pond types. LCPs dried quickly and displayed high early-summer nutrient concentrations and losses. Troughs consistently received solute-rich subsurface inflows, which accounted for 12 to 42 per cent of their volume and may explain higher P in the troughs. N to P ratios increased and ammonium concentrations decreased with pond volume, suggesting that P and inorganic N availability may limit ecosystem productivity in older, larger ponds. Arctic summer temperatures will likely increase in the future, which may accelerate mid-summer desiccation. Given their morphology, troughs may remain wet, become warmer and derive greater nutrient loads from their thawing banks. Overall, seasonal- to decadal-scale warming may increase ecosystem productivity in troughs relative to other Arctic Coastal Plain ponds. 

  7. Energy fluxes retrieval on an Alaskan Arctic and Sub-Arctic vegetation by means MODIS imagery and the DTD method

    NASA Astrophysics Data System (ADS)

    Cristobal, J.; Prakash, A.; Starkenburg, D. P.; Fochesatto, G. J.; Anderson, M. C.; Gens, R.; Kane, D. L.; Kustas, W.; Alfieri, J. G.

    2012-12-01

    Evapotranspiration (ET) plays a significant role in the hydrologic cycle of Arctic and Sub-Arctic basins. Surface-atmosphere exchanges due to ET are estimated from water balance computations to be about 74% of summer precipitation or 50% of annual precipitation. Even though ET is a significant component of the hydrologic cycle in this region, the bulk estimates don't accurately account for spatial and temporal variability due to vegetation type, topography, etc. (Kane and Yang, 2004). Nowadays, remote sensing is the only technology capable of providing the necessary radiometric measurements for the calculation of the ET at global scales and in a feasible economic way, especially in Arctic and Sub-Arctic Alaskan basins with a very sparse network of both meteorological and flux towers. In this work we present the implementation and validation of the Dual-Time-Difference model (Kustas et al., 2001) to retrieve energy fluxes (ET, sensible heat flux, net radiation and soil heat flux) in tundra vegetation in Arctic conditions and in a black spruce (Picea mariana) forest in Sub-Arctic conditions. In order to validate the model in tundra vegetation we used a flux tower from the Imnavait Creek sites of the Arctic Observatory Network (Euskirchen et al. 2012). In the case of the black spruce forest, on September 2011 we installed a flux tower in the University of Alaska Fairbanks north campus that includes an eddy-covariance system as well a net radiometer, air temperature probes, soil heat flux plates, soil moisture sensors and thermistors to fully estimate energy fluxes in the field (see http://www.et.alaska.edu/ for further details). Additionally, in order to upscale energy fluxes into MODIS spatial resolution, a scintillometer was also installed covering 1.2 km across the flux tower. DTD model mainly requires meteorological inputs as well as land surface temperature (LST) and leaf area index (LAI) data, both coming from satellite imagery, at two different times: after

  8. Increasing frequency and duration of Arctic winter warming events

    NASA Astrophysics Data System (ADS)

    Graham, R. M.; Cohen, L.; Petty, A.; Boisvert, L.; Rinke, A.; Hudson, S. R.; Nicolaus, M.; Granskog, M. A.

    2017-12-01

    Record low Arctic sea ice extents were observed during the last three winter seasons (March). During each of these winters, near-surface air temperatures close to 0°C were observed, in situ, over sea ice in the central Arctic. Recent media reports and scientific studies suggest that such winter warming events were unprecedented for the Arctic. Here we use in situ winter (December-March) temperature observations, such as those from Soviet North Pole drifting stations and ocean buoys, to determine how common Arctic winter warming events are. The earliest record we find of a winter warming event was in March 1896, where a temperature of -3.7˚C was observed at 84˚N during the Fram expedition. Observations of winter warming events exist over most of the Arctic Basin. Despite a limited observational network, temperatures exceeding -5°C were measured in situ during more than 30% of winters from 1954 to 2010, by either North Pole drifting stations or ocean buoys. Correlation coefficients between the atmospheric reanalysis, ERA-Interim, and these in-situ temperature records are shown to be on the order of 0.90. This suggests that ERA-Interim is a suitable tool for studying Arctic winter warming events. Using the ERA-Interim record (1979-2016), we show that the North Pole (NP) region typically experiences 10 warming events (T2m > -10°C) per winter, compared with only five in the Pacific Central Arctic (PCA). We find a positive trend in the overall duration of winter warming events for both the NP region (4.25 days/decade) and PCA (1.16 days/decade), due to an increased number of events of longer duration.

  9. Community respiration/production and bacterial activity in the upper water column of the central Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Sherr, Barry F.; Sherr, Evelyn B.

    2003-04-01

    Community metabolism (respiration and production) and bacterial activity were assessed in the upper water column of the central Arctic Ocean during the SHEBA/JOIS ice camp experiment, October 1997-September 1998. In the upper 50 m, decrease in integrated dissolved oxygen (DO) stocks over a period of 124 d in mid-winter suggested a respiration rate of ˜3.3 nM O 2 h -1 and a carbon demand of ˜4.5 gC m -2. Increase in 0-50 m integrated stocks of DO during summer implied a net community production of ˜20 gC m -2. Community respiration rates were directly measured via rate of decrease in DO in whole seawater during 72-h dark incubation experiments. Incubation-based respiration rates were on average 3-fold lower during winter (11.0±10.6 nM O 2 h -1) compared to summer (35.3±24.8 nM O 2 h -1). Bacterial heterotrophic activity responded strongly, without noticeable lag, to phytoplankton growth. Rate of leucine incorporation by bacteria (a proxy for protein synthesis and cell growth) increased ˜10-fold, and the cell-specific rate of leucine incorporation ˜5-fold, from winter to summer. Rates of production of bacterial biomass in the upper 50 m were, however, low compared to other oceanic regions, averaging 0.52±0.47 ngC l -1 h -1 during winter and 5.1±3.1 ngC l -1 h -1 during summer. Total carbon demand based on respiration experiments averaged 2.4±2.3 mgC m -3 d -1 in winter and 7.8±5.5 mgC m -3 d -1 in summer. Estimated bacterial carbon demand based on bacterial productivity and an assumed 10% gross growth efficiency was much lower, averaging about 0.12±0.12 mgC m -3 d -1 in winter and 1.3±0.7 mgC m -3 d -1 in summer. Our estimates of bacterial activity during summer were an order of magnitude less than rates reported from a summer 1994 study in the central Arctic Ocean, implying significant inter-annual variability of microbial processes in this region.

  10. Empirical and modeled synoptic cloud climatology of the Arctic Ocean

    NASA Technical Reports Server (NTRS)

    Barry, R. G.; Newell, J. P.; Schweiger, A.; Crane, R. G.

    1986-01-01

    A set of cloud cover data were developed for the Arctic during the climatically important spring/early summer transition months. Parallel with the determination of mean monthly cloud conditions, data for different synoptic pressure patterns were also composited as a means of evaluating the role of synoptic variability on Arctic cloud regimes. In order to carry out this analysis, a synoptic classification scheme was developed for the Arctic using an objective typing procedure. A second major objective was to analyze model output of pressure fields and cloud parameters from a control run of the Goddard Institue for Space Studies climate model for the same area and to intercompare the synoptic climatatology of the model with that based on the observational data.

  11. Exclusion by interference competition? The relationship between red and arctic foxes.

    PubMed

    Tannerfeldt, Magnus; Elmhagen, Bodil; Angerbjörn, Anders

    2002-07-01

    The distribution of many predators may be limited by interactions with larger predator species. The arctic fox in mainland Europe is endangered, while the red fox is increasing its range in the north. It has been suggested that the southern distribution limit of the arctic fox is determined by interspecific competition with the red fox. This has been criticised, on the basis that the species co-exist on a regional scale. However, if the larger red fox is superior and interspecific competition important, the arctic fox should avoid close contact, especially during the breeding season. Consequently, the distribution of breeding dens for the two species would be segregated on a much smaller spatial and temporal scale, in areas where they are sympatric. We tested this hypothesis by analysing den use of reproducing arctic and red foxes over 9 years in Sweden. High quality dens were inhabited by reproducing arctic foxes more often when no red foxes bred in the vicinity. Furthermore, in two out of three cases when arctic foxes did reproduce near red foxes, juveniles were killed by red foxes. We also found that breeding arctic foxes occupied dens at higher altitudes than red foxes did. In a large-scale field experiment, red foxes were removed, but the results were not conclusive. However, we conclude that on the scale of individual territories, arctic foxes avoid areas with red foxes. Through interspecific interference competition, the red fox might thus be excluding the arctic fox from breeding in low altitude habitat, which is most important in years when food abundance is limited and competition is most fierce. With high altitude refuges being less suitable, even small-scale behavioural effects could scale up to significant effects at the population level.

  12. Impact of Holocene climate variability on Arctic vegetation

    NASA Astrophysics Data System (ADS)

    Gajewski, K.

    2015-10-01

    This paper summarizes current knowledge about the postglacial history of the vegetation of the Canadian Arctic Archipelago (CAA) and Greenland. Available pollen data were used to understand the initial migration of taxa across the Arctic, how the plant biodiversity responded to Holocene climate variability, and how past climate variability affected primary production of the vegetation. Current evidence suggests that most of the flora arrived in the area during the Holocene from Europe or refugia south or west of the region immediately after local deglaciation, indicating rapid dispersal of propagules to the region from distant sources. There is some evidence of shrub species arriving later in Greenland, but it is not clear if this is dispersal limited or a response to past climates. Subsequent climate variability had little effect on biodiversity across the CAA, with some evidence of local extinctions in areas of Greenland in the late Holocene. The most significant impact of climate changes is on vegetation density and/or plant production.

  13. Arctic Security Considerations and the U.S. Navy’s Roadmap for the Arctic

    DTIC Science & Technology

    2010-01-01

    observed in the sea, in the air, and on land. Indigenous Arctic people are facing relocation and loss of communities as sea-ice melt causes increased...sea-ice melting associated with global climate change has caused leadersfrom the United States and the international community to reconsider the...of the Navy as a valued partner by the joint, interagency, and international communities . THE CHANGING ARCTIC ENVIRONMENT The Arctic has long been a

  14. Continental Margins of the Arctic Ocean: Implications for Law of the Sea

    NASA Astrophysics Data System (ADS)

    Mosher, David

    2016-04-01

    A coastal State must define the outer edge of its continental margin in order to be entitled to extend the outer limits of its continental shelf beyond 200 M, according to article 76 of the UN Convention on the Law of the Sea. The article prescribes the methods with which to make this definition and includes such metrics as water depth, seafloor gradient and thickness of sediment. Note the distinction between the "outer edge of the continental margin", which is the extent of the margin after application of the formula of article 76, and the "outer limit of the continental shelf", which is the limit after constraint criteria of article 76 are applied. For a relatively small ocean basin, the Arctic Ocean reveals a plethora of continental margin types reflecting both its complex tectonic origins and its diverse sedimentation history. These factors play important roles in determining the extended continental shelves of Arctic coastal States. This study highlights the critical factors that might determine the outer edge of continental margins in the Arctic Ocean as prescribed by article 76. Norway is the only Arctic coastal State that has had recommendations rendered by the Commission on the Limits of the Continental Shelf (CLCS). Russia and Denmark (Greenland) have made submissions to the CLCS to support their extended continental shelves in the Arctic and are awaiting recommendations. Canada has yet to make its submission and the US has not yet ratified the Convention. The various criteria that each coastal State has utilized or potentially can utilize to determine the outer edge of the continental margin are considered. Important criteria in the Arctic include, 1) morphological continuity of undersea features, such as the various ridges and spurs, with the landmass, 2) the tectonic origins and geologic affinities with the adjacent land masses of the margins and various ridges, 3) sedimentary processes, particularly along continental slopes, and 4) thickness and

  15. The role of sustained observations and data co-management in Arctic Ocean governance

    NASA Astrophysics Data System (ADS)

    Eicken, H.; Lee, O. A.; Rupp, S. T.; Trainor, S.; Walsh, J. E.

    2015-12-01

    Rapid environmental change, a rise in maritime activities and resource development, and increasing engagement by non-Arctic nations are key to major shifts underway in Arctic social-environmental systems (SES). These shifts are triggering responses by policy makers, regulators and a range of other actors in the Arctic Ocean region. Arctic science can play an important role in informing such responses, in particular by (i) providing data from sustained observations to serve as indicators of change and major transitions and to inform regulatory and policy response; (ii) identifying linkages across subsystems of Arctic SES and across regions; (iii) providing predictions or scenarios of future states of Arctic SES; and (iv) informing adaptation action in response to rapid change. Policy responses to a changing Arctic are taking a multi-faceted approach by advancing international agreements through the Arctic Council (e.g., Search and Rescue Agreement), global forums (e.g., IMO Polar Code) or private sector instruments (e.g., ISO code for offshore structures). At the regional level, co-management of marine living resources involving local, indigenous stakeholders has proven effective. All of these approaches rely on scientific data and information for planning and decision-making. Examples from the Pacific Arctic sector illustrate how such relevant data is currently collected through a multitude of different government agencies, universities, and private entities. Its effective use in informing policy, planning and emergency response requires coordinated, sustained acquisition, common standards or best practices, and data sharing agreements - best achieved through data co-management approaches. For projections and scenarios of future states of Arctic SES, knowledge co-production that involves all relevant stakeholders and specifically addresses major sources of uncertainty is of particular relevance in an international context.

  16. The Arctic-Subarctic Sea Ice System is Entering a Seasonal Regime: Implications for Future Arctic Amplication

    NASA Astrophysics Data System (ADS)

    Haine, T. W. N.; Martin, T.

    2017-12-01

    The loss of Arctic sea ice is a conspicuous example of climate change. Climate models project ice-free conditions during summer this century under realistic emission scenarios, reflecting the increase in seasonality in ice cover. To quantify the increased seasonality in the Arctic-Subarctic sea ice system, we define a non-dimensional seasonality number for sea ice extent, area, and volume from satellite data and realistic coupled climate models. We show that the Arctic-Subarctic, i.e. the northern hemisphere, sea ice now exhibits similar levels of seasonality to the Antarctic, which is in a seasonal regime without significant change since satellite observations began in 1979. Realistic climate models suggest that this transition to the seasonal regime is being accompanied by a maximum in Arctic amplification, which is the faster warming of Arctic latitudes compared to the global mean, in the 2010s. The strong link points to a peak in sea-ice-related feedbacks that occurs long before the Arctic becomes ice-free in summer.

  17. Carbon cycle uncertainty in the Alaskan Arctic

    NASA Astrophysics Data System (ADS)

    Fisher, J. B.; Sikka, M.; Oechel, W. C.; Huntzinger, D. N.; Melton, J. R.; Koven, C. D.; Ahlström, A.; Arain, A. M.; Baker, I.; Chen, J. M.; Ciais, P.; Davidson, C.; Dietze, M.; El-Masri, B.; Hayes, D.; Huntingford, C.; Jain, A.; Levy, P. E.; Lomas, M. R.; Poulter, B.; Price, D.; Sahoo, A. K.; Schaefer, K.; Tian, H.; Tomelleri, E.; Verbeeck, H.; Viovy, N.; Wania, R.; Zeng, N.; Miller, C. E.

    2014-02-01

    Climate change is leading to a disproportionately large warming in the high northern latitudes, but the magnitude and sign of the future carbon balance of the Arctic are highly uncertain. Using 40 terrestrial biosphere models for Alaska, we provide a baseline of terrestrial carbon cycle structural and parametric uncertainty, defined as the multi-model standard deviation (σ) against the mean (x\\bar) for each quantity. Mean annual uncertainty (σ/x\\bar) was largest for net ecosystem exchange (NEE) (-0.01± 0.19 kg C m-2 yr-1), then net primary production (NPP) (0.14 ± 0.33 kg C m-2 yr-1), autotrophic respiration (Ra) (0.09 ± 0.20 kg C m-2 yr-1), gross primary production (GPP) (0.22 ± 0.50 kg C m-2 yr-1), ecosystem respiration (Re) (0.23 ± 0.38 kg C m-2 yr-1), CH4 flux (2.52 ± 4.02 g CH4 m-2 yr-1), heterotrophic respiration (Rh) (0.14 ± 0.20 kg C m-2 yr-1), and soil carbon (14.0± 9.2 kg C m-2). The spatial patterns in regional carbon stocks and fluxes varied widely with some models showing NEE for Alaska as a strong carbon sink, others as a strong carbon source, while still others as carbon neutral. Additionally, a feedback (i.e., sensitivity) analysis was conducted of 20th century NEE to CO2 fertilization (β) and climate (γ), which showed that uncertainty in γ was 2x larger than that of β, with neither indicating that the Alaskan Arctic is shifting towards a certain net carbon sink or source. Finally, AmeriFlux data are used at two sites in the Alaskan Arctic to evaluate the regional patterns; observed seasonal NEE was captured within multi-model uncertainty. This assessment of carbon cycle uncertainties may be used as a baseline for the improvement of experimental and modeling activities, as well as a reference for future trajectories in carbon cycling with climate change in the Alaskan Arctic.

  18. Remote sensing of the Canadian Arctic: Modelling biophysical variables

    NASA Astrophysics Data System (ADS)

    Liu, Nanfeng

    It is anticipated that Arctic vegetation will respond in a variety of ways to altered temperature and precipitation patterns expected with climate change, including changes in phenology, productivity, biomass, cover and net ecosystem exchange. Remote sensing provides data and data processing methodologies for monitoring and assessing Arctic vegetation over large areas. The goal of this research was to explore the potential of hyperspectral and high spatial resolution multispectral remote sensing data for modelling two important Arctic biophysical variables: Percent Vegetation Cover (PVC) and the fraction of Absorbed Photosynthetically Active Radiation (fAPAR). A series of field experiments were conducted to collect PVC and fAPAR at three Canadian Arctic sites: (1) Sabine Peninsula, Melville Island, NU; (2) Cape Bounty Arctic Watershed Observatory (CBAWO), Melville Island, NU; and (3) Apex River Watershed (ARW), Baffin Island, NU. Linear relationships between biophysical variables and Vegetation Indices (VIs) were examined at different spatial scales using field spectra (for the Sabine Peninsula site) and high spatial resolution satellite data (for the CBAWO and ARW sites). At the Sabine Peninsula site, hyperspectral VIs exhibited a better performance for modelling PVC than multispectral VIs due to their capacity for sampling fine spectral features. The optimal hyperspectral bands were located at important spectral features observed in Arctic vegetation spectra, including leaf pigment absorption in the red wavelengths and at the red-edge, leaf water absorption in the near infrared, and leaf cellulose and lignin absorption in the shortwave infrared. At the CBAWO and ARW sites, field PVC and fAPAR exhibited strong correlations (R2 > 0.70) with the NDVI (Normalized Difference Vegetation Index) derived from high-resolution WorldView-2 data. Similarly, high spatial resolution satellite-derived fAPAR was correlated to MODIS fAPAR (R2 = 0.68), with a systematic

  19. Arctic marine ecosystem contamination.

    PubMed

    Muir, D C; Wagemann, R; Hargrave, B T; Thomas, D J; Peakall, D B; Norstrom, R J

    1992-07-15

    The current state of knowledge of levels, spatial and temporal trends of contaminants in the Arctic marine ecosystem varies greatly among pollutants and among environmental compartments. Levels of polychlorinated biphenyls (PCBs), organochlorine (OC) pesticides and some heavy metals such as mercury and lead, in Arctic marine mammals and fish are relatively well documented because of the need for comparisons with biota in more polluted environments and interest in the contamination of native diets. Levels of heavy metals, alkanes, polyaromatic hydrocarbons (PAH) and OCs in the Arctic Ocean are comparable to uncontaminated ocean waters in the mid-latitudes. But concentrations of alpha- and gamma-hexachlorocyclohexane (HCHs) are higher in northern waters far removed from local sources, possibly because lower water temperature reduces transfer to the atmosphere. Bioaccumulation of OCs and heavy metals in Arctic marine food chains begins with epontic ice algae or phytoplankton in surface waters. Polychlorinated camphenes (PCC), PCBs, DDT- and chlordane-related compounds are the major OCs in marine fish, mammals and seabirds. Mean concentrations of most PCBs and OC pesticides in ringed seal (Phoca hispida) and polar bear (Ursus maritimus) populations in the Canadian Arctic are quite similar indicating a uniform geographic distribution of contamination, although alpha-HCH showed a distinct latitudinal gradient in bears due to higher levels in zones influenced by continental runoff. Ringed seals from Spitzbergen have higher levels of PCBs, total DDT and polychlorinated dioxins/furans (PCDD/PCDFs). In contrast to other OCs, PCDD/PCDFs in Canadian Arctic ringed seals and polar bears were higher in the east/central Arctic than at more southerly locations. Remarkably high cadmium levels are found in kidney and liver of narwhal (Monodons monoceros) from western Baffin Bay (mean of 63.5 micrograms g-1) and western Greenland waters (median of 39.5 micrograms g-1). Mercury

  20. Changes in Arctic and Boreal ecosystems of North America: Integrating Recent Results from the Field, Remote Sensing and Ecosystem Models

    NASA Astrophysics Data System (ADS)

    Goetz, S. J.; Rogers, B. M.; Mack, M. C.; Goulden, M.; Pastick, N. J.; Berner, L. T.; Fisher, J.

    2017-12-01

    The Arctic and boreal forest biomes have global significance in terms of climate feedbacks associated with land surface interactions with the atmosphere. Changes in Arctic tundra and boreal forest ecosystem productivity and fire disturbance feedbacks have been well documented in recent years, but findings are often only locally relevant and are sometimes inconsistent among research teams. Part of these inconsistencies lie in utilization of different data sets and time periods considered. Integrated approaches are thus needed to adequately address changes in these ecosystems in order to assess consistency and variability of change, as well as ecosystem vulnerability and resiliency across spatial and temporal scales. Ultimately this can best be accomplished via multiple lines of evidence including remote sensing, field measurements and various types of data-constrained models. We will discuss some recent results integrating multiple lines of evidence for directional ecosystem change in the Arctic and boreal forest biomes of North America. There is increasing evidence for widespread spatial and temporal variability in Arctic and boreal ecosystem productivity changes that are strongly influenced by cycles of changing fire disturbance severity and its longer-term implications (i.e legacy effects). Integrated, multi-approach research, like that currently underway as part of the NASA-led Arctic Boreal Vulnerability Experiment (above.nasa.gov), is an effective way to capture the complex mechanisms that drive patterns and directionality of ecosystem structure and function, and ultimately determine feedbacks to environmental change, particularly in the context of global climate change. Additional ongoing ABoVE research will improve our understanding of the consequences of environmental changes underway, as well as increase our confidence in making projections of the ecosystem responses, vulnerability and resilience to change. ABoVE will also build a lasting legacy of

  1. Selection of priority investment projects for the development of the Russian Arctic

    NASA Astrophysics Data System (ADS)

    Novoselov, A.; Potravny, I.; Novoselova, I.; Gassiy, V.

    2017-12-01

    In the Russian Arctic, there is currently an active process of preparation and implementation of investment projects aiming to extract natural resources, with the aim of sustainable socioeconomic development of the region. These projects are associated with the development of key zones in the Arctic and involve the exploration for and production of minerals (diamonds, gold, rare-earth metals, oil, and gas) and the development of energy and infrastructure (e.g., the Northern Sea Route). Such projects, which are often carried out in territories of traditional nature management belonging to the indigenous peoples of the North, must consider their environmental and social responsibility and the preservation of the ethnic identity and culture of indigenous peoples. The extraction of mineral deposits in the Arctic and the Far North places new demands on subsoil users, related to the preservation and development of the socio-cultural environment of the indigenous peoples of the North and to the ecological rehabilitation of the area. This article presents economic and mathematical models for selecting the optimal development project options based on the pairwise comparison of investment projects and the evaluation of indigenous peoples' preferences. We investigated the investment projects' impact on traditional territories in the Arctic, including the Republic of Sakha (Yakutia), in terms of socioeconomic and ethnological development, and environmental change. The suggested system of models can be used to assess the priority of projects supporting and developing the region in the mining corporation's area of responsibility. The proposed models are based on fuzzy set theory, which provides an effective assessment of the population's preferences for projects. Data are processed using the hierarchy analysis method and multivariate optimization calculations to determine the project sets at different funding levels. The creation of information-linked processing models is

  2. The Arctic zone: possibilities and risks of development

    NASA Astrophysics Data System (ADS)

    Sentsov, A.; Bolsunovskaya, Y.; Melnikovich, E.

    2016-09-01

    The authors analyze the Arctic region innovative possibilities from the perspective of political ideology and strategy. The Arctic region with its natural resources and high economic potential attracts many companies and it has become an important area of transnational development. At present, the Arctic region development is of great importance in terms of natural resource management and political system development. However, the most important development issue in the Arctic is a great risk of different countries’ competing interests in economic, political, and legal context. These are challenges for international partnership creating in the Arctic zone, Russian future model developing for the Arctic, and recognition of the Arctic as an important resource for the Russians. The Russian economic, military, and political expansion in the Arctic region has the potential to strengthen the national positions. The authors present interesting options for minimizing and eliminating political risks during the Arctic territories development and define an effective future planning model for the Russian Arctic.

  3. The Arctic Coastal Erosion Problem

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frederick, Jennifer M.; Thomas, Matthew Anthony; Bull, Diana L.

    Permafrost-dominated coastlines in the Arctic are rapidly disappearing. Arctic coastal erosion rates in the United States have doubled since the middle of the twentieth century and appear to be accelerating. Positive erosion trends have been observed for highly-variable geomorphic conditions across the entire Arctic, suggesting a major (human-timescale) shift in coastal landscape evolution. Unfortunately, irreversible coastal land loss in this region poses a threat to native, industrial, scientific, and military communities. The Arctic coastline is vast, spanning more than 100,000 km across eight nations, ten percent of which is overseen by the United States. Much of area is inaccessible bymore » all-season roads. People and infrastructure, therefore, are commonly located near the coast. The impact of the Arctic coastal erosion problem is widespread. Homes are being lost. Residents are being dispersed and their villages relocated. Shoreline fuel storage and delivery systems are at greater risk. The U.S. Department of Energy (DOE) and Sandia National Laboratories (SNL) operate research facilities along some of the most rapidly eroding sections of coast in the world. The U.S. Department of Defense (DOD) is struggling to fortify coastal radar sites, operated to ensure national sovereignty in the air, against the erosion problem. Rapid alterations to the Arctic coastline are facilitated by oceanographic and geomorphic perturbations associated with climate change. Sea ice extent is declining, sea level is rising, sea water temperature is increasing, and permafrost state is changing. The polar orientation of the Arctic exacerbates the magnitude and rate of the environmental forcings that facilitate coastal land area loss. The fundamental mechanics of these processes are understood; their non-linear combination poses an extreme hazard. Tools to accurately predict Arctic coastal erosion do not exist. To obtain an accurate predictive model, a coupling of the influences of

  4. The fate of production in the central Arctic Ocean - top-down regulation by zooplankton expatriates?

    NASA Astrophysics Data System (ADS)

    Olli, Kalle; Wassmann, Paul; Reigstad, Marit; Ratkova, Tatjana N.; Arashkevich, Elena; Pasternak, Anna; Matrai, Patricia A.; Knulst, Johan; Tranvik, Lars; Klais, Riina; Jacobsen, A.

    2007-01-01

    We estimated primary and bacterial production, mineral nutrients, suspended chlorophyll a (Chl), particulate organic carbon (POC) and nitrogen (PON), abundance of planktonic organisms, mesozooplankton fecal pellet production, and the vertical flux of organic particles of the central Arctic Ocean (Amundsen basin, 89-88° N) during a 3 week quasi-Lagrangian ice drift experiment at the peak of the productive season (August 2001). A visual estimate of ≈15% ice-free surface, plus numerous melt ponds on ice sheets, supported a planktonic particulate primary production of 50-150 mg C m -2 d -1 (mean 93 mg C m -2 d -1, n = 7), mostly confined to the upper 10 m of the nutrient replete water column. The surface mixed layer was separated from the rest of the water column by a strong halocline at 20 m depth. Phototrophic biomass was low, generally 0.03-0.3 mg Chl m -3 in the upper 20 m and <0.02 mg Chl m -3 below, dominated by various flagellates, dinoflagellates and diatoms. Bacterial abundance (typically 3.7-5.3 × 10 5, mean 4.1 × 10 5 cells ml -1 in the upper 20 m and 1.3-3.7 × 10 5, mean 1.9 × 10 5 cells ml -1 below) and Chl concentrations were closely correlated ( r = 0.75). Mineral nutrients (3 μmol NO 3 l -1, 0.45 μmol PO 4 l -1, 4-5 μmol SiO 4 l -1) were probably not limiting the primary production in the upper layer. Suspended POC concentration was ∼30-105 (mean 53) mg C m -3 and PON ∼5.4-14.9 (mean 8.2) mg N m -3 with no clear vertical trend. The vertical flux of POC in the upper 30-100 m water column was ∼37-92 (mean 55) mg C m -2 d -1 without clear decrease with depth, and was quite similar at the six investigated stations. The mesozooplankton biomass (≈2 g DW m -2, mostly in the upper 50 m water column) was dominated by adult females of the large calanoid copepods Calanus hyperboreus and Calanus glacialis (≈1.6 g DW m -2). The grazing of these copepods (estimated via fecal pellet production rates) was ≈15 mg C m -2 d -1, being on the order of

  5. CryoSat-2 altimetry derived Arctic bathymetry map: first results and validation

    NASA Astrophysics Data System (ADS)

    Andersen, O. B.; Abulaitijiang, A.; Cancet, M.; Knudsen, P.

    2017-12-01

    The Technical University of Denmark (DTU), DTU Space has been developing high quality high resolution gravity fields including the new highly accurate CryoSat-2 radar altimetry satellite data which extends the global coverage of altimetry data up to latitude 88°. With its exceptional Synthetic Aperture Radar (SAR) mode being operating throughout the Arctic Ocean, leads, i.e., the ocean surface heights, is used to retrieve the sea surface height with centimeter-level range precision. Combined with the long repeat cycle ( 369 days), i.e., dense cross-track coverage, the high-resolution Arctic marine gravity can be modelled using the CryoSat-2 altimetry. Further, the polar gap can be filled by the available ArcGP product, thus yielding the complete map of the Arctic bathymetry map. In this presentation, we will make use of the most recent DTU17 marine gravity, to derive the arctic bathymetry map using inversion based on best available hydrographic maps. Through the support of ESA a recent evaluation of existing hydrographic models of the Arctic Ocean Bathymetry models (RTOPO, GEBCO, IBCAO etc) and various inconsistencies have been identified and means to rectify these inconsistencies have been taken prior to perform the inversion using altimetry. Simultaneously DTU Space has been placing great effort on the Arctic data screening, filtering, and de-noising using various altimetry retracking solutions and classifications. All the pre-processing contributed to the fine modelling of Actic gravity map. Thereafter, the arctic marine gravity grids will eventually be translated (downward continuation operation) to a new altimetry enhanced Arctic bathymetry map using appropriate band-pass filtering.

  6. Endoparasites in the feces of arctic foxes in a terrestrial ecosystem in Canada

    PubMed Central

    Elmore, Stacey A.; Lalonde, Laura F.; Samelius, Gustaf; Alisauskas, Ray T.; Gajadhar, Alvin A.; Jenkins, Emily J.

    2013-01-01

    The parasites of arctic foxes in the central Canadian Arctic have not been well described. Canada’s central Arctic is undergoing dramatic environmental change, which is predicted to cause shifts in parasite and wildlife species distributions, and trophic interactions, requiring that baselines be established to monitor future alterations. This study used conventional, immunological, and molecular fecal analysis techniques to survey the current gastrointestinal endoparasite fauna currently present in arctic foxes in central Nunavut, Canada. Ninety-five arctic fox fecal samples were collected from the terrestrial Karrak Lake ecosystem within the Queen Maud Gulf Migratory Bird Sanctuary. Samples were examined by fecal flotation to detect helminths and protozoa, immunofluorescent assay (IFA) to detect Cryptosporidium and Giardia, and quantitative PCR with melt-curve analysis (qPCR-MCA) to detect coccidia. Positive qPCR-MCA products were sequenced and analyzed phylogenetically. Arctic foxes from Karrak Lake were routinely shedding eggs from Toxascaris leonina (63%). Taeniid (15%), Capillarid (1%), and hookworm eggs (2%), Sarcocystis sp. sporocysts 3%), and Eimeria sp. (6%), and Cystoisospora sp. (5%) oocysts were present at a lower prevalence on fecal flotation. Cryptosporidium sp. (9%) and Giardia sp. (16%) were detected by IFA. PCR analysis detected Sarcocystis (15%), Cystoisospora (5%), Eimeria sp., and either Neospora sp. or Hammondia sp. (1%). Through molecular techniques and phylogenetic analysis, we identified two distinct lineages of Sarcocystis sp. present in arctic foxes, which probably derived from cervid and avian intermediate hosts. Additionally, we detected previously undescribed genotypes of Cystoisospora. Our survey of gastrointestinal endoparasites in arctic foxes from the central Canadian Arctic provides a unique record against which future comparisons can be made. PMID:24533320

  7. An inventory of Arctic Ocean data in the World Ocean Database

    NASA Astrophysics Data System (ADS)

    Zweng, Melissa M.; Boyer, Tim P.; Baranova, Olga K.; Reagan, James R.; Seidov, Dan; Smolyar, Igor V.

    2018-03-01

    The World Ocean Database (WOD) contains over 1.3 million oceanographic casts (where cast refers to an oceanographic profile or set of profiles collected concurrently at more than one depth between the ocean surface and ocean bottom) collected in the Arctic Ocean basin and its surrounding marginal seas. The data, collected from 1849 to the present, come from many submitters and countries, and were collected using a variety of instruments and platforms. These data, along with the derived products World Ocean Atlas (WOA) and the Arctic Regional Climatologies, are exceptionally useful - the data are presented in a standardized, easy to use format and include metadata and quality control information. Collecting data in the Arctic Ocean is challenging, and coverage in space and time ranges from excellent to nearly non-existent. WOD continues to compile a comprehensive collection of Arctic Ocean profile data, ideal for oceanographic, environmental and climatic analyses (https://doi.org/10.7289/V54Q7S16).

  8. Tsunami in the Arctic

    NASA Astrophysics Data System (ADS)

    Kulikov, Evgueni; Medvedev, Igor; Ivaschenko, Alexey

    2017-04-01

    The severity of the climate and sparsely populated coastal regions are the reason why the Russian part of the Arctic Ocean belongs to the least studied areas of the World Ocean. In the same time intensive economic development of the Arctic region, specifically oil and gas industry, require studies of potential thread natural disasters that can cause environmental and technical damage of the coastal and maritime infrastructure of energy industry complex (FEC). Despite the fact that the seismic activity in the Arctic can be attributed to a moderate level, we cannot exclude the occurrence of destructive tsunami waves, directly threatening the FEC. According to the IAEA requirements, in the construction of nuclear power plants it is necessary to take into account the impact of all natural disasters with frequency more than 10-5 per year. Planned accommodation in the polar regions of the Russian floating nuclear power plants certainly requires an adequate risk assessment of the tsunami hazard in the areas of their location. Develop the concept of tsunami hazard assessment would be based on the numerical simulation of different scenarios in which reproduced the hypothetical seismic sources and generated tsunamis. The analysis of available geological, geophysical and seismological data for the period of instrumental observations (1918-2015) shows that the highest earthquake potential within the Arctic region is associated with the underwater Mid-Arctic zone of ocean bottom spreading (interplate boundary between Eurasia and North American plates) as well as with some areas of continental slope within the marginal seas. For the Arctic coast of Russia and the adjacent shelf area, the greatest tsunami danger of seismotectonic origin comes from the earthquakes occurring in the underwater Gakkel Ridge zone, the north-eastern part of the Mid-Arctic zone. In this area, one may expect earthquakes of magnitude Mw ˜ 6.5-7.0 at a rate of 10-2 per year and of magnitude Mw ˜ 7.5 at a

  9. Evaluation of Arctic Clouds And Their Response to External Forcing in Climate Models

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Jiang, J. H.; Ming, Y.; Su, H.; Yung, Y. L.

    2017-12-01

    A warming Arctic is undergoing significant environmental changes, mostly evidenced by the reduction in Arctic sea-ice extent (SIE). However, the role of Arctic clouds in determining the sea ice melting remains elusive, as different phases of clouds can induce either positive or negative radiative forcing in different seasons. The possible cloud feedbacks following the opened ocean surface are also debatable due to variations of polar boundary structure. Therefore, Arctic cloud simulation has long been considered as the largest source of uncertainty in the climate sensitivity assessment. Other local or remote atmospheric factors, such as poleward moisture and heat transport as well as atmospheric aerosols seeding liquid and ice clouds, further complicate our understanding of the Arctic cloud change. Our recent efforts focus on the post-CMIP5 and CMIP6 models, which improve atmospheric compositions, cloud macro- and microphysics, convection parameterizations, etc. In this study, we utilize long-term satellite measurements with high-resolution coverage and broad wavelength spectrum to evaluate the mean states and variations of mixed-phase clouds in the Arctic, along with the concurrent moisture and SIE measurements. The model sensitivity experiments to understand external perturbations on the atmosphere-cryosphere coupling in the Arctic will be presented.

  10. Observations of Bromine Chloride (BrCl) at an Arctic Coastal Site

    NASA Astrophysics Data System (ADS)

    McNamara, S. M.; Garner, N.; Wang, S.; Raso, A. R. W.; Thanekar, S.; Fuentes, J. D.; Shepson, P. B.; Pratt, K.

    2017-12-01

    Chlorine and bromine chemistry in the Arctic boundary layer have significant impacts on tropospheric ozone depletion and the fates of atmospheric pollutants such as methane, a greenhouse gas, and mercury. However, there is sparse understanding of halogen production and removal pathways due to a lack of observations. Here, we report chemical ionization mass spectrometry measurements of bromine chloride (BrCl) observed at Utqiaġvik (Barrow), AK during March-May 2016. Over the course of the three-month study, two distinct BrCl diurnal trends were identified, and production mechanisms were explored using 0-dimensional modeling, constrained by a suite of reactive halogen measurements. The findings in this work highlight coupled chlorine and bromine chemistry, as well as halogen activation pathways in the Arctic.

  11. Arctic in Rapid Transition: Priorities for the future of marine and coastal research in the Arctic

    NASA Astrophysics Data System (ADS)

    Werner, Kirstin; Fritz, Michael; Morata, Nathalie; Keil, Kathrin; Pavlov, Alexey; Peeken, Ilka; Nikolopoulos, Anna; Findlay, Helen S.; Kędra, Monika; Majaneva, Sanna; Renner, Angelika; Hendricks, Stefan; Jacquot, Mathilde; Nicolaus, Marcel; O'Regan, Matt; Sampei, Makoto; Wegner, Carolyn

    2016-09-01

    Understanding and responding to the rapidly occurring environmental changes in the Arctic over the past few decades require new approaches in science. This includes improved collaborations within the scientific community but also enhanced dialogue between scientists and societal stakeholders, especially with Arctic communities. As a contribution to the Third International Conference on Arctic Research Planning (ICARPIII), the Arctic in Rapid Transition (ART) network held an international workshop in France, in October 2014, in order to discuss high-priority requirements for future Arctic marine and coastal research from an early-career scientists (ECS) perspective. The discussion encompassed a variety of research fields, including topics of oceanographic conditions, sea-ice monitoring, marine biodiversity, land-ocean interactions, and geological reconstructions, as well as law and governance issues. Participants of the workshop strongly agreed on the need to enhance interdisciplinarity in order to collect comprehensive knowledge about the modern and past Arctic Ocean's geo-ecological dynamics. Such knowledge enables improved predictions of Arctic developments and provides the basis for elaborate decision-making on future actions under plausible environmental and climate scenarios in the high northern latitudes. Priority research sheets resulting from the workshop's discussions were distributed during the ICARPIII meetings in April 2015 in Japan, and are publicly available online.

  12. Dynamics of a recovering Arctic bird population: the importance of climate, density dependence, and site quality

    USGS Publications Warehouse

    Bruggeman, Jason E.; Swem, Ted; Andersen, David E.; Kennedy, Patricia L.; Nigro, Debora A.

    2015-01-01

    Intrinsic and extrinsic factors affect vital rates and population-level processes, and understanding these factors is paramount to devising successful management plans for wildlife species. For example, birds time migration in response, in part, to local and broadscale climate fluctuations to initiate breeding upon arrival to nesting territories, and prolonged inclement weather early in the breeding season can inhibit egg-laying and reduce productivity. Also, density-dependent regulation occurs in raptor populations, as territory size is related to resource availability. Arctic Peregrine Falcons (Falco peregrinus tundrius; hereafter Arctic peregrine) have a limited and northern breeding distribution, including the Colville River Special Area (CRSA) in the National Petroleum Reserve–Alaska, USA. We quantified influences of climate, topography, nest productivity, prey habitat, density dependence, and interspecific competition affecting Arctic peregrines in the CRSA by applying the Dail-Madsen model to estimate abundance and vital rates of adults on nesting cliffs from 1981 through 2002. Arctic peregrine abundance increased throughout the 1980s, which spanned the population's recovery from DDT-induced reproductive failure, until exhibiting a stationary trend in the 1990s. Apparent survival rate (i.e., emigration; death) was negatively correlated with the number of adult Arctic peregrines on the cliff the previous year, suggesting effects of density-dependent population regulation. Apparent survival and arrival rates (i.e., immigration; recruitment) were higher during years with earlier snowmelt and milder winters, and apparent survival was positively correlated with nesting season maximum daily temperature. Arrival rate was positively correlated with average Arctic peregrine productivity along a cliff segment from the previous year and initial abundance was positively correlated with cliff height. Higher cliffs with documented higher productivity (presumably

  13. SEARCH: Study of Environmental Arctic Change--A System-scale, Cross-disciplinary, Long-term Arctic Research Program

    NASA Astrophysics Data System (ADS)

    Wiggins, H. V.; Schlosser, P.; Loring, A. J.; Warnick, W. K.; Committee, S. S.

    2008-12-01

    The Study of Environmental Arctic Change (SEARCH) is a multi-agency effort to observe, understand, and guide responses to changes in the arctic system. Interrelated environmental changes in the Arctic are affecting ecosystems and living resources and are impacting local and global communities and economic activities. Under the SEARCH program, guided by the Science Steering Committee (SSC), the Interagency Program Management Committee (IPMC), and the Observing, Understanding, and Responding to Change panels, scientists with a variety of expertise--atmosphere, ocean and sea ice, hydrology and cryosphere, terrestrial ecosystems, human dimensions, and paleoclimatology--work together to achieve goals of the program. Over 150 projects and activities contribute to SEARCH implementation. The Observing Change component is underway through National Science Foundation's (NSF) Arctic Observing Network (AON), NOAA-sponsored atmospheric and sea ice observations, and other relevant national and international efforts, including the EU- sponsored Developing Arctic Modelling and Observing Capabilities for Long-term Environmental Studies (DAMOCLES) Program. The Understanding Change component of SEARCH consists of modeling and analysis efforts, with strong linkages to relevant programs such as NSF's Arctic System Synthesis (ARCSS) Program. The Responding to Change element is driven by stakeholder research and applications addressing social and economic concerns. As a national program under the International Study of Arctic Change (ISAC), SEARCH is also working to expand international connections in an effort to better understand the global arctic system. SEARCH is sponsored by eight (8) U.S. agencies, including: the National Science Foundation (NSF), the National Oceanic and Atmospheric Administration (NOAA), the National Aeronautics and Space Administration (NASA), the Department of Defense (DOD), the Department of Energy (DOE), the Department of the Interior (DOI), the Smithsonian

  14. Arctic tipping points in an Earth system perspective.

    PubMed

    Wassmann, Paul; Lenton, Timothy M

    2012-02-01

    We provide an introduction to the volume The Arctic in the Earth System perspective: the role of tipping points. The terms tipping point and tipping element are described and their role in current science, general debates, and the Arctic are elucidated. From a wider perspective, the volume focuses upon the role of humans in the Arctic component of the Earth system and in particular the envelope for human existence, the Arctic ecosystems. The Arctic climate tipping elements, the tipping elements in Arctic ecosystems and societies, and the challenges of governance and anticipation are illuminated through short summaries of eight publications that derive from the Arctic Frontiers conference in 2011 and the EU FP7 project Arctic Tipping Points. Then some ideas based upon resilience thinking are developed to show how wise system management could ease pressures on Arctic systems in order to keep them away from tipping points.

  15. The Arctic Report Card: Communicating the State of the Rapidly Changing Arctic to a Diverse Audience via the Worldwide Web

    NASA Astrophysics Data System (ADS)

    Jeffries, M. O.; Richter-Menge, J.; Overland, J. E.; Soreide, N. N.

    2013-12-01

    Rapid change is occurring throughout the Arctic environmental system. The goal of the Arctic Report Card is to communicate the nature of the many changes to a diverse audience via the Worldwide Web. First published in 2006, the Arctic Report Card is a peer-reviewed publication containing clear, reliable and concise scientific information on the current state of the Arctic environment relative to observational records. Available only online, it is intended to be an authoritative source for scientists, teachers, students, decision-makers, policy-makers and the general public interested in the Arctic environment and science. The Arctic Report Card is organized into five sections: Atmosphere; Sea Ice & Ocean; Marine Ecosystem; Terrestrial Ecosystem; Terrestrial Cryosphere. Arctic Report Card 2012, the sixth annual update, comprised 20 essays on physical and biological topics prepared by an international team of 141 scientists from 15 different countries. For those who want a quick summary, the Arctic Report Card home page provides highlights of key events and findings, and a short video that is also available on YouTube. The release of the Report Card each autumn is preceded by a NOAA press release followed by a press conference, when the Web site is made public. The release of Arctic Report Card 2012 at an AGU Fall Meeting press conference on 5 December 2012 was subsequently reported by leading media organizations. The NOAA Arctic Web site, of which the Report Card is a part, is consistently at the top of Google search results for the keyword 'arctic', and the Arctic Report Card Web site tops search results for keyword "arctic report" - pragmatic indications of a Web site's importance and popularity. As another indication of the Web site's impact, in December 2012, the month when the 2012 update was released, the Arctic Report Card Web site was accessed by 19,851 unique sites in 105 countries, and 4765 Web site URLs referred to the Arctic Report Card. The 2012 Arctic

  16. Organophosphate Ester Flame Retardants and Plasticizers in Ocean Sediments from the North Pacific to the Arctic Ocean.

    PubMed

    Ma, Yuxin; Xie, Zhiyong; Lohmann, Rainer; Mi, Wenying; Gao, Guoping

    2017-04-04

    The presence of organophosphate ester (OPE) flame retardants and plasticizers in surface sediment from the North Pacific to Arctic Ocean was observed for the first time during the fourth National Arctic Research Expedition of China in the summer of 2010. The samples were analyzed for three halogenated OPEs [tris(2-chloroethyl) phosphate (TCEP), tris(1-chloro-2-propyl) phosphate (TCPP), and tris(dichloroisopropyl) phosphate], three alkylated OPEs [triisobutyl phosphate (TiBP), tri-n-butyl phosphate, and tripentyl phosphate], and triphenyl phosphate. Σ 7 OPEs (total concentration of the observed OPEs) was in the range of 159-4658 pg/g of dry weight. Halogenated OPEs were generally more abundant than the nonhalogenated OPEs; TCEP and TiBP dominated the overall concentrations. Except for that of the Bering Sea, Σ 7 OPEs values increased with increasing latitudes from Bering Strait to the Central Arctic Ocean, while the contributions of halogenated OPEs (typically TCEP and TCPP) to the total OPE profile also increased from the Bering Strait to the Central Arctic Ocean, indicating they are more likely to be transported to the remote Arctic. The median budget of 52 (range of 17-292) tons for Σ 7 OPEs in sediment from the Central Arctic Ocean represents only a very small amount of their total production volume, yet the amount of OPEs in Arctic Ocean sediment was significantly larger than the sum of polybrominated diphenyl ethers (PBDEs) in the sediment, indicating they are equally prone to long-range transport away from source regions. Given the increasing level of production and usage of OPEs as substitutes of PBDEs, OPEs will continue to accumulate in the remote Arctic.

  17. Naphthalene biodegradation in temperate and arctic marine microcosms.

    PubMed

    Bagi, Andrea; Pampanin, Daniela M; Lanzén, Anders; Bilstad, Torleiv; Kommedal, Roald

    2014-02-01

    Naphthalene, the smallest polycyclic aromatic hydrocarbon (PAH), is found in abundance in crude oil, its major source in marine environments. PAH removal occurs via biodegradation, a key process determining their fate in the sea. Adequate estimation of PAH biodegradation rates is essential for environmental risk assessment and response planning using numerical models such as the oil spill contingency and response (OSCAR) model. Using naphthalene as a model compound, biodegradation rate, temperature response and bacterial community composition of seawaters from two climatically different areas (North Sea and Arctic Ocean) were studied and compared. Naphthalene degradation was followed by measuring oxygen consumption in closed bottles using the OxiTop(®) system. Microbial communities of untreated and naphthalene exposed samples were analysed by polymerase chain reaction denaturing gradient gel electrophoresis (PCR-DGGE) and pyrosequencing. Three times higher naphthalene degradation rate coefficients were observed in arctic seawater samples compared to temperate, at all incubation temperatures. Rate coefficients at in situ temperatures were however, similar (0.048 day(-1) for temperate and 0.068 day(-1) for arctic). Naphthalene biodegradation rates decreased with similar Q10 ratios (3.3 and 3.5) in both seawaters. Using the temperature compensation method implemented in the OSCAR model, Q10 = 2, biodegradation in arctic seawater was underestimated when calculated from the measured temperate k1 value, showing that temperature difference alone could not predict biodegradation rates adequately. Temperate and arctic untreated seawater communities were different as revealed by pyrosequencing. Geographic origin of seawater affected the community composition of exposed samples.

  18. Detecting and Understanding Changing Arctic Carbon Emissions

    NASA Astrophysics Data System (ADS)

    Bruhwiler, L.

    2017-12-01

    Warming in the Arctic has proceeded faster than anyplace on Earth. Our current understanding of biogeochemistry suggests that we can expect feedbacks between climate and carbon in the Arctic. Changes in terrestrial fluxes of carbon can be expected as the Arctic warms, and the vast stores of organic carbon frozen in Arctic soils could be mobilized to the atmosphere, with possible significant impacts on global climate. Quantifying trends in Arctic carbon exchanges is important for policymaking because greater reductions in anthropogenic emissions may be required to meet climate goals. Observations of greenhouse gases in the Arctic and globally have been collected for several decades. Analysis of this data does not currently support significantly changed Arctic emissions of CH4, however it is difficult to detect changes in Arctic emissions because of transport from lower latitudes and large inter-annual variability. Unfortunately, current space-based remote sensing systems have limitations at Arctic latitudes. Modeling systems can help untangle the Arctic budget of greenhouse gases, but they are dependent on underlying prior fluxes, wetland distributions and global anthropogenic emissions. Also, atmospheric transport models may have significant biases and errors. For example, unrealistic near-surface stability can lead to underestimation of emissions in atmospheric inversions. We discuss our current understanding of the Arctic carbon budget from both top-down and bottom-up approaches. We show that current atmospheric inversions agree well on the CH4 budget. On the other hand, bottom-up models vary widely in their predictions of natural emissions, with some models predicting emissions too large to be accommodated by the budget implied by global observations. Large emissions from the shallow Arctic ocean are also inconsistent with atmospheric observations. We also discuss the sensitivity of the current atmospheric network to what is likely small, gradual increases in

  19. The Arctic National Wildlife Refuge: An Interdisciplinary Unit.

    ERIC Educational Resources Information Center

    Thieman, Gayle; Geil, Mike

    This paper presents a set of interdisciplinary lessons for teaching about the Arctic National Wildlife Refuge (Alaska). Lessons include a petroleum product treasure hunt, an examination of life without petroleum, the development of a wildlife poster, an exploration of the tundra ecosystem and the plants and animals that live there, identification…

  20. The Circumpolar Arctic vegetation map

    USGS Publications Warehouse

    Walker, Donald A.; Raynolds, Martha K.; Daniels, F.J.A.; Einarsson, E.; Elvebakk, A.; Gould, W.A.; Katenin, A.E.; Kholod, S.S.; Markon, C.J.; Melnikov, E.S.; Moskalenko, N.G.; Talbot, S. S.; Yurtsev, B.A.; Bliss, L.C.; Edlund, S.A.; Zoltai, S.C.; Wilhelm, M.; Bay, C.; Gudjonsson, G.; Ananjeva, G.V.; Drozdov, D.S.; Konchenko, L.A.; Korostelev, Y.V.; Ponomareva, O.E.; Matveyeva, N.V.; Safranova, I.N.; Shelkunova, R.; Polezhaev, A.N.; Johansen, B.E.; Maier, H.A.; Murray, D.F.; Fleming, Michael D.; Trahan, N.G.; Charron, T.M.; Lauritzen, S.M.; Vairin, B.A.

    2005-01-01

    Question: What are the major vegetation units in the Arctic, what is their composition, and how are they distributed among major bioclimate subzones and countries? Location: The Arctic tundra region, north of the tree line. Methods: A photo-interpretive approach was used to delineate the vegetation onto an Advanced Very High Resolution Radiometer (AVHRR) base image. Mapping experts within nine Arctic regions prepared draft maps using geographic information technology (ArcInfo) of their portion of the Arctic, and these were later synthesized to make the final map. Area analysis of the map was done according to bioclimate subzones, and country. The integrated mapping procedures resulted in other maps of vegetation, topography, soils, landscapes, lake cover, substrate pH, and above-ground biomass. Results: The final map was published at 1:7 500 000 scale map. Within the Arctic (total area = 7.11 x 106 km 2), about 5.05 ?? 106 km2 is vegetated. The remainder is ice covered. The map legend generally portrays the zonal vegetation within each map polygon. About 26% of the vegetated area is erect shrublands, 18% peaty graminoid tundras, 13% mountain complexes, 12% barrens, 11% mineral graminoid tundras, 11% prostrate-shrub tundras, and 7% wetlands. Canada has by far the most terrain in the High Arctic mostly associated with abundant barren types and prostrate dwarf-shrub tundra, whereas Russia has the largest area in the Low Arctic, predominantly low-shrub tundra. Conclusions: The CAVM is the first vegetation map of an entire global biome at a comparable resolution. The consistent treatment of the vegetation across the circumpolar Arctic, abundant ancillary material, and digital database should promote the application to numerous land-use, and climate-change applications and will make updating the map relatively easy. ?? IAVS; Opulus Press.

  1. Examining the role of shrub expansion and fire in Arctic plant silica cycling

    NASA Astrophysics Data System (ADS)

    Carey, J.; Fetcher, N.; Parker, T.; Rocha, A. V.; Tang, J.

    2017-12-01

    All terrestrial plants accumulate silica (SiO2) to some degree, although the amount varies by species type, functional group, and environmental conditions. Silica improves overall plant fitness, providing protection from a variety of biotic and abiotic stressors. Plant silica uptake serves to retain silica in terrestrial landscapes, influencing silica export rates from terrestrial to marine systems. These export rates are important because silica is often the limiting nutrient for primary production by phytoplankton in coastal waters. Understanding how terrestrial plant processes influence silica export rates to oceanic systems is of interest on the global scale, but nowhere is this issue more important than in the Arctic, where marine diatoms rely on silica for production in large numbers and terrestrial runoff largely influences marine biogeochemistry. Moreover, the rapid rate of change occurring in the Arctic makes understanding plant silica dynamics timely, although knowledge of plant silica cycling in the region is in its infancy. This work specifically examines how shrub expansion, permafrost thaw, and fire regimes influence plant silica behavior in the Alaskan Arctic. We quantified silica accumulation in above and belowground portions of three main tundra types found in the Arctic (wet sedge, moist acidic, moist non-acidic tundra) and scaled these values to estimate how shrub expansion alters plant silica accumulation rates. Results indicate that shrub expansion via warming will increase silica storage in Arctic land plants due to the higher biomass associated with shrub tundra, whereas conversion of tussock to wet sedge tundra via permafrost thaw would produce the opposite effect in the terrestrial plant BSi pool. We also examined silica behavior in plants exposed to fire, finding that post-fire growth results in elevated plant silica uptake. Such changes in the size of the terrestrial vegetation silica reservoir could have direct consequences for the rates

  2. Identifying Priorities for International Arctic Research and Policy

    NASA Astrophysics Data System (ADS)

    Rachold, V.; Hik, D.; Barr, S.

    2015-12-01

    The International Arctic Science Committee (IASC) is a non-governmental, international scientific organization, founded in 1990 by representatives of national scientific organizations of the eight Arctic countries - Canada, Denmark, Finland, Iceland, Norway, Russia (at that time Union of Soviet Socialist Republics), Sweden and the United States of America. Over the past 25 years, IASC has evolved into the leading international science organization of the North and its membership today includes 23 countries involved in all aspects of Arctic research, including 15 non-Arctic countries (Austria, China, the Czech Republic, France, Germany, India, Italy, Japan, the Netherlands, Poland, Portugal, South Korea, Spain, Switzerland and the UK). The Founding Articles committed IASC to pursue a mission of encouraging and facilitating cooperation in all aspects of Arctic research, in all countries engaged in Arctic research and in all areas of the Arctic region. IASC promotes and supports leading-edge multi-disciplinary research in order to foster a greater scientific understanding of the Arctic region and its role in the Earth system. IASC has organized three forward-looking conferences focused on international and interdisciplinary perspectives for advancing Arctic research cooperation and applications of Arctic knowledge. Indeed, the IASC Founding Articles call for IASC to host these conferences periodically in order to "review the status of Arctic science, provide scientific and technical advice, and promote cooperation and links with other national and international organizations." Through its members, including national science organizations and funding agencies from all countries engaged in Arctic research, IASC is uniquely placed to undertake this task. As an accredited observer on the Arctic Council, IASC is also in the position to introduce the outcome of its science planning efforts into the Arctićs main political body and to liaise with the Arctic Council Permanent

  3. Behavioral interactions of penned red and arctic foxes

    USGS Publications Warehouse

    Rudzinski, D.R.; Graves, H.B.; Sargeant, A.B.; Storm, G.L.

    1982-01-01

    Expansion of the geographical distribution of red foxes (Vulpes vulpes) into the far north tundra region may lead to competition between arctic (Alopex lagopus) and red foxes for space and resources. Behavioral interactions between red and arctic foxes were evaluated during 9 trials conducted in a 4.05-ha enclosure near Woodworth, North Dakota. Each trial consisted of introducing a male-female pair of arctic foxes into the enclosure and allowing them to acclimate for approximately a week before releasing a female red fox into the enclosure, followed by her mate a few days later. In 8 of 9 trials, red foxes were dominant over arctic foxes during encounters. Activity of the arctic foxes decreased upon addition of red foxes. Arctic foxes tried unsuccessfully to defend preferred den, resting, and feeding areas. Even though the outcome of competition between red and arctic foxes in the Arctic is uncertain, the more aggressive red fox can dominate arctic foxes in direct competition for den sites and other limited resources.

  4. Fate of the key Arctic copepod Calanus glacialis in a changing environment

    NASA Astrophysics Data System (ADS)

    Daase, M.; Søreide, J.; Freese, D.; Boissonnot, L.; Hatlebakk, M. K.; Graeve, M.; Niehoff, B.

    2016-02-01

    High latitude marine ecosystems experience strong seasonality in incoming light and thus primary production and food availability. Herbivorous calanoid copepods of the genus Calanus may comprise up to 90% of the mesozooplankton biomass in Arctic seas. They are able to build up large lipid deposits during the short, but productive summer and to survive food shortage in winter by entering a dormant state, referred to as diapause. The ongoing reduction in sea ice thickness and extent will significantly change the underwater light climate and thus the timing, quantity and quality of the primary producers in the Arctic with possible consequences for the grazers. Up to date we have very limited knowledge on the overwintering ecology and physiology of Calanus spp., and their ability to respond to external cues like light and food while in diapause. In the research project "Climate effects on planktonic food quality and trophic transfer in Arctic marginal ice zones (CLEOPATRA II)" we combined extensive field and experimental work to investigate the winter ecology and physiology of Calanus glacialis, endemic to the Arctic. This relatively large and lipid-rich copepod prefer seasonal ice covered shelf seas and thus have evolved somewhat different physiological adaptation and behavior than its sibling species in the deeper oceanic realms, C. finmarchicus in the North Atlantic and C. hyperboreus in the Arctic Ocean. Key project results will be presented which all add up to the conclusion that the oldest overwintering stages of C. glacialis do not enter a true diapause in winter, and thus this species is able to respond to rapid changes in its surrounding physical and biological environment.

  5. Arctic Synthesis Collaboratory: A Virtual Organization for Transformative Research and Education on a Changing Arctic

    NASA Astrophysics Data System (ADS)

    Warnick, W. K.; Wiggins, H. V.; Hinzman, L.; Holland, M.; Murray, M. S.; Vörösmarty, C.; Loring, A. J.

    2008-12-01

    About the Arctic Synthesis Collaboratory The Arctic Synthesis Collaboratory concept, developed through a series of NSF-funded workshops and town hall meetings, is envisioned as a cyber-enabled, technical, organizational, and social-synthesis framework to foster: • Interactions among interdisciplinary experts and stakeholders • Integrated data analysis and modeling activities • Training and development of the arctic science community • Delivery of outreach, education, and policy-relevant resources Scientific Rationale The rapid rate of arctic change and our incomplete understanding of the arctic system present the arctic community with a grand scientific challenge and three related issues. First, a wealth of observations now exists as disconnected data holdings, which must be coordinated and synthesized to fully detect and assess arctic change. Second, despite great strides in the development of arctic system simulations, we still have incomplete capabilities for modeling and predicting the behavior of the system as a whole. Third, policy-makers, stakeholders, and the public are increasingly making demands of the science community for forecasts and guidance in mitigation and adaptation strategies. Collaboratory Components The Arctic Synthesis Collaboratory is organized around four integrated functions that will be established virtually as a distributed set of activities, but also with the advantage of existing facilities that could sponsor some of the identified activities. Community Network "Meeting Grounds:" The Collaboratory will link distributed individuals, organizations, and activities to enable collaboration and foster new research initiatives. Specific activities could include: an expert directory, social networking services, and virtual and face-to-face meetings. Data Integration, Synthesis, and Modeling Activities: The Collaboratory will utilize appropriate tools to enable the combination of data and models. Specific activities could include: a web

  6. The Coastal Observing System for Northern and Arctic Seas (COSYNA)

    NASA Astrophysics Data System (ADS)

    Baschek, Burkard; Schroeder, Friedhelm; Brix, Holger; Riethmüller, Rolf; Badewien, Thomas H.; Breitbach, Gisbert; Brügge, Bernd; Colijn, Franciscus; Doerffer, Roland; Eschenbach, Christiane; Friedrich, Jana; Fischer, Philipp; Garthe, Stefan; Horstmann, Jochen; Krasemann, Hajo; Metfies, Katja; Merckelbach, Lucas; Ohle, Nino; Petersen, Wilhelm; Pröfrock, Daniel; Röttgers, Rüdiger; Schlüter, Michael; Schulz, Jan; Schulz-Stellenfleth, Johannes; Stanev, Emil; Staneva, Joanna; Winter, Christian; Wirtz, Kai; Wollschläger, Jochen; Zielinski, Oliver; Ziemer, Friedwart

    2017-05-01

    The Coastal Observing System for Northern and Arctic Seas (COSYNA) was established in order to better understand the complex interdisciplinary processes of northern seas and the Arctic coasts in a changing environment. Particular focus is given to the German Bight in the North Sea as a prime example of a heavily used coastal area, and Svalbard as an example of an Arctic coast that is under strong pressure due to global change.The COSYNA automated observing and modelling system is designed to monitor real-time conditions and provide short-term forecasts, data, and data products to help assess the impact of anthropogenically induced change. Observations are carried out by combining satellite and radar remote sensing with various in situ platforms. Novel sensors, instruments, and algorithms are developed to further improve the understanding of the interdisciplinary interactions between physics, biogeochemistry, and the ecology of coastal seas. New modelling and data assimilation techniques are used to integrate observations and models in a quasi-operational system providing descriptions and forecasts of key hydrographic variables. Data and data products are publicly available free of charge and in real time. They are used by multiple interest groups in science, agencies, politics, industry, and the public.

  7. Spectral determination of concentrations of functionally diverse pigments in increasingly complex arctic tundra canopies.

    PubMed

    Boelman, Natalie T; Magney, Troy S; Logan, Barry A; Griffin, Kevin L; Eitel, Jan U H; Greaves, Heather; Prager, Case M; Vierling, Lee A

    2016-09-01

    As the Arctic warms, tundra vegetation is becoming taller and more structurally complex, as tall deciduous shrubs become increasingly dominant. Emerging studies reveal that shrubs exhibit photosynthetic resource partitioning, akin to forests, that may need accounting for in the "big leaf" net ecosystem exchange models. We conducted a lab experiment on sun and shade leaves from S. pulchra shrubs to determine the influence of both constitutive (slowly changing bulk carotenoid and chlorophyll pools) and facultative (rapidly changing xanthophyll cycle) pigment pools on a suite of spectral vegetation indices, to devise a rapid means of estimating within canopy resource partitioning. We found that: (1) the PRI of dark-adapted shade leaves (PRIo) was double that of sun leaves, and that PRIo was sensitive to variation among sun and shade leaves in both xanthophyll cycle pool size (V + A + Z) (r (2) = 0.59) and Chla/b (r (2) = 0.64); (2) A corrected PRI (difference between dark and illuminated leaves, ΔPRI) was more sensitive to variation among sun and shade leaves in changes to the epoxidation state of their xanthophyll cycle pigments (dEPS) (r (2) = 0.78, RMSE = 0.007) compared to the uncorrected PRI of illuminated leaves (PRI) (r (2) = 0.34, RMSE = 0.02); and (3) the SR680 index was correlated with each of (V + A + Z), lutein, bulk carotenoids, (V + A + Z)/(Chla + b), and Chla/b (r (2) range = 0.52-0.69). We suggest that ΔPRI be employed as a proxy for facultative pigment dynamics, and the SR680 for the estimation of constitutive pigment pools. We contribute the first Arctic-specific information on disentangling PRI-pigment relationships, and offer insight into how spectral indices can assess resource partitioning within shrub tundra canopies.

  8. Arctic tundra and mountain landscapes are persistent sinks of atmospheric CH4

    NASA Astrophysics Data System (ADS)

    Christiansen, Jesper; Winkler, Renato; Juncher Jørgensen, Christian

    2017-04-01

    Recent studies have shown significant rates of net uptake of atmospheric methane (CH4) in Arctic tundra soils. Oxidation of CH4 in these cold, dry soils in the Arctic region can counteract CH4 emissions from wetlands and play a potential important role for the net Arctic CH4 budget. However, significant knowledge gaps exist on the overall magnitude of the net CH4 sink in these cold, dry systems as the spatial and environmental limits for CH4 oxidation has not been determined. In particular, the extent, magnitude and drivers of CH4 oxidation in mountains and alpine landforms, which occupy large land areas in the Arctic and High Arctic has not yet been investigated leaving a potential vast CH4 sink unquantified with major potential implications for our conceptual view of Arctic CH4 budget in a changing climate. Here we present the results from two expeditions in the summers of 2015 and 2016 from Disko Bay and in the pro-glacial landscape in vicinity of the Russell Glacier, Kangerlussuaq, Greenland, respectively. The aim of our work is to determine the magnitude and extent of net uptake of atmospheric CH4 across a variety of previously unexplored dry tundra and post-glacial landforms in the Arctic, i.e. marginal moraines and other glacial features at the Greenland ice sheet as well as mountain tops and outwash plains. We used high-precision, mobile cavity-ring-down spectrometers (e.g. model G4301 GasScouter, Picarro Inc.) to achieve reliable flux estimates in sub-ambient CH4 concentration levels with a 4-minute enclosure time per chamber measurement. Our results show a persistent net uptake of CH4 uptake in these dry, extreme environments that rival the sink strength observed in temperate forest soils, otherwise considered the primary global terrestrial sink of atmospheric CH4. In this dynamic glacial landscape the magnitude of the net CH4 uptake is mainly constrained by recent landscape evolution along glacier margins and meltwater systems. Utilizing the high

  9. Challenges of climate change: an Arctic perspective.

    PubMed

    Corell, Robert W

    2006-06-01

    Climate change is being experienced particularly intensely in the Arctic. Arctic average temperature has risen at almost twice the rate as that of the rest of the world in the past few decades. Widespread melting of glaciers and sea ice and rising permafrost temperatures present additional evidence of strong Arctic warming. These changes in the Arctic provide an early indication of the environmental and societal significance of global consequences. The Arctic also provides important natural resources to the rest of the world (such as oil, gas, and fish) that will be affected by climate change, and the melting of Arctic glaciers is one of the factors contributing to sea level rise around the globe. An acceleration of these climatic trends is projected to occur during this century, due to ongoing increases in concentrations of greenhouse gases in the Earth's atmosphere. These Arctic changes will, in turn, impact the planet as a whole.

  10. With Climate Change Expanding Trade Routes in the Arctic and the Resultant Pursuit of Resources, it is Crucial that the Eight Arctic Nations Find Paths Towards Sustainability and Peace in the Region. Traditional Arctic Games are an Essential Scenario that Provide an Important Scale for Analysis Aimed at Medium-long term Sustainability in the Arctic.

    NASA Astrophysics Data System (ADS)

    Kilbourne, J. R.

    2016-12-01

    With climate change expanding trade routes in the Arctic and the resultant pursuit of oil, gas, mineral deposits, and fish, it is imperative that the eight Arctic countries find paths towards sustainability and peace in the region. Revisiting and understanding the traditional games of the indigenous people of these regions can go a long way towards helping those determining the region's future to work cooperatively towards these goals. Traditional games are an essential scenario that provide an important scale for analysis aimed at medium-long term sustainability in the Arctic. Throughout history the games we have played have been a testament about who we were, and are. From early Inuit bone and hunting games, to the gladiator contests of Ancient Rome, to the modern American game of baseball, the games we play have served as a statement of and a rehearsal for the life-world of that period and place. By reconnecting with and understanding the games of our past, we can build meaningful bridges between our past and present, and hopefully gain a better understanding of our modern world. The aforesaid are timely and important, especially as they relate to indigenous people throughout the world who are trying to preserve their traditions in a fast changing modern world. This presentation/paper will offer, based on my research and experiences in the Arctic, lessons learned from traditional Sámi and Inuit games that may help promote sustainability and peace in the Arctic world. Hopefully by acknowledging these lessons we can pursue a path forward, together reconnecting with the traditional games of the Arctic with the hope of building meaningful bridges between the past and present and moreover, helping to enhance our understanding of the important role traditional games can play in shaping an Arctic where sustainability and peace flourish.

  11. PolarPortal.org Communicates Real-Time Developments in the Arctic

    NASA Astrophysics Data System (ADS)

    Langen, P. L.; Andersen, S. B.; Andersen, K. K.; Andersen, M. L.; Ahlstrom, A. P.; van As, D.; Barletta, V. R.; Box, J. E.; Citterio, M.; Colgan, W. T.; Dybkjær, G.; Forsberg, R.; Høyer, J. L.; Jensen, M. B.; Kliem, N.; Mottram, R.; Nielsen, K. P.; Olesen, M.; Quaglia, F. C.; Rasmussen, T. A.; Rodehacke, C. B.; Stendel, M.; Sandberg Sørensen, L.; Tonboe, R. T.

    2014-12-01

    PolarPortal.org was launched in June 2013 by a consortium of Danish institutions, including the Danish Meteorological Institute (DMI), the Geological Survey of Denmark and Greenland (GEUS) and the National Space Institute at the Technical University of Denmark (DTU-Space). Polar Portal is a single web portal presenting a wide range of near real-time information on both the Greenland ice sheet and Arctic sea-ice in a format geared for non-specialists. Polar Portal aims to meet widespread public interest in a diverse range of climate-cryosphere processes in the Arctic: What is the present Greenland ice sheet contribution to sea level rise? How quickly are outlet glaciers retreating or advancing right now? How extensive is Arctic sea-ice or how warm is the Arctic Ocean at this moment? Although public interest in such topics is widely acknowledged, an important primary task for the scientists behind Polar Portal was collaborating with media specialists to establish the knowledge range of the general public on these topics, in order for Polar Portal to appropriately present useful climate-cryosphere information. Consequently, Polar Portal is designed in a highly visual exploratory format, where individual data products are accompanied by plain written summaries, with hyperlinks to relevant journal papers for more scrutinizing users. Numerous satellite and in situ observations, together with model output, are channeled daily into the Greenland ice sheet and Arctic sea-ice divisions of Polar Portal.

  12. Spatial distribution of aquatic marine fungi across the western Arctic and sub-arctic.

    PubMed

    Hassett, Brandon T; Ducluzeau, Anne-Lise L; Collins, Roy E; Gradinger, Rolf

    2017-02-01

    Fungi are important parasites of primary producers and nutrient cyclers in aquatic ecosystems. In the Pacific-Arctic domain, fungal parasitism is linked to light intensities and algal stress that can elevate disease incidence on algae and reduce diatom concentrations. Fungi are vastly understudied in the marine realm and knowledge of their function is constrained by the current understanding of fungal distribution and drivers on global scales. To investigate the spatial distribution of fungi in the western Arctic and sub-Arctic, we used high throughput methods to sequence 18S rRNA, cloned and sequenced 28S rRNA and microscopically counted chytrid-infected diatoms. We identified a broad distribution of fungal taxa predominated by Chytridiomycota and Dikarya. Phylogenetic analysis of our Chytridiomycota clones placed Arctic marine fungi sister to the order Lobulomycetales. This clade of fungi predominated in fungal communities under ice with low snowpack. Microscopic examination of fixed seawater and sea ice samples revealed chytrids parasitizing diatoms collected across the Arctic that notably infected 25% of a single diatom species in the Bering Sea. The Pezizomycotina comprised > 95% of eukaryotic sequence reads in Greenland, providing preliminary evidence for osmotrophs being a substitute for algae as the base of food webs. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.

  13. Evaluation of arctic multibeam sonar data quality using nadir crossover error analysis and compilation of a full-resolution data product

    NASA Astrophysics Data System (ADS)

    Flinders, Ashton F.; Mayer, Larry A.; Calder, Brian A.; Armstrong, Andrew A.

    2014-05-01

    We document a new high-resolution multibeam bathymetry compilation for the Canada Basin and Chukchi Borderland in the Arctic Ocean - United States Arctic Multibeam Compilation (USAMBC Version 1.0). The compilation preserves the highest native resolution of the bathymetric data, allowing for more detailed interpretation of seafloor morphology than has been previously possible. The compilation was created from multibeam bathymetry data available through openly accessible government and academic repositories. Much of the new data was collected during dedicated mapping cruises in support of the United States effort to map extended continental shelf regions beyond the 200 nm Exclusive Economic Zone. Data quality was evaluated using nadir-beam crossover-error statistics, making it possible to assess the precision of multibeam depth soundings collected from a wide range of vessels and sonar systems. Data were compiled into a single high-resolution grid through a vertical stacking method, preserving the highest quality data source in any specific grid cell. The crossover-error analysis and method of data compilation can be applied to other multi-source multibeam data sets, and is particularly useful for government agencies targeting extended continental shelf regions but with limited hydrographic capabilities. Both the gridded compilation and an easily distributed geospatial PDF map are freely available through the University of New Hampshire's Center for Coastal and Ocean Mapping (ccom.unh.edu/theme/law-sea). The geospatial pdf is a full resolution, small file-size product that supports interpretation of Arctic seafloor morphology without the need for specialized gridding/visualization software.

  14. Current and future contributions of local emissions from shipping and hydrocarbon extraction flaring to short lived pollutants in the Arctic

    NASA Astrophysics Data System (ADS)

    Marelle, L.; Raut, J. C.; Law, K.; Thomas, J. L.; Fast, J. D.; Berg, L. K.; Shrivastava, M. B.; Easter, R. C.; Herber, A. B.

    2015-12-01

    The Arctic is increasingly open to human activity due to rapid Arctic warming, associated with decreased sea ice extent and snow cover. While pollution from in-Arctic sources is currently low, oil and gas extraction and marine traffic could become a significant future source of short-lived pollutants (aerosols, ozone) in the Arctic. It is currently unclear if these local sources might become significant compared to the long-range transport of anthropogenic pollution from the midlatitudes, which is currently the main source of Arctic pollution. Here, we investigate the current (2012) and future (2050) impact of emissions from shipping and oil and gas extraction on Arctic aerosols and ozone, in relation to emissions from long-range transport. These impacts are determined by performing 6-month long, quasi-hemispheric simulations over the Arctic region with the WRF-Chem model. Our regional simulations include up-to-date representations of cloud/aerosol interactions and secondary organic aerosol formation developed recently for WRF-Chem. In order to determine the impact of Arctic shipping and oil and gas extraction, we use recent emission inventories by Winther et al., 2014 for local shipping and ECLIPSEv5 for oil and gas flaring. Both inventories suggest that current and future emissions from these sources are higher than previous estimates. Simulations are evaluated using measurements at Arctic surface sites and aircraft campaigns (ACCESS, YAK) in 2012. Model results are then used to assess the impact of Arctic shipping and oil and gas flaring on modeled surface aerosol and ozone concentrations, direct aerosol and ozone radiative effects, indirect aerosol radiative effects, and aerosol deposition. Results are used to determine if these local emissions are expected to have a significant influence on these quantities at the local or the regional scale, compared to emissions transported from the midlatitudes and to other emission sources, including boreal fires.

  15. Arctic Logistics Information and Support: ALIAS

    NASA Astrophysics Data System (ADS)

    Warnick, W. K.

    2004-12-01

    The ALIAS web site is a gateway to logistics information for arctic research, funded by the U.S. National Science Foundation, and created and maintained by the Arctic Research Consortium of the United States (ARCUS). ALIAS supports the collaborative development and efficient use of all arctic logistics resources. It presents information from a searchable database, including both arctic terrestrial resources and arctic-capable research vessels, on a circumpolar scale. With this encompassing scope, ALIAS is uniquely valuable as a tool to promote and facilitate international collaboration between researchers, which is of increasing importance for vessel-based research due to the high cost and limited number of platforms. Users of the web site can identify vessels which are potential platforms for their research, examine and compare vessel specifications and facilities, learn about research cruises the vessel has performed in the past, and find contact information for scientists who have used the vessel, as well as for the owners and operators of the vessel. The purpose of this poster presentation is to inform the scientific community about the ALIAS website as a tool for planning arctic research generally, and particularly for identifying and contacting vessels which may be suitable for planned ship-based research projects in arctic seas.

  16. Arctic Messages: Arctic Research in the Vocabulary of Poets and Artists

    NASA Astrophysics Data System (ADS)

    Samsel, F.

    2017-12-01

    Arctic Messages is a series of prints created by a multidisciplinary team designed to build understanding and encourage dialogue about the changing Arctic ecosystems and the impacts on global weather patterns. Our team comprised of Arctic researchers, a poet, a visual artist, photographers and visualization experts set out to blend the vocabularies of our disciplines in order to provide entry into the content for diverse audiences. Arctic Messages is one facet of our broader efforts experimenting with mediums of communication able to provide entry to those of us outside scientific of fields. We believe that the scientific understanding of change presented through the languages art will speak to our humanity as well as our intellect. The prints combine poetry, painting, visualization, and photographs, drawn from the Arctic field studies of the Next Generation Ecosystem Experiments research team at Los Alamos National Laboratory. The artistic team interviewed the scientists, read their papers and poured over their field blogs. The content and concepts are designed to portray the wonder of nature, the complexity of the science and the dedication of the researchers. Smith brings to life the intertwined connection between the research efforts, the ecosystems and the scientist's experience. Breathtaking photography of the research site is accompanied by Samsel's drawings and paintings of the ecosystem relationships and geological formations. Together they provide entry to the variety and wonder of life on the Arctic tundra and that resting quietly in the permafrost below. Our team has experimented with many means of presentation from complex interactive systems to quiet individual works. Here we are presenting a series of prints, each one based on a single thread of the research or the scientist's experience but containing intertwined relationships similar to the ecosystems they represent. Earlier interactive systems, while engaging, were not tuned to those seeking

  17. Arctic summer school onboard an icebreaker

    NASA Astrophysics Data System (ADS)

    Alexeev, Vladimir A.; Repina, Irina A.

    2014-05-01

    The International Arctic Research Center (IARC) of the University of Alaska Fairbanks conducted a summer school for PhD students, post-docs and early career scientists in August-September 2013, jointly with an arctic expedition as a part of NABOS project (Nansen and Amundsen Basin Observational System) onboard the Russian research vessel "Akademik Fedorov". Both the summer school and NABOS expedition were funded by the National Science Foundation. The one-month long summer school brought together graduate students and young scientists with specialists in arctic oceanography and climate to convey to a new generation of scientists the opportunities and challenges of arctic climate observations and modeling. Young scientists gained hands-on experience during the field campaign and learned about key issues in arctic climate from observational, diagnostic, and modeling perspectives. The summer school consisted of background lectures, participation in fieldwork and mini-projects. The mini-projects were performed in collaboration with summer school instructors and members of the expedition. Key topics covered in the lectures included: - arctic climate: key characteristics and processes; - physical processes in the Arctic Ocean; - sea ice and the Arctic Ocean; - trace gases, aerosols, and chemistry: importance for climate changes; - feedbacks in the arctic system (e.g., surface albedo, clouds, water vapor, circulation); - arctic climate variations: past, ongoing, and projected; - global climate models: an overview. An outreach specialist from the Miami Science Museum was writing a blog from the icebreaker with some very impressive statistics (results as of January 1, 2014): Total number of blog posts: 176 Blog posts written/contributed by scientists: 42 Blog views: 22,684 Comments: 1,215 Number of countries who viewed the blog: 89 (on 6 continents) The 33-day long NABOS expedition started on August 22, 2013 from Kirkenes, Norway. The vessel ("Akademik Fedorov") returned to

  18. A new NDVI measure that overcomes data sparsity in cloud-covered regions predicts annual variation in ground-based estimates of high arctic plant productivity

    NASA Astrophysics Data System (ADS)

    Rune Karlsen, Stein; Anderson, Helen B.; van der Wal, René; Bremset Hansen, Brage

    2018-02-01

    Efforts to estimate plant productivity using satellite data can be frustrated by the presence of cloud cover. We developed a new method to overcome this problem, focussing on the high-arctic archipelago of Svalbard where extensive cloud cover during the growing season can prevent plant productivity from being estimated over large areas. We used a field-based time-series (2000-2009) of live aboveground vascular plant biomass data and a recently processed cloud-free MODIS-Normalised Difference Vegetation Index (NDVI) data set (2000-2014) to estimate, on a pixel-by-pixel basis, the onset of plant growth. We then summed NDVI values from onset of spring to the average time of peak NDVI to give an estimate of annual plant productivity. This remotely sensed productivity measure was then compared, at two different spatial scales, with the peak plant biomass field data. At both the local scale, surrounding the field data site, and the larger regional scale, our NDVI measure was found to predict plant biomass (adjusted R 2 = 0.51 and 0.44, respectively). The commonly used ‘maximum NDVI’ plant productivity index showed no relationship with plant biomass, likely due to some years having very few cloud-free images available during the peak plant growing season. Thus, we propose this new summed NDVI from onset of spring to time of peak NDVI as a proxy of large-scale plant productivity for regions such as the Arctic where climatic conditions restrict the availability of cloud-free images.

  19. Assessment of the Dehydration-Greenhouse Feedback Over the Arctic During Winter

    NASA Astrophysics Data System (ADS)

    Girard, E.; Stefanof, A.; Peltier-Champigny, M.; Munoz-Alpizar, R.; Dueymes, G.; Jean-Pierre, B.

    2007-12-01

    The effect of pollution-derived sulphuric acid aerosols on the aerosol-cloud-radiation interactions is investigated over the Arctic for February 1990. Observations suggest that acidic aerosols can decrease the heterogeneous nucleation rate of ice crystals and lower the homogeneous freezing temperature of haze droplets. Based on these observations, we hypothesize that the cloud thermodynamic phase is modified in polluted air mass (Arctic haze). Cloud ice number concentration is reduced, thus promoting further ice crystal growth by the Bergeron-Findeisen process. Hence, ice crystals reach larger sizes and low-level ice crystal precipitation from mixed-phase clouds increases. Enhanced dehydration of the lower troposphere contributes to decrease the water vapour greenhouse effect and cool the surface. A positive feedback is created between surface cooling and air dehydration, accelerating the cold air production. This process is referred to as the dehydration-greenhouse feedback (DGF). Simulations performed using an arctic regional climate model for February 1990, February and March 1985 and 1995 are used to assess the potential effect of the DGF on the Arctic climate. Results show that the DGF has an important effect over the Central and Eurasian Arctic, which is the coldest part of the Arctic with a surface cooling ranging between 0 and -3K. Moreover, the lower tropospheric cooling over the Eurasian and Central Arctic strengthens the atmospheric circulation at upper level, thus increasing the aerosol transport from the mid-latitudes and enhancing the DGF. Over warmer areas, the increased aerosol concentration (caused by the DGF) leads to longer cloud lifetime, which contributes to warm these areas. It is also shown that the maximum ice nuclei reduction must be of the order of 100 to get a significant effect.

  20. The response of aboveground plant productivity to earlier snowmelt and summer warming in an Arctic ecosystem

    NASA Astrophysics Data System (ADS)

    Livensperger, C.; Steltzer, H.; Darrouzet-Nardi, A.; Sullivan, P.; Wallenstein, M. D.; Weintraub, M. N.

    2012-12-01

    Plant communities in the Arctic are undergoing changes in structure and function due to shifts in seasonality from changing winters and summer warming. These changes will impact biogeochemical cycling, surface energy balance, and functioning of vertebrate and invertebrate communities. To examine seasonal controls on aboveground net primary production (ANPP) in a moist acidic tundra ecosystem in northern Alaska, we shifted the growing season by accelerating snowmelt (using radiation absorbing shadecloth) and warming air and soil temperature (using 1 m2 open-top chambers), individually and in combination. After three years, we measured ANPP by harvesting up to 16 individual ramets, tillers and rhizomes for each of 7 plant species, including two deciduous shrubs, two graminoids, two evergreen shrubs and one forb during peak season. Our results show that ANPP per stem summed across the 7 species increased when snow melt occurred earlier. However, standing biomass, excluding current year growth, was also greater. The ratio of ANPP/standing biomass decreased in all treatments compared to the control. ANPP per unit standing biomass summed for the four shrub species decreases due to summer warming alone or in combination with early snowmelt; however early snowmelt alone did not lead to lower ANPP for the shrubs. ANPP per tiller or rhizome summed for the three herbaceous species increased in response to summer warming. Understanding the differential response of plants to changing seasonality will inform predictions of future Arctic plant community structure and function.

  1. Contrasts in Sea Ice Formation and Production in the Arctic Seasonal and Perennial Ice Zones

    NASA Technical Reports Server (NTRS)

    Kwok, R.

    2006-01-01

    Four years (1997-2000) of RADARSAT Geophysical Processor System (RGPS) data are used to contrast the sea ice deformation and production regionally, and in the seasonal (SIZ) and perennial (PIZ) ice zones. Ice production is of seasonal ice in openings during the winter. 3-day estimates of these quantities are provided within Lagrangian elements initially 10 km on a side. A distinct seasonal cycle is seen in both zones with these estimates highest in the late fall and with seasonal minimums in the mid-winter. Regional divergence over the winter could be up to 30%. Spatially, the highest deformation is in the SIZ north of coastal Alaska. Both ice deformation and production are higher in the SIZ: deformation-related ice production in the SIZ (approx.0.5 m) is 1.5-2.3 times that of the PIZ (approx.0.3 m) - this is connected to ice strength and thickness. Atmospheric forcing and boundary layer structure contribute to only the seasonal and interannual variability. Seasonal ice growth in ice fractures accounts for approx.25-40% of the total ice production of the Arctic Ocean. By itself, this deformation-ice production relationship could be considered a negative feedback when thickness is perturbed. However, the overall effect on ice production in the face of increasing seasonal and thinner/weaker ice coverage could be modified by: local destabilization of the water column promoting overturning of warmer water due to increased brine rejection; and, the upwelling of the pynocline associated with increased occurrence of large shear motion in sea ice.

  2. Arctic Sea ice thickness loss determined using subsurface, aircraft, and satellite observations

    NASA Astrophysics Data System (ADS)

    Lindsay, R. W.; Schweiger, A. J. B.

    2014-12-01

    Sea ice thickness is a fundamental climate state variable. However, observations of ice thickness have been sparse in time and space making the construction of observation-based time series difficult. Moreover, different groups use a variety of methods and processing procedures to measure ice thickness and each observational source likely has different and poorly characterized measurement and sampling biases. Observational sources include upward looking sonars mounted on submarines or moorings, electromagnetic sensors on helicopters or aircraft, and lidar or radar altimeters on airplanes or satellites. Are these data sources now adequate so that we can construct time series of the mean sea ice thickness with meaningful information about thickness changes? How do the different measurement systems compare in the mean? Are there systematic differences? Very few of the observations provide overlapping measurements of ice of a variety of thickness classes or types for direct comparisons. Error characteristics may vary considerably depending on the presence or thickness of the ridged ice. Here we use a curve-fitting approach to evaluate the systematic differences between eight different observation systems in the Arctic Basin, including ICESat and IceBridge measurements. The approach determines the large-scale spatial and temporal variability of the ice thickness as well as the mean differences between the observation systems using over 3000 estimates of the ice thickness. The thickness estimates are measured over spatial scales of approximately 50 km or time scales of 1 month and the primary time period analyzed is 2000-2013 when the modern mix of observations is available. Good agreement is found between five of the systems, within 0.15 m, while systematic differences of up to 0.5 m are found for three others compare to the five. The annual mean ice thickness for the central Arctic Basin based on observations only has decreased from 3.45 m in 1975 to 1.11 m in 2013, a

  3. SEARCH: Study of Environmental Arctic Change--A System-scale, Cross-disciplinary, Long-term Arctic Research Program

    NASA Astrophysics Data System (ADS)

    Wiggins, H. V.; Schlosser, P.; Fox, S. E.

    2009-12-01

    The Study of Environmental Arctic Change (SEARCH) is a multi-agency effort to observe, understand, and guide responses to changes in the changing arctic system. Under the SEARCH program, guided by the Science Steering Committee (SSC), the Observing, Understanding, and Responding to Change panels, and the Interagency Program Management Committee (IPMC), scientists with a variety of expertise work together to achieve goals of the program. Over 150 projects and activities contribute to SEARCH implementation. The Observing Change component is underway through the NSF’s Arctic Observing Network (AON), NOAA-sponsored atmospheric and sea ice observations, and other relevant national and international efforts, including the EU-sponsored Developing Arctic Modeling and Observing Capabilities for Long-term Environmental Studies (DAMOCLES) Program. The Understanding Change component of SEARCH consists of modeling and analysis efforts, including the Sea Ice Outlook project, an international effort to provide a community-wide summary of the expected September arctic sea ice minimum. The Understanding Change component also has strong linkages to programs such as the NSF Arctic System Science (ARCSS) Program. The Responding to Change element will be launched through stakeholder-focused research and applications addressing social and economic concerns. As a national program under the International Study of Arctic Change (ISAC), SEARCH is working to expand international connections. The State of the Arctic Conference (soa.arcus.org), to be held 16-19 March 2010 in Miami, will be a milestone activity of SEARCH and will provide an international forum for discussion of future research directions aimed toward a better understanding of the arctic system and its trajectory. SEARCH is sponsored by eight U.S. agencies that comprise the IPMC, including: the National Science Foundation (NSF), the National Oceanic and Atmospheric Administration (NOAA), the National Aeronautics and Space

  4. Characterization of Arctic elemental carbon in Barrow, AK using radiocarbon source apportionment

    NASA Astrophysics Data System (ADS)

    Barrett, T. E.; Usenko, S.; Robinson, E. M.; Sheesley, R. J.

    2013-12-01

    Currently, the Arctic is one of the fastest warming regions on earth with surface temperatures increasing at a rate nearly double the global mean over recent decades. Despite the fact that atmospheric concentrations of elemental carbon (EC) are lower in the Arctic than in lower latitudes, deposition of EC on snow and ice may exacerbate regional warming by simultaneously decreasing albedo and increasing melt rates. Due to the intensifying Arctic oil exploration in areas such as the Beaufort and Chukchi seas, the impact of new emission sources such as heavy fuel and heavy diesel combustion on regional carbon needs to be assessed. The first step in developing mitigation strategies for reducing current and future EC emissions in the Arctic is to determine emission source contributions. This study aims to determine the relative contributions of fossil fuel and biomass combustion and to identify major source regions of EC to the Arctic. Radiocarbon analysis of both total organic carbon (TOC) and EC combined with organic tracer and back trajectory analysis has been applied to a set of wintertime coarse particulate matter (PM10) samples from Barrow, AK. Preliminary apportionment for January 2013 indicates roughly half of TOC is from biogenic/biomass burning emissions and one third of EC is due to biomass burning emissions. The radiocarbon results will be combined with organic tracer analysis (polycyclic aromatic hydrocarbons, petroleum biomarkers and normal alkanes), increasing the specificity of the relative contribution of both the fossil and modern (biogenic/biomass burning) carbon emission sources. This research represents the first reported radiocarbon values for Arctic EC, providing highly conclusive source apportionment prior to the influence of increased drilling operations and ship traffic in the Beaufort and Chukchi seas.

  5. Advancement into the Arctic Region for Bioactive Sponge Secondary Metabolites

    PubMed Central

    Abbas, Samuel; Kelly, Michelle; Bowling, John; Sims, James; Waters, Amanda; Hamann, Mark

    2011-01-01

    Porifera have long been a reservoir for the discovery of bioactive compounds and drug discovery. Most research in the area has focused on sponges from tropical and temperate waters, but more recently the focus has shifted to the less accessible colder waters of the Antarctic and, to a lesser extent, the Arctic. The Antarctic region in particular has been a more popular location for natural products discovery and has provided promising candidates for drug development. This article reviews groups of bioactive compounds that have been isolated and reported from the southern reaches of the Arctic Circle, surveys the known sponge diversity present in the Arctic waters, and details a recent sponge collection by our group in the Aleutian Islands, Alaska. The collection has yielded previously undescribed sponge species along with primary activity against opportunistic infectious diseases, malaria, and HCV. The discovery of new sponge species and bioactive crude extracts gives optimism for the isolation of new bioactive compounds from a relatively unexplored source. PMID:22163194

  6. Compensation of ocean acidification effects in Arctic phytoplankton assemblages

    NASA Astrophysics Data System (ADS)

    Hoppe, Clara Jule Marie; Wolf, Klara K. E.; Schuback, Nina; Tortell, Philippe D.; Rost, Björn

    2018-06-01

    The Arctic and subarctic shelf seas, which sustain large fisheries and contribute to global biogeochemical cycling, are particularly sensitive to ongoing ocean acidification (that is, decreasing seawater pH due to anthropogenic CO2 emissions). Yet, little information is available on the effects of ocean acidification on natural phytoplankton assemblages, which are the main primary producers in high-latitude waters. Here we show that coastal Arctic and subarctic primary production is largely insensitive to ocean acidification over a large range of light and temperature levels in different experimental designs. Out of ten CO2-manipulation treatments, significant ocean acidification effects on primary productivity were observed only once (at temperatures below 2 °C), and shifts in the species composition occurred only three times (without correlation to specific experimental conditions). These results imply a high capacity to compensate for environmental variability, which can be understood in light of the environmental history, tolerance ranges and intraspecific diversity of the dominant phytoplankton species.

  7. In Brief: Arctic Report Card

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2009-11-01

    The 2009 annual update of the Arctic Report Card, issued on 22 October, indicates that “warming of the Arctic continues to be widespread, and in some cases dramatic. Linkages between air, land, sea, and biology are evident.” The report, a collaborative effort of 71 national and international scientists initiated in 2006 by the Climate Program Office of the U.S. National Oceanic and Atmospheric Administration (NOAA), highlights several concerns, including a change in large-scale wind patterns affected by the loss of summer sea ice; the replacement of multiyear sea ice by first-year sea ice; warmer and fresher water in the upper ocean linked to new ice-free areas; and the effects of the loss of sea ice on Arctic plant, animal, and fish species. “Climate change is happening faster in the Arctic than any other place on Earth-and with wide-ranging consequences,” said NOAA administrator Jane Lubchenco. “This year“s Arctic Report Card underscores the urgency of reducing greenhouse gas pollution and adapting to climate changes already under way.”

  8. The Arctic Research Consortium of the United States

    NASA Astrophysics Data System (ADS)

    Warnick, W. K.; Wiggins, H. V.

    2007-12-01

    The Arctic Research Consortium of the United States (ARCUS) is a nonprofit membership organization composed of universities and institutions that have a substantial commitment to research in the Arctic. ARCUS was formed in 1988 to serve as a forum for planning, facilitating, coordinating, and implementing interdisciplinary studies of the Arctic; to act as a synthesizer and disseminator of scientific information on arctic research; and to educate scientists and the general public about the needs and opportunities for research in the Arctic. ARCUS, in collaboration with the broad science community, relevant agencies and organizations, and other stakeholders, coordinates science planning and educational activities across disciplinary and organizational boundaries. Examples of current ARCUS science planning activities include: serving as the project office for the multi-agency Study of Environmental Arctic Change (SEARCH) program and providing support to the related Bering Ecosystem Study (BEST), and serving as the Science Management Office for the National Science Foundation (NSF) Arctic System Science (ARCSS) Program. ARCUS' central educational activity is PolarTREC (Teachers and Researchers Exploring and Collaborating), an International Polar Year (IPY) program whereby K-12 educators and researchers work together in hands-on field experiences in the Arctic and Antarctic to advance polar science education. Additional science planning, educational, information, and outreach activities include the Witness the Arctic newsletter, the Arctic Visiting Speakers' Series, the ArcticInfo listserve, the Internet Media Archive (IMA), the annual Arctic Forum conference, and many others. More information about these and other ARCUS activities can be found at the ARCUS website at www.arcus.org.

  9. Biogeochemical controls on microbial CH4 and CO2 production in Arctic polygon tundra

    NASA Astrophysics Data System (ADS)

    Zheng, J.

    2016-12-01

    Accurately simulating methane (CH4) and carbon dioxide (CO2) emissions from high latitude soils is critically important for reducing uncertainties in soil carbon-climate feedback predictions. The signature polygonal ground of Arctic tundra generates high level of heterogeneity in soil thermal regime, hydrology and oxygen availability, which limits the application of current land surface models with simple moisture response functions. We synthesized CH4 and CO2 production measurements from soil microcosm experiments across a wet-to dry permafrost degradation gradient from low-centered (LCP) to flat-centered (FCP), and high-centered polygons (HCP) to evaluate the relative importance of biogeochemical processes and their response to warming. More degraded polygon (HCP) showed much less carbon loss as CO2 or CH4, while the total CO2 production from FCP is comparable to that from LCP. Maximum CH4 production from the active layer of LCP was nearly 10 times that of permafrost and FCP. Multivariate analyses identifies gravimetric water content and organic carbon content as key predictors for CH4 production, and iron reduction as a key regulator of pH. The synthesized data are used to validate the geochemical model PHREEQC with extended anaerobic organic substrate turnover, fermentation, iron reduction, and methanogenesis reactions. Sensitivity analyses demonstrate that better representations of anaerobic processes and their pH dependency could significantly improve estimates of CH4 and CO2 production. The synthesized data suggest local decreases in CH4 production along the polygon degradation gradient, which is consistent with previous surface flux measurements. Methane oxidation occurring through the soil column of degraded polygons contributes to their low CH4 emissions as well.

  10. Improving the representation of Arctic photosynthesis in Earth System Models

    NASA Astrophysics Data System (ADS)

    Rogers, A.; Serbin, S.; Sloan, V. L.; Norby, R. J.; Wullschleger, S. D.

    2014-12-01

    The primary goal of Earth System Models (ESMs) is to improve understanding and projection of future global change. In order to do this models must accurately represent the terrestrial carbon cycle. Although Arctic carbon fluxes are small relative to global carbon fluxes, uncertainty is large. Photosynthetic CO2 uptake is well described by the Farquhar, von Caemmerer and Berry (FvCB) model of photosynthesis and most ESMs use a derivation of the FvCB model to calculate gross primary productivity. Two key parameters required by the FvCB model are an estimate of the maximum rate of carboxylation by the enzyme Rubisco (Vc,max) and the maximum rate of electron transport (Jmax). In ESMs the parameter Vc,max is typically fixed for a given plant functional type (PFT). Only four ESMs currently have an explicit Arctic PFT and the data used to derive Vc,max in these models relies on small data sets and unjustified assumptions. We examined the derivation of Vc,max and Jmax in current Arctic PFTs and estimated Vc,max and Jmax for a range of Arctic PFTs growing on the Barrow Environmental Observatory, Barrow, AK. We found that the values of Vc,max currently used to represent Arctic plants in ESMs are 70% lower than the values we measured, and contemporary temperature response functions for Vc,max also appear to underestimate Vc,max at low temperature. ESMs typically use a single multiplier (JVratio) to convert Vc,max to Jmax, however we found that the JVratio of Arctic plants is higher than current estimates suggesting that Arctic PFTs will be more responsive to rising carbon dioxide than currently projected. In addition we are exploring remotely sensed methods to scale up key biochemical (e.g. leaf N, leaf mass area) and physiological (e.g. Vc,max and Jmax) properties that drive model representation of photosynthesis in the Arctic. Our data suggest that the Arctic tundra has a much greater capacity for CO2 uptake, particularly at low temperature, and will be more CO2 responsive

  11. INTAROS: Development of an integrated Arctic observation system under Horizon 2020

    NASA Astrophysics Data System (ADS)

    Beszczynska-Möller, Agnieszka; Sandven, Stein; Sagen, Hanne

    2017-04-01

    INTAROS is a research and innovation action funded under the H2020-BG-09 call for the five-year period 2016-2021. INTAROS will develop an integrated Arctic Observation System (iAOS) by extending, improving and unifying existing systems in the different regions of the Arctic. INTAROS will have a strong multidisciplinary focus, with tools for integration of data from atmosphere, ocean, cryosphere and terrestrial sciences, provided by institutions in Europe, North America and Asia. Satellite earth observation (EO) data plays an increasingly important role in such observing systems, because the amount of EO data for observing the global climate and environment grows year by year. EO data will therefore be integrated into iAOS based on existing products and databases. In situ observing systems are much more limited due to logistical constraints and cost limitations. The sparseness of in situ data is therefore the largest gap in the overall observing system. INTAROS will assess strengths and weaknesses of existing Arctic observing systems and contribute with innovative solutions to fill some of the critical gaps in the selected networks. INTAROS will develop a platform, iAOS, to search for and access data from distributed databases. The evolution into a sustainable Arctic observing system requires coordination, mobilization and cooperation between the existing European and international infrastructures (in-situ and remote, including space-based), the modeling communities and relevant stakeholder groups. INTAROS will include development of community-based observing systems, where local knowledge is merged with scientific data. Multidisciplinary data integrated under INTAROS will contribute to better understanding of interactions and coupling in the complex Arctic ice-ocean-land-atmosphere system. An integrated Arctic Observation System will enable better-informed decisions and better-documented processes within key sectors (e.g. local communities, shipping, tourism

  12. Revolatilization of persistent organic pollutants in the Arctic induced by climate change

    NASA Astrophysics Data System (ADS)

    Ma, Jianmin; Hung, Hayley; Tian, Chongguo; Kallenborn, Roland

    2011-08-01

    Persistent organic pollutants (POPs) are organic compounds produced by human activities that are resistant to environmental degradation. They include industrial chemicals, such as polychlorinated biphenyls, and pesticides, such as dichlorodiphenyltrichloroethane. Owing to their persistence in the environment, POPs are transported long distances in the atmosphere, accumulating in regions such as the Arctic, where low temperatures induce their deposition. Here the compounds accumulate in wildlife and humans, putting their health at risk. The concentrations of many POPs have decreased in Arctic air over the past few decades owing to restrictions on their production and use. As the climate warms, however, POPs deposited in sinks such as water and ice are expected to revolatilize into the atmosphere, and there is evidence that this process may have already begun for volatile compounds. Here we show that many POPs, including those with lower volatilities, are being remobilized into the air from repositories in the Arctic region as a result of sea-ice retreat and rising temperatures. We analysed records of the concentrations of POPs in Arctic air since the early 1990s and compared the results with model simulations of the effect of climate change on their atmospheric abundances. Our results indicate that a wide range of POPs have been remobilized into the Arctic atmosphere over the past two decades as a result of climate change, confirming that Arctic warming could undermine global efforts to reduce environmental and human exposure to these toxic chemicals.

  13. Evaluation of CORDEX-Arctic daily precipitation and temperature-based climate indices over Canadian Arctic land areas

    NASA Astrophysics Data System (ADS)

    Diaconescu, Emilia Paula; Mailhot, Alain; Brown, Ross; Chaumont, Diane

    2018-03-01

    This study focuses on the evaluation of daily precipitation and temperature climate indices and extremes simulated by an ensemble of 12 Regional Climate Model (RCM) simulations from the ARCTIC-CORDEX experiment with surface observations in the Canadian Arctic from the Adjusted Historical Canadian Climate Dataset. Five global reanalyses products (ERA-Interim, JRA55, MERRA, CFSR and GMFD) are also included in the evaluation to assess their potential for RCM evaluation in data sparse regions. The study evaluated the means and annual anomaly distributions of indices over the 1980-2004 dataset overlap period. The results showed that RCM and reanalysis performance varied with the climate variables being evaluated. Most RCMs and reanalyses were able to simulate well climate indices related to mean air temperature and hot extremes over most of the Canadian Arctic, with the exception of the Yukon region where models displayed the largest biases related to topographic effects. Overall performance was generally poor for indices related to cold extremes. Likewise, only a few RCM simulations and reanalyses were able to provide realistic simulations of precipitation extreme indicators. The multi-reanalysis ensemble provided superior results to individual datasets for climate indicators related to mean air temperature and hot extremes, but not for other indicators. These results support the use of reanalyses as reference datasets for the evaluation of RCM mean air temperature and hot extremes over northern Canada, but not for cold extremes and precipitation indices.

  14. Chapter 3: Circum-Arctic mapping project: New magnetic and gravity anomaly maps of the Arctic

    USGS Publications Warehouse

    Gaina, C.; Werner, S.C.; Saltus, R.; Maus, S.; Aaro, S.; Damaske, D.; Forsberg, R.; Glebovsky, V.; Johnson, Kevin; Jonberger, J.; Koren, T.; Korhonen, J.; Litvinova, T.; Oakey, G.; Olesen, O.; Petrov, O.; Pilkington, M.; Rasmussen, T.; Schreckenberger, B.; Smelror, M.

    2011-01-01

    New Circum-Arctic maps of magnetic and gravity anomalies have been produced by merging regional gridded data. Satellite magnetic and gravity data were used for quality control of the long wavelengths of the new compilations. The new Circum-Arctic digital compilations of magnetic, gravity and some of their derivatives have been analyzed together with other freely available regional and global data and models in order to provide a consistent view of the tectonically complex Arctic basins and surrounding continents. Sharp, linear contrasts between deeply buried basement blocks with different magnetic properties and densities that can be identified on these maps can be used, together with other geological and geophysical information, to refine the tectonic boundaries of the Arctic domain. ?? 2011 The Geological Society of London.

  15. Mercury in Arctic Marine Ecosystems: Sources, Pathways, and Exposure

    PubMed Central

    Kirk, Jane L.; Lehnherr, Igor; Andersson, Maria; Braune, Birgit M.; Chan, Laurie; Dastoor, Ashu P.; Durnford, Dorothy; Gleason, Amber L.; Loseto, Lisa L.; Steffen, Alexandra; St. Louis, Vincent L.

    2014-01-01

    Mercury in the Arctic is an important environmental and human health issue. The reliance of Northern Peoples on traditional foods, such as marine mammals, for subsistence means that they are particularly at risk from mercury exposure. The cycling of mercury in Arctic marine systems is reviewed here, with emphasis placed on the key sources, pathways and processes which regulate mercury levels in marine food webs and ultimately the exposure of human populations to this contaminant. While many knowledge gaps exist limiting our ability to make strong conclusions, it appears that the long range transport of mercury from Asian emissions is an important source of atmospheric Hg to the Arctic and that mercury methylation resulting in monomethylmercury production (an organic form of mercury which is both toxic and bioaccumulated) in Arctic marine waters is the principal source of mercury incorporated into food webs. Mercury concentrations in biological organisms have increased since the onset of the industrial age and are controlled by a combination of abiotic factors (e.g., monomethylmercury supply), food web dynamics and structure, and animal behavior (e.g., habitat selection and feeding behavior). Finally, although some Northern Peoples have high mercury concentrations of mercury in their blood and hair, harvesting and consuming traditional foods has many nutritional, social, cultural and physical health benefits which must be considered in risk management and communication. PMID:23102902

  16. Date of Snowmelt at High Latitudes as Determined from Visible Satellite Data and Relationship with the Arctic Oscillation

    NASA Technical Reports Server (NTRS)

    Foster, James; Robinson, Dave; Estilow, Tom; Hall, Dorothy

    2012-01-01

    Spring snow cover across Arctic lands has, on average, retreated approximately five days earlier since the late 1980s compared to the previous twenty years. However, it appears that since about 1990, the date the snowline first retreats north during the spring has remained nearly unchanged--in the last twenty years, the date of snow disappearance has not been occurring noticeably earlier. Snowmelt changes observed in the 1980s was step-like in nature, unlike a more continuous downward trend seen in Arctic sea ice extent. At latitude 70 deg N, several latitudinal segments (of 10 degrees) show significant (negative) trends. However, only two latitudinal segments at 60 deg N show significant trends, one positive and one negative. These variations appear to be related to variations in the Arctic Oscillation (AO). Additional observations and modeling investigations are needed to better explain past and present spring melt characteristics and peculiarities.

  17. Plate tectonic history of the Arctic

    NASA Technical Reports Server (NTRS)

    Burke, K.

    1984-01-01

    Tectonic development of the Arctic Ocean is outlined, and geological maps are provided for the Arctic during the mid-Cenozoic, later Cretaceous, late Jurassic, early Cretaceous, early Jurassic and late Devonian. It is concluded that Arctic basin history is moulded by the events of the following intervals: (1) continental collision and immediately subsequent rifting and ocean formation in the Devonian, and continental rifting ocean formation, rapid rotation of microcontinents, and another episode of collision in the latest Jurassic and Cretaceous. It is noted that Cenozoic Arctic basin formation is a smaller scale event superimposed on the late Mesozoic ocean basin.

  18. Public Perceptions of Arctic Change

    NASA Astrophysics Data System (ADS)

    Hamilton, L.

    2014-12-01

    What does the general US public know, or think they know, about Arctic change? Two broad nationwide surveys in 2006 and 2010 addressed this topic in general terms, before and after the International Polar Year (IPY). Since then a series of representative national or statewide surveys have carried this research farther. The new surveys employ specific questions that assess public knowledge of basic Arctic facts, along with perceptions about the possible consequences of future Arctic change. Majorities know that late-summer Arctic sea ice area has declined compared with 30 years ago, although substantial minorities -- lately increasing -- believe instead that it has now recovered to historical levels. Majorities also believe that, if the Arctic warms in the future, this will have major effects on the weather where they live. Their expectation of local impacts from far-away changes suggests a degree of global thinking. On the other hand, most respondents do poorly when asked whether melting Arctic sea ice, melting Greenland/Antarctic land ice, or melting Himalayan glaciers could have more effect on sea level. Only 30% knew or guessed the right answer to this question. Similarly, only 33% answered correctly on a simple geography quiz: whether the North Pole could best be described as ice a few feet or yards thick floating over a deep ocean, ice more than a mile thick over land, or a rocky, mountainous landscape. Close analysis of response patterns suggests that people often construct Arctic "knowledge" on items such as sea ice increase/decrease from their more general ideology or worldview, such as their belief (or doubt) that anthropogenic climate change is real. When ideology or worldviews provide no guidance, as on the North Pole or sealevel questions, the proportion of accurate answers is no better than chance. These results show at least casual public awareness and interest in Arctic change, unfortunately not well grounded in knowledge. Knowledge problems seen on

  19. Warm Arctic-cold Siberia: comparing the recent and the early 20th-century Arctic warmings

    NASA Astrophysics Data System (ADS)

    Wegmann, Martin; Orsolini, Yvan; Zolina, Olga

    2018-02-01

    The Warm Arctic-cold Siberia surface temperature pattern during recent boreal winter is suggested to be triggered by the ongoing decrease of Arctic autumn sea ice concentration and has been observed together with an increase in mid-latitude extreme events and a meridionalization of tropospheric circulation. However, the exact mechanism behind this dipole temperature pattern is still under debate, since model experiments with reduced sea ice show conflicting results. We use the early twentieth-century Arctic warming (ETCAW) as a case study to investigate the link between September sea ice in the Barents-Kara Sea (BKS) and the Siberian temperature evolution. Analyzing a variety of long-term climate reanalyses, we find that the overall winter temperature and heat flux trend occurs with the reduction of September BKS sea ice. Tropospheric conditions show a strengthened atmospheric blocking over the BKS, strengthening the advection of cold air from the Arctic to central Siberia on its eastern flank, together with a reduction of warm air advection by the westerlies. This setup is valid for both the ETCAW and the current Arctic warming period.

  20. Surveillance of infectious diseases in the Arctic.

    PubMed

    Bruce, M; Zulz, T; Koch, A

    2016-08-01

    This study reviews how social and environmental issues affect health in Arctic populations and describes infectious disease surveillance in Arctic Nations with a special focus on the activities of the International Circumpolar Surveillance (ICS) project. We reviewed the literature over the past 2 decades looking at Arctic living conditions and their effects on health and Arctic surveillance for infectious diseases. In regards to other regions worldwide, the Arctic climate and environment are extreme. Arctic and sub-Arctic populations live in markedly different social and physical environments compared to those of their more southern dwelling counterparts. A cold northern climate means people spending more time indoors, amplifying the effects of household crowding, smoking and inadequate ventilation on the person-to-person spread of infectious diseases. The spread of zoonotic infections north as the climate warms, emergence of antibiotic resistance among bacterial pathogens, the re-emergence of tuberculosis, the entrance of HIV into Arctic communities, the specter of pandemic influenza or the sudden emergence and introduction of new viral pathogens pose new challenges to residents, governments and public health authorities of all Arctic countries. ICS is a network of hospitals, public health agencies, and reference laboratories throughout the Arctic working together for the purposes of collecting, comparing and sharing of uniform laboratory and epidemiological data on infectious diseases of concern and assisting in the formulation of prevention and control strategies (Fig. 1). In addition, circumpolar infectious disease research workgroups and sentinel surveillance systems for bacterial and viral pathogens exist. The ICS system is a successful example of collaborative surveillance and research in an extreme environment. Published by Elsevier Ltd.

  1. Trend analysis of Arctic sea ice extent

    NASA Astrophysics Data System (ADS)

    Silva, M. E.; Barbosa, S. M.; Antunes, Luís; Rocha, Conceição

    2009-04-01

    The extent of Arctic sea ice is a fundamental parameter of Arctic climate variability. In the context of climate change, the area covered by ice in the Arctic is a particularly useful indicator of recent changes in the Arctic environment. Climate models are in near universal agreement that Arctic sea ice extent will decline through the 21st century as a consequence of global warming and many studies predict a ice free Arctic as soon as 2012. Time series of satellite passive microwave observations allow to assess the temporal changes in the extent of Arctic sea ice. Much of the analysis of the ice extent time series, as in most climate studies from observational data, have been focussed on the computation of deterministic linear trends by ordinary least squares. However, many different processes, including deterministic, unit root and long-range dependent processes can engender trend like features in a time series. Several parametric tests have been developed, mainly in econometrics, to discriminate between stationarity (no trend), deterministic trend and stochastic trends. Here, these tests are applied in the trend analysis of the sea ice extent time series available at National Snow and Ice Data Center. The parametric stationary tests, Augmented Dickey-Fuller (ADF), Phillips-Perron (PP) and the KPSS, do not support an overall deterministic trend in the time series of Arctic sea ice extent. Therefore, alternative parametrizations such as long-range dependence should be considered for characterising long-term Arctic sea ice variability.

  2. Response of an arctic predator guild to collapsing lemming cycles

    PubMed Central

    Schmidt, Niels M.; Ims, Rolf A.; Høye, Toke T.; Gilg, Olivier; Hansen, Lars H.; Hansen, Jannik; Lund, Magnus; Fuglei, Eva; Forchhammer, Mads C.; Sittler, Benoit

    2012-01-01

    Alpine and arctic lemming populations appear to be highly sensitive to climate change, and when faced with warmer and shorter winters, their well-known high-amplitude population cycles may collapse. Being keystone species in tundra ecosystems, changed lemming dynamics may convey significant knock-on effects on trophically linked species. Here, we analyse long-term (1988–2010), community-wide monitoring data from two sites in high-arctic Greenland and document how a collapse in collared lemming cyclicity affects the population dynamics of the predator guild. Dramatic changes were observed in two highly specialized lemming predators: snowy owl and stoat. Following the lemming cycle collapse, snowy owl fledgling production declined by 98 per cent, and there was indication of a severe population decline of stoats at one site. The less specialized long-tailed skua and the generalist arctic fox were more loosely coupled to the lemming dynamics. Still, the lemming collapse had noticeable effects on their reproductive performance. Predator responses differed somewhat between sites in all species and could arise from site-specific differences in lemming dynamics, intra-guild interactions or subsidies from other resources. Nevertheless, population extinctions and community restructuring of this arctic endemic predator guild are likely if the lemming dynamics are maintained at the current non-cyclic, low-density state. PMID:22977153

  3. Tracking of Arctic terns Sterna paradisaea reveals longest animal migration.

    PubMed

    Egevang, Carsten; Stenhouse, Iain J; Phillips, Richard A; Petersen, Aevar; Fox, James W; Silk, Janet R D

    2010-02-02

    The study of long-distance migration provides insights into the habits and performance of organisms at the limit of their physical abilities. The Arctic tern Sterna paradisaea is the epitome of such behavior; despite its small size (<125 g), banding recoveries and at-sea surveys suggest that its annual migration from boreal and high Arctic breeding grounds to the Southern Ocean may be the longest seasonal movement of any animal. Our tracking of 11 Arctic terns fitted with miniature (1.4-g) geolocators revealed that these birds do indeed travel huge distances (more than 80,000 km annually for some individuals). As well as confirming the location of the main wintering region, we also identified a previously unknown oceanic stopover area in the North Atlantic used by birds from at least two breeding populations (from Greenland and Iceland). Although birds from the same colony took one of two alternative southbound migration routes following the African or South American coast, all returned on a broadly similar, sigmoidal trajectory, crossing from east to west in the Atlantic in the region of the equatorial Intertropical Convergence Zone. Arctic terns clearly target regions of high marine productivity both as stopover and wintering areas, and exploit prevailing global wind systems to reduce flight costs on long-distance commutes.

  4. Tracking of Arctic terns Sterna paradisaea reveals longest animal migration

    PubMed Central

    Egevang, Carsten; Stenhouse, Iain J.; Phillips, Richard A.; Petersen, Aevar; Fox, James W.; Silk, Janet R. D.

    2010-01-01

    The study of long-distance migration provides insights into the habits and performance of organisms at the limit of their physical abilities. The Arctic tern Sterna paradisaea is the epitome of such behavior; despite its small size (<125 g), banding recoveries and at-sea surveys suggest that its annual migration from boreal and high Arctic breeding grounds to the Southern Ocean may be the longest seasonal movement of any animal. Our tracking of 11 Arctic terns fitted with miniature (1.4-g) geolocators revealed that these birds do indeed travel huge distances (more than 80,000 km annually for some individuals). As well as confirming the location of the main wintering region, we also identified a previously unknown oceanic stopover area in the North Atlantic used by birds from at least two breeding populations (from Greenland and Iceland). Although birds from the same colony took one of two alternative southbound migration routes following the African or South American coast, all returned on a broadly similar, sigmoidal trajectory, crossing from east to west in the Atlantic in the region of the equatorial Intertropical Convergence Zone. Arctic terns clearly target regions of high marine productivity both as stopover and wintering areas, and exploit prevailing global wind systems to reduce flight costs on long-distance commutes. PMID:20080662

  5. Response of an arctic predator guild to collapsing lemming cycles.

    PubMed

    Schmidt, Niels M; Ims, Rolf A; Høye, Toke T; Gilg, Olivier; Hansen, Lars H; Hansen, Jannik; Lund, Magnus; Fuglei, Eva; Forchhammer, Mads C; Sittler, Benoit

    2012-11-07

    Alpine and arctic lemming populations appear to be highly sensitive to climate change, and when faced with warmer and shorter winters, their well-known high-amplitude population cycles may collapse. Being keystone species in tundra ecosystems, changed lemming dynamics may convey significant knock-on effects on trophically linked species. Here, we analyse long-term (1988-2010), community-wide monitoring data from two sites in high-arctic Greenland and document how a collapse in collared lemming cyclicity affects the population dynamics of the predator guild. Dramatic changes were observed in two highly specialized lemming predators: snowy owl and stoat. Following the lemming cycle collapse, snowy owl fledgling production declined by 98 per cent, and there was indication of a severe population decline of stoats at one site. The less specialized long-tailed skua and the generalist arctic fox were more loosely coupled to the lemming dynamics. Still, the lemming collapse had noticeable effects on their reproductive performance. Predator responses differed somewhat between sites in all species and could arise from site-specific differences in lemming dynamics, intra-guild interactions or subsidies from other resources. Nevertheless, population extinctions and community restructuring of this arctic endemic predator guild are likely if the lemming dynamics are maintained at the current non-cyclic, low-density state.

  6. Exploring Arctic history through scientific drilling

    NASA Astrophysics Data System (ADS)

    ODP Leg 151 Shipboard Scientific Party

    During the brief Arctic summer of 1993, the Ocean Drilling Program's research vessel JOIDES Resolution recovered the first scientific drill cores from the eastern Arctic Ocean. Dodging rafts of pack ice shed from the Arctic ice cap, the science party sampled sediments north of 80°N latitude from the Yermak Plateau, as well as from sites in Fram Strait, the northeastern Greenland margin, and the Iceland Plateau (Figure 1).The sediments collected reveal the earliest history of the connection between the North Atlantic and Arctic Oceans through the Nordic Seas. The region between Greenland and Norway first formed a series of isolated basins, sometimes with restricted deep circulation, that eventually joined and allowed deep and surface Arctic Ocean water to invade the region. A record was also retrieved that shows major glaciation in the region began about 2.5 m.y.a.

  7. Dynamical amplification of Arctic and global warming

    NASA Astrophysics Data System (ADS)

    Alekseev, Genrikh; Ivanov, Nikolai; Kharlanenkova, Natalia; Kuzmina, Svetlana; Bobylev, Leonid; Gnatiuk, Natalia; Urazgildeeva, Aleksandra

    2015-04-01

    The Arctic is coupled with global climate system by the atmosphere and ocean circulation that provides a major contribution to the Arctic energy budget. Therefore increase of meridional heat transport under global warming can impact on its Arctic amplification. Contribution of heat transport to the recent warming in the Arctic, Northern Hemisphere and the globe are estimated on base of reanalysis data, global climate model data and proposed special index. It is shown that significant part of linear trend during last four decades in average surface air temperature in these areas can be attributed to dynamical amplification. This attribution keeps until 400 mb height with progressive decreasing. The Arctic warming is amplified also due to an increase of humidity and cloudiness in the Arctic atmosphere that follow meridional transport gain. From October to January the Arctic warming trends are amplified as a result of ice edge retreat from the Siberian and Alaska coast and the heating of expanded volume of sea water. This investigation is supported with RFBR project 15-05-03512.

  8. Acquiring Marine Data in the Canada Basin, Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Hutchinson, Deborah R.; Jackson, H. Ruth; Shimeld, John W.; Chapman, C. Borden; Childs, Jonathan R.; Funck, Thomas; Rowland, Robert W.

    2009-06-01

    Despite the record minimum ice extent in the Arctic Ocean for the past 2 years, collecting geophysical data with towed sensors in ice-covered regions continues to pose enormous challenges. Significant parts of the Canada Basin in the western Arctic Ocean have remained largely unmapped because thick multiyear ice has limited access even by research vessels strengthened against ice [Jackson et al., 1990]. Because of the resulting paucity of data, the western Arctic Ocean is one of the few areas of ocean in the world where major controversies still exist with respect to its origin and tectonic evolution [Grantz et al., 1990; Lawver and Scotese, 1990; Lane, 1997; Miller et al., 2006]. This article describes the logistical challenges and initial data sets from geophysical seismic reflection, seismic refraction, and hydrographic surveys in the Canada Basin conducted by scientists with U.S. and Canadian government agencies (Figure 1a) to fulfill the requirements of the United Nations Convention on the Law of the Sea to determine sediment thickness, geological origin, and basin evolution in this unexplored part of the world. Some of these data were collected using a single ship, but the heaviest ice conditions necessitated using two icebreakers, similar to other recent Arctic surveys [e.g., Jokat, 2003].

  9. Strategic Assessment for Arctic Observing, and the New Arctic Observing Viewer

    NASA Astrophysics Data System (ADS)

    Kassin, A.; Cody, R. P.; Manley, W. F.; Gaylord, A. G.; Dover, M.; Score, R.; Lin, D. H.; Villarreal, S.; Quezada, A.; Tweedie, C. E.

    2013-12-01

    Although a great deal of progress has been made with various Arctic Observing efforts, it can be difficult to assess that progress. What data collection efforts are established or under way? Where? By whom? To help meet the strategic needs of SEARCH-AON, SAON, and related initiatives, a new resource has been released: the Arctic Observing Viewer (AOV; http://ArcticObservingViewer.org). This web mapping application covers the 'who', 'what', 'where', and 'when' of data collection sites - wherever marine or terrestrial data are collected. Hundreds of sites are displayed, providing an overview as well as details. Users can visualize, navigate, select, search, draw, print, and more. This application currently showcases a subset of observational activities and will become more comprehensive with time. The AOV is founded on principles of interoperability, with an emerging metadata standard and compatible web service formats, such that participating agencies and organizations can use the AOV tools and services for their own purposes. In this way, the AOV will complement other cyber-resources, and will help science planners, funding agencies, PI's, and others to: assess status, identify overlap, fill gaps, assure sampling design, refine network performance, clarify directions, access data, coordinate logistics, collaborate, and more to meet Arctic Observing goals.

  10. Activity of disaccharidases in arctic populations: evolutionary aspects disaccharidases in arctic populations.

    PubMed

    Kozlov, Andrew; Vershubsky, Galina; Borinskaya, Svetlana; Sokolova, Maria; Nuvano, Vladislav

    2005-07-01

    Disorders of dietary sugar assimilation occur more often among native people of the Arctic then in temperate climate inhabitants. It is hypothesized that the limited variety of natural exogenous sugars in the Arctic, and their low content in the traditional diets of native northerners in accordance with a "protein-lipid" type of metabolism weakened selection, favoring diversity of disaccharidase enzymes.

  11. Lagrangian Modeling of Arctic Ocean Circulation Pathways: Impact of Advection on Spread of Pollutants

    NASA Astrophysics Data System (ADS)

    Kelly, S.; Popova, E.; Aksenov, Y.; Marsh, R.; Yool, A.

    2018-04-01

    Sea-ice-free summers are projected to become a prominent feature of the Arctic environment in the coming decades. From a shipping perspective, this means larger areas of open water in the summer, thinner and less compact ice all year round, and longer operating seasons. Therefore, the possibility for easier navigation along trans-Arctic shipping routes arises. The Northern Sea Route (NSR) is one trans-Arctic route, and it offers a potential 10 day shortcut between Western Europe and the Far East. More ships transiting the NSR means an increased risk of an accident, and associated oil spill, occurring. Previous research suggests that current infrastructure is insufficient for increased shipping. Therefore, should an oil spill occur, the window for a successful clean-up will be short. In the event of a failed recovery, the long-term fate of the unrecovered pollutants must be considered, at least until the next melt season when it could become accessible again. Here we investigate the role of oceanic advection in determining the long-term fate of Arctic pollutants using a high-resolution ocean model along with Lagrangian particle-tracking to simulate the spread of pollutants. The resulting "advective footprints" of pollutants are proposed as an informative metric for analyzing such experiments. We characterize the circulation along different parts of the NSR, defining three main regions in the Eurasian Arctic, and relate the distinctive circulation pathways of each to the long-term fate of spilled oil. We conclude that a detailed understanding of ocean circulation is critical for determining the long-term fate of Arctic pollutants.

  12. Observing Arctic Ecology using Networked Infomechanical Systems

    NASA Astrophysics Data System (ADS)

    Healey, N. C.; Oberbauer, S. F.; Hollister, R. D.; Tweedie, C. E.; Welker, J. M.; Gould, W. A.

    2012-12-01

    2012. Once compiled and quality controlled, all of our data are freely available online via the Arctic Observing Network's Advanced Cooperative Arctic Data and Information Service (ACADIS). Here we present some of our findings to show how our results can be advantageous to various disciplines including plant ecology, hydrology, geology, atmospheric sciences, and remote sensing. For instance, we found that albedo decreases with increasing NDVI after initial green-up and loss of dead standing litter (DOY 174-184), displaying an r2 of 0.90 in 2012 at Toolik Lake. This relationship is vital for determining phonological events via remote sensing and understanding the surface energy balance that impacts atmospheric processes, weather and climate, the hydrologic cycle, and ecophysiological progression throughout the short arctic growing season. Scaling these data to larger scales, which is critical to future monitoring of the potential impacts of climate change on arctic vegetation, is facilitated by linkage of measurements along the NIMS transects and manual vegetation measurements in the 1 km2 sample grids with frequent low-altitude aerial photography.

  13. SONARC: A Sea Ice Monitoring and Forecasting System to Support Safe Operations and Navigation in Arctic Seas

    NASA Astrophysics Data System (ADS)

    Stephenson, S. R.; Babiker, M.; Sandven, S.; Muckenhuber, S.; Korosov, A.; Bobylev, L.; Vesman, A.; Mushta, A.; Demchev, D.; Volkov, V.; Smirnov, K.; Hamre, T.

    2015-12-01

    Sea ice monitoring and forecasting systems are important tools for minimizing accident risk and environmental impacts of Arctic maritime operations. Satellite data such as synthetic aperture radar (SAR), combined with atmosphere-ice-ocean forecasting models, navigation models and automatic identification system (AIS) transponder data from ships are essential components of such systems. Here we present first results from the SONARC project (project term: 2015-2017), an international multidisciplinary effort to develop novel and complementary ice monitoring and forecasting systems for vessels and offshore platforms in the Arctic. Automated classification methods (Zakhvatkina et al., 2012) are applied to Sentinel-1 dual-polarization SAR images from the Barents and Kara Sea region to identify ice types (e.g. multi-year ice, level first-year ice, deformed first-year ice, new/young ice, open water) and ridges. Short-term (1-3 days) ice drift forecasts are computed from SAR images using feature tracking and pattern tracking methods (Berg & Eriksson, 2014). Ice classification and drift forecast products are combined with ship positions based on AIS data from a selected period of 3-4 weeks to determine optimal vessel speed and routing in ice. Results illustrate the potential of high-resolution SAR data for near-real-time monitoring and forecasting of Arctic ice conditions. Over the next 3 years, SONARC findings will contribute new knowledge about sea ice in the Arctic while promoting safe and cost-effective shipping, domain awareness, resource management, and environmental protection.

  14. An Intensified Arctic Water Cycle? Trend Analysis of the Arctic System Freshwater Cycle: Observations and Expectations

    NASA Astrophysics Data System (ADS)

    Rawlins, M. A.; Adam, J. C.; Vorosmarty, C. J.; Serreze, M. C.; Hinzman, L. D.; Holland, M.; Shiklomanov, A.

    2007-12-01

    It is expected that a warming climate will be attended by an intensification of the global hydrological cycle. While there are signs of positive trends in several hydrological quantities emerging at the global scale, the scope, character, and quantitative significance of these changes are not well established. In particular, long-term increases in river discharge across Arctic Eurasia are assumed to represent such an intensification and have received considerable attention. Yet, no change in long-term annual precipitation across the region can be related with the discharge trend. Given linkages and feedbacks between the arctic and global climate systems, a more complete understanding of observed changes across northern high latitudes is needed. We present a working definition of an accelerated or intensified hydrological cycle and a synthesis of long-term (nominally 50 years) trends in observed freshwater stocks and fluxes across the arctic land-atmosphere-ocean system. Trend and significance measures from observed data are described alongside expectations of intensification based on GCM simulations of contemporary and future climate. Our domain of interest includes the terrestrial arctic drainage (including all of Alaska and drainage to Hudson Bay), the Arctic Ocean, and the atmosphere over the land and ocean domains. For the terrestrial Arctic, time series of spatial averages which are derived from station data and atmospheric reanalysis are available. Reconstructed data sets are used for quantities such as Arctic Ocean ice and liquid freshwater transports. Study goals include a comprehensive survey of past changes in freshwater across the pan-arctic and a set of benchmarks for expected changes based on an ensemble of GCM simulations, and identification of potential mechanistic linkages which may be examined with contemporary remote sensing data sets.

  15. The Arctic Research Consortium of the United States (ARCUS)

    NASA Astrophysics Data System (ADS)

    Fox, S. E.; Wiggins, H. V.; Creek, K. R.

    2012-12-01

    The Arctic Research Consortium of the United States (ARCUS) is a nonprofit membership organization composed of universities and institutions that have a substantial commitment to research in the Arctic. Founded in 1988 to serve as a forum for advancing interdisciplinary studies of the Arctic, ARCUS synthesizes and disseminates scientific information on arctic research and educates scientists and the general public about the needs and opportunities for research in the Arctic. ARCUS works closely with national and international stakeholders in advancing science planning and educational activities across disciplinary and organizational boundaries. Examples of ARCUS projects include: - Arctic Sea Ice Outlook - an international effort that provides monthly summer reports synthesizing community estimates of the expected sea ice minimum. - Sea Ice for Walrus Outlook - a resource for Alaska Native subsistence hunters, coastal communities, and others that provides weekly reports with information on sea ice conditions relevant to walrus in Alaska waters. - PolarTREC (Teachers and Researchers Exploring and Collaborating) - a program for K-12 educators and researchers to work together in hands-on field experiences in the Arctic and Antarctic to advance polar science education. - ArcticInfo mailing list, Witness the Arctic newsletter, and the Arctic Calendar - communication tools for the arctic community to keep apprised of relevant news, meetings, and announcements. - Project Office for the Study of Environmental Arctic Change (SEARCH) program, which aims to provide scientific understanding of arctic environmental change to help society understand and respond to a rapidly changing Arctic. More information about these and other ARCUS activities can be found at the ARCUS website at: http://www.arcus.org.

  16. The Arctic Research Consortium of the United States (ARCUS)

    NASA Astrophysics Data System (ADS)

    Creek, K. R.; Fox, S. E.

    2013-12-01

    The Arctic Research Consortium of the United States (ARCUS) is a nonprofit membership organization composed of universities and institutions that have a substantial commitment to research in the Arctic. Founded in 1988 to serve as a forum for advancing interdisciplinary studies of the Arctic, ARCUS synthesizes and disseminates scientific information on arctic research and educates scientists and the general public about the needs and opportunities for research in the Arctic. ARCUS works closely with national and international stakeholders in advancing science planning and educational activities across disciplinary and organizational boundaries. Examples of ARCUS projects include: - Arctic Sea Ice Outlook - an international effort that provides monthly summer reports synthesizing community estimates of the expected sea ice minimum. - Sea Ice for Walrus Outlook - a resource for Alaska Native subsistence hunters, coastal communities, and others that provides weekly reports with information on sea ice conditions relevant to walrus in Alaska waters. - PolarTREC (Teachers and Researchers Exploring and Collaborating) - a program for K-12 educators and researchers to work together in hands-on field experiences in the Arctic and Antarctic to advance polar science education. - ArcticInfo mailing list, Witness the Arctic newsletter, and the Arctic Calendar - communication tools for the arctic community to keep apprised of relevant news, meetings, and announcements. - Project Office for the Study of Environmental Arctic Change (SEARCH) program, which aims to provide scientific understanding of arctic environmental change to help society understand and respond to a rapidly changing Arctic. More information about these and other ARCUS activities can be found at the ARCUS website at: http://www.arcus.org.

  17. The Arctic Research Consortium of the United States (ARCUS)

    NASA Astrophysics Data System (ADS)

    Fox, S. E.; Wiggins, H. V.

    2011-12-01

    The Arctic Research Consortium of the United States (ARCUS) is a nonprofit membership organization composed of universities and institutions that have a substantial commitment to research in the Arctic. ARCUS was formed in 1988 to serve as a forum for planning, facilitating, coordinating, and implementing interdisciplinary studies of the Arctic; to act as a synthesizer and disseminator of scientific information on arctic research; and to educate scientists and the general public about the needs and opportunities for research in the Arctic. ARCUS, in collaboration with the broader science community, relevant agencies and organizations, and other stakeholders, coordinates science planning and educational activities across disciplinary and organizational boundaries. Examples of ARCUS projects include: - Arctic Sea Ice Outlook - an international effort that provides monthly summer reports synthesizing community estimates of the expected sea ice minimum. - Sea Ice for Walrus Outlook - a resource for Alaska Native subsistence hunters, coastal communities, and others that provides weekly reports with information on sea ice conditions relevant to walrus in Alaska waters. - PolarTREC (Teachers and Researchers Exploring and Collaborating) - a program whereby K-12 educators and researchers work together in hands-on field experiences in the Arctic and Antarctic to advance polar science education. - ArcticInfo mailing list, Witness the Arctic newsletter, and the Arctic Calendar - communication tools for the arctic science community to keep apprised of relevant news, meetings, and announcements. - Coordination for the Study of Environmental Arctic Change (SEARCH) program, which aims to provide scientific understanding of arctic environmental change to help society understand and respond to a rapidly changing Arctic.

  18. A potential loss of carbon associated with greater plant growth in the European Arctic

    NASA Astrophysics Data System (ADS)

    Hartley, Iain P.; Garnett, Mark H.; Sommerkorn, Martin; Hopkins, David W.; Fletcher, Benjamin J.; Sloan, Victoria L.; Phoenix, Gareth K.; Wookey, Philip A.

    2012-12-01

    Rapid warming is expected to increase plant growth in the Arctic, and result in trees gradually colonizing tundra. Models predict that enhanced carbon (C) storage in plant biomass may help offset atmospheric CO2 increases and reduce rates of climate change. However, in some Arctic ecosystems, high plant productivity is associated with rapid cycling and low storage of soil C (refs , , ); thus, as plant growth increases, soil C may be lost through enhanced decomposition. Here we show that, in northern Sweden, total ecosystem C storage is greater in tundra heath (owing to greater soil C stocks) than in more productive mountain-birch forest. Furthermore, we demonstrate that in the forest, high plant activity during the middle of the growing season stimulates the decomposition of older soil organic matter. Such a response, referred to as positive priming, helps explain the low soil C storage in the forest when compared with the tundra. We suggest that, as more productive forest communities colonize tundra, the decomposition of the large C stocks in tundra soils could be stimulated. Thus, counter-intuitively, increased plant growth in the European Arctic could result in C being released to the atmosphere, accelerating climate change.

  19. NATO’s Future Role in the Arctic

    DTIC Science & Technology

    2016-05-01

    iv Global Climate Change and Arctic Geopolitics............................. Error! Bookmark not defined. Russian Claims to the Arctic...13 1 Global Climate Change and Arctic Geopolitics Global climate change has a profound...explaining the effect of climate change in the Arctic and the consequences on regional security. Issues regarding territorial sovereignty will be

  20. ArcticDEM Validation and Accuracy Assessment

    NASA Astrophysics Data System (ADS)

    Candela, S. G.; Howat, I.; Noh, M. J.; Porter, C. C.; Morin, P. J.

    2017-12-01

    ArcticDEM comprises a growing inventory Digital Elevation Models (DEMs) covering all land above 60°N. As of August, 2017, ArcticDEM had openly released 2-m resolution, individual DEM covering over 51 million km2, which includes areas of repeat coverage for change detection, as well as over 15 million km2 of 5-m resolution seamless mosaics. By the end of the project, over 80 million km2 of 2-m DEMs will be produced, averaging four repeats of the 20 million km2 Arctic landmass. ArcticDEM is produced from sub-meter resolution, stereoscopic imagery using open source software (SETSM) on the NCSA Blue Waters supercomputer. These DEMs have known biases of several meters due to errors in the sensor models generated from satellite positioning. These systematic errors are removed through three-dimensional registration to high-precision Lidar or other control datasets. ArcticDEM is registered to seasonally-subsetted ICESat elevations due its global coverage and high report accuracy ( 10 cm). The vertical accuracy of ArcticDEM is then obtained from the statistics of the fit to the ICESat point cloud, which averages -0.01 m ± 0.07 m. ICESat, however, has a relatively coarse measurement footprint ( 70 m) which may impact the precision of the registration. Further, the ICESat data predates the ArcticDEM imagery by a decade, so that temporal changes in the surface may also impact the registration. Finally, biases may exist between different the different sensors in the ArcticDEM constellation. Here we assess the accuracy of ArcticDEM and the ICESat registration through comparison to multiple high-resolution airborne lidar datasets that were acquired within one year of the imagery used in ArcticDEM. We find the ICESat dataset is performing as anticipated, introducing no systematic bias during the coregistration process, and reducing vertical errors to within the uncertainty of the airborne Lidars. Preliminary sensor comparisons show no significant difference post coregistration

  1. Capturing Micro-topography of an Arctic Tundra Landscape through Digital Elevation Models (DEMs) Acquired from Various Remote Sensing Platforms

    NASA Astrophysics Data System (ADS)

    Vargas, S. A., Jr.; Tweedie, C. E.; Oberbauer, S. F.

    2013-12-01

    The need to improve the spatial and temporal scaling and extrapolation of plot level measurements of ecosystem structure and function to the landscape level has been identified as a persistent research challenge in the arctic terrestrial sciences. Although there has been a range of advances in remote sensing capabilities on satellite, fixed wing, helicopter and unmanned aerial vehicle platforms over the past decade, these present costly, logistically challenging (especially in the Arctic), technically demanding solutions for applications in an arctic environment. Here, we present a relatively low cost alternative to these platforms that uses kite aerial photography (KAP). Specifically, we demonstrate how digital elevation models (DEMs) were derived from this system for a coastal arctic landscape near Barrow, Alaska. DEMs of this area acquired from other remote sensing platforms such as Terrestrial Laser Scanning (TLS), Airborne Laser Scanning, and satellite imagery were also used in this study to determine accuracy and validity of results. DEMs interpolated using the KAP system were comparable to DEMs derived from the other platforms. For remotely sensing acre to kilometer square areas of interest, KAP has proven to be a low cost solution from which derived products that interface ground and satellite platforms can be developed by users with access to low-tech solutions and a limited knowledge of remote sensing.

  2. Utilizing Colored Dissolved Organic Matter to Derive Dissolved Black Carbon Export by Arctic Rivers

    NASA Astrophysics Data System (ADS)

    Stubbins, Aron; Spencer, Robert; Mann, Paul; Holmes, R.; McClelland, James; Niggemann, Jutta; Dittmar, Thorsten

    2015-10-01

    Wildfires have produced black carbon (BC) since land plants emerged. Condensed aromatic compounds, a form of BC, have accumulated to become a major component of the soil carbon pool. Condensed aromatics leach from soils into rivers, where they are termed dissolved black carbon (DBC). The transport of DBC by rivers to the sea is a major term in the global carbon and BC cycles. To estimate Arctic river DBC export, 25 samples collected from the six largest Arctic rivers (Kolyma, Lena, Mackenzie, Ob’, Yenisey and Yukon) were analyzed for dissolved organic carbon (DOC), colored dissolved organic matter (CDOM), and DBC. A simple, linear regression between DOC and DBC indicated that DBC accounted for 8.9 ± 0.3% DOC exported by Arctic rivers. To improve upon this estimate, an optical proxy for DBC was developed based upon the linear correlation between DBC concentrations and CDOM light absorption coefficients at 254 nm (a254). Relatively easy to measure a254 values were determined for 410 Arctic river samples between 2004 and 2010. Each of these a254 values was converted to a DBC concentration based upon the linear correlation, providing an extended record of DBC concentration. The extended DBC record was coupled with daily discharge data from the six rivers to estimate riverine DBC loads using the LOADEST modeling program. The six rivers studied cover 53% of the pan-Arctic watershed and exported 1.5 ± 0.1 million tons of DBC per year. Scaling up to the full area of the pan-Arctic watershed, we estimate that Arctic rivers carry 2.8 ± 0.3 million tons of DBC from land to the Arctic Ocean each year. This equates to ~8% of Arctic river DOC export, slightly less than indicated by the simpler DBC vs DOC correlation-based estimate. Riverine discharge is predicted to increase in a warmer Arctic. DBC export was positively correlated with river runoff, suggesting that the export of soil BC to the Arctic Ocean is likely to increase as the Arctic warms.

  3. Regional variability in food availability for Arctic marine mammals.

    PubMed

    Bluhm, Bodil A; Gradinger, Rolf

    2008-03-01

    This review provides an overview of prey preferences of seven core Arctic marine mammal species (AMM) and four non-core species on a pan-Arctic scale with regional examples. Arctic marine mammal species exploit prey resources close to the sea ice, in the water column, and at the sea floor, including lipid-rich pelagic and benthic crustaceans and pelagic and ice-associated schooling fishes such as capelin and Arctic cod. Prey preferred by individual species range from cephalopods and benthic bivalves to Greenland halibut. A few AMM are very prey-, habitat-, and/or depth-specific (e.g., walrus, polar bear), while others are rather opportunistic and, therefore, likely less vulnerable to change (e.g., beluga, bearded seal). In the second section, we review prey distribution patterns and current biomass hotspots in the three major physical realms (sea ice, water column, and seafloor), highlighting relations to environmental parameters such as advection patterns and the sea ice regime. The third part of the contribution presents examples of documented changes in AMM prey distribution and biomass and, subsequently, suggests three potential scenarios of large-scale biotic change, based on published observations and predictions of environmental change. These scenarios discuss (1) increased pelagic primary and, hence, secondary production, particularly in the central Arctic, during open-water conditions in the summer (based on surplus nutrients currently unutilized); (2) reduced benthic and pelagic biomass in coastal/shelf areas (due to increased river runoff and, hence, changed salinity and turbidity conditions); and (3) increased pelagic grazing and recycling in open-water conditions at the expense of the current tight benthic-pelagic coupling in part of the ice-covered shelf regions (due to increased pelagic consumption vs. vertical flux). Should those scenarios hold true, pelagic-feeding and generalist AMM might be advantaged, while the range for benthic shelf

  4. Arctic tipping points: governance in turbulent times.

    PubMed

    Young, Oran R

    2012-02-01

    Interacting forces of climate change and globalization are transforming the Arctic. Triggered by a non-linear shift in sea ice, this transformation has unleashed mounting interest in opportunities to exploit the region's natural resources as well as growing concern about environmental, economic, and political issues associated with such efforts. This article addresses the implications of this transformation for governance, identifies limitations of existing arrangements, and explores changes needed to meet new demands. It advocates the development of an Arctic regime complex featuring flexibility across issues and adaptability over time along with an enhanced role for the Arctic Council both in conducting policy-relevant assessments and in promoting synergy in interactions among the elements of the emerging Arctic regime complex. The emphasis throughout is on maximizing the fit between the socioecological features of the Arctic and the character of the governance arrangements needed to steer the Arctic toward a sustainable future.

  5. Long photoperiods sustain high pH in Arctic kelp forests.

    PubMed

    Krause-Jensen, Dorte; Marbà, Núria; Sanz-Martin, Marina; Hendriks, Iris E; Thyrring, Jakob; Carstensen, Jacob; Sejr, Mikael Kristian; Duarte, Carlos M

    2016-12-01

    Concern on the impacts of ocean acidification on calcifiers, such as bivalves, sea urchins, and foraminifers, has led to efforts to understand the controls on pH in their habitats, which include kelp forests and seagrass meadows. The metabolism of these habitats can lead to diel fluctuation in pH with increases during the day and declines at night, suggesting no net effect on pH at time scales longer than daily. We examined the capacity of subarctic and Arctic kelps to up-regulate pH in situ and experimentally tested the role of photoperiod in determining the capacity of Arctic macrophytes to up-regulate pH. Field observations at photoperiods of 15 and 24 hours in Greenland combined with experimental manipulations of photoperiod show that photoperiods longer than 21 hours, characteristic of Arctic summers, are conducive to sustained up-regulation of pH by kelp photosynthesis. We report a gradual increase in pH of 0.15 units and a parallel decline in pCO 2 of 100 parts per million over a 10-day period in an Arctic kelp forest over midsummer, with ample scope for continued pH increase during the months of continuous daylight. Experimental increase in CO 2 concentration further stimulated the capacity of macrophytes to deplete CO 2 and increase pH. We conclude that long photoperiods in Arctic summers support sustained up-regulation of pH in kelp forests, with potential benefits for calcifiers, and propose that this mechanism may increase with the projected expansion of Arctic vegetation in response to warming and loss of sea ice.

  6. North Atlantic Deep Water formation inhibits high Arctic contamination by continental perfluorooctane sulfonate discharges

    NASA Astrophysics Data System (ADS)

    Zhang, Xianming; Zhang, Yanxu; Dassuncao, Clifton; Lohmann, Rainer; Sunderland, Elsie M.

    2017-08-01

    Perfluorooctane sulfonate (PFOS) is an aliphatic fluorinated compound with eight carbon atoms that is extremely persistent in the environment and can adversely affect human and ecological health. The stability, low reactivity, and high water solubility of PFOS combined with the North American phaseout in production around the year 2000 make it a potentially useful new tracer for ocean circulation. Here we characterize processes affecting the lifetime and accumulation of PFOS in the North Atlantic Ocean and transport to sensitive Arctic regions by developing a 3-D simulation within the MITgcm. The model captures variability in measurements across biogeographical provinces (R2 = 0.90, p = 0.01). In 2015, the North Atlantic PFOS reservoir was equivalent to 60% of cumulative inputs from the North American and European continents (1400 Mg). Cumulative inputs to the Arctic accounted for 30% of continental discharges, while the remaining 10% was transported to the tropical Atlantic and other regions. PFOS concentrations declined rapidly after 2002 in the surface mixed layer (half-life: 1-2 years) but are still increasing below 1000 m depth. During peak production years (1980-2000), plumes of PFOS-enriched seawater were transported to the sub-Arctic in energetic surface ocean currents. However, Atlantic Meridional Overturning Circulation (AMOC) and deep ocean transport returned a substantial fraction of this northward transport (20%, 530 Mg) to southern latitudes and reduced cumulative inputs to the Arctic (730 Mg) by 70%. Weakened AMOC due to climate change is thus likely to increase the magnitude of persistent bioaccumulative pollutants entering the Arctic Ocean.

  7. Sensitivity of Arctic carbon in a changing climate

    Treesearch

    A. David McGuire; Henry P. Huntington; Simon Wilson

    2009-01-01

    The Arctic has been warming rapidly in the past few decades. A key question is how that warming will affect the cycling of carbon (C) in the Arctic system. At present, the Arctic is a global sink for C. If that changes and the Arctic becomes a carbon source, global climate warming may speed up.

  8. High Arctic sea ice conditions influence marine birds wintering in Low Arctic regions

    NASA Astrophysics Data System (ADS)

    McFarlane Tranquilla, Laura; Hedd, April; Burke, Chantelle; Montevecchi, William A.; Regular, Paul M.; Robertson, Gregory J.; Stapleton, Leslie Ann; Wilhelm, Sabina I.; Fifield, David A.; Buren, Alejandro D.

    2010-09-01

    Ocean climate change is having profound biological effects in polar regions. Such change can also have far-reaching downstream effects in sub-polar regions. This study documents an environmental relationship between High Arctic sea ice changes and mortality events of marine birds in Low Arctic coastal regions. During April 2007 and March 2009, hundreds of beached seabird carcasses and moribund seabirds were found along the east and northeast coasts of Newfoundland, Canada. These seabird "wrecks" (i.e. dead birds on beaches) coincided with a period of strong, persistent onshore winds and heavily-accumulated sea ice that blocked bays and trapped seabirds near beaches. Ninety-two percent of wreck seabirds were Thick-billed Murres ( Uria lomvia). Body condition and demographic patterns of wreck murres were compared to Thick-billed Murres shot in the Newfoundland murre hunt. Average body and pectoral masses of wreck carcasses were 34% and 40% lighter (respectively) than shot murres, indicating that wreck birds had starved. The acute nature of each wreck suggested that starvation and associated hypothermia occurred within 2-3 days. In 2007, first-winter murres (77%) dominated the wreck. In 2009, there were more adults (78%), mostly females (66%). These results suggest that spatial and temporal segregation in ages and sexes can play a role in differential survival when stochastic weather conditions affect discrete areas where these groups aggregate. In wreck years, southward movement of Arctic sea ice to Low Arctic latitudes was later and blocked bays longer than in most other years. These inshore conditions corresponded with recent climate-driven changes in High Arctic ice break-up and ice extent; coupled with local weather conditions, these ice conditions appeared to be the key environmental features that precipitated the ice-associated seabird wrecks in the Low Arctic region.

  9. Shrub growth and expansion in the Arctic tundra: an assessment of controlling factors using an evidence-based approach

    NASA Astrophysics Data System (ADS)

    Martin, Andrew C.; Jeffers, Elizabeth S.; Petrokofsky, Gillian; Myers-Smith, Isla; Macias-Fauria, Marc

    2017-08-01

    Woody shrubs have increased in biomass and expanded into new areas throughout the Pan-Arctic tundra biome in recent decades, which has been linked to a biome-wide observed increase in productivity. Experimental, observational, and socio-ecological research suggests that air temperature—and to a lesser degree precipitation—trends have been the predominant drivers of this change. However, a progressive decoupling of these drivers from Arctic vegetation productivity has been reported, and since 2010, vegetation productivity has also been declining. We created a protocol to (a) identify the suite of controls that may be operating on shrub growth and expansion, and (b) characterise the evidence base for controls on Arctic shrub growth and expansion. We found evidence for a suite of 23 proximal controls that operate directly on shrub growth and expansion; the evidence base focused predominantly on just four controls (air temperature, soil moisture, herbivory, and snow dynamics). 65% of evidence was generated in the warmest tundra climes, while 24% was from only one of 28 floristic sectors. Temporal limitations beyond 10 years existed for most controls, while the use of space-for-time approaches was high, with 14% of the evidence derived via experimental approaches. The findings suggest the current evidence base is not sufficiently robust or comprehensive at present to answer key questions of Pan-Arctic shrub change. We suggest future directions that could strengthen the evidence, and lead to an understanding of the key mechanisms driving changes in Arctic shrub environments.

  10. Changes in Ocean Circulation with an Ice-Free Arctic: Reconstructing Early Holocene Arctic Ocean Circulation Using Geochemical Signals from Individual Neogloboquadrina pachyderma (sinistral) Shells

    NASA Astrophysics Data System (ADS)

    Livsey, C.; Spero, H. J.; Kozdon, R.

    2016-12-01

    The impacts of sea ice decrease and consequent hydrologic changes in the Arctic Ocean will be experienced globally as ocean and atmospheric temperatures continue to rise, though it is not evident to what extent. Understanding the structure of the Arctic water column during the early/mid Holocene sea ice minimum ( 6-10 kya), a post-glacial analogue of a seasonally ice-free Arctic, will help us to predict what the changes we can expect as the Earth warms over the next century. Neogloboquadrina pachyderma (sinistral; Nps) is a species of planktonic foraminifera that dominates assemblages in the polar oceans. This species grows its chambers (ontogenetic calcite) in the surface waters and subsequently descends through the water column to below the mixed layer where it quickly adds a thick crust of calcite (Kohfeld et al., 1996). Therefore, geochemical signals from both the surface waters and sub-mixed layer depths are captured within single Nps shells. We were able to target <5 μm - sized domains for δ18O using secondary ion mass spectrometry (SIMS), therefore capturing signals from both the ontogenetic and crust calcite in single Nps shells. This data was combined with laser ablation- inductively coupled mass spectrometry (LA-ICPMS) Mg/Ca profiles of trace metals through the two layers of calcite of the same shells, to determine the thermal structure of the water column. Combining δ18O, temperature, and salinity gradients from locations across the Arctic basin allow us to reconstruct the hydrography of the early Holocene Arctic sea ice minimum. These results will be compared with modern Arctic water column characteristics in order to develop a conceptual model of Arctic Ocean oceanographic change due to global warming. Kohfeld, K.E., Fairbanks, R.G., Smith, S.L., Walsh, I.D., 1996. Neogloboquadrina pachyderma(sinistral coiling) as paleoceanographic tracers in polar oceans: Evidence from northeast water polynya plankton tows, sediment traps, and surface sediments

  11. Long-term patterns of benthic irradiance and kelp production in the central Beaufort sea reveal implications of warming for Arctic inner shelves

    NASA Astrophysics Data System (ADS)

    Bonsell, Christina; Dunton, Kenneth H.

    2018-03-01

    This study synthesizes a multidecadal dataset of annual growth of the Arctic endemic kelp Laminaria solidungula and corresponding measurements of in situ benthic irradiance from Stefansson Sound in the central Beaufort Sea. We incorporate long-term data on sea ice concentration (National Sea Ice Data Center) and wind (National Weather Service) to assess how ice extent and summer wind dynamics affect the benthic light environment and annual kelp production. We find evidence of significant changes in sea ice extent in Stefansson Sound, with an extension of the ice-free season by approximately 17 days since 1979. Although kelp elongation at 5-7 m depths varies significantly among sites and years (3.8-49.8 cm yr-1), there is no evidence for increased production with either earlier ice break-up or a longer summer ice-free period. This is explained by very low light transmittance to the benthos during the summer season (mean daily percent surface irradiance ± SD: 1.7 ± 3.6 to 4.5 ± 6.6, depending on depth, with light attenuation values ranging from 0.5 to 0.8 m-1), resulting in minimal potential for kelp production on most days. Additionally, on month-long timescales (35 days) in the ice-free summer, benthic light levels are negatively related to wind speed. The frequent, wind-driven resuspension of sediments following ice break-up significantly reduce light to the seabed, effectively nullifying the benefits of an increased ice-free season on annual kelp growth. Instead, benthic light and primary production may depend substantially on the 1-3 week period surrounding ice break-up when intermediate sea ice concentrations reduce wind-driven sediment resuspension. These results suggest that both benthic and water column primary production along the inner shelf of Arctic marginal seas may decrease, not increase, with reductions in sea ice extent.

  12. Arctic Glass: Innovative Consumer Technology in Support of Arctic Research

    NASA Astrophysics Data System (ADS)

    Ruthkoski, T.

    2015-12-01

    The advancement of cyberinfrastructure on the North Slope of Alaska is drastically limited by location-specific conditions, including: unique geophysical features, remoteness of location, and harsh climate. The associated cost of maintaining this unique cyberinfrastructure also becomes a limiting factor. As a result, field experiments conducted in this region have historically been at a technological disadvantage. The Arctic Glass project explored a variety of scenarios where innovative consumer-grade technology was leveraged as a lightweight, rapidly deployable, sustainable, alternatives to traditional large-scale Arctic cyberinfrastructure installations. Google Glass, cloud computing services, Internet of Things (IoT) microcontrollers, miniature LIDAR, co2 sensors designed for HVAC systems, and portable network kits are several of the components field-tested at the Toolik Field Station as part of this project. Region-specific software was also developed, including a multi featured, voice controlled Google Glass application named "Arctic Glass". Additionally, real-time sensor monitoring and remote control capability was evaluated through the deployment of a small cluster of microcontroller devices. Network robustness was analyzed as the devices delivered streams of abiotic data to a web-based dashboard monitoring service in near real time. The same data was also uploaded synchronously by the devices to Amazon Web Services. A detailed overview of solutions deployed during the 2015 field season, results from experiments utilizing consumer sensors, and potential roles consumer technology could play in support of Arctic science will be discussed.

  13. Development of pan-Arctic database for river chemistry

    USGS Publications Warehouse

    McClelland, J.W.; Holmes, R.M.; Peterson, B.J.; Amon, R.; Brabets, T.; Cooper, L.; Gibson, J.; Gordeev, V.V.; Guay, C.; Milburn, D.; Staples, R.; Raymond, P.A.; Shiklomanov, I.; Striegl, Robert G.; Zhulidov, A.; Gurtovaya, T.; Zimov, S.

    2008-01-01

    More than 10% of all continental runoff flows into the Arctic Ocean. This runoff is a dominant feature of the Arctic Ocean with respect to water column structure and circulation. Yet understanding of the chemical characteristics of runoff from the pan-Arctic watershed is surprisingly limited. The Pan- Arctic River Transport of Nutrients, Organic Matter, and Suspended Sediments ( PARTNERS) project was initiated in 2002 to help remedy this deficit, and an extraordinary data set has emerged over the past few years as a result of the effort. This data set is publicly available through the Cooperative Arctic Data and Information Service (CADIS) of the Arctic Observing Network (AON). Details about data access are provided below.

  14. Organochlorine contaminant and stable isotope profiles in Arctic fox (Alopex lagopus) from the Alaskan and Canadian Arctic.

    PubMed

    Hoekstra, P F; Braune, B M; O'Hara, T M; Elkin, B; Solomon, K R; Muir, D C G

    2003-01-01

    Arctic fox (Alopex lagopus) is a circumpolar species distributed across northern Canada and Alaska. Arctic fox muscle and liver were collected at Barrow, AK, USA (n=18), Holman, NT, Canada (n=20), and Arviat, NU, Canada (n=20) to elucidate the feeding ecology of this species and relate these findings to body residue patterns of organochlorine contaminants (OCs). Stable carbon (delta 13C) and nitrogen (delta 15N) isotope analyses of Arctic fox muscle indicated that trophic position (estimated by delta 15N) is positively correlated with increasing delta 13C values, suggesting that Arctic fox with a predominantly marine-based foraging strategy occupy a higher trophic level than individuals mostly feeding from a terrestrial-based carbon source. At all sites, the rank order for OC groups in muscle was polychlorinated biphenyls (Sigma PCB) > chlordane-related compounds (Sigma CHLOR) > hexachlorocyclohexane (Sigma HCH) > total toxaphene (TOX) > or = chlorobenzenes (Sigma ClBz) > DDT-related isomers (Sigma DDT). In liver, Sigma CHLOR was the most abundant OC group, followed by Sigma PCB > TOX > Sigma HCH > Sigma ClBz > Sigma DDT. The most abundant OC analytes detected from Arctic fox muscle and liver were oxychlordane, PCB-153, and PCB-180. The comparison of delta 15N with OC concentrations indicated that relative trophic position might not accurately predict OC bioaccumulation in Arctic fox. The bioaccumulation pattern of OCs in the Arctic fox is similar to the polar bear. While Sigma PCB concentrations were highly variable, concentrations in the Arctic fox were generally below those associated with the toxicological endpoints for adverse effects on mammalian reproduction. Further research is required to properly elucidate the potential health impacts to this species from exposure to OCs.

  15. Multidecadal trends in aerosol radiative forcing over the Arctic: Contribution of changes in anthropogenic aerosol to Arctic warming since 1980

    NASA Astrophysics Data System (ADS)

    Breider, Thomas J.; Mickley, Loretta J.; Jacob, Daniel J.; Ge, Cui; Wang, Jun; Payer Sulprizio, Melissa; Croft, Betty; Ridley, David A.; McConnell, Joseph R.; Sharma, Sangeeta; Husain, Liaquat; Dutkiewicz, Vincent A.; Eleftheriadis, Konstantinos; Skov, Henrik; Hopke, Phillip K.

    2017-03-01

    Arctic observations show large decreases in the concentrations of sulfate and black carbon (BC) aerosols since the early 1980s. These near-term climate-forcing pollutants perturb the radiative balance of the atmosphere and may have played an important role in recent Arctic warming. We use the GEOS-Chem global chemical transport model to construct a 3-D representation of Arctic aerosols that is generally consistent with observations and their trends from 1980 to 2010. Observations at Arctic surface sites show significant decreases in sulfate and BC mass concentrations of 2-3% per year. We find that anthropogenic aerosols yield a negative forcing over the Arctic, with an average 2005-2010 Arctic shortwave radiative forcing (RF) of -0.19 ± 0.05 W m-2 at the top of atmosphere (TOA). Anthropogenic sulfate in our study yields more strongly negative forcings over the Arctic troposphere in spring (-1.17 ± 0.10 W m-2) than previously reported. From 1980 to 2010, TOA negative RF by Arctic aerosol declined, from -0.67 ± 0.06 W m-2 to -0.19 ± 0.05 W m-2, yielding a net TOA RF of +0.48 ± 0.06 W m-2. The net positive RF is due almost entirely to decreases in anthropogenic sulfate loading over the Arctic. We estimate that 1980-2010 trends in aerosol-radiation interactions over the Arctic and Northern Hemisphere midlatitudes have contributed a net warming at the Arctic surface of +0.27 ± 0.04 K, roughly one quarter of the observed warming. Our study does not consider BC emissions from gas flaring nor the regional climate response to aerosol-cloud interactions or BC deposition on snow.

  16. Role of Siderophores in Dissimilatory Iron Reduction in Arctic Soils : Effect of Direct Amendment of Siderophores to Arctic Soil

    NASA Astrophysics Data System (ADS)

    Srinivas, A. J.; Dinsdale, E. A.; Lipson, D.

    2014-12-01

    Dissimilatory iron reduction (DIR), where ferric iron (Fe3+) is reduced to ferrous iron (Fe2+) anaerobically, is an important respiratory pathway used by soil bacteria. DIR contributes to carbon dioxide (CO2) efflux from the wet sedge tundra biome in the Arctic Coastal Plain (ACP) in Alaska, and could competitively inhibit the production of methane, a stronger greenhouse gas than CO2, from arctic soils. The occurrence of DIR as a dominant anaerobic process depends on the availability of substantial levels of Fe3+ in soils. Siderophores are metabolites made by microbes to dissolve Fe3+ from soil minerals in iron deficient systems, making Fe3+ soluble for micronutrient uptake. However, as the ACP is not iron deficient, siderophores in arctic soils may play a vital role in anaerobic respiration by dissolving Fe3+ for DIR. We studied the effects of direct siderophore addition to arctic soils through a field study conducted in Barrow, Alaska, and a laboratory incubation study conducted at San Diego State University. In the field experiment, 50μM deferroxamine mesylate (a siderophore), 50μM trisodium nitrilotriacetate (an organic chelator) or an equal volume of water was added to isolated experimental plots, replicated in clusters across the landscape. Fe2+ concentrations were measured in soil pore water samples collected periodically to measure DIR over time in each. In the laboratory experiment, frozen soil samples obtained from drained thaw lake basins in the ACP, were cut into cores and treated with the above-mentioned compounds to the same final concentrations. Along with measuring Fe2+ concentrations, CO2 output was also measured to monitor DIR over time in each core. Experimental addition of siderophores to soils in both the field and laboratory resulted in increased concentrations of soluble Fe3+ and a sustained increase in Fe2+concentrations over time, along with increased respiration rates in siderophore-amended cores. These results show increased DIR in

  17. The changing seasonal climate in the Arctic.

    PubMed

    Bintanja, R; van der Linden, E C

    2013-01-01

    Ongoing and projected greenhouse warming clearly manifests itself in the Arctic regions, which warm faster than any other part of the world. One of the key features of amplified Arctic warming concerns Arctic winter warming (AWW), which exceeds summer warming by at least a factor of 4. Here we use observation-driven reanalyses and state-of-the-art climate models in a variety of standardised climate change simulations to show that AWW is strongly linked to winter sea ice retreat through the associated release of surplus ocean heat gained in summer through the ice-albedo feedback (~25%), and to infrared radiation feedbacks (~75%). Arctic summer warming is surprisingly modest, even after summer sea ice has completely disappeared. Quantifying the seasonally varying changes in Arctic temperature and sea ice and the associated feedbacks helps to more accurately quantify the likelihood of Arctic's climate changes, and to assess their impact on local ecosystems and socio-economic activities.

  18. The changing seasonal climate in the Arctic

    PubMed Central

    Bintanja, R.; van der Linden, E. C.

    2013-01-01

    Ongoing and projected greenhouse warming clearly manifests itself in the Arctic regions, which warm faster than any other part of the world. One of the key features of amplified Arctic warming concerns Arctic winter warming (AWW), which exceeds summer warming by at least a factor of 4. Here we use observation-driven reanalyses and state-of-the-art climate models in a variety of standardised climate change simulations to show that AWW is strongly linked to winter sea ice retreat through the associated release of surplus ocean heat gained in summer through the ice-albedo feedback (~25%), and to infrared radiation feedbacks (~75%). Arctic summer warming is surprisingly modest, even after summer sea ice has completely disappeared. Quantifying the seasonally varying changes in Arctic temperature and sea ice and the associated feedbacks helps to more accurately quantify the likelihood of Arctic's climate changes, and to assess their impact on local ecosystems and socio-economic activities. PMID:23532038

  19. Vulnerability of polar oceans to anthropogenic acidification: comparison of arctic and antarctic seasonal cycles.

    PubMed

    Shadwick, E H; Trull, T W; Thomas, H; Gibson, J A E

    2013-01-01

    Polar oceans are chemically sensitive to anthropogenic acidification due to their relatively low alkalinity and correspondingly weak carbonate buffering capacity. Here, we compare unique CO2 system observations covering complete annual cycles at an Arctic (Amundsen Gulf) and Antarctic site (Prydz Bay). The Arctic site experiences greater seasonal warming (10 vs 3°C), and freshening (3 vs 2), has lower alkalinity (2220 vs 2320 μmol/kg), and lower summer pH (8.15 vs 8.5), than the Antarctic site. Despite a larger uptake of inorganic carbon by summer photosynthesis, the Arctic carbon system exhibits smaller seasonal changes than the more alkaline Antarctic system. In addition, the excess surface nutrients in the Antarctic may allow mitigation of acidification, via CO2 removal by enhanced summer production driven by iron inputs from glacial and sea-ice melting. These differences suggest that the Arctic system is more vulnerable to anthropogenic change due to lower alkalinity, enhanced warming, and nutrient limitation.

  20. Vulnerability of Polar Oceans to Anthropogenic Acidification: Comparison of Arctic and Antarctic Seasonal Cycles

    PubMed Central

    Shadwick, E. H.; Trull, T. W.; Thomas, H.; Gibson, J. A. E.

    2013-01-01

    Polar oceans are chemically sensitive to anthropogenic acidification due to their relatively low alkalinity and correspondingly weak carbonate buffering capacity. Here, we compare unique CO2 system observations covering complete annual cycles at an Arctic (Amundsen Gulf) and Antarctic site (Prydz Bay). The Arctic site experiences greater seasonal warming (10 vs 3°C), and freshening (3 vs 2), has lower alkalinity (2220 vs 2320 μmol/kg), and lower summer pH (8.15 vs 8.5), than the Antarctic site. Despite a larger uptake of inorganic carbon by summer photosynthesis, the Arctic carbon system exhibits smaller seasonal changes than the more alkaline Antarctic system. In addition, the excess surface nutrients in the Antarctic may allow mitigation of acidification, via CO2 removal by enhanced summer production driven by iron inputs from glacial and sea-ice melting. These differences suggest that the Arctic system is more vulnerable to anthropogenic change due to lower alkalinity, enhanced warming, and nutrient limitation. PMID:23903871

  1. Variability and Trends in the Arctic Sea Ice Cover: Results from Different Techniques

    NASA Technical Reports Server (NTRS)

    Comiso, Josefino C.; Meier, Walter N.; Gersten, Robert

    2017-01-01

    Variability and trend studies of sea ice in the Arctic have been conducted using products derived from the same raw passive microwave data but by different groups using different algorithms. This study provides consistency assessment of four of the leading products, namely, Goddard Bootstrap (SB2), Goddard NASA Team (NT1), EUMETSAT Ocean and Sea Ice Satellite Application Facility (OSI-SAF 1.2), and Hadley HadISST 2.2 data in evaluating variability and trends in the Arctic sea ice cover. All four provide generally similar ice patterns but significant disagreements in ice concentration distributions especially in the marginal ice zone and adjacent regions in winter and meltponded areas in summer. The discrepancies are primarily due to different ways the four techniques account for occurrences of new ice and meltponding. However, results show that the different products generally provide consistent and similar representation of the state of the Arctic sea ice cover. Hadley and NT1 data usually provide the highest and lowest monthly ice extents, respectively. The Hadley data also show the lowest trends in ice extent and ice area at negative 3.88 percent decade and negative 4.37 percent decade, respectively, compared to an average of negative 4.36 percent decade and negative 4.57 percent decade for all four. Trend maps also show similar spatial distribution for all four with the largest negative trends occurring at the Kara/Barents Sea and Beaufort Sea regions, where sea ice has been retreating the fastest. The good agreement of the trends especially with updated data provides strong confidence in the quantification of the rate of decline in the Arctic sea ice cover.

  2. Synoptic Drivers of Precipitation in the Atlantic Sector of the Arctic

    NASA Astrophysics Data System (ADS)

    Cohen, L.; Hudson, S.; Graham, R.; Renwick, J. A.

    2017-12-01

    Precipitation in the Arctic has been shown to be increasing in recent decades, from both observational and modelling studies, with largest trends seen in autumn and winter. This trend is attributed to a combination of the warming atmosphere and reduced sea ice extent. The seasonality of precipitation in the Arctic is important as it largely determines whether the precipitation falls as snow or rain. This study assesses the spatial and temporal variability of the synoptic drivers of precipitation in the Atlantic (European) sector of the Arctic. This region of the Arctic is of particular interest as it has the largest inter-annual variability in sea ice extent and is the primary pathway for moisture transport into the Arctic from lower latitudes. This study uses the ECMWF ERA-I reanalysis total precipitation to compare to long-term precipitation observations from Ny Ålesund, Svalbard to show that the reanalysis captures the synoptic variability of precipitation well and that most precipitation in this region is synoptically driven. The annual variability of precipitation in the Atlantic Arctic shows strong regionality. In the Svalbard and Barents Sea region, most of the annual total precipitation occurs during autumn and winter (Oct-Mar) (>60% of annual total), while the high-Arctic (> 80N) and Kara Sea receives most of the annual precipitation ( 60% of annual total) during summer (July-Sept). Using a synoptic classification developed for this region, this study shows that winter precipitation is driven by winter cyclone occurrence, with strong correlations to the AO and NAO indices. High precipitation over Svalbard is also strongly correlated with the Scandinavian blocking pattern, which produces a southerly flow in the Greenland Sea/Svalbard area. An increasing occurrence of these synoptic patterns are seen for winter months (Nov and Jan), which may explain much of the observed winter increase in precipitation.

  3. Composition, buoyancy regulation and fate of ice algal aggregates in the Central Arctic Ocean.

    PubMed

    Fernández-Méndez, Mar; Wenzhöfer, Frank; Peeken, Ilka; Sørensen, Heidi L; Glud, Ronnie N; Boetius, Antje

    2014-01-01

    Sea-ice diatoms are known to accumulate in large aggregates in and under sea ice and in melt ponds. There is recent evidence from the Arctic that such aggregates can contribute substantially to particle export when sinking from the ice. The role and regulation of microbial aggregation in the highly seasonal, nutrient- and light-limited Arctic sea-ice ecosystem is not well understood. To elucidate the mechanisms controlling the formation and export of algal aggregates from sea ice, we investigated samples taken in late summer 2011 and 2012, during two cruises to the Eurasian Basin of the Central Arctic Ocean. Spherical aggregates densely packed with pennate diatoms, as well as filamentous aggregates formed by Melosira arctica showed sign of different stages of degradation and physiological stoichiometries, with carbon to chlorophyll a ratios ranging from 110 to 66700, and carbon to nitrogen molar ratios of 8-35 and 9-40, respectively. Sub-ice algal aggregate densities ranged between 1 and 17 aggregates m(-2), maintaining an estimated net primary production of 0.4-40 mg C m(-2) d(-1), and accounted for 3-80% of total phototrophic biomass and up to 94% of local net primary production. A potential factor controlling the buoyancy of the aggregates was light intensity, regulating photosynthetic oxygen production and the amount of gas bubbles trapped within the mucous matrix, even at low ambient nutrient concentrations. Our data-set was used to evaluate the distribution and importance of Arctic algal aggregates as carbon source for pelagic and benthic communities.

  4. Composition, Buoyancy Regulation and Fate of Ice Algal Aggregates in the Central Arctic Ocean

    PubMed Central

    Fernández-Méndez, Mar; Wenzhöfer, Frank; Peeken, Ilka; Sørensen, Heidi L.; Glud, Ronnie N.; Boetius, Antje

    2014-01-01

    Sea-ice diatoms are known to accumulate in large aggregates in and under sea ice and in melt ponds. There is recent evidence from the Arctic that such aggregates can contribute substantially to particle export when sinking from the ice. The role and regulation of microbial aggregation in the highly seasonal, nutrient- and light-limited Arctic sea-ice ecosystem is not well understood. To elucidate the mechanisms controlling the formation and export of algal aggregates from sea ice, we investigated samples taken in late summer 2011 and 2012, during two cruises to the Eurasian Basin of the Central Arctic Ocean. Spherical aggregates densely packed with pennate diatoms, as well as filamentous aggregates formed by Melosira arctica showed sign of different stages of degradation and physiological stoichiometries, with carbon to chlorophyll a ratios ranging from 110 to 66700, and carbon to nitrogen molar ratios of 8–35 and 9–40, respectively. Sub-ice algal aggregate densities ranged between 1 and 17 aggregates m−2, maintaining an estimated net primary production of 0.4–40 mg C m−2 d−1, and accounted for 3–80% of total phototrophic biomass and up to 94% of local net primary production. A potential factor controlling the buoyancy of the aggregates was light intensity, regulating photosynthetic oxygen production and the amount of gas bubbles trapped within the mucous matrix, even at low ambient nutrient concentrations. Our data-set was used to evaluate the distribution and importance of Arctic algal aggregates as carbon source for pelagic and benthic communities. PMID:25208058

  5. Marine Corps Equities in the Arctic

    DTIC Science & Technology

    2013-04-18

    reduces the shipping time from Yokohama, Japan, to Hamburg , Germany, by 11 days as compared to the Suez Canal. Ships average approximately a 20...areas within the Arctic Circle. 10 Warming ocean water is causing fisheries to shift north as well. Fish populations usually found in the...people live in the Arctic region. Commercial fishing fleets are following these populations. 29 Russia holds the majority of the Arctic population

  6. Vertical structure of recent Arctic warming.

    PubMed

    Graversen, Rune G; Mauritsen, Thorsten; Tjernström, Michael; Källén, Erland; Svensson, Gunilla

    2008-01-03

    Near-surface warming in the Arctic has been almost twice as large as the global average over recent decades-a phenomenon that is known as the 'Arctic amplification'. The underlying causes of this temperature amplification remain uncertain. The reduction in snow and ice cover that has occurred over recent decades may have played a role. Climate model experiments indicate that when global temperature rises, Arctic snow and ice cover retreats, causing excessive polar warming. Reduction of the snow and ice cover causes albedo changes, and increased refreezing of sea ice during the cold season and decreases in sea-ice thickness both increase heat flux from the ocean to the atmosphere. Changes in oceanic and atmospheric circulation, as well as cloud cover, have also been proposed to cause Arctic temperature amplification. Here we examine the vertical structure of temperature change in the Arctic during the late twentieth century using reanalysis data. We find evidence for temperature amplification well above the surface. Snow and ice feedbacks cannot be the main cause of the warming aloft during the greater part of the year, because these feedbacks are expected to primarily affect temperatures in the lowermost part of the atmosphere, resulting in a pattern of warming that we only observe in spring. A significant proportion of the observed temperature amplification must therefore be explained by mechanisms that induce warming above the lowermost part of the atmosphere. We regress the Arctic temperature field on the atmospheric energy transport into the Arctic and find that, in the summer half-year, a significant proportion of the vertical structure of warming can be explained by changes in this variable. We conclude that changes in atmospheric heat transport may be an important cause of the recent Arctic temperature amplification.

  7. Otolith Length-Fish Length Relationships of Eleven US Arctic Fish Species and Their Application to Ice Seal Diet Studies

    NASA Astrophysics Data System (ADS)

    Walker, K. L.; Norcross, B.

    2016-02-01

    The Arctic ecosystem has moved into the spotlight of scientific research in recent years due to increased climate change and oil and gas exploration. Arctic fishes and Arctic marine mammals represent key parts of this ecosystem, with fish being a common part of ice seal diets in the Arctic. Determining sizes of fish consumed by ice seals is difficult because otoliths are often the only part left of the fish after digestion. Otolith length is known to be positively related to fish length. By developing species-specific otolith-body morphometric relationships for Arctic marine fishes, fish length can be determined for fish prey found in seal stomachs. Fish were collected during ice free months in the Beaufort and Chukchi seas 2009 - 2014, and the most prevalent species captured were chosen for analysis. Otoliths from eleven fish species from seven families were measured. All species had strong linear relationships between otolith length and fish total length. Nine species had coefficient of determination values over 0.75, indicating that most of the variability in the otolith to fish length relationship was explained by the linear regression. These relationships will be applied to otoliths found in stomachs of three species of ice seals (spotted Phoca largha, ringed Pusa hispida, and bearded Erignathus barbatus) and used to estimate fish total length at time of consumption. Fish lengths can in turn be used to calculate fish weight, enabling further investigation into ice seal energetic demands. This application will aid in understanding how ice seals interact with fish communities in the US Arctic and directly contribute to diet comparisons among and within ice seal species. A better understanding of predator-prey interactions in the US Arctic will aid in predicting how ice seal and fish species will adapt to a changing Arctic.

  8. Sources and Removal of Springtime Arctic Aerosol

    NASA Astrophysics Data System (ADS)

    Willis, M. D.; Burkart, J.; Bozem, H.; Kunkel, D.; Schulz, H.; Hanna, S.; Aliabadi, A. A.; Bertram, A. K.; Hoor, P. M.; Herber, A. B.; Leaitch, R.; Abbatt, J.

    2017-12-01

    The sources and removal mechanisms of pollution transported to Arctic regions are key factors in controlling the impact of short-lived climate forcing agents on Arctic climate. We lack a predictive understanding of pollution transport to Arctic regions largely due to poor understanding of removal mechanisms and aerosol chemical and physical processing both within the Arctic and during transport. We present vertically resolved observations of aerosol physical and chemical properties in High Arctic springtime. While much previous work has focused on characterizing episodic events of high pollutant concentrations transported to Arctic regions, here we focus on measurements made under conditions consistent with chronic Arctic Haze, which is more representative of the pollution seasonal maximum observed at long term monitoring stations. On six flights based at Alert and Eureka, Nunavut, Canada, we observe evidence for vertical variations in both aerosol sources and removal mechanisms. With support from model calculations, we show evidence for sources of partially neutralized aerosol with higher organic aerosol (OA) and black carbon content in the middle troposphere, compared to lower tropospheric aerosol with higher amounts of acidic sulfate. Further, we show evidence for aerosol depletion relative to carbon monoxide, both in the mid-to-upper troposphere and within the Arctic Boundary Layer (ABL). Dry deposition, with relatively low removal efficiency, was responsible for aerosol removal in the ABL while ice or liquid-phase scavenging was responsible for aerosol removal at higher altitudes during transport. Overall, we find that vertical variations in both regional and remote aerosol sources, and removal mechanisms, combine with long aerosol residence times to drive the properties of springtime Arctic aerosol.

  9. Arctic air pollution: A Norwegian perspective

    NASA Astrophysics Data System (ADS)

    Ottar, B.

    The paper gives a survey of the results obtained during a research programme in the Norwegian Arctic, financed by British Petroleum Ltd. during the period 1981-1986 under an agreement between the Norwegian Government and the oil companies. The programme included extensive measurement programmes by aircraft and at ground stations, as well as modelling of the transport of air pollutants to the Arctic. The results show that the Arctic plays an important role as an intermediate station in the general dispersion of air pollutants within the Northern Hemisphere. Continued measurements in the Arctic may therefore provide essential information concerning such questions as the change of climate and the global dispersion of polychlorinated hydrocarbons and other halogenated organics.

  10. Semi volatile organic compounds in the snow of Russian Arctic islands: Archipelago Novaya Zemlya.

    PubMed

    Lebedev, A T; Mazur, D M; Polyakova, O V; Kosyakov, D S; Kozhevnikov, A Yu; Latkin, T B; Andreeva Yu, I; Artaev, V B

    2018-04-18

    Environmental contamination of the Arctic has widely been used as a worldwide pollution marker. Various classes of organic pollutants such as pesticides, personal care products, PAHs, flame retardants, biomass burning markers, and many others emerging contaminants have been regularly detected in Arctic samples. Although numerous papers have been published reporting data from the Canadian, Danish, and Norwegian Arctic regions, the environmental situation in Russian Arctic remains mostly underreported. Snow analysis is known to be used for monitoring air pollution in the regions with cold climate in both short-term and long-term studies. This paper presents the results of a nontargeted study on the semivolatile organic compounds detected and identified in snow samples collected at the Russian Artic Archipelago Novaya Zemlya in June 2016. Gas chromatography coupled to a high-resolution time-of-flight mass spectrometer enabled the simultaneous detection and quantification of a variety of pollutants including those from the US Environmental Protection Agency (EPA) priority pollutants list, emerging contaminants (plasticizers, flame retardants-only detection), as well as the identification of novel Arctic organic pollutants, (e.g., fatty acid amides and polyoxyalkanes). The possible sources of these novel pollutants are also discussed. GC-HRMS enabled the detection and identification of emerging contaminants and novel organic pollutants in the Arctic, e.g., fatty amides and polyoxyalkanes. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Examining Differences in Arctic and Antarctic Sea Ice Change

    NASA Astrophysics Data System (ADS)

    Nghiem, S. V.; Rigor, I. G.; Clemente-Colon, P.; Neumann, G.; Li, P.

    2015-12-01

    The paradox of the rapid reduction of Arctic sea ice versus the stability (or slight increase) of Antarctic sea ice remains a challenge in the cryospheric science research community. Here we start by reviewing a number of explanations that have been suggested by different researchers and authors. One suggestion is that stratospheric ozone depletion may affect atmospheric circulation and wind patterns such as the Southern Annular Mode, and thereby sustaining the Antarctic sea ice cover. The reduction of salinity and density in the near-surface layer may weaken the convective mixing of cold and warmer waters, and thus maintaining regions of no warming around the Antarctic. A decrease in sea ice growth may reduce salt rejection and upper-ocean density to enhance thermohalocline stratification, and thus supporting Antarctic sea ice production. Melt water from Antarctic ice shelves collects in a cool and fresh surface layer to shield the surface ocean from the warmer deeper waters, and thus leading to an expansion of Antarctic sea ice. Also, wind effects may positively contribute to Antarctic sea ice growth. Moreover, Antarctica lacks of additional heat sources such as warm river discharge to melt sea ice as opposed to the case in the Arctic. Despite of these suggested explanations, factors that can consistently and persistently maintains the stability of sea ice still need to be identified for the Antarctic, which are opposed to factors that help accelerate sea ice loss in the Arctic. In this respect, using decadal observations from multiple satellite datasets, we examine differences in sea ice properties and distributions, together with dynamic and thermodynamic processes and interactions with land, ocean, and atmosphere, causing differences in Arctic and Antarctic sea ice change to contribute to resolving the Arctic-Antarctic sea ice paradox.

  12. A Recommended Set of Key Arctic Indicators

    NASA Astrophysics Data System (ADS)

    Stanitski, D.; Druckenmiller, M.; Fetterer, F. M.; Gerst, M.; Intrieri, J. M.; Kenney, M. A.; Meier, W.; Overland, J. E.; Stroeve, J.; Trainor, S.

    2017-12-01

    The Arctic is an interconnected and environmentally sensitive system of ice, ocean, land, atmosphere, ecosystems, and people. From local to pan-Arctic scales, the area has already undergone major changes in physical and societal systems and will continue at a pace that is greater than twice the global average. Key Arctic indicators can quantify these changes. Indicators serve as the bridge between complex information and policy makers, stakeholders, and the general public, revealing trends and information people need to make important socioeconomic decisions. This presentation evaluates and compiles more than 70 physical, biological, societal and economic indicators into an approachable summary that defines the changing Arctic. We divided indicators into "existing," "in development," "possible," and "aspirational". In preparing a paper on Arctic Indicators for a special issue of the journal Climatic Change, our group established a set of selection criteria to identify indicators to specifically guide decision-makers in their responses to climate change. A goal of the analysis is to select a manageable composite list of recommended indicators based on sustained, reliable data sources with known user communities. The selected list is also based on the development of a conceptual model that identifies components and processes critical to our understanding of the Arctic region. This list of key indicators is designed to inform the plans and priorities of multiple groups such as the U.S. Global Change Research Program (USGCRP), Interagency Arctic Research Policy Committee (IARPC), and the Arctic Council.

  13. Fresh Water Content Variability in the Arctic Ocean

    NASA Technical Reports Server (NTRS)

    Hakkinen, Sirpa; Proshutinsky, Andrey

    2003-01-01

    Arctic Ocean model simulations have revealed that the Arctic Ocean has a basin wide oscillation with cyclonic and anticyclonic circulation anomalies (Arctic Ocean Oscillation; AOO) which has a prominent decadal variability. This study explores how the simulated AOO affects the Arctic Ocean stratification and its relationship to the sea ice cover variations. The simulation uses the Princeton Ocean Model coupled to sea ice. The surface forcing is based on NCEP-NCAR Reanalysis and its climatology, of which the latter is used to force the model spin-up phase. Our focus is to investigate the competition between ocean dynamics and ice formation/melt on the Arctic basin-wide fresh water balance. We find that changes in the Atlantic water inflow can explain almost all of the simulated fresh water anomalies in the main Arctic basin. The Atlantic water inflow anomalies are an essential part of AOO, which is the wind driven barotropic response to the Arctic Oscillation (AO). The baroclinic response to AO, such as Ekman pumping in the Beaufort Gyre, and ice meldfreeze anomalies in response to AO are less significant considering the whole Arctic fresh water balance.

  14. The Arctic Circle

    NASA Astrophysics Data System (ADS)

    McDonald, Siobhan

    2016-04-01

    My name is Siobhan McDonald. I am a visual artist living and working in Dublin. My studio is based in The School of Science at University College Dublin where I was Artist in Residence 2013-2015. A fascination with time and the changeable nature of landmass has led to ongoing conversations with scientists and research institutions across the interweaving disciplines of botany, biology and geology. I am developing a body of work following a recent research trip to the North Pole where I studied the disappearing landscape of the Arctic. Prompted by my experience of the Arctic shelf receding, this new work addresses issues of the instability of the earth's materiality. The work is grounded in an investigation of material processes, exploring the dynamic forces that transform matter and energy. This project combines art and science in a fascinating exploration of one of the Earth's last relatively untouched wilderness areas - the High Arctic to bring audiences on journeys to both real and artistically re-imagined Arctic spaces. CRYSTALLINE'S pivotal process is collaboration: with The European Space Agency; curator Helen Carey; palaeontologist Prof. Jenny McElwain, UCD; and with composer Irene Buckley. CRYSTALLINE explores our desire to make corporeal contact with geological phenomena in Polar Regions. From January 2016, in my collaboration with Jenny McElwain, I will focus on the study of plants and atmospheres from the Arctic regions as far back as 400 million years ago, to explore the essential 'nature' that, invisible to the eye, acts as imaginary portholes into other times. This work will be informed by my arctic tracings of sounds and images recorded in the glaciers of this disappearing frozen landscape. In doing so, the urgencies around the tipping of natural balances in this fragile region will be revealed. The final work will emerge from my forthcoming residency at the ESA in spring 2016. Here I will conduct a series of workshops in ESA Madrid to work with

  15. Arctic Security in a Warming World

    DTIC Science & Technology

    2010-03-01

    2009). 3 Map based on: “Northwest Passage - Map of Arctic Sea Ice: Global Warming is Opening Canada’s Arctic” http://geology.com/articles/northwest...War College, February 17, 2009) 3. 5 Scott G. Borgerson, “Arctic Meltdown: the Economic and Security Implications of Global Warming ”, Foreign Affairs...april/kirkpatrick.pdf (accessed February 10, 2010). 45 Thomas R. McCarthy, Jr., Global Warming Threatens National Interests in the Arctic, Strategy

  16. FORMATION OF REACTIVE GASEOUS MERCURY IN THE ARCTIC: EVIDENCE OF OXIDATION OF HG0 TO GAS-PHASE HG-II COMPOUNDS AFTER ARCTIC SUNRISE

    EPA Science Inventory

    We have measured total gaseous mercury concentrations (Hgo) at Point Barrow, Alaska since September 1998 in an effort to determine the geographic extent and reaction mechanism of the so-called mercury depletion events (MDE) previously reported in the high Arctic at Alert, Canad...

  17. The Arctic Research Consortium of the United States (ARCUS)

    NASA Astrophysics Data System (ADS)

    Wiggins, H. V.; Warnick, W. K.

    2008-12-01

    The Arctic Research Consortium of the United States (ARCUS) is a nonprofit membership organization composed of universities and institutions that have a substantial commitment to research in the Arctic. ARCUS was formed in 1988 to serve as a forum for planning, facilitating, coordinating, and implementing interdisciplinary studies of the Arctic; to act as a synthesizer and disseminator of scientific information on arctic research; and to educate scientists and the general public about the needs and opportunities for research in the Arctic. ARCUS, in collaboration with the broader science community, relevant agencies and organizations, and other stakeholders, coordinates science planning and educational activities across disciplinary and organizational boundaries. Examples of current ARCUS science planning activities include: serving as the project office for the multi- agency Study of Environmental Arctic Change (SEARCH) program, providing support to the related Bering Ecosystem Study (BEST), and serving as the Science Management Office for the National Science Foundation (NSF) Arctic System Science (ARCSS) Program. ARCUS" central educational activity is PolarTREC (Teachers and Researchers Exploring and Collaborating), an International Polar Year (IPY) program whereby K-12 educators and researchers work together in hands-on field experiences in the Arctic and Antarctic to advance polar science education. Additional science planning, educational, information, and outreach activities include, among many others, the Witness the Arctic newsletter, the Arctic Visiting Speakers" Series, the ArcticInfo listserve, the Internet Media Archive (IMA), and the annual Arctic Forum conference. More information about these and other ARCUS activities can be found at the ARCUS website at: http://www.arcus.org.

  18. The Arctic Research Consortium of the United States (ARCUS)

    NASA Astrophysics Data System (ADS)

    Creek, K. R.; Fox, S. E.; Wiggins, H. V.

    2010-12-01

    The Arctic Research Consortium of the United States (ARCUS) is a nonprofit membership organization composed of universities and institutions that have a substantial commitment to research in the Arctic. ARCUS was formed in 1988 to serve as a forum for planning, facilitating, coordinating, and implementing interdisciplinary studies of the Arctic; to act as a synthesizer and disseminator of scientific information on arctic research; and to educate scientists and the general public about the needs and opportunities for research in the Arctic. ARCUS, in collaboration with the broader science community, relevant agencies and organizations, and other stakeholders, coordinates science planning and educational activities across disciplinary and organizational boundaries. Examples of current ARCUS science planning activities include: serving as the project office for the multi-agency Study of Environmental Arctic Change (SEARCH) program, providing support to the related Bering Ecosystem Study (BEST), and serving as the Science Management Office for the National Science Foundation (NSF) Arctic System Science (ARCSS) Program. ARCUS’ central educational activity is PolarTREC (Teachers and Researchers Exploring and Collaborating), an International Polar Year (IPY) program whereby K-12 educators and researchers work together in hands-on field experiences in the Arctic and Antarctic to advance polar science education. Additional science planning, educational, information, and outreach activities include, among many others, the Witness the Arctic newsletter, the Arctic Visiting Speakers’ Series, the ArcticInfo listserve, the Internet Media Archive (IMA), and the annual Arctic Forum conference. More information about these and other ARCUS activities can be found at the ARCUS website at: http://www.arcus.org.

  19. A New High Resolution Tidal Model in the Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Cancet, M.; Andersen, O.; Lyard, F.; Schulz, A.; Cotton, D.; Benveniste, J.

    2016-08-01

    The Arctic Ocean is a challenging region for tidal modelling. The accuracy of the global tidal models decreases by several centimeters in the Polar Regions, which has a large impact on the quality of the satellite altimeter sea surface heights and the altimetry-derived products.NOVELTIS and DTU Space have developed a regional, high-resolution tidal atlas in the Arctic Ocean, in the framework of an extension of the CryoSat Plus for Ocean (CP4O) ESA STSE (Support to Science Element) project. In particular, this atlas benefits from the assimilation of the most complete satellite altimetry dataset ever used in this region, including Envisat data up to 82°N and CryoSat-2 data between 82°N and 88°N. The combination of these satellite altimetry missions gives the best possible coverage of altimetry-derived tidal constituents. The available tide gauge data were also used for data assimilation and validation.This paper presents the implementation methodology and the performance of this new regional tidal model in the Arctic Ocean, compared to the existing global tidal models.

  20. Does the Arctic Amplification peak this decade?

    NASA Astrophysics Data System (ADS)

    Martin, Torge; Haine, Thomas W. N.

    2017-04-01

    Temperatures rise faster in the Arctic than on global average, a phenomenon known as Arctic Amplification. While this is well established from observations and model simulations, projections of future climate (here: RCP8.5) with models of the Coupled Model Intercomparison Project phase 5 (CMIP5) also indicate that the Arctic Amplification has a maximum. We show this by means of an Arctic Amplification factor (AAF), which we define as the ratio of Arctic mean to global mean surface air temperature (SAT) anomalies. The SAT anomalies are referenced to the period 1960-1980 and smoothed by a 30-year running mean. For October, the multi-model ensemble-mean AAF reaches a maximum in 2017. The maximum moves however to later years as Arctic winter progresses: for the autumn mean SAT (September to November) the maximum AAF is found in 2028 and for winter (December to February) in 2060. Arctic Amplification is driven, amongst others, by the ice-albedo feedback (IAF) as part of the more general surface albedo feedback (involving clouds, snow cover, vegetation changes) and temperature effects (Planck and lapse-rate feedbacks). We note that sea ice retreat and the associated warming of the summer Arctic Ocean are not only an integral part of the IAF but are also involved in the other drivers. In the CMIP5 simulations, the timing of the AAF maximum coincides with the period of fastest ice retreat for the respective month. Presence of at least some sea ice is crucial for the IAF to be effective because of the contrast in surface albedo between ice and open water and the need to turn ocean warming into ice melt. Once large areas of the Arctic Ocean are ice-free, the IAF should be less effective. We thus hypothesize that the ice retreat significantly affects AAF variability and forces a decline of its magnitude after at least half of the Arctic Ocean is ice-free and the ice cover becomes basically seasonal.

  1. Arctic Riverine CDOM and its effects on the Polar Marine Light Field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Orandle, Zoe Ann; Weijer, Wilbert; Elliott, Scott M.

    2016-09-28

    It is well-known that CDOM (Chromophoric Dissolved Organic Matter) can have a significant effect on biological activity in the photic zones of aquatic ecosystems. However, the extent of CDOM’s interference with biological activity is not well-known. We examined this issue in great detail in the mixed surface layer of the Arctic Ocean. We studied the impacts of CDOM’s light attenuation on Arctic phytoplankton populations to discover if riverine CDOM’s presence in the Arctic ocean could inhibit and possibly prevent local phytoplankton populations from performing photosynthesis. We incorporated biogeochemistry concepts and data with oceanographic models and calculations to approach the problem.more » The results showed that riverine CDOM can indeed significantly impact the productivity of phytoplankton populations during the spring and summer months near the major Arctic river mouths we chose to examine. Although our study was detailed and inclusive of many variables, the issue of CDOM’s light attenuation and its effects on phytoplankton populations must be explored on a global scale to help understand if riverine CDOM could prove disastrous for phytoplankton populations.« less

  2. 78 FR 12033 - Programs and Research Projects Affecting the Arctic

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-21

    ... ARCTIC RESEARCH COMMISSION Programs and Research Projects Affecting the Arctic Notice is hereby given that the U.S. Arctic Research Commission will hold its 100th meeting in Anchorage and Bethel... presentations concerning Arctic research activities The focus of the meeting will be Arctic research activities...

  3. Tipping elements in the Arctic marine ecosystem.

    PubMed

    Duarte, Carlos M; Agustí, Susana; Wassmann, Paul; Arrieta, Jesús M; Alcaraz, Miquel; Coello, Alexandra; Marbà, Núria; Hendriks, Iris E; Holding, Johnna; García-Zarandona, Iñigo; Kritzberg, Emma; Vaqué, Dolors

    2012-02-01

    The Arctic marine ecosystem contains multiple elements that present alternative states. The most obvious of which is an Arctic Ocean largely covered by an ice sheet in summer versus one largely devoid of such cover. Ecosystems under pressure typically shift between such alternative states in an abrupt, rather than smooth manner, with the level of forcing required for shifting this status termed threshold or tipping point. Loss of Arctic ice due to anthropogenic climate change is accelerating, with the extent of Arctic sea ice displaying increased variance at present, a leading indicator of the proximity of a possible tipping point. Reduced ice extent is expected, in turn, to trigger a number of additional tipping elements, physical, chemical, and biological, in motion, with potentially large impacts on the Arctic marine ecosystem.

  4. MOSAiC - Multidisciplinary drifting Observatory for the Study of Arctic Climate

    NASA Astrophysics Data System (ADS)

    Shupe, M.; Persson, O. P.; Tjernstrom, M. K.; Dethloff, K.

    2012-12-01

    Arctic become more biologically productive and what are the consequences of this to other components of the system? *How do the different scales of heterogeneity within the atmosphere ice and ocean interact to impact the linkages or feedbacks within the system? *How do interfacial exchange rates, biology and chemistry couple to regulate the major elemental cycles? MOSAiC will address these multi-disciplinary questions using intensive observations and modeling of processes that transfer energy, mass, and momentum through the atmosphere-ice-ocean system. The centerpiece of the observatory will be an icebreaker-based station to serve as a hub for intensive and comprehensive observations of climatically-significant physical, chemical, and biological processes through the vertical column. To provide important spatial context and horizontal variability, this facility will be the focal point for a constellation of coordinated observations made by drifting buoys, unmanned aerial and underwater vehicles, aircraft, ships, and satellites. These MOSAiC observational activities will serve as a testbed for evaluation and development of models at scales ranging from high-resolution, process models to regional and global climate models. MOSAiC observational and modeling activities will be linked at the outset, such that model needs will be integral in observational design, implementation, and analysis.

  5. Landscape topography structures the soil microbiome in arctic polygonal tundra

    DOE PAGES

    Taş, Neslihan; Prestat, Emmanuel; Wang, Shi; ...

    2018-02-22

    Global temperature increases are resulting in thaw of permafrost soil in the arctic with increased emission of greenhouse gases (GHGs). Soil microorganisms are responsible for degradation of the trapped organic carbon (C) in permafrost and emission of GHG as it thaws. However, environmental factors governing microbial degradation of soil C and GHG emissions are poorly understood. Here we determined the functional potential of soil microbiomes in arctic tundra across a cryoperturbed polygonal landscape in Barrow, Alaska. Using a combination of metagenome sequencing and gas flux measurements, we found that the soil microbiome composition, diversity and functional potential varied across themore » polygon transect and that specific microbes and functional genes were correlated to GHG measurements. Several draft genomes of novel species were obtained with genes encoding enzymes involved in cycling of complex organic compounds. These results have larger implications for prediction of the influence of the soil microbiome on soil C flux from arctic regions undergoing environmental change.« less

  6. Landscape topography structures the soil microbiome in arctic polygonal tundra

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taş, Neslihan; Prestat, Emmanuel; Wang, Shi

    Global temperature increases are resulting in thaw of permafrost soil in the arctic with increased emission of greenhouse gases (GHGs). Soil microorganisms are responsible for degradation of the trapped organic carbon (C) in permafrost and emission of GHG as it thaws. However, environmental factors governing microbial degradation of soil C and GHG emissions are poorly understood. Here we determined the functional potential of soil microbiomes in arctic tundra across a cryoperturbed polygonal landscape in Barrow, Alaska. Using a combination of metagenome sequencing and gas flux measurements, we found that the soil microbiome composition, diversity and functional potential varied across themore » polygon transect and that specific microbes and functional genes were correlated to GHG measurements. Several draft genomes of novel species were obtained with genes encoding enzymes involved in cycling of complex organic compounds. These results have larger implications for prediction of the influence of the soil microbiome on soil C flux from arctic regions undergoing environmental change.« less

  7. Role of small-sized copepods in the lipid-driven Arctic marine food web

    NASA Astrophysics Data System (ADS)

    Daase, M.; Boissonnot, L.; Graeve, M.; Søreide, J.; Niehoff, B.

    2016-02-01

    Despite of the low individual biomass of small-sized copepods such as the calanoid Pseudocalanus minutus and the cyclopoid Oithona similis, they are extremely numerous which make them an important trophic component in Arctic marine ecosystems. Due to the strong seasonality in light and thus primary production and food availability, the accumulation of lipid reserves is a key feature in Arctic marine ecosystems. However, very few studies exist on the lipid biochemistry of small copepods such as P. minutus and O. similis. In order to investigate the importance of these species in terms of transfer of lipids from primary production to higher trophic levels, feeding experiments were conducted, based on animals from Billefjorden, a high-Arctic fjord in Svalbard, Norway. A mixture of 13C labeled flagellates and diatoms was fed to the animals and the transfer and assimilation of lipid carbon, fatty acids and fatty alcohols was analyzed with gas chromatography-IRMS technique (CSIA). The results revealed that both species were incorporating dietary lipids in high quantities. The highest accumulation occurred in P. minutus in which 54.4% of the lipids were exchanged after 21 days, whereas 9.4% were assimilated in O. similis. Hence, at least this amount of carbon was used for metabolism and replaced by feeding. The lipid composition of the copepods did not reflect exactly the algal lipids, and differed between P. minutus and O. similis. Our results suggested intrinsic preferences in the accumulation of particular fatty acids, probably related to species-specific body requirements. This emphasizes the importance of also food quality in Arctic marine systems. Due to the relatively high lipid turnover rates in particularly in P. minutus, also small copepods are important drivers of the lipid-driven Arctic marine food web.

  8. Soil pH is a Key Determinant of Soil Fungal Community Composition in the Ny-Ålesund Region, Svalbard (High Arctic)

    PubMed Central

    Zhang, Tao; Wang, Neng-Fei; Liu, Hong-Yu; Zhang, Yu-Qin; Yu, Li-Yan

    2016-01-01

    This study assessed the fungal community composition and its relationships with properties of surface soils in the Ny-Ålesund Region (Svalbard, High Arctic). A total of thirteen soil samples were collected and soil fungal community was analyzed by 454 pyrosequencing with fungi-specific primers targeting the rDNA internal transcribed spacer (ITS) region. The following eight soil properties were analyzed: pH, organic carbon (C), organic nitrogen (N), ammonium nitrogen (NH4+-N), silicate silicon (SiO42--Si), nitrite nitrogen (NO2--N), phosphate phosphorus (PO43--P), and nitrate nitrogen (NO3--N). A total of 57,952 reads belonging to 541 operational taxonomic units (OTUs) were found. of these OTUs, 343 belonged to Ascomycota, 100 to Basidiomycota, 31 to Chytridiomycota, 22 to Glomeromycota, 11 to Zygomycota, 10 to Rozellomycota, whereas 24 belonged to unknown fungi. The dominant orders were Helotiales, Verrucariales, Agaricales, Lecanorales, Chaetothyriales, Lecideales, and Capnodiales. The common genera (>eight soil samples) were Tetracladium, Mortierella, Fusarium, Cortinarius, and Atla. Distance-based redundancy analysis (db-rda) and analysis of similarities (ANOSIM) revealed that soil pH (p = 0.001) was the most significant factor in determining the soil fungal community composition. Members of Verrucariales were found to predominate in soils of pH 8–9, whereas Sordariales predominated in soils of pH 7–8 and Coniochaetales predominated in soils of pH 6–7. The results suggest the presence and distribution of diverse soil fungal communities in the High Arctic, which can provide reliable data for studying the ecological responses of soil fungal communities to climate changes in the Arctic. PMID:26955371

  9. The Holocene history of Nares Strait: Transition from glacial bay to Arctic-Atlantic throughflow

    USGS Publications Warehouse

    Jennings, Anne E.; Sheldon, Christina; Cronin, Thomas M.; Francus, Pierre; Stoner, Joseph; Andrews, John

    2011-01-01

    Retreat of glacier ice from Nares Strait and other straits in the Canadian Arctic Archipelago after the end of the last Ice Age initiated an important connection between the Arctic and the North Atlantic Oceans, allowing development of modern ocean circulation in Baffin Bay and the Labrador Sea. As low-salinity, nutrient-rich Arctic Water began to enter Baffin Bay, it contributed to the Baffin and Labrador currents flowing southward. This enhanced freshwater inflow must have influenced the sea ice regime and likely is responsible for poor calcium carbonate preservation that characterizes the Baffin Island margin today. Sedimentologic and paleoceanographic data from radiocarbon-dated core HLY03-05GC, Hall Basin, northern Nares Strait, document the timing and paleoenvironments surrounding the retreat of waning ice sheets from Nares Strait and opening of this connection between the Arctic Ocean and Baffin Bay. Hall Basin was deglaciated soon before 10,300 cal BP (calibrated years before present) and records ice-distal sedimentation in a glacial bay facing the Arctic Ocean until about 9,000 cal BP. Atlantic Water was present in Hall Basin during deglaciation, suggesting that it may have promoted ice retreat. A transitional unit with high ice-rafted debris content records the opening of Nares Strait at approximately 9,000 cal BP. High productivity in Hall Basin between 9,000 and 6,000 cal BP reflects reduced sea ice cover and duration as well as throughflow of nutrient-rich Pacific Water. The later Holocene is poorly resolved in the core, but slow sedimentation rates and heavier carbon isotope values support an interpretation of increased sea ice cover and decreased productivity during the Neoglacial period.

  10. An AeroCom Assessment of Black Carbon in Arctic Snow and Sea Ice

    NASA Technical Reports Server (NTRS)

    Jiao, C.; Flanner, M. G.; Balkanski, Y.; Bauer, S. E.; Bellouin, N.; Bernsten, T. K.; Bian, H.; Carslaw, K. S.; Chin, M.; DeLuca, N.; hide

    2014-01-01

    Though many global aerosols models prognose surface deposition, only a few models have been used to directly simulate the radiative effect from black carbon (BC) deposition to snow and sea ice. Here, we apply aerosol deposition fields from 25 models contributing to two phases of the Aerosol Comparisons between Observations and Models (AeroCom) project to simulate and evaluate within-snow BC concentrations and radiative effect in the Arctic. We accomplish this by driving the offline land and sea ice components of the Community Earth System Model with different deposition fields and meteorological conditions from 2004 to 2009, during which an extensive field campaign of BC measurements in Arctic snow occurred. We find that models generally underestimate BC concentrations in snow in northern Russia and Norway, while overestimating BC amounts elsewhere in the Arctic. Although simulated BC distributions in snow are poorly correlated with measurements, mean values are reasonable. The multi-model mean (range) bias in BC concentrations, sampled over the same grid cells, snow depths, and months of measurements, are -4.4 (-13.2 to +10.7) ng/g for an earlier phase of AeroCom models (phase I), and +4.1 (-13.0 to +21.4) ng/g for a more recent phase of AeroCom models (phase II), compared to the observational mean of 19.2 ng/g. Factors determining model BC concentrations in Arctic snow include Arctic BC emissions, transport of extra-Arctic aerosols, precipitation, deposition efficiency of aerosols within the Arctic, and meltwater removal of particles in snow. Sensitivity studies show that the model-measurement evaluation is only weakly affected by meltwater scavenging efficiency because most measurements were conducted in non-melting snow. The Arctic (60-90degN) atmospheric residence time for BC in phase II models ranges from 3.7 to 23.2 days, implying large inter-model variation in local BC deposition efficiency. Combined with the fact that most Arctic BC deposition originates

  11. An AeroCom assessment of black carbon in Arctic snow and sea ice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiao, C.; Flanner, M. G.; Balkanski, Y.

    2014-01-01

    Though many global aerosols models prognose surface deposition, only a few models have been used to directly simulate the radiative effect from black carbon (BC) deposition to snow and sea ice. In this paper, we apply aerosol deposition fields from 25 models contributing to two phases of the Aerosol Comparisons between Observations and Models (AeroCom) project to simulate and evaluate within-snow BC concentrations and radiative effect in the Arctic. We accomplish this by driving the offline land and sea ice components of the Community Earth System Model with different deposition fields and meteorological conditions from 2004 to 2009, during whichmore » an extensive field campaign of BC measurements in Arctic snow occurred. We find that models generally underestimate BC concentrations in snow in northern Russia and Norway, while overestimating BC amounts elsewhere in the Arctic. Although simulated BC distributions in snow are poorly correlated with measurements, mean values are reasonable. The multi-model mean (range) bias in BC concentrations, sampled over the same grid cells, snow depths, and months of measurements, are -4.4 (-13.2 to +10.7) ng g -1 for an earlier phase of AeroCom models (phase I), and +4.1 (-13.0 to +21.4) ng g -1 for a more recent phase of AeroCom models (phase II), compared to the observational mean of 19.2 ng g -1. Factors determining model BC concentrations in Arctic snow include Arctic BC emissions, transport of extra-Arctic aerosols, precipitation, deposition efficiency of aerosols within the Arctic, and meltwater removal of particles in snow. Sensitivity studies show that the model–measurement evaluation is only weakly affected by meltwater scavenging efficiency because most measurements were conducted in non-melting snow. The Arctic (60–90° N) atmospheric residence time for BC in phase II models ranges from 3.7 to 23.2 days, implying large inter-model variation in local BC deposition efficiency. Combined with the fact that most

  12. Cyclone Activity in the Arctic From an Ensemble of Regional Climate Models (Arctic CORDEX)

    NASA Astrophysics Data System (ADS)

    Akperov, Mirseid; Rinke, Annette; Mokhov, Igor I.; Matthes, Heidrun; Semenov, Vladimir A.; Adakudlu, Muralidhar; Cassano, John; Christensen, Jens H.; Dembitskaya, Mariya A.; Dethloff, Klaus; Fettweis, Xavier; Glisan, Justin; Gutjahr, Oliver; Heinemann, Günther; Koenigk, Torben; Koldunov, Nikolay V.; Laprise, René; Mottram, Ruth; Nikiéma, Oumarou; Scinocca, John F.; Sein, Dmitry; Sobolowski, Stefan; Winger, Katja; Zhang, Wenxin

    2018-03-01

    The ability of state-of-the-art regional climate models to simulate cyclone activity in the Arctic is assessed based on an ensemble of 13 simulations from 11 models from the Arctic-CORDEX initiative. Some models employ large-scale spectral nudging techniques. Cyclone characteristics simulated by the ensemble are compared with the results forced by four reanalyses (ERA-Interim, National Centers for Environmental Prediction-Climate Forecast System Reanalysis, National Aeronautics and Space Administration-Modern-Era Retrospective analysis for Research and Applications Version 2, and Japan Meteorological Agency-Japanese 55-year reanalysis) in winter and summer for 1981-2010 period. In addition, we compare cyclone statistics between ERA-Interim and the Arctic System Reanalysis reanalyses for 2000-2010. Biases in cyclone frequency, intensity, and size over the Arctic are also quantified. Variations in cyclone frequency across the models are partly attributed to the differences in cyclone frequency over land. The variations across the models are largest for small and shallow cyclones for both seasons. A connection between biases in the zonal wind at 200 hPa and cyclone characteristics is found for both seasons. Most models underestimate zonal wind speed in both seasons, which likely leads to underestimation of cyclone mean depth and deep cyclone frequency in the Arctic. In general, the regional climate models are able to represent the spatial distribution of cyclone characteristics in the Arctic but models that employ large-scale spectral nudging show a better agreement with ERA-Interim reanalysis than the rest of the models. Trends also exhibit the benefits of nudging. Models with spectral nudging are able to reproduce the cyclone trends, whereas most of the nonnudged models fail to do so. However, the cyclone characteristics and trends are sensitive to the choice of nudged variables.

  13. An assessment of phytoplankton primary productivity in the Arctic Ocean from satellite ocean color/in situ chlorophyll‐a based models

    PubMed Central

    Matrai, Patricia A.; Friedrichs, Marjorie A. M.; Saba, Vincent S.; Antoine, David; Ardyna, Mathieu; Asanuma, Ichio; Babin, Marcel; Bélanger, Simon; Benoît‐Gagné, Maxime; Devred, Emmanuel; Fernández‐Méndez, Mar; Gentili, Bernard; Hirawake, Toru; Kang, Sung‐Ho; Kameda, Takahiko; Katlein, Christian; Lee, Sang H.; Lee, Zhongping; Mélin, Frédéric; Scardi, Michele; Smyth, Tim J.; Tang, Shilin; Turpie, Kevin R.; Waters, Kirk J.; Westberry, Toby K.

    2015-01-01

    Abstract We investigated 32 net primary productivity (NPP) models by assessing skills to reproduce integrated NPP in the Arctic Ocean. The models were provided with two sources each of surface chlorophyll‐a concentration (chlorophyll), photosynthetically available radiation (PAR), sea surface temperature (SST), and mixed‐layer depth (MLD). The models were most sensitive to uncertainties in surface chlorophyll, generally performing better with in situ chlorophyll than with satellite‐derived values. They were much less sensitive to uncertainties in PAR, SST, and MLD, possibly due to relatively narrow ranges of input data and/or relatively little difference between input data sources. Regardless of type or complexity, most of the models were not able to fully reproduce the variability of in situ NPP, whereas some of them exhibited almost no bias (i.e., reproduced the mean of in situ NPP). The models performed relatively well in low‐productivity seasons as well as in sea ice‐covered/deep‐water regions. Depth‐resolved models correlated more with in situ NPP than other model types, but had a greater tendency to overestimate mean NPP whereas absorption‐based models exhibited the lowest bias associated with weaker correlation. The models performed better when a subsurface chlorophyll‐a maximum (SCM) was absent. As a group, the models overestimated mean NPP, however this was partly offset by some models underestimating NPP when a SCM was present. Our study suggests that NPP models need to be carefully tuned for the Arctic Ocean because most of the models performing relatively well were those that used Arctic‐relevant parameters. PMID:27668139

  14. Exploitation dynamics of small fish stocks like Arctic cisco

    USGS Publications Warehouse

    Nielsen, Jennifer L.

    2004-01-01

    Potential impacts to the Arctic cisco population fall into both demographic and behavioral categories. Possible demographic impacts include stock recruitment effects, limited escapement into marine habitats, and variable age-class reproductive success. Potential behavioral impacts involve migratory patterns, variable life histories, and strategies for seasonal feeding. Arctic cisco stocks are highly susceptible to over-exploitation due to our limited basic knowledge of the highly variable Arctic environment and the role they play in this dynamic ecosystem.Our knowledge of potential demographic changes is very limited, and it is necessary to determine the abundance and recruitment of the hypothesized Mackenzie River source population, the extent of the coastal migratory corridor, growth patterns, and coastal upwelling and mixing effects on population dynamics for this species. Information needed to answer some of the demographic questions includes basic evolutionary history and molecular genetics of Arctic cisco (for instance, are there contributions to the Arctic cisco stock from the Yukon?), what is the effective population size (i.e., breeding population size), and potential links to changes in climate. The basic behavioral questions include migratory and variable life history questions. For instance, the extent of movement back and forth between freshwater and the sea, age-specific differences in food web dynamics, and nearshore brackish and high salinity habitats are topics that should be studied. Life history data should be gathered to understand the variation in age at reproduction, salinity tolerance, scale and duration of the freshwater stage, survival, and adult migration. Both molecular and ecological tools should be integrated to manage the Arctic cisco stock(s), such as understanding global climate changes on patterns of harvest and recruitment, and the genetics of population structure and colonization. Perhaps other populations are contributing to the

  15. The Contribution to Arctic Climate Change from Countries in the Arctic Council

    NASA Astrophysics Data System (ADS)

    Schultz, T.; MacCracken, M. C.

    2013-12-01

    The conventional accounting frameworks for greenhouse gas (GHG) emissions used today, established under the Kyoto Protocol 25 years ago, exclude short lived climate pollutants (SLCPs), and do not include regional effects on the climate. However, advances in climate science now suggest that mitigation of SLCPs can reduce up to 50% of global warming by 2050. It has also become apparent that regions such as the Arctic have experienced a much greater degree of anthropogenic warming than the globe as a whole, and that efforts to slow this warming could benefit the larger effort to slow climate change around the globe. A draft standard for life cycle assessment (LCA), LEO-SCS-002, being developed under the American National Standards Institute process, has integrated the most recent climate science into a unified framework to account for emissions of all radiatively significant GHGs and SLCPs. This framework recognizes four distinct impacts to the oceans and climate caused by GHGs and SLCPs: Global Climate Change; Arctic Climate Change; Ocean Acidification; and Ocean Warming. The accounting for Arctic Climate Change, the subject of this poster, is based upon the Absolute Regional Temperature Potential, which considers the incremental change to the Arctic surface temperature resulting from an emission of a GHG or SLCP. Results are evaluated using units of mass of carbon dioxide equivalent (CO2e), which can be used by a broad array of stakeholders, including scientists, consumers, policy makers, and NGOs. This poster considers the contribution to Arctic Climate Change from emissions of GHGs and SLCPs from the eight member countries of the Arctic Council; the United States, Canada, Russia, Denmark, Finland, Iceland, Norway, and Sweden. Of this group of countries, the United States was the largest contributor to Arctic Climate Change in 2011, emitting 9600 MMT CO2e. This includes a gross warming of 11200 MMT CO2e (caused by GHGs, black and brown carbon, and warming effects

  16. Dissolved organic matter (DOM) in pore water of Arctic Ocean sediments: linking DOM molecular composition with microbial community structure

    NASA Astrophysics Data System (ADS)

    Rossel, P. E.; Bienhold, C.; Boetius, A.; Dittmar, T.

    2016-02-01

    Marine organic matter (OM) that sinks from surface waters to the seafloor is the energy and carbon source for benthic communities. These communities produce dissolved organic matter (DOM) in the process of remineralization, enriching the sediment porewater with fresh DOM compounds. In the Arctic Ocean, primary production is limited by nutrients and light and is thus strongly influenced by sea ice cover. Ice cover is expected to further decrease due to global warming, which may have important consequences for primary production and the quantity and quality of OM exported to the seafloor. This study focused on: 1) the molecular composition of the DOM in sediment pore waters of the deep Eurasian Arctic basins, 2) whether there is any relation between Arctic Ocean ice cover and DOM composition and 3) whether the DOM composition correlates with microbial community structure. Molecular data, obtained via 15 Tesla Fourier transform ion cyclotron resonance mass spectrometry, were statistically correlated with environmental parameters. The productive ice margin stations showed higher abundances of molecular formulae of peptides, unsaturated aliphatics and saturated fatty acids. This molecular trend is indicative of fresh OM and phytodetritus deposition, compared to the northernmost, ice-covered stations which had stronger aromatic signals. Benthic bacterial community structure, as assessed with the fingerprinting method ARISA, was significantly correlated with DOM molecular composition. Further analyses using Illumina next-generation sequencing will enable the taxonomic identification of specific bacterial groups and their interdependence with DOM compounds. This study contributes to the understanding of the coupling between Arctic Ocean productivity and its depositional regime, and provides first insights into potential links between microbial community structure and DOM molecular composition in Arctic sediments

  17. The Carbon in Arctic Reservoirs Vulnerability Experiment (CARVE): Examining the complex Arctic biological-climatologic-hydrologic system

    NASA Astrophysics Data System (ADS)

    McDonald, K. C.; Podest, E.; Miller, C. E.; Dinardo, S. J.

    2012-12-01

    Fundamental aspects of the complex Arctic biological-climatologic-hydrologic system remain poorly quantified. As a result, significant uncertainties exist in the carbon budget of the Arctic ecosystem. NASA's Carbon in Arctic Reservoirs Vulnerability Experiment (CARVE) is a currently-operational Earth Venture 1 (EV-1) mission that is examining correlations between atmospheric and surface state variables for the Alaskan terrestrial ecosystems. CARVE is conducted through a series of intensive seasonal aircraft campaigns, ground-based observations, and analysis sustained over a 5-year mission timeframe. CARVE employs a C-23 Sherpa aircraft to fly an innovative airborne remote sensing payload. This payload includes an L-band radiometer/radar system and a nadir-viewing spectrometer to deliver simultaneous measurements of land surface state variables that control gas emissions (i.e., soil moisture and inundation, freeze/thaw state, surface temperature) and total atmospheric columns of carbon dioxide, methane, and carbon monoxide. The aircraft payload also includes a gas analyzer that links greenhouse gas measurements directly to World Meteorological Organization standards and provide vertical profile information. CARVE measurement campaigns are scheduled regularly throughout the growing season each year to capture the seasonal variability in Arctic system carbon fluxes associated with the spring thaw, the summer drawdown, and the fall refreeze. Continuous ground-based measurements provide temporal and regional context as well as calibration for CARVE airborne measurements. CARVE bridges critical gaps in our knowledge and understanding of Arctic ecosystems, linkages between the Arctic hydrologic and terrestrial carbon cycles, and the feedbacks from fires and thawing permafrost. Ultimately, CARVE will provide an integrated set of data that will provide unprecedented experimental insights into Arctic carbon cycling. Portions of this work were carried out at the Jet

  18. Arctic sea ice concentration observed with SMOS during summer

    NASA Astrophysics Data System (ADS)

    Gabarro, Carolina; Martinez, Justino; Turiel, Antonio

    2017-04-01

    The Arctic Ocean is under profound transformation. Observations and model predictions show dramatic decline in sea ice extent and volume [1]. A retreating Arctic ice cover has a marked impact on regional and global climate, and vice versa, through a large number of feedback mechanisms and interactions with the climate system [2]. The launch of the Soil Moisture and Ocean Salinity (SMOS) mission, in 2009, marked the dawn of a new type of space-based microwave observations. Although the mission was originally conceived for hydrological and oceanographic studies [3,4], SMOS is also making inroads in the cryospheric sciences by measuring the thin ice thickness [5,6]. SMOS carries an L-band (1.4 GHz), passive interferometric radiometer (the so-called MIRAS) that measures the electromagnetic radiation emitted by the Earth's surface, at about 50 km spatial resolution, continuous multi-angle viewing, large wide swath (1200-km), and with a 3-day revisit time at the equator, but more frequently at the poles. A novel radiometric method to determine sea ice concentration (SIC) from SMOS is presented. The method uses the Bayesian-based Maximum Likelihood Estimation (MLE) approach to retrieve SIC. The advantage of this approach with respect to the classical linear inversion is that the former takes into account the uncertainty of the tie-point measured data in addition to the mean value, while the latter only uses a mean value of the tie-point data. When thin ice is present, the SMOS algorithm underestimates the SIC due to the low opacity of the ice at this frequency. However, using a synergistic approach with data from other satellite sensors, it is possible to obtain accurate thin ice thickness estimations with the Bayesian-based method. Despite its lower spatial resolution relative to SSMI or AMSR-E, SMOS-derived SIC products are little affected by the atmosphere and the snow (almost transparent at L-band). Moreover L-band measurements are more robust in front of the

  19. Arctic research vessel design would expand science prospects

    NASA Astrophysics Data System (ADS)

    Elsner, Robert; Kristensen, Dirk

    The U.S. polar marine science community has long declared the need for an arctic research vessel dedicated to advancing the study of northern ice-dominated seas. Planning for such a vessel began 2 decades ago, but competition for funding has prevented construction. A new design program is underway, and it shows promise of opening up exciting possibilities for new research initiatives in arctic marine science.With its latest design, the Arctic Research Vessel (ARV) has grown to a size and capability that will make it the first U.S. academic research vessel able to provide access to the Arctic Ocean. This ship would open a vast arena for new studies in the least known of the world's seas. These studies promise to rank high in national priority because of the importance of the Arctic Ocean as a source of data relating to global climate change. Other issues that demand attention in the Arctic include its contributions to the world's heat budget, the climate history buried in its sediments, pollution monitoring, and the influence of arctic conditions on marine renewable resources.

  20. The Impact of Transported Pollution on Arctic Climate

    NASA Astrophysics Data System (ADS)

    Quinn, P.; Stohl, A.; Arneth, A.; Berntsen, T.; Burkhart, J. F.; Flanner, M. G.; Kupiainen, K.; Shepherd, M.; Shevchenko, V. P.; Skov, H.; Vestreng, V.

    2011-12-01

    Arctic temperatures have increased at almost twice the global average rate over the past 100 years. Warming in the Arctic has been accompanied by an earlier onset of spring melt, a lengthening of the melt season, changes in the mass balance of the Greenland ice sheet, and a decrease in sea ice extent. Short-lived, climate warming pollutants such as black carbon (BC) have recently gained attention as a target for immediate mitigation of Arctic warming in addition to reductions in long lived greenhouse gases. Model calculations indicate that BC increases surface temperatures within the Arctic primarily through deposition on snow and ice surfaces with a resulting decrease in surface albedo and increase in absorbed solar radiation. In 2009, the Arctic Monitoring and Assessment Program (AMAP) established an Expert Group on BC with the goal of identifying source regions and energy sectors that have the largest impact on Arctic climate. Here we present the results of this work and investigate links between mid-latitude pollutants and Arctic climate.

  1. Multi-model seasonal forecast of Arctic sea-ice: forecast uncertainty at pan-Arctic and regional scales

    NASA Astrophysics Data System (ADS)

    Blanchard-Wrigglesworth, E.; Barthélemy, A.; Chevallier, M.; Cullather, R.; Fučkar, N.; Massonnet, F.; Posey, P.; Wang, W.; Zhang, J.; Ardilouze, C.; Bitz, C. M.; Vernieres, G.; Wallcraft, A.; Wang, M.

    2017-08-01

    Dynamical model forecasts in the Sea Ice Outlook (SIO) of September Arctic sea-ice extent over the last decade have shown lower skill than that found in both idealized model experiments and hindcasts of previous decades. Additionally, it is unclear how different model physics, initial conditions or forecast post-processing (bias correction) techniques contribute to SIO forecast uncertainty. In this work, we have produced a seasonal forecast of 2015 Arctic summer sea ice using SIO dynamical models initialized with identical sea-ice thickness in the central Arctic. Our goals are to calculate the relative contribution of model uncertainty and irreducible error growth to forecast uncertainty and assess the importance of post-processing, and to contrast pan-Arctic forecast uncertainty with regional forecast uncertainty. We find that prior to forecast post-processing, model uncertainty is the main contributor to forecast uncertainty, whereas after forecast post-processing forecast uncertainty is reduced overall, model uncertainty is reduced by an order of magnitude, and irreducible error growth becomes the main contributor to forecast uncertainty. While all models generally agree in their post-processed forecasts of September sea-ice volume and extent, this is not the case for sea-ice concentration. Additionally, forecast uncertainty of sea-ice thickness grows at a much higher rate along Arctic coastlines relative to the central Arctic ocean. Potential ways of offering spatial forecast information based on the timescale over which the forecast signal beats the noise are also explored.

  2. Aerosol formation and distribution in the Arctic during AGASP-II, March-April 1986

    NASA Technical Reports Server (NTRS)

    Schnell, Russell C.; Kahl, Jonathan D.; Herbert, Gary A.; Bodhaine, B. A.; Bridgman, Howard A.

    1988-01-01

    The Arctic Gas and Aerosol Sampling Program has undertaken the determination of the distribution, transport, chemistry, aerosol physics, and radiative effects of the 'Arctic haze' air-pollution phenomenon. Attention has been given the April 2-3, 1986 haze zone, with large condensation nuclei, SO2, and soot-carbon concentrations, which appeared near the Barrow Baseline Station. The composite trajectory of the haze zone has been determined, as has its probable source region. After travelling 10,000 km, the haze still had SO2, aerosol black carbon, and condensation nuclei concentrations in excess of those measured off the East Coast of the U.S. in January of the same year.

  3. Changing seasonality of Arctic hydrology disrupts key biotic linkages in Arctic aquatic ecosystems.

    NASA Astrophysics Data System (ADS)

    Deegan, L.; MacKenzie, C.; Peterson, B. J.; Fishscape Project

    2011-12-01

    Arctic grayling (Thymallus arcticus) is an important circumpolar species that provide a model system for understanding the impacts of changing seasonality on arctic ecosystem function. Grayling serve as food for other biota, including lake trout, birds and humans, and act as top-down controls in stream ecosystems. In Arctic tundra streams, grayling spend their summers in streams but are obligated to move back into deep overwintering lakes in the fall. Climatic change that affects the seasonality of river hydrology could have a significant impact on grayling populations: grayling may leave overwintering lakes sooner in the spring and return later in the fall due to a longer open water season, but the migration could be disrupted by drought due to increased variability in discharge. In turn, a shorter overwintering season may impact lake trout dynamics in the lakes, which may rely on the seasonal inputs of stream nutrients in the form of migrating grayling into these oligotrophic lakes. To assess how shifting seasonality of Arctic river hydrology may disrupt key trophic linkages within and between lake and stream components of watersheds on the North Slope of the Brooks Mountain Range, Alaska, we have undertaken new work on grayling and lake trout population and food web dynamics. We use Passive Integrated Transponder (PIT) tags coupled with stream-width antenna units to monitor grayling movement across Arctic tundra watersheds during the summer, and into overwintering habitat in the fall. Results indicate that day length may prime grayling migration readiness, but that flooding events are likely the cue grayling use to initiate migration in to overwintering lakes. Many fish used high discharge events in the stream as an opportunity to move into lakes. Stream and lake derived stable isotopes also indicate that lake trout rely on these seasonally transported inputs of stream nutrients for growth. Thus, changes in the seasonality of river hydrology may have broader

  4. Progress report for project modeling Arctic barrier island-lagoon system response to projected Arctic warming

    USGS Publications Warehouse

    Erikson, Li H.; Gibbs, Ann E.; Richmond, Bruce M.; Storlazzi, Curt; B.M. Jones,

    2012-01-01

    Changes in Arctic coastal ecosystems in response to global warming may be some of the most severe on the planet. A better understanding and analysis of the rates at which these changes are expected to occur over the coming decades is crucial in order to delineate high-priority areas that are likely to be affected by climate changes. In this study we investigate the likelihood of changes to habitat-supporting barrier island – lagoon systems in response to projected changes in atmospheric and oceanographic forcing associated with Arctic warming. To better understand the relative importance of processes responsible for the current and future coastal landscape, key parameters related to increasing arctic temperatures are investigated and used to establish boundary conditions for models that simulate barrier island migration and inundation of deltaic deposits and low-lying tundra. The modeling effort investigates the dominance and relative importance of physical processes shaping the modern Arctic coastline as well as decadal responses due to projected conditions out to the year 2100.

  5. Arctic reconstruction from an Alaskan viewpoint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crane, R.C.

    1985-04-01

    Field, seismic, structural, and stratigraphic data were used to reconstruct the geologic history of the Arctic in 10-m.y. time slices from the present to mid-Jurassic - the initial opening of the Arctic Ocean. A basic assumption is that Lomonosov Ridge, Alpha Ridge, Mendeleyev Ridge, and Chukchi Plateau are all foundered continental plates. Opening of the Arctic occurs in two stages: Late Jurassic - Cretaceous for the Canada basin and Neogene for the Eurasian basin. Opening is facilitated by two subparallel transform shears - the Arctic (Kaltag-Porcupine) on the east and the Chukchi on the west. Deformation is essentially tensional onmore » the Barents side of the Arctic and shear-compressional on the Alaska side. The development of Chutkoya, North Slope, Brooks Range, north-west Canada, Seward Peninsula, and central Alaska can be sequentially related to Arctic opening, modified by impingement on the northern terrane of allochthonous terranes arriving from the south - the Pacific plates of Tintina, Denali, Orca (Prince William-Chugach-Yakutat), Anadyr, Khatyrka, Kolyman, and other minor terranes. The North Slope of Alaska, a passive, rifted, subsided margin, is restored to line up with a similar margin on Alpha Ridge. Northeastern Alaska (the Romanzof Mountain area) lines up opposite the north end of the Sverdrup Rim, near Prince Patrick and Borden Islands.« less

  6. Multinational Experiment 7. Maritime Security Region: The Arctic

    DTIC Science & Technology

    2013-07-08

    Russia. Marine Resources The Arctic Ocean is home to countless species from microscopic plankton to gigantic whales . Large-scale commercial...Arctic is a circumpolar region that encompasses both marine and land masses and includes the Arctic Ocean and its seas that cover more than 30...and does not rise on the day of the winter solstice. The Arctic Ocean is the world’s smallest and shallowest, with an average depth of roughly a

  7. Contrasts in Sea Ice Deformation and Production in the Arctic Seasonal and Perennial Ice Zones

    NASA Technical Reports Server (NTRS)

    Kwok, K.

    2006-01-01

    Four years (1997-2000) of RADARSAT Geophysical Processor System (RGPS) data are used to contrast the sea ice deformation and production regionally, and in the seasonal (SIZ) and perennial (PIZ) ice zones. Ice production is of seasonal ice in openings during the winter. Three-day estimates of these quantities are provided within Lagrangian elements initially 10 km on a side. A distinct seasonal cycle is seen in both zones with these estimates highest in the late fall and with seasonal minimums in the midwinter. Regional divergence over the winter could be up to 30%. Spatially, the highest deformation is seen in the SIZ north of coastal Alaska. Both ice deformation and production are higher in the SIZ: deformation-related ice production in the SIZ (approx.0.5 m) is 1.5-2.3 times that of the PIZ (approx.0.3 m): this is connected to ice strength and thickness. Atmospheric forcing and boundary layer structure contribute to only the seasonal and interannual variability. Seasonal ice growth in ice fractures accounts for approx.25-40% of the total ice production of the Arctic Ocean. Uncertainties in these estimates are discussed. By itself, this deformation-ice production relationship could be considered a negative feedback when thickness is perturbed. However, the overall effect on ice production in the face of increasing seasonal and thinner/weaker ice coverage could be modified by local destabilization of the water column promoting overturning of warmer water due to increased brine rejection; and the upwelling of the pynocline associated with increased occurrence of large shear motion in sea ice. Divergence is shown to be negligibly correlated to cyclonic motion in summer and winter in both ice zones.

  8. Assessment of crude oil biodegradation in arctic seashore sediments: effects of temperature, salinity, and crude oil concentration.

    PubMed

    Sharma, Priyamvada; Schiewer, Silke

    2016-08-01

    The expected increase in offshore oil exploration and production in the Arctic may lead to crude oil spills along arctic shorelines. To evaluate the potential effectiveness of bioremediation to treat such spills, oil spill bioremediation in arctic sediments was simulated in laboratory microcosms containing beach sediments from Barrow (Alaska), spiked with North Slope Crude, and incubated at varying temperatures and salinities. Biodegradation was measured via respiration rates (CO2 production); volatilization was quantified by gas chromatography/mass spectrophotometry (GC/MS) analysis of hydrocarbons sorbed to activated carbon, and hydrocarbons remaining in the sediment were quantified by GC/flame ionization detector (FID). Higher temperature leads to increased biodegradation by naturally occurring microorganisms, while the release of volatile organic compounds was similar at both temperatures. Increased salinity had a small positive impact on crude oil removal. At higher crude oil dosages, volatilization increased, however CO2 production did not. While only a small percentage of crude oil was completely biodegraded, a larger percentage was volatilized within 6-9 weeks.

  9. Sources of Arctic Ocean upper halocline and changes in its properties

    NASA Astrophysics Data System (ADS)

    Anderson, L. G.; Andersson, P. S.; Bjvrk, G. M.; Jutterstrom, S.; Wahlstrom, I.

    2011-12-01

    The upper halocline of the Arctic Ocean has a distinct chemical signature by its high nutrient and partial pressure of carbon dioxide as well as low oxygen and pH values. This signature is formed along the bottoms of the Siberian shelf seas, primarily the Chukchi and East Siberian Seas, by a combination of mineralization of organic matter and release of the decay products to the sea ice brine enriched bottom water. In this contribution we use salinity and total alkalinity data to show that the fraction of sea ice brine in the nutrient enriched upper halocline water in the central Arctic Ocean is up to 4%. This water of low pH, and thus also low in calcium carbonate solubility, is found between about 100 and 200 m depth and is thus close to the productive surface water in a future central Arctic Ocean of less summer sea ice cover. In the East Siberian Sea the bottom waters with exceptional high nutrient concentration and low pH have typically between 5 and 10% of sea ice brine as computed form salinity and oxygen-18 vales. On the continental slope, over bottom depths of 15-200 m, the brine contribution was 6% at the nutrient maximum depth (50-100 m). At the same location as well as over deeper waters the silicate maximum was found over a wider salinity range than traditionally, in agreement with observations of Nishino et al (J. Oceanogr, Vol. 65, pp. 871 to 883, 2009) in the area of the deep Arctic Ocean east of the Chukchi Plateau. However, the water with lowest salinity (~32.5) in the silicate maximum had maximum in nitrate deficit expressed as N** (= [NO3] - 16[PO4] + 2.9) and the waters with highest salinity (~34.5) had the lowest oxygen concentration. This pattern is not obvious and point to at least two different biochemical environments within the East Siberian Sea that has not been observed before and could be a sign of a changing marine climate in the East Siberian Sea. One cause could be more open water in the summer season followed by more sea ice

  10. Marine Mammals and Climate Change in the Pacific Arctic: Impacts & Resilience

    NASA Astrophysics Data System (ADS)

    Moore, S. E.

    2014-12-01

    Extreme reductions in Arctic sea ice extent and thickness have become a hallmark of climate change, but impacts to the marine ecosystem are poorly understood. As top predators, marine mammals must adapt to biological responses to physical forcing and thereby become sentinels to ecosystem variability and reorganization. Recent sea ice retreats have influenced the ecology of marine mammals in the Pacific Arctic sector. Walruses now often haul out by the thousands along the NW Alaska coast in late summer, and reports of harbor porpoise, humpback, fin and minke whales in the Chukchi Sea demonstrate that these temperate species routinely occur there. In 2010, satellite tagged bowhead whales from Atlantic and Pacific populations met in the Northwest Passage, an overlap thought precluded by sea ice since the Holocene. To forage effectively, baleen whales must target dense patches of zooplankton and small fishes. In the Pacific Arctic, bowhead and gray whales appear to be responding to enhanced prey availability delivered both by new production and advection pathways. Two programs, the Distributed Biological Observatory (DBO) and the Synthesis of Arctic Research (SOAR), include tracking of marine mammal and prey species' responses to ecosystem shifts associated with sea ice loss. Both programs provide an integrated-ecosystem baseline in support of the development of a web-based Marine Mammal Health Map, envisioned as a component of the U.S. Integrated Ocean Observing System (IOOS). An overarching goal is to identify ecological patterns for marine mammals in the 'new' Arctic, as a foundation for integrative research, local response and adaptive management.

  11. A pan-Arctic synthesis of CH4 and CO2 production from anoxic soil incubations

    USGS Publications Warehouse

    Treat, C.C.; Natali, Susan M.; Ernakovich, Jessica; Iverson, Colleen M.; Lupasco, Massimo; McGuire, A. David; Norby, Richard J.; Roy Chowdhury, Taniya; Richter, Andreas; Šantrůčková, Hana; Schädel, C.; Schuur, Edward A.G.; Sloan, Victoria L.; Turetsky, Merritt R.; Waldrop, Mark P.

    2015-01-01

    Permafrost thaw can alter the soil environment through changes in soil moisture, frequently resulting in soil saturation, a shift to anaerobic decomposition, and changes in the plant community. These changes, along with thawing of previously frozen organic material, can alter the form and magnitude of greenhouse gas production from permafrost ecosystems. We synthesized existing methane (CH4) and carbon dioxide (CO2) production measurements from anaerobic incubations of boreal and tundra soils from the geographic permafrost region to evaluate large-scale controls of anaerobic CO2 and CH4 production and compare the relative importance of landscape-level factors (e.g., vegetation type and landscape position), soil properties (e.g., pH, depth, and soil type), and soil environmental conditions (e.g., temperature and relative water table position). We found fivefold higher maximum CH4 production per gram soil carbon from organic soils than mineral soils. Maximum CH4 production from soils in the active layer (ground that thaws and refreezes annually) was nearly four times that of permafrost per gram soil carbon, and CH4 production per gram soil carbon was two times greater from sites without permafrost than sites with permafrost. Maximum CH4 and median anaerobic CO2 production decreased with depth, while CO2:CH4 production increased with depth. Maximum CH4 production was highest in soils with herbaceous vegetation and soils that were either consistently or periodically inundated. This synthesis identifies the need to consider biome, landscape position, and vascular/moss vegetation types when modeling CH4 production in permafrost ecosystems and suggests the need for longer-term anaerobic incubations to fully capture CH4 dynamics. Our results demonstrate that as climate warms in arctic and boreal regions, rates of anaerobic CO2 and CH4 production will increase, not only as a result of increased temperature, but also from shifts in vegetation and increased

  12. 77 FR 76706 - Endangered and Threatened Species; Threatened Status for the Arctic, Okhotsk, and Baltic...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-28

    ...We, NMFS, issue a final determination to list the Arctic (Phoca hispida hispida), Okhotsk (Phoca hispida ochotensis), and Baltic (Phoca hispida botnica) subspecies of the ringed seal (Phoca hispida) as threatened and the Ladoga (Phoca hispida ladogensis) subspecies of the ringed seal as endangered under the Endangered Species Act (ESA). We will propose to designate critical habitat for the Arctic ringed seal in a future rulemaking. To assist us in this effort, we solicit information that may be relevant to the designation of critical habitat for Arctic ringed seals. In light of public comments and upon further review, we are withdrawing the proposed ESA section 4(d) protective regulations for threatened subspecies of the ringed seal because we have determined that such regulations are not necessary or advisable for the conservation of the Arctic, Okhotsk, or Baltic subspecies of the ringed seal at this time. Given their current population sizes, the long-term nature of the primary threat to these subspecies (habitat alteration stemming from climate change), and the existing protections under the Marine Mammal Protection Act, it is unlikely that the proposed protective regulations would provide appreciable conservation benefits.

  13. CYCLING OF DISSOLVED ELEMENTAL MERCURY IN ARCTIC ALASKAN LAKES. (R829796)

    EPA Science Inventory

    Aqueous production and water-air exchange of elemental mercury (Hg0) are important features of the environmental cycling of Hg. We investigated Hg0 cycling in ten Arctic Alaskan lakes that spanned a wide range in physicochemical characteristics. Dissolved...

  14. Islands of the Arctic

    NASA Astrophysics Data System (ADS)

    Dowdeswell, Julian; Hambrey, Michael

    2002-11-01

    The Arctic islands are characterized by beautiful mountains and glaciers, in which the wildlife lives in delicate balance with its environment. It is a fragile region with a long history of exploration and exploitation that is now experiencing rapid environmental change. All of these themes are explored in Islands of the Arctic, a richly illustrated volume with superb photographs from the Canadian Arctic archipelago, Greenland, Svalbard and the Russian Arctic. It begins with the various processes shaping the landscape: glaciers, rivers and coastal processes, the role of ice in the oceans and the weather and climate. Julian Dowdeswell and Michael Hambrey describe the flora and fauna in addition to the human influences on the environment, from the sustainable approach of the Inuit, to the devastating damage inflicted by hunters and issues arising from the presence of military security installations. Finally, they consider the future prospects of the Arctic islands Julian Dowdeswell is Director of the Scott Polar Research Institute and Professor of Physical Geography at 0he University of Cambridge. He received the Polar Medal from Queen Elizabeth for his contributions to the study of glacier geophysics and the Gill Memorial Award from the Royal Geographical Society. He is chair of the Publications Committee of the International Glaciological Society and head of the Glaciers and Ice Sheets Division of the International Commission for Snow and Ice. Michael Hambrey is Director of the Centre for Glaciology at the University of Wales, Aberystwyth. A past recipient of the Polar Medal, he was also given the Earth Science Editors' Outstanding Publication Award for Glaciers (Cambridge University Press). Hambrey is also the author of Glacial Environments (British Columbia, 1994).

  15. Evaluating Arctic warming mechanisms in CMIP5 models

    NASA Astrophysics Data System (ADS)

    Franzke, Christian L. E.; Lee, Sukyoung; Feldstein, Steven B.

    2017-05-01

    Arctic warming is one of the most striking signals of global warming. The Arctic is one of the fastest warming regions on Earth and constitutes, thus, a good test bed to evaluate the ability of climate models to reproduce the physics and dynamics involved in Arctic warming. Different physical and dynamical mechanisms have been proposed to explain Arctic amplification. These mechanisms include the surface albedo feedback and poleward sensible and latent heat transport processes. During the winter season when Arctic amplification is most pronounced, the first mechanism relies on an enhancement in upward surface heat flux, while the second mechanism does not. In these mechanisms, it has been proposed that downward infrared radiation (IR) plays a role to a varying degree. Here, we show that the current generation of CMIP5 climate models all reproduce Arctic warming and there are high pattern correlations—typically greater than 0.9—between the surface air temperature (SAT) trend and the downward IR trend. However, we find that there are two groups of CMIP5 models: one with small pattern correlations between the Arctic SAT trend and the surface vertical heat flux trend (Group 1), and the other with large correlations (Group 2) between the same two variables. The Group 1 models exhibit higher pattern correlations between Arctic SAT and 500 hPa geopotential height trends, than do the Group 2 models. These findings suggest that Arctic warming in Group 1 models is more closely related to changes in the large-scale atmospheric circulation, whereas in Group 2, the albedo feedback effect plays a more important role. Interestingly, while Group 1 models have a warm or weak bias in their Arctic SAT, Group 2 models show large cold biases. This stark difference in model bias leads us to hypothesize that for a given model, the dominant Arctic warming mechanism and trend may be dependent on the bias of the model mean state.

  16. Development of Decision Analysis Specifically for Arctic Offshore Drilling Islands.

    DTIC Science & Technology

    1985-12-01

    the decision analysis method will - give tradeoffs between costs and design wave height, production and depth • :of water for an oil platform , etc...optimizing the type of platform that is best suited for a particular site has become an extremely difficult decision. Over fifty- one different types of...drilling and production platforms have been identified for the Arctic environment, with new concepts being developed - every year, Boslov et al (198j

  17. U.S. National Arctic Strategy: Preparing Defensive Lines of Effort for the Arctic

    DTIC Science & Technology

    2014-04-01

    publications hint at new political posturing and suggest China should develop a more assertive approach to the international debates on controlling ...currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 1. REPORT DATE (DD-MM-YYYY) 01-04-2014 2. REPORT TYPE...importance of the Arctic, but lacks the infrastructure, command and control structure, and Arctic-capable assets to meet national strategic objectives

  18. Levels and trends of contaminants in humans of the Arctic.

    PubMed

    Gibson, Jennifer; Adlard, Bryan; Olafsdottir, Kristin; Sandanger, Torkjel Manning; Odland, Jon Øyvind

    2016-01-01

    The Arctic Monitoring and Assessment Programme (AMAP) is one of the six working groups established under the Arctic Council. AMAP is tasked with monitoring the levels of contaminants present in the Arctic environment and people as well as assessing their effects on a continuous basis, and reporting these results regularly. Most of the presented data have been collected over the last 20 years and are from all eight Arctic countries. Levels of contaminants appear to be declining in some of the monitored Arctic populations, but it is not consistent across the Arctic. Most Arctic populations continue to experience elevated levels of these contaminants compared to other populations monitored globally. There are certain contaminants, such as perfluorinated compounds and polybrominated diphenyl ethers, which are still increasing in Arctic populations. These contaminants require more investigation to find out the predominant and important sources of exposure, and whether they are being transported to the Arctic through long-range transport in the environment.

  19. Levels and trends of contaminants in humans of the Arctic

    PubMed Central

    Gibson, Jennifer; Adlard, Bryan; Olafsdottir, Kristin; Sandanger, Torkjel Manning; Odland, Jon Øyvind

    2016-01-01

    The Arctic Monitoring and Assessment Programme (AMAP) is one of the six working groups established under the Arctic Council. AMAP is tasked with monitoring the levels of contaminants present in the Arctic environment and people as well as assessing their effects on a continuous basis, and reporting these results regularly. Most of the presented data have been collected over the last 20 years and are from all eight Arctic countries. Levels of contaminants appear to be declining in some of the monitored Arctic populations, but it is not consistent across the Arctic. Most Arctic populations continue to experience elevated levels of these contaminants compared to other populations monitored globally. There are certain contaminants, such as perfluorinated compounds and polybrominated diphenyl ethers, which are still increasing in Arctic populations. These contaminants require more investigation to find out the predominant and important sources of exposure, and whether they are being transported to the Arctic through long-range transport in the environment. PMID:27974136

  20. Long-term experimental warming alters nitrogen-cycling communities but site factors remain the primary drivers of community structure in high arctic tundra soils.

    PubMed

    Walker, Jennifer K M; Egger, Keith N; Henry, Gregory H R

    2008-09-01

    Arctic air temperatures are expected to rise significantly over the next century. Experimental warming of arctic tundra has been shown to increase plant productivity and cause community shifts and may also alter microbial community structure. Hence, the objective of this study was to determine whether experimental warming caused shifts in soil microbial communities by measuring changes in the frequency, relative abundance and/or richness of nosZ and nifH genotypes. Five sites at a high arctic coastal lowland were subjected to a 13-year warming experiment using open-top chambers (OTCs). Sites differed by dominant plant community, soil parent material and/or moisture regimen. Six soil cores were collected from each of four replicate OTC and ambient plots at each site and subdivided into upper and lower samples. Differences in frequency and relative abundance of terminal restriction fragments were assessed graphically by two-way cluster analysis and tested statistically with permutational multivariate analysis of variance (ANOVA). Genotypic richness was compared using factorial ANOVA. The genotype frequency, relative abundance and genotype richness of both nosZ and nifH communities differed significantly by site, and by OTC treatment and/or depth at some sites. The site that showed the most pronounced treatment effect was a wet sedge meadow, where community structure and genotype richness of both nosZ and nifH were significantly affected by warming. Although warming was an important factor affecting these communities at some sites at this high arctic lowland, overall, site factors were the main determinants of community structure.

  1. Occurrence of weak, sub-micron, tropospheric aerosol events at high Arctic latitudes

    NASA Astrophysics Data System (ADS)

    O'Neill, N. T.; Pancrati, O.; Baibakov, K.; Eloranta, E.; Batchelor, R. L.; Freemantle, J.; McArthur, L. J. B.; Strong, K.; Lindenmaier, R.

    2008-07-01

    Numerous fine mode (sub-micron) aerosol optical events were observed during the summer of 2007 at the High Arctic atmospheric observatory (PEARL) located at Eureka, Nunavut, Canada. Half of these events could be traced to forest fires in southern and eastern Russia and the Northwest Territories of Canada. The most notable findings were that (a) a combination of ground-based measurements (passive sunphotometry, high spectral resolution lidar) could be employed to determine that weak (near sub-visual) fine mode events had occurred, and (b) this data combined with remote sensing imagery products (MODIS, OMI-AI, FLAMBE fire sources), Fourier transform spectroscopy and back trajectories could be employed to identify the smoke events.

  2. [Dynamics of parasite communities in an age series of Arctic Cisco Coregonus migratorius (Georgi, 1775)].

    PubMed

    Dugarov, Zh N; Pronin, N M

    2013-01-01

    Parasite communities of Arctic cisco from Chivyrkui Bay of Lake Baikal have been analyzed at levels of a host individual (infracommunity), a individual age group of a host-(assemblages of infracommunities), and a host population (component community). Significant positive correlations of parameters of species richness (number of parasite species, Margalef and Menhinick indices) with the age of Arctic cisco were recorded only at the level of parasite inffacommunities. The absence of linear positive correlations between the parameters of species richness and the age of Arctic cisco at the level of assemblages of parasite infracommunities were revealed for the first time for fish of Lake Baikal. The peculiarity of the dynamics of parasite communities of. Arctic cisco is determined by specific features of the host physiology and ecology, primarily by the age dynamics of the feeding spectrum.

  3. Branched glycerol dialkyl glycerol tetraethers in Arctic lake sediments: Sources and implications for paleothermometry at high latitudes

    NASA Astrophysics Data System (ADS)

    Peterse, Francien; Vonk, Jorien E.; Holmes, R. Max; Giosan, Liviu; Zimov, Nikita; Eglinton, Timothy I.

    2014-08-01

    Branched glycerol dialkyl glycerol tetraethers (brGDGTs) are analyzed in different lakes of the Mackenzie (Canadian Arctic) and Kolyma (Siberian Arctic) River basins to evaluate their sources and the implications for brGDGT-based paleothermometry in high-latitude lakes. The comparison of brGDGT distributions and concentrations in the lakes with those in river suspended particulate matter, riverbank sediments, and permafrost material indicates that brGDGTs in Arctic lake sediments have mixed sources. In contrast to global observations, distributional offsets between brGDGTs in Arctic lakes and elsewhere in the catchment are minor, likely due to the extreme seasonality and short window of biological production at high latitudes. Consequently, both soil- and lake-calibrated brGDGT-based temperature proxies return sensible temperature estimates, even though the mean air temperature (MAT) in the Arctic is below the calibration range. The original soil-calibrated MBT-CBT (methylation of branched tetraethers-cyclisation of branched tetraethers) proxy generates MATs similar to those in the studied river basins, whereas using the recently revised MBT'-CBT calibration overestimates MAT. The application of the two global lake calibrations, generating summer air temperatures (SAT) and MAT, respectively, illustrates the influence of seasonality on the production of brGDGTs in lakes, as the latter overestimates actual MAT, whereas the SAT-based lake calibration accounts for this influence and consequently returns more accurate temperatures. Our results in principle support the application of brGDGT-based temperature proxies in high-latitude lakes in order to obtain long-term paleotemperature records for the Arctic, although the calibration and associated transfer function have to be selected with care.

  4. Changes in arctic and boreal ecosystem productivity in response to changes in growing season length

    NASA Astrophysics Data System (ADS)

    Hmimina, G.; Yu, R.; Billesbach, D. P.; Huemmrich, K. F.; Gamon, J. A.

    2017-12-01

    Large-scale greening and browning trends have been reported in northern terrestrial ecosystems over the last two decades. The greening is interpreted as an increased productivity in response to increases in temperature. Boreal and arctic ecosystem productivity is expected to increase as the length of growing seasons increases, resulting in a bigger northern carbon sink pool. While evidences of such greening based on the use of remotely-sensed vegetation indices are compelling, analysis over the sparse network of flux tower sites available in northern latitudes paint a more complex story, and raise some issues as to whether vegetation indices based on NIR reflectance at large spatial scales are suited to the analysis of very fragmented landscapes that exhibit strong patterns in snow and standing water cover. In a broader sense, whether "greenness" is a sufficiently good proxy of ecosystem productivity in northern latitudes is unclear. The current work focused on deriving continuous estimates of ecosystem potential productivity and photosynthesis limitation over a network of flux towers, and on analyzing the relationships between potential yearly productivity and the length of the growing season over time and space. A novel partitioning method was used to derive ecophysiological parameters from sparse carbon fluxes measurements, and those parameters were then used to delimit the growing season and to estimate potential yearly productivity over a wide range of ecosystems. The relationships obtained between those two metrics were then computed for each of the 23 studied sites, exhibiting a wide range of different responses to changes in growing season length. While an overall significant increasing productivity trend was found (R²=0.12) suggesting increased productivity, the more northern sites exhibited a consistent decreasing trend (0.11 The attribution of these trends to either changes in potential productivity or productivity limitation by abiotic factors will be

  5. Observed Changes at the Surface of the Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Ortmeyer, M.; Rigor, I.

    2004-12-01

    The Arctic has long been considered a harbinger of global climate change since simulations with global climate models predict that if the concentration of CO2 in the atmosphere doubles, the Arctic would warm by more than 5°C, compared to a warming of 2°C for subpolar regions (Manabe et al., 1991). And indeed, studies of the observational records show polar amplification of the warming trends (e.g. Serreze and Francis, 2004). These temperature trends are accompanied by myriad concurrent changes in Arctic climate. One of the first indicators of Arctic climate change was found by Walsh et al. (1996) using sea level pressure (SLP) data from the International Arctic Buoy Programme (IABP, http://iabp.apl.washington.edu). In this study, they showed that SLP over the Arctic Ocean decreased by over 4 hPa from 1979 - 1994. The decreases in SLP (winds) over the Arctic Ocean, forced changes in the circulation of sea ice and the surface ocean currents such that the Beaufort Gyre is reduced in size and speed (e.g. Rigor et al., 2002). Data from the IABP has also been assimilated into the global surface air temperature (SAT) climatologies (e.g. Jones et al. 1999), and the IABP SAT analysis shows that the temperature trends noted over land extend out over the Arctic Ocean. Specifically, Rigor et al. (2000) found warming trends in SAT over the Arctic Ocean during win¬ter and spring, with values as high as 2°C/decade in the eastern Arctic during spring. It should be noted that many of the changes in Arctic climate were first observed or explained using data from the IABP. The observations from IABP have been one of the cornerstones for environmental forecasting and studies of climate and climate change. These changes have a profound impact on wildlife and people. Many species and cultures depend on the sea ice for habitat and subsistence. Thus, monitoring the Arctic Ocean is crucial not only for our ability to detect climate change, but also to improve our understanding of the

  6. Does temporal variation of mercury levels in Arctic seabirds reflect changes in global environmental contamination, or a modification of Arctic marine food web functioning?

    PubMed

    Fort, Jérôme; Grémillet, David; Traisnel, Gwendoline; Amélineau, Françoise; Bustamante, Paco

    2016-04-01

    Studying long-term trends of contaminants in Arctic biota is essential to better understand impacts of anthropogenic activities and climate change on the exposure of sensitive species and marine ecosystems. We concurrently measured temporal changes (2006-2014) in mercury (Hg) contamination of little auks (Alle alle; the most abundant Arctic seabird) and in their major zooplankton prey species (Calanoid copepods, Themisto libellula, Gammarus spp.). We found an increasing contamination of the food-chain in East Greenland during summer over the last decade. More specifically, bird contamination (determined by body feather analyses) has increased at a rate of 3.4% per year. Conversely, bird exposure to Hg during winter in the northwest Atlantic (determined by head feather analyses) decreased over the study period (at a rate of 1.5% per year), although winter concentrations remained consistently higher than during summer. By combining mercury levels measured in birds and zooplankton to isotopic analyses, our results demonstrate that inter-annual variations of Hg levels in little auks reflect changes in food-chain contamination, rather than a reorganization of the food web and a modification of seabird trophic ecology. They therefore underline the value of little auks, and Arctic seabirds in general, as bio-indicators of long-term changes in environmental contamination. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Toward a United States Arctic research policy

    NASA Astrophysics Data System (ADS)

    Roederer, Juan G.

    Of all countries bordering on the Arctic, the United States is the only one without a national institute, laboratory, or any other organization devoted to the sustained planning and support of Arctic research. Up to now, the responsibility for planning, implementing, and funding Arctic research has been divided between several federal agencies, the state of Alaska, and private groups whose mandates or objectives are often unconnected.The result of this pluralistic approach to U.S. science in the Arctic is that basic research has been conducted in piecemeal fashion. Individual studies are proposed and supported separately, and their costly logistic requirements must be funded in competition with research carried out under less-demanding environmental conditions in the rest of the country. Fundamental data-gathering and interpretation of information has been the responsibility of public agencies whose missions are separate and whose budgets may not reflect the priorities of Arctic issues.

  8. An observational analysis: Tropical relative to Arctic influence on midlatitude weather in the era of Arctic amplification

    NASA Astrophysics Data System (ADS)

    Cohen, Judah

    2016-05-01

    The tropics, in general, and El Niño/Southern Oscillation (ENSO) in particular are almost exclusively relied upon for seasonal forecasting. Much less considered and certainly more controversial is the idea that Arctic variability is influencing midlatitude weather. However, since the late 1980s and early 1990s, the Arctic has undergone the most rapid warming observed globally, referred to as Arctic amplification (AA), which has coincided with an observed increase in extreme weather. Analysis of observed trends in hemispheric circulation over the period of AA more closely resembles variability associated with Arctic boundary forcings than with tropical forcing. Furthermore, analysis of intraseasonal temperature variability shows that the cooling in midlatitude winter temperatures has been accompanied by an increase in temperature variability and not a decrease, popularly referred to as "weather whiplash."

  9. Arctic Ocean Paleoceanography and Future IODP Drilling

    NASA Astrophysics Data System (ADS)

    Stein, Ruediger

    2015-04-01

    Although the Arctic Ocean is a major player in the global climate/earth system, this region is one of the last major physiographic provinces on Earth where the short- and long-term geological history is still poorly known. This lack in knowledge is mainly due to the major technological/logistical problems in operating within the permanently ice-covered Arctic region which makes it difficult to retrieve long and undisturbed sediment cores. Prior to 2004, in the central Arctic Ocean piston and gravity coring was mainly restricted to obtaining near-surface sediments, i.e., only the upper 15 m could be sampled. Thus, all studies were restricted to the late Pliocene/Quaternary time interval, with a few exceptions. These include the four short cores obtained by gravity coring from drifting ice floes over the Alpha Ridge, where older pre-Neogene organic-carbon-rich muds and laminated biosiliceous oozes were sampled. Continuous central Arctic Ocean sedimentary records, allowing a development of chronologic sequences of climate and environmental change through Cenozoic times and a comparison with global climate records, however, were missing prior to the IODP Expedition 302 (Arctic Ocean Coring Expedition - ACEX), the first scientific drilling in the central Arctic Ocean. By studying the unique ACEX sequence, a large number of scientific discoveries that describe previously unknown Arctic paleoenvironments, were obtained during the last decade (for most recent review and references see Stein et al., 2014). While these results from ACEX were unprecedented, key questions related to the climate history of the Arctic Ocean remain unanswered, in part because of poor core recovery, and in part because of the possible presence of a major mid-Cenozoic hiatus or interval of starved sedimentation within the ACEX record. In order to fill this gap in knowledge, international, multidisciplinary expeditions and projects for scientific drilling/coring in the Arctic Ocean are needed. Key

  10. The NSF Arctic Data Center: Leveraging the DataONE Federation to Build a Sustainable Archive for the NSF Arctic Research Community

    NASA Astrophysics Data System (ADS)

    Budden, A. E.; Arzayus, K. M.; Baker-Yeboah, S.; Casey, K. S.; Dozier, J.; Jones, C. S.; Jones, M. B.; Schildhauer, M.; Walker, L.

    2016-12-01

    The newly established NSF Arctic Data Center plays a critical support role in archiving and curating the data and software generated by Arctic researchers from diverse disciplines. The Arctic community, comprising Earth science, archaeology, geography, anthropology, and other social science researchers, are supported through data curation services and domain agnostic tools and infrastructure, ensuring data are accessible in the most transparent and usable way possible. This interoperability across diverse disciplines within the Arctic community facilitates collaborative research and is mirrored by interoperability between the Arctic Data Center infrastructure and other large scale cyberinfrastructure initiatives. The Arctic Data Center leverages the DataONE federation to standardize access to and replication of data and metadata to other repositories, specifically the NOAA's National Centers for Environmental Information (NCEI). This approach promotes long-term preservation of the data and metadata, as well as opening the door for other data repositories to leverage this replication infrastructure with NCEI and other DataONE member repositories. The Arctic Data Center uses rich, detailed metadata following widely recognized standards. Particularly, measurement-level and provenance metadata provide scientists the details necessary to integrate datasets across studies and across repositories while enabling a full understanding of the provenance of data used in the system. The Arctic Data Center gains this deep metadata and provenance support by simply adopting DataONE services, which results in significant efficiency gains by eliminating the need to develop systems de novo. Similarly, the advanced search tool developed by the Knowledge Network for Biocomplexity and extended for data submission by the Arctic Data Center, can be used by other DataONE-compliant repositories without further development. By standardizing interfaces and leveraging the DataONE federation

  11. Quantifying emerging local anthropogenic emissions in the Arctic region: the ACCESS aircraft campaign experiment (Invited)

    NASA Astrophysics Data System (ADS)

    Roiger, A.; Thomas, J. L.; Schlager, H.; Law, K.; Kim, J.; Reiter, A.; Schaefler, A.; Weinzierl, B.; Rose, M.; Raut, J.; Marelle, L.

    2013-12-01

    Arctic sea ice has decreased dramatically in the past few decades, which has opened the Arctic Ocean to transit shipping and hydrocarbon extraction. These anthropogenic activities are expected to increase emissions of air pollutants and climate forcers (e.g. aerosols, ozone) in the Arctic troposphere significantly in the future. However, large knowledge gaps exist how these emissions influence regional air pollution and Arctic climate. Here we present an overview on the ACCESS (Arctic Climate Change, Economy, and Society, a European Union Seventh Framework Programme project) aircraft campaign, which primarily focused on studying emissions from emerging Arctic pollution sources. During the ACCESS campaign in July 2012, the DLR Falcon was based in Andenes, Norway, and was equipped with a suite of trace gas and aerosol instruments (black carbon, ozone, as well as other trace species). During nine scientific flights, emissions from different ship types (e.g. cargo, passenger, and fishing vessels) and a variety of offshore extraction facilities (e.g. drilling rigs, production and storage platforms) were probed off the Norwegian Coast. The emissions from these increasing pollution sources showed distinct differences in chemical and aerosol composition. To put the emerging local pollution within a broader context, we also measured sulfur-rich emissions originating from industrial activities on the Kola Peninsula and black carbon containing biomass burning plumes imported from Siberian wildfires. We will present an overview on the trace gas and aerosol properties of the different emission sources, and discuss the influence of future local anthropogenic activities on the Arctic air composition by combining measurements with model simulations.

  12. The Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC)

    NASA Astrophysics Data System (ADS)

    Rex, M.; Shupe, M.; Dethloff, K.

    2017-12-01

    MOSAiC is an international initiative under the umbrella of the International Arctic Science Committee (IASC) designed by an international consortium of leading polar research institutes. Rapid changes in the Arctic lead to an urgent need for reliable information about the state and evolution of the Arctic climate system. This requires more observations and improved modelling over various spatial and temporal scales, and across a wide variety of disciplines. Observations of many critical parameters were never made in the central Arctic for a full annual cycle. MOSAiC will be the first year-around expedition into the central Arctic exploring the coupled climate system. The research vessel Polarstern will drift with the sea ice across the central Arctic during the years 2019 to 2020. The drift starts in the Siberian sector of the Arctic in late summer. A distributed regional network of observational sites will be established on the sea ice in an area of up to 50 km distance from Polarstern, representing a grid cell of climate models. The ship and the surrounding network will drift with the natural sea ice drift across the polar cap towards the Atlantic. The focus of MOSAiC lies on in-situ observations of the climate processes that couple atmosphere, ocean, sea ice, biogeochemistry and ecosystem. These measurements will be supported by weather and sea ice predictions and remote sensing operations to make the expedition successful. The expedition includes aircraft operations and cruises by icebreakers from MOSAiC partners. All these observations will be used for the main scientific goals of MOSAiC, enhancing the understanding of the regional and global consequences of Arctic climate change and sea ice loss and improve weather and climate prediction. More precisely, the results are needed to advance the data assimilation for numerical weather prediction models, sea ice forecasts and climate models and ground truth for satellite remote sensing. Additionally, the

  13. Analysis of Oil and Gas Production in the Arctic National Wildlife Refuge

    EIA Publications

    2004-01-01

    This study analyzed the impact on future oil imports and expenditures of opening the Arctic National Wildlife Refuge (ANWR) to petroleum development. High, low, and mean ANWR oil resource case projections were compared to the Annual Energy Outlook 2004 reference case. The study also examined whether potential synergies exist in opening ANWR to petroleum development and the construction of an Alaska gas pipeline from the North Slope to the lower 48 states.

  14. Sources and fate of chromophoric dissolved organic matter and water mass ventilation in the upper Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Walker, S. A.; Amon, R. M.; Stedmon, C. A.

    2011-12-01

    The majority of high latitude soil organic carbon is stored within vast permafrost regions surrounding the Arctic, which are highly susceptible to climate change. As global warming persists increased river discharge combined with permafrost erosion and extended ice free periods will increase the supply of soil organic carbon to the Arctic Ocean. Increased river discharge to the Arctic will also have a significant impact its hydrological cycle and could potentially be critical to sea ice formation. This impact is due to freshwater discharge to the Arctic which has been shown to help sustain halocline formation, a critical water mass that acts as an insulator trapping heat from inflowing Atlantic waters from ice at the surface. As the climate warms it is therefore important to identify halocline source waters and to determine fluctuations in their contribution to this critical water mass. To better understand dissolved organic matter (DOM) quality and its fate within the Arctic as well as runoff distributions across the basin the optical properties of chromophoric dissolved organic carbon (CDOM) were evaluated during a trans-Arctic expedition, AOS 2005. This cruise is unique because it is the first time fluorescence data have been obtained from all basins in the Arctic. Excitation/Emission Matrix Spectroscopy (EEM's) coupled to Parallel Factor Analysis (PARAFAC) was used to decompose the combined CDOM fluorescence signal into six independent components that can be traced to a source. Three humic-like CDOM components were isolated and linked to runoff waters using Principal Component Analysis (PCA). Inherent differences were observed between Eurasian (EB) and Canadian (CB) basin surface waters in terms of DOM quality and freshwater distributions. In EB surface waters (0-50m) the humic-like CDOM components explained roughly half of the variance in the DOC pool and were strongly related to lignin phenol concentrations. These results indicate CDOM in Trans-Polar Drift

  15. CARVE: The Carbon in Arctic Reservoirs Vulnerability Experiment

    NASA Technical Reports Server (NTRS)

    Miller, Charles E.; Dinardo, Steven J.

    2012-01-01

    The Carbon in Arctic Reservoirs Vulnerability Experiment (CARVE) is a NASA Earth Ventures (EV-1) investigation designed to quantify correlations between atmospheric and surface state variables for the Alaskan terrestrial ecosystems through intensive seasonal aircraft campaigns, ground-based observations, and analysis sustained over a 5-year mission. CARVE bridges critical gaps in our knowledge and understanding of Arctic ecosystems, linkages between the Arctic hydrologic and terrestrial carbon cycles, and the feedbacks from fires and thawing permafrost. CARVE's objectives are to: (1) Directly test hypotheses attributing the mobilization of vulnerable Arctic carbon reservoirs to climate warming; (2) Deliver the first direct measurements and detailed maps of CO2 and CH4 sources on regional scales in the Alaskan Arctic; and (3) Demonstrate new remote sensing and modeling capabilities to quantify feedbacks between carbon fluxes and carbon cycle-climate processes in the Arctic (Figure 1). We describe the investigation design and results from 2011 test flights in Alaska.

  16. Patterned-ground facilitates shrub expansion in Low Arctic tundra

    NASA Astrophysics Data System (ADS)

    Frost, Gerald V.; Epstein, Howard E.; Walker, Donald A.; Matyshak, Georgiy; Ermokhina, Ksenia

    2013-03-01

    Recent expansion of tall shrubs in Low Arctic tundra is widely seen as a response to climate warming, but shrubification is not occurring as a simple function of regional climate trends. We show that establishment of tall alder (Alnus) is strongly facilitated by small, widely distributed cryogenic disturbances associated with patterned-ground landscapes. We identified expanding and newly established shrub stands at two northwest Siberian sites and observed that virtually all new shrubs occurred on bare microsites (‘circles’) that were disturbed by frost-heave. Frost-heave associated with circles is a widespread, annual phenomenon that maintains mosaics of mineral seedbeds with warm soils and few competitors that are immediately available to shrubs during favorable climatic periods. Circle facilitation of alder recruitment also plausibly explains the development of shrublands in which alders are regularly spaced. We conclude that alder abundance and extent have increased rapidly in the northwest Siberian Low Arctic since at least the mid-20th century, despite a lack of summer warming in recent decades. Our results are consistent with findings in the North American Arctic which emphasize that the responsiveness of Low Arctic landscapes to climate change is largely determined by the frequency and extent of disturbance processes that create mineral-rich seedbeds favorable for tall shrub recruitment. Northwest Siberia has high potential for continued expansion of tall shrubs and concomitant changes to ecosystem function, due to the widespread distribution of patterned-ground landscapes.

  17. Perfluorinated and polyfluorinated compounds in lake food webs from the Canadian high Arctic.

    PubMed

    Lescord, Gretchen L; Kidd, Karen A; De Silva, Amila O; Williamson, Mary; Spencer, Christine; Wang, Xiaowa; Muir, Derek C G

    2015-03-03

    Per- and polyfluorinated alkyl substances (PFASs) enter Arctic lakes through long-range atmospheric transport and local contamination, but their behavior in aquatic food webs at high latitudes is poorly understood. This study compared the concentrations of perfluorocarboxylates, perfluorosulfonates, and fluorotelomer sulfonates (FTS) in biotic and abiotic samples from six high Arctic lakes near Resolute Bay, Nunavut, Canada. Two of these lakes are known to be locally contaminated by a small airport and Arctic char (Salvelinus alpinus) from these lakes had over 100 times higher total [PFAS] when compared to fish from neighboring lakes. Perfluorononanoate (PFOA) and perfluorooctanesulfonate (PFOS) dominated in char, benthic chironomids (their main prey), and sediments, while pelagic zooplankton and water were dominated by lower chain acids and perfluorodecanesulfonate (PFDS). This study also provides the first measures of perfluoroethylcyclohexanesulfonate (PFECHS) and FTS compounds in water, sediment, juvenile char, and benthic invertebrates from lakes in the high Arctic. Negative relationships between [PFAS] and δ(15)N values (indicative of trophic position) within these food webs indicated no biomagnification. Overall, these results suggest that habitat use and local sources of contamination, but not trophic level, are important determinants of [PFAS] in biota from freshwater food webs in the Canadian Arctic.

  18. The International Polar year 2007-2008; the Arctic human health legacy.

    PubMed

    Parkinson, Alan J

    2007-01-01

    Life expectancy in Arctic populations has greatly improved over the last 50 years. Much of this improvement can be attributed health research that has resulted in a reduction in morbidity and mortality from infectious diseases, such as tuberculosis, and the vaccine-preventable diseases of childhood. However, despite these improvements in health indicators of Arctic residents, life expectancy and infant mortality remain higher in indigenous Arctic residents in the US Arctic, northern Canada, and Greenland when compared to Arctic residents of Nordic countries. The International Polar Year (IPY) represents a unique opportunity to focus world attention on Arctic human health and to further stimulate Circumpolar cooperation on emerging Arctic human health concerns. The Arctic Human Health Initiative (AHHI) is an Arctic Council IPY initiative that aims to build and expand on existing Arctic Council and International Union for Circumpolar Health (IUCH) human health research activities. The human health legacy of the IPY will be increased visibility of the human health concerns of Arctic communities, revitalization of cooperative Arctic human health research focused on those concerns, the development of health policies based on research findings, and the subsequent implementation of appropriate interventions, prevention and control measures at the community level.

  19. Arctic-HYCOS: a Large Sample observing system for estimating freshwater fluxes in the drainage basin of the Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Pietroniro, Al; Korhonen, Johanna; Looser, Ulrich; Hardardóttir, Jórunn; Johnsrud, Morten; Vuglinsky, Valery; Gustafsson, David; Lins, Harry F.; Conaway, Jeffrey S.; Lammers, Richard; Stewart, Bruce; Abrate, Tommaso; Pilon, Paul; Sighomnou, Daniel; Arheimer, Berit

    2015-04-01

    The Arctic region is an important regulating component of the global climate system, and is also experiencing a considerable change during recent decades. More than 10% of world's river-runoff flows to the Arctic Ocean and there is evidence of changes in its fresh-water balance. However, about 30% of the Arctic basin is still ungauged, with differing monitoring practices and data availability from the countries in the region. A consistent system for monitoring and sharing of hydrological information throughout the Arctic region is thus of highest interest for further studies and monitoring of the freshwater flux to the Arctic Ocean. The purpose of the Arctic-HYCOS project is to allow for collection and sharing of hydrological data. Preliminary 616 stations were identified with long-term daily discharge data available, and around 250 of these already provide online available data in near real time. This large sample will be used in the following scientific analysis: 1) to evaluate freshwater flux to the Arctic Ocean and Seas, 2) to monitor changes and enhance understanding of the hydrological regime and 3) to estimate flows in ungauged regions and develop models for enhanced hydrological prediction in the Arctic region. The project is intended as a component of the WMO (World Meteorological Organization) WHYCOS (World Hydrological Cycle Observing System) initiative, covering the area of the expansive transnational Arctic basin with participation from Canada, Denmark, Finland, Iceland, Norway, Russian Federation, Sweden and United States of America. The overall objective is to regularly collect, manage and share high quality data from a defined basic network of hydrological stations in the Arctic basin. The project focus on collecting data on discharge and possibly sediment transport and temperature. Data should be provisional in near-real time if available, whereas time-series of historical data should be provided once quality assurance has been completed. The

  20. A 600-ka Arctic sea-ice record from Mendeleev Ridge based on ostracodes

    USGS Publications Warehouse

    Cronin, Thomas M.; Polyak, L.V.; Reed, D.; Kandiano, E. S.; Marzen, R. E.; Council, E. A.

    2013-01-01

    Arctic paleoceanography and sea-ice history were reconstructed from epipelagic and benthic ostracodes from a sediment core (HLY0503-06JPC, 800 m water depth) located on the Mendeleev Ridge, Western Arctic Ocean. The calcareous microfaunal record (ostracodes and foraminifers) covers several glacial/interglacial cycles back to estimated Marine Isotope Stage 13 (MIS 13, ∼500 ka) with an average sedimentation rate of ∼0.5 cm/ka for most of the stratigraphy (MIS 5–13). Results based on ostracode assemblages and an unusual planktic foraminiferal assemblage in MIS 11 dominated by a temperate-water species Turborotalita egelida show that extreme interglacial warmth, high surface ocean productivity, and possibly open ocean convection characterized MIS 11 and MIS 13 (∼400 and 500 ka, respectively). A major shift in western Arctic Ocean environments toward perennial sea ice occurred after MIS 11 based on the distribution of an ice-dwelling ostracode Acetabulastoma arcticum. Spectral analyses of the ostracode assemblages indicate sea ice and mid-depth ocean circulation in western Arctic Ocean varied primarily at precessional (∼22 ka) and obliquity (∼40 ka) frequencies.

  1. CARVE Measurements of Atmospheric Methane Concentrations and Emissions in Arctic and Boreal Alaska

    NASA Astrophysics Data System (ADS)

    Miller, C. E.; Miller, J. B.; Chang, R. Y.; Sweeney, C.; Karion, A.; Wofsy, S. C.; Henderson, J.; Eluszkiewicz, J.; Mountain, M.; Oechel, W. C.

    2013-12-01

    The Carbon in Arctic Reservoirs Vulnerability Experiment (CARVE) is a NASA Earth Ventures (EV-1) investigation designed to quantify correlations between atmospheric and surface state variables for the Alaskan terrestrial ecosystems through intensive seasonal aircraft campaigns, ground-based observations, and analysis sustained over a 5-year mission. CARVE bridges critical gaps in our knowledge and understanding of Arctic ecosystems, linkages between the Arctic hydrologic and terrestrial carbon cycles, and the feedbacks from fires and thawing permafrost. We present CARVE airborne measurements of spatial and temporal patterns in atmospheric CH4 concentrations and estimated surface-atmosphere emissions for Arctic and Boreal Alaska. Continuous in situ CH4, CO2 and CO data are supplemented by periodic whole air flask samples from which 13CH4 and non-methane hydrocarbons are used to assess the relative contributions of wetlands, fossil fuel combustion, and oil and gas production to the observed CH4 signals. The CARVE project has also initiated monthly 14CH4 sampling at Barrow, AK (BRW) and the CARVE Tower in Fox, AK (CRV) to evaluate seasonal changes in the fraction of old carbon being mobilized via methanogenesis.

  2. Sulfate Aerosol in the Arctic: Source Attribution and Radiative Forcing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Yang; Wang, Hailong; Smith, Steven J.

    Source attributions of Arctic sulfate and its direct radiative effect for 2010–2014 are quantified in this study using the Community Earth System Model (CESM) equipped with an explicit sulfur source-tagging technique. Regions that have high emissions and/or are near/within the Arctic present relatively large contributions to Arctic sulfate burden, with the largest contribution from sources in East Asia (27%). East Asia and South Asia together have the largest contributions to Arctic sulfate concentrations at 9–12 km, whereas sources within or near the Arctic account largely below 2 km. For remote sources with strong emissions, their contributions to Arctic sulfate burdenmore » are primarily driven by meteorology, while contributions of sources within or near the Arctic are dominated by their emission strength. The sulfate direct radiative effect (DRE) is –0.080 W m-2 at the Arctic surface, offsetting the net warming effect from the combination of in-snow heating and DRE cooling from black carbon. East Asia, Arctic local and Russia/Belarus/Ukraine sources contribute –0.017, –0.016 and –0.014 W m-2, respectively, to Arctic sulfate DRE. A 20% reduction in anthropogenic SO2 emissions leads to a net increase of +0.013 W m-2 forcing at the Arctic surface. These results indicate that a joint reduction in BC emissions could prevent possible Arctic warming from future reductions in SO2 emissions. Sulfate DRE efficiency calculations suggest that short transport pathways together with meteorology favoring long sulfate lifetimes make certain sources more efficient in influencing the Arctic sulfate DRE.« less

  3. Quaternary paleoceanography of the deep Arctic Ocean based on quantitative analysis of Ostracoda

    USGS Publications Warehouse

    Cronin, T. M.; Holtz, T.R.; Whatley, R.C.

    1994-01-01

    Ostracodes were studied from deep Arctic Ocean cores obtained during the Arctic 91 expedition of the Polarstern to the Nansen, Amundsen and Makarov Basins, the Lomonosov Ridge, Morris Jesup Rise and Yermak Plateau, in order to investigate their distribution in Arctic Ocean deep water (AODW) and apply these data to paleoceanographic reconstruction of bottom water masses during the Quaternary. Analyses of coretop assemblages from Arctic 91 boxcores indicate the following: ostracodes are common at all depths between 1000 and 4500 m, and species distribution is strongly influenced by water mass characteristics and bathymetry; quantitative analyses comparing Eurasian and Canada Basin assemblages indicate that distinct assemblages inhabit regions east and west of the Lomonosov Ridge, a barrier especially important to species living in lower AODW; deep Eurasian Basin assemblages are more similar to those living in Greenland Sea deep water (GSDW) than those in Canada Basin deep water; two upper AODW assemblages were recognized throughout the Arctic Ocean, one living between 1000 and 1500 m, and the other, having high species diversity, at 1500-3000 m. Downcore quantitative analyses of species' abundances and the squared chord distance coefficient of similarity reveals a distinct series of abundance peaks in key indicator taxa interpreted to signify the following late Quaternary deep water history of the Eurasian Basin. During the Last Glacial Maximum (LGM), a GSDW/AODW assemblage, characteristic of cold, well oxygenated deep water > 3000 m today, inhabited the Lomonosov Ridge to depths as shallow as 1000 m, perhaps indicating the influence of GSDW at mid-depths in the central Arctic Ocean. During Termination 1, a period of high organic productivity associated with a strong inflowing warm North Atlantic layer occurred. During the mid-Holocene, several key faunal events indicate a period of warming and/or enhanced flow between the Canada and Eurasian Basins. A long

  4. Sources of inorganic and monomethyl mercury to high and sub Arctic marine ecosystems

    NASA Astrophysics Data System (ADS)

    Kirk, Jane Liza

    Monomethyl mercury (MMHg), a toxic and bioaccumulative form of Hg, is present in some Canadian high and sub Arctic marine mammals at concentrations high enough to pose health risks to Northern peoples using these animals as food. To quantify potentially large sources of Hg to Arctic marine ecosystems, we examined several aspects of Hg cycling in the Canadian Arctic Archipelago (CAA) and Hudson Bay. Firstly, we quantified net Hg inputs to Hudson Bay from atmospheric Hg depletion events (AMDEs). During AMDEs, gaseous elemental Hg(0) (GEM), which is present in the Arctic atmosphere at global background concentrations, is oxidized to inorganic Hg(II) species that deposit to snowpacks. By simultaneously monitoring Hg in the atmosphere and in snowpacks of western Hudson Bay, we demonstrated that most of the Hg(II) deposited during AMDEs is rapidly (photo)reduced and emitted to the atmosphere. Secondly, we examined Hg speciation in marine waters of the CAA and Hudson Bay. We found high concentrations of MMHg and dimethyl Hg (DMHg; a toxic, gaseous form of Hg) in deep marine waters, where they are likely produced from Hg(II). Arctic marine waters were also found to be a substantial source of DMHg and GEM to the atmosphere. Thirdly, we quantified Hg exports to Hudson Bay from two major rivers, the Nelson and the Churchill, which have been altered for hydroelectric power production. When landscapes are inundated during river diversion or reservoir creation, microbial production of MMHg is stimulated in flooded soils. Newly produced MMHg can then be exported to downstream waterbodies. We found that annual inputs of total Hg (THg; includes both Hg(II) and MMHg) to Hudson Bay from combined Nelson and Churchill River discharge were comparable to inputs from AMDEs. MMHg inputs from river discharge are, however, ˜13 times greater than those from annual snowmelt of Hudson Bay snowpacks. Finally, although combined river and AMDE Hg inputs may account for a large portion of the THg

  5. A Framework for Multi-Scale, Multi-Disciplinary Arctic Terrestrial Field Research Design, Nomenclature and Data Management

    NASA Astrophysics Data System (ADS)

    Charsley-Groffman, L.; Killeffer, T.; Wullschleger, S. D.; Wilson, C. J.

    2016-12-01

    The Next Generation Ecosystem Experiment, NGEE Arctic, project aims to improve the representation of arctic terrestrial processes and properties in Earth System Models, ESMs, through coordinated multi-disciplinary field-based observations and experiments. NGEE involves nearly one hundred research staff, post docs and students from multiple DOE laboratories and universities who deploy a wide range of in-situ and remote field observation techniques to quantify and understand interactions between the climate system and surface and subsurface coupled thermal-hydrologic, biogeochemical and vegetation processes. Careful attention was given to the design and management of co-located long-term and one off data collection efforts, as well as their data streams. Field research sites at the Barrow Environmental Observatory near Barrow AK and on the Seward Peninsula were designed around the concept of "ecotypes" which co-evolved with readily identified and classified hydro-geomorphic features characteristic of arctic landscapes. NGEE sub-teams focused on 5 unique science questions collaborated to design field sites and develop naming conventions for locations and data types to develop coherent data sets to parameterize, initialize and test a range of site-specific process resolving models to ESMs. Multi-layer mapping products were a critical means of developing a coordinated and coherent observation design, and a centralized data portal and data reporting framework was critical to ensuring meaningful data products for NGEE modelers and Arctic scientific community at large. We present examples of what works and lessons learned for a large multi-disciplinary terrestrial observational research project in the Arctic.

  6. Benthic macroinfaunal community structure, resource utilisation and trophic relationships in two Canadian Arctic Archipelago polynyas

    PubMed Central

    Witte, Ursula; Archambault, Philippe

    2017-01-01

    Climate change driven alterations to patterns of Arctic marine primary production, with increasing phytoplankton- and decreasing ice algal production, have the potential to change the resource utilisation and trophic structure of the benthic communities relying on the algae for food. To predict the benthic responses to dietary changes, we studied the macroinfaunal community compositions, and used the faunal δ13C and δ15N signatures to investigate their main food sources and trophic positions in North Water (NOW) and Lancaster Sound (LS) polynyas in the Canadian Arctic Archipelago. Macroinfaunal density (10 952 ind. m-2) and biomass (3190 mg C m-2) recorded in NOW were higher than previously found in the Arctic at depths >500m, and significantly higher than in LS (8355 ind. m-2 and 2110 mg C m-2). This was attributed to higher particulate organic matter fluxes to seafloor in NOW. Polychaetes were significant taxa at both sites in terms of density and biomass, and in addition crustacean density in NOW and bivalve density in LS were high. Facultative filter and surface deposit feeders were highly prevalent at both sites, suggesting feeding plasticity is a successful strategy for accessing different food sources. The macrofaunal δ13C signatures reflected the signatures of pelagic particulate organic matter at the sites, and an isotope mixing model confirmed phytoplankton as the main food source for most taxa and feeding guilds. The food web length in LS was longer than in NOW (3.2 vs. 2.8 trophic levels). This was attributed to a larger reliance on reworked organic matter by the benthic community in LS, whereas the high export fluxes at the highly productive NOW resulted in higher rates of selective consumption of fresh algal matter. Despite studies suggesting that loss of ice algae from consumer diets in the Arctic might have a negative impact on the benthos, this study suggests that Arctic macrobenthic communities thrive using phytoplankton as their main food

  7. Climate Change, Globalization and Geopolitics in the New Maritime Arctic

    NASA Astrophysics Data System (ADS)

    Brigham, L. W.

    2011-12-01

    Early in the 21st century a confluence of climate change, globalization and geopolitics is shaping the future of the maritime Arctic. This nexus is also fostering greater linkage of the Arctic to the rest of the planet. Arctic sea ice is undergoing a historic transformation of thinning, extent reduction in all seasons, and reduction in the area of multiyear ice in the central Arctic Ocean. Global Climate Model simulations of Arctic sea ice indicate multiyear ice could disappear by 2030 for a short period of time each summer. These physical changes invite greater marine access, longer seasons of navigation, and potential, summer trans-Arctic voyages. As a result, enhanced marine safety, environmental protection, and maritime security measures are under development. Coupled with climate change as a key driver of regional change is the current and future integration of the Arctic's natural wealth with global markets (oil, gas and hard minerals). Abundant freshwater in the Arctic could also be a future commodity of value. Recent events such as drilling for hydrocarbons off Greenland's west coast and the summer marine transport of natural resources from the Russian Arctic to China across the top of Eurasia are indicators of greater global economic ties to the Arctic. Plausible Arctic futures indicate continued integration with global issues and increased complexity of a range of regional economic, security and environmental challenges.

  8. Arctic-like Rabies Virus, Bangladesh

    PubMed Central

    Jamil, Khondoker Mahbuba; Hossain, Moazzem; Matsumoto, Takashi; Ali, Mohammad Azmat; Hossain, Sohrab; Hossain, Shakhawat; Islam, Aminul; Nasiruddin, Mohammad; Nishizono, Akira

    2012-01-01

    Arctic/Arctic-like rabies virus group 2 spread into Bangladesh ≈32 years ago. Because rabies is endemic to and a major public health problem in this country, we characterized this virus group. Its glycoprotein has 3 potential N-glycosylation sites that affect viral pathogenesis. Diversity of rabies virus might have public health implications in Bangladesh. PMID:23171512

  9. Arctic Council Nations Could Encourage Development of Climate Indicator: Flux to the Atmosphere from Arctic Permafrost Carbon

    NASA Astrophysics Data System (ADS)

    Ekwurzel, B.; Yona, L.; Natali, S.; Holmes, R. M.; Schuur, E.

    2015-12-01

    Permafrost regions store almost twice the carbon in the atmosphere (Tarnocai et al 2009). As climate warms a proportion of this carbon will be released as carbon dioxide and methane. The Arctic Council may be best suited to harness international scientific collaboration for policy relevant knowledge about the global impacts of permafrost thaw. Scientists in Arctic Council and observer states have historically collaborated on permafrost research (e.g. Permafrost Carbon Network, part of Study of Environmental Arctic Change (SEARCH) project). This work increased knowledge of permafrost carbon pool size and vulnerability. However, data gaps persist across the Arctic. Despite gaps, numerous studies directly inform international policy negotiations aiming to stay below 2° C. Some suggest "permafrost carbon feedback" may comprise 3 to 11% of total allowed emissions through 2100 under a RCP4.5 (Schaefer et al2014). Understanding and accounting for future permafrost atmospheric carbon release requires science and policy coordination that the Arctic Council could incentivize. For example, Council nations could convene scientists and stakeholders to develop a Permafrost-Climate Indicator providing more direct decision support than current permafrost indicators, and identify research needed for a periodic estimate of Arctic permafrost CO2 and CH4 emissions. This presentation covers current challenges scientists and policymakers may face to develop a practical and robust Permafrost Climate Indicator. For example, which timescales are most appropriate for international emissions commitments? Do policy-relevant timescales align with current scientific knowledge? What are the uncertainties and how can they be decreased? We present likely strengths and challenges of a Permafrost Climate Indicator co-developed by scientists and stakeholders. Potential greenhouse gas atmospheric flux from Arctic permafrost carbon may be greater than some nations' United Nations emissions reductions

  10. Arctic-midlatitude weather linkages in North America

    NASA Astrophysics Data System (ADS)

    Overland, James E.; Wang, Muyin

    2018-06-01

    There is intense public interest in whether major Arctic changes can and will impact midlatitude weather such as cold air outbreaks on the central and east side of continents. Although there is progress in linkage research for eastern Asia, a clear gap is conformation for North America. We show two stationary temperature/geopotential height patterns where warmer Arctic temperatures have reinforced existing tropospheric jet stream wave amplitudes over North America: a Greenland/Baffin Block pattern during December 2010 and an Alaska Ridge pattern during December 2017. Even with continuing Arctic warming over the past decade, other recent eastern US winter months were less susceptible for an Arctic linkage: the jet stream was represented by either zonal flow, progressive weather systems, or unfavorable phasing of the long wave pattern. The present analysis lays the scientific controversy over the validity of linkages to the inherent intermittency of jet stream dynamics, which provides only an occasional bridge between Arctic thermodynamic forcing and extended midlatitude weather events.

  11. Arctic Clouds

    Atmospheric Science Data Center

    2013-04-19

    ...     View Larger Image Stratus clouds are common in the Arctic during the summer months, ... (Acro Service Corporation/Jet Propulsion Laboratory), David J. Diner (Jet Propulsion Laboratory). Other formats available at JPL ...

  12. Sedimentary Cover of the Central Arctic

    NASA Astrophysics Data System (ADS)

    Kireev, Artem; Poselov, Viktor; Butsenko, Viktor; Smirnov, Oleg

    2017-04-01

    Partial revised Submission of the Russian Federation for establishment of the OLCS (outer limit of the continental shelf) in the Arctic Ocean is made to include in the extended continental shelf of the Russian Federation, in accordance with article 76 of the Convention, the seabed and its subsoil in the central Arctic Ocean which is natural prolongation of the Russian land territory. To submit partial revised Submission in 2016, in 2005 - 2014 the Russian organizations carried out a wide range of geophysical studies, so that today over 23000 km of MCS lines, over hundreds of wide-angle reflection/refraction seismic sonobuoy soundings and 4000 km of deep seismic sounding are accomplished. All of these MCS and seismic soundings data were used to establish the seismic stratigraphy model of the Arctic region. Stratigraphy model of the sedimentary cover was successively determined for the Cenozoic and pre-Cenozoic parts of the section and was based on correlation of the Russian MCS data and seismic data documented by existing boreholes. Interpretation of the Cenozoic part of the sedimentary cover was based on correlation of the Russian MCS data and AWI91090 section calibrated by ACEX-2004 boreholes on the Lomonosov Ridge for Amerasia basin and by correlation of onlap contacts onto oceanic crust with defined magnetic anomalies for Eurasia basin, while interpretation of the Pre-Cenozoic part of the sedimentary cover was based on correlation with MCS and boreholes data from Chukchi sea shelf. Six main unconformities were traced: regional unconformity (RU), Eocene unconformity (EoU) (for Eurasia basin only), post-Campanian unconformity (pCU), Brookian (BU - base of the Lower Brookian unit), Lower Cretaceous (LCU) and Jurassic (JU - top of the Upper Ellesmerian unit). The final step in our research was to estimate the total thickness of the sedimentary cover of the Arctic Ocean and adjacent Eurasian shelf using top of acoustic basement correlation data and bathymetry data

  13. Arctic sea ice albedo from AVHRR

    NASA Technical Reports Server (NTRS)

    Lindsay, R. W.; Rothrock, D. A.

    1994-01-01

    The seasonal cycle of surface albedo of sea ice in the Arctic is estimated from measurements made with the Advanced Very High Resolution Radiometer (AVHRR) on the polar-orbiting satellites NOAA-10 and NOAA-11. The albedos of 145 200-km-square cells are analyzed. The cells are from March through September 1989 and include only those for which the sun is more than 10 deg above the horizon. Cloud masking is performed manually. Corrections are applied for instrument calibration, nonisotropic reflection, atmospheric interference, narrowband to broadband conversion, and normalization to a common solar zenith angle. The estimated albedos are relative, with the instrument gain set to give an albedo of 0.80 for ice floes in March and April. The mean values for the cloud-free portions of individual cells range from 0.18 to 0.91. Monthly averages of cells in the central Arctic range from 0.76 in April to 0.47 in August. The monthly averages of the within-cell standard deviations in the central Arctic are 0.04 in April and 0.06 in September. The surface albedo and surface temperature are correlated most strongly in March (R = -0.77) with little correlation in the summer. The monthly average lead fraction is determined from the mean potential open water, a scaled representation of the temperature or albedo between 0.0 (for ice) and 1.0 (for water); in the central Arctic it rises from an average 0.025 in the spring to 0.06 in September. Sparse data on aerosols, ozone, and water vapor in the atmospheric column contribute uncertainties to instantaneous, area-average albedos of 0.13, 0.04, and 0.08. Uncertainties in monthly average albedos are not this large. Contemporaneous estimation of these variables could reduce the uncertainty in the estimated albedo considerably. The poor calibration of AVHRR channels 1 and 2 is another large impediment to making accurate albedo estimates.

  14. Coarse mode aerosols in the High Arctic

    NASA Astrophysics Data System (ADS)

    Baibakov, K.; O'Neill, N. T.; Chaubey, J. P.; Saha, A.; Duck, T. J.; Eloranta, E. W.

    2014-12-01

    Fine mode (submicron) aerosols in the Arctic have received a fair amount of scientific attention in terms of smoke intrusions during the polar summer and Arctic haze pollution during the polar winter. Relatively little is known about coarse mode (supermicron) aerosols, notably dust, volcanic ash and sea salt. Asian dust is a regular springtime event whose optical and radiative forcing effects have been fairly well documented at the lower latitudes over North America but rarely reported for the Arctic. Volcanic ash, whose socio-economic importance has grown dramatically since the fear of its effects on aircraft engines resulted in the virtual shutdown of European civil aviation in the spring of 2010 has rarely been reported in the Arctic in spite of the likely probability that ash from Iceland and the Aleutian Islands makes its way into the Arctic and possibly the high Arctic. Little is known about Arctic sea salt aerosols and we are not aware of any literature on the optical measurement of these aerosols. In this work we present preliminary results of the combined sunphotometry-lidar analysis at two High Arctic stations in North America: PEARL (80°N, 86°W) for 2007-2011 and Barrow (71°N,156°W) for 2011-2014. The multi-years datasets were analyzed to single out potential coarse mode incursions and study their optical characteristics. In particular, CIMEL sunphotometers provided coarse mode optical depths as well as information on particle size and refractive index. Lidar measurements from High Spectral Resolution lidars (AHSRL at PEARL and NSHSRL at Barrow) yielded vertically resolved aerosol profiles and gave an indication of particle shape and size from the depolarization ratio and color ratio profiles. Additionally, we employed supplementary analyses of HYSPLIT backtrajectories, OMI aerosol index, and NAAPS (Navy Aerosol Analysis and Prediction System) outputs to study the spatial context of given events.

  15. Arctic Climate Change, Economy and Society (ACCESS): Integrated perspectives.

    PubMed

    Crépin, Anne-Sophie; Karcher, Michael; Gascard, Jean-Claude

    2017-12-01

    This introduction to the special issue presents an overview of the wide range of results produced during the European Union project Arctic Climate Change, Economy and Society (ACCESS). This project assessed the main impacts of climate change on Arctic Ocean's geophysical variables and how these impending changes could be expected to impact directly and indirectly on socio-economic activities like transportation, marine sea food production and resource exploitation. Related governance issues were examined. These results were used to develop several management tools that can live on beyond ACCESS. In this article, we synthesize most of the project results in the form of tentative responses to questions raised during the project. By doing so, we put the findings of the project in a broader perspective and introduce the contributions made in the different articles published in this special issue.

  16. Controlled meteorological (CMET) free balloon profiling of the Arctic atmospheric boundary layer around Spitsbergen compared to ERA-Interim and Arctic System Reanalyses

    NASA Astrophysics Data System (ADS)

    Roberts, Tjarda J.; Dütsch, Marina; Hole, Lars R.; Voss, Paul B.

    2016-09-01

    Observations from CMET (Controlled Meteorological) balloons are analysed to provide insights into tropospheric meteorological conditions (temperature, humidity, wind) around Svalbard, European High Arctic. Five Controlled Meteorological (CMET) balloons were launched from Ny-Ålesund in Svalbard (Spitsbergen) over 5-12 May 2011 and measured vertical atmospheric profiles over coastal areas to both the east and west. One notable CMET flight achieved a suite of 18 continuous soundings that probed the Arctic marine boundary layer (ABL) over a period of more than 10 h. Profiles from two CMET flights are compared to model output from ECMWF Era-Interim reanalysis (ERA-I) and to a high-resolution (15 km) Arctic System Reanalysis (ASR) product. To the east of Svalbard over sea ice, the CMET observed a stable ABL profile with a temperature inversion that was reproduced by ASR but not captured by ERA-I. In a coastal ice-free region to the west of Svalbard, the CMET observed a stable ABL with strong wind shear. The CMET profiles document increases in ABL temperature and humidity that are broadly reproduced by both ASR and ERA-I. The ASR finds a more stably stratified ABL than observed but captured the wind shear in contrast to ERA-I. Detailed analysis of the coastal CMET-automated soundings identifies small-scale temperature and humidity variations with a low-level flow and provides an estimate of local wind fields. We demonstrate that CMET balloons are a valuable approach for profiling the free atmosphere and boundary layer in remote regions such as the Arctic, where few other in situ observations are available for model validation.

  17. Unraveling the intricate dynamics of planktonic Arctic marine food webs. A sensitivity analysis of a well-documented food web model

    NASA Astrophysics Data System (ADS)

    Saint-Béat, Blanche; Maps, Frédéric; Babin, Marcel

    2018-01-01

    The extreme and variable environment shapes the functioning of Arctic ecosystems and the life cycles of its species. This delicate balance is now threatened by the unprecedented pace and magnitude of global climate change and anthropogenic pressure. Understanding the long-term consequences of these changes remains an elusive, yet pressing, goal. Our work was specifically aimed at identifying which biological processes impact Arctic planktonic ecosystem functioning, and how. Ecological Network Analysis (ENA) indices reveal emergent ecosystem properties that are not accessible through simple in situ observation. These indices are based on the architecture of carbon flows within food webs. But, despite the recent increase in in situ measurements from Arctic seas, many flow values remain unknown. Linear inverse modeling (LIM) allows missing flow values to be estimated from existing flow observations and, subsequent reconstruction of ecosystem food webs. Through a sensitivity analysis on a LIM model of the Amundsen Gulf in the Canadian Arctic, we were able to determine which processes affected the emergent properties of the planktonic ecosystem. The analysis highlighted the importance of an accurate knowledge of the various processes controlling bacterial production (e.g. bacterial growth efficiency and viral lysis). More importantly, a change in the fate of the microzooplankton within the food web can be monitored through the trophic level of mesozooplankton. It can be used as a "canary in the coal mine" signal, a forewarner of larger ecosystem change.

  18. Climate Change: Science and Policy in the Arctic Climate Change: Science and Policy in the Arctic

    NASA Astrophysics Data System (ADS)

    Bigras, S. C.

    2009-12-01

    It is an accepted fact that the Earth’s climate is warming. Recent research has demonstrated the direct links between the Arctic regions and the rest of the planet. We have become more aware that these regions are feeling the effects of global climate change more intensely than anywhere else on Earth -- and that they are fast becoming the new frontiers for resources and political disputes. This paper examines some of the potential climate change impacts in the Arctic and how the science of climate change can be used to develop policies that will help mitigate some of these impacts. Despite the growing body of research we do not yet completely understand the potential consequences of climate change in the Arctic. Climate models predict significant changes and impacts on the northern physical environment and renewable resources, and on the communities and societies that depend on them. Policies developed and implemented as a result of the research findings will be designed to help mitigate some of the more serious consequences. Given the importance of cost in making policy decisions, the financial implications of different scenarios will need to be considered. The Arctic Ocean Basin is a complex and diverse environment shared by five Arctic states. Cooperation among the states surrounding the Arctic Ocean is often difficult, as each country has its own political and social agenda. Northerners and indigenous peoples should be engaged and able to influence the direction of northern adaptation policies. Along with climate change, the Arctic environment and Arctic residents face many other challenges, among them safe resource development. Resource development in the Arctic has always been a controversial issue, seen by some as a solution to high unemployment and by others as an unacceptably disruptive and destructive force. Its inherent risks need to be considered: there are needs for adaptation, for management frameworks, for addressing cumulative effects, and for

  19. Modeling methane emissions from Arctic lakes under warming conditions

    NASA Astrophysics Data System (ADS)

    Zhuang, Qianlai; Tan, Zeli

    2014-05-01

    To investigate the response of methane emissions from arctic lakes, a process-based climate-sensitive lake methane model is developed. The processes of methane production, oxidation and transport are modeled within a one-dimensional water and sediment column. Dynamics of point-source ebullition seeps are explicitly modeled. The model was calibrated and verified using observational data in the region. The model was further used to estimate the lake methane emissions from the Arctic from 2002 to 2004. We estimate that the total amount of methane emissions is 24.9 Tg CH4 yr-1, which is consistent with a recent estimation of 24±10 Tg CH4 yr-1 and two-fold of methane emissions from natural wetlands in the north of 60 oN. The methane emission rate of lakes spatially varies over high latitudes from 170.5 mg CH4 m-2 day-1 in northern Siberia to only 10.1 mg CH4 m-2 day-1 in northern Europe. A projection assuming 2-7.5oC warming and 15-25% expansion of lake coverage shows that the total amount of methane emitted from Arctic lakes will increase to 29.8-35.6 Tg CH4 yr-1.

  20. Polycyclic aromatic hydrocarbon-DNA adducts in Beluga whales from the Arctic

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mathieu, A.; Payne, J.F.; Fancey, L.L.

    1997-09-01

    The Arctic is still relatively pristine in nature, but it is also vulnerable to pollution because contaminants originating from midlatitudes are transported to the Arctic by atmospheric processes, ocean currents, and river. Recognition of this fact of Arctic vulnerability has resulted in a Declaration on the Protection of the Arctic Environment by eight Arctic countries. A manifest aim of this declaration is to develop an Arctic Monitoring and Assessment Program. We report here on the presence of measurable levels of polycyclic aromatic hydrocarbon-DNA adducts, including relatively high levels in Arctic beluga (Delphinapterus leucas). These results lend support to the valuemore » of developing biological assessment programs for Arctic wildlife. 15 refs., 1 tab.« less