Science.gov

Sample records for production target irradiation

  1. Development of a Ne gas target for 22Na production by proton irradiation

    NASA Astrophysics Data System (ADS)

    Mandal, Bidhan Ch.; Barua, Luna; Das, Sujata Saha; Pal, Gautam

    2016-03-01

    The article presents the design and development of a neon gas target for the production of 22Na using a proton beam from the room temperature cyclotron in Variable Energy Cyclotron Centre, Kolkata. The target design is made to handle a beam power of 85 W (17 MeV, 5 μA). The design is based on simulation using the computer code FLUKA for the beam dump and CFD-CFX for target cooling. The target has been successfully used for the production of 22Na in a 6 day long 17 MeV, 5 μA proton irradiation run.

  2. Development of a Ne gas target for (22)Na production by proton irradiation.

    PubMed

    Mandal, Bidhan Ch; Barua, Luna; Das, Sujata Saha; Pal, Gautam

    2016-03-01

    The article presents the design and development of a neon gas target for the production of (22)Na using a proton beam from the room temperature cyclotron in Variable Energy Cyclotron Centre, Kolkata. The target design is made to handle a beam power of 85 W (17 MeV, 5 μA). The design is based on simulation using the computer code FLUKA for the beam dump and CFD-CFX for target cooling. The target has been successfully used for the production of (22)Na in a 6 day long 17 MeV, 5 μA proton irradiation run. PMID:27036769

  3. Post-Irradiation Examination of 237Np Targets for 238Pu Production

    SciTech Connect

    Morris, Robert Noel; Baldwin, Charles A; Hobbs, Randy W; Schmidlin, Joshua E

    2015-01-01

    Oak Ridge National Laboratory is recovering the US 238Pu production capability and the first step in the process has been to evaluate the performance of a 237Np target cermet pellet encased in an aluminum clad. The process proceeded in 3 steps; the first step was to irradiate capsules of single pellets composed of NpO2 and aluminum power to examine their shrinkage and gas release. These pellets were formed by compressing sintered NpO2 and aluminum powder in a die at high pressure followed by sintering in a vacuum furnace. Three temperatures were chosen for sintering the solution precipitated NpO2 power used for pellet fabrication. The second step was to irradiate partial targets composed of 8 pellets in a semi-prototypical arrangement at the two best performing sintering temperatures to determine which temperature gave a pellet that performed the best under the actual planned irradiation conditions. The third step was to irradiate ~50 pellets in an actual target configuration at design irradiation conditions to assess pellet shrinkage and gas release, target heat transfer, and dimensional stability. The higher sintering temperature appeared to offer the best performance after one cycle of irradiation by having the least shrinkage, thus keeping the heat transfer gap between the pellets and clad small minimizing the pellet operating temperature. The final result of the testing was a target that can meet the initial production goals, satisfy the reactor safety requirements, and can be fabricated in production quantities. The current focus of the program is to verify that the target can be remotely dissembled, the pellets dissolved, and the 238Pu recovered. Tests are being conducted to examine these concerns and to compare results to code predictions. Once the performance of the full length targets has been quantified, the pellet 237Np loading will be revisited to determine if it can be

  4. Production of 230U/226Th for targeted alpha therapy via proton irradiation of 231Pa.

    PubMed

    Morgenstern, Alfred; Lebeda, Ondrej; Stursa, Jan; Bruchertseifer, Frank; Capote, Roberto; McGinley, John; Rasmussen, Gert; Sin, Mihaela; Zielinska, Barbara; Apostolidis, Christos

    2008-11-15

    (230)U and its daughter nuclide (226)Th are novel therapeutic nuclides for application in targeted alpha-therapy of cancer. We have investigated the feasibility of producing (230)U/(226)Th via proton irradiation of (231)Pa according to the reaction (231)Pa(p,2n)(230)U. The experimental excitation function for this reaction is reported for the first time. Cross sections were measured using thin targets of (231)Pa prepared by electrodeposition and (230)U yields were analyzed using alpha-spectrometry. Beam parameters (energy and intensity) were determined both by calculation using a mathematical model based on measured beam orbits and beam current integrator and by parallel monitor reactions on copper foils using high-resolution gamma-spectrometry and IAEA recommended cross-section data. The measured cross sections are in good agreement with model calculations using the EMPIRE-II code and are sufficiently high for the production of (230)U/(226)Th in clinically relevant amounts. A highly effective separation process was developed to isolate clinical grade (230)U from irradiated protactinium oxide targets. Product purity was assessed using alpha- and gamma-spectrometry as well as ICPMS. PMID:18925748

  5. Influence of lateral target size on hot electron production and electromagnetic pulse emission from laser-irradiated metallic targets

    SciTech Connect

    Chen Ziyu; Li Jianfeng; Yu Yong; Li Xiaoya; Peng Qixian; Zhu Wenjun; Wang Jiaxiang

    2012-11-15

    The influences of lateral target size on hot electron production and electromagnetic pulse emission from laser interaction with metallic targets have been investigated. Particle-in-cell simulations at high laser intensities show that the yield of hot electrons tends to increase with lateral target size, because the larger surface area reduces the electrostatic field on the target, owing to its expansion along the target surface. At lower laser intensities and longer time scales, experimental data characterizing electromagnetic pulse emission as a function of lateral target size also show target-size effects. Charge separation and a larger target tending to have a lower target potential have both been observed. The increase in radiation strength and downshift in radiation frequency with increasing lateral target size can be interpreted using a simple model of the electrical capacity of the target.

  6. High energy irradiations simulating cosmic-ray-induced planetary gamma ray production. I - Fe target

    NASA Technical Reports Server (NTRS)

    Metzger, A. E.; Parker, R. H.; Yellin, J.

    1986-01-01

    Two thick Fe targets were bombarded by a series of 6 GeV proton irradiations for the purpose of simulating the cosmic ray bombardment of planetary objects in space. Gamma ray energy spectra were obtained with a germanium solid state detector during the bombardment, and 46 of the gamma ray lines were ascribed to the Fe targets. A comparison between observed and predicted values showed good agreement for Fe lines from neutron inelastic scattering and spallation reactions, and less satisfactory agreement for neutron capture reactions, the latter attributed to the difference in composition between the Fe target and the mean lunar abundance used in the modeling. Through an analysis of the irradiation results together with continuum data obtained in lunar orbit, it was found that 100 hours of measurement with a current instrument should generate a spectrum containing approximately 20 lines due to Fe alone, with a 2-sigma sensitivity for detection of about 0.2 percent.

  7. Production of medical isotopes from a thorium target irradiated by light charged particles up to 70 MeV.

    PubMed

    Duchemin, C; Guertin, A; Haddad, F; Michel, N; Métivier, V

    2015-02-01

    The irradiation of a thorium target by light charged particles (protons and deuterons) leads to the production of several isotopes of medical interest. Direct nuclear reaction allows the production of Protactinium-230 which decays to Uranium-230 the mother nucleus of Thorium-226, a promising isotope for alpha radionuclide therapy. The fission of Thorium-232 produces fragments of interest like Molybdenum-99, Iodine-131 and Cadmium-115g. We focus our study on the production of these isotopes, performing new cross section measurements and calculating production yields. Our new sets of data are compared with the literature and the last version of the TALYS code. PMID:25574934

  8. Production of medical isotopes from a thorium target irradiated by light charged particles up to 70 MeV

    NASA Astrophysics Data System (ADS)

    Duchemin, C.; Guertin, A.; Haddad, F.; Michel, N.; Métivier, V.

    2015-02-01

    The irradiation of a thorium target by light charged particles (protons and deuterons) leads to the production of several isotopes of medical interest. Direct nuclear reaction allows the production of Protactinium-230 which decays to Uranium-230 the mother nucleus of Thorium-226, a promising isotope for alpha radionuclide therapy. The fission of Thorium-232 produces fragments of interest like Molybdenum-99, Iodine-131 and Cadmium-115g. We focus our study on the production of these isotopes, performing new cross section measurements and calculating production yields. Our new sets of data are compared with the literature and the last version of the TALYS code.

  9. Parallel computation safety analysis irradiation targets fission product molybdenum in neutronic aspect using the successive over-relaxation algorithm

    NASA Astrophysics Data System (ADS)

    Susmikanti, Mike; Dewayatna, Winter; Sulistyo, Yos

    2014-09-01

    One of the research activities in support of commercial radioisotope production program is a safety research on target FPM (Fission Product Molybdenum) irradiation. FPM targets form a tube made of stainless steel which contains nuclear-grade high-enrichment uranium. The FPM irradiation tube is intended to obtain fission products. Fission materials such as Mo99 used widely the form of kits in the medical world. The neutronics problem is solved using first-order perturbation theory derived from the diffusion equation for four groups. In contrast, Mo isotopes have longer half-lives, about 3 days (66 hours), so the delivery of radioisotopes to consumer centers and storage is possible though still limited. The production of this isotope potentially gives significant economic value. The criticality and flux in multigroup diffusion model was calculated for various irradiation positions and uranium contents. This model involves complex computation, with large and sparse matrix system. Several parallel algorithms have been developed for the sparse and large matrix solution. In this paper, a successive over-relaxation (SOR) algorithm was implemented for the calculation of reactivity coefficients which can be done in parallel. Previous works performed reactivity calculations serially with Gauss-Seidel iteratives. The parallel method can be used to solve multigroup diffusion equation system and calculate the criticality and reactivity coefficients. In this research a computer code was developed to exploit parallel processing to perform reactivity calculations which were to be used in safety analysis. The parallel processing in the multicore computer system allows the calculation to be performed more quickly. This code was applied for the safety limits calculation of irradiated FPM targets containing highly enriched uranium. The results of calculations neutron show that for uranium contents of 1.7676 g and 6.1866 g (× 106 cm-1) in a tube, their delta reactivities are the still

  10. Measurement and modelling of radionuclide production in thick spherical targets irradiated isotropically with 1600 MeV protons

    SciTech Connect

    Michel, R.; Lange, H.J.; Leya, I.; Luepke, M.; Herpers, U.; Meltzow, B.; Roesel, R.; Filges, D.; Cloth, P.; Dragovitsch, P.

    1994-12-31

    Two thick spherical targets made of gabbro and of steel with radii of 25 and 10 cm, respectively, were isotropically irradiated with 1.6 GeV protons at the Saturne accelerator at Laboratoire National Saturne/Saclay in order to simulate the interactions of galactic cosmic ray (GCR) protons with stony and iron meteoroids. The artificial meteoroids contained large numbers of individual small targets of up to 27 elements, in which the depth-dependent production of residual nuclides was measured by {gamma}-, accelerator and conventional mass spectrometry. Theoretical production depth profiles were derived by folding depth-dependent spectra of primary and secondary particles calculated by the HERMES code system with experimental and theoretical production rates shortcomings of the cross section data base can be distinguished and medium-energy neutron cross sections can be improved.

  11. Prediction of production of 22Na in a gas-cell target irradiated by protons using Monte Carlo tracking

    NASA Astrophysics Data System (ADS)

    Eslami, M.; Kakavand, T.; Mirzaii, M.; Rajabifar, S.

    2015-01-01

    The 22Ne(p,n)22Na is an optimal reaction for the cyclotron production of 22Na. This work tends to monitor the proton induced production of 22Na in a gas-cell target, containing natural and enriched neon gas, using Monte Carlo method. The excitation functions of reactions are calculated by both TALYS-1.6 and ALICE/ASH codes and then the optimum energy range of projectile for the high yield production is selected. A free gaseous environment of neon at a particular pressure and temperature is prearranged and the proton beam is transported within it using Monte Carlo codes MCNPX and SRIM. The beam monitoring performed by each of these codes indicates that the gas-cell has to be designed as conical frustum to reach desired interactions. The MCNPX is also employed to calculate the energy distribution of proton in the designed target and estimation of the residual nuclei during irradiation. The production yield of 22Na in 22Ne(p,n)22Na and natNe(p,x)22Na reactions are estimated and it shows a good agreement with the experimental results. The results demonstrate that Monte Carlo makes available a beneficial manner to design and optimize the gas targets as well as calibration of detectors, which can be used for the radionuclide production purposes.

  12. Production of 64Cu and 67Cu radiopharmaceuticals using zinc target irradiated with accelerator neutrons

    NASA Astrophysics Data System (ADS)

    Kawabata, Masako; Hashimoto, Kazuyuki; Saeki, Hideya; Sato, Nozomi; Motoishi, Shoji; Nagai, Yasuki

    2014-09-01

    Copper radioisotopes have gained a lot of attention in radiopharmaceuticals owing to their unique decay characteristics. The longest half-life β emitter, 67Cu, is thought to be suitable for targeted radio-immunotherapy. Adequate production of 67Cu to meet the demands of clinical studies has not been fully established. Another attractive copper isotope, 64Cu has possible applications as a diagnostic imaging tracer combined with a therapeutic effect. This work proposes a production method using accelerator neutrons in which two copper radioisotopes can be produced: 1) 68Zn(n,x)67Cu and 2) 64Zn(n,p)64Cu using ~14 MeV neutrons generated by natC(d, n) reaction, both from natural or enriched zinc oxides. The generated 64,67Cu were separated from the target zinc oxide using a chelating and an anion exchange columns and were labelled with two widely studied chelators where the labelling efficiency was found to be acceptably good. The major advantage of this method is that a significant amount of 64,67Cu with a very few impurity radionuclides are produced which also makes the separation procedure simple. Provided an accelerator supplying an Ed = ~ 40 MeV, a wide application of 64,67Cu based drugs in nuclear medicine is feasible in the near future. We will present the characteristics of this production method using accelerator neutrons including the chemical separation processes.

  13. Parallel computation safety analysis irradiation targets fission product molybdenum in neutronic aspect using the successive over-relaxation algorithm

    SciTech Connect

    Susmikanti, Mike; Dewayatna, Winter; Sulistyo, Yos

    2014-09-30

    One of the research activities in support of commercial radioisotope production program is a safety research on target FPM (Fission Product Molybdenum) irradiation. FPM targets form a tube made of stainless steel which contains nuclear-grade high-enrichment uranium. The FPM irradiation tube is intended to obtain fission products. Fission materials such as Mo{sup 99} used widely the form of kits in the medical world. The neutronics problem is solved using first-order perturbation theory derived from the diffusion equation for four groups. In contrast, Mo isotopes have longer half-lives, about 3 days (66 hours), so the delivery of radioisotopes to consumer centers and storage is possible though still limited. The production of this isotope potentially gives significant economic value. The criticality and flux in multigroup diffusion model was calculated for various irradiation positions and uranium contents. This model involves complex computation, with large and sparse matrix system. Several parallel algorithms have been developed for the sparse and large matrix solution. In this paper, a successive over-relaxation (SOR) algorithm was implemented for the calculation of reactivity coefficients which can be done in parallel. Previous works performed reactivity calculations serially with Gauss-Seidel iteratives. The parallel method can be used to solve multigroup diffusion equation system and calculate the criticality and reactivity coefficients. In this research a computer code was developed to exploit parallel processing to perform reactivity calculations which were to be used in safety analysis. The parallel processing in the multicore computer system allows the calculation to be performed more quickly. This code was applied for the safety limits calculation of irradiated FPM targets containing highly enriched uranium. The results of calculations neutron show that for uranium contents of 1.7676 g and 6.1866 g (× 10{sup 6} cm{sup −1}) in a tube, their delta

  14. Production of isotopes and isomers with irradiation of Z = 47–50 targets by 23-MeV bremsstrahlung

    SciTech Connect

    Karamian, S. A.; Carroll, J. J.; Aksenov, N. V.; Albin, Yu. A.; Belov, A. G.; Bozhikov, G. A.; Dmitriev, S. N.; Starodub, G. Ya.

    2015-09-15

    The irradiations of Ag to Sn targets by bremsstrahlung generated with 23-MeV electron beams are performed at the MT-25 microtron. Gamma spectra of the induced activities have been measured and the yields of all detected radionuclides and isomers are carefully measured and analyzed. A regular dependence of yields versus changed reaction threshold is confirmed. Many isomers are detected and the suppression of the production probability is observed with growing product spin. Special peculiarities for the isomer-to-ground state ratios were deduced for the {sup 106m}Ag, {sup 108m}Ag, {sup 113m}In, {sup 115m}In, and {sup 123m}Sn isomers. The production of such nuclides as {sup 108m}Ag, {sup 115m}In, {sup 117g}In, and {sup 113m}Cd is of interest for applications, especially when economic methods are available.

  15. Deuteron irradiation of W and WO3 for production of high specific activity (186)Re: Challenges associated with thick target preparation.

    PubMed

    Balkin, Ethan R; Gagnon, Katherine; Strong, Kevin T; Smith, Bennett E; Dorman, Eric F; Emery, Robert C; Pauzauskie, Peter J; Fassbender, Michael E; Cutler, Cathy S; Ketring, Alan R; Jurisson, Silvia S; Wilbur, D Scott

    2016-09-01

    This investigation evaluated target fabrication and beam parameters for scale-up production of high specific activity (186)Re using deuteron irradiation of enriched (186)W via the (186)W(d,2n)(186)Re reaction. Thick W and WO3 targets were prepared, characterized and evaluated in deuteron irradiations. Full-thickness targets, as determined using SRIM, were prepared by uniaxially pressing powdered natural abundance W and WO3, or 96.86% enriched (186)W, into Al target supports. Alternatively, thick targets were prepared by pressing (186)W between two layers of graphite powder or by placing pre-sintered (1105°C, 12h) natural abundance WO3 pellets into an Al target support. Assessments of structural integrity were made on each target prepared. Prior to irradiation, material composition analyses were conducted using SEM, XRD, and Raman spectroscopy. Within a minimum of 24h post irradiation, gamma-ray spectroscopy was performed on all targets to assess production yields and radionuclidic byproducts. Problems were encountered with the structural integrity of some pressed W and WO3 pellets before and during irradiation, and target material characterization results could be correlated with the structural integrity of the pressed target pellets. Under the conditions studied, the findings suggest that all WO3 targets prepared and studied were unacceptable. By contrast, (186)W metal was found to be a viable target material for (186)Re production. Thick targets prepared with powdered (186)W pressed between layers of graphite provided a particularly robust target configuration. PMID:27423020

  16. Conversion of Molybdenum-99 production process to low enriched uranium: Neutronic and thermal hydraulic analyses of HEU and LEU target plates for irradiation in Pakistan Research Reactor-1

    NASA Astrophysics Data System (ADS)

    Mushtaq, Ahmad; Iqbal, Masood; Bokhari, Ishtiaq Hussain; Mahmood, Tayyab; Muhammad, Atta

    2012-09-01

    Technetium-99m, the daughter product of Molybdenum-99 is the most widely needed radionuclide for diagnostic studies in Pakistan. Molybdenum-99 Production Facility has been established at PINSTECH. Highly enriched uranium (93% 235U) U/Al alloy targets have been irradiated in Pakistan Research Reactor-1 (PARR-1) for the generation of fission Mo-99, while basic dissolution technique is used for separation of Mo-99 from target matrix activity. In line with the international objective of minimizing and eventually eliminating the use of HEU in civil commerce, national and international efforts have been underway to shift the production of medical isotopes from HEU to LEU (LEU; <20% 235U enrichment) targets. To achieve the equivalent amount of 99Mo with LEU targets, approximately 5 times uranium is needed. LEU aluminum uranium dispersion target has been developed, which may replace existing HEU aluminum/uranium alloy targets for production of 99Mo using basic dissolution technique. Neutronic and thermal hydraulic calculations were performed for safe irradiation of targets in the core of PARR-1.

  17. Production Target Design Report

    SciTech Connect

    Woloshun, Keith Albert; Dale, Gregory E.; Olivas, Eric Richard

    2015-07-28

    The Northstar 99Mo production target, a cylindrical length of 100Mo rod, has evolved considerably since its first conception.  The cylinder was very early sliced into disks to increase the heat transfer area, first to 1 mm thick disks then to the current 0.5 mm thick.  The coolant was changed early in the target development from water to helium to eliminate corrosion and dissolution.  The diameter has increased from initially 6 mm to 12 mm, the current diameter of the test target now at ANL, to nominally 28 mm (26-30.6 mm, depending upon optimal beam spot size and shape).  The length has also changed to improve the production to cost ratio, so now the target is nominally 41 mm long (excluding coolant gaps between disks), and irradiated on both ends.  This report summarizes the current status of the plant target design.

  18. Computational investigation of ⁹⁹Mo production yield via proton irradiation of natU and ²³²Th targets.

    PubMed

    Mirvakili, Seyed Mohammad; Alizadeh, Masoumeh; Vaziri, Atyeh Joze; Gholamzadeh, Zohreh; Davari, Amin

    2015-07-01

    Accelerators have some advantages such as safety and cheaper operating and decommissioning costs for (99)Mo production. Yield theoretical calculation using computational codes can powerfully estimate usefulness of a proposed nuclear reaction for a routine manufacturing. In this work, Monte Carlo-based code was used to compute (99)Mo yield in (232)Th and (nat)U proton-irradiated targets, as well as maximum applicable beam current. Results showed that the code well agrees with published experimental data. The targets can bear maximum beam current of 30 µA. Targets from (232)Th provides higher (99)Mo yield. PMID:25898237

  19. PLUTONIUM-238 PRODUCTION TARGET DESIGN STUDIES

    SciTech Connect

    Hurt, Christopher J; Wham, Robert M; Hobbs, Randall W; Owens, R Steven; Chandler, David; Freels, James D; Maldonado, G Ivan

    2014-01-01

    A new supply chain is planned for plutonium-238 using existing reactors at the Oak Ridge National Laboratory (ORNL) and Idaho National Laboratory (INL) and existing chemical recovery facilities at ORNL. Validation and testing activities for new irradiation target designs have been conducted in three phases over a 2 year period to provide data for scale-up to production. Target design, qualification, target fabrication, and irradiation of fully-loaded targets have been accomplished. Data from post-irradiation examination (PIE) supports safety analysis and irradiation of future target designs.

  20. Extension of excitation functions up to 50 MeV for activation products in deuteron irradiations of Pr and Tm targets

    NASA Astrophysics Data System (ADS)

    Hermanne, A.; Tárkányi, F.; Takács, S.; Ditrói, F.

    2016-09-01

    Extension up to 50 MeV incident deuteron energy is presented for excitation functions of activation products formed in monoisotopic Tm (169Tm) and Pr (141Pr). By stacked foil irradiations direct and/or cumulative production of 140,139m,138Nd, 138mPr, 141,139,137m,135Ce on Pr and 166,169Yb, 166,167,168Tm on Tm targets were measured. Confirmation of earlier experimental results for all investigated radionuclides is found and the influence of the higher energy on thick target yields and batch production of medically relevant radionuclides (140Nd, 139Pr (as decay product of 139mNd), 166,169Yb, 167Tm) is discussed. A comparison of experimental values with TALYS1.6 code results (predicted values from TENDL-2015 on-line library) shows a better description of the (d,pxn) reactions than older ones.

  1. Suprathermal electron production in laser-irradiated Cu targets characterized by combined methods of x-ray imaging and spectroscopy

    NASA Astrophysics Data System (ADS)

    Renner, O.; Šmíd, M.; Batani, D.; Antonelli, L.

    2016-07-01

    In a series of experiments performed with laser-irradiated planar targets at the PALS laser facility, the generation of suprathermal electrons has been studied at conditions relevant for the development of a shock ignition approach to inertial confinement fusion. A simultaneous application of high-collection-efficiency K-shell imaging with high resolution x-ray spectroscopy offers a novel approach to hot electron diagnosis at non-coated or moderately coated, medium-atomic-number targets, where the contribution of suprathermal-electron-generated, frequency-shifted Kα emission from highly ionized atoms cannot be neglected. Based on experimental data provided by these combined techniques and their interpretation via collisional-radiative atomic codes and Monte Carlo modeling of hot electron energy deposition in heated Cu targets, the fraction of the energy converted to hot electrons at laser intensities  ≈1016 W cm‑2 was measured to be at the level of 0.1–0.8%. The higher values of conversion efficiency found for frequency tripled radiation support a theoretical conjecture of enhanced laser energy absorption by a resonance mechanism and its transport to a flow of fast electrons.

  2. 225Ac and 223Ra production via 800 MeV proton irradiation of natural thorium targets.

    PubMed

    Weidner, J W; Mashnik, S G; John, K D; Ballard, B; Birnbaum, E R; Bitteker, L J; Couture, A; Fassbender, M E; Goff, G S; Gritzo, R; Hemez, F M; Runde, W; Ullmann, J L; Wolfsberg, L E; Nortier, F M

    2012-11-01

    Cross sections for the formation of (225,227)Ac, (223,225)Ra, and (227)Th via the proton bombardment of natural thorium targets were measured at a nominal proton energy of 800 MeV. No earlier experimental cross section data for the production of (223,225)Ra, (227)Ac and (227)Th by this method were found in the literature. A comparison of theoretical predictions with the experimental data shows agreement within a factor of two. Results indicate that accelerator-based production of (225)Ac and (223)Ra is a viable production method. PMID:22944532

  3. Separation of transuranium elements from irradiated targets

    SciTech Connect

    Wham, R.M.; Benker, D.E.; Felker, L.K.; Chattin, F.R.

    1993-12-31

    Aluminum targets containing curium/americium oxide are irradiated to produce the transcurium actinides einsteinium, fermium, berkelium, and californium. Recovery of recycle curium/americium and the transcurium elements involves several chemical processing steps to selectively recover those elements and remove fission products. Chemical processing steps developed at the Radiochemical Engineering Development Center (REDC) include aluminum dejacketing, solvent extraction to remove bulk impurities, solvent extraction to remove plutonium, anion exchange to partition curium and transcurium elements from the rare earths, and a second anion exchange cycle to separate americium/curium from the transcurium elements.

  4. Irradiation of northwest agricultural products

    NASA Astrophysics Data System (ADS)

    Eakin, D. E.; Tingey, G. I.

    1985-02-01

    Irradiation of food for disinfestation and preservation is increasing in importance because of increasing restrictions on various chemical treatments. Irradiation treatment is of particular interest in the Northwest because of a growing supply of agricultural products and the need to develop new export markets. Several products have, or could potentially have, significant export markets if stringent insect ocntrol procedures are developed and followed. Due to the recognized potential benefits of irradiation, this program was conducted to evaluate the benefits of using irradiation on Northwest agricultural products. Commodities currently included in the program are cherries, apples, asparagus, spices, hay, and hides.

  5. Niobium sputtered Havar foils for the high-power production of reactive [18F]fluoride by proton irradiation of [18O]H2O targets.

    PubMed

    Wilson, J S; Avila-Rodriguez, M A; Johnson, R R; Zyuzin, A; McQuarrie, S A

    2008-05-01

    Niobium sputtered Havar entrance foils were used for the production of reactive [(18)F]fluoride by proton irradiation of [(18)O]H(2)O targets under pressurized conditions. The synthesis yield in the routine production of 2-[(18)F]fluoro-2-deoxy-glucose (FDG) was used as an indicative parameter of the reactivity of (18)F. The yield of FDG obtained with (18)F produced in a target with Havar foil was used as a baseline. No statistically significant difference was found in the saturated yields of (18)F when using Havar or Havar-Nb sputtered entrance foils. However, the amount of long-lived radionuclidic impurities decreased more than 10-fold using the Havar-Nb entrance foil. The average decay corrected synthesis yield of FDG, evaluated over a period of more than 2 years, was found to be approximately 5% higher when using a Havar-Nb entrance foil and a marked improvement on the FDG yield consistency was noted. In addition, the frequency of target rebuilding was greatly diminished when using the Nb sputtered entrance foil. PMID:18242099

  6. Post-Irradiation Examination of Array Targets - Part I

    SciTech Connect

    Icenhour, A.S.

    2004-01-23

    During FY 2001, two arrays, each containing seven neptunium-loaded targets, were irradiated at the Advanced Test Reactor in Idaho to examine the influence of multi-target self-shielding on {sup 236}Pu content and to evaluate fission product release data. One array consisted of seven targets that contained 10 vol% NpO{sub 2} pellets, while the other array consisted of seven targets that contained 20 vol % NpO{sub 2} pellets. The arrays were located in the same irradiation facility but were axially separated to minimize the influence of one array on the other. Each target also contained a dosimeter package, which consisted of a small NpO{sub 2} wire that was inside a vanadium container. After completion of irradiation and shipment back to the Oak Ridge National Laboratory, nine of the targets (four from the 10 vol% array and five from the 20 vol% array) were punctured for pressure measurement and measurement of {sup 85}Kr. These nine targets and the associated dosimeters were then chemically processed to measure the residual neptunium, total plutonium production, {sup 238}Pu production, and {sup 236}Pu concentration at discharge. The amount and isotopic composition of fission products were also measured. This report provides the results of the processing and analysis of the nine targets.

  7. Separation of sodium-22 from irradiated targets

    DOEpatents

    Taylor, Wayne A.; Jamriska, David

    1996-01-01

    A process for selective separation of sodium-22 from an irradiated target including dissolving an irradiated target to form a first solution, contacting the first solution with hydrated antimony pentoxide to selectively separate sodium-22 from the first solution, separating the hydrated antimony pentoxide including the separated sodium-22 from the first solution, dissolving the hydrated antimony pentoxide including the separated sodium-22 in a mineral acid to form a second solution, and, separating the antimony from the sodium-22 in the second solution.

  8. Irradiation of Northwest agricultural products

    SciTech Connect

    Eakin, D.E.; Tingey, G.L.

    1985-02-01

    Irradiation of food for disinfestation and preservation is increasing in importance because of increasing restrictions on various chemical treatments. Irradiation treatment is of particular interest in the Northwest because of a growing supply of agricultural products and the need to develop new export markets. Several products have, or could potentially have, significant export markets if stringent insect control procedures are developed and followed. Due to the recognized potential benefits of irradiation, Pacific Northwest Laboratory (PNL) is conducting this program to evaluate the benefits of using irradiation on Northwest agricultural products under the US Department of Energy (DOE) Defense Byproducts Production and Utilization Program. Commodities currently included in the program are cherries, apples, asparagus, spices, hay, and hides.

  9. Microjet formation and hard x-ray production from a liquid metal target irradiated by intense femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Lar'kin, A.; Uryupina, D.; Ivanov, K.; Savel'ev, A.; Bonnet, T.; Gobet, F.; Hannachi, F.; Tarisien, M.; Versteegen, M.; Spohr, K.; Breil, J.; Chimier, B.; Dorchies, F.; Fourment, C.; Leguay, P.-M.; Tikhonchuk, V. T.

    2014-09-01

    By using a liquid metal as a target one may significantly enhance the yield of hard x-rays with a sequence of two intense femtosecond laser pulses. The influence of the time delay between the two pulses is studied experimentally and interpreted with numerical simulations. It was suggested that the first arbitrary weak pulse produces microjets from the target surface, while the second intense pulse provides an efficient electron heating and acceleration along the jet surface. These energetic electrons are the source of x-ray emission while striking the target surface. The microjet formation is explained based on the results given by both optical diagnostics and hydrodynamic modeling by a collision of shocks originated from two distinct zones of laser energy deposition.

  10. Microjet formation and hard x-ray production from a liquid metal target irradiated by intense femtosecond laser pulses

    SciTech Connect

    Lar'kin, A. Uryupina, D.; Ivanov, K.; Savel'ev, A.; Bonnet, T.; Gobet, F.; Hannachi, F.; Tarisien, M.; Versteegen, M.; Spohr, K.; Breil, J.; Chimier, B.; Dorchies, F.; Fourment, C.; Leguay, P.-M.; Tikhonchuk, V. T.

    2014-09-15

    By using a liquid metal as a target one may significantly enhance the yield of hard x-rays with a sequence of two intense femtosecond laser pulses. The influence of the time delay between the two pulses is studied experimentally and interpreted with numerical simulations. It was suggested that the first arbitrary weak pulse produces microjets from the target surface, while the second intense pulse provides an efficient electron heating and acceleration along the jet surface. These energetic electrons are the source of x-ray emission while striking the target surface. The microjet formation is explained based on the results given by both optical diagnostics and hydrodynamic modeling by a collision of shocks originated from two distinct zones of laser energy deposition.

  11. A target for production of radioxenons

    NASA Technical Reports Server (NTRS)

    Blue, J. W.; Leonard, R.; Jha, S.; Sodd, V. J.; Vincent, J. S.

    1976-01-01

    A liquid cesium target has been developed which allows the production and separate identification of the neutron deficient isotopes of xenon. The present report describes irradiations utilizing 34 to 41 MeV protons to produce millicurie quantities of Xe-127 and Xe-129m. At higher energies, however, the target could be used without modification to produce xenon isotopes as light as 119.

  12. Note: Proton irradiation at kilowatt-power and neutron production from a free-surface liquid-lithium target

    NASA Astrophysics Data System (ADS)

    Halfon, S.; Arenshtam, A.; Kijel, D.; Paul, M.; Weissman, L.; Aviv, O.; Berkovits, D.; Dudovitch, O.; Eisen, Y.; Eliyahu, I.; Feinberg, G.; Haquin, G.; Hazenshprung, N.; Kreisel, A.; Mardor, I.; Shimel, G.; Shor, A.; Silverman, I.; Tessler, M.; Yungrais, Z.

    2014-05-01

    The free-surface Liquid-Lithium Target, recently developed at Soreq Applied Research Accelerator Facility (SARAF), was successfully used with a 1.9 MeV, 1.2 mA (2.3 kW) continuous-wave proton beam. Neutrons (˜2 × 1010 n/s having a peak energy of ˜27 keV) from the 7Li(p,n)7Be reaction were detected with a fission-chamber detector and by gold activation targets positioned in the forward direction. The setup is being used for nuclear astrophysics experiments to study neutron-induced reactions at stellar energies and to demonstrate the feasibility of accelerator-based boron neutron capture therapy.

  13. Note: Proton irradiation at kilowatt-power and neutron production from a free-surface liquid-lithium target

    SciTech Connect

    Halfon, S.; Feinberg, G.; Arenshtam, A.; Kijel, D.; Weissman, L.; Aviv, O.; Berkovits, D.; Dudovitch, O.; Eisen, Y.; Eliyahu, I.; Haquin, G.; Hazenshprung, N.; Kreisel, A.; Mardor, I.; Shimel, G.; Shor, A.; Silverman, I.; Yungrais, Z.; Paul, M. Tessler, M.

    2014-05-15

    The free-surface Liquid-Lithium Target, recently developed at Soreq Applied Research Accelerator Facility (SARAF), was successfully used with a 1.9 MeV, 1.2 mA (2.3 kW) continuous-wave proton beam. Neutrons (∼2 × 10{sup 10} n/s having a peak energy of ∼27 keV) from the {sup 7}Li(p,n){sup 7}Be reaction were detected with a fission-chamber detector and by gold activation targets positioned in the forward direction. The setup is being used for nuclear astrophysics experiments to study neutron-induced reactions at stellar energies and to demonstrate the feasibility of accelerator-based boron neutron capture therapy.

  14. A target design for irradiation of NaI at high beam current

    NASA Technical Reports Server (NTRS)

    Blue, J. W.; Sodd, V. J.

    1972-01-01

    A solution to the targetry problems encountered when the iodine nucleus is a target for cyclotron irradiation is given as a target design. A target based on this design was used in 30 microampere irradiations of 46 MeV alpha particles for one-half hour without significant damage. Such an irradiation produces 6 to 7 mCi of Cs-129. This target should also be considered for cyclotron production of the radioisotopes Cs-127, I-123, and Xe-127.

  15. Development of Water Target for Radioisotope Production

    NASA Astrophysics Data System (ADS)

    Tripp, Nathan

    2011-10-01

    Ongoing studies of plant physiology at TUNL require a supply of nitrogen-13 for use as a radiotracer. Production of nitrogen-13 using a water target and a proton beam follows the nuclear reaction 16-O(p,a)13-N. Unfortunately the irradiation of trace amounts of oxygen-18 within a natural water target produces fluorine-18 by the reaction 18-O(p, n)18-F. The presence of this second radioisotope reduces the efficacy of nitrogen-13 as a radiotracer. Designing a natural water target for nitrogen-13 production at TUNL required the design of several new systems to address the problems inherent in nitrogen-13 production. A heat exchanger cools the target water after irradiation within the target cell. The resulting improved thermal regulation of the target water prevents the system from overheating and minimizes the effect of the cavitations occurring within the target. Alumina pellets within a scrubbing unit remove the fluorine-18 contamination from the irradiated water. The modular design of the water target apparatus makes the system highly adaptable, allowing for easy reuse and adaptation of the different components into future projects. The newly designed and constructed water target should meet the current and future needs of TUNL researchers in the production of nitrogen-13. This TUNL REU project was funded in part by a grant from the National Science Foundation (NSF) NSF-PHY-08-51813.

  16. A solid target system with remote handling of irradiated targets for PET cyclotrons.

    PubMed

    Siikanen, J; Tran, T A; Olsson, T G; Strand, S-E; Sandell, A

    2014-12-01

    A solid target system was developed for a PET cyclotron. The system is compatible with many different target materials in the form of foils and electroplated/sputtered targets which makes it useful for production of a wide variety of different PET radionuclides. The target material is manually loaded into the system. Remote handling of irradiated target material is managed with a pneumatic piston and a vacuum technique which allows the targets to be dropped into a shielded transport container. To test the target performance, proton irradiations (12.8 MeV, 45 μA) of monoisotopic yttrium foils (0.64 mm, direct water cooling) were performed to produce 89Zr. The yields were 2200±200 MBq (1 h, n=13) and 6300±65 MBq (3 h, n=3). PMID:25265518

  17. Simulation of cosmic irradiation conditions in thick target arrangements

    NASA Technical Reports Server (NTRS)

    Theis, S.; Englert, P.; Reedy, R. C.; Arnold, J. R.

    1986-01-01

    One approach to simulate 2-pi irradiation conditions of planetary surfaces which has been widely applied in the past are bombardments of so called thick targets. A very large thick target was exposed recently to 2.1 GeV protons at the Bevatron-Bevalac in Berkeley. In a 100x100x180 cm steel-surrounded granodiorite target radioactive medium and high energy spallation products of the incident primary and of secondary particles were analyzed along the beam axis down to depths of 140 g/cm(2) in targets such as Cu, Ni, Co, Fe, T, Si, SiO2 and Al. Activities of these nuclides were exclusively determined via instrumental gamma-ray spectroscopy. Relative yields of neutron capture and spallation products induced in Co and Cu targets during the thick target bombardment are shown as a function of depth. The majority of the medium energy products such as Co-58 from Co targets exhibit a maximum at shallow depths of 40-60 g/cm(2) and then decrease exponentially. In a comparable 600 MeV proton bombarded thick target such a slight maximum for medium energy products was not observed. Rather, Co-58 activities in Co decreased steadily with the highest activity at the surface. The activities of the n-capture product Co-60 increase steadily starting at the surface. This indicates the rapidly growing flux of low energy neutrons within the target.

  18. Interfractional Target Variations for Partial Breast Irradiation

    SciTech Connect

    Ahunbay, Ergun E.; Robbins, Jared; Christian, Robert; Godley, Andrew; White, Julia; Li, X. Allen

    2012-04-01

    Purpose: In this work, we quantify the interfractional variations in the shape of the clinical target volume (CTV) by analyzing the daily CT data acquired during CT-guided partial breast irradiation (PBI) and compare the effectiveness of various repositioning alignment strategies considered to account for the variations. Methods and Materials: The daily CT data for 13 breast cancer patients treated with PBI in either prone (10 patients) or supine (3 patients) with daily kV CT guidance using CT on Rails (CTVision, Siemens, Malvern, PA) were analyzed. For approximately 25 points on the surface of the CTV, deformation vectors were calculated by means of deformable image registration and verified by visual inspection. These were used to calculate the distances along surface normals (DSN), which directly related to the required margin expansions for each point. The DSN values were determined for seven alignment methods based on volumetric imaging and also two-dimensional projections (portal imaging). Results: The margin expansion necessary to cover 99% of all points for all days was 2.7 mm when utilizing the alignment method based on deformation field data (the best alignment method). The center-of-mass based alignment yielded slightly worse results (a margin of 4.0 mm), and shifts obtained by operator placement (7.9 mm), two-dimensional-based methods (7.0-10.1 mm), and skin marks (13.9 mm) required even larger margin expansions. Target shrinkage was evident for most days by the negative values of DSN. Even with the best alignment, the range of DSN values could be as high as 7 mm, resulting in a large amount of normal tissue irradiation, unless adaptive replanning is employed. Conclusion: The appropriate alignment method is important to minimize the margin requirement to cover the significant interfractional target deformations observed during PBI. The amount of normal tissue unnecessarily irradiated is still not insignificant, and can be minimized if adaptive

  19. Recovery of niobium from irradiated targets

    DOEpatents

    Phillips, Dennis R.; Jamriska, Sr., David J.; Hamilton, Virginia T.

    1994-01-01

    A process for selective separation of niobium from proton irradiated molybdenum targets is provided and includes dissolving the molybdenum target in a hydrogen peroxide solution to form a first ion-containing solution, contacting the first ion-containing solution with a cationic resin whereby ions selected form the group consisting of molybdenum, biobium, technetium, selenium, vanadium, arsenic, germanium, zirconium and rubidium remain in a second ion-containing solution while ions selected from the group consisting of rubidium, zinc, beryllium, cobalt, iron, manganese, chromium, strontium, yttrium and zirconium are selectively adsorbed by the cationic resin; adjusting the pH of the second ion-containing solution to within a range of from about 5.0 to about 6.0; contacting the pH adjusting second ion-containing solution with a dextran-based material for a time to selectively separate niobium from the solution and recovering the niobium from the dextran-based material.

  20. Recovery of niobium from irradiated targets

    SciTech Connect

    Phillips, D.R.; Jamriska, D.J. Sr.; Hamilton, V.T.

    1994-03-22

    A process for selective separation of niobium from proton irradiated molybdenum targets is provided and includes dissolving the molybdenum target in a hydrogen peroxide solution to form a first ion-containing solution, contacting the first ion-containing solution with a cationic resin whereby ions selected form the group consisting of molybdenum, niobium, technetium, selenium, vanadium, arsenic, germanium, zirconium and rubidium remain in a second ion-containing solution while ions selected from the group consisting of rubidium, zinc, beryllium, cobalt, iron, manganese, chromium, strontium, yttrium and zirconium are selectively adsorbed by the cationic resin; adjusting the pH of the second ion-containing solution to within a range of from about 5.0 to about 6.0; contacting the pH adjusting second ion-containing solution with a dextran-based material for a time to selectively separate niobium from the solution and recovering the niobium from the dextran-based material.

  1. Recovery of germanium-68 from irradiated targets

    DOEpatents

    Phillips, Dennis R.; Jamriska, Sr., David J.; Hamilton, Virginia T.

    1993-01-01

    A process for selective separation of germanium-68 from proton irradiated molybdenum targets is provided and includes dissolving the molybdenum target in a hydrogen peroxide solution to form a first ion-containing solution, contacting the first ion-containing solution with a cationic resin whereby ions selected from the group consisting of molybdenum, niobium, technetium, selenium, vanadium, arsenic, germanium, zirconium and rubidium remain in a second ion-containing solution while ions selected from the group consisting of rubidium, zinc, beryllium, cobalt, iron, manganese, chromium, strontium, yttrium and zirconium are selectively adsorbed by the first resin, adjusting the pH of the second ion-containing solution to within a range of from about 0.7 to about 3.0, adjusting the soluble metal halide concentration in the second ion-containing solution to a level adapted for subsequent separation of germanium, contacting the pH-adjusted, soluble metal halide-containing second ion-containing solution with a dextran-based material whereby germanium ions are separated by the dextran-based material, and recovering the germanium from the dextran-based material, preferably by distillation.

  2. Recovery of germanium-68 from irradiated targets

    SciTech Connect

    Phillips, D.R.; Jamriska, D.J. Sr.; Hamilton, V.T.

    1992-12-31

    This invention is comprised of a process for selective separation of germanium-68 from proton irradiated molybdenum targets is provided and includes dissolving the molybdenum target in a hydrogen peroxide solution to form a first ion-containing solution, contacting the first ion-containing solution with a cationic resin whereby ions selected from the group consisting of molybdenum, niobium, technetium, selenium,vanadium, arsenic, germanium, zirconium and rubidium remain in a second ion-containing solution while ions selected from the group consisting of rubidium, zinc, beryllium, cobalt, iron, manganese, chromium, strontium, yttrium and zirconium are selectively adsorbed by the first resin, adjusting the pH of the second ion-containing solution to within a range of from about 0.7 to about 3.0, adjusting the soluble metal halide concentration in the second ion-containing solution to a level adapted for subsequent separation of germanium, contacting the pH-adjusted, soluble metal halide-containing second ion-containing solution with a dextran-based material whereby germanium ions are separated by the dextran-based material, and recovering the germanium from the dextran-based material, preferably by distillation.

  3. Recovery of germanium-68 from irradiated targets

    SciTech Connect

    Phillips, D.R.; Jamriska, D.J. Sr.; Hamilton, V.T.

    1993-03-02

    A process for selective separation of germanium-68 from proton irradiated molybdenum targets is provided and includes dissolving the molybdenum target in a hydrogen peroxide solution to form a first ion-containing solution, contacting the first ion-containing solution with a cationic resin whereby ions selected from the group consisting of molybdenum, niobium, technetium, selenium, vanadium, arsenic, germanium, zirconium and rubidium remain in a second ion-containing solution while ions selected from the group consisting of rubidium, zinc, beryllium, cobalt, iron, manganese, chromium, strontium, yttrium and zirconium are selectively adsorbed by the first resin, adjusting the pH of the second ion-containing solution to within a range of from about 0.7 to about 3.0, adjusting the soluble metal halide concentration in the second ion-containing solution to a level adapted for subsequent separation of germanium, contacting the pH-adjusted, soluble metal halide-containing second ion-containing solution with a dextran-based material whereby germanium ions are separated by the dextran-based material, and recovering the germanium from the dextran-based material, preferably by distillation.

  4. A target design for irradiation of NaI at high beam current.

    NASA Technical Reports Server (NTRS)

    Blue, J. W.; Sodd, V. J.

    1972-01-01

    A solution to the targetry problems encountered when the iodine nucleus is a target for cyclotron irradiation is given as a new target design. A target based on this design has been used in 30 microampere irradiations of 46 MeV alpha particles for one-half hour without significant damage. Such an irradiation produces 6 to 7 mCi of Cs-129, an isotope useful in nuclear medicine. This target should also be considered for cyclotron production of the radioisotopes Cs-127, I-123, and Xe-127.

  5. Method for mounting laser fusion targets for irradiation

    DOEpatents

    Fries, R. Jay; Farnum, Eugene H.; McCall, Gene H.

    1977-07-26

    Methods for preparing laser fusion targets of the ball-and-disk type are disclosed. Such targets are suitable for irradiation with one or two laser beams to produce the requisite uniform compression of the fuel material.

  6. Development of annular targets for {sup 99}MO production.

    SciTech Connect

    Conner, C.; Lewandowski, E. F.; Snelgrove, J. L.; Liberatore, M. W.; Walker, D. E.; Wiencek, T. C.; McGann, D. J.; Hofman, G. L.; Vandegrift, G. F.

    1999-09-30

    The new annular target performed well during irradiation. The target is inexpensive and provides good heat transfer during irradiation. Based on these and previous tests, we conclude that targets with zirconium tubes and either nickel-plated or zinc-plated foils work well. We proved that we could use aluminum target tubes, which are much cheaper and easier to work with than the zirconium tubes. In aluminum target tubes nickel-plated fission-recoil barriers work well and prevent bonding of the foil to the new target tubes during irradiation. Also, zinc-plated and aluminum-foil barriers appear promising in anodized aluminum tubes. Additional tests are anticipated to address such issues as fission-recoil barrier thickness and uranium foil composition. Overall, however, the target was successful and will provide an inexpensive, efficient way to irradiate LEU metal foil for the production of {sup 99}Mo.

  7. Measurement and simulation of the cross sections for the production of {sup 148}Gd in thin {sup nat}W and {sup 181}Ta targets irradiated with 0.4- to 2.6-GeV protons

    SciTech Connect

    Titarenko, Yu. E. Batyaev, V. F.; Titarenko, A. Yu.; Butko, M. A.; Pavlov, K. V.; Florya, S. N.; Tikhonov, R. S.; Zhivun, V. M.; Ignatyuk, A. V.; Mashnik, S. G.; Leray, S.; Boudard, A.; Cugnon, J.; Mancusi, D.; Yariv, Y.; Nishihara, K.; Matsuda, N.; Kumawat, H.; Mank, G.; Gudowski, W.

    2011-04-15

    The cross sections for the production of {sup 148}Gd in {sup nat}W and {sup 181}Ta targets irradiated by 0.4-, 0.6-, 0.8-, 1.2-, 1.6-, and 2.6-GeV protons at the ITEP accelerator complex have been measured by direct {alpha} spectrometry without chemical separation. The experimental data have been compared with the data obtained at other laboratories and with the theoretical simulations of the yields on the basis of the BERTINI, ISABEL, CEM03.02, INCL4.2, INCL4.5, CASCADE07, and PHITS codes.

  8. Final Report on MEGAPIE Target Irradiation and Post-Irradiation Examination

    SciTech Connect

    Yong, Dai

    2015-06-30

    Megawatt pilot experiment (MEGAPIE) was successfully performed in 2006. One of the important goals of MEGAPIE is to understand the behaviour of structural materials of the target components exposed to high fluxes of high-energy protons and spallation neutrons in flowing LBE (liquid lead-bismuth eutectic) environment by conducting post-irradiation examination (PIE). The PIE includes four major parts: non-destructive test, radiochemical analysis of production and distribution of radionuclides produced by spallation reaction in LBE, analysis of LBE corrosion effects on structural materials, T91 and SS 316L steels, and mechanical testing of the T91 and SS 316L steels irradiated in the lower part of the target. The non-destructive test (NDT) including visual inspection and ultrasonic measurement was performed in the proton beam window area of the T91 calotte of the LBE container, the most intensively irradiated part of the MEGAPIE target. The visual inspection showed no visible failure and the ultrasonic measurement demonstrated no detectable change in thickness in the beam window area. Gamma mapping was also performed in the proton beam window area of the AlMg3 safety-container. The gamma mapping results were used to evaluate the accumulated proton fluence distribution profile, the input data for determining irradiation parameters. Radiochemical analysis of radionuclides produced by spallation reaction in LBE is to improve the understanding of the production and distribution of radionuclides in the target. The results demonstrate that the radionuclides of noble metals, 207Bi, 194Hg/Au are rather homogeneously distributed within the target, while radionuclides of electropositive elements are found to be deposited on the steel-LBE interface. The corrosion effect of LBE on the structural components under intensive irradiation was investigated by metallography. The results show that no evident corrosion damages. However, unexpected deep

  9. PLUTONIUM-238 RECOVERY FROM IRRADIATED NEPTUNIUM TARGETS USING SOLVENT EXTRACTION

    SciTech Connect

    Scott Herbst; Terry Todd; Jack Law; Bruce Mincher; Steve Frank; John Swanson

    2006-10-01

    The United States Department of Energy proposes to re-establish a domestic capability for producing plutonium-238 (238Pu) to fuel radioisotope power systems primarily in support of future space missions. A conceptual design report is currently being prepared for a new 238Pu, and neptunium-237 (237Np) target fabrication and processing facility tentatively to be built at the Idaho National Laboratory (INL) in the USA. The facility would be capable of producing at least 5 kg of 238Pu-oxide powder per year. Production of 238Pu requires fabrication of 237Np targets with subsequent irradiation in the existing Advanced Test Reactor (ATR) located at the INL. The targets are 237Np oxide dispersed in a compact of powdered aluminum and clad with aluminum metal. The 238Pu product is separated and purified from the residual 237Np, aluminum matrix, and fission products. The unconverted 237Np is also a valuable starting material and is separated, purified and recycled to the target fabrication process. The proposed baseline method for separating and purifying 238Pu and unconverted 237Np post irradiation is by anion exchange (IX). Separation of Pu from Np by IX was chosen as the baseline method because of the method’s proven ability to produce a quality Pu product and because it is amenable to the relatively small scale, batch type production methods used (small batches of ~200g 238Pu are processed at a time). Multiple IX cycles are required involving substantial volumes of nitric acid and other process solutions which must be cleaned and recycled or disposed of as waste. Acid recycle requires rather large evaporator systems, including one contained in a hot cell for remote operation. Finally, the organic based anion exchange resins are rapidly degraded due to the high a-dose and associated heat production from 238Pu decay, and must be regularly replaced (and disposed of as waste). In summary, IX is time consuming, cumbersome, and requires substantial tankage to accommodate the

  10. High power neutron production targets

    SciTech Connect

    Wender, S.

    1996-06-01

    The author describes issues of concern in the design of targets and associated systems for high power neutron production facilities. The facilities include uses for neutron scattering, accelerator driven transmutation, accelerator production of tritium, short pulse spallation sources, and long pulse spallation sources. Each of these applications requires a source with different design needs and consequently different implementation in practise.

  11. Measurement and simulation of the cross sections for nuclide production in {sup nat}W and {sup 181}Ta targets irradiated with 0.04- to 2.6-GeV protons

    SciTech Connect

    Titarenko, Yu. E. Batyaev, V. F.; Titarenko, A. Yu.; Butko, M. A.; Pavlov, K. V.; Florya, S. N.; Tikhonov, R. S.; Zhivun, V. M.; Ignatyuk, A. V.; Mashnik, S. G.; Leray, S.; Boudard, A.; Cugnon, J.; Mancusi, D.; Yariv, Y.; Nishihara, K.; Matsuda, N.; Kumawat, H.; Mank, G.; Gudowski, W.

    2011-04-15

    The cross sections for nuclide production in thin {sup nat}Wand {sup 181}Ta targets irradiated by 0.04-2.6-GeV protons have been measured by direct {gamma} spectrometry using two {gamma} spectrometers with the resolutions of 1.8 and 1.7 keV in the {sup 60}Co 1332-keV {gamma} line. As a result, 1895 yields of radioactive residual product nuclei have been obtained. The {sup 27}Al(p, x){sup 22}Na reaction has been used as a monitor reaction. The experimental data have been compared with the MCNPX (BERTINI, ISABEL), CEM03.02, INCL4.2, INCL4.5, PHITS, and CASCADE07 calculations.

  12. Mechanism of genotoxicity induced by targeted cytoplasmic irradiation

    PubMed Central

    Hong, M; Xu, A; Zhou, H; Wu, L; Randers-Pehrson, G; Santella, R M; Yu, Z; Hei, T K

    2010-01-01

    Background: Direct damage to DNA is generally accepted as the main initiator of mutation and cancer induced by environmental carcinogens or ionising radiation. However, there is accumulating evidence suggesting that extracellular/extranuclear targets may also have a key role in mediating the genotoxic effects of ionising radiation. As the possibility of a particle traversal through the cytoplasm is much higher than through the nuclei in environmental radiation exposure, the contribution to genotoxic damage from cytoplasmic irradiation should not be ignored in radiation risk estimation. Although targeted cytoplasmic irradiation has been shown to induce mutations in mammalian cells, the precise mechanism(s) underlying the mutagenic process is largely unknown. Methods: A microbeam that can target the cytoplasm of cells with high precision was used to study mechanisms involved in mediating the genotoxic effects in irradiated human–hamster hybrid (AL) cells. Results: Targeted cytoplasmic irradiation induces oxidative DNA damages and reactive nitrogen species (RNS) in AL cells. Lipid peroxidation, as determined by the induction of 4-hydroxynonenal was enhanced in irradiated cells, which could be suppressed by butylated hydroxyl toluene treatment. Moreover, cytoplasmic irradiation of AL cells increased expression of cyclooxygenase-2 (COX-2) and activation of extracellular signal-related kinase (ERK) pathway. Conclusion: We herein proposed a possible signalling pathway involving reactive oxygen/nitrogen species and COX-2 in the cytoplasmic irradiation-induced genotoxicity effect. PMID:20842121

  13. Production of modified starches by gamma irradiation

    NASA Astrophysics Data System (ADS)

    Kang, Il-Jun; Byun, Myung-Woo; Yook, Hong-Sun; Bae, Chun-Ho; Lee, Hyun-Soo; Kwon, Joong-Ho; Chung, Cha-Kwon

    1999-04-01

    As a new processing method for the production of modified starch, gamma irradiation and four kinds of inorganic peroxides were applied to commercial corn starch. The addition of inorganic peroxides without gamma irradiation or gamma irradiation without the addition of inorganic peroxides effectively decreased initial viscosity, but did not sufficiently keep viscosity stable. The combination of adding ammonium persulfate (APS) and gamma irradiation showed the lowest initial viscosity and the best stability out of the tested four kinds of inorganic peroxides. Among the tested mixing methods of APS, soaking was found to be more effective than dry blending or spraying. Therefore, the production of modified starch with low viscosity as well as with sufficient viscosity stability became feasible by the control of gamma irradiation dose levels and the amount of added APS to starch.

  14. Vacuum aperture isolator for retroreflection from laser-irradiated target

    DOEpatents

    Benjamin, Robert F.; Mitchell, Kenneth B.

    1980-01-01

    The disclosure is directed to a vacuum aperture isolator for retroreflection of a laser-irradiated target. Within a vacuum chamber are disposed a beam focusing element, a disc having an aperture and a recollimating element. The edge of the focused beam impinges on the edge of the aperture to produce a plasma which refracts any retroreflected light from the laser's target.

  15. Measurement and simulation of the cross sections for nuclide production in {sup 93}Nb and {sup nat}Ni targets irradiated with 0.04- to 2.6-GeV protons

    SciTech Connect

    Titarenko, Yu. E. Batyaev, V. F.; Titarenko, A. Yu.; Butko, M. A.; Pavlov, K. V.; Florya, S. N.; Tikhonov, R. S.; Zhivun, V. M.; Ignatyuk, A. V.; Mashnik, S. G.; Leray, S.; Boudard, A.; Cugnon, J.; Mancusi, D.; Yariv, Y.; Nishihara, K.; Matsuda, N.; Kumawat, H.; Mank, G.; Gudowski, W.

    2011-04-15

    The cross sections for nuclide production in thin {sup 93}Nb and {sup nat}Ni targets irradiated by 0.04- to 2.6-GeV protons have been measured by direct {gamma} spectrometry using two {gamma} spectrometers with the resolutions of 1.8 and 1.7 keV in the {sup 60}Co 1332-keV {gamma} line. As a result, 1112 yields of radioactive residual nuclei have been obtained. The {sup 27}Al(p, x){sup 22}Na reaction has been used as a monitor reaction. The experimental data have been compared with the MCNPX (BERTINI, ISABEL), CEM03.02, INCL4.2, INCL4.5, PHITS, and CASCADE07 calculations.

  16. Monitoring pathogens from irradiated agriculture products

    NASA Astrophysics Data System (ADS)

    Butterweck, Joseph S.

    The final food and environmental safety assessment of agriculture product irradiation can only be determined by product history. Product history will be used for future research and development, regulations, commercial practices and implementation of agriculture and food irradiation on a regional basis. The commercial irradiator treats large varieties and amounts of products that are used in various environments. It, in time, will generate a large data base of product history. Field product monitoring begins when food irradiation progresses from the pilot/demonstration phase to the commercial phase. At that time, it is important that there be in place a monitoring system to collect and analyze field data. The systems managers, public health authorities and exotic disease specialists will use this information to assess the reduction of food pathogens on the populace and the environment. The common sources of monitoring data are as follows: 1) Host Monitoring a) Medical Diagnosis b) Autopsy c) Serology Surveys 2) Environmental Monitoring a) Sentinel b) Pest Surveys/Microbial Counts c) Sanitary Inspections 3) Food Industries Quality Assurance Monitoring a) End Product Inspection b) Complaints c) Continual Use of the Product

  17. Oak Ridge Isotope Production Cyclotron Facility and Target Handling

    SciTech Connect

    Bradley, Eric Craig; Varma, Venugopal Koikal; Egle, Brian; Binder, Jeffrey L; Mirzadeh, Saed; Tatum, B Alan; Burgess, Thomas W; Devore, Joe; Rennich, Mark; Saltmarsh, Michael John; Caldwell, Benjamin Cale

    2011-01-01

    Abstract The Nuclear Science Advisory Committee issued in August 2009 an Isotopes Subcommittee report that recommended the construction and operation of a variable-energy, high-current, multiparticle accelerator for producing medical radioisotopes. To meet the needs identified in the report, Oak Ridge National Laboratory is developing a technical concept for a commercial 70 MeV dual-port-extraction, multiparticle cyclotron to be located at the Holifield Radioactive Ion Beam Facility. The conceptual design of the isotope production facility as envisioned would provide two types of targets for use with this new cyclotron. One is a high-power target cooled by water circulating on both sides, and the other is a commercial target cooled only on one side. The isotope facility concept includes an isotope target vault for target irradiation and a shielded transfer station for radioactive target handling. The targets are irradiated in the isotope target vault. The irradiated targets are removed from the target vault and packaged in an adjoining shielded transfer station before being sent out for postprocessing. This paper describes the conceptual design of the target-handling capabilities required for dealing with these radioactive targets and for minimizing the contamination potential during operations.

  18. Radioactive Target Production at RIA

    NASA Astrophysics Data System (ADS)

    Blackmon, J. C.

    2002-12-01

    We explore the production of samples of long-lived isotopes (t1/2 >1 h) at an advanced radioactive ion beam facility, RIA. Production yields at RIA are compared to capabilities at stable beam facilities and at high-flux reactors. Long-lived neutron-rich nuclei can generally be produced more efficiently in a nuclear reactor if appropriate target samples are available. As a result, only two s process branch point nuclei, 135Cs and 163Ho, seem suitable for sample production at RIA. In contrast, samples of many long-lived proton-rich nuclei are produced effectively at RIA, including isotopes important for the p process. Sample production at RIA is more favored when the lifetime of the isotope is shorter.

  19. Targets and methods for target preparation for radionuclide production

    SciTech Connect

    Zhuikov, Boris L; Konyakhin, Nicolai A; Kokhanyuk, Vladimir M; Srivastava, Suresh C

    2012-10-16

    The invention relates to nuclear technology, and to irradiation targets and their preparation. One embodiment of the present invention includes a method for preparation of a target containing intermetallic composition of antimony Ti--Sb, Al--Sb, Cu--Sb, or Ni--Sb in order to produce radionuclides (e.g., tin-117 m) with a beam of accelerated particles. The intermetallic compounds of antimony can be welded by means of diffusion welding to a copper backing cooled during irradiation on the beam of accelerated particles. Another target can be encapsulated into a shell made of metallic niobium, stainless steel, nickel or titanium cooled outside by water during irradiation. Titanium shell can be plated outside by nickel to avoid interaction with the cooling water.

  20. Target Material Irradiation Studies for High-Intensity Accelerator Beams

    SciTech Connect

    Simos, N.; Kirk, H.; Ludewig, H.; Thieberger, P.; Weng, W.T.; McDonald, K.; Sheppard, J.; Evangelakis, G.; Yoshimura, K.; /KEK, Tsukuba

    2005-08-16

    This paper presents results of recent experimental studies focusing on the behavior of special materials and composites under irradiation conditions and their potential use as accelerator targets. The paper also discusses the approach and goals of on-going investigations on an expanded material matrix geared toward the neutrino superbeam and muon collider initiatives.

  1. Advanced targets preparation for TNSA laser irradiation and their characterization

    NASA Astrophysics Data System (ADS)

    Ceccio, G.; Torrisi, L.; Cutroneo, M.

    2016-04-01

    Thin targets have been investigated at low laser intensity in order to prepare foils for TNSA (Target Normal Sheath Acceleration) laser irradiation at high intensity. Foils were prepared with different techniques, such as deposition of metallic nanoparticles on polymeric substrates. Polymer films were covered by solutions containing nanoparticles or embedded inside or covered by nanostructures. Such advanced targets permit to enhance the laser wavelength absorbance. Thick and thin targets were irradiated using laser radiation at 1010 W/cm2 intensity and prepared to be submitted to laser irradiation at higher intensity. The foils were characterized by optical measurements of absorbance and transmittance as a function of wavelength in the regions UV, VIS and IR. Laser irradiation measurements using a Nd:YAG laser simulate the prepulse of high laser intensity. Accelerated ions were measured with ion collectors using time of flight techniques. The protons and ions acceleration and their yields were measured as a function of the equivalent atomic number of the foils and of other characteristics, as it will be presented and discussed.

  2. Cyclotron production of Ac-225 for targeted alpha therapy.

    PubMed

    Apostolidis, C; Molinet, R; McGinley, J; Abbas, K; Möllenbeck, J; Morgenstern, A

    2005-03-01

    The feasibility of producing Ac-225 by proton irradiation of Ra-226 in a cyclotron through the reaction Ra-226(p,2n)Ac-225 has been experimentally demonstrated for the first time. Proton energies were varied from 8.8 to 24.8 MeV and cross-sections were determined by radiochemical analysis of reaction yields. Maximum yields were reached at incident proton energies of 16.8 MeV. Radiochemical separation of Ac-225 from the irradiated target yielded a product suitable for targeted alpha therapy of cancer. PMID:15607913

  3. Evaluation of CERES surface irradiance products

    NASA Astrophysics Data System (ADS)

    Kato, S.; Loeb, N. G.; Rose, F. G.; Rutan, D. A.; Doelling, D.; Radkevich, A.; Ham, S. H.

    2014-12-01

    Understanding the surface radiation budget is important for several reasons. At the global and large temporal scales, it should balance with the sum of surface latent and sensible heat fluxes and ocean heating. At regional scales, it is an indispensable boundary condition for ocean or snow models or any other models that need energy input to the surface. NASA's Clouds and the Earth's Radiant Energy System (CERES) project provides surface irradiance data products for a range of temporal and spatial scales computed using a radiative transfer model initialized using satellite-derived cloud and aerosol properties. Other inputs to the radiative transfer model include temperature and humidity profiles from NASA Global Modeling and Assimilation Office's (GMAO) reanalysis. The CERES team uses more than 80 surface observation sites located over land and ocean to evaluate computed irradiances. When computed monthly 1° by 1° gridded mean downward irradiances are compared with 10 years of observed irradiances, the bias averaged over all land and ocean sites are, respectively, -1.7 Wm-2 and 4.7 Wm-2 for shortwave and -1.0 Wm-2 and -2.0 Wm-2 for longwave. The shortwave agreement is significantly better than other satellite-based surface irradiance products. One of reasons for the better agreement is careful treatment of diurnal cycle of clouds by merging 3-hourly geostationary satellite-derived cloud properties. In addition, computed surface irradiance variability shows a remarkable agreement with observed variability. However, these data sets have their shortcomings. The uncertainty in nighttime surface longwave irradiance over polar regions is larger than that of other regions primarily due to the difficulty of cloud detection and large uncertainties in skin temperature and near-surface temperature and humidity. The large uncertainty in polar region surface irradiances hampers, for example, investigation of surface radiation budget changes in response to changes in sea ice

  4. Prospects for Irradiation in Cellulosic Ethanol Production

    PubMed Central

    Saini, Anita; Aggarwal, Neeraj K.; Sharma, Anuja; Yadav, Anita

    2015-01-01

    Second generation bioethanol production technology relies on lignocellulosic biomass composed of hemicelluloses, celluloses, and lignin components. Cellulose and hemicellulose are sources of fermentable sugars. But the structural characteristics of lignocelluloses pose hindrance to the conversion of these sugar polysaccharides into ethanol. The process of ethanol production, therefore, involves an expensive and energy intensive step of pretreatment, which reduces the recalcitrance of lignocellulose and makes feedstock more susceptible to saccharification. Various physical, chemical, biological, or combined methods are employed to pretreat lignocelluloses. Irradiation is one of the common and promising physical methods of pretreatment, which involves ultrasonic waves, microwaves, γ-rays, and electron beam. Irradiation is also known to enhance the effect of saccharification. This review explains the role of different radiations in the production of cellulosic ethanol. PMID:26839707

  5. Prospects for Irradiation in Cellulosic Ethanol Production.

    PubMed

    Saini, Anita; Aggarwal, Neeraj K; Sharma, Anuja; Yadav, Anita

    2015-01-01

    Second generation bioethanol production technology relies on lignocellulosic biomass composed of hemicelluloses, celluloses, and lignin components. Cellulose and hemicellulose are sources of fermentable sugars. But the structural characteristics of lignocelluloses pose hindrance to the conversion of these sugar polysaccharides into ethanol. The process of ethanol production, therefore, involves an expensive and energy intensive step of pretreatment, which reduces the recalcitrance of lignocellulose and makes feedstock more susceptible to saccharification. Various physical, chemical, biological, or combined methods are employed to pretreat lignocelluloses. Irradiation is one of the common and promising physical methods of pretreatment, which involves ultrasonic waves, microwaves, γ-rays, and electron beam. Irradiation is also known to enhance the effect of saccharification. This review explains the role of different radiations in the production of cellulosic ethanol. PMID:26839707

  6. Disinfestation of different cereal products by irradiation

    NASA Astrophysics Data System (ADS)

    Kovács, E.; Kiss, I.; Boros, A.; Horváth, Ny.; Tóth, J.; Gyulai, P.; Szalma, Á.

    The sensitivity of overlineTribolium confusum - small flour beetle - to radiation was studied in a dose range of 0-0.8 kGy. We found that the insect egg was the most sensitive to radiation, then larvae and pupae followed it. 0.2 kGy dose of irradiation kills these forms or their further development is inhibited. Imagoes do not immediately die after 0.8 kGy dose of irradiation; the young imagoes are more sensitive to radiation than the aged ones. 0.4 kGy average dose of irradiation is a suitable protection against overlineTribolium confusum. Disinfestation experiments were performed with wheat-germ and wheat-bran and parallelly the most important ingredients of the two products were analysed. The vitamin E content and the rate of lipid-oxidation of wheat germ were determined. The vitamin E content decreased after radiation treatment, however, during storage of at least 6 months, it remained at a level specified by food quality standards (higher than 10 mg%). Carbohydrate content of wheat-bran (water soluble carbohydrate content, crude-fibre and dietary fibre content) did not change at all. Storability of radiation disinfested wheat-germ was 8 months, wheat-bran 3-4 months. On the base of the results 2-2 tons of wheat-germ and wheat-bran were irradiated and trial marked in 1985. In 1986 the irradiation of 10 tons of wheat-germ is planned.

  7. Post irradiation examination of the Spallation Neutron Source target vessels

    SciTech Connect

    McClintock, David A; Ferguson, Phillip D; Mansur, Louis K

    2010-01-01

    The Spallation Neutron Source (SNS) at Oak Ridge National Laboratory is an accelerator-based pulsed neutron source that produces high-energy spallation neutrons by bombarding liquid mercury flowing through a stainless steel target vessel. During operation the proton beam and spallation neutrons produce radiation damage in the AISI 316L austenitic stainless steel target vessel and water-cooled shroud. The beam pulses also cause rapid heating of the liquid mercury, which may produce cavitation erosion damage on the inner surface of the target vessel. The cavitation erosion rate is thought to be highly sensitive to beam power and predicted to be the primary life-limiting factor of target vessel. Though mitigation of cavitation erosion and radiation damage to the target vessel will be a critical for successful high-power operation of the SNS facility, the effects of radiation damage and cavitation erosion to target vessels in liquid metal spallation systems are not well known. Therefore preparations are being undertaken to perform post irradiation examination (PIE) of the liquid mercury target vessel and water-cooled shroud after end-of-life occurs. An overview of the planned PIE for the SNS target vessel is presented here, including proposed techniques for specimen acquisition and subsequent material properties characterization.

  8. Irradiation Products On Dwarf Planet Makemake

    NASA Astrophysics Data System (ADS)

    Brown, M. E.; Schaller, E. L.; Blake, G. A.

    2015-03-01

    The dark, reddish tinged surfaces of icy bodies in the outer solar system are usually attributed to the long term irradiation of simple hydrocarbons leading to the breaking of C-H bonds, loss of hydrogen, and the production of long carbon chains. While the simple hydrocarbon methane is stable and detected on the most massive bodies in the Kuiper Belt, evidence of active irradiation chemistry is scant except for the presence of ethane on methane-rich Makemake and the possible detections of ethane on more methane-poor Pluto and Quaoar. We have obtained deep high signal-to-noise spectra of Makemake from 1.4 to 2.5 μm in an attempt to trace the radiation chemistry in the outer solar system beyond the initial ethane formation. We present the first astrophysical detection of solid ethylene and evidence for acetylene and high-mass alkanes—all expected products of the continued irradiation of methane, and use these species to map the chemical pathway from methane to long-chain hydrocarbons.

  9. Ion-exchange chromatographic separation of einsteinium from irradiated californium targets

    SciTech Connect

    Elesin, A.A.; Nikolaev, V.M.; Shalimov, V.V.; Popov, Yu.S.; Kovantsev, V.N.; Tselishchev, I.V.; Filimonov, V.T.; Mishenev, V.B.; Yadovin, A.A.; Golosovskii, L.S.; Chetverikov, A.P.

    1987-07-01

    Einsteinium was obtained by preparing two experimental californium targets and subjecting them to neutron irradiation in a high-flux reactor. The einsteinium was separated from the bombarded targets on a column packed with KU-2U sulfonated cation-exchange resin (20-50 ..mu..m) and eluted at room temperature with an ammonium ..cap alpha..-hydroxyisobutyrate solution. Three successive separation cycles removed californium to produce einsteinium in 68% yield with a decontamination factor of 5.3 x 10/sup 6/. About 20% of the einsteinium was used up by analysis and 11% remained in intermediate fractions. The method developed yielded pure einsteinium with little fission products present. The contribution of the fission products to the total einsteinium gamma-irradiation dose rate was no greater than 81%, due primarily to the radioisotope terbium-160.

  10. Irradiation promotes Akt-targeting therapeutic gene delivery to the tumor vasculature

    SciTech Connect

    Sonveaux, Pierre; Frerart, Francoise; Bouzin, Caroline; Brouet, Agnes; Wever, Julie de; Jordan, Benedicte F.; Gallez, Bernard; Feron, Olivier . E-mail: feron@mint.ucl.ac.be

    2007-03-15

    Purpose: To determine whether radiation-induced increases in nitric oxide (NO) production can influence tumor blood flow and improve delivery of Akt-targeting therapeutic DNA lipocomplexes to the tumor. Methods and Materials: The contribution of NO to the endothelial response to radiation was identified using NO synthase (NOS) inhibitors and endothelial NOS (eNOS)-deficient mice. Reporter-encoding plasmids complexed with cationic lipids were used to document the tumor vascular specificity and the efficacy of in vivo lipofection after irradiation. A dominant-negative Akt gene construct was used to evaluate the facilitating effects of radiotherapy on the therapeutic transgene delivery. Results: The abundance of eNOS protein was increased in both irradiated tumor microvessels and endothelial cells, leading to a stimulation of NO release and an associated increase in tumor blood flow. Transgene expression was subsequently improved in the irradiated vs. nonirradiated tumor vasculature. This effect was not apparent in eNOS-deficient mice and could not be reproduced in irradiated cultured endothelial cells. Finally, we combined low-dose radiotherapy with a dominant-negative Akt gene construct and documented synergistic antitumor effects. Conclusions: This study offers a new rationale to combine radiotherapy with gene therapy, by directly exploiting the stimulatory effects of radiation on NO production by tumor endothelial cells. The preferential expression of the transgene in the tumor microvasculature underscores the potential of such an adjuvant strategy to limit the angiogenic response of irradiated tumors.

  11. Target production for inertial fusion energy

    SciTech Connect

    Woodworth, J.G.; Meier, W.

    1995-03-01

    Inertial fusion energy (IFE) power plants will require the ignition and burn of 5-10 fusion fuel targets every second. The technology to economically mass produce high-quality, precision targets at this rate is beyond the current state of the art. Techniques that are scalable to high production rates, however, have been identified for all the necessary process steps, and many have been tested in laboratory experiments or are similar to current commercial manufacturing processes. In this paper, we describe a baseline target factory conceptual design and estimate its capital and operating costs. The result is a total production cost of {approximately}16{cents} per target. At this level, target production represents about 6% of the estimated cost of electricity from a 1-GW{sub e} IFE power plant. Cost scaling relationships are presented and used to show the variation in target cost with production rate and plant power level.

  12. Windowless gas targets for neutron production

    NASA Astrophysics Data System (ADS)

    Iverson, Erik. B.; Lanza, Richard C.; Lidsky, L. M.

    1997-02-01

    A windowless deuterium gas target has been constructed for either monoenergetic or white neutron production with a 900 KeV deuteron accelerator. The target is capable of operation at 100 mbar target pressure, and can admit a beam of 5 mm transverse extent. This target is further being modified by the inclusion of an intermittent valve arrangement to reduce the flow rates in the higher pressure stages. This valve should allow operation at up to 1000 mbar with low duty factor beams.

  13. Mono-energetic ions emission by nanosecond laser solid target irradiation

    NASA Astrophysics Data System (ADS)

    Muoio, A.; Tudisco, S.; Altana, C.; Lanzalone, G.; Mascali, D.; Cirrone, G. A. P.; Schillaci, F.; Trifirò, A.

    2016-09-01

    An experimental campaign aiming to investigate the acceleration mechanisms through laser-matter interaction in nanosecond domain has been carried out at the LENS (Laser Energy for Nuclear Science) laboratory of INFN-LNS, Catania. Pure Al targets were irradiated by 6 ns laser pulses at different pumping energies, up to 2 J. Advanced diagnostics tools were used to characterize the plasma plume and ion production. We show the preliminary results of this experimental campaign, and especially the ones showing the production of multicharged ions having very narrow energy spreads.

  14. Charpy impact tests on martensitic/ferritic steels after irradiation in SINQ target-3

    NASA Astrophysics Data System (ADS)

    Dai, Yong; Marmy, Pierre

    2005-08-01

    Charpy impact tests were performed on martensitic/ferritic (MF) steels T91, F82H, Optifer-V and Optimax-A/-C irradiated in SINQ Target-3 up to 7.5 dpa and 500 appm He in a temperature range of 120-195 °C. Results demonstrate that for all the four kinds of steels, the ductile-to-brittle transition temperature (DBTT) increases with irradiation dose. The difference in the DBTT shifts (ΔDBTT) of the different steels is not significant after irradiation in the SINQ target. The ΔDBTT data from the previous small punch (Δ DBTT SP) and the present Charpy impact (ΔDBTT CVN) tests can be correlated with the expression: Δ DBTT SP = 0.4ΔDBTT CVN. All the ΔDBTT data fall into a linear band when they are plotted versus helium concentration. The results indicate that helium effects on the embrittlement of MF steels are significant, particularly at higher concentrations. It suggests that MF steels may not be very suitable for applications at low temperatures in spallation irradiation environments where helium production is high.

  15. Optical emission from Al target irradiated by FLASH

    NASA Astrophysics Data System (ADS)

    Stránský, M.; Rohlena, K.

    2014-04-01

    The following text touches on some peculiarities in optical emission spectroscopy results from experiments on the free-electron laser FLASH [1, 2]. Aluminum targets were irradiated with 13.5 nm ~ 25 fs pulses at intensities of 1013 and 1016 W/cm2 (20 and 1 μm foci). Surprisingly, only neutral atom lines for the case with wider focus and traces of ion lines in the tighter focus case were observed with the optical emission spectroscopy (200-600 nm range), [2]. The motivating idea behind this work is the suggestion in [1] by Zastrau that the optical spectrometer sees only emissions from a cold expanding lower-density (< 1022 cm-3) plasma plume. In this contribution the notion of UV range screening is analyzed in detail.

  16. Recovery and purification of nickel-63 from HFIR-irradiated targets

    SciTech Connect

    Williams, D.F.; O'Kelley, G.D.; Knauer, J.B.; Porter, C.E.; Wiggins, J.T.

    1993-06-01

    The production of large quantities of high-specific-activity [sup 63]Ni (>10 Ci/g) requires both a highly enriched [sup 62]Ni target and a long irradiation period at high neutron flux. Trace impurities in the nickel and associated target materials are also activated and account for a significant fraction of the discharged activity and essentially all of the gamma activity. While most of these undesirable activation products can be removed as chloride complexes during anion exchange, chromium, present at [sup 51]Cr, and scandium, present as [sup 46]Sc, are exceptions and require additional processing to achieve the desired purity. Optimized flowsheets are discussed based upon the current development and production experience.

  17. Recovery and purification of nickel-63 from HFIR-irradiated targets

    SciTech Connect

    Williams, D.F.; O`Kelley, G.D.; Knauer, J.B.; Porter, C.E.; Wiggins, J.T.

    1993-06-01

    The production of large quantities of high-specific-activity {sup 63}Ni (>10 Ci/g) requires both a highly enriched {sup 62}Ni target and a long irradiation period at high neutron flux. Trace impurities in the nickel and associated target materials are also activated and account for a significant fraction of the discharged activity and essentially all of the gamma activity. While most of these undesirable activation products can be removed as chloride complexes during anion exchange, chromium, present at {sup 51}Cr, and scandium, present as {sup 46}Sc, are exceptions and require additional processing to achieve the desired purity. Optimized flowsheets are discussed based upon the current development and production experience.

  18. Irradiation of strontium chloride targets at proton energies above 35 MeV to produce PET radioisotope Y-86

    SciTech Connect

    Medvedev D. G.; Mausner, L.F.; Srivastava, S.C.

    2011-12-01

    Proton irradiation of natural and enriched SrCl{sub 2} targets was used to produce PET radioisotope {sup 86}. The proton energy was degraded from the incident 117.8 MeV to induce the {sup 88}Sr(p,3n) reaction. For the irradiation three pellets made of {sup nat}SrCl{sub 2} (6.61 and 74.49 g) and {sup 88}SrCl{sub 2} (5.02 g) were pressed and individually encapsulated in stainless steel target bodies. The two smaller targets were irradiated for 0.5-1 h at the energy - 46 {yields} 37 MeV to take advantage of the peak in the excitation function of the {sup 88}Sr(p,3n) reaction. The larger target was irradiated at 66.4 {yields} 44.6 MeV. The irradiated pellets were chemically processed to selectively separate {sup 86}Y radioisotope using Eichrom DGA (N,N,N{prime},N{prime}-tetra-n-octyldiglycolamide) resin. The production yields of {sup 86}Y were determined to be 10-13 mCi/{mu}A h. Coproduction of {sup 87m}Y in the final product was 34% for {sup nat}SrCl{sub 2} and 54% for {sup 88}SrCl{sub 2} target. The chemical separation yield of yttrium reached 88-92%. The developed chemical procedure allows for the same day processing and shipment of the isotope to users.

  19. Analysis of some products from the irradiation of solid chloramphenicol

    NASA Astrophysics Data System (ADS)

    Zeegers, F.; Gibella, M.; Tilquin, B.

    1997-08-01

    After radiation sterilization, it is always necessary to demonstrate that any products formed in the irradiation are not harmful. The amounts of products formed in the gamma-irradiation of solid samples may be so small, that standard toxicity tests could be ineffective. Hence, analysis of the final products in the radiosterilized solid samples might be required. In this work, some chloramphenicol degradation products that are unique to radiolysis, i.e. different from the normal degradation products, were detected.

  20. Practical dosimetric aspects of blood and blood product irradiation

    SciTech Connect

    Fearon, T.C.; Luban, N.L.

    1986-09-01

    The method of choice to reduce susceptibility to transfusion-transmitted graft-versus-host disease is irradiation of allogenic blood and blood products for transfusion to immunosuppressed recipients. Optimal irradiation requires delivery of a known and homogeneous absorbed dose. The use of absorbed dose in air measured at the center of the irradiation volume without proper compensation for sample absorption can lead to approximately 20 percent underexposure. A lucite cylinder was used to provide the delivery of a homogeneous irradiation dose to blood products of different volumes by allowing rotation of the product.

  1. Process and targets for production of no-carrier-added radiotin

    DOEpatents

    Srivastava, Suresh C; Zhuikov, Boris Leonidovich; Ermolaev, Stanislav Victorovich; Konyakhin, Nikolay Alexandrovich; Kokhanyuk, Vladimir Mikhailovich; Khamyanov, Stepan Vladimirovich; Togaeva, Natalya Roaldovna

    2014-04-22

    One embodiment of the present invention includes a process for production and recovery of no-carrier-added radioactive tin (NCA radiotin). An antimony target can be irradiated with a beam of accelerated particles forming NCA radiotin, followed by separation of the NCA radiotin from the irradiated target. The target is metallic Sb in a hermetically sealed shell. The shell can be graphite, molybdenum, or stainless steel. The irradiated target can be removed from the shell by chemical or mechanical means, and dissolved in an acidic solution. Sb can be removed from the dissolved irradiated target by extraction. NCA radiotin can be separated from the remaining Sb and other impurities using chromatography on silica gel sorbent. NCA tin-117m can be obtained from this process. NCA tin-117m can be used for labeling organic compounds and biological objects to be applied in medicine for imaging and therapy of various diseases.

  2. Production of stable tellurium evaporated targets

    NASA Astrophysics Data System (ADS)

    Greene, John P.; Palumbo, Annalia; Tan, Wanpeng; Görres, Joachim; Wiescher, Michael C.

    2008-06-01

    Due to the low melting point of tellurium metal, self-supporting Te targets degrade quickly when exposed to particle beams. This situation is greatly improved if the tellurium material is evaporated onto C foil backings. Elastic scattering in target and backing layers broadens the Te peak, making measurements difficult, while too little material reduces the reaction rate. Therefore, it is necessary to optimize the target thickness. Evaporated metallic and oxide Te targets were prepared at Argonne National Laboratory by vacuum deposition from a resistively heated source boat. The stability of the targets was then tested by exposing them to a varying intensity alpha beam with an energy range from 17 to 27 MeV using the FN Tandem Van de Graaff accelerator at the University of Notre Dame. Optimal target thicknesses and beam currents were then obtained for p-process experiments. A description of the apparatus and production method will be presented.

  3. Effect of green laser irradiation on hydrogen production

    NASA Astrophysics Data System (ADS)

    Bidin, Noriah; Razak, Siti Noraiza A.; Radiana Azni, Siti; Nguroho, Waskito; Mohsin, Ali Kamel; Abdullah, Mundzir; Krishnan, Ganesan; Bakhtiar, Hazri

    2014-06-01

    The effect of green laser irradiation on hydrogen production via water electrolysis was investigated. Diode pumped solid-state laser operating in second harmonic generation was employed as a source of irradiation. The hydrogen production system was also irradiated by a conventional light, a halogen source, for comparison. The best catalyst was identified by mixing distilled water with two types of salt: NaCl and Na2SO4. Optimization of hydrogen production from water electrolysis was realized by using NaCl and green laser irradiation. The power of green laser irradiation and the concentration of NaCl in water contribute to hydrogen production. The hydrogen yield also depends on the distance and direction of the green beam to the electrode.

  4. Hot Electron Generation in the Micro-Tipped Cone and Wedge Targets Irradiated with Ultra Intense Laser.

    NASA Astrophysics Data System (ADS)

    Cho, B. I.; Dyer, G. M.; Kneip, S.; Symes, D. R.; Bernstein, A. C.; Pikuz, S.; Sentoku, Y.; Le Galloudec, N.; Cowan, T. E.; Ditmire, T.

    2008-04-01

    By comparing Kα and bremsstrahlung x-rays yields, we have investigated hot electron generation from pyramidal-shaped reentrant micro-structured targets. We focused the THOR laser at the University of Texas at Austin (800nm, 40fs, 600mJ, 2 x 10^19 W/cm^2 ) into these cone and wedge shaped targets with various polarizations. We find that hot electron production is highest in the wedge targets when irradiated with transverse polarization, though Kα is maximized with wedge targets and parallel polarization. These results are explained with particle-in-cell simulations.

  5. Separation of Plutonium from Irradiated Fuels and Targets

    SciTech Connect

    Gray, Leonard W.; Holliday, Kiel S.; Murray, Alice; Thompson, Major; Thorp, Donald T.; Yarbro, Stephen; Venetz, Theodore J.

    2015-09-30

    Spent nuclear fuel from power production reactors contains moderate amounts of transuranium (TRU) actinides and fission products in addition to the still slightly enriched uranium. Originally, nuclear technology was developed to chemically separate and recover fissionable plutonium from irradiated nuclear fuel for military purposes. Military plutonium separations had essentially ceased by the mid-1990s. Reprocessing, however, can serve multiple purposes, and the relative importance has changed over time. In the 1960’s the vision of the introduction of plutonium-fueled fast-neutron breeder reactors drove the civilian separation of plutonium. More recently, reprocessing has been regarded as a means to facilitate the disposal of high-level nuclear waste, and thus requires development of radically different technical approaches. In the last decade or so, the principal reason for reprocessing has shifted to spent power reactor fuel being reprocessed (1) so that unused uranium and plutonium being recycled reduce the volume, gaining some 25% to 30% more energy from the original uranium in the process and thus contributing to energy security and (2) to reduce the volume and radioactivity of the waste by recovering all long-lived actinides and fission products followed by recycling them in fast reactors where they are transmuted to short-lived fission products; this reduces the volume to about 20%, reduces the long-term radioactivity level in the high-level waste, and complicates the possibility of the plutonium being diverted from civil use – thereby increasing the proliferation resistance of the fuel cycle. In general, reprocessing schemes can be divided into two large categories: aqueous/hydrometallurgical systems, and pyrochemical/pyrometallurgical systems. Worldwide processing schemes are dominated by the aqueous (hydrometallurgical) systems. This document provides a historical review of both categories of reprocessing.

  6. Metallic targets ablation by laser plasma production in a vacuum

    NASA Astrophysics Data System (ADS)

    Beilis, I. I.

    2016-03-01

    A model of metallic target ablation and metallic plasma production by laser irradiation is reported. The model considers laser energy absorption by the plasma, electron emission from hot targets and ion flux to the target from the plasma as well as an electric sheath produced at the target-plasma interface. The proposed approach takes into account that the plasma, partially shields the laser radiation from the target, and also converts absorbed laser energy to kinetic and potential energies of the charged plasma particles, which they transport not only through the ambient vacuum but also through the electrostatic sheath to the solid surface. Therefore additional plasma heating by the accelerated emitted electrons and target heating caused by bombardment of it by the accelerated ions are considered. A system of equations, including equations for solid heat conduction, plasma generation, and plasma expansion, is solved self-consistently. The results of calculations explain the measured dependencies of ablation yield (μ g/pulse) for Al, Ni, and Ti targets on laser fluence in range of (5-21)J/cm2 published previously by Torrisi et al.

  7. Target studies for surface muon production

    NASA Astrophysics Data System (ADS)

    Berg, F.; Desorgher, L.; Fuchs, A.; Hajdas, W.; Hodge, Z.; Kettle, P.-R.; Knecht, A.; Lüscher, R.; Papa, A.; Rutar, G.; Wohlmuther, M.

    2016-02-01

    Meson factories are powerful drivers of diverse physics programs. With beam powers already in the MW-regime attention has to be turned to target and beam line design to further significantly increase surface muon rates available for experiments. For this reason we have explored the possibility of using a neutron spallation target as a source of surface muons by performing detailed Geant4 simulations with pion production cross sections based on a parametrization of existing data. While the spallation target outperforms standard targets in the backward direction by more than a factor 7 it is not more efficient than standard targets viewed under 90°. Not surprisingly, the geometry of the target plays a large role in the generation of surface muons. Through careful optimization, a gain in surface muon rate of between 30% and 60% over the standard "box-like" target used at the Paul Scherrer Institute could be achieved by employing a rotated slab target. An additional 10% gain could also be possible by utilizing novel target materials such as, e.g., boron carbide.

  8. Windowless gas targets for neutron production

    NASA Astrophysics Data System (ADS)

    Iverson, Erik B.

    A windowless deuterium gas target has been constructed for high yield production of either monoenergetic or white fast neutrons. The operation of this target has been demonstrated on a 900 keV deuteron accelerator. The target is capable of operation at 100 mbar target pressure, and can admit a low duty factor beam of 5 mm transverse extent. The target employs an intermittent valve arrangement to reduce the flow rates in the higher pressure stages of a differentially pumped vacuum system. This valve allows operation at much greater target pressures for low duty factor beams than would otherwise be the case. Neutron yield measurements validated the functionality of the target system. This target will make possible considerable advances in methods of non-destructive testing and evaluation which employ fast neutrons, whether mono-energetic or otherwise. It is further suited to use as a thermal neutron source, with the addition of an appropriate moderator. The development of this target system has not only provided a functioning and valuable piece of equipment for use in further research, but has also investigated the technological limitations and functional requirements of implementing such a system in a practical setting. (Copies available exclusively from MIT Libraries, Rm. 14- 0551, Cambridge, MA 2139-4307. Ph. 617-253-5668; Fax 617- 253-1690.)

  9. Improving the survivability of Nb-encapsulated Ga targets for the production of 68Ge

    NASA Astrophysics Data System (ADS)

    Bach, H. T.; Claytor, T. N.; Hunter, J. F.; Olivas, E. R.; Kelsey, C. T., IV; Engle, J. W.; Connors, M. A.; Nortier, F. M.; Runde, W. H.; Moddrell, C.; Lenz, J. W.; John, K. D.

    2013-03-01

    At the Los Alamos Neutron Science Center (LANSCE) Isotope Production Facility (IPF), radioisotopes are produced for medical, scientific, and industrial applications by irradiating various targets with a 100 MeV, 230 μA proton beam. The medical isotope germanium-68 is produced by irradiating Nb capsules containing molten Ga target material. During irradiation, the Nb is subjected to intense radiation damage, corrosive attack by Ga, and mechanical and thermally-induced stresses for an extended period. Maintaining the structural integrity of the Nb target capsules during irradiation is crucial to contain the molten Ga target and the radioisotope product. In the present work, we focus on potential material related factors and assess the effect of the Nb stock material on target durability. We do so by comparing post-irradiation target mortality information to data collected during pre-irradiation ultrasound testing and X-ray imaging. We also explore possible failure mechanisms by using MCNP6 simulations and ANSYS codes to predict the induced atom displacement levels, hydrogen gas built-up, temperature distribution, and mechanical stresses. Our analysis, performed entirely in the context of an aggressive production program that allows for only limited diagnostic interference, suggests that using Nb stock with reasonably large and uniform grains is the most important factor in reducing early target failure at integrated beam current values <18 mAh and random failure at the face of the rear window at <60 mAh. We discuss possible failure mechanisms of failed targets that were fabricated using the same stock material and grain structure and then irradiated to integrated beam current values of up to 60 mAh and more. Based on these observations, we have enacted new specifications for Nb stock material quality, target design, and limits on integrated beam current. These changes have resulted in improved Nb capsule survivability.

  10. Target telemetry in medical isotope production

    NASA Astrophysics Data System (ADS)

    Nickles, R. J.; Votaw, J. R.; Hutchins, G. D.; Rosenthal, M. S.; Funk, K. M.; Sunderland, J. J.; Satter, M. R.

    1985-05-01

    Positron emission tomography reveals the biochemical basis underlying many disease processes. The key step is the labeling of authentic metabolic substrates, generally starting with precursor compounds of the short-lived radionuclides 11C, 13N, 15O and 18F. These, in turn, are produced on accelerators, with small cyclotrons now appearing in hospitals. The success of maintaining a reliable source of imaging agents in a clinical setting hinges more on making effective use of modest beams and energies (50 μA; 10 MeV) rather than scaling up the cyclotron in an engineering overkill. Target performance is observed by telemetry of a number of parameters during irradiation. In particular, the neutron flux can be singled out as an immediate signature of the (p, n) reaction, and serves as an important variable to optimize during the bombardment.

  11. Irradiation of meat products, chicken and use of irradiated spices for sausages

    NASA Astrophysics Data System (ADS)

    Kiss, I. F.; Beczner, J.; Zachariev, Gy.; Kovács, S.

    The shelf-life of packed minced meat has been increased at least threefold at 4°C by applying a 2 kGy dose. Results have been confirmed by detailed quatitative microbiological examinations. Sensory evaluations show no significant difference between the unirradiated samples. The optimal average dose was 4 kGy for packed-frosen chicken. The number of mesophilic aerobic microbes was reduced by 2, that of psychrotolerant by 2-3 and that of Enterbacteriaceae by 3-4 orders of magnitude by 4 kGy. S. aureus and Salmonella could not be detected in the irradiated samples. In sensory evaluations there was no significant difference between untreated and irradiated samples. In 1984-1985 5100 kg irradiated chickens were marketed labelled as radiation treated. Irradiated spices (5 kGy) were used in the production of sausages (heat-treated and non-heat-treated) under industrial conditions. The microbiological contamination of irradiated spices was lower than that of ethylene oxide treated ones. The cell count in products made with irradiated spices was lower than in those made with unirradiated spices. The sausages proved to be of very good quality. In accordance with the permission, products were marketed and because of the low ratio of spices there was no need to declare them as using irradiated spices.

  12. Effect of. gamma. -ray irradiation on alcohol production from corn

    SciTech Connect

    Han, Y.W.; Cho, Y.K.; Ciegler, A.

    1983-11-01

    Cracked corn was irradiated with ..gamma.. rays at 0-100 Mrad and the effects of the irradiation on sugar yield, susceptibility to enzymatic hydrolysis of starch, yeast growth, and alcohol production were studied. Gamma irradiation at 50 Mrad or greater produced a considerable amount of reducing sugar but little glucose. At lower dosages, ..gamma.. irradiation significantly increased the susceptibility of corn starch to enzymatic hydrolysis, but dosages of 50 Mrad or greater decomposed the starch molecules as indicated by the reduction in iodine uptake. About 12.5% reducing sugar was produced by amylase treatment of uncooked, irradiated corn. This amount exceeded the level of sugar produced from cooked (gelatinized) corn by the same enzyme treatment. The yeast numbers in submerged cultivation were lower on a corn substrate that was irradiated at 50 Mrad or greater compared to that on an unirradiated control. About the same level of alcohol was produced on uncooked, irradiated (10/sup 5/ - 10/sup 6/ rad) corn as from cooked (121 degrees C for 30 min) corn. Therefore, the conventional cooking process for gelatinization of starch prior to its saccharification can be eliminated by irradiation. Irradiation also eliminated the necessity of sterilization of the medium and reduced the viscosity of high levels of substrate in the fermentation broth. (Refs. 10).

  13. Production of {sup 99}Mo using LEU and molybdenum targets in a 1 MW Triga reactor

    SciTech Connect

    Mo, S.C.

    1993-12-31

    The production of {sup 99}Mo using Low Enriched Uranium (LEU) and natural molybdenum targets in a 1 MW Triga reactor is investigated. The successive linear programming technique is applied to minimize the target loadings for different yield constraints. The irradiation time is related to the kinetics of the growth and decay of {sup 99}Mo. The feasibility of a neutron generated based {sup 99}Mo production system is discussed.

  14. Application of AnaLig resin for (99m)Tc separation from (100)Mo target irradiated in cyclotron.

    PubMed

    Pawlak, D W; Wojdowska, W; Parus, L J; Mikołajczak, R

    2016-07-01

    The purpose of this study was the development of procedure for molybdenum metallic target processing after its irradiation in a cyclotron. As a first step the dissolution of molybdenum in various physical forms was investigated. The concentrations of NaOH and (NH4)2CO3 allowing the highest sorption of Tc on AnaLig Tc-02 resin had been found. Based on these results the sintered irradiated Mo pellet was processed. The radionuclidic and radiochemical purities of separated Tc product were evaluated. PMID:27149397

  15. Target-selective degradation of proteins by porphyrins upon visible photo-irradiation.

    PubMed

    Tanimoto, Shuho; Matsumura, Shuichi; Toshima, Kazunobu

    2008-08-21

    A porphyrin derivative effectively and selectively degraded the target transcription factor, human estrogen receptor-alpha (hER-alpha), upon visible light irradiation, in the absence of additives and under neutral conditions. PMID:18665297

  16. Low-Dose Irradiation Enhances Gene Targeting in Human Pluripotent Stem Cells

    PubMed Central

    Hatada, Seigo; Subramanian, Aparna; Mandefro, Berhan; Ren, Songyang; Kim, Ho Won; Tang, Jie; Funari, Vincent; Baloh, Robert H.; Sareen, Dhruv

    2015-01-01

    Human pluripotent stem cells (hPSCs) are now being used for both disease modeling and cell therapy; however, efficient homologous recombination (HR) is often crucial to develop isogenic control or reporter lines. We showed that limited low-dose irradiation (LDI) using either γ-ray or x-ray exposure (0.4 Gy) significantly enhanced HR frequency, possibly through induction of DNA repair/recombination machinery including ataxia-telangiectasia mutated, histone H2A.X and RAD51 proteins. LDI could also increase HR efficiency by more than 30-fold when combined with the targeting tools zinc finger nucleases, transcription activator-like effector nucleases, and clustered regularly interspaced short palindromic repeats. Whole-exome sequencing confirmed that the LDI administered to hPSCs did not induce gross genomic alterations or affect cellular viability. Irradiated and targeted lines were karyotypically normal and made all differentiated lineages that continued to express green fluorescent protein targeted at the AAVS1 locus. This simple method allows higher throughput of new, targeted hPSC lines that are crucial to expand the use of disease modeling and to develop novel avenues of cell therapy. Significance The simple and relevant technique described in this report uses a low level of radiation to increase desired gene modifications in human pluripotent stem cells by an order of magnitude. This higher efficiency permits greater throughput with reduced time and cost. The low level of radiation also greatly increased the recombination frequency when combined with developed engineered nucleases. Critically, the radiation did not lead to increases in DNA mutations or to reductions in overall cellular viability. This novel technique enables not only the rapid production of disease models using human stem cells but also the possibility of treating genetically based diseases by correcting patient-derived cells. PMID:26185257

  17. Targeting Nuclear Receptors with Marine Natural Products

    PubMed Central

    Yang, Chunyan; Li, Qianrong; Li, Yong

    2014-01-01

    Nuclear receptors (NRs) are important pharmaceutical targets because they are key regulators of many metabolic and inflammatory diseases, including diabetes, dyslipidemia, cirrhosis, and fibrosis. As ligands play a pivotal role in modulating nuclear receptor activity, the discovery of novel ligands for nuclear receptors represents an interesting and promising therapeutic approach. The search for novel NR agonists and antagonists with enhanced selectivities prompted the exploration of the extraordinary chemical diversity associated with natural products. Recent studies involving nuclear receptors have disclosed a number of natural products as nuclear receptor ligands, serving to re-emphasize the translational possibilities of natural products in drug discovery. In this review, the natural ligands of nuclear receptors will be described with an emphasis on their mechanisms of action and their therapeutic potentials, as well as on strategies to determine potential marine natural products as nuclear receptor modulators. PMID:24473166

  18. Implementation of a solid target production facility

    NASA Astrophysics Data System (ADS)

    Tochon-Danguy, H. J.; Poniger, S. S.; Sachinidis, J. I.; Panopoulos, H. P.; Scott, A. M.

    2012-12-01

    The desire to utilize long-lived PET isotopes in Australia has significantly increased over the years and several research projects for labelling of peptides, proteins and biomolecules, including labelling of recombinant antibodies has been restricted due to the limited availability of suitable isotopes. This need has led to the recent installation and commissioning of a new facility dedicated to fully automated solid target isotope production, including 24I, 64Cu, 89Zr and 86Y at the Austin Health Centre for PET.

  19. Determination of the accuracy for targeted irradiations of cellular substructures at SNAKE

    NASA Astrophysics Data System (ADS)

    Siebenwirth, C.; Greubel, C.; Drexler, S. E.; Girst, S.; Reindl, J.; Walsh, D. W. M.; Dollinger, G.; Friedl, A. A.; Schmid, T. E.; Drexler, G. A.

    2015-04-01

    In the last 10 years the ion microbeam SNAKE, installed at the Munich 14 MV tandem accelerator, has been successfully used for radiobiological experiments by utilizing pattern irradiation without targeting single cells. Now for targeted irradiation of cellular substructures a precise irradiation device was added to the live cell irradiation setup at SNAKE. It combines a sub-micrometer single ion irradiation facility with a high resolution optical fluorescence microscope. Most systematic errors can be reduced or avoided by using the same light path in the microscope for beam spot verification as well as for and target recognition. In addition online observation of the induced cellular responses is possible. The optical microscope and the beam delivering system are controlled by an in-house developed software which integrates the open-source image analysis software, CellProfiler, for semi-automatic target recognition. In this work the targeting accuracy was determined by irradiation of a cross pattern with 55 MeV carbon ions on nucleoli in U2OS and HeLa cells stably expressing a GFP-tagged repair protein MDC1. For target recognition, nuclei were stained with Draq5 and nucleoli were stained with Syto80 or Syto83. The damage response was determined by live-cell imaging of MDC1-GFP accumulation directly after irradiation. No systematic displacement and a random distribution of about 0.7 μm (SD) in x-direction and 0.8 μm (SD) in y-direction were observed. An independent analysis after immunofluorescence staining of the DNA damage marker yH2AX yielded similar results. With this performance a target with a size similar to that of nucleoli (i.e. a diameter of about 3 μm) is hit with a probability of more than 80%, which enables the investigation of the radiation response of cellular subcompartments after targeted ion irradiation in the future.

  20. Diaphragm contractile dysfunction causes by off-target low-dose irradiation

    PubMed Central

    Hsieh, Chen-Hsi; Lin, Yun-Cheng; Chen, Yu-Jen; Wu, Huey-Dong; Wang, Li-Ying

    2016-01-01

    Background: Diaphragm is a primary inspiratory muscle and often receives off-target dose in patients with thoracic radiotherapy, and whether acute effect of low dose irradiation would cause contractile dysfunction of the diaphragm remains unclear. We use a rat model to investigate the effect of low-dose irradiation on diaphragm contractile function in the current study. Methods: The radiation dose distributions in patients with esophageal cancer receiving radiotherapy were calculated to determine the dose received by the off-target diaphragm area. Rats were randomly assigned to an irradiated or a non-irradiated control group (n = 10 per group). A single-fraction of 5 Gy radiation was then delivered to the diaphragms of Sprague-Dawley rats in the irradiated group. The control group received sham irradiation (0 Gy). Rats were sacrificed 24 hours after the irradiation procedures and diaphragms were removed en bloc for contractile function assessment, oxidative injury and DNA damage analysis. Oxidative injury was determined by analyzing concentration of protein carbonyls and DNA damage was determined by analyzing retention of γH2AX foci in nuclei of diaphragmatic tissue. Results: At 24 hours after delivery of a single dose of 5 Gy radiation, specific twitch (p = 0.03) and tetanus tension (p = 0.02) were significantly lower in the irradiated group than in the control group. The relative force-frequency curves showed a significant downward shift in the irradiated group. Protein carbonyl level (p < 0.01) and percentage of γH2AX-positive diaphragm muscle cells were significantly higher in the irradiated group than in the control group 24 hours after irradiation (58% vs. 30%, p = 0.01). Conclusions: Off-target low dose irradiation could induce acute contractile dysfunction of the diaphragm which was related to radiation-induced direct DNA and indirect oxidative damage. PMID:27186277

  1. Heavy-Ion Irradiation of Thulium(III) Oxide Targets Prepared by Polymer-Assisted Deposition

    SciTech Connect

    Garcia, Mitch A.; Ali, Mazhar N.; Chang, Noel N.; Parsons-Moss, Tashi; Ashby, Paul D.; Gates, Jacklyn M.; Stavsetra, Liv; Gregorich, Kenneth E.; Nitsche, Heino

    2008-09-15

    Thulium(III) oxide (Tm{sub 2}O{sub 3}) targets prepared by the polymer-assisted deposition (PAD) method were irradiated by heavy-ion beams to test the method's feasibility for nuclear science applications. Targets were prepared on silicon nitride backings (thickness of 1000 nm, 344 {micro}g/cm{sup 2}) and were irradiated with an {sup 40}Ar beam at laboratory frame energy of {approx}210 MeV (50 particle nA). The root mean squared (RMS) roughness prior to irradiation is 1.1 nm for a {approx}250 nm ({approx}220 {micro}g/cm{sup 2}) Tm{sub 2}O{sub 3} target, and an RMS roughness of 2.0 nm after irradiation was measured by atomic force microscopy (AFM). Scanning electron microscopy of the irradiated target reveals no significant differences in surface homogeneity when compared to imaging prior to irradiation. Target flaking was not observed from monitoring Rutherford scattered particles as a function of time.

  2. Modeling astatine production in liquid lead-bismuth spallation targets

    NASA Astrophysics Data System (ADS)

    David, J. C.; Boudard, A.; Cugnon, J.; Ghali, S.; Leray, S.; Mancusi, D.; Zanini, L.

    2013-03-01

    Astatine isotopes can be produced in liquid lead-bismuth eutectic targets through proton-induced double charge exchange reactions on bismuth or in secondary helium-induced interactions. Models implemented into the most common high-energy transport codes generally have difficulties to correctly estimate their production yields as was shown recently by the ISOLDE Collaboration, which measured release rates from a lead-bismuth target irradiated by 1.4 and 1 GeV protons. In this paper, we first study the capability of the new version of the Liège intranuclear cascade model, INCL4.6, coupled to the deexcitation code ABLA07 to predict the different elementary reactions involved in the production of such isotopes through a detailed comparison of the model with the available experimental data from the literature. Although a few remaining deficiencies are identified, very satisfactory results are found, thanks in particular to improvements brought recently on the treatment of low-energy helium-induced reactions. The implementation of the models into MCNPX allows identifying the respective contributions of the different possible reaction channels in the ISOLDE case. Finally, the full simulation of the ISOLDE experiment is performed, taking into account the likely rather long diffusion time from the target, and compared with the measured diffusion rates for the different astatine isotopes, at the two studied energies, 1.4 and 1 GeV. The shape of the isotopic distribution is perfectly reproduced as well as the absolute release rates, assuming in the calculation a diffusion time between 5 and 10hours. This work finally shows that our model, thanks to the attention paid to the emission of high-energy clusters and to low-energy cluster induced reactions, can be safely used within MCNPX to predict isotopes with a charge larger than that of the target by two units in spallation targets, and, probably, more generally to isotopes created in secondary reactions induced by composite

  3. Oxidative product formation in irradiated neutrophils. A flow cytometric analysis

    SciTech Connect

    Wolber, R.A.; Duque, R.E.; Robinson, J.P.; Oberman, H.A.

    1987-03-01

    The effect of irradiation on neutrophil oxidative function was evaluated using a flow cytometric assay of intracellular hydrogen peroxide (H/sub 2/O/sub 2/) production. This assay quantitates the H/sub 2/O/sub 2/-dependent conversion of the nonfluorescent compound, 2'-7'-dichlorofluorescein (DCFH), into fluorescent 2'-7'-dichlorofluorescein (DCF) on a single-cell basis. Intracellular H/sub 2/O/sub 2/ production in response to stimulation with phorbol myristate acetate was not affected by neutrophil irradiation at doses up to 2500 rad. In addition, irradiation of intracellular DCFH and aqueous 2'-7'-dichlorofluorescein diacetate (DCFH-DA) resulted in DCF production, which suggested that oxidative molecules produced by aqueous radiolysis were detected by this assay. This study indicates that radiation doses of 1500 to 2500 rad, which are sufficient to prevent induction of graft-versus-host disease by transfused blood components, are not deleterious to neutrophil oxidative metabolism.

  4. Feasibility development program LEU-foil plate type target for the production of Mo-99

    SciTech Connect

    Allen, C.W.; Butler, R.A.; Jarousse, C.; Falgoux, J.L.

    2008-07-15

    The University of Missouri Research Reactor and AREVA-CERCA have recently signed a Memorandum of Understanding to cooperate in a program to determine the feasibility of manufacturing a prototype LEU-foil target in a plate geometry for the production of molybdenum-99. The concept of a plate type target consists of transitioning Argonne National Laboratory's existing LEU-foil annular target design from a concentric tube geometry to a plate geometry. The objectives of the feasibility determination are: 1) Evaluate the structural integrity and geometric stability of a foil plate target during irradiation and post-irradiation by finite element analysis modeling. 2) Evaluate the heat transfer characteristics of a foil plate target with respect to thermal contact resistance at the foil / plate interfaces. 3) Determine the economics of manufacturing an LEU-foil plate target in comparison to that of a LEU dispersion plate type target on a commercial scale basis. 4) Determine the most effective and efficient method of disassembling the target to remove the foil component of the target for chemical processing. The results of the structural and thermal analyses will be used to determine if a comprehensive set of Safety Case documentation can be developed to support the irradiation and disassembly of a 'mini' (i.e., small scale) LEU-foil plate target as a trial demonstration. (author)

  5. Light irradiance and spectral distribution effects on cyanobacterial hydrogen production

    NASA Astrophysics Data System (ADS)

    Fatihah Salleh, Siti; Kamaruddin, Azlina; Hekarl Uzir, Mohamad; Rahman Mohamed, Abdul; Halim Shamsuddin, Abdul

    2016-03-01

    Light is an essential energy source for photosynthetic cyanobacteria. Changes in both light irradiance and spectral distribution will affect their photosynthetic productivity. Compared to the light irradiance, little investigations have been carried out on the effect of light spectra towards cyanobacterial hydrogen production. Hence, this work aims to investigate the effects of both light quantity and quality on biohydrogen productivity of heterocystous cyanobacterium, A.variabilis. Under white light condition, the highest hydrogen production rate of 31 µmol H2 mg chl a -1 h-1 was achieved at 70 µE m-2 s-1. When the experiment was repeated at the same light irradiance but different light spectra of blue, red and green, the accumulations of hydrogen were significantly lower than the white light except for blue light. As the light irradiance was increased to 350 µE m-2 s-1, the accumulated hydrogen under the blue light doubled that of the white light. Besides that, an unusual prolongation of the hydrogen production up to 120 h was observed. The results obtained suggest that blue light could be the most desirable light spectrum for cyanobacterial hydrogen production.

  6. Effect of gamma irradiation on rice and its food products

    NASA Astrophysics Data System (ADS)

    Sung, Wen-Chieh

    2005-07-01

    Two milled indica rice varieties were exposed to gamma radiation with doses ranging from 0 to 1.0 kGy. The effects of gamma irradiation on rice flour pasting properties and the qualities of its food product, rice curd, were compared to the effects of storage. A dose of 1 kGy can decrease the flour paste viscosity and tenderize the texture of the rice curd to similar levels as those obtained after 12 months of storage. It was thus shown that gamma irradiation could shorten the indica rice aging time and improve the processing stability and quality of rice products.

  7. Fission product release from irradiated LWR fuel under accident conditions

    SciTech Connect

    Strain, R.V.; Sanecki, J.E.; Osborne, M.F.

    1984-01-01

    Fission product release from irradiated LWR fuel is being studied by heating fuel rod segments in flowing steam and an inert carrier gas to simulate accident conditions. Fuels with a range of irradiation histories are being subjected to several steam flow rates over a wide range of temperatures. Fission product release during each test is measured by gamma spectroscopy and by detailed examination of the collection apparatus after the test has been completed. These release results are complemented by a detailed posttest examination of samples of the fuel rod segment. Results of release measurements and fuel rod characterizations for tests at 1400 through 2000/sup 0/C are presented in this paper.

  8. Target life time of laser ion source for low charge state ion production

    SciTech Connect

    Kanesue,T.; Tamura, J.; Okamura, M.

    2008-06-23

    Laser ion source (LIS) produces ions by irradiating pulsed high power laser shots onto the solid state target. For the low charge state ion production, laser spot diameter on the target can be over several millimeters using a high power laser such as Nd:YAG laser. In this case, a damage to the target surface is small while there is a visible crater in case of the best focused laser shot for high charge state ion production (laser spot diameter can be several tens of micrometers). So the need of target displacement after each laser shot to use fresh surface to stabilize plasma is not required for low charge state ion production. We tested target lifetime using Nd:YAG laser with 5 Hz repetition rate. Also target temperature and vacuum condition were recorded during experiment. The feasibility of a long time operation was verified.

  9. Production of sodium-22 from proton irradiated aluminum

    DOEpatents

    Taylor, Wayne A.; Heaton, Richard C.; Jamriska, David J.

    1996-01-01

    A process for selective separation of sodium-22 from a proton irradiated minum target including dissolving a proton irradiated aluminum target in hydrochloric acid to form a first solution including aluminum ions and sodium ions, separating a portion of the aluminum ions from the first solution by crystallization of an aluminum salt, contacting the remaining first solution with an anion exchange resin whereby ions selected from the group consisting of iron and copper are selectively absorbed by the anion exchange resin while aluminum ions and sodium ions remain in solution, contacting the solution with an cation exchange resin whereby aluminum ions and sodium ions are adsorbed by the cation exchange resin, and, contacting the cation exchange resin with an acid solution capable of selectively separating the adsorbed sodium ions from the cation exchange resin while aluminum ions remain adsorbed on the cation exchange resin is disclosed.

  10. Production of long-lived hafnium isomers in reactor irradiations

    NASA Astrophysics Data System (ADS)

    Karamian, S. A.; Carroll, J. J.; Adam, J.; Kulagin, E. N.; Shabalin, E. P.

    2006-06-01

    Experiments on production of long-lived Hf178m isomer in reactor irradiations are described. Properties of this nuclide are promising for its potential application as a relatively safe power source characterized by high density of accumulated energy. Metal natHf samples were activated in the Dubna IBR-2 reactor at positions corresponding to different neutron fluxes. Samples were bare or shielded by Cd and B 4C layers. The gamma activity of the samples was analyzed with Ge gamma spectrometers during a two-year period following their irradiation. In the presence of dominant activation products 175Hf and 181Hf, the high-spin isomers Hf178m and Hf179m were also detected despite relatively low levels. The isomer-to-ground state ratios and cross-sections were determined from the measured yields. For Hf178m, the cross-section for burnup (destruction) by neutron capture after its production was also estimated, clarifying the results from earlier experiments. In the context of suggestions for use of Hf178m for applications, the results confirm that large-scale production of this isomer by reactor irradiations is not feasible. In contrast, the efficiency of production of Hf179m is much higher and an amount of about 10 16 atoms may be produced in standard reactor irradiations. For Hf178m, more productive methods are known, in particular fast neutron irradiations at E n ≥ 14 MeV and spallation reactions at intermediate energies. Neutron cross-sections for isomers may also be significant in astrophysics.

  11. Modeling of thermal properties of a TeO 2 target for radioiodine production

    NASA Astrophysics Data System (ADS)

    Čomor, J. J.; Stevanović, Ž.; Rajčević, M.; Košutić, D.

    2004-03-01

    Three radionuclides of iodine ( 120I, 123I and 124I) are of great interest for modern nuclear medical diagnostics. They can be all produced by the (p,n) nuclear reaction using isotopically enriched solid TeO 2 targets. The produced radioiodine can be rapidly separated from the target material by dry-distillation from the melted target after the irradiation. Since TeO 2 has low thermal conductivity, the most critical issue in the design of a production target is the provision of its effective cooling in order to avoid melting of the oxide layer during the irradiation. A compact solid target irradiation system (COSTIS) has been designed for the irradiation of TeO 2 targets, suitable for routine production of radioiodine. The target is a circular Pt-disk that carries the TeO 2 melted into a circular grove in the center of the disk. The target coin is manually inserted into COSTIS, fixed pneumatically in the irradiation position, released remotely after irradiation and falls down driven by gravity into a transport container. The engineering design of the cavity for helium cooling of the front face of TeO 2 and the impinging water jet cooling the back face of the target disk was done based on a simulation of the thermal behavior of the target during the irradiation. A straightforward numerical method for the prediction of the thermal properties of the solid target has been developed. The approach is based on calculations without using the common practice of Prandtl and Nusselt empirical correlation. The fluid flow description in the boundary layer was refined in such a way, that the heat flux, exchanged between the solid and fluid, is obtained directly from Fourier law. The governing equations are based on the local thermodynamic equilibrium and conservation equation of mass, momentum and energy. In order to solve the set of governing equations, the finite-volume method is used. This procedure gives rapid answers whether the proposed geometry satisfies the design

  12. Particle and x-ray generation by irradiation of gaseous and solid targets with a 100 TW laser pulse

    NASA Astrophysics Data System (ADS)

    Willi, O.; Behmke, M.; Gezici, L.; Hidding, B.; Jung, R.; Königstein, T.; Pipahl, A.; Osterholz, J.; Pretzler, G.; Pukhov, A.; Toncian, M.; Toncian, T.; Heyer, M.; Jäckel, O.; Kübel, M.; Paulus, G.; Rödel, C.; Schlenvoigt, H. P.; Ziegler, W.; Büscher, M.; Feyt, A.; Lehrach, A.; Ohm, H.; Oswald, G.; Raab, N.; Ruzzo, M.; Seltmann, M.; Zhang, Q.

    2009-12-01

    The recently commissioned 100 TW, TiSa laser system (2.5 J, 25 fs) at the University of Düsseldorf has been used to study various issues at relativistic intensities including interaction physics, electron and proton acceleration and higher surface harmonics. The plasma evolution during and after laser pulse propagation through underdense gaseous targets was investigated with an optical probe pulse. Under similar experimental conditions the electron beam was recorded with Lanex screens and an electron spectrometer. On solid thin foil targets the production of protons was studied using a magnetic spectrometer. Due to the high contrast of the laser pulse, foil targets as thin as 300 nm could be used. Higher harmonics from laser irradiated fused silica targets were observed.

  13. Contamination of Optical Surfaces Under Irradiation by Outgassed Volatile Products

    SciTech Connect

    Khasanshin, R. H.; Grigorevskiy, A. V.; Galygin, A. N.; Alexandrov, N. G.

    2009-01-05

    Deposition of outgassed products of a polymeric composite on model material surfaces being irradiated by electrons and protons with initial energies of E{sub e} = 40 keV and E{sub p} = 30 keV respectively was studied. It was shown that deposition of volatile products on model material surfaces being under ionizing radiations results in increase of organic film growth rate.

  14. Mitochondria-Targeted Vitamin E Protects Skin from UVB-Irradiation

    PubMed Central

    Kim, Won-Serk; Kim, Ikyon; Kim, Wang-Kyun; Choi, Ju-Yeon; Kim, Doo Yeong; Moon, Sung-Guk; Min, Hyung-Keun; Song, Min-Kyu; Sung, Jong-Hyuk

    2016-01-01

    Mitochondria-targeted vitamin E (MVE) is designed to accumulate within mitochondria and is applied to decrease mitochondrial oxidative damage. However, the protective effects of MVE in skin cells have not been identified. We investigated the protective effect of MVE against UVB in dermal fibroblasts and immortalized human keratinocyte cell line (HaCaT). In addition, we studied the wound-healing effect of MVE in animal models. We found that MVE increased the proliferation and survival of fibroblasts at low concentration (i.e., nM ranges). In addition, MVE increased collagen production and downregulated matrix metalloproteinase1. MVE also increased the proliferation and survival of HaCaT cells. UVB increased reactive oxygen species (ROS) production in fibroblasts and HaCaT cells, while MVE decreased ROS production at low concentration. In an animal experiment, MVE accelerated wound healing from laser-induced skin damage. These results collectively suggest that low dose MVE protects skin from UVB irradiation. Therefore, MVE can be developed as a cosmetic raw material. PMID:26869457

  15. Mitochondria-Targeted Vitamin E Protects Skin from UVB-Irradiation.

    PubMed

    Kim, Won-Serk; Kim, Ikyon; Kim, Wang-Kyun; Choi, Ju-Yeon; Kim, Doo Yeong; Moon, Sung-Guk; Min, Hyung-Keun; Song, Min-Kyu; Sung, Jong-Hyuk

    2016-05-01

    Mitochondria-targeted vitamin E (MVE) is designed to accumulate within mitochondria and is applied to decrease mitochondrial oxidative damage. However, the protective effects of MVE in skin cells have not been identified. We investigated the protective effect of MVE against UVB in dermal fibroblasts and immortalized human keratinocyte cell line (HaCaT). In addition, we studied the wound-healing effect of MVE in animal models. We found that MVE increased the proliferation and survival of fibroblasts at low concentration (i.e., nM ranges). In addition, MVE increased collagen production and downregulated matrix metalloproteinase1. MVE also increased the proliferation and survival of HaCaT cells. UVB increased reactive oxygen species (ROS) production in fibroblasts and HaCaT cells, while MVE decreased ROS production at low concentration. In an animal experiment, MVE accelerated wound healing from laser-induced skin damage. These results collectively suggest that low dose MVE protects skin from UVB irradiation. Therefore, MVE can be developed as a cosmetic raw material. PMID:26869457

  16. Fixed-target hadron production experiments

    NASA Astrophysics Data System (ADS)

    Popov, Boris A.

    2015-08-01

    Results from fixed-target hadroproduction experiments (HARP, MIPP, NA49 and NA61/SHINE) as well as their implications for cosmic ray and neutrino physics are reviewed. HARP measurements have been used for predictions of neutrino beams in K2K and MiniBooNE/SciBooNE experiments and are also being used to improve predictions of the muon yields in EAS and of the atmospheric neutrino fluxes as well as to help in the optimization of neutrino factory and super-beam designs. Recent measurements released by the NA61/SHINE experiment are of significant importance for a precise prediction of the J-PARC neutrino beam used for the T2K experiment and for interpretation of EAS data. These hadroproduction experiments provide also a large amount of input for validation and tuning of hadron production models in Monte-Carlo generators.

  17. Myanmar production meets first-gas targets

    SciTech Connect

    Lepage, A.

    1998-09-07

    Despite scheduling complications caused by annual monsoons, the Yadana project to bring offshore Myanmar gas ashore and into neighboring Thailand has met it first-gas target of July 1, 1998. The Yadana field is a dry-gas reservoir in the reef upper Birman limestone formation t 1,260 m and a pressure of 174 bara (approximately 2,500 psi). It extends nearly 7 km (west to east) and 10 km (south to north). The water-saturated reservoir gas contains mostly methane mixed with CO{sub 2} and N{sub 2}. No production of condensate is anticipated. The Yadana field contains certified gas reserves of 5.7 tcf, calculated on the basis of 2D and 3D seismic data-acquisition campaigns and of seven appraisal wells. The paper discusses early interest, development sequences, offshore platforms, the gas-export pipeline, safety, environmental steps, and schedule constraints.

  18. Optimization of irradiation conditions for {sup 177}Lu production at the LVR-15 research reactor

    SciTech Connect

    Lahodova, Z.; Viererbl, L.; Klupak, V.; Srank, J.

    2012-07-01

    The use of lutetium in medicine has been increasing over the last few years. The {sup 177}Lu radionuclide is commercially available for research and test purposes as a diagnostic and radiotherapy agent in the treatment of several malignant tumours. The yield of {sup 177}Lu from the {sup 176}Lu(n,{gamma}){sup 177}Lu nuclear reaction depends significantly on the thermal neutron fluence rate. The capture cross-sections of both reaction {sup 176}Lu(n,{gamma}){sup 177}Lu and reaction {sup 177}Lu(n,{gamma}){sup 178}Lu are very high. Therefore a burn-up of target and product nuclides should be taken into account when calculating {sup 177}Lu activity. The maximum irradiation time, when the activity of the {sup 177}Lu radionuclide begins to decline, was found for different fluence rates. Two vertical irradiation channels at the LVR-15 nuclear research reactor were compared in order to choose the channel with better irradiation conditions, such as a higher thermal neutron fluence rate in the irradiation volume. In this experiment, lutetium was irradiated in a titanium capsule. The influence of the Ti capsule on the neutron spectrum was monitored using activation detectors. The choice of detectors was based on requirements for irradiation time and accurate determination of thermal neutrons. The following activation detectors were selected for measurement of the neutron spectrum: Ti, Fe, Ni, Co, Ag and W. (authors)

  19. Development of two-band infrared radiometer for irradiance calibration of target simulators

    SciTech Connect

    Yang, Sen; Li, Chengwei

    2015-07-15

    A detector-based spectral radiometer has been developed for the calibration of target simulator. Unlike the conventional spectral irradiance calibration method based on radiance and irradiance, the new radiometer is calibrated using image-space temperature based method. The image-space temperature based method improves the reproducibility in the calibration of radiometer and reduces the uncertainties existing in the conventional calibration methods. The calibrated radiometer is then used to establish the irradiance transfer standard for the target simulator. With the designed radiometer in this paper, a highly accurate irradiance calibration for target simulators of wavelength from 2.05 to 2.55 μm and from 3.7 to 4.8 μm can be performed with an expanded uncertainty (k = 2) of calibration of 2.18%. Last but not least, the infrared radiation of the target simulator was measured by the infrared radiometer, the effectiveness and capability of which are verified through measurement of temperature and irradiance and a comparison with the thermal imaging camera.

  20. Preliminary investigations on the use of uranium silicide targets for fission Mo-99 production

    SciTech Connect

    Cols, H.; Cristini, P.; Marques, R.

    1997-08-01

    The National Atomic Energy Commission (CNEA) of Argentine Republic owns and operates an installation for production of molybdenum-99 from fission products since 1985, and, since 1991, covers the whole national demand of this nuclide, carrying out a program of weekly productions, achieving an average activity of 13 terabecquerel per week. At present they are finishing an enlargement of the production plant that will allow an increase in the volume of production to about one hundred of terabecquerel. Irradiation targets are uranium/aluminium alloy with 90% enriched uranium with aluminium cladding. In view of international trends held at present for replacing high enrichment uranium (HEU) for enrichment values lower than 20 % (LEU), since 1990 the authors are in contact with the RERTR program, beginning with tests to adapt their separation process to new irradiation target conditions. Uranium silicide (U{sub 3}Si{sub 2}) was chosen as the testing material, because it has an uranium mass per volume unit, so that it allows to reduce enrichment to a value of 20%. CNEA has the technology for manufacturing miniplates of uranium silicide for their purposes. In this way, equivalent amounts of Molybdenum-99 could be obtained with no substantial changes in target parameters and irradiation conditions established for the current process with Al/U alloy. This paper shows results achieved on the use of this new target.

  1. Systems and methods for processing irradiation targets through a nuclear reactor

    DOEpatents

    Dayal, Yogeshwar; Saito, Earl F.; Berger, John F.; Brittingham, Martin W.; Morales, Stephen K.; Hare, Jeffrey M.

    2016-05-03

    Apparatuses and methods produce radioisotopes in instrumentation tubes of operating commercial nuclear reactors. Irradiation targets may be inserted and removed from instrumentation tubes during operation and converted to radioisotopes otherwise unavailable during operation of commercial nuclear reactors. Example apparatuses may continuously insert, remove, and store irradiation targets to be converted to useable radioisotopes or other desired materials at several different origin and termination points accessible outside an access barrier such as a containment building, drywell wall, or other access restriction preventing access to instrumentation tubes during operation of the nuclear plant.

  2. Modeling the behavior of a light-water production reactor target rod

    SciTech Connect

    Sherwood, D.J.

    1992-03-01

    Pacific Northwest Laboratory has been conducting a series of in-reactor experiments in the Idaho National Engineering Laboratory (INEL) Advanced Test Reactor (ATR) to determine the amount of tritium released by permeation from a target rod under neutron irradiation. The model discussed in this report was developed from first principles to model the behavior of the first target rod irradiated in the ATR. The model can be used to determine predictive relationships for the amount of tritium that permeates through the target rod cladding during irradiation. The model consists of terms and equations for tritium production, gettering, partial pressure, and permeation, all of which are described in this report. The model addressed only the condition of steady state and features only a single adjustable parameter. The target rod design for producing tritium in a light-water reactor was tested first in the WC-1 in-reactor experiment. During irradiation, tritium is generated in the target rod within the ceramic lithium target material. The target rod has been engineered to limit the release of tritium to the reactor coolant during normal operations. The engineered features are a nickel-plated Zircaloy-4 getter and a barrier coating on the cladding surfaces. The ceramic target is wrapped with the getter material and the resulting ``pencils`` are inserted into the barrier coated cladding. These features of the rod are described in the report, along with the release of tritium from the ceramic target. The steady-state model could be useful for the design procedure of target rod components.

  3. Modeling the behavior of a light-water production reactor target rod

    SciTech Connect

    Sherwood, D.J.

    1992-03-01

    Pacific Northwest Laboratory has been conducting a series of in-reactor experiments in the Idaho National Engineering Laboratory (INEL) Advanced Test Reactor (ATR) to determine the amount of tritium released by permeation from a target rod under neutron irradiation. The model discussed in this report was developed from first principles to model the behavior of the first target rod irradiated in the ATR. The model can be used to determine predictive relationships for the amount of tritium that permeates through the target rod cladding during irradiation. The model consists of terms and equations for tritium production, gettering, partial pressure, and permeation, all of which are described in this report. The model addressed only the condition of steady state and features only a single adjustable parameter. The target rod design for producing tritium in a light-water reactor was tested first in the WC-1 in-reactor experiment. During irradiation, tritium is generated in the target rod within the ceramic lithium target material. The target rod has been engineered to limit the release of tritium to the reactor coolant during normal operations. The engineered features are a nickel-plated Zircaloy-4 getter and a barrier coating on the cladding surfaces. The ceramic target is wrapped with the getter material and the resulting pencils'' are inserted into the barrier coated cladding. These features of the rod are described in the report, along with the release of tritium from the ceramic target. The steady-state model could be useful for the design procedure of target rod components.

  4. Formation of the uniform irradiation of a target in high-power laser facilities

    SciTech Connect

    Garanin, Sergey G; Derkach, Vladimir N; Shnyagin, Roman A

    2004-05-31

    The methods are developed for obtaining highly uniform laser beams for direct irradiation of targets in high-power laser facilities being designed. The methods are based on the optimisation of the mutual arrangement of the beams irradiating a target, the use of stationary phase plates for the formation of the specified radiation intensity distribution on the target, and the employment of the spatiotemporal beam smoothing to suppress small-scale inhomogeneities. The requirements on different systems of the facility are considered which provide the necessary accuracy of the beam steering on a target and the admissible difference in the intensities of the beams. A method is proposed for the spatiotemporal beam smoothing using the nonstationary properties of a laser plasma. The possibilities of this method are studied experimentally. (invited paper)

  5. Salivary gland sparing and improved target irradiation by conformal and intensity modulated irradiation of head and neck cancer.

    PubMed

    Eisbruch, Avraham; Ship, Jonathan A; Dawson, Laura A; Kim, Hyungjin M; Bradford, Carol R; Terrell, Jeffrey E; Chepeha, Douglas B; Teknos, Theodore N; Hogikyan, Norman D; Anzai, Yoshimi; Marsh, Lon H; Ten Haken, Randall K; Wolf, Gregory T

    2003-07-01

    The goals of this study were to facilitate sparing of the major salivary glands while adequately treating tumor targets in patients requiring comprehensive bilateral neck irradiation (RT), and to assess the potential for improved xerostomia. Since 1994 techniques of target irradiation and locoregional tumor control with conformal and intensity modulated radiation therapy (IMRT) have been developed. In patients treated with these modalities, the salivary flow rates before and periodically after RT have been measured selectively from each major salivary gland and the residual flows correlated with glands' dose volume histograms (DVHs). In addition, subjective xerostomia questionnaires have been developed and validated. The pattern of locoregional recurrence has been examined from computed tomography (CT) scans at the time of recurrence, transferring the recurrence volumes to the planning CT scans, and regenerating the dose distributions at the recurrence sites. Treatment plans for target coverage and dose homogeneity using static, multisegmental IMRT were found to be significantly better than standard RT plans. In addition, significant parotid gland sparing was achieved in the conformal plans. The relationships among dose, irradiated volume, and the residual saliva flow rates from the parotid glands were characterized by dose and volume thresholds. A mean radiation dose of 26 Gy was found to be the threshold for preserved stimulated saliva flow. Xerostomia questionnaire scores suggested that xerostomia was significantly reduced in patients irradiated with bilateral neck, parotid-sparing RT, compared to patients with similar tumors treated with standard RT. Examination of locoregional tumor recurrence patterns revealed that the large majority of recurrences occurred inside targets, in areas that had been judged to be at high risk and that had received RT doses according to the perceived risk. Tangible gains in salivary gland sparing and target coverage are being

  6. Simulation of photon acceleration upon irradiation of a mylar target by femtosecond laser pulses

    SciTech Connect

    Andreev, Stepan N; Rukhadze, Anri A; Tarakanov, V P; Yakutov, B P

    2010-01-31

    Acceleration of protons is simulated by the particle-in-cell (PIC) method upon irradiation of mylar targets of different thicknesses by femtosecond plane-polarised pulsed laser radiation and at different angles of radiation incidence on the target. The comparison of the results of calculations with the experimental data obtained in recent experiments shows their good agreement. The optimal angle of incidence (458) at which the proton energy achieves its absolute maximum is obtained. (effects of laser radiation on matter)

  7. Lithium target for accelerator based BNCT neutron source: Influence by the proton irradiation on lithium

    NASA Astrophysics Data System (ADS)

    Fujii, R.; Imahori, Y.; Nakakmura, M.; Takada, M.; Kamada, S.; Hamano, T.; Hoshi, M.; Sato, H.; Itami, J.; Abe, Y.; Fuse, M.

    2012-12-01

    The neutron source for Boron Neutron Capture Therapy (BNCT) is in the transition stage from nuclear reactor to accelerator based neutron source. Generation of low energy neutron can be achieved by 7Li (p, n) 7Be reaction using accelerator based neutron source. Development of small-scale and safe neutron source is within reach. The melting point of lithium that is used for the target is low, and durability is questioned for an extended use at a high current proton beam. In order to test its durability, we have irradiated lithium with proton beam at the same level as the actual current density, and found no deterioration after 3 hours of continuous irradiation. As a result, it is suggested that lithium target can withstand proton irradiation at high current, confirming suitability as accelerator based neutron source for BNCT.

  8. Post-irradiation Examination and Fission Product Inventory Analysis of AGR-1 Irradiation Capsules

    SciTech Connect

    J M Harp; P D Demkowicz; S A Ploger

    2012-10-01

    The AGR-1 experiment was the first in a series of Advanced Gas Reactor (AGR) experiments designed to test TRISO fuel under High Temperature Gas Reactor irradiation conditions. This experiment was irradiated in the Advanced Test Reactor (ATR) at Idaho National Laboratory (INL) and is currently undergoing post-irradiation examination (PIE) at INL’s Materials and Fuels Complex (MFC). The inventory and distribution of fission products, especially Ag-110m, was assessed and analyzed for all the components of the AGR-1 capsules. This data should help inform the study of fission product migration in coated particle fuel. Gamma spectrometry was used to measure the activity of various different fission products in the different components of the AGR-1 test train. Each capsule contained: 12 fuel compacts, a graphite holder that kept the fuel compacts in place, graphite spacers that were above and below the graphite holders and fuel compacts, gas lines through which a helium neon gas mixture flowed in and out of each capsule, and the stainless steel shell that contained the experiment. Gamma spectrometry results and the experimental techniques used to capture these results will be presented for all the capsule components. The components were assayed to determine the total activity of different fission products present in or on them. These totals are compared to the total expected activity of a particular fission product in the capsule based on predictions from physics simulation. Based on this metric, a significant fraction of the Ag-110m was detected outside the fuel compacts, but the amount varied highly between the 6 capsules. Very small fractions of Cs-137 (<2E-5), Cs-134 (<1e-5), and Eu-154 (<4e-4) were detected outside of the fuel compacts. Additionally, the distribution of select fission products in some of the components including the fuel compacts and the graphite holders were measured and will be discussed.

  9. Production of (211)At by a vertical beam irradiation method.

    PubMed

    Nagatsu, Kotaro; Minegishi, Katsuyuki; Fukada, Masami; Suzuki, Hisashi; Hasegawa, Sumitaka; Zhang, Ming-Rong

    2014-12-01

    We produced (211)At by irradiating the semi-sealed encapsulated Bi target with an external vertical beam. At 28.5MeV, the yield of (211)At was 22MBq/μAh (600μCi/μAh). (211)At was recovered by dry distillation, and 80% of the produced (211)At was successfully obtained in dry Na(211)At form within 2h from the end of bombardment (EOB). The radionuclidic purity of (211)At was >99% at 5h from EOB. PMID:25439168

  10. The influence of target preparation and mode of irradiation on PIXE analysis of biological samples

    NASA Astrophysics Data System (ADS)

    Galuszka, Janusz; Jarczyk, Lucjan; Rokita, Eugeniusz; Strzalkowski, Adam; Sych, Marek

    1984-04-01

    The following methods of target preparation were examined and compared: dry ashing at high temperature, low temperature ashing in plasma asher, wet ashing, lyophilization at a temperature of 35°C, cryofixation with drying in vacuum and dehydration in alcohol with drying in vacuum. All these techniques were applied to prepare targets from five different rat organs: liver, kidney, brain, lung and muscle tissue. The dried and powdered sample material was pressed into pellets or was distributed on formvar film. The evaporation of the thin carbon layer on the investigated target and placing of the thin carbon film in front of a target were also tested. The targets were irradiated in vacuum using an external beam in the air chamber. The influence of the method of target preparation on the detection limits, time requirements and escape of elements from the sample material is discussed.

  11. Particle production and targeting experience at the Brookhaven AGS

    SciTech Connect

    Lazarus, D.M.

    1986-01-01

    Experience in production of secondary pions (neutrinos), kaons and antiprotons by 28.5 GeV/c protons incident on various target materials is given. The problems associated with various target materials with respect to target heating, physical degradation and in some cases, disintegration, are discussed. The effect of target length and production angle on secondary beam flux and optical quality will be illustrated by some incomplete but nonetheless informative data.

  12. ULTRASONIC AND RADIOGRAPHIC IMAGING OF NIOBIUM TARGET CAPSULES FOR RADIOISOTOPE PRODUCTION

    SciTech Connect

    Bach, H. T.; Claytor, T. N.; Hunter, J. F.; Dozier, B. E.; Nortier, F. M.; Smith, D. M.; Lenz, J. W.; Moddrell, C.; Smith, P. A.

    2009-03-03

    In the case of proton-irradiated radioisotope production, niobium target capsules containing gallium are exposed to intense radiation, thermally induced stress, for extended periods. The structural integrity of the target capsules is of crucial importance for containing the accelerator-produced radioisotopes and target material. The capsule window should be as thin and transparent to the proton beam as possible, and preferably should not become significantly activated under proton irradiation. In addition, the material for the capsule needs to be as defect-free as possible. Niobium encapsulated gallium targets have a history of unpredictable failure under intense irradiation with 100 MeV protons. This study illustrates the utility of non-destructive testing in order to detect defects that may result in mechanical failure of the capsules during irradiation. Prior to this work, it was not known if the gallium initially wets the niobium capsule that encapsulates it, and if it does, it is not known to what degree. However, the imaging techniques used in this work show that local areas of wetting do occur. We used ultrasonic images from various lots of niobium capsule material to assess the integrity of the capsules. Digital radiography is also used to detect any voids in the gallium that will tend to cause local heating in the capsules.

  13. Sensing device and method for measuring emission time delay during irradiation of targeted samples

    NASA Technical Reports Server (NTRS)

    Danielson, J. D. Sheldon (Inventor)

    2000-01-01

    An apparatus for measuring emission time delay during irradiation of targeted samples by utilizing digital signal processing to determine the emission phase shift caused by the sample is disclosed. The apparatus includes a source of electromagnetic radiation adapted to irradiate a target sample. A mechanism generates first and second digital input signals of known frequencies with a known phase relationship, and a device then converts the first and second digital input signals to analog sinusoidal signals. An element is provided to direct the first input signal to the electromagnetic radiation source to modulate the source by the frequency thereof to irradiate the target sample and generate a target sample emission. A device detects the target sample emission and produces a corresponding first output signal having a phase shift relative to the phase of the first input signal, the phase shift being caused by the irradiation time delay in the sample. A member produces a known phase shift in the second input signal to create a second output signal. A mechanism is then provided for converting each of the first and second analog output signals to digital signals. A mixer receives the first and second digital output signals and compares the signal phase relationship therebetween to produce a signal indicative of the change in phase relationship between the first and second output signals caused by the target sample emission. Finally, a feedback arrangement alters the phase of the second input signal based on the mixer signal to ultimately place the first and second output signals in quadrature. Mechanisms for enhancing this phase comparison and adjustment technique are also disclosed.

  14. Effects of the irradiation of a finite number of laser beams on the implosion of a cone-guided target

    NASA Astrophysics Data System (ADS)

    Yanagawa, T.; Sakagami, H.; Nagatomo, H.; Sunahara, A.

    2016-03-01

    In direct drive laser fusion, the non-uniformity of the laser absorption on the target surface caused by the irradiation of a finite number of laser beams is a sever problem. GekkoXII laser at Osaka University has twelve laser beams and is irradiated to the target with a dodecahedron orientation, in which the distribution of the laser absorption on the target surface becomes non-uniform. Furthermore, in the case of a cone-guided target, the laser irradiation orientation is more limited. In this paper, we conducted implosion simulations of the cone- guided target based on GekkoXII irradiation orientation and compared the case of using the twelve beams and nine beams where the three beams irradiating the cone region are cut. The implosion simulations were conducted by a three-dimensional pure hydro code.

  15. Targeted Cytoplasmic Irradiation with Alpha Particles Induces Mutations in Mammalian Cells

    NASA Astrophysics Data System (ADS)

    Wu, Li-Jun; Randers-Pehrson, Gerhard; Xu, An; Waldren, Charles A.; Geard, Charles R.; Yu, Zengliang; Hei, Tom K.

    1999-04-01

    Ever since x-rays were shown to induce mutation in Drosophila more than 70 years ago, prevailing dogma considered the genotoxic effects of ionizing radiation, such as mutations and carcinogenesis, as being due mostly to direct damage to the nucleus. Although there was indication that alpha particle traversal through cellular cytoplasm was innocuous, the full impact remained unknown. The availability of the microbeam at the Radiological Research Accelerator Facility of Columbia University made it possible to target and irradiate the cytoplasm of individual cells in a highly localized spatial region. By using dual fluorochrome dyes (Hoechst and Nile Red) to locate nucleus and cellular cytoplasm, respectively, thereby avoiding inadvertent traversal of nuclei, we show here that cytoplasmic irradiation is mutagenic at the CD59 (S1) locus of human-hamster hybrid (AL) cells, while inflicting minimal cytotoxicity. The principal class of mutations induced are similar to those of spontaneous origin and are entirely different from those of nuclear irradiation. Furthermore, experiments with radical scavenger and inhibitor of intracellular glutathione indicated that the mutagenicity of cytoplasmic irradiation depends on generation of reactive oxygen species. These findings suggest that cytoplasm is an important target for genotoxic effects of ionizing radiation, particularly radon, the second leading cause of lung cancer in the United States. In addition, cytoplasmic traversal by alpha particles may be more dangerous than nuclear traversal, because the mutagenicity is accomplished by little or no killing of the target cells.

  16. Production of leukotrienes by macrophage cells irradiated with ultraviolet light

    SciTech Connect

    Minoui, S.

    1986-01-01

    Mouse peritoneal macrophages were cultured, labelled with /sup 14/C-arachidonic acid, and then were irradiated with UV light (254 nm). Also, some /sup 14/C-arachidonic acid labelled macrophages were treated with Ca-ionophore (A-23187). The UV-treated macrophages produced two to three times as much arachidonic acid metabolites as did the Ca-ionophore treated cells, the UV irradiated cells produced about 20 ng of LTC/sub 4/ and 5 ng of LTB/sub 4/ per million cells, whereas the Ca-ionophore treated cells produced 10 ng LTC/sub 4/ and 1 ng LTB/sub 4/ per million cells. The irradiated cultures also exhibited a high degree of aggregation of viable macrophages around the lysed cells. There was little aggregation in the Ca-ionophore treated cultures. In phagocytosis and cell aggregation leukotrienes are produced by the viable macrophage cells. Leukotrienes are arachidonic acid oxygenation products that are thought to be mediators both in the expression of the immune-based and inflammatory responses. This study shows that macrophage cells under stressful conditions produced by a trauma-causing agent (UV light) respond by producing leukotrienes and chemotactic factors. These responses of the macrophage cells are the result of multiple biochemical events that promote the production of leukotrienes in the cultures.

  17. Demonstration of {sup 99}MO production using LEU metal-foil targets in the cintichem process.

    SciTech Connect

    Vandegrift, G. F.; Conner, C.; Hofman, G. L.; Snelgrove, J. L.; Mutalib, A.; Purwadi, B.; Adang, H. G.; Hotman, L.; Kadarisman, Sukmana, A.; Dicky, T. J.; Sriyono, Suripto, A.; Lutfi, D.; Amin; Basiran, A.; Gogo, A.; Sarwani; Taryo, T.

    1999-09-30

    In March and September 1999, demonstrations of the irradiation, disassembly, and processing of LEU metal foil targets were performed in the Indonesian BATAN PUSPIPTEK Facilities. These demonstrations showed that (1) irradiation and disassembly can be performed so that the uranium foil can be easily removed from the target body, and (2) with only minor changes to the current process, the LEU foil can produce yield and purity of the {sup 99}Mo product at least as great as that obtained with the HEU target. Further, because of these modifications, two hours are cut from the processing time, and the liquid waste volume is reduced. Results of these demonstrations will be presented along with conclusions and plans for future work.

  18. Beauty and charm production at fixed-target experiments

    SciTech Connect

    Erik E. Gottschalk

    2003-12-10

    Fixed-target experiments continue to provide insights into the physics of particle production in strong interactions. The experiments are performed with different types of beam particles of varying energies, and many different target materials. Studies of beauty and charm production are of particular interest, since experimental results can be compared to perturbative QCD calculations. It is in this context that recent results from fixed-target experiments on beauty and charm production will be reviewed.

  19. Low enriched uranium foil plate target for the production of fission Molybdenum-99 in Pakistan Research Reactor-1

    NASA Astrophysics Data System (ADS)

    Mushtaq, A.; Iqbal, Masood; Bokhari, Ishtiaq Hussain; Mahmood, Tayyab

    2009-04-01

    Low enriched uranium foil (19.99% 235U) will be used as target material for the production of fission Molybdenum-99 in Pakistan Research Reactor-1 (PARR-1). LEU foil plate target proposed by University of Missouri Research Reactor (MURR) will be irradiated in PARR-1 for the production of 100Ci of Molybdenum-99 at the end of irradiation, which will be sufficient to prepare required 99Mo/ 99mTc generators at Pakistan Institute of Nuclear Science and Technology, Islamabad (PINSTECH) and its supply in the country. Neutronic and thermal hydraulic analysis for the fission Molybdenum-99 production at PARR-1 has been performed. Power levels in target foil plates and their corresponding irradiation time durations were initially determined by neutronic analysis to have the required neutron fluence. Finally, the thermal hydraulic analysis has been carried out for the proposed design of the target holder using LEU foil plates for fission Molybdenum-99 production at PARR-1. Data shows that LEU foil plate targets can be safely irradiated in PARR-1 for production of desired amount of fission Molybdenum-99.

  20. Yeast cell metabolism investigated by CO{_2} production and soft X-ray irradiation

    NASA Astrophysics Data System (ADS)

    Masini, A.; Batani, D.; Previdi, F.; Milani, M.; Pozzi, A.; Turcu, E.; Huntington, S.; Takeyasu, H.

    1999-01-01

    Results obtained using a new technique for studying cell metabolism are presented. The technique, consisting in CO2 production monitoring, has been applied to Saccharomyces cerevisiae yeast cells. Also the cells were irradiated using the soft X-ray laser-plasma source at Rutherford Appleton Laboratory with the aim of producing a damage of metabolic processes at the wall level, responsible for fermentation, without great interference with respiration, taking place in mitochondria, and DNA activity. The source was calibrated with PIN diodes and X-ray spectrometers and used Teflon stripes as target, emitting X-rays at about 0.9 keV, with a very low penetration in biological material. X-ray doses delivered to the different cell compartments were calculated following a Lambert-Bouguet-Beer law. Immediately after irradiation, the damage to metabolic activity was measured again by monitoring CO2 production. Results showed a general reduction in gas production by irradiated samples, together with non-linear and non-monotone response to dose. There was also evidence of oscillations in cell metabolic activity and of X-ray induced changes in oscillation frequency.

  1. Extractive separation of sodium 22 and aluminum 26 from cyclotron-irradiated magnesium targets

    SciTech Connect

    Iofa, B.Z.; Dzhigirkhanov, M.S.A.; Maklachkov, A.G.; Ovcharenko, V.P.; Sevast'yanov, Yu.G.; Silant'ev, A.I.

    1988-05-01

    An extraction procedure has been developed for the successive isolation of carrier-free sodium 22 and aluminum 26 from deuteron- (proton-) irradiated magnesium targets. The irradiated magnesium metal or alloy target is dissolved in sulfuric acid and the pH adjusted to 1.0-1.5 with ammonia. Sodium 22 is extracted with a chloroform solution of 15-crown-5 and picric acid and back-extracted with water in the presence of tetraphenylphosphonium chloride or a tetraalkylammonium chloride. Then aluminum 26 is extracted by trioctyl-ammonium oxalate in benzene (toluene) containing chloroform and back-extracted with 6M hydrochloric acid. The yields of sodium 22 and aluminum 26 are better than 95%.

  2. Bioethanol production from Ficus religiosa leaves using microwave irradiation.

    PubMed

    Klein, Miri; Griess, Ofir; Pulidindi, Indra Neel; Perkas, Nina; Gedanken, Aharon

    2016-07-15

    A microwave assisted feasible process for the production of bioethanol from Ficus religiosa leaves was developed. Under the process conditions (8 min. microwave irradiation, 1 M HCl), 10.1 wt% glucose yield was obtained from the leaves. Microwave based hydrolysis process yielded higher glucose content (10.1 wt%) compared to the conventional hydrothermal process (4.1 wt%). Upon fermentation of the hydrolysate using Baker's yeast, 3 wt% (dry wt. basis) of bioethanol was produced. PMID:27064733

  3. A Mitochondria-Targeted Nitroxide/Hemigramicidin S Conjugate Protects Mouse Embryonic Cells Against Gamma Irradiation

    SciTech Connect

    Jiang Jianfei; Belikova, Natalia A.; Hoye, Adam T.; Zhao Qing; Epperly, Michael W.; Greenberger, Joel S.; Wipf, Peter; Kagan, Valerian E.

    2008-03-01

    Purpose: To evaluate the in vitro radioprotective effect of the mitochondria-targeted hemigramicidin S-conjugated 4-amino-2,2,6,6-tetramethyl-piperidine-N-oxyl (hemi-GS-TEMPO) 5-125 in {gamma}-irradiated mouse embryonic cells and adenovirus-12 SV40 hybrid virus transformed human bronchial epithelial cells BEAS-2B and explore the mechanisms involved in its radioprotective effect. Methods and Materials: Cells were incubated with 5-125 before (10 minutes) or after (1 hour) {gamma}-irradiation. Superoxide generation was determined by using dihydroethidium assay, and lipid oxidation was quantitated by using a fluorescence high-performance liquid chromatography-based Amplex Red assay. Apoptosis was characterized by evaluating the accumulation of cytochrome c in the cytosol and externalization of phosphatidylserine on the cell surface. Cell survival was measured by means of a clonogenic assay. Results: Treatment (before and after irradiation) of cells with 5-125 at low concentrations (5, 10, and 20 {mu}M) effectively suppressed {gamma}-irradiation-induced superoxide generation, cardiolipin oxidation, and delayed irradiation-induced apoptosis, evaluated by using cytochrome c release and phosphatidylserine externalization. Importantly, treatment with 5-125 increased the clonogenic survival rate of {gamma}-irradiated cells. In addition, 5-125 enhanced and prolonged {gamma}-irradiation-induced G{sub 2}/M phase arrest. Conclusions: Radioprotection/mitigation by hemi-GS-TEMPO likely is caused by its ability to act as an electron scavenger and prevent superoxide generation, attenuate cardiolipin oxidation in mitochondria, and hence prevent the release of proapoptotic factors from mitochondria. Other mechanisms, including cell-cycle arrest at the G{sub 2}/M phase, may contribute to the protection.

  4. Remotely Operated Equipment for Post Irradiation Examination of the SNS Target Vessel

    SciTech Connect

    Carroll, Adam J; Graves, Van B; Dayton, Michael J; Riemer, Bernie

    2011-01-01

    The Spallation Neutron Source produces neutrons by accelerating protons into flowing mercury contained inside a stainless steel target vessel. During facility operation the target vessel is degraded by a combination of high-energy neutrons, the proton beam, and cavitation-induced corrosion. The degradation is primarily concentrated at the nose of the target vessel, where the proton beam passes through. Currently, the Spallation Neutron Source has replaced three target vessels and is operating the fourth. To minimize the operational costs of manufacturing and disposing of target vessels, efforts are underway to increase the operational lifetimes of the target vessels by conducting post irradiation examinations of spent vessels. This examination involves remotely removing multiple coupons from the nose of the target vessel using a single piece of equipment, called the Nose Sampling Cutter, installed inside the Spallation Neutron Source s hot cell. The Cutter produces circular coupons approximately 2 inches in diameter using a carbide-tipped hole saw. The nose of the target vessel consists of four layers of material, and the Nose Sampling Cutter is capable of cutting through the layers in a single stroke. This remote operation has been successfully completed twice. In addition to the Nose Sampling Cutter, a large reciprocation saw capable of removing a sizable section of the nose of the target vessel has been constructed and tested, but never implemented. To support this large reciprocation saw other equipment has also been designed. The details of the Nose Sampling Cutter, reciprocation saw, and associated equipment are discussed.

  5. Mechanisms of DNA damage response to targeted irradiation in organotypic 3D skin cultures.

    PubMed

    Acheva, Anna; Ghita, Mihaela; Patel, Gaurang; Prise, Kevin M; Schettino, Giuseppe

    2014-01-01

    DNA damage (caused by direct cellular exposure and bystander signaling) and the complex pathways involved in its repair are critical events underpinning cellular and tissue response following radiation exposures. There are limited data addressing the dynamics of DNA damage induction and repair in the skin particularly in areas not directly exposed. Here we investigate the mechanisms regulating DNA damage, repair, intracellular signalling and their impact on premature differentiation and development of inflammatory-like response in the irradiated and surrounding areas of a 3D organotypic skin model. Following localized low-LET irradiation (225 kVp X-rays), low levels of 53BP1 foci were observed in the 3D model (3.8±0.28 foci/Gy/cell) with foci persisting and increasing in size up to 48 h post irradiation. In contrast, in cell monolayers 14.2±0.6 foci/Gy/cell and biphasic repair kinetics with repair completed before 24 h was observed. These differences are linked to differences in cellular status with variable level of p21 driving apoptotic signalling in 2D and accelerated differentiation in both the directly irradiated and bystander areas of the 3D model. The signalling pathways utilized by irradiated keratinocytes to induce DNA damage in non-exposed areas of the skin involved the NF-κB transcription factor and its downstream target COX-2. PMID:24505255

  6. Self-Irradiation Effects on 99Mo Reagents and Products

    SciTech Connect

    Carson, S.D.; Garcia, M.J.; McDonald, M.J.; Simpson, R.L.; Tallant, D.R.

    1998-10-07

    produced in 1996 and shipped to pharmaceutical houses for evaluation of compatibility with oxime solution used to precipitate `?vfo as the oxime complex is both air and light-sensitive, and containing a black precipitate that forms during shipment, presumably as a result of self- irradiation. Addition of sodium hypochlorite to the product solution prior to shipment prevents precipitate formation, indicating the precipitate is a reduced form of `%lo. to remove any precipitate. Duplicate aliquots of the filtered samples were titrated to a phenolphthalein irradiation and afler standing at room temperature for 86.4 hours. Precipitates were washed to a FTIR analysis of the white precipitate showed it to be alpha benzoin oxime. Since the basic After 86.4 hours, no precipitate had formed in bottles containing sodium hypochlorite. Black precipitate had formed in all bottles that did not contain sodium hypochlorite after 14.4 hours. The precipitate appeared to initially form on the surface of the HDPE sample bottles and Black precipitate was first noticed in sample set 1 after 28.8 hrs' irradiation. No visible sample containing precipitate was kept at room temperature in the original bottle. Precipitate in sample sets 2 and 3. Since no precipitate formed in these bottles, this was equivalent to duplicate samples. Once the precipitate in the 20-mL aliquots that had been set aside had returned to sample sets 1 through 3 and the samples with redissolved precipitate all experienced an average decrease in base strength of 0.013 meq mL-l. Sample 1-C had a decrease of 0.004 meq mL-l and sample 1-D had returned to the initial value of 0.198 meq mL-l. Raman spectra for the black precipitate from samples l-C, 1-D and supplemental sample set 1 Fig. 2. Raman spectra of the black precipitate formed in 9%40 product solutions after 28.8,43.2, 72 and 86.4 hours of `oCo irradiation in Sandia's Gamma Irradiation Facility. increase with time, as seen in the titration of 1-C and 1-D samples

  7. Neutron-rich isotope production using a uranium carbide - carbon nanotubes SPES target prototype

    NASA Astrophysics Data System (ADS)

    Corradetti, S.; Biasetto, L.; Manzolaro, M.; Scarpa, D.; Carturan, S.; Andrighetto, A.; Prete, G.; Vasquez, J.; Zanonato, P.; Colombo, P.; Jost, C. U.; Stracener, D. W.

    2013-05-01

    The SPES (Selective Production of Exotic Species) project, under development at the Istituto Nazionale di Fisica Nucleare - Laboratori Nazionali di Legnaro (INFN-LNL), is a new-generation Isotope Separation On-Line (ISOL) facility for the production of radioactive ion beams by means of the proton-induced fission of uranium. In the framework of the research on the SPES target, seven uranium carbide discs, obtained by reacting uranium oxide with graphite and carbon nanotubes, were irradiated with protons at the Holifield Radioactive Ion Beam Facility (HRIBF) of Oak Ridge National Laboratory (ORNL). In the following, the yields of several fission products obtained during the experiment are presented and discussed. The experimental results are then compared to those obtained using a standard uranium carbide target. The reported data highlights the capability of the new type of SPES target to produce and release isotopes of interest for the nuclear physics community.

  8. Probing Dense Plasmas Created from Intense Irradiation of Solid Target in the XUV Domain

    SciTech Connect

    Dobosz, S.; Doumy, G.; Stabile, H.; Monot, P.; Bougeard, M.; Reau, F.; Martin, Ph.

    2006-04-07

    In this paper, electronic density and temperature have been inferred from XUV transmission through hot solid-density plasma created by high temporal contrast femtosecond irradiation of thin plastic foil target in the 1018W/cm2 intensity range. High order harmonics generated in pulsed gas jet are used as a probe beam. The initial plasma parameters are determined with an accuracy better than 15% on the 100fs time scale, by comparison of the transmission of two consecutive harmonics.

  9. Behavior of structural and target materials irradiated in spallation neutron environments

    SciTech Connect

    Stubbins, J.F.; Wechsler, M.; Borden, M.; Sommer, W.F.

    1995-05-01

    This paper describes considerations for selection of structural and target materials for accelerator-driven neutron sources. Due to the operating constraints of proposed accelerator-driven neutron sources, the criteria for selection are different than those commonly applied to fission and fusion systems. Established irradiation performance of various alloy systems is taken into account in the selection criteria. Nevertheless, only limited materials performance data are available which specifically related to neutron energy spectra anticipated for spallation sources.

  10. Feasibility study Part I - Thermal hydraulic analysis of LEU target for {sup 99}Mo production in Tajoura reactor

    SciTech Connect

    Bsebsu, F.M.; Abotweirat, F. E-mail: abutweirat@yahoo.com; Elwaer, S.

    2008-07-15

    The Renewable Energies and Water Desalination Research Center (REWDRC), Libya, will implement the technology for {sup 99}Mo isotope production using LEU foil target, to obtain new revenue streams for the Tajoura nuclear research reactor and desiring to serve the Libyan hospitals by providing the medical radioisotopes. Design information is presented for LEU target with irradiation device and irradiation Beryllium (Be) unit in the Tajoura reactor core. Calculated results for the reactor core with LEU target at different level of power are presented for steady state and several reactivity induced accident situations. This paper will present the steady state thermal hydraulic design and transient analysis of Tajoura reactor was loaded with LEU foil target for {sup 99}Mo production. The results of these calculations show that the reactor with LEU target during the several cases of transient are in safe and no problems will occur. (author)

  11. Estimation of photoneutron yield from beryllium target irradiated by variable energy microtron-based bremsstrahlung radiation

    NASA Astrophysics Data System (ADS)

    Eshwarappa, K. M.; Ganesh; Siddappa, K.; Kashyap, Yogesh; Sinha, Amar; Sarkar, P. S.; Godwal, B. K.

    2005-03-01

    The possibility of setting up microtron-based photoneutron source by utilizing bremsstrahlung radiation interaction with beryllium targets is critically examined. The bremsstrahlung yield for tantalum (Ta) target is obtained by EGS4 simulation. The neutron yield is estimated theoretically by MCNP simulation. The yield was measured experimentally by neutron irradiation of calibrated SSNTD CR-39 films. The total neutron yield is found to be of the order 10 10 n/s for 250 Hz PRR and 10 9 n/s for 50 Hz PRR. A detailed comparison shows good agreement between theoretical and experimentally measured yields.

  12. Production of radionuclides in artificial meteorites irradiated isotropically with 600 MeV protons

    NASA Technical Reports Server (NTRS)

    Michel, R.; Dragovitsch, P.; Englert, P.; Herpers, U.

    1986-01-01

    The understanding of the production of cosmogenic nuclides in small meteorites (R is less than 40 cm) still is not satisfactory. The existing models for the calculation of depth dependent production rates do not distinguish between the different types of nucleons reacting in a meteorite. They rather use general depth dependent particle fluxes to which cross sections have to be adjusted to fit the measured radionuclide concentrations. Some of these models can not even be extended to zero meteorite sizes without logical contradictions. Therefore, a series of three thick target irradiations was started at the 600 MeV proton beam of the CERN isochronuous cyclotron in order to study the interactions of small stony meteorites with galactic protons. The homogeneous 4 pi irradiation technique used provides a realistic meteorite model which allows a direct comparison of the measured depth profiles with those in real meteorites. Moreover, by the simultaneous measurement of thin target production cross sections one can differentiate between the contributions of primary and secondary nucleons over the entire volume of the artificial meteorite.

  13. Proton emission from thin hydrogenated targets irradiated by laser pulses at 10{sup 16} W/cm{sup 2}

    SciTech Connect

    Torrisi, L.; Giuffrida, L.; Cirrone, P.; Cutroneo, M.; Picciotto, A.; Krasa, J.; Margarone, D.; Velyhan, A.; Laska, L.; Ullschmied, J.; Wolowski, J.; Badziak, J.; Rosinski, M.

    2012-02-15

    The iodine laser at PALS Laboratory in Prague, operating at 1315 nm fundamental harmonics and at 300 ps FWHM pulse length, is employed to irradiate thin hydrogenated targets placed in vacuum at intensities on the order of 10{sup 16} W/cm{sup 2}. The laser-generated plasma is investigated in terms of proton and ion emission in the forward and backward directions. The time-of-flight technique, using ion collectors and semiconductor detectors, is used to measure the ion currents and the corresponding velocities and energies. Thomson parabola spectrometer is employed to separate the contribution of the ion emission from single laser shots. A particular attention is given to the proton production in terms of the maximum energy, emission yield, and angular distribution as a function of the laser energy, focal position, target thickness, and composition. Metallic and polymeric targets allow to generate protons with large energy range and different yield, depending on the laser, target composition, and target geometry properties.

  14. Post-irradiation examination of the Spallation Neutron Source target module

    NASA Astrophysics Data System (ADS)

    McClintock, D. A.; Ferguson, P. D.; Mansur, L. K.

    2010-03-01

    The Spallation Neutron Source (SNS) at Oak Ridge National Laboratory is an accelerator-based pulsed neutron source that produces high-energy spallation neutrons by bombarding liquid mercury flowing through a stainless steel target vessel. During operation the proton beam and spallation neutrons produce radiation damage in the AISI 316L austenitic stainless steel target vessel and water-cooled shroud. The beam pulses also cause rapid heating of the liquid mercury, which may produce cavitation erosion damage on the inner surface of the target vessel. The cavitation erosion rate is thought to be highly sensitive to beam power and predicted to be the primary life-limiting factor of the target module. Though cavitation erosion and radiation damage to the target vessel are expected to dictate its lifetime, the effects of radiation damage and cavitation erosion to target vessels in liquid metal spallation systems are not well known. Therefore preparations are being undertaken to perform post-irradiation examination (PIE) of the liquid mercury target vessel and water-cooled shroud after end-of-life occurs. An overview of the planned PIE for the SNS target vessel is presented here, including proposed techniques for specimen acquisition and subsequent material properties characterization.

  15. A Semantically Enabled Metadata Repository for Solar Irradiance Data Products

    NASA Astrophysics Data System (ADS)

    Wilson, A.; Cox, M.; Lindholm, D. M.; Nadiadi, I.; Traver, T.

    2014-12-01

    The Laboratory for Atmospheric and Space Physics, LASP, has been conducting research in Atmospheric and Space science for over 60 years, and providing the associated data products to the public. LASP has a long history, in particular, of making space-based measurements of the solar irradiance, which serves as crucial input to several areas of scientific research, including solar-terrestrial interactions, atmospheric, and climate. LISIRD, the LASP Interactive Solar Irradiance Data Center, serves these datasets to the public, including solar spectral irradiance (SSI) and total solar irradiance (TSI) data. The LASP extended metadata repository, LEMR, is a database of information about the datasets served by LASP, such as parameters, uncertainties, temporal and spectral ranges, current version, alerts, etc. It serves as the definitive, single source of truth for that information. The database is populated with information garnered via web forms and automated processes. Dataset owners keep the information current and verified for datasets under their purview. This information can be pulled dynamically for many purposes. Web sites such as LISIRD can include this information in web page content as it is rendered, ensuring users get current, accurate information. It can also be pulled to create metadata records in various metadata formats, such as SPASE (for heliophysics) and ISO 19115. Once these records are be made available to the appropriate registries, our data will be discoverable by users coming in via those organizations. The database is implemented as a RDF triplestore, a collection of instances of subject-object-predicate data entities identifiable with a URI. This capability coupled with SPARQL over HTTP read access enables semantic queries over the repository contents. To create the repository we leveraged VIVO, an open source semantic web application, to manage and create new ontologies and populate repository content. A variety of ontologies were used in

  16. Transition of proton energy scaling using an ultrathin target irradiated by linearly polarized femtosecond laser pulses.

    PubMed

    Kim, I Jong; Pae, Ki Hong; Kim, Chul Min; Kim, Hyung Taek; Sung, Jae Hee; Lee, Seong Ku; Yu, Tae Jun; Choi, Il Woo; Lee, Chang-Lyoul; Nam, Kee Hwan; Nickles, Peter V; Jeong, Tae Moon; Lee, Jongmin

    2013-10-18

    Particle acceleration using ultraintense, ultrashort laser pulses is one of the most attractive topics in relativistic laser-plasma research. We report proton and/or ion acceleration in the intensity range of 5×10(19) to 3.3×10(20) W/cm2 by irradiating linearly polarized, 30-fs laser pulses on 10-to 100-nm-thick polymer targets. The proton energy scaling with respect to the intensity and target thickness is examined, and a maximum proton energy of 45 MeV is obtained when a 10-nm-thick target is irradiated by a laser intensity of 3.3×10(20) W/cm2. The proton acceleration is explained by a hybrid acceleration mechanism including target normal sheath acceleration, radiation pressure acceleration, and Coulomb explosion assisted-free expansion. The transition of proton energy scaling from I(1/2) to I is observed as a consequence of the hybrid acceleration mechanism. The experimental results are supported by two- and three-dimensional particle-in-cell simulations. PMID:24182274

  17. Investigation of laser ion acceleration inside irradiated solid targets by neutron spectroscopy

    SciTech Connect

    Youssef, A.; Kodama, R.; Tampo, M.

    2006-03-15

    Origins and acceleration directions of accelerated ions inside solid LiF, CH-LiF, and LiF-CH targets irradiated by a 450 fs, 20 J, 1053 nm laser at an intensity of 3x10{sup 18} W/cm{sup 2} have been investigated by neutron spectroscopy. The irradiated targets generate neutrons through the reaction {sup 7}Li (p,n){sup 7}Be between accelerated protons and background {sup 7}Li ions inside the target. The produced neutron spectra observed from two different observation angles 20 deg. and 120 deg. to the target rear-side normal. From the measured and calculated spectra, by three-dimensional Monte Carlo code, the maximum energy, the total number, and the slope temperature of the accelerated ions are investigated. The results indicate that ions are not only accelerated from the front surface toward the rear surface, but also from the rear surface toward the front surface with comparable maximum energy and higher number.

  18. Plant Natural Products Targeting Bacterial Virulence Factors.

    PubMed

    Silva, Laura Nunes; Zimmer, Karine Rigon; Macedo, Alexandre José; Trentin, Danielle Silva

    2016-08-24

    Decreased antimicrobial efficiency has become a global public health issue. The paucity of new antibacterial drugs is evident, and the arsenal against infectious diseases needs to be improved urgently. The selection of plants as a source of prototype compounds is appropriate, since plant species naturally produce a wide range of secondary metabolites that act as a chemical line of defense against microorganisms in the environment. Although traditional approaches to combat microbial infections remain effective, targeting microbial virulence rather than survival seems to be an exciting strategy, since the modulation of virulence factors might lead to a milder evolutionary pressure for the development of resistance. Additionally, anti-infective chemotherapies may be successfully achieved by combining antivirulence and conventional antimicrobials, extending the lifespan of these drugs. This review presents an updated discussion of natural compounds isolated from plants with chemically characterized structures and activity against the major bacterial virulence factors: quorum sensing, bacterial biofilms, bacterial motility, bacterial toxins, bacterial pigments, bacterial enzymes, and bacterial surfactants. Moreover, a critical analysis of the most promising virulence factors is presented, highlighting their potential as targets to attenuate bacterial virulence. The ongoing progress in the field of antivirulence therapy may therefore help to translate this promising concept into real intervention strategies in clinical areas. PMID:27437994

  19. The mitochondria-targeted nitroxide JP4-039 augments potentially lethal irradiation damage repair.

    PubMed

    Rajagopalan, Malolan S; Gupta, Kanika; Epperly, Michael W; Franicola, Darcy; Zhang, Xichen; Wang, Hong; Zhao, Hong; Tyurin, Vladimir A; Pierce, Joshua G; Kagan, Valerian E; Wipf, Peter; Kanai, Anthony J; Greenberger, Joel S

    2009-01-01

    It was unknown if a mitochondria-targeted nitroxide (JP4-039) could augment potentially lethal damage repair (PLDR) of cells in quiescence. We evaluated 32D cl 3 murine hematopoietic progenitor cells which were irradiated and then either centrifuged to pellets (to simulate PLDR conditions) or left in exponential growth for 0, 24, 48 or 72 h. Pelleted cells demonstrated cell cycle arrest with a greater percentage in the G(1)-phase than did exponentially growing cells. Irradiation survival curves demonstrated a significant radiation damage mitigation effect of JP4-039 over untreated cells in cells pelleted for 24 h. No significant radiation mitigation was detected if drugs were added 48 or 72 h after irradiation. Electron paramagnetic resonance spectroscopy demonstrated a greater concentration of JP4-039 in mitochondria of 24 h-pelleted cells than in exponentially growing cells. These results establish a potential role of mitochondria-targeted nitroxide drugs as mitigators of radiation damage to quiescent cells including stem cells. PMID:19779106

  20. Gamma Knife irradiation method based on dosimetric controls to target small areas in rat brains

    SciTech Connect

    Constanzo, Julie; Paquette, Benoit; Charest, Gabriel; Masson-Côté, Laurence; Guillot, Mathieu

    2015-05-15

    Purpose: Targeted and whole-brain irradiation in humans can result in significant side effects causing decreased patient quality of life. To adequately investigate structural and functional alterations after stereotactic radiosurgery, preclinical studies are needed. The purpose of this work is to establish a robust standardized method of targeted irradiation on small regions of the rat brain. Methods: Euthanized male Fischer rats were imaged in a stereotactic bed, by computed tomography (CT), to estimate positioning variations relative to the bregma skull reference point. Using a rat brain atlas and the stereotactic bregma coordinates obtained from CT images, different regions of the brain were delimited and a treatment plan was generated. A single isocenter treatment plan delivering ≥100 Gy in 100% of the target volume was produced by Leksell GammaPlan using the 4 mm diameter collimator of sectors 4, 5, 7, and 8 of the Gamma Knife unit. Impact of positioning deviations of the rat brain on dose deposition was simulated by GammaPlan and validated with dosimetric measurements. Results: The authors’ results showed that 90% of the target volume received 100 ± 8 Gy and the maximum of deposited dose was 125 ± 0.7 Gy, which corresponds to an excellent relative standard deviation of 0.6%. This dose deposition calculated with GammaPlan was validated with dosimetric films resulting in a dose-profile agreement within 5%, both in X- and Z-axes. Conclusions: The authors’ results demonstrate the feasibility of standardizing the irradiation procedure of a small volume in the rat brain using a Gamma Knife.

  1. Post-Irradiation Properties of Candidate Materials for High-Power Targets

    SciTech Connect

    Kirk, H.G.; Ludewig, H.; Mausner, L.F.; Simos, N.; Thieberger, P.; Hayato, Y.; Yoshimura, K.; McDonald, K.T.; Sheppard, J.; Trung, L.P.; /SUNY, Stony Brook

    2006-03-15

    The desire of the high-energy-physics community for more intense secondary particle beams motivates the development of multi-megawatt, pulsed proton sources. The targets needed to produce these secondary particle beams must be sufficiently robust to withstand the intense pressure waves arising from the high peak-energy deposition which an intense pulsed beam will deliver. In addition, the materials used for the targets must continue to perform in a severe radiation environment. The effect of the beam induced pressure waves can be mitigated by use of target materials with high-yield strength and/or low coefficient of thermal expansion (CTE). We report here first results of an expanded study of the effects of irradiation on several additional candidate materials with high strength (AlBeMet, beryllium, Ti-V6-Al4) or low CTE (a carbon-carbon composite, a new Toyota ''gum'' metal alloy, Super-Invar).

  2. Energetic proton beams from plastic targets irradiated by an ultra-intense laser pulse

    NASA Astrophysics Data System (ADS)

    Lee, Kitae; Lee, Ji-Young; Park, Seong Hee; Cha, Yong-Ho; Kim, Kyung-Nam; Jeong, Young Uk

    2011-05-01

    It has been found that more intense proton beams are generated from plastic foils than metal foils irradiated by an ultraintense laser pulse. The acceleration model, ARIE (Acceleration by a Resistively Induced Electric field) accounts for the experimental observations from plastic foils compared with metal foils. Proton beams on foil thickness and laser prepulse have been observed, which is also well described by the ARIE model. An experiment with an aluminum-coated plastic target strongly suggests that front side acceleration is a dominant acceleration process in plastic targets. We also suggest that a vacuum-sandwiched double layer target could effectively enhance the laser contrast ratio, which was investigated in the combination of a two-dimensional hydro code and a two-dimensional PIC (Particle-In-Cell) code.

  3. Hypoglycemia unawareness prevention: Targeting glucagon production.

    PubMed

    Samson, Willis K; Stein, Lauren M; Elrick, Mollisa; Salvatori, Alison; Kolar, Grant; Corbett, John A; Yosten, Gina L C

    2016-08-01

    Insulin-dependent individuals with diabetes are at risk for a severe hypoglycemic event that may predispose them to several repeat episodes during which the normal counter regulatory mechanisms that protect against hypoglycemia fail to be activated. This state of hypoglycemia unawareness is characterized by a failure of glucagon release, preventing mobilization of endogenous glucose stores from the liver. We describe the discovery of a novel hormone, produced in pancreatic delta cells, which stimulates glucagon production and release, particularly under low glucose conditions. We hypothesize that this hormone, called neuronostatin, may be effective as a co-therapy with insulin to prevent repeated, potentially fatal episodes of recurrent hypoglycemia. PMID:27080082

  4. Optimization of ethyl ester production assisted by ultrasonic irradiation.

    PubMed

    Noipin, K; Kumar, S

    2015-01-01

    This study presents the optimization of the continuous flow potassium hydroxide-catalyzed synthesis of ethyl ester from palm oil with ultrasonic assistance. The process was optimized by application of factorial design and response surface methodology. The independent variables considered were ethanol to oil molar ratio, catalyst concentration, reaction temperature and ultrasonic amplitude; and the response was ethyl ester yield. The results show that ethanol to oil molar ratio, catalyst concentration, and ultrasonic amplitude have positive effect on ethyl ester yield, whereas reaction temperature has negative influence on ethyl ester yield. Second-order models were developed to predict the responses analyzed as a function of these three variables, and the developed models predicts the results in the experimental ranges studied adequately. This study shows that ultrasonic irradiation improved the ethyl ester production process to achieve ethyl ester yields above 92%. PMID:25116594

  5. Heavy flavor production at fixed target photo- and hadroproduction

    SciTech Connect

    Kwan, S.

    1993-11-01

    Recent results on photo- and hadroproduction of heavy flavor particles from fixed target experiments at CERN and Fermilab are presented. These include results on production characteristics, cross-section and pair correlation for both charm and beauty mesons.

  6. Automated Production of High Rep Rate Foam Targets

    NASA Astrophysics Data System (ADS)

    Hall, F.; Spindloe, C.; Haddock, D.; Tolley, M.; Nazarov, W.

    2016-04-01

    Manufacturing low density targets in the numbers needed for high rep rate experiments is highly challenging. This report summarises advances from manual production to semiautomated and the improvements that follow both in terms of production time and target uniformity. The production process is described and shown to be improved by the integration of an xyz robot with dispensing capabilities. Results are obtained from manual and semiautomated production runs and compared. The variance in the foam thickness is reduced significantly which should decrease experimental variation due to target parameters and could allow for whole batches to be characterised by the measurement of a few samples. The work applies to both foil backed and free standing foam targets.

  7. Yields of Fission Products from Various Uranium and Thorium Targets

    SciTech Connect

    Kronenberg, Andreas; Spejewski, Eugene H.; Mervin, Brenden T.; Jost, Cara; Carter, H Kennon; Stracener, Daniel W; Greene, John P.; Nolen, Jerry A.; Talbert, Willard L.

    2008-01-01

    Yield measurements from proton-induced fission have been performed on a number of actinide targets, both Th and U, at the on-line test facility at Oak Ridge National Laboratory. The results are discussed with a focus on the production process and physical and chemical properties of the targets.

  8. Yields of fission products from various uranium and thorium targets.

    SciTech Connect

    Kronenberg, A.; Spejewski, E. H.; Mervin, B.; Jost, C.; Carter, H. K.; Stracener, D. W.; Greene, J. P.; Nolen, J. A.; Talbert, W. L.; Physics; Oak Ridge Associated Univ.; ORNL; TechSource, Inc.

    2008-10-31

    Yield measurements from proton-induced fission have been performed on a number of actinide targets, both Th and U, at the on-line test facility at Oak Ridge National Laboratory. The results are discussed with a focus on the production process and physical and chemical properties of the targets.

  9. Micro-hardness measurement and micro-structure characterization of T91 weld metal irradiated in SINQ Target-3

    NASA Astrophysics Data System (ADS)

    Jia, X.; Dai, Y.

    2005-08-01

    This work is concerned with the micro-structure and mechanical behavior of T91 weld metal before and after an irradiation in SINQ Target-3. Optical and TEM observations and micro-hardness tests were performed to identify the irradiation effects. Before irradiation, the micro-structure of the T91 weld metals consisted of mainly tempered martensite and retained ferrite area. Precipitates in the weld metal are predominately M 7C 3 carbides, and few M 23C 6 particles are observed along the martensitic lath and primary austenite grain boundaries. The dislocation density in the weld metal is much higher than that in the base metal. The main feature of the irradiated micro-structure of the weld metal are small defects (black dots) and faulted Frank interstitial loops at lower irradiation temperature and a high density of helium bubbles appear at higher irradiation dose and temperature. The results are comparable with those of the T91 base metal irradiated under the same condition in the previous work. The weld metal and heat affected zone (HAZ) show much higher hardness than the base metal before irradiation, showing that no post-weld heat treatment (PWHT) has been applied to the weld metal. Irradiation hardening increases with irradiation dose below 10 dpa, but decreases at higher dose, which might be related to the transformation of M 7C 3 precipitates to M 23C 6 at higher irradiation temperatures.

  10. Improvement of saccharification process for bioethanol production from Undaria sp. by gamma irradiation

    NASA Astrophysics Data System (ADS)

    Yoon, Minchul; Choi, Jong-il; Lee, Ju-Woon; Park, Don-Hee

    2012-08-01

    Recently, many research works have reported on improvements to the saccharification process that increase bioethanol production from cellulosic materials. Gamma irradiation has been studied as an effective method for the depolymerization of complex polysaccharides. In this study, the effect of gamma irradiation on saccharification of Undaria biomass for bioethanol production was investigated. The Undaria biomass was irradiated at doses of 0, 10, 50, 100, 200 and 500 kGy and then hydrolyzed using sulfuric acid. The effects of gamma irradiation were measured through microscopic analysis to determine morphological changes and concentration of the reducing sugar of hydrolysates. Microscopic images show that gamma irradiation causes structure breakage of the Undaria cell wall. The concentration of reducing sugar of hydrolysates significantly increased as a result of gamma irradiation, with or without acid hydrolysis. These results indicate that the combined method of gamma irradiation with acid hydrolysis can significantly improve the saccharification process for bioethanol production from marine algae materials.

  11. Transportation risk assessment for the shipment of irradiated FFTF tritium target assemblies from the Hanford Site to the Savannah River Site

    SciTech Connect

    Nielsen, D. L.

    1997-11-19

    A Draft Technical Information Document (HNF-1855) is being prepared to evaluate proposed interim tritium and medical isotope production at the Fast Flux Test Facility (FFTF). This report examines the potential health and safety impacts associated with transportation of irradiated tritium targets from FFTF to the Savannah River Site for processing at the Tritium Extraction Facility. Potential risks to workers and members of the public during normal transportation and accident conditions are assessed.

  12. Natural Products That Target Cancer Stem Cells.

    PubMed

    Moselhy, Jim; Srinivasan, Sowmyalakshmi; Ankem, Murali K; Damodaran, Chendil

    2015-11-01

    The cancer stem cell model suggests that tumor initiation is governed by a small subset of distinct cells with stem-like character termed cancer stem cells (CSCs). CSCs possess properties of self-renewal and intrinsic survival mechanisms that contribute to resistance of tumors to most chemotherapeutic drugs. The failure to eradicate CSCs during the course of therapy is postulated to be the driving force for tumor recurrence and metastasis. Recent studies have focused on understanding the unique phenotypic properties of CSCs from various tumor types, as well as the signaling pathways that underlie self-renewal and drug resistance. Natural products (NPs) such as those derived from botanicals and food sources may modulate vital signaling pathways involved in the maintenance of CSC phenotype. The Wingless/Integrated (WNT), Hedgehog, Notch and PI3K/AKT/mTOR pathways have all been associated with quiescence and self-renewal of CSCs, as well as execution of CSC function including differentiation, multidrug resistance and metastasis. Recent studies evaluating NPs against CSC support the epidemiological evidence linking plant-based diets with reduced malignancy rates. This review covers the key aspects of NPs as modulators of CSC fate. PMID:26503998

  13. Targeting Mycobacterial Enzymes with Natural Products.

    PubMed

    Sieniawska, Elwira

    2015-10-22

    Tuberculosis (TB) is a recurring threat to contemporary civilization. It affects not only those within developing countries, but has also appeared again in places where it was once considered eradicated. TB co-infection in patients infected by HIV is, at the time of writing, the most common cause of death. In the field of searching for new antimycobacterial drug leads, compounds of natural origin still remain a promising source. The review is intended to gather information about natural products (metabolites of plants, fungi, bacteria, and marine sponges) that show activity against mycobacterial enzymes. Here, natural metabolites are presented as being inhibitors/activators of the mycobacterial enzymes involved in mycobacterial growth in vitro (ClpC1, ClpP, MurE ligase, mycothiol S-conjugate amidase, β-ketoacyl-ACP synthase, InhA) and in vivo, as regards the host cell (PtpB). Each enzyme is briefly described so as to generate an understanding of its role in mycobacterial growth and engender a perception of the mechanism of action of the studied natural compounds. Furthermore, after the introduction of the enzyme, its inhibitors are listed and exactly characterized. PMID:26441042

  14. Ion heating dynamics in solid buried layer targets irradiated by ultra-short intense laser pulses

    SciTech Connect

    Huang, L. G.; Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden; University of Chinese Academy of Sciences, 100049 Beijing ; Bussmann, M.; Kluge, T.; Lei, A. L.; Yu, W.; Cowan, T. E.; Technische Universität Dresden, 01062 Dresden

    2013-09-15

    We investigate bulk ion heating in solid buried layer targets irradiated by ultra-short laser pulses of relativistic intensities using particle-in-cell simulations. Our study focuses on a CD{sub 2}-Al-CD{sub 2} sandwich target geometry. We find enhanced deuteron ion heating in a layer compressed by the expanding aluminium layer. A pressure gradient created at the Al-CD{sub 2} interface pushes this layer of deuteron ions towards the outer regions of the target. During its passage through the target, deuteron ions are constantly injected into this layer. Our simulations suggest that the directed collective outward motion of the layer is converted into thermal motion inside the layer, leading to deuteron temperatures higher than those found in the rest of the target. This enhanced heating can already be observed at laser pulse durations as low as 100 fs. Thus, detailed experimental surveys at repetition rates of several ten laser shots per minute are in reach at current high-power laser systems, which would allow for probing and optimizing the heating dynamics.

  15. X-ray generation in cryogenic targets irradiated by 1 {mu}m pulse laser

    SciTech Connect

    Shimoura, A.; Amano, S.; Miyamoto, S.; Mochizuki, T.

    1998-01-01

    Soft x-ray spectral radiations from Xe, H{sub 2}O, and CO{sub 2} cryogenic targets irradiated by a 1 {mu}m neodymium doped YAG-slab laser at pulse widths of 12{endash}20 ns and at laser intensities of 5{times}10{sup 10}{endash}10{sup 12}W/cm{sup 2} have been observed. These targets radiate soft x-rays in a wavelength range of 10{endash}13 nm which is useful for projection microlithography. We have found a strong x-ray spectral peak at {lambda}=10.8nm with a Xe cryogenic target. The measured x-ray conversion efficiency with the Xe target was 0.8{percent}/sr({lambda}=10.8{plus_minus}0.27nm) at a laser intensity of 1{times}10{sup 12}W/cm{sup 2}. This was ten times or more efficient than that with H{sub 2}O and CO{sub 2} targets. {copyright} {ital 1998 American Institute of Physics.}

  16. Shielding calculations for a production target for secondary beams

    SciTech Connect

    Rehm, K.E.; Back, B.B.; Jiang, C.L.

    1995-08-01

    In order to estimate the amount of shielding required for a radioactive beam facility dose rate were performed. The calculations for production targets with different geometries were performed. The calculations were performed with the MSU shielding code assuming a 500-p{mu}A 200-MeV deuteron beam stopped in a thick Al target. The target and the ion-optical elements for beam extraction are located in a 2 m{sup 3} large volume at the center of the production cell. These dose rate calculations show that with a combination of Fe and concrete it is possible to reduce the dose rate expected at the surface of a 7-m-wide cube housing the production target to less than 2 mrem/hr.

  17. Tomographic imaging of a target directly irradiated in experiments on the Iskra-5 iodine laser facility

    SciTech Connect

    Bondarenko, S V; Garanin, R V; Garanin, Sergey G; Zhidkov, N V; Oreshkov, O V; Potapov, S V; Suslov, N A; Frolova, N V

    2010-12-29

    We set forth the data of experiments involving direct microtarget irradiation by the 12 second-harmonic beams ({lambda} = 0.66 {mu}m) of iodine laser radiation carried out on the Iskra-5 facility. For microtargets we employed glass shells {approx}500 {mu}m in diameter with {approx}1-{mu}m thick walls, which were filled with a DT mixture at a pressure p{sub DT} {approx} 3-4 atm. In one of these experiments, a tomographic image of the microtarget was recorded from the images obtained using pinhole cameras, which were arranged along seven different directions. The pinhole images were acquired in the X-ray radiation with photon energies above 1.5 keV. The procedure used for reconstructing the volume luminosity of the microtarget is described. An analysis of the tomographic image suggests that the compressed microtarget domain possesses a complex asymmetric shape; 20-30 {mu}m sized structural elements being clearly visible. The resultant data set allowed us to estimate the initial nonuniformity of microtarget surface irradiation by the laser radiation. The rms nonuniformity of microtarget irradiance was estimated at {approx}60 %. (interaction of laser radiation with targets)

  18. Thermal release of volatile fission products from irradiated nuclear fuel

    SciTech Connect

    Bray, L.A.; Burger, L.L.; Morgan, L.G.; Baldwin, D.L.

    1983-06-01

    An effective procedure for removing /sup 3/H, Xe and Kr from irradiated fuels was demonstrated using Shippingport UO/sub 2/ fuel. The release characteristics of /sup 3/H, Kr, Xe, and I from irradiated nuclear fuel have been determined as a function of temperature and gaseous environment. Vacuum outgassing and a flowing gas stream have been used to vary the gaseous environment. Vacuum outgassing released about 99% of the /sup 3/H and 20% of both Kr and Xe within a 3 h at 1500/sup 0/C. Similar results were obtained using a carrier gas of He containing 6% H/sub 2/. However, a carrier gas containing only He resulted in the release of approximately 80% of the /sup 3/H and 99% of both Kr and Xe. These results indicate that the release of these volatile fission products from irradiated nuclear fuel is a function of the chemical composition of the gaseous environment. The rate of tritium release increased with increasing temperature (1100 to 1500/sup 0/C) and with the addition of hydrogen to the gas stream. Using crushed UO/sub 2/ fuel without cladding and He as the carrier gas, Kr was completely released at 1500/sup 0/C in 2.5 h. Below 1350/sup 0/C, no Kr-Xe release was observed. Approximately 86% of the /sup 129/I and 95% of the cesium was released from a piece (3.9 g) of UO/sub 2/ fuel at 1500/sup 0/C in He. The zirconium cladding was observed to fracture during heat treatment. A large-scale thermal outgassing system was conceptually designed by the General Atomic Company from an engineering analysis of available experimental data. The direct cost of a 0.5 metric/ton day thermal outgassing system is estimated to be $1,926,000 (1982 dollars), including equipment, installation, instrumentation and controls, piping, and services. The thermal outgassing process was determined to be a technically feasible and cost-competitive process to remove tritium in the head-end portion of a LWR fuel reprocessing plant. Additional laboratory-scale development has been recommended.

  19. Directed fast electron beams in ultraintense picosecond laser irradiated solid targets

    SciTech Connect

    Ge, X. L.; Lin, X. X.; Yuan, X. H. E-mail: ytli@iphy.ac.cn; Sheng, Z. M.; Carroll, D. C.; Neely, D.; Gray, R. J.; Tresca, O.; McKenna, P.; Yu, T. P.; Chen, M.; Liu, F.; Zhuo, H. B.; Zielbauer, B.; and others

    2015-08-31

    We report on fast electron transport and emission patterns from solid targets irradiated by s-polarized, relativistically intense, picosecond laser pulses. A beam of multi-MeV electrons is found to be transported along the target surface in the laser polarization direction. The spatial-intensity and energy distributions of this beam are compared with the beam produced along the laser propagation axis. It is shown that even for peak laser intensities an order of magnitude higher than the relativistic threshold, laser polarization still plays an important role in electron energy transport. Results from 3D particle-in-cell simulations confirm the findings. The characterization of directional beam emission is important for applications requiring efficient energy transfer, including secondary photon and ion source development.

  20. Abiotic production of iodine molecules in irradiated ice

    NASA Astrophysics Data System (ADS)

    Choi, Wonyong; Kim, Kitae; Yabushita, Akihiro

    2015-04-01

    Reactive halogen species play an important role in Earth's environmental systems. Iodine compounds are related to ozone depletion event (ODE) during Antarctic spring, formation of CCN (cloud condensation nuclei), and controlling the atmospheric oxidizing capacity. However, the processes and mechanisms for abiotic formation of iodine compounds in polar region are still unclear. Although the chemical reactions taking place in ice are greatly different from those in aquatic environment, reaction processes of halogens in frozen condition have rarely studied compared to those in water. In this study, we investigated iodide oxidation to form triiodide (I3-) in ice phase under UV irradiation ( λ > 300 nm) and dark condition. The production of I3- through iodide oxidation, which is negligible in aqueous solution, was significantly accelerated in ice phase even in the absence of UV irradiation. The following release of gaseous iodine molecule (I2) to the atmosphere was also monitored by cavity ring-down spectroscopy (CRDS). We speculate that the markedly enhanced iodide oxidation in polycrystalline ice is due to the freeze concentration of iodides, protons, and dissolved oxygen in the ice crystal grain boundaries. The experiments conducted under ambient solar radiation of the Antarctic region (King George Island, 62°13'S 58°47'W, sea level) also confirmed that the generation of I3- via iodide oxidation process is enhanced when iodide is trapped in ice. The observed intrinsic oxidative transformation of iodide to generate I3-(aq) and I2(g) in frozen environment suggests a previously unknown pathway for the substantial release of reactive iodine species to the atmosphere.

  1. Intensity-Modulated Radiotherapy for Craniospinal Irradiation: Target Volume Considerations, Dose Constraints, and Competing Risks

    SciTech Connect

    Parker, William Filion, Edith; Roberge, David; Freeman, Carolyn R.

    2007-09-01

    Purpose: To report the results of an analysis of dose received to tissues and organs outside the target volume, in the setting of spinal axis irradiation for the treatment of medulloblastoma, using three treatment techniques. Methods and Materials: Treatment plans (total dose, 23.4 Gy) for a standard two-dimensional (2D) technique, a three-dimensional (3D) technique using a 3D imaging-based target volume, and an intensity-modulated radiotherapy (IMRT) technique, were compared for 3 patients in terms of dose-volume statistics for target coverage, as well as organ at risk (OAR) and overall tissue sparing. Results: Planning target volume coverage and dose homogeneity was superior for the IMRT plans for V{sub 95%} (IMRT, 100%; 3D, 96%; 2D, 98%) and V{sub 107%} (IMRT, 3%; 3D, 38%; 2D, 37%). In terms of OAR sparing, the IMRT plan was better for all organs and whole-body contour when comparing V{sub 10Gy}, V{sub 15Gy}, and V{sub 20Gy}. The 3D plan was superior for V{sub 5Gy} and below. For the heart and liver in particular, the IMRT plans provided considerable sparing in terms of V{sub 10Gy} and above. In terms of the integral dose, the IMRT plans were superior for liver (IMRT, 21.9 J; 3D, 28.6 J; 2D, 38.6 J) and heart (IMRT, 9 J; 3D, 14.1J; 2D, 19.4 J), the 3D plan for the body contour (IMRT, 349 J; 3D, 337 J; 2D, 555 J). Conclusions: Intensity-modulated radiotherapy is a valid treatment option for spinal axis irradiation. We have shown that IMRT results in sparing of organs at risk without a significant increase in integral dose.

  2. Chemical isolation of .sup.82 Sr from proton-irradiated Mo targets

    DOEpatents

    Grant, Patrick M.; Kahn, Milton; O'Brien, Jr., Harold A.

    1976-01-01

    Spallation reactions are induced in Mo targets with 200-800 MeV protons to produce microcurie to millicurie amounts of a variety of radionuclides. A six-step radiochemical procedure, incorporating precipitation, solvent extractions, and ion exchange techniques, has been developed for the separation and purification of Sr radioactivities from other spallation products and the bulk target material. Radiostrontium can be quantitatively recovered in a sufficiently decontaminated state for use in biomedical generator development.

  3. A target station for plasma exposure of neutron irradiated fusion material samples to reactor relevant conditions

    NASA Astrophysics Data System (ADS)

    Rapp, Juergen; Giuliano, Dominic; Ellis, Ronald; Howard, Richard; Lore, Jeremy; Lumsdaine, Arnold; Lessard, Timothy; McGinnis, William; Meitner, Steven; Owen, Larry; Varma, Venugopal

    2015-11-01

    The Material Plasma Exposure eXperiment (MPEX) is a device planned to address scientific and technological gaps for the development of viable plasma facing components for fusion reactor conditions (FNSF, DEMO). It will have to address the relevant plasma conditions in a reactor divertor (electron density, electron temperature, ion fluxes) and it needs to be able to expose a-priori neutron irradiated samples. A pre design of a target station able to handle activated materials will be presented. This includes detailed MCNP as well as SCALE and MAVRIC calculations for all potential plasma-facing materials to estimate dose rates. Details on the remote handling schemes for the material samples will be presented. 2 point modeling of the linear plasma transport has been used to scope out the parameter range of the anticipated power fluxes to the target. This has been used to design the cooling capability of the target. The operational conditions of surface temperatures, plasma conditions, and oblique angle of incidence of magnetic field to target surface will be discussed. ORNL is managed by UT-Battelle, LLC, for the U.S. DOE under contract DE-AC-05-00OR22725.

  4. Generation and Transport of Fast Electrons in Laser Irradiated Targets at Relativistic Intensities

    NASA Astrophysics Data System (ADS)

    Amiranoff, F.; Baton, S. D.; Gremillet, L.; Guilbaud, O.; Koenig, M.; Martinolli, E.; Santos, J. J.; Le Gloahec, M. Rabec; Rousseaux, C.; Hall, T.

    2002-10-01

    The transport of relativistic electrons in solid targets irradiated by a short laser pulse at relativistic intensities has been studied both experimentally and numerically. A Monte-Carlo collision code takes into account individual collisions with the ions and electrons in the target. A 3D-hybrid code takes into account these collisions as well as the generation of electric and magnetic fields and the self-consistent motion of the electrons in these fields. It predicts a magnetic guiding of a fraction of the fast electron current over long distances and a localized heating of the material along the propagation axis. In experiments performed at LULI on the 100 TW laser facility, several diagnostics have been implemented to diagnose the geometry of the fast electron transport and the target heating. The typical conditions were: E1 less-than-or-equal 20 J, lambda = 1 mum, tau approximately 300 fs, I approximately 1018-5.1019W/cm2. The results indicate a modest heating of the target (typically 20-40 eV over 20 mum to 50 mum), consistent with an acceleration of the electrons inside a wide aperture cone along the laser axis.

  5. Production of a thin diamond target by laser for HESR at FAIR

    NASA Astrophysics Data System (ADS)

    Balestra, F.; Ferrero, S.; Introzzi, R.; Pirri, F.; Scaltrito, L.; Younis, H.

    2016-04-01

    In the future hadron facility FAIR, the HESR ring will supply antiprotons in the momentum range 1.5-15 GeV/c as projectiles to study charm, strangeness and a wide range of other Physics topics. For all these reactions it will be necessary to use internal targets and in particular, for the production of systems with double strangeness, a solid 12C target will be used. Inserting a solid target inside an antiproton ring creates two main problems: a large background on the detectors due to the overwhelming amount of annihilations and a strong depletion of the beam due to all the hadronic and Coulomb interactions of the antiprotons with the 12C nuclei. The width of the target plays a crucial role in minimizing these unwanted effects. Two wire-shaped prototypes have been already realized, starting from a thin diamond disk. The wire shape has been obtained by using a femto-edge laser. One prototype has been submitted to irradiation by protons of 1.5 MeV and to simultaneous Back-Scattering control to test the impurity level, the 12C density, the radiation hardness and possible phase modifications during irradiation. Both the prototypes have been submitted to Micro-Raman spectroscopy in order to scan the carbon phases along the width. The results show performances which satisfy the experimental requirements.

  6. A CUPRONICKEL ROTATING BAND PION PRODUCTION TARGET FOR MUON COLLIDERS.

    SciTech Connect

    KING,B.J.; WEGGEL,R.J.; MOKHOV,N.V.; MOSER,S.S.

    1999-03-29

    A conceptual design is presented for a high power cupronickel pion production target. It forms a circular band in a horizontal plane with approximate dimensions of: 2.5 meters radius, 6 cm high and 0.6 cm thick. The target is continuously rotated at 3 m/s to carry heat away from the production region to a water cooling channel. Bunches of 16 GeV protons with total energies of 270 kl and repetition rates of 15 Hz are incident tangentially to arc of the target along the symmetry axis of a 20 Tesla solenoidal magnetic capture channel. The mechanical layout and cooling setup are described. Results are presented from realistic MARS Monte Carlo computer simulations of the pion yield and energy deposition in the target. ANSYS finite element calculations are beginning to give predictions for the resultant shock heating stresses.

  7. Batch Production of Micron-scale Backlighter Targets

    NASA Astrophysics Data System (ADS)

    Arthur, G.

    2016-04-01

    The fabrication of micron-scale backlighter targets is described. Traditionally laser targets have been fabricated using conventional machining or coarse etching processes and have been produced in quantities of 10s to low 100s. The processes described herein allow batch production with numbers in the 1000s. In addition, the Micro-Electro-Mechanical System (MEMS) fabrication techniques used allow much finer tolerances and more accurate placement of the various components relative to each other.

  8. Cyclotron production of ⁹⁹mTc: recycling of enriched ¹⁰⁰Mo metal targets.

    PubMed

    Gagnon, K; Wilson, J S; Holt, C M B; Abrams, D N; McEwan, A J B; Mitlin, D; McQuarrie, S A

    2012-08-01

    There is growing interest in the large scale cyclotron production of (99m)Tc via the (100)Mo(p,2n)(99m)Tc reaction. While the use and recycling of cyclotron-irradiated enriched molybdenum targets has been reported previously in the context of (94m)Tc production, to the best of our knowledge, previous recycling studies have been limited to the use of oxide targets. To facilitate reuse of high-power enriched (100)Mo targets, this work presents and evaluates a strategy for recycling of enriched metallic molybdenum. For the irradiated (100)Mo targets in this study, an overall metal to metal recovery of 87% is reported. Evaluation of "new" and "recycled" (100)Mo revealed no changes in the molybdenum isotopic composition (as measured via ICP-MS). For similar irradiation conditions of "new" and "recycled" (100)Mo, (i.e. target thicknesses, irradiation time, and energy), comparable levels of (94g)Tc, (95g)Tc, and (96g)Tc contaminants were observed. Comparable QC specifications (i.e. aluminum ion concentration, pH, and radiochemical purity) were also reported. We finally note that [(99m)Tc]-MDP images obtained by comparing MDP labelled with generator-based (99m)Tc vs. (99m)Tc obtained following the irradiation of recycled (100)Mo demonstrated comparable biodistribution. With the goal of producing large quantities of (99m)Tc, the proposed methodology demonstrates that efficient recycling of enriched metallic (100)Mo targets is feasible and effective. PMID:22750197

  9. Radioxenon production through neutron irradiation of stable xenon gas

    SciTech Connect

    Haas, Derek A.; Biegalski, Steven R.; Foltz Biegalski, Kendra M.

    2009-12-01

    The Spectral Deconvolution Analysis Tool (SDAT) software was developed to improve counting statistics and detection limits for nuclear explosion radionuclide measurements. SDAT utilizes spectral deconvolution spectroscopy techniques and can analyze both β-γ coincidence spectra for radioxenon isotopes and high-resolution HPGe spectra from aerosol monitors. The deconvolution algorithm of the SDAT requires a library of β-γ coincidence spectra of individual radioxenon isotopes to determine isotopic ratios in a sample. In order to get experimentally produced spectra of the individual isotopes we have irradiated enriched samples of 130Xe, 132Xe, and 134Xe gas with a neutron beam from the TRIGA reactor at The University of Texas. The samples produced were counted in an Automated Radioxenon Sampler/Analyzer (ARSA) style β-γ coincidence detector. The spectra produced show that this method of radioxenon production yields samples with very high purity of the individual isotopes for 131mXe and 135Xe and a sample with a substantial 133mXe to 133Xe ratio.

  10. PROCESS FOR CONTINUOUSLY SEPARATING IRRADIATION PRODUCTS OF THORIUM

    DOEpatents

    Hatch, L.P.; Miles, F.T.; Sheehan, T.V.; Wiswall, R.H.; Heus, R.J.

    1959-07-01

    A method is presented for separating uranium-233 and protactinium from thorium-232 containing compositions which comprises irradiating finely divided particles of said thorium with a neutron flux to form uranium-233 and protactinium, heating the neutron-irradiated composition in a fluorine and hydrogen atmosphere to form volatile fluorides of uranium and protactinium and thereafter separating said volatile fluorides from the thorium.

  11. The RIB production target for the SPES project

    NASA Astrophysics Data System (ADS)

    Monetti, Alberto; Andrighetto, Alberto; Petrovich, Carlo; Manzolaro, Mattia; Corradetti, Stefano; Scarpa, Daniele; Rossetto, Francesco; Martinez Dominguez, Fernando; Vasquez, Jesus; Rossignoli, Massimo; Calderolla, Michele; Silingardi, Roberto; Mozzi, Aldo; Borgna, Francesca; Vivian, Gianluca; Boratto, Enrico; Ballan, Michele; Prete, Gianfranco; Meneghetti, Giovanni

    2015-10-01

    Facilities making use of the Isotope Separator On-Line (ISOL) method for the production of Radioactive Ion Beams (RIB) attract interest because they can be used for nuclear structure and reaction studies, astrophysics research and interdisciplinary applications. The ISOL technique is based on the fast release of the nuclear reaction products from the chosen target material together with their ionization into short-lived nuclei beams. Within this context, the SPES (Selective Production of Exotic Species) facility is now under construction in Italy at INFN-LNL (Istituto Nazionale di Fisica Nucleare — Laboratori Nazionali di Legnaro). The SPES facility will produce RIBs mainly from n-rich isotopes obtained by a 40 MeV cyclotron proton beam (200 μA) directly impinging on a uranium carbide multi-foil fission target. The aim of this work is to describe and update, from a comprehensive point of view, the most important results obtained by the analysis of the on-line behavior of the SPES production target assembly. In particular an improved target configuration has been studied by comparing different codes and physics models: the thermal analyses and the isotope production are re-evaluated. Then some consequent radioprotection aspects, which are essential for the installation and operation of the facility, are presented.

  12. Explosive Boiling In Carbon Target Irradiated By Third Harmonic Of Nd :YAG Laser

    SciTech Connect

    Yahiaoui, K.; Kerdja, T.; Malek, S.

    2008-09-23

    In order to identify the physical phenomena responsible to the formation of droplets onto thin films grown during laser ablation, and to correlate between the appearance of those droplets versus the laser flux, we have measured the amount of ejected matter for carbon target irradiated by a third harmonic of Nd:YAG laser by changing laser flux. The measurement was achieved by a quartz microbalance placed in front of the target. The obtained results show at first a linear increase of the ejected material followed by a saturation behavior, and then an abrupt increase of the ablated mass beyond a laser Intensity of 3,64x10{sup 10} W/cm{sup 2}. This increasing is assigned to the homogeneous nucleation of bubbles in a layer of the molten material, also called phase explosion, the surface temperature of the target will approaches the critical thermodynamic temperature (T{sub tc}). We have also measured time-of-flight (TOF) distributions of positives ions of carbons in the plasma using a charge collector. The TOF signals have been fitted with a shifted Maxwellian distribution function. This has allowed us to estimate the critical temperature T{sub tc} of the material.

  13. High levels of reactive oxygen species in gold nanoparticle-targeted cancer cells following femtosecond pulse irradiation

    NASA Astrophysics Data System (ADS)

    Minai, Limor; Yeheskely-Hayon, Daniella; Yelin, Dvir

    2013-07-01

    Cancer cells could be locally damaged using specifically targeted gold nanoparticles and laser pulse irradiation, while maintaining minimum damage to nearby, particle-free tissue. Here, we show that in addition to the immediate photothermal cell damage, high concentrations of reactive oxygen species (ROS) are formed within the irradiated cells. Burkitt lymphoma B cells and epithelial breast cancer cells were targeted by antibody-coated gold nanospheres and irradiated by a few resonant femtosecond pulses, resulting in significant elevation of intracellular ROS which was characterized and quantified using time-lapse microscopy of different fluorescent markers. The results suggest that techniques that involve targeting of various malignancies using gold nanoparticles and ultrashort pulses may be more effective and versatile than previously anticipated, allowing diverse, highly specific set of tools for local cancer therapy.

  14. High levels of reactive oxygen species in gold nanoparticle-targeted cancer cells following femtosecond pulse irradiation.

    PubMed

    Minai, Limor; Yeheskely-Hayon, Daniella; Yelin, Dvir

    2013-01-01

    Cancer cells could be locally damaged using specifically targeted gold nanoparticles and laser pulse irradiation, while maintaining minimum damage to nearby, particle-free tissue. Here, we show that in addition to the immediate photothermal cell damage, high concentrations of reactive oxygen species (ROS) are formed within the irradiated cells. Burkitt lymphoma B cells and epithelial breast cancer cells were targeted by antibody-coated gold nanospheres and irradiated by a few resonant femtosecond pulses, resulting in significant elevation of intracellular ROS which was characterized and quantified using time-lapse microscopy of different fluorescent markers. The results suggest that techniques that involve targeting of various malignancies using gold nanoparticles and ultrashort pulses may be more effective and versatile than previously anticipated, allowing diverse, highly specific set of tools for local cancer therapy. PMID:23828378

  15. Laser irradiation of disk targets at 0. 53. mu. m wavelength

    SciTech Connect

    Mead, W.C.; Campbell, E.M.; Estabrook, K.G.

    1981-01-26

    We present results and analysis for laser-irradiations of Be, CH, Ti, and Au disk targets with 0.53 ..mu..m light in 3 to 35 J, 600 ps pulses, at nominal intensities from 3 x 10/sup 13/ to approx. 4 x 10/sup 15/ W/cm/sup 2/. The measured absorptions are higher than observed in similar 1.06 ..mu..m irradiations, and are largely consistent with modeling which shows the importance of inverse bremsstrahlung and Brillouin scattering. Observed red-shifted back-reflected light shows that Brillouin is operating at low to moderate levels. The measured fluxes of multi-keV x-rays indicate low hot-electron fractions, with temperatures which are consistent with resonance absorption. Measurements show efficient conversion of absorbed light into sub-keV x-rays, with time-, angular-, and spatial-emission distributions which are generally consistent with non-LTE modeling using inhibited thermal electron transport.

  16. Measurements of the divergence of fast electrons in laser-irradiated spherical targets

    SciTech Connect

    Yaakobi, B.; Solodov, A. A.; Myatt, J. F.; Delettrez, J. A.; Stoeckl, C.; Froula, D. H.

    2013-09-15

    In recent experiments using directly driven spherical targets on the OMEGA laser system, the energy in fast electrons was found to reach ∼1% of the laser energy at an irradiance of ∼1.1 × 10{sup 15} W/cm{sup 2}. The fraction of these fast electrons absorbed in the compressed fuel shell depends on their angular divergence. This paper describes measurements of this divergence deduced from a series of shots where Mo-coated shells of increasing diameter (D) were suspended within an outer CH shell. The intensity of the Mo–Kα line and the hard x-ray radiation were found to increase approximately as ∼D{sup 2}, indicating wide divergence of the fast electrons. Alternative interpretations of these results (electron scattering, radiation excitation of Kα, and an electric field due to return current) are shown to be unimportant.

  17. Systems and methods for managing shared-path instrumentation and irradiation targets in a nuclear reactor

    DOEpatents

    Heinold, Mark R.; Berger, John F.; Loper, Milton H.; Runkle, Gary A.

    2015-12-29

    Systems and methods permit discriminate access to nuclear reactors. Systems provide penetration pathways to irradiation target loading and offloading systems, instrumentation systems, and other external systems at desired times, while limiting such access during undesired times. Systems use selection mechanisms that can be strategically positioned for space sharing to connect only desired systems to a reactor. Selection mechanisms include distinct paths, forks, diverters, turntables, and other types of selectors. Management methods with such systems permits use of the nuclear reactor and penetration pathways between different systems and functions, simultaneously and at only distinct desired times. Existing TIP drives and other known instrumentation and plant systems are useable with access management systems and methods, which can be used in any nuclear plant with access restrictions.

  18. Present status of the liquid lithium target facility in the international fusion materials irradiation facility (IFMIF)

    NASA Astrophysics Data System (ADS)

    Nakamura, Hiroo; Riccardi, B.; Loginov, N.; Ara, K.; Burgazzi, L.; Cevolani, S.; Dell'Orco, G.; Fazio, C.; Giusti, D.; Horiike, H.; Ida, M.; Ise, H.; Kakui, H.; Matsui, H.; Micciche, G.; Muroga, T.; Nakamura, Hideo; Shimizu, K.; Sugimoto, M.; Suzuki, A.; Takeuchi, H.; Tanaka, S.; Yoneoka, T.

    2004-08-01

    During the three year key element technology phase of the International Fusion Materials Irradiation Facility (IFMIF) project, completed at the end of 2002, key technologies have been validated. In this paper, these results are summarized. A water jet experiment simulating Li flow validated stable flow up to 20 m/s with a double reducer nozzle. In addition, a small Li loop experiment validated stable Li flow up to 14 m/s. To control the nitrogen content in Li below 10 wppm will require surface area of a V-Ti alloy getter of 135 m 2. Conceptual designs of diagnostics have been carried out. Moreover, the concept of a remote handling system to replace the back wall based on `cut and reweld' and `bayonet' options has been established. Analysis by FMEA showed safe operation of the target system. Recent activities in the transition phase, started in 2003, and plan for the next phase are also described.

  19. Systems and methods for retaining and removing irradiation targets in a nuclear reactor

    SciTech Connect

    Runkle, Gary A.; Matsumoto, Jack T.; Dayal, Yogeshwar; Heinold, Mark R.

    2015-12-08

    A retainer is placed on a conduit to control movement of objects within the conduit in access-restricted areas. Retainers can prevent or allow movement in the conduit in a discriminatory fashion. A fork with variable-spacing between prongs can be a retainer and be extended or collapsed with respect to the conduit to change the size of the conduit. Different objects of different sizes may thus react to the fork differently, some passing and some being blocked. Retainers can be installed in inaccessible areas and allow selective movement in remote portions of conduit where users cannot directly interface, including below nuclear reactors. Position detectors can monitor the movement of objects through the conduit remotely as well, permitting engagement of a desired level of restriction and object movement. Retainers are useable in a variety of nuclear power plants and with irradiation target delivery, harvesting, driving, and other remote handling or robotic systems.

  20. Progress report on the accelerator production of tritium materials irradiation program

    SciTech Connect

    Maloy, S.A.; Sommer, W.F.; Brown, R.D.; Roberts, J.E.

    1997-05-01

    The Accelerator Production of Tritium (APT) project is developing an accelerator and a spoliation neutron source capable of producing tritium through neutron capture on He-3. A high atomic weight target is used to produce neutrons that are then multiplied and moderated in a blanket prior to capture. Materials used in the target and blanket region of an APT facility will be subjected to several different and mixed particle radiation environments; high energy protons (1-2 GeV), protons in the 20 MeV range, high energy neutrons, and low energy neutrons, depending on position in the target and blanket. Flux levels exceed 10{sup 14}/cm{sup 2}s in some areas. The APT project is sponsoring an irradiation damage effects program that will generate the first data-base for materials exposed to high energy particles typical of spallation neutron sources. The program includes a number of candidate materials in small specimen and model component form and uses the Los Alamos Spallation Radiation Effects Facility (LASREF) at the 800 MeV, Los Alamos Neutron Science Center (LANSCE) accelerator.

  1. High-flux low-divergence positron beam generation from ultra-intense laser irradiated a tapered hollow target

    SciTech Connect

    Liu, Jian-Xun; Ma, Yan-Yun; Zhao, Jun; Yu, Tong-Pu Yang, Xiao-Hu; Gan, Long-Fei; Zhang, Guo-Bo; Yan, Jian-Feng; Zhuo, Hong-Bin; Liu, Jin-Jin; Zhao, Yuan; Kawata, Shigeo

    2015-10-15

    By using two-dimensional particle-in-cell simulations, we demonstrate high-flux dense positrons generation by irradiating an ultra-intense laser pulse onto a tapered hollow target. By using a laser with an intensity of 4 × 10{sup 23 }W/cm{sup 2}, it is shown that the Breit-Wheeler process dominates the positron production during the laser-target interaction and a positron beam with a total number >10{sup 15} is obtained, which is increased by five orders of magnitude than in the previous work at the same laser intensity. Due to the focusing effect of the transverse electric fields formed in the hollow cone wall, the divergence angle of the positron beam effectively decreases to ∼15° with an effective temperature of ∼674 MeV. When the laser intensity is doubled, both the positron flux (>10{sup 16}) and temperature (963 MeV) increase, while the divergence angle gets smaller (∼13°). The obtained high-flux low-divergence positron beam may have diverse applications in science, medicine, and engineering.

  2. High-flux low-divergence positron beam generation from ultra-intense laser irradiated a tapered hollow target

    NASA Astrophysics Data System (ADS)

    Liu, Jian-Xun; Ma, Yan-Yun; Zhao, Jun; Yu, Tong-Pu; Yang, Xiao-Hu; Gan, Long-Fei; Zhang, Guo-Bo; Yan, Jian-Feng; Zhuo, Hong-Bin; Liu, Jin-Jin; Zhao, Yuan; Kawata, Shigeo

    2015-10-01

    By using two-dimensional particle-in-cell simulations, we demonstrate high-flux dense positrons generation by irradiating an ultra-intense laser pulse onto a tapered hollow target. By using a laser with an intensity of 4 × 1023 W/cm2, it is shown that the Breit-Wheeler process dominates the positron production during the laser-target interaction and a positron beam with a total number >1015 is obtained, which is increased by five orders of magnitude than in the previous work at the same laser intensity. Due to the focusing effect of the transverse electric fields formed in the hollow cone wall, the divergence angle of the positron beam effectively decreases to ˜15° with an effective temperature of ˜674 MeV. When the laser intensity is doubled, both the positron flux (>1016) and temperature (963 MeV) increase, while the divergence angle gets smaller (˜13°). The obtained high-flux low-divergence positron beam may have diverse applications in science, medicine, and engineering.

  3. Heavy flavor production in fixed-target experiments

    SciTech Connect

    Appel, J.A.

    1990-09-01

    This presentation is a review of recent measurements on charm production at fixed-target experiments. The measurements are relevant to a number of basic physics issues: tests of perturbative QCD, fragmentation, and basic hadronic structure. We now have high quality, high statistics data from several fixed-target experiments. These include a total of about 30,000 fully reconstructed open charm decays and even more copious J/{Psi}, {Psi}, and {Upsilon} decays. Reconstruction of the full data is now reaching completion and we await final results for systematic physics interpretations. This review of the current situation will be followed by a brief look beyond, toward beauty production at fixed-target experiments.

  4. Eliciting Production of L2 Target Structures through Priming Activities

    ERIC Educational Resources Information Center

    McDonough, Kim; Trofimovich, Pavel; Neumann, Heike

    2015-01-01

    This study focuses on the pedagogical applications of structural priming research in an English for academic purposes (EAP) context, investigating whether priming activities are an effective tool for eliciting production of target grammatical structures. University students across four EAP classes carried out a total of 6 information-exchange…

  5. The thermal-mechanical analysis of targets for the high volume production of molybdenum-99 using a low-enriched uranium metal foil

    NASA Astrophysics Data System (ADS)

    Turner, Kyler Kriens

    Molybdenum-99 diagnostic imaging is the most commonly practiced procedure in nuclear medicine today with the majority molybdenum-99 produced with proliferation sensitive HEU. International and domestic efforts to develop non-HEU production techniques have taking the first steps toward establishing a new non-HEU molybdenum-99 based supply chain. The focus of the research presented in this work is on the analysis of a new high U-235 density LEU based molybdenum-99 production target. Converting directly to LEU using current manufacturing techniques greatly reduces the molybdenum-99 yield per target making high volume production uneconomical. The LEU based foil target analyzed in this research increases the yield per target making economic high volume production with LEU possible. The research analyzed the thermal-mechanical response of an LEU foil target during irradiation. Thermal-mechanical studies focused on deflections and stresses to assess the probability of target failure. Simpler analytical models were used to determine the proper shape of the target and to benchmark the numerical modeling software. Numerical studies using Abaqus focused on analyzing various heating and cooling conditions and assessing the effects of curvature on the target. Finally, experiments were performed to simulate low power heating and further benchmark the models. The results from all of these analyses indicate a LEU foil target could survive irradiation depending on the conditions seen during irradiation.

  6. Targeting Pro-Apoptotic TRAIL Receptors Sensitizes HeLa Cervical Cancer Cells to Irradiation-Induced Apoptosis

    SciTech Connect

    Maduro, John H.; Vries, Elisabeth de; Meersma, Gert-Jan; Hougardy, Brigitte; Zee, Ate G.J. van der; Jong, Steven de

    2008-10-01

    Purpose: To investigate the potential of irradiation in combination with drugs targeting the tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) death receptor (DR)4 and DR5 and their mechanism of action in a cervical cancer cell line. Methods and Materials: Recombinant human TRAIL (rhTRAIL) and the agonistic antibodies against DR4 and DR5 were added to irradiated HeLa cells. The effect was evaluated with apoptosis and cytotoxicity assays and at the protein level. Membrane receptor expression was measured with flow cytometry. Small-interfering RNA against p53, DR4, and DR5 was used to investigate their function on the combined effect. Results: rhTRAIL and the agonistic DR4 and DR5 antibodies strongly enhanced 10-Gy-induced apoptosis. This extra effect was 22%, 23%, and 29% for rhTRAIL, DR4, and DR5, respectively. Irradiation increased p53 expression and increased the membrane expression of DR5 and DR4. p53 suppression, as well as small-interfering RNA against DR5, resulted in a significant downregulation of DR5 membrane expression but did not affect apoptosis induced by irradiation and rhTRAIL. After small-interfering RNA against DR4, rhTRAIL-induced apoptosis and the additive effect of irradiation on rhTRAIL-induced apoptosis were abrogated, implicating an important role for DR4 in apoptosis induced through irradiation in combination with rhTRAIL. Conclusion: Irradiation-induced apoptosis is strongly enhanced by targeting the pro-apoptotic TRAIL receptors DR4 or DR5. Irradiation results in a p53-dependent increase in DR5 membrane expression. The sensitizing effect of rhTRAIL on irradiation in the HeLa cell line is, however especially mediated through the DR4 receptor.

  7. Impact of irradiation on the safety and quality of poultry and meat products: a review.

    PubMed

    O'Bryan, Corliss A; Crandall, Philip G; Ricke, Steven C; Olson, Dennis G

    2008-05-01

    For more than 100 years research on food irradiation has demonstrated that radiation will make food safer and improve the shelf life of irradiated foods. Using the current food safety technology, we may have reached the point of diminishing returns even though recent figures from the CDC show a significant drop in the number of foodborne illnesses. However, too many people continue to get sick and die from eating contaminated food. New and under utilized technologies such as food irradiation need to be re-examined to achieve new levels of safety for the food supply. Effects of irradiation on the safety and quality of meat and poultry are discussed. Irradiation control of the principle microbial pathogens including viruses, the differences among at-risk sub-populations, factors affecting the diminished rate of improvement in food safety and published D values for irradiating raw meat and poultry are presented. Currently permitted levels of irradiation are probably not sufficient to control pathogenic viruses. Typical gram-negative spoilage organisms are very sensitive to irradiation. Their destruction leads to a significant increase in the acceptable shelf life. In addition, the destruction of these normal spoilage organisms did not provide a competitive growth advantage for irradiation injured food pathogens. Another of the main focuses of this review is a detailed compilation of the effects of most of the food additives that have been proposed to minimize the negative quality effect of irradiation. Most of the antimicrobials and antioxidants used singly or in combination produced an increased lethality of irradiation and a decrease in oxidation by-products. Combinations of dosage, temperature, dietary and direct additives, storage temperature and packaging atmosphere can produce meats that the average consumer will find indistinguishable from non-irradiated meats. A discussion of the production of unique radiological by-products is also included. PMID:18464033

  8. Heavy flavor production at fixed target and collider energies

    SciTech Connect

    Berger, E.L.

    1988-10-13

    A review is presented of heavy quark production in /bar p/p, p, and pp interactions at fixed target and collider energies. Calculations of total cross sections are described including contributions through next-to-leading order in QCD perturbation theory. Comparisons with available data on charm and bottom quark production show good agreement for reasonable values of charm and bottom quark masses and other parameters. Open issues in the interpretation of results are summarized. A discussion is presented of signatures, backgrounds, and expected event rates for top quark production. 19 refs., 4 figs.

  9. Solar Irradiance Data Products at the LASP Interactive Solar IRradiance Datacenter (LISIRD)

    NASA Astrophysics Data System (ADS)

    Ware Dewolfe, A.; Wilson, A.; Lindholm, D. M.; Pankratz, C. K.; Snow, M. A.; Woods, T. N.

    2010-12-01

    The Laboratory for Atmospheric and Space Physics (LASP) has developed the LASP Interactive Solar IRradiance Datacenter (LISIRD) to provide access to a comprehensive set of solar irradiance measurements. LISIRD has recently been updated to serve many new datasets and models, including data from SORCE, UARS-SOLSTICE, SME, and TIMED-SEE, and model data from the Flare Irradiance Spectral Model (FISM). The user interface emphasizes web-based interactive visualizations, allowing users to explore and compare this data before downloading it for analysis. The data provided covers a wavelength range from soft X-ray (XUV) at 0.1 nm up to the near infrared (NIR) at 2400 nm, as well as wavelength-independent Total Solar Irradiance (TSI). Combined data from the SORCE, TIMED-SEE, UARS-SOLSTICE, and SME instruments provide continuous coverage from 1981 to the present, while Lyman-alpha measurements, FISM daily data, and TSI models date from the 1940s to the present. LISIRD will also host Glory TSI data as part of the SORCE data system. This poster provides an overview of the LISIRD system, summarizes the data sets currently available, describes future plans and capabilities, and provides details on how to access solar irradiance data through LISIRD’s interfaces.

  10. Industrial production of 131I by neutron irradiation and melting of sintered TeO2

    NASA Astrophysics Data System (ADS)

    Alanis, Jose; Navarrete, Manuel

    2001-07-01

    Optimal conditions of temperature and reaction rate have been settled to produce high purity TeO2 by the chemical reaction between Te and HNO3. Also, heating and time conditions for sintering this product have been found, in order to create cavities in the crystal inside, where a gaseous element such as iodine can be adsorbed with minimal leaking. In this way it is fabricated a suitable target to be irradiated with thermal neutrons for obtaining 131Te(t1/2=24.8 m) and 131mTe(t1/2=30 h) by (n, γ) nuclear reactions. Irradiation time has been chosen to get 131Te saturation activity (ti=150 m) because much longer irradiation times do not increase significantly total activity. Since parents 131Te and 131mTe have shorter half life than daughter 131I(t1/2=8.05 d) optimal cooling time must permit daughter activity to grow up till a maximum (tc=4d). Then, sintered cylinder shaped radioactive sample is manipulated in a hot cell, transported and put on a quartz tray, keeping Health Physics regulations. The quartz tray is inside a small electric oven enclosed in an airtight box with negative pressure (water 0.5 cm). There, it is gradually heated till melting point (733 °C). From 400 °C on, vapors are pumped out and bubbled in two solutions: one is 0.1 M NaOH, which retains nearly 99.9% of pumped 131I. Other is 0.02 M Na2CO3 (60%) plus 0.0025 M NaHCO3 (40%), which retains the remaining sample residue. Air filtering is accomplished by activated carbon and alumina filters in the inflow, glass wool fiber before bubbling, and activated carbon again in the outflow.

  11. Characterization of MeV proton acceleration from double pulse irradiation of foil targets

    NASA Astrophysics Data System (ADS)

    Kerr, S.; Mo, M. Z.; Masud, R.; Tiedje, H. F.; Tsui, Y.; Fedosejevs, R.; Link, A.; Patel, P.; McLean, H. S.; Hazi, A.; Chen, H.; Ceurvorst, L.; Norreys, P.

    2014-10-01

    We report on the experimental characterization of proton acceleration from double-pulse irradiation of um-scale foil targets. Temporally separated sub-picosecond pulses have been shown to increase the conversion efficiency of laser energy to MeV protons. Here, two 700 fs, 1 ω pulses were separated by 1 to 5 ps; total beam energy was 100 J, with 5-20% of the total energy contained within the first pulse. In contrast to the ultraclean beams used in previous experiments, prepulse energies on the order of 10 mJ were present in the current experiments which appear to have a moderating effect on the enhancement. Proton beam measurements were made with radiochromic film stacks, as well as magnetic spectrometers. The effect on electron generation was measured using Kα emission from buried Cu tracer layers, while specular light diagnostics (FROG, reflection spectralon) indicated the laser coupling efficiency into the target. The results obtained will be presented and compared to PIC simulations. Work by LLNL was performed under the auspices of U.S. DOE under contract DE-AC52-07NA27344.

  12. Targeting WISP1 to sensitize esophageal squamous cell carcinoma to irradiation

    PubMed Central

    Peng, Jin; Jiang, Zhenzhen; Song, Tao; Wu, Bo; Yue, Jing; Zhou, Rongjing; Xie, Ruifei; Chen, Tian; Wu, Shixiu

    2015-01-01

    Radiotherapy is a primary treatment modality for esophageal squamous cell carcinoma (ESCC). However, most of patients benefited little from radiotherapy due to refractory radioresistance. We found that WISP1, a downstream target gene of Wnt/β-catenin pathway, was re-expressed in 67.3 % of ESCC patients as an oncofetal gene. Expression of WISP1 predicted prognosis of ESCC patients treated with radiotherapy. Overall survival in WISP1-positive patients was significantly poorer than in WISP1-negative patients. Serum concentration of WISP1 after radiotherapy reversely correlated with relapse-free survival. Gain and loss of function studies confirmed that WISP1 mediated radioresistance both in esophageal squamous cancer cells and in xenograft tumor models. Further studies revealed that WISP1 contributed to radioresistance primarily by repressing irradiation-induced DNA damage and activating PI3K kinase. LncRNA BOKAS was up-regulated following radiation and promoted WISP1 expression and resultant radioresistance. Furthermore, WISP1 facilitated its own expression in response to radiation, creating a positive feedback loop and increased radioresistance. Our study revealed WISP1 as a potential target to overcome radioresistance in ESCC.  PMID:25749038

  13. Improvement of foaming ability of egg white product by irradiation and its application

    NASA Astrophysics Data System (ADS)

    Song, Hyun-Pa; Kim, Binna; Choe, Jun-Ho; Jung, Samooel; Kim, Kyong-Su; Kim, Dong-Ho; Jo, Cheorun

    2009-03-01

    To investigate the enhancement of foaming abilities of liquid egg white (LEW) and egg white powder (EWP) by irradiation and its application for bakery product, LEW and EWP were irradiated at 0, 1, 2, and 5 kGy by Co-60 gamma ray. There was no pH change found among treatments in both LEW and EWP. The viscosity of LEW decreased significantly by irradiation ( P<0.05), whereas that of EWP was not affected by irradiation. The foaming ability of LEW and EWP was significantly increased by irradiation as a dose-dependent manner ( P<0.05). The volume and the height of angel cake baked with irradiated LEW were significantly higher than those of unirradiated control ( P<0.05). For EWP, the volume and the height of angel cake were greater at 2 kGy only than those of control. A significant decrease in hardness, chewiness, and gumminess values and an increase in Hunter L* value were observed in the angel cakes prepared from irradiated egg white products ( P<0.05). Results indicated that irradiation of egg white could offer advantages in increasing foaming ability and improving quality of final bakery products.

  14. High-intensity quasi-monochromatic x-ray irradiation from the linear plasma target

    NASA Astrophysics Data System (ADS)

    Sato, Eiichi; Suzuki, Yusaku; Hayasi, Yasuomi; Tanaka, Etsuro; Mori, Hidezo; Kawai, Toshiaki; Takayama, Kazuyoshi; Ido, Hideaki; Tamakawa, Yoshiharu

    2001-12-01

    High-intensity quasi-monochromatic x-ray irradiation from the linear plasma target is described. The plasma x-ray generator employs a high-voltage power supply, a low- impedance coaxial transmission line, a high-voltage condenser with a capacity of about 200 nF, a turbo-molecular pump, a thyristor pulse generator as a trigger device, and a new flash x-ray tube. The high-voltage main condenser is charged up to 60 kV by the power supply, and the electric charges in the condenser are discharged to the tube after triggering the cathode electrode. The flash x-rays are then produced. The x-ray tube is of a demountable triode that is connected to the turbo molecular pump with a pressure of approximately 1 mPa. As the electron flows from the cathode electrode are roughly converged to the nickel target by the electric field in the tube, the plasma x-ray source, which consists of metal ions and electrons, forms by the target evaporating. Both the tube voltage and current displayed damped oscillations, and their peak values increased according to increases in the charging voltage. In the present work, the peak tube voltage was almost equal to the initial charging voltage of the main condenser, and the peak current was about 29 kA with a charging voltage of 60 kV. When the charging voltage was increased, the linear plasma x-ray source formed, and the characteristic x-ray intensities of K-series lines increased. The quasi- monochromatic radiography was performed by a new film-less computed radiography system.

  15. Improvement of shelf stability and processing properties of meat products by gamma irradiation

    NASA Astrophysics Data System (ADS)

    Byun, Myung-Woo; Lee, Ju-Woon; Yook, Hong-Sun; Lee, Kyong-Haeng; Kim, Hee-Yun

    2002-03-01

    To evaluate the effects of gamma irradiation on the processing properties of meat products, emulsion-type sausage, beef patties and pork loin ham were manufactured. Most contaminated bacteria were killed by 3 kGy-irradiation to raw ground beef, and sausage can be manufactured with desirable flavor, a reduction of NaCl and phosphate, and extension of shelf life using gamma irradiation on the raw meat. The beef patties were manufactured with the addition of antioxidants (200 ppm), BHA, ascorbyl palmitate, α-tocopherol, or β-carotene, and gamma-irradiation. Retardation of lipid oxidation appeared at the patties with an antioxidant. A dose of 5 kGy was observed to be as effective as the use of 200 ppm NaNO 2 to provide and maintain the desired color of the product during storage. After curing, irradiation, heating and smoking could extensively prolong the shelf life of the hams.

  16. Forecasting Plant Productivity and Health Using Diffuse-to-Global Irradiance Ratios Extracted from the OMI Aerosol Product

    NASA Technical Reports Server (NTRS)

    Knowlton, Kelly; Andrews, Jane C.; Ryan, Robert E.

    2007-01-01

    Atmospheric aerosols are a major contributor to diffuse irradiance. This Candidate Solution suggests using the OMI (Ozone Monitoring Instrument) aerosol product as input into a radiative transfer model, which would calculate the ratio of diffuse to global irradiance at the Earth s surface. This ratio can significantly influence the rate of photosynthesis in plants; increasing the ratio of diffuse to global irradiance can accelerate photosynthesis, resulting in greater plant productivity. Accurate values of this ratio could be useful in predicting crop productivity, thereby improving forecasts of regional food resources. However, disagreements exist between diffuse-to-global irradiance values measured by different satellites and ground sensors. OMI, with its unique combination of spectral bands, high resolution, and daily global coverage, may be able to provide more accurate aerosol measurements than other comparable sensors.

  17. Calculations of helium production in materials irradiated at spallation neutron sources

    SciTech Connect

    Corzine, R.K.; Dudziak, D.J.; Wechsler, M.S.; Barnett, M.H.; Mansur, L.K.

    1998-09-01

    Experience with materials irradiated in fission reactor neutron environments has shown that radiation-produced helium can exacerbate the degradation of properties caused by radiation-produced defects and defect clusters. Whereas fission-reactor neutron energies extend up to {approximately}10 MeV, the neutrons and protons at spallation neutron sources reach up to 1,000 to 2,000 MeV, and He production is much greater. For example, calculations have shown for the innermost shell of the containment vessel of the spallation neutron source, under collaborative design by several national laboratories led by the Oak Ridge National Laboratory, that full-power displacement and He production rates are {approximately}20 displacements per atom (dpa)/yr and 1,000 atomic parts per million (appm) He/yr, which corresponds to 50 appm He/dpa. By contrast, materials in fission reactor cores usually experience <1 appm He/dpa. In this paper, the authors summarize methods and results for the calculation of He production cross sections appropriate to the neutron and proton energies to which target and containment materials are exposed at spallation neutron sources. The principal calculational tool is LAHET or, more broadly, the LAHET code system (LCS).

  18. Electroplated targets for production of unique PET radionuclides

    NASA Astrophysics Data System (ADS)

    Bui, V.; Sheh, Y.; Finn, R.; Francesconi, L.; Cai, S.; Schlyer, D.; Wieland, B.

    1995-12-01

    The past decade has witnessed the applications of positron emission tomography (PET) evolving from a purely research endeavor to a procedure which has specific clinical applications in the areas of cardiology, neurology and oncology. The growth of PET has been facilitated by developments in both medical instrumentation and radiopharmaceutical chemistry efforts. Included in this latter effort has been the low energy accelerator production and processing of unique PET radionuclides appropriate for the radiolabeling of biomolecules, i.e. monoclonal antibodies and peptides. The development and application of electroplated targets of antimony and copper for the production of iodine-124 and gallium-66 respectively, utilizing the Memorial Sloan-Kettering Cancer Center (MSKCC) cyclotron are examples of target design and development applicable to many medical accelerators.

  19. Electroplating targets for production of unique PET radionuclides

    SciTech Connect

    Bui, V.; Sheh, Y.; Finn, R.

    1994-12-31

    The past decade has witnessed the applications of Positron Emission Tomography (PET) evolving from a purely research endeavour to a procedure which has specific clinical applications in the areas of cardiology, neurology and oncology. The growth of PET has been facilitated by developments in medical instrumentation and radiopharmaceutical chemistry efforts. Included in this latter effort has been the low energy accelerator production and processing of unique PET radionuclides appropriate for the radiolabeling of biomolecules i.e. monoclonal antibodies and pepetides. The development and application of electroplated targets of antimony and copper for the production of iodine-124 and gallium-66 respectively, utilizing the Memorial Sloan-Kettering Cancer Center cyclotron are examples of target design and development applicable to many medical accelerators.

  20. Alternate Tritium Production Methods Using A Liquid Lithium Target

    SciTech Connect

    Wilson, J.

    2015-10-08

    For over 60 years, the Savannah River Site’s primary mission has been the production of tritium. From the beginning, the Savannah River National Laboratory (SRNL) has provided the technical foundation to ensure the successful execution of this critical defense mission. SRNL has developed most of the processes used in the tritium mission and provides the research and development necessary to supply this critical component. This project was executed by first developing reactor models that could be used as a neutron source. In parallel to this development calculations were carried out testing the feasibility of accelerator technologies that could also be used for tritium production. Targets were designed with internal moderating material and optimized target was calculated to be capable of 3000 grams using a 1400 MWt sodium fast reactor, 850 grams using a 400 MWt sodium fast reactor, and 100 grams using a 62 MWt reactor, annually.

  1. GEANT4 simulation of cyclotron radioisotope production in a solid target.

    PubMed

    Poignant, F; Penfold, S; Asp, J; Takhar, P; Jackson, P

    2016-05-01

    The use of radioisotopes in nuclear medicine is essential for diagnosing and treating cancer. The optimization of their production is a key factor in maximizing the production yield and minimizing the associated costs. An efficient approach to this problem is the use of Monte Carlo simulations prior to experimentation. By predicting isotopes yields, one can study the isotope of interest expected activity for different energy ranges. One can also study the target contamination with other radioisotopes, especially undesired radioisotopes of the wanted chemical element which are difficult to separate from the irradiated target and might result in increasing the dose when delivering the radiopharmaceutical product to the patient. The aim of this work is to build and validate a Monte Carlo simulation platform using the GEANT4 toolkit to model the solid target system of the South Australian Health and Medical Research Institute (SAHMRI) GE Healthcare PETtrace cyclotron. It includes a GEANT4 Graphical User Interface (GUI) where the user can modify simulation parameters such as the energy, shape and current of the proton beam, the target geometry and material, the foil geometry and material and the time of irradiation. The paper describes the simulation and presents a comparison of simulated and experimental/theoretical yields for various nuclear reactions on an enriched nickel 64 target using the GEANT4 physics model QGSP_BIC_AllHP, a model recently developed to evaluate with high precision the interaction of protons with energies below 200MeV available in Geant4 version 10.1. The simulation yield of the (64)Ni(p,n)(64)Cu reaction was found to be 7.67±0.074 mCi·μA(-1) for a target energy range of 9-12MeV. Szelecsenyi et al. (1993) gives a theoretical yield of 6.71mCi·μA(-1) and an experimental yield of 6.38mCi·μA(-1). The (64)Ni(p,n)(64)Cu cross section obtained with the simulation was also verified against the yield predicted from the nuclear database TENDL and

  2. Global surface solar irradiance product derived from SCIAMACHY FRESCO cloud fraction

    NASA Astrophysics Data System (ADS)

    Wang, Ping; Stammes, Piet; Müller, Richard

    The FRESCO cloud retrieval algorithm has been developed as a simple but fast and efficient algorithm for GOME and SCIAMACHY (Koelemeijer et al., 2001; Fournier et al., 2006; Wang et al., 2008). FRESCO employs the O2 A band at 760 nm to retrieve the effective cloud fraction and cloud pressure using a simple Lambertian cloud model. The effective cloud fraction is a combination of geometric cloud fraction and cloud optical thickness, which yield the same reflectance at the top of the atmosphere as the cloud in the scene. It is well-known that clouds reduce the surface solar irradiance. Therefore the all-sky irradiance can be derived from the clear-sky irradiance with a scaling factor related to the cloud index. The cloud index is very similar to the effective cloud fraction by definition. The MAGIC (Mesoscale Atmospheric Global Irradiance Code) software converts the cloud index to the surface solar irradiance using the Heliosat method (Mueller et al. 2009). The MAGIC algorithm is also used by the CM-SAF surface solar irradiance product for clear sky cases. We applied the MAGIC software to FRESCO effective cloud fraction with slight modifications. In this presentation we will show the FRESCO-SSI monthly mean product and the comparison with the BSRN global irradiance data at Cabauw, the Netherlands and surface solar irradiance measurement at Tibetan plateau in China.

  3. Gamma irradiation induced disintegration of waste activated sludge for biological hydrogen production

    NASA Astrophysics Data System (ADS)

    Yin, Yanan; Wang, Jianlong

    2016-04-01

    In this paper, gamma irradiation was applied for the disintegration and dissolution of waste activated sludge produced during the biological wastewater treatment, and the solubilized sludge was used as substrate for bio-hydrogen production. The experimental results showed that the solubilization of waste activated sludge was 53.7% at 20 kGy and pH=12, and the SCOD, polysaccharides, protein, TN and TP contents in the irradiated sludge solutions was 3789.6 mg/L, 268.3 mg/L, 1881.5 mg/L, 132.3 mg/L and 80.4 mg/L, respectively. The irradiated sludge was used for fermentative hydrogen production, and the hydrogen yield was 10.5±0.7 mL/g SCODconsumed. It can be concluded that the irradiated waste activated sludge could be used as a low-cost substrate for fermentative hydrogen production.

  4. Demonstration of a neonlike argon soft-x-ray laser with a picosecond-laser-irradiated gas puff target.

    PubMed

    Fiedorowicz, H; Bartnik, A; Dunn, J; Smith, R F; Hunter, J; Nilsen, J; Osterheld, A L; Shlyaptsev, V N

    2001-09-15

    We demonstrate a neonlike argon-ion x-ray laser, using a short-pulse laser-irradiated gas puff target. The gas puff target was formed by pulsed injection of gas from a high-pressure solenoid valve through a nozzle in the form of a narrow slit and irradiated with a combination of long, 600-ps and short, 6-ps high-power laser pulses with a total of 10 J of energy in a traveling-wave excitation scheme. Lasing was observed on the 3p (1)S(0)?3s (1)P(1) transition at 46.9 nm and the 3d (1)P(1)?3p (1)P(1) transition at 45.1 nm. A gain of 11 cm(-1) was measured on these transitions for targets up to 0.9 cm long. PMID:18049619

  5. Analyses of the plasma generated by laser irradiation on sputtered target for determination of the thickness used for plasma generation

    SciTech Connect

    Kumaki, Masafumi; Ikeda, Shunsuke; Sekine, Megumi; Munemoto, Naoya; Fuwa, Yasuhiro; Cinquegrani, David; Kanesue, Takeshi; Okamura, Masahiro; Washio, Masakazu

    2014-02-15

    In Brookhaven National Laboratory, laser ion source has been developed to provide heavy ion beams by using plasma generation with 1064 nm Nd:YAG laser irradiation onto solid targets. The laser energy is transferred to the target material and creates a crater on the surface. However, only the partial material can be turned into plasma state and the other portion is considered to be just vaporized. Since heat propagation in the target material requires more than typical laser irradiation period, which is typically several ns, only the certain depth of the layers may contribute to form the plasma. As a result, the depth is more than 500 nm because the base material Al ions were detected. On the other hand, the result of comparing each carbon thickness case suggests that the surface carbon layer is not contributed to generate plasma.

  6. SU-D-304-02: Magnetically Focused Proton Irradiation of Small Field Targets

    SciTech Connect

    McAuley, GA; Slater, JM; Slater, JD; Wroe, AJ

    2015-06-15

    Purpose: To investigate the use of magnetic focusing for small field proton irradiations. It is hypothesized that magnetic focusing will provide significant dose distribution benefits over standard collimated beams for fields less than 10 mm diameter. Methods: Magnets consisting of 24 segments of radiation hard samarium-cobalt adhered into hollow cylinders were designed and manufactured. Two focusing magnets were placed on a positioning track on our Gantry 1 treatment table. Proton beams with energies of 127 and 157 MeV, 15 and 30 mm modulation, and 8 mm initial diameters were delivered to a water tank using single-stage scattering. Depth dose distributions were measured using a PTW PR60020 diode detector and transverse profiles were measured with Gafchromic EBT3 film. Monte Carlo simulations were also performed - both for comparison with experimental data and to further explore the potential of magnetic focusing in silica. For example, beam spot areas (based on the 90% dose contour) were matched at Bragg depth between simulated 100 MeV collimated beams and simulated beams focused by two 400 T/m gradient magnets. Results: Preliminary experimental results show 23% higher peak to entrance dose ratios and flatter spread out Bragg peak plateaus for 8 mm focused beams compared with uncollimated beams. Monte Carlo simulations showed 21% larger peak to entrance ratios and a ∼9 fold more efficient dose to target delivery compared to spot-sized matched collimated beams. Our latest results will be presented. Conclusion: Our results suggest that rare earth focusing magnet assemblies could reduce skin dose and beam number while delivering dose to nominally spherical radiosurgery targets over a much shorter time compared to unfocused beams. Immediate clinical applications include those associated with proton radiosurgery and functional radiosurgery of the brain and spine, however expanded treatment sites can be also envisaged.

  7. WE-D-17A-04: Magnetically Focused Proton Irradiation of Small Volume Targets

    SciTech Connect

    McAuley, G; Slater, J; Wroe, A

    2014-06-15

    Purpose: To explore the advantages of magnetic focusing for small volume proton irradiations and the potential clinical benefits for radiosurgery targets. The primary goal is to create narrow elongated proton beams of elliptical cross section with superior dose delivery characteristics compared to current delivery modalities (eg, collimated beams). In addition, more general beam shapes are also under investigation. Methods: Two prototype magnets consisting of 24 segments of samarium-cobalt (Sm2Co17) permanent magnetic material adhered into hollow cylinders were manufactured for testing. A single focusing magnet was placed on a positioning track on our Gantry 1 treatment table and 15 mm diameter proton beams with energies and modulation relevant to clinical radiosurgery applications (127 to 186 MeV, and 0 to 30 mm modulation) were delivered to a terminal water tank. Beam dose distributions were measured using a PTW diode detector and Gafchromic EBT2 film. Longitudinal and transverse dose profiles were analyzed and compared to data from Monte Carlo simulations analogous to the experimental setup. Results: The narrow elongated focused beam spots showed high elliptical symmetry indicating high magnet quality. In addition, when compared to unfocused beams, peak-to-entrance depth dose ratios were 11 to 14% larger (depending on presence or extent of modulation), and minor axis penumbras were 11 to 20% smaller (again depending on modulation) for focused beams. These results suggest that the use of rare earth magnet assemblies is practical and could improve dose-sparing of normal tissue and organs at risk while delivering enhanced dose to small proton radiosurgery targets. Conclusion: Quadrapole rare earth magnetic assemblies are a promising and inexpensive method to counteract particle out scatter that tends to degrade the peak to entrance performance of small field proton beams. Knowledge gained from current experiments will inform the design of a prototype treatment

  8. Inhibition of gamma-irradiation induced adhesion molecules and NO production by alginate in human endothelial cells.

    PubMed

    Son, E W; Cho, C K; Rhee, D K; Pyo, S

    2001-10-01

    Inflammation is a frequent radiation-induced reaction following therapeutic irradiation. Treatment of human umbilical endothelial cells (HUVEC) with gamma-irradiation (gammaIR) induces the expression of adhesion proteins such as intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1), and E-selectin. Since the upregulation of these proteins on endothelial cell surface has been known to be associated with inflammation, interfering with the expression of adhesion molecules is an important therapeutic target. In the present study, we demonstrate that high mannuronic acid-containing alginate (HMA) inhibits gammaIR induced expression of ICAM-1, VCAM-1, and E-selectin on HUVEC in a dose dependent manner. HMA also inhibited gammaIR induced production of Nitric oxide (NO). These data suggest that HMA has therapeutic potential for the treatment of various inflammatory disorder associated with an increase of endothelial leukocyte adhesion molecules. PMID:11693551

  9. Sensing device and method for measuring emission time delay during irradiation of targeted samples utilizing variable phase tracking

    NASA Technical Reports Server (NTRS)

    Danielson, J. D. Sheldon (Inventor)

    2006-01-01

    An apparatus for measuring emission time delay during irradiation of targeted samples by utilizing digital signal processing to determine the emission phase shift caused by the sample is disclosed. The apparatus includes a source of electromagnetic radiation adapted to irradiate a target sample. A mechanism generates first and second digital input signals of known frequencies with a known phase relationship, and a device then converts the first and second digital input signals to analog sinusoidal signals. An element is provided to direct the first input signal to the electromagnetic radiation source to modulate the source by the frequency thereof to irradiate the target sample and generate a target sample emission. A device detects the target sample emission and produces a corresponding first output signal having a phase shift relative to the phase of the first input signal, the phase shift being caused by the irradiation time delay in the sample. A member produces a known phase shift in the second input signal to create a second output signal. A mechanism is then provided for converting each of the first and second analog output signals to digital signals. A mixer receives the first and second digital output signals and compares the signal phase relationship therebetween to produce a signal indicative of the change in phase relationship between the first and second output signals caused by the target sample emission. Finally, a feedback arrangement alters the phase of the second input signal based on the mixer signal to ultimately place the first and second output signals in quadrature. Mechanisms for enhancing this phase comparison and adjustment technique are also disclosed.

  10. Mechanism Targeted Discovery of Antitumor Marine Natural Products

    PubMed Central

    Nagle, Dale G.; Zhou, Yu-Dong; Mora, Flor D.; Mohammed, Kaleem A.; Kim, Yong-Pil

    2010-01-01

    Antitumor drug discovery programs aim to identify chemical entities for use in the treatment of cancer. Many strategies have been used to achieve this objective. Natural products have always played a major role in anticancer medicine and the unique metabolites produced by marine organisms have increasingly become major players in antitumor drug discovery. Rapid advances have occurred in the understanding of tumor biology and molecular medicine. New insights into mechanisms responsible for neoplastic disease are significantly changing the general philosophical approach towards cancer treatment. Recently identified molecular targets have created exciting new means for disrupting tumor-specific cell signaling, cell division, energy metabolism, gene expression, drug resistance, and blood supply. Such tumor-specific treatments could someday decrease our reliance on traditional cytotoxicity-based chemotherapy and provide new less toxic treatment options with significantly fewer side effects. Novel molecular targets and state-of-the-art molecular mechanism-based screening methods have revitalized antitumor research and these changes are becoming an ever-increasing component of modern antitumor marine natural products research. This review describes marine natural products identified using tumor-specific mechanism-based assays for regulators of angiogenesis, apoptosis, cell cycle, macromolecule synthesis, mitochondrial respiration, mitosis, multidrug efflux, and signal transduction. Special emphasis is placed on natural products directly discovered using molecular mechanism-based screening. PMID:15279579

  11. Melanosomes are a primary target of Q-switched ruby laser irradiation in guinea pig skin

    SciTech Connect

    Polla, L.L.; Margolis, R.J.; Dover, J.S.; Whitaker, D.; Murphy, G.F.; Jacques, S.L.; Anderson, R.R.

    1987-09-01

    The specific targeting of melanosomes may allow for laser therapy of pigmented cutaneous lesions. The mechanism of selective destruction of pigmented cells by various lasers, however, has not been fully clarified. Black, brown, and albino guinea pigs were exposed to optical pulses at various radiant exposure doses from a Q-switched, 40 nsec, 694 nm ruby laser. Biopsies were analyzed by light and electron microscopy (EM). Albino animals failed to develop clinical or microscopic evidence of cutaneous injury after irradiation. In both black and brown animals, the clinical threshold for gross change was 0.4 J/cm2, which produced an ash-white spot. By light microscopy, alterations appeared at 0.3 J/cm2 and included separation at the dermoepidermal junction, and the formation of vacuolated epidermal cells with a peripheral cytoplasmic condensation of pigment. By EM, enlarged melanosomes with a central lucent zone were observed within affected epidermal cells at 0.3 J/cm2. At 0.8 and 1.2 J/cm2, individual melanosomes were more intensely damaged and disruption of melanosomes deep in the hair papillae was observed. Dermal-epidermal blisters were formed precisely at the lamina lucida, leaving basal cell membranes and hemidesmosomes intact. Possible mechanisms for melanosomal injury are discussed. These observations show that the effects of the Q-switched ruby laser are melanin-specific and melanin-dependent, and may be useful in the selective destruction of pigmented as well as superficial cutaneous lesions.

  12. Mechanisms of volatile production from sulfur-containing amino acids by irradiation

    NASA Astrophysics Data System (ADS)

    Uk Ahn, Dong; Joo Lee, Eun; Feng, Xi; Zhang, Wangang; Lee, Ji Hwan; Jo, Cheorun; Nam, Kichang

    2016-02-01

    Sulfur-containing amino acids were used to study the mechanisms of off-odor production in meat by irradiation. Irradiation not only increased the amounts of volatiles but also produced many new volatiles from sulfur-containing amino acid monomers. We speculate that the majority of the volatiles were the direct radiolytic products of the side chains, but Strecker degradation as well as deamination and decarboxylation of radiolytic products were also involved in the production of volatile compounds from sulfur amino acids. The volatile compounds produced in amino acids were not only the primary products of irradiation, but also the products of secondary chemical reactions after the primary compounds were produced. Cysteine and methionine produced odor characteristics similar to that of the irradiated meat, but the amounts of sulfur volatiles from methionine were far greater than that of cysteine. Although the present study was carried out using an amino acid model system, the information can be applied to the quality indexes of irradiated meats as well as other food products.

  13. Study of ablation by laser irradiation of plane targets at wavelengths 1. 05, 0. 53, and 0. 35. mu. m

    SciTech Connect

    Key, M.H.; Toner, W.T.; Goldsack, T.J.; Kilkenny, J.D.; Veats, S.A.; Cunningham, P.F.; Lewis, C.L.S.

    1983-07-01

    Ablation by laser irradiation at wavelengths lambda = 1.05, 0.53, and 0.35 ..mu..m has been studied from analysis of time-resolved x-ray spectra of layered targets and of ion emission. Irradiance was varied in the range 2 x 10/sup 13/ to 2 x 10/sup 15/ W cm/sup -2/ with constant laser power and variable focal spot size. Deductions include the effect of lateral energy transport from small focal spots and ablation rates and ablation pressures obtained both in the limit of negligible transport and when lateral transport is significant. Advantages of short wavelengths for ablatively driven implosions are quantified.

  14. Numerical study of the ablative Richtmyer-Meshkov instability of laser-irradiated deuterium and deuterium-tritium targets

    NASA Astrophysics Data System (ADS)

    Marocchino, Alberto; Atzeni, Stefano; Schiavi, Angelo

    2010-11-01

    The Richtmyer-Meshkov instability (RMI) at the ablation front of laser-irradiated planar targets is investigated by two-dimensional numerical hydrodynamics simulations. The linear evolution of perturbations seeded either by surface roughness or target inhomogeneity is studied for perturbation wavelengths in the range 10≤λ≤400 μm and laser intensity 4×1012≤I≤4×1014 W/cm2 (with laser wavelength λlaser=0.35 μm). Thin and thick cryogenic deuterium or deuterium-tritium (DT) planar targets are considered. For targets irradiated at constant intensity, it is found that perturbations with wavelength below a given threshold perform damped oscillations, while perturbations above such a threshold are unstable and oscillate with growing amplitude. This is qualitatively in agreement with theoretical predictions by Goncharov et al. [Phys. Plasmas 13, 012702 (2006)], according to which ablation related processes stabilize perturbations with kDc≫1, where Dc is the distance between the ablation front and critical density for laser propagation. For kDc<1 a weakly growing Landau-Darrieus instability (LDI) is instead excited. The stability threshold increases substantially with laser intensity, given the dependence of Dc on laser intensity I (roughly Dc∝I, according to the present simulations). Direct-drive laser fusion targets are irradiated by time-shaped pulses, with a low intensity initial foot. In this case, perturbations with wavelengths below some threshold (about 10 μm, for typical ignition-class all-DT targets) are damped after an initial growth. In a thin target, initial perturbations, either damped or amplified by RMI and LDI, seed the subsequent Rayleigh-Taylor instability. Finally, it is shown that RMI growth of fusion targets can be reduced by using laser pulses including an initial adiabat-shaping picket (originally proposed to reduce the growth of Rayleigh-Taylor instability).

  15. Nanoparticle production by UV irradiation of combustion generated soot particles

    SciTech Connect

    Stipe, Christopher B.; Choi, Jong Hyun; Lucas, Donald; Koshland, Catherine P.; Sawyer, Robert F.

    2004-07-01

    Laser ablation of surfaces normally produce high temperature plasmas that are difficult to control. By irradiating small particles in the gas phase, we can better control the size and concentration of the resulting particles when different materials are photofragmented. Here, we irradiate soot with 193 nm light from an ArF excimer laser. Irradiating the original agglomerated particles at fluences ranging from 0.07 to 0.26 J/cm{sup 2} with repetition rates of 20 and 100 Hz produces a large number of small, unagglomerated particles, and a smaller number of spherical agglomerated particles. Mean particle diameters from 20 to 50 nm are produced from soot originally having a mean electric mobility diameter of 265nm. We use a non-dimensional parameter, called the photon/atom ratio (PAR), to aid in understanding the photofragmentation process. This parameter is the ratio of the number of photons striking the soot particles to the number of the carbon atoms contained in the soot particles, and is a better metric than the laser fluence for analyzing laser-particle interactions. These results suggest that UV photofragmentation can be effective in controlling particle size and morphology, and can be a useful diagnostic for studying elements of the laser ablation process.

  16. Point defect production and annihilation in neutron-irradiated zirconium

    SciTech Connect

    MacEwen, S.R.; Zee, R.H.; Birtcher, R.C.; Abromeit, C.

    1984-05-01

    High-purity Zr has been irradiated to a dose of 2.2 x 10/sup 21/ n/m/sup 2/ (E < 0.1 MeV) using the pulsed spallation source at IPNS. Electrical resistivity was monitored continuously during irradiation. The saturation resistivity, found from a linear extrapolation of the damage-rate curve between four and five n..cap omega...m. However, comparison with data from the literature shows that the normalized damage-rate curves from five experiments at different temperatures (less than or equal to 77 K) and with different neutron spectra, all fall on the same common curve. A saturation resistivity of 100 n..cap omega...m is found from the high-dose, linear part of this curve. A spontaneous recombination volume in the range 280 to 400 atomic volumes is found using the theory of Dettmann, Leibfried and Schroeder and the saturation resistivity of 100 n..cap omega...m. Post-irradiation annealing has been done up to 300 K using stepped, isochronal anneals. The recovery spectrum is in reasonable agreement with previous work, showing a large peak near 100 K, and two smaller peaks at 160 K and 250 K.

  17. Processing of LEU targets for {sup 99}Mo production: Dissolution of U{sub 3}Si{sub 2} targets by alkaline hydrogen peroxide

    SciTech Connect

    Buchholz, B.A.; Vandegrift, G.F.

    1995-09-01

    Low-enriched uranium silicide targets designed to recover fission product {sup 99}Mo were dissolved in alkaline hydrogen peroxide (H{sub 2}O{sub 2} plus NaOH) at about 90C. Sintering of matrix aluminum powder during irradiation and heat treatment retarded aluminum dissolution and prevented silicide particle dispersion. Gas evolved during dissolution is suspected to adhere to particles and block hydroxide ion contact with aluminum. Reduction of base concentrations from 5M to O.lM NaOH yielded similar silicide dissolution and peroxide destruction rates, simplifying later processing. Future work in particle dispersion enhancement, {sup 99}Mo separation, and waste disposal is also discussed.

  18. Targeted genetic modification of cell lines for recombinant protein production

    PubMed Central

    Piskareva, Olga; Muniyappa, Mohan

    2007-01-01

    Considerable increases in productivity have been achieved in biopharmaceutical production processes over the last two decades. Much of this has been a result of improvements in media formulation and process development. Though advances have been made in cell line development, there remains considerable opportunity for improvement in this area. The wealth of transcriptional and proteomic data being generated currently hold the promise of specific molecular interventions to improve the performance of production cell lines in the bioreactor. Achieving this—particularly for multi-gene modification—will require specific, targeted and controlled genetic manipulation of these cells. This review considers some of the current and potential future techniques that might be employed to realise this goal. PMID:19003191

  19. Biohydrogen production by purple non-sulfur bacteria Rhodobacter sphaeroides: Effect of low-intensity electromagnetic irradiation.

    PubMed

    Gabrielyan, Lilit; Sargsyan, Harutyun; Trchounian, Armen

    2016-09-01

    The present work was focused on the effects of low-intensity (the flux capacity was of 0.06mWcm(-2)) electromagnetic irradiation (EMI) of extremely high frequencies or millimeter waves on the growth and hydrogen (H2) photoproduction by purple non-sulfur bacteria Rhodobacter sphaeroides MDC6521 (from Armenian mineral springs). After exposure of R. sphaeroides, grown under anaerobic conditions upon illumination, to EMI (51.8GHz and 53.0GHz) for 15min an increase of specific growth rate by ~1.2-fold, in comparison with control (non-irradiated cells), was obtained. However, the effect of EMI depends on the duration of irradiation: the exposure elongation up to 60min caused the delay of the growth lag phase and the decrease specific growth rate by ~1.3-fold, indicating the bactericidal effect of EMI. H2 yield of the culture, irradiated by EMI for 15min, determined during 72h growth, was ~1.2-fold higher than H2 yield of control cells, whereas H2 production by cultures, irradiated by EMI for 60min was not observed during 72h growth. This difference in the effects of extremely high frequency EMI indicates a direct effect of radiation on the membrane transfer and the enzymes of these bacteria. Moreover, EMI increased DCCD-inhibited H(+) fluxes across the bacterial membrane and DCCD-sensitive ATPase activity of membrane vesicles, indicating that the proton FoF1-ATPase is presumably a basic target for extremely high frequency EMI related to H2 production by cultures. PMID:27479839

  20. Development of additive [11C]CO2 target system in the KOTRON-13 cyclotron and its application for [11C]radiopharmaceutical production

    NASA Astrophysics Data System (ADS)

    Moon, Byung Seok; Lee, Hong Jin; Lee, Won Kyung; Hur, Min Goo; Yang, Seung Dae; Lee, Byung Chul; Kim, Sang Eun

    2015-08-01

    The KOTRON-13 cyclotron, which was developed in South Korea for the production of medical radioisotopes, has the structural limitation of only one beam-output port, restricting the production of the carbon-11 isotope. In the present study, we investigate the design of a switchable target system and develop an effective carbon-11 target in the KOTRON-13 cyclotron, for combination with the fluorine-18 target. The target system was designed by introducing a sliding-type element between the fluorine-18 and carbon-11 targets, a tailor-made C-11 target and its cooling system. For the efficient production of [11C]CO2, the desirable target shape and internal volume were determined by a Stopping and Range of Ions in Matter (SRIM) simulation program, and the target grid was modified to resist the cavity pressure during beam irradiation. We evaluated the [11C]CO2 production while varying the material and thickness of the target foil, oxygen content of the nitrogen gas, and target loading pressure. Using sliding-type equipment including an additional gate valve and a high vacuum in a beam line, the bi-directional conversion between the fluorine-18 and carbon-11 targets was efficient regarding the accurate beam irradiation on both targets. The optimal [11C]CO2 production for 30 min irradiation at 60 μA (86.6 ± 1.7 GBq in the target at EOB) was observed at a thickness of 19 μm with HAVAR® material as a target foil and a target loading pressure of 24 bar with nitrogen plus 300 ppb of oxygen gas. Additionally, the coolant cavity system in the target grid and target chamber is useful to remove the heat transferred to the target body by the internal convection of water and thereby ensure the stability of the [11C]CO2 production under a high beam current. In the application of C-11 labeled radiopharmaceuticals such as [11C]PIB, [11C]DASB, [11C]PBR28, [11C]Methionine and [11C]Clozapine, the radiochemical yields were shown to be 25-38% (decay corrected) with over 166 GBq/μmol of

  1. Measurement of prompt gamma profiles in inhomogeneous targets with a knife-edge slit camera during proton irradiation

    NASA Astrophysics Data System (ADS)

    Priegnitz, M.; Helmbrecht, S.; Janssens, G.; Perali, I.; Smeets, J.; Vander Stappen, F.; Sterpin, E.; Fiedler, F.

    2015-06-01

    Proton and ion beam therapies become increasingly relevant in radiation therapy. To fully exploit the potential of this irradiation technique and to achieve maximum target volume conformality, the verification of particle ranges is highly desirable. Many research activities focus on the measurement of the spatial distributions of prompt gamma rays emitted during irradiation. A passively collimating knife-edge slit camera is a promising option to perform such measurements. In former publications, the feasibility of accurate detection of proton range shifts in homogeneous targets could be shown with such a camera. We present slit camera measurements of prompt gamma depth profiles in inhomogeneous targets. From real treatment plans and their underlying CTs, representative beam paths are selected and assembled as one-dimensional inhomogeneous targets built from tissue equivalent materials. These phantoms have been irradiated with monoenergetic proton pencil beams. The accuracy of range deviation estimation as well as the detectability of range shifts is investigated in different scenarios. In most cases, range deviations can be detected within less than 2 mm. In close vicinity to low-density regions, range detection is challenging. In particular, a minimum beam penetration depth of 7 mm beyond a cavity is required for reliable detection of a cavity filling with the present setup. Dedicated data post-processing methods may be capable of overcoming this limitation.

  2. Improvement of color and physiological properties of tuna-processing by-product by gamma irradiation

    NASA Astrophysics Data System (ADS)

    Choi, Jong-il; Kim, Hyun-Joo; Kim, Jae-Hun; Song, Beom-Seok; Chun, Byeong-Soo; Ahn, Dong-Hyun; Byun, Myung-Woo; Lee, Ju-Woon

    2009-07-01

    Although the by-products from fishery industry had many nutrients, it is being wasted or only used as bacteria media. In this study, the effect of a gamma irradiation on the cooking drips of Thunnus thynnus (CDT) was investigated to examine the possible use of the cooking drips as a functional material for food and cosmetic composition. Total aerobic bacteria, and yeasts/molds from CDT were detected at the level of 2.79 and 2.58 Log CFU/mL, respectively. But, CDT was efficiently sterilized by a gamma irradiation at a low dose of 1 kGy. The Hunter L* value of the gamma-irradiated ethanol extract of CDT was increased, and the a* and b* values were decreased compared to the non-irradiated extract, showing color improvement. Antioxidant activity of the ethanol extract of CDT was increased by a gamma irradiation depending on the irradiation dose. The increased contents of polyphenolic compounds and proteins in CDT extract by gamma irradiation may be the reason of the increased biological activity. These results suggested that the wasted cooking drips can be successfully used as functional components with gamma irradiation treatment.

  3. Irradiation and fumigation effects on flavor, aroma and composition of grapefruit products

    SciTech Connect

    Moshonas, M.G.; Shaw, P.E.

    1982-05-01

    Effects were evaluated on grapefruit treated to meet quarantine restrictions against Caribbean fruit fly infestation. Differences were found in flavor of fresh sections, fresh juice, and aroma of peel oil when obtained from fruit irradiated with x-rays, as compared with products from nonirradiated fruit. Flavor differences were found in all pasteurized juices from fruit irradiated at 50-60 krad. Vitamin C levels were significantly lower in juice from most irradiated fruit. Flavor differences were found in fresh and pasteurized juice from fruit treated with methyl bromide, and in pasteurized juice from fruit treated with ethylene dibromide. Aroma differences were found in peel oil from fruit treated with phosphine.

  4. Changes in microbial community during biohydrogen production using gamma irradiated sludge as inoculum.

    PubMed

    Yin, Yanan; Wang, Jianlong

    2016-01-01

    The changes in microbial community structures during fermentative hydrogen production process were investigated by analyzing 16S rDNA gene sequences using gamma irradiated sludge as inoculum. The experimental results showed that the microbial community structure of untreated sludge was very rich in diversity. After gamma irradiation, lots of species were inhibited, and species with high survival rates under radiation conditions became dominant. After fermentation, Clostridium butyrium and a sequence closely related to Clostridium perfringens ATCC 13124(T) (CP000246) became predominant, which were all common hydrogen producers. Microbial distribution analysis indicated that gamma irradiation was a good pretreatment method for enriching hydrogen-producing strains from digested sludge. PMID:26492174

  5. Infectivity and egg production of Nematospiroides dubius as affected by space flight and ultraviolet irradiation

    NASA Technical Reports Server (NTRS)

    Long, R. A.; Ellis, W. L.; Taylor, G. R.

    1973-01-01

    Nematospiroides dubius was tested to determine the infective potential of the third stage larvae and the egg-production and egg-viability rates of the resulting adults after they are exposed to space flight and solar ultraviolet irradiation. The results are indicative that space-flown larvae exposed to solar ultraviolet irradiation were rendered noninfective in C57 mice, whereas flight control larvae that received no solar ultraviolet irradiation matured at the same rate as the ground control larvae. However, depressed egg viability was evident in the flight control larvae.

  6. Primordial comet mantle - Irradiation production of a stable, organic crust

    SciTech Connect

    Strazzulla, G.; Baratta, G.A.; Johnson, R.E.; Donn, B. Osservatorio Astrofisico, Catania Virginia, University, Charlottesville )

    1991-05-01

    The thickness and survivability of a cosmic ray-generated primordial comet refractory mantle, or 'crust', are presently predicted by laboratory data and corrected estimates of cosmic ray dose to be capable of surviving a new comet's entry into the inner solar system over numerous revolutions. It is suggested that, since this mantle may be as much as several meters deep, the probe apparatus of the projected CRAF and Rosetta spacecraft will have to be extended in order to reach the desired, unprocessed cometary material. As things stand, there is a high probability that these missions will sample cometary matter than has been heavily irradiated and reprocessed in the Oort cloud. 28 refs.

  7. Efficiency of gamma irradiation to inactivate growth and fumonisin production of Fusarium moniliforme on corn grains.

    PubMed

    Mansur, Ahmad Rois; Yu, Chun-Cheol; Oh, Deog-Hwan

    2014-02-28

    The efficiency of gamma irradiation (0, 1, 5, 10, 15, 20, and 30 kGy) as a sterilization method of corn samples (30 g) artificially contaminated with Fusarium moniliforme stored at normal condition (25ºC with approximate relative humidity (RH) of 55%) and optimal condition (25ºC with a controlled RH of 97%) was studied. The results showed that the fungal growth and the amount of fumonisin were decreased as the dose of gamma irradiation increased. Gamma irradiation at 1-5 kGy treatment significantly inhibited the growth of F. moniliforme by 1-2 log reduction on corn samples (P < 0.05). Sublethal effect of gamma irradiation was observed at 10-20 kGy doses after storage, and a complete inactivation required 30 kGy. Fungal growth and fumonisin production increased with higher humidity and longer storage time in all corn samples. This study also demonstrated that there was no strict correlation between fungal growth and fumonisin production. Storage at normal condition significantly resulted in lower growth and fumonisin production of F. moniliforme as compared with those stored at optimal condition (P < 0.05). Gamma irradiation with the dose of ≥ 5 kGy followed by storage at normal condition successfully prolonged the shelf life of irradiated corns, intended for human and animal consumptions, up to 7 weeks. PMID:24169453

  8. Σ production from targets of ^4He and ^13C

    NASA Astrophysics Data System (ADS)

    Chrien, R. E.

    1996-10-01

    One of the abiding issues in hypernuclear research has been the question of the formation of nuclear bound states incorporating the Σ-hyperon. The recent increases in beam intensity at the Brookhaven AGS have enabled us to obtain a high statistics study on the production of Σ-hyperons on a ^4He target. Earlier research using stopped kaons at KEK indicated the presence of structure in the (K^-,π^-) reaction, and led to the postulate of a Σ bound state. That structure has now been definitely confirmed in the in-flight kaon experiment at the LESB2 beam line and Moby-Dick spectrometer. An improved measurement of the binding energy of the presumed state will be reported, together with a production cross section. In addition, both (K^-,π^-) and (K^-,π^+) reactions on ^13C have been studied and will be compared to similar measurements on ^9Be.

  9. Near monochromatic 20 Me V proton acceleration using fs laser irradiating Au foils in target normal sheath acceleration regime

    NASA Astrophysics Data System (ADS)

    Torrisi, L.; Cutroneo, M.; Ceccio, G.; Cannavò, A.; Batani, D.; Boutoux, G.; Jakubowska, K.; Ducret, J. E.

    2016-04-01

    A 200 mJ laser pulse energy, 39 fs-pulse duration, 10 μm focal spot, p-polarized radiation has been employed to irradiate thin Au foils to produce proton acceleration in the forward direction. Gold foils were employed to produce high density relativistic electrons emission in the forward direction to generate a high electric field driving the ion acceleration. Measurements were performed by changing the focal position in respect of the target surface. Proton acceleration was monitored using fast SiC detectors in time-of-flight configuration. A high proton energy, up to about 20 Me V, with a narrow energy distribution, was obtained in particular conditions depending on the laser parameters, the irradiation conditions, and a target optimization.

  10. Dry-distillation of astatine-211 from irradiated bismuth targets: a time-saving procedure with high recovery yields.

    PubMed

    Lindegren, S; Bäck, T; Jensen, H J

    2001-08-01

    Astatine-211 was produced via the 209Bi(alpha,2n) 211At reaction. The radionuclide was isolated with a novel procedure employing dry-distillation of the irradiated target material. The astatine was condensed as a dry residue in a PEEK-capillary cryotrap. Distillation was completed within 1-2 min with isolation yields of 92 +/- 3%. Subsequent work-up of the nuclide resulted in final recovery yields of 79 +/- 3%. PMID:11393754