Comparison of calculations of fragment production rates
Canavan, G.H.
1997-08-01
Differences between NASA and DoD estimates of fragment production rates in space debris collisions are shown to be due primarily to different choices of the exponent in the debris distribution. The sensitivity to this parameter over the range of values consistent with experimental data is discussed.
Eigenvalue methods for unimolecular rate calculations with several products.
Pritchard, Huw O
2007-10-25
When the calculation of a unimolecular reaction rate constant is cast in the form of a master equation eigenvalue problem, the magnitude of that rate is often smaller than the rounding error of the trace of the corresponding reaction matrix. Here, a previously published procedure (Pritchard, H. O. J. Phys. Chem. A 2004, 108, 5249-5252) for solving this problem is extended to the case of more than one reaction product. An Appendix notes the occurrence of avoided crossings between eigenvalues of the master equation in reversible, in mixed reversible-irreversible, and in multiwell unimolecular reaction calculations. PMID:17914776
Production rate calculations for a secondary beam facility
Jiang, C.L.; Back, B.B.; Rehm, K.E.
1995-08-01
In order to select the most cost-effective method for the production of secondary ion beams, yield calculations for a variety of primary beams were performed ranging in mass from protons to {sup 18}O with energies of 100-200 MeV/u. For comparison, production yields for 600-1000 MeV protons were also calculated. For light ion-(A < {sup 4}He) induced reactions at energies above 50 MeV/u the LAHET code was used while the low energy calculations were performed with LPACE. Heavy-ion-induced production rates were calculated with the ISAPACE program. The results of these codes were checked against each other and wherever possible a comparison with experimental data was performed. These comparisons extended to very exotic reaction channels, such as the production of {sup 100}Sn from {sup 112}Sn and {sup 124}Xe induced fragmentation reactions. These comparisons indicate that the codes are able to predict production rates to within one order of magnitude.
Entropy production rates from viscous flow calculations. I - A turbulent boundary layer flow
NASA Astrophysics Data System (ADS)
Moore, J.; Moore, J. G.
1983-03-01
A procedure for obtaining entropy production rates from viscous flow calculations is described. The method is based on process thermodynamics; it allows loss production to be calculated in 'irreversible equilibrium processes'. The two-dimensional turbulent boundary layer of Samuel and Joubert is considered. Mean rates of entropy production are evaluated from measured data using rates of dissipation and rates of increase of turbulence kinetic energy. Calculations performed with the Moore Cascade Flow Program give good agreement with mean rates of entropy production and reveal details of the distribution of entropy production throughout the boundary layer.
... My Saved Articles » My ACS » + - Text Size Target Heart Rate Calculator Compute your best workout Enter your age ... is your age? years. How to Check Your Heart Rate Right after you stop exercising, take your pulse: ...
19 CFR 351.525 - Calculation of ad valorem subsidy rate and attribution of subsidy to a product.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 19 Customs Duties 3 2012-04-01 2012-04-01 false Calculation of ad valorem subsidy rate and attribution of subsidy to a product. 351.525 Section 351.525 Customs Duties INTERNATIONAL TRADE ADMINISTRATION, DEPARTMENT OF COMMERCE ANTIDUMPING AND COUNTERVAILING DUTIES Identification and Measurement of Countervailable Subsidies § 351.525 Calculation...
NASA Technical Reports Server (NTRS)
Sisterson, J. M.; Brooks, F. D.; Buffler, A.; Allie, M. S.; Herbert, M. S.; Nchodu, M. R.; Makupula, S.; Ullmann, J.; Reedy, R. C.; Jones, D. T. L.
2002-01-01
New cross section measurements for reactions induced by neutrons with energies greater than 70 MeV are used to calculate the production rates for cobalt isotopes in meteorites and these new calculations are compared to previous estimates. Additional information is contained in the original extended abstract.
19 CFR 351.525 - Calculation of ad valorem subsidy rate and attribution of subsidy to a product.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 19 Customs Duties 3 2014-04-01 2014-04-01 false Calculation of ad valorem subsidy rate and attribution of subsidy to a product. 351.525 Section 351.525 Customs Duties INTERNATIONAL TRADE ADMINISTRATION, DEPARTMENT OF COMMERCE ANTIDUMPING AND COUNTERVAILING DUTIES Identification and Measurement...
19 CFR 351.525 - Calculation of ad valorem subsidy rate and attribution of subsidy to a product.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 19 Customs Duties 3 2013-04-01 2013-04-01 false Calculation of ad valorem subsidy rate and attribution of subsidy to a product. 351.525 Section 351.525 Customs Duties INTERNATIONAL TRADE ADMINISTRATION, DEPARTMENT OF COMMERCE ANTIDUMPING AND COUNTERVAILING DUTIES Identification and Measurement...
19 CFR 351.525 - Calculation of ad valorem subsidy rate and attribution of subsidy to a product.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 19 Customs Duties 3 2011-04-01 2011-04-01 false Calculation of ad valorem subsidy rate and attribution of subsidy to a product. 351.525 Section 351.525 Customs Duties INTERNATIONAL TRADE ADMINISTRATION, DEPARTMENT OF COMMERCE ANTIDUMPING AND COUNTERVAILING DUTIES Identification and Measurement...
Small Rayed Crater Ejecta Retention Age Calculated from Current Crater Production Rates on Mars
NASA Technical Reports Server (NTRS)
Calef, F. J. III; Herrick, R. R.; Sharpton, V. L.
2011-01-01
Ejecta from impact craters, while extant, records erosive and depositional processes on their surfaces. Estimating ejecta retention age (Eret), the time span when ejecta remains recognizable around a crater, can be applied to estimate the timescale that surface processes operate on, thereby obtaining a history of geologic activity. However, the abundance of sub-kilometer diameter (D) craters identifiable in high resolution Mars imagery has led to questions of accuracy in absolute crater dating and hence ejecta retention ages (Eret). This research calculates the maximum Eret for small rayed impact craters (SRC) on Mars using estimates of the Martian impactor flux adjusted for meteorite ablation losses in the atmosphere. In addition, we utilize the diameter-distance relationship of secondary cratering to adjust crater counts in the vicinity of the large primary crater Zunil.
Ca-41 in iron falls, Grant and Estherville - Production rates and related exposure age calculations
NASA Technical Reports Server (NTRS)
Fink, D.; Klein, J.; Middleton, R.; Vogt, S.; Herzog, G. F.
1991-01-01
Results are presented of the first phase of a Ca-41 cosmogenic studies program aimed at establishing baseline concentrations and trends in selected meteorites and the use of Ca-41 in estimating exposure ages and preatmospheric meteorite radii. The average Ca-41 saturation activity recorded in four small iron falls is 24 +/-1 dpm/kg. This finding, together with measurements at the center and surface of the large iron Grant, indicates that production of Ca-41 from spallation on iron is weakly dependent on shielding to depths as large as 250 g/sq cm. The (K-41)-Ca-41 exposure age of Grant is estimated at 330 +/-50 My, and an upper limit to its terrestrial age of 43 +/-15 ky. A comparison of the Ca-41 contents of stony and metallic material separated from the mesosiderite Estherville identifies low-energy neutron capture on native Ca as a second important channel of production. It is found that the Ca-41 signal in the stone phase from three meteorites correlates with their size, and that the inferred low-energy neutron fluxes vary by a factor of at least 20.
NASA Astrophysics Data System (ADS)
Argento, D.; Reedy, R. C.; Stone, J. O.
2012-12-01
Cosmogenic nuclides have been used to develop a set of tools critical to the quantification of a wide range of geomorphic and climatic processes and events (Dunai 2010). Having reliable absolute measurement methods has had great impact on research constraining ice age extents as well as providing important climatic data via well constrained erosion rates, etc. Continuing to improve CN methods is critical for these sciences. While significant progress has been made in the last two decades to reduce uncertainties (Dunai 2010; Gosse & Phillips 2001), numerous aspects still need to be refined in order to achieve the analytic resolution desired by glaciologists and geomorphologists. In order to investigate the finer details of the radiation responsible for cosmogenic nuclide production, we have developed a physics based model which models the radiation cascade of primary and secondary cosmic-rays through the atmosphere. In this study, a Monte Carlo method radiation transport code, MCNPX, is used to model the galactic cosmic-ray (GCR) radiation impinging on the upper atmosphere. Beginning with a spectrum of high energy protons and alpha particles at the top of the atmosphere, the code tracks the primary and resulting secondary particles through a model of the Earth's atmosphere and into the lithosphere. Folding the neutron and proton flux results with energy dependent cross sections for nuclide production provides production rates for key cosmogenic nuclides (Argento et al. 2012, in press; Reedy 2012, in press). Our initial study for high latitude shows that nuclides scale at different rates for each nuclide (Argento 2012, in press). Furthermore, the attenuation length for each of these nuclide production rates increases with altitude, and again, they increase at different rates. This has the consequence of changing the production rate ratio as a function of altitude. The earth's geomagnetic field differentially filters low energy cosmic-rays by deflecting them away
Calculation of molecular excitation rates
NASA Technical Reports Server (NTRS)
Flynn, George
1993-01-01
State-to-state collisional excitation rates for interstellar molecules observed by radio astronomers continue to be required to interpret observed line intensities in terms of local temperatures and densities. A problem of particular interest is collisional excitation of water which is important for modeling the observed interstellar masers. In earlier work supported by a different NASA Grant, excitation of water in collisions with He atoms was studied; after many years of successively more refined calculations that problem now seems to be well understood, and discrepancies with earlier experimental data for related (pressure broadening) phenomena are believed to reflect experimental errors. Because of interstellar abundances, excitation by H2, the dominant interstellar species, is much more important than excitation by He, although it has been argued that rates for excitation by these are similar. Under the current grant theoretical study of this problem has begun which is greatly complicated by the additional degrees of freedom which must be included both in determining the interaction potential and also in the molecular scattering calculation. We have now computed the interaction forces for nearly a thousand molecular geometries and are close to having an acceptable global fit to these points which is necessary for the molecular dynamics calculations. Also, extensive modifications have been made to the molecular scattering code, MOLSCAT. These included coding the rotational basis sets and coupling matrix elements required for collisions of an asymmetric top with a linear rotor. A new method for numerical solution of the coupled equations has been incorporated. Because of the long-ranged nature of the water-hydrogen interaction it is necessary to integrate the equations to rather large intermolecular separations, and the integration methods previously available in MOLSCAT are not ideal for such cases. However, the method used by Alexander in his HIBRIDON code is
Calculations of oxidation rates of zirconium
Condon, J.B.
1981-12-01
The rates of oxidation for zirconium metal in oxygen are calculated using perfusive-precipitation modeling with the boundary conditions that: there is no moving boundary and metal matrix saturation is reached for oxygen solubility. The perfusive-precipitation model is a diffusion model with a chemical reaction. It uses Fick's Second Law of Diffusion with an added sink term. The sink term is an overall second order reaction, first order with respect to each the dissolved oxygen and the metal. The stationary boundary condition is valid for the ductile zirconium as long as the expansion due to the reaction product formation does not cause metal failure or spalling. The metal matrix saturated condition implies an upper limit to the metastable solubility of oxygen in the zirconium metal and is approximated from the phase diagram. The calculated rates are compared to the rates listed in the literature. These calculated rates, using no variable parameters, are in good agreement with experimental data.
19 CFR 351.525 - Calculation of ad valorem subsidy rate and attribution of subsidy to a product.
Code of Federal Regulations, 2010 CFR
2010-04-01
... downstream products produced by a corporation. (6) Corporations with cross-ownership. (i) In general. The... between an input supplier and a downstream producer, and production of the input product is primarily dedicated to production of the downstream product, the Secretary will attribute subsidies received by...
NASA Astrophysics Data System (ADS)
Velinov, P. I. Y.; Mateev, L. N.
2008-02-01
The effects of galactic cosmic rays (CRs) in the middle atmosphere are considered in this work. We take into account the CR modulation by solar wind and the anomalous CR component also. In fact, CRs determine the electric conductivity in the middle atmosphere and influence the electric processes in itin this way. CRs introduce solar variability in the terrestrial atmosphere and ozonosphere--because they are modulated by solar wind. A new analytical approach for CR ionization by protons and nuclei with charge Z in the lower ionosphere is developed in this paper. For this purpose, the ionization losses (dE/dh) according to the Bohr-Bethe-Bloch formula for the energetic charged particles are approximated in three different energy intervals. More accurate expressions for CR energy decrease E(h) and electron production rate profiles q(h) are derived. The obtained formulas allow comparatively easy computer programming. q(h) is determined by the solution of a 3D integral with account of geomagnetic cut-off rigidity. The integrand in q(h) gives the possibility for application of adequate numerical methods--in this case Gauss quadrature, for the solution of the mathematical problem. Computations for CR ionization in the middle atmosphere are made. In this way the process of interaction of CR particles with the upper and middle atmosphere are described much more realistically. The full CR composition is taken into account: protons, helium ([alpha]-particles), light L, medium M, heavy H and very heavy VH group of nuclei. All computations are made for geomagnetic cut-off rigidity R=1 GV in the altitude interval 15-120 km. The COSPAR International Reference Atmosphere CIRA'86 is applied in the computer program for the neutral density and scale height values. The proposed improved CR ionization model will contribute to the quantitative understanding of solar-atmosphere relationships.
ACTIVE: a program to calculate and plot reaction rates from ANISN calculated fluxes
Judd, J.L.
1981-12-01
The ACTIVE code calculates spatial heating rates, tritium production rates, neutron reaction rates, and energy spectra from particle fluxes calculated by ANISN. ACTIVE has a variety of input options including the capability to plot all calculated spatial distributions. The code was primarily designed for use with fusion first wall/blanket systems, but could be applied to any one-dimensional problem.
Comparison of calculations of fragment production
Canavan, G.H.
1998-01-01
This note compares estimates of fragment production rates in debris collisions through calculations performed with consistent debris distribution functions implicit in integrated collision frequencies provided by Attachment A. Differences between estimates of fragment production rates in space debris collisions are shown to be due primarily to different choices of the exponent in the fragment production function and the distinction between catastrophic and all collisions. Sensitivity to the fragment production parameter over the range of values consistent with experimental data is discussed.
NASA Astrophysics Data System (ADS)
Ma, L.; Chabaux, F. J.; Pelt, E.; Blaes, E.; Jin, L.; Brantley, S. L.
2009-12-01
It is essential to understand the rates and mechanisms of regolith formation as it contributes to important Critical Zone processes such as nutrient cycling, carbon sequestration, erosion, and acid rain mitigation. Over the long term, the rates of weathering and erosion also combine to control the evolution of landscapes. Uranium-series isotopes offer a powerful tool to investigate regolith production rates and residence times within a weathering system because of their well-documented fractionation behavior during chemical weathering and transport by water. Here, we present a study of U-series isotopes (238U, 234U and 230Th) in soils developed on shale bedrock at the Shale Hills catchment in central Pennsylvania. (234U/238U) and (230Th/238U) activity ratios in samples collected from soil profiles along a planar hillslope in the catchment range from 0.934 to 1.072 and from 0.920 to 1.096, respectively. These values show significant U-series disequilibrium and are explained by a dual process of U-series isotopes during weathering: a loss of 234U, 238U, and 230Th during water-rock interactions and a gain of 234U and 238U as U precipitated from circulating soil water. Regolith production rates calculated with U-series isotopes for these soil profiles range from ~15 to 45 m/Myr and decrease systematically with increasing distance from the ridge top to the middle slope and to the valley floor. Soil residence times within these profiles increase from the ridge to the valley floor. The regolith production rates at Shale Hills vary as an exponential function of soil thickness, similar to the soil production functions derived from many other studies. With the local soil production function at Shale Hills, a hillslope soil transport model is used to predict the landscape evolution and change of soil thickness along the planar transect. The simulation results suggest that both the landscape and soil thickness along the planar hillscope at Shale Hills are currently at a
A Program for Calculating Radiation Dose Rates.
Energy Science and Technology Software Center (ESTSC)
1986-01-27
Version 00 SMART calculates radiation dose rate at the center of the outer cask surface. It can be applied to determine the radiation dose rate on each cask if source conditions, characteristic function, and material conditions in the bottle regions are given. MANYCASK calculates radiation dose rate distribution in a space surrounded by many casks. If the dose rate on each cask surface can be measured, MANYCASK can be applied to predict dose spatial dosemore » rate distribution for any case of cask configuration.« less
Tank Z-361 dose rate calculations
Richard, R.F.
1998-09-30
Neutron and gamma ray dose rates were calculated above and around the 6-inch riser of tank Z-361 located at the Plutonium Finishing Plant. Dose rates were also determined off of one side of the tank. The largest dose rate 0.029 mrem/h was a gamma ray dose and occurred 76.2 cm (30 in.) directly above the open riser. All other dose rates were negligible. The ANSI/ANS 1991 flux to dose conversion factor for neutrons and photons were used in this analysis. Dose rates are reported in units of mrem/h with the calculated uncertainty shown within the parentheses.
Historical river flow rates for dose calculations
Carlton, W.H.
1991-06-10
Annual average river flow rates are required input to the LADTAP Computer Code for calculating offsite doses from liquid releases of radioactive materials to the Savannah River. The source of information on annual river flow rates used in dose calculations varies, depending on whether calculations are for retrospective releases or prospective releases. Examples of these types of releases are: Retrospective - releases from routine operations (annual environmental reports) and short term release incidents that have occurred. Prospective - releases that might be expected in the future from routine or abnormal operation of existing or new facilities (EIS`s, EID`S, SAR`S, etc.). This memorandum provides historical flow rates at the downstream gauging station at Highway 301 for use in retrospective dose calculations and derives flow rate data for the Beaufort-Jasper and Port Wentworth water treatment plants.
Calculations of Polar Ozone Loss Rates
NASA Technical Reports Server (NTRS)
Dessler, A. E.; Wu, J.
1999-01-01
We calculate vortex-averaged ozone loss rates at 465-K potential temperature during the Aug.-Sept. time period in the southern hemisphere and Feb.-Mar. time period in the northern hemisphere. Ozone loss rates are calculated two ways. First, from the time series of measurements of 03. Second, from measurements of ClO, from which ozone loss is inferred based on our theories of Cl-catalyzed ozone destruction. Both measurement sets are from the Upper Atmosphere Research Satellite (UARS) Microwave Limb Sounder (MLS) instrument. We find good agreement between vortex-averaged ozone loss rates calculated from these methods. Our analysis provides no support for recent work suggesting that current theories of Cl-catalyzed ozone loss underestimate the observed decrease in polar ozone during the ozone "hole" period.
Shuffler bias corrections using calculated count rates
Rinard, Phillip M.; Hurd, J. R.; Hsue, F.
2001-04-01
Los Alamos National Laboratory has two identical shufflers that have been calibrated with a dozen U{sub 3}O{sub 8} certified standards from 10 g {sup 235}U to 3600 g {sup 235}U. The shufflers are used to assay a wide variety of material types for their {sup 235}U contents. When the items differ greatly in chemical composition or shape from the U{sub 3}O{sub 8} standards a bias is introduced because the calibration is not appropriate. Recently a new tool has been created to calculate shuffler count rates accurately, and this has been applied to generate bias correction factors. The tool has also been used to verify the masses and count rates of some uncertified U{sub 3}O{sub 8} standards up to 8.0 kg of {sup 235}U which were used to provisionally extend the calibration beyond the 3.6 kg of {sup 235}U mass when a special need arose. Metallic uranium has significantly different neutronic properties from the U{sub 3}O{sub 8} standards and measured count rates from metals are biased low when the U{sub 3}O{sub 8} calibration is applied. The application of the calculational tool to generate bias corrrections for assorted metals will be described. The accuracy of the calculational tool was verified using highly enriched metal disk standards that could be stacked to form cylinders or put into spread arrays.
Glass dissolution rate measurement and calculation revisited
NASA Astrophysics Data System (ADS)
Fournier, Maxime; Ull, Aurélien; Nicoleau, Elodie; Inagaki, Yaohiro; Odorico, Michaël; Frugier, Pierre; Gin, Stéphane
2016-08-01
Aqueous dissolution rate measurements of nuclear glasses are a key step in the long-term behavior study of such waste forms. These rates are routinely normalized to the glass surface area in contact with solution, and experiments are very often carried out using crushed materials. Various methods have been implemented to determine the surface area of such glass powders, leading to differing values, with the notion of the reactive surface area of crushed glass remaining vague. In this study, around forty initial dissolution rate measurements were conducted following static and flow rate (SPFT, MCFT) measurement protocols at 90 °C, pH 10. The international reference glass (ISG), in the forms of powders with different particle sizes and polished monoliths, and soda-lime glass beads were examined. Although crushed glass grains clearly cannot be assimilated with spheres, it is when using the samples geometric surface (Sgeo) that the rates measured on powders are closest to those found for monoliths. Overestimation of the reactive surface when using the BET model (SBET) may be due to small physical features at the atomic scale-contributing to BET surface area but not to AFM surface area. Such features are very small compared with the thickness of water ingress in glass (a few hundred nanometers) and should not be considered in rate calculations. With a SBET/Sgeo ratio of 2.5 ± 0.2 for ISG powders, it is shown here that rates measured on powders and normalized to Sgeo should be divided by 1.3 and rates normalized to SBET should be multiplied by 1.9 in order to be compared with rates measured on a monolith. The use of glass beads indicates that the geometric surface gives a good estimation of glass reactive surface if sample geometry can be precisely described. Although data clearly shows the repeatability of measurements, results must be given with a high uncertainty of approximately ±25%.
Biased Brownian dynamics for rate constant calculation.
Zou, G; Skeel, R D; Subramaniam, S
2000-08-01
An enhanced sampling method-biased Brownian dynamics-is developed for the calculation of diffusion-limited biomolecular association reaction rates with high energy or entropy barriers. Biased Brownian dynamics introduces a biasing force in addition to the electrostatic force between the reactants, and it associates a probability weight with each trajectory. A simulation loses weight when movement is along the biasing force and gains weight when movement is against the biasing force. The sampling of trajectories is then biased, but the sampling is unbiased when the trajectory outcomes are multiplied by their weights. With a suitable choice of the biasing force, more reacted trajectories are sampled. As a consequence, the variance of the estimate is reduced. In our test case, biased Brownian dynamics gives a sevenfold improvement in central processing unit (CPU) time with the choice of a simple centripetal biasing force. PMID:10919998
Technique for atmospheric rate chemistry calculations. [of SST exhaust
NASA Technical Reports Server (NTRS)
Matloff, G. L.
1976-01-01
The possibility that predictions of atmospheric photochemistry/transport models are sensitive to uncertainties in reaction rates and other inputs stresses the need for rapid numerical integration schemes in rate photochemistry problems. Reducing the computational burden has a major merit in facilitating sensitivity studies to assess the effect of uncertainties on predicted ozone diminutions from NOx (NO + NO2) in the exhaust plume of SST engines. The paper discusses the validity of an algorithmic approach to integration of rate chemistry problems in combustion, developed by Rubel and Baronti for an approximate calculation of the production rate of the i-th chemical species involved. An analysis of two projected SST engines confirms the validity of the proposed algorithm. Because of the relative arithmetical simplicity, it may be easier to treat diffusion rate chemistry calculations using the Rubel and Baronti approximation than would be possible by other approaches.
NASA Astrophysics Data System (ADS)
Hansen, Kenneth; Altwegg, Kathrin; Berthelier, Jean-Jacques; Bieler, Andre; Calmonte, Ursina; Combi, Michael; De Keyser, Johan; Fiethe, Björn; Fougere, Nicolas; Fuselier, Stephen; Gombosi, Tamas; Hässig, Myrtha; Huang, Zhenguang; Le Roy, Lena; Rubin, Martin; Tenishev, Valeriy; Toth, Gabor; Tzou, Chia-Yu
2016-04-01
We have previously used results from the AMPS DSMC (Adaptive Mesh Particle Simulator Direct Simulation Monte Carlo) model to create an empirical model of the near comet coma (<400 km) of comet 67P for the pre-equinox orbit of comet 67P/Churyumov-Gerasimenko. In this work we extend the empirical model to the post-equinox, post-perihelion time period. In addition, we extend the coma model to significantly further from the comet (~100,000-1,000,000 km). The empirical model characterizes the neutral coma in a comet centered, sun fixed reference frame as a function of heliocentric distance, radial distance from the comet, local time and declination. Furthermore, we have generalized the model beyond application to 67P by replacing the heliocentric distance parameterizations and mapping them to production rates. Using this method, the model become significantly more general and can be applied to any comet. The model is a significant improvement over simpler empirical models, such as the Haser model. For 67P, the DSMC results are, of course, a more accurate representation of the coma at any given time, but the advantage of a mean state, empirical model is the ease and speed of use. One application of the empirical model is to de-trend the spacecraft motion from the ROSINA COPS and DFMS data (Rosetta Orbiter Spectrometer for Ion and Neutral Analysis, Comet Pressure Sensor, Double Focusing Mass Spectrometer). The ROSINA instrument measures the neutral coma density at a single point and the measured value is influenced by the location of the spacecraft relative to the comet and the comet-sun line. Using the empirical coma model we can correct for the position of the spacecraft and compute a total production rate based on the single point measurement. In this presentation we will present the coma production rate as a function of heliocentric distance both pre- and post-equinox and perihelion.
NPP ATMS Snowfall Rate Product
NASA Technical Reports Server (NTRS)
Meng, Huan; Ferraro, Ralph; Kongoli, Cezar; Wang, Nai-Yu; Dong, Jun; Zavodsky, Bradley; Yan, Banghua
2015-01-01
Passive microwave measurements at certain high frequencies are sensitive to the scattering effect of snow particles and can be utilized to retrieve snowfall properties. Some of the microwave sensors with snowfall sensitive channels are Advanced Microwave Sounding Unit (AMSU), Microwave Humidity Sounder (MHS) and Advance Technology Microwave Sounder (ATMS). ATMS is the follow-on sensor to AMSU and MHS. Currently, an AMSU and MHS based land snowfall rate (SFR) product is running operationally at NOAA/NESDIS. Based on the AMSU/MHS SFR, an ATMS SFR algorithm has been developed recently. The algorithm performs retrieval in three steps: snowfall detection, retrieval of cloud properties, and estimation of snow particle terminal velocity and snowfall rate. The snowfall detection component utilizes principal component analysis and a logistic regression model. The model employs a combination of temperature and water vapor sounding channels to detect the scattering signal from falling snow and derive the probability of snowfall (Kongoli et al., 2015). In addition, a set of NWP model based filters is also employed to improve the accuracy of snowfall detection. Cloud properties are retrieved using an inversion method with an iteration algorithm and a two-stream radiative transfer model (Yan et al., 2008). A method developed by Heymsfield and Westbrook (2010) is adopted to calculate snow particle terminal velocity. Finally, snowfall rate is computed by numerically solving a complex integral. NCEP CMORPH analysis has shown that integration of ATMS SFR has improved the performance of CMORPH-Snow. The ATMS SFR product is also being assessed at several NWS Weather Forecast Offices for its usefulness in weather forecast.
NASA Astrophysics Data System (ADS)
France, J. L.; King, M. D.; Lee-Taylor, J.; Beine, H. J.; Ianniello, A.; Domine, F.; MacArthur, A.
2011-12-01
Depth-integrated production rates of OH radicals and NO2 molecules from snowpacks in Ny-Ålesund, Svalbard, are calculated from fieldwork investigating the light penetration depth (e-folding depth) and nadir reflectivity of snowpacks during the unusually warm spring of 2006. Light penetration depths of 8.1, 11.3, 5.1, and 8.2 cm were measured for fresh, old, marine-influenced, and glacial snowpacks, respectively (wavelength 400 nm). Radiative-transfer calculations of the light penetration depths with reflectivity measurements produced scattering cross sections of 5.3, 9.5, 20, and 25.5 m2 kg-1 and absorption cross sections of 7.7, 1.4, 3.4, and 0.5 cm2 kg-1 for the fresh, old, marine-influenced, and glacial snowpacks, respectively (wavelength 400 nm). Photolysis rate coefficients, J, are presented as a function of snow depth and solar zenith angle for the four snowpacks for the photolysis of H2O2 and NO3-. Depth-integrated production rates of hydroxyl radicals are 1270, 2130, 950, and 1850 nmol m-2 h-1 (solar zenith angle of 60°) for fresh, old, marine-influenced, and glacial snowpacks, respectively. Depth-integrated production rates of NO2 are 32, 56, 11, and 22 nmol m-2 h-1 (solar zenith angle of 60°) for the fresh, old, marine-influenced, and glacial snowpacks, respectively. The uncertainty of repeated light penetration depth measurement was determined to be ˜20%, which propagates into a 20% error in depth-integrated production rates. A very simple steady state hydroxyl radical calculation demonstrates that a pseudo first-order loss rate of OH radicals of ˜102-104 s-1 is required in snowpack. The snowpacks around Ny-Ålesund are thick enough to be considered optically infinite.
Calculating Graduation Rates: We Can Do Better
ERIC Educational Resources Information Center
Bracey, Gerald W.
2009-01-01
The statistic of choice to prove that U.S. schools are failing has changed over time. First, it was test scores that meant they could not keep up with Japan. More recently it has become graduation rate. Often accompanying the graduation rate in the failure litany is the drop-out rate. NCLB puts additional pressure on dropout counts because it…
Simplified methods for calculating photodissociation rates
NASA Technical Reports Server (NTRS)
Shimazaki, T.; Ogawa, T.; Farrell, B. C.
1977-01-01
Simplified methods for calculating the transmission of solar UV radiation and the dissociation coefficients of various molecules are compared. A significant difference sometimes appears in calculations of the individual band, but the total transmission and the total dissociation coefficients integrated over the entire SR (solar radiation) band region agree well between the methods. The ambiguities in the solar flux data affect the calculated dissociation coefficients more strongly than does the method. A simpler method is developed for the purpose of reducing the computation time and computer memory size necessary for storing coefficients of the equations. The new method can reduce the computation time by a factor of more than 3 and the memory size by a factor of more than 50 compared with the Hudson-Mahle method, and yet the result agrees within 10 percent (in most cases much less) with the original Hudson-Mahle results, except for H2O and CO2. A revised method is necessary for these two molecules, whose absorption cross sections change very rapidly over the SR band spectral range.
39 CFR 3010.23 - Calculation of percentage change in rates.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 39 Postal Service 1 2013-07-01 2013-07-01 false Calculation of percentage change in rates. 3010.23 Section 3010.23 Postal Service POSTAL REGULATORY COMMISSION PERSONNEL REGULATION OF RATES FOR MARKET DOMINANT PRODUCTS Rules for Applying the Price Cap § 3010.23 Calculation of percentage change in rates. (a) The term rate cell as applied in...
39 CFR 3010.23 - Calculation of percentage change in rates.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 39 Postal Service 1 2011-07-01 2011-07-01 false Calculation of percentage change in rates. 3010.23 Section 3010.23 Postal Service POSTAL REGULATORY COMMISSION PERSONNEL REGULATION OF RATES FOR MARKET DOMINANT PRODUCTS Rules for Applying the Price Cap § 3010.23 Calculation of percentage change in rates. (a) The term rate cell as applied in...
39 CFR 3010.23 - Calculation of percentage change in rates.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 39 Postal Service 1 2010-07-01 2010-07-01 false Calculation of percentage change in rates. 3010.23 Section 3010.23 Postal Service POSTAL REGULATORY COMMISSION PERSONNEL REGULATION OF RATES FOR MARKET DOMINANT PRODUCTS Rules for Applying the Price Cap § 3010.23 Calculation of percentage change in rates. (a) The term rate cell as applied in...
39 CFR 3010.23 - Calculation of percentage change in rates.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 39 Postal Service 1 2012-07-01 2012-07-01 false Calculation of percentage change in rates. 3010.23 Section 3010.23 Postal Service POSTAL REGULATORY COMMISSION PERSONNEL REGULATION OF RATES FOR MARKET DOMINANT PRODUCTS Rules for Applying the Price Cap § 3010.23 Calculation of percentage change in rates. (a) The term rate cell as applied in...
Calculating lunar retreat rates using tidal rhythmites
Kvale, E.P.; Johnson, H.W.; Sonett, C.P.; Archer, A.W.; Zawistoski, A.N.N.
1999-01-01
Tidal rhythmites are small-scale sedimenta??r}- structures that can preserve a hierarchy of astronomically induced tidal periods. They can also preserve a record of periodic nontidal sedimentation. If properly interpreted and understood, tidal rhjthmites can be an important component of paleoastronomy and can be used to extract information on ancient lunar orbital dynamics including changes in Earth-Moon distance through geologic time. Herein we present techniques that can be used to calculate ancient Earth-Moon distances. Each of these techniques, when used on a modern high-tide data set, results in calculated estimates of lunar orbital periods and an EarthMoon distance that fall well within 1 percent of the actual values. Comparisons to results from modern tidal data indicate that ancient tidal rhythmite data as short as 4 months can provide suitable estimates of lunar orbital periods if these tidal records are complete. An understanding of basic tidal theory allows for the evaluation of completeness of the ancient tidal record as derived from an analysis of tidal rhythmites. Utilizing the techniques presented herein, it appears from the rock record that lunar orbital retreat slowed sometime during the midPaleozoic. Copyright ??1999, SEPM (Society for Sedimentary Geology).
Updates to In-Line Calculation of Photolysis Rates
How photolysis rates are calculated affects ozone and aerosol concentrations predicted by the CMAQ model and the model?s run-time. The standard configuration of CMAQ uses the inline option that calculates photolysis rates by solving the radiative transfer equation for the needed ...
Shielding calculations for a production target for secondary beams
Rehm, K.E.; Back, B.B.; Jiang, C.L.
1995-08-01
In order to estimate the amount of shielding required for a radioactive beam facility dose rate were performed. The calculations for production targets with different geometries were performed. The calculations were performed with the MSU shielding code assuming a 500-p{mu}A 200-MeV deuteron beam stopped in a thick Al target. The target and the ion-optical elements for beam extraction are located in a 2 m{sup 3} large volume at the center of the production cell. These dose rate calculations show that with a combination of Fe and concrete it is possible to reduce the dose rate expected at the surface of a 7-m-wide cube housing the production target to less than 2 mrem/hr.
Calculates Neutron Production in Canisters of High-level Waste
Energy Science and Technology Software Center (ESTSC)
1993-01-15
ALPHN calculates the (alpha,n) neutron production rate of a canister of vitrified high-level waste. The user supplies the chemical composition of the glass or glass-ceramic and the curies of the alpha-emitting actinides present. The output of the program gives the (alpha,n) neutron production of each actinide in neutrons per second and the total for the canister. The (alpha,n) neutron production rates are source terms only; that is, they are production rates within the glass andmore » do not take into account the shielding effect of the glass. For a given glass composition, the user can calculate up to eight cases simultaneously; these cases are based on the same glass composition but contain different quantities of actinides per canister.« less
40 CFR 1036.530 - Calculating greenhouse gas emission rates.
Code of Federal Regulations, 2013 CFR
2013-07-01
... applicable duty cycle as specified in 40 CFR 1065.650. Do not apply infrequent regeneration adjustment... 40 Protection of Environment 34 2013-07-01 2013-07-01 false Calculating greenhouse gas emission... Procedures § 1036.530 Calculating greenhouse gas emission rates. This section describes how to...
Computer Calculation of First-Order Rate Constants
ERIC Educational Resources Information Center
Williams, Robert C.; Taylor, James W.
1970-01-01
Discusses the computer program used to calculate first-order rate constants. Discussion includes data preparation, weighting options, comparison techniques, infinity point adjustment, least-square fit, Guggenheim calculation, and printed outputs. Exemplifies the utility of the computer program by two experiments: (1) the thermal decomposition of…
Calculation of rates for enzyme and microbial kinetics via a spline technique
Technology Transfer Automated Retrieval System (TEKTRAN)
In biocatalysis research, determination of enzyme kinetics, microbial growth rates, substrate utilization rates, and product accumulation rates sometime require derivatives to be calculated with a method that can be duplicated and yields consistent results. In this paper, several methods that have ...
Experiences with leak rate calculations methods for LBB application
Grebner, H.; Kastner, W.; Hoefler, A.; Maussner, G.
1997-04-01
In this paper, three leak rate computer programs for the application of leak before break analysis are described and compared. The programs are compared to each other and to results of an HDR Reactor experiment and two real crack cases. The programs analyzed are PIPELEAK, FLORA, and PICEP. Generally, the different leak rate models are in agreement. To obtain reasonable agreement between measured and calculated leak rates, it was necessary to also use data from detailed crack investigations.
Benchmark calculations of thermal reaction rates. I - Quantal scattering theory
NASA Technical Reports Server (NTRS)
Chatfield, David C.; Truhlar, Donald G.; Schwenke, David W.
1991-01-01
The thermal rate coefficient for the prototype reaction H + H2 yields H2 + H with zero total angular momentum is calculated by summing, averaging, and numerically integrating state-to-state reaction probabilities calculated by time-independent quantum-mechanical scattering theory. The results are very carefully converged with respect to all numerical parameters in order to provide high-precision benchmark results for confirming the accuracy of new methods and testing their efficiency.
Ozone loss rates calculated along ER-2 flight tracks
Murphy, D.M. )
1991-03-20
Local ozone loss rates due to the ClO+ClO and BrO+ClO cycles are calculated using ClO, pressure, and temperature from in-situ aircraft measurements and representative BrO mixing ratios. Ozone loss during the vertical profiles executed by the ER-2 near 72{degree}S usually extended over a deep altitude range rather than reaching a maximum at the top of the profiles. This is due to the strong pressure dependence of the rate determining steps. In the Antarctic, very high ozone loss rates (>5{center dot}10{sup 6} cm{sup {minus}3} s{sup {minus}1}) were observed at altitudes with potential temperatures below 400 K, where advective exchange is likely to be much more rapid than at higher altitudes. On September 22, 1987, the ER-2 measured an ozone loss rate of aboutn 2.8 Dobson units (DU) per 12 sunlit hours in the 350-400 K range and 2.0 DU in the 400-450 K range near 72{degree}S. Rapid ozone loss in the Arctic did not extend below 400 K in the available data. The calculated average loss rate, which is nonlinear, in general depends on the order in which the terms are averaged. Loss rates calculated by averaging the ClO, pressure and temperature for up to 2,400 s (about 500 km) generally agree with the average of the local loss rate to within one percent except at the edge of the vortex, where the difference can be up to 30%. Adiabatic temperature and pressure effects nearly cancel. Thermal decomposition of Cl{sub 2}O{sub 2} was not important along sunlit portions of ER-2 flight tracks if equilibrium is assumed between ClO and Cl{sub 2}O{sub 2}. The effect of recalibration of the ClO data on the calculated loss rates is discussed.
PX and PXT: New Methods for Calculating Shoreline Change Rates
NASA Astrophysics Data System (ADS)
Genz, A. S.; Frazer, L. N.; Fletcher, C. H.; Romine, B. M.; Barbee, M. M.; Lim, S.; Dyer, M.
2007-12-01
It is imperative that coastal erosion studies produce valid erosion rates and erosion hazard predictions to aid in the development of public policy and protect coastal resources. Currently, the Single-Transect method is the most common shoreline change model, which calculates a rate at each shore-normal transect without regard to influences of data from adjacent transects along a beach. Improving on Single-Transect, the University of Hawaii Coastal Geology Group has developed the PX (Polynomial in distance X) and PXT (Polynomial in distance X and Time) shoreline change rate calculation methods, which model all the shoreline positions within a beach simultaneously using polynomial techniques. PX is a special case of PXT that models shoreline change rates spatially along a beach. PXT not only models the shoreline change spatially, but it lets the rate change with time (acceleration). This is an important advance, as beaches may not erode or accrete at a constant (linear) rate. A linear sum of basis functions characterizes the shoreline change rate for both PX and PXT. These methods are an improvement on previous methods as they produce more meaningful, i.e., statistically significant rates and erosion hazard predictions. To date, PX and PXT improve the significance in the rate by 25% on Maui. We use an information criterion (gMDL) to (1) identify the number of coefficients of the basis functions that are needed to describe shoreline change in PX and PXT, and (2) compare different methods to determine which method best describes shoreline change. We present an overview of the PX and PXT methods and results from a shoreline change study of the beaches of southeast Oahu, Hawaii, utilizing these rate calculation methods.
42 CFR 413.312 - Methodology for calculating rates.
Code of Federal Regulations, 2012 CFR
2012-10-01
... prospectively determined payment rates, CMS uses: (i) The SNF cost data that were used to develop the applicable... recent projections of increases in the costs from the SNF market basket index. (2) In the annual schedule...) Calculation of per diem rate—(1) Routine operating component of rate—(i) Adjusting cost report data. The...
42 CFR 413.312 - Methodology for calculating rates.
Code of Federal Regulations, 2011 CFR
2011-10-01
... prospectively determined payment rates, CMS uses: (i) The SNF cost data that were used to develop the applicable... recent projections of increases in the costs from the SNF market basket index. (2) In the annual schedule...) Calculation of per diem rate—(1) Routine operating component of rate—(i) Adjusting cost report data. The...
42 CFR 413.312 - Methodology for calculating rates.
Code of Federal Regulations, 2013 CFR
2013-10-01
... prospectively determined payment rates, CMS uses: (i) The SNF cost data that were used to develop the applicable... recent projections of increases in the costs from the SNF market basket index. (2) In the annual schedule...) Calculation of per diem rate—(1) Routine operating component of rate—(i) Adjusting cost report data. The...
42 CFR 413.312 - Methodology for calculating rates.
Code of Federal Regulations, 2014 CFR
2014-10-01
... prospectively determined payment rates, CMS uses: (i) The SNF cost data that were used to develop the applicable... recent projections of increases in the costs from the SNF market basket index. (2) In the annual schedule...) Calculation of per diem rate—(1) Routine operating component of rate—(i) Adjusting cost report data. The...
Calculations of rates for direct detection of neutralino dark matter
NASA Technical Reports Server (NTRS)
Griest, Kim
1988-01-01
The detection rates in cryogenic detectors of neutralinos, the most well motivated supersymmetric dark-matter candidate, are calculated. These rates can differ greatly from the special case of pure photinos and pure Higgsinos which are usually considered. In addition, a new term is found in the elastic-scattering cross section proportional to the Z-ino component which is 'spin independent', even for these Majorana particles. As a result, substantial detection rates exist for previously disfavored, mostly spinless materials such as germanium and mercury.
Calculated emission rates for barium releases in space
NASA Technical Reports Server (NTRS)
Stenbaek-Nielsen, H. C.
1989-01-01
The optical emissions from barium releases in space are caused by resonance and fluorescent scattering of sunlight. Emission rates for the dominant ion and neutral lines are calculated assuming the release to be optically thin and the barium to be in radiative equilibrium with the solar radiation. The solar spectrum has deep Fraunhofer absorption lines at the primary barium ion resonances. A velocity component toward or away from the sun will Doppler shift the emission lines relative to the absorption lines and the emission rates will increase many-fold over the rest value. The Doppler brightening is important in shaped charge or satellite releases where the barium is injected at high velocities. Emission rates as a function of velocity are calculated for the 4554, 4934, 5854, 6142 and 6497 A ion emission lines and the dominant neutral line at 5535 A. Results are presented for injection parallel to the ambient magnetic field, B, and for injection at an angle to B.
Empirical rate equation model and rate calculations of hydrogen generation for Hanford tank waste
HU, T.A.
1999-07-13
Empirical rate equations are derived to estimate hydrogen generation based on chemical reactions, radiolysis of water and organic compounds, and corrosion processes. A comparison of the generation rates observed in the field with the rates calculated for twenty eight tanks shows agreement with in a factor of two to three.
Cholesteatoma in children, predictors and calculation of recurrence rates.
Stangerup, S E; Drozdziewicz, D; Tos, M
1999-10-01
The aim of the study was to evaluate the long-term recurrence rate after surgery for acquired cholesteatoma in children, to search for predictors of recurrency and to analyse the impact of the applied statistical method on the outcome of the results. During a 15-year period, 114 children underwent first-time surgery for acquired cholesteatoma. The patients were re-evaluated with a median observation time of 5.8 years, range 1-16 years. Recurrence of cholesteatoma developed in 27 ears. The cumulated total recurrence rate was 24% using standard incidence rate calculation, applying Kaplan-Meier survival analysis the recurrence rate was 33%. Recurrent disease occurred significantly more frequent in children < 8 years, with negative preoperative Valsalva, ossicular resorption and with large cholesteatomas. In conclusion, young children with poor Eustachian tube function, large cholesteatoma and erosion of the ossicular chain, are at special risk of recurrence and should be observed several years after surgery. PMID:10577779
Semiclassical Calculation of Reaction Rate Constants for Homolytical Dissociations
NASA Technical Reports Server (NTRS)
Cardelino, Beatriz H.
2002-01-01
There is growing interest in extending organometallic chemical vapor deposition (OMCVD) to III-V materials that exhibit large thermal decomposition at their optimum growth temperature, such as indium nitride. The group III nitrides are candidate materials for light-emitting diodes and semiconductor lasers operating into the blue and ultraviolet regions. To overcome decomposition of the deposited compound, the reaction must be conducted at high pressures, which causes problems of uniformity. Microgravity may provide the venue for maintaining conditions of laminar flow under high pressure. Since the selection of optimized parameters becomes crucial when performing experiments in microgravity, efforts are presently geared to the development of computational OMCVD models that will couple the reactor fluid dynamics with its chemical kinetics. In the present study, we developed a method to calculate reaction rate constants for the homolytic dissociation of III-V compounds for modeling OMCVD. The method is validated by comparing calculations with experimental reaction rate constants.
Methods for calculating SEU rates for bipolar and NMOS circuits
NASA Astrophysics Data System (ADS)
McNulty, P. J.; Abdel-Kader, W. G.; Bisgrove, J. M.
1985-12-01
Computer codes developed at Clarkson for simulating charge generation by proton-induced nuclear reactions in well-defined silicon microstructures can be used to calculate SEU rates for specific devices when the critical charge and the dimensions of all SEU sensitive junctions on the device are known, provided one can estimate the contribution from externally-generated charge which enters the sensitive junction by drift and diffusion. Calculations for two important bipolar devices, the AMD 2901B bit slice and the Fairchild 93L422 RAM, for which the dimensions of the sensitive volumes were estimated from available heavy-ion test data, have been found to be in agreement with experimental data. Circuit data for the Intel 2164A, an alpha sensitive dRAM, was provided by the manufacturer. Calculations based on crude assumptions regarding which nuclear recoils and which alphas trigger upsets in the 2164A were found to agree with experimental data.
Improved glucose utilization rate calculation by a recursive technique
Finn, E.J.; Brooks, R.A.; Di Chiro, G.
1984-01-01
When scanning with deoxyglucose, the crucial step in quantitation is the determination of glucose utilization rate, R, from tissue uptake data. R is conventionally calculated using nominal rate constants k/sub 1/-k/sub 4/, which are needed to correct for free deoxyglucose in the tissue at the time of the scan. In general, the resulting R is not consistent with these nominal rate constants, so the answer is necessarily in error. By adjusting the rate constants for consistency and then recalculating R, and repeating as necessary, an accuracy improvement should be obtained. The method reported here interates through modification of the third rate constant, k/sub 3/, since its value is determined by the hexokinase reaction which is considered to be the rate-limiting step. Data have been analyzed, taken from a representative sampling of the more than 150 patients scanned during the past year. It is seen that as glucose utilization rate moves away from the nominal rate for a subject, the self-consistency process developed by the iterative technique modified the quoted rate by an extra 2% per 10% change in R. Further, the percentage change in k/sub 3/ varies approximately linearly, but at a rate roughly twice that of the change in R. This modification indeed corresponds to an improvement in accuracy insofar as the enzymatic reaction described by k/sub 3/ is the primary source of change in glucose kinetics for the tissue in question. The same iterative procedure could be used with other assumptions about the way the rate constants vary.
NAC-1 cask dose rate calculations for LWR spent fuel
CARLSON, A.B.
1999-02-24
A Nuclear Assurance Corporation nuclear fuel transport cask, NAC-1, is being considered as a transport and storage option for spent nuclear fuel located in the B-Cell of the 324 Building. The loaded casks will be shipped to the 200 East Area Interim Storage Area for dry interim storage. Several calculations were performed to assess the photon and neutron dose rates. This report describes the analytical methods, models, and results of this investigation.
Calculating the Annihilation Rate of Weakly Interacting Massive Particles
NASA Astrophysics Data System (ADS)
Baumgart, Matthew; Rothstein, Ira Z.; Vaidya, Varun
2015-05-01
We develop a formalism that allows one to systematically calculate the weakly interacting massive particle (WIMP) annihilation rate into gamma rays whose energy far exceeds the weak scale. A factorization theorem is presented which separates the radiative corrections stemming from initial-state potential interactions from loops involving the final state. This separation allows us to go beyond the fixed order calculation, which is polluted by large infrared logarithms. For the case of Majorana WIMPs transforming in the adjoint representation of SU(2), we present the result for the resummed rate at leading double-log accuracy in terms of two initial-state partial-wave matrix elements and one hard matching coefficient. For a given model, one may calculate the cross section by finding the tree level matching coefficient and determining the value of a local four-fermion operator. The effects of resummation can be as large as 100% for a 20 TeV WIMP. However, for lighter WIMP masses relevant for the thermal relic scenario, leading-log resummation modifies the Sudakov factors only at the 10% level. Furthermore, given comparably sized Sommerfeld factors, the total effect of radiative corrections on the semi-inclusive photon annihilation rate is found to be percent level. The generalization of the formalism to other types of WIMPs is discussed.
Calculating the annihilation rate of weakly interacting massive particles.
Baumgart, Matthew; Rothstein, Ira Z; Vaidya, Varun
2015-05-29
We develop a formalism that allows one to systematically calculate the weakly interacting massive particle (WIMP) annihilation rate into gamma rays whose energy far exceeds the weak scale. A factorization theorem is presented which separates the radiative corrections stemming from initial-state potential interactions from loops involving the final state. This separation allows us to go beyond the fixed order calculation, which is polluted by large infrared logarithms. For the case of Majorana WIMPs transforming in the adjoint representation of SU(2), we present the result for the resummed rate at leading double-log accuracy in terms of two initial-state partial-wave matrix elements and one hard matching coefficient. For a given model, one may calculate the cross section by finding the tree level matching coefficient and determining the value of a local four-fermion operator. The effects of resummation can be as large as 100% for a 20 TeV WIMP. However, for lighter WIMP masses relevant for the thermal relic scenario, leading-log resummation modifies the Sudakov factors only at the 10% level. Furthermore, given comparably sized Sommerfeld factors, the total effect of radiative corrections on the semi-inclusive photon annihilation rate is found to be percent level. The generalization of the formalism to other types of WIMPs is discussed. PMID:26066424
The SEU Figure of Merit and proton upset rate calculations
Petersen, E.L.
1998-12-01
This paper re-examines the use of the SEU Figure of Merit for heavy ion upset rate predictions. Slightly different orbit dependent rate coefficients are used for unhardened and hardened parts. The two different coefficients allow for the slight changes of LET spectra that occur due to the earth`s magnetic shielding. Accurate heavy ion predictions can be made for any orbit and any part. The authors show that the Figure of Merit can also be used to predict upset rate due to protons in the proton radiation belt. A proton rate coefficient is introduced to describe the upset likelihood in orbits with proton exposures. These results mean that a part susceptibility can be described by a single parameter, rather than the four Weibull parameters and two Bendel parameters used previously. The Figure of Merit completely describes a part`s SEU susceptibility and can be obtained from either proton or heavy ion measurements, eliminating the expense of making both types of experiment. The total upset rate for a part in a particular orbit can be calculated using its characteristic Figure of Merit and a single orbit specific rate coefficient, the sum of the heavy ion and proton rate coefficients.
7 CFR 760.811 - Rates and yields; calculating payments.
Code of Federal Regulations, 2011 CFR
2011-01-01
... for a quantity loss on a unit with respect to value-based crops are determined by multiplying the payment rate established for the crop by FSA times the loss of value that exceeds 35 percent of the expected production value, as determined by FSA, of the unit. (3) As determined by FSA, additional...
7 CFR 760.811 - Rates and yields; calculating payments.
Code of Federal Regulations, 2010 CFR
2010-01-01
... average market price times 42 percent, times the loss of production which exceeds 35 percent of the... percent of the average market price. (c) Separate payment rates and yields for the same crop may be.... (e) Each eligible participant's share of a disaster payment will be based on the...
30 CFR 250.1632 - Production rates.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 2 2011-07-01 2011-07-01 false Production rates. 250.1632 Section 250.1632 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, REGULATION, AND ENFORCEMENT, DEPARTMENT OF THE... § 250.1632 Production rates. Each sulphur deposit shall be produced at rates that will provide...
Divided Saddle Theory: A New Idea for Rate Constant Calculation.
Daru, János; Stirling, András
2014-03-11
We present a theory of rare events and derive an algorithm to obtain rates from postprocessing the numerical data of a free energy calculation and the corresponding committor analysis. The formalism is based on the division of the saddle region of the free energy profile of the rare event into two adjacent segments called saddle domains. The method is built on sampling the dynamics within these regions: auxiliary rate constants are defined for the saddle domains and the absolute forward and backward rates are obtained by proper reweighting. We call our approach divided saddle theory (DST). An important advantage of our approach is that it requires only standard computational techniques which are available in most molecular dynamics codes. We demonstrate the potential of DST numerically on two examples: rearrangement of alanine-dipeptide (CH3CO-Ala-NHCH3) conformers and the intramolecular Cope reaction of the fluxional barbaralane molecule. PMID:26580187
Photolysis Rate Coefficient Calculations in Support of SOLVE II
NASA Technical Reports Server (NTRS)
Swartz, William H.
2005-01-01
A quantitative understanding of photolysis rate coefficients (or "j-values") is essential to determining the photochemical reaction rates that define ozone loss and other crucial processes in the atmosphere. j-Values can be calculated with radiative transfer models, derived from actinic flux observations, or inferred from trace gas measurements. The primary objective of the present effort was the accurate calculation of j-values in the Arctic twilight along NASA DC-8 flight tracks during the second SAGE III Ozone Loss and Validation Experiment (SOLVE II), based in Kiruna, Sweden (68 degrees N, 20 degrees E) during January-February 2003. The JHU/APL radiative transfer model was utilized to produce a large suite of j-values for photolysis processes (over 70 reactions) relevant to the upper troposphere and lower stratosphere. The calculations take into account the actual changes in ozone abundance and apparent albedo of clouds and the Earth surface along the aircraft flight tracks as observed by in situ and remote sensing platforms (e.g., EP-TOMS). A secondary objective was to analyze solar irradiance data from NCAR s Direct beam Irradiance Atmospheric Spectrometer (DIAS) on-board the NASA DC-8 and to start the development of a flexible, multi-species spectral fitting technique for the independent retrieval of O3,O2.02, and aerosol optical properties.
Code System to Calculate Reactor Coolant System Leak Rate.
Energy Science and Technology Software Center (ESTSC)
1999-10-19
Version 00 RCSLK9 was developed to analyze the leak tightness of the primary coolant system for any pressurized water reactor (PWR). From given system conditions, water levels in tanks, and certain system design parameters, RCSLK9 calculates the loss of water from the reactor coolant system (RCS) and the increase of water in the leakage collection system during an arbitrary time interval. The program determines the system leak rates and displays or prints a report ofmore » the results. During the initial application to a specific reactor, RCSLK9 creates a file of system parameters and saves it for future use.« less
Code System to Calculate Reactor Coolant System Leak Rate.
Bell, Pat
1999-10-19
Version 00 RCSLK9 was developed to analyze the leak tightness of the primary coolant system for any pressurized water reactor (PWR). From given system conditions, water levels in tanks, and certain system design parameters, RCSLK9 calculates the loss of water from the reactor coolant system (RCS) and the increase of water in the leakage collection system during an arbitrary time interval. The program determines the system leak rates and displays or prints a report of the results. During the initial application to a specific reactor, RCSLK9 creates a file of system parameters and saves it for future use.
NASA Technical Reports Server (NTRS)
May, C. E.
1984-01-01
The various steps that could control the vaporization rate of a material are discussed. These steps include the actual vaporization, flow rate of matrix gas, chemical reaction, gas diffusion, and solid state diffusion. The applicable equations have been collected from diverse appropriate sources, and their use is explained. Rate equations are derived for conditions where more than one step is rate controlling. Calculations are made for two model materials: rhenium which vaporizes congruently, and tantalum carbide which vaporizes incongruently. The case of vaporization under thermal gradient conditions is also treated. The existence of a thermal gradient in the resistojet means that the vaporization rate of a material may be only one thousandth of that predicted under isothermal conditions. Calculations show that rhenium might have a 100,000 hr lifetime at temperature in a 2500 C resistojet. Tantalum carbide would have a life of only 660 sec under similar conditions.
30 CFR 250.1632 - Production rates.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 2 2010-07-01 2010-07-01 false Production rates. 250.1632 Section 250.1632 Mineral Resources MINERALS MANAGEMENT SERVICE, DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Sulphur Operations § 250.1632 Production rates. Each...
Relativistic collision rate calculations for electron-air interactions
Graham, G.; Roussel-Dupre, R.
1993-12-01
The most recent data available on differential cross sections for electron-air interactions are used to calculate the avalanche, momentum transfer, and energy loss rates that enter into the fluid equations. Data for the important elastic, inelastic, and ionizing processes are generally available out to electron energies of 1--10 keV. Prescriptions for extending these cross sections to the relativistic regime are presented. The angular dependence of the cross sections is included where data are available as is the doubly differential cross section for ionizing collisions. The collision rates are computed by taking moments of the Boltzmann collision integrals with the assumption that the electron momentum distribution function is given by the Juettner distribution function which satisfies the relativistic H- theorem and which reduces to the familiar Maxwellian velocity distribution in the nonrelativistic regime. The distribution function is parameterized in terms of the electron density, mean momentum, and thermal energy and the rates are therefore computed on a two dimensional grid as a function of mean kinetic energy and thermal energy.
Relativistic collision rate calculations for electron-air interactions
Graham, G.; Roussel-Dupre, R.
1992-12-16
The most recent data available on differential cross sections for electron-air interactions are used to calculate the avalanche, momentum transfer, and energy loss rates that enter into the fluid equations. Data for the important elastic, inelastic, and ionizing processes are generally available out to electron energies of 1--10 kev. Prescriptions for extending these cross sections to the relativistic regime are presented. The angular dependence of the cross sections is included where data is available as is the doubly differential cross section for ionizing collisions. The collision rates are computed by taking moments of the Boltzmann collision integrals with the assumption that the electron momentum distribution function is given by the Juettner distribution function which satisfies the relativistic H- theorem and which reduces to the familiar Maxwellian velocity distribution in the nonrelativistic regime. The distribution function is parameterized in terms of the electron density, mean momentum, and thermal energy and the rates are therefore computed on a two-dimensional grid as a function of mean kinetic energy and thermal energy.
A model to calculate the induced dose rate around an 18 MV ELEKTA linear accelerator.
Perrin, Bruce; Walker, Anne; Mackay, Ranald
2003-03-01
The dose rate due to activity induced by (gamma, n) reactions around an ELEKTA Precise accelerator running at 18 MV is reported. A model to calculate the induced dose rate for a variety of working practices has been derived and compared to the measured values. From this model, the dose received by the staff using the machine can be estimated. From measured dose rates at the face of the linear accelerator for a 10 x 10 cm2 jaw setting at 18 MV an activation coefficient per MU was derived for each of the major activation products. The relative dose rates at points around the linac head, for different energy and jaw settings, were measured. Dose rates adjacent to the patient support system and portal imager were also measured. A model to calculate the dose rate at these points was derived, and compared to those measured over a typical working week. The model was then used to estimate the maximum dose to therapists for the current working schedule on this machine. Calculated dose rates at the linac face agreed to within +/- 12% of those measured over a week, with a typical dose rate of 4.5 microSv h(-1) 2 min after the beam has stopped. The estimated maximum annual whole body dose for a treatment therapist, with the machine treating at only 18 MV, for 60000 MUs per week was 2.5 mSv. This compares well with value of 2.9 mSv published for a Clinac 21EX. A model has been derived to calculate the dose from the four dominant activation products of an ELEKTA Precise 18 MV linear accelerator. This model is a useful tool to calculate the induced dose rate around the treatment head. The model can be used to estimate the dose to the staff for typical working patterns. PMID:12696804
NASA Astrophysics Data System (ADS)
Marius Mudd, Simon; Harel, Marie-Alice; Hurst, Martin D.; Grieve, Stuart W. D.; Marrero, Shasta M.
2016-08-01
We report a new program for calculating catchment-averaged denudation rates from cosmogenic nuclide concentrations. The method (Catchment-Averaged denudatIon Rates from cosmogenic Nuclides: CAIRN) bundles previously reported production scaling and topographic shielding algorithms. In addition, it calculates production and shielding on a pixel-by-pixel basis. We explore the effect of sampling frequency across both azimuth (Δθ) and altitude (Δϕ) angles for topographic shielding and show that in high relief terrain a relatively high sampling frequency is required, with a good balance achieved between accuracy and computational expense at Δθ = 8° and Δϕ = 5°. CAIRN includes both internal and external uncertainty analysis, and is packaged in freely available software in order to facilitate easily reproducible denudation rate estimates. CAIRN calculates denudation rates but also automates catchment averaging of shielding and production, and thus can be used to provide reproducible input parameters for the CRONUS family of online calculators.
Calculations of bottom quark production at hadron colliders
Kuebel, D.
1991-06-29
This thesis studies Monte Carlo simulations of QCD heavy flavor production processes (p{bar p} {yields} Q({anti Q})X) at hadron colliders. ISAJET bottom quark cross-sections are compared to the O({alpha} {sub s}{sup 3}) perturbative calculation of Nason, Dawson, and Ellis. These Monte Carlo cross-sections are computed from data samples which use different parton distribution functions and physics parameters. Distributions are presented in the heavy quark`s transverse momentum and rapidity. Correlations in rapidity and azimuthal angle are computed for the heavy flavor pair. Theory issues which arise are the behavior of the cross-section at low and high values of transverse momentum and the treatment of double counting problems in the flavor excitation samples. An important result is that ISAJET overestimates bottom quark production cross-sections and K factors. These findings are relevant for estimates of rates and backgrounds of heavy floor events.
Calculations of bottom quark production at hadron colliders
Kuebel, D.
1991-06-29
This thesis studies Monte Carlo simulations of QCD heavy flavor production processes (p{bar p} {yields} Q({anti Q})X) at hadron colliders. ISAJET bottom quark cross-sections are compared to the O({alpha} {sub s}{sup 3}) perturbative calculation of Nason, Dawson, and Ellis. These Monte Carlo cross-sections are computed from data samples which use different parton distribution functions and physics parameters. Distributions are presented in the heavy quark's transverse momentum and rapidity. Correlations in rapidity and azimuthal angle are computed for the heavy flavor pair. Theory issues which arise are the behavior of the cross-section at low and high values of transverse momentum and the treatment of double counting problems in the flavor excitation samples. An important result is that ISAJET overestimates bottom quark production cross-sections and K factors. These findings are relevant for estimates of rates and backgrounds of heavy floor events.
Java Analysis Tools for Element Production Calculations in Computational Astrophysics
NASA Astrophysics Data System (ADS)
Lingerfelt, E.; Hix, W.; Guidry, M.; Smith, M.
2002-12-01
We are developing a set of extendable, cross-platform tools and interfaces using Java and vector graphic technologies such as SVG and SWF to facilitate element production calculations in computational astrophysics. The Java technologies are customizable and portable, and can be utilized as stand-alone applications or distributed across a network. These tools, which have broad applications in general scientific visualization, are currently being used to explore and analyze a large library of nuclear reaction rates and visualize results of explosive nucleosynthesis calculations with compact, high quality vector graphics. The facilities for reading and plotting nuclear reaction rates and their components from a network or library permit the user to easily include new rates and compare and adjust current ones. Sophisticated visualization and graphical analysis tools offer the ability to view results in an interactive, scalable vector graphics format, which leads to a dramatic (ten-fold) reduction in visualization file sizes while maintaining high visual quality and interactive control. ORNL Physics Division is managed by UT-Battelle, LLC, for the U.S. Department of Energy under contract DE-AC05-00OR22725.
Reference calculations for subthreshold Ξ production
NASA Astrophysics Data System (ADS)
Tomášik, Boris; Kolomeitsev, Evgeni E.
2016-01-01
We present a minimal statistical model designed for the description of rare- hadron multiplicities in nucleus-nucleus collisions at energies below the threshold of the particle production in binary elementary collisions. Differences to more conventional canonical statistical model are explained. The minimal statistical model is applied to the description of multiplicity ratios involving Ξ hyperons, which are measured by the HADES collaboration at GSI-SIS. It is argued that the HADES data cannot be reproduced by the model based on the statistical equilibrium and the strangeness conservation. The data remain underpredicted even when inmedium potentials acting on hadrons are taken into account. This hints to non-equilibrium production of the Ξ hyperons and their continuous freeze-out.
Effect of seeding rate on organic production
Technology Transfer Automated Retrieval System (TEKTRAN)
Increased demand for organic rice (Oryza sativa L.) has incentivized producer conversion from conventional to organically-managed rice production in the U.S. Little is known on the impacts of seeding rate on organic rice production. A completely randomized factorial design with four replications was...
Papadimitriou, Vassileios C; Lazarou, Yannis G; Talukdar, Ranajit K; Burkholder, James B
2011-01-20
Rate coefficients, k, for the gas-phase reactions of Cl atoms and NO(3) radicals with 2,3,3,3-tetrafluoropropene, CF(3)CF═CH(2) (HFO-1234yf), and 1,2,3,3,3-pentafluoropropene, (Z)-CF(3)CF═CHF (HFO-1225ye), are reported. Cl-atom rate coefficients were measured in the fall-off region as a function of temperature (220-380 K) and pressure (50-630 Torr; N(2), O(2), and synthetic air) using a relative rate method. The measured rate coefficients are well represented by the fall-off parameters k(0)(T) = 6.5 × 10(-28) (T/300)(-6.9) cm(6) molecule(-2) s(-1) and k(∞)(T) = 7.7 × 10(-11) (T/300)(-0.65) cm(3) molecule(-1) s(-1) for CF(3)CF═CH(2) and k(0)(T) = 3 × 10(-27) (T/300)(-6.5) cm(6) molecule(-2) s(-1) and k(∞)(T) = 4.15 × 10(-11) (T/300)(-0.5) cm(3) molecule(-1) s(-1) for (Z)-CF(3)C═CHF with F(c) = 0.6. Reaction product yields were measured in the presence of O(2) to be (98 ± 7)% for CF(3)C(O)F and (61 ± 4)% for HC(O)Cl in the CF(3)CF═CH(2) reaction and (108 ± 8)% for CF(3)C(O)F and (112 ± 8)% for HC(O)F in the (Z)-CF(3)CF═CHF reaction, where the quoted uncertainties are 2σ (95% confidence level) and include estimated systematic errors. NO(3) reaction rate coefficients were determined using absolute and relative rate methods. Absolute measurements yielded upper limits for both reactions between 233 and 353 K, while the relative rate measurements yielded k(3)(295 K) = (2.6 ± 0.25) × 10(-17) cm(3) molecule(-1) s(-1) and k(4)(295 K) = (4.2 ± 0.5) × 10(-18) cm(3) molecule(-1) s(-1) for CF(3)CF═CH(2) and (Z)-CF(3)CF═CHF, respectively. The Cl-atom reaction with CF(3)CF═CH(2) and (Z)-CF(3)CF═CHF leads to decreases in their atmospheric lifetimes and global warming potentials and formation of a chlorine-containing product, HC(O)Cl, for CF(3)CF═CH(2). The NO(3) reaction has been shown to have a negligible impact on the atmospheric lifetimes of CF(3)CF═CH(2) and (Z)-CF(3)CF═CHF. The energetics for the reaction of Cl, NO(3), and OH with CF
Calculation of Reactive-evaporation Rates of Chromia
Holcomb, G.R.
2008-04-01
A methodology is developed to calculate Cr-evaporation rates from Cr2O3 with a flat planar geometry. Variables include temperature, total pressure, gas velocity, and gas composition. The methodology was applied to solid-oxide, fuel cell conditions for metallic interconnects and to advanced-steam turbines conditions. The high velocities and pressures of the advanced steam turbine led to evaporation predictions as high as 5.18 9 10-8 kg/m2/s of CrO2(OH)2(g) at 760 °C and 34.5 MPa. This is equivalent to 0.080 mm per year of solid Cr loss. Chromium evaporation is expected to be an important oxidation mechanism with the types of nickel-base alloys proposed for use above 650 °C in advanced-steam boilers and turbines. It is shown that laboratory experiments, with much lower steam velocities and usually much lower total pressure than found in advanced steam turbines, would best reproduce chromium-evaporation behavior with atmospheres that approach either O2 + H2O or air + H2O with 57% H2O.
Photolysis Rate Coefficient Calculations in Support of SOLVE Campaign
NASA Technical Reports Server (NTRS)
Lloyd, Steven A.; Swartz, William H.
2001-01-01
The objectives for this SOLVE project were 3-fold. First, we sought to calculate a complete set of photolysis rate coefficients (j-values) for the campaign along the ER-2 and DC-8 flight tracks. En route to this goal, it would be necessary to develop a comprehensive set of input geophysical conditions (e.g., ozone profiles), derived from various climatological, aircraft, and remotely sensed datasets, in order to model the radiative transfer of the atmosphere accurately. These j-values would then need validation by comparison with flux-derived j-value measurements. The second objective was to analyze chemistry along back trajectories using the NASA/Goddard chemistry trajectory model initialized with measurements of trace atmospheric constituents. This modeling effort would provide insight into the completeness of current measurements and the chemistry of Arctic wintertime ozone loss. Finally, we sought to coordinate stellar occultation measurements of ozone (and thus ozone loss) during SOLVE using the MSX/UVISI satellite instrument. Such measurements would determine ozone loss during the Arctic polar night and represent the first significant science application of space-based stellar occultation in the Earth's atmosphere.
Photolysis Rate Coefficient Calculations in Support of SOLVE Campaign
NASA Technical Reports Server (NTRS)
Lloyd, Steven A.; Swartz, William H.
2001-01-01
The objectives for this SOLVE project were 3-fold. First, we sought to calculate a complete set of photolysis rate coefficients (j-values) for the campaign along the ER-2 and DC-8 flight tracks. En route to this goal, it would be necessary to develop a comprehensive set of input geophysical conditions (e.g., ozone profiles), derived from various climatological, aircraft, and remotely sensed datasets, in order to model the radiative transfer of the atmosphere accurately. These j-values would then need validation by comparison with flux-derived j-value measurements. The second objective was to analyze chemistry along back trajectories using the NASA/Goddard chemistry trajectory model initialized with measurements of trace atmospheric constituents. This modeling effort would provide insight into the completeness of current measurements and the chemistry of Arctic wintertime ozone loss. Finally, we sought to coordinate stellar occultation measurements of ozone (and thus ozone loss) during SOLVE using the Midcourse Space Experiment(MSX)/Ultraviolet and Visible Imagers and Spectrographic Imagers (UVISI) satellite instrument. Such measurements would determine ozone loss during the Arctic polar night and represent the first significant science application of space-based stellar occultation in the Earth's atmosphere.
A method for calculating the productivity of cable communications networks
NASA Astrophysics Data System (ADS)
Shulikin, S. N.; Shulikina, M. S.; Maryin, S. S.; Vinogradova, D. V.; Zavgorodnyaya, M. E.
2016-04-01
A probabilistic-mathematical instrument was used to develop a method for calculating the productivity of a cable line. The effect of deviation of factors from data of recording devices was determined when identifying random stream characteristics. The developed method was used to perform predictive calculation of the productivity of the modern cable communication line.
42 CFR 413.312 - Methodology for calculating rates.
Code of Federal Regulations, 2010 CFR
2010-10-01
... SERVICES; OPTIONAL PROSPECTIVELY DETERMINED PAYMENT RATES FOR SKILLED NURSING FACILITIES Prospectively Determined Payment Rates for Low-Volume Skilled Nursing Facilities, for Cost Reporting Periods...
20 CFR 10.216 - How is the pay rate for COP calculated?
Code of Federal Regulations, 2011 CFR
2011-04-01
... 20 Employees' Benefits 1 2011-04-01 2011-04-01 false How is the pay rate for COP calculated? 10..., AS AMENDED Continuation of Pay Calculation of Cop § 10.216 How is the pay rate for COP calculated? The employer shall calculate COP using the period of time and the weekly pay rate. (a) The pay...
20 CFR 10.216 - How is the pay rate for COP calculated?
Code of Federal Regulations, 2010 CFR
2010-04-01
... 20 Employees' Benefits 1 2010-04-01 2010-04-01 false How is the pay rate for COP calculated? 10..., AS AMENDED Continuation of Pay Calculation of Cop § 10.216 How is the pay rate for COP calculated? The employer shall calculate COP using the period of time and the weekly pay rate. (a) The pay...
Rate of nova production in the Galaxy
Liller, W.; Mayer, B.
1987-07-01
The ongoing PROBLICOM program in the Southern Hemisphere now makes it possible to derive a reliable value for the overall production rate of Galactic novae. The results, 73 + or - 24/y, indicates that the Galaxy outproduces M 31 by a factor of two or three. It is estimated that the rate of supernova ejecta is one and a half orders of magnitude greater than that of novae in the Galaxy. 15 references.
Code System to Calculate Integral Parameters with Reaction Rates from WIMS Output.
Energy Science and Technology Software Center (ESTSC)
1994-10-25
Version 00 REACTION calculates different integral parameters related to neutron reactions on reactor lattices, from reaction rates calculated with WIMSD4 code, and comparisons with experimental values.
Modeling of asteroidal dust production rates
NASA Technical Reports Server (NTRS)
Durda, Daniel D.; Dermott, Stanley F.; Gustafson, Bo A. S.
1992-01-01
The production rate of dust associated with the prominent Hirayama asteroid families and the background asteroidal population are modeled with the intent of using the families as a calibrator of mainbelt dust production. However, the dust production rates of asteroid families may be highly stochastic; there is probably more than an order of magnitude variation in the total area of dust associated with a family. Over 4.5 x 10(exp 9) years of collisional evolution, the volume (mass) of a family is ground down by an order of magnitude, suggesting a similar loss from the entire mainbelt population. Our collisional models show that the number of meteoroids deliverable to Earth also varies stochastically, but only by a factor of 2 to 3.
Calculation of kinetic rate constants from thermodynamic data
NASA Technical Reports Server (NTRS)
Marek, C. John
1995-01-01
A new scheme for relating the absolute value for the kinetic rate constant k to the thermodynamic constant Kp is developed for gases. In this report the forward and reverse rate constants are individually related to the thermodynamic data. The kinetic rate constants computed from thermodynamics compare well with the current kinetic rate constants. This method is self consistent and does not have extensive rules. It is first demonstrated and calibrated by computing the HBr reaction from H2 and Br2. This method then is used on other reactions.
Photochemical Production Rates in Western Houston
Berkowitz, Carl M.; Spicer, C. W.; Doskey, Paul V.
2004-01-01
In this paper, we evaluate the instantaneous O3 chemical production rates, NOx (= NO + NO2) loss rates and ozone production efficiency within ozone plumes sampled on the west side of Houston, Texas, during the Texas 2000 Air Quality Study. We emphasize days during which rapid increases associated with plume passage were observed in the 15-minute average ozone mixing ratio, O3. The basis for this work will be observations of key nitrogen species and VOCs collected from the top of a sky scraper on the western edge of the city. These observations are used in a 0-dimensional model to quantify the chemical kinetics within parcels of air associated with ozone levels in excess of 100 ppb. We identify the key VOCs affecting ozone production and assess the relative role of anthropogenic versus biogenic VOCs to local ozone production. We also examine how the daily variations in ozone production and ozone production efficiencies are related to differences in VOC/NOx ratios.
49 CFR 1141.1 - Procedures to calculate interest rates.
Code of Federal Regulations, 2014 CFR
2014-10-01
.... Prime Rate as published by The Wall Street Journal. The rate levels will be determined as follows: (1... Street Journal in effect on the date the statement is filed accounting for all amounts received under the... by The Wall Street Journal in effect on the day when the unlawful charge is paid. The interest...
Ultrasonic energy in liposome production: process modelling and size calculation.
Barba, A A; Bochicchio, S; Lamberti, G; Dalmoro, A
2014-04-21
The use of liposomes in several fields of biotechnology, as well as in pharmaceutical and food sciences is continuously increasing. Liposomes can be used as carriers for drugs and other active molecules. Among other characteristics, one of the main features relevant to their target applications is the liposome size. The size of liposomes, which is determined during the production process, decreases due to the addition of energy. The energy is used to break the lipid bilayer into smaller pieces, then these pieces close themselves in spherical structures. In this work, the mechanisms of rupture of the lipid bilayer and the formation of spheres were modelled, accounting for how the energy, supplied by ultrasonic radiation, is stored within the layers, as the elastic energy due to the curvature and as the tension energy due to the edge, and to account for the kinetics of the bending phenomenon. An algorithm to solve the model equations was designed and the relative calculation code was written. A dedicated preparation protocol, which involves active periods during which the energy is supplied and passive periods during which the energy supply is set to zero, was defined and applied. The model predictions compare well with the experimental results, by using the energy supply rate and the time constant as fitting parameters. Working with liposomes of different sizes as the starting point of the experiments, the key parameter is the ratio between the energy supply rate and the initial surface area. PMID:24647821
Towards a Model for Protein Production Rates
NASA Astrophysics Data System (ADS)
Dong, J. J.; Schmittmann, B.; Zia, R. K. P.
2007-07-01
In the process of translation, ribosomes read the genetic code on an mRNA and assemble the corresponding polypeptide chain. The ribosomes perform discrete directed motion which is well modeled by a totally asymmetric simple exclusion process (TASEP) with open boundaries. Using Monte Carlo simulations and a simple mean-field theory, we discuss the effect of one or two "bottlenecks" (i.e., slow codons) on the production rate of the final protein. Confirming and extending previous work by Chou and Lakatos, we find that the location and spacing of the slow codons can affect the production rate quite dramatically. In particular, we observe a novel "edge" effect, i.e., an interaction of a single slow codon with the system boundary. We focus in detail on ribosome density profiles and provide a simple explanation for the length scale which controls the range of these interactions.
49 CFR 1141.1 - Procedures to calculate interest rates.
Code of Federal Regulations, 2010 CFR
2010-10-01
... Section 1141.1 Transportation Other Regulations Relating to Transportation (Continued) SURFACE... quarter in which an unlawful charge is paid. The interest rate in complaint proceedings shall be updated... complaint proceedings, the reparations period shall begin on the date the unlawful charge is paid....
49 CFR 1141.1 - Procedures to calculate interest rates.
Code of Federal Regulations, 2011 CFR
2011-10-01
... Section 1141.1 Transportation Other Regulations Relating to Transportation (Continued) SURFACE... quarter in which an unlawful charge is paid. The interest rate in complaint proceedings shall be updated... complaint proceedings, the reparations period shall begin on the date the unlawful charge is paid....
The effect of direct positron production on relativistic feedback rates
NASA Astrophysics Data System (ADS)
Vodopiyanov, I. B.; Dwyer, J. R.; Lucia, R. J.; Cramer, E. S.; Arabshahi, S.; Rassoul, H.
2013-12-01
Relativistic feedback produces a self-sustaining runaway electron discharge via the production of backward propagating positrons and back-scattered x-rays. To date, only positrons created from pair-production by gamma-rays interacting with the air have been considered. In contrast, direct pair-production involves the creation of electron-positron pairs directly from the interaction of energetic runaway electrons with nuclei, and so it does not require the generation of bremsstrahlung gamma-rays. For high electric fields, where the runaway electron avalanche length scales are short, pair-production involving bremsstrahlung gamma-rays makes a smaller contribution to the total relativistic feedback rates than at lower fields, since both the bremsstrahlung interaction and the pair-production need to occur over a short length. On the other hand, for high fields, because direct positron production only involves one interaction, it may make a significant contribution to relativistic feedback rates in some cases. In this poster, we shall present the direct positron production cross-sections and calculate the effects on the relativistic feedback rates due to this process.
Influence of sampling rate on the calculated fidelity of an aircraft simulation
NASA Technical Reports Server (NTRS)
Howard, J. C.
1983-01-01
One of the factors that influences the fidelity of an aircraft digital simulation is the sampling rate. As the sampling rate is increased, the calculated response of the discrete representation tends to coincide with the response of the corresponding continuous system. Because of computer limitations, however, the sampling rate cannot be increased indefinitely. Moreover, real-time simulation requirements demand that a finite sampling rate be adopted. In view of these restrictions, a study was undertaken to determine the influence of sampling rate on the response characteristics of a simulated aircraft describing short-period oscillations. Changes in the calculated response characteristics of the simulated aircraft degrade the fidelity of the simulation. In the present context, fidelity degradation is defined as the percentage change in those characteristics that have the greatest influence on pilot opinion: short period frequency omega, short period damping ratio zeta, and the product omega zeta. To determine the influence of the sampling period on these characteristics, the equations describing the response of a DC-8 aircraft to elevator control inputs were used. The results indicate that if the sampling period is too large, the fidelity of the simulation can be degraded.
On the figure of merit model for SEU rate calculations
Barak, J.; Reed, R.A.; LaBel, K.A.
1999-12-01
Petersen has introduced a one parameter characterization of a device by the Figure of Merit (FOM). It was claimed that this parameter was sufficient to estimate the SEU rate in almost all orbits. The present paper presents an analytic study of the FOM concept and compares the FOM model with other empirical models. It is found that indeed the FOM parameter gives, in most cases, a good agreement with the rates found using the full SEU cross section plots of the devices. The agreement is poorer in cases where a high portion of the proton flux comes from low energy protons and for very SEU-hard devices. This is demonstrated for certain devices (FPGAs) where the FOM predicted by proton may be smaller by an order of magnitude than the FOM from heavy ions.
'Nose method' of calculating critical cooling rates for glass formation
NASA Technical Reports Server (NTRS)
Weinberg, Michael C.; Uhlmann, Donald R.; Zanotto, Edgar D.
1989-01-01
The use of the so-called 'nose method' for computing critical cooling rates for glass formation is examined and compared with other methods, presenting data for the glass-forming systems SiO2, GeO2, and P2O5. It is shown that, for homogeneous crystallization, the nose-method will give an overestimate of Rc, a conclusion which was drawn after assessing the enfluence of a range of values for the parameters which control crystal growth and nucleation. The paper also proposes an alternative simple procedure (termed the 'cutoff method') for computing critical cooling rates from T-T-T diagrams, which was shown in the SiO2 and GeO2 systems to be superior to the nose method.
Calculations on decay rates of various proton emissions
NASA Astrophysics Data System (ADS)
Qian, Yibin; Ren, Zhongzhou
2016-03-01
Proton radioactivity of neutron-deficient nuclei around the dripline has been systematically studied within the deformed density-dependent model. The crucial proton-nucleus potential is constructed via the single-folding integral of the density distribution of daughter nuclei and the effective M3Y nucleon-nucleon interaction or the proton-proton Coulomb interaction. After the decay width is obtained by the modified two-potential approach, the final decay half-lives can be achieved by involving the spectroscopic factors from the relativistic mean-field (RMF) theory combined with the BCS method. Moreover, a simple formula along with only one adjusted parameter is tentatively proposed to evaluate the half-lives of proton emitters, where the introduction of nuclear deformation is somewhat discussed as well. It is found that the calculated results are in satisfactory agreement with the experimental values and consistent with other theoretical studies, indicating that the present approach can be applied to the case of proton emission. Predictions on half-lives are made for possible proton emitters, which may be useful for future experiments.
Dose Rate Calculation of TRU Metal Ingot in Pyroprocessing - 12202
Lee, Yoon Hee; Lee, Kunjai
2012-07-01
Spent fuel management has been a main problem to be solved for continuous utilization of nuclear energy. Spent fuel management policy of Korea is 'Wait and See'. It is focused on Pyro-process and SFR (Sodium-cooled Fast Reactor) for closed-fuel cycle research and development in Korea. For peaceful use of nuclear facilities, the proliferation resistance has to be proved. Proliferation resistance is one of key constraints in the deployment of advanced nuclear energy systems. Non-proliferation and safeguard issues have been strengthening internationally. Barriers to proliferation are that reduces desirability or attractiveness as an explosive and makes it difficult to gain access to the materials, or makes it difficult to misuse facilities and/or technologies for weapons applications. Barriers to proliferation are classified into intrinsic and extrinsic barriers. Intrinsic barrier is inherent quality of reactor materials or the fuel cycle that is built into the reactor design and operation such as material and technical barriers. As one of the intrinsic measures, the radiation from the material is considered significantly. Therefore the radiation of TRU metal ingot from the pyro-process was calculated using ORIGEN and MCNP code. (authors)
ATMS Snowfall Rate Product and Its Applications
NASA Astrophysics Data System (ADS)
Meng, H.; Kongoli, C.; Dong, J.; Wang, N. Y.; Ferraro, R. R.; Zavodsky, B.; Banghua Yan, B.
2015-12-01
A snowfall rate (SFR) algorithm has been developed for the Advanced Technology Microwave Sounder (ATMS) aboard S-NPP and future JPSS satellites. The product is based on the NOAA/NESDIS operational Microwave Humidity Sounder (MHS) SFR but with several key advancements. The algorithm has benefited from continuous development to improve accuracy and snowfall detection efficiency. The enhancements also expand the applicable temperature range for the algorithm and allow significantly more snowfall to be detected than the operational SFR. Another major improvement is the drastically reduced product latency by using Direct Broadcast (DB) data. The new developments have also been implemented in the MHS SFR to ensure product consistency across satellites. Currently, there are five satellites that carry either ATMS or MHS: S-NPP, NOAA-18/-19 and Metop-A/-B. The combined satellites deliver up to ten SFR estimates a day at any location over land in mid-latitudes. The product provides much needed winter precipitation estimates for applications such as weather forecasting and hydrology. Both ATMS and MHS SFR serve as input to a global precipitation analysis product, the NOAA/NCEP CMORPH-Snow. SFR is the sole satellite-based snowfall estimates in the blended product. In addition, ATMS and MHS SFR was assessed at several NWS Weather Forecast Offices (WFOs) and NESDIS/Satellite Analysis Branch (SAB) for its operational values in winter 2015. This is a joint effort among NASA/SPoRT, NOAA/NESDIS, University of Maryland/CICS, and the WFOs. The feedback from the assessment indicated that SFR provides useful information for snowfall forecast. It is especially valuable for areas with poor radar coverage and ground observations. The feedback also identified some limitations of the product such as inadequate detection of shallow snowfall. The algorithm developers will continue to improve product quality as well as developing SFR for new microwave sensors and over ocean in a project
Calculation of fusion product angular correlation coefficients for fusion plasmas
Murphy, T.J.
1987-08-01
The angular correlation coefficients for fusion products are calculated in the cases of Maxwellian and beam-target plasmas. Measurement of these coefficients as a localized ion temperature or fast-ion diagnostic is discussed. 8 refs., 7 figs., 1 tab.
Methodology for calculation of carbon balances for biofuel crops production
NASA Astrophysics Data System (ADS)
Gerlfand, I.; Hamilton, S. K.; Snapp, S. S.; Robertson, G. P.
2012-04-01
Understanding the carbon balance implications for different biofuel crop production systems is important for the development of decision making tools and policies. We present here a detailed methodology for assessing carbon balances in agricultural and natural ecosystems. We use 20 years of data from Long-term Ecological Research (LTER) experiments at the Kellogg Biological Station (KBS), combined with models to produce farm level CO2 balances for different management practices. We compared four grain and one forage systems in the U.S. Midwest: corn (Zea mays) - soybean (Glycine max) - wheat (Triticum aestivum) rotations managed with (1) conventional tillage, (2) no till, (3) low chemical input, and (4) biologically-based (organic) practices; and (5) continuous alfalfa (Medicago sativa). In addition we use an abandoned agricultural field (successionnal ecosystem) as reference system. Measurements include fluxes of N2O and CH4, soil organic carbon change, agricultural yields, and agricultural inputs (e.g. fertilization and farm fuel use). In addition to measurements, we model carbon offsets associated with the use of bioenergy from agriculturally produced crops. Our analysis shows the importance of establishing appropriate system boundaries for carbon balance calculations. We explore how different assumptions regarding production methods and emission factors affect overall conclusions on carbon balances of different agricultural systems. Our results show management practices that have major the most important effects on carbon balances. Overall, agricultural management with conventional tillage was found to be a net CO2 source to the atmosphere, while agricultural management under reduced tillage, low input, or organic management sequestered carbon at rates of 93, -23, -51, and -14 g CO2e m-2 yr-1, respectively for conventionally tilled, no-till, low-input, and organically managed ecosystems. Perennial systems (alfalfa and the successionnal fields) showed net carbon
42 CFR 413.337 - Methodology for calculating the prospective payment rates.
Code of Federal Regulations, 2010 CFR
2010-10-01
...-STAGE RENAL DISEASE SERVICES; OPTIONAL PROSPECTIVELY DETERMINED PAYMENT RATES FOR SKILLED NURSING FACILITIES Prospective Payment for Skilled Nursing Facilities § 413.337 Methodology for calculating...
Production rates of neon xenon isotopes by energetic neutrons
NASA Technical Reports Server (NTRS)
Leich, D. A.; Borg, R. J.; Lanier, V. B.
1986-01-01
As a first step in an experimental program to study the behavior of noble gases produced in situ in minerals, a suite of minerals and pure chemicals were irradiated with 14.5 MeV neutrons at LLNL's Rotating Target Neutron Source (RTNS-II) and production rates for noble gases were determined. While neutron effects in meteorites and lunar samples are dominated by low-energy neutron capture, more energetic cosmic-ray secondary neutrons can provide significant depth-dependent contributions to production of cosmogenic nuclides through endothermic reactions such as (n,2n), (n,np), (n,d) and (n,alpha). Production rates for nuclides produced by cosmic-ray secondary neutrons are therefore useful in interpreting shielding histories from the relative abundances of cosmogenic nuclides. Absolute production cross sections were calculated from isotope dilution analyses of NaCl, Mg, CsCl, and Ba(NO3)2 samples, assuming purity, stoichiometry, and quantitative noble gas retention and extraction. Relative production cross sections determined from neon isotopic ratios in the mineral samples were also considered in evaluating the neon production cross sections. Results are presented.
Using a Calculated Pulse Rate with an Artificial Neural Network to Detect Irregular Interbeats.
Yeh, Bih-Chyun; Lin, Wen-Piao
2016-03-01
Heart rate is an important clinical measure that is often used in pathological diagnosis and prognosis. Valid detection of irregular heartbeats is crucial in the clinical practice. We propose an artificial neural network using the calculated pulse rate to detect irregular interbeats. The proposed system measures the calculated pulse rate to determine an "irregular interbeat on" or "irregular interbeat off" event. If an irregular interbeat is detected, the proposed system produces a danger warning, which is helpful for clinicians. If a non-irregular interbeat is detected, the proposed system displays the calculated pulse rate. We include a flow chart of the proposed software. In an experiment, we measure the calculated pulse rates and achieve an error percentage of < 3% in 20 participants with a wide age range. When we use the calculated pulse rates to detect irregular interbeats, we find such irregular interbeats in eight participants. PMID:26643078
Freely expanding detonation products: Scaling of rate processes
NASA Astrophysics Data System (ADS)
Greiner, N. R.
1988-03-01
Using the Los Alamos reactive hydrodynamics code KIVA, calculations have been made to simulate the free expansion of cylinders of detonation products into a high vacuum. The emphasis of this paper is on the scaling of rate processes with cylinder size and initial conditions as a function of position in the expanding mass. The processes considered include diffusion, unimolecular decomposition, biomolecular radical reactions, and vibrational relaxation. The calculations also give time-dependent velocity fields; schlieren images; and profiles of density, pressure, and temperature. Many features of the calculations can be compared with experimental observations, including time-delayed schlieren and shadowgraph snapshots, time-dependent absorption spectra, and time-of-arrival profiles of molecular species. Some unexpected insights, such as the effect of the equation of state on the shape of the expanding plume and the effect of position on the rate of quenching, are discussed. These calculations are being used to interpret the available experimental data and to design future experiments.
Factors affecting production rates of cosmogenic nuclides in extraterrestrial matter
NASA Astrophysics Data System (ADS)
Reedy, R. C.
2015-10-01
Good production rates are needed for cosmic-ray-produced nuclides to interpret their measurements. Rates depend on many factors, especially the pre-atmospheric object's size, the location of the sample in that object (such as near surface or deep inside), and the object's bulk composition. The bulk composition affects rates, especially in objects with very low and very high iron contents. Extraterrestrial materials with high iron contents usually have higher rates for making nuclides made by reactions with energetic particles and lower rates for the capture of thermal neutrons. In small objects and near the surface of objects, the cascade of secondary neutrons is being developed as primary particles are being removed. Deep in large objects, that secondary cascade is fully developed and the fluxes of primary particles are low. Recent work shows that even the shape of an object in space has a small but measureable effect. Work has been done and continues to be done on better understanding those and other factors. More good sets of measurements in meteorites with known exposure geometries in space are needed. With the use of modern Monte Carlo codes for the production and transport of particles, the nature of these effects have been and is being studied. Work needs to be done to improve the results of these calculations, especially the cross sections for making spallogenic nuclides.
HU, T.A.
2005-10-27
Assess the steady-state flammability level at normal and off-normal ventilation conditions. The hydrogen generation rate was calculated for 177 tanks using the rate equation model. Flammability calculations based on hydrogen, ammonia, and methane were performed for 177 tanks for various scenarios.
HU TA
2009-10-26
Assess the steady-state flammability level at normal and off-normal ventilation conditions. The hydrogen generation rate was calculated for 177 tanks using the rate equation model. Flammability calculations based on hydrogen, ammonia, and methane were performed for 177 tanks for various scenarios.
7 CFR 760.705 - Payment rates and calculation of payments.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 7 Agriculture 7 2012-01-01 2012-01-01 false Payment rates and calculation of payments. 760.705 Section 760.705 Agriculture Regulations of the Department of Agriculture (Continued) FARM SERVICE AGENCY, DEPARTMENT OF AGRICULTURE SPECIAL PROGRAMS INDEMNITY PAYMENT PROGRAMS Crop Assistance Program § 760.705 Payment rates and calculation of...
Calculating a Cohort Dropout Rate for the Chicago Public Schools: A Technical Research Report.
ERIC Educational Resources Information Center
Allensworth, Elaine; Easton, John Q.
This technical report addresses the complexities of calculating dropout rates and presents results from one method of calculation that represented Chicago Public Schools (CPS) dropout rates over several years. The goal was to develop an indicator that would provide accurate and comparable measurement over a sufficient length of time to reveal the…
7 CFR 760.705 - Payment rates and calculation of payments.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 7 Agriculture 7 2011-01-01 2011-01-01 false Payment rates and calculation of payments. 760.705 Section 760.705 Agriculture Regulations of the Department of Agriculture (Continued) FARM SERVICE AGENCY, DEPARTMENT OF AGRICULTURE SPECIAL PROGRAMS INDEMNITY PAYMENT PROGRAMS Crop Assistance Program § 760.705 Payment rates and calculation of...
7 CFR 760.705 - Payment rates and calculation of payments.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 7 Agriculture 7 2014-01-01 2014-01-01 false Payment rates and calculation of payments. 760.705 Section 760.705 Agriculture Regulations of the Department of Agriculture (Continued) FARM SERVICE AGENCY, DEPARTMENT OF AGRICULTURE SPECIAL PROGRAMS INDEMNITY PAYMENT PROGRAMS Crop Assistance Program § 760.705 Payment rates and calculation of...
7 CFR 760.705 - Payment rates and calculation of payments.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 7 Agriculture 7 2013-01-01 2013-01-01 false Payment rates and calculation of payments. 760.705 Section 760.705 Agriculture Regulations of the Department of Agriculture (Continued) FARM SERVICE AGENCY, DEPARTMENT OF AGRICULTURE SPECIAL PROGRAMS INDEMNITY PAYMENT PROGRAMS Crop Assistance Program § 760.705 Payment rates and calculation of...
42 CFR 412.624 - Methodology for calculating the Federal prospective payment rates.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 42 Public Health 2 2011-10-01 2011-10-01 false Methodology for calculating the Federal prospective... Methodology for calculating the Federal prospective payment rates. (a) Data used. To calculate the prospective..., described in paragraph (a)(3) of this section, under the update methodology described in section...
40 CFR 75.83 - Calculation of Hg mass emissions and heat input rate.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 16 2010-07-01 2010-07-01 false Calculation of Hg mass emissions and... (CONTINUED) AIR PROGRAMS (CONTINUED) CONTINUOUS EMISSION MONITORING Hg Mass Emission Provisions § 75.83 Calculation of Hg mass emissions and heat input rate. The owner or operator shall calculate Hg mass...
NASA Technical Reports Server (NTRS)
Hamilton, H. H., II
1982-01-01
An approximate method for calculating heating rates at general three dimensional stagnation points is presented. The application of the method for making stagnation point heating calculations during atmospheric entry is described. Comparisons with results from boundary layer calculations indicate that the method should provide an accurate method for engineering type design and analysis applications.
A model of northern pintail productivity and population growth rate
Flint, P.L.; Grand, J.B.; Rockwell, R.F.
1998-01-01
Our objective was to synthesize individual components of reproductive ecology into a single estimate of productivity and to assess the relative effects of survival and productivity on population dynamics. We used information on nesting ecology, renesting potential, and duckling survival of northern pintails (Anas acuta) collected on the Yukon-Kuskokvim Delta (Y-K Delta), Alaska, 1991-95, to model the number of ducklings produced under a range of nest success and duckling survival probabilities. Using average values of 25% nest success, 11% duckling survival, and 56% renesting probability from our study population, we calculated that all young in our population were produced by 13% of the breeding females, and that early-nesting females produced more young than later-nesting females. Further, we calculated, on average, that each female produced only 0.16 young females/nesting season. We combined these results with estimates of first-year and adult survival to examine the growth rate (??) of the population and the relative contributions of these demographic parameters to that growth rate. Contrary to aerial survey data, the population projection model suggests our study population is declining rapidly (?? = 0.6969). The relative effects on population growth rate were 0.1175 for reproductive success, 0.1175 for first-year survival, and 0.8825 for adult survival. Adult survival had the greatest influence on ?? for our population, and this conclusion was robust over a range of survival and productivity estimates. Given published estimates of annual survival for adult females (61%), our model suggested nest success and duckling survival need to increase to approximately 40% to achieve population stability. We discuss reasons for the apparent discrepancy in population trends between our model and aerial surveys in terms of bias in productivity and survival estimates.
Calculations of pair production by Monte Carlo methods
Bottcher, C.; Strayer, M.R.
1991-01-01
We describe some of the technical design issues associated with the production of particle-antiparticle pairs in very large accelerators. To answer these questions requires extensive calculation of Feynman diagrams, in effect multi-dimensional integrals, which we evaluate by Monte Carlo methods on a variety of supercomputers. We present some portable algorithms for generating random numbers on vector and parallel architecture machines. 12 refs., 14 figs.
Cosmogenic Ne-21 Production Rates in H-Chondrites Based on Cl-36 - Ar-36 Ages
NASA Technical Reports Server (NTRS)
Leya, I.; Graf, Th.; Nishiizumi, K.; Guenther, D.; Wieler, R.
2000-01-01
We measured Ne-21 production rates in 14 H-chondrites in good agreement with model calculations. The production rates are based on Ne-21 concentrations measured on bulk samples or the non-magnetic fraction and Cl-36 - Ar-36 ages determined from the metal phase.
Production rates of cosmogenic nuclei on the lunar surface
NASA Astrophysics Data System (ADS)
Dong, Tie-Kuang; Yun, Su-Jun; Ma, Tao; Chang, Jin; Dong, Wu-Dong; Zhang, Xiao-Ping; Li, Guo-Long; Ren, Zhong-Zhou
2014-07-01
A physical model for Geant4-based simulation of the galactic cosmic ray (GCR) particles' interaction with the lunar surface matter has been developed to investigate the production rates of cosmogenic nuclei. In this model the GCRs, mainly very high energy protons and α particles, bombard the surface of the Moon and produce many secondary particles, such as protons and neutrons. The energies of protons and neutrons at different depths are recorded and saved as ROOT files, and the analytical expressions for the differential proton and neutron fluxes are obtained through the best-fit procedure using ROOT software. To test the validity of this model, we calculate the production rates of the long-lived nuclei 10Be and 26Al in the Apollo 15 long drill core by combining the above differential fluxes and the newly evaluated spallation reaction cross sections. Our numerical results show that the theoretical production rates agree quite well with the measured data, which means that this model works well. Therefore, it can be expected that this model can be used to investigate the cosmogenic nuclei in future lunar samples returned by the Chinese lunar exploration program and can be extended to study other objects, such as meteorites and the Earth's atmosphere.
Upper limits on production rate of NO per ion pair. [during solar proton event
NASA Technical Reports Server (NTRS)
Jackman, C. H.; Frederick, J. E.; Porter, H. S.
1979-01-01
The maximum production rate of NO per ion pair during a solar proton event has been calculated using an approach described by Porter et al. (1976). For altitudes between 80 and 120 km the calculation yields a limit of 2.68 NO per ion pair for 10 keV electrons, a value which is consistent with the rates implied by the measurements of Arnold (1978) as quoted by Fabian et al. (1979). For altitudes below 80 km the maximum rate of NO production is calculated to be 1.46 to 1.53 NO per ion pair.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-04-12
... inspection, and identification, certification, and laboratory services (74 FR 51800). FSIS also proposed to... increase it to $5,000 for FY 2012 and FY 2013 (74 FR 51802). As FSIS explained in the proposed rule... (71 FR 2135). With this rulemaking, the rates and fees for 2006-2008 were increased and...
The Multi-Step CADIS method for shutdown dose rate calculations and uncertainty propagation
Ibrahim, Ahmad M.; Peplow, Douglas E.; Grove, Robert E.; Peterson, Joshua L.; Johnson, Seth R.
2015-12-01
Shutdown dose rate (SDDR) analysis requires (a) a neutron transport calculation to estimate neutron flux fields, (b) an activation calculation to compute radionuclide inventories and associated photon sources, and (c) a photon transport calculation to estimate final SDDR. In some applications, accurate full-scale Monte Carlo (MC) SDDR simulations are needed for very large systems with massive amounts of shielding materials. However, these simulations are impractical because calculation of space- and energy-dependent neutron fluxes throughout the structural materials is needed to estimate distribution of radioisotopes causing the SDDR. Biasing the neutron MC calculation using an importance function is not simple becausemore » it is difficult to explicitly express the response function, which depends on subsequent computational steps. Furthermore, the typical SDDR calculations do not consider how uncertainties in MC neutron calculation impact SDDR uncertainty, even though MC neutron calculation uncertainties usually dominate SDDR uncertainty.« less
The Multi-Step CADIS method for shutdown dose rate calculations and uncertainty propagation
Ibrahim, Ahmad M.; Peplow, Douglas E.; Grove, Robert E.; Peterson, Joshua L.; Johnson, Seth R.
2015-12-01
Shutdown dose rate (SDDR) analysis requires (a) a neutron transport calculation to estimate neutron flux fields, (b) an activation calculation to compute radionuclide inventories and associated photon sources, and (c) a photon transport calculation to estimate final SDDR. In some applications, accurate full-scale Monte Carlo (MC) SDDR simulations are needed for very large systems with massive amounts of shielding materials. However, these simulations are impractical because calculation of space- and energy-dependent neutron fluxes throughout the structural materials is needed to estimate distribution of radioisotopes causing the SDDR. Biasing the neutron MC calculation using an importance function is not simple because it is difficult to explicitly express the response function, which depends on subsequent computational steps. Furthermore, the typical SDDR calculations do not consider how uncertainties in MC neutron calculation impact SDDR uncertainty, even though MC neutron calculation uncertainties usually dominate SDDR uncertainty.
Dynamical coupled channel calculation of pion and omega meson production
Paris, Mark
2009-01-01
A dynamical coupled channel approach is used to study $\\pi$ and $\\omega$--meson production induced by pions and photons scattering from the proton. Six-channels are used to fit unpolarized and polarized scattering data including $\\pi N$, $\\eta N$, $\\pi\\Delta$, $\\sigma N$, $\\rho N$, $\\omega N$. Bare parameters in an effective hadronic Lagrangian are fixed in $\\chi^2$-fits to data from $\\pi N \\to \\pi N$, $\\gamma N \\to \\pi N$, $\\pi^- p \\to \\omega n$, and $\\gamma p \\to \\omega p$ reactions at center-of-mass energies from threshold to $E < 2.0$ GeV. The $T$ matrix determined in these fits is used to calculate the photon beam asymmetry for $\\omega$-meson production and the $\\omega N \\to \\omega N$ total cross section and scattering lengths.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-02-01
... certain antidumping duty proceedings (75 FR 81533). That proposed rule and proposed modification indicated... International Trade Administration 19 CFR Part 351 RIN 0625-AA87 Antidumping Proceedings: Calculation of the... regarding the calculation of the weighted average dumping margin and antidumping duty assessment rate...
40 CFR 1065.642 - SSV, CFV, and PDP molar flow rate calculations.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 34 2012-07-01 2012-07-01 false SSV, CFV, and PDP molar flow rate calculations. 1065.642 Section 1065.642 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Calculations and Data Requirements § 1065.642...
40 CFR 1065.642 - SSV, CFV, and PDP molar flow rate calculations.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 34 2013-07-01 2013-07-01 false SSV, CFV, and PDP molar flow rate calculations. 1065.642 Section 1065.642 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Calculations and Data Requirements § 1065.642...
40 CFR 1065.642 - SSV, CFV, and PDP molar flow rate calculations.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 33 2011-07-01 2011-07-01 false SSV, CFV, and PDP molar flow rate calculations. 1065.642 Section 1065.642 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Calculations and Data Requirements § 1065.642...
40 CFR 1065.642 - SSV, CFV, and PDP molar flow rate calculations.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 32 2010-07-01 2010-07-01 false SSV, CFV, and PDP molar flow rate calculations. 1065.642 Section 1065.642 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Calculations and Data Requirements § 1065.642...
Dynamical coupled channels calculation of pion and omega meson production
Paris, Mark W.
2009-02-15
The dynamical coupled-channels approach developed at the Excited Baryon Analysis Center is extended to include the {omega}N channel to study {pi}- and {omega}-meson production induced by scattering pions and photons from the proton. Six intermediate channels, including {pi}N, {eta}N, {pi}{delta}, {sigma}N, {rho}N, and {omega}N, are employed to describe unpolarized and polarized data. Bare parameters in an effective hadronic Lagrangian are determined in a fit to the data for {pi}N{yields}{pi}N, {gamma}N{yields}{pi}N, {pi}{sup -}p{yields}{omega}n, and {gamma}p{yields}{omega}p reactions at center-of-mass energies from threshold to W<2.0 GeV. The T matrix determined in these fits is used to calculate the photon beam asymmetry for {omega}-meson production and the {omega}N{yields}{omega}N total cross section and {omega}N-scattering lengths. The calculated beam asymmetry is in good agreement with the observed in the range of energies near threshold to W < or approx. 2.0 GeV.
Relating Productivity Events to Holocene Bivalve Shell Growth Rates
NASA Astrophysics Data System (ADS)
Huntley, J. W.; Krause, R. A.; Kowalewski, M.; Romanek, C. S.; Kaufman, D. S.; Simoes, M. G.
2007-12-01
The growth rate of a bivalve can be influenced by many environmental factors that can change during the life of the organism. In this contribution we present initial data from a millennium scale chronology to assess the relationship between ontogenetic growth in the bivalve Semele casali and paleoenvironmental conditions preserved in the shell using growth increment analysis, radiocarbon-calibrated amino acid racemization dating techniques, stable isotopes (C and O) and high spatial resolution (125-150 samples per cm of shell profile) trace element (Ba, Mn) analysis (LA-ICPMS). Time-averaged specimens of S. casali were dredged from two sites at 10 meters and 30 meters depth along the inner continental shelf at Ubatuba Bay in the Southeast Brazilian Bight, an area influenced by productivity pulses triggered by coastal runoff events and coastal upwelling. Seventy-five individual valves were dated using amino acid racemization (aspartic acid). Dates were calculated using an expanded version of a previously published relationship (Barbour Wood et al., 2006 Quaternary Research 323- 331) between aspartic acid ratios and AMS radiocarbon dates of twelve S. casali individuals from the same sampling locations. The resulting time series has complete coverage for the past three thousand years at centennial resolution. From this time series, a sub-sample of dated valves was selected for more detailed growth increment, stable isotope and high-resolution trace element (Ba/Ca and Mn/Ca) analyses. Oceanic productivity is expressed differentially in the trace element profiles of S. casali with elevated Ba/Ca and Mn/Ca ratios capturing nutrient input through coastal runoff events while elevated Ba/Ca and depressed Mn/Ca ratios represent input through coastal upwelling. Fluctuations in Ba/Ca and Mn/Ca are not correlated to fluctuations in relative growth throughout the ontogeny of an individual bivalve, nor are they expected to be as periods of increased productivity are transient
Calculation of the biological effective dose for piecewise defined dose-rate fits
Hobbs, Robert F.; Sgouros, George
2009-03-15
An algorithmic solution to the biological effective dose (BED) calculation from the Lea-Catcheside formula for a piecewise defined function is presented. Data from patients treated for metastatic thyroid cancer were used to illustrate the solution. The Lea-Catcheside formula for the G-factor of the BED is integrated numerically using a large number of small trapezoidal fits to each integral. The algorithmically calculated BED is compatible with an analytic calculation for a similarly valued exponentially fitted dose-rate plot and is the only resolution for piecewise defined dose-rate functions.
Carbon footprint of Canadian dairy products: calculations and issues.
Vergé, X P C; Maxime, D; Dyer, J A; Desjardins, R L; Arcand, Y; Vanderzaag, A
2013-09-01
The Canadian dairy sector is a major industry with about 1 million cows. This industry emits about 20% of the total greenhouse gas (GHG) emissions from the main livestock sectors (beef, dairy, swine, and poultry). In 2006, the Canadian dairy herd produced about 7.7 Mt of raw milk, resulting in about 4.4 Mt of dairy products (notably 64% fluid milk and 12% cheese). An integrated cradle-to-gate model (field to processing plant) has been developed to estimate the carbon footprint (CF) of 11 Canadian dairy products. The on-farm part of the model is the Unified Livestock Industry and Crop Emissions Estimation System (ULICEES). It considers all GHG emissions associated with livestock production but, for this study, it was run for the dairy sector specifically. Off-farm GHG emissions were estimated using the Canadian Food Carbon Footprint calculator, (cafoo)(2)-milk. It considers GHG emissions from the farm gate to the exit gate of the processing plants. The CF of the raw milk has been found lower in western provinces [0.93 kg of CO2 equivalents (CO2e)/L of milk] than in eastern provinces (1.12 kg of CO2e/L of milk) because of differences in climate conditions and dairy herd management. Most of the CF estimates of dairy products ranged between 1 and 3 kg of CO2e/kg of product. Three products were, however, significantly higher: cheese (5.3 kg of CO2e/kg), butter (7.3 kg of CO2e/kg), and milk powder (10.1 kg of CO2e/kg). The CF results depend on the milk volume needed, the co-product allocation process (based on milk solids content), and the amount of energy used to manufacture each product. The GHG emissions per kilogram of protein ranged from 13 to 40 kg of CO2e. Two products had higher values: cream and sour cream, at 83 and 78 kg of CO2e/kg, respectively. Finally, the highest CF value was for butter, at about 730 kg of CO2e/kg. This extremely high value is due to the fact that the intensity indicator per kilogram of product is high and that butter is almost exclusively
An environmental impact calculator for greenhouse production systems.
Torrellas, Marta; Antón, Assumpció; Montero, Juan Ignacio
2013-03-30
Multiple web-based calculators have come on the market as tools to support sustainable decision making, but few are available to agriculture. Life cycle assessment (LCA) has proved to be an objective, transparent tool for calculating environmental impacts throughout the life cycle of products and services, but can often be too complex for non-specialists. The objective of this study was therefore to develop an environmental support tool to determine the environmental impacts of protected crops. An effort was made to provide an easy-to-use tool in order to reach a wide audience and help horticulture stakeholders choose efficient options to mitigate the environmental impacts of protected crops. Users can estimate the environmental performance of their crops by entering a limited amount of data and following a few easy steps. A questionnaire must be answered with data on the crop, greenhouse dimensions, substrate, waste management, and the consumption of water, energy, fertilisers and pesticides. The calculator was designed as a simplified LCA, based on two scenarios analysed in detail in previous tasks of the EUPHOROS project and used as reference systems in this study. Two spreadsheets were provided based on these reference scenarios: one for a tomato crop in a multi-tunnel greenhouse under Southern European climate conditions and the other for a tomato crop in a Venlo glass greenhouse under Central European climate conditions. The selected functional unit was one tonne of tomatoes. Default data were given for each reference system for users who did not have complete specific data and to provide results for comparison with users' own results. The results were presented for water use as an inventory indicator and for the impact categories abiotic depletion, acidification, eutrophication, global warming, photochemical oxidation and cumulative energy demand. In the multi-tunnel greenhouse, the main contributors based on the default data were the structure, fertilisers
HU, T.A.
2000-04-27
This work is to assess the steady-state flammability level at normal and off-normal ventilation conditions in the tank dome space for 177 double-shell and single-shell tanks at Hanford. Hydrogen generation rate was calculated for 177 tanks using rate equation model developed recently.
31 CFR 356.21 - How are awards at the high yield or discount rate calculated?
Code of Federal Regulations, 2011 CFR
2011-07-01
... 31 Money and Finance:Treasury 2 2011-07-01 2011-07-01 false How are awards at the high yield or... high yield or discount rate calculated? (a) Awards to submitters. We generally prorate bids at the highest accepted yield or discount rate under § 356.20(a)(2) of this part. For example, if 80.15% is...
31 CFR 356.21 - How are awards at the high yield or discount rate calculated?
Code of Federal Regulations, 2010 CFR
2010-07-01
... 31 Money and Finance: Treasury 2 2010-07-01 2010-07-01 false How are awards at the high yield or... high yield or discount rate calculated? (a) Awards to submitters. We generally prorate bids at the highest accepted yield or discount rate under § 356.20(a)(2) of this part. For example, if 80.15% is...
Influences of Response Rate and Distribution on the Calculation of Interobserver Reliability Scores
ERIC Educational Resources Information Center
Rolider, Natalie U.; Iwata, Brian A.; Bullock, Christopher E.
2012-01-01
We examined the effects of several variations in response rate on the calculation of total, interval, exact-agreement, and proportional reliability indices. Trained observers recorded computer-generated data that appeared on a computer screen. In Study 1, target responses occurred at low, moderate, and high rates during separate sessions so that…
Dose Rate Calculations for the 2-MCO/2-DHLW Waste Package
G. Radulescu
2000-10-03
The objective of this calculation is to determine the dose rates on the external surfaces of the waste package (WP) containing two Hanford defense high-level waste (DHLW) glass canisters and two Hanford multi-canister overpacks (MCO). Each MCO is loaded with the N Reactor spent nuclear fuel (SNF). The information provided by the sketches attached to this calculation is that of the potential design for the WP type considered in this calculation. The scope of this calculation is limited to reporting dose rates averaged over segments of the WP radial and axial surfaces and of surfaces 1 m and 2 m from the WP. The results of this calculation will be used to assess the shielding performance of the 2-MC012-DHLW WP engineering design.
NASA Technical Reports Server (NTRS)
Quinn, Robert D.; Gong, Leslie
2000-01-01
This report describes a method that can calculate transient aerodynamic heating and transient surface temperatures at supersonic and hypersonic speeds. This method can rapidly calculate temperature and heating rate time-histories for complete flight trajectories. Semi-empirical theories are used to calculate laminar and turbulent heat transfer coefficients and a procedure for estimating boundary-layer transition is included. Results from this method are compared with flight data from the X-15 research vehicle, YF-12 airplane, and the Space Shuttle Orbiter. These comparisons show that the calculated values are in good agreement with the measured flight data.
Addressing Fission Product Validation in MCNP Burnup Credit Criticality Calculations
Mueller, Don; Bowen, Douglas G; Marshall, William BJ J
2015-01-01
The US Nuclear Regulatory Commission (NRC) Division of Spent Fuel Storage and Transportation issued Interim Staff Guidance (ISG) 8, Revision 3 in September 2012. This ISG provides guidance for NRC staff members’ review of burnup credit (BUC) analyses supporting transport and dry storage of pressurized water reactor spent nuclear fuel (SNF) in casks. The ISG includes guidance for addressing validation of criticality (k_{eff}) calculations crediting the presence of a limited set of fission products and minor actinides (FP&MAs). Based on previous work documented in NRC Regulatory Guide (NUREG) Contractor Report (CR)-7109, the ISG recommends that NRC staff members accept the use of either 1.5 or 3% of the FP&MA worth—in addition to bias and bias uncertainty resulting from validation of k_{eff} calculations for the major actinides in SNF—to conservatively account for the bias and bias uncertainty associated with the specified unvalidated FP&MAs. The ISG recommends (1) use of 1.5% of the FP&MA worth if a modern version of SCALE and its nuclear data are used and (2) 3% of the FP&MA worth for well qualified, industry standard code systems other than SCALE with the Evaluated Nuclear Data Files, Part B (ENDF/B),-V, ENDF/B-VI, or ENDF/B-VII cross sections libraries. The work presented in this paper provides a basis for extending the use of the 1.5% of the FP&MA worth bias to BUC criticality calculations performed using the Monte Carlo N-Particle (MCNP) code. The extended use of the 1.5% FP&MA worth bias is shown to be acceptable by comparison of FP&MA worths calculated using SCALE and MCNP with ENDF/B-V, -VI, and -VII–based nuclear data. The comparison supports use of the 1.5% FP&MA worth bias when the MCNP code is used for criticality calculations, provided that the cask design is similar to the hypothetical generic BUC-32 cask model and that the credited FP&MA worth is no more than 0.1 Δk_{eff} (ISG-8, Rev. 3, Recommendation 4).
NASA Technical Reports Server (NTRS)
Lim, J. T.; Raper, C. D. Jr; Gold, H. J.; Wilkerson, G. G.; Raper CD, J. r. (Principal Investigator)
1989-01-01
A simple mathematical model for calculating the concentration of mobile carbon skeletons in the shoot of soya bean plants [Glycine max (L.) Merrill cv. Ransom] was built to examine the suitability of measured net photosynthetic rates (PN) for calculation of saccharide flux into the plant. The results suggest that either measurement of instantaneous PN overestimated saccharide influx or respiration rates utilized in the model were underestimated. If neither of these is the case, end-product inhibition of photosynthesis or waste respiration through the alternative pathway should be included in modelling of CH2O influx or efflux; and even if either of these is the case, the model output at a low coefficient of leaf activity indicates that PN still may be controlled by either end-product inhibition or alternative respiration.
Variations of cosmogenic radionuclide production rates along the meteorite orbits
NASA Astrophysics Data System (ADS)
Alexeev, V. A.; Laubenstein, M.; Povinec, P. P.; Ustinova, G. K.
2015-08-01
Cosmogenic radionuclides produced by galactic cosmic rays (GCR) in meteorites during their motion in space are natural detectors of the GCR intensity and variations along the meteorite orbits. On the basis of measured and calculated contents of cosmogenic radionuclides in the freshly fallen Chelyabinsk and Košice chondrites some peculiarities of generation of cosmogenic radionuclides of different half-lives in the chondrites of different orbits and dates of fall onto the Earth are demonstrated. Dependence of production rates of the radionuclides on the GCR variations in the heliosphere is analyzed. Using radionuclides with different half-lives it is possible to compare the average GCR intensity over various time periods. The measurement and theoretical analysis of cosmogenic radionuclides in consecutively fallen chondrites provide a unique information on the space-time continuum of the cosmogenic radionuclide production rates and their variations over a long time scale, which could be useful in correlative analyses of processes in the heliosphere. Some applications of cosmogenic radionuclide depth distribution in chondrites for estimation of their pre-atmospheric sizes are illustrated.
Pair production rates in mildly relativistic, magnetized plasmas
NASA Technical Reports Server (NTRS)
Burns, M. L.; Harding, A. K.
1984-01-01
Electron-positron pairs may be produced by either one or two photons in the presence of a strong magnetic field. In magnetized plasmas with temperatures kT approximately sq mc, both of these processes may be important and could be competitive. The rates of one-photon and two-photon pair production by photons with Maxwellian, thermal bremsstrahlung, thermal synchrotron and power law spectra are calculated as a function of temperature or power law index and field strength. This allows a comparison of the two rates and a determination of the conditions under which each process may be a significant source of pairs in astrophysical plasmas. It is found that for photon densities n(gamma) or = 10 to the 25th power/cu cm and magnetic field strengths B or = 10 to the 12th power G, one-photon pair production dominates at kT approximately sq mc for a Maxwellian, at kT approximately 2 sq mc for a thermal bremsstrahlung spectrum, at all temperatures for a thermal synchrotron spectrum, and for power law spectra with indices s approximately 4.
Cheng, Yuhui; Suen, Jason K.; Zhang, Deqiang; Bond, Stephen D.; Zhang, Yongjie; Song, Yuhua; Baker, Nathan A.; Bajaj, Chandrajit L.; Holst, Michael J.; McCammon, J. Andrew
2007-01-01
This article describes the numerical solution of the time-dependent Smoluchowski equation to study diffusion in biomolecular systems. Specifically, finite element methods have been developed to calculate ligand binding rate constants for large biomolecules. The resulting software has been validated and applied to the mouse acetylcholinesterase (mAChE) monomer and several tetramers. Rates for inhibitor binding to mAChE were calculated at various ionic strengths with several different time steps. Calculated rates show very good agreement with experimental and theoretical steady-state studies. Furthermore, these finite element methods require significantly fewer computational resources than existing particle-based Brownian dynamics methods and are robust for complicated geometries. The key finding of biological importance is that the rate accelerations of the monomeric and tetrameric mAChE that result from electrostatic steering are preserved under the non-steady-state conditions that are expected to occur in physiological circumstances. PMID:17307827
Recent Augmentations of the Functionality of the Thermonuclear Reaction Rate Calculator (TReRaC)
NASA Astrophysics Data System (ADS)
Thomsen, Kyle; Smith, Michael
2011-10-01
The chemical variety of our universe can be explained by stellar nucleosynthesis. Many thermonuclear reactions are studied by reproducing them in accelerator experiments and determining their rates. Using the codes available through the Computational Infrastructure for Nuclear Astrophysics (CINA), researchers can process the results of these experiments. One such program is the Thermonuclear Reaction Rate Calculator (TReRaC), which uses various experimental inputs including resonant energies, strengths, channel widths, and information on non-resonant contributions to calculate reaction rates. Presently, TReRaC is capable of quickly generating accurate rates which closely match those given in a number of publications. This adds to CINA capabilities by enabling a wider variety of nuclear information to generate rates. The next step in TReRaC's evolution is integration into the existing CINA complex so that it can be used by researchers worldwide.
Neutron and photon effective dose equivalent rate calculations for the repackaging of tru waste
Sattelberger, J. A.
2002-01-01
Neutron and photon effective dose equivalent rates were estimated for operations that will occur in the characterization and repackaging of transuranic (TRU) waste drums. These activities will be performed in structures called Mobile Units (MU). A MU is defined as a modular and transportable container, also called a transportainer. The transportainers have been designed to house a process required for certification of TRU wastes. The purpose of these calculations was to provide dose rates from Pu-238 TRU waste in various locations in the transportainer using MCNP-4C. In addition to dose rates for the various radiological operations in the repackaging area, the dose rate from the adjacent storage area was calculated to determine the contribution to the total dose rate.
NASA Technical Reports Server (NTRS)
Haider, S. A.; Kim, J.; Nagy, A. F.; Keller, C. N.; Verigin, M. I.; Gringauz, K. I.; Shutte, N. M.; Szego, K.; Kiraly, P.
1992-01-01
The calculations presented in this paper clearly establish that the electron fluxes measured by the HARP instrument, carried on board Phobos 2, could cause significant electron impact ionization and excitation in the nightside atmosphere of Mars, if these electrons actually do precipitate. The calculated peak electron densities were found to be about a factor of 2 larger than the mean observed nightside densities, indicating that if a significant fraction of the measured electrons actually precipitate, they could be the dominant mechanism responsible for maintaining the nightside ionosphere. The calculated zenith column emission rates of the O I 5577-A and 6300-A and CO Cameron band emissions, due to electron impact and dissociative recombination mechanisms, were found to be significant.
First-principles calculations for the tunnel ionization rate of atoms and molecules
Otobe, T.; Yabana, K.; Iwata, J.-I.
2004-05-01
We present first-principles calculations for the tunnel ionization rate of some atoms and molecules in a static intense electric field. The Gamow state is calculated to describe the ionization process in the Kohn-Sham formalism with the self-interaction correction. The tunnel ionization rate is obtained from the imaginary part of the Gamow state eigenvalue. The ionization rates of rare-gas atoms Ar and Xe and diatomic molecules N{sub 2}, O{sub 2}, and F{sub 2} are investigated. The calculations describe well the observed behavior of the tunnel ionization. The results also show good correspondence with the Ammosov-Delone-Krainov model for rare-gas atoms. We find that the properties of the highest occupied orbital have significant effects on the ionization rate. In particular, our calculation reproduces the suppression of the ionization rate of O{sub 2} molecule in comparison with that of Xe atom. We also find that the ionization rates of O{sub 2} and F{sub 2} molecules are very sensitive to the relative angle between the electric field and the molecular axis, reflecting properties of the highest occupied orbital.
Ab Initio Calculation of Rate Constants for Molecule–Surface Reactions with Chemical Accuracy
Piccini, GiovanniMaria; Alessio, Maristella
2016-01-01
Abstract The ab initio prediction of reaction rate constants for systems with hundreds of atoms with an accuracy that is comparable to experiment is a challenge for computational quantum chemistry. We present a divide‐and‐conquer strategy that departs from the potential energy surfaces obtained by standard density functional theory with inclusion of dispersion. The energies of the reactant and transition structures are refined by wavefunction‐type calculations for the reaction site. Thermal effects and entropies are calculated from vibrational partition functions, and the anharmonic frequencies are calculated separately for each vibrational mode. This method is applied to a key reaction of an industrially relevant catalytic process, the methylation of small alkenes over zeolites. The calculated reaction rate constants (free energies), pre‐exponential factors (entropies), and enthalpy barriers show that our computational strategy yields results that agree with experiment within chemical accuracy limits (less than one order of magnitude). PMID:27008460
Ab Initio Calculation of Rate Constants for Molecule-Surface Reactions with Chemical Accuracy.
Piccini, GiovanniMaria; Alessio, Maristella; Sauer, Joachim
2016-04-18
The ab initio prediction of reaction rate constants for systems with hundreds of atoms with an accuracy that is comparable to experiment is a challenge for computational quantum chemistry. We present a divide-and-conquer strategy that departs from the potential energy surfaces obtained by standard density functional theory with inclusion of dispersion. The energies of the reactant and transition structures are refined by wavefunction-type calculations for the reaction site. Thermal effects and entropies are calculated from vibrational partition functions, and the anharmonic frequencies are calculated separately for each vibrational mode. This method is applied to a key reaction of an industrially relevant catalytic process, the methylation of small alkenes over zeolites. The calculated reaction rate constants (free energies), pre-exponential factors (entropies), and enthalpy barriers show that our computational strategy yields results that agree with experiment within chemical accuracy limits (less than one order of magnitude). PMID:27008460
Aftershock production rate of driven viscoelastic interfaces.
Jagla, E A
2014-10-01
We study analytically and by numerical simulations the statistics of the aftershocks generated after large avalanches in models of interface depinning that include viscoelastic relaxation effects. We find in all the analyzed cases that the decay law of aftershocks with time can be understood by considering the typical roughness of the interface and its evolution due to relaxation. In models where there is a single viscoelastic relaxation time there is an exponential decay of the number of aftershocks with time. In models in which viscoelastic relaxation is wave-vector dependent we typically find a power-law dependence of the decay rate that is compatible with the Omori law. The factors that determine the value of the decay exponent are analyzed. PMID:25375460
Aftershock production rate of driven viscoelastic interfaces
NASA Astrophysics Data System (ADS)
Jagla, E. A.
2014-10-01
We study analytically and by numerical simulations the statistics of the aftershocks generated after large avalanches in models of interface depinning that include viscoelastic relaxation effects. We find in all the analyzed cases that the decay law of aftershocks with time can be understood by considering the typical roughness of the interface and its evolution due to relaxation. In models where there is a single viscoelastic relaxation time there is an exponential decay of the number of aftershocks with time. In models in which viscoelastic relaxation is wave-vector dependent we typically find a power-law dependence of the decay rate that is compatible with the Omori law. The factors that determine the value of the decay exponent are analyzed.
Finite Element Solution of the Steady-State Smoluchowski Equation for Rate Constant Calculations
Song, Yuhua; Zhang, Yongjie; Shen, Tongye; Bajaj, Chandrajit L.; McCammon, J. Andrew; Baker, Nathan A.
2004-01-01
This article describes the development and implementation of algorithms to study diffusion in biomolecular systems using continuum mechanics equations. Specifically, finite element methods have been developed to solve the steady-state Smoluchowski equation to calculate ligand binding rate constants for large biomolecules. The resulting software has been validated and applied to mouse acetylcholinesterase. Rates for inhibitor binding to mAChE were calculated at various ionic strengths with several different reaction criteria. The calculated rates were compared with experimental data and show very good agreement when the correct reaction criterion is used. Additionally, these finite element methods require significantly less computational resources than existing particle-based Brownian dynamics methods. PMID:15041644
EFFECTS OF VENTILATION RATES AND PRODUCT LOADING ON ORGANIC EMISSION RATES FROM PARTICLEBOARD
The paper discusses the effects of ventilation rates and product loading on organic emission rates from particleboard. Recently, investigators have confirmed the presence of varied and significant amounts of organic compounds in indoor environment, including compounds known or su...
Benchmarking of Monte Carlo based shutdown dose rate calculations for applications to JET.
Petrizzi, L; Batistoni, P; Fischer, U; Loughlin, M; Pereslavtsev, P; Villari, R
2005-01-01
The calculation of dose rates after shutdown is an important issue for operating nuclear reactors. A validated computational tool is needed for reliable dose rate calculations. In fusion reactors neutrons induce high levels of radioactivity and presumably high doses. The complex geometries of the devices require the use of sophisticated geometry modelling and computational tools for transport calculations. Simple rule of thumb laws do not always apply well. Two computational procedures have been developed recently and applied to fusion machines. Comparisons between the two methods showed some inherent discrepancies when applied to calculation for the ITER while good agreement was found for a 14 MeV point source neutron benchmark experiment. Further benchmarks were considered necessary to investigate in more detail the reasons for the different results in different cases. In this frame the application to the Joint European Torus JET machine has been considered as a useful benchmark exercise. In a first calculational benchmark with a representative D-T irradiation history of JET the two methods differed by no more than 25%. In another, more realistic benchmark exercise, which is the subject of this paper, the real irradiation history of D-T and D-D campaigns conducted at JET in 1997-98 were used to calculate the shut-down doses at different locations, irradiation and decay times. Experimental dose data recorded at JET for the same conditions offer the possibility to check the prediction capability of the calculations and thus show the applicability (and the constraints) of the procedures and data to the rather complex shutdown dose rate analysis of real fusion devices. Calculation results obtained by the two methods are reported below, comparison with experimental results give discrepancies ranging between 2 and 10. The reasons of that can be ascribed to the high uncertainty on the experimental data and the unsatisfactory JET model used in the calculation. A new
Rate constant calculations of H-atom abstraction reactions from ethers by HȮ2 radicals.
Mendes, Jorge; Zhou, Chong-Wen; Curran, Henry J
2014-02-27
In this work, we detail hydrogen atom abstraction reactions from six ethers by the hydroperoxyl radical, including dimethyl ether, ethyl methyl ether, propyl methyl ether, isopropyl methyl ether, butyl methyl ether, and isobutyl methyl ether, in order to test the effect of the functional group on the rate constant calculations. The Møller-Plesset (MP2) method with the 6-311G(d,p) basis set has been employed in the geometry optimizations and frequency calculations of all of the species involved in the above reaction systems. The connections between each transition state and the corresponding local minima have been determined by intrinsic reaction coordinate calculations. Energies are reported at the CCSD(T)/cc-pVTZ level of theory and include the zero-point energy corrections. As a benchmark in the electronic energy calculations, the CCSD(T)/CBS extrapolation was used for the reactions of dimethyl ether + HȮ2 radicals. A systematic calculation of the high-pressure limit rate constants has been performed using conventional transition-state theory, including asymmetric Eckart tunneling corrections, in the temperature range of 500-2000 K. The one dimensional hindrance potentials obtained at MP2/6-311G(d,p) for the reactants and transition states have been used to describe the low frequency torsional modes. Herein, we report the calculated individual, average, and total rate constants. A branching ratio analysis for every reaction site has also been performed. PMID:24483837
Ozone production efficiency calculated for different cities in North China
NASA Astrophysics Data System (ADS)
Xue, Min; Ma, Jianzhong
2014-05-01
North China, or Huabei in Chinese, is one of the most severely polluted regions in China. There are many large, complex and strong emission sources in Beijing, Tianjin and Tangshan (together called Jing-Jin-Tang in Chinese) and other urban and industrial centers in Huabei. We applied a regional chemical transport model including the tracer-tagging technique to investigate the chemical characteristics of air masses from different pollution hotspots in Huabei during the IPAC-NC campaign in spring 2006. We calculated the ozone production efficiency of NOx (OPEx) using selected data points of Ox and NOz corresponding to a large number of model grids, which have a good representation of the chemical characteristics of air masses for an entire investigated region. The estimated OPEx for Beijing, Tianjin, Tangshan, and Shijiazhuang general plumes is 3.35, 2.75, 1.43 and 2.33 mole/mole, respectively. We also calculated the OPEx using selected data points of Ox and NOz corresponding to different air masses arriving at Xin'an (one model grid), a rural station located in the center part of Jing-Jin-Tang. The estimated OPEx in Beijing, Tianjin, and Tangshan air masses arriving at Xin'an is 2.98, 2.52, and 1.42 mole/mole, respectively. The difference in estimated OPEx can be attributed to the difference in the emission source types and strength between these regions. The estimated OPEx in Beijing, Tianjin and Tangshan air masses arriving at Xin'an are comparable to those in their general pollution plumes. This indicates that air masses from different urban and industrial centers in Huabei can also maintain their different chemical characteristics while being transported to the rural areas.
Cowley, S.C.; Kulsrud, R.M.
1989-11-01
We calculate the fusion reaction rates in molecules of hydrogen isotopes. The rates are calculated analytically (for the first time) as an asymptotic expansion in the ratio of the electron mass to the reduced mass of the nucleii. The fusion rates of the P-D, D-D, and D-T reactions are given for a variable electron mass by a simple analytic formula. However, we do not know any mechanism by which a sufficiently localized electron in solid can have an effective mass' large enough to explain the result of Fleischman and Pons (FP). This calculation indicates that P-D rates should exceed D-D rates for D-D fusion rates less than approximately 10{sup {minus}23} per molecule per second. The D-D fusion rate is enhanced by a factor of 10{sup 5} at 10,000{degree}K if the excited vibrational states are populated with a Boltzmann distribution and the rotational excitations suppressed. The suggestion that experimental results could be explained by bombardment of cold deuterons by kilovolt deuterons is shown to be an unlikely from an energetic point of view. 12 refs., 3 figs., 1 tab.
Backsurging perforations can increase production rates
Brieger, E.F.
1991-07-01
Subjecting formations to a large pressure differential or underbalance is a common means of surging perforations to remove damage and increase flow from oil and gas wells. Underbalanced perforating, a standard industry completion technique, is normally used to obtain the pressure differentials intended to dislodge debris from perforations and flush the surrounding compacted zone. Gradually applied pressure underbalance can be achieved by swabbing or jetting to reduce hydrostatic head. Suddenly applied underbalance is achieved by evacuating the tubing in conjunction with a rupture disc, tubing-conveyed perforating systems or by using a new wireline-set, through-tubing backsurge tool. These techniques, except for the through-tubing method, are often utilized only during later workovers due to the expense and difficulty of achieving an adequate underbalance. Many operators prefer to perforate in balanced or overbalanced pressures conditions. This typically leaves perforations completely or partially plugged with gun debris, mud solids and shattered formation material that has been recompacted. Production logging shows that wells often produce from only 10 to 20% of the total interval apparently because of ineffective, plugged perforations.
NASA Astrophysics Data System (ADS)
Dzaugis, Mary E.; Spivack, Arthur J.; D'Hondt, Steven
2015-10-01
We present a mathematical model that quantifies the rate of water radiolysis near radionuclide-containing solids. Our model incorporates the radioactivity of the solid along with the energies and attenuation properties for alpha (α), beta (β), and gamma (γ) radiation to calculate volume normalized dose rate profiles. In the model, these dose rate profiles are then used to calculate radiolytic hydrogen (H2) and hydrogen peroxide (H2O2) production rates as a function of distance from the solid-water interface. It expands on previous water radiolysis models by incorporating planar or cylindrical solid-water interfaces and by explicitly including γ radiation in dose rate calculations. To illustrate our model's utility, we quantify radiolytic H2 and H2O2 production rates surrounding spent nuclear fuel under different conditions (at 20 years and 1000 years of storage, as well as before and after barrier failure). These examples demonstrate the extent to which α, β and γ radiation contributes to total absorbed dose rate and radiolytic production rates. The different cases also illustrate how H2 and H2O2 yields depend on initial composition, shielding and age of the solid. In this way, the examples demonstrate the importance of including all three types of radiation in a general model of total radiolytic production rates.
Bibler, N.E.
1992-11-12
Hydrogen production from radiolysis of aqueous solutions can create a safety hazard since hydrogen is flammable. At times this production can be significant, especially in HB line where nitric acid solutions containing high concentrations of Pu-238, an intense alpha emitter, are processed. The hydrogen production rates from these solutions are necessary for safety analyses of these process systems. The methods and conclusions of hydrogen production rate tests are provided in this report.
NASA Technical Reports Server (NTRS)
Boughner, Robert E.
1986-01-01
A method for calculating the photodissociation rates needed for photochemical modeling of the stratosphere, which includes the effects of molecular scattering, is described. The procedure is based on Sokolov's method of averaging functional correction. The radiation model and approximations used to calculate the radiation field are examined. The approximated diffuse fields and photolysis rates are compared with exact data. It is observed that the approximate solutions differ from the exact result by 10 percent or less at altitudes above 15 km; the photolysis rates differ from the exact rates by less than 5 percent for altitudes above 10 km and all zenith angles, and by less than 1 percent for altitudes above 15 km.
Nonideal thermoequilibrium calculations using a large product species data base
Hobbs, M.L.; Baer, M.R.
1992-06-01
Thermochemical data fits for approximately 900 gaseous and 600 condensed species found in the JANAF tables (Chase et al., 1985) have been completed for use with the TIGER nonideal thermoequilibrium code (Cowperthwaite and Zwisler, 1973). The TIGER code has been modified to allow systems containing up to 400 gaseous and 100 condensed constituents composed of up to 50 elements. Gaseous covolumes have been estimated following the procedure outlined by Mader (1979) using estimates of van der Waals radii for 48 elements and three-dimensional molecular mechanics. Molecular structures for all gaseous components were explicitly defined in terms of atomic coordinates in {Angstrom}. The Becker-Kistiakowsky-Wilson equation of state (BKW-EOS) has been calibrated near C-J states using detonation temperatures measured in liquid and solid explosives and a large product species data base. Detonation temperatures for liquid and solid explosives were predicted adequately with a single set of BKW parameters. Values for the empirical BKW constants {alpha}, {beta}, k, and {theta} were 0.5, 0.174, 11.85, and 5160, respectively. Values for the covolume factors, k{sub i}, were assumed to be invariant. The liquid explosives included mixtures of hydrazine nitrate with hydrazine, hydrazine hydrate, and water; mixtures of tetranitromethane with nitromethane; liquid isomers ethyl nitrate and 2-nitroethanol; and nitroglycerine. The solid explosives included HMX, RDX, PETN, Tetryl, and TNT. Color contour plots of HMX equilibrium products as well as thermodynamic variables are shown in pressure and temperature space. Similar plots for a pyrotechnic reaction composed of TiH{sub 2} and KC1O{sub 4} are also reported. Calculations for a typical HMX-based propellant are also discussed.
Code of Federal Regulations, 2010 CFR
2010-07-01
...; or (2) The royalty rate that BLM prescribes or calculates under 43 CFR 3211.17. See § 206.361 for... multiplied by the royalty rate BLM prescribed for your lease under 43 CFR 3211.17. See § 206.361 for... geothermal resources used for commercial production or generation of electricity? 206.352 Section...
Graduation Rates and Accountability: Regressions versus Production Frontiers
ERIC Educational Resources Information Center
Archibald, Robert B.; Feldman, David H.
2008-01-01
This paper suggests an alternative to the standard practice of measuring the graduation rate performance using regression analysis. The alternative is production frontier analysis. Production frontier analysis is appealing because it compares an institution's graduation rate to the best performance instead of the average performance. The paper…
Fine-grid calculations for stellar electron and positron capture rates on Fe isotopes
Nabi, Jameel-Un; Tawfik, Abdel Nasser
2013-03-15
The acquisition of precise and reliable nuclear data is a prerequisite to success for stellar evolution and nucleosynthesis studies. Core-collapse simulators find it challenging to generate an explosion from the collapse of the core of massive stars. It is believed that a better understanding of the microphysics of core-collapse can lead to successful results. The weak interaction processes are able to trigger the collapse and control the lepton-to-baryon ratio (Y{sub e}) of the corematerial. It is suggested that the temporal variation of Y{sub e} within the core of a massive star has a pivotal role to play in the stellar evolution and a fine-tuning of this parameter at various stages of presupernova evolution is the key to generate an explosion. During the presupernova evolution of massive stars, isotopes of iron, mainly {sup 54-56}Fe, are considered to be key players in controlling Y{sub e} ratio via electron capture on these nuclides. Recently an improved microscopic calculation of weak-interaction-mediated rates for iron isotopes was introduced using the proton-neutron quasiparticle random-phase-approximation (pn-QRPA) theory. The pn-QRPA theory allows a microscopic state-by-state calculation of stellar capture rates which greatly increases the reliability of calculated rates. The results were suggestive of some fine-tuning of the Y{sub e} ratio during various phases of stellar evolution. Here we present for the first time the fine-grid calculation of the electron and positron capture rates on {sup 54-56}Fe. The sensitivity of the pn-QRPA calculated capture rates to the deformation parameter is also studied in this work. Core-collapse simulators may find this calculation suitable for interpolation purposes and for necessary incorporation in the stellar evolution codes.
Results of Propellant Mixing Variable Study Using Precise Pressure-Based Burn Rate Calculations
NASA Technical Reports Server (NTRS)
Stefanski, Philip L.
2014-01-01
A designed experiment was conducted in which three mix processing variables (pre-curative addition mix temperature, pre-curative addition mixing time, and mixer speed) were varied to estimate their effects on within-mix propellant burn rate variability. The chosen discriminator for the experiment was the 2-inch diameter by 4-inch long (2x4) Center-Perforated (CP) ballistic evaluation motor. Motor nozzle throat diameters were sized to produce a common targeted chamber pressure. Initial data analysis did not show a statistically significant effect. Because propellant burn rate must be directly related to chamber pressure, a method was developed that showed statistically significant effects on chamber pressure (either maximum or average) by adjustments to the process settings. Burn rates were calculated from chamber pressures and these were then normalized to a common pressure for comparative purposes. The pressure-based method of burn rate determination showed significant reduction in error when compared to results obtained from the Brooks' modification of the propellant web-bisector burn rate determination method. Analysis of effects using burn rates calculated by the pressure-based method showed a significant correlation of within-mix burn rate dispersion to mixing duration and the quadratic of mixing duration. The findings were confirmed in a series of mixes that examined the effects of mixing time on burn rate variation, which yielded the same results.
45 CFR 286.85 - How will we calculate the work participation rates?
Code of Federal Regulations, 2014 CFR
2014-10-01
... 45 Public Welfare 2 2014-10-01 2012-10-01 true How will we calculate the work participation rates? 286.85 Section 286.85 Public Welfare Regulations Relating to Public Welfare OFFICE OF FAMILY ASSISTANCE (ASSISTANCE PROGRAMS), ADMINISTRATION FOR CHILDREN AND FAMILIES, DEPARTMENT OF HEALTH AND HUMAN SERVICES TRIBAL TANF PROVISIONS Tribal TANF...
45 CFR 261.25 - Do we count Tribal families in calculating the work participation rate?
Code of Federal Regulations, 2010 CFR
2010-10-01
... 45 Public Welfare 2 2010-10-01 2010-10-01 false Do we count Tribal families in calculating the work participation rate? 261.25 Section 261.25 Public Welfare Regulations Relating to Public Welfare OFFICE OF FAMILY ASSISTANCE (ASSISTANCE PROGRAMS), ADMINISTRATION FOR CHILDREN AND FAMILIES, DEPARTMENT OF HEALTH AND HUMAN SERVICES ENSURING...
45 CFR 286.85 - How will we calculate the work participation rates?
Code of Federal Regulations, 2010 CFR
2010-10-01
... 45 Public Welfare 2 2010-10-01 2010-10-01 false How will we calculate the work participation rates? 286.85 Section 286.85 Public Welfare Regulations Relating to Public Welfare OFFICE OF FAMILY ASSISTANCE (ASSISTANCE PROGRAMS), ADMINISTRATION FOR CHILDREN AND FAMILIES, DEPARTMENT OF HEALTH AND HUMAN SERVICES TRIBAL TANF PROVISIONS Tribal TANF...
45 CFR 261.25 - Do we count Tribal families in calculating the work participation rate?
Code of Federal Regulations, 2014 CFR
2014-10-01
... 45 Public Welfare 2 2014-10-01 2012-10-01 true Do we count Tribal families in calculating the work participation rate? 261.25 Section 261.25 Public Welfare Regulations Relating to Public Welfare OFFICE OF FAMILY ASSISTANCE (ASSISTANCE PROGRAMS), ADMINISTRATION FOR CHILDREN AND FAMILIES, DEPARTMENT OF HEALTH AND HUMAN SERVICES ENSURING...
34 CFR 668.183 - Calculating and applying cohort default rates.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Program (as defined in 34 CFR 685.102) that is used to repay those loans. (2) A borrower may be included...) Rehabilitated under 34 CFR 682.405 or 34 CFR 685.211(e); or (ii) Repurchased by a lender because the claim for... 34 Education 3 2010-07-01 2010-07-01 false Calculating and applying cohort default rates....
42 CFR 419.32 - Calculation of prospective payment rates for hospital outpatient services.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 42 Public Health 3 2012-10-01 2012-10-01 false Calculation of prospective payment rates for hospital outpatient services. 419.32 Section 419.32 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICARE PROGRAM (CONTINUED) PROSPECTIVE PAYMENT...
20 CFR 10.216 - How is the pay rate for COP calculated?
Code of Federal Regulations, 2013 CFR
2013-04-01
... 20 Employees' Benefits 1 2013-04-01 2012-04-01 true How is the pay rate for COP calculated? 10.216 Section 10.216 Employees' Benefits OFFICE OF WORKERS' COMPENSATION PROGRAMS, DEPARTMENT OF LABOR FEDERAL EMPLOYEES' COMPENSATION ACT CLAIMS FOR COMPENSATION UNDER THE FEDERAL EMPLOYEES' COMPENSATION ACT,...
Technology Transfer Automated Retrieval System (TEKTRAN)
Inverse dispersion models are useful tools for estimating emissions from animal feeding operations, waste storage ponds, and manure application fields. Atmospheric stability is an important input parameter to such models. The objective of this study was to compare emission rates calculated with a ba...
Wall, G.R.; Ingleston, H.H.; Litten, S.
2005-01-01
Total mercury (THg) load in rivers is often calculated from a site-specific "rating-curve" based on the relation between THg concentration and river discharge along with a continuous record of river discharge. However, there is no physical explanation as to why river discharge should consistently predict THg or any other suspended analyte. THg loads calculated by the rating-curve method were compared with those calculated by a "continuous surrogate concentration" (CSC) method in which a relation between THg concentration and suspended-sediment concentration (SSC) is constructed; THg loads then can be calculated from the continuous record of SSC and river discharge. The rating-curve and CSC methods, respectively, indicated annual THg loads of 46.4 and 75.1 kg for the Mohawk River, and 52.9 and 33.1 kg for the upper Hudson River. Differences between the results of the two methods are attributed to the inability of the rating-curve method to adequately characterize atypical high flows such as an ice-dam release, or to account for hysteresis, which typically degrades the strength of the relation between stream discharge and concentration of material in suspension. ?? Springer 2005.
42 CFR 413.337 - Methodology for calculating the prospective payment rates.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 42 Public Health 2 2013-10-01 2013-10-01 false Methodology for calculating the prospective payment rates. 413.337 Section 413.337 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES MEDICARE PROGRAM PRINCIPLES OF REASONABLE COST REIMBURSEMENT; PAYMENT FOR END-STAGE RENAL DISEASE SERVICES;...
Thermonuclear reaction rate of 18Ne(α ,p ) 21Na from Monte Carlo calculations
NASA Astrophysics Data System (ADS)
Mohr, P.; Longland, R.; Iliadis, C.
2014-12-01
The 18Ne(α ,p ) 21Na reaction impacts the break-out from the hot CNO cycles to the r p process in type-I x-ray bursts. We present a revised thermonuclear reaction rate, which is based on the latest experimental data. The new rate is derived from Monte Carlo calculations, taking into account the uncertainties of all nuclear physics input quantities. In addition, we present the reaction rate uncertainty and probability density versus temperature. Our results are also consistent with estimates obtained using different indirect approaches.
Cut-off rate calculations for the outer channel in a concatenated cooling system
NASA Technical Reports Server (NTRS)
Herro, M. A.; Costello, D. J., Jr.; Hu, L.
1984-01-01
Concatenated codes were long used as a practical means of achieving long block or constraint lengths for combating errors on very noisy channels. The inner and outer encoders are normally separated by an interleaver, so that decoded error bursts coming from the inner decoder are randomized before entering the outer decoder. The effectiveness of this interleaver is examined by calculating the cut-off rate of the outer channel seen by the outer decoder with and without interleaving. Interleaving never hurts the performance of a concatenated code, and when the inner code rate is near the cut-off rate of the inner channel, interleaving significantly improves code performance.
Improved estimates of environmental copper release rates from antifouling products.
Finnie, Alistair A
2006-01-01
The US Navy Dome method for measuring copper release rates from antifouling paint in-service on ships' hulls can be considered to be the most reliable indicator of environmental release rates. In this paper, the relationship between the apparent copper release rate and the environmental release rate is established for a number of antifouling coating types using data from a variety of available laboratory, field and calculation methods. Apart from a modified Dome method using panels, all laboratory, field and calculation methods significantly overestimate the environmental release rate of copper from antifouling coatings. The difference is greatest for self-polishing copolymer antifoulings (SPCs) and smallest for certain erodible/ablative antifoulings, where the ASTM/ISO standard and the CEPE calculation method are seen to typically overestimate environmental release rates by factors of about 10 and 4, respectively. Where ASTM/ISO or CEPE copper release rate data are used for environmental risk assessment or regulatory purposes, it is proposed that the release rate values should be divided by a correction factor to enable more reliable generic environmental risk assessments to be made. Using a conservative approach based on a realistic worst case and accounting for experimental uncertainty in the data that are currently available, proposed default correction factors for use with all paint types are 5.4 for the ASTM/ISO method and 2.9 for the CEPE calculation method. Further work is required to expand this data-set and refine the correction factors through correlation of laboratory measured and calculated copper release rates with the direct in situ environmental release rate for different antifouling paints under a range of environmental conditions. PMID:17110352
The impact of different sampling rates and calculation time intervals on ROTI values
NASA Astrophysics Data System (ADS)
Jacobsen, Knut Stanley
2014-11-01
The ROTI (Rate of TEC index) is a commonly used measure of ionospheric irregularities level. The algorithm to calculate ROTI is easily implemented, and is the same from paper to paper. However, the sample rate of the GNSS data used, and the time interval over which a value of ROTI is calculated, varies from paper to paper. When comparing ROTI values from different studies, this must be taken into account. This paper aims to show what these differences are, to increase the awareness of this issue. We have investigated the effect of different parameters for the calculation of ROTI values, using one year of data from 8 receivers at latitudes ranging from 59° N to 79° N. We have found that the ROTI values calculated using different parameter choices are strongly positively correlated. However, the ROTI values are quite different. The effect of a lower sample rate is to lower the ROTI value, due to the loss of high-frequency parts of the ROT spectrum, while the effect of a longer calculation time interval is to remove or reduce short-lived peaks due to the inherent smoothing effect. The ratio of ROTI values based on data of different sampling rate is examined in relation to the ROT power spectrum. Of relevance to statistical studies, we find that the median level of ROTI depends strongly on sample rate, strongly on latitude at auroral latitudes, and weakly on time interval. Thus, a baseline "quiet" or "noisy" level for one location or choice or parameters may not be valid for another location or choice of parameters.
Koeppe, R.A.; Holden, J.E.; Hutchins, G.D.
1985-05-01
The authors have developed a method for the rapid pixel-by-pixel estimation of glucose metabolic rate from a dynamic sequence of PCT images acquired over 40 minutes following venous bolus injection of 2-deoxy-2-fluoro-D-glucose (2-FDG). The calculations are based on the conventional four parameter model. The dephosphorylation rate (k/sub 4/) cannot be reliably estimated from only 40 minutes of data; however, neglecting dephosphorylation can nonetheless introduce significant biases into the parameter estimation processes. In the authors' method, the rate is constrained to fall within a small range about a presumed value. Computer simulation studies show that this constraint greatly reduces the systematic biases in the other three fitted parameters and in the metabolic rate that arise from the assumption of no dephosphorylation. The parameter estimation scheme used is formally identical to one originally developed for dynamic methods of cerebral blood flow estimation. Estimation of metabolic rate and the individual model rate parameters k/sub 1/, k/sub 2/, and k/sub 3/, can be carried out for each pixel sequence of a 100 x 100 pixel image in less than two minutes on our PDP 11/60 minicomputer with floating point processor. While the maps of k/sub 2/ amd k/sub 3/ are quite noisy, accurate estimates of average values can be attained for regions of a few cm/sup 2/. The maps of metabolic rate offer many advantages in addition to that of direct visualization. These include improved statistical precision and the avoidance of averaging failure in the fitting of heterogeneous regions.
CALCULATION OF DEMONSTRATION BULK VITRIFICATION SYSTEM MELTER INLEAKAGE AND OFF-GAS GENERATION RATE
MAY TH
2008-04-16
The River Protection Project (RPP) mission is to safely store, retrieve, treat, immobilize, and dispose of the Hanford Site tank waste. The Demonstration Bulk Vitrification System (DBVS) is a research and development project whose objective is to demonstrate the suitability of Bulk Vitrification treatment technology waste form for disposing of low-activity waste from the Tank Farms. The objective of this calculation is to determine the DBVS melter inleakage and off-gas generation rate based on full scale testing data from 38D. This calculation estimates the DBVS melter in leakage and gas generation rate based on test data. Inleakage is estimated before the melt was initiated, at one point during the melt, and at the end of the melt. Maximum gas generation rate is also estimated.
Effects of surface pressures and streamline metrics on the calculation of laminar heating rates
NASA Technical Reports Server (NTRS)
Riley, Christopher J.; Dejarnette, Fred R.; Zoby, Vincent
1988-01-01
The effect of streamline geometry and pressure distributions on surface heating rates is examined for slender, spherically blunted cones. The modifications to the approximate aeroheating code include a curve fit of pressures computed by an Euler solution over a range of Mach numbers and cone angles. The streamline geometry is then found using the surface pressures and inviscid surface properties. Previously, streamlines were determined using the inviscid properties at the edge of the boundary layer when accounting for the effects of entropy-layer swallowing. Streamline calculations are now based on inviscid surface conditions rather than boundary-layer edge properties. However, the heating rates are calculated using inviscid properties at the edge of the boundary layer. Resulting heating rates compare favorably with solutions from the viscous-shock-layer equations.
CHARADE: A characteristic code for calculating rate-dependent shock-wave response
Johnson, J.N.; Tonks, D.L.
1991-01-01
In this report we apply spatially one-dimensional methods and simple shock-tracking techniques to the solution of rate-dependent material response under flat-plate-impact conditions. This method of solution eliminates potential confusion of material dissipation with artificial dissipative effects inherent in finite-difference codes, and thus lends itself to accurate calculation of elastic-plastic deformation, shock-to-detonation transition in solid explosives, and shock-induced structural phase transformation. Equations are presented for rate-dependent thermoelastic-plastic deformation for (100) planar shock-wave propagation in materials of cubic symmetry (or higher). Specific numerical calculations are presented for polycrystalline copper using the mechanical threshold stress model of Follansbee and Kocks with transition to dislocation drag. A listing of the CHARADE (for characteristic rate dependence) code and sample input deck are given. 26 refs., 11 figs.
Scholl, M.A.
2000-01-01
Numerical simulations were used to examine the effects of heterogeneity in hydraulic conductivity (K) and intrinsic biodegradation rate on the accuracy of contaminant plume-scale biodegradation rates obtained from field data. The simulations were based on a steady-state BTEX contaminant plume-scale biodegradation under sulfate-reducing conditions, with the electron acceptor in excess. Biomass was either uniform or correlated with K to model spatially variable intrinsic biodegradation rates. A hydraulic conductivity data set from an alluvial aquifer was used to generate three sets of 10 realizations with different degrees of heterogeneity, and contaminant transport with biodegradation was simulated with BIOMOC. Biodegradation rates were calculated from the steady-state contaminant plumes using decreases in concentration with distance downgradient and a single flow velocity estimate, as is commonly done in site characterization to support the interpretation of natural attenuation. The observed rates were found to underestimate the actual rate specified in the heterogeneous model in all cases. The discrepancy between the observed rate and the 'true' rate depended on the ground water flow velocity estimate, and increased with increasing heterogeneity in the aquifer. For a lognormal K distribution with variance of 0.46, the estimate was no more than a factor of 1.4 slower than the true rate. For aquifer with 20% silt/clay lenses, the rate estimate was as much as nine times slower than the true rate. Homogeneous-permeability, uniform-degradation rate simulations were used to generate predictions of remediation time with the rates estimated from heterogeneous models. The homogeneous models were generally overestimated the extent of remediation or underestimated remediation time, due to delayed degradation of contaminants in the low-K areas. Results suggest that aquifer characterization for natural attenuation at contaminated sites should include assessment of the presence
Clouvas, A; Xanthos, S; Antonopoulos-Domis, M; Silva, J
2000-03-01
The dose rate conversion factors D(CF) (absorbed dose rate in air per unit activity per unit of soil mass, nGy h(-1) per Bq kg(-1)) are calculated 1 m above ground for photon emitters of natural radionuclides uniformly distributed in the soil. Three Monte Carlo codes are used: 1) The MCNP code of Los Alamos; 2) The GEANT code of CERN; and 3) a Monte Carlo code developed in the Nuclear Technology Laboratory of the Aristotle University of Thessaloniki. The accuracy of the Monte Carlo results is tested by the comparison of the unscattered flux obtained by the three Monte Carlo codes with an independent straightforward calculation. All codes and particularly the MCNP calculate accurately the absorbed dose rate in air due to the unscattered radiation. For the total radiation (unscattered plus scattered) the D(CF) values calculated from the three codes are in very good agreement between them. The comparison between these results and the results deduced previously by other authors indicates a good agreement (less than 15% of difference) for photon energies above 1,500 keV. Antithetically, the agreement is not as good (difference of 20-30%) for the low energy photons. PMID:10688452
NASA Astrophysics Data System (ADS)
Song, L.; Balakrishnan, N.; Walker, K. M.; Stancil, P. C.; Thi, W. F.; Kamp, I.; van der Avoird, A.; Groenenboom, G. C.
2015-11-01
We present calculated rate coefficients for ro-vibrational transitions of CO in collisions with H atoms for a gas temperature range of 10 K ≤ T ≤ 3000 K, based on the recent three-dimensional ab initio H-CO interaction potential of Song et al. Rate coefficients for ro-vibrational v=1,j=0-30\\to v\\prime =0,j\\prime transitions were obtained from scattering cross sections previously computed with the close-coupling (CC) method by Song et al. Combining these with the rate coefficients for vibrational v=1-5\\to v\\prime \\lt v quenching obtained with the infinite-order sudden approximation, we propose a new extrapolation scheme that yields the rate coefficients for ro-vibrational v=2-5,j=0-30\\to v\\prime ,j\\prime de-excitation. Cross sections and rate coefficients for ro-vibrational v=2,j=0-30\\to v\\prime =1,j\\prime transitions calculated with the CC method confirm the effectiveness of this extrapolation scheme. Our calculated and extrapolated rates are very different from those that have been adopted in the modeling of many astrophysical environments. The current work provides the most comprehensive and accurate set of ro-vibrational de-excitation rate coefficients for the astrophysical modeling of the H-CO collision system. The application of the previously available and new data sets in astrophysical slab models shows that the line fluxes typically change by 20%-70% in high temperature environments (800 K) with an H/H2 ratio of 1; larger changes occur for lower temperatures.
Evaluation of fission product worth margins in PWR spent nuclear fuel burnup credit calculations.
Blomquist, R.N.; Finck, P.J.; Jammes, C.; Stenberg, C.G.
1999-02-17
Current criticality safety calculations for the transportation of irradiated LWR fuel make the very conservative assumption that the fuel is fresh. This results in a very substantial overprediction of the actual k{sub eff} of the transportation casks; in certain cases, this decreases the amount of spent fuel which can be loaded in a cask, and increases the cost of transporting the spent fuel to the repository. Accounting for the change of reactivity due to fuel depletion is usually referred to as ''burnup credit.'' The US DOE is currently funding a program aimed at establishing an actinide only burnup credit methodology (in this case, the calculated reactivity takes into account the buildup or depletion of a limited number of actinides). This work is undergoing NRC review. While this methodology is being validated on a significant experimental basis, it implicitly relies on additional margins: in particular, the absorption of neutrons by certain actinides and by all fission products is not taken into account. This provides an important additional margin and helps guarantee that the methodology is conservative provided these neglected absorption are known with reasonable accuracy. This report establishes the accuracy of fission product absorption rate calculations: (1) the analysis of European fission product worth experiments demonstrates that fission product cross-sections available in the US provide very good predictions of fission product worth; (2) this is confirmed by a direct comparison of European and US cross section evaluations; (3) accuracy of Spent Nuclear Fuel (SNF) fission product content predictions is established in a recent ORNL report where several SNF isotopic assays are analyzed; and (4) these data are then combined to establish in a conservative manner the fraction of the predicted total fission product absorption which can be guaranteed based on available experimental data.
NASA Astrophysics Data System (ADS)
de Paiva, Eduardo
Concave beta sources of 106Ru/106Rh are used in radiotherapy to treat ophthalmic tumors. However, a problem that arises is the difficult determination of absorbed dose distributions around such sources mainly because of the small range of the electrons and the steep dose gradients. In this sense, numerical methods have been developed to calculate the dose distributions around the beta applicators. In this work a simple code in Fortran language is developed to estimate the dose rates along the central axis of 106Ru/106Rh curved plaques by numerical integration of the beta point source function and results are compared with other calculated data.
Development of a New Shielding Model for JB-Line Dose Rate Calculations
Buckner, M.R.
2001-08-09
This report describes the shielding model development for the JB-Line Upgrade project. The product of this effort is a simple-to-use but accurate method of estimating the personnel dose expected for various operating conditions on the line. The current techniques for shielding calculations use transport codes such as ANISN which, while accurate for geometries which can be accurately approximated as one dimensional slabs, cylinders or spheres, fall short in calculating configurations in which two-or three-dimensional effects (e.g., streaming) play a role in the dose received by workers.
NASA Astrophysics Data System (ADS)
Ghafuri, Mohazabeh; Golfar, Bahareh; Nosrati, Mohsen; Hoseinkhani, Saman
2014-12-01
The process of ATP production is one of the most vital processes in living cells which happens with a high efficiency. Thermodynamic evaluation of this process and the factors involved in oxidative phosphorylation can provide a valuable guide for increasing the energy production efficiency in research and industry. Although energy transduction has been studied qualitatively in several researches, there are only few brief reviews based on mathematical models on this subject. In our previous work, we suggested a mathematical model for ATP production based on non-equilibrium thermodynamic principles. In the present study, based on the new discoveries on the respiratory chain of animal mitochondria, Golfar's model has been used to generate improved results for the efficiency of oxidative phosphorylation and the rate of energy loss. The results calculated from the modified coefficients for the proton pumps of the respiratory chain enzymes are closer to the experimental results and validate the model.
External dose-rate conversion factors for calculation of dose to the public
Not Available
1988-07-01
This report presents a tabulation of dose-rate conversion factors for external exposure to photons and electrons emitted by radionuclides in the environment. This report was prepared in conjunction with criteria for limiting dose equivalents to members of the public from operations of the US Department of Energy (DOE). The dose-rate conversion factors are provided for use by the DOE and its contractors in performing calculations of external dose equivalents to members of the public. The dose-rate conversion factors for external exposure to photons and electrons presented in this report are based on a methodology developed at Oak Ridge National Laboratory. However, some adjustments of the previously documented methodology have been made in obtaining the dose-rate conversion factors in this report. 42 refs., 1 fig., 4 tabs.
Diffusion Rates for Hydrogen on Pd(111) from Molecular Quantum Dynamics Calculations.
Firmino, Thiago; Marquardt, Roberto; Gatti, Fabien; Dong, Wei
2014-12-18
The van Hove formula for the dynamical structure factor (DSF) related to particle scattering at mobile adsorbates is extended to include the relaxation of the adsorbates' vibrational states. The total rate obtained from the DSF is assumed to be the sum of a diffusion and a relaxation rate. A simple kinetic model to support this assumption is presented. To illustrate its potential applicability, the formula is evaluated using wave functions, energies, and lifetimes of vibrational states obtained for H/Pd(111) from first-principle calculations. Results show that quantum effects can be expected to be important even at room temperature. PMID:26273973
A method for calculating strain energy release rate based on beam theory
NASA Technical Reports Server (NTRS)
Sun, C. T.; Pandey, R. K.
1993-01-01
The Timoshenko beam theory was used to model cracked beams and to calculate the total strain energy release rate. The root rotation of the beam segments at the crack tip were estimated based on an approximate 2D elasticity solution. By including the strain energy released due to the root rotations of the beams during crack extension, the strain energy release rate obtained using beam theory agrees very well with the 2D finite element solution. Numerical examples were given for various beam geometries and loading conditions. Comparisons with existing beam models were also given.
Assessments of fluid friction factors for use in leak rate calculations
Chivers, T.C.
1997-04-01
Leak before Break procedures require estimates of leakage, and these in turn need fluid friction to be assessed. In this paper available data on flow rates through idealized and real crack geometries are reviewed in terms of a single friction factor k It is shown that for {lambda} < 1 flow rates can be bounded using correlations in terms of surface R{sub a} values. For {lambda} > 1 the database is less precise, but {lambda} {approx} 4 is an upper bound, hence in this region flow calculations can be assessed using 1 < {lambda} < 4.
Java and Vector Graphics Tools for Element Production Calculations in Computational Astrophysics
NASA Astrophysics Data System (ADS)
Lingerfelt, Eric; McMahon, Erin; Hix, Raph; Guidry, Mike; Smith, Michael
2002-08-01
We are developing a set of extendable, cross-platform tools and interfaces using Java and vector technologies such as SVG and SWF to facilitate element production calculations in computational astrophysics. The Java technologies are customizable and portable, and can be utilized as a stand-alone application or distributed across a network. These tools, which can have a broad applications in general scientific visualization, are currently being used to explore and compare various reaction rates, set up and run explosive nucleosynthesis calculations, and visualize these results with compact, high quality vector graphics. The facilities for reading and plotting nuclear reaction rates and their components from a network or library permit the user to include new rates and adjust current ones. Setup and initialization of a nucleosynthesis calculation is through an intuitive graphical interface. Sophisticated visualization and graphical analysis tools offer the ability to view results in an interactive, scalable vector graphics format, which leads to a dramatic reduction in visualization file sizes while maintaining high visual quality and interactive control. The use of these tools for other applications will also be mentioned.
Niu, Y. F.; Paar, N.; Vretenar, D.; Meng, J.
2011-04-15
We introduce a self-consistent microscopic theoretical framework for modeling the process of electron capture on nuclei in stellar environment, based on relativistic energy density functionals. The finite-temperature relativistic mean-field model is used to calculate the single-nucleon basis and the occupation factors in a target nucleus, and J{sup {pi}}=0{sup {+-}}, 1{sup {+-}}, and 2{sup {+-}} charge-exchange transitions are described by the self-consistent finite-temperature relativistic random-phase approximation. Cross sections and rates are calculated for electron capture on {sup 54,56}Fe and {sup 76,78}Ge in stellar environment, and results compared with predictions of similar and complementary model calculations.
Calculation of Decompression Rates for the Initial Explosive Phase of the 2010 Merapi Eruption
NASA Astrophysics Data System (ADS)
Matthews, E.; Genareau, K. D.
2015-12-01
The 2010 eruption of Merapi (Java, Indonesia) initiated with an uncharacteristic explosion, followed by rapid lava dome growth and collapse, all of which generated deadly pyroclastic density currents (PDCs). PDC samples from the initial explosion on October 26th were collected from several locations surrounding the edifice. Plagioclase phenocrysts represent the primary component of the dominant ash mode due to the elutriation of the finer ash fraction during PDC transport. Secondary electron images of 45 phenocrysts were taken using the scanning electron microscope (SEM) to examine preserved glass coatings on phenocrysts, which represent the interstitial melt within the magma at the point of fragmentation. Using these images, the bubble number densities (BNDs) were determined, and the decompression rate meter of Toramaru (2006) was used to calculate the decompression rate during the initial explosion of the 2010 Merapi eruption. Calculated decompression rates range from 6.08x10^7 Pa/s to 1.4x10^8 Pa/s. Decompression rates have shown to correlate with eruption column height; therefore Merapi's rates should be similar to those of other Vulcanian explosions, because the eruption column was 8-9 km in height. The decompression rates acquired for Merapi using Toramaru's BND meter are higher than the rates calculated with other methods such as microlite number density and extension cracks in crystals. Sakurajima volcano (Japan) experienced decompression rates from 7.0 × 10^3 to 7.8 × 10^4 Pa/s during the later phase of the fall 2011 Vulcanian explosions. Plinian explosions, such as at the 1991 eruption of Mt. Pinatubo and the 1980 eruption of St. Helens had much higher column heights compared to the initial 2010 Merapi explosion; 35 km, 19 km, and 8-9 km, respectively, but decompression rates in a comparative range (10^8 Pa/s). Higher decompression rates during the 2010 initial explosion at Merapi likely resulted from increased overpressure in the shallow conduit, the
Calculations of helium production in materials irradiated at spallation neutron sources
Corzine, R.K.; Dudziak, D.J.; Wechsler, M.S.; Barnett, M.H.; Mansur, L.K.
1998-09-01
Experience with materials irradiated in fission reactor neutron environments has shown that radiation-produced helium can exacerbate the degradation of properties caused by radiation-produced defects and defect clusters. Whereas fission-reactor neutron energies extend up to {approximately}10 MeV, the neutrons and protons at spallation neutron sources reach up to 1,000 to 2,000 MeV, and He production is much greater. For example, calculations have shown for the innermost shell of the containment vessel of the spallation neutron source, under collaborative design by several national laboratories led by the Oak Ridge National Laboratory, that full-power displacement and He production rates are {approximately}20 displacements per atom (dpa)/yr and 1,000 atomic parts per million (appm) He/yr, which corresponds to 50 appm He/dpa. By contrast, materials in fission reactor cores usually experience <1 appm He/dpa. In this paper, the authors summarize methods and results for the calculation of He production cross sections appropriate to the neutron and proton energies to which target and containment materials are exposed at spallation neutron sources. The principal calculational tool is LAHET or, more broadly, the LAHET code system (LCS).
Simple strategies for inclusion of Voigt effects in infrared cooling rate calculations.
Fels, S B
1979-08-01
A line shape with rectangular core and nu(-2) wings is shown to be an excellent alias for the Voigt profile when calculating equivalent widths. It leads to closed analytic forms in the commonly employed random models and gives highly accurate ozone cooling rates. An even simpler device for applications where less accurate results are required involves use of the Lorentz profile with a width which does not vanish at zero pressure. PMID:20212722
Entrained liquid fraction calculation in adiabatic disperse-annular flows at low rate in film
NASA Astrophysics Data System (ADS)
Yagov, V. V.; Minko, M. V.
2016-04-01
In this work, we continue our study [1] and extend further an approach to low reduced pressures. An approximate model of droplets entrainment from the laminar film surface and an equation for calculating entrainment intensity are proposed. To carry out direct verification of this equation using experimental data is extremely difficult because the integral effect—liquid flow rate in a film at a dynamic equilibrium between entrainment and deposition—is usually measured in the experiments. The balance between flows of droplets entrainment and deposition corresponds to the dynamic equilibrium because of turbulent diffusion. The transcendental equation, which was obtained on the basis of this balance, contains one unknown numerical factor and allows one to calculate the liquid rate. Comparing calculation results with the experimental data for the water-air and water-helium flows at low reduced pressures (less than 0.03) has shown their good agreement at the universal value of a numerical constant, if an additional dimensionless parameter, a fourth root of vaporliquid densities ratio, is introduced. The criterion that determines the boundary of using methods of this work and that of [1] in calculations and that reflects effect of pressure and state of film surface on distribution of the liquid in the annular flow is proposed; the numerical value of this criterion has been determined.
An exact calculation of infrared cooling rate due to water vapor
NASA Astrophysics Data System (ADS)
Xu, Li; Shi, Guangyu
1985-11-01
The longwave (0-2380 cm-1) cooling rate due to water vapor in the troposphere and the stratosphere has been calculated by a new infrared transmission model in this paper. An exact scheme is used for treating the integration over wavenumber and the inhomogeneous path in the atmosphere. It is shown that the atmospheric window region (730-1200 cm-1) (mainly water vapor continuum) plays an important role in the total cooling near the surface, about 72% of the total cooling lying in this region at the height of 1 km; the CG approximation used for an inhomogeneous path is fairly applicable for calculating the cooling rate due to water vapor, with a maximum error of 0.16 K/day throughout the troposhere and the stratosphere; on the other hand, the error due to the diffusivity factor of 1.66 appears to be slightly larger near the surface. In this study, the influences on the calculation of above infrared cooling rate, of the temperature-dependence of the absorption coefficients of water vapor, the upper level cutoff and the integration step for altitude, and the substitution of the quasi-grey approximation for the exact integration over wavenumber, are also examined.
Optimised geometry to calculate dose rate conversion coefficient for external exposure to photons.
Askri, B; Manai, K; Trabelsi, A; Baccari, B
2008-01-01
A single-parameter geometry to describe soil is achieved for Monte Carlo calculation of absorbed dose rate in air for photon emitters from natural radionuclides. This optimised geometry based on physical assumptions consists of the soil part whose emitted radiation has a given minimum probability to reach the detector. This geometry was implemented in Geant4 toolkit and a significant reduction in computation time was achieved. Simulation tests have shown that for soil represented by a cylinder of 40 m radius and 1 m deep, >98% of the calculated dose rate conversion coefficients in air at 1 m above the ground is generated by only 6% of the soil volume in the case of uniform distribution of radioactivity, and >99.2% of the calculated dose rate for an exponential distribution. When the soil is represented by the entire optimised geometry, 99% of the conversion coefficients values are reached for a soil depth of 1 m and 100% for that of approximately 2 m. PMID:17959610
Atomic hydrogen production rates for comet P/Halley from observations with Dynamics Explorer I
NASA Technical Reports Server (NTRS)
Craven, J. D.; Frank, L. A.
1987-01-01
Newly analyzed observations of the Dynamics Explorer I (DE1), launched on August 3, 1981, were used to determine the hydrogen production rate for Comet Halley at heliocentric distances, r, less than about 1.5 AU from measurements of the total Lyman-alpha flux at earth due to the cometary neutral hydrogen distribution. The production rates, determined as a function of r, were found to be consistent with in situ measurements from the Giotto and Vega spacecraft. The calculated rates are also consistent with remote observations using two sounding rockets and with the Pioneer-Venus and IUE spacecraft.
Effects of Sample Size on Estimates of Population Growth Rates Calculated with Matrix Models
Fiske, Ian J.; Bruna, Emilio M.; Bolker, Benjamin M.
2008-01-01
Background Matrix models are widely used to study the dynamics and demography of populations. An important but overlooked issue is how the number of individuals sampled influences estimates of the population growth rate (λ) calculated with matrix models. Even unbiased estimates of vital rates do not ensure unbiased estimates of λ–Jensen's Inequality implies that even when the estimates of the vital rates are accurate, small sample sizes lead to biased estimates of λ due to increased sampling variance. We investigated if sampling variability and the distribution of sampling effort among size classes lead to biases in estimates of λ. Methodology/Principal Findings Using data from a long-term field study of plant demography, we simulated the effects of sampling variance by drawing vital rates and calculating λ for increasingly larger populations drawn from a total population of 3842 plants. We then compared these estimates of λ with those based on the entire population and calculated the resulting bias. Finally, we conducted a review of the literature to determine the sample sizes typically used when parameterizing matrix models used to study plant demography. Conclusions/Significance We found significant bias at small sample sizes when survival was low (survival = 0.5), and that sampling with a more-realistic inverse J-shaped population structure exacerbated this bias. However our simulations also demonstrate that these biases rapidly become negligible with increasing sample sizes or as survival increases. For many of the sample sizes used in demographic studies, matrix models are probably robust to the biases resulting from sampling variance of vital rates. However, this conclusion may depend on the structure of populations or the distribution of sampling effort in ways that are unexplored. We suggest more intensive sampling of populations when individual survival is low and greater sampling of stages with high elasticities. PMID:18769483
Comparison of photon-photon and photon-magnetic field pair production rates. [in neutron stars
NASA Technical Reports Server (NTRS)
Burns, M. L.; Harding, A. K.
1983-01-01
Neutron stars were proposed as the site of gamma-ray burst activity and the copious supply of MeV photons admits the possibility of electron-positron pair production. If the neutron star magnetic field is sufficiently intense (10 to the 12th power G), both photon-photon (2 gamma) and photon-magnetic field (gamma) pair production should be important mechanisms. Rates for the two processes were calculated using a Maxwellian distribution for the photons. The ratio of 1 gamma to 2 gamma pair production rates was obtained as a function of photon temperature and magnetic field strength.
Comparison of Photon-photon and Photon-magnetic Field Pair Production Rates
NASA Technical Reports Server (NTRS)
Burns, M. L.; Harding, A. K.
1983-01-01
Neutron stars were proposed as the site of gamma-ray burst activity and the copious supply of MeV photons admits the possibility of electron-positron pair production. If the neutron star magnetic field is sufficiently intense ( 10 to the 12th power G), both photon-photon (2 gamma) and photon-magnetic field ( gamma) pair production should be important mechanisms. Rates for the two processes were calculated using a Maxwellian distribution for the photons. The ratio of 1 gamma to 2 gamma pair production rates was obtained as a function of photon temperature and magnetic field strength.
Reduced Equations for Calculating the Combustion Rates of Jet-A and Methane Fuel
NASA Technical Reports Server (NTRS)
Molnar, Melissa; Marek, C. John
2003-01-01
Simplified kinetic schemes for Jet-A and methane fuels were developed to be used in numerical combustion codes, such as the National Combustor Code (NCC) that is being developed at Glenn. These kinetic schemes presented here result in a correlation that gives the chemical kinetic time as a function of initial overall cell fuel/air ratio, pressure, and temperature. The correlations would then be used with the turbulent mixing times to determine the limiting properties and progress of the reaction. A similar correlation was also developed using data from NASA's Chemical Equilibrium Applications (CEA) code to determine the equilibrium concentration of carbon monoxide as a function of fuel air ratio, pressure, and temperature. The NASA Glenn GLSENS kinetics code calculates the reaction rates and rate constants for each species in a kinetic scheme for finite kinetic rates. These reaction rates and the values obtained from the equilibrium correlations were then used to calculate the necessary chemical kinetic times. Chemical kinetic time equations for fuel, carbon monoxide, and NOx were obtained for both Jet-A fuel and methane.
Finite Volume Numerical Methods for Aeroheating Rate Calculations from Infrared Thermographic Data
NASA Technical Reports Server (NTRS)
Daryabeigi, Kamran; Berry, Scott A.; Horvath, Thomas J.; Nowak, Robert J.
2003-01-01
The use of multi-dimensional finite volume numerical techniques with finite thickness models for calculating aeroheating rates from measured global surface temperatures on hypersonic wind tunnel models was investigated. Both direct and inverse finite volume techniques were investigated and compared with the one-dimensional semi -infinite technique. Global transient surface temperatures were measured using an infrared thermographic technique on a 0.333-scale model of the Hyper-X forebody in the Langley Research Center 20-Inch Mach 6 Air tunnel. In these tests the effectiveness of vortices generated via gas injection for initiating hypersonic transition on the Hyper-X forebody were investigated. An array of streamwise orientated heating striations were generated and visualized downstream of the gas injection sites. In regions without significant spatial temperature gradients, one-dimensional techniques provided accurate aeroheating rates. In regions with sharp temperature gradients due to the striation patterns two-dimensional heat transfer techniques were necessary to obtain accurate heating rates. The use of the one-dimensional technique resulted in differences of 20% in the calculated heating rates because it did not account for lateral heat conduction in the model.
Finite Volume Numerical Methods for Aeroheating Rate Calculations from Infrared Thermographic Data
NASA Technical Reports Server (NTRS)
Daryabeigi, Kamran; Berry, Scott A.; Horvath, Thomas J.; Nowak, Robert J.
2006-01-01
The use of multi-dimensional finite volume heat conduction techniques for calculating aeroheating rates from measured global surface temperatures on hypersonic wind tunnel models was investigated. Both direct and inverse finite volume techniques were investigated and compared with the standard one-dimensional semi-infinite technique. Global transient surface temperatures were measured using an infrared thermographic technique on a 0.333-scale model of the Hyper-X forebody in the NASA Langley Research Center 20-Inch Mach 6 Air tunnel. In these tests the effectiveness of vortices generated via gas injection for initiating hypersonic transition on the Hyper-X forebody was investigated. An array of streamwise-orientated heating striations was generated and visualized downstream of the gas injection sites. In regions without significant spatial temperature gradients, one-dimensional techniques provided accurate aeroheating rates. In regions with sharp temperature gradients caused by striation patterns multi-dimensional heat transfer techniques were necessary to obtain more accurate heating rates. The use of the one-dimensional technique resulted in differences of 20% in the calculated heating rates compared to 2-D analysis because it did not account for lateral heat conduction in the model.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-01-05
... 29, 1985 (50 FR 21832), the interest rate paid on applicable overpayments or underpayments of customs... SECURITY U.S. Customs and Border Protection Quarterly IRS Interest Rates Used in Calculating Interest on... Internal Revenue Service interest rates used to calculate interest on overdue accounts (underpayments)...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-19
... Federal Register on May 29, 1985 (50 FR 21832), the interest rate paid on applicable overpayments or... SECURITY Customs and Border Protection Quarterly IRS Interest Rates Used in Calculating Interest on Overdue... Service interest rates used to calculate interest on overdue accounts (underpayments) and...
NASA Astrophysics Data System (ADS)
Bender, Michael; Orchardo, Joe; Dickson, Mary-Lynn; Barber, Richard; Lindley, Steven
1999-04-01
We report rates of gross and net O 2 production measured in vitro during JGOFS cruises in the equatorial Pacific in spring and fall, 1992. We scale O 2 productivities to net and gross C production. We then compare the calculated rates with 14C production and with new/export production measured by various techniques. 14C productivities in samples incubated for 24 h are about 45% of gross carbon production rates calculated from gross O 2 production. The difference is compatible with expected rates of the Mehler reaction, photorespiration, excretion, and community mitochondrial respiration. 14C production rates are similar to net carbon production rates in the upper half of the euphotic zone. At lower irradiances, where net C production can be zero or less, 14C productivities lie between net community production and gross primary production. Net carbon production rates in vitro are a factor of =4-20 times greater than estimates from drifting sediment trap and tracer transport studies. This difference probably reflects anomalous accumulation of POC in bottles because of the exclusion of grazers.
NASA Astrophysics Data System (ADS)
Thornton, J. A.; Wooldridge, P. J.; Cohen, R. C.; Martinez, M.; Harder, H.; Brune, W. H.; Williams, E. J.; Roberts, J. M.; Fehsenfeld, F. C.; Hall, S. R.; Shetter, R. E.; Wert, B. P.; Fried, A.
2002-06-01
Tropospheric O3 concentrations are functions of the chain lengths of NOx (NOx ≡ NO + NO2) and HOx (HOx ≡ OH + HO2 + RO2) radical catalytic cycles. For a fixed HOx source at low NOx concentrations, kinetic models indicate the rate of O3 production increases linearly with increases in NOx concentrations (NOx limited). At higher NOx concentrations, kinetic models predict ozone production rates decrease with increasing NOx (NOx saturated). We present observations of NO, NO2, O3, OH, HO2, H2CO, actinic flux, and temperature obtained during the 1999 Southern Oxidant Study from June 15 to July 15, 1999, at Cornelia Fort Airpark, Nashville, Tennessee. The observations are used to evaluate the instantaneous ozone production rate (PO3) as a function of NO abundances and the primary HOx production rate (PHOx). These observations provide quantitative evidence for the response of PO3 to NOx. For high PHOx (0.5 < PHOx < 0.7 ppt/s), O3 production at this site increases linearly with NO to ~500 ppt. PO3 levels out in the range 500-1000 ppt NO and decreases for NO above 1000 ppt. An analysis along chemical coordinates indicates that models of chemistry controlling peroxy radical abundances, and consequently PO3, have a large error in the rate or product yield of the RO2 + HO2 reaction for the classes of RO2 that predominate in Nashville. Photochemical models and our measurements can be forced into agreement if the product of the branching ratio and rate constant for organic peroxide formation, via RO2 + HO2 -> ROOH + O2, is reduced by a factor of 3-12. Alternatively, these peroxides could be rapidly photolyzed under atmospheric conditions making them at best a temporary HOx reservoir. This result implies that O3 production in or near urban areas with similar hydrocarbon reactivity and HOx production rates may be NOx saturated more often than current models suggest.
NASA Astrophysics Data System (ADS)
Nicholson, D. P.
2011-07-01
Kaiser (2011) has introduced an improved method for calculating gross productivity from the triple isotopic composition of dissolved oxygen in aquatic systems. His equation avoids approximations of previous methodologies, and also accounts for additional physical processes such as kinetic fractionation during invasion and evasion at the air-sea interface. However, when comparing his new approach to previous methods, Kaiser inconsistently defines the biological end-member with the result of overestimating the degree to which the various approaches of previous studies diverge. In particular, for his base case, Kaiser assigns a 17O excess to the product of photosynthesis that is too low, resulting in his result being ~30 % too high when compared to previous equations. When this is corrected, I find that Kaiser's equations are consistent with all previous study methodologies within about ±20 % for realistic conditions of metabolic balance (f) and gross productivity (g). A methodological bias of ±20 % is of similar magnitude to current uncertainty in the wind-speed dependence of the air-sea gas transfer velocity, k, which directly impacts calculated gross productivity rates as well. While previous results could and should be revisited and corrected using the proposed improved equations, the magnitude of such corrections may be much less than implied by Kaiser.
Shakib, Farnaz; Hanna, Gabriel
2016-07-12
In this work, we derive a general mixed quantum-classical formula for calculating thermal proton-coupled electron-transfer (PCET) rate constants, starting from the time integral of the quantum flux-flux correlation function. This formula allows for the direct simulation of PCET reaction dynamics via the mixed quantum-classical Liouville approach. Owing to the general nature of the derivation, this formula does not rely on any prior mechanistic assumptions and can be applied across a wide range of electronic and protonic coupling regimes. To test the validity of this formula, we applied it to a reduced model of a condensed-phase PCET reaction. Good agreement with the numerically exact rate constant is obtained, demonstrating the accuracy of our formalism. We believe that this approach constitutes a solid foundation for future investigations of the rates and mechanisms of a wide range of PCET reactions. PMID:27232936
Mapping {sup 15}O Production Rate for Proton Therapy Verification
Grogg, Kira; Alpert, Nathaniel M.; Zhu, Xuping; Min, Chul Hee; Testa, Mauro; Winey, Brian; Normandin, Marc D.; Shih, Helen A.; Paganetti, Harald; Bortfeld, Thomas; El Fakhri, Georges
2015-06-01
Purpose: This work was a proof-of-principle study for the evaluation of oxygen-15 ({sup 15}O) production as an imaging target through the use of positron emission tomography (PET), to improve verification of proton treatment plans and to study the effects of perfusion. Methods and Materials: Dynamic PET measurements of irradiation-produced isotopes were made for a phantom and rabbit thigh muscles. The rabbit muscle was irradiated and imaged under both live and dead conditions. A differential equation was fitted to phantom and in vivo data, yielding estimates of {sup 15}O production and clearance rates, which were compared to live versus dead rates for the rabbit and to Monte Carlo predictions. Results: PET clearance rates agreed with decay constants of the dominant radionuclide species in 3 different phantom materials. In 2 oxygen-rich materials, the ratio of {sup 15}O production rates agreed with the expected ratio. In the dead rabbit thighs, the dynamic PET concentration histories were accurately described using {sup 15}O decay constant, whereas the live thigh activity decayed faster. Most importantly, the {sup 15}O production rates agreed within 2% (P>.5) between conditions. Conclusions: We developed a new method for quantitative measurement of {sup 15}O production and clearance rates in the period immediately following proton therapy. Measurements in the phantom and rabbits were well described in terms of {sup 15}O production and clearance rates, plus a correction for other isotopes. These proof-of-principle results support the feasibility of detailed verification of proton therapy treatment delivery. In addition, {sup 15}O clearance rates may be useful in monitoring permeability changes due to therapy.
Calculators, Graphs, Gestures and the Production of Meaning
ERIC Educational Resources Information Center
Radford, Luis; Demers, Serge; Guzman, Jose; Cerulli, Michele
2003-01-01
In this paper we report an analysis of a teaching sequence in which Grade 11 students were asked to produce some graphs corresponding to the relationship between time and distance of a cylinder moving up and down an inclined plane. The students were also asked to carry out the experience using a TI 83+ graphic calculator equipped with a sensor,…
Calculating inspector probability of detection using performance demonstration program pass rates
NASA Astrophysics Data System (ADS)
Cumblidge, Stephen; D'Agostino, Amy
2016-02-01
The United States Nuclear Regulatory Commission (NRC) staff has been working since the 1970's to ensure that nondestructive testing performed on nuclear power plants in the United States will provide reasonable assurance of structural integrity of the nuclear power plant components. One tool used by the NRC has been the development and implementation of the American Society of Mechanical Engineers (ASME) Boiler and Pressure Vessel Code Section XI Appendix VIII[1] (Appendix VIII) blind testing requirements for ultrasonic procedures, equipment, and personnel. Some concerns have been raised, over the years, by the relatively low pass rates for the Appendix VIII qualification testing. The NRC staff has applied statistical tools and simulations to determine the expected probability of detection (POD) for ultrasonic examinations under ideal conditions based on the pass rates for the Appendix VIII qualification tests for the ultrasonic testing personnel. This work was primarily performed to answer three questions. First, given a test design and pass rate, what is the expected overall POD for inspectors? Second, can we calculate the probability of detection for flaws of different sizes using this information? Finally, if a previously qualified inspector fails a requalification test, does this call their earlier inspections into question? The calculations have shown that one can expect good performance from inspectors who have passed appendix VIII testing in a laboratory-like environment, and the requalification pass rates show that the inspectors have maintained their skills between tests. While these calculations showed that the PODs for the ultrasonic inspections are very good under laboratory conditions, the field inspections are conducted in a very different environment. The NRC staff has initiated a project to systematically analyze the human factors differences between qualification testing and field examinations. This work will be used to evaluate and prioritize
Evaluating range-expansion models for calculating nonnative species' expansion rate
Preuss, Sonja; Low, Matthew; Cassel-Lundhagen, Anna; Berggren, Åsa
2014-01-01
Species range shifts associated with environmental change or biological invasions are increasingly important study areas. However, quantifying range expansion rates may be heavily influenced by methodology and/or sampling bias. We compared expansion rate estimates of Roesel's bush-cricket (Metrioptera roeselii, Hagenbach 1822), a nonnative species currently expanding its range in south-central Sweden, from range statistic models based on distance measures (mean, median, 95th gamma quantile, marginal mean, maximum, and conditional maximum) and an area-based method (grid occupancy). We used sampling simulations to determine the sensitivity of the different methods to incomplete sampling across the species' range. For periods when we had comprehensive survey data, range expansion estimates clustered into two groups: (1) those calculated from range margin statistics (gamma, marginal mean, maximum, and conditional maximum: ˜3 km/year), and (2) those calculated from the central tendency (mean and median) and the area-based method of grid occupancy (˜1.5 km/year). Range statistic measures differed greatly in their sensitivity to sampling effort; the proportion of sampling required to achieve an estimate within 10% of the true value ranged from 0.17 to 0.9. Grid occupancy and median were most sensitive to sampling effort, and the maximum and gamma quantile the least. If periods with incomplete sampling were included in the range expansion calculations, this generally lowered the estimates (range 16–72%), with exception of the gamma quantile that was slightly higher (6%). Care should be taken when interpreting rate expansion estimates from data sampled from only a fraction of the full distribution. Methods based on the central tendency will give rates approximately half that of methods based on the range margin. The gamma quantile method appears to be the most robust to incomplete sampling bias and should be considered as the method of choice when sampling the entire
A full variational calculation based on a tensor product decomposition
NASA Astrophysics Data System (ADS)
Senese, Frederick A.; Beattie, Christopher A.; Schug, John C.; Viers, Jimmy W.; Watson, Layne T.
1989-08-01
A new direct full variational approach exploits a tensor (Kronecker) product decomposition of the Hamiltonian. Explicit assembly and storage of the Hamiltonian matrix is avoided by using the Kronecker product structure to form matrix-vector products directly from the molecular integrals. Computation-intensive integral transformations and formula tapes are unnecessary. The wavefunction is expanded in terms of spin-free primitive kets rather than Slater determinants or configuration state functions, and the expansion is equivalent to a full configuration interaction expansion. The approach suggests compact storage schemes and algorithms which are naturally suited to parallel and pipelined machines.
Patient-specific dose calculation methods for high-dose-rate iridium-192 brachytherapy
NASA Astrophysics Data System (ADS)
Poon, Emily S.
In high-dose-rate 192Ir brachytherapy, the radiation dose received by the patient is calculated according to the AAPM Task Group 43 (TG-43) formalism. This table-based dose superposition method uses dosimetry parameters derived with the radioactive 192Ir source centered in a water phantom. It neglects the dose perturbations caused by inhomogeneities, such as the patient anatomy, applicators, shielding, and radiographic contrast solution. In this work, we evaluated the dosimetric characteristics of a shielded rectal applicator with an endocavitary balloon injected with contrast solution. The dose distributions around this applicator were calculated by the GEANT4 Monte Carlo (MC) code and measured by ionization chamber and GAFCHROMIC EBT film. A patient-specific dose calculation study was then carried out for 40 rectal treatment plans. The PTRAN_CT MC code was used to calculate the dose based on computed tomography (CT) images. This study involved the development of BrachyGUI, an integrated treatment planning tool that can process DICOM-RT data and create PTRAN_CT input initialization files. BrachyGUI also comes with dose calculation and evaluation capabilities. We proposed a novel scatter correction method to account for the reduction in backscatter radiation near tissue-air interfaces. The first step requires calculating the doses contributed by primary and scattered photons separately, assuming a full scatter environment. The scatter dose in the patient is subsequently adjusted using a factor derived by MC calculations, which depends on the distances between the point of interest, the 192Ir source, and the body contour. The method was validated for multicatheter breast brachytherapy, in which the target and skin doses for 18 patient plans agreed with PTRAN_CT calculations better than 1%. Finally, we developed a CT-based analytical dose calculation method. It corrects for the photon attenuation and scatter based upon the radiological paths determined by ray tracing
Computer program FPIP-REV calculates fission product inventory for U-235 fission
NASA Technical Reports Server (NTRS)
Brown, W. S.; Call, D. W.
1967-01-01
Computer program calculates fission product inventories and source strengths associated with the operation of U-235 fueled nuclear power reactor. It utilizes a fission-product nuclide library of 254 nuclides, and calculates the time dependent behavior of the fission product nuclides formed by fissioning of U-235.
Isotope Production Facility Conceptual Thermal-Hydraulic Design Review and Scoping Calculations
Pasamehmetoglu, K.O.; Shelton, J.D.
1998-08-01
The thermal-hydraulic design of the target for the Isotope Production Facility (IPF) is reviewed. In support of the technical review, scoping calculations are performed. The results of the review and scoping calculations are presented in this report.
Water balance calculations and net production of perennial vegetation in the northern Mojave Desert
Lane, L.J.; Romney, E.M.; Hakonson, T.E.
1984-01-01
Measurements obtained between 1968 and 1976 indicate the influence of climatic factors and soil characteristics upon soil moisture and production of perennial vegetation in the northern Mojave Desert. Seasonal distribution patterns of precipitation are shown to have a strong effect on plant-available soil moisture, and these patterns are, in turn, reflected in net production of perennial vegetation. Available climatic data and soil characteristics were used as input to a continuous simulation model to calculate the water balance for a unit area watershed. Computed and measured soil moisture agreed quite well over a rangeof values from close to the wilting point to near field capacity. The authors used computed evapo-transpiration rates to estimate water use by perennial vegetation. Computed water use was multiplied by a water use efficiency factor to estimate net production of perennial vegetation. Estimated net production exhibited year-to-year variability comparable with measured values, and agreed quite closely with available observations. This paper briefly describes soil-water-plant relationships in the northern Mojave Desert and illustrates an application of a continuous simulation model to predict soil moisture and net production of perennial vegetation. Based on the authors analysis, the simulation model would appear to have potential for estimating the water balance and above ground net primary production on arid and semiarid rangelands. 21 references, 5 figures, 5 tables.
NASA Astrophysics Data System (ADS)
Adam, J.; Tater, M.; Truhlík, E.; Epelbaum, E.; Machleidt, R.; Ricci, P.
2012-03-01
The doublet capture rate Λ1 / 2 of the negative muon capture in deuterium is calculated employing the nuclear wave functions generated from accurate nucleon-nucleon (NN) potentials constructed at next-to-next-to-next-to-leading order of heavy-baryon chiral perturbation theory and the weak meson exchange current operator derived within the same formalism. All but one of the low-energy constants that enter the calculation were fixed from pion-nucleon and nucleon-nucleon scattering data. The low-energy constant dˆR (cD), which cannot be determined from the purely two-nucleon data, was extracted recently from the triton β-decay and the binding energies of the three-nucleon systems. The calculated values of Λ1 / 2 show a rather large spread for the used values of the dˆR. Precise measurement of Λ1 / 2 in the future will not only help to constrain the value of dˆR, but also provide a highly nontrivial test of the nuclear chiral EFT framework. Besides, the precise knowledge of the constant dˆR will allow for consistent calculations of other two-nucleon weak processes, such as proton-proton fusion and solar neutrino scattering on deuterons, which are important for astrophysics.
Mapping 15O production rate for proton therapy verification
Grogg, Kira; Alpert, Nathaniel M.; Zhu, Xuping; Min, Chul Hee; Testa, Mauro; Winey, Brian; Normandin, Marc D.; Shih, Helen A.; Paganetti, Harald; Bortfeld, Thomas; El Fakhri, Georges
2015-01-01
Purpose This is a proof-of-principle study for the evaluation of 15O production as an imaging target, through the use of positron emission tomography (PET), to improve verification of proton treatment plans and study the effects of perfusion. Methods and Materials Dynamic PET measurements of irradiation-produced isotopes were taken for a phantom and rabbit thigh muscles. The rabbit muscle was irradiated and imaged in both live and dead conditions. A differential equation was fitted to the phantom and the in vivo data, yielding estimates of the 15O production and clearance rates, which was compared for live versus dead for the rabbit, and to Monte Carlo (MC) predictions. Results PET clearance rates agreed with the decay constants of the dominant radionuclide species in three different phantom materials. In two oxygen-rich materials, the ratio of 15O production rates agreed with the MC prediction. In the dead rabbit thighs, the dynamic PET concentration histories were accurately described using the 15O decay constant, while the live thigh activity decayed faster. Most importantly, the 15O production rates agreed within 2% (p> 0.5) between conditions. Conclusion We developed a new method for quantitative measurement of 15O production and clearance rates in the period immediately following proton therapy. Measurements in the phantom and rabbits were well described in terms of 15O production and clearance rates, plus a correction for other isotopes. These proof-of-principle results support the feasibility of detailed verification of proton therapy treatment delivery. In addition, 15O clearance rates may be useful in monitoring permeability changes due to therapy. PMID:25817530
New reaction rates for improved primordial D /H calculation and the cosmic evolution of deuterium
NASA Astrophysics Data System (ADS)
Coc, Alain; Petitjean, Patrick; Uzan, Jean-Philippe; Vangioni, Elisabeth; Descouvemont, Pierre; Iliadis, Christian; Longland, Richard
2015-12-01
Primordial or big bang nucleosynthesis (BBN) is one of the three historically strong evidences for the big bang model. Standard BBN is now a parameter-free theory, since the baryonic density of the Universe has been deduced with an unprecedented precision from observations of the anisotropies of the cosmic microwave background radiation. There is a good agreement between the primordial abundances of 4He, D, 3He, and 7Li deduced from observations and from primordial nucleosynthesis calculations. However, the 7Li calculated abundance is significantly higher than the one deduced from spectroscopic observations and remains an open problem. In addition, recent deuterium observations have drastically reduced the uncertainty on D /H , to reach a value of 1.6%. It needs to be matched by BBN predictions whose precision is now limited by thermonuclear reaction rate uncertainties. This is especially important as many attempts to reconcile Li observations with models lead to an increased D prediction. Here, we reevaluate the d (p ,γ )3He, d (d ,n ) 3H3, and d (d ,p ) 3H reaction rates that govern deuterium destruction, incorporating new experimental data and carefully accounting for systematic uncertainties. Contrary to previous evaluations, we use theoretical ab initio models for the energy dependence of the S factors. As a result, these rates increase at BBN temperatures, leading to a reduced value of D /H =(2.45 ±0.10 )×10-5 (2 σ ), in agreement with observations.
Calculation of cell production from ( sup 3 H)Thymidine incorporation with freshwater bacteria
Smits, J.D. ); Riemann, B. )
1988-09-01
The conversion factor for the calculation of bacterial production from rates of ({sup 3}H)thymidine incorporation was examined with diluted batch cultures of freshwater bacteria. Natural bacterial assemblages were grown in aged, normal, and enriched media at 10 to 20{degree}C. The generation time during 101 growth cycles covered a range from 4 to >200 h. The average conversion factor was 2.15 {times} 10{sup 18} cells mol{sup {minus}1} of thymidine incorporated into the trichloroacetic acid (TCA) precipitate, when the generation time exceeded 20 h. At generation times of <20 h, the average conversion factor was 11.8 {times} 10{sup 18} cells mol{sup {minus}1} of thymidine incorporated into TCA precipitate. The amount of radioactivity in purified DNA increased with decreasing generation time and increasing conversion factor (calculated from the TCA precipitate), corresponding to a decrease in the percentage in protein. The conversion factors calculated from purified DNA or from the TCA precipitate gave the same variability. Conversion factors did not change significantly with the medium, but were significantly higher at 20{degree}C that at 15 and 10{degree}C. Results suggests that incorporation of ({sup 3}H)thymidine into DNA is probably limited by uptake during period with generation times of <20 h and that freshwater bacterioplankton cell production sometimes is underestimated when a conversion factor of 2.15 {times} 10{sup 18} cells mol{sup {minus}1} of thymidine incorporated is used.
NASA Astrophysics Data System (ADS)
Garden, Anna L.; Paulot, Fabien; Crounse, John D.; Maxwell-Cameron, Isobel J.; Wennberg, Paul O.; Kjaergaard, Henrik G.
2009-05-01
We have calculated relative energies and dipole moments of the stable conformers of nitrous acid, ethanol, ethylene glycol and propanone nitrate using a range of ab initio methods and basis sets. We have used these to calculate conformationally weighted dipole moments that are useful in estimates of collision rates between molecules and ions. We find that the average error in the conformationally weighted dipole moments is less than 5% for CCSD(T) with the aug-cc-pVTZ basis set, less than 10% for B3LYP/6-31G(d) and less than 20% for B3LYP/6-31+G(d) and B3LYP/aug-cc-pVTZ.
Code of Federal Regulations, 2011 CFR
2011-07-01
... in your lease; or (2) The royalty rate that BLM prescribes or calculates under 43 CFR 3211.17. See... CFR 3211.17. See § 1206.361 for additional provisions applicable to determining gross proceeds under... geothermal resources used for commercial production or generation of electricity? 1206.352 Section...
Advanced Fuel Cycle Initiative - Projected Linear Heat Generation Rate and Burnup Calculations
Richard G. Ambrosek; Gray S. Chang; Debbie J. Utterbeck
2005-02-01
This report provides documentation of the physics analysis performed to determine the linear heat generation rate (LHGR) and burnup calculations for the Advanced Fuel Cycle Initiative (AFCI) tests, AFC-1D, AFC-1H, and AFC-1G. The AFC-1D and AFC-1H tests consists of low-fertile metallic fuel compositions and the AFC-1G test consists of non-fertile and low-fertile nitride compositions. These tests will be irradiated in the East Flux Trap (EFT) positions E1, E2, and E3, respectively, during Advanced Test Reactor (ATR) Cycle 135B.
Vadimova, O L; Mukhin, I B; Kuznetsov, I I; Palashov, O V; Perevezentsev, E A; Khazanov, Efim A
2013-03-31
We have calculated the stored energy and gain coefficient in disk gain elements cooled to cryogenic temperatures. The problem has been solved with allowance for intense heat generation, amplified spontaneous emission and parasitic lasing, without averaging over any spatial coordinate. The numerical simulation results agree well with experimental data, in particular at high heat generation rates. Experimental data and theoretical analysis indicate that composite disk gain elements containing an undoped region can store considerably more energy due to suppression of amplified spontaneous emission and parasitic lasing. (extreme light fields and their applications)
Calculation of energy relaxation rates of fast particles by phonons in crystals
Prange, Micah P.; Campbell, Luke W.; Wu, Dangxin; Gao, Fei; Kerisit, Sebastien N.
2015-03-01
We present ab initio calculations of the temperature-dependent exchange of energy between a classical charged point-particle and the phonons of a crystalline material. The phonons, which are computed using density functional perturbation theory (DFPT) methods, interact with the mov- ing particle via the Coulomb interaction between the density induced in the material by phonon excitation and the charge of the classical particle. Energy relaxation rates are computed using time- dependent perturbation theory. The method, which is applicable wherever DFPT is, is illustrated with results for CsI, an important scintillator whose performance is affected by electron thermal- ization. We discuss the influence of the form assumed for quasiparticle dispersion on theoretical estimates of electron cooling rates.
Cosmogenic Chlorine-36 Global Production Rate Parameter Calibration
NASA Astrophysics Data System (ADS)
Marrero, S.; Borchers, B.; Phillips, F. M.; Aumer, R.; Stone, J.
2010-12-01
As part of the CRONUS-Earth project, geological calibrations of in-situ production rates of cosmogenic nuclides, including chlorine-36, are being conducted as part of a larger project to improve the accuracy of techniques employing cosmogenic nuclides. Previous chlorine-36 production rate calibrations have been particularly difficult, likely due to the multiple production pathways. We are performing a step-wise calibration in order to specifically address the uncertainties and problems in previous studies. The low-energy neutrons will be constrained first using a depth profile analysis and then the spallation rates will be calibrated using surface and depth profile samples from five additional sites. This study will produce production rate parameters for each of the main spallation reactions (K, Ca) as well as the production by low-energy neutrons from Cl. Muons are based on Heisinger, 2002 and are not calibrated in this study. The geological calibration locations include the Peruvian Andes; Lake Bonneville, UT; Isle of Skye, Scotland; Hawaii; Dry Valleys of Antactica; and Copper Canyon, NM.
Exergy and Its Efficiency Calculations in Ferrochrome Production
NASA Astrophysics Data System (ADS)
Ramakrishna, G.; Kadrolkar, Ameya; Srikakulapu, N. Gurulaxmi
2015-04-01
Ferrochrome production is a high energy intensive process consuming around 3000 to 3500 kWh/t of electrical energy. Ferrochrome is produced by smelting of different grades of chromite ore with coke and fluxing agents such as lime, dolomite, and quartz in a submerged arc furnace (SAF). Apart from the production of ferrochrome, co-products that are produced during the process include carbon monoxide rich off-gas and slag. The slag is cooled with high pressure jet water which results in the formation of slag granules. In the present practice, off-gas generated from the SAF is used for ladle preheating, as fuel in sinter plant, while the remaining is unutilized. Approximately 34 to 40 pct of heat from off-gas is utilized, while the remaining 60 to 66 pct of the off-gas can be utilized for generating electricity by gas combustion turbine. The concept of exergy is applied to monitor the existing process and to understand the feasibility of modification. In the present study, comparison of exergy efficiency for existing process and two adapted case studies has been performed, involving utilization of off-gas for sintering and power generation and waste heat utilization from dry slag granulation. It is observed that there was considerable increase in exergy efficiency for waste heat utilization by dry granulation case study when compared with other two case studies.
Comparison of measured and calculated dose rates near nuclear medicine patients.
Yi, Y; Stabin, M G; McKaskle, M H; Shone, M D; Johnson, A B
2013-08-01
Widely used release criteria for patients receiving radiopharmaceuticals (NUREG-1556, Vol. 9, Rev.1, Appendix U) are known to be overly conservative. The authors measured external exposure rates near patients treated with I, Tc, and F and compared the measurements to calculated values using point and line source models. The external exposure dose rates for 231, 11, and 52 patients scanned or treated with I, Tc, and F, respectively, were measured at 0.3 m and 1.0 m shortly after radiopharmaceutical administration. Calculated values were always higher than measured values and suggested the application of "self-shielding factors," as suggested by Siegel et al. in 2002. The self-shielding factors of point and line source models for I at 1 m were 0.60 ± 0.16 and 0.73 ± 0.20, respectively. For Tc patients, the self-shielding factors for point and line source models were 0.44 ± 0.19 and 0.55 ± 0.23, and the values were 0.50 ± 0.09 and 0.60 ± 0.12, respectively, for F (all FDG) patients. Treating patients as unshielded point sources of radiation is clearly inappropriate. In reality, they are volume sources, but treatment of their exposures using a line source model with appropriate self-shielding factors produces a more realistic, but still conservative, approach for managing patient release. PMID:23799503
Direct calculation of ice homogeneous nucleation rate for a molecular model of water.
Haji-Akbari, Amir; Debenedetti, Pablo G
2015-08-25
Ice formation is ubiquitous in nature, with important consequences in a variety of environments, including biological cells, soil, aircraft, transportation infrastructure, and atmospheric clouds. However, its intrinsic kinetics and microscopic mechanism are difficult to discern with current experiments. Molecular simulations of ice nucleation are also challenging, and direct rate calculations have only been performed for coarse-grained models of water. For molecular models, only indirect estimates have been obtained, e.g., by assuming the validity of classical nucleation theory. We use a path sampling approach to perform, to our knowledge, the first direct rate calculation of homogeneous nucleation of ice in a molecular model of water. We use TIP4P/Ice, the most accurate among existing molecular models for studying ice polymorphs. By using a novel topological approach to distinguish different polymorphs, we are able to identify a freezing mechanism that involves a competition between cubic and hexagonal ice in the early stages of nucleation. In this competition, the cubic polymorph takes over because the addition of new topological structural motifs consistent with cubic ice leads to the formation of more compact crystallites. This is not true for topological hexagonal motifs, which give rise to elongated crystallites that are not able to grow. This leads to transition states that are rich in cubic ice, and not the thermodynamically stable hexagonal polymorph. This mechanism provides a molecular explanation for the earlier experimental and computational observations of the preference for cubic ice in the literature. PMID:26240318
Heart rate calculation from ensemble brain wave using wavelet and Teager-Kaiser energy operator.
Srinivasan, Jayaraman; Adithya, V
2015-01-01
Electroencephalogram (EEG) signal artifacts are caused by various factors, such as, Electro-oculogram (EOG), Electromyogram (EMG), Electrocardiogram (ECG), movement artifact and line interference. The relatively high electrical energy cardiac activity causes EEG artifacts. In EEG signal processing the general approach is to remove the ECG signal. In this paper, we introduce an automated method to extract the ECG signal from EEG using wavelet and Teager-Kaiser energy operator for R-peak enhancement and detection. From the detected R-peaks the heart rate (HR) is calculated for clinical diagnosis. To check the efficiency of our method, we compare the HR calculated from ECG signal recorded in synchronous with EEG. The proposed method yields a mean error of 1.4% for the heart rate and 1.7% for mean R-R interval. The result illustrates that, proposed method can be used for ECG extraction from single channel EEG and used in clinical diagnosis like estimation for stress analysis, fatigue, and sleep stages classification studies as a multi-model system. In addition, this method eliminates the dependence of additional synchronous ECG in extraction of ECG from EEG signal process. PMID:26737640
A simple parameterization of ozone infrared absorption for atmospheric heating rate calculations
NASA Technical Reports Server (NTRS)
Rosenfield, Joan E.
1991-01-01
A simple parameterization of ozone absorption in the 9.6-micron region which is suitable for two- and three-dimensional stratospheric and tropospheric models is presented. The band is divided into two parts, a brand center region and a band wing region, grouping together regions for which the temperature dependence of absorption is similar. Each of the two regions is modeled with a function having the form of the Goody random model, with pressure and temperature dependent band parameters chosen by empirically fitting line-by-line equivalent widths for pressures between 0.25 and 1000 mbar and ozone absorber amounts between 1.0 x 10 to the -7th and 1.0 cm atm. The model has been applied to calculations of atmospheric heating rates using an absorber amount weighted mean pressure and temperature along the inhomogeneous paths necessary for flux computations. In the stratosphere, maximum errors in the heating rates relative to line-by-line calculations are 0.1 K/d, or 5 percent of the peak cooling at the stratopause. In the troposphere the errors are at most 0.005 K/d.