Sample records for profiling developmental neurotoxicity

  1. Zebrafish as a systems toxicology model for developmental neurotoxicity testing.

    PubMed

    Nishimura, Yuhei; Murakami, Soichiro; Ashikawa, Yoshifumi; Sasagawa, Shota; Umemoto, Noriko; Shimada, Yasuhito; Tanaka, Toshio

    2015-02-01

    The developing brain is extremely sensitive to many chemicals. Exposure to neurotoxicants during development has been implicated in various neuropsychiatric and neurological disorders, including autism spectrum disorder, attention deficit hyperactive disorder, schizophrenia, Parkinson's disease, and Alzheimer's disease. Although rodents have been widely used for developmental neurotoxicity testing, experiments using large numbers of rodents are time-consuming, expensive, and raise ethical concerns. Using alternative non-mammalian animal models may relieve some of these pressures by allowing testing of large numbers of subjects while reducing expenses and minimizing the use of mammalian subjects. In this review, we discuss some of the advantages of using zebrafish in developmental neurotoxicity testing, focusing on central nervous system development, neurobehavior, toxicokinetics, and toxicodynamics in this species. We also describe some important examples of developmental neurotoxicity testing using zebrafish combined with gene expression profiling, neuroimaging, or neurobehavioral assessment. Zebrafish may be a systems toxicology model that has the potential to reveal the pathways of developmental neurotoxicity and to provide a sound basis for human risk assessments. © 2014 Japanese Teratology Society.

  2. Biomarkers of adult and developmental neurotoxicity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Slikker, William; Bowyer, John F.

    2005-08-07

    Neurotoxicity may be defined as any adverse effect on the structure or function of the central and/or peripheral nervous system by a biological, chemical, or physical agent. A multidisciplinary approach is necessary to assess adult and developmental neurotoxicity due to the complex and diverse functions of the nervous system. The overall strategy for understanding developmental neurotoxicity is based on two assumptions: (1) significant differences in the adult versus the developing nervous system susceptibility to neurotoxicity exist and they are often developmental stage dependent; (2) a multidisciplinary approach using neurobiological, including gene expression assays, neurophysiological, neuropathological, and behavioral function is necessarymore » for a precise assessment of neurotoxicity. Application of genomic approaches to developmental studies must use the same criteria for evaluating microarray studies as those in adults including consideration of reproducibility, statistical analysis, homogenous cell populations, and confirmation with non-array methods. A study using amphetamine to induce neurotoxicity supports the following: (1) gene expression data can help define neurotoxic mechanism(s) (2) gene expression changes can be useful biomarkers of effect, and (3) the site-selective nature of gene expression in the nervous system may mandate assessment of selective cell populations.« less

  3. MicroRNA Profiling as Tool for In Vitro Developmental Neurotoxicity Testing: The Case of Sodium Valproate

    PubMed Central

    Smirnova, Lena; Block, Katharina; Sittka, Alexandra; Oelgeschläger, Michael; Seiler, Andrea E. M.; Luch, Andreas

    2014-01-01

    Studying chemical disturbances during neural differentiation of murine embryonic stem cells (mESCs) has been established as an alternative in vitro testing approach for the identification of developmental neurotoxicants. miRNAs represent a class of small non-coding RNA molecules involved in the regulation of neural development and ESC differentiation and specification. Thus, neural differentiation of mESCs in vitro allows investigating the role of miRNAs in chemical-mediated developmental toxicity. We analyzed changes in miRNome and transcriptome during neural differentiation of mESCs exposed to the developmental neurotoxicant sodium valproate (VPA). A total of 110 miRNAs and 377 mRNAs were identified differently expressed in neurally differentiating mESCs upon VPA treatment. Based on miRNA profiling we observed that VPA shifts the lineage specification from neural to myogenic differentiation (upregulation of muscle-abundant miRNAs, mir-206, mir-133a and mir-10a, and downregulation of neural-specific mir-124a, mir-128 and mir-137). These findings were confirmed on the mRNA level and via immunochemistry. Particularly, the expression of myogenic regulatory factors (MRFs) as well as muscle-specific genes (Actc1, calponin, myosin light chain, asporin, decorin) were found elevated, while genes involved in neurogenesis (e.g. Otx1, 2, and Zic3, 4, 5) were repressed. These results were specific for valproate treatment and―based on the following two observations―most likely due to the inhibition of histone deacetylase (HDAC) activity: (i) we did not observe any induction of muscle-specific miRNAs in neurally differentiating mESCs exposed to the unrelated developmental neurotoxicant sodium arsenite; and (ii) the expression of muscle-abundant mir-206 and mir-10a was similarly increased in cells exposed to the structurally different HDAC inhibitor trichostatin A (TSA). Based on our results we conclude that miRNA expression profiling is a suitable molecular endpoint for

  4. Phenotypic screening for developmental neurotoxicity ...

    EPA Pesticide Factsheets

    There are large numbers of environmental chemicals with little or no available information on their toxicity, including developmental neurotoxicity. Because of the resource-intensive nature of traditional animal tests, high-throughput (HTP) methods that can rapidly evaluate chemicals for the potential to affect the developing brain are being explored. Typically, HTP screening uses biochemical and molecular assays to detect the interaction of a chemical with a known target or molecular initiating event (e.g., the mechanism of action). For developmental neurotoxicity, however, the mechanism(s) is often unknown. Thus, we have developed assays for detecting chemical effects on the key events of neurodevelopment at the cellular level (e.g., proliferation, differentiation, neurite growth, synaptogenesis, network formation). Cell-based assays provide a test system at a level of biological complexity that encompasses many potential neurotoxic mechanisms. For example, phenotypic assessment of neurite outgrowth at the cellular level can detect chemicals that target kinases, ion channels, or esterases at the molecular level. The results from cell-based assays can be placed in a conceptual framework using an Adverse Outcome Pathway (AOP) which links molecular, cellular, and organ level effects with apical measures of developmental neurotoxicity. Testing a wide range of concentrations allows for the distinction between selective effects on neurodevelopmental and non-specific

  5. Developmental neurotoxicity of succeeding generations of insecticides

    PubMed Central

    Abreu-Villaça, Yael; Levin, Edward D.

    2016-01-01

    Insecticides are by design toxic. They must be toxic to effectively kill target species of insects. Unfortunately, they also have off-target toxic effects that can harm other species, including humans. Developmental neurotoxicity is one of the most prominent off-target toxic risks of insecticides. Over the past seven decades several classes of insecticides have been developed, each with their own mechanisms of effect and toxic side effects. This review covers the developmental neurotoxicity of the succeeding generations of insecticides including organochlorines, organophosphates, pyrethroids, carbamates and neonicotinoids. The goal of new insecticide development is to more effectively kill target species with fewer toxic side effects on non-target species. From the experience with the developmental neurotoxicity caused by the generations of insecticides developed in the past advice is offered how to proceed with future insecticide development to decrease neurotoxic risk. PMID:27908457

  6. Assessing the Developmental Neurotoxicity of 27 ...

    EPA Pesticide Factsheets

    Assessing the Developmental Neurotoxicity of 27 Organophosphorus Pesticides Using a Zebrafish Behavioral Assay, Waalkes, M., Hunter, D.L., Jarema, K., Mundy, W., and S. Padilla. The U.S. Environmental Protection Agency is evaluating methods to screen and prioritize organophosphorus pesticides for developmental neurotoxicity. As such, we are exploring a behavioral testing paradigm that can assess the effects of sublethal and subteratogenic concentrations of developmental neurotoxicants on zebrafish (Danio rerio). This in vivo assay quantifies the locomotor response to light stimuli under tandem light and dark conditions in a 96-well plate using a video tracking system on 6 day post fertilization zebrafish larvae. Each of twenty-seven organophosphorus pesticides was tested for their developmental neurotoxic potential by exposing zebrafish embryos/larvae to the pesticide at several concentrations (≤ 100 μM nominal concentration) during the first five days of development, followed by 24 hours of depuration and then behavioral testing. Approximately 22% of the chemicals (Acephate, Dichlorvos, Diazoxon, Bensulide,Tribufos, Tebupirimfos) did not produce any behavioral changes after developmental exposure, while many (Malaoxon Fosthiazate, Dimethoate, Dicrotophos, Ethoprop, Malathion, Naled, Diazinon, Methamidophos, Terbufos, Trichlorfon, Phorate, Pirimiphos-methyl, Profenofos, Z-Tetrachlorvinphos, Chlorpyrifos, Coumaphos, Phosmet, Omethoate) produced changes in swi

  7. Can Zebrafish be used to Identify Developmentally Neurotoxic Chemicals

    EPA Science Inventory

    Can Zebrafish be Used to Identify Developmentally Neurotoxic Chemicals? The U.S. Environmental Protection Agency is evaluating methods to screen and prioritize large numbers of chemicals for developmental neurotoxicity. We are exploring behavioral methods using zebrafish by desig...

  8. MicroRNAs: New Players in Anesthetic-Induced Developmental Neurotoxicity

    PubMed Central

    Twaroski, Danielle; Bosnjak, Zeljko J.; Bai, Xiaowen

    2015-01-01

    Growing evidence demonstrates that prolonged exposure to general anesthetics during brain development induces widespread neuronal cell death followed by long-term memory and learning disabilities in animal models. These studies have raised serious concerns about the safety of anesthetic use in pregnant women and young children. However, the underlying mechanisms of anesthetic-induced neurotoxicity are complex and are not well understood. MicroRNAs are endogenous, small, non-coding RNAs that have been implicated to play important roles in many different disease processes by negatively regulating target gene expression. A possible role for microRNAs in anesthetic-induced developmental neurotoxicity has recently been identified, suggesting that microRNA-based signaling might be a novel target for preventing the neurotoxicity. Here we provide an overview of anesthetic-induced developmental neurotoxicity and focus on the role of microRNAs in the neurotoxicity observed in both human stem cell-derived neuron and animal models. Aberrant expression of some microRNAs has been shown to be involved in anesthetic-induced developmental neurotoxicity, revealing the potential of microRNAs as therapeutic or preventive targets against the toxicity. PMID:26146587

  9. Developmental Neurotoxicology: History and Outline of Developmental Neurotoxicity Study Guidelines.

    EPA Science Inventory

    The present work provides a brief review of basic concepts in developmental neurotoxicology, as well as current representative testing guidelines for evaluating developmental neurotoxicity (DNT) of xenobiotics. Historically, DNT was initially recognized as a “functional” teratoge...

  10. Developmental neurotoxicity of pyrethroid insecticides in zebrafish embryos.

    PubMed

    DeMicco, Amy; Cooper, Keith R; Richardson, Jason R; White, Lori A

    2010-01-01

    Pyrethroid insecticides are one of the most commonly used residential and agricultural insecticides. Based on the increased use of pyrethroids and recent studies showing that pregnant women and children are exposed to pyrethroids, there are concerns over the potential for developmental neurotoxicity. However, there have been relatively few studies on the developmental neurotoxicity of pyrethroids. In this study, we sought to investigate the developmental toxicity of six common pyrethroids, three type I compounds (permethrin, resmethrin, and bifenthrin) and three type II compounds (deltamethrin, cypermethrin, and lambda-cyhalothrin), and to determine whether zebrafish embryos may be an appropriate model for studying the developmental neurotoxicity of pyrethroids. Exposure of zebrafish embryos to pyrethroids caused a dose-dependent increase in mortality and pericardial edema, with type II compounds being the most potent. At doses approaching the LC(50), permethrin and deltamethrin caused craniofacial abnormalities. These findings are consistent with mammalian studies demonstrating that pyrethroids are mildly teratogenic at very high doses. However, at lower doses, body axis curvature and spasms were observed, which were reminiscent of the classic syndromes observed with pyrethroid toxicity. Treatment with diazepam ameliorated the spasms, while treatment with the sodium channel antagonist MS-222 ameliorated both spasms and body curvature, suggesting that pyrethroid-induced neurotoxicity is similar in zebrafish and mammals. Taken in concert, these data suggest that zebrafish may be an appropriate alternative model to study the mechanism(s) responsible for the developmental neurotoxicity of pyrethroid insecticides and aid in identification of compounds that should be further tested in mammalian systems.

  11. Developmental Neurotoxicity of Pyrethroid Insecticides in Zebrafish Embryos

    PubMed Central

    DeMicco, Amy; Cooper, Keith R.; Richardson, Jason R.; White, Lori A.

    2010-01-01

    Pyrethroid insecticides are one of the most commonly used residential and agricultural insecticides. Based on the increased use of pyrethroids and recent studies showing that pregnant women and children are exposed to pyrethroids, there are concerns over the potential for developmental neurotoxicity. However, there have been relatively few studies on the developmental neurotoxicity of pyrethroids. In this study, we sought to investigate the developmental toxicity of six common pyrethroids, three type I compounds (permethrin, resmethrin, and bifenthrin) and three type II compounds (deltamethrin, cypermethrin, and λ-cyhalothrin), and to determine whether zebrafish embryos may be an appropriate model for studying the developmental neurotoxicity of pyrethroids. Exposure of zebrafish embryos to pyrethroids caused a dose-dependent increase in mortality and pericardial edema, with type II compounds being the most potent. At doses approaching the LC50, permethrin and deltamethrin caused craniofacial abnormalities. These findings are consistent with mammalian studies demonstrating that pyrethroids are mildly teratogenic at very high doses. However, at lower doses, body axis curvature and spasms were observed, which were reminiscent of the classic syndromes observed with pyrethroid toxicity. Treatment with diazepam ameliorated the spasms, while treatment with the sodium channel antagonist MS-222 ameliorated both spasms and body curvature, suggesting that pyrethroid-induced neurotoxicity is similar in zebrafish and mammals. Taken in concert, these data suggest that zebrafish may be an appropriate alternative model to study the mechanism(s) responsible for the developmental neurotoxicity of pyrethroid insecticides and aid in identification of compounds that should be further tested in mammalian systems. PMID:19861644

  12. Developmental Neurotoxicity of Pyrethroid Insecticides: Critical Review and Future Research Needs

    PubMed Central

    Shafer, Timothy J.; Meyer, Douglas A.; Crofton, Kevin M.

    2005-01-01

    Pyrethroid insecticides have been used for more than 40 years and account for 25% of the worldwide insecticide market. Although their acute neurotoxicity to adults has been well characterized, information regarding the potential developmental neurotoxicity of this class of compounds is limited. There is a large age dependence to the acute toxicity of pyrethroids in which neonatal rats are at least an order of magnitude more sensitive than adults to two pyrethroids. There is no information on age-dependent toxicity for most pyrethroids. In the present review we examine the scientific data related to potential for age-dependent and developmental neurotoxicity of pyrethroids. As a basis for understanding this neurotoxicity, we discuss the heterogeneity and ontogeny of voltage-sensitive sodium channels, a primary neuronal target of pyrethroids. We also summarize 22 studies of the developmental neurotoxicity of pyrethroids and review the strengths and limitations of these studies. These studies examined numerous end points, with changes in motor activity and muscarinic acetylcholine receptor density the most common. Many of the developmental neurotoxicity studies suffer from inadequate study design, problematic statistical analyses, use of formulated products, and/or inadequate controls. These factors confound interpretation of results. To better understand the potential for developmental exposure to pyrethroids to cause neurotoxicity, additional, well-designed and well-executed developmental neurotoxicity studies are needed. These studies should employ state-of-the-science methods to promote a greater understanding of the mode of action of pyrethroids in the developing nervous system. PMID:15687048

  13. Developmental neurotoxicity of pyrethroid insecticides: critical review and future research needs.

    PubMed

    Shafer, Timothy J; Meyer, Douglas A; Crofton, Kevin M

    2005-02-01

    Pyrethroid insecticides have been used for more than 40 years and account for 25% of the worldwide insecticide market. Although their acute neurotoxicity to adults has been well characterized, information regarding the potential developmental neurotoxicity of this class of compounds is limited. There is a large age dependence to the acute toxicity of pyrethroids in which neonatal rats are at least an order of magnitude more sensitive than adults to two pyrethroids. There is no information on age-dependent toxicity for most pyrethroids. In the present review we examine the scientific data related to potential for age-dependent and developmental neurotoxicity of pyrethroids. As a basis for understanding this neurotoxicity, we discuss the heterogeneity and ontogeny of voltage-sensitive sodium channels, a primary neuronal target of pyrethroids. We also summarize 22 studies of the developmental neurotoxicity of pyrethroids and review the strengths and limitations of these studies. These studies examined numerous end points, with changes in motor activity and muscarinic acetylcholine receptor density the most common. Many of the developmental neurotoxicity studies suffer from inadequate study design, problematic statistical analyses, use of formulated products, and/or inadequate controls. These factors confound interpretation of results. To better understand the potential for developmental exposure to pyrethroids to cause neurotoxicity, additional, well-designed and well-executed developmental neurotoxicity studies are needed. These studies should employ state-of-the-science methods to promote a greater understanding of the mode of action of pyrethroids in the developing nervous system.

  14. INTRACELLULAR SIGNALING AND DEVELOPMENTAL NEUROTOXICITY.

    EPA Science Inventory

    A book chapter in ?Molecular Toxicology: Transcriptional Targets? reviewed the role of intracellular signaling in the developmental neurotoxicity of environmental chemicals. This chapter covered a number of aspects including the development of the nervous system, role of intrace...

  15. Predicting developmental neurotoxicity in rodents from larval zebrafish - - and vice versa

    EPA Science Inventory

    The complexity of standard mammalian developmental neurotoxicity tests limits evaluation of large numbers of chemicals. Less complex, more rapid assays using larval zebrafish are gaining popularity for evaluating the developmental neurotoxicity of chemicals; there remains, howeve...

  16. Potential developmental neurotoxicity of pesticides used in Europe

    PubMed Central

    Bjørling-Poulsen, Marina; Andersen, Helle Raun; Grandjean, Philippe

    2008-01-01

    Pesticides used in agriculture are designed to protect crops against unwanted species, such as weeds, insects, and fungus. Many compounds target the nervous system of insect pests. Because of the similarity in brain biochemistry, such pesticides may also be neurotoxic to humans. Concerns have been raised that the developing brain may be particularly vulnerable to adverse effects of neurotoxic pesticides. Current requirements for safety testing do not include developmental neurotoxicity. We therefore undertook a systematic evaluation of published evidence on neurotoxicity of pesticides in current use, with specific emphasis on risks during early development. Epidemiologic studies show associations with neurodevelopmental deficits, but mainly deal with mixed exposures to pesticides. Laboratory experimental studies using model compounds suggest that many pesticides currently used in Europe – including organophosphates, carbamates, pyrethroids, ethylenebisdithiocarbamates, and chlorophenoxy herbicides – can cause neurodevelopmental toxicity. Adverse effects on brain development can be severe and irreversible. Prevention should therefore be a public health priority. The occurrence of residues in food and other types of human exposures should be prevented with regard to the pesticide groups that are known to be neurotoxic. For other substances, given their widespread use and the unique vulnerability of the developing brain, the general lack of data on developmental neurotoxicity calls for investment in targeted research. While awaiting more definite evidence, existing uncertainties should be considered in light of the need for precautionary action to protect brain development. PMID:18945337

  17. A screening approach using zebrafish for the detection and characterization of developmental neurotoxicity.

    EPA Science Inventory

    Thousands of chemicals have little or no data to support developmental neurotoxicity risk assessments. Current developmental neurotoxicity guideline studies mandating mammalian model systems are expensive and time consuming. Therefore a rapid, cost-effective method to assess de...

  18. Evaluating Developmental Neurotoxicity Hazard: Better than Before

    EPA Pesticide Factsheets

    EPA researchers grew neural networks in their laboratory that showed the promise of helping to screen thousands of chemicals in the environment that are yet to be characterized for developmental neurotoxicity hazard through traditional methods.

  19. Developmental neurotoxicity of monocrotophos and lead is linked to thyroid disruption

    PubMed Central

    Kumar, B. Kala; Reddy, A. Gopala; Krishna, A. Vamsi; Quadri, S. S. Y. H.; Kumar, P. Shiva

    2016-01-01

    Aim: A role of thyroid disruption in developmental neurotoxicity of monocrotophos (MCP) and lead is studied. Materials and Methods: A total of 24 female rats after conception were randomized into four groups of six each and treated as follows: Group I - Sham was administered distilled water orally. Group II - A positive control was administered methyl methimazole at 0.02% orally in drinking water. Group III - MCP orally at 0.3 mg/kg and Group IV - Lead acetate at 0.2% orally in drinking water. The drug was administered from gestation day 3 through post-natal day 21 in all the groups. Acetylcholinesterase (AChE) inhibition, thyroid profile (thyroid stimulating hormone, T3 and T4), neurodevelopment (brain wet weights, DNA, RNA and protein), and neurobehavioral (elevated plus maze, photoactometry, and Morris water maze) parameters were assessed in pups. A histopathology of thyroid of dams and brain of progeny was conducted. Results: Inhibition of AChE was <20%. Thyroid profile decreased in the treatment groups. Neurodevelopmental and neurobehavioral parameters did not reveal any significant changes. Thyroid architecture was affected significantly with MCP and lead. Cortical layers too were affected. The three layers of cerebellum either had abnormal arrangement or decreased cellularity in all treated groups relating to thyroid disruption. Conclusion: MCP and lead might have affected the development of cerebrum and cerebellum via thyroid disruption leading to developmental neurotoxicity. PMID:27051198

  20. The developmental neurotoxicity of arsenic: cognitive and behavioral consequences of early life exposure.

    PubMed

    Tolins, Molly; Ruchirawat, Mathuros; Landrigan, Philip

    2014-01-01

    More than 200 million people worldwide are chronically exposed to arsenic. Arsenic is a known human carcinogen, and its carcinogenic and systemic toxicity have been extensively studied. By contrast, the developmental neurotoxicity of arsenic has been less well described. The aim of this review was to provide a comprehensive review of the developmental neurotoxicity of arsenic. We reviewed the published epidemiological and toxicological literature on the developmental neurotoxicity of arsenic. Arsenic is able to gain access to the developing brain and cause neurotoxic effects. Animal models link prenatal and early postnatal exposure to reduction in brain weight, reductions in numbers of glia and neurons, and alterations in neurotransmitter systems. Animal and in vitro studies both suggest that oxidative stress may be a mechanism of arsenic neurotoxicity. Fifteen epidemiological studies indicate that early life exposure is associated with deficits in intelligence and memory. These effects may occur at levels of exposure below current safety guidelines, and some neurocognitive consequences may become manifest only later in life. Sex, concomitant exposures, and timing of exposure appear to modify the developmental neurotoxicity of arsenic. Four epidemiological studies failed to show behavioral outcomes of arsenic exposure. The published literature indicates that arsenic is a human developmental neurotoxicant. Ongoing and future prospective birth cohort studies will allow more precise definition of the developmental consequences of arsenic exposure in early life. Copyright © 2014. Published by Elsevier Inc.

  1. EVALUATION OF POTENTIAL DEVELOPMENTAL NEUROTOXICITY OF ORGANOTINS.

    EPA Science Inventory

    Organotins, including monomethyltin (MMT), dimethyltin (DMT), and dibutyltin (DBT), are widely used as heat stabilizers in PVC and CPVC piping, which results in their presence in drinking water supplies. Concern for developmental neurotoxic effects were raised by published findi...

  2. Developmental Origins of Adult Diseases and Neurotoxicity: Epidemiological and Experimental Studies

    PubMed Central

    Fox, Donald A.; Grandjean, Philippe; de Groot, Didima; Paule, Merle

    2013-01-01

    To date, only a small number of commercial chemicals have been tested and documented as developmental neurotoxicants. Moreover, an increasing number of epidemiological, clinical and experimental studies suggest an association between toxicant or drug exposure during the perinatal period and the development of metabolic-related diseases and neurotoxicity later in life. The four speakers in this symposium presented their research results on different neurotoxic chemicals as they relate to the developmental origins of health and adult disease (DOHaD). Philippe Grandjean presented epidemiological data on children exposed to methylmercury and discussed the behavioral outcome measures as they relate to age and stage of brain development. Donald A. Fox presented data that low-to-moderate dose human equivalent gestational lead exposure produced late-onset obesity, and motor and coordination dysfunction only in male mice. Didima de Groot discussed the role of caloric restriction and/or high fat diets during gestation and/or postnatal development in mediating the metabolic and neurotoxic effects of developmental methylmercury exposure in rats. Merle G. Paule addressed the long-term changes in learning, motivation and short-term memory in aged Rhesus monkeys following 24 hour exposure to ketamine during early development. Overall, these presentations addressed fundamental issues in the emerging areas of lifetime neurotoxicity testing, differential vulnerable periods of exposure, nonmonotonic dose-response effects and neurotoxic risk assessment. PMID:22245043

  3. Non-invasive fluorescent imaging of gliosis in transgenic mice for profiling developmental neurotoxicity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ho, Gideon; Zhang Chunyan; Zhuo Lang

    2007-05-15

    Gliosis is a universal response of Brain to almost all types of neural insults, including neurotoxicity, neurodegeneration, viral infection, and stroke. A hallmark of gliotic reaction is the up-regulation of the astrocytic biomarker GFAP (glial fibrillary acidic protein), which often precedes the anatomically apparent damages in Brain. In this study, neonatal transgenic mice at postnatal day (PD) 4 expressing GFP (green fluorescent protein) under the control of a widely used 2.2-kb human GFAP promoter in Brain are treated with two model neurotoxicants, 1-methyl-4(2'-methylphenyl)-1,2,3,6-tetrahydropyridine (2'-CH{sub 3}-MPTP), and kainic acid (KA), respectively, to induce gliosis. Here we show that the neurotoxicant-induced acutemore » gliosis can be non-invasively imaged and quantified in Brain of conscious (un-anesthetized) mice in real-time, at 0, 2, 4, 6, and 8 h post-toxicant dosing. Therefore the current methodology could be a useful tool for studying the developmental aspects of neuropathies and neurotoxicity.« less

  4. Developmental neurotoxicity of industrial chemicals.

    PubMed

    Grandjean, P; Landrigan, P J

    2006-12-16

    Neurodevelopmental disorders such as autism, attention deficit disorder, mental retardation, and cerebral palsy are common, costly, and can cause lifelong disability. Their causes are mostly unknown. A few industrial chemicals (eg, lead, methylmercury, polychlorinated biphenyls [PCBs], arsenic, and toluene) are recognised causes of neurodevelopmental disorders and subclinical brain dysfunction. Exposure to these chemicals during early fetal development can cause brain injury at doses much lower than those affecting adult brain function. Recognition of these risks has led to evidence-based programmes of prevention, such as elimination of lead additives in petrol. Although these prevention campaigns are highly successful, most were initiated only after substantial delays. Another 200 chemicals are known to cause clinical neurotoxic effects in adults. Despite an absence of systematic testing, many additional chemicals have been shown to be neurotoxic in laboratory models. The toxic effects of such chemicals in the developing human brain are not known and they are not regulated to protect children. The two main impediments to prevention of neurodevelopmental deficits of chemical origin are the great gaps in testing chemicals for developmental neurotoxicity and the high level of proof required for regulation. New, precautionary approaches that recognise the unique vulnerability of the developing brain are needed for testing and control of chemicals.

  5. Mechanistic insight into neurotoxicity induced by developmental insults

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tamm, Christoffer; Ceccatelli, Sandra

    Epidemiological and/or experimental studies have shown that unfavorable prenatal environmental factors, such as stress or exposure to certain neurotoxic environmental contaminants, may have adverse consequences for neurodevelopment. Alterations in neurogenesis can have harmful effects not only for the developing nervous system, but also for the adult brain where neurogenesis is believed to play a role in learning, memory, and even in depression. Many recent advances in the understanding of the complex process of nervous system development can be integrated into the field of neurotoxicology. In the past 15 years we have been using cultured neural stem or progenitor cells tomore » investigate the effects of neurotoxic stimuli on cell survival, proliferation and differentiation, with special focus on heritable effects. This is an overview of the work performed by our group in the attempt to elucidate the mechanisms of developmental neurotoxicity and possibly provide relevant information for the understanding of the etiopathogenesis of complex brain disorders. - Highlights: • The developing nervous system is highly sensitive to toxic insults. • Neural stem cells are relevant models for mechanistic studies as well as for identifying heritable effects due to epigenetic changes. • Depending on the dose, the outcome of exposure to neurotoxicants ranges from altered proliferation and differentiation to cell death. • The elucidation of neurotoxicity mechanisms is relevant for understanding the etiopathogenesis of developmental and adult nervous system disorders.« less

  6. Developmental neurotoxic effects of Malathion on 3D neurosphere system

    PubMed Central

    Salama, Mohamed; Lotfy, Ahmed; Fathy, Khaled; Makar, Maria; El-emam, Mona; El-gamal, Aya; El-gamal, Mohamed; Badawy, Ahmad; Mohamed, Wael M.Y.; Sobh, Mohamed

    2015-01-01

    Developmental neurotoxicity (DNT) refers to the toxic effects induced by various chemicals on brain during the early childhood period. As human brains are vulnerable during this period, various chemicals would have significant effects on brains during early childhood. Some toxicants have been confirmed to induce developmental toxic effects on CNS; however, most of agents cannot be identified with certainty. This is because available animal models do not cover the whole spectrum of CNS developmental periods. A novel alternative method that can overcome most of the limitations of the conventional techniques is the use of 3D neurosphere system. This in-vitro system can recapitulate many of the changes during the period of brain development making it an ideal model for predicting developmental neurotoxic effects. In the present study we verified the possible DNT of Malathion, which is one of organophosphate pesticides with suggested possible neurotoxic effects on nursing children. Three doses of Malathion (0.25 μM, 1 μM and 10 μM) were used in cultured neurospheres for a period of 14 days. Malathion was found to affect proliferation, differentiation and viability of neurospheres, these effects were positively correlated to doses and time progress. This study confirms the DNT effects of Malathion on 3D neurosphere model. Further epidemiological studies will be needed to link these results to human exposure and effects data. PMID:27054080

  7. Systematic developmental neurotoxicity assessment of a representative PAH Superfund mixture using zebrafish

    DOE PAGES

    Geier, Mitra C.; James Minick, D.; Truong, Lisa; ...

    2018-04-01

    Superfund sites often consist of complex mixtures of polycyclic aromatic hydrocarbons (PAHs). It is widely recognized that PAHs pose risks to human and environmental health, but the risks posed by exposure to PAH mixtures are unclear. Here, we constructed an environmentally relevant PAH mixture with the top 10 most prevalent PAHs (SM10) from a Superfund site derived from environmental passive sampling data. Using the zebrafish model, we measured body burden at 48 hours post fertilization (hpf) and evaluated the developmental and neurotoxicity of SM10 and the 10 individual constituents at 24 hours post fertilization (hpf) and 5 days post fertilizationmore » (dpf). Zebrafish embryos were exposed from 6 to 120 hpf to (1) the SM10 mixture, (2) a variety of individual PAHs: pyrene, fluoranthene, retene, benzo[a]anthracene, chrysene, naphthalene, acenaphthene, phenanthrene, fluorene, and 2-methylnaphthalene. We demonstrated that SM10 and only 3 of the individual PAHs were developmentally toxic. Subsequently, we constructed and exposed developing zebrafish to two sub-mixtures: SM3 (comprised of 3 of the developmentally toxicity PAHs) and SM7 (7 non-developmentally toxic PAHs). We found that the SM3 toxicity profile was similar to SM10, and SM7 unexpectedly elicited developmental toxicity unlike that seen with its individual components. The results demonstrated that the overall developmental toxicity in the mixtures could be explained using the general concentration addition model. To determine if exposures activated the AHR pathway, spatial expression of CYP1A was evaluated in the 10 individual PAHs and the 3 mixtures at 5 dpf. Results showed activation of AHR in the liver and vasculature for the mixtures and some individual PAHs. Embryos exposed to SM10 during development and raised in chemical-free water into adulthood exhibited decreased learning and responses to startle stimulus indicating that developmental SM10 exposures affect neurobehavior. Collectively, these

  8. Systematic developmental neurotoxicity assessment of a representative PAH Superfund mixture using zebrafish.

    PubMed

    Geier, Mitra C; James Minick, D; Truong, Lisa; Tilton, Susan; Pande, Paritosh; Anderson, Kim A; Teeguardan, Justin; Tanguay, Robert L

    2018-04-06

    Superfund sites often consist of complex mixtures of polycyclic aromatic hydrocarbons (PAHs). It is widely recognized that PAHs pose risks to human and environmental health, but the risks posed by exposure to PAH mixtures are unclear. We constructed an environmentally relevant PAH mixture with the top 10 most prevalent PAHs (SM10) from a Superfund site derived from environmental passive sampling data. Using the zebrafish model, we measured body burden at 48 hours post fertilization (hpf) and evaluated the developmental and neurotoxicity of SM10 and the 10 individual constituents at 24 hours post fertilization (hpf) and 5 days post fertilization (dpf). Zebrafish embryos were exposed from 6 to 120 hpf to (1) the SM10 mixture, (2) a variety of individual PAHs: pyrene, fluoranthene, retene, benzo[a]anthracene, chrysene, naphthalene, acenaphthene, phenanthrene, fluorene, and 2-methylnaphthalene. We demonstrated that SM10 and only 3 of the individual PAHs were developmentally toxic. Subsequently, we constructed and exposed developing zebrafish to two sub-mixtures: SM3 (comprised of 3 of the developmentally toxicity PAHs) and SM7 (7 non-developmentally toxic PAHs). We found that the SM3 toxicity profile was similar to SM10, and SM7 unexpectedly elicited developmental toxicity unlike that seen with its individual components. The results demonstrated that the overall developmental toxicity in the mixtures could be explained using the general concentration addition model. To determine if exposures activated the AHR pathway, spatial expression of CYP1A was evaluated in the 10 individual PAHs and the 3 mixtures at 5 dpf. Results showed activation of AHR in the liver and vasculature for the mixtures and some individual PAHs. Embryos exposed to SM10 during development and raised in chemical-free water into adulthood exhibited decreased learning and responses to startle stimulus indicating that developmental SM10 exposures affect neurobehavior. Collectively, these

  9. Systematic developmental neurotoxicity assessment of a representative PAH Superfund mixture using zebrafish

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geier, Mitra C.; James Minick, D.; Truong, Lisa

    Superfund sites often consist of complex mixtures of polycyclic aromatic hydrocarbons (PAHs). It is widely recognized that PAHs pose risks to human and environmental health, but the risks posed by exposure to PAH mixtures are unclear. Here, we constructed an environmentally relevant PAH mixture with the top 10 most prevalent PAHs (SM10) from a Superfund site derived from environmental passive sampling data. Using the zebrafish model, we measured body burden at 48 hours post fertilization (hpf) and evaluated the developmental and neurotoxicity of SM10 and the 10 individual constituents at 24 hours post fertilization (hpf) and 5 days post fertilizationmore » (dpf). Zebrafish embryos were exposed from 6 to 120 hpf to (1) the SM10 mixture, (2) a variety of individual PAHs: pyrene, fluoranthene, retene, benzo[a]anthracene, chrysene, naphthalene, acenaphthene, phenanthrene, fluorene, and 2-methylnaphthalene. We demonstrated that SM10 and only 3 of the individual PAHs were developmentally toxic. Subsequently, we constructed and exposed developing zebrafish to two sub-mixtures: SM3 (comprised of 3 of the developmentally toxicity PAHs) and SM7 (7 non-developmentally toxic PAHs). We found that the SM3 toxicity profile was similar to SM10, and SM7 unexpectedly elicited developmental toxicity unlike that seen with its individual components. The results demonstrated that the overall developmental toxicity in the mixtures could be explained using the general concentration addition model. To determine if exposures activated the AHR pathway, spatial expression of CYP1A was evaluated in the 10 individual PAHs and the 3 mixtures at 5 dpf. Results showed activation of AHR in the liver and vasculature for the mixtures and some individual PAHs. Embryos exposed to SM10 during development and raised in chemical-free water into adulthood exhibited decreased learning and responses to startle stimulus indicating that developmental SM10 exposures affect neurobehavior. Collectively, these

  10. Studies on the Behavior of Larval Zebrafish for Developmental Neurotoxicity Screening

    EPA Science Inventory

    The U.S. Environmental Protection Agency is evaluating methods to screen and prioritize large numbers of chemicals for developmental toxicity. We are exploring methods to detect developmentally neurotoxic chemicals using zebrafish behavior at 6 days of age. The behavioral paradig...

  11. Translating neurobehavioural endpoints of developmental neurotoxicity tests into in vitro assays and readouts

    PubMed Central

    van Thriel, Christoph; Westerink, Remco; Beste, Christian; Bale, Ambuja S.; Lein, Pamela J.; Leist, Marcel

    2011-01-01

    The developing nervous system is particularly vulnerable to chemical insults. Exposure to chemicals can results in neurobehavioural alterations, and these have been be used as sensitive readouts to assess neurotoxicity in animals and man. Deconstructing neurobehaviour into relevant cellular and molecular components may allow for detection of specific neurotoxic effects in cell-based systems, which in turn may allow an easier examination of neurotoxic pathways and modes of actions and eventually inform the regulatory assessment of chemicals with potential developmental neurotoxicity. Here, current developments towards these goals are reviewed. Imaging genetics (CB) provides new insights into the neurobiological correlates of cognitive function that are being used to delineate neurotoxic mechanisms. The gaps between in vivo neurobehaviour and real-time in vitro measurements of neuronal function are being bridged by ex vivo measurements of synaptic plasticity (RW). An example of solvent neurotoxicity demonstrates how an in vivo neurological defect can be linked via the N-methyl-D-aspartate (NMDA)-glutamate receptor as a common target to in vitro readouts (AB). Axonal and dendritic morphology in vitro proved to be good correlates of neuronal connectivity and neurobehaviour in animals exposed to polychlorinated biphenyls and organophosphorus pesticides (PJL). Similarly, chemically-induced changes in neuronal morphology affected the formation of neuronal networks on structured surfaces. Such network formation may become an important readout for developmental neurotoxicity in vitro (CvT), especially when combined with human neurons derived from embryonic stem cells (ML). We envision that future in vitro test systems for developmental neurotoxicity will combine the above approaches with exposure information, and we suggest a strategy for test system development and cell-based risk assessment. PMID:22008243

  12. Recent Insights Into Molecular Mechanisms of Propofol-Induced Developmental Neurotoxicity: Implications for the Protective Strategies.

    PubMed

    Bosnjak, Zeljko J; Logan, Sarah; Liu, Yanan; Bai, Xiaowen

    2016-11-01

    Mounting evidence has demonstrated that general anesthetics could induce developmental neurotoxicity, including acute widespread neuronal cell death, followed by long-term memory and learning abnormalities. Propofol is a commonly used intravenous anesthetic agent for the induction and maintenance of anesthesia and procedural and critical care sedation in children. Compared with other anesthetic drugs, little information is available on its potential contributions to neurotoxicity. Growing evidence from multiple experimental models showed a similar neurotoxic effect of propofol as observed in other anesthetic drugs, raising serious concerns regarding pediatric propofol anesthesia. The aim of this review is to summarize the current findings of propofol-induced developmental neurotoxicity. We first present the evidence of neurotoxicity from animal models, animal cell culture, and human stem cell-derived neuron culture studies. We then discuss the mechanism of propofol-induced developmental neurotoxicity, such as increased cell death in neurons and oligodendrocytes, dysregulation of neurogenesis, abnormal dendritic development, and decreases in neurotrophic factor expression. Recent findings of complex mechanisms of propofol action, including alterations in microRNAs and mitochondrial fission, are discussed as well. An understanding of the toxic effect of propofol and the underlying mechanisms may help to develop effective novel protective or therapeutic strategies for avoiding the neurotoxicity in the developing human brain.

  13. Recommendations for Developing Alternative Test Methods for Developmental Neurotoxicity

    EPA Science Inventory

    There is great interest in developing alternative methods for developmental neurotoxicity testing (DNT) that are cost-efficient, use fewer animals and are based on current scientific knowledge of the developing nervous system. Alternative methods will require demonstration of the...

  14. TESTING FOR DEVELOPMENTAL NEUROTOXICITY: CURRENT APPROACHES AND FUTURE NEEDS.

    EPA Science Inventory

    There are many adverse effects on the nervous system following exposure to environmental chemicals during development. In a number of cases (e.g., lead, methyl mercury) the developing nervous system is a highly susceptible. Developmental Neurotoxicity Testing (DNT) guidelines...

  15. Meeting report: alternatives for developmental neurotoxicity testing.

    PubMed

    Lein, Pamela; Locke, Paul; Goldberg, Alan

    2007-05-01

    Developmental neurotoxicity testing (DNT) is perceived by many stakeholders to be an area in critical need of alternatives to current animal testing protocols and guidelines. To address this need, the Johns Hopkins Center for Alternatives to Animal Testing (CAAT), the U.S. Environmental Protection Agency, and the National Toxicology Program are collaborating in a program called TestSmart DNT, the goals of which are to: (a) develop alternative methodologies for identifying and prioritizing chemicals and exposures that may cause developmental neurotoxicity in humans; (b) develop the policies for incorporating DNT alternatives into regulatory decision making; and (c) identify opportunities for reducing, refining, or replacing the use of animals in DNT. The first TestSmart DNT workshop was an open registration meeting held 13-15 March 2006 in Reston, Virginia. The primary objective was to bring together stakeholders (test developers, test users, regulators, and advocates for children's health, animal welfare, and environmental health) and individuals representing diverse disciplines (developmental neurobiology, toxicology, policy, and regulatory science) from around the world to share information and concerns relating to the science and policy of DNT. Individual presentations are available at the CAAT TestSmart website. This report provides a synthesis of workgroup discussions and recommendations for future directions and priorities, which include initiating a systematic evaluation of alternative models and technologies, developing a framework for the creation of an open database to catalog DNT data, and devising a strategy for harmonizing the validation process across international jurisdictional borders.

  16. Screening for Developmental Neurotoxicity; What Role Can Zebrafish Play?

    EPA Science Inventory

    There are so many chemicals in use today. How can we screen those chemicals for potential developmental neurotoxicity? The zebrafish larval assay with behavioral assessments may prove useful for that chemical screen. This talk presents data from our laboratory as well as others t...

  17. IN VITRO ASSESSMENT OF DEVELOPMENTAL NEUROTOXICITY: USE OF MICROELECTRODE ARRAYS TO MEASURE FUNCTIONAL CHANGES IN NEURONAL NETWORK ONTOGENY

    EPA Science Inventory

    Because the Developmental Neurotoxicity Testing Battery requires large numbers of animals and is expensive, development of in vitro approaches to screen chemicals for potential developmental neurotoxicity is a high priority. Many proposed approaches for screening are biochemical,...

  18. In Vitro Assessment of Developmental Neurotoxicity: Use of Microelectrode Arrays to Measure Functional Changes in Neuronal Network Ontogeny*

    EPA Science Inventory

    Because the Developmental Neurotoxicity Testing Guidelines require large numbers of animals and is expensive, development of in vitro approaches to screen chemicals for potential developmental neurotoxicity is a high priority. Many proposed approaches for screening are biochemica...

  19. Meeting Report: Alternatives for Developmental Neurotoxicity Testing

    PubMed Central

    Lein, Pamela; Locke, Paul; Goldberg, Alan

    2007-01-01

    Developmental neurotoxicity testing (DNT) is perceived by many stakeholders to be an area in critical need of alternatives to current animal testing protocols and guidelines. To address this need, the Johns Hopkins Center for Alternatives to Animal Testing (CAAT), the U.S. Environmental Protection Agency, and the National Toxicology Program are collaborating in a program called TestSmart DNT, the goals of which are to: (a) develop alternative methodologies for identifying and prioritizing chemicals and exposures that may cause developmental neurotoxicity in humans; (b) develop the policies for incorporating DNT alternatives into regulatory decision making; and (c) identify opportunities for reducing, refining, or replacing the use of animals in DNT. The first TestSmart DNT workshop was an open registration meeting held 13–15 March 2006 in Reston, Virginia. The primary objective was to bring together stakeholders (test developers, test users, regulators, and advocates for children’s health, animal welfare, and environmental health) and individuals representing diverse disciplines (developmental neurobiology, toxicology, policy, and regulatory science) from around the world to share information and concerns relating to the science and policy of DNT. Individual presentations are available at the CAAT TestSmart website. This report provides a synthesis of workgroup discussions and recommendations for future directions and priorities, which include initiating a systematic evaluation of alternative models and technologies, developing a framework for the creation of an open database to catalog DNT data, and devising a strategy for harmonizing the validation process across international jurisdictional borders. PMID:17520065

  20. ONTOGENY OF PROTEINS FOR USE AS BIOMARKERS OF DEVELOPMENTAL NEUROTOXICITY.

    EPA Science Inventory

    The developing nervous system can be uniquely susceptible to adverse effects following exposure to environmental chemicals, and several advisory panels (e.g. ILSI, NRC, NAS) have highlighted the need for rapid and sensitive developmental neurotoxicity testing methods. Measurement...

  1. DEVELOPMENTAL NEUROTOXICITY OF POLYBROMINATED DIPHENYL ETHER (PBDE) FLAME RETARDANTS

    PubMed Central

    Costa, Lucio G.; Giordano, Gennaro

    2007-01-01

    Polybrominated diphenyl ethers (PBDEs) are a class of flame retardants used in a variety of consumer products. In the past 25 years, PBDEs have become ubiquitous environmental contaminants. They have been detected in soil, air, sediments, birds, marine species, fish, house dust, and human tissues, blood and breast milk. Diet and house dust appear to be the major sources of PBDE exposure in the general population, though occupational exposure can also occur. Levels of PBDEs in human tissues are particularly high in North America, compared to Asian and European countries, and have been increasing in the past 30 years. Concentrations of PBDEs are particularly high in breast milk, resulting in high exposure of infants. In addition, for toddlers, dust has been estimated to account for a large percentage of exposure. PBDEs can also cross the placenta, as they have been detected in fetal blood and liver. Tetra-, penta- and hexa BDEs are most commonly present in human tissues. The current greatest concern for potential adverse effects of PBDEs relates to their developmental neurotoxicity. Pre- or postnatal exposure of mice or rats to various PBDEs has been shown to cause long-lasting changes in spontaneous motor activity, mostly characterized as hyperactivity or decreased habituation, and to disrupt performance in learning and memory tests. While a reduction in circulating thyroid hormone (T4) may contribute to the developmental neurotoxicity of PBDEs, direct effects on the developing brain have also been reported. Among these, PBDEs have been shown to affect signal transduction pathways and to cause oxidative stress. Levels of PBDEs causing developmental neurotoxicity in animals are not much dissimilar from levels found in highly exposed infants and toddlers. PMID:17904639

  2. Change in Gene Expression in Zebrafish as an Endpoint for Developmental Neurotoxicity Screening

    EPA Science Inventory

    Chemicals that adversely affect the developing nervous system may have long-term consequences on human health. Little information exists on a large number of environmental chemicals to guide the risk assessments for developmental neurotoxicity (DNT). As traditional developmental ...

  3. DEVELOPMENTAL NEUROTOXICITY TESTING GUIDELINES: VARIABILITY IN MORPHOMETRIC ASSESSMENTS OF NEUROPATHOLOGY.

    EPA Science Inventory

    The USEPA Developmental Neurotoxicity (DNT) Study Test Guideline (OPPTS 870.6300) calls for neuropathological and morphometric assessments of rat pups on postnatal day (PND) 11 and at study termination (after PND 60). In recent discussions about conducting these studies on pesti...

  4. Studies of the Variables Affecting Behavior of Larval Zebrafish for Developmental Neurotoxicity Testing*

    EPA Science Inventory

    The U.S. Environmental Protection Agency is evaluating methods to screen and prioritize large numbers of chemicals for developmental toxicity. We are exploring methods to screen for developmentally neurotoxic chemicals using zebrafish behavior at 6 days of age. The behavioral par...

  5. Studies of the Variables Affecting Behavior of Larval Zebrafish for Developmental Neurotoxicity Testing

    EPA Science Inventory

    The U.S. Environmental Protection Agency is evaluating methods to screen and prioritize large numbers of chemicals for developmental toxicity. We are exploring methods to detect developmentally neurotoxic chemicals using zebrafish behavior at 6 days of age. The behavioral paradig...

  6. A protective role of autophagy in TDCIPP-induced developmental neurotoxicity in zebrafish larvae.

    PubMed

    Li, Ruiwen; Zhang, Ling; Shi, Qipeng; Guo, Yongyong; Zhang, Wei; Zhou, Bingsheng

    2018-06-01

    Tris (1, 3-dichloro-2-propyl) phosphate (TDCIPP), an extensively used organophosphorus flame retardant, is frequently detected in various environmental media and biota, and has been demonstrated as neurotoxic. Autophagy has been proposed as a protective mechanism against toxicant-induced neurotoxicity. The purpose of the present study was to investigate the effect of TDCIPP exposure on autophagy, and its role in TDCIPP-induced developmental neurotoxicity. Zebrafish embryos (2-120 h post-fertilization [hpf]) were exposed to TDCIPP (0, 5, 50 and 500 μg/l) and a model neurotoxic chemical, chlorpyrifos (CPF, 100 μg/l). The developmental endpoints, locomotive behavior, cholinesterase activities, gene and protein expression related to neurodevelopment and autophagy were measured in the larvae. Our results demonstrate that exposure to TDCIPP (500 μg/l) and CPF causes developmental toxicity, including reduced hatching and survival rates and increased malformation rate (e.g., spinal curvature), as well as altered locomotor behavior. The expression of selected neurodevelopmental gene and protein markers (e.g., mbp, syn2a, and α1-tubulin) was significantly down-regulated in CPF and TDCIPP exposed zebrafish larvae. Treatment with CPF significantly inhibits AChE and BChE, while TDCIPP (0-500 μg/l) exerts no effects on these enzymes. Furthermore, the conversion of microtubule-associated protein I (LC3 I) to LC3 II was significantly increased in TDCIPP exposed zebrafish larvae. In addition, exposure to TDCIPP also activates transcription of several critical genes in autophagy (e.g. Becn1, atg3, atg5, map1lc3b and sqstm1). To further investigate the role of autophagy in TDCIPP induced developmental neurotoxicity, an autophagy inducer (rapamycin, Rapa, 1 nM) and inhibitor (chloroquine, CQ, 1 μM) were used. The results demonstrate that the hatching rate, survival rate, and the expression of mbp and а1-tubulin proteins were all significantly increased in larvae

  7. An overview of butanol-induced developmental neurotoxicity and the potential mechanisms related to these observed effects.

    PubMed

    Bale, Ambuja S; Lee, Janice S

    2016-01-01

    The purpose of this article is to briefly review the published literature on the developmental neurotoxic effects, including potential mechanisms, of four butanols: n-butanol, sec-butanol, tert-butanol, isobutanol, and identify data gaps and research needs for evaluation of human health risks in this area. Exposure potential to these four butanols is considerable given the high production volume (>1 billion lb) of n- and tert-butanol and moderate production volumes (100-500 million lb) of sec- and isobutanol. With the impetus to derive cleaner gasoline blends, butanols are being considered for use as fuel oxygenates. Notable signs of neurotoxicity and developmental neurotoxicity have been observed in some studies where laboratory animals (rodents) were gestationally exposed to n- or tert-butanol. Mechanistic data relevant to the observed developmental neurotoxicity endpoints were also reviewed to hypothesize potential mechanisms associated with the developmental neurotoxicity outcome. Data from the related and highly characterized alcohol, ethanol, were included to examine consistencies between this compound and the four butanols. It is widely known that alcohols, including butanols, interact with several ion channels and modulate the function of these targets following both acute and chronic exposures. In addition, n- and sec-butanol have been demonstrated to inhibit fetal rat brain astroglial cell proliferation. Further, rat pups exposed to n-butanol in utero were also reported to have significant increases in brain levels of dopamine and serotonin, but decreases in serotonin levels were noted with gestational exposure to tert-butanol. tert-Butanol was reported to inhibit muscarinic receptor-stimulated phosphoinositide metabolism which has been hypothesized to be a possible target for the neurotoxic effects of ethanol during brain development. The mechanistic data for the butanols support developmental neurotoxicity that has been observed in some of the rodent

  8. Characterization of Human Neural Progenitor Cell Models for Developmental Neurotoxicity Screening

    EPA Science Inventory

    Current testing methods for developmental neurotoxicity (DNT) make evaluation of the effects of large numbers of chemicals impractical and prohibitively expensive. As such, we are evaluating two different human neural progenitor cell (hNPC) models for their utility in screens for...

  9. Neurogenesis and Developmental Anesthetic Neurotoxicity

    PubMed Central

    Kang, Eunchai; Berg, Daniel A.; Furmanski, Orion; Jackson, William M.; Ryu, Yun Kyoung; Gray, Christy D.; Mintz, C. David

    2017-01-01

    The mechanism by which anesthetics might act on the developing brain in order to cause long term deficits remains incompletely understood. The hippocampus has been identified as a structure that is likely to be involved, as rodent models show numerous deficits in behavioral tasks of learning that are hippocampal-dependent. The hippocampus is an unusual structure in that it is the site of large amounts of neurogenesis postnatally, particularly in the first year of life in humans, and these newly generated neurons are critical to the function of this structure. Intriguingly, neurogenesis is a major developmental event that occurs during postulated windows of vulnerability to developmental anesthetic neurotoxicity across the different species in which it has been studied. In this review, we examine the evidence for anesthetic effects on neurogenesis in the early postnatal period and ask whether neurogenesis should be studied further as a putative mechanism of injury. Multiple anesthetics are considered, and both in vivo and in vitro work is presented. While there is abundant evidence that anesthetics act to suppress neurogenesis at several different phases, evidence of a causal link between these effects and any change in learning behavior remains elusive. PMID:27751818

  10. Developmental neurotoxicity of different pesticides in PC-12 cells in vitro

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Christen, Verena

    The detection of developmental neurotoxicity (DNT) of chemicals has high relevance for protection of human health. However, DNT of many pesticides is only little known. Furthermore, validated in vitro systems for assessment of DNT are not well established. Here we employed the rat phaeochromocytoma cell line PC-12 to evaluate DNT of 18 frequently used pesticides of different classes, including neonicotinoids, pyrethroids, organophosphates, organochlorines, as well as quaternary ammonium compounds, the organic compound used in pesticides, piperonyl butoxide, as well as the insect repellent diethyltoluamide (DEET). We determined the outgrowth of neurites in PC-12 cells co-treated with nerve growth factor andmore » different concentrations of biocides for 5 days. Furthermore, we determined transcriptional alterations of selected genes that may be associated with DNT, such as camk2α and camk2β, gap-43, neurofilament-h, tubulin-α and tubulin-β. Strong and dose- dependent inhibition of neurite outgrowth was induced by azamethiphos and chlorpyrifos, and dieldrin and heptachlor, which was correlated with up-regulation of gap-43. No or only weak effects on neurite outgrowth and transcriptional alterations occurred for neonicotinoids acetamiprid, clothianidin, imidacloprid and thiamethoxam, the pyrethroids λ-cyhalothrin, cyfluthrin, deltamethrin, and permethrin, the biocidal disinfectants C12-C14-alkyl(ethylbenzyl)dimethylammonium (BAC), benzalkonium chloride and barquat (dimethyl benzyl ammonium chloride), and piperonyl butoxide and DEET. Our study confirms potential developmental neurotoxicity of some pesticides and provides first evidence that azamethiphos has the potential to act as a developmental neurotoxic compound. We also demonstrate that inhibition of neurite outgrowth and transcriptional alterations of gap-43 expression correlate, which suggests the employment of gap-43 expression as a biomarker for detection and initial evaluation of potential DNT of

  11. Current Practices and Future Trends in Neuropathology Assessment for Developmental Neurotoxicity Testing

    EPA Science Inventory

    The continuing education course on "Developmental Neurotoxicity Testing" (DNT) was designed to communicate current practices for DNT neuropathology, describe promising innovations in quantitative analysis and non-invasive imaging, and facilitate a discussion among experienced neu...

  12. Neurotoxicity of developmental hypothyroxinemia and hypothyroidism in rats: Impairments of long-term potentiation are mediated by phosphatidylinositol 3-kinase signaling pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yi; Wei, Wei; Wang, Yuan

    Neurotoxicity of iodine deficiency-induced hypothyroidism during developmental period results in serious impairments of brain function, such as learning and memory. These impairments are largely irreversible, and the underlying mechanisms remain unclear. In addition to hypothyroidism, iodine deficiency may cause hypothyroxinemia, a relatively subtle form of thyroid hormone deficiency. Neurotoxicity of developmental hypothyroxinemia also potentially impairs learning and memory. However, more direct evidence of the associations between developmental hypothyroxinemia and impairments of learning and memory should be provided, and the underlying mechanisms remain to be elucidated. Thus, in the present study, we investigated the effects of developmental hypothyroxinemia and hypothyroidism onmore » long-term potentiation (LTP), a widely accepted cellular model of learning and memory, in the hippocampal CA1 region. The activation of the phosphatidylinositol 3-kinase (PI3K) signaling pathway – a pathway closely associated with synaptic plasticity and learning and memory – was also investigated. Wistar rats were treated with iodine deficient diet or methimazole (MMZ) to induce developmental hypothyroxinemia or hypothyroidism. The results showed that developmental hypothyroxinemia caused by mild iodine deficiency and developmental hypothyroidism caused by severe iodine deficiency or MMZ significantly reduced the field-excitatory postsynaptic potential (f-EPSP) slope and the population spike (PS) amplitude. Decreased activation of the PI3K signaling pathway was also observed in rats subjected to developmental hypothyroxinemia or hypothyroidism. Our results may support the hypothesis that neurotoxicity of both developmental hypothyroxinemia and hypothyroidism causes damages to learning and memory. Our results also suggest that decreased activation of the PI3K signaling pathway may contribute to impairments of LTP caused by neurotoxicity of both developmental

  13. The Potential Contribution of Advanced Imaging Techniques to Developmental Neurotoxicity Risk Assessment

    EPA Science Inventory

    Neuropathologic assessment provides critical data essential to developmental neurotoxicity risk assessment. There are a number of objectives in conducting a neuropathologic assessment to effectively support risk assessment. These include a comprehensive assessment of the adult an...

  14. Developmental neurotoxic effects of two pesticides: Behavior and biomolecular studies on chlorpyrifos and carbaryl

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Iwa; Eriksson, Per; Fredriksson, Anders

    In recent times, an increased occurrence of neurodevelopmental disorders, such as neurodevelopmental delays and cognitive abnormalities has been recognized. Exposure to pesticides has been suspected to be a possible cause of these disorders, as these compounds target the nervous system of pests. Due to the similarities of brain development and composition, these pesticides may also be neurotoxic to humans. We studied two different pesticides, chlorpyrifos and carbaryl, which specifically inhibit acetylcholinesterase (AChE) in the nervous system. The aim of the study was to investigate if the pesticides can induce neurotoxic effects, when exposure occurs during a period of rapid brainmore » growth and maturation. The results from the present study show that both compounds can affect protein levels in the developing brain and induce persistent adult behavior and cognitive impairments, in mice neonatally exposed to a single oral dose of chlorpyrifos (0.1, 1.0 or 5 mg/kg body weight) or carbaryl (0.5, 5.0 or 20.0 mg/kg body weight) on postnatal day 10. The results also indicate that the developmental neurotoxic effects induced are not related to the classical mechanism of acute cholinergic hyperstimulation, as the AChE inhibition level (8–12%) remained below the threshold for causing systemic toxicity. The neurotoxic effects are more likely caused by a disturbed neurodevelopment, as similar behavioral neurotoxic effects have been reported in studies with pesticides such as organochlorines, organophosphates, pyrethroids and POPs, when exposed during a critical window of neonatal brain development. - Highlights: • A single neonatal exposure to chlorpyrifos or carbaryl induced developmental neurotoxic effects. • The neurotoxic effects were not caused by acute AChE inhibition. • The neurotoxic effects manifested as altered levels of neuroproteins in the developing brain. • The neurotoxic effects manifested as adult persistent aberrant behavior and cognitive

  15. DEVELOPMENTAL NEUROTOXICITY TESTING GUIDELINES: A QUALIFICATIVE RETROSPECTIVE ANALYSIS OF POSITIVE CONTROL DATA.

    EPA Science Inventory

    The USEPA Developmental Neurotoxicity (DNT) Study Test Guideline calls for both functional and neuropathological assessments in offspring during and following maternal exposure. This guideline also requires data from positive control (PC) agents. Submission of these data permit e...

  16. A QUALITATIVE RETROSPECTIVE ANALYSIS OF POSITIVE CONTROL DATA IN DEVELOPMENTAL NEUROTOXICITY STUDIES.

    EPA Science Inventory

    A manuscript reviews positive control data submitted by registrants in support of Developmental Neurotoxicity (DNT) guideline studies. Adequate positive control data are needed to evaluate laboratory proficiency in detecting changes in the structure and function of the developin...

  17. A mechanistic view of polybrominated diphenyl ether (PBDE) developmental neurotoxicity

    PubMed Central

    Costa, Lucio G.; de Laat, Rian; Tagliaferri, Sara; Pellacani, Claudia

    2013-01-01

    Polybrominated diphenyl ethers (PBDEs), extensively used in the past few decades as flame retardants in a variety of consumer products, have become world-wide persistent environmental pollutants. Levels in North America are usually higher than those in Europe and Asia, and body burden is 3 to 9-fold higher in infants and toddlers than in adults. The latter has raised concern for potential developmental toxicity and neurotoxicity of PBDEs. Experimental studies in animals and epidemiological observations in humans suggest that PBDEs may be developmental neurotoxicants. Pre- and/or post-natal exposure to PBDEs may cause long-lasting behavioral abnormalities, particularly in the domains of motor activity and cognition. The mechanisms underlying the developmental neurotoxic effects of PBDEs are not known, though several hypotheses have been put forward. One general mode of action relates to the ability of PBDEs to impair thyroid hormone homeostasis, thus indirectly affecting the developing brain. An alternative or additional mode of action involves a direct effect of PBDEs on nervous system cells; PBDEs can cause oxidative stress-related damage (DNA damage, mitochondrial dysfunction, apoptosis), and interfere with signal transduction (particularly calcium signaling), and with neurotransmitter systems. Important issues such as bioavailability and metabolism of PBDEs, extrapolation of results to low level of exposures, and the potential effects of interactions among PBDE congeners and between PBDEs and other contaminants also need to be taken into account. PMID:24270005

  18. CHLORPYRIFOS DEVELOPMENTAL NEUROTOXICITY: INTERACTION WITH GLUCOCORTICOIDS IN PC12 CELLS

    PubMed Central

    Slotkin, Theodore A.; Card, Jennifer; Seidler, Frederic J.

    2012-01-01

    Prenatal coexposures to glucocorticoids and organophosphate pesticides are widespread. Glucocorticoids are elevated by maternal stress and are commonly given in preterm labor; organophosphate exposures are virtually ubiquitous. We used PC12 cells undergoing neurodifferentiation in order to assess whether dexamethasone enhances the developmental neurotoxicity of chlorpyrifos, focusing on concentrations relevant to human exposures. By themselves, each agent reduced the number of cells and the combined exposure elicited a correspondingly greater effect than with either agent alone. There was no general cytotoxicity, as cell growth was actually enhanced, and again, the combined treatment evoked greater cellular hypertrophy than with the individual compounds. The effects on neurodifferentiation were more complex. Chlorpyrifos alone had a promotional effect on neuri to genesis whereas dexamethasone impaired it; combined treatment showed an overall impairment greater than that seen with dexamethasone alone. The effect of chlorpyrifos on differentiation into specific neurotransmitter phenotypes was shifted by dexamethasone. Either agent alone promoted differentiation into the dopaminergic phenotype at the expense of the cholinergic phenotype. However, in dexamethasone-primed cells, chlorpyrifos actually enhanced cholinergic neurodifferentiation instead of suppressing this phenotype. Our results indicate that developmental exposure to glucocorticoids, either in the context of stress or the therapy of preterm labor, could enhance the developmental neurotoxicity of organophosphates and potentially of other neurotoxicants, as well as producing neurobehavioral outcomes distinct from those seen with either individual agent. PMID:22796634

  19. Neurogenesis and developmental anesthetic neurotoxicity.

    PubMed

    Kang, Eunchai; Berg, Daniel A; Furmanski, Orion; Jackson, William M; Ryu, Yun Kyoung; Gray, Christy D; Mintz, C David

    The mechanism by which anesthetics might act on the developing brain in order to cause long term deficits remains incompletely understood. The hippocampus has been identified as a structure that is likely to be involved, as rodent models show numerous deficits in behavioral tasks of learning that are hippocampal-dependent. The hippocampus is an unusual structure in that it is the site of large amounts of neurogenesis postnatally, particularly in the first year of life in humans, and these newly generated neurons are critical to the function of this structure. Intriguingly, neurogenesis is a major developmental event that occurs during postulated windows of vulnerability to developmental anesthetic neurotoxicity across the different species in which it has been studied. In this review, we examine the evidence for anesthetic effects on neurogenesis in the early postnatal period and ask whether neurogenesis should be studied further as a putative mechanism of injury. Multiple anesthetics are considered, and both in vivo and in vitro work is presented. While there is abundant evidence that anesthetics act to suppress neurogenesis at several different phases, evidence of a causal link between these effects and any change in learning behavior remains elusive. Copyright © 2016. Published by Elsevier Inc.

  20. Editor's Highlight: Congener-Specific Disposition of Chiral Polychlorinated Biphenyls in Lactating Mice and Their Offspring: Implications for PCB Developmental Neurotoxicity.

    PubMed

    Kania-Korwel, Izabela; Lukasiewicz, Tracy; Barnhart, Christopher D; Stamou, Marianna; Chung, Haeun; Kelly, Kevin M; Bandiera, Stelvio; Lein, Pamela J; Lehmler, Hans-Joachim

    2017-07-01

    Chiral polychlorinated biphenyl (PCB) congeners have been implicated by laboratory and epidemiological studies in PCB developmental neurotoxicity. These congeners are metabolized by cytochrome P450 (P450) enzymes to potentially neurotoxic hydroxylated metabolites (OH-PCBs). The present study explores the enantioselective disposition and toxicity of 2 environmentally relevant, neurotoxic PCB congeners and their OH-PCB metabolites in lactating mice and their offspring following dietary exposure of the dam. Female C57BL/6N mice (8-weeks old) were fed daily, beginning 2 weeks prior to conception and continuing throughout gestation and lactation, with 3.1 µmol/kg bw/d of racemic 2,2',3,5',6-pentachlorobiphenyl (PCB 95) or 2,2',3,3',6,6'-hexachlorobiphenyl (PCB 136) in peanut butter; controls received vehicle (peanut oil) in peanut butter. PCB 95 levels were higher than PCB 136 levels in both dams and pups, consistent with the more rapid metabolism of PCB 136 compared with PCB 95. In pups and dams, both congeners were enriched for the enantiomer eluting second on enantioselective gas chromatography columns. OH-PCB profiles in lactating mice and their offspring were complex and varied according to congener, tissue and age. Developmental exposure to PCB 95 versus PCB 136 differentially affected the expression of P450 enzymes as well as neural plasticity (arc and ppp1r9b) and thyroid hormone-responsive genes (nrgn and mbp). The results suggest that the enantioselective metabolism of PCBs to OH-PCBs may influence neurotoxic outcomes following developmental exposures, a hypothesis that warrants further investigation. © The Author 2017. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  1. Screening for Developmental Neurotoxicity in Zebrafish Larvae: Assessment of Behavior and Malformations.

    EPA Science Inventory

    The U.S. Environmental Protection Agency is evaluating methods to screen and prioritize large numbers of chemicals for developmental toxicity. As part of this approach, it is important to be able to separate overt toxicity (Le., malformed larvae) from the more specific neurotoxic...

  2. In vitro approaches to screening and prioritizing chemicals for potential developmental neurotoxicity

    EPA Science Inventory

    Characterization of the potential adverse effects is lacking for tens of thousands of chemicals that are present in the environment, and characterization of developmental neurotoxicity (DNT) hazard lags behind that of other adverse outcomes (e.g. hepatotoxicity). This is due in p...

  3. Novel Methods at Molecular Level for Developmental Neurotoxicity Testing in 21st Century-Utility of Structure-Activity Relationship

    EPA Science Inventory

    Current neurotoxicity and developmental neurotoxicity testing methods for hazard identification rely on in vivo neurobehavior, neurophysiological, and gross pathology of the nervous system. These measures may not be sensitive enough to detect small changes caused by realistic ex...

  4. Developmental neurotoxicity of different pesticides in PC-12 cells in vitro.

    PubMed

    Christen, Verena; Rusconi, Manuel; Crettaz, Pierre; Fent, Karl

    2017-06-15

    The detection of developmental neurotoxicity (DNT) of chemicals has high relevance for protection of human health. However, DNT of many pesticides is only little known. Furthermore, validated in vitro systems for assessment of DNT are not well established. Here we employed the rat phaeochromocytoma cell line PC-12 to evaluate DNT of 18 frequently used pesticides of different classes, including neonicotinoids, pyrethroids, organophosphates, organochlorines, as well as quaternary ammonium compounds, the organic compound used in pesticides, piperonyl butoxide, as well as the insect repellent diethyltoluamide (DEET). We determined the outgrowth of neurites in PC-12 cells co-treated with nerve growth factor and different concentrations of biocides for 5days. Furthermore, we determined transcriptional alterations of selected genes that may be associated with DNT, such as camk2α and camk2β, gap-43, neurofilament-h, tubulin-α and tubulin-β. Strong and dose- dependent inhibition of neurite outgrowth was induced by azamethiphos and chlorpyrifos, and dieldrin and heptachlor, which was correlated with up-regulation of gap-43. No or only weak effects on neurite outgrowth and transcriptional alterations occurred for neonicotinoids acetamiprid, clothianidin, imidacloprid and thiamethoxam, the pyrethroids λ-cyhalothrin, cyfluthrin, deltamethrin, and permethrin, the biocidal disinfectants C12-C14-alkyl(ethylbenzyl)dimethylammonium (BAC), benzalkonium chloride and barquat (dimethyl benzyl ammonium chloride), and piperonyl butoxide and DEET. Our study confirms potential developmental neurotoxicity of some pesticides and provides first evidence that azamethiphos has the potential to act as a developmental neurotoxic compound. We also demonstrate that inhibition of neurite outgrowth and transcriptional alterations of gap-43 expression correlate, which suggests the employment of gap-43 expression as a biomarker for detection and initial evaluation of potential DNT of chemicals

  5. Phenotypic screening for developmental neurotoxicity: mechanistic data at the level of the cell

    EPA Science Inventory

    There are large numbers of environmental chemicals with little or no available information on their toxicity, including developmental neurotoxicity. Because of the resource-intensive nature of traditional animal tests, high-throughput (HTP) methods that can rapidly evaluate chemi...

  6. MOTOR ACTIVITY IN DEVELOPMENTAL NEUROTOXICITY TESTING: A CROSS-LABORATORY COMPARISON OF CONTROL DATA.

    EPA Science Inventory

    The USEPA Developmental Neurotoxicity (DNT) Study Test Guideline (OPPTS 870.6300) calls for a battery of functional and neuropathological assessments in offspring during and following maternal exposure. The battery includes measurement of motor activity on post-natal days (PND) ...

  7. Assessing the Developmental Neurotoxicity of 27 Organophosphorus Pesticides Using a Zebrafish Behavioral Assay

    EPA Science Inventory

    Assessing the Developmental Neurotoxicity of 27 Organophosphorus Pesticides Using a Zebrafish Behavioral Assay, Waalkes, M., Hunter, D.L., Jarema, K., Mundy, W., and S. Padilla. The U.S. Environmental Protection Agency is evaluating methods to screen and prioritize organophosphor...

  8. A MULTIFACETED, MEDIUM-THROUGHPUT APPROACH FOR DETECTING AND CHARACTERIZING DEVELOPMENTAL NEUROTOXICITY USING ZEBRAFISH.

    EPA Science Inventory

    To address the EPA's need to prioritize hundreds to thousands of chemicals for testing, we are developing a rapid, cost-effective in vivo screen for developmental neurotoxicity using zebrafish (Danio rerio), a small freshwater fish with external fertilization. Zebrafish embryos d...

  9. In vitro approaches to screening and prioritization of chemicals for potential developmental neurotoxicity

    EPA Science Inventory

    Characterization of the potential adverse effects is lacking for tens of thousands of chemicals that are present in the environment, and characterization of developmental neurotoxicity (DNT) hazard lags behind that of other adverse outcomes (e.g. hepatotoxicity). This is due in p...

  10. Developmental Neurotoxicity of Traffic-Related Air Pollution: Focus on Autism.

    PubMed

    Costa, Lucio G; Chang, Yu-Chi; Cole, Toby B

    2017-06-01

    Epidemiological and animal studies suggest that air pollution may negatively affect the central nervous system (CNS) and contribute to CNS diseases. Traffic-related air pollution is a major contributor to global air pollution, and diesel exhaust (DE) is its most important component. Several studies suggest that young individuals may be particularly susceptible to air pollution-induced neurotoxicity and that perinatal exposure may cause or contribute to developmental disabilities and behavioral abnormalities. In particular, a number of recent studies have found associations between exposures to traffic-related air pollution and autism spectrum disorders (ASD), which are characterized by impairment in socialization and in communication and by the presence of repetitive and unusual behaviors. The cause(s) of ASD are unknown, and while it may have a hereditary component, environmental factors are increasingly suspected as playing a pivotal role in its etiology, particularly in genetically susceptible individuals. Autistic children present higher levels of neuroinflammation and systemic inflammation, which are also hallmarks of exposure to traffic-related air pollution. Gene-environment interactions may play a relevant role in determining individual susceptibility to air pollution developmental neurotoxicity. Given the worldwide presence of elevated air pollution, studies on its effects and mechanisms on the developing brain, genetic susceptibility, role in neurodevelopmental disorders, and possible therapeutic interventions are certainly warranted.

  11. Neurotoxicity fingerprinting of venoms using on-line microfluidic AChBP profiling.

    PubMed

    Slagboom, Julien; Otvos, Reka A; Cardoso, Fernanda C; Iyer, Janaki; Visser, Jeroen C; van Doodewaerd, Bjorn R; McCleary, Ryan J R; Niessen, Wilfried M A; Somsen, Govert W; Lewis, Richard J; Kini, R Manjunatha; Smit, August B; Casewell, Nicholas R; Kool, Jeroen

    2018-06-15

    Venoms from snakes are rich sources of highly active proteins with potent affinity towards a variety of enzymes and receptors. Of the many distinct toxicities caused by envenomation, neurotoxicity plays an important role in the paralysis of prey by snakes as well as by venomous sea snails and insects. In order to improve the analytical discovery component of venom toxicity profiling, this paper describes the implementation of microfluidic high-resolution screening (HRS) to obtain neurotoxicity fingerprints from venoms that facilitates identification of the neurotoxic components of envenomation. To demonstrate this workflow, 47 snake venoms were profiled using the acetylcholine binding protein (AChBP) to mimic the target of neurotoxic proteins, in particular nicotinic acetylcholine receptors (nAChRs). In the microfluidic HRS system, nanoliquid chromatographic (nanoLC) separations were on-line connected to both AChBP profiling and parallel mass spectrometry (MS). For virtually all neurotoxic elapid snake venoms tested, we obtained bioactivity fingerprints showing major and minor bioactive zones containing masses consistent with three-finger toxins (3FTxs), whereas, viperid and colubrid venoms showed little or no detectable bioactivity. Our findings demonstrate that venom interactions with AChBP correlate with the severity of neurotoxicity observed following human envenoming by different snake species. We further, as proof of principle, characterized bioactive venom peptides from a viperid (Daboia russelli) and an elapid (Aspidelaps scutatus scutatus) snake by nanoLC-MS/MS, revealing that different toxin classes interact with the AChBP, and that this binding correlates with the inhibition of α7-nAChR in calcium-flux cell-based assays. The on-line post-column binding assay and subsequent toxin characterization methodologies described here provide a new in vitro analytic platform for rapidly investigating neurotoxic snake venom proteins. Copyright © 2018 The Author

  12. Developmental Neurotoxicity of Methamidophos in the Embryo-Larval Stages of Zebrafish.

    PubMed

    He, Xiaowei; Gao, Jiawei; Dong, Tianyu; Chen, Minjian; Zhou, Kun; Chang, Chunxin; Luo, Jia; Wang, Chao; Wang, Shoulin; Chen, Daozhen; Zhou, Zuomin; Tian, Ying; Xia, Yankai; Wang, Xinru

    2016-12-28

    Methamidophos is a representative organophosphate insecticide. The knowledge of its developmental neurotoxicity is limited, especially for zebrafish in the early stages of their life. Four hour post-fertilization (hpf) zebrafish embryos were exposed to several environmentally relevant concentrations of methamidophos (0, 25, and 500 μg/L) for up to 72 hpf. Locomotor behavior was then studied in the zebrafish larvae at this timepoint. Acridine orange (AO) staining was carried out in the zebrafish larvae, and the mRNA levels of genes associated with neural development ( mbp and syn2a ) were analyzed by reverse transcription-polymerase chain reaction (RT-PCR). The number of escape responders for mechanical stimulation was significantly decreased in exposed groups. AO staining showed noticeable signs of apoptosis mainly in the brain. In addition, the mRNA levels of mbp and syn2a were both significantly down-regulated in exposed groups. Our study provides the first evidence that methamidophos exposure can cause developmental neurotoxicity in the early stages of zebrafish life, which may be caused by the effect of methamidophos on neurodevelopmental genes and the activation of cell apoptosis in the brain.

  13. Gene Expression Changes in Developing Zebrafish as Potential Markers for Rapid Developmental Neurotoxicity Screening

    EPA Science Inventory

    Sparse information exists on many chemicals to guide developmental neurotoxicity (DNT) risk assessments. As DNT testing using rodents is laborious and expensive, alternative species such as zebrafish are being adapted for toxicity screening. Assessing the DNT potential of chem...

  14. International STakeholder NETwork (ISTNET): Creating a Developmental Neurotoxicity Testing (DNT) Roadmap for Regulatory Purposes

    EPA Science Inventory

    A major problem in developmental neurotoxicity (DNT) risk assessment is the lack of toxicological hazard information for most compounds. Therefore, new approaches are being considered to provide adequate experimental data that allow regulatory decisions. This process requires a m...

  15. The classification of motor neuron defects in the zebrafish embryo toxicity test (ZFET) as an animal alternative approach to assess developmental neurotoxicity.

    PubMed

    Muth-Köhne, Elke; Wichmann, Arne; Delov, Vera; Fenske, Martina

    2012-07-01

    Rodents are widely used to test the developmental neurotoxicity potential of chemical substances. The regulatory test procedures are elaborate and the requirement of numerous animals is ethically disputable. Therefore, non-animal alternatives are highly desirable, but appropriate test systems that meet regulatory demands are not yet available. Hence, we have developed a new developmental neurotoxicity assay based on specific whole-mount immunostainings of primary and secondary motor neurons (using the monoclonal antibodies znp1 and zn8) in zebrafish embryos. By classifying the motor neuron defects, we evaluated the severity of the neurotoxic damage to individual primary and secondary motor neurons caused by chemical exposure and determined the corresponding effect concentration values (EC₅₀). In a proof-of-principle study, we investigated the effects of three model compounds thiocyclam, cartap and disulfiram, which show some neurotoxicity-indicating effects in vertebrates, and the positive controls ethanol and nicotine and the negative controls 3,4-dichloroaniline (3,4-DCA) and triclosan. As a quantitative measure of the neurotoxic potential of the test compounds, we calculated the ratios of the EC₅₀ values for motor neuron defects and the cumulative malformations, as determined in a zebrafish embryo toxicity test (zFET). Based on this index, disulfiram was classified as the most potent and thiocyclam as the least potent developmental neurotoxin. The index also confirmed the control compounds as positive and negative neurotoxicants. Our findings demonstrate that this index can be used to reliably distinguish between neurotoxic and non-neurotoxic chemicals and provide a sound estimate for the neurodevelopmental hazard potential of a chemical. The demonstrated method can be a feasible approach to reduce the number of animals used in developmental neurotoxicity evaluation procedures. Copyright © 2012 Elsevier Inc. All rights reserved.

  16. Alternative Test Methods for Developmental Neurotoxicity: A History and Path Forward (OECD EFSA workshop)

    EPA Science Inventory

    Exposure to environmental contaminants is well documented to adversely impact the development of the nervous system. However, the time, animal and resource intensive EPA and OECD testing guideline methods for developmental neurotoxicity (DNT) are not a viable solution to characte...

  17. UNDERTAKING POSITIVE CONTROL STUDIES AS PART OF DEVELOPMENTAL NEUROTOXICITY TESTING: A REPORT FROM THE ILSI RESEARCH FOUNDATION/RISK SCIENCE INSTITUTE EXPERT WORKING GROUP ON NEURODEVELOPMENTAL ENDPOINTS

    EPA Science Inventory

    Developmental neurotoxicity testing involves functional and neurohistological assessments in offspring during and following maternal and/or neonatal exposure. Data from positive control studies are an integral component in developmental neurotoxicity risk assessments. Positive ...

  18. Developmental neurotoxicity of traffic-related air pollution: focus on autism

    PubMed Central

    Costa, Lucio G.; Chang, Yu-Chi; Cole, Toby B.

    2018-01-01

    Purpose of Review Epidemiological and animal studies suggest that air pollution may negatively affect the central nervous system (CNS) and contribute to CNS diseases. Traffic-related air pollution is a major contributor to global air pollution, and diesel exhaust (DE) is its most important component. Recent findings Several studies suggest that young individuals may be particularly susceptible to air pollution-induced neurotoxicity, and that perinatal exposure may cause or contribute to developmental disabilities and behavioral abnormalities. In particular, a number of recent studies have found associations between exposures to traffic-related air pollution and autism spectrum disorders (ASD), which are characterized by impairment in socialization and in communication, and by the presence of repetitive and unusual behaviors. The cause(s) of ASD are unknown, and while it may have a hereditary component, environmental factors are increasingly suspected as playing a pivotal role in its etiology, particularly in genetically susceptible individuals. Summary Autistic children present higher levels of neuroinflammation and systemic inflammation, which are also hallmarks of exposure to traffic-related air pollution. Gene-environment interactions may play a relevant role in determining individual susceptibility to air pollution developmental neurotoxicity. Given the worldwide presence of elevated air pollution, studies on its effects and mechanisms on the developing brain, genetic susceptibility, role in neurodevelopmental disorders, and possible therapeutic interventions, are certainly warranted. PMID:28417440

  19. Conference Report: Advancing the Science of Developmental Neurotoxicity (DNT) Testing for Better Safety Evaluation

    EPA Science Inventory

    1. Introduction The 3rd International Conference on Alternatives for Developmental Neurotoxicity Testing (DNT3), organized by the European Centre for the Validation of Alternative Methods (ECVAM), the Joint Research Centre of the European Commission, was held from May 10 -13, 20...

  20. Webinar Presentation: Using in Vitro and in Vivo Models to Inform Understanding of Developmental Neurotoxicity

    EPA Pesticide Factsheets

    This presentation, Using in Vitro and in Vivo Models to Inform Understanding of Developmental Neurotoxicity, was given at the NIEHS/EPA Children's Centers 2015 Webinar Series: Interdisciplinary Approaches to Neurodevelopment held on Sept. 9, 2015.

  1. Ultraviolet Photolysis of Chlorpyrifos: Developmental Neurotoxicity Modeled in PC12 Cells

    PubMed Central

    Slotkin, Theodore A.; Seidler, Frederic J.; Wu, Changlong; MacKillop, Emiko A.; Linden, Karl G.

    2009-01-01

    Background Ultraviolet photodegradation products from pesticides form both in the field and during water treatment. Objectives We evaluated the photolytic breakdown of the organophosphate pesticide chlorpyrifos (CPF) in terms of both the chemical entities generated by low-pressure ultraviolet C irradiation and their potential as developmental neurotoxicants. Methods We separated by-products using high-performance liquid chromatography and characterized them by gas chromatography/mass spectrometry. We assessed neurotoxicity in neuronotypic PC12 cells, both in the undifferentiated state and during differentiation. Results Photodegradation of CPF in methanol solution generated CPF oxon and trichloropyridinol, products known to retain developmental neurotoxicant actions, as well as a series of related organophosphate and phosphorothionate derivatives. Exposure conditions that led to 50% degradation of CPF thus did not reduce developmental neurotoxicity. The degradation mixture inhibited DNA synthesis in undifferentiated cells to the same extent as native CPF. In differentiating cells, the products likewise retained the full ability to elicit shortfalls in cell number and corresponding effects on cell growth and neurite formation. When the exposure was prolonged to the point where 70% of the CPF was degraded, the adverse effects on PC12 cells were no longer evident; however, these conditions were sufficiently severe to generate toxic products from the methanol vehicle. Conclusions Our results indicate that field conditions or remediation treatments that degrade a significant proportion of the CPF do not necessarily produce inactive products and, indeed, may elicit formation of even more toxic chemicals that are more water soluble and thus have greater field mobility than CPF itself. PMID:19337505

  2. LEARNING AND MEMORY TESTS IN DEVELOPMENTAL NEUROTOXICITY TESTING: A CROSS-LABORATORY COMPARISON OF CONTROL DATA.

    EPA Science Inventory

    The US EPA Developmental Neurotoxicity (DNT) Study Test Guideline (OPPTS 870.6300) calls for functional tests to assess the impact of chemicals on cognitive function in offspring following maternal exposure. A test of associative learning and memory is to be conducted around th...

  3. Developmental Neurotoxicity Study of Dietary Bisphenol A in Sprague-Dawley Rats

    PubMed Central

    Stump, Donald G.; Beck, Melissa J.; Radovsky, Ann; Garman, Robert H.; Freshwater, Lester L.; Sheets, Larry P.; Marty, M. Sue; Waechter, John M.; Dimond, Stephen S.; Van Miller, John P.; Shiotsuka, Ronald N.; Beyer, Dieter; Chappelle, Anne H.; Hentges, Steven G.

    2010-01-01

    This study was conducted to determine the potential of bisphenol A (BPA) to induce functional and/or morphological effects to the nervous system of F1 offspring from dietary exposure during gestation and lactation according to the Organization for Economic Cooperation and Development and U.S. Environmental Protection Agency guidelines for the study of developmental neurotoxicity. BPA was offered to female Sprague-Dawley Crl:CD (SD) rats (24 per dose group) and their litters at dietary concentrations of 0 (control), 0.15, 1.5, 75, 750, and 2250 ppm daily from gestation day 0 through lactation day 21. F1 offspring were evaluated using the following tests: detailed clinical observations (postnatal days [PNDs] 4, 11, 21, 35, 45, and 60), auditory startle (PNDs 20 and 60), motor activity (PNDs 13, 17, 21, and 61), learning and memory using the Biel water maze (PNDs 22 and 62), and brain and nervous system neuropathology and brain morphometry (PNDs 21 and 72). For F1 offspring, there were no treatment-related neurobehavioral effects, nor was there evidence of neuropathology or effects on brain morphometry. Based on maternal and offspring body weight reductions, the no-observed-adverse-effect level (NOAEL) for systemic toxicity was 75 ppm (5.85 and 13.1 mg/kg/day during gestation and lactation, respectively), with no treatment-related effects at lower doses or nonmonotonic dose responses observed for any parameter. There was no evidence that BPA is a developmental neurotoxicant in rats, and the NOAEL for developmental neurotoxicity was 2250 ppm, the highest dose tested (164 and 410 mg/kg/day during gestation and lactation, respectively). PMID:20164145

  4. Recommendations for Developing Alternative Test Methods for Screening and Prioritization of Chemicals for Developmental Neurotoxicity

    EPA Science Inventory

    Developmental neurotoxicity testing (DNT) is perceived by many stakeholders to be an area in critical need of alternative methods to current animal testing protocols and gUidelines. An immediate goal is to develop test methods that are capable of screening large numbers of chemic...

  5. Neural Progenitor Cells as Models for High-Throughput Screens of Developmental Neurotoxicity: State of the Science

    EPA Science Inventory

    In vitro, high-throughput approaches have been widely recommended as an approach to screen chemicals for the potential to cause developmental neurotoxicity and prioritize them for additional testing. The choice of cellular models for such an approach will have important ramificat...

  6. Induced pluripotent stem cell-derived neuron as a human model for testing environmentally induced developmental neurotoxicity

    EPA Science Inventory

    Induced pluripotent stem cell-derived neurons as a human model for testing environmentally induced developmental neurotoxicity Ingrid L. Druwe1, Timothy J. Shafer2, Kathleen Wallace2, Pablo Valdivia3 ,and William R. Mundy2. 1University of North Carolina, Curriculum in Toxicology...

  7. Anchorage Kindergarten Profile: Implementing the Alaska Kindergarten Developmental Profile.

    ERIC Educational Resources Information Center

    Fenton, Ray

    This paper discusses the development of the Anchorage Kindergarten Developmental Profile in the context of the Alaska Kindergarten Developmental Profile and presents some evaluation results from studies of the Anchorage measure. Alaska mandated the completion of an Alaska Developmental Profile (ADP) on each kindergarten student and each student…

  8. Markers of murine embryonic and neural stem cells, neurons and astrocytes: reference points for developmental neurotoxicity testing

    EPA Science Inventory

    Developmental neurotoxicity (DNT) is a significant concern for environmental chemicals, as well as for food and drug constituents. The sensitivity of animal-based DNT models is unclear, and they are expensive and time consuming. Murine embryonic stem cells (mESC) recapitulate sev...

  9. A 3-dimensional human embryonic stem cell (hESC)-derived model to detect developmental neurotoxicity of nanoparticles.

    PubMed

    Hoelting, Lisa; Scheinhardt, Benjamin; Bondarenko, Olesja; Schildknecht, Stefan; Kapitza, Marion; Tanavde, Vivek; Tan, Betty; Lee, Qian Yi; Mecking, Stefan; Leist, Marcel; Kadereit, Suzanne

    2013-04-01

    Nanoparticles (NPs) have been shown to accumulate in organs, cross the blood-brain barrier and placenta, and have the potential to elicit developmental neurotoxicity (DNT). Here, we developed a human embryonic stem cell (hESC)-derived 3-dimensional (3-D) in vitro model that allows for testing of potential developmental neurotoxicants. Early central nervous system PAX6(+) precursor cells were generated from hESCs and differentiated further within 3-D structures. The 3-D model was characterized for neural marker expression revealing robust differentiation toward neuronal precursor cells, and gene expression profiling suggested a predominantly forebrain-like development. Altered neural gene expression due to exposure to non-cytotoxic concentrations of the known developmental neurotoxicant, methylmercury, indicated that the 3-D model could detect DNT. To test for specific toxicity of NPs, chemically inert polyethylene NPs (PE-NPs) were chosen. They penetrated deep into the 3-D structures and impacted gene expression at non-cytotoxic concentrations. NOTCH pathway genes such as HES5 and NOTCH1 were reduced in expression, as well as downstream neuronal precursor genes such as NEUROD1 and ASCL1. FOXG1, a patterning marker, was also reduced. As loss of function of these genes results in severe nervous system impairments in mice, our data suggest that the 3-D hESC-derived model could be used to test for Nano-DNT.

  10. A critical review of neonicotinoid insecticides for developmental neurotoxicity

    PubMed Central

    Sheets, Larry P.; Li, Abby A.; Minnema, Daniel J.; Collier, Richard H.; Creek, Moire R.; Peffer, Richard C.

    2016-01-01

    Abstract A comprehensive review of published and previously unpublished studies was performed to evaluate the neonicotinoid insecticides for evidence of developmental neurotoxicity (DNT). These insecticides have favorable safety profiles, due to their preferential affinity for nicotinic receptor (nAChR) subtypes in insects, poor penetration of the mammalian blood–brain barrier, and low application rates. Nevertheless, examination of this issue is warranted, due to their insecticidal mode of action and potential exposure with agricultural and residential uses. This review identified in vitro, in vivo, and epidemiology studies in the literature and studies performed in rats in accordance with GLP standards and EPA guidelines with imidacloprid, acetamiprid, thiacloprid, clothianidin, thiamethoxam, and dinotefuran, which are all the neonicotinoids currently registered in major markets. For the guideline-based studies, treatment was administered via the diet or gavage to primiparous female rats at three dose levels, plus a vehicle control (≥20/dose level), from gestation day 0 or 6 to lactation day 21. F1 males and females were evaluated using measures of motor activity, acoustic startle response, cognition, brain morphometry, and neuropathology. The principal effects in F1 animals were associated with decreased body weight (delayed sexual maturation, decreased brain weight, and morphometric measurements) and acute toxicity (decreased activity during exposure) at high doses, without neuropathology or impaired cognition. No common effects were identified among the neonicotinoids that were consistent with DNT or the neurodevelopmental effects associated with nicotine. Findings at high doses were associated with evidence of systemic toxicity, which indicates that these insecticides do not selectively affect the developing nervous system. PMID:26513508

  11. A critical review of neonicotinoid insecticides for developmental neurotoxicity.

    PubMed

    Sheets, Larry P; Li, Abby A; Minnema, Daniel J; Collier, Richard H; Creek, Moire R; Peffer, Richard C

    2016-02-01

    A comprehensive review of published and previously unpublished studies was performed to evaluate the neonicotinoid insecticides for evidence of developmental neurotoxicity (DNT). These insecticides have favorable safety profiles, due to their preferential affinity for nicotinic receptor (nAChR) subtypes in insects, poor penetration of the mammalian blood-brain barrier, and low application rates. Nevertheless, examination of this issue is warranted, due to their insecticidal mode of action and potential exposure with agricultural and residential uses. This review identified in vitro, in vivo, and epidemiology studies in the literature and studies performed in rats in accordance with GLP standards and EPA guidelines with imidacloprid, acetamiprid, thiacloprid, clothianidin, thiamethoxam, and dinotefuran, which are all the neonicotinoids currently registered in major markets. For the guideline-based studies, treatment was administered via the diet or gavage to primiparous female rats at three dose levels, plus a vehicle control (≥20/dose level), from gestation day 0 or 6 to lactation day 21. F1 males and females were evaluated using measures of motor activity, acoustic startle response, cognition, brain morphometry, and neuropathology. The principal effects in F1 animals were associated with decreased body weight (delayed sexual maturation, decreased brain weight, and morphometric measurements) and acute toxicity (decreased activity during exposure) at high doses, without neuropathology or impaired cognition. No common effects were identified among the neonicotinoids that were consistent with DNT or the neurodevelopmental effects associated with nicotine. Findings at high doses were associated with evidence of systemic toxicity, which indicates that these insecticides do not selectively affect the developing nervous system.

  12. In vitro acute and developmental neurotoxicity screening: an overview of cellular platforms and high-throughput technical possibilities.

    PubMed

    Schmidt, Béla Z; Lehmann, Martin; Gutbier, Simon; Nembo, Erastus; Noel, Sabrina; Smirnova, Lena; Forsby, Anna; Hescheler, Jürgen; Avci, Hasan X; Hartung, Thomas; Leist, Marcel; Kobolák, Julianna; Dinnyés, András

    2017-01-01

    Neurotoxicity and developmental neurotoxicity are important issues of chemical hazard assessment. Since the interpretation of animal data and their extrapolation to man is challenging, and the amount of substances with information gaps exceeds present animal testing capacities, there is a big demand for in vitro tests to provide initial information and to prioritize for further evaluation. During the last decade, many in vitro tests emerged. These are based on animal cells, human tumour cell lines, primary cells, immortalized cell lines, embryonic stem cells, or induced pluripotent stem cells. They differ in their read-outs and range from simple viability assays to complex functional endpoints such as neural crest cell migration. Monitoring of toxicological effects on differentiation often requires multiomics approaches, while the acute disturbance of neuronal functions may be analysed by assessing electrophysiological features. Extrapolation from in vitro data to humans requires a deep understanding of the test system biology, of the endpoints used, and of the applicability domains of the tests. Moreover, it is important that these be combined in the right way to assess toxicity. Therefore, knowledge on the advantages and disadvantages of all cellular platforms, endpoints, and analytical methods is essential when establishing in vitro test systems for different aspects of neurotoxicity. The elements of a test, and their evaluation, are discussed here in the context of comprehensive prediction of potential hazardous effects of a compound. We summarize the main cellular characteristics underlying neurotoxicity, present an overview of cellular platforms and read-out combinations assessing distinct parts of acute and developmental neurotoxicology, and highlight especially the use of stem cell-based test systems to close gaps in the available battery of tests.

  13. Comments from the Developmental Neurotoxicology Committee of the Japanese Teratology Society on the OECD Guideline for the Testing of Chemicals, Proposal for a New Guideline 426, Developmental Neurotoxicity Study, Draft Document (October 2006 version), and on the Draft Document of the Retrospective Performance Assessment of the Draft Test Guideline 426 on Developmental Neurotoxicity.

    PubMed

    Ema, Makoto; Fukui, Yoshihiro; Aoyama, Hiroaki; Fujiwara, Michio; Fuji, Junichiro; Inouye, Minoru; Iwase, Takayuki; Kihara, Takahide; Oi, Akihide; Otani, Hiroki; Shinomiya, Mitsuhiro; Sugioka, Kozo; Yamano, Tsunekazu; Yamashita, Keisuke H; Tanimura, Takashi

    2007-06-01

    In October 2006, a new revision of the draft guideline (OECD Guideline for the Testing of Chemicals, Proposal for a New Guideline 426. Developmental Neurotoxicity Study) and Draft Document of the Retrospective Performance Assessment (RPA) of the Draft Test Guideline 426 on Developmental Neurotoxicity were distributed following incorporation of the results of the Expert Consultation Meeting in Tokyo on May 24-26, 2005. The draft guideline consists of 50 paragraphs and an appendix with 102 references; and the draft RPA consists of 37 paragraphs with 109 references. National coordinators were requested to arrange for national expert reviews of these draft documents in their member countries. Members of the Developmental Neurotoxicology (DNT) Committee of the Japanese Teratology Society (JTS) reviewed, discussed, and commented on the draft Test Guideline Proposal. The DNT Committee of the JTS also commented on the draft document of the RPA. These comments were sent to the OECD Secretariat. The DNT Committee of the JTS expects the comments to be useful for the finalization of these draft documents.

  14. BRAIN DEVELOPMENT AND METHYLMERCURY: UNDERESTIMATION OF NEUROTOXICITY

    PubMed Central

    Grandjean, Philippe; Herz, Katherine T.

    2011-01-01

    Methylmercury is now recognized as an important developmental neurotoxicant, though this insight developed slowly over many decades. Developmental neurotoxicity was first reported in a Swedish case report in 1952, and from a serious outbreak in Minamata, Japan a few years later. While the infant suffered congenital poisoning, the mother was barely harmed, thus reflecting a unique vulnerability of the developing nervous system. Nonetheless, exposure limits for this environmental chemical were based solely on adult toxicity until 50 years after the first report on developmental neurotoxicity. Even current evidence is affected by uncertainty, most importantly by imprecision of the exposure assessment in epidemiological studies. Detailed calculations suggest that the relative imprecision may be as much as 50%, or greater, thereby substantially biasing the results toward the null. In addition, as methylmercury exposure usually originates from fish and seafood that also contains essential nutrients, so-called negative confounding may occur. Thus, the beneficial effects of the nutrients may appear to dampen the toxicity, unless proper adjustment is included in the analysis to reveal the true extent of adverse effects. These problems delayed the recognition of low-level methylmercury neurotoxicity. However, such problems are not unique, and many other industrial compounds are thought to cause developmental neurotoxicity, mostly with less epidemiological support than methylmercury. The experience obtained with methylmercury should therefore be taken into account when evaluating the evidence for other substances suspected of being neurotoxic. PMID:21259267

  15. EVALUATION OF HUMAN NEURAL PROGENITOR CELLS FOR DEVELOPMENTAL NEUROTOXICITY SCREENING: TIME COURSE OF EFFECTS ON CELL PROLIFERATION AND VIABILITY.

    EPA Science Inventory

    Current testing methods for developmental neurotoxicity (DNT) make evaluation of the effects of large numbers of chemicals impractical and prohibitively expensive. As such, we are evaluating human neural progenitor cells (NPCs) as a screen for DNT. ReNcell CX (ReN CX) cells are a...

  16. Comparative developmental neurotoxicity of organophosphates in vivo: transcriptional responses of pathways for brain cell development, cell signaling, cytotoxicity and neurotransmitter systems.

    PubMed

    Slotkin, Theodore A; Seidler, Frederic J

    2007-05-30

    Organophosphates affect mammalian brain development through a variety of mechanisms beyond their shared property of cholinesterase inhibition. We used microarrays to characterize similarities and differences in transcriptional responses to chlorpyrifos and diazinon, assessing defined gene groupings for the pathways known to be associated with the mechanisms and/or outcomes of chlorpyrifos-induced developmental neurotoxicity. We exposed neonatal rats to daily doses of chlorpyrifos (1mg/kg) or diazinon (1 or 2mg/kg) on postnatal days 1-4 and evaluated gene expression profiles in brainstem and forebrain on day 5; these doses produce little or no cholinesterase inhibition. We evaluated pathways for general neural cell development, cell signaling, cytotoxicity and neurotransmitter systems, and identified significant differences for >60% of 252 genes. Chlorpyrifos elicited major transcriptional changes in genes involved in neural cell growth, development of glia and myelin, transcriptional factors involved in neural cell differentiation, cAMP-related cell signaling, apoptosis, oxidative stress, excitotoxicity, and development of neurotransmitter synthesis, storage and receptors for acetylcholine, serotonin, norepinephrine and dopamine. Diazinon had similar effects on many of the same processes but also showed major differences from chlorpyrifos. Our results buttress the idea that different organophosphates target multiple pathways involved in neural cell development but also that they deviate in key aspects that may contribute to disparate neurodevelopmental outcomes. Equally important, these pathways are compromised at exposures that are unrelated to biologically significant cholinesterase inhibition and its associated signs of systemic toxicity. The approach used here demonstrates how planned comparisons with microarrays can be used to screen for developmental neurotoxicity.

  17. Comparative Developmental Neurotoxicity of Organophosphates In Vivo: Transcriptional Responses of Pathways for Brain Cell Development, Cell Signaling, Cytotoxicity and Neurotransmitter Systems

    PubMed Central

    Slotkin, Theodore A.; Seidler, Frederic J.

    2007-01-01

    Organophosphates affect mammalian brain development through a variety of mechanisms beyond their shared property of cholinesterase inhibition. We used microarrays to characterize similarities and differences in transcriptional responses to chlorpyrifos and diazinon, assessing defined gene groupings for the pathways known to be associated with the mechanisms and/or outcomes of chlorpyrifos-induced developmental neurotoxicity. We exposed neonatal rats to daily doses of chlorpyrifos (1 mg/kg) or diazinon (1 or 2 mg/kg) on postnatal days 1-4 and evaluated gene expression profiles in brainstem and forebrain on day 5; these doses produce little or no cholinesterase inhibition. We evaluated pathways for general neural cell development, cell signaling, cytotoxicity and neurotransmitter systems, and identified significant differences for >60% of 252 genes. Chlorpyrifos elicited major transcriptional changes in genes involved in neural cell growth, development of glia and myelin, transcriptional factors involved in neural cell differentiation, cAMP-related cell signaling, apoptosis, oxidative stress, excitotoxicity, and development of neurotransmitter synthesis, storage and receptors for acetylcholine, serotonin, norepinephrine and dopamine. Diazinon had similar effects on many of the same processes but also showed major differences from chlorpyrifos. Our results buttress the idea that different organophosphates target multiple pathways involved in neural cell development but also that they deviate in key aspects that may contribute to disparate neurodevelopmental outcomes. Equally important, these pathways are compromised at exposures that are unrelated to biologically significant cholinesterase inhibition and its associated signs of systemic toxicity. The approach used here demonstrates how planned comparisons with microarrays can be used to screen for developmental neurotoxicity. PMID:17452286

  18. Design and validation of an ontology-driven animal-free testing strategy for developmental neurotoxicity testing.

    PubMed

    Hessel, Ellen V S; Staal, Yvonne C M; Piersma, Aldert H

    2018-03-13

    Developmental neurotoxicity entails one of the most complex areas in toxicology. Animal studies provide only limited information as to human relevance. A multitude of alternative models have been developed over the years, providing insights into mechanisms of action. We give an overview of fundamental processes in neural tube formation, brain development and neural specification, aiming at illustrating complexity rather than comprehensiveness. We also give a flavor of the wealth of alternative methods in this area. Given the impressive progress in mechanistic knowledge of human biology and toxicology, the time is right for a conceptual approach for designing testing strategies that cover the integral mechanistic landscape of developmental neurotoxicity. The ontology approach provides a framework for defining this landscape, upon which an integral in silico model for predicting toxicity can be built. It subsequently directs the selection of in vitro assays for rate-limiting events in the biological network, to feed parameter tuning in the model, leading to prediction of the toxicological outcome. Validation of such models requires primary attention to coverage of the biological domain, rather than classical predictive value of individual tests. Proofs of concept for such an approach are already available. The challenge is in mining modern biology, toxicology and chemical information to feed intelligent designs, which will define testing strategies for neurodevelopmental toxicity testing. Copyright © 2018 Elsevier Inc. All rights reserved.

  19. Neurotoxicity profile of supermethrin, a new pyrethroid insecticide.

    PubMed

    Hornychova, M; Frantik, E; Kubat, J; Formanek, J

    1995-11-01

    The use of a standard two-tier neurotoxicity screening procedure in the context of risk assessment is exemplified. Testing of a new pyrethroid in rats addressed the following sequence of questions: Does the substance evoke neurotoxic symptoms in sublethal doses? Do these symptoms reflect a primary neurotropic action? What are the dynamic characteristics of injury, the clinical profile of effect, and the relative potency of the tested substance compared to similar compounds? - The testing protocol is an animal analogue of a systematic neurological and psychological examination in man. First tier tests (structured observation, motor activity measurement, simple neurological examination) were applied after the first dose, during repeated dosing phase and in the restitution phase. Facultative tests for the second-tier examination (motor activity pattern, learning/retention test, evoked potentials, dynamic motor performance) were selected on the basis of effects revealed by the first-tier testing. Supermethrin evoked acute neurotoxicity in sublethal doses, ranging from 1/30 to 1/15 of LD50. The clinical pattern was similar to other cyano-substituted pyrethroids. Behavioural inhibition was transient and complete tolerance to it developed after 4-week repeated dosing. No indications of long-lasting changes in neuronal excitability or in learning and memory processes were found. Ataxia and excitomotoric phenomena dominated both the acute and the subchronic picture. Marked and persistent motor disturbances, including symptoms of lower motoneuron injury, were limited to individual animals of the highest, near-lethal dose group (27 mg-kg-1). Compared to lambda-cyhalothrin, the effects of supermethrin were 2 to 3 times weaker, disappeared more rapidly, cumulated less, and had higher tendency to tolerance.

  20. IDENTIFICATION AND INTERPRETATION OF DEVELOPMENTAL NEUROTOXICITY EFFECTS: A REPORT FROM THE ILSI RESEARCH FOUNDATION/RISK SCIENCE INSTITUTE EXPERT WORKING GROUP ON NEURODEVELOPMENTAL ENDPOINTS

    EPA Science Inventory

    The reliable detection, measurement, and interpretation of treatment-related developmental neurotoxicity (DNT) effects depend on appropriate study design and execution, using scientifically established methodologies, with appropriate controls to minimize confounding factors. App...

  1. Exposure to PFOS, PFHxS, or PFHxA, but not GenX, Nafion BP1, or ADONA, Elicits Developmental Neurotoxicity in Larval Zebrafish

    EPA Science Inventory

    Exposure to polyfluoroalkyl substances (PFAS) like perfluorooctane sulfonic acid (PFOS) or perfluorooctanoic acid (PFOA) are associated with developmental toxicity, neurotoxicity, and carcinogenesis. Legacy PFAS have therefore been replaced with shorter carbon chain and polyfluor...

  2. Alternative Test Methods for Developmental Neurotoxicity: A ...

    EPA Pesticide Factsheets

    Exposure to environmental contaminants is well documented to adversely impact the development of the nervous system. However, the time, animal and resource intensive EPA and OECD testing guideline methods for developmental neurotoxicity (DNT) are not a viable solution to characterizing potential chemical hazards for the thousands of untested chemicals currently in commerce. Thus, research efforts over the past decade have endeavored to develop cost-effective alternative DNT testing methods. These efforts have begun to generate data that can inform regulatory decisions. Yet there are major challenges to both the acceptance and use of this data. Major scientific challenges for DNT include development of new methods and models that are “fit for purpose”, development of a decision-use framework, and regulatory acceptance of the methods. It is critical to understand that use of data from these methods will be driven mainly by the regulatory problems being addressed. Some problems may be addressed with limited datasets, while others may require data for large numbers of chemicals, or require the development and use of new biological and computational models. For example mechanistic information derived from in vitro DNT assays can be used to inform weight of evidence (WoE) or integrated approaches to testing and assessment (IATA) approaches for chemical-specific assessments. Alternatively, in vitro data can be used to prioritize (for further testing) the thousands

  3. Assessment of learning, memory, and attention in developmental neurotoxicity regulatory studies: synthesis, commentary, and recommendations.

    PubMed

    Vorhees, Charles V; Makris, Susan L

    2015-01-01

    Cognitive tests of learning and memory (L&M) have been required by U.S. Environmental Protection Agency (EPA) developmental neurotoxicity test (DNT) guidelines for more than two decades. To evaluate the utility of these guidelines, the EPA reviewed 69 pesticide DNT studies. This review found that the DNT provided or could provide the point-of-departure for risk assessment by showing the Lowest Observable Adverse Effect Level (LOAEL) in 28 of these studies in relation to other reported end points. Among the behavioral tests, locomotor activity and auditory/acoustic startle provided the most LOAELs, and tests of cognitive function and the Functional Observational Battery (FOB) the fewest. Two issues arose from the review: (1) what is the relative utility of cognitive tests versus tests of unconditioned behavior, and (2) how might cognitive tests be improved? The EPA sponsored a symposium to address this. Bushnell reviewed studies in which both screening (locomotor activity, FOB, reflex ontogeny, etc.) and complex tests (those requiring training) were used within the same study; he found relatively little evidence that complex tests provided a LOAEL lower than screening tests (with exceptions). Levin reviewed reasons for including cognitive tests in regulatory studies and methods and evidence for the radial arm maze and its place in developmental neurotoxicity assessments. Driscoll and Strupp reviewed the value of serial reaction time operant methods for assessing executive function in developmental neurotoxicity studies. Vorhees and Williams reviewed the value of allocentric (spatial) and egocentric cognitive tests and presented methods for using the Morris water maze for spatial and the Cincinnati water maze for egocentric cognitive assessment. They also reviewed the possible use of water radial mazes. The relatively lower impact of cognitive tests in previous DNT studies in the face of the frequency of human complaints of chemical-induced cognitive dysfunction

  4. Developmental manganese neurotoxicity in rats: Cognitive deficits in allocentric and egocentric learning and memory.

    PubMed

    Amos-Kroohs, Robyn M; Davenport, Laurie L; Atanasova, Nina; Abdulla, Zuhair I; Skelton, Matthew R; Vorhees, Charles V; Williams, Michael T

    Manganese (Mn) is an essential element but neurotoxic at higher exposure levels. The effects of Mn overexposure (MnOE) on hippocampal and striatal-dependent learning and memory in rats were tested in combination with iron deficiency (FeD) and developmental stress that often co-occur with MnOE. Moderate FeD affects up to 15% of U.S. children and developmental stress is common in lower socio-economic areas where MnOE occurs. Pregnant Sprague-Dawley rats and their litters were housed in cages with or without (barren cage (BAR)) standard bedding from embryonic day (E)7 to postnatal day (P)28. Dams were fed a 90% FeD or iron sufficient (FeS) diet from E15-P28. Within each litter, separate offspring were treated with 100mg/kg Mn (MnOE) or vehicle (VEH) by gavage on alternate days from P4-28. Offspring were tested as adults in the Morris and Cincinnati water mazes. FeD and developmental stress interactively impaired spatial learning in the Morris water maze. Developmental stress and MnOE impaired learning and memory in both mazes. MnOE resulted in reduced CA1 hippocampal long-term potentiation (LTP) and increased levels of α-synuclein. Preweaning MnOE resulted in cognitive deficits on multiple domains of learning and memory accompanied by impaired LTP and α-synuclein changes, effects worsened by developmental stress. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Effect of Gestational Intake of Fisetin (3,3',4',7-Tetrahydroxyflavone) on Developmental Methyl Mercury Neurotoxicity in F1 Generation Rats.

    PubMed

    Jacob, Sherin; Thangarajan, Sumathi

    2017-06-01

    Methyl mercury (MeHg) is a developmental neurotoxin that causes irreversible cognitive damage in offspring of gestationally exposed mothers. Currently, no preventive drugs are established against MeHg developmental neurotoxicity. The neuroprotective effect of gestational administration of a flavanoid against in utero toxicity of MeHg is not explored much. Hence, the present study validated the effect of a bioactive flavanoid, fisetin, on MeHg developmental neurotoxicity outcomes in rat offspring at postnatal weaning age. Pregnant Wistar rats were simultaneously given MeHg (1.5 mg/kg b.w.) and two doses of fisetin (10 and 50 mg/kg b.w. in two separate groups) orally from gestational day (GD) 5 till parturition. Accordingly, after parturition, on postnatal day (PND) 24, weaning F 1 generation rats were studied for motor and cognitive behavioural changes. Biochemical and histopathological changes were also studied in the cerebral cortex, cerebellum and hippocampus on PND 25. Administration of fisetin during pregnancy prevented behavioural impairment due to transplacental MeHg exposure in weaning rats. Fisetin decreased the levels of oxidative stress markers, increased enzymatic and non-enzymatic antioxidant levels and increased the activity of membrane-bound ATPases and cholinergic function in F 1 generation rats. In light microscopic studies, fisetin treatment protected the specific offspring brain regions from significant morphological aberrations. Between the two doses of fisetin studied, 10 mg/kg b.w. was found to be more satisfactory and effective than 50 mg/kg b.w. The present study shows that intake of fisetin during pregnancy in rats ameliorated in utero MeHg exposure-induced neurotoxicity outcomes in postnatal weaning F 1 generation rats.

  6. Studies of (±)-3,4-methylenedioxymethamphetamine (MDMA) metabolism and disposition in rats and mice: relationship to neuroprotection and neurotoxicity profile.

    PubMed

    Mueller, Melanie; Maldonado-Adrian, Concepcion; Yuan, Jie; McCann, Una D; Ricaurte, George A

    2013-02-01

    The neurotoxicity of (±)-3,4-methylenedioxymethamphetamine (MDMA; "Ecstasy") is influenced by temperature and varies according to species. The mechanisms underlying these two features of MDMA neurotoxicity are unknown, but differences in MDMA metabolism have recently been implicated in both. The present study was designed to 1) assess the effect of hypothermia on MDMA metabolism, 2) determine whether the neuroprotective effect of hypothermia is related to inhibition of MDMA metabolism, and 3) determine if different neurotoxicity profiles in mice and rats are related to differences in MDMA metabolism and/or disposition in the two species. Rats and mice received single neurotoxic oral doses of MDMA at 25°C and 4°C, and body temperature, pharmacokinetic parameters, and serotonergic and dopaminergic neuronal markers were measured. Hypothermia did not alter MDMA metabolism in rats and only modestly inhibited MDMA metabolism in mice; however, it afforded complete neuroprotection in both species. Rats and mice metabolized MDMA in a similar pattern, with 3,4-methylenedioxyamphetamine being the major metabolite, followed by 4-hydroxy-3-methoxymethamphetamine and 3,4-dihydroxymethamphetamine, respectively. Differences between MDMA pharmacokinetics in rats and mice, including faster elimination in mice, did not account for the different profile of MDMA neurotoxicity in the two species. Taken together, the results of these studies indicate that inhibition of MDMA metabolism is not responsible for the neuroprotective effect of hypothermia in rodents, and that different neurotoxicity profiles in rats and mice are not readily explained by differences in MDMA metabolism or disposition.

  7. Studies of (±)-3,4-Methylenedioxymethamphetamine (MDMA) Metabolism and Disposition in Rats and Mice: Relationship to Neuroprotection and Neurotoxicity Profile

    PubMed Central

    Mueller, Melanie; Maldonado-Adrian, Concepcion; Yuan, Jie; McCann, Una D.

    2013-01-01

    The neurotoxicity of (±)-3,4-methylenedioxymethamphetamine (MDMA; “Ecstasy”) is influenced by temperature and varies according to species. The mechanisms underlying these two features of MDMA neurotoxicity are unknown, but differences in MDMA metabolism have recently been implicated in both. The present study was designed to 1) assess the effect of hypothermia on MDMA metabolism, 2) determine whether the neuroprotective effect of hypothermia is related to inhibition of MDMA metabolism, and 3) determine if different neurotoxicity profiles in mice and rats are related to differences in MDMA metabolism and/or disposition in the two species. Rats and mice received single neurotoxic oral doses of MDMA at 25°C and 4°C, and body temperature, pharmacokinetic parameters, and serotonergic and dopaminergic neuronal markers were measured. Hypothermia did not alter MDMA metabolism in rats and only modestly inhibited MDMA metabolism in mice; however, it afforded complete neuroprotection in both species. Rats and mice metabolized MDMA in a similar pattern, with 3,4-methylenedioxyamphetamine being the major metabolite, followed by 4-hydroxy-3-methoxymethamphetamine and 3,4-dihydroxymethamphetamine, respectively. Differences between MDMA pharmacokinetics in rats and mice, including faster elimination in mice, did not account for the different profile of MDMA neurotoxicity in the two species. Taken together, the results of these studies indicate that inhibition of MDMA metabolism is not responsible for the neuroprotective effect of hypothermia in rodents, and that different neurotoxicity profiles in rats and mice are not readily explained by differences in MDMA metabolism or disposition. PMID:23209329

  8. Developmental neurotoxicity of the organophosphorus insecticide chlorpyrifos: from clinical findings to preclinical models and potential mechanisms

    PubMed Central

    Burke, Richard D.; Todd, Spencer W.; Lumsden, Eric; Mullins, Roger J.; Mamczarz, Jacek; Fawcett, William P.; Gullapalli, Rao P.; Randall, William R.; Pereira, Edna F. R.; Albuquerque, Edson X.

    2017-01-01

    Organophosphorus (OP) insecticides are pest-control agents heavily used worldwide. Unfortunately, they are also well known for the toxic effects that they can trigger in humans. Clinical manifestations of an acute exposure of humans to OP insecticides include a well-defined cholinergic crisis that develops as a result of the irreversible inhibition of acetylcholinesterase (AChE), the enzyme that hydrolyzes the neurotransmitter acetylcholine (ACh). Prolonged exposures to levels of OP insecticides that are insufficient to trigger signs of acute intoxication, which are hereafter referred to as subacute exposures, have also been associated with neurological deficits. In particular, epidemiological studies have reported statistically significant correlations between prenatal subacute exposures to OP insecticides, including chlorpyrifos, and neurological deficits that range from cognitive impairments to tremors in childhood. The primary objectives of this article are: (i) to address the short- and long-term neurological issues that have been associated with acute and subacute exposures of humans to OP insecticides, especially early in life (ii) to discuss the translational relevance of animal models of developmental exposure to OP insecticides, and (iii) to review mechanisms that are likely to contribute to the developmental neurotoxicity of OP insecticides. Most of the discussion will be focused on chlorpyrifos, the top-selling OP insecticide in the United States and throughout the world. These points are critical for the identification and development of safe and effective interventions to counter and/or prevent the neurotoxic effects of these chemicals in the developing brain. PMID:28791702

  9. DEVELOPMENTAL NEUROTOXICITY OF PYRETHROID INSECTICIDES: CRITICAL REVIEW.

    EPA Science Inventory

    Pyrethroids are widely utilized insecticides whose primary action is the disruption of voltage-sensitive sodium channels (VSSC). Although these compounds have been in use for over 30 years and their acute neurotoxicity has been well characterized, there is considerably less info...

  10. Neurotoxicity in Aquatic Systems: Evaluation of Anthropogenic Trace Substances

    EPA Science Inventory

    The U.S. Environmental Protection Agency is evaluating methods to screen and prioritize large numbers of chemicals for developmental toxicity, as well as acute and developmental neurotoxicity. In this endeavor, one of our focuses is on contaminants found in drinking water. To exp...

  11. Developmental neurotoxicity of the organophosphorus insecticide chlorpyrifos: from clinical findings to preclinical models and potential mechanisms.

    PubMed

    Burke, Richard D; Todd, Spencer W; Lumsden, Eric; Mullins, Roger J; Mamczarz, Jacek; Fawcett, William P; Gullapalli, Rao P; Randall, William R; Pereira, Edna F R; Albuquerque, Edson X

    2017-08-01

    Organophosphorus (OP) insecticides are pest-control agents heavily used worldwide. Unfortunately, they are also well known for the toxic effects that they can trigger in humans. Clinical manifestations of an acute exposure of humans to OP insecticides include a well-defined cholinergic crisis that develops as a result of the irreversible inhibition of acetylcholinesterase (AChE), the enzyme that hydrolyzes the neurotransmitter acetylcholine (ACh). Prolonged exposures to levels of OP insecticides that are insufficient to trigger signs of acute intoxication, which are hereafter referred to as subacute exposures, have also been associated with neurological deficits. In particular, epidemiological studies have reported statistically significant correlations between prenatal subacute exposures to OP insecticides, including chlorpyrifos, and neurological deficits that range from cognitive impairments to tremors in childhood. The primary objectives of this article are: (i) to address the short- and long-term neurological issues that have been associated with acute and subacute exposures of humans to OP insecticides, especially early in life (ii) to discuss the translational relevance of animal models of developmental exposure to OP insecticides, and (iii) to review mechanisms that are likely to contribute to the developmental neurotoxicity of OP insecticides. Most of the discussion will be focused on chlorpyrifos, the top-selling OP insecticide in the United States and throughout the world. These points are critical for the identification and development of safe and effective interventions to counter and/or prevent the neurotoxic effects of these chemicals in the developing brain. This is an article for the special issue XVth International Symposium on Cholinergic Mechanisms. © 2017 International Society for Neurochemistry.

  12. Neonatal anesthetic neurotoxicity: Insight into the molecular mechanisms of long-term neurocognitive deficits.

    PubMed

    Yu, Deshui; Li, Linji; Yuan, Weiguo

    2017-03-01

    Mounting animal studies have demonstrated that almost all the clinically used general anesthetics could induce widespread neuroapoptosis in the immature brain. Alarmingly, some published findings have reported long-term neurocognitive deficits in response to early anesthesia exposure which deeply stresses the potential seriousness of developmental anesthetic neurotoxicity. However, the connection between anesthesia induced neuroapoptosis and subsequent neurocognitive deficits remains controversial. It should be noted that developmental anesthesia related neurotoxicity is not limited to neuroapoptosis. Early anesthesia exposure caused transient suppression of neurogenesis, ultrastructural abnormalities in synapse and alteration in the development of neuronal networks also could contribute to the long-term neurocognitive dysfunction. Understanding the mechanisms of developmental anesthetic neurotoxicity, especially by which anesthesia impairs brain function months after exposure, may lead to development of rational preventive and therapeutic strategies. The focus of present review is on some of those potential mechanisms that have been proposed for anesthesia induced cognitive decline. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  13. Gene expression profiles following exposure to a developmental neurotoxicant, Aroclor 1254: Pathway analysis for possible mode(s) of action

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Royland, Joyce E.; Kodavanti, Prasada Rao S.

    2008-09-01

    Epidemiological studies indicate that low levels of polychlorinated biphenyl (PCB) exposure can adversely affect neurocognitive development. In animal models, perturbations in calcium signaling, neurotransmitters, and thyroid hormones have been postulated as potential mechanisms for PCB-induced developmental neurotoxicity. In order to understand the role of these proposed mechanisms and to identify other mechanisms in PCB-induced neurotoxicity, we have chosen a global approach utilizing oligonucleotide microarrays to examine gene expression profiles in the brain following developmental exposure to Aroclor 1254 (0 or 6 mg/kg/day from gestation day 6 through postnatal day (PND) 21) in Long-Evans rats. Gene expression levels in the cerebellummore » and hippocampus from PNDs 7 and 14 animals were determined on Affymetrix rat 230A{sub 2}.0 chips. In the cerebellum, 87 transcripts were altered at PND7 compared to 27 transcripts at PND14 by Aroclor 1254 exposure, with only one transcript affected at both ages. In hippocampus, 175 transcripts and 50 transcripts were altered at PND7 and PND14, respectively, by Aroclor 1254 exposure with five genes commonly affected. Functional analysis suggests that pathways related to calcium homeostasis (Gng3, Ryr2, Trdn, Cacna1a), intracellular signaling (Camk2d, Stk17b, Pacsin2, Ryr2, Trio, Fert2, Ptk2b), axonal guidance (Lum, Mxd3, Akap11, Gucy1b3), aryl hydrocarbon receptor signaling (Nfia, Col1a2), and transcripts involved in cell proliferation (Gspt2, Cdkn1c, Ptk2b) and differentiation (Ifitm31, Hpca, Zfp260, Igsf4a, Hes5) leading to the development of nervous system were significantly altered by Aroclor 1254 exposure. Of the two brain regions examined, Aroclor 1254-induced genomic changes were greater in the hippocampus than the cerebellum. The genomic data suggests that PCB-induced neurotoxic effects were due to disruption of normal ontogenetic pattern of nervous system growth and development by altering intracellular signaling

  14. Global methylmercury exposure from seafood consumption and risk of developmental neurotoxicity: a systematic review

    PubMed Central

    Burke, Thomas A; Navas-Acien, Ana; Breysse, Patrick N; McGready, John; Fox, Mary A

    2014-01-01

    Abstract Objective To examine biomarkers of methylmercury (MeHg) intake in women and infants from seafood-consuming populations globally and characterize the comparative risk of fetal developmental neurotoxicity. Methods A search was conducted of the published literature reporting total mercury (Hg) in hair and blood in women and infants. These biomarkers are validated proxy measures of MeHg, a neurotoxin found primarily in seafood. Average and high-end biomarkers were extracted, stratified by seafood consumption context, and pooled by category. Medians for average and high-end pooled distributions were compared with the reference level established by a joint expert committee of the Food and Agriculture Organization (FAO) and the World Health Organization (WHO). Findings Selection criteria were met by 164 studies of women and infants from 43 countries. Pooled average biomarkers suggest an intake of MeHg several times over the FAO/WHO reference in fish-consuming riparians living near small-scale gold mining and well over the reference in consumers of marine mammals in Arctic regions. In coastal regions of south-eastern Asia, the western Pacific and the Mediterranean, average biomarkers approach the reference. Although the two former groups have a higher risk of neurotoxicity than the latter, coastal regions are home to the largest number at risk. High-end biomarkers across all categories indicate MeHg intake is in excess of the reference value. Conclusion There is a need for policies to reduce Hg exposure among women and infants and for surveillance in high-risk populations, the majority of which live in low-and middle-income countries. PMID:24700993

  15. Global methylmercury exposure from seafood consumption and risk of developmental neurotoxicity: a systematic review.

    PubMed

    Sheehan, Mary C; Burke, Thomas A; Navas-Acien, Ana; Breysse, Patrick N; McGready, John; Fox, Mary A

    2014-04-01

    To examine biomarkers of methylmercury (MeHg) intake in women and infants from seafood-consuming populations globally and characterize the comparative risk of fetal developmental neurotoxicity. A search was conducted of the published literature reporting total mercury (Hg) in hair and blood in women and infants. These biomarkers are validated proxy measures of MeHg, a neurotoxin found primarily in seafood. Average and high-end biomarkers were extracted, stratified by seafood consumption context, and pooled by category. Medians for average and high-end pooled distributions were compared with the reference level established by a joint expert committee of the Food and Agriculture Organization (FAO) and the World Health Organization (WHO). Selection criteria were met by 164 studies of women and infants from 43 countries. Pooled average biomarkers suggest an intake of MeHg several times over the FAO/WHO reference in fish-consuming riparians living near small-scale gold mining and well over the reference in consumers of marine mammals in Arctic regions. In coastal regions of south-eastern Asia, the western Pacific and the Mediterranean, average biomarkers approach the reference. Although the two former groups have a higher risk of neurotoxicity than the latter, coastal regions are home to the largest number at risk. High-end biomarkers across all categories indicate MeHg intake is in excess of the reference value. There is a need for policies to reduce Hg exposure among women and infants and for surveillance in high-risk populations, the majority of which live in low-and middle-income countries.

  16. Alaska Developmental Profile, 2001-2002. Summary Report.

    ERIC Educational Resources Information Center

    Fenton, Ray

    This document presents a profile of the development of Alaska kindergarten and first grade students in fall 2001. Alaska teachers completed reports for 13,688 kindergarten and first grade students at that time. Most were found to exhibit important behaviors associated with school successes on the Alaska Developmental Profile Recording Form.…

  17. Using Neural Progenitor Cells in High-Throughput Screens for Developmental Neurotoxicants: Triumphs and Tragedies

    EPA Science Inventory

    Current protocols for developmental neurotoxicity testing are insufficient to test thousands of commercial chemicals. Thus, development of highthroughput screens (HTS) to detect and prioritize chemicals that may cause developmental neurotoxicity is needed to improve protection of...

  18. Inhibition of O-linked N-acetylglucosamine transferase activity in PC12 cells - A molecular mechanism of organophosphate flame retardants developmental neurotoxicity.

    PubMed

    Gu, Yuxin; Yang, Yu; Wan, Bin; Li, Minjie; Guo, Liang-Hong

    2018-06-01

    Organophosphate flame retardants (OPFRs), as alternatives of brominated flame retardants, can cause neurodevelopmental effects similar to organophosphate pesticides. However, the molecular mechanisms underlying the toxicity remain elusive. O-linked N-acetylglucosamine (O-GlcNAc) transferase (OGT) regulates numerous neural processes through the O-GlcNAcylation modification of nuclear and cytoplasmic proteins. In this study, we aimed to investigate the molecular mechanisms accounting for the developmental neurotoxicity of OPFRs by identifying potential targets of OPFRs and the attendant effects. Twelve OPFRs were evaluated for inhibition of OGT activity using an electrochemical biosensor. Their potency differed with substituent groups. The alkyl group substituted OPFRs had no inhibitory effect. Instead, the six OPFRs substituted with aromatic or chlorinated alkyl groups inhibited OGT activity significantly, with tri-m-cresyl phosphate (TCrP) being the strongest. The six OPFRs (0-100 μM exposure) also inhibited OGT activity in PC12 cells and decreased protein O-GlcNAcylation level. Inhibition of OGT by OPFRs might be involved in the subsequent toxic effects, including intracellular reactive oxygen species (ROS), calcium level, as well as cell proliferation and autophagy. Molecular docking of the OGT/OPFR complexes provided rationales for the difference in their structure-dependent inhibition potency. Our findings may provide a new biological target of OPFRs in their neurotoxicological actions, which might be a major molecular mechanism of OPFRs developmental neurotoxicity. Copyright © 2018 Elsevier Inc. All rights reserved.

  19. Novel Methods at Molecular Level for Neurotoxicity Testing in 21st Century-Utility of Structure-Activity Relationship

    EPA Science Inventory

    Current neurotoxicity and developmental neurotoxicity testing methods for hazard identification rely on in vivo neurobehavior, neurophysiological, and gross pathology of the nervous system. These measures may not be sensitive enough to detect small changes caused by realistic ex...

  20. Developmental fluoride neurotoxicity: a systematic review and meta-analysis.

    PubMed

    Choi, Anna L; Sun, Guifan; Zhang, Ying; Grandjean, Philippe

    2012-10-01

    Although fluoride may cause neurotoxicity in animal models and acute fluoride poisoning causes neurotoxicity in adults, very little is known of its effects on children's neurodevelopment. We performed a systematic review and meta-analysis of published studies to investigate the effects of increased fluoride exposure and delayed neurobehavioral development. We searched the MEDLINE, EMBASE, Water Resources Abstracts, and TOXNET databases through 2011 for eligible studies. We also searched the China National Knowledge Infrastructure (CNKI) database, because many studies on fluoride neurotoxicity have been published in Chinese journals only. In total, we identified 27 eligible epidemiological studies with high and reference exposures, end points of IQ scores, or related cognitive function measures with means and variances for the two exposure groups. Using random-effects models, we estimated the standardized mean difference between exposed and reference groups across all studies. We conducted sensitivity analyses restricted to studies using the same outcome assessment and having drinking-water fluoride as the only exposure. We performed the Cochran test for heterogeneity between studies, Begg's funnel plot, and Egger test to assess publication bias, and conducted meta-regressions to explore sources of variation in mean differences among the studies. The standardized weighted mean difference in IQ score between exposed and reference populations was -0.45 (95% confidence interval: -0.56, -0.35) using a random-effects model. Thus, children in high-fluoride areas had significantly lower IQ scores than those who lived in low-fluoride areas. Subgroup and sensitivity analyses also indicated inverse associations, although the substantial heterogeneity did not appear to decrease. The results support the possibility of an adverse effect of high fluoride exposure on children's neurodevelopment. Future research should include detailed individual-level information on prenatal

  1. Developmental Fluoride Neurotoxicity: A Systematic Review and Meta-Analysis

    PubMed Central

    Sun, Guifan; Zhang, Ying; Grandjean, Philippe

    2012-01-01

    Background: Although fluoride may cause neurotoxicity in animal models and acute fluoride poisoning causes neurotoxicity in adults, very little is known of its effects on children’s neurodevelopment. Objective: We performed a systematic review and meta-analysis of published studies to investigate the effects of increased fluoride exposure and delayed neurobehavioral development. Methods: We searched the MEDLINE, EMBASE, Water Resources Abstracts, and TOXNET databases through 2011 for eligible studies. We also searched the China National Knowledge Infrastructure (CNKI) database, because many studies on fluoride neurotoxicity have been published in Chinese journals only. In total, we identified 27 eligible epidemiological studies with high and reference exposures, end points of IQ scores, or related cognitive function measures with means and variances for the two exposure groups. Using random-effects models, we estimated the standardized mean difference between exposed and reference groups across all studies. We conducted sensitivity analyses restricted to studies using the same outcome assessment and having drinking-water fluoride as the only exposure. We performed the Cochran test for heterogeneity between studies, Begg’s funnel plot, and Egger test to assess publication bias, and conducted meta-regressions to explore sources of variation in mean differences among the studies. Results: The standardized weighted mean difference in IQ score between exposed and reference populations was –0.45 (95% confidence interval: –0.56, –0.35) using a random-effects model. Thus, children in high-fluoride areas had significantly lower IQ scores than those who lived in low-fluoride areas. Subgroup and sensitivity analyses also indicated inverse associations, although the substantial heterogeneity did not appear to decrease. Conclusions: The results support the possibility of an adverse effect of high fluoride exposure on children’s neurodevelopment. Future research

  2. Assessment of learning, memory and attention in developmental neurotoxicity regulatory studies: Introduction.

    PubMed

    Makris, Susan L; Vorhees, Charles V

    2015-01-01

    There are a variety of chemicals, including pharmaceuticals, that alter neurobehavior following developmental exposure and guidelines for the conduct of studies to detect such effects by statute in the United States and Europe. Guidelines for Developmental Neurotoxicity Testing (DNT) studies issued by the U.S. Environmental Protection Agency (EPA) under prevailing law and European Organization for Economic Cooperation and Development (OECD) recommendations to member countries provide that such studies include a series of neurobehavioral and neuropathological assessments. Among these are assessment of cognitive function, specifically learning and memory. After reviewing 69 DNT studies submitted to the EPA, tests of learning and memory were noted to have detected the lowest observed adverse effect level (LOAELs) less frequently than behavioral tests of locomotor activity and acoustic/auditory startle, but slightly more than for the developmental Functional Observational Battery (devFOB; which is less extensive than the full FOB), but the reasons for the lower LOAEL detection rate for learning and memory assessment could not be determined. A major concern identified in the review, however, was the adequacy of the methods employed in these studies rather than on the importance of learning and memory to the proper assessment of brain function. Accordingly, a symposium was conducted to consider how the guidelines for tests of learning and memory might be improved. Four laboratories with established histories investigating the effects of chemical exposures during development on learning, memory, and attention, were invited to review the topic and offer recommendations, both theoretical and practical, on approaches to improve the assessment of these vital CNS functions. Reviewers were asked to recommend methods that are grounded in functional importance to CNS integrity, well-validated, reliable, and amenable to the context of regulatory studies as well as to basic

  3. Developmental Exposure to Valproate or Ethanol Alters Locomotor Activity and Retino-Tectal Projection Area in Zebrafish Embryos

    EPA Science Inventory

    Given the minimal developmental neurotoxicity data available for the large number of new and existing chemicals, there is a critical need for alternative methods to identify and prioritize chemicals for further testing. We outline a developmental neurotoxicity screening approach ...

  4. Developmental Neurotoxicology: History and Outline of ...

    EPA Pesticide Factsheets

    The present work provides a brief review of basic concepts in developmental neurotoxicology, as well as current representative testing guidelines for evaluating developmental neurotoxicity (DNT) of xenobiotics. Historically, DNT was initially recognized as a “functional” teratogenicity: the main concern was that prenatal and/or early postnatal exposures to chemicals during critical periods of central nervous system (CNS) development would cause later functional abnormalities of the brain. Current internationally harmonized DNT study guidelines are thus intended to predict adverse effects of test compounds on the developing CNS by observing such postnatal parameters as motor activity, startle response, and learning and memory, as well as neropathological alterations. The reliability of current DNT study guidelines and sensitivity of testing methodologies recommended in these guidelines have been confirmed by retrospective evaluations of the many international and domestic collaborative validation studies in developed nations including Japan. Invited review with brief review of basic concepts in developmental neurotoxicology, as well as current representative testing guidelines for evaluating developmental neurotoxicity (DNT) of xenobiotics.

  5. Reversible Lithium Neurotoxicity: Review of the Literature

    PubMed Central

    Netto, Ivan

    2012-01-01

    preventive measures were also described. Conclusions: Reversible lithium neurotoxicity presents with a certain clinical profile and precipitating factors for which there are appropriate preventive measures. This recognition will help in early diagnosis and prompt treatment of lithium neurotoxicity. PMID:22690368

  6. Mechanistic Insights into Neurotoxicity Induced by Anesthetics in the Developing Brain

    PubMed Central

    Lei, Xi; Guo, Qihao; Zhang, Jun

    2012-01-01

    Compelling evidence has shown that exposure to anesthetics used in the clinic can cause neurodegeneration in the mammalian developing brain, but the basis of this is not clear. Neurotoxicity induced by exposure to anesthestics in early life involves neuroapoptosis and impairment of neurodevelopmental processes such as neurogenesis, synaptogenesis and immature glial development. These effects may subsequently contribute to behavior abnormalities in later life. In this paper, we reviewed the possible mechanisms of anesthetic-induced neurotoxicity based on new in vitro and in vivo findings. Also, we discussed ways to protect against anesthetic-induced neurotoxicity and their implications for exploring cellular and molecular mechanisms of neuroprotection. These findings help in improving our understanding of developmental neurotoxicology and in avoiding adverse neurological outcomes in anesthesia practice. PMID:22837663

  7. Transformation of Developmental Neurotoxicity Data into a Structure-Searchable Relational Database

    EPA Science Inventory

    A database of neurotoxicants is critical to support the development and validation of animal alternatives for neurotoxicity. Validation of in vitro test methods can only be done using known animal and human neurotoxicants producing defined responses for neurochemical, neuropatho...

  8. Developmental neurotoxicants in e-waste: an emerging health concern.

    PubMed

    Chen, Aimin; Dietrich, Kim N; Huo, Xia; Ho, Shuk-mei

    2011-04-01

    Electronic waste (e-waste) has been an emerging environmental health issue in both developed and developing countries, but its current management practice may result in unintended developmental neurotoxicity in vulnerable populations. To provide updated information about the scope of the issue, presence of known and suspected neurotoxicants, toxicologic mechanisms, and current data gaps, we conducted this literature review. We reviewed original articles and review papers in PubMed and Web of Science regarding e-waste toxicants and their potential developmental neurotoxicity. We also searched published reports of intergovernmental and governmental agencies and nongovernmental organizations on e-waste production and management practice. We focused on the potential exposure to e-waste toxicants in vulnerable populations-that is, pregnant women and developing children-and neurodevelopmental outcomes. In addition, we summarize experimental evidence of developmental neurotoxicity and mechanisms. In developing countries where most informal and primitive e-waste recycling occurs, environmental exposure to lead, cadmium, chromium, polybrominated diphenyl ethers, polychlorinated biphenyls, and polycyclic aromatic hydrocarbons is prevalent at high concentrations in pregnant women and young children. Developmental neurotoxicity is a serious concern in these regions, but human studies of adverse effects and potential mechanisms are scarce. The unprecedented mixture of exposure to heavy metals and persistent organic pollutants warrants further studies and necessitates effective pollution control measures. Pregnant women and young children living close to informal e-waste recycling sites are at risk of possible perturbations of fetus and child neurodevelopment.

  9. Developmental neurotoxicity elicited by prenatal or postnatal chlorpyrifos exposure: effects on neurospecific proteins indicate changing vulnerabilities.

    PubMed

    Garcia, Stephanie J; Seidler, Frederic J; Slotkin, Theodore A

    2003-03-01

    The developmental neurotoxicity of the organophosphate pesticide chlorpyrifos (CPF) is thought to involve both neurons and glia, thus producing a prolonged window of vulnerability. To characterize the cell types and brain regions involved in these effects, we administered CPF to developing rats and examined neuroprotein markers for oligodendrocytes (myelin basic protein, MBP), for neuronal cell bodies (neurofilament 68 kDa, NF68), and for developing axons (neurofilament 200 kDa, NF200). Prenatal CPF administration on gestational days (GDs) 17-20 elicited an immediate (GD21) enhancement of MBP and NF68; by postnatal day (PN) 30, however, there were deficits in all three biomarkers, with the effect restricted to females. Exposure in the early postnatal period, PN1-4, did not evoke significant short-term or long-term changes in the neuroproteins. However, with treatment on PN11-14, we found reductions in MBP in the immediate posttreatment period (PN15, PN20) throughout the brain, and deficiencies across all three proteins emerged by PN30. With this regimen, males were targeted preferentially. The sex-selective effects seen here for the GD17-20 and PN11-14 regimens match those reported earlier for subsequent behavioral performance. These results indicate a shift in the populations of neural cells targeted by CPF, dependent upon the period of exposure. Similarly, developmental differences in the sex selectivity of the biochemical mechanisms underlying neurotoxicant actions are likely to contribute to discrete behavioral outcomes.

  10. Assessment of attention and inhibitory control in rodent developmental neurotoxicity studies.

    PubMed

    Driscoll, Lori L; Strupp, Barbara J

    2015-01-01

    In designing screens to assess potential neurotoxicants, the paramount goal is that the selected assessment tools detect dysfunction if it exists. This goal is particularly challenging in the case of cognitive assessments. Cognition is not a unitary phenomenon, and indeed there is growing evidence that different aspects of cognitive functioning are subserved by distinct neural systems. As a result, if a particular neurotoxicant selectively damages certain neural systems but not others, it can impair some cognitive, sensory, or affective functions, but leave many others intact. Accordingly, studies with human subjects use batteries of cognitive tests, cognizant of the fact that no one test is capable of detecting all forms of cognitive dysfunction. In contrast, assessment of cognitive functioning in non-human animal developmental neurotoxicity (DNT) studies typically consists of a single, presumably representative, "learning and memory" task that is expected to detect all potential effects on cognitive functioning. Streamlining the cognitive assessment in these studies saves time and money, but these shortcuts can have serious consequences if the aspect of cognitive functioning that is impaired is not tapped by the single selected task. In particular, executive functioning - a constellation of cognitive functions which enables the organism to focus on multiple streams of information simultaneously, and revise plans as necessary - is poorly assessed in most animal DNT studies. The failure to adequately assess these functions - which include attention, working memory, inhibitory control, and planning - is particularly worrisome in light of evidence that the neural systems that subserve these functions may be uniquely vulnerable to early developmental insults. We illustrate the importance of tapping these areas of functioning in DNT studies by describing the pattern of effects produced by early developmental Pb exposure. Rats exposed to lead (Pb) early in development

  11. Prenatal Dexamethasone Augments the Sex-Selective Developmental Neurotoxicity of Chlorpyrifos: Implications for Vulnerability after Pharmacotherapy for Preterm Labor

    PubMed Central

    Slotkin, Theodore A.; Card, Jennifer; Infante, Alice; Seidler, Frederic J.

    2013-01-01

    Glucocorticoids are routinely given in preterm labor and are also elevated by maternal stress; organophosphate exposures are virtually ubiquitous, so coexposures to these two agents are pervasive. We administered dexamethasone to pregnant rats on gestational days 17–19 at a standard therapeutic dose (0.2 mg/kg); offspring were then given chlorpyrifos on postnatal days 1–4, at a dose (1 mg/kg) that produces barely-detectable (<10%) inhibition of brain cholinesterase activity. We evaluated indices for acetylcholine (ACh) synaptic function throughout adolescence, young adulthood and later adulthood, in brain regions possessing the majority of ACh projections and cell bodies; we measured nicotinic ACh receptor binding, hemicholinium-3 binding to the presynaptic choline transporter and choline acetyltransferase activity, all known targets for the adverse developmental effects of dexamethasone and chlorpyrifos given individually. Dexamethasone did not enhance the systemic toxicity of chlorpyrifos, as evidenced by weight gain and measurements of cholinesterase inhibition during chlorpyrifos treatment. Nevertheless, it enhanced the loss of presynaptic ACh function selectively in females, who ordinarily show sparing of organophosphate developmental neurotoxicity relative to males. Females receiving the combined treatment showed decrements in choline transporter binding and choline acetyltransferase activity that were unique (not found with either treatment alone), as well as additive decrements in nicotinic receptor binding. On the other hand, males given dexamethasone showed no augmentation of the effects of chlorpyrifos. Our findings indicate that prior dexamethasone exposure could create a subpopulation that is especially vulnerable to the adverse effects of organophosphates or other developmental neurotoxicants. PMID:23416428

  12. Developmental Neurotoxicants in E-Waste: An Emerging Health Concern

    PubMed Central

    Chen, Aimin; Dietrich, Kim N.; Huo, Xia; Ho, Shuk-mei

    2011-01-01

    Objective Electronic waste (e-waste) has been an emerging environmental health issue in both developed and developing countries, but its current management practice may result in unintended developmental neurotoxicity in vulnerable populations. To provide updated information about the scope of the issue, presence of known and suspected neurotoxicants, toxicologic mechanisms, and current data gaps, we conducted this literature review. Data sources We reviewed original articles and review papers in PubMed and Web of Science regarding e-waste toxicants and their potential developmental neurotoxicity. We also searched published reports of intergovernmental and governmental agencies and nongovernmental organizations on e-waste production and management practice. Data extraction We focused on the potential exposure to e-waste toxicants in vulnerable populations—that is, pregnant women and developing children—and neurodevelopmental outcomes. In addition, we summarize experimental evidence of developmental neurotoxicity and mechanisms. Data synthesis In developing countries where most informal and primitive e-waste recycling occurs, environmental exposure to lead, cadmium, chromium, polybrominated diphenyl ethers, polychlorinated biphenyls, and polycyclic aromatic hydrocarbons is prevalent at high concentrations in pregnant women and young children. Developmental neurotoxicity is a serious concern in these regions, but human studies of adverse effects and potential mechanisms are scarce. The unprecedented mixture of exposure to heavy metals and persistent organic pollutants warrants further studies and necessitates effective pollution control measures. Conclusions Pregnant women and young children living close to informal e-waste recycling sites are at risk of possible perturbations of fetus and child neurodevelopment. PMID:21081302

  13. Developmental Neurotoxicity Testing: A Path Forward

    EPA Science Inventory

    Great progress has been made over the past 40 years in understanding the hazards of exposure to a small number of developmental neurotoxicants. Lead, PCBs, and methylmercury are all good examples of science-based approaches to characterizing the hazard to the developing nervous s...

  14. Microarray expression profiling and co-expression network analysis of circulating LncRNAs and mRNAs associated with neurotoxicity induced by BPA.

    PubMed

    Pang, Wei; Lian, Fu-Zhi; Leng, Xue; Wang, Shu-Min; Li, Yi-Bo; Wang, Zi-Yu; Li, Kai-Ren; Gao, Zhi-Xian; Jiang, Yu-Gang

    2018-05-01

    A growing body of evidence has shown bisphenol A (BPA), an estrogen-like industrial chemical, has adverse effects on the nervous system. In this study, we investigated the transcriptional behavior of long non-coding RNAs (lncRNAs) and mRNAs to provide the information to explore neurotoxic effects induced by BPA. By microarray expression profiling, we discovered 151 differentially expressed lncRNAs and 794 differentially expressed mRNAs in the BPA intervention group compared with the control group. Gene ontology analysis indicated the differentially expressed mRNAs were mainly involved in fundamental metabolic processes and physiological and pathological conditions, such as development, synaptic transmission, homeostasis, injury, and neuroinflammation responses. In the expression network of the BPA-induced group, a great number of nodes and connections were found in comparison to the control-derived network. We identified lncRNAs that were aberrantly expressed in the BPA group, among which, growth arrest specific 5 (GAS5) might participate in the BPA-induced neurotoxicity by regulating Jun, RAS, and other pathways indirectly through these differentially expressed genes. This study provides the first investigation of genome-wide lncRNA expression and correlation between lncRNA and mRNA expression in the BPA-induced neurotoxicity. Our results suggest that the elevated expression of lncRNAs is a major biomarker in the neurotoxicity induced by BPA.

  15. [Cognitive Profiles of Preschool Children with Developmental Coordination Disorders and ADHD].

    PubMed

    Jascenoka, Julia; Korsch, Franziska; Petermann, Franz; Petermann, Ulrike

    2015-01-01

    Cognitive Profiles of Preschool Children with Developmental Coordination Disorders and ADHD Studies confirm that developmental coordination disorders (DCD) are often accompanied by ADHD. It is important to know why children with combined disorders show a special profile in a common intelligence test (WPPSI-III). For this purpose, the WPPSI-III results of a total of 125 children aged five to six years with diagnosed isolated DCD, isolated ADHD, combined disorders and a normative sample were compared. Children with isolated ADHD showed the best cognitive profile. Children of all three diagnosis subgroups presented significantly poorer abilities in all WPPSI-III scales than the normative sample. In comparison with preschoolers showing isolated ADHD, children with DCD and ADHD have a significant lower Processing Speed Quotient.

  16. Lead alters the developmental profile of the galactolipid metabolic enzymes in cultured oligodendrocyte lineage cells.

    PubMed

    Deng, W; Poretz, R D

    2001-08-01

    Lead is a neurotoxicant that can cause myelin deficits. Galactolipids are expressed during differentiation of oligodendrocyte lineage cells and accumulate in myelin. To examine the impact of lead on oligodendroglial differentiation, galactolipid metabolism in cultured oligodendrocyte lineage cells exposed to the metal was studied. Oligodendrocyte progenitor cells obtained from newborn rat pups were exposed to 1 microM lead acetate for 24 h prior to maintenance of the cells in medium containing the metal salt for 0, 2, or 6 days of differentiation. Lead caused approximately 50% reduction in levels of the galactolipid biosynthetic transferases, UDP-galactose:ceramide galactosyltransferase and 3'-phosphoadenosine-5'-phosphosulfate:galactocerebroside sulfotransferase, as compared to sodium-treated controls, in cultures of oligodendrocyte lineage cells following 2 days of differentiation. The activities of the galactolipid catabolic hydrolases, galactocerebroside-beta-galactosidase and arylsulfatase A, were reduced by 20%. Following 6 days of differentiation, lead-exposed cells exhibited levels of all the enzymes, except for arylsulfatase A, similar to those of the control cells. These results are consistent with the lead-induced delay of oligodendrocyte differentiation, as evidenced by the emergence of stage-specific immunochemical markers and the observed change in the developmental activity profile of 2',3'-cyclic nucleotide 3'-phosphohydrolase. The activity of arylsulfatase A in lead-treated 6-day oligodendrocytes was significantly less than that found in control cultures. This effect is consistent with the lead-induced reduction of arylsulfatase A in human fibroblasts caused by mis-sorting the newly-synthesized enzyme. The perturbation of galactolipid metabolism by lead during developmental maturation of oligodendrocytes may represent a contributing mechanism for lead-induced neurotoxicity.

  17. Is decabromodiphenyl ether (BDE-209) a developmental neurotoxicant?

    PubMed Central

    Costa, Lucio G.; Giordano, Gennaro

    2011-01-01

    Polybrominated diphenyl ether (PBDE) flame retardants have become ubiquitous environmental pollutants. The relatively higher body burden in toddlers and children has reaised concern for their potential developmental neurotoxicity, which has been suggested by animal studies, in vitro experiments, and recent human epidemiological evidence. While lower brominated PBDEs have been banned in several countries, the fully brominated decaBDE (BDE-209) is still utilized, though manufacturers will discontinue production in the U.S.A. in 2013. The recent decision by the U.S. Environmental Protection Agency to base the Reference Dose (RfD) for BDE-209 on a developmental neurotoxicity study has generated some controversy. Because of its bulky configuration, BDE-209 is poorly absorbed and does not easily penetrate the cell wall. Its acute and chronic toxicities are relatively low, with the liver and the thyroid as the primary targets, though there is some evidence of carcinogenicity. A few animal studies have indicated that BDE-209 may cause developmental neurotoxicity, affecting motor and cognitive domains, as seen for other PBDEs. Limited in vivo and in vitro studies have also evidenced effects of BDE-209 on thyroid hormone homeostasis and direct effects on nervous cells, again similar to what found with other lower brominated PBDEs. In contrast, a recent developmental neurotoxicity study, carried out according to international guidelines, has provided no evidence of adverse effects on neurodevelopment, and this should be considered in a future re-evaluation of BDE-209. While estimated exposure to BDE-209 in children is believed to be several orders of magnitude below the most conservative RfD proposed by the USEPA, questions remain on the extent and relevance of BDE-209 metabolism to lower brominated PBDEs in the environment and in humans. PMID:21182867

  18. Nucleus Accumbens Invulnerability to Methamphetamine Neurotoxicity

    PubMed Central

    Kuhn, Donald M.; Angoa-Pérez, Mariana; Thomas, David M.

    2016-01-01

    Methamphetamine (Meth) is a neurotoxic drug of abuse that damages neurons and nerve endings throughout the central nervous system. Emerging studies of human Meth addicts using both postmortem analyses of brain tissue and noninvasive imaging studies of intact brains have confirmed that Meth causes persistent structural abnormalities. Animal and human studies have also defined a number of significant functional problems and comorbid psychiatric disorders associated with long-term Meth abuse. This review summarizes the salient features of Meth-induced neurotoxicity with a focus on the dopamine (DA) neuronal system. DA nerve endings in the caudate-putamen (CPu) are damaged by Meth in a highly delimited manner. Even within the CPu, damage is remarkably heterogeneous, with ventral and lateral aspects showing the greatest deficits. The nucleus accumbens (NAc) is largely spared the damage that accompanies binge Meth intoxication, but relatively subtle changes in the disposition of DA in its nerve endings can lead to dramatic increases in Meth-induced toxicity in the CPu and overcome the normal resistance of the NAc to damage. In contrast to the CPu, where DA neuronal deficiencies are persistent, alterations in the NAc show a partial recovery. Animal models have been indispensable in studies of the causes and consequences of Meth neurotoxicity and in the development of new therapies. This research has shown that increases in cytoplasmic DA dramatically broaden the neurotoxic profile of Meth to include brain structures not normally targeted for damage. The resistance of the NAc to Meth-induced neurotoxicity and its ability to recover reveal a fundamentally different neuroplasticity by comparison to the CPu. Recruitment of the NAc as a target of Meth neurotoxicity by alterations in DA homeostasis is significant in light of the numerous important roles played by this brain structure. PMID:23382149

  19. Nucleus accumbens invulnerability to methamphetamine neurotoxicity.

    PubMed

    Kuhn, Donald M; Angoa-Pérez, Mariana; Thomas, David M

    2011-01-01

    Methamphetamine (Meth) is a neurotoxic drug of abuse that damages neurons and nerve endings throughout the central nervous system. Emerging studies of human Meth addicts using both postmortem analyses of brain tissue and noninvasive imaging studies of intact brains have confirmed that Meth causes persistent structural abnormalities. Animal and human studies have also defined a number of significant functional problems and comorbid psychiatric disorders associated with long-term Meth abuse. This review summarizes the salient features of Meth-induced neurotoxicity with a focus on the dopamine (DA) neuronal system. DA nerve endings in the caudate-putamen (CPu) are damaged by Meth in a highly delimited manner. Even within the CPu, damage is remarkably heterogeneous, with ventral and lateral aspects showing the greatest deficits. The nucleus accumbens (NAc) is largely spared the damage that accompanies binge Meth intoxication, but relatively subtle changes in the disposition of DA in its nerve endings can lead to dramatic increases in Meth-induced toxicity in the CPu and overcome the normal resistance of the NAc to damage. In contrast to the CPu, where DA neuronal deficiencies are persistent, alterations in the NAc show a partial recovery. Animal models have been indispensable in studies of the causes and consequences of Meth neurotoxicity and in the development of new therapies. This research has shown that increases in cytoplasmic DA dramatically broaden the neurotoxic profile of Meth to include brain structures not normally targeted for damage. The resistance of the NAc to Meth-induced neurotoxicity and its ability to recover reveal a fundamentally different neuroplasticity by comparison to the CPu. Recruitment of the NAc as a target of Meth neurotoxicity by alterations in DA homeostasis is significant in light of the numerous important roles played by this brain structure.

  20. Neurotoxic effects of perfluoroalkylated compounds: mechanisms of action and environmental relevance.

    PubMed

    Mariussen, Espen

    2012-09-01

    Perfluoroalkylated compounds (PFCs) are used in fire-fighting foams, treatment of clothes, carpets and leather products, and as lubricants, pesticides, in paints and medicine. Recent developments in chemical analysis have revealed that fluorinated compounds have become ubiquitously spread and are regarded as a potential threats to the environment. Due to the carbon-fluorine bond, which has a very high bond strength, these chemicals are extremely persistent towards degradation and some PFCs have a potential for bioaccumulation in organisms. Of particular concern has been the developmental toxicity of PFOS and PFOA, which has been manifested in rodent studies as high mortality of prenatally exposed newborn rats and mice within 24 h after delivery. The nervous system appears to be one of the most sensitive targets of environmental contaminants. The serious developmental effects of PFCs have lead to the upcoming of studies that have investigated neurotoxic effects of these substances. In this review the major findings of the neurotoxicity of the main PFCs and their suggested mechanisms of action are presented. The neurotoxic effects are discussed in light of other toxic effects of PFCs to indicate the significance of PFCs as neurotoxicants. The main findings are that PFCs may induce neurobehavioral effects, particularly in developmentally exposed animals. The effects are, however, subtle and inconclusive and are often induced at concentrations where other toxic effects also are expected. Mechanistic studies have shown that PFCs may affect the thyroid system, influence the calcium homeostasis, protein kinase C, synaptic plasticity and cellular differentiation. Compared to other environmental toxicants the human blood levels of PFCs are high and of particular concern is that susceptible groups may be exposed to a cocktail of substances that in combination reach harmful concentrations.

  1. Neurotoxicity and risk assessment of brominated and alternative flame retardants.

    PubMed

    Hendriks, Hester S; Westerink, Remco H S

    2015-01-01

    Brominated flame retardants (BFRs) are widely used chemicals that prevent or slow the onset and spreading of fire. Unfortunately, many of these compounds pose serious threats for human health and the environment, indicating an urgent need for safe(r) and less persistent alternative flame retardants (AFRs). As previous research identified the nervous system as a sensitive target organ, the neurotoxicity of past and present flame retardants is reviewed. First, an overview of the neurotoxicity of BFRs in humans and experimental animals is provided, and some common in vitro neurotoxic mechanisms of action are discussed. The combined epidemiological and toxicological studies clearly underline the need for replacing BFRs. Many potentially suitable AFRs are already in use, despite the absence of a full profile of their environmental behavior and toxicological properties. To prioritize the suitability of some selected halogenated and non-halogenated organophosphorous flame retardants and inorganic halogen-free flame retardants, the available neurotoxic data of these AFRs are discussed. The suitability of the AFRs is rank-ordered and combined with human exposure data (serum concentrations, breast milk concentrations and house dust concentrations) and physicochemical properties (useful to predict e.g. bioavailability and persistence in the environment) for a first semi-quantitative risk assessment of the AFRs. As can be concluded from the reviewed data, several BFRs and AFRs share some neurotoxic effects and modes of action. Moreover, the available neurotoxicity data indicate that some AFRs may be suitable substitutes for BFRs. However, proper risk assessment is hampered by an overall scarcity of data, particularly regarding environmental persistence, human exposure levels, and the formation of breakdown products and possible metabolites as well as their toxicity. Until these data gaps in environmental behavioral and toxicological profiles are filled, large scale use of

  2. A holistic approach to anesthesia-induced neurotoxicity and its implications for future mechanistic studies.

    PubMed

    Zanghi, Christine N; Jevtovic-Todorovic, Vesna

    The year 2016 marked the 15th anniversary since anesthesia-induced developmental neurotoxicity and its resulting cognitive dysfunction were first described. Since that time, multiple scientific studies have supported these original findings and investigated possible mechanisms behind anesthesia-induced neurotoxicity. This paper reviews the existing mechanistic literature on anesthesia-induced neurotoxicity in the context of a holistic approach that emphasizes the importance of both neuronal and non-neuronal cells during early postnatal development. Sections are divided into key stages in early neural development; apoptosis, neurogenesis, migration, differentiation, synaptogenesis, gliogenesis, myelination and blood brain barrier/cerebrovasculature. In addition, the authors combine the established literature in the field of anesthesia-induced neurotoxicity with literature from other related scientific fields to speculate on the potential role of non-neuronal cells and to generate new future hypotheses for understanding anesthetic toxicity and its application to the practice of pediatric anesthesia. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Neurotoxicity of lead, methylmercury, and PCBs in relation to the Great Lakes.

    PubMed Central

    Rice, D C

    1995-01-01

    There is ample evidence identifying lead, methylmercury, and polychlorinated biphenyls (PCBs) as neurotoxic agents. A large body of data on the neurotoxicity of lead, based on both epidemiologic studies in children and animal models of developmental exposure, reveals that body burdens of lead typical of people in industrialized environments produce behavioral impairment. Methylmercury was identified as a neurotoxicant in both adults and the developing organism based on episodes of human poisoning: these effects have been replicated and extended in animals. High-dose PCB exposure was recognized as a developmental toxicant as a result of several episodes of contamination of cooking oil. The threshold for PCB neurotoxicity in humans is less clear, although research in animals suggests that relatively low-level exposure produces behavioral impairment and other toxic effects. Tissue levels in fish below which human health would not be adversely affected were estimated for methylmercury and PCBs based on calculated reference doses (RfDs) and estimated fish intake. Present levels in fish tissue in the Great Lakes exceed these levels for both neurotoxicants. Great Lakes fish and water do not pose a particular hazard for increased lead intake. However, the fact that the present human body burden is in a range at which functional deficits are probable suggests that efforts should be made to eliminate point sources of lead contamination in the Great Lakes basin. PMID:8635443

  4. Autism Developmental Profiles and Cooperation with Oral Health Screening.

    PubMed

    Du, Rennan Y; Yiu, Cynthia C Y; Wong, Virginia C N; McGrath, Colman P

    2015-09-01

    To determine the associations between autism developmental profiles and cooperation with an oral health screening among preschool children with autism spectrum disorders (ASDs). A random sample of Special Child Care Centres registered with the Government Social Welfare Department in Hong Kong was selected (19 out of 37 Centres). All preschool children with ASDs were invited to participate in the oral health survey and 347 children agreed to participate (among 515 invited). A checklist of autism developmental profiles: (1) level of cognitive functioning, (2) social skills development, (3) communication skills development, (4) reading skills and (5) challenging behaviours was ascertained. Feasibility of conducting oral health screening in preschool children with ASDs was associated with their cognitive functioning (p = 0.001), social skills development (p = 0.002), communication skills development (p < 0.001), reading skills (p < 0.001) and challenging behaviours (p = 0.06). In regression analyses accounting for age (in months) and gender, inability to cooperate with an oral health screening was associated with high level of challenging behaviours (OR 10.50, 95 % CI 2.89-38.08, p < 0.001) and reduced cognitive functioning (OR 5.29, 95 % CI 1.14-24.61, p = 0.034). Age (in months) was positively associated with likelihood of cooperative behaviour with an oral health screening (OR 1.06, 95 % CI 1.03, 1.08, p < 0.001). Feasibility of conducting population-wide oral health screening among preschool children with ASDs is associated with their developmental profiles; and in particular levels of cognitive functioning, and challenging behaviours.

  5. DEVELOPMENTAL DISRUPTION OF THYROID HORMONE: CORRELATIONS WITH HEARING DYSFUNCTION IN RATS.

    EPA Science Inventory

    A manuscript presents evidence that thyroxine (T4) is a good biomarker-of-effect for developmental neurotoxicity associated with exposure to environmental thyrotoxicants. A major uncertainty in assessing the risks of developmental exposure to thyrotoxicants is the lack of a clear...

  6. Workgroup Report: Incorporating In Vitro Alternative Methods for Developmental Neurotoxicity into International Hazard and Risk Assessment Strategies

    PubMed Central

    Coecke, Sandra; Goldberg, Alan M; Allen, Sandra; Buzanska, Leonora; Calamandrei, Gemma; Crofton, Kevin; Hareng, Lars; Hartung, Thomas; Knaut, Holger; Honegger, Paul; Jacobs, Miriam; Lein, Pamela; Li, Abby; Mundy, William; Owen, David; Schneider, Steffen; Silbergeld, Ellen; Reum, Torsten; Trnovec, Tomas; Monnet-Tschudi, Florianne; Bal-Price, Anna

    2007-01-01

    This is the report of the first workshop on Incorporating In Vitro Alternative Methods for Developmental Neurotoxicity (DNT) Testing into International Hazard and Risk Assessment Strategies, held in Ispra, Italy, on 19–21 April 2005. The workshop was hosted by the European Centre for the Validation of Alternative Methods (ECVAM) and jointly organized by ECVAM, the European Chemical Industry Council, and the Johns Hopkins University Center for Alternatives to Animal Testing. The primary aim of the workshop was to identify and catalog potential methods that could be used to assess how data from in vitro alternative methods could help to predict and identify DNT hazards. Working groups focused on two different aspects: a) details on the science available in the field of DNT, including discussions on the models available to capture the critical DNT mechanisms and processes, and b) policy and strategy aspects to assess the integration of alternative methods in a regulatory framework. This report summarizes these discussions and details the recommendations and priorities for future work. PMID:17589601

  7. A Retrospective Performance Assessment of the Developmental Neurotoxicity Study in Support of OECD Test Guideline 426

    PubMed Central

    Makris, Susan L.; Raffaele, Kathleen; Allen, Sandra; Bowers, Wayne J.; Hass, Ulla; Alleva, Enrico; Calamandrei, Gemma; Sheets, Larry; Amcoff, Patric; Delrue, Nathalie; Crofton, Kevin M.

    2009-01-01

    Objective We conducted a review of the history and performance of developmental neurotoxicity (DNT) testing in support of the finalization and implementation of Organisation of Economic Co-operation and Development (OECD) DNT test guideline 426 (TG 426). Information sources and analysis In this review we summarize extensive scientific efforts that form the foundation for this testing paradigm, including basic neurotoxicology research, interlaboratory collaborative studies, expert workshops, and validation studies, and we address the relevance, applicability, and use of the DNT study in risk assessment. Conclusions The OECD DNT guideline represents the best available science for assessing the potential for DNT in human health risk assessment, and data generated with this protocol are relevant and reliable for the assessment of these end points. The test methods used have been subjected to an extensive history of international validation, peer review, and evaluation, which is contained in the public record. The reproducibility, reliability, and sensitivity of these methods have been demonstrated, using a wide variety of test substances, in accordance with OECD guidance on the validation and international acceptance of new or updated test methods for hazard characterization. Multiple independent, expert scientific peer reviews affirm these conclusions. PMID:19165382

  8. Building a Database of Developmental Neurotoxitants: Evidence from Human and Animal Studies

    EPA Science Inventory

    EPA’s program for the screening and prioritization of chemicals for developmental neurotoxicity (DNT) necessitates the generation of a list of chemicals that are known mammalian developmental neurotoxicants. This chemical list will be used to evaluate the sensitivity, reliability...

  9. TRANSFORMATION OF DEVELOPMENTAL NEUROTOXICITY DATA INTO STRUCTURE-SEARCHABLE TOXML DATABASE IN SUPPORT OF STRUCTURE-ACTIVITY RELATIONSHIP (SAR) WORKFLOW.

    EPA Science Inventory

    Early hazard identification of new chemicals is often difficult due to lack of data on the novel material for toxicity endpoints, including neurotoxicity. At present, there are no structure searchable neurotoxicity databases. A working group was formed to construct a database to...

  10. Mechanisms of methylmercury-induced neurotoxicity: evidence from experimental studies

    PubMed Central

    Farina, Marcelo; Rocha, João B. T.; Aschner, Michael

    2011-01-01

    Neurological disorders are common, costly, and can cause enduring disability. Although mostly unknown, a few environmental toxicants are recognized causes of neurological disorders and subclinical brain dysfunction. One of the best known neurotoxins is methylmercury (MeHg), a ubiquitous environmental toxicant that leads to long-lasting neurological and developmental deficits in animals and humans. In the aquatic environment, MeHg is accumulated in fish, which represent a major source of human exposure. Although several episodes of MeHg poisoning have contributed to the understanding of the clinical symptoms and histological changes elicited by this neurotoxicant in humans, experimental studies have been pivotal in elucidating the molecular mechanisms that mediate MeHg-induced neurotoxicity. The objective of this mini-review is to summarize data from experimental studies on molecular mechanisms of MeHg-induced neurotoxicity. While the full picture has yet to be unmasked, in vitro approaches based on cultured cells, isolated mitochondria and tissue slices, as well as in vivo studies based mainly on the use of rodents, point to impairment in intracellular calcium homeostasis, alteration of glutamate homeostasis and oxidative stress as important events in MeHg-induced neurotoxicity. The potential relationship among these events is discussed, with particular emphasis on the neurotoxic cycle triggered by MeHg-induced excitotoxicity and oxidative stress. The particular sensitivity of the developing brain to MeHg toxicity, the critical role of selenoproteins and the potential protective role of selenocompounds are also discussed. These concepts provide the biochemical bases to the understanding of MeHg neurotoxicity, contributing to the discovery of endogenous and exogenous molecules that counteract such toxicity and provide efficacious means for ablating this vicious cycle. PMID:21683713

  11. Detecting Developmental Neurotoxicants Using Zebrafish Embryos

    EPA Science Inventory

    As part of EPA’s program on the screening and prioritization of chemicals for developmental neurotoxicity, a rapid, cost-effective in vivo vertebrate screen is being developed using an alternative species approach. Zebrafish (Danio rerio), a small freshwater fish with external f...

  12. Autism Developmental Profiles and Cooperation with Oral Health Screening

    ERIC Educational Resources Information Center

    Du, Rennan Y.; Yiu, Cynthia C. Y.; Wong, Virginia C. N.; McGrath, Colman P.

    2015-01-01

    To determine the associations between autism developmental profiles and cooperation with an oral health screening among preschool children with autism spectrum disorders (ASDs). A random sample of Special Child Care Centres registered with the Government Social Welfare Department in Hong Kong was selected (19 out of 37 Centres). All preschool…

  13. 40 CFR 799.9630 - TSCA developmental neurotoxicity.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... exposure of the mother during pregnancy and lactation. (c) Principle of the test method. The test substance... section must be monitored as appropriate for the developmental stage being observed. (C) Any gross signs... motor activity are sound level, size and shape of the test cage, temperature, relative humidity, light...

  14. 40 CFR 799.9630 - TSCA developmental neurotoxicity.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... exposure of the mother during pregnancy and lactation. (c) Principle of the test method. The test substance... section must be monitored as appropriate for the developmental stage being observed. (C) Any gross signs... motor activity are sound level, size and shape of the test cage, temperature, relative humidity, light...

  15. Distinct developmental profiles in typical speech acquisition

    PubMed Central

    Campbell, Thomas F.; Shriberg, Lawrence D.; Green, Jordan R.; Abdi, Hervé; Rusiewicz, Heather Leavy; Venkatesh, Lakshmi; Moore, Christopher A.

    2012-01-01

    Three- to five-year-old children produce speech that is characterized by a high level of variability within and across individuals. This variability, which is manifest in speech movements, acoustics, and overt behaviors, can be input to subgroup discovery methods to identify cohesive subgroups of speakers or to reveal distinct developmental pathways or profiles. This investigation characterized three distinct groups of typically developing children and provided normative benchmarks for speech development. These speech development profiles, identified among 63 typically developing preschool-aged speakers (ages 36–59 mo), were derived from the children's performance on multiple measures. These profiles were obtained by submitting to a k-means cluster analysis of 72 measures that composed three levels of speech analysis: behavioral (e.g., task accuracy, percentage of consonants correct), acoustic (e.g., syllable duration, syllable stress), and kinematic (e.g., variability of movements of the upper lip, lower lip, and jaw). Two of the discovered group profiles were distinguished by measures of variability but not by phonemic accuracy; the third group of children was characterized by their relatively low phonemic accuracy but not by an increase in measures of variability. Analyses revealed that of the original 72 measures, 8 key measures were sufficient to best distinguish the 3 profile groups. PMID:22357794

  16. Profile of referrals for early childhood developmental delay to ambulatory subspecialty clinics.

    PubMed

    Shevell, M I; Majnemer, A; Rosenbaum, P; Abrahamowicz, M

    2001-09-01

    The objective of this study was to determine the profile and pattern of referral to subspecialty clinics of young children with suspected developmental delay together with the factors prompting their referral. All children under 5 years of age referred to either developmental pediatrics or pediatric neurology clinics at a single tertiary hospital over an 18-month period were prospectively identified. Standardized demographic and referral information were collected at intake, final developmental delay subtype diagnosed was identified, and referring physicians were surveyed regarding factors prompting referral. A total of 224 children met study criteria. There was a marked male preponderance (166/224), especially among those with either cognitive or language delay. Two delay subtypes, global developmental delay and developmental language disorder, accounted for two thirds of the diagnoses made. For slightly more than one third of the children (75/224), the delay subtype diagnosed following specialty evaluation was different from that initially suspected by the referring physician. A mean delay of 15.5 months was observed for the cohort as a whole between initial parental concern and specialty assessment. For referring physicians, the major factor prompting referral was the severity of the observed delay. The most important aspects of the specialty evaluation according to referral sources were the identification of a possible etiology and confirmation of delay. A profile of referrals and the rationale thereof for a cohort of children with suspected developmental delay is presented that, although locale specific, has implications for service provision and training.

  17. 40 CFR 799.9630 - TSCA developmental neurotoxicity.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    .... (2) Control group. A concurrent control group is required. This group must be a sham-treated group or, if a vehicle is used in administering the test substance, a vehicle control group. The vehicle must neither be developmentally toxic nor have effects on reproduction. Animals in the control group must be...

  18. 40 CFR 799.9630 - TSCA developmental neurotoxicity.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    .... (2) Control group. A concurrent control group is required. This group must be a sham-treated group or, if a vehicle is used in administering the test substance, a vehicle control group. The vehicle must neither be developmentally toxic nor have effects on reproduction. Animals in the control group must be...

  19. 40 CFR 799.9630 - TSCA developmental neurotoxicity.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    .... (2) Control group. A concurrent control group is required. This group must be a sham-treated group or, if a vehicle is used in administering the test substance, a vehicle control group. The vehicle must neither be developmentally toxic nor have effects on reproduction. Animals in the control group must be...

  20. Developmental toxicity and neurotoxicity of synthetic organic insecticides in zebrafish (Danio rerio): A comparative study of deltamethrin, acephate, and thiamethoxam.

    PubMed

    Liu, XingYu; Zhang, QiuPing; Li, ShiBao; Mi, Ping; Chen, DongYan; Zhao, Xin; Feng, XiZeng

    2018-05-01

    Synthetic organic insecticides, including pyrethroids, organophosphates, neonicotinoids and other types, have the potential to alter the ecosystems and many are harmful to humans. This study examines the developmental toxicity and neurotoxicity of three synthetic organic insecticides, including deltamethrin (DM), acephate (AP), and thiamethoxam (TM), using embryo-larval stages of zebrafish (Danio rerio). Results showed that DM exposure led to embryo development delay and a significant increase in embryo mortality at 24 and 48 h post-fertilization (hpf). DM and AP decreased embryo chorion surface tension at 24 hpf, along with the increase in hatching rate at 72 hpf. Moreover, DM caused ntl, shh, and krox20 misexpression in a dose-dependent manner with morphological deformities of shorter body length, smaller eyes, and larger head-body angles at 10 μg/L. TM did not show significant developmental toxicity. Furthermore, results of larval rest/wake assay indicated that DM (>0.1 μg/L) and AP (0.1 mg/L) increased activity behavior with different patterns. Interestingly, as an insect-specific pesticide, TM still could alter locomotor activity in zebrafish larvae at concentrations as low as 0.1 mg/L. Our results indicate that different types of synthetic organic insecticides could create different toxicity outcomes in zebrafish embryos and larvae. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. In vitro developmental neurotoxicity (DNT) testing: relevant models and endpoints.

    PubMed

    Bal-Price, Anna K; Hogberg, Helena T; Buzanska, Leonora; Lenas, Petros; van Vliet, Erwin; Hartung, Thomas

    2010-09-01

    Environmental chemicals have a potential impact on children's health as the developing brain is much more vulnerable to injury caused by different classes of chemicals than the adult brain. This vulnerability is partly due to the fact that very complex processes of cell development and maturation take place within a tightly controlled time frame. So different stages of brain development are susceptible to toxic effects at different time points. Additionally the adult brain is well protected against chemicals by the blood brain barrier (BBB) whereas the placenta only partially protects against harmful chemical exposure. Many metals easily cross the placenta and BBB barrier since even after the birth BBB is not entirely differentiated (until about 6 months after birth). Additionally, the susceptibility of infants and children is due to increased exposure, augmented absorption rates, and less efficient ability of defense mechanism in comparison to adults. The In Vitro Session during the 12th International Neurotoxicology Association meeting (Jerusalem, June, 2009) provided the opportunity to discuss the new challenges that have to be faced to create new type of safety assessments for regulatory requirements. The integration of various tests into testing strategies as well as combination of information-rich approaches with bioinformatics was discussed. Furthermore relevant models and endpoints for developmental neurotoxicity (DNT) evaluation using in vitro approach were presented. The primary neuronal cultures of cerebellar granule cells (CGCs) as well as 3D aggregate model and the possible application of human embryonic and adult stem cells was discussed pointing out the potential of these models to be used for DNT testing. The presented systems are relevant for DNT evaluation as the key processes of brain development such cell proliferation, migration and neuronal/glial differentiation are present. Furthermore, emerging technologies such as gene expression

  2. Screening for Developmental Neurotoxicity Using PC12 Cells: Comparisons of Organophosphates with a Carbamate, an Organochlorine, and Divalent Nickel

    PubMed Central

    Slotkin, Theodore A.; MacKillop, Emiko A.; Ryde, Ian T.; Tate, Charlotte A.; Seidler, Frederic J.

    2007-01-01

    Background In light of the large number of chemicals that are potential developmental neurotoxicants, there is a need to develop rapid screening techniques. Objectives We exposed undifferentiated and differentiating neuronotypic PC12 cells to different organophosphates (chlorpyrifos, diazinon, parathion), a carbamate (physostigmine), an organochlorine (dieldrin), and a metal (divalent nickel; Ni2+) and examined indices of cell replication and differentiation for both short- and long-term exposures. Results In undifferentiated cells, all the agents inhibited DNA synthesis, with the greatest effect for diazinon, but physostigmine eventually produced the largest deficits in the total number of cells after prolonged exposure. The onset of differentiation intensified the adverse effects on DNA synthesis and changed the rank order in keeping with a shift away from noncholinergic mechanisms and toward cholinergic mechanisms. Differentiation also worsened the effects of each agent on cell number after prolonged exposure, whereas cell growth was not suppressed, nor were there any effects on viability as assessed with trypan blue. Nevertheless, differentiating cells displayed signs of oxidative stress from all of the test compounds except Ni2+, as evidenced by measurements of lipid peroxidation. Finally, all of the toxicants shifted the transmitter fate of the cells away from the cholinergic phenotype and toward the catecholaminergic phenotype. Conclusions These studies point out the feasibility of developing cell-based screening methods that enable the detection of multiple end points that may relate to mechanisms associated with developmental neurotoxicity, revealing some common targets for disparate agents. PMID:17366826

  3. From the Cover: AstrocytesAre Protective Against Chlorpyrifos Developmental Neurotoxicity in Human Pluripotent Stem Cell-Derived Astrocyte-Neuron Cocultures.

    PubMed

    Wu, Xian; Yang, Xiangkun; Majumder, Anirban; Swetenburg, Raymond; Goodfellow, Forrest T; Bartlett, Michael G; Stice, Steven L

    2017-06-01

    Human neural progenitor cells are capable of independent, directed differentiation into astrocytes, oligodendrocytes and neurons and thus offer a potential cell source for developmental neurotoxicity (DNT) systems. Human neural progenitor-derived astrocyte-neuron cocultured at defined ratios mimic cellular heterogeneity and interaction in the central nervous system. Cytochrome P450 enzymes are expressed at a relatively high level in astrocytes and may play a critical role in the biotransformation of endogenous or exogenous compounds, including chlorpyrifos, an organophosphate insecticide that affects the central nervous system. P450 enzymes metabolize chlorpyrifos to chlorpyrifos-oxon, which is then metabolized primarily to 3, 5, 6-trichloropyridinol in addition to diethylphosphate and diethylthiophosphate. These end metabolites are less neurotoxic than chlorpyrifos and chlorpyrifos-oxon. Our objective was to identify the interactive role of astrocytes and neurons in chlorpyrifos-induced human DNT. In neuron-only cultures, chlorpyrifos inhibited neurite length, neurite number and branch points per neuron in a dose-dependent manner during a 48 h exposure, starting at 10 μM. However, in astrocyte-neuron cocultures, astrocytes protected neurons from the effects of chlorpyrifos at higher concentrations, up to and including 30 μM chlorpyrifos and endogenous astrocyte P450 enzymes effectively metabolized chlorpyrifos. The P450 inhibitor SKF525A partly negated the protective effect of astrocytes, allowing reduction in branch points with chlorpyrifos (10 μM). Thus, the scalable and defined astrocyte-neuron cocultures model that we established here has potentially identified a role for P450 enzymes in astrocytic neuroprotection against chlorpyrifos and provides a novel model for addressing DNT in a more accurate multicellular environment. © The Author 2017. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For

  4. Developmental profiles and mentality in preschool children with Prader-Willi syndrome: a preliminary study.

    PubMed

    Chen, Chien-Min; Chen, Chia-Ling; Hou, Jia-Woei; Hsu, Hung-Chih; Chung, Chia-Ying; Chou, Shih-Wei; Lin, Chu-Hsu; Chen, Kai-Hua

    2010-01-01

    A majority of the children with Prader-Willi syndrome (PWS) have global developmental delay and mental delay. The aim of this study was to investigate the developmental profiles and mental assessments among preschool children with PWS. Ten children with PWS between the ages of 15 months to 6 years, and 11 children with typical development were enrolled. Developmental profiles in terms of their developmental quotient (DQ) for the eight domains of the Chinese Children Developmental Inventory (CCDI) and mental assessments in terms of intelligence quotient (IQ) and developmental index (DI) were carried out for all children. The DQs of all eight domains, including gross motor, fine motor, expressive language, concept comprehension, situation comprehension, self help, personal- social and general development, in the PWS group were lower than the DQs of the children from the typical development group (p < 0.01). Children with PWS had better DQs in the fine motor domain than in the gross motor domain and in the receptive language domain than in the expressive language domain. Furthermore, their verbal IQ were better than their performance IQ and their mental DI was better than their psychomotor DI. These findings suggest that the children with PWS show an uneven global developmental delay together with an uneven mental delay. The results of this study should allow clinicians to better understand the developmental functioning of children with PWS and this will help with the planning of treatment strategies.

  5. Zebrafish embryotoxicity test for developmental (neuro)toxicity: Demo case of an integrated screening approach system using anti-epileptic drugs.

    PubMed

    Beker van Woudenberg, Anna; Snel, Cor; Rijkmans, Eke; de Groot, Didima; Bouma, Marga; Hermsen, Sanne; Piersma, Aldert; Menke, Aswin; Wolterbeek, André

    2014-11-01

    To improve the predictability of the zebrafish embryotoxicity test (ZET) for developmental (neuro)toxicity screening, we used a multiple-endpoints strategy, including morphology, motor activity (MA), histopathology and kinetics. The model compounds used were antiepileptic drugs (AEDs): valproic acid (VPA), carbamazepine (CBZ), ethosuximide (ETH) and levetiracetam (LEV). For VPA, histopathology was the most sensitive parameter, showing effects already at 60μM. For CBZ, morphology and MA were the most sensitive parameters, showing effects at 180μM. For ETH, all endpoints showed similar sensitivity (6.6mM), whereas MA was the most sensitive parameter for LEV (40mM). Inclusion of kinetics did not alter the absolute ranking of the compounds, but the relative potency was changed considerably. Taking all together, this demo-case study showed that inclusion of multiple-endpoints in ZET may increase the sensitivity of the assay, contribute to the elucidation of the mode of toxic action and to a better definition of the applicability domain of ZET. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Prenatal nicotine alters the developmental neurotoxicity of postnatal chlorpyrifos directed toward cholinergic systems: better, worse, or just "different?".

    PubMed

    Slotkin, Theodore A; Seidler, Frederic J

    2015-01-01

    This study examines whether prenatal nicotine exposure sensitizes the developing brain to subsequent developmental neurotoxicity evoked by chlorpyrifos, a commonly-used insecticide. We gave nicotine to pregnant rats throughout gestation at a dose (3mg/kg/day) producing plasma levels typical of smokers; offspring were then given chlorpyrifos on postnatal days 1-4, at a dose (1mg/kg) that produces minimally-detectable inhibition of brain cholinesterase activity. We evaluated indices for acetylcholine (ACh) synaptic function throughout adolescence, young adulthood and later adulthood, in brain regions possessing the majority of ACh projections and cell bodies; we measured nicotinic ACh receptor binding, hemicholinium-3 binding to the presynaptic choline transporter and choline acetyltransferase activity, all known targets for the adverse developmental effects of nicotine and chlorpyrifos given individually. By itself nicotine elicited overall upregulation of the ACh markers, albeit with selective differences by sex, region and age. Likewise, chlorpyrifos alone had highly sex-selective effects. Importantly, all the effects showed temporal progression between adolescence and adulthood, pointing to ongoing synaptic changes rather than just persistence after an initial injury. Prenatal nicotine administration altered the responses to chlorpyrifos in a consistent pattern for all three markers, lowering values relative to those of the individual treatments or to those expected from simple additive effects of nicotine and chlorpyrifos. The combination produced global interference with emergence of the ACh phenotype, an effect not seen with nicotine or chlorpyrifos alone. Given that human exposures to nicotine and chlorpyrifos are widespread, our results point to the creation of a subpopulation with heightened vulnerability. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Putative adverse outcome pathways relevant to neurotoxicity

    PubMed Central

    Bal-Price, Anna; Crofton, Kevin M.; Sachana, Magdalini; Shafer, Timothy J.; Behl, Mamta; Forsby, Anna; Hargreaves, Alan; Landesmann, Brigitte; Lein, Pamela J.; Louisse, Jochem; Monnet-Tschudi, Florianne; Paini, Alicia; Rolaki, Alexandra; Schrattenholz, André; Suñol, Cristina; van Thriel, Christoph; Whelan, Maurice; Fritsche, Ellen

    2016-01-01

    The Adverse Outcome Pathway (AOP) framework provides a template that facilitates understanding of complex biological systems and the pathways of toxicity that result in adverse outcomes (AOs). The AOP starts with an molecular initiating event (MIE) in which a chemical interacts with a biological target(s), followed by a sequential series of KEs, which are cellular, anatomical, and/or functional changes in biological processes, that ultimately result in an AO manifest in individual organisms and populations. It has been developed as a tool for a knowledge-based safety assessment that relies on understanding mechanisms of toxicity, rather than simply observing its adverse outcome. A large number of cellular and molecular processes are known to be crucial to proper development and function of the central (CNS) and peripheral nervous systems (PNS). However, there are relatively few examples of well-documented pathways that include causally linked MIEs and KEs that result in adverse outcomes in the CNS or PNS. As a first step in applying the AOP framework to adverse health outcomes associated with exposure to exogenous neurotoxic substances, the EU Reference Laboratory for Alternatives to Animal Testing (EURL ECVAM) organized a workshop (March 2013, Ispra, Italy) to identify potential AOPs relevant to neurotoxic and developmental neurotoxic outcomes. Although the AOPs outlined during the workshop are not fully described, they could serve as a basis for further, more detailed AOP development and evaluation that could be useful to support human health risk assessment in a variety of ways. PMID:25605028

  8. Relationships between developmental profiles and ambulatory ability in A follow-up study of preschool children with spastic quadriplegic cerebral palsy.

    PubMed

    Chen, Chia-Ling; Chen, Chung-Yao; Lin, Keh-Chung; Chen, Kai-Hua; Wu, Ching-Yi; Lin, Chu-Hsu; Liu, Wen-Yu; Hsu, Hung-Chih

    2010-01-01

    To investigate the follow-up course of developmental profiles in preschool children with spastic quadriplegic (SQ) cerebral palsy (CP) who had varying ambulatory abilities. Forty-eight children with SQ CP between 1 and 5 years old were classified into 2 groups, the ambulatory and non-ambulatory groups, based on Gross Motor Function Classification System (GMFCS) levels during the initial assessment. The developmental profiles, consisting of development quotients (DQs) of 8 domains, were evaluated during the initial assessment and the final assessment one year later. The DQ change index (%) was calculated as 100% X (final DQ-initial DQ)/initial DQ. The DQs of all developmental domains in the non-ambulatory group were lower than those in the ambulatory group on both initial and final assessments (p<0.01). As indicated by the DQ change indices, most DQs in the ambulatory group decreased slightly, whereas those in the non-ambulatory group decreased considerably (p<0.05). Furthermore, fine motor function increased proportionally with age in the ambulatory group, but not in the non-ambulatory group. The DQs of the developmental profiles varied in preschool CP children with different ambulatory abilities. The course of developmental profiles in preschool children with SQ CP evolves with age and relates to the degree of ambulatory function. Knowledge of these developmental profiles may be helpful in understanding, predicting, and managing the developmental problems of these children.

  9. International STakeholder NETwork (ISTNET): creating a developmental neurotoxicity (DNT) testing road map for regulatory purposes.

    PubMed

    Bal-Price, Anna; Crofton, Kevin M; Leist, Marcel; Allen, Sandra; Arand, Michael; Buetler, Timo; Delrue, Nathalie; FitzGerald, Rex E; Hartung, Thomas; Heinonen, Tuula; Hogberg, Helena; Bennekou, Susanne Hougaard; Lichtensteiger, Walter; Oggier, Daniela; Paparella, Martin; Axelstad, Marta; Piersma, Aldert; Rached, Eva; Schilter, Benoît; Schmuck, Gabriele; Stoppini, Luc; Tongiorgi, Enrico; Tiramani, Manuela; Monnet-Tschudi, Florianne; Wilks, Martin F; Ylikomi, Timo; Fritsche, Ellen

    2015-02-01

    A major problem in developmental neurotoxicity (DNT) risk assessment is the lack of toxicological hazard information for most compounds. Therefore, new approaches are being considered to provide adequate experimental data that allow regulatory decisions. This process requires a matching of regulatory needs on the one hand and the opportunities provided by new test systems and methods on the other hand. Alignment of academically and industrially driven assay development with regulatory needs in the field of DNT is a core mission of the International STakeholder NETwork (ISTNET) in DNT testing. The first meeting of ISTNET was held in Zurich on 23-24 January 2014 in order to explore the concept of adverse outcome pathway (AOP) to practical DNT testing. AOPs were considered promising tools to promote test systems development according to regulatory needs. Moreover, the AOP concept was identified as an important guiding principle to assemble predictive integrated testing strategies (ITSs) for DNT. The recommendations on a road map towards AOP-based DNT testing is considered a stepwise approach, operating initially with incomplete AOPs for compound grouping, and focussing on key events of neurodevelopment. Next steps to be considered in follow-up activities are the use of case studies to further apply the AOP concept in regulatory DNT testing, making use of AOP intersections (common key events) for economic development of screening assays, and addressing the transition from qualitative descriptions to quantitative network modelling.

  10. Prenatal Nicotine Alters the Developmental Neurotoxicity of Postnatal Chlorpyrifos Directed Toward Cholinergic Systems: Better, Worse, or Just “Different?”

    PubMed Central

    Slotkin, Theodore A.; Seidler, Frederic J.

    2014-01-01

    This study examines whether prenatal nicotine exposure sensitizes the developing brain to subsequent developmental neurotoxicity evoked by chlorpyrifos, a commonly-used insecticide. We gave nicotine to pregnant rats throughout gestation at a dose (3 mg/kg/day) producing plasma levels typical of smokers; offspring were then given chlorpyrifos on postnatal days 1–4, at a dose (1 mg/kg) that produces minimally-detectable inhibition of brain cholinesterase activity. We evaluated indices for acetylcholine (ACh) synaptic function throughout adolescence, young adulthood and later adulthood, in brain regions possessing the majority of ACh projections and cell bodies; we measured nicotinic ACh receptor binding, hemicholinium-3 binding to the presynaptic choline transporter and choline acetyltransferase activity, all known targets for the adverse developmental effects of nicotine and chlorpyrifos given individually. By itself nicotine elicited overall upregulation of the ACh markers, albeit with selective differences by sex, region and age. Likewise, chlorpyrifos alone had highly sex-selective effects. Importantly, all the effects showed temporal progression between adolescence and adulthood, pointing to ongoing synaptic changes rather than just persistence after an initial injury. Prenatal nicotine administration altered the responses to chlorpyrifos in a consistent pattern for all three markers, lowering values relative to those of the individual treatments or to those expected from simple additive effects of nicotine and chlorpyrifos. The combination produced global interference with emergence of the ACh phenotype, an effect not seen with nicotine or chlorpyrifos alone. Given that human exposures to nicotine and chlorpyrifos are widespread, our results point to the creation of a subpopulation with heightened vulnerability. PMID:25510202

  11. t-BHQ Provides Protection against Lead Neurotoxicity via Nrf2/HO-1 Pathway

    PubMed Central

    Ye, Fang; Li, Xiaoyi; Li, Lili; Yuan, Jing; Chen, Jun

    2016-01-01

    The neurotoxicity of lead has been well established, and oxidative stress is strongly associated with lead-induced neurotoxicity. Nrf2 is important for protection against oxidative stress in many disease models. We applied t-BHQ, which is an Nrf2 activator, to investigate the possible role of Nrf2 in the protection against lead neurotoxicity. t-BHQ significantly attenuated the oxidative stress in developmental rats by decreasing MDA level, as well as by increasing SOD activity and GSH content, in the hippocampus and frontal cortex. Furthermore, neuronal apoptosis was detected by Nissl staining, and Bax expression was inhibited in the t-BHQ-treated group. Results showed that t-BHQ suppressed ROS production and caspase 3/7 activity but increased intracellular GSH content, in SH-SY5Y cells under lead exposure. Moreover, in vivo and in vitro, t-BHQ enhanced the nuclear translocation of Nrf2 and binding to ARE areas but did not induce Nrf2 transcription. These phenomena were confirmed using RT-PCR, EMSA, Western blot, and immunofluorescence analyses. Subsequent upregulation of the expression of HO-1, NQO1, and GCLC was observed. However, knockdown of Nrf2 or HO-1 adversely affected the protective effects of t-BHQ against lead toxicity in SH-SY5Y cells. Thus, t-BHQ can protect against lead neurotoxicity, depending on the Nrf2/HO-1 pathway. PMID:26798413

  12. Neurobehavioral impairments caused by developmental imidacloprid exposure in zebrafish.

    PubMed

    Crosby, Emily B; Bailey, Jordan M; Oliveri, Anthony N; Levin, Edward D

    2015-01-01

    Neonicotinoid insecticides are becoming more widely applied as organophosphate (OP) insecticides are decreasing in use. Because of their relative specificity to insect nicotinic receptors, they are thought to have reduced risk of neurotoxicity in vertebrates. However, there is scant published literature concerning the neurobehavioral effects of developmental exposure of vertebrates to neonicotinoids. Using zebrafish, we investigated the neurobehavioral effects of developmental exposure to imidacloprid, a prototypic neonicotinoid pesticide. Nicotine was also administered for comparison. Zebrafish were exposed via immersion in aqueous solutions containing 45 μM or 60 μM of imidacloprid or nicotine (or vehicle control) from 4h to 5d post fertilization. The functional effects of developmental exposure to both imidacloprid and nicotine were assessed in larvae using an activity assay and during adolescence and adulthood using a battery of neurobehavioral assays, including assessment of sensorimotor response and habituation in a tactile startle test, novel tank swimming, and shoaling behavior. In larvae, developmental imidacloprid exposure at both doses significantly decreased swimming activity. The 5D strains of zebrafish were more sensitive to both nicotine and imidacloprid than the AB* strain. In adolescent and adult fish, developmental exposure to imidacloprid significantly decreased novel tank exploration and increased sensorimotor response to startle stimuli. While nicotine did not affect novel tank swimming, it increased sensorimotor response to startle stimuli at the low dose. No effects of either compound were found on shoaling behavior or habituation to a startling stimulus. Early developmental exposure to imidacloprid has both early-life and persisting effects on neurobehavioral function in zebrafish. Its developmental neurotoxicity should be further investigated. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Neurobehavioral Impairments Caused by Developmental Imidacloprid Exposure in Zebrafish

    PubMed Central

    Crosby, Emily B.; Bailey, Jordan M.; Oliveri, Anthony N.; Levin, Edward D.

    2015-01-01

    BACKGROUND Neonicotinoid insecticides are becoming more widely applied as organophosphate (OP) insecticides are decreasing in use. Because of their relative specificity to insect nicotinic receptors, they are thought to have reduced risk of neurotoxicity in vertebrates. However, there is scant published literature concerning the neurobehavioral effects of developmental exposure of vertebrates to neonicotinoids. METHODS Using zebrafish, we investigated the neurobehavioral effects of developmental exposure to imidacloprid, a prototypic neonicotinoid pesticide. Nicotine was also administered for comparison. Zebrafish were exposed via immersion in aqueous solutions containing 45 μM or 60 μM of imidacloprid or nicotine (or vehicle control) from 4 h to 5 d post fertilization. The functional effects of developmental exposure to both imidacloprid and nicotine were assessed in larvae using an activity assay and during adolescence and adulthood using a battery of neurobehavioral assays, including assessment of sensorimotor response and habituation in a tactile startle test, novel tank swimming, and shoaling behavior. RESULTS In larvae, developmental imidacloprid exposure at both doses significantly decreased swimming activity. The 5D strain of zebrafish were more sensitive to both nicotine and imidacloprid than the AB* strain. In adolescent and adult fish, developmental exposure to imidacloprid significantly decreased novel tank exploration and increased sensorimotor response to startle stimuli. While nicotine did not affect novel tank swimming, it increased sensorimotor response to startle stimuli at the low dose. No effects of either compound were found on shoaling behavior or habituation to a startling stimulus. DISCUSSION Early developmental exposure to imidacloprid has both early-life and persisting effects on neurobehavioral function in zebrafish. Its developmental neurotoxicity should be further investigated. PMID:25944383

  14. Gene expression profiling of the hippocampal dentate gyrus in an adult toxicity study captures a variety of neurodevelopmental dysfunctions in rat models of hypothyroidism.

    PubMed

    Shiraki, Ayako; Saito, Fumiyo; Akane, Hirotoshi; Akahori, Yumi; Imatanaka, Nobuya; Itahashi, Megu; Yoshida, Toshinori; Shibutani, Makoto

    2016-01-01

    We previously found that developmental hypothyroidism changed the expression of genes in the rat hippocampal dentate gyrus, a brain region where adult neurogenesis is known to occur. In the present study, we performed brain region-specific global gene expression profiling in an adult rat hypothyroidism model to see if it reflected the developmental neurotoxicity we saw in the developmental hypothyroidism model. Starting when male rats were 5 weeks old, we administered 6-propyl-2-thiouracil at a doses of 0, 0.1 and 10 mg kg(-1) body weight by gavage for 28 days. We selected four brain regions to represent both cerebral and cerebellar tissues: hippocampal dentate gyrus, cerebral cortex, corpus callosum and cerebellar vermis. We observed significant alterations in the expression of genes related to neural development (Eph family genes and Robo3) in the cerebral cortex and hippocampal dentate gyrus and in the expression of genes related to myelination (Plp1 and Mbp) in the hippocampal dentate gyrus. We observed only minor changes in the expression of these genes in the corpus callosum and cerebellar vermis. We used real-time reverse-transcription polymerase chain reaction to confirm Chrdl1, Hes5, Mbp, Plp1, Slit1, Robo3 and the Eph family transcript expression changes. The most significant changes in gene expression were found in the dentate gyrus. Considering that the gene expression profile of the adult dentate gyrus closely related to neurogenesis, 28-day toxicity studies looking at gene expression changes in adult hippocampal dentate gyrus may also detect possible developmental neurotoxic effects. Copyright © 2015 John Wiley & Sons, Ltd.

  15. Platinum-Induced Neurotoxicity and Preventive Strategies: Past, Present, and Future

    PubMed Central

    Avan, Abolfazl; Postma, Tjeerd J.; Ceresa, Cecilia; Avan, Amir; Cavaletti, Guido; Giovannetti, Elisa

    2015-01-01

    Neurotoxicity is a burdensome side effect of platinum-based chemotherapy that prevents administration of the full efficacious dosage and often leads to treatment withdrawal. Peripheral sensory neurotoxicity varies from paresthesia in fingers to ataxic gait, which might be transient or irreversible. Because the number of patients being treated with these neurotoxic agents is still increasing, the need for understanding the pathogenesis of this dramatic side effect is critical. Platinum derivatives, such as cisplatin and carboplatin, harm mainly peripheral nerves and dorsal root ganglia neurons, possibly because of progressive DNA-adduct accumulation and inhibition of DNA repair pathways (e.g., extracellular signal-regulated kinase 1/2, c-Jun N-terminal kinase/stress-activated protein kinase, and p38 mitogen-activated protein kinass), which finally mediate apoptosis. Oxaliplatin, with a completely different pharmacokinetic profile, may also alter calcium-sensitive voltage-gated sodium channel kinetics through a calcium ion immobilization by oxalate residue as a calcium chelator and cause acute neurotoxicity. Polymorphisms in several genes, such as voltage-gated sodium channel genes or genes affecting the activity of pivotal metal transporters (e.g., organic cation transporters, organic cation/carnitine transporters, and some metal transporters, such as the copper transporters, and multidrug resistance-associated proteins), can also influence drug neurotoxicity and treatment response. However, most pharmacogenetics studies need to be elucidated by robust evidence. There are supportive reports about the effectiveness of several neuroprotective agents (e.g., vitamin E, glutathione, amifostine, xaliproden, and venlafaxine), but dose adjustment and/or drug withdrawal seem to be the most frequently used methods in the management of platinum-induced peripheral neurotoxicity. To develop alternative options in the treatment of platinum-induced neuropathy, studies on in vitro

  16. Does “Tiger Parenting” Exist? Parenting Profiles of Chinese Americans and Adolescent Developmental Outcomes

    PubMed Central

    Kim, Su Yeong; Wang, Yijie; Orozco-Lapray, Diana; Shen, Yishan; Murtuza, Mohammed

    2013-01-01

    “Tiger parenting,” as described by Chua (2011), has put parenting in Asian American families in the spotlight. The current study identified parenting profiles in Chinese American families and explored their effects on adolescent adjustment. In a three-wave longitudinal design spanning eight years, from early adolescence to emerging adulthood, adolescents (54% female), fathers and mothers from 444 Chinese American families reported on eight parenting dimensions (e.g., warmth and shaming) and six developmental outcomes (e.g., GPA and academic pressure). Latent profile analyses on the eight parenting dimensions demonstrated four parenting profiles: supportive, tiger, easygoing, and harsh parenting. Over time, the percentage of parents classified as tiger parents decreased among mothers but increased among fathers. Path analyses showed that the supportive parenting profile, which was the most common, was associated with the best developmental outcomes, followed by easygoing parenting, tiger parenting, and harsh parenting. Compared with the supportive parenting profile, a tiger parenting profile was associated with lower GPA and educational attainment, as well as less of a sense of family obligation; it was also associated with more academic pressure, more depressive symptoms and a greater sense of alienation. The current study suggests that, contrary to the common perception, tiger parenting is not the most typical parenting profile in Chinese American families, nor does it lead to optimal adjustment among Chinese American adolescents. PMID:23646228

  17. Involvement of Programmed Cell Death in Neurotoxicity of Metallic Nanoparticles: Recent Advances and Future Perspectives

    NASA Astrophysics Data System (ADS)

    Song, Bin; Zhou, Ting; Liu, Jia; Shao, LongQuan

    2016-11-01

    The widespread application of metallic nanoparticles (NPs) or NP-based products has increased the risk of exposure to NPs in humans. The brain is an important organ that is more susceptible to exogenous stimuli. Moreover, any impairment to the brain is irreversible. Recently, several in vivo studies have found that metallic NPs can be absorbed into the animal body and then translocated into the brain, mainly through the blood-brain barrier and olfactory pathway after systemic administration. Furthermore, metallic NPs can cross the placental barrier to accumulate in the fetal brain, causing developmental neurotoxicity on exposure during pregnancy. Therefore, metallic NPs become a big threat to the brain. However, the mechanisms underlying the neurotoxicity of metallic NPs remain unclear. Programmed cell death (PCD), which is different from necrosis, is defined as active cell death and is regulated by certain genes. PCD can be mainly classified into apoptosis, autophagy, necroptosis, and pyroptosis. It is involved in brain development, neurodegenerative disorders, psychiatric disorders, and brain injury. Given the pivotal role of PCD in neurological functions, we reviewed relevant articles and tried to summarize the recent advances and future perspectives of PCD involvement in the neurotoxicity of metallic NPs, with the purpose of comprehensively understanding the neurotoxic mechanisms of NPs.

  18. Neurotoxicity of Vanadium.

    PubMed

    Ngwa, Hilary Afeseh; Ay, Muhammet; Jin, Huajun; Anantharam, Vellareddy; Kanthasamy, Arthi; Kanthasamy, Anumantha G

    2017-01-01

    Vanadium (V) is a transition metal that presents in multiple oxidation states and numerous inorganic compounds and is also an ultra-trace element considered to be essential for most living organisms. Despite being one of the lightest metals, V offers high structural strength and good corrosion resistance and thus has been widely adopted for high-strength steel manufacturing. High doses of V exposure are toxic, and inhalation exposure to V adversely affects the respiratory system. The neurotoxicological properties of V are just beginning to be identified. Recent studies by our group and others demonstrate the neurotoxic potential of this metal in the nigrostriatal system and other parts of the central nervous system (CNS). The neurotoxic effects of V have been mainly attributed to its ability to induce the generation of reactive oxygen species (ROS). It is noteworthy that the neurotoxicity induced by occupational V exposure commonly occurs with co-exposure to other metals, especially manganese (Mn). This review focuses on the chemistry, pharmacology, toxicology, and neurotoxicity of V.

  19. Quantitative proteomic analysis reveals proteins involved in the neurotoxicity of marine medaka Oryzias melastigma chronically exposed to inorganic mercury.

    PubMed

    Wang, Yuyu; Wang, Dazhi; Lin, Lin; Wang, Minghua

    2015-01-01

    Mercury is a ubiquitous environmental contaminant which exerts neurotoxicity upon animals. Nevertheless, the molecular mechanisms involved in inorganic mercury neurotoxicity are unknown. We investigated protein profiles of marine medaka, chronically exposed to mercuric chloride using two-dimensional difference gel electrophoresis (2D-DIGE) and matrix-assisted laser desorption/ionization tandem time-of-flight mass spectrometry (MALDI-TOF-TOF MS) analysis. The mercury accumulation and ultrastructure were also examined in the brain. The results showed that mercury was significantly accumulated in the treated brain, and subsequently caused a noticeable damage. The comparison of 2D-DIGE protein profiles between the control and treatment revealed that 16 protein spots were remarkably altered in abundance, which were further submitted for MALDI-TOF-TOF MS analysis. The identified proteins indicated that inorganic mercury may cause neurotoxicity through the induction of oxidative stress, cytoskeletal assembly dysfunction and metabolic disorders. Thus, this study provided a basis for a better understanding of the molecular mechanisms involved in mercury neurotoxicity. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Developmental Neurotoxicity of Tobacco Smoke Directed Toward Cholinergic and Serotonergic Systems: More Than Just Nicotine.

    PubMed

    Slotkin, Theodore A; Skavicus, Samantha; Card, Jennifer; Stadler, Ashley; Levin, Edward D; Seidler, Frederic J

    2015-09-01

    Tobacco smoke contains thousands of compounds in addition to nicotine, a known neuroteratogen. We evaluated the developmental neurotoxicity of tobacco smoke extract (TSE) administered to pregnant rats starting preconception and continued through the second postnatal week. We simulated nicotine concentrations encountered with second-hand smoke, an order of magnitude below those seen in active smokers, and compared TSE with an equivalent dose of nicotine alone, and to a 10-fold higher nicotine dose. We conducted longitudinal evaluations in multiple brain regions, starting in adolescence (postnatal day 30) and continued to full adulthood (day 150). TSE exposure impaired presynaptic cholinergic activity, exacerbated by a decrement in nicotinic cholinergic receptor concentrations. Although both nicotine doses produced presynaptic cholinergic deficits, these were partially compensated by hyperinnervation and receptor upregulation, effects that were absent with TSE. TSE also produced deficits in serotonin receptors in females that were not seen with nicotine. Regression analysis showed a profound sex difference in the degree to which nicotine could account for overall TSE effects: whereas the 2 nicotine doses accounted for 36%-46% of TSE effects in males, it accounted for only 7%-13% in females. Our results show that the adverse effects of TSE on neurodevelopment exceed those that can be attributed to just the nicotine present in the mixture, and further, that the sensitivity extends down to levels commensurate with second-hand smoke exposure. Because nicotine itself evoked deficits at low exposures, "harm reduction" nicotine products do not eliminate the potential for neurodevelopmental damage. © The Author 2015. Published by Oxford University Press on behalf of the Society of Toxicology.All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  1. Screening for Developmental Neurotoxicants using In Vitro "Brain on a Chip" Cultures

    EPA Science Inventory

    Currently there are thousands of chemicals in the environment that have not been screened for their potential to cause developmental neurotoxicity (DNT). The use of microelectrode array (MEA) technology allows for simultaneous extracellular measurement of action potential (spike)...

  2. Only extra-high dose of ketamine affects l-glutamate-induced intracellular Ca(2+) elevation and neurotoxicity.

    PubMed

    Shibuta, Satoshi; Morita, Tomotaka; Kosaka, Jun; Kamibayashi, Takahiko; Fujino, Yuji

    2015-09-01

    The neurotoxic effects of anesthetics on the developing brain are a concern. Although most of the anesthetics are GABAA agonists or NMDA antagonists, the differences in these effects on prospective glutamate-neurotoxicity in the brain is not fully understood. We examined the degree of L-glutamate-induced intracellular calcium ([Ca(2+)]i) elevation and neurotoxicity in neurons exposed to anesthetics. Primary cortical neurons from E17 rats were preincubated with 1-100 μM of ketamine or thiopental sodium (TPS) for the first 72 h of culturing. Two weeks later, the neurons were exposed to L-glutamate. The extent of glutamate toxicity was evaluated using Ca(2+)-imaging and morphological experiments. Preincubation with 100 μM ketamine but not with other concentrations of ketamine and TPS for the first 72 h in culture significantly enhanced L-glutamate-induced [Ca(2+)]i elevation 2 weeks later. Morphology experiments showed that vulnerability to L-glutamate-mediated neurotoxicity was only altered in neurons preincubated with 100 μM ketamine but not with TPS. Although preincubation with high concentration of ketamine showed enhancement of L-glutamate-induced [Ca(2+)]i elevation 2 weeks later, long-term exposure to TPS or ketamine at clinical doses during developmental periods may not result in a dose-related potentiation of exogenous glutamate-induced neurotoxicity, once the intravenous anesthetics are discontinued. Copyright © 2015 Elsevier Ireland Ltd and the Japan Neuroscience Society. All rights reserved.

  3. Functional Assays and Alternative Species: Using Larval Zebrafish in Developmental Neurotoxicity Screening

    EPA Science Inventory

    The U.S. Environmental Protection Agency is developing and evaluating methods to screen and prioritize large numbers of chemicals for developmental toxicity. Towards this goal, we are exploring methods to detect developmental neurotoxicants in very young larval zebrafish. We have...

  4. BRAIN AND BLOOD TIN LEVELS IN A DEVELOPMENTAL NEUROTOXICITY STUDY OF DIBUTYLTIN.

    EPA Science Inventory

    Dibutyltin (DBT), a widely used plastic stabilizer, is detected in the environment and human tissues. While teratological and developmental effects are known, we could find no published report of DBT effects on the developing nervous system. As part of a developmental neurotoxi...

  5. Developmental Rainbow: Early Childhood Development Profile.

    ERIC Educational Resources Information Center

    Mahoney, Gerald; Mahoney, Frida

    One of the most important skills of professionals who work with young children is the ability to assess developmental functioning through informal observation. This skill serves as the foundation for screening or identifying children in need of developmental services, conducting play-based developmental assessments, and helping parents to…

  6. Neurotoxicity of Persistent Organic Pollutants: Possible Mode(s) of Action and Further Considerations

    PubMed Central

    Kodavanti, Prasada Rao S.

    2005-01-01

    Persistent organic pollutants (POPs) are long-lived toxic organic compounds and are of major concern for human and ecosystem health. Although the use of most POPs is banned in most countries, some organochlorine pesticides are still being used in several parts of the world. Although environmental levels of some POPs such as polychlorinated biphenyls (PCBs) have declined, newly emerging POPs such as polybrominated diphenyl ethers (PBDEs) have been increasing considerably. Exposure to POPs has been associated with a wide spectrum of effects including reproductive, developmental, immunologic, carcinogenic, and neurotoxic effects. It is of particular concern that neurotoxic effects of some POPs have been observed in humans at low environmental concentrations. This review focuses on PCBs as a representative chemical class of POPs and discusses the possible mode(s) of action for the neurotoxic effects with emphasis on comparing dose-response and structure-activity relationships (SAR) with other structurally related chemicals. There is sufficient epidemiological and experimental evidence showing that PCB exposure is associated with motor and cognitive deficits in humans and animal models. Although several potential mode(s) of actions were postulated for PCB-induced neurotoxic effects, changes in neurotransmitter systems, altered intracellular signalling processes, and thyroid hormone imbalance are predominant ones. These three potential mechanisms are discussed in detail in vitro and in vivo. In addition, SAR was conducted on other structurally similar chemicals to see if they have a common mode(s) of action. Relative potency factors for several of these POPs were calculated based on their effects on intracellular signalling processes. This is a comprehensive review comparing molecular effects at the cellular level to the neurotoxic effects seen in the whole animal for environmentally relevant POPs. PMID:18648619

  7. Intracystic interferon-α treatment leads to neurotoxicity in craniopharyngioma: case report.

    PubMed

    Sharma, Julia; Bonfield, Christopher M; Singhal, Ash; Hukin, Juliette; Steinbok, Paul

    2015-09-01

    Craniopharyngioma is a benign, cystic suprasellar tumor that can be treated with intracystic chemotherapy. Interferon-α (IFN-α) has been gaining popularity as an intracystic treatment for craniopharyngioma because of its efficacy and supposed benign neurotoxicity profile. In this case report the authors describe a patient who, while receiving intracystic IFN-α, suffered a neurological event, which was believed to be related to drug leakage outside the cyst. This is the first report of a focal neurological deficit potentially attributable to intracystic IFN-α therapy, highlighting the fact that IFN-α may have neurotoxic effects on the central nervous system. Given this case and the results of a literature review, the authors suggest that a positive leak test is a relative contraindication to intracystic IFN-α treatment.

  8. Heterogeneity of Developmental Dyscalculia: Cases with Different Deficit Profiles

    PubMed Central

    Träff, Ulf; Olsson, Linda; Östergren, Rickard; Skagerlund, Kenny

    2017-01-01

    Developmental Dyscalculia (DD) has long been thought to be a monolithic learning disorder that can be attributed to a specific neurocognitive dysfunction. However, recent research has increasingly recognized the heterogeneity of DD, where DD can be differentiated into subtypes in which the underlying cognitive deficits and neural dysfunctions may differ. The aim was to further understand the heterogeneity of developmental dyscalculia (DD) from a cognitive psychological perspective. Utilizing four children (8–9 year-old) we administered a comprehensive cognitive test battery that shed light on the cognitive-behavioral profile of each child. The children were compared against norm groups of aged-matched peers. Performance was then contrasted against predominant hypotheses of DD, which would also give insight into candidate neurocognitive correlates. Despite showing similar mathematical deficits, these children showed remarkable interindividual variability regarding cognitive profile and deficits. Two cases were consistent with the approximate number system deficit account and also the general magnitude-processing deficit account. These cases showed indications of having domain-general deficits as well. One case had an access deficit in combination with a general cognitive deficit. One case suffered from general cognitive deficits only. The results showed that DD cannot be attributed to a single explanatory factor. These findings support a multiple deficits account of DD and suggest that some cases have multiple deficits, whereas other cases have a single deficit. We discuss a previously proposed distinction between primary DD and secondary DD, and suggest hypotheses of dysfunctional neurocognitive correlates responsible for the displayed deficits. PMID:28101068

  9. Heterogeneity of Developmental Dyscalculia: Cases with Different Deficit Profiles.

    PubMed

    Träff, Ulf; Olsson, Linda; Östergren, Rickard; Skagerlund, Kenny

    2016-01-01

    Developmental Dyscalculia (DD) has long been thought to be a monolithic learning disorder that can be attributed to a specific neurocognitive dysfunction. However, recent research has increasingly recognized the heterogeneity of DD, where DD can be differentiated into subtypes in which the underlying cognitive deficits and neural dysfunctions may differ. The aim was to further understand the heterogeneity of developmental dyscalculia (DD) from a cognitive psychological perspective. Utilizing four children (8-9 year-old) we administered a comprehensive cognitive test battery that shed light on the cognitive-behavioral profile of each child. The children were compared against norm groups of aged-matched peers. Performance was then contrasted against predominant hypotheses of DD, which would also give insight into candidate neurocognitive correlates. Despite showing similar mathematical deficits, these children showed remarkable interindividual variability regarding cognitive profile and deficits. Two cases were consistent with the approximate number system deficit account and also the general magnitude-processing deficit account. These cases showed indications of having domain-general deficits as well. One case had an access deficit in combination with a general cognitive deficit. One case suffered from general cognitive deficits only. The results showed that DD cannot be attributed to a single explanatory factor. These findings support a multiple deficits account of DD and suggest that some cases have multiple deficits, whereas other cases have a single deficit. We discuss a previously proposed distinction between primary DD and secondary DD, and suggest hypotheses of dysfunctional neurocognitive correlates responsible for the displayed deficits.

  10. Non-fibrillar amyloid-{beta} peptide reduces NMDA-induced neurotoxicity, but not AMPA-induced neurotoxicity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Niidome, Tetsuhiro, E-mail: tniidome@pharm.kyoto-u.ac.jp; Goto, Yasuaki; Kato, Masaru

    2009-09-04

    Amyloid-{beta} peptide (A{beta}) is thought to be linked to the pathogenesis of Alzheimer's disease. Recent studies suggest that A{beta} has important physiological roles in addition to its pathological roles. We recently demonstrated that A{beta}42 protects hippocampal neurons from glutamate-induced neurotoxicity, but the relationship between A{beta}42 assemblies and their neuroprotective effects remains largely unknown. In this study, we prepared non-fibrillar and fibrillar A{beta}42 based on the results of the thioflavin T assay, Western blot analysis, and atomic force microscopy, and examined the effects of non-fibrillar and fibrillar A{beta}42 on glutamate-induced neurotoxicity. Non-fibrillar A{beta}42, but not fibrillar A{beta}42, protected hippocampal neurons frommore » glutamate-induced neurotoxicity. Furthermore, non-fibrillar A{beta}42 decreased both neurotoxicity and increases in the intracellular Ca{sup 2+} concentration induced by N-methyl-D-aspartate (NMDA), but not by {alpha}-amino-3-hydrozy-5-methyl-4-isoxazole propionic acid (AMPA). Our results suggest that non-fibrillar A{beta}42 protects hippocampal neurons from glutamate-induced neurotoxicity through regulation of the NMDA receptor.« less

  11. Neurotoxicity of a polybrominated diphenyl ether mixture (DE-71) in mouse neurons and astrocytes is modulated by intracellular glutathione levels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Giordano, Gennaro; Kavanagh, Terrance J.; Costa, Lucio G.

    2008-10-15

    Polybrominated diphenyl ether (PBDE) flame retardants have become widespread environmental contaminants. Body burden in the U.S. population has been shown to be higher than in other countries, and infants and toddlers have highest exposure through maternal breast milk and household dust. The primary concern for adverse health effects of PBDEs relates to their potential developmental neurotoxicity, which has been found in a number of animal studies. Information on the possible mechanisms of PBDE neurotoxicity is limited, though some studies have suggested that PBDEs may elicit oxidative stress. The present study examined the in vitro neurotoxicity of DE-71, a penta-BDE mixture,more » in primary neurons and astrocytes obtained from wild-type and Gclm knockout mice, which lack the modifier subunit of glutamate-cysteine ligase and, as a consequence, have very low levels of glutathione (GSH). These experiments show that neurotoxicity of DE-71 in these cells is modulated by cellular GSH levels. Cerebellar granule neurons (CGNs) from Gclm (-/-) mice displayed a higher sensitivity to DE-71 toxicity compared to CGNs from wild-type animals. DE-71 neurotoxicity in CGNs from Gclm (+/+) mice was exacerbated by GSH depletion, and in CGNs from both genotypes it was antagonized by increasing GSH levels and by antioxidants. DE-71 caused an increase in reactive oxygen species and in lipid peroxidation in CGNs, that was more pronounced in Gclm (-/-) mice. Toxicity of DE-71 was mostly due to the induction of apoptotic cell death. An analysis of DE-71-induced cytotoxicity and apoptosis in neurons and astrocytes from different brain areas (cerebellum, hippocampus, cerebral cortex) in both mouse genotypes showed a significant correlation with intracellular GSH levels. As an example, DE-71 caused cytotoxicity in hippocampal neurons with IC50s of 2.2 and 0.3 {mu}M, depending on genotype, and apoptosis with IC50s of 2.3 and 0.4 {mu}M, respectively. These findings suggest that the

  12. The influence of study design and sex-differences on results from developmental neurotoxicity studies of bisphenol A: implications for toxicity testing.

    PubMed

    Beronius, Anna; Johansson, Niklas; Rudén, Christina; Hanberg, Annika

    2013-09-06

    Developmental neurotoxicity (DNT) of bisphenol A (BPA) has been investigated in a large number of studies. However, there are discrepancies in the results reported between the studies. The aim of this study was to identify and analyze factors that may contribute to these differences and to assess whether there are sex-differences in the sensitivity of certain endpoints or tests used in DNT-studies. Forty-four DNT studies of BPA were identified from the open literature. Details about study design and results from each study, as well as the criteria for DNT testing according to the standardized OECD test guideline (TG) 426, were collected in a database. This enabled systematic and detailed comparisons between studies as well as to the criteria and recommendations stated in TG 426. Multivariate analyses were also used to investigate how different factors of the study design contributed to differences in study results. The analyses showed behavioral effects were often observed for endpoints that are not required according to OECD TG 426, such as anxiety-related, social and sexual behaviors, especially at very low doses and in female offspring. On the other hand relatively few studies observed any effects on motor activity, which is commonly used in screening for neurotoxic effects in regulatory testing. However, varied and to some extent seemingly contradictory results have been reported in these studies, especially for endpoints related to motor activity and anxiety and exploration. Many studies were also poorly reported, limiting these analyses. No strong conclusions could be drawn from the multivariate analyses. A few factors of study design, such as the size of the dose and number of dose levels used and the use of litter or individual pup as statistical unit seemed to have some influence on study results. In conclusion, this analysis suggests that DNT-studies conducted according to the standardized OECD TG 426 may overlook sensitive effects of BPA, and possibly

  13. Dopamine quinones activate microglia and induce a neurotoxic gene expression profile: relationship to methamphetamine-induced nerve ending damage.

    PubMed

    Kuhn, Donald M; Francescutti-Verbeem, Dina M; Thomas, David M

    2006-08-01

    Methamphetamine (METH) intoxication leads to persistent damage of dopamine (DA) nerve endings of the striatum. Recently, we and others have suggested that the neurotoxicity associated with METH is mediated by extensive microglial activation. DA itself has been shown to play an obligatory role in METH neurotoxicity, possibly through the formation of quinone species. We show presently that DA-quinones (DAQ) cause a time-dependent activation of cultured microglial cells. Microarray analysis of the effects of DAQ on microglial gene expression revealed that 101 genes were significantly changed in expression, with 73 genes increasing and 28 genes decreasing in expression. Among those genes differentially regulated by DAQ were those often associated with neurotoxic conditions including inflammation, cytokines, chemokines, and prostaglandins. In addition, microglial genes associated with a neuronally protective phenotype were among those that were downregulated by DAQ. These results implicate DAQ as one species that could cause early activation of microglial cells in METH intoxication, manifested as an alteration in the expression of a broad biomarker panel of genes. These results also link oxidative stress, chemical alterations in DA to its quinone, and microglial activation as part of a cascade of glial-neuronal crosstalk that can amplify METH-induced neurotoxicity.

  14. DEVELOPMENTAL NEUROTOXICITY OF ORGANOPHOSPHATES TARGETS CELL CYCLE AND APOPTOSIS, REVEALED BY TRANSCRIPTIONAL PROFILES IN VIVO AND IN VITRO

    PubMed Central

    Slotkin, Theodore A.; Seidler, Frederic J.

    2012-01-01

    Developmental organophosphate exposure reduces the numbers of neural cells, contributing to neurobehavioral deficits. We administered chlorpyrifos or diazinon to newborn rats on postnatal days 1–4, in doses straddling the threshold for barely-detectable cholinesterase, and evaluated gene expression in the cell cycle and apoptosis pathways on postnatal day 5. Both organophosphates evoked transcriptional changes in 20–25% of the genes in each category; chlorpyrifos and diazinon targeted the same genes, with similar magnitudes of change, as evidenced by high concordance. Furthermore, the same effects were obtained with doses above or below the threshold for cholinesterase inhibition, indicating a mechanism unrelated to anticholinesterase actions. We then evaluated the effects of chlorpyrifos in undifferentiated and differentiating PC12 cells and found even greater targeting of cell cycle and apoptosis genes, affecting up to 40% of all genes in the pathways. Notably, the genes affected in undifferentiated cells were not concordant with those in differentiating cells, pointing to dissimilar outcomes dependent on developmental stage. The in vitro model successfully identified 60–70% of the genes affected by chlorpyrifos in vivo, indicating that the effects are exerted directly on developing neural cells. Our results show that organophosphates target the genes regulating the cell cycle and apoptosis in the developing brain and in neuronotypic cells in culture, with the pattern of vulnerability dependent on the specific stage of development. Equally important, these effects do not reflect actions on cholinesterase and operate at exposures below the threshold for any detectable inhibition of this enzyme. PMID:22222554

  15. Developmental neurotoxicity of organophosphates targets cell cycle and apoptosis, revealed by transcriptional profiles in vivo and in vitro.

    PubMed

    Slotkin, Theodore A; Seidler, Frederic J

    2012-03-01

    Developmental organophosphate exposure reduces the numbers of neural cells, contributing to neurobehavioral deficits. We administered chlorpyrifos or diazinon to newborn rats on postnatal days 1-4, in doses straddling the threshold for barely-detectable cholinesterase inhibition, and evaluated gene expression in the cell cycle and apoptosis pathways on postnatal day 5. Both organophosphates evoked transcriptional changes in 20-25% of the genes in each category; chlorpyrifos and diazinon targeted the same genes, with similar magnitudes of change, as evidenced by high concordance. Furthermore, the same effects were obtained with doses above or below the threshold for cholinesterase inhibition, indicating a mechanism unrelated to anticholinesterase actions. We then evaluated the effects of chlorpyrifos in undifferentiated and differentiating PC12 cells and found even greater targeting of cell cycle and apoptosis genes, affecting up to 40% of all genes in the pathways. Notably, the genes affected in undifferentiated cells were not concordant with those in differentiating cells, pointing to dissimilar outcomes dependent on developmental stage. The in vitro model successfully identified 60-70% of the genes affected by chlorpyrifos in vivo, indicating that the effects are exerted directly on developing neural cells. Our results show that organophosphates target the genes regulating the cell cycle and apoptosis in the developing brain and in neuronotypic cells in culture, with the pattern of vulnerability dependent on the specific stage of development. Equally important, these effects do not reflect actions on cholinesterase and operate at exposures below the threshold for any detectable inhibition of this enzyme. Copyright © 2011 Elsevier Inc. All rights reserved.

  16. Developmental transcriptional profiling reveals key insights into Triticeae reproductive development.

    PubMed

    Tran, Frances; Penniket, Carolyn; Patel, Rohan V; Provart, Nicholas J; Laroche, André; Rowland, Owen; Robert, Laurian S

    2013-06-01

    Despite their importance, there remains a paucity of large-scale gene expression-based studies of reproductive development in species belonging to the Triticeae. As a first step to address this deficiency, a gene expression atlas of triticale reproductive development was generated using the 55K Affymetrix GeneChip(®) wheat genome array. The global transcriptional profiles of the anther/pollen, ovary and stigma were analyzed at concurrent developmental stages, and co-expressed as well as preferentially expressed genes were identified. Data analysis revealed both novel and conserved regulatory factors underlying Triticeae floral development and function. This comprehensive resource rests upon detailed gene annotations, and the expression profiles are readily accessible via a web browser. © 2013 Her Majesty the Queen in Right of Canada as represented by the Minister of Agriculture and Agri-Food Canada.

  17. Sub-microradian Surface Slope Metrology with the ALS Developmental Long Trace Profiler

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yashchuk, Valeriy V; Barber, Samuel; Domning, Edward E.

    2009-09-11

    A new low budget slope measuring instrument, the Developmental Long Trace Profiler (DLTP), was recently brought to operation at the ALS Optical Metrology Laboratory. The design, instrumental control and data acquisition system, initial alignment and calibration procedures, as well as the developed experimental precautions and procedures are described in detail. The capability of the DLTP to achieve sub-microradian surface slope metrology is verified via cross-comparison measurements with other high performance slope measuring instruments when measuring the same high quality test optics. The directions of future work to develop a surface slope measuring profiler with nano-radian performance are also discussed.

  18. A novel in vitro metabolomics approach for neurotoxicity testing, proof of principle for methyl mercury chloride and caffeine.

    PubMed

    van Vliet, Erwin; Morath, Siegfried; Eskes, Chantra; Linge, Jens; Rappsilber, Juri; Honegger, Paul; Hartung, Thomas; Coecke, Sandra

    2008-01-01

    There is a need for more efficient methods giving insight into the complex mechanisms of neurotoxicity. Testing strategies including in vitro methods have been proposed to comply with this requirement. With the present study we aimed to develop a novel in vitro approach which mimics in vivo complexity, detects neurotoxicity comprehensively, and provides mechanistic insight. For this purpose we combined rat primary re-aggregating brain cell cultures with a mass spectrometry (MS)-based metabolomics approach. For the proof of principle we treated developing re-aggregating brain cell cultures for 48 h with the neurotoxicant methyl mercury chloride (0.1-100 microM) and the brain stimulant caffeine (1-100 microM) and acquired cellular metabolic profiles. To detect toxicant-induced metabolic alterations the profiles were analysed using commercial software which revealed patterns in the multi-parametric dataset by principal component analyses (PCA), and recognised the most significantly altered metabolites. PCA revealed concentration-dependent cluster formations for methyl mercury chloride (0.1-1 microM), and treatment-dependent cluster formations for caffeine (1-100 microM) at sub-cytotoxic concentrations. Four relevant metabolites responsible for the concentration-dependent alterations following methyl mercury chloride treatment could be identified using MS-MS fragmentation analysis. These were gamma-aminobutyric acid, choline, glutamine, creatine and spermine. Their respective mass ion intensities demonstrated metabolic alterations in line with the literature and suggest that the metabolites could be biomarkers for mechanisms of neurotoxicity or neuroprotection. In addition, we evaluated whether the approach could identify neurotoxic potential by testing eight compounds which have target organ toxicity in the liver, kidney or brain at sub-cytotoxic concentrations. PCA revealed cluster formations largely dependent on target organ toxicity indicating possible potential

  19. Neurotoxic snakes of the Americas

    PubMed Central

    Rolan, Terry D.

    2015-01-01

    Abstract Snake envenomation is a global problem and often a matter of life or death. Emergency treatment is not always readily available or effective. There are numerous neurotoxic snakes in the Americas, chiefly elapids; some crotalids have also evolved neurotoxic venom. The variability of neurotoxins found in snake venom within the same species makes development and choice of proper antivenom a major challenge that has not been completely addressed. This article reviews the epidemiology, clinical effects, and current treatment of neurotoxic snake envenomation in the Americas. PMID:29443174

  20. Evaluating alterations in Zebrafish retino-tectal projections as an indication of developmental neurotoxicity

    EPA Science Inventory

    The U.S. EPA is developing alternative screening methods to identify putative developmental neurotoxicants and prioritize chemicals for additional testing. One method developmentally exposes zebrafish embryos and assesses nervous system structure at 2 days post-fertilization (dpf...

  1. Non-coding RNAs—Novel targets in neurotoxicity

    PubMed Central

    Tal, Tamara L.; Tanguay, Robert L.

    2012-01-01

    Over the past ten years non-coding RNAs (ncRNAs) have emerged as pivotal players in fundamental physiological and cellular processes and have been increasingly implicated in cancer, immune disorders, and cardiovascular, neurodegenerative, and metabolic diseases. MicroRNAs (miRNAs) represent a class of ncRNA molecules that function as negative regulators of post-transcriptional gene expression. miRNAs are predicted to regulate 60% of all human protein-coding genes and as such, play key roles in cellular and developmental processes, human health, and disease. Relative to counterparts that lack bindings sites for miRNAs, genes encoding proteins that are post-transcriptionally regulated by miRNAs are twice as likely to be sensitive to environmental chemical exposure. Not surprisingly, miRNAs have been recognized as targets or effectors of nervous system, developmental, hepatic, and carcinogenic toxicants, and have been identified as putative regulators of phase I xenobiotic-metabolizing enzymes. In this review, we give an overview of the types of ncRNAs and highlight their roles in neurodevelopment, neurological disease, activity-dependent signaling, and drug metabolism. We then delve into specific examples that illustrate their importance as mediators, effectors, or adaptive agents of neurotoxicants or neuroactive pharmaceutical compounds. Finally, we identify a number of outstanding questions regarding ncRNAs and neurotoxicity. PMID:22394481

  2. Mechanisms involved in the neurotoxic and cognitive effects of developmental methamphetamine exposure.

    PubMed

    Jablonski, Sarah A; Williams, Michael T; Vorhees, Charles V

    2016-06-01

    Methamphetamine exposure in utero leads to a variety of higher-order cognitive deficits, such as decreased attention and working, and spatial memory impairments in exposed children (Piper et al., 2011; Roussotte et al., 2011; Kiblawi et al., 2011). As with other teratogens, the timing of methamphetamine exposure greatly determines its effects on both neuroanatomical and behavioral outcomes. Methamphetamine exposure in rodents during the third trimester human equivalent period of brain development results in distinct and long-lasting route-based and spatial navigation deficits (Williams et al., 2003; Vorhees et al., 2005, 2008, 2009;). Here, we examine the impact of neonatal methamphetamine-induced neurotoxicity on behavioral outcomes, neurotransmission, receptor changes, plasticity proteins, and DNA damage. Birth Defects Research (Part C) 108:131-141, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  3. Comparison of the Developmental and Acute Neurotoxicity of a Library of Organophosphorus Pesticides Using a Vertebrate Behavioral Assay

    EPA Science Inventory

    The U.S. Environmental Protection Agency is evaluating methods to screen and prioritize organophosphorus pesticides for neurotoxicity using behavioral tests in an in vivo, vertebrate, medium-throughput model (zebrafish; Danio rerio). Our behavioral testing paradigm assesses the e...

  4. Developmental Thyroid Hormone Insufficiency Induces Cortical Brain Malformation and Learning Impairments: A Cross-Fostering Study

    EPA Science Inventory

    Thyroid hormones (TH) are essential for brain development, but animal models of well-defined and sensitive downstream apical neurotoxic outcomes associated with developmental TH disruption are lacking. A structural anomaly, a cortical heterotopia, in the brains of hypothyroid rat...

  5. Use of alternative assays to identify and prioritize organophosphorus flame retardants for potential developmental and neurotoxicity.

    PubMed

    Behl, Mamta; Hsieh, Jui-Hua; Shafer, Timothy J; Mundy, William R; Rice, Julie R; Boyd, Windy A; Freedman, Jonathan H; Hunter, E Sidney; Jarema, Kimberly A; Padilla, Stephanie; Tice, Raymond R

    2015-01-01

    Due to their toxicity and persistence in the environment, brominated flame retardants (BFRs) are being phased out of commercial use, leading to the increased use of alternative chemicals such as the organophosphorus flame retardants (OPFRs). There is, however, limited information on the potential health effects of OPFRs. Due to the structural similarity of the OPFRs to organophosphorus insecticides, there is concern regarding developmental toxicity and neurotoxicity. In response, we evaluated a set of OPFRs (triphenyl phosphate [TPHP]), isopropylated phenyl phosphate [IPP], 2-ethylhexyl diphenyl phosphate [EHDP], tert-butylated phenyl diphenyl phosphate [BPDP], trimethyl phenyl phosphate [TMPP], isodecyl diphenyl phosphate [IDDP], (tris(1,3-dichloroisopropyl) phosphate [TDCIPP], and tris(2-chloroethyl)phosphate [TCEP]) in a battery of cell-based in vitro assays and alternative model organisms and compared the results to those obtained for two classical BFRs (3,3',5,5'-tetrabromobisphenol A [TBBPA] and 2,2'4,4'-brominated diphenyl ether [BDE-47]). The assays used evaluated the effects of chemicals on the differentiation of mouse embryonic stem cells, the proliferation and growth of human neural stem cells, rat neuronal growth and network activity, and development of nematode (Caenorhabditis elegans) and zebrafish (Danio rerio). All assays were performed in a concentration-response format, allowing for the determination of the point of departure (POD: the lowest concentration where a chemically-induced response exceeds background noise). The majority of OPFRs (8/9) were active in multiple assays in the range of 1-10 μM, most of which had comparable activity to the BFRs TBBPA and BDE-47. TCEP was negative in all assays. The results indicate that the replacement OPFRs, with the exception of TCEP, showed comparable activity to the two BFRs in the assays tested. Based on these results, more comprehensive studies are warranted to further characterize the potential hazard

  6. WISC-III cognitive profiles in children with developmental dyslexia: specific cognitive disability and diagnostic utility.

    PubMed

    Moura, Octávio; Simões, Mário R; Pereira, Marcelino

    2014-02-01

    This study analysed the usefulness of the Wechsler Intelligence Scale for Children-Third Edition in identifying specific cognitive impairments that are linked to developmental dyslexia (DD) and the diagnostic utility of the most common profiles in a sample of 100 Portuguese children (50 dyslexic and 50 normal readers) between the ages of 8 and 12 years. Children with DD exhibited significantly lower scores in the Verbal Comprehension Index (except the Vocabulary subtest), Freedom from Distractibility Index (FDI) and Processing Speed Index subtests, with larger effect sizes than normal readers in Information, Arithmetic and Digit Span. The Verbal-Performance IQs discrepancies, Bannatyne pattern and the presence of FDI; Arithmetic, Coding, Information and Digit Span subtests (ACID) and Symbol Search, Coding, Arithmetic and Digit Span subtests (SCAD) profiles (full or partial) in the lowest subtests revealed a low diagnostic utility. However, the receiver operating characteristic curve and the optimal cut-off score analyses of the composite ACID; FDI and SCAD profiles scores showed moderate accuracy in correctly discriminating dyslexic readers from normal ones. These results suggested that in the context of a comprehensive assessment, the Wechsler Intelligence Scale for Children-Third Edition provides some useful information about the presence of specific cognitive disabilities in DD. Practitioner Points. Children with developmental dyslexia revealed significant deficits in the Wechsler Intelligence Scale for Children-Third Edition subtests that rely on verbal abilities, processing speed and working memory. The composite Arithmetic, Coding, Information and Digit Span subtests (ACID); Freedom from Distractibility Index and Symbol Search, Coding, Arithmetic and Digit Span subtests (SCAD) profile scores showed moderate accuracy in correctly discriminating dyslexics from normal readers. Wechsler Intelligence Scale for Children-Third Edition may provide some useful

  7. IN VITRO SCREENING OF DEVELOPMENTAL NEUROTOXICANTS IN RAT PRIMARY CORTICAL NEURONS USING HIGH CONTENT IMAGE

    EPA Science Inventory

    There is a need for more efficient and cost-effective methods for identifying, characterizing and prioritizing chemicals which may result in developmental neurotoxicity. One approach is to utilize in vitro test systems which recapitulate the critical processes of nervous system d...

  8. Number Processing and Heterogeneity of Developmental Dyscalculia: Subtypes with Different Cognitive Profiles and Deficits

    ERIC Educational Resources Information Center

    Skagerlund, Kenny; Träff, Ulf

    2016-01-01

    This study investigated if developmental dyscalculia (DD) in children with different profiles of mathematical deficits has the same or different cognitive origins. The defective approximate number system hypothesis and the access deficit hypothesis were tested using two different groups of children with DD (11-13 years old): a group with…

  9. Empirically Based Phenotypic Profiles of Children with Pervasive Developmental Disorders: Interpretation in the Light of the DSM-5

    ERIC Educational Resources Information Center

    Greaves-Lord, Kirstin; Eussen, Mart L. J. M.; Verhulst, Frank C.; Minderaa, Ruud B.; Mandy, William; Hudziak, James J.; Steenhuis, Mark Peter; de Nijs, Pieter F.; Hartman, Catharina A.

    2013-01-01

    This study aimed to contribute to the Diagnostic and Statistical Manual (DSM) debates on the conceptualization of autism by investigating (1) whether empirically based distinct phenotypic profiles could be distinguished within a sample of mainly cognitively able children with pervasive developmental disorder (PDD), and (2) how profiles related to…

  10. Developmental assets: profile of youth in a juvenile justice facility.

    PubMed

    Chew, Weslee; Osseck, Jenna; Raygor, Desiree; Eldridge-Houser, Jennifer; Cox, Carol

    2010-02-01

    Possessing high numbers of developmental assets greatly reduces the likelihood of a young person engaging in health-risk behaviors. Since youth in the juvenile justice system seem to exhibit many high-risk behaviors, the purpose of this study was to assess the presence of external, internal, and social context areas of developmental assets in at-risk youth attending a northeast Missouri juvenile justice center. Male and female middle and high school students moved to a residential juvenile justice center voluntarily completed the Developmental Assets Profile (DAP) instrument during a regularly scheduled "intake" session. Most respondents reported lacking risk-protective factors in the internal and social context areas. Respondents noted their lack of community involvement in the social context area and their overinvolvement with negative influences in the internal context area. Specifically in the internal and external context areas, most respondents reported having trouble with substance abuse and not having positive peer or parental support. In the social context area, many noted that they wanted to do well in activities and were encouraged to do well; however, they scored service to others and involvement in religious groups or activities as low. Students who lack protective qualities, especially those who do not feel committed to their community, are more likely to be involved in substance abuse and risky behaviors. School-community partnerships may provide the targeted health protective factors that encourage more community involvement and more positive health behaviors in these youth.

  11. Synthesis and Neurotoxicity Profile of 2,4,5-Trihydroxymethamphetamine and its 6-(N-Acetylcystein-S-yl) Conjugate

    PubMed Central

    Neudörffer, Anne; Mueller, Melanie; Martinez, Claire-Marie; Mechan, Annis; McCann, Una; Ricaurte, George A.; Largeron, Martine

    2011-01-01

    The purpose of the present study was to determine if trihydroxymethamphetamine (THMA), a metabolite of methylenedioxymethamphetamine (MDMA, “ecstasy”) or its thioether conjugate, 6-(N-acetylcystein-S-yl)-2,4,5-trihydroxymethamphetamine (6-NAC-THMA), plays a role in the lasting effects of MDMA on brain serotonin (5-HT) neurons. To this end, novel high-yield syntheses of THMA and 6-NAC-THMA were developed. Lasting effects of both compounds on brain serotonin (5-HT) neuronal markers were then examined. A single intraventricular injection of THMA produced a significant lasting depletion of regional rat brain 5-HT and 5-hydroxyindoleacetic acid (5-HIAA), consistent with previous reports that THMA harbors 5-HT neurotoxic potential. The lasting effect of THMA on brain 5-HT markers was blocked by the 5-HT uptake inhibitor fluoxetine, indicating persistent effects of THMA on 5-HT markers, like those of MDMA, are dependent on intact 5-HT transporter function. Efforts to identify THMA in the brains of animals treated with a high, neurotoxic dose (80 mg/kg) of MDMA were unsuccessful. Inability to identify THMA in brains of these animals was not related to the unstable nature of the THMA molecule, because exogenous THMA administered intracerebroventricularly could be readily detected in the rat brain for several hours. The thioether conjugate of THMA, 6-NAC-THMA, led to no detectable lasting alterations of cortical 5-HT or 5-HIAA levels, indicating that it lacks significant 5-HT neurotoxic activity. The present results cast doubt on the role of either THMA or 6-NAC-THMA in the lasting serotonergic effects of MDMA. The possibility remains that different conjugated forms of THMA, or oxidized cyclic forms (e.g. the indole of THMA) play a role in MDMA-induced 5-HT neurotoxicity in vivo. PMID:21557581

  12. Oral supplements of inulin during gestation offsets rotenone-induced oxidative impairments and neurotoxicity in maternal and prenatal rat brain.

    PubMed

    Krishna, Gokul; Muralidhara

    2018-05-25

    Environmental insults including pesticide exposure and their entry into the immature brain are of increased concern due to their developmental neurotoxicity. Several lines of evidence suggest that maternal gut microbiota influences in utero fetal development via modulation of host's microbial composition with prebiotics. Hence we examined the hypothesis if inulin (IN) supplements during pregnancy in rats possess the potential to alleviate brain oxidative response and mitochondrial deficits employing a developmental model of rotenone (ROT) neurotoxicity. Initially, pregnant Sprague-Dawley rats were gavaged during gestational days (GDs) 6-19 with 0 (control), 10 (low), 30 (mid) or 50 (high) mg/kg bw/day of ROT to recapitulate developmental effects on general fetotoxicity (assessed by the number of fetuses, fetal body and placental weights), markers of oxidative stress and cholinergic activities in maternal brain regions and whole fetal-brain. Secondly, dams orally supplemented with inulin (2×/day, 2 g/kg/bw) on GD 0-21 were administered ROT (50 mg/kg, GD 6-19). IN supplements increased maternal cecal bacterial numbers that significantly corresponded with improved exploratory-related behavior among ROT administered rats. In addition, IN supplements improved fetal and placental weight on GD 19. IN diminished gestational ROT-induced increased reactive oxygen species levels, protein and lipid peroxidation biomarkers, and cholinesterase activity in maternal brain regions (cortex, cerebellum, and striatum) and fetal brain. Moreover, in the maternal cortex, mitochondrial assessment revealed IN protected against ROT-induced reduction in NADH cytochrome c oxidoreductase and ATPase activities. These data suggest a potential role for indigestible oligosaccharides in reducing oxidative stress-mediated developmental origins of neurodegenerative disorders. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  13. RISK CHARACTERIZATION OF PERSISTENT NEUROTOXIC CONTAMINANTS

    EPA Science Inventory

    Neurotoxicity is an adverse change in structure or function of the central and/or peripheral nervous system following exposure to a chemical, physical, or biological agent. Thousands of chemicals have been estimated to have neurotoxic potential. Many persistent and bioaccumulat...

  14. Neurotoxic Weapons and Syndromes.

    PubMed

    Carota, Antonio; Calabrese, Pasquale; Bogousslavsky, Julien

    2016-01-01

    The modern era of chemical and biological warfare began in World War I with the large-scale production and use of blistering and choking agents (chlorine, phosgene and mustard gases) in the battlefield. International treaties (the 1925 Geneva Protocol, the 1975 Biological and Toxin Weapons Convention and the 1993 Chemical Weapons Convention) banned biological and chemical weapons. However, several countries are probably still engaged in their development. Hence, there is risk of these weapons being used in the future. This chapter will focus on neurotoxic weapons (e.g. nerve agents, chemical and biological neurotoxins, psychostimulants), which act specifically or preeminently on the central nervous system and/or the neuromuscular junction. Deeply affecting the function of the nervous system, these agents either have incapacitating effects or cause clusters of casualties who manifest primary symptoms of encephalopathy, seizures, muscle paralysis and respiratory failure. The neurologist should be prepared both to notice patterns of symptoms and signs that are sufficiently consistent to raise the alarm of neurotoxic attacks and to define specific therapeutic interventions. Additionally, extensive knowledge on neurotoxic syndromes should stimulate scientific research to produce more effective antidotes and antibodies (which are still lacking for most neurotoxic weapons) for rapid administration in aerosolized forms in the case of terrorist or warfare scenarios. © 2016 S. Karger AG, Basel.

  15. Generation and Characterization of Neurogeninl-GFP Transgenic Medaka for High Throughput Developmental Neurotoxicity Screening

    EPA Science Inventory

    Fish models such as zebrafish and medaka are increasingly used as alternatives to rodents in developmental and toxicological studies. These developmental and toxicological studies can be facilitated by the use of transgenic reporters that permit the real-time, noninvasive observa...

  16. The Portland Neurotoxicity Scale: Validation of a Brief Self-Report Measure of Antiepileptic-Drug-Related Neurotoxicity

    ERIC Educational Resources Information Center

    Salinsky, Martin C.; Storzbach, Daniel

    2005-01-01

    The Portland Neurotoxicity Scale (PNS) is a brief patient-based survey of neurotoxicity complaints commonly encountered with the use of antiepileptic drugs (AEDs). The authors present data on the validity of this scale, particularly when used in longitudinal studies. Participants included 55 healthy controls, 23 epilepsy patient controls, and 86…

  17. Central neurotoxicity of immunomodulatory drugs in multiple myeloma.

    PubMed

    Patel, Urmeel H; Mir, Muhammad A; Sivik, Jeffrey K; Raheja, Divisha; Pandey, Manoj K; Talamo, Giampaolo

    2015-02-24

    Immunomodulatory drugs (IMiDs) currently used in the treatment of multiple myeloma, are thalidomide, lenalidomide and pomalidomide. One of the most common side effects of thalidomide is neurotoxicity, predominantly in the form of peripheral neuropathy. We report 6 cases of significant central neurotoxicity associated with IMiD therapy. Treatment with thalidomide (1 patient), lenalidomide (4 patients), and pomalidomide (1 patient) was associated with various clinical manifestations of central neurotoxicity, including reversible coma, amnesia, expressive aphasia, and dysarthria. Central neurotoxicity should be recognized as an important side effect of IMiD therapy.

  18. Central Neurotoxicity of Immunomodulatory Drugs in Multiple Myeloma

    PubMed Central

    Patel, Urmeel H.; Mir, Muhammad A.; Sivik, Jeffrey K.; Raheja, Divisha; Pandey, Manoj K.; Talamo, Giampaolo

    2015-01-01

    Immunomodulatory drugs (IMiDs) currently used in the treatment of multiple myeloma, are thalidomide, lenalidomide and pomalidomide. One of the most common side effects of thalidomide is neurotoxicity, predominantly in the form of peripheral neuropathy. We report 6 cases of significant central neurotoxicity associated with IMiD therapy. Treatment with thalidomide (1 patient), lenalidomide (4 patients), and pomalidomide (1 patient) was associated with various clinical manifestations of central neurotoxicity, including reversible coma, amnesia, expressive aphasia, and dysarthria. Central neurotoxicity should be recognized as an important side effect of IMiD therapy. PMID:25852850

  19. Current Challenges in Neurotoxicity Risk Assessment ...

    EPA Pesticide Factsheets

    Neurotoxicity risk assessment must continue to evolve in parallel with advances in basic research. Along with this evolution is an expansion in the scope of neurotoxicity assessments of environmental health risks. Examples of this expansion include an increasing emphasis on complex animal models that better replicate human behavior and a wider array of molecular and mechanistic data relevant to interpreting the underlying cause(s) of toxicity. However, modern neurotoxicology studies are often more nuanced and complicated than traditional studies, and they often vary considerably in evaluation methods from one study to the next, impeding comparisons. This can pose particular difficulties for risk assessors, especially given the recent demand for chemical risk assessments to be more systematic and transparent. This presentation will introduce and provide some examples of specific challenges in neurotoxicity assessments of environmental chemicals. Some of these challenges are relatively new to the field, such as the incorporation of data on neuron-supportive glial cells into hazard characterization, while other challenges have persisted for several decades, but only recently are studies being designed to evaluate them, including analyses of latent neurotoxicity. The examples provided illustrate some future research areas of interest for scientists and risk assessors examining human neurotoxicity risk. This abstract will be presented to internal U.S. Food and Drug A

  20. Developmental neurotoxicity screening using human embryonic stem cells.

    PubMed

    Bosnjak, Zeljko J

    2012-09-01

    Research in the area of stem cell biology and regenerative medicine, along with neuroscience, will further our understanding of drug-induced death of neurons during their development. With the development of an in vitro model of stem cell-derived human neural cell lines investigators can, under control conditions and during intense neuronal growth, examine molecular mechanisms of various drugs and conditions on early developmental neuroapoptosis in humans. If the use of this model will lead to fewer risks, or identification of drugs and anesthetics that are less likely to cause the death of neurons, this approach will be a major stride toward assuring the safety of drugs during the brain development. The ultimate goal would be not only to find the trigger for the catastrophic chain of events, but also to prevent neuronal cell death itself. Copyright © 2012. Published by Elsevier Inc.

  1. DISPARATE DEVELOPMENTAL NEUROTOXICANTS CONVERGE ON THE CYCLIC AMP SIGNALING CASCADE, REVEALED BY TRANSCRIPTIONAL PROFILES IN VITRO AND IN VIVO

    PubMed Central

    Adigun, Abayomi A.; Seidler, Frederic J.; Slotkin, Theodore A.

    2009-01-01

    Cell-signaling cascades are convergent targets for developmental neurotoxicity of otherwise unrelated agents. We compared organophosphates (chlorpyrifos, diazinon), an organochlorine (dieldrin) and a metal (Ni2+) for their effects on neuronotypic PC12 cells, assessing gene transcription involved in the cyclic AMP pathway. Each agent was introduced during neurodifferentiation at a concentration of 30 μM for 24 or 72 hr and we assessed 69 genes encoding adenylyl cyclase isoforms and regulators, G-protein α- and β,γ-subunits, protein kinase A subtypes and the phosphodiesterase family. We found strong concordance among the four agents across all the gene families, with the strongest relationships for the G-proteins, followed by adenylyl cyclase, and lesser concordance for protein kinase A and phosphodiesterase. Superimposed on this pattern, chlorpyrifos and diazinon were surprisingly the least alike, whereas there was strong concordance of dieldrin and Ni2+ with each other and with each individual organophosphate. Further, the effects of chlorpyrifos differed substantially depending on whether cells were undifferentiated or differentiating. To resolve the disparities between chlorpyrifos and diazinon, we performed analyses in rat brain regions after in vivo neonatal exposures; unlike the in vitro results, there was strong concordance. Our results show that unrelated developmental neurotoxicants can nevertheless produce similar outcomes by targeting cell signaling pathways involved in neurodifferentiation during a critical developmental period of vulnerability. Nevertheless, a full evaluation of concordance between different toxicants requires evaluations of in vitro systems that detect direct effects, as well as in vivo systems that allow for more complex interactions that converge on the same pathway. PMID:20026089

  2. DEVELOPMENTAL NEUOTOXICITY EVALUATION OF MIXTURES OF MONO- AND DIMETHYL TIN IN DRINKING WATER OF RATS.

    EPA Science Inventory

    Developmental Neurotoxicity Evaluation of Mixtures of Mono- and Dimethyl Tin in Drinking Water of Rats

    V.C. Moser, K.L. McDaniel, P.M. Phillips

    Neurotoxicology Division, NHEERL, ORD, US EPA, RTP, NC, USA

    Organotins, especially monomethyl (MMT) and dimethyl (D...

  3. Neurotoxicity in Snakebite—The Limits of Our Knowledge

    PubMed Central

    Ranawaka, Udaya K.; Lalloo, David G.; de Silva, H. Janaka

    2013-01-01

    Snakebite is classified by the WHO as a neglected tropical disease. Envenoming is a significant public health problem in tropical and subtropical regions. Neurotoxicity is a key feature of some envenomings, and there are many unanswered questions regarding this manifestation. Acute neuromuscular weakness with respiratory involvement is the most clinically important neurotoxic effect. Data is limited on the many other acute neurotoxic manifestations, and especially delayed neurotoxicity. Symptom evolution and recovery, patterns of weakness, respiratory involvement, and response to antivenom and acetyl cholinesterase inhibitors are variable, and seem to depend on the snake species, type of neurotoxicity, and geographical variations. Recent data have challenged the traditional concepts of neurotoxicity in snake envenoming, and highlight the rich diversity of snake neurotoxins. A uniform system of classification of the pattern of neuromuscular weakness and models for predicting type of toxicity and development of respiratory weakness are still lacking, and would greatly aid clinical decision making and future research. This review attempts to update the reader on the current state of knowledge regarding this important issue. PMID:24130909

  4. Low glucose utilization and neurodegenerative changes caused by sodium fluoride exposure in rat's developmental brain.

    PubMed

    Jiang, Chunyang; Zhang, Shun; Liu, Hongliang; Guan, Zhizhong; Zeng, Qiang; Zhang, Cheng; Lei, Rongrong; Xia, Tao; Wang, Zhenglun; Yang, Lu; Chen, Yihu; Wu, Xue; Zhang, Xiaofei; Cui, Yushan; Yu, Linyu; Wang, Aiguo

    2014-03-01

    Fluorine, a toxic and reactive element, is widely prevalent throughout the environment and can induce toxicity when absorbed into the body. This study was to explore the possible mechanisms of developmental neurotoxicity in rats treated with different levels of sodium fluoride (NaF). The rats' intelligence, as well as changes in neuronal morphology, glucose absorption, and functional gene expression within the brain were determined using the Morris water maze test, transmission electron microscopy, small-animal magnetic resonance imaging and Positron emission tomography and computed tomography, and Western blotting techniques. We found that NaF treatment-impaired learning and memory in these rats. Furthermore, NaF caused neuronal degeneration, decreased brain glucose utilization, decreased the protein expression of glucose transporter 1 and glial fibrillary acidic protein, and increased levels of brain-derived neurotrophic factor in the rat brains. The developmental neurotoxicity of fluoride may be closely associated with low glucose utilization and neurodegenerative changes.

  5. [Speech fluency developmental profile in Brazilian Portuguese speakers].

    PubMed

    Martins, Vanessa de Oliveira; Andrade, Claudia Regina Furquim de

    2008-01-01

    speech fluency varies from one individual to the next, fluent or stutterer, depending on several factors. Studies that investigate the influence of age on fluency patterns have been identified; however these differences were investigated in isolated age groups. Studies about life span fluency variations were not found. to verify the speech fluency developmental profile. speech samples of 594 fluent participants of both genders, with ages between 2:0 and 99:11 years, speakers of the Brazilian Portuguese language, were analyzed. Participants were grouped as follows: pre-scholars, scholars, early adolescence, late adolescence, adults and elderlies. Speech samples were analyzed according to the Speech Fluency Profile variables and were compared regarding: typology of speech disruptions (typical and less typical), speech rate (words and syllables per minute) and frequency of speech disruptions (percentage of speech discontinuity). although isolated variations were identified, overall there was no significant difference between the age groups for the speech disruption indexes (typical and less typical speech disruptions and percentage of speech discontinuity). Significant differences were observed between the groups when considering speech rate. the development of the neurolinguistic system for speech fluency, in terms of speech disruptions, seems to stabilize itself during the first years of life, presenting no alterations during the life span. Indexes of speech rate present variations in the age groups, indicating patterns of acquisition, development, stabilization and degeneration.

  6. Developmental Exposure to Concentrated Ambient Ultrafine Particulate Matter Air Pollution in Mice Results in Persistent and Sex-Dependent Behavioral Neurotoxicity and Glial Activation

    PubMed Central

    Allen, Joshua L.; Liu, Xiufang; Weston, Douglas; Prince, Lisa; Oberdörster, Günter; Finkelstein, Jacob N.; Johnston, Carl J.; Cory-Slechta, Deborah A.

    2014-01-01

    The brain appears to be a target of air pollution. This study aimed to further ascertain behavioral and neurobiological mechanisms of our previously observed preference for immediate reward (Allen, J. L., Conrad, K., Oberdorster, G., Johnston, C. J., Sleezer, B., and Cory-Slechta, D. A. (2013). Developmental exposure to concentrated ambient particles and preference for immediate reward in mice. Environ. Health Perspect. 121, 32–38), a phenotype consistent with impulsivity, in mice developmentally exposed to inhaled ultrafine particles. It examined the impact of postnatal and/or adult concentrated ambient ultrafine particles (CAPS) or filtered air on another behavior thought to reflect impulsivity, Fixed interval (FI) schedule-controlled performance, and extended the assessment to learning/memory (novel object recognition (NOR)), and locomotor activity to assist in understanding behavioral mechanisms of action. In addition, levels of brain monoamines and amino acids, and markers of glial presence and activation (GFAP, IBA-1) were assessed in mesocorticolimbic brain regions mediating these cognitive functions. This design produced four treatment groups/sex of postnatal/adult exposure: Air/Air, Air/CAPS, CAPS/Air, and CAPS/CAPS. FI performance was adversely influenced by CAPS/Air in males, but by Air/CAPS in females, effects that appeared to reflect corresponding changes in brain mesocorticolimbic dopamine/glutamate systems that mediate FI performance. Both sexes showed impaired short-term memory on the NOR. Mechanistically, cortical and hippocampal changes in amino acids raised the potential for excitotoxicity, and persistent glial activation was seen in frontal cortex and corpus callosum of both sexes. Collectively, neurodevelopment and/or adulthood CAPS can produce enduring and sex-dependent neurotoxicity. Although mechanisms of these effects remain to be fully elucidated, findings suggest that neurodevelopment and/or adulthood air pollution exposure may

  7. Comments from the Behavioral Teratology Committee of the Japanese Teratology Society on OECD guideline for the testing of chemicals, proposal for a new guideline 426, developmental neurotoxicity study, draft document (September 2003).

    PubMed

    Fukui, Yoshihiro; Ema, Makoto; Fujiwara, Michio; Higuchi, Hashihiro; Inouye, Minoru; Iwase, Takayuki; Kihara, Takahide; Nishimura, Tatsuya; Oi, Akihide; Ooshima, Yojiro; Otani, Hiroki; Shinomiya, Mitsuhiro; Sugioka, Kozo; Yamano, Tsunekazu; Yamashita, Keisuke H; Tanimura, Takashi

    2004-09-01

    In September 2003, a new revision of the draft guideline (Organization for Economic Co-operation and Development [OECD] Guideline for the Testing of Chemicals, Proposal for a New Guideline 426, Developmental Neurotoxicity Study) was distributed. The draft guideline consists of 51 paragraphs and an appendix. The National Coordinators were requested to arrange national expert reviews of the guideline proposal in their member countries. The member of the Behavioral Teratology (BT) Committee of the Japanese Teratology Society (JTS) reviewed, discussed and commented on the draft Test Guideline proposal. The BT Committee of the JTS also commented that the International Collaborative Study to validate this protocol should be definitely performed. These comments were sent to the OECD Secretariat. The BT Committee of the JTS expects that the comments are useful for further discussion.

  8. Developmental cuprizone exposure impairs oligodendrocyte lineages differentially in cortical and white matter tissues and suppresses glutamatergic neurogenesis signals and synaptic plasticity in the hippocampal dentate gyrus of rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abe, Hajime; Pathogenetic Veterinary Science, United Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu-shi, Gifu 501-1193; Saito, Fumiyo

    2016-01-01

    Developmental cuprizone (CPZ) exposure impairs rat hippocampal neurogenesis. Here, we captured the developmental neurotoxicity profile of CPZ using a region-specific expression microarray analysis in the hippocampal dentate gyrus, corpus callosum, cerebral cortex and cerebellar vermis of rat offspring exposed to 0, 0.1, or 0.4% CPZ in the maternal diet from gestation day 6 to postnatal day (PND) 21. Transcripts of those genes identified as altered were subjected to immunohistochemical analysis on PNDs 21 and 77. Our results showed that transcripts for myelinogenesis-related genes, including Cnp, were selectively downregulated in the cerebral cortex by CPZ at ≥ 0.1% or 0.4% onmore » PND 21. CPZ at 0.4% decreased immunostaining intensity for 2′,3′-cyclic-nucleotide 3′-phosphodiesterase (CNPase) and CNPase{sup +} and OLIG2{sup +} oligodendrocyte densities in the cerebral cortex, whereas CNPase immunostaining intensity alone was decreased in the corpus callosum. By contrast, a striking transcript upregulation for Klotho gene and an increased density of Klotho{sup +} oligodendrocytes were detected in the corpus callosum at ≥ 0.1%. In the dentate gyrus, CPZ at ≥ 0.1% or 0.4% decreased the transcript levels for Gria1, Grin2a and Ptgs2, genes related to the synapse and synaptic transmission, and the number of GRIA1{sup +} and GRIN2A{sup +} hilar γ-aminobutyric acid (GABA)-ergic interneurons and cyclooxygenase-2{sup +} granule cells. All changes were reversed at PND 77. Thus, developmental CPZ exposure reversibly decreased mature oligodendrocytes in both cortical and white matter tissues, and Klotho protected white matter oligodendrocyte growth. CPZ also reversibly targeted glutamatergic signals of GABAergic interneuron to affect dentate gyrus neurogenesis and synaptic plasticity in granule cells. - Highlights: • We examined developmental cuprizone (CPZ) neurotoxicity in maternally exposed rats. • Multiple brain region-specific global gene expression

  9. New Insights on Developmental Dyslexia Subtypes: Heterogeneity of Mixed Reading Profiles

    PubMed Central

    Zoubrinetzky, Rachel; Bielle, Frédérique; Valdois, Sylviane

    2014-01-01

    We examined whether classifications based on reading performance are relevant to identify cognitively homogeneous subgroups of dyslexic children. Each of the 71 dyslexic participants was selected to have a mixed reading profile, i.e. poor irregular word and pseudo-word reading performance (accuracy and speed). Despite their homogeneous reading profile, the participants were found to split into four distinct cognitive subgroups, characterized by a single phonological disorder, a single visual attention span disorder, a double deficit or none of these disorders. The two subgroups characterized by single and contrasted cognitive disorders were found to exhibit a very similar reading pattern but more contrasted spelling performance (quantitative analysis). A qualitative analysis of the error types produced in reading and spelling provided some cues about the participants' underlying cognitive deficit. The overall findings disqualify subtyping based on reading profiles as a classification method to identify cognitively homogeneous subgroups of dyslexic children. They rather show an opaque relationship between the cognitive underpinnings of developmental dyslexia and their behavioral manifestations in reading and spelling. Future neuroimaging and genetic studies should take this issue into account since synthesizing over cognitively heterogeneous children would entail potential pitfalls. PMID:24918441

  10. Neurotoxicity profiles of substituted amphetamines in the C57BL/6J mouse.

    PubMed

    O'Callaghan, J P; Miller, D B

    1994-08-01

    Dopaminergic (DA) and serotonergic (5-HT) projections to striatum and cortex have been implicated as the primary targets of substituted amphetamine (AMP)-induced neurotoxicity, largely on the basis of the propensity of these compounds to cause protracted decrements in DA and 5-HT rather than on the basis of AMP-induced alterations of indices linked to neural damage. Moreover, most studies of AMP-induced neurotoxicity, regardless of the endpoints assessed, have been conducted using a rat model; relatively little attention has been focused on the effects of these compounds in the mouse. Here, we evaluated the potential neurotoxic effects of d-methamphetamine (d-METH), d-methylenedioxyamphetamine (d-MDA), d-methylene-dioxymethamphetamine (d-MDMA) and d-fenfluramine (d-FEN) in the C57BL6/J mouse. Astrogliosis, assessed by quantification of glial fibrillary acidic protein (GFAP), was taken as the main index of AMP-induced neural damage. A silver degeneration stain also was used to obtain direct evidence of AMP-induced neuronal damage. Assays of tyrosine hydroxylase (TH), DA and 5-HT were used to assess effects on DA and 5-HT systems. Mice received d-METH (10 mg/kg), d-MDA (20 mg/kg), d-MDMA (20 mg/kg) or d-FEN (25 mg/kg) every 2 hr for a total of four s.c. injections. d-METH, d-MDA and d-MDMA caused a large (300%) increase in striatal GFAP that resolved by 3 weeks and a 50 to 75% decrease in TH and DA that did not resolve. d-METH, d-MDA and d-MDMA also caused fiber and terminal degeneration in striatum as revealed by silver staining. d-FEN did not affect any parameters in striatum. d-METH, d-MDA and d-MDMA also increased GFAP in cortex, effects that were associated with small (10-25%) and transient decrements in cortical 5-HT. d-FEN caused prolonged (weeks) decrements (20%) in cortical 5-HT but did not affect cortical GFAP. The effects of d-METH, d-MDA and d-MDMA were stereoselective and were blocked by pretreatment with MK-801. Core temperature was slightly elevated by

  11. WORKSHOP ON THE QUALITATIVE AND QUANTITATIVE COMPARABILITY OF HUMAN AND ANIMAL DEVELOPMENTAL NEUROTOXICITY, WORK GROUP I REPORT: COMPARABILITY OF MEASURES OF DEVELOPMENTAL NEUROTOXICITY IN HUMANS AND LABORATORY ANIMALS

    EPA Science Inventory

    Assessment measures used in developmental neurotoxicology are reviewed for their comparability in humans and laboratory animals, and their ability to detect comparable, adverse effects across species. ompounds used for these comparisons include: abuse substances, anticonvulsant d...

  12. Antineuropathic Profile of N-Palmitoylethanolamine in a Rat Model of Oxaliplatin-Induced Neurotoxicity

    PubMed Central

    Di Cesare Mannelli, Lorenzo; Pacini, Alessandra; Corti, Francesca; Boccella, Serena; Luongo, Livio; Esposito, Emanuela; Cuzzocrea, Salvatore; Maione, Sabatino; Calignano, Antonio; Ghelardini, Carla

    2015-01-01

    Neurotoxicity is a main side effect of the anticancer drug oxaliplatin. The development of a neuropathic syndrome impairs quality of life and potentially results in chemotherapy dose reductions and/or early discontinuation. In the complex pattern of molecular and morphological alterations induced by oxaliplatin in the nervous system, an important activation of glia has been preclinically evidenced. N-Palmitoylethanolamine (PEA) modulates glial cells and exerts antinociceptive effects in several animal models. In order to improve the therapeutic chances for chemotherapy-dependent neuropathy management, the role of PEA was investigated in a rat model of oxaliplatin-induced neuropathy (2.4 mg kg-1 daily, intraperitoneally). On day 21, a single administration of PEA (30 mg kg-1 i.p.) was able to reduce oxaliplatin-dependent pain induced by mechanical and thermal stimuli. The repeated treatment with PEA (30 mg kg-1 daily i.p. for 21 days, from the first oxaliplatin injection) prevented lowering of pain threshold as well as increased pain on suprathreshold stimulation. Ex vivo histological and molecular analysis of dorsal root ganglia, peripheral nerves and spinal cord highlighted neuroprotective effects and glia-activation prevention induced by PEA repeated administration. The protective effect of PEA resulted in the normalization of the electrophysiological activity of the spinal nociceptive neurons. Finally, PEA did not alter the oxaliplatin-induced mortality of the human colon cancer cell line HT-29. The efficacy of PEA in neuropathic pain control and in preventing nervous tissue alteration candidates this endogenous compound as disease modifying agent. These characteristics, joined to the safety profile, suggest the usefulness of PEA in chemotherapy-induced neuropathy. PMID:26039098

  13. Developmental cigarette smoke exposure II: Hepatic proteome profiles in 6 month old adult offspring.

    PubMed

    Neal, Rachel E; Chen, Jing; Webb, Cindy; Stocke, Kendall; Gambrell, Caitlin; Greene, Robert M; Pisano, M Michele

    2016-10-01

    Utilizing a mouse model of 'active' developmental cigarette smoke exposure (CSE) [gestational day (GD) 1 through postnatal day (PD) 21] characterized by offspring low birth weight, the impact of developmental CSE on liver proteome profiles of adult offspring at 6 months of age was determined. Liver tissue was collected from Sham- and CSE-offspring for 2D-SDS-PAGE based proteome analysis with Partial Least Squares-Discriminant Analysis (PLS-DA). A similar study conducted at the cessation of exposure to cigarette smoke documented decreased gluconeogenesis coupled to oxidative stress in weanling offspring. In the current study, exposure throughout development to cigarette smoke resulted in impaired hepatic carbohydrate metabolism, decreased serum glucose levels, and increased gluconeogenic regulatory enzyme abundances during the fed-state coupled to decreased expression of SIRT1 as well as increased PEPCK and PGC1α expression. Together these findings indicate inappropriately timed gluconeogenesis that may reflect impaired insulin signaling in mature offspring exposed to 'active' developmental CSE. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. In vitro techniques for the assessment of neurotoxicity.

    PubMed Central

    Harry, G J; Billingsley, M; Bruinink, A; Campbell, I L; Classen, W; Dorman, D C; Galli, C; Ray, D; Smith, R A; Tilson, H A

    1998-01-01

    Risk assessment is a process often divided into the following steps: a) hazard identification, b) dose-response assessment, c) exposure assessment, and d) risk characterization. Regulatory toxicity studies usually are aimed at providing data for the first two steps. Human case reports, environmental research, and in vitro studies may also be used to identify or to further characterize a toxic hazard. In this report the strengths and limitations of in vitro techniques are discussed in light of their usefulness to identify neurotoxic hazards, as well as for the subsequent dose-response assessment. Because of the complexity of the nervous system, multiple functions of individual cells, and our limited knowledge of biochemical processes involved in neurotoxicity, it is not known how well any in vitro system would recapitulate the in vivo system. Thus, it would be difficult to design an in vitro test battery to replace in vivo test systems. In vitro systems are well suited to the study of biological processes in a more isolated context and have been most successfully used to elucidate mechanisms of toxicity, identify target cells of neurotoxicity, and delineate the development and intricate cellular changes induced by neurotoxicants. Both biochemical and morphological end points can be used, but many of the end points used can be altered by pharmacological actions as well as toxicity. Therefore, for many of these end points it is difficult or impossible to set a criterion that allows one to differentiate between a pharmacological and a neurotoxic effect. For the process of risk assessment such a discrimination is central. Therefore, end points used to determine potential neurotoxicity of a compound have to be carefully selected and evaluated with respect to their potential to discriminate between an adverse neurotoxic effect and a pharmacologic effect. It is obvious that for in vitro neurotoxicity studies the primary end points that can be used are those affected

  15. Genetic Diversity Influences the Response of the Brain to Developmental Lead Exposure

    PubMed Central

    Schneider, Jay S.; Talsania, Keyur; Mettil, William; Anderson, David W.

    2014-01-01

    Although extrinsic factors, such as nutritional status, and some intrinsic genetic factors may modify susceptibility to developmental lead (Pb) poisoning, no studies have specifically examined the influence of genetic background on outcomes from Pb exposure. In this study, we used gene microarray profiling to identify Pb-responsive genes in rats of different genetic backgrounds, including inbred (Fischer 344 (F344)) and outbred (Long Evans (LE), Sprague Dawley (SD)) strains, to investigate the role that genetic variation may play in influencing outcomes from developmental Pb exposure. Male and female animals received either perinatal (gestation through lactation) or postnatal (birth through weaning) exposure to Pb in food (0, 250, or 750 ppm). RNA was extracted from the hippocampus at day 55 and hybridized to Affymetrix Rat Gene 1.0 ST Arrays. There were significant strain-specific effects of Pb on the hippocampal transcriptome with 978 transcripts differentially expressed in LE rats across all experimental groups, 269 transcripts differentially expressed in F344 rats, and only 179 transcripts differentially expressed in SD rats. These results were not due to strain-related differences in brain accumulation of Pb. Further, no genes were consistently differentially regulated in all experimental conditions. There was no set of “Pb toxicity” genes that are a molecular signature for Pb neurotoxicity that transcended sex, exposure condition, and strain. These results demonstrate the influence that strain and genetic background play in modifying the brain's response to developmental Pb exposure and may have relevance for better understanding the molecular underpinnings of the lack of a neurobehavioral signature in childhood Pb poisoning. PMID:24913800

  16. Use of Zebrafish Larvae as a Multi-Endpoint Platform to Characterize the Toxicity Profile of Silica Nanoparticles.

    PubMed

    Pham, Duc-Hung; De Roo, Bert; Nguyen, Xuan-Bac; Vervaele, Mattias; Kecskés, Angela; Ny, Annelii; Copmans, Daniëlle; Vriens, Hanne; Locquet, Jean-Pierre; Hoet, Peter; de Witte, Peter A M

    2016-11-22

    Nanomaterials are being extensively produced and applied in society. Human and environmental exposures are, therefore, inevitable and so increased attention is being given to nanotoxicity. While silica nanoparticles (NP) are one of the top five nanomaterials found in consumer and biomedical products, their toxicity profile is poorly characterized. In this study, we investigated the toxicity of silica nanoparticles with diameters 20, 50 and 80 nm using an in vivo zebrafish platform that analyzes multiple endpoints related to developmental, cardio-, hepato-, and neurotoxicity. Results show that except for an acceleration in hatching time and alterations in the behavior of zebrafish embryos/larvae, silica NPs did not elicit any developmental defects, nor any cardio- and hepatotoxicity. The behavioral alterations were consistent for both embryonic photomotor and larval locomotor response and were dependent on the concentration and the size of silica NPs. As embryos and larvae exhibited a normal touch response and early hatching did not affect larval locomotor response, the behavior changes observed are most likely the consequence of modified neuroactivity. Overall, our results suggest that silica NPs do not cause any developmental, cardio- or hepatotoxicity, but they pose a potential risk for the neurobehavioral system.

  17. Modifying welding process parameters can reduce the neurotoxic potential of manganese-containing welding fumes.

    PubMed

    Sriram, Krishnan; Lin, Gary X; Jefferson, Amy M; Stone, Samuel; Afshari, Aliakbar; Keane, Michael J; McKinney, Walter; Jackson, Mark; Chen, Bean T; Schwegler-Berry, Diane; Cumpston, Amy; Cumpston, Jared L; Roberts, Jenny R; Frazer, David G; Antonini, James M

    2015-02-03

    Welding fumes (WF) are a complex mixture of toxic metals and gases, inhalation of which can lead to adverse health effects among welders. The presence of manganese (Mn) in welding electrodes is cause for concern about the potential development of Parkinson's disease (PD)-like neurological disorder. Consequently, from an occupational safety perspective, there is a critical need to prevent adverse exposures to WF. As the fume generation rate and physicochemical characteristics of welding aerosols are influenced by welding process parameters like voltage, current or shielding gas, we sought to determine if changing such parameters can alter the fume profile and consequently its neurotoxic potential. Specifically, we evaluated the influence of voltage on fume composition and neurotoxic outcome. Rats were exposed by whole-body inhalation (40 mg/m(3); 3h/day × 5 d/week × 2 weeks) to fumes generated by gas-metal arc welding using stainless steel electrodes (GMA-SS) at standard/regular voltage (25 V; RVSS) or high voltage (30 V; HVSS). Fumes generated under these conditions exhibited similar particulate morphology, appearing as chain-like aggregates; however, HVSS fumes comprised of a larger fraction of ultrafine particulates that are generally considered to be more toxic than their fine counterparts. Paradoxically, exposure to HVSS fumes did not elicit dopaminergic neurotoxicity, as monitored by the expression of dopaminergic and PD-related markers. We show that the lack of neurotoxicity is due to reduced solubility of Mn in HVSS fumes. Our findings show promise for process control procedures in developing prevention strategies for Mn-related neurotoxicity during welding; however, it warrants additional investigations to determine if such modifications can be suitably adapted at the workplace to avert or reduce adverse neurological risks. Published by Elsevier Ireland Ltd.

  18. Modifying welding process parameters can reduce the neurotoxic potential of manganese-containing welding fumes

    PubMed Central

    Sriram, Krishnan; Lin, Gary X.; Jefferson, Amy M.; Stone, Samuel; Afshari, Aliakbar; Keane, Michael J.; McKinney, Walter; Jackson, Mark; Chen, Bean T.; Schwegler-Berry, Diane; Cumpston, Amy; Cumpston, Jared L.; Roberts, Jenny R.; Frazer, David G.; Antonini, James M.

    2015-01-01

    Welding fumes (WF) are a complex mixture of toxic metals and gases, inhalation of which can lead to adverse health effects among welders. The presence of manganese (Mn) in welding electrodes is cause for concern about the potential development of Parkinson’s disease (PD)-like neurological disorder. Consequently, from an occupational safety perspective, there is a critical need to prevent adverse exposures to WF. As the fume generation rate and physicochemical characteristics of welding aerosols are influenced by welding process parameters like voltage, current or shielding gas, we sought to determine if changing such parameters can alter the fume profile and consequently its neurotoxic potential. Specifically, we evaluated the influence of voltage on fume composition and neurotoxic outcome. Rats were exposed by whole-body inhalation (40 mg/m3; 3 h/day × 5 d/week × 2 weeks) to fumes generated by gas–metal arc welding using stainless steel electrodes (GMA-SS) at standard/regular voltage (25 V; RVSS) or high voltage (30 V; HVSS). Fumes generated under these conditions exhibited similar particulate morphology, appearing as chain-like aggregates; however, HVSS fumes comprised of a larger fraction of ultrafine particulates that are generally considered to be more toxic than their ne counterparts. Paradoxically, exposure to HVSS fumes did not elicit dopaminergic neurotoxicity, as monitored by the expression of dopaminergic and PD-related markers. We show that the lack of neurotoxicity is due to reduced solubility of Mn in HVSS fumes. Our findings show promise for process control procedures in developing prevention strategies for Mn-related neurotoxicity during welding; however, it warrants additional investigations to determine if such modifications can be suitably adapted at the workplace to avert or reduce adverse neurological risks. PMID:25549921

  19. Cetuximab-induced hypomagnesaemia aggravates peripheral sensory neurotoxicity caused by oxaliplatin

    PubMed Central

    Satomi, Machiko; Asama, Toshiyuki; Ebisawa, Yoshiaki; Chisato, Naoyuki; Suno, Manabu; Karasaki, Hidenori; Furukawa, Hiroyuki; Matsubara, Kazuo

    2010-01-01

    Calcium and magnesium replacement is effective in reducing oxaliplatin-induced neurotoxicity. However, cetuximab treatment has been associated with severe hypomagnesaemia. Therefore, we retrospectively investigated whether cetuximab-induced hypomagnesaemia exacerbated oxaliplatin-induced neurotoxicity. Six patients with metastatic colorectal cancer who were previously treated with oxaliplatin-fluorouracil combination therapy were administered cetuximab in combination with irinotecan alone or irinotecan and fluorouracil as a second-line treatment. All patients had normal magnesium levels before receiving cetuximab. The Common Terminology Criteria for Adverse Events version 3.0 was used to evaluate the grade of neurotoxicity, hypomagnesaemia, hypocalcaemia, and hypokalemia every week. All six patients had grade 1 or higher hypomagnesaemia after starting cetuximab therapy. The serum calcium and potassium levels were within the normal range at the onset of hypomagnesaemia. Oxaliplatin-induced neurotoxicity occurred in all patients at the beginning of cetuximab therapy, with grade 1 neurotoxicity in five patients and grade 2 in one patient. After cetuximab administration, the neurotoxicity worsened in all six patients, and three progressed to grade 3. Among the three patients with grade 3 neurotoxicity, two required a dose reduction and one had to discontinue cetuximab therapy. A discontinuation or dose reduction in cetuximab therapy was associated with exacerbated oxaliplatin-induced neurotoxicity due to cetuximab-induced hypomagnesaemia in half of patients who had previously received oxaliplatin. Therefore, when administering cetuximab after oxaliplatin therapy, we suggest serially evaluating serum magnesium levels and neurotoxicity. PMID:22811813

  20. DEVELOPMENTAL NEUROTOXICITY FOLLOWING NEONATAL EXPOSURE TO 3,3'-IMINODIPROPIONITRILE IN THE RAT

    EPA Science Inventory

    Adult exposure to the neurotoxicant 3,3'-iminodipropionitrile (IDPN) induces a hyperkinetic syndrome consisting of spontaneous head movements, abnormal circling, backwards locomotion, and sensory disruption. e report here the behavioral effects of developmental exposure to IDPN i...

  1. In-vitro neurotoxicity of two Malaysian krait species (Bungarus candidus and Bungarus fasciatus) venoms: neutralization by monovalent and polyvalent antivenoms from Thailand.

    PubMed

    Rusmili, Muhamad Rusdi Ahmad; Yee, Tee Ting; Mustafa, Mohd Rais; Othman, Iekhsan; Hodgson, Wayne C

    2014-03-12

    Bungarus candidus and Bungarus fasciatus are two species of krait found in Southeast Asia. Envenoming by these snakes is often characterized by neurotoxicity and, without treatment, causes considerable morbidity and mortality. In this study, the in vitro neurotoxicity of each species, and the effectiveness of two monovalent antivenoms and a polyvalent antivenom, against the neurotoxic effects of the venoms, were examined in a skeletal muscle preparation. Both venoms caused concentration-dependent inhibition of indirect twitches, and attenuated responses to exogenous nicotinic receptor agonists, in the chick biventer preparation, with B. candidus venom being more potent than B. fasciatus venom. SDS-PAGE and western blot analysis indicated different profiles between the venoms. Despite these differences, most proteins bands were recognized by all three antivenoms. Antivenom, added prior to the venoms, attenuated the neurotoxic effect of the venoms. Interestingly, the respective monovalent antivenoms did not neutralize the effects of the venom from the other Bungarus species indicating a relative absence of cross-neutralization. Addition of a high concentration of polyvalent antivenom, at the t90 time point after addition of venom, partially reversed the neurotoxicity of B. fasciatus venom but not B. candidus venom. The monovalent antivenoms had no significant effect when added at the t90 time point. This study showed that B. candidus and B. fasciatus venoms display marked in vitro neurotoxicity in the chick biventer preparation and administration of antivenoms at high dose is necessary to prevent or reverse neurotoxicity.

  2. Oxidative stress in MeHg-induced neurotoxicity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farina, Marcelo, E-mail: farina@ccb.ufsc.br; Aschner, Michael; Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN

    2011-11-15

    Methylmercury (MeHg) is an environmental toxicant that leads to long-lasting neurological and developmental deficits in animals and humans. Although the molecular mechanisms mediating MeHg-induced neurotoxicity are not completely understood, several lines of evidence indicate that oxidative stress represents a critical event related to the neurotoxic effects elicited by this toxicant. The objective of this review is to summarize and discuss data from experimental and epidemiological studies that have been important in clarifying the molecular events which mediate MeHg-induced oxidative damage and, consequently, toxicity. Although unanswered questions remain, the electrophilic properties of MeHg and its ability to oxidize thiols have beenmore » reported to play decisive roles to the oxidative consequences observed after MeHg exposure. However, a close examination of the relationship between low levels of MeHg necessary to induce oxidative stress and the high amounts of sulfhydryl-containing antioxidants in mammalian cells (e.g., glutathione) have led to the hypothesis that nucleophilic groups with extremely high affinities for MeHg (e.g., selenols) might represent primary targets in MeHg-induced oxidative stress. Indeed, the inhibition of antioxidant selenoproteins during MeHg poisoning in experimental animals has corroborated this hypothesis. The levels of different reactive species (superoxide anion, hydrogen peroxide and nitric oxide) have been reported to be increased in MeHg-exposed systems, and the mechanisms concerning these increments seem to involve a complex sequence of cascading molecular events, such as mitochondrial dysfunction, excitotoxicity, intracellular calcium dyshomeostasis and decreased antioxidant capacity. This review also discusses potential therapeutic strategies to counteract MeHg-induced toxicity and oxidative stress, emphasizing the use of organic selenocompounds, which generally present higher affinity for MeHg when compared to the

  3. Omnisphero: a high-content image analysis (HCA) approach for phenotypic developmental neurotoxicity (DNT) screenings of organoid neurosphere cultures in vitro.

    PubMed

    Schmuck, Martin R; Temme, Thomas; Dach, Katharina; de Boer, Denise; Barenys, Marta; Bendt, Farina; Mosig, Axel; Fritsche, Ellen

    2017-04-01

    Current developmental neurotoxicity (DNT) testing in animals faces major limitations, such as high cost and time demands as well as uncertainties in their methodology, evaluation and regulation. Therefore, the use of human-based 3D in vitro systems in combination with high-content image analysis (HCA) might contribute to DNT testing with lower costs, increased throughput and enhanced predictivity for human hazard identification. Human neural progenitor cells (hNPCs) grown as 3D neurospheres mimic basic processes of brain development including hNPC migration and differentiation and are therefore useful for DNT hazard identification. HCA of migrated neurospheres creates new challenges for automated evaluations because it encompasses variable cell densities, inconsistent z-layers and heterogeneous cell populations. We tackle those challenges with our Omnisphero software, which assesses multiple endpoints of the 'Neurosphere Assay.' For neuronal identification, Omnisphero reaches a true positive rate (TPR) of 83.8 % and a false discovery rate (FDR) of 11.4 %, thus being comparable to the interindividual difference among two researchers (TPR = 94.3, FDR = 11.0 %) and largely improving the results obtained by an existing HCA approach, whose TPR does not exceed 50 % at a FDR above 50 %. The high FDR of existing methods results in incorrect measurements of neuronal morphological features accompanied by an overestimation of compound effects. Omnisphero additionally includes novel algorithms to assess 'neurosphere-specific' endpoints like radial migration and neuronal density distribution within the migration area. Furthermore, a user-assisted parameter optimization procedure makes Omnisphero accessible to non-expert end users.

  4. HIGH-CONTENT ANALYSIS OF PRIMARY RAT NEURAL CORTICALCULTURES FOR DEVELOPMENTAL NEUROTOXICITY SCREENING

    EPA Science Inventory

    Development of the vertebrate nervous system proceeds through a number of critical processes, ultimately concluding with the extension of neurites and establishment of synaptic networks. Early-life exposure to toxicants that perturb these critical developmental processes can po...

  5. Amiodarone biokinetics, the formation of its major oxidative metabolite and neurotoxicity after acute and repeated exposure of brain cell cultures.

    PubMed

    Pomponio, Giuliana; Zurich, Marie-Gabrielle; Schultz, Luise; Weiss, Dieter G; Romanelli, Luca; Gramowski-Voss, Alexandra; Di Consiglio, Emma; Testai, Emanuela

    2015-12-25

    The difficulty in mimicking nervous system complexity and cell-cell interactions as well as the lack of kinetics information has limited the use of in vitro neurotoxicity data. Here, we assessed the biokinetic profile as well as the neurotoxicity of Amiodarone after acute and repeated exposure in two advanced rodent brain cell culture models, consisting of both neurons and glial cells organized in 2 or 3 dimensions to mimic the brain histiotypic structure and function. A strategy was applied to evidence the abiotic processes possibly affecting Amiodarone in vitro bioavailability, showing its ability to adsorb to the plastic devices. At clinically relevant Amiodarone concentrations, known to induce neurotoxicity in some patients during therapeutic treatment, a complete uptake was observed in both models in 24 h, after single exposure. After repeated treatments, bioaccumulation was observed, especially in the 3D cell model, together with a greater alteration of neurotoxicity markers. After 14 days, Amiodarone major oxidative metabolite (mono-N-desethylamiodarone) was detected at limited levels, indicating the presence of active drug metabolism enzymes (i.e. cytochrome P450) in both models. The assessment of biokinetics provides useful information on the relevance of in vitro toxicity data and should be considered in the design of an Integrated Testing Strategy aimed to identify specific neurotoxic alerts, and to improve the neurotoxicity assay predictivity for human acute and repeated exposure. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Integration of tomato reproductive developmental landmarks and expression profiles, and the effect of SUN on fruit shape

    PubMed Central

    Xiao, Han; Radovich, Cheryll; Welty, Nicholas; Hsu, Jason; Li, Dongmei; Meulia, Tea; van der Knaap, Esther

    2009-01-01

    Background Universally accepted landmark stages are necessary to highlight key events in plant reproductive development and to facilitate comparisons among species. Domestication and selection of tomato resulted in many varieties that differ in fruit shape and size. This diversity is useful to unravel underlying molecular and developmental mechanisms that control organ morphology and patterning. The tomato fruit shape gene SUN controls fruit elongation. The most dramatic effect of SUN on fruit shape occurs after pollination and fertilization although a detailed investigation into the timing of the fruit shape change as well as gene expression profiles during critical developmental stages has not been conducted. Results We provide a description of floral and fruit development in a red-fruited closely related wild relative of tomato, Solanum pimpinellifolium accession LA1589. We use established and propose new floral and fruit landmarks to present a framework for tomato developmental studies. In addition, gene expression profiles of three key stages in floral and fruit development are presented, namely floral buds 10 days before anthesis (floral landmark 7), anthesis-stage flowers (floral landmark 10 and fruit landmark 1), and 5 days post anthesis fruit (fruit landmark 3). To demonstrate the utility of the landmarks, we characterize the tomato shape gene SUN in fruit development. SUN controls fruit shape predominantly after fertilization and its effect reaches a maximum at 8 days post-anthesis coinciding with fruit landmark 4 representing the globular embryo stage of seed development. The expression profiles of the NILs that differ at sun show that only 34 genes were differentially expressed and most of them at a less than 2-fold difference. Conclusion The landmarks for flower and fruit development in tomato were outlined and integrated with the effect of SUN on fruit shape. Although we did not identify many genes differentially expressed in the NILs that differ at

  7. Functional Assays and Alternative Species: Using Larval Zebrafish in Developmental Neurotoxicity Screening**

    EPA Science Inventory

    The U.S. Environmental Protection Agency is evaluating methods to screen and prioritize large numbers of chemicals for developmental toxicity. As such, we are exploring a behavioral testing paradigm, which can assess the effect of sublethal and subteratogenic concentrations of de...

  8. Identifying Developmental Zones in Maize Lateral Root Cell Length Profiles using Multiple Change-Point Models

    PubMed Central

    Moreno-Ortega, Beatriz; Fort, Guillaume; Muller, Bertrand; Guédon, Yann

    2017-01-01

    The identification of the limits between the cell division, elongation and mature zones in the root apex is still a matter of controversy when methods based on cellular features, molecular markers or kinematics are compared while methods based on cell length profiles have been comparatively underexplored. Segmentation models were developed to identify developmental zones within a root apex on the basis of epidermal cell length profiles. Heteroscedastic piecewise linear models were estimated for maize lateral roots of various lengths of both wild type and two mutants affected in auxin signaling (rtcs and rum-1). The outputs of these individual root analyses combined with morphological features (first root hair position and root diameter) were then globally analyzed using principal component analysis. Three zones corresponding to the division zone, the elongation zone and the mature zone were identified in most lateral roots while division zone and sometimes elongation zone were missing in arrested roots. Our results are consistent with an auxin-dependent coordination between cell flux, cell elongation and cell differentiation. The proposed segmentation models could extend our knowledge of developmental regulations in longitudinally organized plant organs such as roots, monocot leaves or internodes. PMID:29123533

  9. Effects of developmental exposure to a Commercial PBDE mixture (DE-71) on protein networks in the rat Cerebellum and Hippocampus

    EPA Science Inventory

    Title (20 words): Effects of developmental exposure to a Commercial PBDE mixture (DE-71) on protein networks in the rat Cerebellum and Hippocampus. Introduction (120 words): Polybrominated diphenyl ethers (PBDE5) possess neurotoxic effects similar to those of PCBs. The cellular a...

  10. Neurotoxic Profiles of HIV, Psychostimulant Drugs of Abuse, and their Concerted Effect on the Brain: Current Status of Dopamine System Vulnerability in NeuroAIDS

    PubMed Central

    Ferris, Mark J.; Mactutus, Charles F.; Booze, Rosemarie M.

    2008-01-01

    There are roughly 30 to 40 million HIV infected individuals in the world as of December 2007, and drug abuse directly contributes to one-third of all HIV-infections in the United States. Antiretroviral therapy has increased the lifespan of HIV-seropositives, but CNS function often remains diminished, effectively decreasing quality of life. A modest proportion may develop HIV-associated dementia, the severity and progression of which is increased with drug abuse. HIV and drugs of abuse in the CNS target subcortical brain structures and DA systems in particular. This toxicity is mediated by a number of neurotoxic mechanisms, including but not limited to, aberrant immune response and oxidative stress. Therefore, novel therapeutic strategies must be developed that can address a wide variety of disparate neurotoxic mechanisms and apoptotic cascades. This paper reviews the research pertaining to the where, what, and how of HIV and cocaine/methamphetamine toxicity in the CNS. Specifically, where these toxins most affect the brain, what aspects of the virus are neurotoxic, and how these toxins mediate neurotoxicity. PMID:18430470

  11. Inflammatory and oxidative stress-related effects associated with neurotoxicity are maintained after exclusively prenatal trichloroethylene exposure

    PubMed Central

    Blossom, Sarah J.; Melnyk, Stepan B.; Li, Ming; Wessinger, William D.; Cooney, Craig A.

    2016-01-01

    Trichloroethylene (TCE) is a widespread environmental toxicant with immunotoxic and neurotoxic potential. Previous studies have shown that continuous developmental exposure to TCE encompassing gestation and early life as well as postnatal only exposure in the drinking water of MRL+/+ mice promoted CD4+ T cell immunotoxicity, glutathione depletion and oxidative stress in the cerebellum, as well increased locomotor activity in male offspring. The purpose of this study was to characterize the effects of exclusively prenatal exposure on these parameters. Another goal was to investigate potential plasma oxidative stress/inflammatory biomarkers to possibly be used as predictors of TCE-mediated neurotoxicity. In the current study, 6 week old male offspring of dams exposed gestationally to 0, 0.01, and 0.1 mg/ml TCE in the drinking water were evaluated. Our results confirmed that the oxidized phenotype in plasma and cerebellum was maintained after exclusively prenatal exposure. A Phenotypic analysis by flow cytometry revealed that TCE exposure expanded the effector/memory subset of peripheral CD4+ T cells in association with increased production of pro-inflammatory cytokines IFN-γ and IL-17. Serum biomarkers of oxidative stress and inflammation were also elevated in plasma suggesting that systemic effects are important and may be used to predict neurotoxicity in our model. These results suggested that the prenatal period is a critical stage of life by which the developing CNS and immune system are susceptible to long-lasting changes mediated by TCE. PMID:26812193

  12. Prevention of dopaminergic neurotoxicity by targeting nitric oxide and peroxynitrite: implications for the prevention of methamphetamine-induced neurotoxic damage.

    PubMed

    Imam, S Z; Islam, F; Itzhak, Y; Slikker, W; Ali, S F

    2000-09-01

    Methamphetamine (METH) is a neurotoxic psychostimulant that produces catecholaminergic brain damage by producing oxidative stress and free radical generation. The role of oxygen and nitrogen radicals is well documented as a cause of METH-induced neurotoxic damage. In this study, we have obtained evidence that METH-induced neurotoxicity is the resultant of interaction between oxygen and nitrogen radicals, and it is mediated by the production of peroxynitrite. We have also assessed the effects of inhibitors of neuronal nitric oxide synthase (nNOS) as well as scavenger of nitric oxide and a peroxynitrite decomposition catalyst. Significant protective effects were observed with the inhibitor of nNOS, 7-nitroindazole (7-NI), as well as by the selective peroxynitrite scavenger or decomposition catalyst, 5,10,15,20-tetrakis(2,4,6-trimethyl-3,5-sulfonatophenyl)porphyrinato iron III (FeTPPS). However, the use of a nitric oxide scavenger, 2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (c-PTIO), did not provide any significant protection against METH-induced hyperthermia or peroxynitrite generation and the resulting dopaminergic neurotoxicity. In particular, treatment with FeTPPS completely prevented METH-induced hyperthermia, peroxynitrite production, and METH-induced dopaminergic depletion. Together, these data demonstrate that METH-induced dopaminergic neurotoxicity is mediated by the generation of peroxynitrite, which can be selectively protected by nNOS inhibitors or peroxynitrite scavenger or decomposition catalysts.

  13. A systematic review of methodology applied during preclinical anesthetic neurotoxicity studies: important issues and lessons relevant to the design of future clinical research.

    PubMed

    Disma, Nicola; Mondardini, Maria C; Terrando, Niccolò; Absalom, Anthony R; Bilotta, Federico

    2016-01-01

    Preclinical evidence suggests that anesthetic agents harm the developing brain thereby causing long-term neurocognitive impairments. It is not clear if these findings apply to humans, and retrospective epidemiological studies thus far have failed to show definitive evidence that anesthetic agents are harmful to the developing human brain. The aim of this systematic review was to summarize the preclinical studies published over the past decade, with a focus on methodological issues, to facilitate the comparison between different preclinical studies and inform better design of future trials. The literature search identified 941 articles related to the topic of neurotoxicity. As the primary aim of this systematic review was to compare methodologies applied in animal studies to inform future trials, we excluded a priori all articles focused on putative mechanism of neurotoxicity and the neuroprotective agents. Forty-seven preclinical studies were finally included in this review. Methods used in these studies were highly heterogeneous-animals were exposed to anesthetic agents at different developmental stages, in various doses and in various combinations with other drugs, and overall showed diverse toxicity profiles. Physiological monitoring and maintenance of physiological homeostasis was variable and the use of cognitive tests was generally limited to assessment of specific brain areas, with restricted translational relevance to humans. Comparison between studies is thus complicated by this heterogeneous methodology and the relevance of the combined body of literature to humans remains uncertain. Future preclinical studies should use better standardized methodologies to facilitate transferability of findings from preclinical into clinical science. © 2015 John Wiley & Sons Ltd.

  14. Serotonergic neurotoxic metabolites of ecstasy identified in rat brain.

    PubMed

    Jones, Douglas C; Duvauchelle, Christine; Ikegami, Aiko; Olsen, Christopher M; Lau, Serrine S; de la Torre, Rafael; Monks, Terrence J

    2005-04-01

    The selective serotonergic neurotoxicity of 3,4-methylenedioxyamphetamine (MDA) and 3,4-methylenedioxymethamphetamine (MDMA, ecstasy) depends on their systemic metabolism. We have recently shown that inhibition of brain endothelial cell gamma-glutamyl transpeptidase (gamma-GT) potentiates the neurotoxicity of both MDMA and MDA, indicating that metabolites that are substrates for this enzyme contribute to the neurotoxicity. Consistent with this view, glutathione (GSH) and N-acetylcysteine conjugates of alpha-methyl dopamine (alpha-MeDA) are selective neurotoxicants. However, neurotoxic metabolites of MDMA or MDA have yet to be identified in brain. Using in vivo microdialysis coupled to liquid chromatography-tandem mass spectroscopy and a high-performance liquid chromatography-coulometric electrode array system, we now show that GSH and N-acetylcysteine conjugates of N-methyl-alpha-MeDA are present in the striatum of rats administered MDMA by subcutaneous injection. Moreover, inhibition of gamma-GT with acivicin increases the concentration of GSH and N-acetylcysteine conjugates of N-methyl-alpha-MeDA in brain dialysate, and there is a direct correlation between the concentrations of metabolites in dialysate and the extent of neurotoxicity, measured by decreases in serotonin (5-HT) and 5-hydroxyindole acetic (5-HIAA) levels. Importantly, the effects of acivicin are independent of MDMA-induced hyperthermia, since acivicin-mediated potentiation of MDMA neurotoxicity occurs in the context of acivicin-mediated decreases in body temperature. Finally, we have synthesized 5-(N-acetylcystein-S-yl)-N-methyl-alpha-MeDA and established that it is a relatively potent serotonergic neurotoxicant. Together, the data support the contention that MDMA-mediated serotonergic neurotoxicity is mediated by the systemic formation of GSH and N-acetylcysteine conjugates of N-methyl-alpha-MeDA (and alpha-MeDA). The mechanisms by which such metabolites access the brain and produce selective

  15. Neurotoxicity and Behavior

    EPA Science Inventory

    Neurotoxicity is important to consider as a component of occupational and environmental safety and health programs. The failure to do so has contributed to a number of cases in which workers, consumers of manufactured products, and people exposed in the environment were irreparab...

  16. On the protective effect of omega-3 against propionic acid-induced neurotoxicity in rat pups

    PubMed Central

    2011-01-01

    Backgrounds The investigation of the environmental contribution for developmental neurotoxicity is very important. Many environmental chemical exposures are now thought to contribute to the development of neurological disorders, especially in children. Results from animal studies may guide investigations of human populations toward identifying environmental contaminants and drugs that produce or protect from neurotoxicity and may help in the treatment of neurodevelopmental disorders. Objective To study the protective effects of omega-3 polyunsaturated fatty acid on brain intoxication induced by propionic acid (PPA) in rats. Methods 24 young male Western Albino rats were enrolled in the present study. They were grouped into three equal groups; oral buffered PPA-treated group given a nuerotoxic dose of 250 mg/Kg body weight/day for 3 days; omega-3 - protected group given a dose of 100 mg/kg body weight/day omega-3 orally daily for 5 days followed by PPA for 3 days, and a third group as control given only phosphate buffered saline. Tumor necrosis factor-α, caspase-3, interlukin-6, gamma amino-buteric acid (GABA), serotonin, dopamine and phospholipids were then assayed in the rats brain's tissue of different groups. Results The obtained data showed that PPA caused multiple signs of brain toxicity as measured by depletion of gamaaminobyteric acid (GABA), serotonin (5HT) and dopamine (DA) as three important neurotransmitters that reflect brain function. A high significant increase of interlukin-6 (Il-6), tumor necrosis factor-α (TNF-α) as excellent markers of proinflammation and caspase-3 as a proapotic marker were remarkably elevated in the intoxicated group of rats. Moreover, brain phospholipid profile was impaired in PPA-treated young rats recording lower levels of phosphatidylethanolamine (PE), phosphatidylserine (PS) and phosphatidylcholine (PC). Conclusions Omega-3 fatty acids showed a protective effects on PPA - induced changes in rats as there was a remarkable

  17. Developmental exposure to concentrated ambient ultrafine particulate matter air pollution in mice results in persistent and sex-dependent behavioral neurotoxicity and glial activation.

    PubMed

    Allen, Joshua L; Liu, Xiufang; Weston, Douglas; Prince, Lisa; Oberdörster, Günter; Finkelstein, Jacob N; Johnston, Carl J; Cory-Slechta, Deborah A

    2014-07-01

    The brain appears to be a target of air pollution. This study aimed to further ascertain behavioral and neurobiological mechanisms of our previously observed preference for immediate reward (Allen, J. L., Conrad, K., Oberdorster, G., Johnston, C. J., Sleezer, B., and Cory-Slechta, D. A. (2013). Developmental exposure to concentrated ambient particles and preference for immediate reward in mice. Environ. Health Perspect. 121, 32-38), a phenotype consistent with impulsivity, in mice developmentally exposed to inhaled ultrafine particles. It examined the impact of postnatal and/or adult concentrated ambient ultrafine particles (CAPS) or filtered air on another behavior thought to reflect impulsivity, Fixed interval (FI) schedule-controlled performance, and extended the assessment to learning/memory (novel object recognition (NOR)), and locomotor activity to assist in understanding behavioral mechanisms of action. In addition, levels of brain monoamines and amino acids, and markers of glial presence and activation (GFAP, IBA-1) were assessed in mesocorticolimbic brain regions mediating these cognitive functions. This design produced four treatment groups/sex of postnatal/adult exposure: Air/Air, Air/CAPS, CAPS/Air, and CAPS/CAPS. FI performance was adversely influenced by CAPS/Air in males, but by Air/CAPS in females, effects that appeared to reflect corresponding changes in brain mesocorticolimbic dopamine/glutamate systems that mediate FI performance. Both sexes showed impaired short-term memory on the NOR. Mechanistically, cortical and hippocampal changes in amino acids raised the potential for excitotoxicity, and persistent glial activation was seen in frontal cortex and corpus callosum of both sexes. Collectively, neurodevelopment and/or adulthood CAPS can produce enduring and sex-dependent neurotoxicity. Although mechanisms of these effects remain to be fully elucidated, findings suggest that neurodevelopment and/or adulthood air pollution exposure may represent

  18. A Case of Neurotoxicity Following 5-Fluorouracil-based Chemotherapy

    PubMed Central

    Ki, Seung Seog; Jeong, Jin Mo; Kim, Seong Ho; Jeong, Sook Hyang; Lee, Jin Hyuk; Han, Chul Ju; Kim, You Cheol; Lee, Jhin Oh; Hong, Young Joon

    2002-01-01

    5-Fluorouracil (5-FU) is a commonly used chemotherapeutic agent. However, its neurotoxicity is rare and not well recognized. We report a case of 5-FU neurotoxicity with organic brain syndrome and progression to multifocal leukoencephalopathy in a 44-year-old male patient having malignant gastrointestinal stromal tumor. 5-FU-induced neurotoxicity should, therefore, be considered as an important differential diagnosis in cancer patients with neurological abnormality and history of chemotherapy. PMID:12014219

  19. Developmental neurotoxicity of inhaled ambient ultrafine particle air pollution: Parallels with neuropathological and behavioral features of autism and other neurodevelopmental disorders.

    PubMed

    Allen, J L; Oberdorster, G; Morris-Schaffer, K; Wong, C; Klocke, C; Sobolewski, M; Conrad, K; Mayer-Proschel, M; Cory-Slechta, D A

    2017-03-01

    Accumulating evidence from both human and animal studies show that brain is a target of air pollution. Multiple epidemiological studies have now linked components of air pollution to diagnosis of autism spectrum disorder (ASD), a linkage with plausibility based on the shared mechanisms of inflammation. Additional plausibility appears to be provided by findings from our studies in mice of exposures from postnatal day (PND) 4-7 and 10-13 (human 3rd trimester equivalent), to concentrated ambient ultrafine (UFP) particles, considered the most reactive component of air pollution, at levels consistent with high traffic areas of major U.S. cities and thus highly relevant to human exposures. These exposures, occurring during a period of marked neuro- and gliogenesis, unexpectedly produced a pattern of developmental neurotoxicity notably similar to multiple hypothesized mechanistic underpinnings of ASD, including its greater impact in males. UFP exposures induced inflammation/microglial activation, reductions in size of the corpus callosum (CC) and associated hypomyelination, aberrant white matter development and/or structural integrity with ventriculomegaly (VM), elevated glutamate and excitatory/inhibitory imbalance, increased amygdala astrocytic activation, and repetitive and impulsive behaviors. Collectively, these findings suggest the human 3rd trimester equivalent as a period of potential vulnerability to neurodevelopmental toxicity to UFP, particularly in males, and point to the possibility that UFP air pollution exposure during periods of rapid neuro- and gliogenesis may be a risk factor not only for ASD, but also for other neurodevelopmental disorders that share features with ASD, such as schizophrenia, attention deficit disorder, and periventricular leukomalacia. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Developmental Neurotoxicity of Inhaled Ambient Ultrafine Particle Air Pollution: Parallels with Neuropathological and Behavioral Features of Autism and Other Neurodevelopmental Disorders

    PubMed Central

    Allen, J. L.; Oberdorster, G.; Morris-Schafer, K.; Wong, C.; Klocke, C.; Sobolewski, M.; Conrad, K.; Mayer-Proschel, M.; Cory-Slechta, D. A.

    2016-01-01

    Accumulating evidence from both human and animal studies show that brain is a target of air pollution. Multiple epidemiological studies have now linked components of air pollution to diagnosis of autism spectrum disorder (ASD), a linkage with plausibility based on the shared mechanisms of inflammation. Additional plausibility appears to be provided by findings from our studies in mice of exposures from postnatal day (PND) 4-7 and 10-13 (human 3rd trimester equivalent), to concentrated ambient ultrafine (UFP) particles, considered the most reactive component of air pollution, at levels consistent with high traffic areas of major U.S. cities and thus highly relevant to human exposures. These exposures, occurring during a period of marked neuro- and gliogenesis, unexpectedly produced a pattern of developmental neurotoxicity notably similar to multiple hypothesized mechanistic underpinnings of ASD, including its greater impact in males. UFP exposures induced inflammation/microglial activation, reductions in size of the corpus callosum (CC) and associated hypomyelination, aberrant white matter development and/or structural integrity with ventriculomegaly (VM), elevated glutamate and excitatory/inhibitory imbalance, increased amygdala astrocytic activation, and repetitive and impulsive behaviors. Collectively, these findings suggest the human 3rd trimester equivalent as a period of potential vulnerability to neurodevelopmental toxicity to UFP, particularly in males, and point to the possibility that UFP air pollution exposure during periods of rapid neuro- and gliogenesis may be a risk factor not only for ASD, but also for other neurodevelopmental disorders that share features with ASD, such as schizophrenia, attention deficit disorder, and periventricular leukomalacia. PMID:26721665

  1. Developmental neurotoxicity of Propylthiouracil (PTU) in rats: Relationship between transient hypothyroxinemia during development and long-lasting behavioural and functional changes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Axelstad, Marta; Hansen, Pernille Reimar; Boberg, Julie

    2008-10-01

    Markedly lowered thyroid hormone levels during development may influence a child's behaviour, intellect, and auditory function. Recent studies, indicating that even small changes in the mother's thyroid hormone status early in pregnancy may cause adverse effects on her child, have lead to increased concern for thyroid hormone disrupting chemicals in the environment. The overall aim of the study was therefore to provide a detailed knowledge on the relationship between thyroid hormone levels during development and long-lasting effects on behaviour and hearing. Groups of 16-17 pregnant rats (HanTac:WH) were dosed with PTU (0, 0.8, 1.6 or 2.4 mg/kg/day) from gestation daymore » (GD) 7 to postnatal day (PND) 17, and the physiological and behavioural development of rat offspring was assessed. Both dams and pups in the higher dose groups had markedly decreased thyroxine (T{sub 4}) levels during the dosing period, and the weight and histology of the thyroid glands were severely affected. PTU exposure caused motor activity levels to decrease on PND 14, and to increase on PND 23 and in adulthood. In the adult offspring, learning and memory was impaired in the two highest dose groups when tested in the radial arm maze, and auditory function was impaired in the highest dose group. Generally, the results showed that PTU-induced hypothyroxinemia influenced the developing rat brain, and that all effects on behaviour and loss of hearing in the adult offspring were significantly correlated to reductions in T{sub 4} during development. This supports the hypothesis that decreased T{sub 4} may be a relevant predictor for long-lasting developmental neurotoxicity.« less

  2. Developmental neurotoxicity of propylthiouracil (PTU) in rats: relationship between transient hypothyroxinemia during development and long-lasting behavioural and functional changes.

    PubMed

    Axelstad, Marta; Hansen, Pernille Reimar; Boberg, Julie; Bonnichsen, Mia; Nellemann, Christine; Lund, Søren Peter; Hougaard, Karin Sørig; Hass, Ulla

    2008-10-01

    Markedly lowered thyroid hormone levels during development may influence a child's behaviour, intellect, and auditory function. Recent studies, indicating that even small changes in the mother's thyroid hormone status early in pregnancy may cause adverse effects on her child, have lead to increased concern for thyroid hormone disrupting chemicals in the environment. The overall aim of the study was therefore to provide a detailed knowledge on the relationship between thyroid hormone levels during development and long-lasting effects on behaviour and hearing. Groups of 16-17 pregnant rats (HanTac:WH) were dosed with PTU (0, 0.8, 1.6 or 2.4 mg/kg/day) from gestation day (GD) 7 to postnatal day (PND) 17, and the physiological and behavioural development of rat offspring was assessed. Both dams and pups in the higher dose groups had markedly decreased thyroxine (T(4)) levels during the dosing period, and the weight and histology of the thyroid glands were severely affected. PTU exposure caused motor activity levels to decrease on PND 14, and to increase on PND 23 and in adulthood. In the adult offspring, learning and memory was impaired in the two highest dose groups when tested in the radial arm maze, and auditory function was impaired in the highest dose group. Generally, the results showed that PTU-induced hypothyroxinemia influenced the developing rat brain, and that all effects on behaviour and loss of hearing in the adult offspring were significantly correlated to reductions in T(4) during development. This supports the hypothesis that decreased T(4) may be a relevant predictor for long-lasting developmental neurotoxicity.

  3. Effects of postnatal ethanol exposure at different developmental phases on neurotrophic factors and phosphorylated proteins on signal transductions in rat brain.

    PubMed

    Tsuji, Ryozo; Fattori, Vittorio; Abe, Shin-ichi; Costa, Lucio G; Kobayashi, Kumiko

    2008-01-01

    Exposure to ethanol during development induces severe brain damage resulting in a number of CNS dysfunctions including microencephaly and mental retardation in humans and in laboratory animals. The most vulnerable period to ethanol neurotoxicity coincides with the peak of brain growth spurt. Recently, neurotrophic factors and/or their signal transduction pathways have been reported as a potential relevant target for the developmental neurotoxicity of ethanol. The present studies were designed to investigate the effects of ethanol given in various developmental phases during the brain growth spurt in rats. Rat pups were assigned to the three treatment groups and treated with 5 g/kg of ethanol for three days, on postnatal days (PND) 2-4, 6-8 or 13-15. Whole brain weights were reduced only in the PND 6-8 group concurrently with the reduction of GDNF mRNA in cortex in this group. BDNF mRNA expression was reduced in both the PND 6-8 and 13-15 groups, while mRNA expressions of NT-3 and NGF were unchanged in all three groups. Phospho-Akt level was mostly reduced in the PND 6-8 group. Both phospho-MAPK and p-70S6 kinase levels were decreased in all groups whereas no changes were observed in either phospho-PKCzeta or CREB level. The phosphorylation of Akt was immediately inhibited after single administration of ethanol, and its inhibition was correlated with variations in blood ethanol concentration. These findings suggest that GDNF and the phosphorylation of Akt play a possible key role in the ethanol-induced developmental neurotoxicity.

  4. Local Anesthetic-Induced Neurotoxicity

    PubMed Central

    Verlinde, Mark; Hollmann, Markus W.; Stevens, Markus F.; Hermanns, Henning; Werdehausen, Robert; Lirk, Philipp

    2016-01-01

    This review summarizes current knowledge concerning incidence, risk factors, and mechanisms of perioperative nerve injury, with focus on local anesthetic-induced neurotoxicity. Perioperative nerve injury is a complex phenomenon and can be caused by a number of clinical factors. Anesthetic risk factors for perioperative nerve injury include regional block technique, patient risk factors, and local anesthetic-induced neurotoxicity. Surgery can lead to nerve damage by use of tourniquets or by direct mechanical stress on nerves, such as traction, transection, compression, contusion, ischemia, and stretching. Current literature suggests that the majority of perioperative nerve injuries are unrelated to regional anesthesia. Besides the blockade of sodium channels which is responsible for the anesthetic effect, systemic local anesthetics can have a positive influence on the inflammatory response and the hemostatic system in the perioperative period. However, next to these beneficial effects, local anesthetics exhibit time and dose-dependent toxicity to a variety of tissues, including nerves. There is equivocal experimental evidence that the toxicity varies among local anesthetics. Even though the precise order of events during local anesthetic-induced neurotoxicity is not clear, possible cellular mechanisms have been identified. These include the intrinsic caspase-pathway, PI3K-pathway, and MAPK-pathways. Further research will need to determine whether these pathways are non-specifically activated by local anesthetics, or whether there is a single common precipitating factor. PMID:26959012

  5. Local Anesthetic-Induced Neurotoxicity.

    PubMed

    Verlinde, Mark; Hollmann, Markus W; Stevens, Markus F; Hermanns, Henning; Werdehausen, Robert; Lirk, Philipp

    2016-03-04

    This review summarizes current knowledge concerning incidence, risk factors, and mechanisms of perioperative nerve injury, with focus on local anesthetic-induced neurotoxicity. Perioperative nerve injury is a complex phenomenon and can be caused by a number of clinical factors. Anesthetic risk factors for perioperative nerve injury include regional block technique, patient risk factors, and local anesthetic-induced neurotoxicity. Surgery can lead to nerve damage by use of tourniquets or by direct mechanical stress on nerves, such as traction, transection, compression, contusion, ischemia, and stretching. Current literature suggests that the majority of perioperative nerve injuries are unrelated to regional anesthesia. Besides the blockade of sodium channels which is responsible for the anesthetic effect, systemic local anesthetics can have a positive influence on the inflammatory response and the hemostatic system in the perioperative period. However, next to these beneficial effects, local anesthetics exhibit time and dose-dependent toxicity to a variety of tissues, including nerves. There is equivocal experimental evidence that the toxicity varies among local anesthetics. Even though the precise order of events during local anesthetic-induced neurotoxicity is not clear, possible cellular mechanisms have been identified. These include the intrinsic caspase-pathway, PI3K-pathway, and MAPK-pathways. Further research will need to determine whether these pathways are non-specifically activated by local anesthetics, or whether there is a single common precipitating factor.

  6. Metabolic Profiles and Free Radical Scavenging Activity of Cordyceps bassiana Fruiting Bodies According to Developmental Stage

    PubMed Central

    Hyun, Sun-Hee; Lee, Seok-Young; Sung, Gi-Ho; Kim, Seong Hwan; Choi, Hyung-Kyoon

    2013-01-01

    The metabolic profiles of Cordyceps bassiana according to fruiting body developmental stage were investigated using gas chromatography-mass spectrometry. We were able to detect 62 metabolites, including 48 metabolites from 70% methanol extracts and 14 metabolites from 100% n-hexane extracts. These metabolites were classified as alcohols, amino acids, organic acids, phosphoric acids, purine nucleosides and bases, sugars, saturated fatty acids, unsaturated fatty acids, or fatty amides. Significant changes in metabolite levels were found according to developmental stage. Relative levels of amino acids, purine nucleosides, and sugars were higher in development stage 3 than in the other stages. Among the amino acids, valine, isoleucine, lysine, histidine, glutamine, and aspartic acid, which are associated with ABC transporters and aminoacyl-tRNA biosynthesis, also showed higher levels in stage 3 samples. The free radical scavenging activities, which were significantly higher in stage 3 than in the other stages, showed a positive correlation with purine nucleoside metabolites such as adenosine, guanosine, and inosine. These results not only show metabolic profiles, but also suggest the metabolic pathways associated with fruiting body development stages in cultivated C. bassiana. PMID:24058459

  7. Increases in cytoplasmic dopamine compromise the normal resistance of the nucleus accumbens to methamphetamine neurotoxicity

    PubMed Central

    Thomas, David M.; Francescutti-Verbeem, Dina M.; Kuhnt, Donald M.

    2016-01-01

    Methamphetamine (METH) is a neurotoxic drug of abuse that damages the dopamine (DA) neuronal system in a highly delimited manner. The brain structure most affected by METH is the caudate–putamen (CPu) where long-term DA depletion and microglial activation are most evident. Even damage within the CPu is remarkably heterogenous with lateral and ventral aspects showing the greatest deficits. The nucleus accumbens (NAc) is largely spared of the damage that accompanies binge METH intoxication. Increases in cytoplasmic DA produced by reserpine, L-DOPA or clorgyline prior to METH uncover damage in the NAc as evidenced by microglial activation and depletion of DA, tyrosine hydroxylase (TH), and the DA transporter. These effects do not occur in the NAc after treatment with METH alone. In contrast to the CPu where DA, TH, and DA transporter levels remain depleted chronically, DA nerve ending alterations in the NAc show a partial recovery over time. None of the treatments that enhance METH toxicity in the NAc and CPu lead to losses of TH protein or DA cell bodies in the substantia nigra or the ventral tegmentum. These data show that increases in cytoplasmic DA dramatically broaden the neurotoxic profile of METH to include brain structures not normally targeted for damage by METH alone. The resistance of the NAc to METH-induced neurotoxicity and its ability to recover reveal a fundamentally different neuroplasticity by comparison to the CPu. Recruitment of the NAc as a target of METH neurotoxicity by alterations in DA homeostasis is significant in light of the important roles played by this brain structure. PMID:19457119

  8. Increases in cytoplasmic dopamine compromise the normal resistance of the nucleus accumbens to methamphetamine neurotoxicity.

    PubMed

    Thomas, David M; Francescutti-Verbeem, Dina M; Kuhn, Donald M

    2009-06-01

    Methamphetamine (METH) is a neurotoxic drug of abuse that damages the dopamine (DA) neuronal system in a highly delimited manner. The brain structure most affected by METH is the caudate-putamen (CPu) where long-term DA depletion and microglial activation are most evident. Even damage within the CPu is remarkably heterogenous with lateral and ventral aspects showing the greatest deficits. The nucleus accumbens (NAc) is largely spared of the damage that accompanies binge METH intoxication. Increases in cytoplasmic DA produced by reserpine, L-DOPA or clorgyline prior to METH uncover damage in the NAc as evidenced by microglial activation and depletion of DA, tyrosine hydroxylase (TH), and the DA transporter. These effects do not occur in the NAc after treatment with METH alone. In contrast to the CPu where DA, TH, and DA transporter levels remain depleted chronically, DA nerve ending alterations in the NAc show a partial recovery over time. None of the treatments that enhance METH toxicity in the NAc and CPu lead to losses of TH protein or DA cell bodies in the substantia nigra or the ventral tegmentum. These data show that increases in cytoplasmic DA dramatically broaden the neurotoxic profile of METH to include brain structures not normally targeted for damage by METH alone. The resistance of the NAc to METH-induced neurotoxicity and its ability to recover reveal a fundamentally different neuroplasticity by comparison to the CPu. Recruitment of the NAc as a target of METH neurotoxicity by alterations in DA homeostasis is significant in light of the important roles played by this brain structure.

  9. Transcription profile data of phorbol esters biosynthetic genes during developmental stages in Jatropha curcas.

    PubMed

    Jadid, Nurul; Mardika, Rizal Kharisma; Purwani, Kristanti Indah; Permatasari, Erlyta Vivi; Prasetyowati, Indah; Irawan, Mohammad Isa

    2018-06-01

    Jatropha curcas is currently known as an alternative source for biodiesel production. Beside its high free fatty acid content, J. curcas also contains typical diterpenoid-toxic compounds of Euphorbiaceae plant namely phorbol esters. This article present the transcription profile data of genes involved in the biosynthesis of phorbol esters at different developmental stages of leaves, fruit, and seed in Jatropha curcas . Transcriptional profiles were analyzed using reverse transcription-polymerase chain reaction (RT-PCR). We used two genes including GGPPS (Geranylgeranyl diphospate synthase), which is responsible for the formation of common diterpenoid precursor (GGPP) and CS (Casbene Synthase), which functions in the synthesis of casbene. Meanwhile, J. curcas Actin ( ACT ) was used as internal standard. We demonstrated dynamic of GGPPS and CS expression among different stage of development of leaves, fruit and seed in Jatropha .

  10. Neurotoxic effects of gasoline and gasoline constituents.

    PubMed Central

    Burbacher, T M

    1993-01-01

    This overview was developed as part of a symposium on noncancer end points of gasoline and key gasoline components. The specific components included are methyl tertiary butyl ether, ethyl tertiary butyl ether, tertiary amyl methyl ether, butadiene, benzene, xylene, toluene, methyl alcohol, and ethyl alcohol. The overview focuses on neurotoxic effects related to chronic low-level exposures. A few general conclusions and recommendations can be made based on the results of the studies to date. a) All the compounds reviewed are neuroactive and, as such, should be examined for their neurotoxicity. b) For most of the compounds, there is a substantial margin of safety between the current permissible exposure levels and levels that would be expected to cause overt signs of neurotoxicity in humans. This is not the case for xylene, toluene, and methanol, however, where neurologic effects are observed at or below the current Threshold Limit Value. c) For most of the compounds, the relationship between chronic low-level exposure and subtle neurotoxic effects has not been studied. Studies therefore should focus on examining the dose-response relationship between chronic low-level exposure and subtle changes in central nervous system function. PMID:8020437

  11. Attenuated microglial activation mediates tolerance to the neurotoxic effects of methamphetamine.

    PubMed

    Thomas, David M; Kuhn, Donald M

    2005-02-01

    Methamphetamine causes persistent damage to dopamine nerve endings of the striatum. Repeated, intermittent treatment of mice with low doses of methamphetamine leads to the development of tolerance to its neurotoxic effects. The mechanisms underlying tolerance are not understood but clearly involve more than alterations in drug bioavailability or reductions in the hyperthermia caused by methamphetamine. Microglia have been implicated recently as mediators of methamphetamine-induced neurotoxicity. The purpose of the present studies was to determine if a tolerance regimen of methamphetamine would attenuate the microglial response to a neurotoxic challenge. Mice treated with a low-dose methamphetamine tolerance regimen showed minor reductions in striatal dopamine content and low levels of microglial activation. When the tolerance regimen preceded a neurotoxic challenge of methamphetamine, the depletion of dopamine normally seen was significantly attenuated. The microglial activation that occurs after a toxic methamphetamine challenge was blunted likewise. Despite the induction of tolerance against drug-induced toxicity and microglial activation, a neurotoxic challenge with methamphetamine still caused hyperthermia. These results suggest that tolerance to methamphetamine neurotoxicity is associated with attenuated microglial activation and they further dissociate its neurotoxicity from drug-induced hyperthermia.

  12. SLA Developmental Stages and Teachers' Assessment of Written French: Exploring Direkt Profil as a Diagnostic Assessment Tool

    ERIC Educational Resources Information Center

    Granfeldt, Jonas; Ågren, Malin

    2014-01-01

    One core area of research in Second Language Acquisition is the identification and definition of developmental stages in different L2s. For L2 French, Bartning and Schlyter (2004) presented a model of six morphosyntactic stages of development in the shape of grammatical profiles. The model formed the basis for the computer program Direkt Profil…

  13. Cognitive Profiles of Adults with Asperger's Disorder, High-Functioning Autism, and Pervasive Developmental Disorder Not Otherwise Specified Based on the WAIS-III

    ERIC Educational Resources Information Center

    Kanai, Chieko; Tani, Masayuki; Hashimoto, Ryuichiro; Yamada, Takashi; Ota, Haruhisa; Watanabe, Hiromi; Iwanami, Akira; Kato, Nobumasa

    2012-01-01

    Little is known about the cognitive profiles of high-functioning Pervasive Developmental Disorders (PDD) in adults based on the Wechsler Intelligence Scale III (WAIS-III). We examined cognitive profiles of adults with no intellectual disability (IQ greater than 70), and in adults with Asperger's disorder (AS; n = 47), high-functioning autism (HFA;…

  14. Emerging Neurotoxic Mechanisms in Environmental Factors-Induced Neurodegeneration

    PubMed Central

    Kanthasamy, Anumantha; Jin, Huajun; Anantharam, Vellareddy; Sondarva, Gautam; Rangasamy, Velusamy; Rana, Ajay; Kanthasamy, Arthi

    2012-01-01

    Exposure to environmental neurotoxic metals, pesticides and other chemicals is increasingly recognized as a key risk factor in the pathogenesis of chronic neurodegenerative disorders such as Parkinson’s and Alzheimer’s diseases. Oxidative stress and apoptosis have been actively investigated as neurotoxic mechanisms over the past two decades, resulting in a greater understanding of neurotoxic processes. Nevertheless, emerging evidence indicates that epigenetic changes, protein aggregation and autophagy are important cellular and molecular correlates of neurodegenerative diseases resulting from chronic neurotoxic chemical exposure. During the Joint Conference of the 13th International Neurotoxicology Association and the 11th International Symposium on Neurobehavioral Methods and Effects in Occupational and Environmental Health, the recent progress made toward understanding epigenetic mechanisms, protein aggregation, autophagy, and deregulated kinase activation following neurotoxic chemical exposure and the relevance to neurodegenerative conditions were one of the themes of the symposium. Dr. Anumantha G. Kanthasamy described the role of acetylation of histones and non-histone proteins in neurotoxicant-induced neurodegenerative processes in the nigral dopaminergic neuronal system. Dr. Arthi Kanthasamy illustrated the role of autophagy as a key determinant in cell death events during neurotoxic insults. Dr. Ajay Rana provided evidence for posttranslational modification of α-synuclein protein by the Mixed Linage Kinase (MLK) group of kinases to initiate protein aggregation in cell culture and animal models of Parkinson’s disease. These presentations outlined emerging cutting edge mechanisms that might set the stage for future mechanistic investigations into new frontiers of molecular neurotoxicology. This report summarizes the views of symposium participants, with emphasis on future directions for study of environmentally and occupationally linked chronic

  15. Developmental Competence and Epigenetic Profile of Porcine Embryos Produced by Two Different Cloning Methods.

    PubMed

    Liu, Ying; Lucas-Hahn, Andrea; Petersen, Bjoern; Li, Rong; Hermann, Doris; Hassel, Petra; Ziegler, Maren; Larsen, Knud; Niemann, Heiner; Callesen, Henrik

    2017-06-01

    The "Dolly" based cloning (classical nuclear transfer, [CNT]) and the handmade cloning (HMC) are methods that are nowadays routinely used for somatic cloning of large domestic species. Both cloning protocols share several similarities, but differ with regard to the required in vitro culture, which in turn results in different time intervals until embryo transfer. It is not yet known whether the differences between cloned embryos from the two protocols are due to the cloning methods themselves or the in vitro culture, as some studies have shown detrimental effects of in vitro culture on conventionally produced embryos. The goal of this study was to unravel putative differences between two cloning methods, with regard to developmental competence, expression profile of a panel of developmentally important genes and epigenetic profile of porcine cloned embryos produced by either CNT or HMC, either with (D5 or D6) or without (D0) in vitro culture. Embryos cloned by these two methods had a similar morphological appearance on D0, but displayed different cleavage rates and different quality of blastocysts, with HMC embryos showing higher blastocyst rates (HMC vs. CNT: 35% vs. 10%, p < 0.05) and cell numbers per blastocyst (HMC vs. CNT: 31 vs. 23 on D5 and 42 vs. 18 on D6, p < 0.05) compared to CNT embryos. With regard to histone acetylation and gene expression, CNT and HMC derived cloned embryos were similar on D0, but differed on D6. In conclusion, both cloning methods and the in vitro culture may affect porcine embryo development and epigenetic profile. The two cloning methods essentially produce embryos of similar quality on D0 and after 5 days in vitro culture, but thereafter both histone acetylation and gene expression differ between the two types of cloned embryos.

  16. Inflammatory and oxidative stress-related effects associated with neurotoxicity are maintained after exclusively prenatal trichloroethylene exposure.

    PubMed

    Blossom, Sarah J; Melnyk, Stepan B; Li, Ming; Wessinger, William D; Cooney, Craig A

    2017-03-01

    Trichloroethylene (TCE) is a widespread environmental toxicant with immunotoxic and neurotoxic potential. Previous studies have shown that continuous developmental exposure to TCE encompassing gestation and early life as well as postnatal only exposure in the drinking water of MRL+/+ mice promoted CD4 + T cell immunotoxicity, glutathione depletion and oxidative stress in the cerebellum, as well increased locomotor activity in male offspring. The purpose of this study was to characterize the effects of exclusively prenatal exposure on these parameters. Another goal was to investigate potential plasma oxidative stress/inflammatory biomarkers to possibly be used as predictors of TCE-mediated neurotoxicity. In the current study, 6 week old male offspring of dams exposed gestationally to 0, 0.01, and 0.1mg/ml TCE in the drinking water were evaluated. Our results confirmed that the oxidized phenotype in plasma and cerebellum was maintained after exclusively prenatal exposure. A Phenotypic analysis by flow cytometry revealed that TCE exposure expanded the effector/memory subset of peripheral CD4 + T cells in association with increased production of pro-inflammatory cytokines IFN-γ and IL-17. Serum biomarkers of oxidative stress and inflammation were also elevated in plasma suggesting that systemic effects are important and may be used to predict neurotoxicity in our model. These results suggested that the prenatal period is a critical stage of life by which the developing CNS and immune system are susceptible to long-lasting changes mediated by TCE. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Application of in vitro neurotoxicity testing for regulatory purposes: Symposium III summary and research needs.

    PubMed

    Bal-Price, Anna K; Suñol, Cristina; Weiss, Dieter G; van Vliet, Erwin; Westerink, Remco H S; Costa, Lucio G

    2008-05-01

    Prediction of neurotoxic effects is a key feature in the toxicological profile of many compounds and therefore is required by regulatory testing schemes. Nowadays neurotoxicity assessment required by the OECD and EC test guidelines is based solely on in vivo testing, evaluating mainly effects on neurobehavior and neuropathology, which is expensive, time consuming and unsuitable for screening large number of chemicals. Additionally, such in vivo tests are not always sensitive enough to predict human neurotoxicity and often do not provide information that facilitates regulatory decision-making processes. Incorporation of alternative tests (in vitro testing, computational modelling, QSARs, grouping, read-across, etc.) in screening strategies would speed up the rate at which compound knowledge and mechanistic data are available and the information obtained could be used in the refinement of future in vivo studies to facilitate predictions of neurotoxicity. On 1st June 2007, the European Commission legislation concerning registration, evaluation and authorisation of chemicals (REACH) has entered into force. REACH addresses one of the key issues for chemicals in Europe, the lack of publicly available safety data sheets. It outlines a plan to test approximately 30,000 existing substances. These chemicals are currently produced in volumes greater than 1ton/year and the essential data on the human health and ecotoxicological effects are lacking. It is estimated that approximately 3.9 million test animals (including 2.6 million vertebrates) (Hartung T, Bremer S, Casati S, Coecke S, Corvi R, Fortnaer S, et al. ECVAM's response to the changing political environment for alternatives: consequences of the European Union chemicals and cosmetics policies. ATLA 2003;31:473-81) would be necessary to fulfill the requirements of REACH if the development and establishment of alternative methods is not accepted by regulatory authorities. In an effort to reduce animal use and testing

  18. Evaluation of a human neurite growth assay as specific screen for developmental neurotoxicants.

    PubMed

    Krug, Anne K; Balmer, Nina V; Matt, Florian; Schönenberger, Felix; Merhof, Dorit; Leist, Marcel

    2013-12-01

    Organ-specific in vitro toxicity assays are often highly sensitive, but they lack specificity. We evaluated here examples of assay features that can affect test specificity, and some general procedures are suggested on how positive hits in complex biological assays may be defined. Differentiating human LUHMES cells were used as potential model for developmental neurotoxicity testing. Forty candidate toxicants were screened, and several hits were obtained and confirmed. Although the cells had a definitive neuronal phenotype, the use of a general cell death endpoint in these cultures did not allow specific identification of neurotoxicants. As alternative approach, neurite growth was measured as an organ-specific functional endpoint. We found that neurite extension of developing LUHMES was specifically inhibited by diverse compounds such as colchicine, vincristine, narciclasine, rotenone, cycloheximide, or diquat. These compounds reduced neurite growth at concentrations that did not compromise cell viability, and neurite growth was affected more potently than the integrity of developed neurites of mature neurons. A ratio of the EC50 values of neurite growth inhibition and cell death of >4 provided a robust classifier for compounds associated with a developmental neurotoxic hazard. Screening of unspecific toxicants in the test system always yielded ratios <4. The assay identified also compounds that accelerated neurite growth, such as the rho kinase pathway modifiers blebbistatin or thiazovivin. The negative effects of colchicine or rotenone were completely inhibited by a rho kinase inhibitor. In summary, we suggest that assays using functional endpoints (neurite growth) can specifically identify and characterize (developmental) neurotoxicants.

  19. A 21st Century Update on Neurotoxicity Risk Assessment

    EPA Science Inventory

    In 1998, EPA published Guidelines for Neurotoxicity Risk Assessment as the basis for interpreting neurotoxicity results. At that time, the focus was on traditional toxicity testing and human clinical /epidemiological data. More recently, a change in approach to toxicity testing ...

  20. The Usefulness of the Revised Psychoeducational Profile for the Assessment of Preschool Children with Pervasive Developmental Disorders

    ERIC Educational Resources Information Center

    Portoghese, Claudia; Buttiglione, Maura; Pavone, Francesca; Lozito, Vito; De Giacomo, Andrea; Martinelli, Domenico; Margari, Lucia

    2009-01-01

    Data from the Psychoeducational Profile-Revised (PEP-R) were analysed in a sample of 46 children, aged from 1.7 to 5.11 years, of whom 21 had autistic disorder (AD) and 25 had pervasive developmental disorder not otherwise specified (PDD-NOS). Analysis with a t-test for independent samples revealed a significant difference (p less than 0.05)…

  1. Microglial activation is a pharmacologically specific marker for the neurotoxic amphetamines.

    PubMed

    Thomas, David M; Dowgiert, Jennifer; Geddes, Timothy J; Francescutti-Verbeem, Dina; Liu, Xiuli; Kuhn, Donald M

    2004-09-09

    Neurotoxic amphetamines cause damage to monoamine nerve terminals of the striatum by unknown mechanisms. Microglial activation contributes to the neuronal damage that accompanies injury, disease, and inflammation, but a role for these cells in amphetamine-induced neurotoxicity has received little attention. We show presently that D-methamphetamine, 3,4-methylenedioxymethamphetamine (MDMA), D-amphetamine, and p-chloroamphetamine, each of which has been linked to dopamine (DA) or serotonin nerve terminal damage, result in microglial activation in the striatum. The non-neurotoxic amphetamines l-methamphetamine, fenfluramine, and DOI do not have this effect. All drugs that cause microglial activation also increase expression of glial fibrillary acidic protein (GFAP). At a minimum, microglial activation serves as a pharmacologically specific marker for striatal nerve terminal damage resulting only from those amphetamines that exert neurotoxicity. Because microglia are known to produce many of the reactive species (e.g., nitric oxide, superoxide, cytokines) that mediate the neurotoxicity of the amphetamine-class of drugs, their activation could represent an early and essential event in the neurotoxic cascade associated with high-dose amphetamine intoxication.

  2. THC Prevents MDMA Neurotoxicity in Mice.

    PubMed

    Touriño, Clara; Zimmer, Andreas; Valverde, Olga

    2010-02-10

    The majority of MDMA (ecstasy) recreational users also consume cannabis. Despite the rewarding effects that both drugs have, they induce several opposite pharmacological responses. MDMA causes hyperthermia, oxidative stress and neuronal damage, especially at warm ambient temperature. However, THC, the main psychoactive compound of cannabis, produces hypothermic, anti-inflammatory and antioxidant effects. Therefore, THC may have a neuroprotective effect against MDMA-induced neurotoxicity. Mice receiving a neurotoxic regimen of MDMA (20 mg/kg x 4) were pretreated with THC (3 mg/kg x 4) at room (21 degrees C) and at warm (26 degrees C) temperature, and body temperature, striatal glial activation and DA terminal loss were assessed. To find out the mechanisms by which THC may prevent MDMA hyperthermia and neurotoxicity, the same procedure was carried out in animals pretreated with the CB(1) receptor antagonist AM251 and the CB(2) receptor antagonist AM630, as well as in CB(1), CB(2) and CB(1)/CB(2) deficient mice. THC prevented MDMA-induced-hyperthermia and glial activation in animals housed at both room and warm temperature. Surprisingly, MDMA-induced DA terminal loss was only observed in animals housed at warm but not at room temperature, and this neurotoxic effect was reversed by THC administration. However, THC did not prevent MDMA-induced hyperthermia, glial activation, and DA terminal loss in animals treated with the CB(1) receptor antagonist AM251, neither in CB(1) and CB(1)/CB(2) knockout mice. On the other hand, THC prevented MDMA-induced hyperthermia and DA terminal loss, but only partially suppressed glial activation in animals treated with the CB(2) cannabinoid antagonist and in CB(2) knockout animals. Our results indicate that THC protects against MDMA neurotoxicity, and suggest that these neuroprotective actions are primarily mediated by the reduction of hyperthermia through the activation of CB(1) receptor, although CB(2) receptors may also contribute to

  3. THC Prevents MDMA Neurotoxicity in Mice

    PubMed Central

    Touriño, Clara; Zimmer, Andreas; Valverde, Olga

    2010-01-01

    The majority of MDMA (ecstasy) recreational users also consume cannabis. Despite the rewarding effects that both drugs have, they induce several opposite pharmacological responses. MDMA causes hyperthermia, oxidative stress and neuronal damage, especially at warm ambient temperature. However, THC, the main psychoactive compound of cannabis, produces hypothermic, anti-inflammatory and antioxidant effects. Therefore, THC may have a neuroprotective effect against MDMA-induced neurotoxicity. Mice receiving a neurotoxic regimen of MDMA (20 mg/kg ×4) were pretreated with THC (3 mg/kg ×4) at room (21°C) and at warm (26°C) temperature, and body temperature, striatal glial activation and DA terminal loss were assessed. To find out the mechanisms by which THC may prevent MDMA hyperthermia and neurotoxicity, the same procedure was carried out in animals pretreated with the CB1 receptor antagonist AM251 and the CB2 receptor antagonist AM630, as well as in CB1, CB2 and CB1/CB2 deficient mice. THC prevented MDMA-induced-hyperthermia and glial activation in animals housed at both room and warm temperature. Surprisingly, MDMA-induced DA terminal loss was only observed in animals housed at warm but not at room temperature, and this neurotoxic effect was reversed by THC administration. However, THC did not prevent MDMA-induced hyperthermia, glial activation, and DA terminal loss in animals treated with the CB1 receptor antagonist AM251, neither in CB1 and CB1/CB2 knockout mice. On the other hand, THC prevented MDMA-induced hyperthermia and DA terminal loss, but only partially suppressed glial activation in animals treated with the CB2 cannabinoid antagonist and in CB2 knockout animals. Our results indicate that THC protects against MDMA neurotoxicity, and suggest that these neuroprotective actions are primarily mediated by the reduction of hyperthermia through the activation of CB1 receptor, although CB2 receptors may also contribute to attenuate neuroinflammation in this

  4. Cumulative Genetic Risk Predicts Platinum/Taxane-Induced Neurotoxicity

    PubMed Central

    McWhinney-Glass, Sarah; Winham, Stacey J.; Hertz, Daniel L.; Revollo, Jane Yen; Paul, Jim; He, Yijing; Brown, Robert; Motsinger-Reif, Alison A.; McLeod, Howard L.

    2013-01-01

    Purpose The combination of a platinum and taxane are standard of care for many cancers, but the utility is often limited due to debilitating neurotoxicity. We examined whether single nucleotide polymorphisms (SNPs) from annotated candidate genes will identify genetic risk for chemotherapy-induced neurotoxicity. Patients and Methods A candidate-gene association study was conducted to validate the relevance of 1261 SNPs within 60 candidate genes in 404 ovarian cancer patients receiving platinum/taxane chemotherapy on the SCOTROC1 trial. Statistically significant variants were then assessed for replication in a separate 404 patient replication cohort from SCOTROC1. Results Significant associations with chemotherapy-induced neurotoxicity were identified and replicated for four SNPs in SOX10, BCL2, OPRM1, and TRPV1. The Population Attributable Risk for each of the four SNPs ranged from 5–35%, with a cumulative risk of 62%. According to the multiplicative model, the odds of developing neurotoxicity increase by a factor of 1.64 for every risk genotype. Patients possessing 3 risk variants have an estimated odds ratio of 4.49 (2.36–8.54) compared to individuals with 0 risk variants. Neither the four SNPs nor the risk score were associated with progression free survival or overall survival. Conclusions This study demonstrates that SNPs in four genes have a significant cumulative association with increased risk for the development of chemotherapy-induced neurotoxicity, independent of patient survival. PMID:23963862

  5. Cyanobacterial Xenobiotics as Evaluated by a Caenorhabditis elegans Neurotoxicity Screening Test

    PubMed Central

    Ju, Jingjuan; Saul, Nadine; Kochan, Cindy; Putschew, Anke; Pu, Yuepu; Yin, Lihong; Steinberg, Christian E. W.

    2014-01-01

    In fresh waters cyanobacterial blooms can produce a variety of toxins, such as microcystin variants (MCs) and anatoxin-a (ANA). ANA is a well-known neurotoxin, whereas MCs are hepatotoxic and, to a lesser degree, also neurotoxic. Neurotoxicity applies especially to invertebrates lacking livers. Current standardized neurotoxicity screening methods use rats or mice. However, in order to minimize vertebrate animal experiments as well as experimental time and effort, many investigators have proposed the nematode Caenorhabditis elegans as an appropriate invertebrate model. Therefore, four known neurotoxic compounds (positive compounds: chlorpyrifos, abamectin, atropine, and acrylamide) were chosen to verify the expected impacts on autonomic (locomotion, feeding, defecation) and sensory (thermal, chemical, and mechanical sensory perception) functions in C. elegans. This study is another step towards successfully establishing C. elegans as an alternative neurotoxicity model. By using this protocol, anatoxin-a adversely affected locomotive behavior and pharyngeal pumping frequency and, most strongly, chemotactic and thermotactic behavior, whereas MC-LR impacted locomotion, pumping, and mechanical behavior, but not chemical sensory behavior. Environmental samples can also be screened in this simple and fast way for neurotoxic characteristics. The filtrate of a Microcystis aeruginosa culture, known for its hepatotoxicity, also displayed mild neurotoxicity (modulated short-term thermotaxis). These results show the suitability of this assay for environmental cyanotoxin-containing samples. PMID:24776722

  6. Corneal neurotoxicity due to topical benzalkonium chloride.

    PubMed

    Sarkar, Joy; Chaudhary, Shweta; Namavari, Abed; Ozturk, Okan; Chang, Jin-Hong; Yco, Lisette; Sonawane, Snehal; Khanolkar, Vishakha; Hallak, Joelle; Jain, Sandeep

    2012-04-06

    The aim of this study was to determine and characterize the effect of topical application of benzalkonium chloride (BAK) on corneal nerves in vivo and in vitro. Thy1-YFP+ neurofluorescent mouse eyes were treated topically with vehicle or BAK (0.01% or 0.1%). Wide-field stereofluorescence microscopy was performed to sequentially image the treated corneas in vivo every week for 4 weeks, and changes in stromal nerve fiber density (NFD) and aqueous tear production were determined. Whole-mount immunofluorescence staining of corneas was performed with antibodies to axonopathy marker SMI-32. Western immunoblot analyses were performed on trigeminal ganglion and corneal lysates to determine abundance of proteins associated with neurotoxicity and regeneration. Compartmental culture of trigeminal ganglion neurons was performed in Campenot devices to determine whether BAK affects neurite outgrowth. BAK-treated corneas exhibited significantly reduced NFD and aqueous tear production, and increased inflammatory cell infiltration and fluorescein staining at 1 week (P < 0.05). These changes were most significant after 0.1% BAK treatment. The extent of inflammatory cell infiltration in the cornea showed a significant negative correlation with NFD. Sequential in vivo imaging of corneas showed two forms of BAK-induced neurotoxicity: reversible neurotoxicity characterized by axonopathy and recovery, and irreversible neurotoxicity characterized by nerve degeneration and regeneration. Increased abundance of beta III tubulin in corneal lysates confirmed regeneration. A dose-related significant reduction in neurites occurred after BAK addition to compartmental cultures of dissociated trigeminal ganglion cells. Although both BAK doses (0.0001% and 0.001%) reduced nerve fiber length, the reduction was significantly more with the higher dose (P < 0.001). Topical application of BAK to the eye causes corneal neurotoxicity, inflammation, and reduced aqueous tear production.

  7. Corneal Neurotoxicity Due to Topical Benzalkonium Chloride

    PubMed Central

    Sarkar, Joy; Chaudhary, Shweta; Namavari, Abed; Ozturk, Okan; Chang, Jin-Hong; Yco, Lisette; Sonawane, Snehal; Khanolkar, Vishakha; Hallak, Joelle; Jain, Sandeep

    2012-01-01

    Purpose. The aim of this study was to determine and characterize the effect of topical application of benzalkonium chloride (BAK) on corneal nerves in vivo and in vitro. Methods. Thy1-YFP+ neurofluorescent mouse eyes were treated topically with vehicle or BAK (0.01% or 0.1%). Wide-field stereofluorescence microscopy was performed to sequentially image the treated corneas in vivo every week for 4 weeks, and changes in stromal nerve fiber density (NFD) and aqueous tear production were determined. Whole-mount immunofluorescence staining of corneas was performed with antibodies to axonopathy marker SMI-32. Western immunoblot analyses were performed on trigeminal ganglion and corneal lysates to determine abundance of proteins associated with neurotoxicity and regeneration. Compartmental culture of trigeminal ganglion neurons was performed in Campenot devices to determine whether BAK affects neurite outgrowth. Results. BAK-treated corneas exhibited significantly reduced NFD and aqueous tear production, and increased inflammatory cell infiltration and fluorescein staining at 1 week (P < 0.05). These changes were most significant after 0.1% BAK treatment. The extent of inflammatory cell infiltration in the cornea showed a significant negative correlation with NFD. Sequential in vivo imaging of corneas showed two forms of BAK-induced neurotoxicity: reversible neurotoxicity characterized by axonopathy and recovery, and irreversible neurotoxicity characterized by nerve degeneration and regeneration. Increased abundance of beta III tubulin in corneal lysates confirmed regeneration. A dose-related significant reduction in neurites occurred after BAK addition to compartmental cultures of dissociated trigeminal ganglion cells. Although both BAK doses (0.0001% and 0.001%) reduced nerve fiber length, the reduction was significantly more with the higher dose (P < 0.001). Conclusion. Topical application of BAK to the eye causes corneal neurotoxicity, inflammation, and reduced aqueous

  8. Changes in gene expression linked to methamphetamine-induced dopaminergic neurotoxicity.

    PubMed

    Xie, Tao; Tong, Liqiong; Barrett, Tanya; Yuan, Jie; Hatzidimitriou, George; McCann, Una D; Becker, Kevin G; Donovan, David M; Ricaurte, George A

    2002-01-01

    The purpose of these studies was to examine the role of gene expression in methamphetamine (METH)-induced dopamine (DA) neurotoxicity. First, the effects of the mRNA synthesis inhibitor, actinomycin-D, and the protein synthesis inhibitor, cycloheximide, were examined. Both agents afforded complete protection against METH-induced DA neurotoxicity and did so independently of effects on core temperature, DA transporter function, or METH brain levels, suggesting that gene transcription and mRNA translation play a role in METH neurotoxicity. Next, microarray technology, in combination with an experimental approach designed to facilitate recognition of relevant gene expression patterns, was used to identify gene products linked to METH-induced DA neurotoxicity. This led to the identification of several genes in the ventral midbrain associated with the neurotoxic process, including genes for energy metabolism [cytochrome c oxidase subunit 1 (COX1), reduced nicotinamide adenine dinucleotide ubiquinone oxidoreductase chain 2, and phosphoglycerate mutase B], ion regulation (members of sodium/hydrogen exchanger and sodium/bile acid cotransporter family), signal transduction (adenylyl cyclase III), and cell differentiation and degeneration (N-myc downstream-regulated gene 3 and tau protein). Of these differentially expressed genes, we elected to further examine the increase in COX1 expression, because of data implicating energy utilization in METH neurotoxicity and the known role of COX1 in energy metabolism. On the basis of time course studies, Northern blot analyses, in situ hybridization results, and temperature studies, we now report that increased COX1 expression in the ventral midbrain is linked to METH-induced DA neuronal injury. The precise role of COX1 and other genes in METH neurotoxicity remains to be elucidated.

  9. Guidelines for Neurotoxicity Risk Assessment

    EPA Pesticide Factsheets

    These Guidelines set forth principles and procedures to guide EPA scientists in evaluating environmental contaminants that may pose neurotoxic risks, and inform Agency decision makers and the public about these procedures.

  10. Gene expression profiles in the cerebellum and hippocampus following exposure to a neurotoxicant, Aroclor 1254: Developmental effects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Royland, Joyce E.; Wu, Jinfang; Zawia, Nasser H.

    2008-09-01

    The developmental consequences of exposure to the polychlorinated biphenyls (PCBs) have been widely studied, making PCBs a unique model to understand issues related to environmental mixture of persistent chemicals. PCB exposure in humans adversely affects neurocognitive development, causes psychomotor difficulties, and contributes to attention deficits in children, all of which seem to be associated with altered patterns of neuronal connectivity. In the present study, we examined gene expression profiles in the rat nervous system following PCB developmental exposure. Pregnant rats (Long-Evans) were dosed perinatally with 0 or 6 mg/kg/day of Aroclor 1254 from gestation day 6 through postnatal day (PND)more » 21. Gene expression in cerebellum and hippocampus from PND7 and PND14 animals was analyzed with an emphasis on developmental aspects. Changes in gene expression ({>=} 1.5 fold) in control animals identified normal developmental changes. These basal levels of expression were compared to data from Aroclor 1254-treated animals to determine the impact of gestational PCB exposure on developmental parameters. The results indicate that the expression of a number of developmental genes related to cell cycle, synaptic function, cell maintenance, and neurogenesis is significantly altered from PND7 to PND14. Aroclor 1254 treatment appears to dampen the overall growth-related gene expression levels in both regions with the effect being more pronounced in the cerebellum. Functional analysis suggests that Aroclor 1254 delays maturation of the developing nervous system, with the consequences dependent on the ontological state of the brain area and the functional role of the individual gene. Such changes may underlie learning and memory deficits observed in PCB exposed animals and humans.« less

  11. Deficient PKR in RAX/PKR Association Ameliorates Ethanol-Induced Neurotoxicity in the Developing Cerebellum.

    PubMed

    Li, Hui; Chen, Jian; Qi, Yuanlin; Dai, Lu; Zhang, Mingfang; Frank, Jacqueline A; Handshoe, Jonathan W; Cui, Jiajun; Xu, Wenhua; Chen, Gang

    2015-08-01

    Ethanol-induced neuronal loss is closely related to the pathogenesis of fetal alcohol spectrum disorders. The cerebellum is one of the brain areas that are most sensitive to ethanol. The mechanism underlying ethanol neurotoxicity remains unclear. Our previous in vitro studies have shown that the double-stranded RNA (dsRNA)-activated protein kinase (PKR) regulates neuronal apoptosis upon ethanol exposure and ethanol activates PKR through association with its intracellular activator RAX. However, the role of PKR and its interaction with RAX in vivo have not been investigated. In the current study, by utilizing N-PKR-/- mice, C57BL/6J mice with a deficient RAX-binding domain in PKR, we determined the critical role of RAX/PKR association in PKR-regulated ethanol neurotoxicity in the developing cerebellum. Our data indicate that while N-PKR-/- mice have a similar BAC profile as wild-type mice, ethanol induces less brain/body mass reduction as well as cerebellar neuronal loss. In addition, ethanol promotes interleukin-1β (IL-1β) secretion, and IL-1β is a master cytokine regulating inflammatory response. Importantly, ethanol-promoted IL-1β secretion is inhibited in the developing cerebellum of N-PKR-/- mice. Thus, RAX/PKR interaction and PKR activation regulate ethanol neurotoxicity in the developing cerebellum, which may involve ethanol-induced neuroinflammation. Further, PKR could be a possible target for pharmacological intervention to prevent or treat fetal alcohol spectrum disorder (FASD).

  12. Deficient PKR in RAX/PKR Association Ameliorates Ethanol-Induced Neurotoxicity in the Developing Cerebellum

    PubMed Central

    Li, Hui; Chen, Jian; Qi, Yuanlin; Dai, Lu; Zhang, Mingfang; Frank, Jacqueline A.; Handshoe, Jonathan W.; Cui, Jiajun; Xu, Wenhua

    2015-01-01

    Ethanol-induced neuronal loss is closely related to the pathogenesis of fetal alcohol spectrum disorders. The cerebellum is one of the brain areas that are most sensitive to ethanol. The mechanism underlying ethanol neurotoxicity remains unclear. Our previous in vitro studies have shown that the double-stranded RNA (dsRNA)-activated protein kinase (PKR) regulates neuronal apoptosis upon ethanol exposure and ethanol activates PKR through association with its intracellular activator RAX. However, the role of PKR and its interaction with RAX in vivo have not been investigated. In the current study, by utilizing N-PKR−/− mice, C57BL/6J mice with a deficient RAX-binding domain in PKR, we determined the critical role of RAX/PKR association in PKR-regulated ethanol neurotoxicity in the developing cerebellum. Our data indicate that while N-PKR−/− mice have a similar BAC profile as wild-type mice, ethanol induces less brain/body mass reduction as well as cerebellar neuronal loss. In addition, ethanol promotes interleukin-1β (IL-1β) secretion, and IL-1β is a master cytokine regulating inflammatory response. Importantly, ethanol-promoted IL-1β secretion is inhibited in the developing cerebellum of N-PKR−/− mice. Thus, RAX/PKR interaction and PKR activation regulate ethanol neurotoxicity in the developing cerebellum, which may involve ethanol-induced neuroinflammation. Further, PKR could be a possible target for pharmacological intervention to prevent or treat fetal alcohol spectrum disorder (FASD). PMID:25592072

  13. Manganese-induced Neurotoxicity: From C. elegans to Humans

    PubMed Central

    Chen, Pan; Chakraborty, Sudipta; Peres, Tanara V.; Bowman, Aaron B.; Aschner, Michael

    2014-01-01

    Manganese (Mn) is one of the most abundant metals on the earth. It is required for normal cellular activities, but overexposure leads to toxicity. Neurons are more susceptible to Mn-induced toxicity than other cells, and accumulation of Mn in the brain results in Manganism that presents with Parkinson's disease (PD)-like symptoms. In the last decade, a number of Mn transporters have been identified, which improves our understanding of Mn transport in and out of cells. However, the mechanism of Mn-induced neurotoxicity is only partially uncovered, with further research needed to explore the whole picture of Mn-induced toxicity. In this review, we will address recent progress in Mn-induced neurotoxicity from C. elegans to humans, and explore future directions that will help understand the mechanisms of its neurotoxicity. PMID:25893090

  14. Multiple neurotoxic effects of haloperidol resulting in neuronal death.

    PubMed

    Nasrallah, Henry A; Chen, Alexander T

    2017-08-01

    Several published studies have reported an association between antipsychotic medications, especially first-generation agents, and a decline in gray matter volume. This prompted us to review the possible neurotoxic mechanisms of first-generation antipsychotics (FGAs), especially haloperidol, which has been widely used over the past several decades. A PubMed search was conducted using the keywords haloperidol, antipsychotic, neurotoxicity, apoptosis, oxidative stress, and neuroplasticity. No restrictions were placed on the date of the articles or language. Studies with a clearly described methodology were included. Animal, cell culture, and human tissue studies were identified. Thirty reports met the criteria for the search. All studies included haloperidol; a few also included other FGAs (fluphenazine and perphenazine) and/or second-generation agents (SGAs) (aripiprazole, paliperidone, and risperidone). A neurotoxic effect of haloperidol and other FGAs was a common theme across all studies. Minimal (mainly at high doses) or no neurotoxic effects were noted in SGAs. A review of the literature suggests that haloperidol exerts measurable neurotoxic effects at all doses via many molecular mechanisms that lead to neuronal death. A similar effect was observed in 2 other FGAs, but the effect in SGAs was much smaller and occurred mainly at high doses. A stronger binding to serotonin 5HT-2A receptors than to dopamine D2 receptors may have a neuroprotective effect among SGAs. Further studies are warranted to confirm these findings.

  15. Reference compounds for alternative test methods to indicate developmental neurotoxicity (DNT) potential of chemicals: example lists and criteria for their selection and use.

    PubMed

    Aschner, Michael; Ceccatelli, Sandra; Daneshian, Mardas; Fritsche, Ellen; Hasiwa, Nina; Hartung, Thomas; Hogberg, Helena T; Leist, Marcel; Li, Abby; Mundi, William R; Padilla, Stephanie; Piersma, Aldert H; Bal-Price, Anna; Seiler, Andrea; Westerink, Remco H; Zimmer, Bastian; Lein, Pamela J

    2017-01-01

    There is a paucity of information concerning the developmental neurotoxicity (DNT) hazard posed by industrial and environmental chemicals. New testing approaches will most likely be based on batteries of alternative and complementary (non-animal) tests. As DNT is assumed to result from the modulation of fundamental neurodevelopmental processes (such as neuronal differentiation, precursor cell migration or neuronal network formation) by chemicals, the first generation of alternative DNT tests target these processes. The advantage of such types of assays is that they capture toxicants with multiple targets and modes-of-action. Moreover, the processes modelled by the assays can be linked to toxicity endophenotypes, i.e., alterations in neural connectivity that form the basis for neurofunctional deficits in man. The authors of this review convened in a workshop to define criteria for the selection of positive/negative controls, to prepare recommendations on their use, and to initiate the setup of a directory of reference chemicals. For initial technical optimization of tests, a set of > 50 endpoint-specific control compounds was identified. For further test development, an additional "test" set of 33 chemicals considered to act directly as bona fide DNT toxicants is proposed, and each chemical is annotated to the extent it fulfills these criteria. A tabular compilation of the original literature used to select the test set chemicals provides information on statistical procedures, and toxic/non-toxic doses (both for pups and dams). Suggestions are provided on how to use the > 100 compounds (including negative controls) compiled here to address specificity, adversity and use of alternative test systems.

  16. Reference compounds for alternative test methods to indicate developmental neurotoxicity (DNT) potential of chemicals: example lists and criteria for their selection and use

    PubMed Central

    Aschner, Michael; Ceccatelli, Sandra; Daneshian, Mardas; Fritsche, Ellen; Hasiwa, Nina; Hartung, Thomas; Hogberg, Helena T.; Leist, Marcel; Li, Abby; Mundy, William R.; Padilla, Stephanie; Piersma, Aldert H.; Bal-Price, Anna; Seiler, Andrea; Westerink, Remco H.; Zimmer, Bastian; Lein, Pamela J.

    2016-01-01

    Summary There is a paucity of information concerning the developmental neurotoxicity (DNT) hazard posed by industrial and environmental chemicals. New testing approaches will most likely be based on batteries of alternative and complementary (non-animal) tests. As DNT is assumed to result from the modulation of fundamental neurodevelopmental processes (such as neuronal differentiation, precursor cell migration or neuronal network formation) by chemicals, the first generation of alternative DNT tests target these processes. The advantage of such types of assays is that they capture toxicants with multiple targets and modes-of-action. Moreover, the processes modelled by the assays can be linked to toxicity endophenotypes, i.e. alterations in neural connectivity that form the basis for neurofunctional deficits in man. The authors of this review convened in a workshop to define criteria for the selection of positive/negative controls, to prepare recommendations on their use, and to initiate the setup of a directory of reference chemicals. For initial technical optimization of tests, a set of >50 endpoint-specific control compounds was identified. For further test development, an additional “test” set of 33 chemicals considered to act directly as bona fide DNT toxicants is proposed, and each chemical is annotated to the extent it fulfills these criteria. A tabular compilation of the original literature used to select the test set chemicals provides information on statistical procedures, and toxic/non-toxic doses (both for pups and dams). Suggestions are provided on how to use the >100 compounds (including negative controls) compiled here to address specificity, adversity and use of alternative test systems. PMID:27452664

  17. An argument for the chicken embryo as a model for the developmental toxicological effects of the polyhalogenated aromatic hydrocarbons (PHAHs)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Henshel, D.S.

    1996-12-31

    This article will present the argument that the chicken embryo is especially appropriate as an animal model for studying the mechanism of the developmental toxicological effects of the polyhalogenated aromatic hydrocarbons (PHAHs). The PHAHs are a group of toxicologically related compounds including, in part, the polychlorinated dibenzodioxins, dibenzofurans and biphenyls. The chicken (Gallus gallus) embryo is relatively sensitive to the toxicological effects of the PHAHs being approximately two orders of magnitude more sensitive than the mature bird. The chicken embryo has been used to demonstrate general toxicological teratogeneicity, hepatotoxicity and neurotoxicity. Many of these effects, or analogous effects, have alsomore » been observed in mammals and fish. Thus, most animals appear to respond to the PHAHs with a similar toxicological profile, indicating that many of the biomarkers used for the PHAHs are valid across a number of species, including the chicken. Furthermore, the chicken embryo is relatively inexpensive to use for toxicity testing. In addition, all effects detected are due to direct effects on the embryo and are not complicated by maternal interactions. In short, for sensitivity, ease of use, cost and applicability of results to other animals, the chicken embryo is an excellent animal model for evaluation of the mechanism underlying the developmental toxicological effects of the PHAHs.« less

  18. Research advances on potential neurotoxicity of quantum dots.

    PubMed

    Wu, Tianshu; Zhang, Ting; Chen, Yilu; Tang, Meng

    2016-03-01

    With rapid development of nanotechnology, quantum dots (QDs) as advanced nanotechnology products have been widely used in biological and biomedical studies, including neuroscience, due to their superior optical properties. In recent years, there has been intense concern regarding the toxicity of QDs with a growing number of studies. However, the knowledge of neurotoxic consequences of QDs applied in living organisms is lagging behind their development, while a potential risk of neurotoxicity arises if mass production of QDs leads to increased exposure and distribution in the nervous system. Owing to the quantum size effect of QDs, they are capable of crossing the blood-brain barrier or moving along neural pathways and entering the brain. Nevertheless, the interactions of QDs with cells and tissues in the central nervous system are not well understood. This review highlighted research advances on the neurotoxicity of QDs in the central nervous system, including oxidative stress injury, elevated cytoplasmic Ca(2+) levels and autophagy to damage in vitro neural cells, and impairments of synaptic transmission and plasticity as well as brain functions in tested animals, with the hope of throwing light on future research directions of QD neurotoxicity, which is a demanding topic that requires further exploration. Copyright © 2015 John Wiley & Sons, Ltd.

  19. Elucidating the neurotoxic effects of MDMA and its analogs.

    PubMed

    Karuppagounder, Senthilkumar S; Bhattacharya, Dwipayan; Ahuja, Manuj; Suppiramaniam, Vishnu; Deruiter, Jack; Clark, Randall; Dhanasekaran, Muralikrishnan

    2014-04-17

    There is a rapid increase in the use of methylenedioxymethamphetamine (MDMA) and its structural congeners/analogs globally. MDMA and MDMA-analogs have been synthesized illegally in furtive dwellings and are abused due to its addictive potential. Furthermore, MDMA and MDMA-analogs have shown to have induced several adverse effects. Hence, understanding the mechanisms mediating this neurotoxic insult of MDMA-analogs is of immense importance for the public health in the world. We synthesized and investigated the neurotoxic effects of MDMA and its analogs [4-methylenedioxyamphetamine (MDA), 2, 6-methylenedioxyamphetamine (MDMA), and N-ethyl-3, 4-methylenedioxyamphetamine (MDEA)]. The stimulatory or the dopaminergic agonist effects of MDMA and MDMA-analogs were elucidated using the established 6-hydroxydopamine lesioned animal model. Additionally, we also investigated the neurotoxic mechanisms of MDMA and MDMA-analogs on mitochondrial complex-I activity and reactive oxygen species generation. MDMA and MDMA-analogs exhibited stimulatory activity as compared to amphetamines and also induced several behavioral changes in the rodents. MDMA and MDMA-analogs enhanced the reactive oxygen generation and inhibited mitochondrial complex-I activity which can lead to neurodegeneration. Hence the mechanism of neurotoxicity, MDMA and MDMA-analogs can enhance the release of monoamines, alter the monoaminergic neurotransmission, and augment oxidative stress and mitochondrial abnormalities leading to neurotoxicity. Thus, our study will help in developing effective pharmacological and therapeutic approaches for the treatment of MDMA and MDMA-analog abuse. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Is Neurotoxicity of Metallic Nanoparticles the Cascades of Oxidative Stress?

    NASA Astrophysics Data System (ADS)

    Song, Bin; Zhang, YanLi; Liu, Jia; Feng, XiaoLi; Zhou, Ting; Shao, LongQuan

    2016-06-01

    With the rapid development of nanotechnology, metallic (metal or metal oxide) nanoparticles (NPs) are widely used in many fields such as cosmetics, the food and building industries, and bio-medical instruments. Widespread applications of metallic NP-based products increase the health risk associated with human exposures. Studies revealed that the brain, a critical organ that consumes substantial amounts of oxygen, is a primary target of metallic NPs once they are absorbed into the body. Oxidative stress (OS), apoptosis, and the inflammatory response are believed to be the main mechanisms underlying the neurotoxicity of metallic NPs. Other studies have disclosed that antioxidant pretreatment or co-treatment can reverse the neurotoxicity of metallic NPs by decreasing the level of reactive oxygen species, up-regulating the activities of antioxidant enzymes, decreasing the proportion of apoptotic cells, and suppressing the inflammatory response. These findings suggest that the neurotoxicity of metallic NPs might involve a cascade of events following NP-induced OS. However, additional research is needed to determine whether NP-induced OS plays a central role in the neurotoxicity of metallic NPs, to develop a comprehensive understanding of the correlations among neurotoxic mechanisms and to improve the bio-safety of metallic NP-based products.

  1. The newly synthesized pool of dopamine determines the severity of methamphetamine-induced neurotoxicity.

    PubMed

    Thomas, David M; Francescutti-Verbeem, Dina M; Kuhn, Donald M

    2008-05-01

    The neurotransmitter dopamine (DA) has long been implicated as a participant in the neurotoxicity caused by methamphetamine (METH), yet, its mechanism of action in this regard is not fully understood. Treatment of mice with the tyrosine hydroxylase (TH) inhibitor alpha-methyl-p-tyrosine (AMPT) lowers striatal cytoplasmic DA content by 55% and completely protects against METH-induced damage to DA nerve terminals. Reserpine, by disrupting vesicle amine storage, depletes striatal DA by more than 95% and accentuates METH-induced neurotoxicity. l-DOPA reverses the protective effect of AMPT against METH and enhances neurotoxicity in animals with intact TH. Inhibition of MAO-A by clorgyline increases pre-synaptic DA content and enhances METH striatal neurotoxicity. In all conditions of altered pre-synaptic DA homeostasis, increases or decreases in METH neurotoxicity paralleled changes in striatal microglial activation. Mice treated with AMPT, l-DOPA, or clorgyline + METH developed hyperthermia to the same extent as animals treated with METH alone, whereas mice treated with reserpine + METH were hypothermic, suggesting that the effects of alterations in cytoplasmic DA on METH neurotoxicity were not strictly mediated by changes in core body temperature. Taken together, the present data reinforce the notion that METH-induced release of DA from the newly synthesized pool of transmitter into the extracellular space plays an essential role in drug-induced striatal neurotoxicity and microglial activation. Subtle alterations in intracellular DA content can lead to significant enhancement of METH neurotoxicity. Our results also suggest that reactants derived from METH-induced oxidation of released DA may serve as neuronal signals that lead to microglial activation early in the neurotoxic process associated with METH.

  2. Multiple mechanisms of PCB neurotoxicity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carpenter, D.O.; Stoner, C.T.; Lawrence, D.A.

    1996-12-31

    Polychlorinated biphenyls (PCBs) have been implicated in cancer, but many of the symptoms in humans exposed to PCBs are related to the nervous system and behavior. We demonstrated three different direct mechanisms whereby PCBs are neurotoxic in rats. By using flow cytometry, we demonstrated that the orthosubstituted PCB congener 2,4,4{prime}, but neither TCDD nor the coplanar PCB congener 3,4,5,3{prime},4{prime}, causes rapid death of cerebellar granule cells. The ortho-substituted congener 2,4,4{prime} reduced long-term potentiation, an indicator of cognitive potential, in hippocampal brain slices, but a similar effect was observed for the coplanar congener 3,4,3{prime},4{prime}, indicating that this effect may be causedmore » by both ortho- and coplanar congeners by mechanisms presumably not mediated via the Ah receptor. It was previously shown that some ortho-substituted PCB congeners cause a reduction in levels of the neurotransmitter dopamine, and we present in vitro and in vivo evidence that this is due to reduction of synthesis of dopamine via inhibition of the enzyme tyrosine hydroxylase. Thus, PCBs have a variety of mechanisms of primary neurotoxicity, and neurotoxicity is a characteristic of ortho-substituted, non-dioxin-like congeners as well as some coplanar congeners. The relative contribution of each of these mechanisms to the loss of cognitive function in humans exposed to PCBs remains to be determined. 42 refs., 3 figs., 1 tab.« less

  3. Children with developmental and behavioural concerns in Singapore.

    PubMed

    Lian, Wee Bin; Ho, Selina Kah Ying; Choo, Sylvia Hean Tean; Shah, Varsha Atul; Chan, Daisy Kwai Lin; Yeo, Cheo Lian; Ho, Lai Yun

    2012-07-01

    Childhood developmental and behavioural disorders (CDABD) have been increasingly recognised in recent years. This study evaluated the profiles and outcomes of children referred for developmental and behavioural concerns to a tertiary child developmental centre in Singapore. This is the first such regional database. Baseline information, obtained through a questionnaire, together with history at first consultation, provided information for referral, demographic and presentation profiles. Clinical formulations were then made. Definitive developmental and medical diagnoses, as well as outcomes based on clinical assessment and standardised testing, were recorded at one year post first consultation. Out of 1,304 referrals between January 1, 2003 and December 1, 2004, 45% were 2-4 years old and 74% were boys. The waiting time from referral to first consultation exceeded four months in 52% of children. Following clinical evaluation, 7% were found to be developmentally appropriate. The single most common presenting concern was speech and language (S&L) delay (29%). The most common clinical developmental diagnosis was autism spectrum disorder (ASD) (30%), followed by isolated S&L disorder, global developmental delay (GDD) and cognitive impairment (CI). Recommendations included S&L therapy (57%), occupational therapy (50%) and psychological/behavioural services (40%). At one year, ASD remained the most common definitive developmental diagnosis (31%), followed by S&L disorder, CI and GDD. Most were children with high-prevalence, low-moderate severity disorders who could potentially achieve fair-good prognosis with early intervention. Better appreciation of the profile and outcome of children with CDABD in Singapore could enable better resource planning for diagnosis and intervention.

  4. Sub-microradian Surface Slope Metrology with the ALS Developmental Long Trace Profiler

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yashchuk, Valeriy V.; Barber, Samuel; Domning, Edward E.

    2009-06-15

    Development of X-ray optics for 3rd and 4th generation X-ray light sources with a level of surface slope precision of 0.1-0.2 {micro}rad requires the development of adequate fabrication technologies and dedicated metrology instrumentation and methods. Currently, the best performance of surface slope measurement has been achieved with the NOM (Nanometer Optical Component Measuring Machine) slope profiler at BESSY (Germany) [1] and the ESAD (Extended Shear Angle Difference) profiler at the PTB (Germany) [2]. Both instruments are based on electronic autocollimators (AC) precisely calibrated for the specific application [3] with small apertures of 2.5-5 mm in diameter. In the present work,more » we describe the design, initial alignment and calibration procedures, the instrumental control and data acquisition system, as well as the measurement performance of the Developmental Long Trace Profiler (DLTP) slope measuring instrument recently brought into operation at the Advanced Light Source (ALS) Optical Metrology Laboratory (OML). Similar to the NOM and ESAD, the DLTP is based on a precisely calibrated autocollimator. However, this is a reasonably low budget instrument used at the ALS OML for the development and testing of new measuring techniques and methods. Some of the developed methods have been implemented into the ALS LTP-II (slope measuring long trace profiler [4]) which was recently upgraded and has demonstrated a capability for 0.25 {micro}rad surface metrology [5]. Performance of the DLTP was verified via a number of measurements with high quality reference mirrors. A comparison with the corresponding results obtained with the world's best slope measuring instrument, the BESSY NOM, proves the accuracy of the DLTP measurements on the level of 0.1-0.2 {micro}rad depending on the curvature of a surface under test. The directions of future work to develop a surface slope measuring profiler with nano-radian performance are also discussed.« less

  5. A peptide disrupting the D2R-DAT interaction protects against dopamine neurotoxicity.

    PubMed

    Su, Ping; Liu, Fang

    2017-09-01

    Dopamine reuptake from extracellular space to cytosol leads to accumulation of dopamine, which triggers neurotoxicity in dopaminergic neurons. Previous studies have shown that both dopamine D2 receptor (D2R) and dopamine transporter (DAT) are involved in dopamine neurotoxicity. However, blockade of either D2R or DAT causes side effects due to antagonism of other physiological functions of these two proteins. We previously found that DAT can form a protein complex with D2R and its cell surface expression is facilitated via D2R-DAT interaction, which regulates dopamine reuptake and intracellular dopamine levels. Here we found that an interfering peptide (DAT-S1) disrupting the D2R-DAT interaction protects neurons against dopamine neurotoxicity, and this effect is mediated by inhibiting DAT cell surface expression and inhibiting both caspase-3 and PARP-1 cleavage. This study demonstrates the role of the D2R-DAT complex in dopamine neurotoxicity and investigated the potential mechanisms, which might help better understand the mechanisms of dopamine neurotoxicity. The peptide may provide some insights to improve treatments for dopamine neurotoxicity and related diseases, such as Parkinson's disease, as well as methamphetamine- and 3,4-methsylenedioxy methamphetamine-induced neurotoxicity. Copyright © 2017. Published by Elsevier Inc.

  6. Potential Role of Epigenetic Mechanism in Manganese Induced Neurotoxicity

    PubMed Central

    Tarale, Prashant; Chakrabarti, Tapan; Sivanesan, Saravanadevi; Naoghare, Pravin; Bafana, Amit; Krishnamurthi, Kannan

    2016-01-01

    Manganese is a vital nutrient and is maintained at an optimal level (2.5–5 mg/day) in human body. Chronic exposure to manganese is associated with neurotoxicity and correlated with the development of various neurological disorders such as Parkinson's disease. Oxidative stress mediated apoptotic cell death has been well established mechanism in manganese induced toxicity. Oxidative stress has a potential to alter the epigenetic mechanism of gene regulation. Epigenetic insight of manganese neurotoxicity in context of its correlation with the development of parkinsonism is poorly understood. Parkinson's disease is characterized by the α-synuclein aggregation in the form of Lewy bodies in neuronal cells. Recent findings illustrate that manganese can cause overexpression of α-synuclein. α-Synuclein acts epigenetically via interaction with histone proteins in regulating apoptosis. α-Synuclein also causes global DNA hypomethylation through sequestration of DNA methyltransferase in cytoplasm. An individual genetic difference may also have an influence on epigenetic susceptibility to manganese neurotoxicity and the development of Parkinson's disease. This review presents the current state of findings in relation to role of epigenetic mechanism in manganese induced neurotoxicity, with a special emphasis on the development of Parkinson's disease. PMID:27314012

  7. Pb Neurotoxicity: Neuropsychological Effects of Lead Toxicity

    PubMed Central

    Mason, Lisa H.; Harp, Jordan P.; Han, Dong Y.

    2014-01-01

    Neurotoxicity is a term used to describe neurophysiological changes caused by exposure to toxic agents. Such exposure can result in neurocognitive symptoms and/or psychiatric disturbances. Common toxic agents include heavy metals, drugs, organophosphates, bacterial, and animal neurotoxins. Among heavy metal exposures, lead exposure is one of the most common exposures that can lead to significant neuropsychological and functional decline in humans. In this review, neurotoxic lead exposure's pathophysiology, etiology, and epidemiology are explored. In addition, commonly associated neuropsychological difficulties in intelligence, memory, executive functioning, attention, processing speed, language, visuospatial skills, motor skills, and affect/mood are explored. PMID:24516855

  8. Developmental Profiles of Eczema, Wheeze, and Rhinitis: Two Population-Based Birth Cohort Studies

    PubMed Central

    2014-01-01

    Background The term “atopic march” has been used to imply a natural progression of a cascade of symptoms from eczema to asthma and rhinitis through childhood. We hypothesize that this expression does not adequately describe the natural history of eczema, wheeze, and rhinitis during childhood. We propose that this paradigm arose from cross-sectional analyses of longitudinal studies, and may reflect a population pattern that may not predominate at the individual level. Methods and Findings Data from 9,801 children in two population-based birth cohorts were used to determine individual profiles of eczema, wheeze, and rhinitis and whether the manifestations of these symptoms followed an atopic march pattern. Children were assessed at ages 1, 3, 5, 8, and 11 y. We used Bayesian machine learning methods to identify distinct latent classes based on individual profiles of eczema, wheeze, and rhinitis. This approach allowed us to identify groups of children with similar patterns of eczema, wheeze, and rhinitis over time. Using a latent disease profile model, the data were best described by eight latent classes: no disease (51.3%), atopic march (3.1%), persistent eczema and wheeze (2.7%), persistent eczema with later-onset rhinitis (4.7%), persistent wheeze with later-onset rhinitis (5.7%), transient wheeze (7.7%), eczema only (15.3%), and rhinitis only (9.6%). When latent variable modelling was carried out separately for the two cohorts, similar results were obtained. Highly concordant patterns of sensitisation were associated with different profiles of eczema, rhinitis, and wheeze. The main limitation of this study was the difference in wording of the questions used to ascertain the presence of eczema, wheeze, and rhinitis in the two cohorts. Conclusions The developmental profiles of eczema, wheeze, and rhinitis are heterogeneous; only a small proportion of children (∼7% of those with symptoms) follow trajectory profiles resembling the atopic march. Please see later

  9. Methamphetamine-induced hyperthermia and dopaminergic neurotoxicity in mice: pharmacological profile of protective and nonprotective agents.

    PubMed

    Albers, D S; Sonsalla, P K

    1995-12-01

    Neurotoxic doses of methamphetamine (METH) can cause hyperthermia in experimental animals. Damage sustained to dopaminergic nerve terminals by this stimulant can be reduced by environmental cooling or by pharmacological manipulation which attenuates the hyperthermia. Many pharmacological agents with very diverse actions protect against METH-induced neuropathology. Several of these compounds, as well as drugs which do not protect, were investigated to determine if there was a relationship between protection and METH-induced hyperthermia. Mice received METH with or without concurrent administration of other drugs and core (i.e., colonic) temperature was monitored during treatment. The animals were sacrificed > or = 5 days later and neostriatal tyrosine hydroxylase activity and dopamine were measured. Core temperature was significantly elevated (> or = 2 degrees C) in mice treated with doses of METH which produced > or = 90% losses in striatal dopamine but not in mice less severally affected (only 50% loss of dopamine). Concurrent treatment of mice with METH and pharmacological agents which protected partially or completely from METH-induced toxicity also prevented the hyperthermic response (i.e., dopamine receptor antagonists, fenfluramine, dizocilpine, alpha-methyl-p-tyrosine, phenytoin, aminooxyacetic acid and propranol). These findings are consistent with the hypothesis that the hyperthermia produced by METH contributes to its neuropathology. However, studies with reserpine, a compound which dramatically lowers core temperature, demonstrated that hyperthermia per se is not a requirement for METH-induced neurotoxicity. Although core temperature was elevated in reserpinized mice treated with METH as compared with reserpinized control mice, their temperatures remained significantly lower than in nonreserpinized control mice. However, the hypothermic state produced in the reserpinized mice did not provide protection from METH-induced toxicity. These data demonstrate

  10. Occupational Neurotoxic Diseases in Taiwan

    PubMed Central

    Liu, Chi-Hung; Huang, Chu-Yun

    2012-01-01

    Occupational neurotoxic diseases have become increasingly common in Taiwan due to industrialization. Over the past 40 years, Taiwan has transformed from an agricultural society to an industrial society. The most common neurotoxic diseases also changed from organophosphate poisoning to heavy metal intoxication, and then to organic solvent and semiconductor agent poisoning. The nervous system is particularly vulnerable to toxic agents because of its high metabolic rate. Neurological manifestations may be transient or permanent, and may range from cognitive dysfunction, cerebellar ataxia, Parkinsonism, sensorimotor neuropathy and autonomic dysfunction to neuromuscular junction disorders. This study attempts to provide a review of the major outbreaks of occupational neurotoxins from 1968 to 2012. A total of 16 occupational neurotoxins, including organophosphates, toxic gases, heavy metals, organic solvents, and other toxic chemicals, were reviewed. Peer-reviewed articles related to the electrophysiology, neuroimaging, treatment and long-term follow up of these neurotoxic diseases were also obtained. The heavy metals involved consisted of lead, manganese, organic tin, mercury, arsenic, and thallium. The organic solvents included n-hexane, toluene, mixed solvents and carbon disulfide. Toxic gases such as carbon monoxide, and hydrogen sulfide were also included, along with toxic chemicals including polychlorinated biphenyls, tetramethylammonium hydroxide, organophosphates, and dimethylamine borane. In addition we attempted to correlate these events to the timeline of industrial development in Taiwan. By researching this topic, the hope is that it may help other developing countries to improve industrial hygiene and promote occupational safety and health care during the process of industrialization. PMID:23251841

  11. Evaluation of Cisplatin Neurotoxicity in Cultured Rat Dorsal Root Ganglia via Cytosolic Calcium Accumulation

    PubMed Central

    Erol, Kevser; Yiğitaslan, Semra; Ünel, Çiğdem; Kaygısız, Bilgin; Yıldırım, Engin

    2016-01-01

    Background: Calcium homeostasis is considered to be important in antineoplastic as well as in neurotoxic adverse effects of cisplatin. Aims: This study aimed to investigate the role of Ca2+ in cisplatin neurotoxicity in cultured rat dorsal root ganglia (DRG) cells. Study Design: Cell culture study. Methods: DRG cells prepared from 1-day old Sprague-Dawley rats were used to determine the role of Ca2+ in the cisplatin (10–600 μM) neurotoxicity. The cells were incubated with cisplatin plus nimodipine (1–3 μM), dizocilpine (MK-801) (1–3 μM) or thapsigargin (100–300 nM). Toxicity of cisplatinon DRG cells was determined by the MTT assay. Results: The neurotoxicity of cisplatin was significant when used in high concentrations (100–600 μM). Nimodipine (1 μM) but not MK-801 or thapsigargin prevented the neurotoxic effects of 200 μM of cisplatin. Conclusion: Voltage-dependent calcium channels may play a role in cisplatin neurotoxicity. PMID:27403382

  12. Metabolism of 2,2′,3,3′,6,6′-Hexachlorobiphenyl (PCB 136) Atropisomers in Tissue Slices from Phenobarbital or Dexamethasone-Induced Rats is Sex-Dependent

    PubMed Central

    Wu, Xianai; Kania-Korwel, Izabela; Chen, Hao; Stamou, Marianna; Dammanahalli, Karigowda J.; Duffel, Michael; Lein, Pamela J.; Lehmler, Hans-Joachim

    2013-01-01

    Chiral polychlorinated biphenyls (PCBs) such as PCB 136 enantioselectively sensitize the ryanodine receptor (RyR). In light of recent evidence that PCBs cause developmental neurotoxicity via RyR-dependent mechanisms, this suggests that enantioselective PCB metabolism may influence the developmental neurotoxicity of chiral PCBs. However, enantioselective disposition of PCBs has not been fully characterized.The effect of sex and cytochrome P450 (P450) enzyme induction on the enantioselective metabolism of PCB 136 was studied using liver tissue slices prepared from naïve control (CTL), phenobarbital (PB; CYP2B inducer) or dexamethasone (DEX; CYP3A inducer) pretreated adult Sprague-Dawley rats. PCB 136 metabolism was also examined in hippocampal slices derived from untreated rat pups.In liver tissue slices, hydroxylated PCB (OH-PCB) profiles depended on sex and inducer pretreatment, and OH-PCB levels followed the rank orders male > female and PB > DEX > CTL. In contrast, the enantiomeric enrichment of PCB 136 and its metabolites was independent of sex and inducer pretreatment. Only small amounts of PCB 136 partitioned into hippocampal tissue slices and no OH-PCB metabolites were detected.Our results suggest that enantioselective metabolism, sex and induction status of P450 enzymes in the liver may modulate the neurotoxic outcomes of developmental exposure to chiral PCBs. PMID:23581876

  13. Number Processing and Heterogeneity of Developmental Dyscalculia: Subtypes With Different Cognitive Profiles and Deficits.

    PubMed

    Skagerlund, Kenny; Träff, Ulf

    2016-01-01

    This study investigated if developmental dyscalculia (DD) in children with different profiles of mathematical deficits has the same or different cognitive origins. The defective approximate number system hypothesis and the access deficit hypothesis were tested using two different groups of children with DD (11-13 years old): a group with arithmetic fact dyscalculia (AFD) and a group with general dyscalculia (GD). Several different aspects of number magnitude processing were assessed in these two groups and compared with age-matched typically achieving children. The GD group displayed weaknesses with both symbolic and nonsymbolic number processing, whereas the AFD group displayed problems only with symbolic number processing. These findings provide evidence that the origins of DD in children with different profiles of mathematical problems diverge. Children with GD have impairment in the innate approximate number system, whereas children with AFD suffer from an access deficit. These findings have implications for researchers' selection procedures when studying dyscalculia, and also for practitioners in the educational setting. © Hammill Institute on Disabilities 2014.

  14. CHANGES IN PROTEOMIC PROFILES OF CEREBELLUM FOLLOWING DEVELOPMENTAL EXPOSURE TO AROCLOR 1254 OR DE-71.

    EPA Science Inventory

    Chronic low level exposure to polychlorinated biphenyls (PCBs) has been shown to adversely affect human health, including learning and memory. Polybromiated diphenyl ethers (PBDEs) are structurally similar to PCBs and have been shown to have neurotoxic effects in vitro and in viv...

  15. The Dynamics of Autism Spectrum Disorders: How Neurotoxic Compounds and Neurotransmitters Interact

    PubMed Central

    Quaak, Ilona; Brouns, Madeleine R.; de Bor, Margot Van

    2013-01-01

    In recent years concern has risen about the increasing prevalence of Autism Spectrum Disorders (ASD). Accumulating evidence shows that exposure to neurotoxic compounds is related to ASD. Neurotransmitters might play a key role, as research has indicated a connection between neurotoxic compounds, neurotransmitters and ASD. In the current review a literature overview with respect to neurotoxic exposure and the effects on neurotransmitter systems is presented. The aim was to identify mechanisms and related factors which together might result in ASD. The literature reported in the current review supports the hypothesis that exposure to neurotoxic compounds can lead to alterations in the GABAergic, glutamatergic, serotonergic and dopaminergic system which have been related to ASD in previous work. However, in several studies findings were reported that are not supportive of this hypothesis. Other factors also might be related, possibly altering the mechanisms at work, such as time and length of exposure as well as dose of the compound. Future research should focus on identifying the pathway through which these factors interact with exposure to neurotoxic compounds making use of human studies. PMID:23924882

  16. Phenotypically anchored transcriptome profiling of developmental exposure to the antimicrobial agent, triclosan, reveals hepatotoxicity in embryonic zebrafish

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haggard, Derik E.

    Triclosan (TCS) is an antimicrobial agent commonly found in a variety of personal care products and cosmetics. TCS readily enters the environment through wastewater and is detected in human plasma, urine, and breast milk due to its widespread use. Studies have implicated TCS as a disruptor of thyroid and estrogen signaling; therefore, research examining the developmental effects of TCS is warranted. In this study, we used embryonic zebrafish to investigate the developmental toxicity and potential mechanism of action of TCS. Embryos were exposed to graded concentrations of TCS from 6 to 120 hours post-fertilization (hpf) and the concentration where 80%more » of the animals had mortality or morbidity at 120 hpf (EC{sub 80}) was calculated. Transcriptomic profiling was conducted on embryos exposed to the EC{sub 80} (7.37 μM). We identified a total of 922 significant differentially expressed transcripts (FDR adjusted P-value ≤ 0.05; fold change ≥ 2). Pathway and gene ontology enrichment analyses identified biological networks and transcriptional hubs involving normal liver functioning, suggesting TCS may be hepatotoxic in zebrafish. Tissue-specific gene enrichment analysis further supported the role of the liver as a target organ for TCS toxicity. We also examined the in vitro bioactivity profile of TCS reported by the ToxCast screening program. TCS had a diverse bioactivity profile and was a hit in 217 of the 385 assay endpoints we identified. We observed similarities in gene expression and hepatic steatosis assays; however, hit data for TCS were more concordant with the hypothesized CAR/PXR activity of TCS from rodent and human in vitro studies. - Highlights: • Triclosan is a common antimicrobial agent with widespread human exposure. • Exposure to the triclosan EC{sub 80} causes robust gene expression changes in zebrafish. • The liver may be a target organ of triclosan toxicity in embryonic zebrafish. • Triclosan disrupts normal liver functioning and

  17. Current research on methamphetamine-induced neurotoxicity: animal models of monoamine disruption.

    PubMed

    Kita, Taizo; Wagner, George C; Nakashima, Toshikatsu

    2003-07-01

    Methamphetamine (METH)-induced neurotoxicity is characterized by a long-lasting depletion of striatal dopamine (DA) and serotonin as well as damage to striatal dopaminergic and serotonergic nerve terminals. Several hypotheses regarding the mechanism underlying METH-induced neurotoxicity have been proposed. In particular, it is thought that endogenous DA in the striatum may play an important role in mediating METH-induced neuronal damage. This hypothesis is based on the observation of free radical formation and oxidative stress produced by auto-oxidation of DA consequent to its displacement from synaptic vesicles to cytoplasm. In addition, METH-induced neurotoxicity may be linked to the glutamate and nitric oxide systems within the striatum. Moreover, using knockout mice lacking the DA transporter, the vesicular monoamine transporter 2, c-fos, or nitric oxide synthetase, it was determined that these factors may be connected in some way to METH-induced neurotoxicity. Finally a role for apoptosis in METH-induced neurotoxicity has also been established including evidence of protection of bcl-2, expression of p53 protein, and terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL), activity of caspase-3. The neuronal damage induced by METH may reflect neurological disorders such as autism and Parkinson's disease.

  18. INTERRELATIONSHIPS OF UNDERNUTRITION AND NEUROTOXICITY: FOOD FOR THOUGHT AND RESEARCH ATTENTION

    PubMed Central

    Spencer, Peter S.; Palmer, Valerie S.

    2012-01-01

    The neurotoxic actions of chemical agents on humans and animals are usually studied with little consideration of the subject’s nutritional status. States of protein-calorie, vitamin and mineral undernutrition are associated with a range of neurodevelopmental, neurological and psychiatric disorders, commonly with involvement of both the central and peripheral nervous system. Undernutrition can modify risk for certain chemical-induced neurologic diseases, and in some cases undernutrition may be a prerequisite for neurotoxicity to surface. In addition, neurologic disease associated with undernutrition or neurotoxicity may show similarities in clinical and neuropathological expression, especially in the peripheral nervous system. The combined effects of undernutrition and chemical neurotoxicity are most relevant to people of low-income who experience chronic hunger, parasitism and infectious disease, monotonous diets of plants with neurotoxic potential (notably cassava), environmental pollution from rapid industrial development, chronic alcohol abuse, and prolonged treatment with certain therapeutic drugs. Undernutrition alone or in combination with chemical exposure is also important in high-income societies in the setting of drug and alcohol abuse, old age, food faddism, post-bariatric surgery, and drug treatment for certain medical conditions, including cancer and tuberculosis. The nutritional demands of pregnancy and lactation increases the risk of fetal and infant undernutrition and chemical interactions therewith. PMID:22394483

  19. Cyclooxygenase-2 is an obligatory factor in methamphetamine-induced neurotoxicity.

    PubMed

    Thomas, David M; Kuhn, Donald M

    2005-05-01

    Methamphetamine causes persistent damage to dopamine nerve endings of the striatum. The mechanisms underlying its neurotoxicity are not fully understood, but considerable evidence points to oxidative stress as a probable mechanism. A recent microarray analysis of gene expression changes caused by methamphetamine revealed that cyclooxygenase-2 (COX-2) was induced along with its transcription factor CCAAT/enhancer-binding protein (Thomas DM, Francescutti-Verbeem DM, Liu X, and Kuhn DM, 2004). We report presently that methamphetamine increases striatal expression of COX-2 protein. Cyclooxygenase-1 (COX-1) expression was not changed. Mice bearing a null mutation of the gene for COX-2 were resistant to methamphetamine-induced neurotoxicity. COX-1 knockouts, like wild-type mice, showed extensive dopamine nerve terminal damage. Selective inhibitors of COX-1 [5-(4-chlorophenyl)-1-(4-methoxyphenyl)-3-trifluoromethyl pyrazole (SC-560)], COX-2 [N-[2-(cyclohexyloxy)-4-nitrophenyl] methanesulfonamide (NS-398), rofecoxib], or COX-3 (antipyrine) or a nonselective inhibitor of the COX-1/2 isoforms (ketoprofen) did not protect mice from neurotoxicity. Finally, methamphetamine did not change striatal prostaglandin E(2) content. Taken together, these data suggest that COX-2 is an obligatory factor in methamphetamine-induced neurotoxicity. The functional aspect of COX-2 that contributes to drug-induced neurotoxicity does not appear to be its prostaglandin synthetic capacity. Instead, the peroxidase activity associated with COX-2, which can lead to the formation of reactive oxygen species and dopamine quinones, can account for its role.

  20. Social Inclusion of Adults with Developmental Disabilities.

    ERIC Educational Resources Information Center

    Gaylord, Vicki, Ed.

    1997-01-01

    This feature issue presents articles on the social inclusion of people with developmental disabilities into the community and also some related news items. This issue provides profiles of organizations, workplaces, and schools that are successfully integrating people with developmental disabilities into community activities. The articles are:…

  1. The Effects of IGF-1 on Trk Expressing DRG Neurons with HIV-gp120- Induced Neurotoxicity.

    PubMed

    Li, Hao; Liu, Zhen; Chi, Heng; Bi, Yanwen; Song, Lijun; Liu, Huaxiang

    2016-01-01

    HIV envelope glycoprotein gp120 is the main protein that causes HIVassociated sensory neuropathy. However, the underlying mechanisms of gp120-induced neurotoxicity are still unclear. There are lack effective treatments for relieving HIV-related neuropathic symptoms caused by gp120-induced neurotoxicity. In the present study, tyrosine kinase receptor (Trk)A, TrkB, and TrkC expression in primary cultured dorsal root ganglion (DRG) neurons with gp120-induced neurotoxicity was investigated. The effects of IGF-1 on distinct Trk-positive DRG neurons with gp120-induced neurotoxicity were also determined. The results showed that gp120 not only dose-dependently induced DRG neuronal apoptosis and inhibited neuronal survival and neurite outgrowth, but also decreased distinct Trk expression levels. IGF-1 rescued DRG neurons from apoptosis and improved neuronal survival of gp120 neurotoxic DRG neurons in vitro. IGF-1 also improved TrkA and TrkB, but not TrkC, expression in gp120 neurotoxic conditions. The effects of IGF-1 could be blocked by preincubation with the phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002. These results suggested that gp120 may have a wide range of neurotoxicity on different subpopulations of DRG neurons, while IGF-1 might only relieve some subpopulations of DRG neurons with gp120-induced neurotoxicity. These data provide novel information of mechanisms of gp120 neurotoxicity on primary sensory neurons and the potential therapeutic effects of IGF-1 on gp120-induced neurotoxicity.

  2. Working Memory in Children with Developmental Disorders

    ERIC Educational Resources Information Center

    Alloway, Tracy Packiam; Rajendran, Gnanathusharan; Archibald, Lisa M. D.

    2009-01-01

    The aim of the present study was to directly compare working memory skills across students with different developmental disorders to investigate whether the uniqueness of their diagnosis would impact memory skills. The authors report findings confirming differential memory profiles on the basis of the following developmental disorders: Specific…

  3. Neurotoxicity of European viperids in Italy: Pavia Poison Control Centre case series 2001-2011.

    PubMed

    Lonati, D; Giampreti, A; Rossetto, O; Petrolini, V M; Vecchio, S; Buscaglia, E; Mazzoleni, M; Chiara, F; Aloise, M; Gentilli, A; Montecucco, C; Coccini, T; Locatelli, C A

    2014-04-01

    Some clinical aspects about neurotoxicity after snakebites by European viper species remain to be elucidated. This observational case series aims to analyze neurological manifestations due to viper envenomation in Italy in order to describe the characteristic of neurotoxicity and to evaluate the clinical response to the antidotic treatment, the outcome, and the influence of individual variability in determining the appearance of neurotoxic effects. All cases of snakebite referred to Pavia Poison Centre (PPC) presenting peripheral neurotoxic effects from 2001 to 2011 were included. Cases were assessed for time from bite to PPC evaluation, Grade Severity Score (GSS), onset/duration of clinical manifestations, severity/time course of local, non-neurological and neurological effects, and antidotic treatment. Twenty-four were included (age, 3-75 years) and represented on average of 2.2 cases/year (about 5% of total envenomed patients). The mean interval time of PPC evaluation from snakebite was 10.80 ± 19.93 hours. GSS at ED-admission was 0 (1 case), 1 (10 cases), and 2 (13 cases). All patients showed local signs: 41.6%, minor; 58.4%, extensive swelling and necrosis. The main systemic non-neurological effects were as follows: vomiting (86.7%), diarrhea (66.7%), abdominal discomfort (53.3%), and hypotension (20%). Neurotoxic effects were accommodation troubles and diplopia (100%), ptosis (91.7%), ophtalmoplegia (58.3%), dysphagia (20.8%), drowsiness (16.6%), cranial muscle weakness (12.5%), and dyspnea (4.2%). Neurotoxicity was the unique systemic manifestation in 9 cases; in 4 cases, they were associated with only mild local swelling. In 10 patients the onset of neurotoxic effects followed the resolution of systemic non-neurological effects. Antidote was intravenously administered in 19 (79.2%) patients. The mean duration of manifestations in untreated versus treated groups was 53.5 ± 62.91 versus 41.75 ± 21.18 hours (p = 0.68, local effects) and 9.77 ± 3.29 versus

  4. Postnatal developmental changes in activation profiles of the respiratory neuronal network in the rat ventral medulla

    PubMed Central

    Oku, Yoshitaka; Masumiya, Haruko; Okada, Yasumasa

    2007-01-01

    Two putative respiratory rhythm generators (RRGs), the para-facial respiratory group (pFRG) and the pre-Bötzinger complex (preBötC), have been identified in the neonatal rodent brainstem. To elucidate their functional roles during the neonatal period, we evaluated developmental changes of these RRGs by optical imaging using a voltage-sensitive dye. Optical signals, recorded from the ventral medulla of brainstem–spinal cord preparations of neonatal (P0–P4) rats (n = 44), were analysed by a cross correlation method. With development during the first few postnatal days, the respiratory-related activity in the pFRG reduced and shifted from a preinspiratory (P0–P1) to an inspiratory (P2–P4) pattern, whereas preBötC activity remained unchanged. The μ-opioid agonist [d-Ala(2),N-Me-Phe(4),Gly(5)-ol]-enkephalin (DAMGO) augmented preinspiratory activity in the pFRG, while the μ-opioid antagonist naloxone induced changes in spatiotemporal activation profiles that closely mimicked the developmental changes. These results are consistent with the recently proposed hypothesis by Janczewski and Feldman that the pFRG is activated to compensate for the depression of the preBötC by perinatal opiate surge. We conclude that significant reorganization of the respiratory neuronal network, characterized by a reduction of preinspiratory activity in the pFRG, occurs at P1–P2 in rats. The changes in spatiotemporal activation profiles of the pFRG neurones may reflect changes in the mode of coupling of the two respiratory rhythm generators. PMID:17884928

  5. Translational Biomarkers of Neurotoxicity: A Health and Environmental Sciences Institute Perspective on The Way Forward

    EPA Science Inventory

    Neurotoxicity has been linked to a number of common drugs and chemicals, yet efficient and accurate methods to detect it are lacking. There is a need for more sensitive and specific biomarkers of neurotoxicity that can help diagnose and predict neurotoxicity that are relevant acr...

  6. Economic benefits of methylmercury exposure control in Europe: Monetary value of neurotoxicity prevention

    PubMed Central

    2013-01-01

    Background Due to global mercury pollution and the adverse health effects of prenatal exposure to methylmercury (MeHg), an assessment of the economic benefits of prevented developmental neurotoxicity is necessary for any cost-benefit analysis. Methods Distributions of hair-Hg concentrations among women of reproductive age were obtained from the DEMOCOPHES project (1,875 subjects in 17 countries) and literature data (6,820 subjects from 8 countries). The exposures were assumed to comply with log-normal distributions. Neurotoxicity effects were estimated from a linear dose-response function with a slope of 0.465 Intelligence Quotient (IQ) point reduction per μg/g increase in the maternal hair-Hg concentration during pregnancy, assuming no deficits below a hair-Hg limit of 0.58 μg/g thought to be safe. A logarithmic IQ response was used in sensitivity analyses. The estimated IQ benefit cost was based on lifetime income, adjusted for purchasing power parity. Results The hair-mercury concentrations were the highest in Southern Europe and lowest in Eastern Europe. The results suggest that, within the EU, more than 1.8 million children are born every year with MeHg exposures above the limit of 0.58 μg/g, and about 200,000 births exceed a higher limit of 2.5 μg/g proposed by the World Health Organization (WHO). The total annual benefits of exposure prevention within the EU were estimated at more than 600,000 IQ points per year, corresponding to a total economic benefit between €8,000 million and €9,000 million per year. About four-fold higher values were obtained when using the logarithmic response function, while adjustment for productivity resulted in slightly lower total benefits. These calculations do not include the less tangible advantages of protecting brain development against neurotoxicity or any other adverse effects. Conclusions These estimates document that efforts to combat mercury pollution and to reduce MeHg exposures will have very substantial

  7. Economic benefits of methylmercury exposure control in Europe: monetary value of neurotoxicity prevention.

    PubMed

    Bellanger, Martine; Pichery, Céline; Aerts, Dominique; Berglund, Marika; Castaño, Argelia; Cejchanová, Mája; Crettaz, Pierre; Davidson, Fred; Esteban, Marta; Fischer, Marc E; Gurzau, Anca Elena; Halzlova, Katarina; Katsonouri, Andromachi; Knudsen, Lisbeth E; Kolossa-Gehring, Marike; Koppen, Gudrun; Ligocka, Danuta; Miklavčič, Ana; Reis, M Fátima; Rudnai, Peter; Tratnik, Janja Snoj; Weihe, Pál; Budtz-Jørgensen, Esben; Grandjean, Philippe

    2013-01-07

    Due to global mercury pollution and the adverse health effects of prenatal exposure to methylmercury (MeHg), an assessment of the economic benefits of prevented developmental neurotoxicity is necessary for any cost-benefit analysis. Distributions of hair-Hg concentrations among women of reproductive age were obtained from the DEMOCOPHES project (1,875 subjects in 17 countries) and literature data (6,820 subjects from 8 countries). The exposures were assumed to comply with log-normal distributions. Neurotoxicity effects were estimated from a linear dose-response function with a slope of 0.465 Intelligence Quotient (IQ) point reduction per μg/g increase in the maternal hair-Hg concentration during pregnancy, assuming no deficits below a hair-Hg limit of 0.58 μg/g thought to be safe. A logarithmic IQ response was used in sensitivity analyses. The estimated IQ benefit cost was based on lifetime income, adjusted for purchasing power parity. The hair-mercury concentrations were the highest in Southern Europe and lowest in Eastern Europe. The results suggest that, within the EU, more than 1.8 million children are born every year with MeHg exposures above the limit of 0.58 μg/g, and about 200,000 births exceed a higher limit of 2.5 μg/g proposed by the World Health Organization (WHO). The total annual benefits of exposure prevention within the EU were estimated at more than 600,000 IQ points per year, corresponding to a total economic benefit between €8,000 million and €9,000 million per year. About four-fold higher values were obtained when using the logarithmic response function, while adjustment for productivity resulted in slightly lower total benefits. These calculations do not include the less tangible advantages of protecting brain development against neurotoxicity or any other adverse effects. These estimates document that efforts to combat mercury pollution and to reduce MeHg exposures will have very substantial economic benefits in Europe, mainly in

  8. Rearing Conditions Differentially Affect the Locomotor Behavior of Larval Zebrafish, but not Their Response to Valproate-Induced Developmental Neurotoxicity*

    EPA Science Inventory

    Zebrafish (Danio rerio) are widely used in developmental research, but still not much is known about the role of the environment in their development. Zebrafish are a highly social organism; thus exposure to, or isolation from, social environments may have profound developmental ...

  9. Neurotoxicity of Synthetic Cannabinoids JWH-081 and JWH-210

    PubMed Central

    Cha, Hye Jin; Seong, Yeon-Hee; Song, Min-Ji; Jeong, Ho-Sang; Shin, Jisoon; Yun, Jaesuk; Han, Kyoungmoon; Kim, Young-Hoon; Kang, Hoil; Kim, Hyoung Soo

    2015-01-01

    Synthetic cannabinoids JWH-018 and JWH-250 in ‘herbal incense’ also called ‘spice’ were first introduced in many countries. Numerous synthetic cannabinoids with similar chemical structures emerged simultaneously and suddenly. Currently there are not sufficient data on their adverse effects including neurotoxicity. There are only anecdotal reports that suggest their toxicity. In the present study, we evaluated the neurotoxicity of two synthetic cannabinoids (JWH-081 and JWH-210) through observation of various behavioral changes and analysis of histopathological changes using experimental mice with various doses (0.1, 1, 5 mg/kg). In functional observation battery (FOB) test, animals treated with 5 mg/kg of JWH-081 or JWH-210 showed traction and tremor. Their locomotor activities and rotarod retention time were significantly (p<0.05) decreased. However, no significant change was observed in learning or memory function. In histopathological analysis, neural cells of the animals treated with the high dose (5 mg/kg) of JWH-081 or JWH-210 showed distorted nuclei and nucleus membranes in the core shell of nucleus accumbens, suggesting neurotoxicity. Our results suggest that JWH-081 and JWH-210 may be neurotoxic substances through changing neuronal cell damages, especially in the core shell part of nucleus accumbens. To confirm our findings, further studies are needed in the future. PMID:26535086

  10. MANAGING EXPOSURES TO NEUROTOXIC AIR POLLUTANTS.

    EPA Science Inventory

    Researchers at EPA's National Health and Environmental Effects Research Laboratory are developing a biologically-based dose-response model to describe the neurotoxic effects of exposure to volatile organic compounds (VOCs). The model is being developed to improve risk assessment...

  11. NEUROTOXICITY OF TETRACHLOROETHYLENE (PERCHLOROETHYLENE): DISCUSSION PAPER

    EPA Science Inventory

    This paper is a background document for a meeting of neurotoxicity experts to discuss the central nervous system effects of exposure to perchloroethylene (perc). The document reviews the literature on neurological testing of people exposed to perc occupationally in dry cleanin...

  12. Reversible metronidazole-induced neurotoxicity after 10 weeks of therapy.

    PubMed

    AlDhaleei, Wafa; AlMarzooqi, Ayesha; Gaber, Nouran

    2018-04-20

    Metronidazole is a commonly used antimicrobial worldwide. The most common side effects that have been reported are nausea, vomiting and hypersensitivity reactions. However, neurotoxicity has been reported with the use of metronidazole but rather rare. The most common neurological manifestation is peripheral neuropathy involvement in the form of sensory loss. It is worth mentioning that central neurotoxicity is a rare side effect of metronidazole use but reversible. The manifestations vary from a headache, altered mental status to focal neurological deficits. The diagnosis is mainly by neuroimaging in the setting of acute neurological change in the patient status. Here, we report a case of metronidazole-induced neurotoxicity in a 38-year-old male patient who was admitted with a brain abscess and was started on metronidazole for more than 10 weeks. © BMJ Publishing Group Ltd (unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  13. The relationship between the chemical structure and neurotoxicity of alkyl organophosphorus compounds

    PubMed Central

    Davies, D. R.; Holland, P.; Rumens, M. J.

    1960-01-01

    Thirty-six alkyl organophosphorus compounds have been tested for neurotoxicity in the chicken. The individual compounds were chosen to enable the importance of each portion of the molecule to be assessed in relation to the property of neurotoxicity. Seventeen substances were found to be neurotoxic, fifteen for the first time. All of these contained fluorine. On the basis of the results reported, certain predictions have been made about the chemical structure of compounds which would be expected to be neurotoxic. The importance of fluorine suggests that it plays a direct role in the development of the biochemical lesion, and this may occur as the result of its being carried by the molecule as a whole to specific areas in the nervous system. By the action of cholinesterase, the P-F bond may be ruptured and ionic fluorine liberated where it blocks some metabolic cycle. PMID:13814387

  14. Severe Dopaminergic Neurotoxicity in Primates After a Common Recreational Dose Regimen of MDMA (``Ecstasy'')

    NASA Astrophysics Data System (ADS)

    Ricaurte, George A.; Yuan, Jie; Hatzidimitriou, George; Cord, Branden J.; McCann, Una D.

    2002-09-01

    The prevailing view is that the popular recreational drug (+/-)3,4-methylenedioxymethamphetamine (MDMA, or ``ecstasy'') is a selective serotonin neurotoxin in animals and possibly in humans. Nonhuman primates exposed to several sequential doses of MDMA, a regimen modeled after one used by humans, developed severe brain dopaminergic neurotoxicity, in addition to less pronounced serotonergic neurotoxicity. MDMA neurotoxicity was associated with increased vulnerability to motor dysfunction secondary to dopamine depletion. These results have implications for mechanisms of MDMA neurotoxicity and suggest that recreational MDMA users may unwittingly be putting themselves at risk, either as young adults or later in life, for developing neuropsychiatric disorders related to brain dopamine and/or serotonin deficiency.

  15. A Role for D1 Dopamine Receptors in Striatal Methamphetamine-Induced Neurotoxicity

    PubMed Central

    Friend, Danielle M.; Keefe, Kristen A.

    2015-01-01

    Methamphetamine (METH) exposure results in long-term damage to the dopamine system in both human METH abusers and animal models. One factor that has been heavily implicated in this METH-induced damage to the dopaminergic system is the activation of D1 Dopamine (DA) receptors. However, a significant caveat to the studies investigating the role of the receptor in such toxicity is that genetic and pharmacological manipulations of the D1 DA receptor also mitigate METH-induced hyperthermia. Importantly, METH-induced hyperthermia is tightly associated with the neurotoxicity, such that simply cooling animals during METH exposure protects against the neurotoxicity. Therefore, it is difficult to determine whether D1 DA receptors per se play an important role in METH-induced neurotoxicity or whether the protection observed simply resulted from a mitigation of METH-induced hyperthermia. To answer this important question, the current study infused a D1 DA receptor antagonist into striatum during METH exposure while controlling for METH-induced hyperthermia. Here we found that even when METH-induced hyperthermia is maintained, the coadministration of a D1 DA receptor antagonist protects against METH-induced neurotoxicity, strongly suggesting that D1 DA receptors play an important role in METH-induced neurotoxicity apart from the mitigation of METH-induced hyperthermia. PMID:23994061

  16. Biochemical and transcriptomic analyses reveal different metabolite biosynthesis profiles among three color and developmental stages in 'Anji Baicha' (Camellia sinensis).

    PubMed

    Li, Chun-Fang; Xu, Yan-Xia; Ma, Jian-Qiang; Jin, Ji-Qiang; Huang, Dan-Juan; Yao, Ming-Zhe; Ma, Chun-Lei; Chen, Liang

    2016-09-08

    The new shoots of the albino tea cultivar 'Anji Baicha' are yellow or white at low temperatures and turn green as the environmental temperatures increase during the early spring. 'Anji Baicha' metabolite profiles exhibit considerable variability over three color and developmental stages, especially regarding the carotenoid, chlorophyll, and theanine concentrations. Previous studies focused on physiological characteristics, gene expression differences, and variations in metabolite abundances in albino tea plant leaves at specific growth stages. However, the molecular mechanisms regulating metabolite biosynthesis in various color and developmental stages in albino tea leaves have not been fully characterized. We used RNA-sequencing to analyze 'Anji Baicha' leaves at the yellow-green, albescent, and re-greening stages. The leaf transcriptomes differed considerably among the three stages. Functional classifications based on Gene Ontology enrichment and Kyoto Encyclopedia of Genes and Genomes enrichment analyses revealed that differentially expressed unigenes were mainly related to metabolic pathways, biosynthesis of secondary metabolites, phenylpropanoid biosynthesis, and carbon fixation in photosynthetic organisms. Chemical analyses revealed higher β-carotene and theanine levels, but lower chlorophyll a levels, in the albescent stage than in the green stage. Furthermore, unigenes involved in carotenoid, chlorophyll, and theanine biosyntheses were identified, and the expression patterns of the differentially expressed unigenes in these biosynthesis pathways were characterized. Through co-expression analyses, we identified the key genes in these pathways. These genes may be responsible for the metabolite biosynthesis differences among the different leaf color and developmental stages of 'Anji Baicha' tea plants. Our study presents the results of transcriptomic and biochemical analyses of 'Anji Baicha' tea plants at various stages. The distinct transcriptome profiles

  17. Is There a Critical Period for the Developmental Neurotoxicity of Low-Level Tobacco Smoke Exposure?

    PubMed

    Slotkin, Theodore A; Stadler, Ashley; Skavicus, Samantha; Card, Jennifer; Ruff, Jonathan; Levin, Edward D; Seidler, Frederic J

    2017-01-01

    Secondhand tobacco smoke exposure in pregnancy increases the risk of neurodevelopmental disorders. We evaluated in rats whether there is a critical period during which tobacco smoke extract (TSE) affects the development of acetylcholine and serotonin systems, prominent targets for adverse effects of nicotine and tobacco smoke. We simulated secondhand smoke exposure by administering TSE so as to produce nicotine concentrations one-tenth those in active smoking, with 3 distinct, 10-day windows: premating, early gestation or late gestation. We conducted longitudinal evaluations in multiple brain regions, starting in early adolescence (postnatal day 30) and continued to full adulthood (day 150). TSE exposure in any of the 3 windows impaired presynaptic cholinergic activity, exacerbated by a decrement in nicotinic cholinergic receptor concentrations. Although the adverse effects were seen for all 3 treatment windows, there was a distinct progression, with lowest sensitivity for premating exposure and higher sensitivity for gestational exposures. Serotonin receptors were also reduced by TSE exposure with the same profile: little effect with premating exposure, intermediate effect with early gestational exposure and large effect with late gestational exposure. As serotonergic circuits can offset the neurobehavioral impact of cholinergic deficits, these receptor changes were maladaptive. Thus, there is no single 'critical period' for effects of low-level tobacco smoke but there is differential sensitivity dependent upon the developmental stage at the time of exposure. Our findings reinforce the need to avoid secondhand smoke exposure not only during pregnancy, but also in the period prior to conception, or generally for women of childbearing age. © The Author 2016. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  18. Dysregulation of major functional genes in frontal cortex by maternal exposure to carbon black nanoparticle is not ameliorated by ascorbic acid pretreatment.

    PubMed

    Onoda, Atsuto; Takeda, Ken; Umezawa, Masakazu

    2018-09-01

    Recent cohort studies have revealed that perinatal exposure to particulate air pollution, including carbon-based nanoparticles, increases the risk of brain disorders. Although developmental neurotoxicity is currently a major issue in the toxicology of nanoparticles, critical information for understanding the mechanisms underlying the developmental neurotoxicity of airway exposure to carbon black nanoparticle (CB-NP) is still lacking. In order to investigate these mechanisms, we comprehensively analyzed fluctuations in the gene expression profile of the frontal cortex of offspring mice exposed maternally to CB-NP, using microarray analysis combined with Gene Ontology information. We also analyzed differences in the enriched function of genes dysregulated by maternal CB-NP exposure with and without ascorbic acid pretreatment to refine specific alterations in gene expression induced by CB-NP. Total of 652 and 775 genes were dysregulated by CB-NP in the frontal cortex of 6- and 12-week-old offspring mice, respectively. Among the genes dysregulated by CB-NP, those related to extracellular matrix structural constituent, cellular response to interferon-beta, muscle organ development, and cysteine-type endopeptidase inhibitor activity were ameliorated by ascorbic acid pretreatment. A large proportion of the dysregulated genes, categorized in hemostasis, growth factor, chemotaxis, cell proliferation, blood vessel, and dopaminergic neurotransmission, were, however, not ameliorated by ascorbic acid pretreatment. The lack of effects of ascorbic acid on the dysregulation of genes following maternal CB-NP exposure suggests that the contribution of oxidative stress to the effects of CB-NP on these biological functions, i.e., cell migration and proliferation, blood vessel maintenance, and dopaminergic neuron system, may be limited. At least, ascorbic acid pretreatment is hardly likely to be able to protect the brain of offspring from developmental neurotoxicity of CB-NP. The

  19. Integrative analysis of genes and miRNA alterations in human embryonic stem cells-derived neural cells after exposure to silver nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oh, Jung-Hwa; Department of human and environmental toxicology, University of Science & Technology, Daejeon 34113; Son, Mi-Young

    Given the rapid growth of engineered and customer products made of silver nanoparticles (Ag NPs), understanding their biological and toxicological effects on humans is critically important. The molecular developmental neurotoxic effects associated with exposure to Ag NPs were analyzed at the physiological and molecular levels, using an alternative cell model: human embryonic stem cell (hESC)-derived neural stem/progenitor cells (NPCs). In this study, the cytotoxic effects of Ag NPs (10–200 μg/ml) were examined in these hESC-derived NPCs, which have a capacity for neurogenesis in vitro, at 6 and 24 h. The results showed that Ag NPs evoked significant toxicity in hESC-derivedmore » NPCs at 24 h in a dose-dependent manner. In addition, Ag NPs induced cell cycle arrest and apoptosis following a significant increase in oxidative stress in these cells. To further clarify the molecular mechanisms of the toxicological effects of Ag NPs at the transcriptional and post-transcriptional levels, the global expression profiles of genes and miRNAs were analyzed in hESC-derived NPCs after Ag NP exposure. The results showed that Ag NPs induced oxidative stress and dysfunctional neurogenesis at the molecular level in hESC-derived NPCs. Based on this hESC-derived neural cell model, these findings have increased our understanding of the molecular events underlying developmental neurotoxicity induced by Ag NPs in humans. - Highlights: • This system served as a suitable model for developmental neurotoxicity testing. • Ag NPs induce the apoptosis in human neural cells by ROS generation. • Genes for development of neurons were dysregulated in response to Ag NPs. • Molecular events during early developmental neurotoxicity were proposed.« less

  20. Developmental long trace profiler using optimally aligned mirror based pentaprism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barber, Samuel K; Morrison, Gregory Y.; Yashchuk, Valeriy V.

    2010-07-21

    A low-budget surface slope measuring instrument, the Developmental Long Trace Profiler (DLTP), was recently brought into operation at the Advanced Light Source Optical Metrology Laboratory [Nucl. Instr. and Meth. A 616, 212-223 (2010)]. The instrument is based on a precisely calibrated autocollimator and a movable pentaprism. The capability of the DLTP to achieve sub-microradian surface slope metrology has been verified via cross-comparison measurements with other high-performance slope measuring instruments when measuring the same high-quality test optics. In the present work, a further improvement of the DLTP is achieved by replacing the existing bulk pentaprism with a specially designed mirror basedmore » pentaprism. A mirror based pentaprism offers the possibility to eliminate systematic errors introduced by inhomogeneity of the optical material and fabrication imperfections of a bulk pentaprism. We provide the details of the mirror based pentaprism design and describe an original experimental procedure for precision mutual alignment of the mirrors. The algorithm of the alignment procedure and its efficiency are verified with rigorous ray tracing simulations. Results of measurements of a spherically curved test mirror and a flat test mirror using the original bulk pentaprism are compared with measurements using the new mirror based pentaprism, demonstrating the improved performance.« less

  1. Understanding developmental and adaptive cues in pine through metabolite profiling and co-expression network analysis

    PubMed Central

    Cañas, Rafael A.; Canales, Javier; Muñoz-Hernández, Carmen; Granados, Jose M.; Ávila, Concepción; García-Martín, María L.; Cánovas, Francisco M.

    2015-01-01

    Conifers include long-lived evergreen trees of great economic and ecological importance, including pines and spruces. During their long lives conifers must respond to seasonal environmental changes, adapt to unpredictable environmental stresses, and co-ordinate their adaptive adjustments with internal developmental programmes. To gain insights into these responses, we examined metabolite and transcriptomic profiles of needles from naturally growing 25-year-old maritime pine (Pinus pinaster L. Aiton) trees over a year. The effect of environmental parameters such as temperature and rain on needle development were studied. Our results show that seasonal changes in the metabolite profiles were mainly affected by the needles’ age and acclimation for winter, but changes in transcript profiles were mainly dependent on climatic factors. The relative abundance of most transcripts correlated well with temperature, particularly for genes involved in photosynthesis or winter acclimation. Gene network analysis revealed relationships between 14 co-expressed gene modules and development and adaptation to environmental stimuli. Novel Myb transcription factors were identified as candidate regulators during needle development. Our systems-based analysis provides integrated data of the seasonal regulation of maritime pine growth, opening new perspectives for understanding the complex regulatory mechanisms underlying conifers’ adaptive responses. Taken together, our results suggest that the environment regulates the transcriptome for fine tuning of the metabolome during development. PMID:25873654

  2. Characterization of neural development in zebrafish embryos using real-time quantitative PCR.

    EPA Science Inventory

    Chemicals adversely affecting the developing nervous system may cause long-term consequences on human health. Little information exists on a large number of environmental compounds to guide developmental neurotoxicity risk assessments. Because developmental neurotoxicity studies ...

  3. MDMA, serotonergic neurotoxicity, and the diverse functional deficits of recreational 'Ecstasy' users.

    PubMed

    Parrott, Andrew C

    2013-09-01

    Serotonergic neurotoxicity following MDMA is well-established in laboratory animals, and neuroimaging studies have found lower serotonin transporter (SERT) binding in abstinent Ecstasy/MDMA users. Serotonin is a modulator for many different psychobiological functions, and this review will summarize the evidence for equivalent functional deficits in recreational users. Declarative memory, prospective memory, and higher cognitive skills are often impaired. Neurocognitive deficits are associated with reduced SERT in the hippocampus, parietal cortex, and prefrontal cortex. EEG and ERP studies have shown localised reductions in brain activity during neurocognitive performance. Deficits in sleep, mood, vision, pain, psychomotor skill, tremor, neurohormonal activity, and psychiatric status, have also been demonstrated. The children of mothers who take Ecstasy/MDMA during pregnancy have developmental problems. These psychobiological deficits are wide-ranging, and occur in functions known to be modulated by serotonin. They are often related to lifetime dosage, with light users showing slight changes, and heavy users displaying more pronounced problems. In summary, abstinent Ecstasy/MDMA users can show deficits in a wide range of biobehavioral functions with a serotonergic component. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Manganese-Induced Neurotoxicity and Alterations in Gene Expression in Human Neuroblastoma SH-SY5Y Cells.

    PubMed

    Gandhi, Deepa; Sivanesan, Saravanadevi; Kannan, Krishnamurthi

    2018-06-01

    Manganese (Mn) is an essential trace element required for many physiological functions including proper biochemical and cellular functioning of the central nervous system (CNS). However, exposure to excess level of Mn through occupational settings or from environmental sources has been associated with neurotoxicity. The cellular and molecular mechanism of Mn-induced neurotoxicity remains unclear. In the current study, we investigated the effects of 30-day exposure to a sub-lethal concentration of Mn (100 μM) in human neuroblastoma cells (SH-SY5Y) using transcriptomic approach. Microarray analysis revealed differential expression of 1057 transcripts in Mn-exposed SH-SY5Y cells as compared to control cells. Gene functional annotation cluster analysis exhibited that the differentially expressed genes were associated with several biological pathways. Specifically, genes involved in neuronal pathways including neuron differentiation and development, regulation of neurogenesis, synaptic transmission, and neuronal cell death (apoptosis) were found to be significantly altered. KEGG pathway analysis showed upregulation of p53 signaling pathways and neuroactive ligand-receptor interaction pathways, and downregulation of neurotrophin signaling pathway. On the basis of the gene expression profile, possible molecular mechanisms underlying Mn-induced neuronal toxicity were predicted.

  5. Gene Expression Profiles of Chlamydophila pneumoniae during the Developmental Cycle and Iron Depletion–Mediated Persistence

    PubMed Central

    Mäurer, André P; Mehlitz, Adrian; Mollenkopf, Hans J; Meyer, Thomas F

    2007-01-01

    The obligate intracellular, gram-negative bacterium Chlamydophila pneumoniae (Cpn) has impact as a human pathogen. Little is known about changes in the Cpn transcriptome during its biphasic developmental cycle (the acute infection) and persistence. The latter stage has been linked to chronic diseases. To analyze Cpn CWL029 gene expression, we designed a pathogen-specific oligo microarray and optimized the extraction method for pathogen RNA. Throughout the acute infection, ratio expression profiles for each gene were generated using 48 h post infection as a reference. Based on these profiles, significantly expressed genes were separated into 12 expression clusters using self-organizing map clustering and manual sorting into the “early”, “mid”, “late”, and “tardy” cluster classes. The latter two were differentiated because the “tardy” class showed steadily increasing expression at the end of the cycle. The transcriptome of the Cpn elementary body (EB) and published EB proteomics data were compared to the cluster profile of the acute infection. We found an intriguing association between “late” genes and genes coding for EB proteins, whereas “tardy” genes were mainly associated with genes coding for EB mRNA. It has been published that iron depletion leads to Cpn persistence. We compared the gene expression profiles during iron depletion–mediated persistence with the expression clusters of the acute infection. This led to the finding that establishment of iron depletion–mediated persistence is more likely a mid-cycle arrest in development rather than a completely distinct gene expression pattern. Here, we describe the Cpn transcriptome during the acute infection, differentiating “late” genes, which correlate to EB proteins, and “tardy” genes, which lead to EB mRNA. Expression profiles during iron mediated–persistence led us to propose the hypothesis that the transcriptomic “clock” is arrested during acute mid-cycle. PMID

  6. A role for D1 dopamine receptors in striatal methamphetamine-induced neurotoxicity.

    PubMed

    Friend, Danielle M; Keefe, Kristen A

    2013-10-25

    Methamphetamine (METH) exposure results in long-term damage to the dopamine system in both human METH abusers and animal models. One factor that has been heavily implicated in this METH-induced damage to the dopaminergic system is the activation of D1 dopamine (DA) receptors. However, a significant caveat to the studies investigating the role of the receptor in such toxicity is that genetic and pharmacological manipulations of the D1 DA receptor also mitigate METH-induced hyperthermia. Importantly, METH-induced hyperthermia is tightly associated with the neurotoxicity, such that simply cooling animals during METH exposure protects against the neurotoxicity. Therefore, it is difficult to determine whether D1 DA receptors per se play an important role in METH-induced neurotoxicity or whether the protection observed simply resulted from a mitigation of METH-induced hyperthermia. To answer this important question, the current study infused a D1 DA receptor antagonist into striatum during METH exposure while controlling for METH-induced hyperthermia. Here we found that even when METH-induced hyperthermia is maintained, the coadministration of a D1 DA receptor antagonist protects against METH-induced neurotoxicity, strongly suggesting that D1 DA receptors play an important role in METH-induced neurotoxicity apart from the mitigation of METH-induced hyperthermia. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  7. Protective effects of apomorphine against zinc-induced neurotoxicity in cultured cortical neurons.

    PubMed

    Hara, Hirokazu; Maeda, Asuka; Kamiya, Tetsuro; Adachi, Tetsuo

    2013-01-01

    There is evidence that excessive zinc (Zn(2+)) release from presynaptic terminals following brain injuries such as ischemia and severe epileptic seizures induces neuronal cell death. Apomorphine (Apo), a dopamine receptor agonist, has been shown to have pleiotropic biological functions. In this study, we investigated whether Apo protects cultured cortical neurons from neurotoxicity provoked by excessive Zn(2+) exposure. Pretreatment with Apo dose- and time-dependently ameliorated Zn(2+) neurotoxicity. In addition, pretreatment with Apo prevented intracellular nicotinamide adenine dinucleotide (NAD(+)) and ATP depletion caused by Zn(2+) exposure. Dopamine receptor antagonists did not influence Apo protection against Zn(2+) neurotoxicity. Apo is shown to be autoxidized to produce oxidized products such as reactive oxygen species and quinones. N-Acetylcysteine, a thiol compound, partially reduced Apo protection. Entry of Zn(2+) into neurons is thought to be a critical step of Zn(2+) neurotoxicity. Interestingly, we found that pretreatment with Apo decreased elevation of intracellular Zn(2+) levels after Zn(2+) exposure and induced mRNA expression of the zinc transporter ZnT1, which transports intracellular Zn(2+) out of cells, and metallothionein. Taken together, these results suggest that the protective effects of Apo are regulated, at least in part, by its oxidized products, and preventing intracellular accumulation of Zn(2+) contributes to Apo protection against Zn(2+) neurotoxicity.

  8. Developmental profile of speech-language and communicative functions in an individual with the preserved speech variant of Rett syndrome.

    PubMed

    Marschik, Peter B; Vollmann, Ralf; Bartl-Pokorny, Katrin D; Green, Vanessa A; van der Meer, Larah; Wolin, Thomas; Einspieler, Christa

    2014-08-01

    We assessed various aspects of speech-language and communicative functions of an individual with the preserved speech variant of Rett syndrome (RTT) to describe her developmental profile over a period of 11 years. For this study, we incorporated the following data resources and methods to assess speech-language and communicative functions during pre-, peri- and post-regressional development: retrospective video analyses, medical history data, parental checklists and diaries, standardized tests on vocabulary and grammar, spontaneous speech samples and picture stories to elicit narrative competences. Despite achieving speech-language milestones, atypical behaviours were present at all times. We observed a unique developmental speech-language trajectory (including the RTT typical regression) affecting all linguistic and socio-communicative sub-domains in the receptive as well as the expressive modality. Future research should take into consideration a potentially considerable discordance between formal and functional language use by interpreting communicative acts on a more cautionary note.

  9. Development of a high-throughput screening assay for chemical effects on proliferation and viability of immortalized human neural progenitor cells

    EPA Science Inventory

    There is considerable public concern that the majority of commercial chemicals have not been evaluated for their potential to cause developmental neurotoxicity. Although several chemicals are assessed annually under the current developmental neurotoxicity guidelines, time, resour...

  10. Presynaptic mechanisms of lead neurotoxicity: effects on vesicular release, vesicle clustering and mitochondria number.

    PubMed

    Zhang, Xiao-Lei; Guariglia, Sara R; McGlothan, Jennifer L; Stansfield, Kirstie H; Stanton, Patric K; Guilarte, Tomás R

    2015-01-01

    Childhood lead (Pb2+) intoxication is a global public health problem and accounts for 0.6% of the global burden of disease associated with intellectual disabilities. Despite the recognition that childhood Pb2+ intoxication contributes significantly to intellectual disabilities, there is a fundamental lack of knowledge on presynaptic mechanisms by which Pb2+ disrupts synaptic function. In this study, using a well-characterized rodent model of developmental Pb2+ neurotoxicity, we show that Pb2+ exposure markedly inhibits presynaptic vesicular release in hippocampal Schaffer collateral-CA1 synapses in young adult rats. This effect was associated with ultrastructural changes which revealed a reduction in vesicle number in the readily releasable/docked vesicle pool, disperse vesicle clusters in the resting pool, and a reduced number of presynaptic terminals with multiple mitochondria with no change in presynaptic calcium influx. These studies provide fundamental knowledge on mechanisms by which Pb2+ produces profound inhibition of presynaptic vesicular release that contribute to deficits in synaptic plasticity and intellectual development.

  11. Neurotoxicity induced by methamphetamine-heroin combination in PC12 cells.

    PubMed

    Tian, Xiang; Ru, Qin; Xiong, Qi; Yue, Kai; Chen, Lin; Ma, Baomiao; Gan, Weimin; Si, Yuanren; Xiao, Huqiao; Li, Chaoying

    2017-04-24

    Simultaneous administration of psychostimulants and opioids is a major drug abuse problem worldwide. The combination of psychostimulants and opioids produces more serious effects than either drug alone and is responsible for numerous deaths. In recent years, owing to its increased use, methamphetamine (METH), a psychostimulant, has become a popular choice for use in combination with opioids, especially heroin. However, little is known about the neurotoxicity of METH/heroin combination. The aims of this study were to evaluate whether METH/heroin combination was more neurotoxic than either drug alone and analyze the possible neurotoxic mechanisms using rat pheochromocytoma (PC12) cells. Our data showed that METH/heroin combination exhibited a significant decrease in cell viability than either drug alone, and the coefficient of drug interaction (CDI) indicated that the combination appeared to produce synergistic effects. Further studies showed that METH/heroin combination induced apoptosis and decreased the mitochondrial potential significantly, compared to either drug alone. This was demonstrated by a significant decrease in the expression of Bcl-2 and an increase in expression of Bax, accompanied by increase in the activities of caspase-3 and caspase-9. These results suggest that the combination of METH and heroin is more neurotoxic than either drug alone, and it induces apoptosis via the mitochondrial apoptotic pathway. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Peripheral Ammonia as a Mediator of Methamphetamine Neurotoxicity

    PubMed Central

    Halpin, Laura E.; Yamamoto, Bryan K.

    2012-01-01

    Ammonia is metabolized by the liver and has established neurological effects. The current study examined the possibility that ammonia contributes to the neurotoxic effects of methamphetamine (METH). The results show that a binge dosing regimen of METH to the rat increased plasma and brain ammonia concentrations that were paralleled by evidence of hepatotoxicity. The role of peripheral ammonia in the neurotoxic effects of METH was further substantiated by the demonstration that the enhancement of peripheral ammonia excretion blocked the increases in brain and plasma ammonia and attenuated the long term depletions of dopamine and serotonin typically produced by METH. Conversely, the localized perfusion of ammonia in combination with METH, but not METH alone or ammonia alone, into the striatum recapitulated the neuronal damage produced by the systemic administration of METH. Furthermore, this damage produced by the local administration of ammonia and METH was blocked by the GYKI 52466, an AMPA receptor antagonist. These findings highlight the importance of ammonia derived from the periphery as a small molecule mediator of METH neurotoxicity and more broadly emphasize the importance of peripheral organ damage as a possible mechanism that mediates the neuropathology produced by drugs of abuse and other neuroactive molecules. PMID:22993432

  13. Venom from Opisthacanthus elatus scorpion of Colombia, could be more hemolytic and less neurotoxic than thought.

    PubMed

    Estrada-Gómez, Sebastián; Vargas Muñoz, Leidy Johana; Saldarriaga-Córdoba, Mónica; Quintana Castillo, Juan Carlos

    2016-01-01

    We report the first biochemical, biological, pharmacological and partial proteomic characterization studies of the Opisthancanthus elatus venom (Gervais, 1844) from Colombia. The Reverse Phase High-Performance Liquid Chromatography venom profile showed 28 main well-defined peaks, most eluting between 20 and 45min (18-30% of acetonitrile, respectively). High-resolution mass analysis indicates the presence of 106 components ranging from 806.59742Da to 16849.4139Da. O. elatus venom showed hemolytic activity and hydrolyzed the specific substrate BapNa suggesting the presence of proteins with serine-protease activity. Collected RP-HPLC fractions eluting at 52.6, 55.5, 55.8, 56.2, and 63.9min (PLA2 region between 33 and 40% of acetonitrile), showed hemolytic activity and hydrolyzed the synthetic substrate 4-nitro-3-octanoyloxy-benzoic acid, indicating the presence of compounds with phospholipases A2 activity. These RP-HPLC fractions, showed molecular masses values up to 13978.19546Da, corroborating the possible presence of the mentioned enzymes. Tryptic digestion and MS/MS analysis showed the presence of a phospholipase like fragment, similar to on described in other Opisthacanthus genus studies. No coagulant activity was observed. No larvicidal or antimicrobial activity was observed at concentrations evaluated. Lethal and toxic activity is expected at doses above 100mg/kg, no neurotoxic effects were detected at lower doses. In conclusion, O. elatus exhibits a venom with a predominant phospholipase A2 activity than thought; mammal's neurotoxic activity is expected above the 100mg/kg, which is very high compared to the venom from other neurotoxic scorpions. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. QUANTITATIVE IN VITRO MEASUREMENT OF CELLULAR PROCESSES CRITICAL TO THE DEVELOPMENT OF NEURAL CONNECTIVITY USING HCA.

    EPA Science Inventory

    New methods are needed to screen thousands of environmental chemicals for toxicity, including developmental neurotoxicity. In vitro, cell-based assays that model key cellular events have been proposed for high throughput screening of chemicals for developmental neurotoxicity. Whi...

  15. Mitochondrial dysfunction associated with nitric oxide pathways in glutamate neurotoxicity.

    PubMed

    Manucha, Walter

    Multiple mechanisms underlying glutamate-induced neurotoxicity have recently been discussed. Likewise, a clear deregulation of the mitochondrial respiratory mechanism has been described in patients with neurodegeneration, oxidative stress, and inflammation. This article highlights nitric oxide, an atypical neurotransmitter synthesized and released on demand by the post-synaptic neurons, and has many important implications for nerve cell survival and differentiation. Consequently, synaptogenesis, synapse elimination, and neurotransmitter release, are nitric oxide-modulated. Interesting, an emergent role of nitric oxide pathways has been discussed as regards neurotoxicity from glutamate-induced apoptosis. These findings suggest that nitric oxide pathways modulation could prevent oxidative damage to neurons through apoptosis inhibition. This review aims to highlight the emergent aspects of nitric oxide-mediated signaling in the brain, and how they can be related to neurotoxicity, as well as the development of neurodegenerative diseases development. Copyright © 2016 Sociedad Española de Arteriosclerosis. Publicado por Elsevier España, S.L.U. All rights reserved.

  16. The Locus Preservation Hypothesis: Shared Linguistic Profiles across Developmental Disorders and the Resilient Part of the Human Language Faculty

    PubMed Central

    Leivada, Evelina; Kambanaros, Maria; Grohmann, Kleanthes K.

    2017-01-01

    Grammatical markers are not uniformly impaired across speakers of different languages, even when speakers share a diagnosis and the marker in question is grammaticalized in a similar way in these languages. The aim of this work is to demarcate, from a cross-linguistic perspective, the linguistic phenotype of three genetically heterogeneous developmental disorders: specific language impairment, Down syndrome, and autism spectrum disorder. After a systematic review of linguistic profiles targeting mainly English-, Greek-, Catalan-, and Spanish-speaking populations with developmental disorders (n = 880), shared loci of impairment are identified and certain domains of grammar are shown to be more vulnerable than others. The distribution of impaired loci is captured by the Locus Preservation Hypothesis which suggests that specific parts of the language faculty are immune to impairment across developmental disorders. Through the Locus Preservation Hypothesis, a classical chicken and egg question can be addressed: Do poor conceptual resources and memory limitations result in an atypical grammar or does a grammatical breakdown lead to conceptual and memory limitations? Overall, certain morphological markers reveal themselves as highly susceptible to impairment, while syntactic operations are preserved, granting support to the first scenario. The origin of resilient syntax is explained from a phylogenetic perspective in connection to the “syntax-before-phonology” hypothesis. PMID:29081756

  17. Music Preferences, Personality Style, and Developmental Issues of Adolescents.

    ERIC Educational Resources Information Center

    Schwartz, Kelly D.; Fouts, Gregory T.

    2003-01-01

    Studied the personality characteristics and developmental issues of three groups of adolescent music listeners divided by preferred type of music. Findings for 164 adolescents show that each of the three music preference groups is inclined to demonstrate a unique profile of personality dimensions and developmental issues. (SLD)

  18. The downfall of TBA-354 - a possible explanation for its neurotoxicity via mass spectrometric imaging.

    PubMed

    Ntshangase, Sphamandla; Shobo, Adeola; Kruger, Hendrik G; Asperger, Arndt; Niemeyer, Dagmar; Arvidsson, Per I; Govender, Thavendran; Baijnath, Sooraj

    2017-10-13

    1. TBA-354 was a promising antitubercular compound with activity against both replicating and static Mycobacterium tuberculosis (M.tb), making it the focal point of many clinical trials conducted by the TB Alliance. However, findings from these trials have shown that TBA-354 results in mild signs of reversible neurotoxicity; this left the TB Alliance with no other choice but to stop the research. 2. In this study, mass spectrometric methods were used to evaluate the pharmacokinetics and spatial distribution of TBA-354 in the brain using a validated liquid chromatography tandem-mass spectrometry (LCMS/MS) and mass spectrometric imaging (MSI), respectively. Healthy female Sprague-Dawley rats received intraperitoneal (i.p.) doses of TBA-354 (20 mg/kg bw). 3. The concentrationtime profiles showed a gradual absorption and tissue penetration of TBA-354 reaching the C max at 6 h post dose, followed by a rapid elimination. MSI analysis showed a time-dependent drug distribution, with highest drug concentration mainly in the neocortical regions of the brain. 4. The distribution of TBA-354 provides a possible explanation for the motor dysfunction observed in clinical trials. These results prove the importance of MSI as a potential tool in preclinical evaluations of suspected neurotoxic compounds.

  19. A comparative review of developmental screening tests.

    PubMed

    Glascoe, F P; Martin, E D; Humphrey, S

    1990-10-01

    Public Law 99-457 amends the Education of the Handicapped Act to include services for children from birth through 3 years. Inasmuch as detection and referral of children with developmental delays continues to reside largely with pediatricians and other health care professionals, developmental screening, using standardized tests, is increasingly important. To help physicians select from the array of instruments, 19 different screening tests were administered by a pediatrician and rated by a panel of pediatricians and a special educator. While the panel found few tests that fit within the time constraints of pediatric practice, several tests approached standards for educational and psychologic tests. These included the Battelle Developmental Inventory Screening Test, Infant Monitoring System, Developmental Indicators for Assessment of Learning-Revised, Screening Children for Related Early Educational Needs, and the Developmental Profile II.

  20. Cognitive Profiles of Italian Children with Developmental Dyslexia

    ERIC Educational Resources Information Center

    Tobia, Valentina; Marzocchi, Gian Marco

    2014-01-01

    The aim of this study was to investigate verbal and nonverbal cognitive deficits in Italian students with developmental dyslexia. The performances of 32 dyslexic students, 64 age-matched typically reading controls, and 64 reading age-matched controls were compared on tests of lexical knowledge, phonological awareness, rapid automatized naming,…

  1. Gene Expression Analysis of CL-20-induced Reversible Neurotoxicity Reveals GABAA Receptors as Potential Target in the Earthworm Eisenia fetida

    PubMed Central

    Gong, Ping; Guan, Xin; Pirooznia, Mehdi; Liang, Chun; Perkins, Edward J.

    2012-01-01

    The earthworm Eisenia fetida is one of the most used species in standardized soil ecotoxicity tests. Endpoints such as survival, growth and reproduction are eco-toxicologically relevant but provide little mechanistic insight into toxicity pathways, especially at the molecular level. Here we applied a toxicogenomic approach to investigate the mode of action underlying the reversible neurotoxicity of hexanitrohexaazaisowurtzitane (CL-20), a cyclic nitroamine explosives compound. We developed an E. fetida-specific shotgun microarray targeting 15119 unique E. fetida transcripts. Using this array we profiled gene expression in E. fetida in response to exposure to CL-20. Eighteen earthworms were exposed for 6 days to 0.2 μg/cm2 of CL-20 on filter paper, half of which were allowed to recover in a clean environment for 7 days. Nine vehicle control earthworms were sacrificed at day 6 and 13, separately. Electrophysiological measurements indicated that the conduction velocity of earthworm medial giant nerve fiber decreased significantly after 6-day exposure to CL-20, but was restored after 7 days of recovery. Total RNA was isolated from the four treatment groups including 6-day control, 6-day exposed, 13-day control and 13-day exposed (i.e. 6-day exposure followed by 7-day recovery), and was hybridized to the 15K shot-gun oligo array. Statistical and bioinformatic analyses suggest that CL-20 initiated neurotoxicity by non-competitively blocking the ligand-gated GABAA receptor ion channel, leading to altered expression of genes involved in GABAergic, cholinergic, and Agrin-MuSK pathways. In the recovery phase, expression of affected genes returned to normality, possibly as a result of autophagy and CL-20 dissociation/metabolism. This study provides significant insights into potential mechanisms of CL-20-induced neurotoxicity and the recovery of earthworms from transient neurotoxicity stress. PMID:22191394

  2. Sulforaphane-induced autophagy flux prevents prion protein-mediated neurotoxicity through AMPK pathway.

    PubMed

    Lee, J-H; Jeong, J-K; Park, S-Y

    2014-10-10

    Prion diseases are neurodegenerative and infectious disorders that involve accumulation of misfolded scrapie prion protein, and which are characterized by spongiform degeneration. Autophagy, a major homeostatic process responsible for the degradation of cytoplasmic components, has garnered attention as the potential target for neurodegenerative diseases such as prion disease. We focused on protective effects of sulforaphane found in cruciferous vegetables on prion-mediated neurotoxicity and the mechanism of sulforaphane related to autophagy. In human neuroblastoma cells, sulforaphane protected prion protein (PrP) (106-126)-mediated neurotoxicity and increased autophagy flux marker microtubule-associated protein 1 light chain 3-II protein levels, following a decrease of p62 protein level. Pharmacological and genetical inhibition of autophagy by 3MA, wortmannin and knockdown of autophagy-related 5 (ATG5) led to block the effect of sulforaphane against PrP (106-126)-induced neurotoxicity. Furthermore we demonstrated that both sulforaphane-induced autophagy and protective effect of sulforaphane against PrP (106-126)-induced neurotoxicity are dependent on the AMP-activated protein kinase (AMPK) signaling. The present results indicated that sulforaphane of cruciferous vegetables enhanced autophagy flux led to the protection effects against prion-mediated neurotoxicity, which was regulated by AMPK signaling pathways in human neuron cells. Our data also suggest that sulforaphane has a potential value as a therapeutic tool in neurodegenerative disease including prion diseases. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.

  3. Developmental profile of speech-language and communicative functions in an individual with the Preserved Speech Variant of Rett syndrome

    PubMed Central

    Marschik, Peter B.; Vollmann, Ralf; Bartl-Pokorny, Katrin D.; Green, Vanessa A.; van der Meer, Larah; Wolin, Thomas; Einspieler, Christa

    2018-01-01

    Objective We assessed various aspects of speech-language and communicative functions of an individual with the preserved speech variant (PSV) of Rett syndrome (RTT) to describe her developmental profile over a period of 11 years. Methods For this study we incorporated the following data resources and methods to assess speech-language and communicative functions during pre-, peri- and post-regressional development: retrospective video analyses, medical history data, parental checklists and diaries, standardized tests on vocabulary and grammar, spontaneous speech samples, and picture stories to elicit narrative competences. Results Despite achieving speech-language milestones, atypical behaviours were present at all times. We observed a unique developmental speech-language trajectory (including the RTT typical regression) affecting all linguistic and socio-communicative sub-domains in the receptive as well as the expressive modality. Conclusion Future research should take into consideration a potentially considerable discordance between formal and functional language use by interpreting communicative acts on a more cautionary note. PMID:23870013

  4. A Review of Experimental Evidence Linking Neurotoxic Organophosphorus Compounds and Inflammation

    PubMed Central

    Banks, Christopher N.; Lein, Pamela J.

    2012-01-01

    Organophosphorus (OP) nerve agents and pesticides inhibit acetylcholinesterase (AChE), and this is thought to be a primary mechanism mediating the neurotoxicity of these compounds. However, a number of observations suggest that mechanisms other than or in addition to AChE inhibition contribute to OP neurotoxicity. There is significant experimental evidence that acute OP intoxication elicits a robust inflammatory response, and emerging evidence suggests that chronic repeated low-level OP exposure also upregulates inflammatory mediators. A critical question that is just beginning to be addressed experimentally is the pathophysiologic relevance of inflammation in either acute or chronic OP intoxication. The goal of this article is to provide a brief review of the current status of our knowledge linking inflammation to OP intoxication, and to discuss the implications of these findings in the context of therapeutic and diagnostic approaches to OP neurotoxicity. PMID:22342984

  5. ASSESSING HIPPOCAMPAL CHANGES INDICATIVE OF NEUROTOXIC EFFECTS.

    EPA Science Inventory

    Subtle changes in cognitive function are often the earliest indication of neurotoxic effects in humans. The hippocampus is a large forebrain structure subserving specific kinds of information encoding and consolidation in humans and other animals. Because of it laminar structur...

  6. NEUROTOXICITY TESTING IN HUMAN POPULATIONS: WORKSHOP OVERVIEW

    EPA Science Inventory

    A workshop was held in October 1983 at Rougemont, NC to review strategies and methods for neurotoxicity testing in human populations. Behavioral and electrophysiological testing methods were discussed with a major focus on computerized test batteries. Brief reviews of test method...

  7. Subacute methotrexate neurotoxicity and cerebral venous sinus thrombosis in a 12-year-old with acute lymphoblastic leukemia and methylenetetrahydrofolate reductase (MTHFR) C677T polymorphism: homocysteine-mediated methotrexate neurotoxicity via direct endothelial injury.

    PubMed

    Mahadeo, Kris M; Dhall, Girish; Panigrahy, Ashok; Lastra, Carlos; Ettinger, Lawrence J

    2010-02-01

    From as early as the 1970s methotrexate has been associated with disseminated necrotizing leukoencephalopathy and other neurotoxic sequelae. Yet, a clear mechanism for methotrexate-induced neurotoxicity has not been established. The authors describe the case of a 12-year-old male with acute lymphoblastic leukemia and a homozygous methylenetetrahydrofolate reductase C677T mutation, who developed subacute methotrexate-induced toxicity and cerebral venous thrombosis after receiving intrathecal methotrexate. The role of homocysteine as a possible mediator in methotrexate-induced neurotoxicity via direct endothelial injury is discussed.

  8. Death adder envenoming causes neurotoxicity not reversed by antivenom--Australian Snakebite Project (ASP-16).

    PubMed

    Johnston, Christopher I; O'Leary, Margaret A; Brown, Simon G A; Currie, Bart J; Halkidis, Lambros; Whitaker, Richard; Close, Benjamin; Isbister, Geoffrey K

    2012-01-01

    Death adders (Acanthophis spp) are found in Australia, Papua New Guinea and parts of eastern Indonesia. This study aimed to investigate the clinical syndrome of death adder envenoming and response to antivenom treatment. Definite death adder bites were recruited from the Australian Snakebite Project (ASP) as defined by expert identification or detection of death adder venom in blood. Clinical effects and laboratory results were collected prospectively, including the time course of neurotoxicity and response to treatment. Enzyme immunoassay was used to measure venom concentrations. Twenty nine patients had definite death adder bites; median age 45 yr (5-74 yr); 25 were male. Envenoming occurred in 14 patients. Two further patients had allergic reactions without envenoming, both snake handlers with previous death adder bites. Of 14 envenomed patients, 12 developed neurotoxicity characterised by ptosis (12), diplopia (9), bulbar weakness (7), intercostal muscle weakness (2) and limb weakness (2). Intubation and mechanical ventilation were required for two patients for 17 and 83 hours. The median time to onset of neurotoxicity was 4 hours (0.5-15.5 hr). One patient bitten by a northern death adder developed myotoxicity and one patient only developed systemic symptoms without neurotoxicity. No patient developed venom induced consumption coagulopathy. Antivenom was administered to 13 patients, all receiving one vial initially. The median time for resolution of neurotoxicity post-antivenom was 21 hours (5-168). The median peak venom concentration in 13 envenomed patients with blood samples was 22 ng/mL (4.4-245 ng/mL). In eight patients where post-antivenom bloods were available, no venom was detected after one vial of antivenom. Death adder envenoming is characterised by neurotoxicity, which is mild in most cases. One vial of death adder antivenom was sufficient to bind all circulating venom. The persistent neurological effects despite antivenom, suggests that

  9. The in vitro protective effect of salicylic acid against paclitaxel and cisplatin-induced neurotoxicity.

    PubMed

    Cetin, Damla; Hacımuftuoglu, Ahmet; Tatar, Abdulgani; Turkez, Hasan; Togar, Basak

    2016-08-01

    Paclitaxel (PAC) and cisplatin (CIS) are two established chemotherapeutic drugs used in combination for the treatment of various solid tumors. However, the usage of PAC and CIS are limited because of the incidence of their moderate or severe neurotoxic side effects. In this study, we aimed to assess the protective role of salicylic acid (SA) against neurotoxicity caused by PAC and CIS. For this purpose, newborn Sprague Dawley rats were decapitated in sterile atmosphere and primary cortex neuron cultures were established. On the 10th day SA was added into culture plates. PAC and CIS were added on the 12th day. The cytotoxicity was determined by using the MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay. Oxidative alterations were assessed using total antioxidant capacity and total oxidative stress assays in rat primary neuron cell cultures. It was shown that both concentrations of PAC and CIS treatments caused neurotoxicity. Although SA decreased the neurotoxicity by CIS and PAC, it was more effective against the toxicity caused by CIS rather than the toxicity caused by PAC. In conclusion it was clearly revealed that SA decreased the neurotoxic effect of CIS and PAC in vitro.

  10. Rechallenging With Intrathecal Methotrexate After Developing Subacute Neurotoxicity in Children With Hematologic Malignancies.

    PubMed

    Badke, Colleen; Fleming, Amy; Iqbal, Asneha; Khilji, Ohmed; Parhas, Sophia; Weinstein, Joanna; Morgan, Elaine; Hijiya, Nobuko

    2016-04-01

    Methotrexate is associated with neurologic side effects. It is recommended that patients who developed neurotoxicity be rechallenged with methotrexate, but little is known about the safety of this approach. We performed a chart review to identify patients who received high-dose or intrathecal (IT) methotrexate. Twenty-one of 298 patients (7%) experienced neurologic symptoms attributed to methotrexate treatment in the premaintenance phase. Seventeen of these patients were rechallenged with IT methotrexate and 13 (76%) had no further neurotoxic events. No patients rechallenged during maintenance (n = 9) experienced recurrence of neurotoxic events. It is safe to rechallenge with IT methotrexate in maintenance. © 2015 Wiley Periodicals, Inc.

  11. Metabolic Profiles in Ovine Carotid Arteries with Developmental Maturation and Long-Term Hypoxia

    PubMed Central

    Goyal, Ravi; Longo, Lawrence D.

    2015-01-01

    Background Long-term hypoxia (LTH) is an important stressor related to health and disease during development. At different time points from fetus to adult, we are exposed to hypoxic stress because of placental insufficiency, high-altitude residence, smoking, chronic anemia, pulmonary, and heart disorders, as well as cancers. Intrauterine hypoxia can lead to fetal growth restriction and long-term sequelae such as cognitive impairments, hypertension, cardiovascular disorders, diabetes, and schizophrenia. Similarly, prolonged hypoxic exposure during adult life can lead to acute mountain sickness, chronic fatigue, chronic headache, cognitive impairment, acute cerebral and/or pulmonary edema, and death. Aim LTH also can lead to alteration in metabolites such as fumarate, 2-oxoglutarate, malate, and lactate, which are linked to epigenetic regulation of gene expression. Importantly, during the intrauterine life, a fetus is under a relative hypoxic environment, as compared to newborn or adult. Thus, the changes in gene expression with development from fetus to newborn to adult may be as a consequence of underlying changes in the metabolic profile because of the hypoxic environment along with developmental maturation. To examine this possibility, we examined the metabolic profile in carotid arteries from near-term fetus, newborn, and adult sheep in both normoxic and long-term hypoxic acclimatized groups. Results Our results demonstrate that LTH differentially regulated glucose metabolism, mitochondrial metabolism, nicotinamide cofactor metabolism, oxidative stress and antioxidants, membrane lipid hydrolysis, and free fatty acid metabolism, each of which may play a role in genetic-epigenetic regulation. PMID:26110419

  12. Glial Reactivity in Resistance to Methamphetamine-Induced Neurotoxicity

    PubMed Central

    Friend, Danielle M.; Keefe, Kristen A.

    2013-01-01

    Neurotoxic regimens of methamphetamine (METH) result in reactive microglia and astrocytes in striatum. Prior data indicate that rats with partial dopamine (DA) loss resulting from prior exposure to METH are resistant to further decreases in striatal DA when re-exposed to METH 30 days later. Such resistant animals also do not show an activated microglia phenotype, suggesting a relation between microglial activation and METH-induced neurotoxicity. To date, the astrocyte response in such resistance has not been examined. Thus, this study examined glial-fibrillary acidic protein (GFAP) and CD11b protein expression in striata of animals administered saline or a neurotoxic regimen of METH on postnatal days 60 and/or 90 (Saline:Saline, Saline:METH, METH:Saline, METH:METH). Consistent with previous work, animals experiencing acute toxicity (Saline:METH) showed both activated microglia and astocytes, whereas those resistant to the acute toxicity (METH:METH) did not show activated microglia. Interestingly, GFAP expression remained elevated in rats exposed to METH at PND60 (METH:Saline), and was not elevated further in resistant rats treated for the second time with METH (METH:METH). These data suggest that astrocytes remain reactive up to 30 days post-METH exposure. Additionally, these data indicate that astrocyte reactivity does not reflect acute, METH-induced DA terminal toxicity, whereas microglial reactivity does. PMID:23414433

  13. σ Receptor antagonist attenuation of methamphetamine-induced neurotoxicity is correlated to body temperature modulation.

    PubMed

    Robson, Matthew J; Seminerio, Michael J; McCurdy, Christopher R; Coop, Andrew; Matsumoto, Rae R

    2013-01-01

    Methamphetamine (METH) causes hyperthermia and dopaminergic neurotoxicity in the rodent striatum. METH interacts with σ receptors and σ receptor antagonists normally mitigate METH-induced hyperthermia and dopaminergic neurotoxicity. The present study was undertaken because in two experiments, pretreatment with σ receptor antagonists failed to attenuate METH-induced hyperthermia in mice. This allowed us to determine whether the ability of σ receptor antagonists (AZ66 and AC927) to mitigate METH-induced neurotoxicity depends upon their ability to modulate METH-induced hyperthermia. Mice were treated using a repeated dosing paradigm and body temperatures recorded. Striatal dopamine was measured one week post-treatment. The data indicate that the ability of σ receptor antagonists to attenuate METH-induced dopaminergic neurotoxicity is linked to their ability to block METH-induced hyperthermia. The ability of σ receptor antagonists to mitigate METH-induced hyperthermia may contribute to its neuroprotective actions.

  14. Cholinergic and behavioral neurotoxicity of carbaryl and cadmium to larval rainbow trout (Oncorhynchus mykiss)

    USGS Publications Warehouse

    Beauvais, S.L.; Jones, S.B.; Parris, J.T.; Brewer, S.K.; Little, E.E.

    2001-01-01

    Pesticides and heavy metals are common environmental contaminants that can cause neurotoxicity to aquatic organisms, impairing reproduction and survival. Neurotoxic effects of cadmium and carbaryl exposures were estimated in larval rainbow trout (RBT; Oncorhynchus mykiss) using changes in physiological endpoints and correlations with behavioral responses. Following exposures, RBT were videotaped to assess swimming speed. Brain tissue was used to measure cholinesterase (ChE) activity, muscarinic cholinergic receptor (MChR) number, and MChR affinity. ChE activity decreased with increasing concentrations of carbaryl but not of cadmium. MChR were not affected by exposure to either carbaryl or cadmium. Swimming speed correlated with ChE activity in carbaryl-exposed RBT, but no correlation occurred in cadmium-exposed fish. Thus, carbaryl exposure resulted in neurotoxicity reflected by changes in physiological and behavioral parameters measured, while cadmium exposure did not. Correlations between behavior and physiology provide a useful assessment of neurotoxicity.

  15. Neurotoxicity of "ecstasy" and its metabolites in human dopaminergic differentiated SH-SY5Y cells.

    PubMed

    Ferreira, Patrícia Silva; Nogueira, Tiago Bernandes; Costa, Vera Marisa; Branco, Paula Sério; Ferreira, Luísa Maria; Fernandes, Eduarda; Bastos, Maria Lourdes; Meisel, Andreas; Carvalho, Félix; Capela, João Paulo

    2013-02-04

    "Ecstasy" (3,4-methylenedioxymethamphetamine or MDMA) is a widely abused recreational drug, reported to produce neurotoxic effects, both in laboratory animals and in humans. MDMA metabolites can be major contributors for MDMA neurotoxicity. This work studied the neurotoxicity of MDMA and its catechol metabolites, α-methyldopamine (α-MeDA) and N-methyl-α-methyldopamine (N-Me-α-MeDA) in human dopaminergic SH-SY5Y cells differentiated with retinoic acid and 12-O-tetradecanoyl-phorbol-13-acetate. Differentiation led to SH-SY5Y neurons with higher ability to accumulate dopamine and higher resistance towards dopamine neurotoxicity. MDMA catechol metabolites were neurotoxic to SH-SY5Y neurons, leading to caspase 3-independent cell death in a concentration- and time-dependent manner. MDMA did not show a concentration- and time-dependent death. Pre-treatment with the antioxidant and glutathione precursor, N-acetylcysteine (NAC), resulted in strong protection against the MDMA metabolites' neurotoxicity. Neither the superoxide radical scavenger, tiron, nor the inhibitor of the dopamine (DA) transporter, GBR 12909, prevented the metabolites' toxicity. Cells exposed to α-MeDA showed an increase in intracellular glutathione (GSH) levels, which, at the 48 h time-point, was not dependent in the activity increase of γ-glutamylcysteine synthetase (γ-GCS), revealing a possible transient effect. Importantly, pre-treatment with buthionine sulfoximine (BSO), an inhibitor of γ-GCS, prevented α-MeDA induced increase in GSH levels, but did not augment this metabolite cytotoxicity. Even so, BSO pre-treatment abolished NAC protective effects against α-MeDA neurotoxicity, which were, at least partially, due to GSH de novo synthesis. Inversely, pre-treatment of cells with BSO augmented N-Me-α-MeDA-induced neurotoxicity, but only slightly affected NAC neuroprotection. In conclusion, MDMA catechol metabolites promote differential toxic effects to differentiated dopaminergic human SH

  16. Effect of (+)-Methamphetamine on Path Integration Learning, Novel Object Recognition, and Neurotoxicity in Rats

    PubMed Central

    Herring, Nicole R.; Schaefer, Tori L.; Gudelsky, Gary A.; Vorhees, Charles V.; Williams, Michael T.

    2008-01-01

    Rationale Methamphetamine (MA) has been implicated in cognitive deficits in humans after chronic use. Animal models of neurotoxic MA exposure reveal persistent damage to monoaminergic systems, but few associated cognitive effects. Objectives Since, questions have been raised about the typical neurotoxic dosing regimen used in animals and whether it adequately models human cumulative drug exposure, these experiments examined two different dosing regimens. Methods Rats were treated with one of two regimens, one the typical neurotoxic regimen (4 × 10 mg/kg every 2 h) and one based on pharmacokinetic modeling (Cho et al. 2001) designed to better represent accumulating plasma concentrations of MA as seen in human users (24 ×1.67 mg/kg once every 15 min); matched for total daily dose. In two separate experiments, dosing regimens were compared for their effects on markers of neurotoxicity or on behavior. Results On markers of neurotoxicity, MA showed decreased DA and 5-HT, and increased glial fibrillary acidic protein and increased corticosterone levels regardless of dosing regimen 3 days post-treatment. Behaviorally, MA-treated groups, regardless of dosing regimen, showed hypoactivity, increased initial hyperactivity to a subsequent MA challenge, impaired novel object recognition, impaired learning in a multiple-T water maze test of path integration, and no differences on spatial navigation or reference memory in the Morris water maze. After behavioral testing, reductions of DA and 5-HT remained. Conclusions MA treatment induces an effect on path integration learning not previously reported. Dosing regimen had no differential effects on behavior or neurotoxicity. PMID:18509623

  17. Effect of +-methamphetamine on path integration learning, novel object recognition, and neurotoxicity in rats.

    PubMed

    Herring, Nicole R; Schaefer, Tori L; Gudelsky, Gary A; Vorhees, Charles V; Williams, Michael T

    2008-09-01

    Methamphetamine (MA) has been implicated in cognitive deficits in humans after chronic use. Animal models of neurotoxic MA exposure reveal persistent damage to monoaminergic systems but few associated cognitive effects. Since questions have been raised about the typical neurotoxic dosing regimen used in animals and whether it adequately models human cumulative drug exposure, these experiments examined two different dosing regimens. Rats were treated with one of the two regimens: one based on the typical neurotoxic regimen (4 x 10 mg/kg every 2 h) and one based on pharmacokinetic modeling (Cho AK, Melega WP, Kuczenski R, Segal DS Synapse 39:161-166, 2001) designed to better represent accumulating plasma concentrations of MA as seen in human users (24 x 1.67 mg/kg once every 15 min) matched for total daily dose. In two separate experiments, dosing regimens were compared for their effects on markers of neurotoxicity or on behavior. On markers of neurotoxicity, MA showed decreased dopamine (DA) and 5-HT, increased glial fibrillary acidic protein, and increased corticosterone levels regardless of dosing regimen 3 days post-treatment. Behaviorally, MA-treated groups, regardless of dosing regimen, showed hypoactivity, increased initial hyperactivity to a subsequent MA challenge, impaired novel object recognition, impaired learning in a multiple T water maze test of path integration, and no differences on spatial navigation or reference memory in the Morris water maze. After behavioral testing, reductions of DA and 5-HT remained. MA treatment induces an effect on path integration learning not previously reported. Dosing regimen had no differential effects on behavior or neurotoxicity.

  18. The role of dopamine receptors in the neurotoxicity of methamphetamine.

    PubMed

    Ares-Santos, S; Granado, N; Moratalla, R

    2013-05-01

    Methamphetamine is a synthetic drug consumed by millions of users despite its neurotoxic effects in the brain, leading to loss of dopaminergic fibres and cell bodies. Moreover, clinical reports suggest that methamphetamine abusers are predisposed to Parkinson's disease. Therefore, it is important to elucidate the mechanisms involved in methamphetamine-induced neurotoxicity. Dopamine receptors may be a plausible target to prevent this neurotoxicity. Genetic inactivation of dopamine D1 or D2 receptors protects against the loss of dopaminergic fibres in the striatum and loss of dopaminergic neurons in the substantia nigra. Protection by D1 receptor inactivation is due to blockade of hypothermia, reduced dopamine content and turnover and increased stored vesicular dopamine in D1R(-/-) mice. However, the neuroprotective impact of D2 receptor inactivation is partially dependent on an effect on body temperature, as well as on the blockade of dopamine reuptake by decreased dopamine transporter activity, which results in reduced intracytosolic dopamine levels in D2R(-/-) mice. © 2013 The Association for the Publication of the Journal of Internal Medicine.

  19. CDC Kerala 15: Developmental Evaluation Clinic (2-10 y)--developmental diagnosis and use of home intervention package.

    PubMed

    Nair, M K C; Lakshmi, M A; Latha, S; Lakshmi, Geetha; Harikumaran Nair, G S; Bhaskaran, Deepa; George, Babu; Leena, M L; Russell, Paul Swamidhas Sudhakar

    2014-12-01

    To describe the last 5 years' experience of Child Development Centre (CDC), Kerala Developmental Evaluation Clinic II for children between 2 and 10 y, referred for suspicion of developmental lag in the preschool years and scholastic difficulty in the primary classes with specific focus on developmental profile and the experience of the home based intervention package taught to the mothers. A team of evaluators including developmental therapist, preschool teacher with special training in clinical child development, speech therapist, special educator, clinical psychologist and developmental pediatrician assessed all the children referred to CDC Kerala. Denver Developmental Screening Test (DDST-II), Vineland Social Maturity Scale (VSMS) and Intelligent Quotient (IQ) tests were administered to all children below 6 y and those above 6 with apparent developmental delay. Speech/delay (35.9%), behavior problem (15.4%), global delay/ intellectual disability (15.4%), learning problem (10.9%), pervasive developmental disorders (7.7%), seizure disorder (1.7%), hearing impairment (0.7%), and visual impairment (0.7%) were the clinical diagnosis by a developmental pediatrician. Each child with developmental problem was offered a home based intervention package consisting of developmental therapy and special education items, appropriate to the clinical diagnosis of the individual child and the same was taught to the mother. The experience of conducting the developmental evaluation clinic for children between 2 and 10 y has shown that a team consisting of developmental therapist, speech therapist, preschool teacher, special educator, clinical child psychologist and developmental pediatrician, using appropriate test results of the child could make a clinical diagnosis good enough for providing early intervention therapy using a home based intervention package.

  20. nNOS inhibitors attenuate methamphetamine-induced dopaminergic neurotoxicity but not hyperthermia in mice.

    PubMed

    Itzhak, Y; Martin, J L; Ail, S F

    2000-09-11

    Methamphetamine (METH)-induced dopaminergic neurotoxicity is associated with hyperthermia. We investigated the effect of several neuronal nitric oxide synthase (nNOS) inhibitors on METH-induced hyperthermia and striatal dopaminergic neurotoxicity. Administration of METH (5 mg/kg; q. 3 h x 3) to Swiss Webster mice produced marked hyperthermia and 50-60% depletion of striatal dopaminergic markers 72 h after METH administration. Pretreatment with the nNOS inhibitors S-methylthiocitrulline (SMTC; 10 mg/kg) or 3-bromo-7-nitroindazole (3-Br-7-NI; 20 mg/kg) before each METH injection did not affect the persistent hyperthermia produced by METH, but afforded protection against the depletion of dopaminergic markers. A low dose (25 mg/kg) of the nNOS inhibitor 7-nitroindazole (7-NI) did not affect METH-induced hyperthermia, but a high dose (50 mg/kg) produced significant hypothermia. These findings indicate that low dose of selective nNOS inhibitors protect against METH-induced neurotoxicity with no effect on body temperature and support the hypothesis that nitric oxide (NO) and peroxynitrite have a major role in METH-induced dopaminergic neurotoxicity.

  1. MK-801 and dextromethorphan block microglial activation and protect against methamphetamine-induced neurotoxicity.

    PubMed

    Thomas, David M; Kuhn, Donald M

    2005-07-19

    Methamphetamine causes long-term toxicity to dopamine nerve endings of the striatum. Evidence is emerging that microglia can contribute to the neuronal damage associated with disease, injury, or inflammation, but their role in methamphetamine-induced neurotoxicity has received relatively little attention. Lipopolysaccharide (LPS) and the neurotoxic HIV Tat protein, which cause dopamine neuronal toxicity after direct infusion into brain, cause activation of cultured mouse microglial cells as evidenced by increased expression of intracellular cyclooxygenase-2 and elevated secretion of tumor necrosis factor-alpha. MK-801, a non-competitive NMDA receptor antagonist that is known to protect against methamphetamine neurotoxicity, prevents microglial activation by LPS and HIV Tat. Dextromethorphan, an antitussive agent with NMDA receptor blocking properties, also prevents microglial activation. In vivo, MK-801 and dextromethorphan reduce methamphetamine-induced activation of microglia in striatum and they protect dopamine nerve endings against drug-induced nerve terminal damage. The present results indicate that the ability of MK-801 and dextromethorphan to protect against methamphetamine neurotoxicity is related to their common property as blockers of microglial activation.

  2. Quantitative developmental transcriptomes of the Mediterranean sea urchin Paracentrotus lividus.

    PubMed

    Gildor, Tsvia; Malik, Assaf; Sher, Noa; Avraham, Linor; Ben-Tabou de-Leon, Smadar

    2016-02-01

    Embryonic development progresses through the timely activation of thousands of differentially activated genes. Quantitative developmental transcriptomes provide the means to relate global patterns of differentially expressed genes to the emerging body plans they generate. The sea urchin is one of the classic model systems for embryogenesis and the models of its developmental gene regulatory networks are of the most comprehensive of their kind. Thus, the sea urchin embryo is an excellent system for studies of its global developmental transcriptional profiles. Here we produced quantitative developmental transcriptomes of the sea urchin Paracentrotus lividus (P. lividus) at seven developmental stages from the fertilized egg to prism stage. We generated de-novo reference transcriptome and identified 29,817 genes that are expressed at this time period. We annotated and quantified gene expression at the different developmental stages and confirmed the reliability of the expression profiles by QPCR measurement of a subset of genes. The progression of embryo development is reflected in the observed global expression patterns and in our principle component analysis. Our study illuminates the rich patterns of gene expression that participate in sea urchin embryogenesis and provide an essential resource for further studies of the dynamic expression of P. lividus genes. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Death Adder Envenoming Causes Neurotoxicity Not Reversed by Antivenom - Australian Snakebite Project (ASP-16)

    PubMed Central

    Johnston, Christopher I.; O'Leary, Margaret A.; Brown, Simon G. A.; Currie, Bart J.; Halkidis, Lambros; Whitaker, Richard; Close, Benjamin; Isbister, Geoffrey K.

    2012-01-01

    Background Death adders (Acanthophis spp) are found in Australia, Papua New Guinea and parts of eastern Indonesia. This study aimed to investigate the clinical syndrome of death adder envenoming and response to antivenom treatment. Methodology/Principal Findings Definite death adder bites were recruited from the Australian Snakebite Project (ASP) as defined by expert identification or detection of death adder venom in blood. Clinical effects and laboratory results were collected prospectively, including the time course of neurotoxicity and response to treatment. Enzyme immunoassay was used to measure venom concentrations. Twenty nine patients had definite death adder bites; median age 45 yr (5–74 yr); 25 were male. Envenoming occurred in 14 patients. Two further patients had allergic reactions without envenoming, both snake handlers with previous death adder bites. Of 14 envenomed patients, 12 developed neurotoxicity characterised by ptosis (12), diplopia (9), bulbar weakness (7), intercostal muscle weakness (2) and limb weakness (2). Intubation and mechanical ventilation were required for two patients for 17 and 83 hours. The median time to onset of neurotoxicity was 4 hours (0.5–15.5 hr). One patient bitten by a northern death adder developed myotoxicity and one patient only developed systemic symptoms without neurotoxicity. No patient developed venom induced consumption coagulopathy. Antivenom was administered to 13 patients, all receiving one vial initially. The median time for resolution of neurotoxicity post-antivenom was 21 hours (5–168). The median peak venom concentration in 13 envenomed patients with blood samples was 22 ng/mL (4.4–245 ng/mL). In eight patients where post-antivenom bloods were available, no venom was detected after one vial of antivenom. Conclusions/Significance Death adder envenoming is characterised by neurotoxicity, which is mild in most cases. One vial of death adder antivenom was sufficient to bind all circulating venom. The

  4. Analysis of temporal transcription expression profiles reveal links between protein function and developmental stages of Drosophila melanogaster.

    PubMed

    Wan, Cen; Lees, Jonathan G; Minneci, Federico; Orengo, Christine A; Jones, David T

    2017-10-01

    Accurate gene or protein function prediction is a key challenge in the post-genome era. Most current methods perform well on molecular function prediction, but struggle to provide useful annotations relating to biological process functions due to the limited power of sequence-based features in that functional domain. In this work, we systematically evaluate the predictive power of temporal transcription expression profiles for protein function prediction in Drosophila melanogaster. Our results show significantly better performance on predicting protein function when transcription expression profile-based features are integrated with sequence-derived features, compared with the sequence-derived features alone. We also observe that the combination of expression-based and sequence-based features leads to further improvement of accuracy on predicting all three domains of gene function. Based on the optimal feature combinations, we then propose a novel multi-classifier-based function prediction method for Drosophila melanogaster proteins, FFPred-fly+. Interpreting our machine learning models also allows us to identify some of the underlying links between biological processes and developmental stages of Drosophila melanogaster.

  5. Low-Dose Aronia melanocarpa Concentrate Attenuates Paraquat-Induced Neurotoxicity

    PubMed Central

    Case, A. J.; Agraz, D.; Ahmad, I. M.; Zimmerman, M. C.

    2016-01-01

    Herbicides containing paraquat may contribute to the pathogenesis of neurodegenerative disorders such as Parkinson's disease. Paraquat induces reactive oxygen species-mediated apoptosis in neurons, which is a primary mechanism behind its toxicity. We sought to test the effectiveness of a commercially available polyphenol-rich Aronia melanocarpa (aronia berry) concentrate in the amelioration of paraquat-induced neurotoxicity. Considering the abundance of antioxidants in aronia berries, we hypothesized that aronia berry concentrate attenuates the paraquat-induced increase in reactive oxygen species and protects against paraquat-mediated neuronal cell death. Using a neuronal cell culture model, we observed that low doses of aronia berry concentrate protected against paraquat-mediated neurotoxicity. Additionally, low doses of the concentrate attenuated the paraquat-induced increase in superoxide, hydrogen peroxide, and oxidized glutathione levels. Interestingly, high doses of aronia berry concentrate increased neuronal superoxide levels independent of paraquat, while at the same time decreasing hydrogen peroxide. Moreover, high-dose aronia berry concentrate potentiated paraquat-induced superoxide production and neuronal cell death. In summary, aronia berry concentrate at low doses restores the homeostatic redox environment of neurons treated with paraquat, while high doses exacerbate the imbalance leading to further cell death. Our findings support that moderate levels of aronia berry concentrate may prevent reactive oxygen species-mediated neurotoxicity. PMID:26770655

  6. Low-Dose Aronia melanocarpa Concentrate Attenuates Paraquat-Induced Neurotoxicity.

    PubMed

    Case, A J; Agraz, D; Ahmad, I M; Zimmerman, M C

    2016-01-01

    Herbicides containing paraquat may contribute to the pathogenesis of neurodegenerative disorders such as Parkinson's disease. Paraquat induces reactive oxygen species-mediated apoptosis in neurons, which is a primary mechanism behind its toxicity. We sought to test the effectiveness of a commercially available polyphenol-rich Aronia melanocarpa (aronia berry) concentrate in the amelioration of paraquat-induced neurotoxicity. Considering the abundance of antioxidants in aronia berries, we hypothesized that aronia berry concentrate attenuates the paraquat-induced increase in reactive oxygen species and protects against paraquat-mediated neuronal cell death. Using a neuronal cell culture model, we observed that low doses of aronia berry concentrate protected against paraquat-mediated neurotoxicity. Additionally, low doses of the concentrate attenuated the paraquat-induced increase in superoxide, hydrogen peroxide, and oxidized glutathione levels. Interestingly, high doses of aronia berry concentrate increased neuronal superoxide levels independent of paraquat, while at the same time decreasing hydrogen peroxide. Moreover, high-dose aronia berry concentrate potentiated paraquat-induced superoxide production and neuronal cell death. In summary, aronia berry concentrate at low doses restores the homeostatic redox environment of neurons treated with paraquat, while high doses exacerbate the imbalance leading to further cell death. Our findings support that moderate levels of aronia berry concentrate may prevent reactive oxygen species-mediated neurotoxicity.

  7. INTEGRATING EPIDEMIOLOGY AND TOXICOLOGY IN NEUROTOXICITY RISK ASSESSMENT.

    EPA Science Inventory

    Neurotoxicity risk assessments depend on the best available scientific information, including data from animal toxicity, human experimental studies and human epidemiology studies. There are several factors to consider when evaluating the comparability of data from studies. Reg...

  8. Effects of lead exposure on hippocampal metabotropic glutamate receptor subtype 3 and 7 in developmental rats.

    PubMed

    Xu, Jian; Yan, Huai C; Yang, Bo; Tong, Lu S; Zou, Yu X; Tian, Ying

    2009-04-20

    A complete explanation of the mechanisms by which Pb2+ exerts toxic effects on developmental central nervous system remains unknown. Glutamate is critical to the developing brain through various subtypes of ionotropic or metabotropic glutamate receptors (mGluRs). Ionotropic N-methyl-D-aspartate receptors have been considered as a principal target in lead-induced neurotoxicity. The relationship between mGluR3/mGluR7 and synaptic plasticity had been verified by many recent studies. The present study aimed to examine the role of mGluR3/mGluR7 in lead-induced neurotoxicity. Twenty-four adult and female rats were randomly selected and placed on control or 0.2% lead acetate during gestation and lactation. Blood lead and hippocampal lead levels of pups were analyzed at weaning to evaluate the actual lead content at the end of the exposure. Impairments of short -term memory and long-term memory of pups were assessed by tests using Morris water maze and by detection of hippocampal ultrastructural alterations on electron microscopy. The impact of lead exposure on mGluR3 and mGluR7 mRNA expression in hippocampal tissue of pups were investigated by quantitative real-time polymerase chain reaction and its potential role in lead neurotoxicity were discussed. Lead levels of blood and hippocampi in the lead-exposed rats were significantly higher than those in the controls (P < 0.001). In tests using Morris Water Maze, the overall decrease in goal latency and swimming distance was taken to indicate that controls had shorter latencies and distance than lead-exposed rats (P = 0.001 and P < 0.001 by repeated-measures analysis of variance). On transmission electron microscopy neuronal ultrastructural alterations were observed and the results of real-time polymerase chain reaction showed that exposure to 0.2% lead acetate did not substantially change gene expression of mGluR3 and mGluR7 mRNA compared with controls. Exposure to lead before and after birth can damage short-term and long

  9. Toxicogenomic profiling in maternal and fetal rodent brains following gestational exposure to chlorpyrifos

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moreira, Estefania G.; Department of Physiological Sciences, State University of Londrina, Londrina, PR; Yu Xiaozhong

    2010-06-15

    Considering the wide variety of effects that have been reported to occur in the developmental neurotoxicity of chlorpyrifos (CP) and the lack of consensus on their dependence of brain acetylcholinesterase (AChE) activity inhibition, we applied microarray technology to explore dose-dependent alterations in transcriptional response in the fetal and maternal C57BL/6 mouse brain after daily gestational exposure (days 6 to 17) to CP (2, 4, 10, 12 or 15 mg/kg, sc). We identified significantly altered genes across doses and assessed for overrepresentation of Gene Ontology (GO) biological processes and KEGG pathways. We further clustered genes based on their expression profiles acrossmore » doses and repeated the GO/pathways analysis for each cluster. The dose-effect relationship of CP on gene expression, both at the gene and pathway levels was non-monotonic and not necessarily related to brain AChE inhibition. The largest impact was observed in the 10 mg/kg dose group which was also the LOAEL for brain AChE inhibition. In the maternal brain, lower doses (4 mg/kg) influenced GO categories and pathways such as cell adhesion, behavior, lipid metabolism, long-term potentiation, nervous system development, neurogenesis, synaptic transmission. In the fetal brain, lower doses (2 and/or 4 mg/kg) significantly altered cell division, translation, transmission of nerve impulse, chromatin modification, long-term potentiation. In addition, some genes involved in nervous system development and signaling were shown to be specifically influenced by these lower CP doses. Our approach was sensitive and reflected the diversity of responses known to be disrupted by CP and highlighted possible additional consequences of CP neurotoxicity, such as disturbance of the ubiquitin proteasome system.« less

  10. BDE 49 and developmental toxicity in zebrafish

    PubMed Central

    McClain, Valerie; Stapleton, Heather M.; Gallagher, Evan

    2011-01-01

    The polybrominated diphenyl ethers (PBDEs) are a group of brominated flame retardants. Human health concerns of these agents have largely centered upon their potential to elicit reproductive and developmental effects. Of the various congeners, BDE 49 (2,2’,4,5’-tetrabromodiphenyl ether) has been poorly studied, despite the fact that it is often detected in the tissues of fish and wildlife species. Furthermore, we have previously shown that BDE 49 is a metabolic debromination product of BDE 99 hepatic metabolism in salmon, carp and trout, underscoring the need for a better understanding of biological effects. In the current study, we investigated the developmental toxicity of BDE 49 using the zebrafish (Danio rerio) embryo larval model. Embryo and larval zebrafish were exposed to BDE 49 at either 5 hours post fertilization (hpf) or 24 hpf and monitored for developmental and neurotoxicity. Exposure to BDE 49 at concentrations of 4 µM- 32 µM caused a dose-dependent loss in survivorship at 6 days post fertilization (dpf). Morphological impairments were observed prior to the onset of mortality, the most striking of which included severe dorsal curvatures of the tail. The incidence of dorsal tail curvatures was dose and time dependent. Exposure to BDE 49 caused cardiac toxicity as evidenced by a significant reduction in zebrafish heart rates at 6 dpf but not earlier, suggesting that cardiac toxicity was non-specific and associated with physiological stress. Neurobehavioral injury from BDE 49 was evidenced by an impairment of touch-escape responses observed at 5 dpf. Our results indicate that BDE 49 is a developmental toxicant in larval zebrafish that can cause morphological abnormalities and adversely affect neurobehavior. The observed toxicities from BDE 49 were similar in scope to those previously reported for the more common tetrabrominated congener, BDE 47, and also for other lower brominated PBDEs, suggest that these compounds may share similarities in risk to

  11. Label-free proteome profiling reveals developmental-dependent patterns in young barley grains.

    PubMed

    Kaspar-Schoenefeld, Stephanie; Merx, Kathleen; Jozefowicz, Anna Maria; Hartmann, Anja; Seiffert, Udo; Weschke, Winfriede; Matros, Andrea; Mock, Hans-Peter

    2016-06-30

    Due to its importance as a cereal crop worldwide, high interest in the determination of factors influencing barley grain quality exists. This study focusses on the elucidation of protein networks affecting early grain developmental processes. NanoLC-based separation coupled to label-free MS detection was applied to gain insights into biochemical processes during five different grain developmental phases (pre-storage until storage phase, 3days to 16days after flowering). Multivariate statistics revealed two distinct developmental patterns during the analysed grain developmental phases: proteins showed either highest abundance in the middle phase of development - in the transition phase - or at later developmental stages - within the storage phase. Verification of developmental patterns observed by proteomic analysis was done by applying hypothesis-driven approaches, namely Western Blot analysis and enzyme assays. High general metabolic activity of the grain with regard to protein synthesis, cell cycle regulation, defence against oxidative stress, and energy production via photosynthesis was observed in the transition phase. Proteins upregulated in the storage phase are related towards storage protein accumulation, and interestingly to the defence of storage reserves against pathogens. A mixed regulatory pattern for most enzymes detected in our study points to regulatory mechanisms at the level of protein isoforms. In-depth understanding of early grain developmental processes of cereal caryopses is of high importance as they influence final grain weight and quality. Our knowledge about these processes is still limited, especially on proteome level. To identify key mechanisms in early barley grain development, a label-free data-independent proteomics acquisition approach has been applied. Our data clearly show, that proteins either exhibit highest expression during cellularization and the switch to the storage phase (transition phase, 5-7 DAF), or during storage

  12. Large-scale gene expression profiling data for the model moss Physcomitrella patens aid understanding of developmental progression, culture and stress conditions.

    PubMed

    Hiss, Manuel; Laule, Oliver; Meskauskiene, Rasa M; Arif, Muhammad A; Decker, Eva L; Erxleben, Anika; Frank, Wolfgang; Hanke, Sebastian T; Lang, Daniel; Martin, Anja; Neu, Christina; Reski, Ralf; Richardt, Sandra; Schallenberg-Rüdinger, Mareike; Szövényi, Peter; Tiko, Theodhor; Wiedemann, Gertrud; Wolf, Luise; Zimmermann, Philip; Rensing, Stefan A

    2014-08-01

    The moss Physcomitrella patens is an important model organism for studying plant evolution, development, physiology and biotechnology. Here we have generated microarray gene expression data covering the principal developmental stages, culture forms and some environmental/stress conditions. Example analyses of developmental stages and growth conditions as well as abiotic stress treatments demonstrate that (i) growth stage is dominant over culture conditions, (ii) liquid culture is not stressful for the plant, (iii) low pH might aid protoplastation by reduced expression of cell wall structure genes, (iv) largely the same gene pool mediates response to dehydration and rehydration, and (v) AP2/EREBP transcription factors play important roles in stress response reactions. With regard to the AP2 gene family, phylogenetic analysis and comparison with Arabidopsis thaliana shows commonalities as well as uniquely expressed family members under drought, light perturbations and protoplastation. Gene expression profiles for P. patens are available for the scientific community via the easy-to-use tool at https://www.genevestigator.com. By providing large-scale expression profiles, the usability of this model organism is further enhanced, for example by enabling selection of control genes for quantitative real-time PCR. Now, gene expression levels across a broad range of conditions can be accessed online for P. patens. © 2014 The Authors The Plant Journal © 2014 John Wiley & Sons Ltd.

  13. ASD and schizophrenia show distinct developmental profiles in common genetic overlap with population-based social communication difficulties.

    PubMed

    St Pourcain, B; Robinson, E B; Anttila, V; Sullivan, B B; Maller, J; Golding, J; Skuse, D; Ring, S; Evans, D M; Zammit, S; Fisher, S E; Neale, B M; Anney, R J L; Ripke, S; Hollegaard, M V; Werge, T; Ronald, A; Grove, J; Hougaard, D M; Børglum, A D; Mortensen, P B; Daly, M J; Davey Smith, G

    2018-02-01

    Difficulties in social communication are part of the phenotypic overlap between autism spectrum disorders (ASD) and schizophrenia. Both conditions follow, however, distinct developmental patterns. Symptoms of ASD typically occur during early childhood, whereas most symptoms characteristic of schizophrenia do not appear before early adulthood. We investigated whether overlap in common genetic influences between these clinical conditions and impairments in social communication depends on the developmental stage of the assessed trait. Social communication difficulties were measured in typically-developing youth (Avon Longitudinal Study of Parents and Children, N⩽5553, longitudinal assessments at 8, 11, 14 and 17 years) using the Social Communication Disorder Checklist. Data on clinical ASD (PGC-ASD: 5305 cases, 5305 pseudo-controls; iPSYCH-ASD: 7783 cases, 11 359 controls) and schizophrenia (PGC-SCZ2: 34 241 cases, 45 604 controls, 1235 trios) were either obtained through the Psychiatric Genomics Consortium (PGC) or the Danish iPSYCH project. Overlap in genetic influences between ASD and social communication difficulties during development decreased with age, both in the PGC-ASD and the iPSYCH-ASD sample. Genetic overlap between schizophrenia and social communication difficulties, by contrast, persisted across age, as observed within two independent PGC-SCZ2 subsamples, and showed an increase in magnitude for traits assessed during later adolescence. ASD- and schizophrenia-related polygenic effects were unrelated to each other and changes in trait-disorder links reflect the heterogeneity of genetic factors influencing social communication difficulties during childhood versus later adolescence. Thus, both clinical ASD and schizophrenia share some genetic influences with impairments in social communication, but reveal distinct developmental profiles in their genetic links, consistent with the onset of clinical symptoms.

  14. Protection against MDMA-induced dopaminergic neurotoxicity in mice by methyllycaconitine: involvement of nicotinic receptors.

    PubMed

    Chipana, C; Camarasa, J; Pubill, D; Escubedo, E

    2006-09-01

    Methylenedioxymethamphetamine (MDMA) is a relatively selective dopaminergic neurotoxin in mice. Previous studies demonstrated the participation of alpha-7 nicotinic receptors (nAChR) in the neurotoxic effect of methamphetamine. The aim of this paper was to study the role of this receptor type in the acute effects and neurotoxicity of MDMA in mice. In vivo, methyllycaconitine (MLA), a specific alpha-7 nAChR antagonist, significantly prevented MDMA-induced neurotoxicity at dopaminergic but not at serotonergic level, without affecting MDMA-induced hyperthermia. Glial activation was also fully prevented by MLA. In vitro, MDMA induced intrasynaptosomal reactive oxygen species (ROS) generation, which was calcium-, nitric-oxide synthase-, and protein kinase C-dependent. Also, the increase in ROS was prevented by MLA and alpha-bungarotoxin. Experiments with reserpine point to endogenous dopamine (DA) as the main source of MDMA-induced ROS. MLA also brought the MDMA-induced inhibition of [3H]DA uptake down, from 73% to 11%. We demonstrate that a coordinated activation of alpha-7 nAChR, blockade of DA transporter function and displacement of DA from intracellular stores induced by MDMA produces a neurotoxic effect that can be prevented by MLA, suggesting that alpha-7 nAChR have a key role in the MDMA neurotoxicity in mice; however, the involvement of nicotinic receptors containing the beta2 subunit cannot be conclusively ruled out.

  15. Integrative genomic and proteomic profiling of human neuroblastoma SH-SY5Y cells reveals signatures of endosulfan exposure.

    PubMed

    Gandhi, Deepa; Tarale, Prashant; Naoghare, Pravin K; Bafana, Amit; Kannan, Krishnamurthi; Sivanesan, Saravanadevi

    2016-01-01

    Endosulfan, an organochlorine pesticide, is known to induce multiple disorders/abnormalities including neuro-degenerative disorders in many animal species. However, the molecular mechanism of endosulfan induced neuronal alterations is still not well understood. In the present study, the effect of sub-lethal concentration of endosulfan (3 μM) on human neuroblastoma cells (SH-SY5Y) was investigated using genomic and proteomic approaches. Microarray and 2D-PAGE followed by MALDI-TOF-MS analysis revealed differential expression of 831 transcripts and 16 proteins in exposed cells. A gene ontology enrichment analysis revealed that the differentially expressed genes and proteins were involved in variety of cellular events such as neuronal developmental pathway, immune response, cell differentiation, apoptosis, transmission of nerve impulse, axonogenesis, etc. The present study attempted to explore the possible molecular mechanism of endosulfan induced neuronal alterations in SH-SY5Y cells using an integrated genomic and proteomic approach. Based on the gene and protein profile possible mechanisms underlying endosulfan neurotoxicity were predicted. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Anesthetic-Related Neurotoxicity and Neuroimaging in Children: A Call for Conversation.

    PubMed

    Bjur, Kara A; Payne, Eric T; Nemergut, Michael E; Hu, Danqing; Flick, Randall P

    2017-05-01

    Each year millions of young children undergo procedures requiring sedation or general anesthesia. An increasing proportion of the anesthetics used are provided to optimize diagnostic imaging studies such as magnetic resonance imaging. Concern regarding the neurotoxicity of sedatives and anesthetics has prompted the US Food and Drug Administration to change labeling of anesthetics and sedative agents warning against repeated or prolonged exposure in young children. This review aims to summarize the risk of anesthesia in children with an emphasis on anesthetic-related neurotoxicity, acknowledge the value of pediatric neuroimaging, and address this call for conversation.

  17. Translational Biomarkers of Neurotoxicity: A Health and Environmental Sciences Institute Perspective on the Way Forward

    PubMed Central

    Roberts, Ruth A.; Aschner, Michael; Calligaro, David; Guilarte, Tomas R.; Hanig, Joseph P.; Herr, David W.; Hudzik, Thomas J.; Jeromin, Andreas; Kallman, Mary J.; Liachenko, Serguei; Lynch, James J.; Miller, Diane B.; Moser, Virginia C.; O’Callaghan, James P.; Slikker, William; Paule, Merle G.

    2015-01-01

    Neurotoxicity has been linked to a number of common drugs and chemicals, yet efficient and accurate methods to detect it are lacking. There is a need for more sensitive and specific biomarkers of neurotoxicity that can help diagnose and predict neurotoxicity that are relevant across animal models and translational from nonclinical to clinical data. Fluid-based biomarkers such as those found in serum, plasma, urine, and cerebrospinal fluid (CSF) have great potential due to the relative ease of sampling compared with tissues. Increasing evidence supports the potential utility of fluid-based biomarkers of neurotoxicity such as microRNAs, F2-isoprostanes, translocator protein, glial fibrillary acidic protein, ubiquitin C-terminal hydrolase L1, myelin basic protein, microtubule-associated protein-2, and total tau. However, some of these biomarkers such as those in CSF require invasive sampling or are specific to one disease such as Alzheimer’s, while others require further validation. Additionally, neuroimaging methodologies, including magnetic resonance imaging, magnetic resonance spectroscopy, and positron emission tomography, may also serve as potential biomarkers and have several advantages including being minimally invasive. The development of biomarkers of neurotoxicity is a goal shared by scientists across academia, government, and industry and is an ideal topic to be addressed via the Health and Environmental Sciences Institute (HESI) framework which provides a forum to collaborate on key challenging scientific topics. Here we utilize the HESI framework to propose a consensus on the relative potential of currently described biomarkers of neurotoxicity to assess utility of the selected biomarkers using a nonclinical model. PMID:26609132

  18. Differential Gene Expression Profiling of Functionally and Developmentally Distinct Human Prostate Epithelial Populations

    PubMed Central

    Liu, Haibo; Cadaneanu, Radu M; Lai, Kevin; Zhang, Baohui; Huo, Lihong; An, Dong Sun; Li, Xinmin; Lewis, Michael S; Garraway, Isla P

    2015-01-01

    BACKGROUND Human fetal prostate buds appear in the 10th gestational week as solid cords, which branch and form lumens in response to androgen 1. Previous in vivo analysis of prostate epithelia isolated from benign prostatectomy specimens indicated that Epcam+CD44−CD49fHi basal cells possess efficient tubule initiation capability relative to other subpopulations 2. Stromal interactions and branching morphogenesis displayed by adult tubule-initiating cells (TIC) are reminiscent of fetal prostate development. In the current study, we evaluated in vivo tubule initiation by human fetal prostate cells and determined expression profiles of fetal and adult epithelial subpopulations in an effort to identify pathways used by TIC. METHODS Immunostaining and FACS analysis based on Epcam, CD44, and CD49f expression demonstrated the majority (99.9%) of fetal prostate epithelial cells (FC) were Epcam+CD44− with variable levels of CD49f expression. Fetal populations isolated via cell sorting were implanted into immunocompromised mice. Total RNA isolation from Epcam+CD44−CD49fHi FC, adult Epcam+CD44−CD49fHi TIC, Epcam+CD44+CD49fHi basal cells (BC), and Epcam+CD44−CD49fLo luminal cells (LC) was performed, followed by microarray analysis of 19 samples using the Affymetrix Gene Chip Human U133 Plus 2.0 Array. Data was analyzed using Partek Genomics Suite Version 6.4. Genes selected showed >2-fold difference in expression and P < 5.00E-2. Results were validated with RT-PCR. RESULTS Grafts retrieved from Epcam+CD44− fetal cell implants displayed tubule formation with differentiation into basal and luminal compartments, while only stromal outgrowths were recovered from Epcam- fetal cell implants. Hierarchical clustering revealed four distinct groups determined by antigenic profile (TIC, BC, LC) and developmental stage (FC). TIC and BC displayed basal gene expression profiles, while LC expressed secretory genes. FC had a unique profile with the most similarities to adult TIC

  19. Differential gene expression profiling of functionally and developmentally distinct human prostate epithelial populations.

    PubMed

    Liu, Haibo; Cadaneanu, Radu M; Lai, Kevin; Zhang, Baohui; Huo, Lihong; An, Dong Sun; Li, Xinmin; Lewis, Michael S; Garraway, Isla P

    2015-05-01

    Human fetal prostate buds appear in the 10th gestational week as solid cords, which branch and form lumens in response to androgen 1. Previous in vivo analysis of prostate epithelia isolated from benign prostatectomy specimens indicated that Epcam⁺ CD44⁻ CD49f(Hi) basal cells possess efficient tubule initiation capability relative to other subpopulations 2. Stromal interactions and branching morphogenesis displayed by adult tubule-initiating cells (TIC) are reminiscent of fetal prostate development. In the current study, we evaluated in vivo tubule initiation by human fetal prostate cells and determined expression profiles of fetal and adult epithelial subpopulations in an effort to identify pathways used by TIC. Immunostaining and FACS analysis based on Epcam, CD44, and CD49f expression demonstrated the majority (99.9%) of fetal prostate epithelial cells (FC) were Epcam⁺ CD44⁻ with variable levels of CD49f expression. Fetal populations isolated via cell sorting were implanted into immunocompromised mice. Total RNA isolation from Epcam⁺ CD44⁻ CD49f(Hi) FC, adult Epcam⁺ CD44⁻ CD49f(Hi) TIC, Epcam⁺ CD44⁺ CD49f(Hi) basal cells (BC), and Epcam⁺ CD44⁻ CD49f(Lo) luminal cells (LC) was performed, followed by microarray analysis of 19 samples using the Affymetrix Gene Chip Human U133 Plus 2.0 Array. Data was analyzed using Partek Genomics Suite Version 6.4. Genes selected showed >2-fold difference in expression and P < 5.00E-2. Results were validated with RT-PCR. Grafts retrieved from Epcam⁺ CD44⁻ fetal cell implants displayed tubule formation with differentiation into basal and luminal compartments, while only stromal outgrowths were recovered from Epcam- fetal cell implants. Hierarchical clustering revealed four distinct groups determined by antigenic profile (TIC, BC, LC) and developmental stage (FC). TIC and BC displayed basal gene expression profiles, while LC expressed secretory genes. FC had a unique profile with the most similarities

  20. Ascorbic acid glucoside reduces neurotoxicity and glutathione depletion in mouse brain induced by nitrotriazole radiosensitazer.

    PubMed

    Cherdyntseva, Nadezda V; Ivanova, Anna A; Ivanov, Vladimir V; Cherdyntsev, Evgeny; Nair, Cherupally Krishnan Krishnan; Kagiya, Tsutomu V

    2013-01-01

    To investigate the potential of the anti-oxidant ascorbic acid glucoside (AA-2G) to modulate neurotoxicity induced by high doses of nitrotriazole radiosensitizer. Male and female C56Bl/6xCBA hybrid mice aged 8-14 weeks (weight 18-24 g) were used. Nitrotriazole drug radiosensitizer sanazole at a high dose of 2, 1 g/kg was per os administered to induce neurotoxicity at mice. Ascorbic acid glucoside was given 30 min before the sanazole administration. Serum ascorbic acid, brain glutathione level, as well as behavioral performance using open field apparatus were measured. Administration of high (non-therapeutic) doses of the nitrotriazole drug sanazole results in neurotoxicity in mice as evidenced from behavioral performance, emotional activity and depletion of the cellular antioxidant, glutathione, in the brain. The serum levels of ascorbic acid was also found reduced in high dose sanazole treated animals. Per os administration of ascorbic acid glucoside significantly reduced the neurotoxicity. This effect was associated with the prevention of glutathione depletion in mouse brain and restoring the ascorbic acid level in serum. Administration of ascorbic acid glucoside, but not ascorbic acid, before sanazole administration protected from sanazole-induced neurotoxicity by preventing the decrease in the brain reduced glutathione level and providing high level of ascorbic acid in plasma.

  1. Inulin supplementation during gestation mitigates acrylamide-induced maternal and fetal brain oxidative dysfunctions and neurotoxicity in rats.

    PubMed

    Krishna, Gokul; Muralidhara

    2015-01-01

    mitochondrial dysfunction induced by ACR in both milieus. Although the precise mechanism/s by which IN supplements during pregnancy attenuate ACR induced neurotoxic impact merits further investigations, we hypothesize that it may mediate through enhanced enteric microbiota and abrogation of oxidative stress. Further, our study provides an experimental approach to explore the neuroprotective role of prebiotic oligosaccharides during pregnancy in reducing the adverse impact of developmental neurotoxicants. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Psychometrics and utility of Psycho-Educational Profile-Revised as a developmental quotient measure among children with the dual disability of intellectual disability and autism.

    PubMed

    Alwinesh, Merlin Thanka Jemi; Joseph, Rachel Beulah Jansirani; Daniel, Anna; Abel, Julie Sandra; Shankar, Satya Raj; Mammen, Priya; Russell, Sushila; Russell, Paul Swamidhas Sudhakar

    2012-09-01

    There is no agreement about the measure to quantify the intellectual/developmental level in children with the dual disability of intellectual disability and autism. Therefore, we studied the psychometric properties and utility of Psycho-Educational Profile-Revised (PEP-R) as a developmental test in this population. We identified 116 children with dual disability from the day care and inpatient database of a specialised Autism Clinic. Scale and domain level scores of PEP-R were collected and analyzed. We examined the internal consistency, domain-total correlation of PEP-R and concurrent validity of PEP-R against Gesell's Developmental Schedule, inter-rater and test-retest reliability and utility of PEP-R among children with dual disability in different ages, functional level and severity of autism. Besides the adequate face and content validity, PEP-R demonstrates a good internal consistency (Cronbach's α ranging from 0.91 to 0.93) and domain-total correlation (ranging from 0.75 to 0.90). The inter-rater reliability (intraclass correlation coefficient, ICC = 0.96) and test-retest reliability (ICC = 0.87) for PEP-R is good. There is moderate-to-high concurrent validity with GDS (r ranging from 0.61 to 0.82; all Ps = 0.001). The utility of PEP-R as a developmental measure was good with infants, toddlers, pre-school and primary school children. The ability of PEP-R to measure the developmental age was good, irrespective of the severity of autism but was better with high-functioning children. The PEP-R as an intellectual/developmental test has strong psychometric properties in children with dual disability. It could be used in children with different age groups and severity of autism. PEP-R should be used with caution as a developmental test in children with dual disability who are low functioning.

  3. INTEGRATING EPIDEMIOLOGY AND TOXICOLOGY IN NEUROTOXICITY RISK ASSESSMENT.

    EPA Science Inventory

    This manuscript provides an overview of the use of data from toxicology and epidemiology studies for neurotoxicity risk assessment. Parameters such as the use of subjects, study designs, exposures, and measured outcomes are compared and contrasted. The main concern for use of d...

  4. Multiple sclerosis, brain radiotherapy, and risk of neurotoxicity: The Mayo Clinic experience

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, Robert C.; Lachance, Daniel H.; Lucchinetti, Claudia F.

    2006-11-15

    Purpose: The aim of this study was a retrospective assessment of neurotoxicity in patients with multiple sclerosis (MS) receiving external beam radiotherapy (EBRT) to the brain. Methods and Materials: We studied 15 consecutively treated patients with MS who received brain EBRT. Neurologic toxicity was assessed with the Common Toxicity Criteria v.3.0. Results: Median follow-up for the 5 living patients was 6.0 years (range, 3.3-27.4 years). No exacerbation of MS occurred in any patient during EBRT. Five patients had Grade 4 neurologic toxicity and 1 had possible Grade 5 toxicity. Kaplan-Meier estimated risk of neurotoxicity greater than Grade 4 at 5more » years was 57% (95% confidence interval, 27%-82%). Toxicity occurred at 37.5 to 54.0 Gy at a median of 1.0 year (range, 0.2-4.3 years) after EBRT. Univariate analysis showed an association between opposed-field irradiation of the temporal lobes, central white matter, and brainstem and increased risk of neurotoxicity (p < 0.04). Three of 6 cases of toxicity occurred in patients treated before 1986. Conclusions: External beam radiotherapy of the brain in patients with MS may be associated with an increased risk of neurotoxicity compared with patients without demyelinating illnesses. However, this risk is associated with treatment techniques that may not be comparable to modern, conformal radiotherapy.« less

  5. Cholecystokinin-8 inhibits methamphetamine-induced neurotoxicity via an anti-oxidative stress pathway.

    PubMed

    Wen, Di; An, Meiling; Gou, Hongyan; Liu, Xia; Liu, Li; Ma, Chunling; Cong, Bin

    2016-12-01

    As a powerful addictive psychostimulant drug, coupled with its neurotoxicity, methamphetamine (METH) abuse may lead to long-lasting abnormalities in brain structure and function. We found that pretreatment of cholecystokinin-8 (CCK-8) inhibited METH-induced brain cellular dopaminergic (DA) damage in the striatum and substantia nigra, and related behavioural deficits and hyperthermia. However, the mechanism of CCK-8 action on METH-induced toxicity is not clear. The aim of this study was to explore whether the possible protective effect of CCK-8 on METH-induced neurotoxicity involved anti-oxidative stress mechanisms. The subtypes of CCK receptors mediating the regulatory action of CCK-8 were also investigated. The present results revealed that CCK-8 dose-dependently inhibited METH-induced cytotoxic effect by activating the CCK2 receptor subtype in PC12 cells and CCK2 receptor stable transfected-HEK293 cells. Pre-treatment of CCK-8 before METH stimulation significantly attenuated the generation of reactive oxygen species and NADPH oxidase activation in PC12 cells. In conclusion, our study demonstrated a protective effect of CCK-8 on METH-induced neurotoxicity in vitro and suggested that a possible mechanism of this action was dependent on the activation of the CCK2 receptor to reduce the neurotoxicity and oxidative stress induced by METH stimulation. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Evaluation of the language profile in children with rolandic epilepsy and developmental dysphasia: Evidence for distinct strengths and weaknesses.

    PubMed

    Verly, M; Gerrits, R; Lagae, L; Sunaert, S; Rommel, N; Zink, I

    2017-07-01

    Although benign, rolandic epilepsy (RE) or benign childhood epilepsy with centro-temporal spikes is often associated with language impairment. Recently, fronto-rolandic EEG abnormalities have been described in children with developmental dysphasia (DD), suggesting an interaction between language impairment and interictal epileptiform discharges. To investigate if a behavioral-linguistic continuum between RE and DD exists, a clinical prospective study was carried out to evaluate the language profile of 15 children with RE and 22 children with DD. Language skills were assessed using an extensive, standardized test battery. Language was found to be impaired in both study groups, however RE and DD were associated with distinct language impairment profiles. Children with RE had difficulties with sentence comprehension, semantic verbal fluency and auditory short-term memory, which are unrelated to age of epilepsy onset and laterality of epileptic focus. In children with DD, sentence comprehension and verbal fluency were among their relative strengths, whereas sentence and lexical production constituted relative weaknesses. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Project TENDR: Targeting Environmental Neuro-Developmental Risks The TENDR Consensus Statement

    PubMed Central

    Bennett, Deborah; Bellinger, David C.; Birnbaum, Linda S.; Bradman, Asa; Chen, Aimin; Cory-Slechta, Deborah A.; Engel, Stephanie M.; Fallin, M. Daniele; Halladay, Alycia; Hauser, Russ; Hertz-Picciotto, Irva; Kwiatkowski, Carol F.; Lanphear, Bruce P.; Marquez, Emily; Marty, Melanie; McPartland, Jennifer; Newschaffer, Craig J.; Payne-Sturges, Devon; Patisaul, Heather B.; Perera, Frederica P.; Ritz, Beate; Sass, Jennifer; Schantz, Susan L.; Webster, Thomas F.; Whyatt, Robin M.; Woodruff, Tracey J.; Zoeller, R. Thomas; Anderko, Laura; Campbell, Carla; Conry, Jeanne A.; DeNicola, Nathaniel; Gould, Robert M.; Hirtz, Deborah; Huffling, Katie; Landrigan, Philip J.; Lavin, Arthur; Miller, Mark; Mitchell, Mark A.; Rubin, Leslie; Schettler, Ted; Tran, Ho Luong; Acosta, Annie; Brody, Charlotte; Miller, Elise; Miller, Pamela; Swanson, Maureen; Witherspoon, Nsedu Obot

    2016-01-01

    Summary: Children in America today are at an unacceptably high risk of developing neurodevelopmental disorders that affect the brain and nervous system including autism, attention deficit hyperactivity disorder, intellectual disabilities, and other learning and behavioral disabilities. These are complex disorders with multiple causes—genetic, social, and environmental. The contribution of toxic chemicals to these disorders can be prevented. Approach: Leading scientific and medical experts, along with children’s health advocates, came together in 2015 under the auspices of Project TENDR: Targeting Environmental Neuro-Developmental Risks to issue a call to action to reduce widespread exposures to chemicals that interfere with fetal and children’s brain development. Based on the available scientific evidence, the TENDR authors have identified prime examples of toxic chemicals and pollutants that increase children’s risks for neurodevelopmental disorders. These include chemicals that are used extensively in consumer products and that have become widespread in the environment. Some are chemicals to which children and pregnant women are regularly exposed, and they are detected in the bodies of virtually all Americans in national surveys conducted by the U.S. Centers for Disease Control and Prevention. The vast majority of chemicals in industrial and consumer products undergo almost no testing for developmental neurotoxicity or other health effects. Conclusion: Based on these findings, we assert that the current system in the United States for evaluating scientific evidence and making health-based decisions about environmental chemicals is fundamentally broken. To help reduce the unacceptably high prevalence of neurodevelopmental disorders in our children, we must eliminate or significantly reduce exposures to chemicals that contribute to these conditions. We must adopt a new framework for assessing chemicals that have the potential to disrupt brain development

  8. Neurotoxic effects of ecstasy on the thalamus.

    PubMed

    de Win, Maartje M L; Jager, Gerry; Booij, Jan; Reneman, Liesbeth; Schilt, Thelma; Lavini, Cristina; Olabarriaga, Sílvia D; Ramsey, Nick F; Heeten, Gerard J den; van den Brink, Wim

    2008-10-01

    Neurotoxic effects of ecstasy have been reported, although it remains unclear whether effects can be attributed to ecstasy, other recreational drugs or a combination of these. To assess specific/independent neurotoxic effects of heavy ecstasy use and contributions of amphetamine, cocaine and cannabis as part of The Netherlands XTC Toxicity (NeXT) study. Effects of ecstasy and other substances were assessed with (1)H-magnetic resonance spectroscopy, diffusion tensor imaging, perfusion weighted imaging and [(123)I]2beta-carbomethoxy-3beta-(4-iodophenyl)-tropane ([(123)I]beta-CIT) single photon emission computed tomography (serotonin transporters) in a sample (n=71) with broad variation in drug use, using multiple regression analyses. Ecstasy showed specific effects in the thalamus with decreased [(123)I]beta-CIT binding, suggesting serotonergic axonal damage; decreased fractional anisotropy, suggesting axonal loss; and increased cerebral blood volume probably caused by serotonin depletion. Ecstasy had no effect on brain metabolites and apparent diffusion coefficients. Converging evidence was found for a specific toxic effect of ecstasy on serotonergic axons in the thalamus.

  9. Dizocilpine and reduced body temperature do not prevent methamphetamine-induced neurotoxicity in the vervet monkey: [11C]WIN 35,428 - positron emission tomography studies.

    PubMed

    Melega, W P; Lacan, G; Harvey, D C; Huang, S C; Phelps, M E

    1998-12-11

    [11C]WIN 35,428 (WIN), a cocaine analog that binds to the dopamine transporter (DAT), and positron emission tomography (PET) were used to evaluate the potential neuroprotective effects of dizocilpine (MK-801) on methamphetamine (MeAmp) induced neurotoxicity in the striatal dopamine system of the vervet monkey. MK-801 (1 mg/kg, i.m.) was administered 30 min prior to a neurotoxic MeAmp dosage for this species (2 x 2 mg/kg, 4 h apart); control subjects received MeAmp. MK-801 treated subjects were anesthetized by the drug for 6-8 h; throughout that period, a 2-3 degrees C decrease in body temperature was measured. At 1-2 weeks post-MeAmp, decreases of approximately 75% in striatal WIN binding were observed for both MK-801/MeAmp and MeAmp subjects. Thus, in this non-human primate species, the combination of MK-801 pretreatment and reduced body temperature did not provide protection from the MeAmp-induced loss of DAT. Further, the absence of an elevated body temperature during the acute MeAmp exposure period indicated that hyperthermia, per se, was not a necessary concomitant of the MeAmp neurotoxicity profile as has been previously demonstrated in rodents. These results provide evidence that different regulatory factors maintain the integrity of the rodent and primate striatal dopamine systems.

  10. Oxidative damage and neurodegeneration in manganese-induced neurotoxicity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Milatovic, Dejan; Zaja-Milatovic, Snjezana; Gupta, Ramesh C.

    2009-10-15

    Exposure to excessive manganese (Mn) levels results in neurotoxicity to the extrapyramidal system and the development of Parkinson's disease (PD)-like movement disorder, referred to as manganism. Although the mechanisms by which Mn induces neuronal damage are not well defined, its neurotoxicity appears to be regulated by a number of factors, including oxidative injury, mitochondrial dysfunction and neuroinflammation. To investigate the mechanisms underlying Mn neurotoxicity, we studied the effects of Mn on reactive oxygen species (ROS) formation, changes in high-energy phosphates (HEP), neuroinflammation mediators and associated neuronal dysfunctions both in vitro and in vivo. Primary cortical neuronal cultures showed concentration-dependent alterationsmore » in biomarkers of oxidative damage, F{sub 2}-isoprostanes (F{sub 2}-IsoPs) and mitochondrial dysfunction (ATP), as early as 2 h following Mn exposure. Treatment of neurons with 500 {mu}M Mn also resulted in time-dependent increases in the levels of the inflammatory biomarker, prostaglandin E{sub 2} (PGE{sub 2}). In vivo analyses corroborated these findings, establishing that either a single or three (100 mg/kg, s.c.) Mn injections (days 1, 4 and 7) induced significant increases in F{sub 2}-IsoPs and PGE{sub 2} in adult mouse brain 24 h following the last injection. Quantitative morphometric analyses of Golgi-impregnated striatal sections from mice exposed to single or three Mn injections revealed progressive spine degeneration and dendritic damage of medium spiny neurons (MSNs). These findings suggest that oxidative stress, mitochondrial dysfunction and neuroinflammation are underlying mechanisms in Mn-induced neurodegeneration.« less

  11. A review of the neurotoxicity risk of selected hydrocarbon fuels.

    PubMed

    Ritchie, G D; Still, K R; Alexander, W K; Nordholm, A F; Wilson, C L; Rossi, J; Mattie, D R

    2001-01-01

    Over 1.3 million civilian and military personnel are occupationally exposed to hydrocarbon fuels, emphasizing gasoline, jet fuel, diesel fuel, or kerosene. These exposures may occur acutely or chronically to raw fuel, vapor, aerosol, or fuel combustion exhaust by dermal, respiratory inhalation, or oral ingestion routes, and commonly occur concurrently with exposure to other chemicals and stressors. Hydrocarbon fuels are complex mixtures of 150-260+ aliphatic and aromatic hydrocarbon compounds containing varying concentrations of potential neurotoxicants including benzene, n-hexane, toluene, xylenes, naphthalene, and certain n-C9-C12 fractions (n-propylbenzene, trimethylbenzene isomers). Due to their natural petroleum base, the chemical composition of different hydrocarbon fuels is not defined, and the fuels are classified according to broad performance criteria such as flash and boiling points, complicating toxicological comparisons. While hydrocarbon fuel exposures occur typically at concentrations below permissible exposure limits for their constituent chemicals, it is unknown whether additive or synergistic interactions may result in unpredicted neurotoxicity. The inclusion of up to six performance additives in existing fuel formulations presents additional neurotoxicity challenge. Additionally, exposures to hydrocarbon fuels, typically with minimal respiratory or dermal protection, range from weekly fueling of personal automobiles to waist-deep immersion of personnel in raw fuel during maintenance of aircraft fuel tanks. Occupational exposures may occur on a near daily basis for from several months to over 20 yr. A number of published studies have reported acute or persisting neurotoxic effects from acute, subchronic, or chronic exposure of humans or animals to hydrocarbon fuels, or to certain constituent chemicals of these fuels. This review summarizes human and animal studies of hydrocarbon fuel-induced neurotoxicity and neurobehavioral consequences. It is

  12. Neurotoxicity produced by dibromoacetic acid in drinking water of rats.

    PubMed

    Moser, V C; Phillips, P M; Levine, A B; McDaniel, K L; Sills, R C; Jortner, B S; Butt, M T

    2004-05-01

    An evaluation of potential adverse human health effects of disinfection byproducts requires study of both cancer and noncancer endpoints; however, no studies have evaluated the neurotoxic potential of a common haloacetic acid, dibromoacetic acid (DBA). This study characterized the neurotoxicity of DBA during 6-month exposure in the drinking water of rats. Adolescent male and female Fischer 344 rats were administered DBA at 0, 0.2, 0.6, and 1.5 g/l. On a mg/kg/day basis, the consumed dosages decreased greatly over the exposure period, with average intakes of 0, 20, 72, and 161 mg/kg/day. Weight gain was depressed in the high-concentration group, and concentration-related diarrhea and hair loss were observed early in exposure. Testing with a functional observational battery and motor activity took place before dosing and at 1, 2, 4, and 6 months. DBA produced concentration-related neuromuscular toxicity (mid and high concentrations) characterized by limb weakness, mild gait abnormalities, and hypotonia, as well as sensorimotor depression (all concentrations), with decreased responses to a tail-pinch and click. Other signs of toxicity at the highest concentration included decreased activity and chest clasping. Neurotoxicity was evident as early as one month, but did not progress with continued exposure. The major neuropathological finding was degeneration of spinal cord nerve fibers (mid and high concentrations). Cellular vacuolization in spinal cord gray matter (mostly) and in white matter (occasionally) tracts was also observed. No treatment-related changes were seen in brain, eyes, peripheral nerves, or peripheral ganglia. The lowest-observable effect level for neurobehavioral changes was 20 mg/kg/day (produced by 0.2 g/l, lowest concentration tested), whereas this dosage was a no-effect level for neuropathological changes. These studies suggest that neurotoxicity should be considered in the overall hazard evaluation of haloacetic acids.

  13. Sulthiame but not levetiracetam exerts neurotoxic effect in the developing rat brain.

    PubMed

    Manthey, Daniela; Asimiadou, Stella; Stefovska, Vanya; Kaindl, Angela M; Fassbender, Jessica; Ikonomidou, Chrysanthy; Bittigau, Petra

    2005-06-01

    Antiepileptic drugs (AEDs) used to treat seizures in pregnant women, infants, and young children can cause cognitive impairment. One mechanism implicated in the development of neurocognitive deficits is a pathologic enhancement of physiologically occurring apoptotic neuronal death in the developing brain. We investigated whether the newer antiepileptic drug levetiracetam (LEV) and the older antiepileptic drug sulthiame (SUL) have neurotoxic properties in the developing rat brain. SUL significantly enhanced neuronal death in the brains of rat pups ages 0 to 7 days at doses of 100 mg/kg and above, whereas LEV did not show this neurotoxic effect. Dosages of both drugs used in the context of this study comply with an effective anticonvulsant dose range applied in rodent seizure models. Thus, LEV is an AED which lacks neurotoxicity in the developing rat brain and should be considered in the treatment of epilepsy in pregnant women, infants, and toddlers once general safety issues have been properly addressed.

  14. Translational Biomarkers of Neurotoxicity: A Health and Environmental Sciences Institute Perspective on the Way Forward.

    PubMed

    Roberts, Ruth A; Aschner, Michael; Calligaro, David; Guilarte, Tomas R; Hanig, Joseph P; Herr, David W; Hudzik, Thomas J; Jeromin, Andreas; Kallman, Mary J; Liachenko, Serguei; Lynch, James J; Miller, Diane B; Moser, Virginia C; O'Callaghan, James P; Slikker, William; Paule, Merle G

    2015-12-01

    Neurotoxicity has been linked to a number of common drugs and chemicals, yet efficient and accurate methods to detect it are lacking. There is a need for more sensitive and specific biomarkers of neurotoxicity that can help diagnose and predict neurotoxicity that are relevant across animal models and translational from nonclinical to clinical data. Fluid-based biomarkers such as those found in serum, plasma, urine, and cerebrospinal fluid (CSF) have great potential due to the relative ease of sampling compared with tissues. Increasing evidence supports the potential utility of fluid-based biomarkers of neurotoxicity such as microRNAs, F2-isoprostanes, translocator protein, glial fibrillary acidic protein, ubiquitin C-terminal hydrolase L1, myelin basic protein, microtubule-associated protein-2, and total tau. However, some of these biomarkers such as those in CSF require invasive sampling or are specific to one disease such as Alzheimer's, while others require further validation. Additionally, neuroimaging methodologies, including magnetic resonance imaging, magnetic resonance spectroscopy, and positron emission tomography, may also serve as potential biomarkers and have several advantages including being minimally invasive. The development of biomarkers of neurotoxicity is a goal shared by scientists across academia, government, and industry and is an ideal topic to be addressed via the Health and Environmental Sciences Institute (HESI) framework which provides a forum to collaborate on key challenging scientific topics. Here we utilize the HESI framework to propose a consensus on the relative potential of currently described biomarkers of neurotoxicity to assess utility of the selected biomarkers using a nonclinical model. © The Author 2015. Published by Oxford University Press on behalf of the Society of Toxicology.

  15. GRIN2A polymorphisms and expression levels are associated with lead-induced neurotoxicity.

    PubMed

    Wu, Yu; Wang, Yiqing; Wang, Miaomiao; Sun, Na; Li, Chunping

    2017-04-01

    Lead acts as an antagonist of the N-methyl-d-aspartate receptor (NMDAR). GRIN2A encodes an important subunit of NMDARs and may be a critical factor in the mechanism of lead neurotoxicity. Changes in GRIN2A expression levels or gene variants may be mechanisms of lead-induced neurotoxicity. In this study, we hypothesized that GRIN2A might contribute to lead-induced neurotoxicity. A preliminary HEK293 cell experiment was performed to analyze the association between GRIN2A expression and lead exposure. In addition, in a population-based study, serum GRIN2A levels were measured in both lead-exposed and control populations. To detect further the influence of GRIN2A gene single nucleotide polymorphisms (SNPs) in lead-induced neurotoxicity, 3 tag SNPs (rs2650429, rs6497540, and rs9302415) were genotyped in a case-control study that included 399 lead-exposed subjects and 398 controls. Lead exposure decreased GRIN2A expression levels in HEK293 cells ( p < 0.001) compared with lead-free cells. Lead-exposed individuals had lower serum GRIN2A levels compared with controls ( p < 0.001), and we found a trend of decreasing GRIN2A level with an increase in blood lead level ( p < 0.001). In addition, we found a significant association between rs2650429 CT and TT genotypes and risk of lead poisoning compared with the rs2650429 CC genotype (adjusted odds ratio = 1.42, 95% confidence interval = 1.01-2.00]. Therefore, changes in GRIN2A expression levels and variants may be important mechanisms in the development of lead-induced neurotoxicity.

  16. Functional neuroimaging of amphetamine-induced striatal neurotoxicity in the pleiotrophin knockout mouse model.

    PubMed

    Soto-Montenegro, María Luisa; Vicente-Rodríguez, Marta; Pérez-García, Carmen; Gramage, Esther; Desco, Manuel; Herradón, Gonzalo

    2015-03-30

    Amphetamine-induced neurotoxic effects have traditionally been studied using immunohistochemistry and other post-mortem techniques, which have proven invaluable for the definition of amphetamine-induced dopaminergic damage in the nigrostriatal pathway. However, these approaches are limited in that they require large numbers of animals and do not provide the temporal data that can be collected in longitudinal studies using functional neuroimaging techniques. Unfortunately, functional imaging studies in rodent models of drug-induced neurotoxicity are lacking. The aim of this study was to evaluate in vivo the changes in brain glucose metabolism caused by amphetamine in the pleiotrophin knockout mouse (PTN-/-), a genetic model with increased vulnerability to amphetamine-induced neurotoxic effects. We showed that administration of amphetamine causes a significantly greater loss of striatal tyrosine hydroxylase content in PTN-/- mice than in wild-type (WT) mice. In addition, [(18)F]-FDG-PET shows that amphetamine produces a significant decrease in glucose metabolism in the striatum and prefrontal cortex in the PTN-/- mice, compared to WT mice. These findings suggest that [(18)F]-FDG uptake measured by PET is useful for detecting amphetamine-induced changes in glucose metabolism in vivo in specific brain areas, including the striatum, a key feature of amphetamine-induced neurotoxicity. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  17. Oxidative mechanisms contributing to the developmental neurotoxicity of nicotine and chlorpyrifos

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qiao, Dan; Seidler, Frederic J.; Slotkin, Theodore A.

    Nicotine and chlorpyrifos are developmental neurotoxicants that, despite their differences in structure and mechanism of action, share many aspects for damage to the developing brain. Both are thought to generate oxidative radicals; in the current study, we evaluated their ability to produce lipid peroxidation in two in vitro models of neural cell development (PC12 and SH-SY5Y cells) and for nicotine, with treatment of adolescent rats in vivo. Nicotine and chlorpyrifos, in concentrations relevant to human exposures, elicited an increase in thiobarbituric-acid-reactive species (TBARS) in undifferentiated cells, an effect that was prevented by addition of the antioxidant, Vitamin E. Initiating differentiationmore » with nerve growth factor, which enhances nicotinic acetylcholine receptor expression, increased the TBARS response to nicotine but not chlorpyrifos, suggesting that the two agents act by different originating mechanisms to converge on the endpoint of oxidative damage. Furthermore, nicotine protected the cells from oxidative damage evoked by chlorpyrifos and similarly blocked the antimitotic effect of chlorpyrifos. Treatment of adolescent rats with nicotine elicited increases in TBARS in multiple brain regions when given in doses that simulate plasma nicotine concentrations found in smokers or at one-tenth the dose. Our results indicate that nicotine and chlorpyrifos elicit oxidative damage to developing neural cells both in vitro and in vivo, a mechanism that explains some of the neurodevelopmental endpoints that are common to the two agents. The balance between neuroprotectant and neurotoxicant actions of nicotine may be particularly important in situations where exposure to tobacco smoke is combined with other prooxidant insults.« less

  18. The red tide toxin, brevetoxin, induces embryo toxicity and developmental abnormalities.

    PubMed Central

    Kimm-Brinson, K L; Ramsdell, J S

    2001-01-01

    Brevetoxins are lipophilic polyether toxins produced by the red tide dinoflagellate Gymnodinium breve, and their neurotoxic effects on adult animals have been documented. In this study, we characterized adverse developmental effects of brevetoxin-1 (PbTx-1) using an exposure paradigm that parallels the maternal oocyte transfer of toxin. Medaka fish (Oryzias latipes) embryos were exposed to PbTx-1 via microinjection of toxin reconstituted in a triolein oil droplet. Embryos microinjected with doses of 0.1-8.0 ng/egg (ppm) of brevetoxin-1 exhibited pronounced muscular activity (hyperkinesis) after embryonic day 4. Upon hatching, morphologic abnormalities were commonly found in embryos at the following lowest adverse effect levels: 1.0-3.0 ppm, lateral curvature of the spinal column; 3.1-3.4 ppm, herniation of brain meninges through defects in the skull; and 3.4-4.0 ppm, malpositioned eye. Hatching abnormalities were also commonly observed at brevetoxin doses of 2.0 ppm and higher with head-first, as opposed to the normal tail-first, hatching, and doses > 4.1 ng/egg produced embryos that developed but failed to hatch. Given the similarity of developmental processes found between higher and lower vertebrates, teratogenic effects of brevetoxins have the potential to occur among different phylogenetic classes. The observation of developmental abnormalities after PbTx-1 exposure identifies a new spectrum of adverse effects that may be expected to occur following exposure to G. breve red tide events. PMID:11335186

  19. Creating Profiles of High Risk Students.

    ERIC Educational Resources Information Center

    Higbee, Jeanne L.; Dwinell, Patricia L.

    Measures used at the Division of Developmental Studies at the University of Georgia in constructing a student profile (specifically, of high-risk college freshmen) are discussed. The areas measured concern: goals; learning styles; career exploration; stress and academic anxiety; developmental tasks; and locus of control. The goals checklist…

  20. Drug interactions may be important risk factors for methotrexate neurotoxicity, particularly in pediatric leukemia patients.

    PubMed

    Forster, Victoria J; van Delft, Frederik W; Baird, Susan F; Mair, Shona; Skinner, Roderick; Halsey, Christina

    2016-11-01

    Methotrexate administration is associated with frequent adverse neurological events during treatment for childhood acute lymphoblastic leukemia. Here, we present evidence to support the role of common drug interactions and low vitamin B 12 levels in potentiating methotrexate neurotoxicity. We review the published evidence and highlight key potential drug interactions as well as present clinical evidence of severe methotrexate neurotoxicity in conjunction with nitrous oxide anesthesia and measurements of vitamin B 12 levels among pediatric leukemia patients during therapy. We describe a very plausible mechanism for methotrexate neurotoxicity in pediatric leukemia patients involving reduction in methionine and consequential disruption of myelin production. We provide evidence that a number of commonly prescribed drugs in pediatric leukemia management interact with the same folate biosynthetic pathways and/or reduce functional vitamin B 12 levels and hence are likely to increase the toxicity of methotrexate in these patients. We also present a brief case study supporting out hypothesis that nitrous oxide contributes to methotrexate neurotoxicity and a nutritional study, showing that vitamin B 12 deficiency is common in pediatric leukemia patients. Use of nitrous oxide in pediatric leukemia patients at the same time as methotrexate use should be avoided especially as many suitable alternative anesthetic agents exist. Clinicians should consider monitoring levels of vitamin B 12 in patients suspected of having methotrexate-induced neurotoxic effects.

  1. Is the PentaBDE replacement, tris (1,3-dichloro-2-propyl) phosphate (TDCPP), a developmental neurotoxicant? Studies in PC12 cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dishaw, Laura V.; Powers, Christina M.; Ryde, Ian T.

    Organophosphate flame retardants (OPFRs) are used as replacements for the commercial PentaBDE mixture that was phased out in 2004. OPFRs are ubiquitous in the environment and detected at high concentrations in residential dust, suggesting widespread human exposure. OPFRs are structurally similar to neurotoxic organophosphate pesticides, raising concerns about exposure and toxicity to humans. This study evaluated the neurotoxicity of tris (1,3-dichloro-2-propyl) phosphate (TDCPP) compared to the organophosphate pesticide, chlorpyrifos (CPF), a known developmental neurotoxicant. We also tested the neurotoxicity of three structurally similar OPFRs, tris (2-chloroethyl) phosphate (TCEP), tris (1-chloropropyl) phosphate (TCPP), and tris (2,3-dibromopropyl) phosphate (TDBPP), and 2,2 Primemore » ,4,4 Prime -tetrabromodiphenyl ether (BDE-47), a major component of PentaBDE. Using undifferentiated and differentiating PC12 cells, changes in DNA synthesis, oxidative stress, differentiation into dopaminergic or cholinergic neurophenotypes, cell number, cell growth and neurite growth were assessed. TDCPP displayed concentration-dependent neurotoxicity, often with effects equivalent to or greater than equimolar concentrations of CPF. TDCPP inhibited DNA synthesis, and all OPFRs decreased cell number and altered neurodifferentiation. Although TDCPP elevated oxidative stress, there was no adverse effect on cell viability or growth. TDCPP and TDBPP promoted differentiation into both neuronal phenotypes, while TCEP and TCPP promoted only the cholinergic phenotype. BDE-47 had no effect on cell number, cell growth or neurite growth. Our results demonstrate that different OPFRs show divergent effects on neurodifferentiation, suggesting the participation of multiple mechanisms of toxicity. Additionally, these data suggest that OPFRs may affect neurodevelopment with similar or greater potency compared to known and suspected neurotoxicants.« less

  2. Neurotoxicity of trimethyltin in rat cochlear organotypic cultures

    PubMed Central

    Yu, Jintao; Ding, Dalian; Sun, Hong; Salvi, Richard; Roth, Jerome A.

    2015-01-01

    Trimethyltin (TMT), which has a variety of applications in industry and agricultural is a neurotoxin that is known to affect the auditory system as well as central nervous system (CNS) of humans and experimental animals. However, the mechanisms underlying TMT-induced auditory dysfunction are poorly understood. To gain insights into the neurotoxic effect of TMT on the peripheral auditory system, we treated cochlear organotypic cultures with concentrations of TMT ranging from 5 to 100 μM for 24 h. Interestingly, TMT preferentially damaged auditory nerve fibers and spiral ganglion neurons in a dose-dependent manner, but had no noticeable effects on the sensory hair cells at the doses employed. TMT-induced damage to auditory neurons was associated with significant soma shrinkage, nuclear condensation and activation of caspase-3, biomarkers indicative of apoptotic cell death. Our findings show that TMT is exclusively neurotoxicity in rat cochlear organotypic culture and that TMT-induced auditory neuron death occurs through a caspase-mediated apoptotic pathway. PMID:25957118

  3. Neurotoxicity of dental amalgam is mediated by zinc.

    PubMed

    Lobner, D; Asrari, M

    2003-03-01

    The use of dental amalgam is controversial largely because it contains mercury. We tested whether amalgam caused toxicity in neuronal cultures and whether that toxicity was caused by mercury. In this study, we used cortical cell cultures to show for the first time that amalgam causes nerve cell toxicity in culture. However, the toxicity was not blocked by the mercury chelator, 2,3-dimercaptopropane-1-sulphonate (DMPS), but was blocked by the metal chelator, calcium disodium ethylenediaminetetraacetate (CaEDTA). DMPS was an effective mercury chelator in this system, since it blocked mercury toxicity. Of the components that comprise amalgam (mercury, zinc, tin, copper, and silver), only zinc neurotoxicity was blocked by CaEDTA. These results indicate that amalgam is toxic to nerve cells in culture by releasing zinc. While zinc is known to be neurotoxic, ingestion of zinc is not a major concern because zinc levels in the body are tightly regulated.

  4. Cnidarian Neurotoxic Peptides Affecting Central Nervous System Targets.

    PubMed

    Lazcano-Pérez, Fernando; Hernández-Guzmán, Ulises; Sánchez-Rodríguez, Judith; Arreguín-Espinosa, Roberto

    2016-01-01

    Natural products from animal venoms have been used widely in the discovery of novel molecules with particular biological activities that enable their use as potential drug candidates. The phylum Cnidaria (jellyfish, sea anemones, corals zoanthids, hydrozoans, etc.) is the most ancient venomous phylum on earth. Its venoms are composed of a complex mixture of peptidic compounds with neurotoxic and cytolitic properties that have shown activity on mammalian systems despite the fact that they are naturally targeted against fish and invertebrate preys, mainly crustaceans. For this reason, cnidarian venoms are an interesting and vast source of molecules with a remarkable activity on central nervous system, targeting mainly voltage-gated ion channels, ASIC channels, and TRPV1 receptors. In this brief review, we list the amino acid sequences of most cnidarian neurotoxic peptides reported to date. Additionally, we propose the inclusion of a new type of voltage-gated sea anemone sodium channel toxins based on the most recent reports.

  5. Acute D2/D3 dopaminergic agonism but chronic D2/D3 antagonism prevents NMDA antagonist neurotoxicity.

    PubMed

    Farber, Nuri B; Nemmers, Brian; Noguchi, Kevin K

    2006-09-15

    Antagonists of the N-methyl-D-aspartate (NMDA) glutamate receptor, most likely by producing disinhibtion in complex circuits, acutely produce psychosis and cognitive disturbances in humans, and neurotoxicity in rodents. Studies examining NMDA Receptor Hypofunction (NRHypo) neurotoxicity in animals, therefore, may provide insights into the pathophysiology of psychotic disorders. Dopaminergic D2 and/or D3 agents can modify psychosis over days to weeks, suggesting involvement of these transmitter system(s). We studied the ability of D2/D3 agonists and antagonists to modify NRHypo neurotoxicity both after a one-time acute exposure and after chronic daily exposure. Here we report that D2/D3 dopamine agonists, probably via D3 receptors, prevent NRHypo neurotoxicity when given acutely. The protective effect with D2/D3 agonists is not seen after chronic daily dosing. In contrast, the antipsychotic haloperidol does not affect NRHypo neurotoxicity when given acutely at D2/D3 doses. However, after chronic daily dosing of 1, 3, or 5 weeks, haloperidol does prevent NRHypo neurotoxicity with longer durations producing greater protection. Understanding the changes that occur in the NRHypo circuit after chronic exposure to dopaminergic agents could provide important clues into the pathophysiology of psychotic disorders.

  6. Involvement of ERK in NMDA receptor-independent cortical neurotoxicity of hydrogen sulfide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kurokawa, Yuko; Sekiguchi, Fumiko; Kubo, Satoko

    2011-11-04

    Highlights: Black-Right-Pointing-Pointer Hydrogen sulfide causes NMDA receptor-independent neurotoxicity in mouse fetal cortical neurons. Black-Right-Pointing-Pointer Activation of ERK mediates the toxicity of hydrogen sulfide. Black-Right-Pointing-Pointer Apoptotic mechanisms are involved in the hydrogen-induced cell death. -- Abstract: Hydrogen sulfide (H{sub 2}S), a gasotransmitter, exerts both neurotoxicity and neuroprotection, and targets multiple molecules including NMDA receptors, T-type calcium channels and NO synthase (NOS) that might affect neuronal viability. Here, we determined and characterized effects of NaHS, an H{sub 2}S donor, on cell viability in the primary cultures of mouse fetal cortical neurons. NaHS caused neuronal death, as assessed by LDH release and trypanmore » blue staining, but did not significantly reduce the glutamate toxicity. The neurotoxicity of NaHS was resistant to inhibitors of NMDA receptors, T-type calcium channels and NOS, and was blocked by inhibitors of MEK, but not JNK, p38 MAP kinase, PKC and Src. NaHS caused prompt phosphorylation of ERK and upregulation of Bad, followed by translocation of Bax to mitochondria and release of mitochondrial cytochrome c, leading to the nuclear condensation/fragmentation. These effects of NaHS were suppressed by the MEK inhibitor. Our data suggest that the NMDA receptor-independent neurotoxicity of H{sub 2}S involves activation of the MEK/ERK pathway and some apoptotic mechanisms.« less

  7. p73 gene in dopaminergic neurons is highly susceptible to manganese neurotoxicity.

    PubMed

    Kim, Dong-Suk; Jin, Huajun; Anantharam, Vellareddy; Gordon, Richard; Kanthasamy, Arthi; Kanthasamy, Anumantha G

    2017-03-01

    Chronic exposure to elevated levels of manganese (Mn) has been linked to a Parkinsonian-like movement disorder, resulting from dysfunction of the extrapyramidal motor system within the basal ganglia. However, the exact cellular and molecular mechanisms of Mn-induced neurotoxicity remain elusive. In this study, we treated C57BL/6J mice with 30mg/kg Mn via oral gavage for 30 days. Interestingly, in nigral tissues of Mn-exposed mice, we found a significant downregulation of the truncated isoform of p73 protein at the N-terminus (ΔNp73). To further determine the functional role of Mn-induced p73 downregulation in Mn neurotoxicity, we examined the interrelationship between the effect of Mn on p73 gene expression and apoptotic cell death in an N27 dopaminergic neuronal model. Consistent with our animal study, 300μM Mn treatment significantly suppressed p73 mRNA expression in N27 dopaminergic cells. We further determined that protein levels of the ΔNp73 isoform was also reduced in Mn-treated N27 cells and primary striatal cultures. Furthermore, overexpression of ΔNp73 conferred modest cellular protection against Mn-induced neurotoxicity. Taken together, our results demonstrate that Mn exposure downregulates p73 gene expression resulting in enhanced susceptibility to apoptotic cell death. Thus, further characterization of the cellular mechanism underlying p73 gene downregulation will improve our understanding of the molecular underpinnings of Mn neurotoxicity. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Performance of South African children on the Communication and Symbolic Behavior Scales-Developmental Profile (CSBS DP).

    PubMed

    Chambers, Nola; Stronach, Sheri T; Wetherby, Amy M

    2016-05-01

    Substantial development in social communication skills occurs in the first two years of life. Growth should be evident in sharing emotion and eye gaze; rate of communication, communicating for a variety of functions; using gestures, sounds and words; understanding language, and using functional and pretend actions with objects in play. A delay in these early social communication skills may be the first sign of a developmental delay in young children in nearly all categories of disabilities-including specific language impairment, autism spectrum disorder, HIV/AIDS, lack of environmental stimulation or institutionalization, and global developmental delays-and early detection of these delays is critical for enrolment in appropriate early intervention services. No standardized tests of early social communication skills exist for very young children in South Africa (SA). An existing evaluation tool that has the potential to be culturally fair for children from cultural backgrounds different to the standardization group is the Communication and Symbolic Behaviour Scales-Developmental Profile (CSBS DP). This study aimed to document the performance of a group of English-speaking SA children ranging in age from 12 to 24 months on the CSBS DP and to compare this performance with the original standardization sample. Sixty-seven English-speaking SA children from a range of cultural and linguistic backgrounds were assessed on the CSBS DP Behaviour Sample. Group scores were compared with the original standardization sample using inferential statistics. The results provide preliminary support for the suitability and validity of the face-to-face Behaviour Sample as a measure of early social communication skills in this sample of English-speaking SA children from a range of cultural groups between 12 and 24 months of age. While further research in the SA population is needed, these findings are a first step towards validating a culturally appropriate measure for early detection of

  9. Resveratrol Suppresses Rotenone-induced Neurotoxicity Through Activation of SIRT1/Akt1 Signaling Pathway.

    PubMed

    Wang, Hui; Dong, Xiaoguang; Liu, Zengxun; Zhu, Shaowei; Liu, Haili; Fan, Wenchuang; Hu, Yanlai; Hu, Tao; Yu, Yonghui; Li, Yizhao; Liu, Tianwei; Xie, Chengjia; Gao, Qing; Li, Guibao; Zhang, Jing; Ding, Zhaoxi; Sun, Jinhao

    2018-06-01

    Rotenone is a common pesticide and has been reported as one of the risk factors for Parkinson disease. Rotenone can cause neuronal death or apoptosis through inducing oxidative injury and inhibiting mitochondrial function. As a natural polyphenolic compound, resveratrol possesses the antioxidant capacity and neuroprotective effect. However, the mechanism underlying the neuroprotective effect of resveratrol against rotenone-induced neurotoxicity remains elusive. Here, we treated PC12 cells with rotenone to induce neurotoxicity, and the neurotoxic cells were subjected to resveratrol treatment. The CCK8 and LDH activity assays demonstrated that resveratrol could suppress neurotoxicity induced by rotenone (P < 0.01). The DCFH-DA assay indicated that resveratrol reduced the production of reactive oxygen species (ROS). JC-1 and Hoechst 33342/PI staining revealed that resveratrol attenuated mitochondrial dysfunction and cell apoptosis. Moreover, resveratrol reversed rotenone-induced decrease in SIRT1 expression and Akt1 phosphorylation (P < 0.05). Furthermore, when the SIRT1 and Akt1 activity was inhibited by niacinamide and LY294002, respectively, the neuroprotective effect of resveratrol was remarkably attenuated, which implied that SIRT1 and Akt1 could mediate this process and may be potential molecular targets for intervening rotenone-induced neurotoxicity. In summary, our study demonstrated that resveratrol reduced rotenone-induced oxidative damage, which was partly mediated through activation of the SIRT1/Akt1 signaling pathway. Our study launched a promising avenue for the potential application of resveratrol as a neuroprotective therapeutic agent in Parkinson disease. Anat Rec, 301:1115-1125, 2018. © 2018 Wiley Periodicals, Inc. © 2018 Wiley Periodicals, Inc.

  10. Minocycline attenuates colistin-induced neurotoxicity via suppression of apoptosis, mitochondrial dysfunction and oxidative stress

    PubMed Central

    Dai, Chongshan; Ciccotosto, Giuseppe D.; Cappai, Roberto; Wang, Yang; Tang, Shusheng; Xiao, Xilong; Velkov, Tony

    2017-01-01

    Background: Neurotoxicity is an adverse effect patients experience during colistin therapy. The development of effective neuroprotective agents that can be co-administered during polymyxin therapy remains a priority area in antimicrobial chemotherapy. The present study investigates the neuroprotective effect of the synergistic tetracycline antibiotic minocycline against colistin-induced neurotoxicity. Methods: The impact of minocycline pretreatment on colistin-induced apoptosis, caspase activation, oxidative stress and mitochondrial dysfunction were investigated using cultured mouse neuroblastoma-2a (N2a) and primary cortical neuronal cells. Results: Colistin-induced neurotoxicity in mouse N2a and primary cortical cells gives rise to the generation of reactive oxygen species (ROS) and subsequent cell death via apoptosis. Pretreatment of the neuronal cells with minocycline at 5, 10 and 20 μM for 2 h prior to colistin (200 μM) exposure (24 h), had an neuroprotective effect by significantly decreasing intracellular ROS production and by upregulating the activities of the anti-ROS enzymes superoxide dismutase and catalase. Minocycline pretreatment also protected the cells from colistin-induced mitochondrial dysfunction, caspase activation and subsequent apoptosis. Immunohistochemical imaging studies revealed colistin accumulates within the dendrite projections and cell body of primary cortical neuronal cells. Conclusions: To our knowledge, this is first study demonstrating the protective effect of minocycline on colistin-induced neurotoxicity by scavenging of ROS and suppression of apoptosis. Our study highlights that co-administration of minocycline kills two birds with one stone: in addition to its synergistic antimicrobial activity, minocycline could potentially ameliorate unwanted neurotoxicity in patients undergoing polymyxin therapy. PMID:28204513

  11. Early-postnatal changes in adiposity and lipids profile by transgenerational developmental programming in swine with obesity/leptin resistance.

    PubMed

    Gonzalez-Bulnes, Antonio; Astiz, Susana; Ovilo, Cristina; Lopez-Bote, Clemente J; Sanchez-Sanchez, Raul; Perez-Solana, Maria L; Torres-Rovira, Laura; Ayuso, Miriam; Gonzalez, Jorge

    2014-10-01

    Maternal malnutrition during pregnancy, both deficiency and excess, induces changes in the intrauterine environment and the metabolic status of the offspring, playing a key role in the growth, status of fitness/obesity and appearance of metabolic disorders during postnatal life. There is increasing evidence that these effects may not be only limited to the first generation of descendants, the offspring directly exposed to metabolic challenges, but to subsequent generations. This study evaluated, in a swine model of obesity/leptin resistance, the existence and extent of transgenerational developmental programming effects. Pre- and postnatal development, adiposity and metabolic features were assessed in the second generation of piglets, descendant of sows exposed to either undernutrition or overnutrition during pregnancy. The results indicated that these piglets exhibited early-postnatal increases in adiposity and disturbances in lipid profiles compatible with the early prodrome of metabolic syndrome, with liver tissue also displaying evidence of paediatric liver disease. These features indicative of early-life metabolic disorders were more evident in the males that were descended from overfed grandmothers and during the transition from milk to solid feeding. Thus, this study provides evidence supporting transgenerational developmental programming and supports the necessity for the development of strategies for avoiding the current epidemics of childhood overweight and obesity. © 2014 Society for Endocrinology.

  12. Resistance of neuronal nitric oxide synthase-deficient mice to methamphetamine-induced dopaminergic neurotoxicity.

    PubMed

    Itzhak, Y; Gandia, C; Huang, P L; Ali, S F

    1998-03-01

    Methamphetamine (METH) is a powerful psychostimulant that produces dopaminergic neurotoxicity manifested by a decrease in the levels of dopamine, tyrosine hydroxylase activity and dopamine transporter (DAT) binding sites in the nigrostriatal system. We have recently reported that blockade of the neuronal nitric oxide synthase (nNOS) isoform by 7-nitroindazole provides protection against METH-induced neurotoxicity in Swiss Webster mice. The present study was undertaken to investigate the effect of a neurotoxic dose of METH on mutant mice lacking the nNOS gene [nNOS(-/-)] and wild-type controls. In addition, we sought to investigate the behavioral outcome of exposure to a neurotoxic dose of METH. Homozygote nNOS(-/-), heterozygote nNOS(+/-) and wild-type animals were administered either saline or METH (5 mg/kg x 3). Dopamine, DOPAC and HVA levels, as well as DAT binding site levels, were determined in striatal tissue derived 72 h after the last METH injection. This regimen of METH given to nNOS(-/-) mice affected neither the tissue content of dopamine and its metabolites nor the number of DAT binding sites. Although a moderate reduction in the levels of dopamine (35%) and DAT binding sites (32%) occurred in striatum of heterozygote nNOS(+/-) mice, a more profound depletion of the dopaminergic markers (up to 68%) was observed in the wild-type animals. METH-induced hyperthermia was observed in all animal strains examined except the nNOS(-/-) mice. Investigation of the animals' spontaneous locomotor activity before and after administration of the neurotoxic dose of METH (5 mg/kg x 3) revealed no differences. A low dose of METH (1.0 mg/kg) administered to naive animals (nNOS(-/-) and wild-type) resulted in a similar intensity of locomotor stimulation. However, 68 to 72 h after exposure to the high-dose METH regimen, a marked sensitized responses to a challenge METH injection was observed in the wild-type mice but not in the nNOS(-/-) mice. Taken together, these results

  13. 2,2′,3,5′,6-PENTACHLOROBIPHENYL (PCB 95) AND ITS HYDROXYLATED METABOLITES ARE ENANTIOMERICALLY ENRICHED IN FEMALE MICE

    PubMed Central

    Kania-Korwel, Izabela; Barnhart, Christopher D.; Stamou, Marianna; Truong, Kim M.; El-Komy, Mohammed H.M.E.; Lein, Pamela J.; Veng-Pedersen, Peter; Lehmler, Hans-Joachim

    2012-01-01

    Epidemiological and laboratory studies link polychlorinated biphenyls and their metabolites to adverse neurodevelopmental outcomes. Several neurotoxic PCB congeners are chiral and undergo enantiomeric enrichment in mammalian species, which may modulate PCB developmental neurotoxicity. This study measures levels and enantiomeric enrichment of PCB 95 and its hydroxylated metabolites (OH-PCBs) in adult female C57Bl/6 mice following subchronic exposure to racemic PCB 95. Tissue levels of PCB 95 and OH-PCBs increased with increasing dose. Dose-dependent enantiomeric enrichment of PCB 95 was observed in brain and other tissues. OH-PCBs also displayed enantiomeric enrichment in blood and liver, but were not detected in adipose and brain. In light of data suggesting enantioselective effects of chiral PCBs on molecular targets linked to PCB developmental neurotoxicity, our observations highlight the importance of accounting for PCB and OH-PCB enantiomeric enrichment in the assessment of PCB developmental neurotoxicity. PMID:22974126

  14. Endothelial Activation and Blood-Brain Barrier Disruption in Neurotoxicity after Adoptive Immunotherapy with CD19 CAR-T Cells.

    PubMed

    Gust, Juliane; Hay, Kevin A; Hanafi, Laïla-Aïcha; Li, Daniel; Myerson, David; Gonzalez-Cuyar, Luis F; Yeung, Cecilia; Liles, W Conrad; Wurfel, Mark; Lopez, Jose A; Chen, Junmei; Chung, Dominic; Harju-Baker, Susanna; Özpolat, Tahsin; Fink, Kathleen R; Riddell, Stanley R; Maloney, David G; Turtle, Cameron J

    2017-12-01

    Lymphodepletion chemotherapy followed by infusion of CD19-targeted chimeric antigen receptor-modified T (CAR-T) cells can be complicated by neurologic adverse events (AE) in patients with refractory B-cell malignancies. In 133 adults treated with CD19 CAR-T cells, we found that acute lymphoblastic leukemia, high CD19 + cells in bone marrow, high CAR-T cell dose, cytokine release syndrome, and preexisting neurologic comorbidities were associated with increased risk of neurologic AEs. Patients with severe neurotoxicity demonstrated evidence of endothelial activation, including disseminated intravascular coagulation, capillary leak, and increased blood-brain barrier (BBB) permeability. The permeable BBB failed to protect the cerebrospinal fluid from high concentrations of systemic cytokines, including IFNγ, which induced brain vascular pericyte stress and their secretion of endothelium-activating cytokines. Endothelial activation and multifocal vascular disruption were found in the brain of a patient with fatal neurotoxicity. Biomarkers of endothelial activation were higher before treatment in patients who subsequently developed grade ≥4 neurotoxicity. Significance: We provide a detailed clinical, radiologic, and pathologic characterization of neurotoxicity after CD19 CAR-T cells, and identify risk factors for neurotoxicity. We show endothelial dysfunction and increased BBB permeability in neurotoxicity and find that patients with evidence of endothelial activation before lymphodepletion may be at increased risk of neurotoxicity. Cancer Discov; 7(12); 1404-19. ©2017 AACR. See related commentary by Mackall and Miklos, p. 1371 This article is highlighted in the In This Issue feature, p. 1355 . ©2017 American Association for Cancer Research.

  15. L-Ascorbate attenuates methamphetamine neurotoxicity through enhancing the induction of endogenous heme oxygenase-1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Ya-Ni; Wang, Jiz-Yuh; Lee, Ching-Tien

    Methamphetamine (METH) is a drug of abuse which causes neurotoxicity and increased risk of developing neurodegenerative diseases. We previously found that METH induces heme oxygenase (HO)-1 expression in neurons and glial cells, and this offers partial protection against METH toxicity. In this study, we investigated the effects of L-ascorbate (vitamin C, Vit. C) on METH toxicity and HO-1 expression in neuronal/glial cocultures. Cell viability and damage were evaluated by 3-(4,5-dimethylthianol-2-yl)-2,5 diphenyl tetrazolium bromide (MTT) reduction and lactate dehydrogenase (LDH) release, respectively. Neuronal and glial localization of HO-1 were identified by double immunofluorescence staining. Reactive oxygen species (ROS) production was measuredmore » using the fluorochrome 2′,7′-dichlorofluorescin diacetate. HO-1 mRNA and protein expression were examined by RT-qPCR and Western blotting, respectively. Results show that Vit. C induced HO-1 mRNA and protein expressions in time- and concentration-dependent manners. Inhibition of p38 mitogen-activated protein kinase (MAPK) but not extracellular signal-regulated kinase (ERK) significantly blocked induction of HO-1 by Vit. C. HO-1 mRNA and protein expressions were significantly elevated by a combination of Vit. C and METH, compared to either Vit. C or METH alone. Pretreatment with Vit. C enhanced METH-induced HO-1 expression and attenuated METH-induced ROS production and neurotoxicity. Pharmacological inhibition of HO activity abolished suppressive effects of Vit. C on METH-induced ROS production and attenuated neurotoxicity. We conclude that induction of HO-1 expression contributes to the attenuation of METH-induced ROS production and neurotoxicity by Vit. C. We suggest that HO-1 induction by Vit. C may serve as a strategy to alleviate METH neurotoxicity. -- Highlights: ► Besides the anti-oxidant effect, Vit. C also induces HO-1 expression in brain cells. ► Vit. C reduces METH neurotoxicity and ROS

  16. The chemokine CCL2 protects against methylmercury neurotoxicity.

    PubMed

    Godefroy, David; Gosselin, Romain-Daniel; Yasutake, Akira; Fujimura, Masatake; Combadière, Christophe; Maury-Brachet, Régine; Laclau, Muriel; Rakwal, Randeep; Melik-Parsadaniantz, Stéphane; Bourdineaud, Jean-Paul; Rostène, William

    2012-01-01

    Industrial pollution due to heavy metals such as mercury is a major concern for the environment and public health. Mercury, in particular methylmercury (MeHg), primarily affects brain development and neuronal activity, resulting in neurotoxic effects. Because chemokines can modulate brain functions and are involved in neuroinflammatory and neurodegenerative diseases, we tested the possibility that the neurotoxic effect of MeHg may interfere with the chemokine CCL2. We have used an original protocol in young mice using a MeHg-contaminated fish-based diet for 3 months relevant to human MeHg contamination. We observed that MeHg induced in the mice cortex a decrease in CCL2 concentrations, neuronal cell death, and microglial activation. Knock-out (KO) CCL2 mice fed with a vegetal control food already presented a decrease in cortical neuronal cell density in comparison with wild-type animals under similar diet conditions, suggesting that the presence of CCL2 is required for normal neuronal survival. Moreover, KO CCL2 mice showed a pronounced neuronal cell death in response to MeHg. Using in vitro experiments on pure rat cortical neurons in culture, we observed by blockade of the CCL2/CCR2 neurotransmission an increased neuronal cell death in response to MeHg neurotoxicity. Furthermore, we showed that sod genes are upregulated in brain of wild-type mice fed with MeHg in contrast to KO CCL2 mice and that CCL2 can blunt in vitro the decrease in glutathione levels induced by MeHg. These original findings demonstrate that CCL2 may act as a neuroprotective alarm system in brain deficits due to MeHg intoxication.

  17. Prolactin is a peripheral marker of manganese neurotoxicity

    PubMed Central

    Marreilha dos Santos, AP; Lopes Santos, M; BatorÉu, Maria C; Aschner, M

    2011-01-01

    Excessive exposure to Mn induces neurotoxicity, referred to as manganism. Exposure assessment relies on Mn blood and urine analyses, both of which show poor correlation to exposure. Accordingly, there is a critical need for better surrogate biomarkers of Mn exposure. The aim of this study was to examine the relationship between Mn exposure and early indicators of neurotoxicity, with particular emphasis on peripheral biomarkers. Male Wistar rats (180–200 g) were injected intraperitoneally with 4 or 8 doses of Mn (10 mg/kg). Mn exposure was evaluated by analysis of Mn levels in brain and blood along with biochemical end-points (see below). Results Brain Mn levels were significantly increased both after 4 and 8 doses of Mn compared with controls (p<0.001). Blood levels failed to reflect a dose-dependent increase in brain Mn, with only the 8-dose treated group showing significant differences (p<0.001). Brain glutathione (GSH) levels were significantly decreased in the 8-dose-treated animals (p<0.001). A significant and dose-dependent increase in prolactin levels was found for both treated groups (p<0.001) compared to controls. In addition, a decrease in motor activity was observed in the 8-dose-treated group compared to controls. Conclusions 1) The present study demonstrates that peripheral blood level is a poor indicator of Mn brain accumulation and exposure; 2) Mn reduces GSH brain levels, likely reflecting oxidative stress; 3) Mn increases blood prolactin levels, indicating changes in the integrity of the dopaminergic system. Taken together these results suggest that peripheral prolactin levels may serve as reliable predictive biomarkers of Mn neurotoxicity. PMID:21262206

  18. Acorus tatarinowii Schott extract protects PC12 cells from amyloid-beta induced neurotoxicity.

    PubMed

    An, Hong-Mei; Li, Guo-Wen; Lin, Chen; Gu, Chao; Jin, Miao; Sun, Wen-Xian; Qiu, Ming-Feng; Hu, Bing

    2014-05-01

    Amyloid-beta induced neurotoxicity has been identified as a major cause of Alzheimer's disease. Acorus tatarinowii Schott is one of the most frequently used Chinese herbs for Alzheimer's disease treatment. However, the effects of Acorus tatarinowii Schott on amyloid-beta mediated nerve cell damage remains unknown. In the present study, neuronal differentiated PC12 cells were used as a model to evaluate the effects of A. tatarinowii Schott extract (ATSE) against Abeta25-35 induced neurotoxicity. The results showed pretreatment with ATSE significantly protected PC12 cells from Abeta25-35 induced cell death, lactate dehydrogenase release, DNA damage, mitochondrial dysfunction and cytochrome c release from mitochondria. In addition, pretreatment with ATSE also significantly inhibited Abeta25-35 induced caspase-3 activation and reactive oxygen species generation in PC12 cells. These observations suggested that ATSE protects PC12 cells from amyloid-beta induced neurotoxicity.

  19. In vitro neurotoxic hazard characterization of different tricresyl phosphate (TCP) isomers and mixtures.

    PubMed

    Duarte, Daniel J; Rutten, Joost M M; van den Berg, Martin; Westerink, Remco H S

    2017-03-01

    Exposure to tricresyl phosphates (TCPs), via for example contaminated cabin air, has been associated with health effects including the so-called aerotoxic syndrome. While TCP neurotoxicity is mainly attributed to ortho-isomers like tri-ortho-cresyl phosphate (ToCP), recent exposure and risk assessments indicate that ToCP levels in cabin air are very low. However, the neurotoxic potential of non-ortho TCP isomers and TCP mixtures is largely unknown. We therefore measured effects of exposure (up to 48h) to different TCP isomers, mixtures and the metabolite of ToCP (CBDP: cresyl saligenin phosphate) on cell viability and mitochondrial activity, spontaneous neuronal electrical activity, and neurite outgrowth in primary rat cortical neurons. The results demonstrate that exposure to TCPs (24-48h, up to 10μM) increases mitochondrial activity, without affecting cell viability. Effects of acute TCP exposure (30min) on neuronal electrical activity are limited. However, electrical activity is markedly decreased for the majority of TCPs (10μM) following 48h exposure. Additional preliminary data indicate that exposure to TCPs (48h, 10μM) did not affect the number of neurites per cell or average neurite length, except for TmCP and the analytical TCP mixture (Sigma) that induced a reduction of average neurite length. The combined neurotoxicity data demonstrate that the different TCPs, including ToCP, are roughly equipotent and a clear structure-activity relation is not apparent for the studied endpoints. The no-observed-effect-concentrations (1μM) are well above current exposure levels indicating limited neurotoxic health risk, although exposures may have been higher in the past. Moreover, prolonged and/or repeated exposure to TCPs may exacerbate the observed neurotoxic effects, which argues for additional research. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. A review of developmental and reproductive toxicity of CS2 and H2 S generated by the pesticide sodium tetrathiocarbonate.

    PubMed

    Silva, Marilyn

    2013-04-01

    Sodium tetrathiocarbonate (STTC) is an example of a pesticide that when prepared for use in aqueous solution releases two toxic products carbon disulfide (CS2 ) (active ingredient) and hydrogen sulfide (H2 S) in ambient air in equimolar concentrations resulting in potential exposure to workers and bystanders. CS2 and H2 S are pollutants that are generated from several pesticides as well as in industrial settings. Registrant submitted reports and open literature studies for STTC, CS2 and H2 S were reviewed. Previous reports suggest that CS2 was a concern as a developmental and reproductive toxicant. H2 S was also examined since it is a neurotoxicant and potentially harmful to developing fetuses. STTC did not induce developmental or reproductive effects in animal studies. CS2 was a developmental neurobehavioral toxin in rat pups (inhalation no observed effect level [NOEL]=0.01 ppm). Reproductive effects occurred in male and female factory workers after CS2 exposure (NOEL=1 ppm). H2 S had developmental effects in rats at doses at or above those observed for nasal pathology (NOEL=10 ppm) but was not a reproductive or developmental toxin in humans. The database for CS2 indicates a strong potential for developmental neurotoxicity in animals at low doses but it is lacking in acceptable, well-performed studies. There is also a lack of studies performed with CS2 and H2 S as a mixture. © 2013 Wiley Periodicals, Inc.

  1. Vasospasm is a significant factor in cyclosporine-induced neurotoxicity: case report.

    PubMed

    Braakman, Hilde M H; Lodder, Jan; Postma, Alida A; Span, Lambert F R; Mess, Werner H

    2010-05-11

    The aetiology of central nervous system lesions observed in cerebral cyclosporine neurotoxicity remains controversial. We report a 48-year-old woman with a non-severe aplastic anaemia who presented with stroke-like episodes while on cyclosporine treatment.Transcranial Doppler ultrasound revealed severely elevated flow velocities in several cerebral vessels, consistent with vasospasm. Immediately after reducing the cyclosporine dose, the stroke-like episodes disappeared. Only after cyclosporine withdrawal the transcranial Doppler ultrasound abnormalities fully resolved. This case demonstrates a significant role of vasospasm in the pathway of cyclosporine-induced neurotoxicity. Transcranial Doppler ultrasound is an effective tool for the diagnosis and follow-up of cyclosporine-induced vasospasm.

  2. N-methyl-D-aspartate neurotoxicity in hippocampal slices: protection by aniracetam.

    PubMed

    Pizzi, M; Consolandi, O; Memo, M; Spano, P

    1995-03-14

    Aniracetam, a drug known to elicit cognition enhancing properties in both animals and humans, was found to counteract the neurotoxicity induced by excitatory amino acids in primary cultures of cerebellar neurons. We report here that aniracetam prevents the neurotoxic effect induced by N-methyl-D-aspartate (NMDA) in rat hippocampal slices. Time-course experiments showed that the aniracetam-induced neuroprotection does not require preincubation of the slices with the drug. Maximal effective concentration of aniracetam was 10 microM. Since the NMDA-mediated cell death in hippocampal slices is considered a valuable experimental model of ischemia, these results suggest a possible novel therapeutic application for aniracetam.

  3. Virtual Embryo: Systems Modeling in Developmental Toxicity

    EPA Science Inventory

    High-throughput screening (HTS) studies are providing a rich source of data that can be applied to chemical profiling to address sensitivity and specificity of molecular targets, biological pathways, cellular and developmental processes. EPA’s ToxCast project is testing 960 uniq...

  4. Mechanisms of Mycotoxin-Induced Neurotoxicity through Oxidative Stress-Associated Pathways

    PubMed Central

    Doi, Kunio; Uetsuka, Koji

    2011-01-01

    Among many mycotoxins, T-2 toxin, macrocyclic trichothecenes, fumonisin B1 (FB1) and ochratochin A (OTA) are known to have the potential to induce neurotoxicity in rodent models. T-2 toxin induces neuronal cell apoptosis in the fetal and adult brain. Macrocyclic trichothecenes bring about neuronal cell apoptosis and inflammation in the olfactory epithelium and olfactory bulb. FB1 induces neuronal degeneration in the cerebral cortex, concurrent with disruption of de novo ceramide synthesis. OTA causes acute depletion of striatal dopamine and its metabolites, accompanying evidence of neuronal cell apoptosis in the substantia nigra, striatum and hippocampus. This paper reviews the mechanisms of neurotoxicity induced by these mycotoxins especially from the viewpoint of oxidative stress-associated pathways. PMID:21954354

  5. Does active psychosis cause neurobiological pathology? A critical review of the neurotoxicity hypothesis.

    PubMed

    Rund, B R

    2014-06-01

    Since the neurotoxicity hypothesis was launched in 1991, it has generated a great deal of interest and given rise to several studies investigating the validity of the hypothesis that being psychotic has a toxic effect on the brain. The toxicity argument is used to justify early treatment. This review attempts to assess the studies that have addressed the question: Does an active psychosis, indexed by the duration of untreated psychosis (DUP), cause neurobiological pathology? The validity of the hypothesis has been studied primarily by correlation analyses that assess whether there are significant correlations between DUP and changes in neurocognitive functioning or brain structure. In this review, relevant reports were identified by a literature survey. Of the 35 studies (33 papers) evaluated, six neurocognitive studies supported the hypothesis and 16 did not. Eight morphology studies supported the hypothesis and five did not. In general, the studies that did not support the neurotoxicity hypothesis were larger in size and had more adequate designs (longitudinal) than those that supported the hypothesis. Overall, there is limited empirical evidence for the neurotoxicity hypothesis in the studies reviewed. However, it is possible that there is a threshold value for a toxic effect of psychosis, rather than a linear relationship between DUP and a neurotoxic effect, and that several of the studies evaluated did not have a long enough DUP to detect a toxic effect of active psychosis.

  6. Neurotoxicity Comparison of Two Types of Local Anaesthetics: Amide-Bupivacaine versus Ester-Procaine

    PubMed Central

    Yu, Xu-jiao; Zhao, Wei; Li, Yu-jie; Li, Feng-xian; Liu, Zhong-jie; Xu, Hua-li; Lai, Lu-ying; Xu, Rui; Xu, Shi-yuan

    2017-01-01

    Local anaesthetics (LAs) may lead to neurological complications, but the underlying mechanism is still unclear. Many neurotoxicity research studies have examined different LAs, but none have comprehensively explored the distinct mechanisms of neurotoxicity caused by amide- (bupivacaine) and ester- (procaine) type LAs. Here, based on a CCK8 assay, LDH assay, Rhod-2-AM and JC-1 staining, 2′,7′-dichlorohy-drofluorescein diacetate and dihydroethidium probes, an alkaline comet assay, and apoptosis assay, we show that both bupivacaine and procaine significantly induce mitochondrial calcium overload and a decline in the mitochondrial membrane potential as well as overproduction of ROS, DNA damage and apoptosis (P < 0.05). There were no significant differences in mitochondrial injury and apoptosis between the bupivacaine and procaine subgroups (P > 0.05). However, to our surprise, the superoxide anionic level after treatment with bupivacaine, which leads to more severe DNA damage, was higher than the level after treatment with procaine, while procaine produced more peroxidation than bupivacaine. Some of these results were also affirmed in dorsal root ganglia neurons of C57 mice. The differences in the superoxidation and peroxidation induced by these agents suggest that different types of LAs may cause neurotoxicity via different pathways. We can target more accurate treatment based on their different mechanisms of neurotoxicity. PMID:28338089

  7. Attenuation of Cisplatin-Induced Neurotoxicity by Cyanidin, a Natural Inhibitor of ROS-Mediated Apoptosis in PC12 Cells.

    PubMed

    Li, Da-wei; Sun, Jing-yi; Wang, Kun; Zhang, Shuai; Hou, Ya-jun; Yang, Ming-feng; Fu, Xiao-yan; Zhang, Zong-yong; Mao, Lei-lei; Yuan, Hui; Fang, Jie; Fan, Cun-dong; Zhu, Mei-jia; Sun, Bao-liang

    2015-10-01

    Cisplatin-based chemotherapy in clinic is severely limited by its adverse effect, including neurotoxicity. Oxidative damage contributes to cisplatin-induced neurotoxicity, but the mechanism remains unclearly. Cyanidin, a natural flavonoid compound, exhibits powerful antioxidant activity. Hence, we investigated the protective effects of cyanidin on PC12 cells against cisplatin-induced neurotoxicity and explored the underlying mechanisms. The results showed that cisplatin-induced cytotoxicity was completely reversed by cyanidin through inhibition of PC12 cell apoptosis, as proved by the attenuation of Sub-G1 peak, PARP cleavage, and caspases-3 activation. Mechanistically, cyanidin significantly inhibited reactive oxygen species (ROS)-induced DNA damage in cisplatin-treated PC12 cells. Our findings revealed that cyanidin as an apoptotic inhibitor effectively blocked cisplatin-induced neurotoxicity through inhibition of ROS-mediated DNA damage and apoptosis, predicating its therapeutic potential in prevention of chemotherapy-induced neurotoxicity. Cisplatin caused DNA damage, activated p53, and subsequently induced PC12 cells apoptosis by triggering ROS overproduction. However, cyanidin administration effectively inhibited DNA damage, attenuated p53 phosphorylation, and eventually reversed cisplatin-induced PC12 cell apoptosis through inhibition ROS accumulation.

  8. Spirulina maxima Extract Prevents Neurotoxicity via Promoting Activation of BDNF/CREB Signaling Pathways in Neuronal Cells and Mice.

    PubMed

    Koh, Eun-Jeong; Seo, Young-Jin; Choi, Jia; Lee, Hyeon Yong; Kang, Do-Hyung; Kim, Kui-Jin; Lee, Boo-Yong

    2017-08-17

    Spirulina maxima is a microalgae which contains flavonoids and other polyphenols. Although Spirulina maxima 70% ethanol extract (SM70EE) has diverse beneficial effects, its effects on neurotoxicity have not been fully understood. In this study, we investigated the neuroprotective effects of SM70EE against trimethyltin (TMT)-induced neurotoxicity in HT-22 cells. SM70EE inhibited the cleavage of poly-ADP ribose polymerase (PARP). Besides, ROS production was decreased by down-regulating oxidative stress-associated enzymes. SM70EE increased the factors of brain-derived neurotrophic factor (BDNF)/cyclic AMPresponsive elementbinding protein (CREB) signalling pathways. Additionally, acetylcholinesterase (AChE) was suppressed by SM70EE. Furthermore, we investigated whether SM70EE prevents cognitive deficits against scopolamine-induced neurotoxicity in mice by applying behavioral tests. SM70EE increased step-through latency time and decreased the escape latency time. Therefore, our data suggest that SM70EE may prevent TMT neurotoxicity through promoting activation of BDNF/CREB neuroprotective signaling pathways in neuronal cells. In vivo study, SM70EE would prevent cognitive deficits against scopolamine-induced neurotoxicity in mice.

  9. The Potential Neurotoxic Effects of Low-Dose Sarin Exposure in a Guinea Pig Model

    DTIC Science & Technology

    2002-01-01

    1 THE POTENTIAL NEUROTOXIC EFFECTS OF LOW-DOSE SARIN EXPOSURE IN A GUINEA PIG MODEL Melinda R. Roberson, PhD, Michelle B. Schmidt...Proving Ground, MD 21010 USA ABSTRACT This study is assessing the effects in guinea pigs of repeated low-dose exposure to the nerve...COVERED - 4. TITLE AND SUBTITLE The Potential Neurotoxic Effects Of Low-Dose Sarin Exposure In A Guinea Pig Model 5a. CONTRACT NUMBER 5b

  10. Appraisal of neurobehavioral methods in environmental health research: the developing brain as a target for neurotoxic chemicals.

    PubMed

    Winneke, Gerhard

    2007-10-01

    Psychological tests as developed and validated in the field of differential psychology have a longstanding tradition as tools to study individual differences. In clinical neuropsychology, global or more specific tests are used as neuropsychological tools in the differential diagnosis of various forms of brain damage or neurobehavioral dysfunction following chemical insults, such as mental sequelae of prenatal alcohol consumption by pregnant mothers (fetal alcohol syndrome) or of maternal thyroid deficiency during pregnancy. Psychometric tests are constructed to fulfill basic quality criteria, namely objectivity, reliability and validity. For strictly diagnostic purposes in individual cases they must also possess normative values based on representative reference groups. Intelligence tests or their developmental variants are often used as endpoints in environmental health research for studying neurodevelopmental adversity due to early exposure to neurotoxic chemicals in the environment. Intelligence as treated in psychology is a complex construct made up of specific cognitive functions which usually cover verbal, numerical and spatial skills, as well as perceptual speed, memory and reasoning. In this paper, case studies covering neurodevelopmental adversity of inorganic lead, of methylmercury and of polychlorinated biphenyls (PCBs) are reviewed, and the issue of postnatal behavioral sequelae of prenatal exposure is covered. In such observational studies precautions must be taken in order to avoid pitfalls of causative interpretation of associations between exposure and neurobehavioral outcome. This requires consideration of co-exposure and confounding. Important confounders considered in most modern developmental cohort studies are maternal intelligence and quality of the home environment.

  11. The effect of phenytoin, phenobarbitone, dexamethasone and flurbiprofen on misonidazole neurotoxicity in mice.

    PubMed Central

    Sheldon, P. W.; Clarke, C.; Dawson, K. B.

    1984-01-01

    Using a quantitative cytochemical technique for measuring beta-glucuronidase activity in the peripheral nerves of mice, we have investigated the effectiveness of four potential adjuncts for reducing the dose limiting neurotoxicity of misonidazole (MISO) in the clinic. Under the conditions used, the most effective adjunct was the steroid anti-inflammatory agent dexamethasone. When given over the week previous to MISO treatment, this agent almost completely eliminated the MISO neurotoxicity as determined at week 4 after commencement of MISO dosing. The second most effective adjunct was phenytoin, the third flurbiprofen and the last adjunct, phenobarbitone, was ineffective. Dexamethasone, phenytoin and phenobarbitone all reduced the clearance half-life of MISO and hence the drug exposure dose calculated as the area under the curve of MISO tissue concentration against time. However, no correlation was evident with these parameters and MISO neurotoxicity in the mouse. Dexamethasone, whilst affording protection against MISO toxicity, did not alter the radiosensitivity of the anaplastic MT tumour. PMID:6696821

  12. The role of intestinal endotoxemia in a rat model of aluminum neurotoxicity

    PubMed Central

    Wang, Feng; Guo, Rui-Xia; Li, Wen-Xing; Yu, Bao-Feng; Han, Bai; Liu, Li-Xin; Han, De-Wu

    2017-01-01

    The present study aimed to investigate the effects of intestinal endotoxemia (IETM) in a rat model of aluminum neurotoxicity established by D-galactose and aluminum trichloride (AlCl3). Adult Wistar rats were administered D-galactose and AlCl3 to create the aluminum neurotoxicity model. The learning and memory abilities of the rats were subsequently observed using a Morris water maze test and the serum levels of lipopolysaccharide (LPS), tumor necrosis factor (TNF)-α, interleukin (IL)-1, diamine oxidase (DAO), glutamine (Gln) and glutaminase were measured. The expression of S-100β in the serum was detected using an enzyme-linked immunosorbent assay. The expression levels of the amyloid β-protein (Aβ) precursor (APP), presenilin 1 (PS1), β-site APP-cleaving enzyme (BACE), zona occludens protein (ZO)-1 and Aβ 1–40 in the brain of rats were detected via reverse-transcription polymerase chain reaction, western blotting and immunohistochemistry. The levels of LPS, TNF-α, IL-1, DAO, Gln and S-100β in serum and the mRNA and protein expression levels of APP, PS1, BACE and Aβ1-40 in the brain were markedly increased in the model rats compared with controls. The level of glutaminase in the serum and the expression of ZO-1 in the brain were decreased in the model rats compared with controls. IETM was present in the rat model of aluminum neurotoxicity established by D-galactose and AlCl3 and may be important in the development of this neurotoxicity. PMID:28627692

  13. Hirsutine, an indole alkaloid of Uncaria rhynchophylla, inhibits inflammation-mediated neurotoxicity and microglial activation.

    PubMed

    Jung, Hwan Yong; Nam, Kyong Nyon; Woo, Byung-Choel; Kim, Kyoo-Pil; Kim, Sung-Ok; Lee, Eunjoo H

    2013-01-01

    Chronic microglial activation endangers neuronal survival through the release of various pro-inflammatory and neurotoxic factors. As such, negative regulators of microglial activation have been considered as potential therapeutic candidates to reduce the risk of neurodegeneration associated with inflammation. Uncaria rhynchophylla (U. rhynchophylla) is a traditional oriental herb that has been used for treatment of disorders of the cardiovascular and central nervous systems. Hirsutine (HS), one of the major indole alkaloids of U. rhynchophylla, has demonstrated neuroprotective potential. The aim of the present study was to examine the efficacy of HS in the repression of inflammation-induced neurotoxicity and microglial cell activation. In organotypic hippocampal slice cultures, HS blocked lipopolysaccharide (LPS)-related hippocampal cell death and production of nitric oxide (NO), prostaglandin (PG) E2 and interleukin-1β. HS was demonstrated to effectively inhibit LPS-induced NO release from cultured rat brain microglia. The compound reduced the LPS-stimulated production of PGE2 and intracellular reactive oxygen species. HS significantly decreased LPS-induced phosphorylation of the mitogen-activated protein kinases and Akt signaling proteins. In conclusion, HS reduces the production of various neurotoxic factors in activated microglial cells and possesses neuroprotective activity in a model of inflammation-induced neurotoxicity.

  14. Aroclor 1254, a developmental neurotoxicant, alters energy metabolism- and intracellular signaling-associated protein networks in rat cerebellum and hippocampus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kodavanti, Prasada Rao S., E-mail: kodavanti.prasada@epa.gov; Osorio, Cristina; Program on Molecular Biology and Biotechnology, University of North Carolina at Chapel Hill, North Carolina

    2011-11-15

    The vast literature on the mode of action of polychlorinated biphenyls (PCBs) indicates that PCBs are a unique model for understanding the mechanisms of toxicity of environmental mixtures of persistent chemicals. PCBs have been shown to adversely affect psychomotor function and learning and memory in humans. Although the molecular mechanisms for PCB effects are unclear, several studies indicate that the disruption of Ca{sup 2+}-mediated signal transduction plays significant roles in PCB-induced developmental neurotoxicity. Culminating events in signal transduction pathways include the regulation of gene and protein expression, which affects the growth and function of the nervous system. Our previous studiesmore » showed changes in gene expression related to signal transduction and neuronal growth. In this study, protein expression following developmental exposure to PCB is examined. Pregnant rats (Long Evans) were dosed with 0.0 or 6.0 mg/kg/day of Aroclor-1254 from gestation day 6 through postnatal day (PND) 21, and the cerebellum and hippocampus from PND14 animals were analyzed to determine Aroclor 1254-induced differential protein expression. Two proteins were found to be differentially expressed in the cerebellum following PCB exposure while 18 proteins were differentially expressed in the hippocampus. These proteins are related to energy metabolism in mitochondria (ATP synthase, sub unit {beta} (ATP5B), creatine kinase, and malate dehydrogenase), calcium signaling (voltage-dependent anion-selective channel protein 1 (VDAC1) and ryanodine receptor type II (RyR2)), and growth of the nervous system (dihydropyrimidinase-related protein 4 (DPYSL4), valosin-containing protein (VCP)). Results suggest that Aroclor 1254-like persistent chemicals may alter energy metabolism and intracellular signaling, which might result in developmental neurotoxicity. -- Highlights: Black-Right-Pointing-Pointer We performed brain proteomic analysis of rats exposed to the

  15. Functional, Structural, and Neurotoxicity Biomarkers in Integrative Assessment of Concussions

    PubMed Central

    Dambinova, Svetlana A.; Maroon, Joseph C.; Sufrinko, Alicia M.; Mullins, John David; Alexandrova, Eugenia V.; Potapov, Alexander A.

    2016-01-01

    Concussion is a complex, heterogeneous process affecting the brain. Accurate assessment and diagnosis and appropriate management of concussion are essential to ensure that athletes do not prematurely return to play or others to work or active military duty, risking re-injury. To date, clinical diagnosis relies primarily on evaluating subjects for functional impairment using instruments that include neurocognitive testing, subjective symptom report, and neurobehavioral assessments, such as balance and vestibular-ocular reflex testing. Structural biomarkers, defined as advanced neuroimaging techniques and biomarkers assessing neurotoxicity and immunoexcitotoxicity, may complement the use of functional biomarkers. We hypothesize that neurotoxicity AMPA, NMDA, and kainite receptor biomarkers might be utilized as a part of comprehensive approach to concussion evaluations, with the goal of increasing diagnostic accuracy and facilitating treatment planning and prognostic assessment. PMID:27761129

  16. Neurochemical and electrophysiological diagnosis of reversible neurotoxicity in earthworms exposed to sublethal concentrations of CL-20.

    PubMed

    Gong, Ping; Basu, Niladri; Scheuhammer, Anton M; Perkins, Edward J

    2010-01-01

    Hexanitrohexaazaisowurtzitane (CL-20) is a relatively new energetic compound sharing some degree of structural similarity with hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), a known neurotoxic compound. Previously, we demonstrated using a noninvasive electrophysiological technique that CL-20 was a more potent neurotoxicant than RDX to the earthworm Eisenia fetida. In the present study, we investigated the effect of CL-20 exposure and subsequent recovery on muscarinic acetylcholine receptors (mAChRs) to further define the mechanism of reversible neurotoxicity of CL-20 in E. fetida. We used a noninvasive electrophysiological technique to evaluate neurotoxicity in CL-20-treated worms, and then measured how such exposures altered levels of whole-body mAChR in the same animals. A good correlation exists between these two types of endpoints. Effect on mAChR levels was most prominent at day 6 of exposure. After 7 days of recovery, both conduction velocity and mAChR were significantly restored. Our results show that sublethal concentrations of CL-20 significantly reduced mAChR levels in a concentration- and duration-dependent manner, which was accompanied with significant decreases in the conduction velocity of the medial and lateral giant nerve fibers. After 7-day post exposure recovery, worms restored both neurochemical (mAChR) and neurophysiological (conduction velocity) endpoints that were reduced during 6-day exposures to CL-20 concentrations from 0.02 to 0.22 microg/cm(2). Our findings support the idea that CL-20 induced neurotoxic effects are reversible, and suggest that CL-20 neurotoxicity may be mediated through the cholinergic system. Future studies will investigate other neurotransmission systems such as GABA, glutamate, and monoamine. Ion channels in the nerve membrane should be examined to further define the precise mechanisms underlying CL-20 neurotoxicity.

  17. Brain Localization and Neurotoxicity Evaluation of Polysorbate 80-Modified Chitosan Nanoparticles in Rats

    PubMed Central

    Yuan, Zhong-Yue; Hu, Yu-Lan; Gao, Jian-Qing

    2015-01-01

    The toxicity evaluation of inorganic nanoparticles has been reported by an increasing number of studies, but toxicity studies concerned with biodegradable nanoparticles, especially the neurotoxicity evaluation, are still limited. For example, the potential neurotoxicity of Polysorbate 80-modified chitosan nanoparticles (Tween 80-modified chitosan nanoparticles, TmCS-NPs), one of the most widely used brain targeting vehicles, remains unknown. In the present study, TmCS-NPs with a particle size of 240 nm were firstly prepared by ionic cross-linking of chitosan with tripolyphosphate. Then, these TmCS-NPs were demonstrated to be entered into the brain and specially deposited in the frontal cortex and cerebellum after systemic injection. Moreover, the concentration of TmCS-NPs in these two regions was found to decrease over time. Although no obvious changes were observed for oxidative stress in the in vivo rat model, the body weight was found to remarkably decreased in a dose-dependent manner after exposure to TmCS-NPs for seven days. Besides, apoptosis and necrosis of neurons, slight inflammatory response in the frontal cortex, and decrease of GFAP expression in the cerebellum were also detected in mouse injected with TmCS-NPs. This study is the first report on the sub-brain biodistribution and neurotoxicity studies of TmCS-NPs. Our results provide new insights into the toxicity evaluation of nanoparticles and our findings would help contribute to a better understanding of the neurotoxicity of biodegradable nanomaterials used in pharmaceutics. PMID:26248340

  18. Brain Localization and Neurotoxicity Evaluation of Polysorbate 80-Modified Chitosan Nanoparticles in Rats.

    PubMed

    Yuan, Zhong-Yue; Hu, Yu-Lan; Gao, Jian-Qing

    2015-01-01

    The toxicity evaluation of inorganic nanoparticles has been reported by an increasing number of studies, but toxicity studies concerned with biodegradable nanoparticles, especially the neurotoxicity evaluation, are still limited. For example, the potential neurotoxicity of Polysorbate 80-modified chitosan nanoparticles (Tween 80-modified chitosan nanoparticles, TmCS-NPs), one of the most widely used brain targeting vehicles, remains unknown. In the present study, TmCS-NPs with a particle size of 240 nm were firstly prepared by ionic cross-linking of chitosan with tripolyphosphate. Then, these TmCS-NPs were demonstrated to be entered into the brain and specially deposited in the frontal cortex and cerebellum after systemic injection. Moreover, the concentration of TmCS-NPs in these two regions was found to decrease over time. Although no obvious changes were observed for oxidative stress in the in vivo rat model, the body weight was found to remarkably decreased in a dose-dependent manner after exposure to TmCS-NPs for seven days. Besides, apoptosis and necrosis of neurons, slight inflammatory response in the frontal cortex, and decrease of GFAP expression in the cerebellum were also detected in mouse injected with TmCS-NPs. This study is the first report on the sub-brain biodistribution and neurotoxicity studies of TmCS-NPs. Our results provide new insights into the toxicity evaluation of nanoparticles and our findings would help contribute to a better understanding of the neurotoxicity of biodegradable nanomaterials used in pharmaceutics.

  19. Dopamine disposition in the presynaptic process regulates the severity of methamphetamine-induced neurotoxicity.

    PubMed

    Kuhn, Donald M; Francescutti-Verbeem, Dina M; Thomas, David M

    2008-10-01

    Methamphetamine (METH) is well known for its ability to cause damage to dopamine (DA) nerve endings of the striatum. The mechanisms by which METH causes neurotoxicity are not fully understood, but likely candidates are increased oxidative and nitrosative stress and mitochondrial dysfunction. Microglial activation is also emerging as an important element of the METH neurotoxic cascade, and it appears that extensive cross-talk between these cells and DA nerve endings is an early event in this process. It may seem paradoxical, but DA itself is also thought to be an essential factor in the neuronal damaging effects of METH, but issues relating to its precise role in this regard remain unanswered. We present in this overview a summary of studies that tested how alterations in the disposition of presynaptic DA (injections of reserpine, L-DOPA, or clorgyline) modulate METH neurotoxicity. In all cases, these drugs significantly increased the magnitude of microglial activation as well as the severity of damage to striatal DA nerve endings caused by METH. The enhancement of METH effects in striatum by reserpine, L-DOPA, and clorgyline persisted for 14 days and showed no evidence of recovery. These data establish that subtle shifts in the newly synthesized pool of DA can cause substantial changes in the severity of METH-induced neurotoxicity. DA released into the synapse by METH is very likely the source of downstream reactants that provoke microglial activation and the ensuing damage to DA nerve endings.

  20. Family Decision Making: Benefits to Persons with Developmental Disabilities and Their Family Members

    ERIC Educational Resources Information Center

    Neely-Barnes, Susan; Graff, J. Carolyn; Marcenko, Maureen; Weber, Lisa

    2008-01-01

    Family involvement in planning and choosing services has become a key intervention concept in developmental disability services. This study (N = 547) modeled patterns of family decision making and assessed benefits to persons with developmental disabilities (DDs) and their family members. A latent profile analysis identified 4 classes that were…

  1. [Developmental neurotoxicity of industrial chemicals].

    PubMed

    Labie, Dominique

    2007-10-01

    "A Silent Pandemic : Industrial Chemicals Are Impairing the Brain Development of Children Worldwide" Fetal and early childhood exposures to industrial chemicals in the environment can damage the developing brain and can lead to neurodevelopmental disorders (NDDs)--autism, attention deficit disorder (ADHD), and mental retardation. In a new review study, published in The Lancet, Philip Grandjean and Philip Landrigan from the Harvard School of Public Health systematically examined publicly available data on chemical toxicity in order to identify the industrial chemicals that are the most likely to damage the developing brain. The researchers found that 202 industrial chemicals have the capacity to damage the human brain, and they conclude that chemical pollution may have harmed the brains of millions of children worldwide. The authors conclude further that the toxic effects of industrial chemicals on children have generally been overlooked. In North Amercia, the commission for environmental cooperation, and in European Union the DEVNERTOX projects had reached to the same conclusions. We analyse this review and discuss these rather pessimistic conclusions.

  2. Cytokine-mediated blood brain barrier disruption as a conduit for cancer/chemotherapy-associated neurotoxicity and cognitive dysfunction.

    PubMed

    Wardill, Hannah R; Mander, Kimberley A; Van Sebille, Ysabella Z A; Gibson, Rachel J; Logan, Richard M; Bowen, Joanne M; Sonis, Stephen T

    2016-12-15

    Neurotoxicity is a common side effect of chemotherapy treatment, with unclear molecular mechanisms. Clinical studies suggest that the most frequent neurotoxic adverse events affect memory and learning, attention, concentration, processing speeds and executive function. Emerging preclinical research points toward direct cellular toxicity and induction of neuroinflammation as key drivers of neurotoxicity and subsequent cognitive impairment. Emerging data now show detectable levels of some chemotherapeutic agents within the CNS, indicating potential disruption of blood brain barrier integrity or transport mechanisms. Blood brain barrier disruption is a key aspect of many neurocognitive disorders, particularly those characterized by a proinflammatory state. Importantly, many proinflammatory mediators able to modulate the blood brain barrier are generated by tissues and organs that are targets for chemotherapy-associated toxicities. This review therefore aims to explore the hypothesis that peripherally derived inflammatory cytokines disrupt blood brain barrier permeability, thereby increasing direct access of chemotherapeutic agents into the CNS to facilitate neuroinflammation and central neurotoxicity. © 2016 UICC.

  3. De Novo Synthesized Estradiol Protects against Methylmercury-Induced Neurotoxicity in Cultured Rat Hippocampal Slices

    PubMed Central

    Ishihara, Yasuhiro; Komatsu, Shota; Munetsuna, Eiji; Onizaki, Masahiro; Ishida, Atsuhiko; Kawato, Suguru; Mukuda, Takao

    2013-01-01

    Background Estrogen, a class of female sex steroids, is neuroprotective. Estrogen is synthesized in specific areas of the brain. There is a possibility that the de novo synthesized estrogen exerts protective effect in brain, although direct evidence for the neuroprotective function of brain-synthesized estrogen has not been clearly demonstrated. Methylmercury (MeHg) is a neurotoxin that induces neuronal degeneration in the central nervous system. The neurotoxicity of MeHg is region-specific, and the molecular mechanisms for the selective neurotoxicity are not well defined. In this study, the protective effect of de novo synthesized 17β-estradiol on MeHg-induced neurotoxicity in rat hippocampus was examined. Methodology/Principal Findings Neurotoxic effect of MeHg on hippocampal organotypic slice culture was quantified by propidium iodide fluorescence imaging. Twenty-four-hour treatment of the slices with MeHg caused cell death in a dose-dependent manner. The toxicity of MeHg was attenuated by pre-treatment with exogenously added estradiol. The slices de novo synthesized estradiol. The estradiol synthesis was not affected by treatment with 1 µM MeHg. The toxicity of MeHg was enhanced by inhibition of de novo estradiol synthesis, and the enhancement of toxicity was recovered by the addition of exogenous estradiol. The neuroprotective effect of estradiol was inhibited by an estrogen receptor (ER) antagonist, and mimicked by pre-treatment of the slices with agonists for ERα and ERβ, indicating the neuroprotective effect was mediated by ERs. Conclusions/Significance Hippocampus de novo synthesized estradiol protected hippocampal cells from MeHg-induced neurotoxicity via ERα- and ERβ-mediated pathways. The self-protective function of de novo synthesized estradiol might be one of the possible mechanisms for the selective sensitivity of the brain to MeHg toxicity. PMID:23405170

  4. L-ascorbate attenuates methamphetamine neurotoxicity through enhancing the induction of endogenous heme oxygenase-1.

    PubMed

    Huang, Ya-Ni; Wang, Jiz-Yuh; Lee, Ching-Tien; Lin, Chih-Hung; Lai, Chien-Cheng; Wang, Jia-Yi

    2012-12-01

    Methamphetamine (METH) is a drug of abuse which causes neurotoxicity and increased risk of developing neurodegenerative diseases. We previously found that METH induces heme oxygenase (HO)-1 expression in neurons and glial cells, and this offers partial protection against METH toxicity. In this study, we investigated the effects of l-ascorbate (vitamin C, Vit. C) on METH toxicity and HO-1 expression in neuronal/glial cocultures. Cell viability and damage were evaluated by 3-(4,5-dimethylthianol-2-yl)-2,5 diphenyl tetrazolium bromide (MTT) reduction and lactate dehydrogenase (LDH) release, respectively. Neuronal and glial localization of HO-1 were identified by double immunofluorescence staining. Reactive oxygen species (ROS) production was measured using the fluorochrome 2',7'-dichlorofluorescin diacetate. HO-1 mRNA and protein expression were examined by RT-qPCR and Western blotting, respectively. Results show that Vit. C induced HO-1 mRNA and protein expressions in time- and concentration-dependent manners. Inhibition of p38 mitogen-activated protein kinase (MAPK) but not extracellular signal-regulated kinase (ERK) significantly blocked induction of HO-1 by Vit. C. HO-1 mRNA and protein expressions were significantly elevated by a combination of Vit. C and METH, compared to either Vit. C or METH alone. Pretreatment with Vit. C enhanced METH-induced HO-1 expression and attenuated METH-induced ROS production and neurotoxicity. Pharmacological inhibition of HO activity abolished suppressive effects of Vit. C on METH-induced ROS production and attenuated neurotoxicity. We conclude that induction of HO-1 expression contributes to the attenuation of METH-induced ROS production and neurotoxicity by Vit. C. We suggest that HO-1 induction by Vit. C may serve as a strategy to alleviate METH neurotoxicity. Copyright © 2012 Elsevier Inc. All rights reserved.

  5. Minocycline attenuates colistin-induced neurotoxicity via suppression of apoptosis, mitochondrial dysfunction and oxidative stress.

    PubMed

    Dai, Chongshan; Ciccotosto, Giuseppe D; Cappai, Roberto; Wang, Yang; Tang, Shusheng; Xiao, Xilong; Velkov, Tony

    2017-06-01

    Neurotoxicity is an adverse effect patients experience during colistin therapy. The development of effective neuroprotective agents that can be co-administered during polymyxin therapy remains a priority area in antimicrobial chemotherapy. The present study investigates the neuroprotective effect of the synergistic tetracycline antibiotic minocycline against colistin-induced neurotoxicity. The impact of minocycline pretreatment on colistin-induced apoptosis, caspase activation, oxidative stress and mitochondrial dysfunction were investigated using cultured mouse neuroblastoma-2a (N2a) and primary cortical neuronal cells. Colistin-induced neurotoxicity in mouse N2a and primary cortical cells gives rise to the generation of reactive oxygen species (ROS) and subsequent cell death via apoptosis. Pretreatment of the neuronal cells with minocycline at 5, 10 and 20 μM for 2 h prior to colistin (200 μM) exposure (24 h), had an neuroprotective effect by significantly decreasing intracellular ROS production and by upregulating the activities of the anti-ROS enzymes superoxide dismutase and catalase. Minocycline pretreatment also protected the cells from colistin-induced mitochondrial dysfunction, caspase activation and subsequent apoptosis. Immunohistochemical imaging studies revealed colistin accumulates within the dendrite projections and cell body of primary cortical neuronal cells. To our knowledge, this is first study demonstrating the protective effect of minocycline on colistin-induced neurotoxicity by scavenging of ROS and suppression of apoptosis. Our study highlights that co-administration of minocycline kills two birds with one stone: in addition to its synergistic antimicrobial activity, minocycline could potentially ameliorate unwanted neurotoxicity in patients undergoing polymyxin therapy. © The Author 2017. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions

  6. Developmental Assets: Profile of Youth in a Juvenile Justice Facility

    ERIC Educational Resources Information Center

    Chew, Weslee; Osseck, Jenna; Raygor, Desiree; Eldridge-Houser, Jennifer; Cox, Carol

    2010-01-01

    Background: Possessing high numbers of developmental assets greatly reduces the likelihood of a young person engaging in health-risk behaviors. Since youth in the juvenile justice system seem to exhibit many high-risk behaviors, the purpose of this study was to assess the presence of external, internal, and social context areas of developmental…

  7. Health profiles in people with intellectual developmental disorders.

    PubMed

    Folch-Mas, Anabel; Cortés-Ruiz, María José; Vicens Calderón, Paloma; Martínez-Leal, Rafael

    2017-01-01

    To better understand the health profiles of people with intellectual disability (ID), focusing on the variables that are associated with a poorer health status. Data were collected from the Survey on Disability, Personal Autonomy and Dependency (EDAD 2008) of the Spanish National Statistics Institute (INE). The health data of 2840 subjects with IDD were analyzed in order to verify the impact of different variables on their health profiles. People with severe and profound levels of IDD presented a higher number of medical diagnoses. At residence centers there was a larger proportion of individuals with a higher prevalence of chronic diseases and more severe conditions; age also was an important factor. The health profiles of individuals with IDD differ depending on the severity level of their IDD and their degree of institutionalization. Further research is needed to provide better health care for people with IDD.

  8. 17β-estradiol and tamoxifen protect mice from manganese-induced dopaminergic neurotoxicity.

    PubMed

    Pajarillo, Edward; Johnson, James; Kim, Judong; Karki, Pratap; Son, Deok-Soo; Aschner, Michael; Lee, Eunsook

    2018-03-01

    Chronic exposure to manganese (Mn) causes neurotoxicity, referred to as manganism, with common clinical features of parkinsonism. 17β-estradiol (E2) and tamoxifen (TX), a selective estrogen receptor modulator (SERM), afford neuroprotection in several neurological disorders, including Parkinson's disease (PD). In the present study, we tested if E2 and TX attenuate Mn-induced neurotoxicity in mice, assessing motor deficit and dopaminergic neurodegeneration. We implanted E2 and TX pellets in the back of the neck of ovariectomized C57BL/6 mice two weeks prior to a single injection of Mn into the striatum. One week later, we assessed locomotor activity and molecular mechanisms by immunohistochemistry, real-time quantitative PCR, western blot and enzymatic biochemical analyses. The results showed that both E2 and TX attenuated Mn-induced motor deficits and reversed the Mn-induced loss of dopaminergic neurons in the substantia nigra. At the molecular level, E2 and TX reversed the Mn-induced decrease of (1) glutamate aspartate transporter (GLAST) and glutamate transporter 1 (GLT-1) mRNA and protein levels; (2) transforming growth factor-α (TGF-α) and estrogen receptor-α (ER-α) protein levels; and (3) catalase (CAT) activity and glutathione (GSH) levels, and Mn-increased (1) malondialdehyde (MDA) levels and (2) the Bax/Bcl-2 ratio. These results indicate that E2 and TX afford protection against Mn-induced neurotoxicity by reversing Mn-reduced GLT1/GLAST as well as Mn-induced oxidative stress. Our findings may offer estrogenic agents as potential candidates for the development of therapeutics to treat Mn-induced neurotoxicity. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Rearing Conditions Differentially Affect the Locomotor Behavior of Larval Zebrafish, but not their Response to Valproate-Induced Developmental Neurotoxicity

    EPA Science Inventory

    Zebrafish (Dania rerio) are widely used in developmental research, but little is known about the role environment may play in their development. Zebrafish are a highly social organism; thus exposure to or isolation from social environments may have profound effects. Details of re...

  10. Tissue plasminogen activator mediates amyloid-induced neurotoxicity via Erk1/2 activation

    PubMed Central

    Medina, Manel G; Ledesma, Maria Dolores; Domínguez, Jorge E; Medina, Miguel; Zafra, Delia; Alameda, Francesc; Dotti, Carlos G; Navarro, Pilar

    2005-01-01

    Tissue plasminogen activator (tPA) is the main activator of plasminogen into plasmin in the brain where it may have beneficial roles but also neurotoxic effects that could be plasmin dependent or not. Little is known about the substrates and pathways that mediate plasmin-independent tPA neurotoxicity. Here we show in primary hippocampal neurons that tPA promotes a catalytic-independent activation of the extracellular regulated kinase (Erk)1/2 signal transduction pathway through the N-methyl-D-aspartate receptor, G-proteins and protein kinase C. This results in GSK3 activation in a process that requires de novo synthesis of proteins, and leads to tau aberrant phosphorylation, microtubule destabilization and apoptosis. Similar effects are produced by amyloid aggregates in a tPA-dependent manner, as demonstrated by pharmacological treatments and in wt and tPA−/− mice neurons. Consistently, in Alzheimer's disease (AD) patients' brains, high levels of tPA colocalize with amyloid-rich areas, activated Erk1/2 and phosphorylated tau. This is the first demonstration of an intracellular pathway by which tPA triggers kinase activation, tau phosphorylation and neurotoxicity, suggesting a key role for this molecule in AD pathology. PMID:15861134

  11. Neuroprotective effect of curcumin-loaded lactoferrin nano particles against rotenone induced neurotoxicity.

    PubMed

    Bollimpelli, V Satish; Kumar, Prashant; Kumari, Sonali; Kondapi, Anand K

    2016-05-01

    Curcumin is known to have neuroprotective role and possess antioxidant, anti-inflammatory activities. Rotenone, a flavonoid induced neurotoxicity in dopaminergic cells is being widely studied in Parkinson's Disease (PD) research. In the present study, curcumin loaded lactoferrin nano particles prepared by sol-oil chemistry were used to protect dopaminergic cell line SK-N-SH against rotenone induced neurotoxicity. These curcumin loaded nano particles were of 43-60 nm diameter size and around 100 nm hydrodynamic size as assessed by transmission electron microscopy, atomic force microscopy and dynamic light scattering analysis respectively. The encapsulation efficiency was 61.3% ± 2.4%. Cellular uptake of curcumin through these nano particles was confirmed by confocal imaging and spectrofluorimetric analysis. The curcumin loaded lactoferrin nanoparticles showed greater intracellular drug uptake, sustained retention and greater neuroprotection than soluble counterpart. Neuroprotective activity was characterized through viability assays and by estimating ROS levels. Furthermore rotenone induced PD like features were characterized by decrease in tyrosine hydroxylase expression and increase in α-synuclein expression. Taken together curcumin loaded lactoferrin nanoparticles could be a promising drug delivery strategy against neurotoxicity in dopaminergic neurons. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Effects of rutin on acrylamide-induced neurotoxicity

    PubMed Central

    2014-01-01

    Background Rutin is an important flavonoid that is consumed in the daily diet. The cytoprotective effects of rutin, including antioxidative, and neuroprotective have been shown in several studies. Neurotoxic effects of acrylamide (ACR) have been established in humans and animals. In this study, the protective effects of rutin in prevention and treatment of neural toxicity of ACR were studied. Results Rutin significantly reduced cell death induced by ACR (5.46 mM) in time- and dose-dependent manners. Rutin treatment decreased the ACR-induced cytotoxicity significantly in comparison to control (P <0.01, P < 0.001). Rutin (100 and 200 mg/kg) could prevent decrease of body weight in rats. In combination treatments with rutin (50, 100 and 200 mg/kg), vitamin E (200 mg/kg) and ACR, gait abnormalities significantly decreased in a dose-dependent manner (P < 0.01 and P < 0.001). The level of malondialdehyde significantly decreased in the brain tissue of rats in both preventive and therapeutic groups that received rutin (100 and 200 mg/kg). Conclusion It seems that rutin could be effective in reducing neurotoxicity and the neuroprotective effect of it might be mediated via antioxidant activity. PMID:24524427

  13. Persistent neurotoxicity from a battery fire: is cadmium the culprit?

    PubMed

    Kilburn, K H; McKinley, K L

    1996-07-01

    Two train conductors had chest tightness, painful breathing, muscle cramps, and nausea after fighting a fire in a battery box under a passenger coach. Shortly thereafter, they became anosmic and had excessive fatigue, persistent headaches, sleep disturbances, irritability, unstable moods, and hypertension. Urinary cadmium and nickel levels were elevated. Neurobehavioral testing showed, in comparison to referents, prolonged reaction times, abnormal balance, prolonged blink reflex latency, severely constricted visual fields, and decreased vibration sense. Test scores showed that immediate verbal and visual recall were normal but delayed recall was reduced. Scores on overlearned information were normal. Tests measuring dexterity, coordination, decision making, and peripheral sensation and discrimination revealed abnormalities. Repeat testing 6 and 12 months after exposure showed persistent abnormalities. Cadmium and vinyl chloride are the most plausible causes of the neurotoxicity, but fumes from the fire may have contained other neurotoxic chemicals.

  14. Reproductive and developmental toxicity of degradation products of refrigerants in experimental animals.

    PubMed

    Ema, Makoto; Naya, Masato; Yoshida, Kikuo; Nagaosa, Ryuichi

    2010-01-01

    The present paper summarizes the results of animal studies on the reproductive and developmental toxicity of the degradation products of refrigerants, including trifluoroacetic acid (TFA), carbon dioxide (CO(2)), carbon monoxide (CO), carbonyl fluoride (CF), hydrogen fluoride (HF) and formic acid (FA). Excessive CO(2) in the atmosphere is testicular and reproductive toxic, embryolethal, developmentally neurotoxic and teratogenic in experimental animals. As for CO, maternal exposure causes prenatal and postnatal lethality and growth retardation, skeletal variations, cardiomegaly, blood biochemical, immunological and postnatal behavioral changes, and neurological impairment in offspring of several species. Very early studies of CO in rats and guinea pigs reported fetal malformations in exposed dams. The results of toxicological studies on sodium fluoride (NaF) were used to obtain insight into the toxicity of CF and HF, because CF is rapidly hydrolyzed in contact with water yielding CO(2) and HF, and NaF is similar in kinetics and dynamics to HF. Increased fetal skeletal variation, but not malformation, was noted after the maternal administration of NaF. Rat multiple-generation studies revealed that NaF caused retarded ossification and degenerative changes in the lung and kidney in offspring. There is a lack of information about the toxicity of TFA and FA. Copyright 2009 Elsevier Inc. All rights reserved.

  15. Protection by imidazol(ine) drugs and agmatine of glutamate-induced neurotoxicity in cultured cerebellar granule cells through blockade of NMDA receptor

    PubMed Central

    Olmos, Gabriel; DeGregorio-Rocasolano, Nuria; Regalado, M Paz; Gasull, Teresa; Boronat, M Assumpció; Trullas, Ramón; Villarroel, Alvaro; Lerma, Juan; García-Sevilla, Jesús A

    1999-01-01

    This study was designed to assess the potential neuroprotective effect of several imidazol(ine) drugs and agmatine on glutamate-induced necrosis and on apoptosis induced by low extracellular K+ in cultured cerebellar granule cells.Exposure (30 min) of energy deprived cells to L-glutamate (1–100 μM) caused a concentration-dependent neurotoxicity, as determined 24 h later by a decrease in the ability of the cells to metabolize 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbromide (MTT) into a reduced formazan product. L-glutamate-induced neurotoxicity (EC50=5 μM) was blocked by the specific NMDA receptor antagonist MK-801 (dizocilpine).Imidazol(ine) drugs and agmatine fully prevented neurotoxicity induced by 20 μM (EC100) L-glutamate with the rank order (EC50 in μM): antazoline (13)>cirazoline (44)>LSL 61122 [2-styryl-2-imidazoline] (54)>LSL 60101 [2-(2-benzofuranyl) imidazole] (75)>idazoxan (90)>LSL 60129 [2-(1,4-benzodioxan-6-yl)-4,5-dihydroimidazole] (101)>RX821002 (2-methoxy idazoxan) (106)>agmatine (196). No neuroprotective effect of these drugs was observed in a model of apoptotic neuronal cell death (reduction of extracellular K+) which does not involve stimulation of NMDA receptors.Imidazol(ine) drugs and agmatine fully inhibited [3H]-(+)-MK-801 binding to the phencyclidine site of NMDA receptors in rat brain. The profile of drug potency protecting against L-glutamate neurotoxicity correlated well (r=0.90) with the potency of the same compounds competing against [3H]-(+)-MK-801 binding.In HEK-293 cells transfected to express the NR1-1a and NR2C subunits of the NMDA receptor, antazoline and agmatine produced a voltage- and concentration-dependent block of glutamate-induced currents. Analysis of the voltage dependence of the block was consistent with the presence of a binding site for antazoline located within the NMDA channel pore with an IC50 of 10–12 μM at 0 mV.It is concluded that imidazol(ine) drugs and agmatine are

  16. Association between Pesticide Profiles Used on Agricultural Fields near Maternal Residences during Pregnancy and IQ at Age 7 Years.

    PubMed

    Coker, Eric; Gunier, Robert; Bradman, Asa; Harley, Kim; Kogut, Katherine; Molitor, John; Eskenazi, Brenda

    2017-05-09

    We previously showed that potential prenatal exposure to agricultural pesticides was associated with adverse neurodevelopmental outcomes in children, yet the effects of joint exposure to multiple pesticides is poorly understood. In this paper, we investigate associations between the joint distribution of agricultural use patterns of multiple pesticides (denoted as "pesticide profiles") applied near maternal residences during pregnancy and Full-Scale Intelligence Quotient (FSIQ) at 7 years of age. Among a cohort of children residing in California's Salinas Valley, we used Pesticide Use Report (PUR) data to characterize potential exposure from use within 1 km of maternal residences during pregnancy for 15 potentially neurotoxic pesticides from five different chemical classes. We used Bayesian profile regression (BPR) to examine associations between clustered pesticide profiles and deficits in childhood FSIQ. BPR identified eight distinct clusters of prenatal pesticide profiles. Two of the pesticide profile clusters exhibited some of the highest cumulative pesticide use levels and were associated with deficits in adjusted FSIQ of -6.9 (95% credible interval: -11.3, -2.2) and -6.4 (95% credible interval: -13.1, 0.49), respectively, when compared with the pesticide profile cluster that showed the lowest level of pesticides use. Although maternal residence during pregnancy near high agricultural use of multiple neurotoxic pesticides was associated with FSIQ deficit, the magnitude of the associations showed potential for sub-additive effects. Epidemiologic analysis of pesticides and their potential health effects can benefit from a multi-pollutant approach to analysis.

  17. RNAi pathways contribute to developmental history-dependent phenotypic plasticity in C. elegans

    PubMed Central

    Hall, Sarah E.; Chirn, Gung-Wei; Lau, Nelson C.; Sengupta, Piali

    2013-01-01

    Early environmental experiences profoundly influence adult phenotypes through complex mechanisms that are poorly understood. We previously showed that adult Caenorhabditis elegans that transiently passed through the stress-induced dauer larval stage (post-dauer adults) exhibit significant changes in gene expression profiles, chromatin states, and life history traits when compared with adults that bypassed the dauer stage (control adults). These wild-type, isogenic animals of equivalent developmental stages exhibit different signatures of molecular marks that reflect their distinct developmental trajectories. To gain insight into the mechanisms that contribute to these developmental history-dependent phenotypes, we profiled small RNAs from post-dauer and control adults by deep sequencing. RNA interference (RNAi) pathways are known to regulate genome-wide gene expression both at the chromatin and post-transcriptional level. By quantifying changes in endogenous small interfering RNA (endo-siRNA) levels in post-dauer as compared with control animals, our analyses identified a subset of genes that are likely targets of developmental history-dependent reprogramming through a complex RNAi-mediated mechanism. Mutations in specific endo-siRNA pathways affect expected gene expression and chromatin state changes for a subset of genes in post-dauer animals, as well as disrupt their increased brood size phenotype. We also find that both chromatin state and endo-siRNA distribution in dauers are unique, and suggest that remodeling in dauers provides a template for the subsequent establishment of adult post-dauer profiles. Our results indicate a role for endo-siRNA pathways as a contributing mechanism to early experience-dependent phenotypic plasticity in adults, and describe how developmental history can program adult physiology and behavior via epigenetic mechanisms. PMID:23329696

  18. E-p-Methoxycinnamic acid protects cultured neuronal cells against neurotoxicity induced by glutamate

    PubMed Central

    Kim, So Ra; Sung, Sang Hyun; Jang, Young Pyo; Markelonis, George J; Oh, Tae H; Kim, Young Choong

    2002-01-01

    We previously reported that four new phenylpropanoid glycosides and six known cinnamate derivatives isolated from roots of Scrophularia buergeriana Miquel (Scrophulariaceae) protected cultured cortical neurons from neurotoxicity induced by glutamate. Here, we have investigated the structure-activity relationships in the phenylpropanoids using our primary culture system. The α,β-unsaturated ester moiety and the para-methoxy group in the phenylpropanoids appeared to play a vital role in neuroprotective activity. This suggested that E-p-methoxycinnamic acid (E-p-MCA) might be a crucial component for their neuroprotective activity within the phenylpropanoid compounds. E-p-MCA significantly attenuated glutamate-induced neurotoxicity when added prior to an excitotoxic glutamate challenge. The neuroprotective activity of E-p-MCA appeared to be more effective in protecting neurons against neurotoxicity induced by NMDA than from that induced by kainic acid. E-p-MCA inhibited the binding of [propyl-2,3-3H]-CGP39653 and [2-3H]-glycine to their respective binding sites on rat cortical membranes. However, even high concentrations of E-p-MCA failed to inhibit completely [propyl-2,3-3H]-CGP39653 and [2-3H]-glycine binding. Indeed, E-p-MCA diminished the calcium influx that routinely accompanies glutamate-induced neurotoxicity, and inhibited the subsequent overproduction of nitric oxide and cellular peroxide in glutamate-injured neurons. Thus, our results suggest that E-p-MCA exerts significant protective effects against neurodegeneration induced by glutamate in primary cultures of cortical neurons by an action suggestive of partial glutamatergic antagonism. PMID:11877337

  19. DEVELOPMENTAL TOXICOGENOMIC STUDIES OF PFOA AND PFOS IN MICE.

    EPA Science Inventory

    Perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) are developmentally toxic in rodents. To better understand the mechanism(s) associated with this toxicity, we have conducted transcript profiling in mice. In an initial study, pregnant animals were dosed througho...

  20. Developmental cigarette smoke exposure II: Hippocampus proteome and metabolome profiles in adult offspring.

    PubMed

    Neal, Rachel E; Jagadapillai, Rekha; Chen, Jing; Webb, Cindy; Stocke, Kendall; Greene, Robert M; Pisano, M Michele

    2016-10-01

    Exposure to cigarette smoke during development is linked to neurodevelopmental delays and cognitive impairment including impulsivity, attention deficit disorder, and lower IQ. Utilizing a murine experimental model of "active" inhalation exposure to cigarette smoke spanning the entirety of gestation and through human third trimester equivalent hippocampal development [gestation day 1 (GD1) through postnatal day 21 (PD21)], we examined hippocampus proteome and metabolome alterations present at a time during which developmental cigarette smoke exposure (CSE)-induced behavioral and cognitive impairments are evident in adult animals from this model system. At six month of age, carbohydrate metabolism and lipid content in the hippocampus of adult offspring remained impacted by prior exposure to cigarette smoke during the critical period of hippocampal ontogenesis indicating limited glycolysis. These findings indicate developmental CSE-induced systemic glucose availability may limit both organism growth and developmental trajectory, including the capacity for learning and memory. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. OXIDATION OF POLYCHLORINATED BIPHENYLS BY LIVER TISSUE SLICES FROM PHENOBARBITAL-PRETREATED MICE IS CONGENER-SPECIFIC AND ATROPSELECTIVE

    PubMed Central

    Wu, Xianai; Duffel, Michael; Lehmler, Hans-Joachim

    2013-01-01

    Mouse models are powerful tools to study the developmental neurotoxicity of polychlorinated biphenyls (PCBs); however, studies of the oxidation of chiral PCB congeners to potentially neurotoxic hydroxylated metabolites (OH-PCBs) in mice have not been reported. Here we investigate the atropselective oxidation of chiral PCB 91 (2,2',3,4',6-pentachlorobiphenyl), PCB 95 (2,2',3,5',6-pentachlorobiphenyl), PCB 132 (2,2',3,3',4,6'-hexachlorobiphenyl), PCB 136 (2,2',3,3',6,6'-hexachlorobiphenyl) and PCB 149 (2,2',3,4',5',6-hexachlorobiphenyl) to OH-PCBs in liver tissue slices prepared from female mice. The metabolite profile of PCB 136 typically followed the rank order 5-OH-PCB > 4-OH-PCB > 4,5-OH-PCB, and metabolite levels increased with PCB concentration and incubation time. A similar OH-PCB profile was observed with the other PCB congeners, with 5-OH-PCB:4-OH-PCB ratios ranging from 2 to 12. More 5-OH-PCB 136 was formed in liver tissue slices obtained from animals pretreated with phenobarbital (P450 2B inducer) or, to a lesser extent, dexamethasone (P450 2B and 3A enzyme inducer) compared to tissue slices prepared from vehicle-pretreated animals. The apparent rate of 5-OH-PCBs formation followed the approximate rank order PCB 149 > PCB 91 > PCB 132 ~ PCB 136 > PCB 95. Atropselective gas chromatography revealed a congener-specific atropisomeric enrichment of major OH-PCB metabolites. Comparison of our results with published OH-PCB patterns and chiral signatures (i.e., the direction and extent of the atropisomeric enrichment) from rat liver microsomal revealed drastic differences between both species, especially following induction of P450 2B enzymes. These species differences in the metabolism of chiral PCBs should be considered in developmental neurotoxicity studies of PCBs. PMID:24107130

  2. Developmental manganese exposure in combination with developmental stress and iron deficiency: Effects on behavior and monoamines.

    PubMed

    Amos-Kroohs, Robyn M; Davenport, Laurie L; Gutierrez, Arnold; Hufgard, Jillian R; Vorhees, Charles V; Williams, Michael T

    2016-01-01

    Manganese (Mn) is an essential element but neurotoxic at higher exposures, however, Mn exposure seldom occurs in isolation. It often co-occurs in populations with inadequate dietary iron (Fe) and limited resources that result in stress. Subclinical FeD affects up to 15% of U.S. children and exacerbates Mn toxicity by increasing Mn bioavailability. Therefore, we investigated Mn overexposure (MnOE) in rats in combination with Fe deficiency (FeD) and developmental stress, for which we used barren cage rearing. For barren cage rearing (BAR), rats were housed in cages with a wire grid floor or standard bedding material (STD) from embryonic day (E)7 through postnatal day (P)28. For FeD, dams were fed a 90% Fe-deficient NIH-07 diet from E15 through P28. Within each litter, different offspring were treated with 100mg/kg Mn (MnOE) or vehicle (VEH) by gavage every other day from P4-28. Behavior was assessed at two ages and consisted of: open-field, anxiety tests, acoustic startle response (ASR) with prepulse inhibition (PPI), sociability, sucrose preference, tapered beam crossing, and the Porsolt's forced swim test. MnOE had main effects of decreasing activity, ASR, social preference, and social novelty. BAR and FeD transiently modified MnOE effects. BAR groups weighed less and showed decreased anxiety in the elevated zero maze, had increased ASR and decreased PPI, and exhibited reduced sucrose preference compared with the STD groups. FeD animals also weighed less and had increased slips on the tapered beam. Most of the monoamine effects were dopaminergic and occurred in the MnOE groups. The results showed that Mn is a pervasive developmental neurotoxin, the effects of which are modulated by FeD and/or BAR cage rearing. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Δ9-tetrahydrocannabinol prevents methamphetamine-induced neurotoxicity.

    PubMed

    Castelli, M Paola; Madeddu, Camilla; Casti, Alberto; Casu, Angelo; Casti, Paola; Scherma, Maria; Fattore, Liana; Fadda, Paola; Ennas, M Grazia

    2014-01-01

    Methamphetamine (METH) is a potent psychostimulant with neurotoxic properties. Heavy use increases the activation of neuronal nitric oxide synthase (nNOS), production of peroxynitrites, microglia stimulation, and induces hyperthermia and anorectic effects. Most METH recreational users also consume cannabis. Preclinical studies have shown that natural (Δ9-tetrahydrocannabinol, Δ9-THC) and synthetic cannabinoid CB1 and CB2 receptor agonists exert neuroprotective effects on different models of cerebral damage. Here, we investigated the neuroprotective effect of Δ9-THC on METH-induced neurotoxicity by examining its ability to reduce astrocyte activation and nNOS overexpression in selected brain areas. Rats exposed to a METH neurotoxic regimen (4 × 10 mg/kg, 2 hours apart) were pre- or post-treated with Δ9-THC (1 or 3 mg/kg) and sacrificed 3 days after the last METH administration. Semi-quantitative immunohistochemistry was performed using antibodies against nNOS and Glial Fibrillary Acidic Protein (GFAP). Results showed that, as compared to corresponding controls (i) METH-induced nNOS overexpression in the caudate-putamen (CPu) was significantly attenuated by pre- and post-treatment with both doses of Δ9-THC (-19% and -28% for 1 mg/kg pre- and post-treated animals; -25% and -21% for 3 mg/kg pre- and post-treated animals); (ii) METH-induced GFAP-immunoreactivity (IR) was significantly reduced in the CPu by post-treatment with 1 mg/kg Δ9-THC1 (-50%) and by pre-treatment with 3 mg/kg Δ9-THC (-53%); (iii) METH-induced GFAP-IR was significantly decreased in the prefrontal cortex (PFC) by pre- and post-treatment with both doses of Δ9-THC (-34% and -47% for 1 mg/kg pre- and post-treated animals; -37% and -29% for 3 mg/kg pre- and post-treated animals). The cannabinoid CB1 receptor antagonist SR141716A attenuated METH-induced nNOS overexpression in the CPu, but failed to counteract the Δ9-THC-mediated reduction of METH-induced GFAP-IR both in the PFC and CPu. Our

  4. Impaired Formation of Stimulus–Response, But Not Action–Outcome, Associations in Rats with Methamphetamine-Induced Neurotoxicity

    PubMed Central

    Son, Jong-Hyun; Latimer, Christine; Keefe, Kristen A

    2011-01-01

    Methamphetamine (METH) induces neurotoxic changes, including partial striatal dopamine depletions, which are thought to contribute to cognitive dysfunction in rodents and humans. The dorsal striatum is implicated in action–outcome (A–O) and stimulus–response (S–R) associations underlying instrumental learning. Thus, the present study examined the long-term consequences of METH-induced neurotoxicity on A–O and S–R associations underlying appetitive instrumental behavior. Rats were pretreated with saline or a neurotoxic regimen of METH (4 × 7.5–10 mg/kg). Rats trained on random ratio (RR) or random interval (RI) schedules of reinforcement were then subjected to outcome devaluation or contingency degradation, followed by an extinction test. All rats then were killed, and brains removed for determination of striatal dopamine loss. The results show that: (1) METH pretreatment induced a partial 45–50% decrease in striatal dopamine tissue content in dorsomedial and dorsolateral striatum; (2) METH-induced neurotoxicity did not alter acquisition of instrumental behavior on either RR or RI schedules; (3) outcome devaluation and contingency degradation similarly decreased responding in saline- and METH-pretreated rats trained on the RR schedule, suggesting intact A–O associations guiding behavior; (4) outcome devaluation after training on the RI schedule decreased extinction responding only in METH-pretreated rats, suggesting impaired S–R associations. Overall, these data suggest that METH-induced neurotoxicity, possibly due to impairment of the function of dorsolateral striatal circuitry, may decrease cognitive flexibility by impairing the ability to automatize behavioral patterns. PMID:21775980

  5. Building Developmental Assets to Empower Adolescent Girls in Rural Bangladesh: Evaluation of Project "Kishoree Kontha"

    ERIC Educational Resources Information Center

    Scales, Peter C.; Benson, Peter L.; Dershem, Larry; Fraher, Kathleen; Makonnen, Raphael; Nazneen, Shahana; Syvertsen, Amy K.; Titus, Sarah

    2013-01-01

    "Kishoree Kontha" ("Adolescent Girls' Voices") was implemented in Bangladeshi villages to build the developmental assets (e.g., support from others, social competencies) of rural girls through peer education in social skills, literacy, and school learning. The Developmental Assets Profile (DAP) measured the project's impact on…

  6. Protective Efficacy of Selenite against Lead-Induced Neurotoxicity in Caenorhabditis elegans

    PubMed Central

    Tseng, I-Ling; Liao, Vivian Hsiu-Chuan

    2013-01-01

    Background Selenium is an essential micronutrient that has a narrow exposure window between its beneficial and toxic effects. This study investigated the protective potential of selenite (IV) against lead (Pb(II))-induced neurotoxicity in Caenorhabditis elegans. Principal Findings The results showed that Se(IV) (0.01 µM) pretreatment ameliorated the decline of locomotion behaviors (frequencies of body bends, head thrashes, and reversal ) of C. elegans that are damaged by Pb(II) (100 µM) exposure. The intracellular ROS level of C. elegans induced by Pb(II) exposure was significantly lowered by Se(IV) supplementation prior to Pb(II) exposure. Finally, Se(IV) protects AFD sensory neurons from Pb(II)-induced toxicity. Conclusions Our study suggests that Se(IV) has protective activities against Pb(II)-induced neurotoxicity through its antioxidant property. PMID:23638060

  7. Repin-induced neurotoxicity in rodents.

    PubMed

    Robles, M; Choi, B H; Han, B; Santa Cruz, K; Kim, R C

    1998-07-01

    Russian knapweed is a perennial weed found in many parts of the world, including southern California. Chronic ingestion of this plant by horses has been reported to cause equine nigropallidal encephalomalacia (ENE), which is associated with a movement disorder simulating Parkinson's disease (PD). Repin, a principal ingredient purified from Russian knapweed, is a sesquiterpene lactone containing an alpha-methylenebutyrolactone moiety and epoxides and is a highly reactive electrophile that can readily undergo conjugation with various biological nucleophiles, such as proteins, DNA, and glutathione (GSH). We show in this study that repin is highly toxic to C57BL/6J mice and Sprague-Dawley rats and acutely induces uncoordinated locomotion associated with postural tremors, hypothermia, and inability to respond to sonic and tactile stimuli. We also show that repin intoxication reduces striatal and hippocampal GSH and increases total striatal dopamine (DA) levels in mice. Striatal microdialysis in rats, however, has demonstrated a significant reduction of extracellular DA levels. These findings, coupled with the absence of any demonstrable change in striatal DOPAC levels, suggest that repin acts by inhibiting DA release, a hypothesis that is further supported by our demonstration that, in cultured PC12 cells, repin inhibits the release of DA without affecting its uptake. We believe, therefore, that inhibition of DA release represents one of the earliest pathogenetic events in ENE, leading eventually to striatal extracellular DA denervation, oxidative stress, and degeneration of nigrostriatal pathways. Since the neurotoxic effects of repin appear to be mediated via oxidative stress, and since repin is a natural product isolated from a plant in our environment that can cause a movement disorder associated with degeneration of nigrostriatal pathways, clarification of the mechanism of repin neurotoxicity may provide new insights into our understanding of the pathogenesis of PD

  8. iTRAQ proteomics analysis reveals that PI3K is highly associated with bupivacaine-induced neurotoxicity pathways.

    PubMed

    Zhao, Wei; Liu, Zhongjie; Yu, Xujiao; Lai, Luying; Li, Haobo; Liu, Zipeng; Li, Le; Jiang, Shan; Xia, Zhengyuan; Xu, Shi-yuan

    2016-02-01

    Bupivacaine, a commonly used local anesthetic, has potential neurotoxicity through diverse signaling pathways. However, the key mechanism of bupivacaine-induced neurotoxicity remains unclear. Cultured human SH-SY5Y neuroblastoma cells were treated (bupivacaine) or untreated (control) with bupivacaine for 24 h. Compared to the control group, bupivacaine significantly increased cyto-inhibition, cellular reactive oxygen species, DNA damage, mitochondrial injury, apoptosis (increased TUNEL-positive cells, cleaved caspase 3, and Bcl-2/Bax), and activated autophagy (enhanced LC3II/LC3I ratio). To explore changes in protein expression and intercommunication among the pathways involved in bupivacaine-induced neurotoxicity, an 8-plex iTRAQ proteomic technique and bioinformatics analysis were performed. Compared to the control group, 241 differentially expressed proteins were identified, of which, 145 were up-regulated and 96 were down-regulated. Bioinformatics analysis of the cross-talk between the significant proteins with altered expression in bupivacaine-induced neurotoxicity indicated that phosphatidyl-3-kinase (PI3K) was the most frequently targeted protein in each of the interactions. We further confirmed these results by determining the downstream targets of the identified signaling pathways (PI3K, Akt, FoxO1, Erk, and JNK). In conclusion, our study demonstrated that PI3K may play a central role in contacting and regulating the signaling pathways that contribute to bupivacaine-induced neurotoxicity. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. A developmental-psychobiological approach to developmental neuropsychology.

    PubMed

    Michel, G F

    2001-01-01

    Although both developmental psychobiology and developmental neuropsychology examine the interface between biological and psychological processes, they differ in conceptual framework. This article argues for the incorporation into developmental neuropsychology of certain aspects of the conceptual framework of developmental psychobiology. Three principles of dynamic psychobiological interaction are described and applied to four issues in neuropsychology (handedness, sex differences in behavior, critical periods, and modularity of structure-function relations). Then, it is proposed that developmental psychobiology can make four direct contributions to developmental neuropsychology. Finally, it is argued that the value of the conceptual framework provided by developmental psychobiology depends, in part, on how well it translates into procedures that can be applied in the clinical settings of the developmental neuropsychologist.

  10. THE ROLE OF MOTOR ACTIVITY IN THE ASSESSMENT OF NEUROTOXICITY

    EPA Science Inventory

    Motor activity is a behavioral test that has been recommended as a component of testing batteries that evaluate the neurotoxic potential of chemicals. his brief commentary will address the role of this test in such evaluations. t is organized in accordance with the questions that...

  11. Enhancement of endocannabinoid signaling protects against cocaine-induced neurotoxicity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vilela, Luciano R.; Gobira, Pedro H.; Viana, Thercia G.

    Cocaine is an addictive substance with a potential to cause deleterious effects in the brain. The strategies for treating its neurotoxicity, however, are limited. Evidence suggests that the endocannabinoid system exerts neuroprotective functions against various stimuli. Thus, we hypothesized that inhibition of fatty acid amide hydrolase (FAAH), the main enzyme responsible for terminating the actions of the endocannabinoid anandamide, reduces seizures and cell death in the hippocampus in a model of cocaine intoxication. Male Swiss mice received injections of endocannabinoid-related compounds followed by the lowest dose of cocaine that induces seizures, electroencephalographic activity and cell death in the hippocampus. Themore » molecular mechanisms were studied in primary cell culture of this structure. The FAAH inhibitor, URB597, reduced cocaine-induced seizures and epileptiform electroencephalographic activity. The cannabinoid CB{sub 1} receptor selective agonist, ACEA, mimicked these effects, whereas the antagonist, AM251, prevented them. URB597 also inhibited cocaine-induced activation and death of hippocampal neurons, both in animals and in primary cell culture. Finally, we investigated if the PI3K/Akt/ERK intracellular pathway, a cell surviving mechanism coupled to CB{sub 1} receptor, mediated these neuroprotective effects. Accordingly, URB597 injection increased ERK and Akt phosphorylation in the hippocampus. Moreover, the neuroprotective effect of this compound was reversed by the PI3K inhibitor, LY294002. In conclusion, the pharmacological facilitation of the anandamide/CB1/PI3K signaling protects the brain against cocaine intoxication in experimental models. This strategy may be further explored in the development of treatments for drug-induced neurotoxicity. - Highlights: • Cocaine toxicity is characterized by seizures and hippocampal cell death. • The endocannabinoid anandamide acts as a brain protective mechanism. • Inhibition of anandamide

  12. Atropa belladonna neurotoxicity: Implications to neurological disorders.

    PubMed

    Kwakye, Gunnar F; Jiménez, Jennifer; Jiménez, Jessica A; Aschner, Michael

    2018-06-01

    Atropa belladonna, commonly known as belladonna or deadly nightshade, ranks among one of the most poisonous plants in Europe and other parts of the world. The plant contains tropane alkaloids including atropine, scopolamine, and hyoscyamine, which are used as anticholinergics in Food and Drug Administration (FDA) approved drugs and homeopathic remedies. These alkaloids can be very toxic at high dose. The FDA has recently reported that Hyland's baby teething tablets contain inconsistent amounts of Atropa belladonna that may have adverse effects on the nervous system and cause death in children, thus recalled the product in 2017. A greater understanding of the neurotoxicity of Atropa belladonna and its modification of genetic polymorphisms in the nervous system is critical in order to develop better treatment strategies, therapies, regulations, education of at-risk populations, and a more cohesive paradigm for future research. This review offers an integrated view of the homeopathy and neurotoxicity of Atropa belladonna in children, adults, and animal models as well as its implications to neurological disorders. Particular attention is dedicated to the pharmaco/toxicodynamics, pharmaco/toxicokinetics, pathophysiology, epidemiological cases, and animal studies associated with the effects of Atropa belladonna on the nervous system. Additionally, we discuss the influence of active tropane alkaloids in Atropa belladonna and other similar plants on FDA-approved therapeutic drugs for treatment of neurological disorders. Copyright © 2018. Published by Elsevier Ltd.

  13. Methamphetamine-induced neurotoxicity and microglial activation are not mediated by fractalkine receptor signaling

    PubMed Central

    Thomas, David M.; Francescutti-Verbeem, Dina M.; Kuhn, Donald M.

    2009-01-01

    Methamphetamine (METH) damages dopamine (DA) nerve endings by a process that has been linked to microglial activation but the signaling pathways that mediate this response have not yet been delineated. Cardona et al. [Nat. Neurosci. 9 (2006), 917] recently identified the microglial-specific fractalkine receptor (CX3CR1) as an important mediator of MPTP-induced neurodegeneration of DA neurons. Because the CNS damage caused by METH and MPTP is highly selective for the DA neuronal system in mouse models of neurotoxicity, we hypothesized that the CX3CR1 plays a role in METH-induced neurotoxicity and microglial activation. Mice in which the CX3CR1 gene has been deleted and replaced with a cDNA encoding enhanced green fluorescent protein (eGFP) were treated with METH and examined for striatal neurotoxicity. METH depleted DA, caused microglial activation, and increased body temperature in CX3CR1 knockout mice to the same extent and over the same time course seen in wild-type controls. The effects of METH in CX3CR1 knockout mice were not gender-dependent and did not extend beyond the striatum. Striatal microglia expressing eGFP constitutively show morphological changes after METH that are characteristic of activation. This response was restricted to the striatum and contrasted sharply with unresponsive eGFP-microglia in surrounding brain areas that are not damaged by METH. We conclude from these studies that CX3CR1 signaling does not modulate METH neurotoxicity or microglial activation. Furthermore, it appears that striatal-resident microglia respond to METH with an activation cascade and then return to a surveying state without undergoing apoptosis or migration. PMID:18410508

  14. Methamphetamine-induced neurotoxicity and microglial activation are not mediated by fractalkine receptor signaling.

    PubMed

    Thomas, David M; Francescutti-Verbeem, Dina M; Kuhn, Donald M

    2008-07-01

    Methamphetamine (METH) damages dopamine (DA) nerve endings by a process that has been linked to microglial activation but the signaling pathways that mediate this response have not yet been delineated. Cardona et al. [Nat. Neurosci. 9 (2006), 917] recently identified the microglial-specific fractalkine receptor (CX3CR1) as an important mediator of MPTP-induced neurodegeneration of DA neurons. Because the CNS damage caused by METH and MPTP is highly selective for the DA neuronal system in mouse models of neurotoxicity, we hypothesized that the CX3CR1 plays a role in METH-induced neurotoxicity and microglial activation. Mice in which the CX3CR1 gene has been deleted and replaced with a cDNA encoding enhanced green fluorescent protein (eGFP) were treated with METH and examined for striatal neurotoxicity. METH depleted DA, caused microglial activation, and increased body temperature in CX3CR1 knockout mice to the same extent and over the same time course seen in wild-type controls. The effects of METH in CX3CR1 knockout mice were not gender-dependent and did not extend beyond the striatum. Striatal microglia expressing eGFP constitutively show morphological changes after METH that are characteristic of activation. This response was restricted to the striatum and contrasted sharply with unresponsive eGFP-microglia in surrounding brain areas that are not damaged by METH. We conclude from these studies that CX3CR1 signaling does not modulate METH neurotoxicity or microglial activation. Furthermore, it appears that striatal-resident microglia respond to METH with an activation cascade and then return to a surveying state without undergoing apoptosis or migration.

  15. Mephedrone Does not Damage Dopamine Nerve Endings of the Striatum but Enhances the Neurotoxicity of Methamphetamine, Amphetamine and MDMA

    PubMed Central

    Angoa-Pérez, Mariana; Kane, Michael J.; Briggs, Denise I.; Francescutti, Dina M.; Sykes, Catherine E.; Shah, Mrudang M.; Thomas, David M.; Kuhn, Donald M.

    2012-01-01

    Mephedrone (4-methylmethcathinone) is a β-ketoamphetamine stimulant drug of abuse with close structural and mechanistic similarities to methamphetamine. One of the most powerful actions associated with mephedrone is the ability to stimulate dopamine (DA) release and block its reuptake through its interaction with the dopamine transporter (DAT). Although mephedrone does not cause toxicity to DA nerve endings, its ability to serve as a DAT blocker could provide protection against methamphetamine-induced neurotoxicity like other DAT inhibitors. To test this possibility, mice were treated with mephedrone (10, 20 or 40 mg/kg) prior to each injection of a neurotoxic regimen of methamphetamine (4 injections of 2.5 or 5.0 mg/kg at 2 hr intervals). The integrity of DA nerve endings of the striatum was assessed through measures of DA, DAT and tyrosine hydroxylase levels. The moderate to severe DA toxicity associated with the different doses of methamphetamine was not prevented by any dose of mephedrone but was, in fact, significantly enhanced. The hyperthermia caused by combined treatment with mephedrone and methamphetamine was the same as seen after either drug alone. Mephedrone also enhanced the neurotoxic effects of amphetamine and MDMA on DA nerve endings. In contrast, nomifensine protected against methamphetamine-induced neurotoxicity. Because mephedrone increases methamphetamine neurotoxicity, the present results suggest that it interacts with the DAT in a manner unlike that of other typical DAT inhibitors. The relatively innocuous effects of mephedrone alone on DA nerve endings mask a potentially dangerous interaction with drugs that are often co-abused with it, leading to heightened neurotoxicity. PMID:23205838

  16. Neurotoxicity of drugs of abuse--the case of methylenedioxyamphetamines (MDMA, ecstasy), and amphetamines.

    PubMed

    Gouzoulis-Mayfrank, Euphrosyne; Daumann, Joerg

    2009-01-01

    Ecstasy (MDMA, 3,4-methylendioxymethamphetamine) and the stimulants methamphetamine (METH, speed) and amphetamine are popular drugs among young people, particularly in the dance scene. When given in high doses both MDMA and the stimulant amphetamines are clearly neurotoxic in laboratory animals. MDMA causes selective and persistent lesions of central serotonergic nerve terminals, whereas amphetamines damage both the serotonergic and dopaminergic systems. In recent years, the question of ecstasy-induced neurotoxicity and possible functional sequelae has been addressed in several studies in drug users. Despite large methodological problems, the bulk of evidence suggests residual alterations of serotonergic transmission in MDMA users, although at least partial recovery may occur after long-term abstinence. However, functional sequelae may persist even after longer periods of abstinence. To date, the most consistent findings associate subtle cognitive impairments with ecstasy use, particularly with memory. In contrast, studies on possible long-term neurotoxic effects of stimulant use have been relatively scarce. Preliminary evidence suggests that alterations of the dopaminergic system may persist even after years of abstinence from METH, and may be associated with deficits in motor and cognitive performance. In this paper, we will review the literature focusing on human studies.

  17. Increased interleukin-1β levels following low dose MDMA induces tolerance against the 5-HT neurotoxicity produced by challenge MDMA

    PubMed Central

    2011-01-01

    Background Preconditioning is a phenomenon by which tolerance develops to injury by previous exposure to a stressor of mild severity. Previous studies have shown that single or repeated low dose MDMA can attenuate 5-HT transporter loss produced by a subsequent neurotoxic dose of the drug. We have explored the mechanism of delayed preconditioning by low dose MDMA. Methods Male Dark Agouti rats were given low dose MDMA (3 mg/kg, i.p.) 96 h before receiving neurotoxic MDMA (12.5 mg/kg, i.p.). IL-1β and IL1ra levels and 5-HT transporter density in frontal cortex were quantified at 1 h, 3 h or 7 days. IL-1β, IL-1ra and IL-1RI were determined between 3 h and 96 h after low dose MDMA. sIL-1RI combined with low dose MDMA or IL-1β were given 96 h before neurotoxic MDMA and toxicity assessed 7 days later. Results Pretreatment with low dose MDMA attenuated both the 5-HT transporter loss and elevated IL-1β levels induced by neurotoxic MDMA while producing an increase in IL-1ra levels. Low dose MDMA produced an increase in IL-1β at 3 h and in IL-1ra at 96 h. sIL-1RI expression was also increased after low dose MDMA. Coadministration of sIL-1RI (3 μg, i.c.v.) prevented the protection against neurotoxic MDMA provided by low dose MDMA. Furthermore, IL-1β (2.5 pg, intracortical) given 96 h before neurotoxic MDMA protected against the 5-HT neurotoxicity produced by the drug, thus mimicking preconditioning. Conclusions These results suggest that IL-1β plays an important role in the development of delayed preconditioning by low dose MDMA. PMID:22114930

  18. Mutual enhancement of central neurotoxicity induced by ketamine followed by methamphetamine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ke, J.-J.; Chen, H.-I.; Jen, C.J.

    2008-03-01

    We hereby report that repeated administration of ketamine (350 mg/kg in total) and methamphetamine (30 mg/kg in total) causes specific glutamatergic and dopaminergic neuron deficits, respectively, in adult mouse brain. Acute ketamine did not affect basal body temperature or the later methamphetamine-induced hyperthermia. However, pretreatment with repeated doses of ketamine aggravated methamphetamine-induced dopaminergic terminal loss as evidenced by a drastic decrease in the levels of dopamine, 3,4-dihydroxyphenylacetic acid, and dopamine transporter density as well as poor gait balance performance. In contrast, methamphetamine-induced serotonergic depletion was not altered by ketamine pretreatment. Likewise, the subsequent treatment with methamphetamine exacerbated the ketamine-induced glutamatergicmore » damage as indicated by reduced levels of the vesicular glutamate transporter in hippocampus and striatum and poor memory performance in the Morris water maze. Finally, since activation of the D1 and AMPA/kainate receptors has been known to be involved in the release of glutamate and dopamine, we examined the effects of co-administration of SCH23390, a D1 antagonist, and CNQX, an AMPA/kainate antagonist. Intraventricular CNQX infusion abolished ketamine's potentiation of methamphetamine-induced dopamine neurotoxicity, while systemic SCH23390 mitigated methamphetamine's potentiation of ketamine-induced glutamatergic toxicity. We conclude that repeated doses of ketamine potentiate methamphetamine-induced dopamine neurotoxicity via AMPA/kainate activation and that conjunctive use of methamphetamine aggravates ketamine-induced glutamatergic neurotoxicity possibly via D1 receptor activation.« less

  19. Neuro-protective effect of rutin against Cisplatin-induced neurotoxic rat model.

    PubMed

    Almutairi, Mashal M; Alanazi, Wael A; Alshammari, Musaad A; Alotaibi, Moureq Rashed; Alhoshani, Ali R; Al-Rejaie, Salim Salah; Hafez, Mohamed M; Al-Shabanah, Othman A

    2017-09-29

    Cisplatin is widely used chemotherapeutic agent for cancer treatment with limited uses due to its neurotoxic side effect. The aim of this study was to determine the potential preventive effects of rutin on the brain of cisplatin- neurotoxic rat model. Forty rats were divided into four groups. Group-1 (control group) was intra-peritoneal (IP) injected with 2.5 ml/kg saline. Group-2 (rutin group) was orally administrated 30 mg/kg rutin dissolved in water for 14 days. Group-3 (cisplatin group) was IP received 5 mg/kg cisplatin single dose. Group-4 (rutin and cisplatin group) was orally administrated 30 mg/kg rutin dissolved in water for 14 days with a single dose of 5 mg/kg cisplatin IP on day ten. Brain tissues from frontal cortex was used to extract RNA, the gene expression levels of paraoxonase-1 (PON-1), PON-2, PON-3, peroxisome proliferator-activated receptor delta (PPAR-δ), and glutathione peroxidase (GPx) was investigated by Real-time PCR. Cisplatin significantly decreased the expression levels of PON-1, PON-3, PPAR-δ and GPX whereas significantly increased PON-2 expression levels. Co-administration of Rutin prevented the cisplatin-induced toxicity by restoring the alteration in the studied genes to normal values as in the control group. This study showed that Rutin has neuroprotective effect and reduces cisplatin- neurotoxicity with possible mechanism via the antioxidant pathway.

  20. Early developmental trajectories of number knowledge and math achievement from 4 to 10 years: Low-persistent profile and early-life predictors.

    PubMed

    Garon-Carrier, Gabrielle; Boivin, Michel; Lemelin, Jean-Pascal; Kovas, Yulia; Parent, Sophie; Séguin, Jean R; Vitaro, Frank; Tremblay, Richard E; Dionne, Ginette

    2018-06-01

    Little is known about the development of number knowledge (NK) and the antecedents of low-persistent NK profiles in early childhood. We documented the developmental trajectories of NK across the transition from preschool to elementary school, their predictive validity with respect to later math achievement, and the child and family early-life factors associated with low NK profiles. Children's NK was assessed four times at regular intervals between the ages 4 and 7 years in a large, representative population-based sample. Developmental trajectories of NK were established for 1597 children. These children were also assessed with respect to several features of their family environment at 5, 17, and 29 months, as well as their cognitive skills at age 41 months. Analyses revealed a best-fitting 4-trajectory model, characterized by Low-Increasing (10% of the children), Moderate-Increasing (39%), Moderate-Fast Increasing (32%) and High-Increasing (19%) groups. Children of these trajectory groups differed significantly with respect to math achievement at ages 8 and 10 years, with the Low-Increasing group persistently scoring lower than the other groups throughout these years. Children of Low-Increasing NK group were from household of lower income and father with low educational background, poorer early cognitive development, and more importantly, reduced visual-spatial skills and memory-span. Children displaying reduced cognitive abilities and impoverished living conditions early in life are at greater risk of low NK throughout late preschool and school entry, with ensuing difficulties in math achievement. They deserve early preventive attention to help alleviate later mathematic difficulties. Copyright © 2018 Society for the Study of School Psychology. Published by Elsevier Ltd. All rights reserved.