Science.gov

Sample records for profiling volatile compounds

  1. Volatile organic compound emission profiles of four common arctic plants

    NASA Astrophysics Data System (ADS)

    Vedel-Petersen, Ida; Schollert, Michelle; Nymand, Josephine; Rinnan, Riikka

    2015-11-01

    The biogenic volatile organic compound (BVOC) emissions from plants impact atmosphere and climate. The species-specific emissions, and thereby the atmospheric impact, of many plant species are still unknown. Knowledge of BVOC emission from arctic plants is particularly limited. The vast area and relatively high leaf temperature give the Arctic potential for emissions that cannot be neglected. This field study aimed to elucidate the BVOC emission profiles for four common arctic plant species in their natural environment during the growing season. BVOCs were sampled from aboveground parts of Empetrum hermaphroditum, Salix glauca, Salix arctophila and Betula nana using the dynamic enclosure technique and collection of volatiles in adsorbent cartridges, analyzed by gas chromatography-mass spectrometry. Sampling occurred three times: in late June/early July, in mid-July and in early August. E. hermaphroditum emitted the least BVOCs, dominated by sesquiterpenes (SQTs) and non-isoprenoid BVOCs. The Salix spp. emitted the most, dominated by isoprene. The emissions of B. nana were composed of about two-thirds non-isoprenoid BVOCs, with moderate amounts of monoterpenes (MTs) and SQTs. The total B. nana emissions and the MT and SQT emissions standardized to 30 °C were highest in the first measurement in early July, while the other species had the highest emissions in the last measurement in early August. As climate change is expected to increase plant biomass and change vegetation composition in the Arctic, the BVOC emissions from arctic ecosystems will also change. Our results suggest that if the abundance of deciduous shrubs like Betula and Salix spp. increases at the expense of slower growing evergreens like E. hermaphroditum, there is the potential for increased emissions of isoprene, MTs and non-isoprenoid BVOCs in the Arctic.

  2. A Comparison of volatile organic compound profiles from bacteria on poultry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In recent years the characterization of volatile organic compounds (VOCs) emitted from food-borne bacteria has prompted studies on the development of approaches to utilize the profile of volatiles emitted as a way of detecting contamination. We have examined VOCs from poultry with this in mind. Patt...

  3. Profiling of volatile compounds of Phyllostachys pubescens shoots in Taiwan.

    PubMed

    Chung, Min-Jay; Cheng, Sen-Sung; Lin, Chun-Ya; Chang, Shang-Tzen

    2012-10-15

    This study examined the influence of heating temperature and duration on volatile aromatic components of spring and winter Phyllostachys pubescens shoots using SPME. Results from GC-MS analyses revealed that the main constituents in both bamboo shoots at ambient temperature include methoxy-phenyl oxime, followed by n-hexanol and 3Z-hexenal, which gives a fresh green aroma. Comparing the different compounds, between spring and winter shoots, revealed that spring bamboo shoots at ambient temperature comprise 12.30% methyl salicylate, which provides protection against insect attack, and 9.71% epi-cedrol; while winter bamboo shoots comprise 17.00% 1-octen-3-ol, which produces a distinct mushroom aroma. After heating at 100 °C for 60 min, a marked increase in relative content of benzyl salicylate (43.30%) and a significant decrease in methyl salicylate content in spring bamboo shoots were observed; while the major compound in winter bamboo shoots was n-heneicosane (78.09%) and the content of specific 1-octen-3-ol significantly decreased. PMID:23442614

  4. Relationship between flavour deterioration and the volatile compound profile of semi-ripened sausage.

    PubMed

    Lorenzo, José Manuel; Bedia, Mario; Bañón, Sancho

    2013-03-01

    This study provides data on the relationship between flavour deterioration and the volatile compound profile of semi-ripened pork salami kept under retail conditions for up to 150 days. The flavour of salami deteriorated for 120 days, resulting in rancidity and a loss of acceptability. TBARS increased from 0.16 to 0.57 MDA/kg. The flavour changes during the shelf life of salami were monitored from changes in the volatile profile. The retailing time influenced (p<0.05) the level of 27 of the 30 headspace volatiles determined by SPME-GC/MS. Flavour deterioration was associated with the loss and/or degradation of volatiles resulting from spices and microbial activities, and the formation of volatiles from lipid oxidation. The levels of 2-heptenal and methyl esters of heptanoic, pentanoic and hexanoic acids were the best discriminators of storage time, and therefore seem to be promising as marker compounds of flavour deterioration and acceptability. PMID:23273472

  5. High-resolution gas chromatographic profiles of volatile organic compounds produced by microorganisms at refrigerated temperatures.

    PubMed Central

    Lee, M L; Smith, D L; Freeman, L R

    1979-01-01

    Three different strains of bacteria isolated from spoiled, uncooked chicken were grown in pure culture on Trypticase soy agar supplemented with yeast extract. The volatile organic compounds produced by each culture were concentrated on a porous polymer precolumn and analyzed by high-resolution gas chromatographic mass spectrometry. Twenty different compounds were identified. Both qualitative and quantitative differences in the chromatographic profiles from each culture were found. PMID:104660

  6. Influence of filtration on volatile compounds and sensory profile of virgin olive oils.

    PubMed

    Brkić Bubola, Karolina; Koprivnjak, Olivera; Sladonja, Barbara

    2012-05-01

    The influence of filtration through a hydrophilic cotton layer on volatile compounds, sensory characteristics and colour of two monovarietal oils was investigated in this study. Volatiles were evaluated using headspace solid-phase microextraction-gas chromatography. After the filtration of Buža oils only a slight increase in total alcohols was noticed. In filtered Črna oils a significant decrease of total alcohols and slight changes in total aldehydes, total ketones and total C5 volatile compounds concentration were detected. No significant influence on the sensory scores of oils, but some slight changes in sensorial profiles were noted (slightly higher intensities of sensory characteristics apple and grass, and higher values of the lightness L(∗) in filtered samples). The results point to unequal filtration impact on different monovarietal oils and could be useful in developing targeted technologies for specific monovarietal oils quality improvement. PMID:26434268

  7. Olfactometry Profiles and Quantitation of Volatile Sulfur Compounds of Swiss Tilsit Cheeses.

    PubMed

    Fuchsmann, Pascal; Stern, Mireille Tena; Brügger, Yves-Alain; Breme, Katharina

    2015-09-01

    To establish the odor profiles of three differently fabricated commercial Swiss Tilsit cheeses, analyses were conducted using headspace solid-phase microextraction gas chromatography-mass spectrometry/pulsed flame photometric detection and gas chromatography-olfactometry to identify and quantitate volatile compounds. In addition, odor quality and the impact of target sulfur compounds on the overall odor of the cheeses were investigated. The odor profile was found to be mainly influenced by buttery-cheesy and sulfury odor notes in all cheeses. Buttery-cheesy odor notes were attributed to three main molecules: butanoic acid, 3-methylbutanoic acid, and butane-2,3-dione. Over a dozen volatile sulfur compounds were detected at parts per billion levels, but only a few influenced the odor profile of the cheeses: methanethiol, dimethyl disulfide, bis(methylthio)methane, dimethyl trisulfide, 3-(methylthio)propanal, and 2-methyltetrahydrothiophen-3-one (tentative). In conclusion, the conducted analyses allowed differentiation of the cheeses, and gas chromatography-olfactometry results confirmed that partially thermized milk cheese has a more intense and more multifaceted overall flavor. PMID:26230142

  8. Characteristics of volatile organic compounds emission profiles from hot road bitumens.

    PubMed

    Boczkaj, Grzegorz; Przyjazny, Andrzej; Kamiński, Marian

    2014-07-01

    A procedure for the investigation and comparison of volatile organic compounds (VOCs) emission profiles to the atmosphere from road bitumens with various degrees of oxidation is proposed. The procedure makes use of headspace analysis and gas chromatography with universal as well as selective detection, including gas chromatography-mass spectrometry (GC-MS). The studies revealed that so-called vacuum residue, which is the main component of the charge, contains variable VOC concentrations, from trace to relatively high ones, depending on the extent of thermal cracking in the boiler of the vacuum distillation column. The VOC content in the oxidation product, so-called oxidized paving bitumen, is similarly varied. There are major differences in VOC emission profiles between vacuum residue and oxidized bitumens undergoing thermal cracking. The VOC content in oxidized bitumens, which did not undergo thermal cracking, increases with the degree of oxidation of bitumens. The studies revealed that the total VOC content increases from about 120 ppm for the raw vacuum residue to about 1900 ppm for so-called bitumen 35/50. The amount of volatile sulfur compounds (VSCs) in the volatile fraction of fumes of oxidized bitumens increases with the degree of oxidation of bitumen and constitutes from 0.34% to 3.66% (w/w). The contribution of volatile nitrogen compounds (VNCs) to total VOC content remains constant for the investigated types of bitumens (from 0.16 to 0.28% (w/w) of total VOCs). The results of these studies can also find use during the selection of appropriate bitumen additives to minimize their malodorousness. The obtained data append the existing knowledge on VOC emission from oxidized bitumens. They should be included in reports on the environmental impact of facilities in which hot bitumen binders are used. PMID:24875867

  9. Effect of age and storage conditions on the volatile organic compound profile of blood.

    PubMed

    Forbes, Shari L; Rust, LaTara; Trebilcock, Kate; Perrault, Katelynn A; McGrath, Laura T

    2014-12-01

    Cadaver-detection dogs are used by the police to locate missing persons, victims of homicide, and human remains following mass disasters. Training is conducted using a variety of training aids including blood which can be hours, weeks or months old and stored under variable conditions. The aim of this study was to chemically profile human blood using solid-phase microextraction coupled with gas chromatography-mass spectrometry to determine how the volatile organic compound (VOC) profile changed over time and under variable storage conditions. The VOC profiles of fresh and degraded blood were analyzed as well as blood stored at room temperature, refrigerated, and frozen. Fresh and degraded blood samples produced distinctive VOC patterns with VOC profiles becoming more complex over time. Freezing the blood produced a complex VOC profile that was clearly discriminated from the VOC profile for blood stored at room temperature or in a refrigerator. This study highlights the importance of standardizing the age and storage conditions when using blood as a training aid to ensure cadaver-detection dogs are exposed to an accurate representation of the blood VOCs they may encounter at a scene. PMID:25351882

  10. Volatile compound profiling of Turkish Divle Cave cheese during production and ripening.

    PubMed

    Ozturkoglu-Budak, S; Gursoy, A; Aykas, D P; Koçak, C; Dönmez, S; de Vries, R P; Bron, P A

    2016-07-01

    The formation of volatile compounds in Turkish Divle Cave cheese produced in 3 different dairy farms was determined during production and ripening, revealing 110 compounds including acids, alcohols, ketones, esters, and terpenes. The presence and concentration of these volatile compounds varied between specific phases of the production and the 120-d ripening process. Smaller differences were also detected between cheeses produced at different farms. Carboxylic acids were established as a major class at the end of ripening. The relative amounts of acids and ketones increased until d 90 of ripening, whereas alcohols increased for the first 30d and tailed off during the remaining part of the ripening process. The level of esters increased gradually until the end of ripening. Butanoic, acetic, and valeric acids, 2-butanol, 2-butanone, 2-heptanone, ethyl butanoate, α-pinene, and toluene were the most abundant compounds, likely contributing to the characteristic aroma of this traditional cheese. PMID:27108178

  11. Blood and breath profiles of volatile organic compounds in patients with end-stage renal disease

    PubMed Central

    2014-01-01

    Background Monitoring of volatile organic compounds (VOCs) in exhaled breath shows great potential as a non-invasive method for assessing hemodialysis efficiency. In this work we aim at identifying and quantifying of a wide range of VOCs characterizing uremic breath and blood, with a particular focus on species responding to the dialysis treatment. Methods Gas chromatography with mass spectrometric detection coupled with solid-phase microextraction as pre-concentration method. Results A total of 60 VOCs were reliably identified and quantified in blood and breath of CKD patients. Excluding contaminants, six compounds (isoprene, dimethyl sulfide, methyl propyl sulfide, allyl methyl sulfide, thiophene and benzene) changed their blood and breath levels during the hemodialysis treatment. Conclusions Uremic breath and blood patterns were found to be notably affected by the contaminants from the extracorporeal circuits and hospital room air. Consequently, patient exposure to a wide spectrum of volatile species (hydrocarbons, aldehydes, ketones, aromatics, heterocyclic compounds) is expected during hemodialysis. Whereas highly volatile pollutants were relatively quickly removed from blood by exhalation, more soluble ones were retained and contributed to the uremic syndrome. At least two of the species observed (cyclohexanone and 2-propenal) are uremic toxins. Perhaps other volatile substances reported within this study may be toxic and have negative impact on human body functions. Further studies are required to investigate if VOCs responding to HD treatment could be used as markers for monitoring hemodialysis efficiency. PMID:24607025

  12. Influence of age and gender on the profile of exhaled volatile organic compounds analyzed by an electronic nose

    PubMed Central

    Dragonieri, Silvano; Quaranta, Vitaliano Nicola; Carratu, Pierluigi; Ranieri, Teresa; Resta, Onofrio

    2016-01-01

    We aimed to investigate the effects of age and gender on the profile of exhaled volatile organic compounds. We evaluated 68 healthy adult never-smokers, comparing them by age and by gender. Exhaled breath samples were analyzed by an electronic nose (e-nose), resulting in "breathprints". Principal component analysis and canonical discriminant analysis showed that older subjects (≥ 50 years of age) could not be distinguished from younger subjects on the basis of their breathprints, as well as that the breathprints of males could not distinguished from those of females (cross-validated accuracy, 60.3% and 57.4%, respectively).Therefore, age and gender do not seem to affect the overall profile of exhaled volatile organic compounds measured by an e-nose. PMID:27167436

  13. Aroma characteristic and volatile profiling of carrot varieties and quantitative role of terpenoid compounds for carrot sensory attributes.

    PubMed

    Fukuda, Tomohiko; Okazaki, Keiki; Shinano, Takuro

    2013-11-01

    The aroma characteristics and volatile profiles of 14 carrot varieties were investigated by sensory evaluations and gas chromatography-mass spectrometry volatile analyses. The sensory map obtained by principal components analysis showed that the sensory attributes comprised 3 categories: sour/green, overall carrot/harsh/ink-like, and fruity/fresh/sweet. The Kuroda type is characterized by lower intensities of overall carrot/harsh/ink-like and fruity/fresh/sweet notes. Furthermore, volatile profiling indicated that this type did not have significantly higher amounts of volatiles. Partial least squares regression analysis determined the quantitative contributions to ink-like, harsh, and fruity carrot aromas; monoterpenes had significant positive correlations with these attributes, while bisabolene isomers had negative correlations. The aroma attribute intensity and contents of volatiles and nutritional compounds are relatively low in the Kuroda type than in other carrot types. This type may be useful for reducing carrot harshness during the development of new carrots with good eating qualities. PMID:24245899

  14. Effect of drying method on volatile compounds, phenolic profile and antioxidant capacity of guava powders.

    PubMed

    Nunes, Juliana C; Lago, Mabel G; Castelo-Branco, Vanessa N; Oliveira, Felipe R; Torres, Alexandre Guedes; Perrone, Daniel; Monteiro, Mariana

    2016-04-15

    We studied the chemical composition of oven and freeze dried guava powders for future use as antioxidant-rich flavour enhancers. Among thirty-one volatiles in guava powders, terpenes were predominant, even after both drying processes. In contrast, esters and aldehydes, volatiles characteristic of fresh guava fruit, appeared to have been decreased by drying. Insoluble phenolics were predominant and among the sixteen compounds identified, quercetin-3-O-rutinoside and naringenin corresponded to 56% of total phenolics. Drying processes decreased total phenolics contents by up to 44%. Oven drying promoted the release of insoluble flavonoids, generating mainly quercetin. Antioxidant capacity also decreased due to both drying processes, but guava powders still presented similar antioxidant capacity in comparison to other tropical fruit powders. Our results suggest that oven drying is a viable option for the production of a functional ingredient that would improve the phenolic content of cereal foods while adding desirable guava flavour. PMID:26617030

  15. Modification of volatile compound profile of virgin olive oil due to hot-water treatment of olive fruit.

    PubMed

    Pérez, Ana G; Luaces, Pilar; Ríos, José J; García, José M; Sanz, Carlos

    2003-10-22

    The effect of hot-water treatments of olive fruits before processing on the biosynthesis of virgin olive oil aroma was investigated by quantifying the variation within the major classes of volatile compounds. Data showed that hot-water treatments gave rise to changes in the volatile aroma profile of virgin olive oil from the three olive cultivars under study, Manzanilla, Picual, and Verdial. Different effects by thermal treatments were observed according to cultivar. In general, these changes are mainly due to a decrease in the contents of C(6) aldehydes and C(5) compounds. Contents of C(6) alcohols and esters remained constant or decreased slightly when the temperature of the treatment was increased. Thus, heat treatments seemed to promote a partial deactivation of the lipoxygenase/hydroperoxide lyase enzyme system, whereas other enzymatic activities, within the lipoxygenase pathway, such as alcohol dehydrogenase and alcohol acyltransferase, remained apparently unaffected as a consequence of heat treatments. PMID:14558776

  16. Identifying key non-volatile compounds in ready-to-drink green tea and their impact on taste profile.

    PubMed

    Yu, Peigen; Yeo, Angelin Soo-Lee; Low, Mei-Yin; Zhou, Weibiao

    2014-07-15

    Thirty-nine non-volatile compounds in seven ready-to-drink (RTD) green tea samples were analysed and quantified using liquid chromatography. Taste reconstruction experiments using thirteen selected compounds were conducted to identify the key non-volatile tastants. Taste profiles of the reconstructed samples did not differ significantly from the RTD tea samples. To investigate the taste contribution and significance of individual compounds, omission experiments were carried out by removing individual or a group of compounds. Sensory evaluation revealed that the astringent- and bitter-tasting (-)-epigallocatechin gallate, bitter-tasting caffeine, and the umami-tasting l-glutamic acid were the main contributors to the taste of RTD green tea. Subsequently, the taste profile of the reduced recombinant, comprising of a combination of these three compounds and l-theanine, was found to not differ significantly from the sample recombinant and RTD tea sample. Lastly, regression models were developed to objectively predict and assess the intensities of bitterness and astringency in RTD green teas. PMID:24594147

  17. Species profiles and normalized reactivity of volatile organic compounds from gasoline evaporation in China

    NASA Astrophysics Data System (ADS)

    Zhang, Yanli; Wang, Xinming; Zhang, Zhou; Lü, Sujun; Shao, Min; Lee, Frank S. C.; Yu, Jianzhen

    2013-11-01

    In China, fast increase in passenger cars and gasoline consumption with yet quite limited vapor recovery during gasoline distribution has procured growing concern about gasoline evaporation as an important emission source of volatile organic compounds (VOCs), particularly in megacities hard-hit by air quality problems. This study presents VOC species profiles related to major pathways of gasoline evaporative loss in China, including headspace displacement, refueling operations and spillage/leakage. Apart from liquid gasoline and headspace vapors, gasoline vapors emitted when refueling cars in service stations or tank trucks in oil marketing depots were also sampled in situ with vapor recovery units (VRUs) turning on/off. Alkanes, alkenes and aromatic hydrocarbons accounted for 55-66, 21-35 and 4-8% in refueling vapors, 59-72, 18-28 and 4-10% in headspace vapors and 33-51, 8-15 and 38-48% in liquid gasoline samples, respectively. During refueling with VRUs turning on, total VOCs in vapors were less than one fifth of that with VRUs turning off, and aromatic hydrocarbons had higher weight percentages of about 8% in contrast with that of about 4% during refueling with VRUs turning off. Refueling vapors, especially for that with VRUs turning off, showed a larger fraction of light hydrocarbons including C3-C5 light alkenes when compared to headspace vapors, probably due to splashing and disturbance during filling operation. In refueling or headspace vapors the ratios of i-pentane/benzene, i-pentane/toluene, and MTBE (methyl tert-butyl ether)/benzene ranged 8.7-57, 2.7-4.8, and 1.9-6.6, respectively; and they are distinctively much higher than those previously reported in vehicle exhausts. Calculated normalized reactivity or ozone formation potential of the gasoline vapors in China ranged 3.3-4.4 g O3 g-1 VOC, about twice that of gasoline headspace vapors reported in USA as a result of larger fractions of alkenes in China's gasoline vapors. The results suggested that

  18. Impacts of simulated herbivory on volatile organic compound emission profiles from coniferous plants

    DOE PAGESBeta

    Faiola, C. L.; Jobson, B. T.; VanReken, T. M.

    2015-01-28

    The largest global source of volatile organic compounds (VOCs) in the atmosphere is from biogenic emissions. Plant stressors associated with a changing environment can alter both the quantity and composition of the compounds that are emitted. This study investigated the effects of one global change stressor, increased herbivory, on plant emissions from five different coniferous species: bristlecone pine (Pinus aristata), blue spruce (Picea pungens), western redcedar (Thuja plicata), grand fir (Abies grandis), and Douglas-fir (Pseudotsuga menziesii). Herbivory was simulated in the laboratory via exogenous application of methyl jasmonate (MeJA), a herbivory proxy. Gas-phase species were measured continuously with a gasmore » chromatograph coupled to a mass spectrometer and flame ionization detector (GC–MS–FID). Stress responses varied between the different plant types and even between experiments using the same set of saplings. The compounds most frequently impacted by the stress treatment were alpha-pinene, beta-pinene, 1,8-cineol, beta-myrcene, terpinolene, limonene, and the cymene isomers. Individual compounds within a single experiment often exhibited a different response to the treatment from one another.« less

  19. Impacts of simulated herbivory on volatile organic compound emission profiles from coniferous plants

    NASA Astrophysics Data System (ADS)

    Faiola, C. L.; Jobson, B. T.; VanReken, T. M.

    2015-01-01

    The largest global source of volatile organic compounds (VOCs) in the atmosphere is from biogenic emissions. Plant stressors associated with a changing environment can alter both the quantity and composition of the compounds that are emitted. This study investigated the effects of one global change stressor, increased herbivory, on plant emissions from five different coniferous species: bristlecone pine (Pinus aristata), blue spruce (Picea pungens), western redcedar (Thuja plicata), grand fir (Abies grandis), and Douglas-fir (Pseudotsuga menziesii). Herbivory was simulated in the laboratory via exogenous application of methyl jasmonate (MeJA), a herbivory proxy. Gas-phase species were measured continuously with a gas chromatograph coupled to a mass spectrometer and flame ionization detector (GC-MS-FID). Stress responses varied between the different plant types and even between experiments using the same set of saplings. The compounds most frequently impacted by the stress treatment were alpha-pinene, beta-pinene, 1,8-cineol, beta-myrcene, terpinolene, limonene, and the cymene isomers. Individual compounds within a single experiment often exhibited a different response to the treatment from one another.

  20. Influence of partial replacement of NaCl with KCl on profiles of volatile compounds in dry-cured bacon during processing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study investigated the influence of partial substitution of NaCl with KCl on the formation of volatile compounds in bacons during processing using a purge and trap dynamic headspace GC/MS system. Three substitutions were 0% KCl (I), 40% KCl (II), and 70% KCl (III). The profiles of the volatile ...

  1. [Source profile and chemical reactivity of volatile organic compounds from vehicle exhaust].

    PubMed

    Qiao, Yue-Zhen; Wang, Hong-Li; Huang, Cheng; Chen, Chang-Hong; Su, Lei-Yan; Zhou, Min; Xu, Hua; Zhang, Gang-Feng; Chen, Yi-Ran; Li, Li; Chen, Ming-Hua; Huang, Hai-Ying

    2012-04-01

    Light-duty gasoline taxis (LDGT) and passenger cars (LDGV), heavy-duty diesel buses (HDDB) and trucks (HDDT), gasoline motorcycles (MC) and LPG scooters (LPGS), were selected for tailpipe volatile organic compounds (VOCs) samplings by using transient dynamometer and on road test combined with SUMMA canisters technology. The samples were tested by GC-MS to analyze the concentration and species composition of VOCs. The results indicate that light-duty gasoline automobiles have higher fractions of aromatic hydrocarbons, which account for 43.38%-44.45% of the total VOCs, the main aromatic hydrocarbons are toluene and xylenes. Heavy-duty diesel vehicles have higher fractions of alkanes, which constitute 46.86%-48.57% of the total VOCs, the main alkanes are propane, n-dodecane and n-undecane. In addition, oxy-organics account for 13.28%-15.01% of the VOCs, the main oxy-organics is acetone. The major compound from MC and LPGS exhaust is acetylene, it accounts for 39.75% and 76.67% of the total VOCs, respectively. VOCs exhaust from gasoline motorcycles and light-duty gasoline automobiles has a significantly higher chemical reactivity than those from heavy-duty diesel vehicles, which contribute 55% and 44% to the atmospheric chemical reactivity in Shanghai. The gasoline motorcycles and light-duty gasoline automobiles are the key pollution sources affecting city and region ambient oxidation, and the key active species of toluene, xylenes, propylene, and styrene make the greatest contribution. PMID:22720548

  2. Nutritional composition, bioactive compounds and volatile profile of cocoa beans from different regions of Cameroon.

    PubMed

    Caprioli, Giovanni; Fiorini, Dennis; Maggi, Filippo; Nicoletti, Marcello; Ricciutelli, Massimo; Toniolo, Chiara; Prosper, Biapa; Vittori, Sauro; Sagratini, Gianni

    2016-06-01

    Analysis of the complex composition of cocoa beans provides fundamental information for evaluating the quality and nutritional aspects of cocoa-based food products, nutraceuticals and supplements. Cameroon, the world's fourth largest producer of cocoa, has been defined as "Africa in miniature" because of the variety it habitats. In order to evaluate the nutritional characteristics of cocoa beans from five different regions of Cameroon, we studied their polyphenolic content, volatile compounds and fatty acids composition. The High Performance Thin Layer Chromatography (HPTLC) analysis showed that the Mbalmayo sample had the highest content of theobromine (11.6 mg/g) and caffeic acid (2.1 mg/g), while the Sanchou sample had the highest level of (-)-epicatechin (142.9 mg/g). Concerning fatty acids, the lowest level of stearic acid was found in the Mbalmayo sample while the Bertoua sample showed the highest content of oleic acid. Thus, we confirmed that geographical origin influences the quality and nutritional characteristics of cocoa from these regions of Cameroon. PMID:27055484

  3. Texture profile and volatile compound analyses of ‘Koshihikari’ and ‘Basmati’ rice prepared in different rice cookers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    ‘Koshihikari’ and ‘Basmati’, two premium rices from Japan and India, respectively, were evaluated for volatile compounds and textural characteristics using three different cooking methods. Samples were analyzed for hardness, adhesiveness, and cohesiveness using the Texture Analyzer and for volatiles...

  4. APPARATUS AND PROCEDURE FOR SAMPLING SOIL PROFILES FOR VOLATILE ORGANIC COMPOUNDS

    EPA Science Inventory

    A conventional soil-solution sampler was modified to prevent loss of volatiles, which tend to escape from the liquid sample during sample collection. The sampler is connected to a purging chamber, which is in turn connected to a trap packed with Tenax resin. The sample is collect...

  5. Genetic analysis of plant endophytic Pseudomonas putida BP25 and chemo-profiling of its antimicrobial volatile organic compounds.

    PubMed

    Sheoran, Neelam; Valiya Nadakkakath, Agisha; Munjal, Vibhuti; Kundu, Aditi; Subaharan, Kesavan; Venugopal, Vibina; Rajamma, Suseelabhai; Eapen, Santhosh J; Kumar, Aundy

    2015-04-01

    Black pepper associated bacterium BP25 was isolated from root endosphere of apparently healthy cultivar Panniyur-5 that protected black pepper against Phytophthora capsici and Radopholus similis - the major production constraints. The bacterium was characterized and mechanisms of its antagonistic action against major pathogens are elucidated. The polyphasic phenotypic analysis revealed its identity as Pseudomonas putida. Multi locus sequence typing revealed that the bacterium shared gene sequences with several other isolates representing diverse habitats. Tissue localization assays exploiting green fluorescence protein expression clearly indicated that PpBP25 endophytically colonized not only its host plant - black pepper, but also other distantly related plants such as ginger and arabidopsis. PpBP25 colonies could be enumerated from internal tissues of plants four weeks post inoculation indicated its stable establishment and persistence in the plant system. The bacterium inhibited broad range of pathogens such as Phytophthora capsici, Pythium myriotylum, Giberella moniliformis, Rhizoctonia solani, Athelia rolfsii, Colletotrichum gloeosporioides and plant parasitic nematode, Radopholus similis by its volatile substances. GC/MS based chemical profiling revealed presence of Heneicosane; Tetratetracontane; Pyrrolo [1,2-a] pyrazine-1,4-dione, hexahydro-3-(2-methylpropyl); Tetracosyl heptafluorobutyrate; 1-3-Eicosene, (E)-; 1-Heneicosanol; Octadecyl trifluoroacetate and 1-Pentadecene in PpBP25 metabolite. Dynamic head space GC/MS analysis of airborne volatiles indicated the presence of aromatic compounds such as 1-Undecene;Disulfide dimethyl; Pyrazine, methyl-Pyrazine, 2,5-dimethyl-; Isoamyl alcohol; Pyrazine, methyl-; Dimethyl trisulfide, etc. The work paved way for profiling of broad spectrum antimicrobial VOCs in endophytic PpBP25 for crop protection. PMID:25801973

  6. Milk volatile organic compounds and fatty acid profile in cows fed timothy as hay, pasture, or silage.

    PubMed

    Villeneuve, M-P; Lebeuf, Y; Gervais, R; Tremblay, G F; Vuillemard, J C; Fortin, J; Chouinard, P Y

    2013-01-01

    Nutrient composition and organoleptic properties of milk can be influenced by cow diets. The objective of this study was to evaluate the forage type effects on volatile organic compounds, fatty acid (FA) profile, and organoleptic properties of milk. Timothy grass was fed as hay, pasture, or silage during a period of 27 d to a group of 21 cows in a complete block design based on days in milk. Each cow also received 7.2 kg/d of a concentrate mix to meet their nutrient requirements. Forage dry matter intake averaged 13.9 kg/d and was not different among treatments. Milk yield was higher for cows fed pasture, intermediate for cows fed silage, and lowest for cows fed hay. However, milk fat content was higher for cows fed hay and silage, compared with cows fed pasture. As a result, fat-corrected milk and fat yield were not different among treatments. Increasing the supply of dietary cis-9,cis-12 18:2 (linoleic acid) and cis-9,cis-12,cis-15 18:3 (α-linolenic acid) when feeding pasture enhanced the concentration of these 2 essential FA in milk fat compared with feeding hay or silage. Moreover, the ratio of 16:0 (palmitic acid) to cis-9 18:1 (oleic acid), which is closely related to the melting properties of milk fat, was lower in milk from cows on pasture than in milk from cows fed hay or silage. Cows fed hay produced milk with higher levels of several free FA and γ-lactones, but less pentanal and 1-pentanol. More dimethyl sulfone and toluene were found in milk of cows on pasture. Cows fed silage produced milk with higher levels of acetone, 2-butanone, and α-pinene. Results from a sensory evaluation showed that panelists could not detect a difference in flavor between milk from cows fed hay compared with silage. However, a significant number of assessors perceived a difference between milk from cows fed hay compared with milk from cows fed pasture. In a sensory ranking test, the percentage of assessors ranking for the intensity of total (raw milk, fresh milk, and farm

  7. Volatile compounds in milled/unmilled Queso Fresco during storage

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The profile of volatile compounds that contribute to the flavor of Queso Fresco (QF), a popular high-moisture Hispanic-style cheese, is not well defined. The effects of curd milling on the volatile compounds in QF were determined for cheeses aged at 4 deg C for up to 8 wks. Volatiles from preheate...

  8. Near-road multipollutant profiles: associations between volatile organic compounds and a tracer gas surrogate near a busy highway.

    PubMed

    Barzyk, Timothy M; Ciesielski, Anna; Shores, Richard C; Thoma, Eben D; Seila, Robert L; Isakov, Vlad; Baldauf, Richard W

    2012-05-01

    This research characterizes associations between multiple pollutants in the near-road environment attributed to a roadway line source. It also examines the use of a tracer gas as a surrogate of mobile source pollutants. Air samples were collected in summa canisters along a 300 m transect normal to a highway in Raleigh, North Carolina for five sampling periods spanning four days. Samples were subsequently measured for volatile organic compounds (VOCs) using an electron capture gas chromatograph. Sulfur hexafluoride (SF6) was released from a finite line source adjacent to the roadway for two of the sampling periods, collected in the canisters and measured with the VOCs. Associations between each VOC, and between VOCs and the tracer, were quantified with Pearson correlation coefficients to assess the consistency of the multi-pollutant dispersion profiles, and assess the tracer as a potential surrogate for mobile source pollutants. As expected, benzene, toluene, ethylbenzene, and m,p- and o-xylenes (collectively, BTEX) show strong correlations between each other; further BTEX shows a strong correlation to SF6. Between 26 VOCs, correlation coefficients were greater than 0.8, and 14 VOCs had coefficients greater than 0.6 with the tracer gas. Even under non-downwind conditions, chemical concentrations had significant correlations with distance. Results indicate that certain VOCs are representative of a larger multi-pollutant mixture, and many VOCs are well-correlated with the tracer gas. PMID:22696809

  9. Differential profiling of volatile organic compound biomarker signatures utilizing a logical statistical filter-set and novel hybrid evolutionary classifiers

    NASA Astrophysics Data System (ADS)

    Grigsby, Claude C.; Zmuda, Michael A.; Boone, Derek W.; Highlander, Tyler C.; Kramer, Ryan M.; Rizki, Mateen M.

    2012-06-01

    A growing body of discoveries in molecular signatures has revealed that volatile organic compounds (VOCs), the small molecules associated with an individual's odor and breath, can be monitored to reveal the identity and presence of a unique individual, as well their overall physiological status. Given the analysis requirements for differential VOC profiling via gas chromatography/mass spectrometry, our group has developed a novel informatics platform, Metabolite Differentiation and Discovery Lab (MeDDL). In its current version, MeDDL is a comprehensive tool for time-series spectral registration and alignment, visualization, comparative analysis, and machine learning to facilitate the efficient analysis of multiple, large-scale biomarker discovery studies. The MeDDL toolset can therefore identify a large differential subset of registered peaks, where their corresponding intensities can be used as features for classification. This initial screening of peaks yields results sets that are typically too large for incorporation into a portable, electronic nose based system in addition to including VOCs that are not amenable to classification; consequently, it is also important to identify an optimal subset of these peaks to increase classification accuracy and to decrease the cost of the final system. MeDDL's learning tools include a classifier similar to a K-nearest neighbor classifier used in conjunction with a genetic algorithm (GA) that simultaneously optimizes the classifier and subset of features. The GA uses ROC curves to produce classifiers having maximal area under their ROC curve. Experimental results on over a dozen recognition problems show many examples of classifiers and feature sets that produce perfect ROC curves.

  10. Profiling of Volatile Compounds and Associated Gene Expression and Enzyme Activity during Fruit Development in Two Cucumber Cultivars

    PubMed Central

    Chen, Shuxia; Zhang, Ranran; Hao, Lining; Chen, Weifeng; Cheng, Siqiong

    2015-01-01

    Changes in volatile content, as well as associated gene expression and enzyme activity in developing cucumber fruits were investigated in two Cucumis sativus L. lines (No. 26 and No. 14) that differ significantly in fruit flavor. Total volatile, six-carbon (C6) aldehyde, linolenic and linoleic acid content were higher during the early stages, whereas the nine-carbon (C9) aldehyde content was higher during the latter stages in both lines. Expression of C. sativus hydroperoxide lyase (CsHPL) mirrored 13-hydroperoxide lyase (13-HPL) enzyme activity in variety No. 26, whereas CsHPL expression was correlated with 9-hydroperoxide lyase (9-HPL) enzyme activity in cultivar No. 14. 13-HPL activity decreased significantly, while LOX (lipoxygenase) and 9-HPL activity increased along with fruit ripening in both lines, which accounted for the higher C6 and C9 aldehyde content at 0-6 day post anthesis (dpa) and 9-12 dpa, respectively. Volatile compounds from fruits at five developmental stages were analyzed by principal component analysis (PCA), and heatmaps of volatile content, gene expression and enzyme activity were constructed. PMID:25799542

  11. A profile of volatile organic compounds in exhaled air as a potential non-invasive biomarker for liver cirrhosis

    PubMed Central

    Pijls, Kirsten E.; Smolinska, Agnieszka; Jonkers, Daisy M. A. E.; Dallinga, Jan W.; Masclee, Ad A. M.; Koek, Ger H.; van Schooten, Frederik-Jan

    2016-01-01

    Early diagnosis of liver cirrhosis may prevent progression and development of complications. Liver biopsy is the current standard, but is invasive and associated with morbidity. We aimed to identify exhaled volatiles within a heterogeneous group of chronic liver disease (CLD) patients that discriminates those with compensated cirrhosis (CIR) from those without cirrhosis, and compare this with serological markers. Breath samples were collected from 87 CLD and 34 CIR patients. Volatiles in exhaled air were measured by gas chromatography mass spectrometry. Discriminant Analysis was performed to identify the optimal panel of serological markers and VOCs for classifying our patients using a random training set of 27 CIR and 27 CLD patients. Two randomly selected independent internal validation sets and permutation test were used to validate the model. 5 serological markers were found to distinguish CIR and CLD patients with a sensitivity of 0.71 and specificity of 0.84. A set of 11 volatiles discriminated CIR from CLD patients with sensitivity of 0.83 and specificity of 0.87. Combining both did not further improve accuracy. A specific exhaled volatile profile can predict the presence of compensated cirrhosis among CLD patients with a higher accuracy than serological markers and can aid in reducing liver biopsies. PMID:26822454

  12. Volatile Organic Compounds in Uremia

    PubMed Central

    Seifert, Luzia; Slodzinski, Rafael; Jankowski, Joachim; Zidek, Walter; Westhoff, Timm H.

    2012-01-01

    Background Although “uremic fetor” has long been felt to be diagnostic of renal failure, the compounds exhaled in uremia remain largely unknown so far. The present work investigates whether breath analysis by ion mobility spectrometry can be used for the identification of volatile organic compounds retained in uremia. Methods Breath analysis was performed in 28 adults with an eGFR ≥60 ml/min per 1.73 m2, 26 adults with chronic renal failure corresponding to an eGFR of 10–59 ml/min per 1.73 m2, and 28 adults with end-stage renal disease (ESRD) before and after a hemodialysis session. Breath analysis was performed by ion mobility spectrometryafter gas-chromatographic preseparation. Identification of the compounds of interest was performed by thermal desorption gas chromatography/mass spectrometry. Results Breath analyses revealed significant differences in the spectra of patients with and without renal failure. Thirteen compounds were chosen for further evaluation. Some compounds including hydroxyacetone, 3-hydroxy-2-butanone and ammonia accumulated with decreasing renal function and were eliminated by dialysis. The concentrations of these compounds allowed a significant differentiation between healthy, chronic renal failure with an eGFR of 10–59 ml/min, and ESRD (p<0.05 each). Other compounds including 4-heptanal, 4-heptanone, and 2-heptanone preferentially or exclusively occurred in patients undergoing hemodialysis. Conclusion Impairment of renal function induces a characteristic fingerprint of volatile compounds in the breath. The technique of ion mobility spectrometry can be used for the identification of lipophilic uremic retention molecules. PMID:23049998

  13. Industrial sector-based volatile organic compound (VOC) source profiles measured in manufacturing facilities in the Pearl River Delta, China.

    PubMed

    Zheng, Junyu; Yu, Yufan; Mo, Ziwei; Zhang, Zhou; Wang, Xinming; Yin, Shasha; Peng, Kang; Yang, Yang; Feng, Xiaoqiong; Cai, Huihua

    2013-07-01

    Industrial sector-based VOC source profiles are reported for the Pearl River Delta (PRD) region, China, based source samples (stack emissions and fugitive emissions) analyzed from sources operating under normal conditions. The industrial sectors considered are printing (letterpress, offset and gravure printing processes), wood furniture coating, shoemaking, paint manufacturing and metal surface coating. More than 250 VOC species were detected following US EPA methods TO-14 and TO-15. The results indicated that benzene and toluene were the major species associated with letterpress printing, while ethyl acetate and isopropyl alcohol were the most abundant compounds of other two printing processes. Acetone and 2-butanone were the major species observed in the shoemaking sector. The source profile patterns were found to be similar for the paint manufacturing, wood furniture coating, and metal surface coating sectors, with aromatics being the most abundant group and oxygenated VOCs (OVOCs) as the second largest contributor in the profiles. While OVOCs were one of the most significant VOC groups detected in these five industrial sectors in the PRD region, they have not been reported in most other source profile studies. Such comparisons with other studies show that there are differences in source profiles for different regions or countries, indicating the importance of developing local source profiles. PMID:23584189

  14. Effects of dairy system, herd within dairy system, and individual cow characteristics on the volatile organic compound profile of ripened model cheeses.

    PubMed

    Bergamaschi, M; Aprea, E; Betta, E; Biasioli, F; Cipolat-Gotet, C; Cecchinato, A; Bittante, G; Gasperi, F

    2015-04-01

    The objective of this work was to study the effect of dairy system, herd within dairy system, and characteristics of individual cows (parity, days in milk, and daily milk yield) on the volatile organic compound profile of model cheeses produced under controlled conditions from the milk of individual cows of the Brown Swiss breed. One hundred fifty model cheeses were selected from 1,272 produced for a wider study of the phenotypic and genetic variability of Brown Swiss cows. In our study, we selected 30 herds representing 5 different dairy systems. The cows sampled presented different milk yields (12.3-43.2kg/d), stages of lactation (10-412 d in milk), and parity (1-7). In total, 55 volatile compounds were detected by solid-phase microextraction and gas chromatography-mass spectrometry, including 14 alcohols, 13 esters, 11 free fatty acids, 8 ketones, 4 aldehydes, 3 lactones, 1 terpene, and 1 pyrazine. The most important sources of variation in the volatile organic profiles of model cheeses were dairy system (18 compounds) and days in milk (10 compounds), followed by parity (3 compounds) and milk yield (5 compounds). The model cheeses produced from the milk of tied cows reared on traditional farms had lower quantities of 3-methyl-butan-1-ol, 6-pentyloxan-2-one, 2-phenylethanol, and dihydrofuran-2(3H)-one compared with those reared in freestalls on modern farms. Of these, milk from farms using total mixed rations had higher contents of alcohols (hexan-1-ol, octan-1-ol) and esters (ethyl butanoate, ethyl pentanoate, ethyl hexanoate, and ethyl octanoate) and lower contents of acetic acid compared with those using separate feeds. Moreover, dairy systems that added silage to the total mixed ration produced cheeses with lower levels of volatile organic compounds, in particular alcohols (butan-1-ol, pentan-1-ol, heptan-1-ol), compared with those that did not. The amounts of butan-2-ol, butanoic acid, ethyl-2-methylpropanoate, ethyl-3-methylbutanoate, and 6-propyloxan-2-one

  15. Volatile organic compound sensor system

    DOEpatents

    Schabron, John F.; Rovani, Jr., Joseph F.; Bomstad, Theresa M.; Sorini-Wong, Susan S.; Wong, Gregory K.

    2011-03-01

    Generally, this invention relates to the development of field monitoring methodology for new substances and sensing chemical warfare agents (CWAs) and terrorist substances. It also relates to a portable test kit which may be utilized to measure concentrations of halogenated volatile organic compounds (VOCs) in the field. Specifically it relates to systems for reliably field sensing the potential presence of such items while also distinguishing them from other elements potentially present. It also relates to overall systems and processes for sensing, reacting, and responding to an indicated presence of such substance, including modifications of existing halogenated sensors and arrayed sensing systems and methods.

  16. Volatile organic compound sensor system

    DOEpatents

    Schabron, John F.; Rovani, Jr., Joseph F.; Bomstad, Theresa M.; Sorini-Wong, Susan S.

    2009-02-10

    Generally, this invention relates to the development of field monitoring methodology for new substances and sensing chemical warfare agents (CWAs) and terrorist substances. It also relates to a portable test kit which may be utilized to measure concentrations of halogenated volatile organic compounds (VOCs) in the field. Specifically it relates to systems for reliably field sensing the potential presence of such items while also distinguishing them from other elements potentially present. It also relates to overall systems and processes for sensing, reacting, and responding to an indicated presence of such substance, including modifications of existing halogenated sensors and arrayed sensing systems and methods.

  17. Effect of time at pasture and herbage intake on profile of volatile organic compounds of dairy cow milk.

    PubMed

    Ueda, Yasuko; Asakuma, Sadaki; Miyaji, Makoto; Akiyama, Fumiaki

    2016-01-01

    Volatile organic compounds (VOCs) in milk were investigated as quantitative markers of herbage intake (HI) at pasture. Eight Holstein cows were fed indoors with concentrate and conserved forages (grass silage, corn silage and hay) (NG), then were divided into three treatments according to the duration of access to pasture: 4 h (G4), 8 h (G8), and 20 h (G20) per day. The HIs were 4.3, 8.6, and 13.0 kg dry matter/day for the G4, G8 and G20 treatments, respectively. Milk from cows was sampled and analyzed VOCs by the steam distillation-extraction method and gas chromatography-mass spectrometry (GC-MS). From the intensity of the GC peak area, the levels of 1-phytene (3,7,11,15-tetramethyl-1-hexadecene) and 2-phytene (3,7,11,15-tetramethyl-2-hexadecene) were lowest in NG treatment and markedly increased with grazing time at pasture. With simple regression analysis on the HI to each diterpenoid, a strong correlation was found between the intensity of 1-phytene in the milk and the HI (r = 0.807, P < 0.001). 1-phytene content in milk could be useful as a quantitative marker of the HI of grazing cows. PMID:26032306

  18. Influence of oxygen and long term storage on the profile of volatile compounds released from polymeric multilayer food contact materials sterilized by gamma irradiation.

    PubMed

    Salafranca, Jesús; Clemente, Isabel; Isella, Francesca; Nerín, Cristina; Bosetti, Osvaldo

    2015-06-01

    The profile of volatile compounds released from 13 different multilayer polymeric materials for food use, before and after their exposure to gamma radiation, has been assessed by solid-phase microextraction-gas chromatography-mass spectrometry. Thermosealed bags of different materials were filled with either air or nitrogen to evaluate the oxygen influence. One-third of the samples were analyzed without irradiation, whereas the rest were irradiated at 15 and 25 kGy. Half of the samples were processed just after preparation and the other half was stored for 8 months at room temperature prior to analysis. Very significant differences between unirradiated and irradiated bags were found. About 60-80 compounds were released and identified per sample. A huge peak of 1,3-ditertbutylbenzene was present in most of the irradiated samples. An outstanding reproducibility in all the variables evaluated (chromatograms, oxygen percentage, volume of bags) was noticed. Independently of filling gas, the results of unirradiated materials were almost identical. In contrast, the chromatographic profile and the odor of irradiated bags filled with nitrogen were completely different to those filled with air. Principal component analysis was performed and 86.9% of the accumulated variance was explained with the first two components. The migration of compounds from irradiated materials to the vapor phase was much lower than the limits established in the Commission Regulation (EU) No 10/2011. PMID:26002333

  19. Biofiltration of volatile organic compounds.

    PubMed

    Malhautier, Luc; Khammar, Nadia; Bayle, Sandrine; Fanlo, Jean-Louis

    2005-07-01

    The removal of volatile organic compounds (VOCs) from contaminated airstreams has become a major air pollution concern. Improvement of the biofiltration process commonly used for the removal of odorous compounds has led to a better control of key parameters, enabling the application of biofiltration to be extended also to the removal of VOCs. Moreover, biofiltration, which is based on the ability of micro-organisms to degrade a large variety of compounds, proves to be economical and environmentally viable. In a biofilter, the waste gas is forced to rise through a layer of packed porous material. Thus, pollutants contained in the gaseous effluent are oxidised or converted into biomass by the action of microorganisms previously fixed on the packing material. The biofiltration process is then based on two principal phenomena: (1) transfer of contaminants from the air to the water phase or support medium, (2) bioconversion of pollutants to biomass, metabolic end-products, or carbon dioxide and water. The diversity of biofiltration mechanisms and their interaction with the microflora mean that the biofilter is defined as a complex and structured ecosystem. As a result, in addition to operating conditions, research into the microbial ecology of biofilters is required in order better to optimise the management of such biological treatment systems. PMID:15803311

  20. Volatile organic compound sensing devices

    DOEpatents

    Lancaster, Gregory D.; Moore, Glenn A.; Stone, Mark L.; Reagen, William K.

    1995-01-01

    Apparatus employing vapochromic materials in the form of inorganic double complex salts which change color reversibly when exposed to volatile organic compound (VOC) vapors is adapted for VOC vapor detection, VOC aqueous matrix detection, and selective VOC vapor detection. The basic VOC vapochromic sensor is incorporated in various devices such as a ground probe sensor, a wristband sensor, a periodic sampling monitor, a soil/water penetrometer, an evaporative purge sensor, and various vacuum-based sensors which are particularly adapted for reversible/reusable detection, remote detection, continuous monitoring, or rapid screening of environmental remediation and waste management sites. The vapochromic sensor is used in combination with various fiber optic arrangements to provide a calibrated qualitative and/or quantitative indication of the presence of VOCs.

  1. Volatile organic compound sensing devices

    DOEpatents

    Lancaster, G.D.; Moore, G.A.; Stone, M.L.; Reagen, W.K.

    1995-08-29

    Apparatus employing vapochromic materials in the form of inorganic double complex salts which change color reversibly when exposed to volatile organic compound (VOC) vapors is adapted for VOC vapor detection, VOC aqueous matrix detection, and selective VOC vapor detection. The basic VOC vapochromic sensor is incorporated in various devices such as a ground probe sensor, a wristband sensor, a periodic sampling monitor, a soil/water penetrometer, an evaporative purge sensor, and various vacuum-based sensors which are particularly adapted for reversible/reusable detection, remote detection, continuous monitoring, or rapid screening of environmental remediation and waste management sites. The vapochromic sensor is used in combination with various fiber optic arrangements to provide a calibrated qualitative and/or quantitative indication of the presence of VOCs. 15 figs.

  2. Assessment of volatile compound profiles and the deduced sensory significance of virgin olive oils from the progeny of Picual×Arbequina cultivars.

    PubMed

    Pérez, Ana G; de la Rosa, Raúl; Pascual, Mar; Sánchez-Ortiz, Araceli; Romero-Segura, Carmen; León, Lorenzo; Sanz, Carlos

    2016-01-01

    Volatile compounds are responsible for most of the sensory qualities of virgin olive oil and they are synthesized when enzymes and substrates come together as olive fruit is crushed during the industrial process to obtain the oil. Here we have studied the variability among the major volatile compounds in virgin olive oil prepared from the progeny of a cross of Picual and Arbequina olive cultivars (Olea europaea L.). The volatile compounds were isolated by SPME, and analyzed by HRGC-MS and HRGC-FID. Most of the volatile compounds found in the progeny's oil are produced by the enzymes in the so-called lipoxygenase pathway, and they may be clustered into different groups according to their chain length and polyunsaturated fatty acid origin (linoleic and linolenic acids). In addition, a group of compounds derived from amino acid metabolism and two terpenes also contributed significantly to the volatile fraction, some of which had significant odor values in most of the genotypes evaluated. The volatile compound content of the progeny was very varied, widely transgressing the progenitor levels, suggesting that in breeding programs it might be more effective to consider a larger number of individuals within the same cross than using different crosses with fewer individuals. Multivariate analysis allowed genotypes with particularly interesting volatile compositions to be identified and their flavor quality deduced. PMID:26199104

  3. Volatile compounds of dry beans (Phaseolus vulgaris L.).

    PubMed

    Oomah, B Dave; Liang, Lisa S Y; Balasubramanian, Parthiba

    2007-12-01

    Volatile compounds of uncooked dry bean (Phaseolus vulgaris L.) cultivars representing three market classes (black, dark red kidney and pinto) grown in 2005 were isolated with headspace solid phase microextraction (HS-SPME), and analyzed with gas chromatography mass spectrometry (GC-MS). A total of 62 volatiles consisting of aromatic hydrocarbons, aldehydes, alkanes, alcohols and ketones represented on average 62, 38, 21, 12, and 9 x 10(6) total area counts, respectively. Bean cultivars differed in abundance and profile of volatiles. The combination of 18 compounds comprising a common profile explained 79% of the variance among cultivars based on principal component analysis (PCA). The SPME technique proved to be a rapid and effective method for routine evaluation of dry bean volatile profile. PMID:17926127

  4. Biodiversity of volatile organic compounds from five French ferns.

    PubMed

    Fons, Françoise; Froissard, Didier; Bessière, Jean-Marie; Buatois, Bruno; Rapior, Sylvie

    2010-10-01

    Five French ferns belonging to different families were investigated for volatile organic compounds (VOC) by GC-MS using organic solvent extraction. Fifty-five VOC biosynthesized from the shikimic, lipidic and terpenic pathways including monoterpenes, sesquiterpenes and carotenoid-type compounds were identified. The main volatile compound of Adiantum capillus-veneris L. (Pteridaceae) was (E)-2-decenal with a plastic or "stink bug" odor. The volatile profiles of Athyrium filix-femina (L.) Roth (Woodsiaceae) and Blechnum spicant (L.) Roth (Blechnaceae) showed similarities, with small amounts of isoprenoids and the same main volatile compounds, i.e., 2-phenylethanal (odor of lilac and hyacinth) and 1-octen-3-ol (mushroom-like odor). The main volatile compound of Dryopteris filix-mas (L.) Schott (Dryopteridaceae) was (E)-nerolidol with a woody or fresh bark note. Polyketides, as acylfilicinic acids, were mainly identified in this fern. Oreopteris limbosperma (Bellardi ex. All.) J. Holub (Thelypteridaceae), well-known for its lemon smell, contained the highest biodiversity of VOC. Eighty percent of the volatiles was issued from the terpenic pathway. The main volatiles were (E)-nerolidol, alpha-terpineol, beta-caryophyllene and other minor monoterpenes (for example, linalool, pinenes, limonene, and gamma-terpinen-7-al). It was also the fern with the highest number of carotenoid-type derivatives, which were identified in large amounts. Our results were of great interest underlying new industrial valorisation for ferns based on their broad spectrum of volatiles. PMID:21121267

  5. Nitrogen compounds in must and volatile profile of white wine: Influence of clarification process before alcoholic fermentation.

    PubMed

    Burin, Vívian Maria; Caliari, Vinícius; Bordignon-Luiz, Marilde T

    2016-07-01

    The aim of this study was to investigate the effect of adding a fining agent to the must in relation to the fermentation kinetics and the volatile composition of the wine produced. Three fining agents, bentonite, pectinolytic enzyme and silica were applied, separately, to samples of Chardonnay must. It was observed that the addition of a fining agent had a significant influence on the must and wine composition. The must clarified with bentonite showed the lowest nitrogen content and the enzyme addition led to the highest nitrogen content. During the fermentation process, a difference in the consumption rate was observed for each amino acid in relation to the fining agent used in the process. In relation to the volatile composition, the wine produced had different characteristics according to the fining agent added to the must, which was confirmed by separation of the samples using principal component analysis. PMID:26920313

  6. Effect of autochthonous starter cultures isolated from Siahmazgi cheese on physicochemical, microbiological and volatile compound profiles and sensorial attributes of sucuk, a Turkish dry-fermented sausage.

    PubMed

    Kargozari, Mina; Moini, Sohrab; Akhondzadeh Basti, Afshin; Emam-Djomeh, Zahra; Gandomi, Hassan; Revilla Martin, Isabel; Ghasemlou, Mehran; Carbonell-Barrachina, Angel A

    2014-05-01

    The effect of adding autochthonous starter cultures isolated from Siahmazgi cheese, on the physicochemical parameters and microbial counts of sucuk was investigated during the ripening period. SPME-GC/MS was used in volatile compound analysis and a trained group of panelists carried out sensory analysis of the final product. After preliminary screening, three strains of Lactobacillus plantarum, which possess desirable technological properties, were used to prepare three starter cultures: LBP7, LBP10 and LBP14. The addition of LBP7 and LBP14 starter cultures had a significant effect (P<0.05) on lightness, leading to higher L values compared to control sausages during the ripening period. Both LBP7 and LBP14 sausages showed higher counts of lactic acid bacteria, lower growth of Enterobacteriaceae and Gram-positive catalase-positive cocci and greatly lowered the pH value compared to control sausages throughout the ripening process. At the end of the ripening process, lactic acid bacteria counts were affected (P<0.05) by the addition of starter culture since higher counts were observed in sausages prepared with LBP7 (9.14logCFU/g) and LBP14 (8.96logCFU/g) batches. The decrease of water activity during the ripening of sausages was not affected by the various starters. The texture profiles of all sausages were similar except for LBP10, which showed lower hardness and gumminess during ripening. Under the conditions of the study, volatile compounds were mainly from spices, and no marked differences were found among inoculated sausages. However, sensory evaluation revealed that most of the sensory attributes were scored higher for inoculated sausages than for the control ones. Therefore, LBP7 and LBP14 could be promising candidates for inclusion as starter cultures for the manufacture of sucuk. PMID:24553492

  7. Effect of the dietary supplementation of essential oils from rosemary and artemisia on muscle fatty acids and volatile compound profiles in Barbarine lambs.

    PubMed

    Vasta, Valentina; Aouadi, Dorra; Brogna, Daniela M R; Scerra, Manuel; Luciano, Giuseppe; Priolo, Alessandro; Ben Salem, Hichem

    2013-10-01

    Eighteen Barbarine lambs (3 months of age), were assigned for 95 days to 3 treatments: six lambs were fed a barley-based concentrate plus oat hay ad libitum (control group, C); other lambs received the control diet plus essential oil (400 ppm DM) either of Rosmarinus officinalis (R400 group; n=6) or of Artemisia herba alba (A400 group; n=6). At slaughter the muscle longissimus dorsi was sampled and subjected to fatty acid and volatile organic compounds (VOC) analyses. The A400 lambs presented a greater amount of vaccenic, rumenic and linolenic acids and of polyunsaturated fatty acids (PUFA) in meat than the C and R400 animals. Essential oils supplementation did not affect meat VOC profile though the sesquiterpenes copaene and β-caryophyllene were detected only in the meat of R400 and A400 lambs. It is concluded that the supplementation of rosemary or artemisia essential oils does not produce detrimental effects on lamb meat VOC profile. The supplementation of artemisia can improve meat healthy properties. PMID:23747617

  8. Mapping and profile of emission sources for airborne volatile organic compounds from process regions at a petrochemical plant in Kaohsiung, Taiwan.

    PubMed

    Chen, Ching-Liang; Fang, Hung-Yuan; Shu, Chi-Min

    2006-06-01

    This work surveyed five process regions inside a petrochemical plant in Taiwan to characterize the profiles of airborne volatile organic compounds (VOCs) and locate emission sources. Samples, taken with canisters, were analyzed with gas chromatography-mass spectrometry according to the TO-14 method. Each region was deployed with 24 sampling sites, sampled twice, and 240 samples in total were measured during the survey period. All of the data were consolidated into a database on Excel to facilitate retrieval, statistical analysis, and presentation in the form of a table or graph, and, subsequently, the profile of VOCs was elucidated. Emission sources were located by mapping the concentration distribution of either an individual or a type of species in terms of contour maps on Surfer. Through the cross-analysis of data, the abundant VOCs included alkenes, dienes, alkanes, and aromatics. A total of 19 emission sources were located from these five regions. The sources for alkanes stood inside first, third aromatic, and fourth naphtha cracking regions, whereas the ones for alkenes were inside two naphtha cracking regions. The sources for dienes were found inside the third naphtha cracking region alone; in contrast, the sources for aromatics were universally traced except inside the third naphtha cracking region. The measured intensity for sources mostly ranged from 1000 to 7000 ppb. PMID:16805407

  9. Authentication of fattening diet of Iberian pigs according to their volatile compounds profile from raw subcutaneous fat.

    PubMed

    Narváez-Rivas, M; Pablos, F; Jurado, J M; León-Camacho, M

    2011-02-01

    The composition of volatile components of subcutaneous fat from Iberian pig has been studied. Purge and trap gas chromatography-mass spectrometry has been used. The composition of the volatile fraction of subcutaneous fat has been used for authentication purposes of different types of Iberian pig fat. Three types of this product have been considered, montanera, extensive cebo and intensive cebo. With classification purposes, several pattern recognition techniques have been applied. In order to find out possible tendencies in the sample distribution as well as the discriminant power of the variables, principal component analysis was applied as visualisation technique. Linear discriminant analysis (LDA) and soft independent modelling by class analogy (SIMCA) were used to obtain suitable classification models. LDA and SIMCA allowed the differentiation of three fattening diets by using the contents in 2,2,4,6,6-pentamethyl-heptane, m-xylene, 2,4-dimethyl-heptane, 6-methyl-tridecane, 1-methoxy-2-propanol, isopropyl alcohol, o-xylene, 3-ethyl-2,2-dimethyl-oxirane, 2,6-dimethyl-undecane, 3-methyl-3-pentanol and limonene. PMID:21072505

  10. Resolution of volatile fuel compound profiles from Ascocoryne sarcoides: a comparison by proton transfer reaction-mass spectrometry and solid phase microextraction gas chromatography-mass spectrometry

    PubMed Central

    2012-01-01

    Volatile hydrocarbon production by Ascocoryne sacroides was studied over its growth cycle. Gas-phase compounds were measured continuously with a proton transfer reaction-mass spectrometry (PTR-MS) and at distinct time points with gas chromatography-mass spectrometry (GC-MS) using head space solid phase microextraction (SPME). The PTR-MS ion signal permitted temporal resolution of the volatile production while the SPME results revealed distinct compound identities. The quantitative PTR-MS results showed the volatile production was dominated by ethanol and acetaldehyde, while the concentration of the remainder of volatiles consistently reached 2,000 ppbv. The measurement of alcohols from the fungal culture by the two techniques correlated well. Notable compounds of fuel interest included nonanal, 1-octen-3-ol, 1-butanol, 3-methyl- and benzaldehyde. Abiotic comparison of the two techniques demonstrated SPME fiber bias toward higher molecular weight compounds, making quantitative efforts with SPME impractical. Together, PTR-MS and SPME GC-MS were shown as valuable tools for characterizing volatile fuel compound production from microbiological sources. PMID:22480438

  11. Analyzing volatile compounds in dairy products

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Volatile compounds give the first indication of the flavor in a dairy product. Volatiles are isolated from the sample matrix and then analyzed by chromatography, sensory methods, or an electronic nose. Isolation may be performed by solvent extraction or headspace analysis, and gas chromatography i...

  12. Volatile and sensory profiling of cocktail bitters.

    PubMed

    Johnson, Arielle J; Heymann, Hildegarde; Ebeler, Susan E

    2015-07-15

    Aromatic cocktail bitters are derived from the alcoholic extraction of a variety of plant materials and are used as additives in mixed drinks to enhance aroma and flavor. In this study sixteen commercial bitters were analyzed using volatile (GC-MS) and sensory profiling and multivariate statistics including Principal Component Analysis (PCA) and Partial Least Squares Regression (PLS). The samples differed significantly in their citrus, celery, and spice characteristics. 148 volatile compounds were tentatively identified and the composition varied significantly with the type of bitters sample evaluated. PLS analysis showed that the volatile data correlated well overall to the sensory data, explaining 60% of the overall variability in the dataset. Primary aldehydes and phenylpropanoids were most closely related to green and spice-related sensory descriptors. However, the sensory impact of terpenoid compounds was difficult to predict in many cases. This may be due to the wide range of aroma qualities associated with terpenes as well as to concentration, synergistic or masking effects. PMID:25722175

  13. Microwave spectra of some volatile organic compounds

    NASA Technical Reports Server (NTRS)

    White, W. F.

    1975-01-01

    A computer-controlled microwave (MRR) spectrometer was used to catalog reference spectra for chemical analysis. Tables of absorption frequency, peak absorption intensity, and integrated intensity are included for 26 volatile organic compounds, all but one of which contain oxygen.

  14. VOLATILE ORGANIC COMPOUNDS AS EXPOSURE BIOMARKERS

    EPA Science Inventory

    Alveolar breath sampling and analysis can be extremely useful in exposure assessment studies involving volatile organic compounds (VOCs). Over recent years scientists from the US Environmental Protection Agency's National Exposure Research Laboratory have developed and refined...

  15. A novel Whole Air Sample Profiler (WASP) for the quantification of volatile organic compounds in the boundary layer

    SciTech Connect

    Mak, J. E.; Su, L.; Guenther, Alex B.; Karl, Thomas G.

    2013-10-16

    The emission and fate of reactive VOCs is of inherent interest to those studying chemical biosphere-atmosphere interactions. In-canopy VOC observations are obtainable using tower-based samplers, but the lack of suitable sampling systems for the full boundary 5 layer has limited the data characterizing the vertical structure of such gases above the canopy height and still in the boundary layer. This is the important region where many reactive VOCs are oxidized or otherwise removed. Here we describe an airborne sampling system designed to collect a vertical profile of air into a 3/800 OD tube 150m in length. The inlet ram air pressure is used to flow sampled air through the 10 tube, which results in a varying flow rate based on aircraft speed and altitude. Since aircraft velocity decreases during ascent, it is necessary to account for the variable flow rate into the tube. This is accomplished using a reference gas that is pulsed into the air stream so that the precise altitude of the collected air can be reconstructed post-collection. The pulsed injections are also used to determine any significant effect 15 from diffusion/mixing within the sampling tube, either during collection or subsequent extraction for gas analysis. This system has been successfully deployed, and we show some measured vertical profiles of isoprene and its oxidation products methacrolein and methyl vinyl ketone from a mixed canopy near Columbia, Missouri.

  16. Emission and profile characteristic of volatile organic compounds emitted from coke production, iron smelt, heating station and power plant in Liaoning Province, China.

    PubMed

    Shi, Jianwu; Deng, Hao; Bai, Zhipeng; Kong, Shaofei; Wang, Xiuyan; Hao, Jiming; Han, Xinyu; Ning, Ping

    2015-05-15

    107 kinds of C₂-C₁₂ volatile organic compound (VOC) mass concentrations and profiles for four types of coal-fired stationary sources in Liaoning Province were studied by a dilution sampling system and GC-MS analysis method, which are of significant importance with regard to VOC emissions in northeast of China. The results showed that there were some differences among these VOC source profiles. The total mass concentrations of analyzed 107 VOC species varied from 10,917 to 19,652 μg m(-3). Halogenated hydrocarbons exhibited higher mass percentages for the VOC source profiles of iron smelt (48.8%) and coke production plant (37.7%). Aromatic hydrocarbons were the most abundant in heating station plant (69.1%). Ketones, alcohols and acetates held 45.0% of total VOCs in thermal power plant. For non-methane hydrocarbons (NMHCs), which are demanded for photochemical assessment in the USA, toluene and n-hexane were the most abundant species in the iron smelt, coke production and thermal power plant, with the mass percentages of 64.8%, 52.7% and 38.6%, respectively. Trimethylbenzene, n-propylbenzene and o,m-ethyltoluene approximately accounted for 70.0% in heating station plant. NMHCs emitted from coke production, iron smelt, heating station and power plant listed above presented different chemical reactivities. The average OH loss rate of NMHCs from heating station, was 4 to 5.6 times higher than that of NMHCs from iron smelt, coke production and power plant, which implies that VOCs emitted from heating station in northeast of China should be controlled firstly to avoid photochemical ozone pollution and protect human health. There are significant variations in the ratios of benzene/toluene and m, p-xylene/ethylbenzene of these coal-fired source profiles. The representativeness of the coal-fired sources studied and the VOC samples collected should be more closely examined. The accuracy of VOC source profiles related to coal-fired processes is highly dependent on

  17. Volatile organic compound emissions from silage systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    As a precursor to smog, emission of volatile organic compounds (VOCs) to the atmosphere is an environmental concern in some regions. The major source from farms is silage, with emissions coming from the silo face, mixing wagon, and feed bunk. The major compounds emitted are alcohols with other impor...

  18. VOLATILE ORGANIC COMPOUNDS (VOCS) CHAPTER 31.

    EPA Science Inventory

    The term "volatile organic compounds' (VOCs) was originally coined to refer, as a class, to carbon-containing chemicals that participate in photochemical reactions in the ambient (outdoor) are. The regulatory definition of VOCs used by the U.S. EPA is: Any compound of carbon, ex...

  19. Analyses of volatile organic compounds from human skin

    PubMed Central

    Gallagher, M.; Wysocki, C.J.; Leyden, J.J.; Spielman, A.I.; Sun, X.; Preti, G.

    2008-01-01

    Summary Background Human skin emits a variety of volatile metabolites, many of them odorous. Much previous work has focused upon chemical structure and biogenesis of metabolites produced in the axillae (underarms), which are a primary source of human body odour. Nonaxillary skin also harbours volatile metabolites, possibly with different biological origins than axillary odorants. Objectives To take inventory of the volatile organic compounds (VOCs) from the upper back and forearm skin, and assess their relative quantitative variation across 25 healthy subjects. Methods Two complementary sampling techniques were used to obtain comprehensive VOC profiles, viz., solid-phase micro extraction and solvent extraction. Analyses were performed using both gas chromatography/mass spectrometry and gas chromatography with flame photometric detection. Results Nearly 100 compounds were identified, some of which varied with age. The VOC profiles of the upper back and forearm within a subject were, for the most part, similar, although there were notable differences. Conclusions The natural variation in nonaxillary skin odorants described in this study provides a baseline of compounds we have identified from both endogenous and exogenous sources. Although complex, the profiles of volatile constituents suggest that the two body locations share a considerable number of compounds, but both quantitative and qualitative differences are present. In addition, quantitative changes due to ageing are also present. These data may provide future investigators of skin VOCs with a baseline against which any abnormalities can be viewed in searching for biomarkers of skin diseases. PMID:18637798

  20. The volatile compound BinBase mass spectral database

    PubMed Central

    2011-01-01

    Background Volatile compounds comprise diverse chemical groups with wide-ranging sources and functions. These compounds originate from major pathways of secondary metabolism in many organisms and play essential roles in chemical ecology in both plant and animal kingdoms. In past decades, sampling methods and instrumentation for the analysis of complex volatile mixtures have improved; however, design and implementation of database tools to process and store the complex datasets have lagged behind. Description The volatile compound BinBase (vocBinBase) is an automated peak annotation and database system developed for the analysis of GC-TOF-MS data derived from complex volatile mixtures. The vocBinBase DB is an extension of the previously reported metabolite BinBase software developed to track and identify derivatized metabolites. The BinBase algorithm uses deconvoluted spectra and peak metadata (retention index, unique ion, spectral similarity, peak signal-to-noise ratio, and peak purity) from the Leco ChromaTOF software, and annotates peaks using a multi-tiered filtering system with stringent thresholds. The vocBinBase algorithm assigns the identity of compounds existing in the database. Volatile compound assignments are supported by the Adams mass spectral-retention index library, which contains over 2,000 plant-derived volatile compounds. Novel molecules that are not found within vocBinBase are automatically added using strict mass spectral and experimental criteria. Users obtain fully annotated data sheets with quantitative information for all volatile compounds for studies that may consist of thousands of chromatograms. The vocBinBase database may also be queried across different studies, comprising currently 1,537 unique mass spectra generated from 1.7 million deconvoluted mass spectra of 3,435 samples (18 species). Mass spectra with retention indices and volatile profiles are available as free download under the CC-BY agreement (http

  1. Catalyst for Oxidation of Volatile Organic Compounds

    NASA Technical Reports Server (NTRS)

    Wood, George M. (Inventor); Upchurch, Billy T. (Inventor); Schryer, David R. (Inventor); Davis, Patricia P. (Inventor); Kielin, Erik J. (Inventor); Brown, Kenneth G. (Inventor); Schyryer, Jacqueline L. (Inventor); DAmbrosia, Christine M. (Inventor)

    2000-01-01

    Disclosed is a process for oxidizing volatile organic compounds to carbon dioxide and water with the minimal addition of energy. A mixture of the volatile organic compound and an oxidizing agent (e.g. ambient air containing the volatile organic compound) is exposed to a catalyst which includes a noble metal dispersed on a metal oxide which possesses more than one oxidation state. Especially good results are obtained when the noble metal is platinum, and the metal oxide which possesses more than one oxidation state is tin oxide. A promoter (i.e., a small amount of an oxide of a transition series metal) may be used in association with the tin oxide to provide very beneficial results.

  2. Volatile compounds in shergottite and nakhlite meteorites

    NASA Technical Reports Server (NTRS)

    Gooding, James L.; Aggrey, Kwesi E.; Muenow, David W.

    1990-01-01

    Since discovery of apparent carbonate carbon in Nakhla, significant evidence has accumulated for occurrence of volatile compounds in shergotties and nakhlites. Results are presented from a study of volatile compounds in three shergottites, one nakhlite, and three eucrite control samples. Shergotties ALHA77005, EETA79001, and Shergotty, and the nakhlite Nakhla, all contain oxidized sulfur (sulfate) of preterrestrial origin; sulfur oxidation is most complete in EETA79001/Lith-C. Significant bulk carbonate was confirmed in Nakhla and trace carbonate was substantiated for EETA79001, all of which appears to be preterrestrial in origin. Chlorine covaries with oxidized sulfur, whereas carbonate and sulfate are inversely related. These volatile compounds were probably formed in a highly oxidizing, aqueous environment sometime in the late stage histories of the rocks that are now represented as meteorites. They are consistent with the hypothesis that shergottite and nakhlite meteorites originated on Mars and that Mars has supported aqueous geochemistry during its history.

  3. Volatile compound formation during argan kernel roasting.

    PubMed

    El Monfalouti, Hanae; Charrouf, Zoubida; Giordano, Manuela; Guillaume, Dominique; Kartah, Badreddine; Harhar, Hicham; Gharby, Saïd; Denhez, Clément; Zeppa, Giuseppe

    2013-01-01

    Virgin edible argan oil is prepared by cold-pressing argan kernels previously roasted at 110 degrees C for up to 25 minutes. The concentration of 40 volatile compounds in virgin edible argan oil was determined as a function of argan kernel roasting time. Most of the volatile compounds begin to be formed after 15 to 25 minutes of roasting. This suggests that a strictly controlled roasting time should allow the modulation of argan oil taste and thus satisfy different types of consumers. This could be of major importance considering the present booming use of edible argan oil. PMID:23472454

  4. The Negative Effects of Volatile Sulphur Compounds.

    PubMed

    Milella, Lisa

    2015-01-01

    Oral malodor has been studied extensively in humans but not necessarily to the same degree in our veterinary patients where malodor constitutes a significant problem. Breath malodor may originate from the mouth, or from an extra oral source, originating from other organ systems such as gastrointestinal, respiratory, or even systemic disease. Oral malodor is a result of microbial metabolism of exogenous and endogenous proteinaceous substrates leading to the production of compounds such as indole, skatole, tyramine, cadaverine, puterescine, mercaptans, and sulphides. Volatile sulphur compounds have been shown to be the main cause of oral malodor. Although most clients perceive oral malodor to be primarily a cosmetic problem, there is an increasing volume of evidence in human dental literature demonstrating that volatile sulphur compounds produced by bacteria, even at low concentrations, are toxic to tissues and play a role in the pathogenesis of periodontitis. This article reviews the current available literature in human dentistry looking at these negative effects. No veterinary studies have been conducted looking at the negative effects of volatile sulphur compounds specifically, but as this article highlights, we should be aware of the potential negative effects of volatile sulphur compounds and consider this an area of future research. PMID:26415386

  5. Rapid and direct volatile compound profiling of black and green teas (Camellia sinensis) from different countries with PTR-ToF-MS.

    PubMed

    Yener, Sine; Sánchez-López, José A; Granitto, Pablo M; Cappellin, Luca; Märk, Tilmann D; Zimmermann, Ralf; Bonn, Günther K; Yeretzian, Chahan; Biasioli, Franco

    2016-05-15

    Volatile profiles of 63 black and 38 green teas from different countries were analysed with Proton Transfer Reaction-Time of Flight-Mass Spectrometry (PTR-ToF-MS) both for tea leaves and tea infusion. The headspace volatile fingerprints were collected and the tea classes and geographical origins were tracked with pattern recognition techniques. The high mass resolution achieved by ToF mass analyser provided determination of sum formula and tentative identifications of the mass peaks. The results provided successful separation of the black and green teas based on their headspace volatile emissions both from the dry tea leaves and their infusions. The volatile fingerprints were then used to build different classification models for discrimination of black and green teas according to their geographical origins. Two different cross validation methods were applied and their effectiveness for origin discrimination was discussed. The classification models showed a separation of black and green teas according to geographical origins the errors being mostly between neighbouring countries. PMID:26992494

  6. TREATMENT OF VOLATILE ORGANIC COMPOUNDS IN DRINKING WATER

    EPA Science Inventory

    Volatile chlorinated and non-chlorinated compounds occur in both untreated and treated drinking water. Because volatilization is restricted, ground waters rather than surface waters are more likely to have high concentrations of these compounds. This document reviews properties, ...

  7. The profile of volatile compounds in the outer and inner parts of broiled pork neck is strongly influenced by the acetic-acid marination conditions.

    PubMed

    Biller, Elżbieta; Boselli, Emanuele; Obiedziński, Mieczysław; Karpiński, Piotr; Waszkiewicz-Robak, Bożena

    2016-11-01

    Raw pork neck cutlets were marinated in an aqueous solution of acetic acid (pH4, 24h, 4°C) without (M) or with 1% (w/w) of glucose. The control (K) was formed by non-treated raw pork neck. The cutlets were then broiled (185°C, 30min). In all K cutlets, significant higher amounts of volatile compounds (VCs) were developed after broiling than the other samples. Significant more aldehydes and alcohols were present in the inner parts than in the surface. The correlation between surface and internal layers was high only for aldehydes. Marinating decreased the differences among VCs and led to the standardization of the processed meat. The addition of glucose to the marinade led to more volatile aldehydes, carboxylic acids, esters, furan, pyran, pyrazine, pyrrol and pyridine derivatives than in M samples. Several (53) specific VCs explained the differences among the surface samples related to the marinating process. However, only 16 VCs explained the variance among the inner parts. PMID:27395822

  8. Determination of volatile marker compounds of common coffee roast defects.

    PubMed

    Yang, Ni; Liu, Chujiao; Liu, Xingkun; Degn, Tina Kreuzfeldt; Munchow, Morten; Fisk, Ian

    2016-11-15

    Coffee beans from the same origin were roasted using six time-temperature profiles, in order to identify volatile aroma compounds associated with five common roast coffee defects (light, scorched, dark, baked and underdeveloped). Thirty-seven volatile aroma compounds were selected on the basis that they had previously been identified as potent odorants of coffee and were also identified in all coffee brew preparations; the relative abundance of these aroma compounds was then evaluated using gas chromatography mass spectrometry (GC-MS) with headspace solid phase micro extraction. Some of the 37 key aroma compounds were significantly changed in each coffee roast defect and changes in one marker compound was chosen for each defect type, that is, indole for light defect, 4-ethyl-2-methoxyphenol for scorched defect, phenol for dark defect, maltol for baked defect and 2,5-dimethylfuran for underdeveloped defect. The association of specific changes in aroma profiles for different roast defects has not been shown previously and could be incorporated into screening tools to enable the coffee industry quickly identify if roast defects occur during production. PMID:27283624

  9. Comparative volatile profiles in soy sauce according to inoculated microorganisms.

    PubMed

    Lee, Kyung Eun; Lee, Sang Mi; Choi, Yong Ho; Hurh, Byung Serk; Kim, Young-Suk

    2013-01-01

    We compared the volatile profiles in soy sauce according to inoculation with Tetragenococcus halophilus and/or Zygosaccharomyces rouxii. Totals of 107 and 81 volatiles were respectively identified by using solid-phase microextraction and solvent extraction. The various volatile compounds identified included acids, aldehydes, esters, ketones, furans and furan derivatives, and phenols. The major volatiles in the samples treated with T. halophilus were acetic acid, formic acid, benzaldehyde, methyl acetate, ethyl 2-hydroxypropanoate, 2-hydroxy-3-methyl-2-cyclopenten-1-one, and 4-hydroxy-3-methoxybenzaldehyde, while those in the samples inoculated with Z. rouxii were mainly ethanol, acetaldehyde, ethyl propanoate, 2/3-methylbutanol, 1-butanol, 2-phenylethanol, ethyl 2-methylpropanoate, and 4-hydroxy-2-ethyl-5-methyl-3(2H)-furanone. The results indicate that T. halophilus produced significant acid compounds and could affect the Z. rouxii activity, supporting the notion that yeasts and lactic acid bacteria respectively have different metabolic pathways of alcoholic fermentation and lactic acid fermentation, and produce different dominant volatile compounds in soy sauce. PMID:24200796

  10. In vitro volatile organic compound profiling using GC×GC-TOFMS to differentiate bacteria associated with lung infections: a proof-of-concept study.

    PubMed

    Nizio, K D; Perrault, K A; Troobnikoff, A N; Ueland, M; Shoma, S; Iredell, J R; Middleton, P G; Forbes, S L

    2016-06-01

    Chronic pulmonary infections are the principal cause of morbidity and mortality in individuals with cystic fibrosis (CF). Due to the polymicrobial nature of these infections, the identification of the particular bacterial species responsible is an essential step in diagnosis and treatment. Current diagnostic procedures are time-consuming, and can also be expensive, invasive and unpleasant in the absence of spontaneously expectorated sputum. The development of a rapid, non-invasive methodology capable of diagnosing and monitoring early bacterial infection is desired. Future visions of real-time, in situ diagnosis via exhaled breath testing rely on the differentiation of bacteria based on their volatile metabolites. The objective of this proof-of-concept study was to investigate whether a range of CF-associated bacterial species (i.e. Pseudomonas aeruginosa, Burkholderia cenocepacia, Haemophilus influenzae, Stenotrophomonas maltophilia, Streptococcus pneumoniae and Streptococcus milleri) could be differentiated based on their in vitro volatile metabolomic profiles. Headspace samples were collected using solid phase microextraction (SPME), analyzed using comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry (GC×GC-TOFMS) and evaluated using principal component analysis (PCA) in order to assess the multivariate structure of the data. Although it was not possible to effectively differentiate all six bacteria using this method, the results revealed that the presence of a particular pattern of VOCs (rather than a single VOC biomarker) is necessary for bacterial species identification. The particular pattern of VOCs was found to be dependent upon the bacterial growth phase (e.g. logarithmic versus stationary) and sample storage conditions (e.g. short-term versus long-term storage at  -18 °C). Future studies of CF-associated bacteria and exhaled breath condensate will benefit from the approaches presented in this study and further

  11. Volatile Organic Compounds Produced by Bacteria from the Poultry Processing Environment

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In recent years the characterization of volatile organic compounds (VOCs) emitted from food-borne bacteria has prompted studies on the development of approaches to utilize the profile of volatiles emitted as a way of detecting contamination. We have examined VOCs from poultry with this in mind. Patt...

  12. Discrimination of Swiss cheese from 5 different factories by high impact volatile organic compound profiles determined by odor activity value using selected ion flow tube mass spectrometry and odor threshold.

    PubMed

    Taylor, Kaitlyn; Wick, Cheryl; Castada, Hardy; Kent, Kyle; Harper, W James

    2013-10-01

    Swiss cheese contains more than 200 volatile organic compounds (VOCs). Gas chromatography-mass spectrometry has been utilized for the analysis of volatile compounds in food products; however, it is not sensitive enough to measure VOCs directly in the headspace of a food at low concentrations. Selected ion flow tube mass spectrometry (SIFT-MS) provides a basis for determining the concentrations of VOCs in the head space of the sample in real time at low concentration levels of parts per billion/trillion by volume. Of the Swiss cheese VOCs, relatively few have a major impact on flavor quality. VOCs with odor activity values (OAVs) (concentration/odor threshold) greater than one are considered high-impact flavor compounds. The objective of this study was to utilize SIFT-MS concentrations in conjunction with odor threshold values to determine OAVs thereby identifying high-impact VOCs to use for differentiating Swiss cheese from five factories and identify the factory variability. Seventeen high-impact VOCs were identified for Swiss cheese based on an OAV greater than one in at least 1 of the 5 Swiss cheese factories. Of these, 2,3-butanedione was the only compound with significantly different OAVs in all factories; however, cheese from any pair of factories had multiple statistically different compounds based on OAV. Principal component analysis using soft independent modeling of class analogy statistical differentiation plots, with all of the OAVs, showed differentiation between the 5 factories. Overall, Swiss cheese from different factories was determined to have different OAV profiles utilizing SIFT-MS to determine OAVs of high impact compounds. PMID:24106758

  13. Determination of antioxidant properties of 26 Chilean honeys and a mathematical association study with their volatile profile.

    PubMed

    Sánchez, Elizabeth; Piovano, Marisa; Valdés, Erika; Young, Manuel E; Acevedo, Cristian A; Osorio, Mauricio

    2012-07-01

    Radical scavenging activity (RSA), antioxidant content (TEAC), total phenolic compounds content (TPCC) and volatile profile (VOCs) were measured in 26 honeys obtained from the Valparaiso Region (Chile). Persea americana honey was the most interesting sample according to these evaluated parameters. A Projection to Latent Structures (PLS) based algorithm was used to model the possible relationship between antioxidant activity, total phenolic compounds content and volatile profile. Concerning the volatile profile, only nine volatile compounds, of a total of fifty, showed dependence on antioxidant activity and total phenolic compounds content. PMID:22908591

  14. Physicochemical, textural, volatile, and sensory profiles of traditional Sepet cheese.

    PubMed

    Ercan, D; Korel, F; Yüceer, Y Karagül; Kınık, O

    2011-09-01

    Characterization of traditional cheeses is important for the protection of diversity of tradition and contributing baseline data for further research and quality control. Sepet cheese is a traditional cheese and specific to the Aegean region of Turkey. In this study, 52 Sepet cheese samples were analyzed to characterize the physicochemical, textural, volatile compounds, and sensory profiles. The changes in the physicochemical and volatile compositions were investigated during production and ripening periods. The average dry matter (DM; 55.16%), fat-in-DM (45.80%), protein (29.18%), salt-in-DM (12.88%), water activity (0.83), pH (5.50), titratable acidity (1.69%), ripening and lipolysis indices (11.06 and 6.36), firmness (212.20N), springiness (0.62), cohesiveness (0.57), adhesiveness (0.48 Nmm), and chewiness (66.87N) values of Sepet cheese samples were determined. Hexanoic, octanoic, decanoic, and butyric acids, which were responsible for the cheesy, waxy, goaty odors, were the most abundant volatile compounds in these cheeses. Most of the volatile compounds increased significantly during production and ripening. Significant changes in most of the physicochemical characteristics were observed up to the third month of ripening. As a result of the descriptive sensory analysis, Sepet cheeses were described with descriptors such as free fatty acid, animal like, sulfurous, creamy, cooked, and whey, and aromatics with high salty basic taste. PMID:21854903

  15. FIELD SCREENING FOR HALOGENATED VOLATILE ORGANIC COMPOUNDS

    SciTech Connect

    John F. Schabron; Joseph F. Rovani Jr.; Theresa M. Bomstad

    2002-06-01

    Western Research Institute (WRI) initiated exploratory work towards the development of new field screening methodology and a test kit to measure halogenated volatile organic compounds (VOCs) in the field. Heated diode and corona discharge sensors are commonly used to detect leaks of refrigerants from air conditioners, freezers, and refrigerators. They are both selective to the presence of carbon-halogen bonds. Commercially available heated diode and corona discharge leak detectors were procured and evaluated for halogenated VOC response. The units were modified to provide a digital readout of signal related to VOC concentration. Sensor response was evaluated with carbon tetrachloride and tetrachloroethylene (perchloroethylene, PCE), which represent halogenated VOCs with and without double bonds. The response characteristics were determined for the VOCs directly in headspace in Tedlar bag containers. Quantitation limits in air were estimated. Potential interferences from volatile hydrocarbons, such as toluene and heptane, were evaluated. The effect of humidity was studied also. The performance of the new devices was evaluated in the laboratory by spiking soil samples and monitoring headspace for halogenated VOCs. A draft concept of the steps for a new analytical method was outlined. The results of the first year effort show that both devices show potential utility for future analytical method development work towards the goal of developing a portable test kit for screening halogenated VOCs in the field.

  16. Volatile compounds of Van Herby cheeses produced with raw and pasteurized milks from different species.

    PubMed

    Ocak, Elvan; Javidipour, Issa; Tuncturk, Yusuf

    2015-07-01

    Levels of volatile compounds in Van herby cheeses manufactured from raw and pasteurized; 100 % ewes', 50 % ewes'+50 % cows' and mixture of 50 % ewes'+25 % cows'+25 % goats' milks were investigated over 180 days of ripening at 4 °C. The volatile compounds levels of herby cheese samples increased throughout the 180 days storage period. Samples produced from pasteurized milk showed lower volatile contents than their counterparts produced from raw milk. The volatile compounds profile of herby cheese samples detected by headspace solid-phase microextraction (HS-SPME) consisted of 8 esters, 5 ketones, 5 aldehydes, 9 acids, 6 alcohols and 14 hydrocarbons and terpenes. Acetic acid was the most abundant volatile compound in HS-SPME of ripened cheeses, followed by hexanoic, octanoic and butanoic acids. PMID:26139896

  17. Alkaline dechlorination of chlorinated volatile organic compounds

    SciTech Connect

    Gu, B.; Siegrist, R.L.

    1996-06-01

    The vast majority of contaminated sites in the United States and abroad are contaminated with chlorinated volatile organic compounds (VOCs) such as trichloroethylene (TCE), trichloroethane (TCA), and chloroform. These VOCs are mobile and persistent in the subsurface and present serious health risks at trace concentrations. The goal of this project was to develop a new chemical treatment system that can rapidly and effectively degrade chlorinated VOCs. The system is based on our preliminary findings that strong alkalis such as sodium hydroxide (NaOH) can absorb and degrade TCE. The main objectives of this study were to determine the reaction rates between chlorinated VOCs, particularly TCE, and strong alkalis, to elucidate the reaction mechanisms and by-products, to optimize the chemical reactions under various experimental conditions, and to develop a laboratory bench- scale alkaline destruction column that can be used to destroy vapor- phase TCE.

  18. Volatile Organic Compound Analysis in Istanbul

    NASA Astrophysics Data System (ADS)

    Ćapraz, Ö.; Deniz, A.; Öztürk, A.; Incecik, S.; Toros, H.; Coşkun, M.

    2012-04-01

    Volatile Organic Compound Analysis in Istanbul Ö. Çapraz1, A. Deniz1,3, A. Ozturk2, S. Incecik1, H. Toros1 and, M. Coskun1 (1) Istanbul Technical University, Faculty of Aeronautics and Astronautics, Department of Meteorology, 34469, Maslak, Istanbul, Turkey. (2) Istanbul Technical University, Faculty of Chemical and Metallurgical, Chemical Engineering, 34469, Maslak, Istanbul, Turkey. (3) Marmara Clean Air Center, Ministry of Environment and Urbanization, Nişantaşı, 34365, İstanbul, Turkey. One of the major problems of megacities is air pollution. Therefore, investigations of air quality are increasing and supported by many institutions in recent years. Air pollution in Istanbul contains many components that originate from a wide range of industrial, heating, motor vehicle, and natural emissions sources. VOC, originating mainly from automobile exhaust, secondhand smoke and building materials, are one of these compounds containing some thousands of chemicals. In spite of the risks to human health, relatively little is known about the levels of VOC in Istanbul. In this study, ambient air quality measurements of 32 VOCs including hydrocarbons, halogenated hydrocarbons and carbonyls were conducted in Kağıthane (Golden Horn) region in Istanbul during the winter season of 2011 in order to develop the necessary scientific framework for the subsequent developments. Kağıthane creek valley is the source part of the Golden Horn and one of the most polluted locations in Istanbul due to its topographical form and pollutant sources in the region. In this valley, horizontal and vertical atmospheric motions are very weak. The target compounds most commonly found were benzene, toluene, xylene and ethyl benzene. Concentrations of total hydrocarbons ranged between 1.0 and 10.0 parts per billion, by volume (ppbv). Ambient air levels of halogenated hydrocarbons appeared to exhibit unique spatial variations and no single factor seemed to explain trends for this group of

  19. GLOBAL INVENTORY OF VOLATILE COMPOUND EMISSIONS FROM ANTHROPOGENIC SOURCES

    EPA Science Inventory

    The report describes a global inventory anthropogenic volatile organic compound (VOC) emissions that includes a separate inventory for each of seven pollutant groups--paraffins, olefins, aromatics, formaldehyde, other aldehydes, other aromatics, and marginally reactive compounds....

  20. GLOBAL INVENTORY OF VOLATILE ORGANIC COMPOUND EMISSIONS FORM ANTHROPOGENIC SOURCES

    EPA Science Inventory

    The report describes a global inventory anthropogenic volatile organic compound (VOC) emissions that includes a separate inventory for each of seven pollutant groups--paraffins, olefins, aromatics, formaldehyde, other aldehydes, other aromatics, and marginally reactive compounds....

  1. 40 CFR 60.742 - Standards for volatile organic compounds.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 7 2013-07-01 2013-07-01 false Standards for volatile organic compounds. 60.742 Section 60.742 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Polymeric Coating of Supporting Substrates Facilities § 60.742 Standards for volatile organic compounds....

  2. 40 CFR 60.712 - Standards for volatile organic compounds.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standards for volatile organic compounds. 60.712 Section 60.712 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Magnetic Tape Coating Facilities § 60.712 Standards for volatile organic compounds. Each owner or...

  3. 40 CFR 60.622 - Standards for volatile organic compounds.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 7 2014-07-01 2014-07-01 false Standards for volatile organic compounds. 60.622 Section 60.622 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Petroleum Dry Cleaners § 60.622 Standards for volatile organic compounds. (a) Each affected...

  4. 40 CFR 60.452 - Standard for volatile organic compounds.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 6 2011-07-01 2011-07-01 false Standard for volatile organic compounds. 60.452 Section 60.452 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Industrial Surface Coating: Large Appliances § 60.452 Standard for volatile organic compounds. On or...

  5. 40 CFR 60.602 - Standard for volatile organic compounds.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 7 2012-07-01 2012-07-01 false Standard for volatile organic compounds. 60.602 Section 60.602 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Synthetic Fiber Production Facilities § 60.602 Standard for volatile organic compounds. On and after...

  6. 40 CFR 60.462 - Standards for volatile organic compounds.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 6 2011-07-01 2011-07-01 false Standards for volatile organic compounds. 60.462 Section 60.462 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Coil Surface Coating § 60.462 Standards for volatile organic compounds. (a) On and after the date...

  7. 40 CFR 60.622 - Standards for volatile organic compounds.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 7 2012-07-01 2012-07-01 false Standards for volatile organic compounds. 60.622 Section 60.622 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Petroleum Dry Cleaners § 60.622 Standards for volatile organic compounds. (a) Each affected...

  8. 40 CFR 60.582 - Standard for volatile organic compounds.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 7 2013-07-01 2013-07-01 false Standard for volatile organic compounds. 60.582 Section 60.582 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Flexible Vinyl and Urethane Coating and Printing § 60.582 Standard for volatile organic compounds. (a)...

  9. 40 CFR 60.712 - Standards for volatile organic compounds.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 7 2013-07-01 2013-07-01 false Standards for volatile organic compounds. 60.712 Section 60.712 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Magnetic Tape Coating Facilities § 60.712 Standards for volatile organic compounds. Each owner or...

  10. 40 CFR 60.602 - Standard for volatile organic compounds.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 6 2011-07-01 2011-07-01 false Standard for volatile organic compounds. 60.602 Section 60.602 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Synthetic Fiber Production Facilities § 60.602 Standard for volatile organic compounds. On and after...

  11. 40 CFR 60.582 - Standard for volatile organic compounds.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 7 2012-07-01 2012-07-01 false Standard for volatile organic compounds. 60.582 Section 60.582 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Flexible Vinyl and Urethane Coating and Printing § 60.582 Standard for volatile organic compounds. (a)...

  12. 40 CFR 60.462 - Standards for volatile organic compounds.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 7 2013-07-01 2013-07-01 false Standards for volatile organic compounds. 60.462 Section 60.462 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Coil Surface Coating § 60.462 Standards for volatile organic compounds. (a) On and after the date...

  13. 40 CFR 60.582 - Standard for volatile organic compounds.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 6 2011-07-01 2011-07-01 false Standard for volatile organic compounds. 60.582 Section 60.582 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Flexible Vinyl and Urethane Coating and Printing § 60.582 Standard for volatile organic compounds. (a)...

  14. 40 CFR 60.722 - Standards for volatile organic compounds.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standards for volatile organic compounds. 60.722 Section 60.722 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... volatile organic compounds. (a) Each owner or operator of any affected facility which is subject to...

  15. 40 CFR 60.722 - Standards for volatile organic compounds.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 7 2013-07-01 2013-07-01 false Standards for volatile organic compounds. 60.722 Section 60.722 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... volatile organic compounds. (a) Each owner or operator of any affected facility which is subject to...

  16. 40 CFR 60.722 - Standards for volatile organic compounds.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 6 2011-07-01 2011-07-01 false Standards for volatile organic compounds. 60.722 Section 60.722 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... volatile organic compounds. (a) Each owner or operator of any affected facility which is subject to...

  17. 40 CFR 60.602 - Standard for volatile organic compounds.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 7 2013-07-01 2013-07-01 false Standard for volatile organic compounds. 60.602 Section 60.602 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Synthetic Fiber Production Facilities § 60.602 Standard for volatile organic compounds. On and after...

  18. 40 CFR 60.712 - Standards for volatile organic compounds.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 7 2012-07-01 2012-07-01 false Standards for volatile organic compounds. 60.712 Section 60.712 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Magnetic Tape Coating Facilities § 60.712 Standards for volatile organic compounds. Each owner or...

  19. 40 CFR 60.742 - Standards for volatile organic compounds.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standards for volatile organic compounds. 60.742 Section 60.742 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Polymeric Coating of Supporting Substrates Facilities § 60.742 Standards for volatile organic compounds....

  20. 40 CFR 60.492 - Standards for volatile organic compounds.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 7 2013-07-01 2013-07-01 false Standards for volatile organic compounds. 60.492 Section 60.492 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Beverage Can Surface Coating Industry § 60.492 Standards for volatile organic compounds. On or after...

  1. 40 CFR 60.452 - Standard for volatile organic compounds.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 7 2013-07-01 2013-07-01 false Standard for volatile organic compounds. 60.452 Section 60.452 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Industrial Surface Coating: Large Appliances § 60.452 Standard for volatile organic compounds. On or...

  2. 40 CFR 60.492 - Standards for volatile organic compounds.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 6 2011-07-01 2011-07-01 false Standards for volatile organic compounds. 60.492 Section 60.492 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Beverage Can Surface Coating Industry § 60.492 Standards for volatile organic compounds. On or after...

  3. 40 CFR 60.462 - Standards for volatile organic compounds.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standards for volatile organic compounds. 60.462 Section 60.462 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Coil Surface Coating § 60.462 Standards for volatile organic compounds. (a) On and after the date...

  4. 40 CFR 60.462 - Standards for volatile organic compounds.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 7 2012-07-01 2012-07-01 false Standards for volatile organic compounds. 60.462 Section 60.462 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Coil Surface Coating § 60.462 Standards for volatile organic compounds. (a) On and after the date...

  5. 40 CFR 60.722 - Standards for volatile organic compounds.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 7 2014-07-01 2014-07-01 false Standards for volatile organic compounds. 60.722 Section 60.722 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... volatile organic compounds. (a) Each owner or operator of any affected facility which is subject to...

  6. 40 CFR 60.492 - Standards for volatile organic compounds.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 7 2014-07-01 2014-07-01 false Standards for volatile organic compounds. 60.492 Section 60.492 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Beverage Can Surface Coating Industry § 60.492 Standards for volatile organic compounds. On or after...

  7. 40 CFR 60.742 - Standards for volatile organic compounds.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 6 2011-07-01 2011-07-01 false Standards for volatile organic compounds. 60.742 Section 60.742 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Polymeric Coating of Supporting Substrates Facilities § 60.742 Standards for volatile organic compounds....

  8. 40 CFR 60.582 - Standard for volatile organic compounds.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standard for volatile organic compounds. 60.582 Section 60.582 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Flexible Vinyl and Urethane Coating and Printing § 60.582 Standard for volatile organic compounds. (a)...

  9. 40 CFR 60.602 - Standard for volatile organic compounds.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 7 2014-07-01 2014-07-01 false Standard for volatile organic compounds. 60.602 Section 60.602 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Synthetic Fiber Production Facilities § 60.602 Standard for volatile organic compounds. On and after...

  10. 40 CFR 60.622 - Standards for volatile organic compounds.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 6 2011-07-01 2011-07-01 false Standards for volatile organic compounds. 60.622 Section 60.622 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Petroleum Dry Cleaners § 60.622 Standards for volatile organic compounds. (a) Each affected...

  11. 40 CFR 60.452 - Standard for volatile organic compounds.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 7 2014-07-01 2014-07-01 false Standard for volatile organic compounds. 60.452 Section 60.452 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Industrial Surface Coating: Large Appliances § 60.452 Standard for volatile organic compounds. On or...

  12. 40 CFR 60.452 - Standard for volatile organic compounds.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standard for volatile organic compounds. 60.452 Section 60.452 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Industrial Surface Coating: Large Appliances § 60.452 Standard for volatile organic compounds. On or...

  13. 40 CFR 60.622 - Standards for volatile organic compounds.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standards for volatile organic compounds. 60.622 Section 60.622 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Petroleum Dry Cleaners § 60.622 Standards for volatile organic compounds. (a) Each affected...

  14. 40 CFR 60.712 - Standards for volatile organic compounds.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 6 2011-07-01 2011-07-01 false Standards for volatile organic compounds. 60.712 Section 60.712 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Magnetic Tape Coating Facilities § 60.712 Standards for volatile organic compounds. Each owner or...

  15. 40 CFR 60.492 - Standards for volatile organic compounds.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 7 2012-07-01 2012-07-01 false Standards for volatile organic compounds. 60.492 Section 60.492 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Beverage Can Surface Coating Industry § 60.492 Standards for volatile organic compounds. On or after...

  16. 40 CFR 60.462 - Standards for volatile organic compounds.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 7 2014-07-01 2014-07-01 false Standards for volatile organic compounds. 60.462 Section 60.462 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Coil Surface Coating § 60.462 Standards for volatile organic compounds. (a) On and after the date...

  17. 40 CFR 60.742 - Standards for volatile organic compounds.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 7 2014-07-01 2014-07-01 false Standards for volatile organic compounds. 60.742 Section 60.742 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Polymeric Coating of Supporting Substrates Facilities § 60.742 Standards for volatile organic compounds....

  18. 40 CFR 60.602 - Standard for volatile organic compounds.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standard for volatile organic compounds. 60.602 Section 60.602 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Synthetic Fiber Production Facilities § 60.602 Standard for volatile organic compounds. On and after...

  19. 40 CFR 60.742 - Standards for volatile organic compounds.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 7 2012-07-01 2012-07-01 false Standards for volatile organic compounds. 60.742 Section 60.742 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Polymeric Coating of Supporting Substrates Facilities § 60.742 Standards for volatile organic compounds....

  20. 40 CFR 60.452 - Standard for volatile organic compounds.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 7 2012-07-01 2012-07-01 false Standard for volatile organic compounds. 60.452 Section 60.452 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Industrial Surface Coating: Large Appliances § 60.452 Standard for volatile organic compounds. On or...

  1. 40 CFR 60.582 - Standard for volatile organic compounds.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 7 2014-07-01 2014-07-01 false Standard for volatile organic compounds. 60.582 Section 60.582 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Flexible Vinyl and Urethane Coating and Printing § 60.582 Standard for volatile organic compounds. (a)...

  2. 40 CFR 60.622 - Standards for volatile organic compounds.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 7 2013-07-01 2013-07-01 false Standards for volatile organic compounds. 60.622 Section 60.622 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Petroleum Dry Cleaners § 60.622 Standards for volatile organic compounds. (a) Each affected...

  3. 40 CFR 60.722 - Standards for volatile organic compounds.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 7 2012-07-01 2012-07-01 false Standards for volatile organic compounds. 60.722 Section 60.722 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... volatile organic compounds. (a) Each owner or operator of any affected facility which is subject to...

  4. 40 CFR 60.492 - Standards for volatile organic compounds.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standards for volatile organic compounds. 60.492 Section 60.492 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Beverage Can Surface Coating Industry § 60.492 Standards for volatile organic compounds. On or after...

  5. 40 CFR 60.712 - Standards for volatile organic compounds.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 7 2014-07-01 2014-07-01 false Standards for volatile organic compounds. 60.712 Section 60.712 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Magnetic Tape Coating Facilities § 60.712 Standards for volatile organic compounds. Each owner or...

  6. EMISSION OF VOLATILE COMPOUNDS BY SEEDS UNDER DIFFERENT ENVIRONMENTAL CONDITIONS

    EPA Science Inventory

    Small mammals locate buried wet seeds more efficiently than buried dry seeds. This may be attributable to emission of volatile compounds by the seeds. To test this hypothesis I measured emission of volatile compounds from seeds of three plant species (Pinus contorta, Purshia tr...

  7. High Arctic Biogenic Volatile Organic Compound emissions

    NASA Astrophysics Data System (ADS)

    Schollert, Michelle; Buchard, Sebrina; Faubert, Patrick; Michelsen, Anders; Rinnan, Riikka

    2013-04-01

    Biogenic volatile organic compounds (BVOCs) emitted from terrestrial vegetation participate in oxidative reactions, affecting the tropospheric ozone concentration and the lifetimes of greenhouse gasses such as methane. Also, they affect the formation of secondary organic aerosols. BVOCs thus provide a strong link between the terrestrial biosphere, the atmosphere and the climate. Global models of BVOC emissions have assumed minimal emissions from the high latitudes due to low temperatures, short growing seasons and sparse vegetation cover. However, measurements from this region of the world are lacking and emissions from the High Arctic have not been published yet. The aim of this study was to obtain the first estimates for BVOC emissions from the High Arctic. Hereby, we wish to add new knowledge to the understanding of global BVOC emissions. Measurements were conducted in NE Greenland (74°30' N, 20°30' W) in four vegetation communities in the study area. These four vegetation communities were dominated by Cassiope tetragona, Salix arctica, Vaccinium uliginosum and Kobresia myosuroides/Dryas octopetela/Salix arctica, respectively. Emissions were measured by enclosure technique and collection of volatiles into adsorbent cartridges in August 2009. The volatiles were analyzed by gas chromatography-mass spectrometry following thermal desorption. Isoprene showed highest emissions in S. arctica-dominated heath, where it was the dominant single BVOC. However, isoprene emission decreased below detection limit in the end of August when the temperature was at or below 10°C. According to a principal component analysis, monoterpene and sesquiterpene emissions were especially associated with C. tetragona-dominated heath. Especially S. arctica and C. tetragona dominated heaths showed distinct patterns of emitted BVOCs. Emissions of BVOC from the studied high arctic heaths were clearly lower than the emissions observed previously in subarctic heaths with more dense vegetation

  8. Monitoring biogenic volatile compounds emitted by Eucalyptus citriodora using SPME.

    PubMed

    Zini, C A; Augusto, F; Christensen, T E; Smith, B P; Caramão, E B; Pawliszy, J

    2001-10-01

    A procedure to monitor BVOC emitted by living plants using SPME technique is presented. For this purpose, a glass sampling chamber was designed. This device was employed for the characterization of biogenic volatile compounds emitted by leaves of Eucalyptus citriodora. After extraction with SPME fibers coated with PDMS/ DVB, it was possible to identify or detect 33 compounds emitted by this plant. A semiquantitative approach was applied to monitor the behavior of the emitted BVOC during 9 days. Circadian profiles of the variation in the concentration of isoprene were plotted. Using diffusion-based SPME quantitation, a recently introduced analytical approach, with extraction times as short as 15 s, it was possible to quantify subparts-per-billion amounts of isoprene emitted by this plant. PMID:11605854

  9. Volatile compounds responsible for aroma of Jutrzenka liquer wine.

    PubMed

    Jeleń, Henryk H; Majcher, Małgorzata; Dziadas, Mariusz; Zawirska-Wojtasiak, Renata; Czaczyk, Katarzyna; Wąsowicz, Erwin

    2011-10-21

    Jutrzenka is a sweet liquer wine produced in Poland from the grape variety of the same name, developed in Poland to withstand the harsh climate of winery regions. Jutrzenka wine has a characteristic aroma with strong fruity and flowery notes, which make it unique among other liquer wines as demonstrated in sensory profile analysis. The work was aimed at characterization of volatile compounds in this wine, with the emphasis on characterization of compounds responsible for its unique aroma. Gas chromatography-olfactometry (GC-O) was applied to identify the key odorants using aroma extract dilution analysis (AEDA) approach. To facilitate free and bound terpenes and C(13)-norisoprenoids identification solid phase extraction (SPE) was used followed by GC/MS. Among identified key odorants β-damascenone was the compound having the highest FD (4096), followed by isoamyl alcohol, 4-mercapto-4-methyl-2-pentanone (FD=2048), methional, linalool, ethyl decanoate (FD=1024) and ethyl hexanoate, furaneol (FD=512). Other significant compounds were ethyl 2-methyl propanoate, ethyl 2-methylbutanoate and phenyl ethyl alcohol. Determination of odor activity values (OAV) showed the highest values for β-damascenone (566), 4-mercapto-4-methyl-2-pentanone (288) ethyl hexanoate (32) and linalool (7). Jutrzenka exhibited also a rich profile of free, and to lesser extent bound terpenes. PMID:21831389

  10. Analysis of volatile organic compounds from illicit cocaine samples

    SciTech Connect

    Robins, W.H.; Wright, B.W.

    1994-07-01

    Detection of illicit cocaine hydrochloride shipments can be improved if there is a greater understanding of the identity and quantity of volatile compounds present. This study provides preliminary data concerning the volatile organic compounds detected in a limited Set of cocaine hydrochloride samples. In all cases, cocaine was one of the major volatile compounds detected. Other tropeines were detected in almost all samples. Low concentrations of compounds that may be residues of processing solvents were observed in some samples. The equilibrium emissivity of. cocaine from cocaine hydrochloride was investigated and a value of 83 parts-per-trillion was determined.

  11. Volatile organic compound remedial action project

    SciTech Connect

    1991-12-01

    This Environmental Assessment (EA) reviews a proposed project that is planned to reduce the levels of volatile organic compound (VOC) contaminants present in the Mound domestic water supply. The potable and industrial process water supply for Mound is presently obtained from a shallow aquifer via on-site production wells. The present levels of VOCs in the water supply drawn from the on-site wells are below the maximum contaminant levels (MCLs) permissible for drinking water under Safe Drinking Water Act (SDWA; 40 CFR 141); however, Mound has determined that remedial measures should be taken to further reduce the VOC levels. The proposed project action is the reduction of the VOC levels in the water supply using packed tower aeration (PTA). This document is intended to satisfy the requirements of the National Environmental Policy Act (NEPA) of 1969 and associated Council on Environmental Quality regulations (40 CFR parts 1500 through 1508) as implemented through U.S. Department of Energy (DOE) Order 5440.1D and supporting DOE NEPA Guidelines (52 FR 47662), as amended (54 FR 12474; 55 FR 37174), and as modified by the Secretary of Energy Notice (SEN) 15-90 and associated guidance. As required, this EA provides sufficient information on the probable environmental impacts of the proposed action and alternatives to support a DOE decision either to prepare an Environmental Impact Statement (EIS) or issue a Finding of No Significant Impact (FONSI).

  12. Biogenic volatile organic compounds - small is beautiful

    NASA Astrophysics Data System (ADS)

    Owen, S. M.; Asensio, D.; Li, Q.; Penuelas, J.

    2012-12-01

    While canopy and regional scale flux measurements of biogenic volatile organic compounds (bVOCs) are essential to obtain an integrated picture of total compound reaching the atmosphere, many fascinating and important emission details are waiting to be discovered at smaller scales, in different ecological and functional compartments. We concentrate on bVOCs below ground to <2m above ground level. Emissions at leaf scale are well documented and widely presented, and are not discussed here. Instead we describe some details of recent research on rhizosphere bVOCs, and bVOCs associated with pollination of flowers. Although bVOC emissions from soil surfaces are small, bVOCs are exuded by roots of some plant species, and can be extracted from decaying litter. Naturally occurring monoterpenes in the rhizosphere provide a specialised carbon source for micro-organisms, helping to define the micro-organism community structure, and impacting on nutrient cycles which are partly controlled by microorganisms. Naturally occurring monoterpenes in the soil system could also affect the aboveground structure of ecosystems because of their role in plant defence strategies and as mediating chemicals in allelopathy. A gradient of monoterpene concentration was found in soil around Pinus sylvestris and Pinus halepensis, decreasing with distance from the tree. Some compounds (α-pinene, sabinene, humulene and caryophyllene) in mineral soil were linearly correlated with the total amount of each compound in the overlying litter, indicating that litter might be the dominant source of these compounds. However, α-pinene did not fall within the correlation, indicating a source other than litter, probably root exudates. We also show that rhizosphere bVOCs can be a carbon source for soil microbes. In a horizontal gradient from Populus tremula trees, microbes closest to the tree trunk were better enzymatically equipped to metabolise labeled monoterpene substrate. Monoterpenes can also increase the

  13. Simultaneous control of apparent extract and volatile compounds concentrations in low-malt beer fermentation.

    PubMed

    Kobayashi, Michiko; Nagahisa, Keisuke; Shimizu, Hiroshi; Shioya, Suteaki

    2006-12-01

    Volatile compounds cause undesirable flavor when their concentrations exceed threshold values in beer fermentation. The objective of this study is to develop a system for controlling apparent extract concentration, which indicates the fermentation degree and which should be decreased below a targeted value at a fixed time under a constraint of tolerable amounts of volatile compounds. In beer fermentation, even though the production of volatile compounds is suppressed by maintaining a low fermentation temperature, a low temperature causes a delay in the control of apparent extract concentration. Volatile compound concentration was estimated on-line, and the simulation of apparent extract consumption and volatile compound production was performed. To formulate various beer tastes and conserve energy for attemperation, optimal temperature profiles were determined using a genetic algorithm (GA). The developed feedback control of the brewing temperature profile was successfully applied, and apparent extract and volatile compound concentrations at a fixed time reached their target concentrations. Additionally, the control technique developed in this study enables us to brew a wide variety of beers with different tastes. PMID:16865344

  14. Microbiological characterisation and volatiles profile of model, ex-novo, and traditional Italian white wheat sourdoughs.

    PubMed

    Ripari, Valery; Cecchi, Teresa; Berardi, Enrico

    2016-08-15

    The interplay of sourdough microbiology and generated volatile compounds that define its sensory characteristics was studied. In order to detail the flavour generating potential of microorganisms, eight single-strain dough fermentations were studied, four of them never investigated before. Moreover, for the first time, both ex-novo and traditional wheat sourdoughs were investigated and compared to chemically acidified dough. HS-SPME-GC-MS was used to sample and analyse volatile compounds, some of which have never been detected before in sourdoughs. Alcohols, esters, carbonyl compounds, and acids mainly characterised the volatile profiles. Different sourdough microbiota resulted in different volatile profiles. PCA indicated that samples could be clustered according to their specific microbiota. Production of aroma compounds was strain-specific, confirming previous findings. This study can contribute to the management of desirable features and differentiate specialty products, as well as selecting new, suitable, sourdoughs after microbial screening. PMID:27006243

  15. Analysis of volatile organic compounds. [trace amounts of organic volatiles in gas samples

    NASA Technical Reports Server (NTRS)

    Zlatkis, A. (Inventor)

    1977-01-01

    An apparatus and method are described for reproducibly analyzing trace amounts of a large number of organic volatiles existing in a gas sample. Direct injection of the trapped volatiles into a cryogenic percolum provides a sharply defined plug. Applications of the method include: (1) analyzing the headspace gas of body fluids and comparing a profile of the organic volatiles with standard profiles for the detection and monitoring of disease; (2) analyzing the headspace gas of foods and beverages and comparing the profile with standard profiles to monitor and control flavor and aroma; and (3) analyses for determining the organic pollutants in air or water samples.

  16. Blood volatile compounds as biomarkers for colorectal cancer.

    PubMed

    Wang, Changsong; Li, Peng; Lian, Ailing; Sun, Bo; Wang, Xiaoyang; Guo, Lei; Chi, Chunjie; Liu, Shanshan; Zhao, Wei; Luo, Suqi; Guo, Zhigang; Zhang, Yang; Ke, Chaofu; Ye, Guozhu; Xu, Guowang; Zhang, Fengmin; Li, Enyou

    2014-02-01

    Many recent studies have focused on the connection between the composition of specific volatile organic compounds (VOCs) in exhaled breath and various forms of cancer. However, the composition of exhaled breath is affected by many factors, such as lung disease, smoking, and diet. VOCs are released into the bloodstream before they are exhaled; therefore, the analysis of VOCs in blood will provide more accurate results than the analysis of VOCs in exhaled breath. Blood were collected from 16 colorectal cancer patients and 20 healthy controls, then solid phase microextraction-chromatography-mass spectrometry (SPME-GC-MS) was used to analysis the exhaled volatile organic compounds (VOCs). The statistical methods principal component analysis (PCA) and partial least-squares discriminant analysis (PLSDA) were performed to deal with the final dates. Three metabolic biomarkers were found at significantly lower levels in the group of CRC patients than in the normal control group (P<0.01): phenyl methylcarbamate, ethylhexanol, and 6-t-butyl-2,2,9,9-tetramethyl-3,5-decadien-7-yne. In addition, significantly higher levels of 1,1,4,4-tetramethyl-2,5-dimethylene-cyclohexane were found in the group of CRC patients than in the normal control group (P<0.05). Compared with healthy individuals, patients with colorectal adenocarcinoma exhibited a distinct blood metabolic profile with respect to VOCs. The analysis of blood VOCs appears to have potential clinical applications for CRC screening. PMID:24100612

  17. Breath measurements as volatile organic compound biomarkers.

    PubMed Central

    Wallace, L; Buckley, T; Pellizzari, E; Gordon, S

    1996-01-01

    A brief review of the uses of breath analysis in studies of environmental exposure to volatile organic compounds (VOCs) is provided. The U.S. Environmental Protection Agency's large-scale Total Exposure Assessment Methodology Studies have measured concentrations of 32 target VOCs in the exhaled breath of about 800 residents of various U.S. cities. Since the previous 12-hr integrated personal air exposures to the same chemicals were also measured, the relation between exposure and body burden is illuminated. Another major use of the breath measurements has been to detect unmeasured pathways of exposure; the major impact of active smoking on exposure to benzene and styrene was detected in this way. Following the earlier field studies, a series of chamber studies have provided estimates of several important physiological parameters. Among these are the fraction, f, of the inhaled chemical that is exhaled under steady-state conditions and the residence times. tau i in several body compartments, which may be associated with the blood (or liver), organs, muscle, and fat. Most of the targeted VOCs appear to have similar residence times of a few minutes, 30 min, several hours, and several days in the respective tissue groups. Knowledge of these parameters can be helpful in estimating body burden from exposure or vice versa and in planning environmental studies, particularly in setting times to monitor breath in studies of the variation with time of body burden. Improvements in breath methods have made it possible to study short-term peak exposure situations such as filling a gas tank or taking a shower in contaminated water. PMID:8933027

  18. 40 CFR 60.432 - Standard for volatile organic compounds.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standard for volatile organic compounds. 60.432 Section 60.432 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Graphic Arts Industry: Publication Rotogravure Printing § 60.432 Standard for volatile organic...

  19. 40 CFR 60.432 - Standard for volatile organic compounds.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 7 2012-07-01 2012-07-01 false Standard for volatile organic compounds. 60.432 Section 60.432 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Graphic Arts Industry: Publication Rotogravure Printing § 60.432 Standard for volatile organic...

  20. 40 CFR 60.392 - Standards for volatile organic compounds.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 7 2014-07-01 2014-07-01 false Standards for volatile organic compounds. 60.392 Section 60.392 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Automobile and Light Duty Truck Surface Coating Operations § 60.392 Standards for volatile organic...

  1. 40 CFR 60.432 - Standard for volatile organic compounds.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 6 2011-07-01 2011-07-01 false Standard for volatile organic compounds. 60.432 Section 60.432 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Graphic Arts Industry: Publication Rotogravure Printing § 60.432 Standard for volatile organic...

  2. 40 CFR 60.392 - Standards for volatile organic compounds

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standards for volatile organic compounds 60.392 Section 60.392 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Automobile and Light Duty Truck Surface Coating Operations § 60.392 Standards for volatile organic...

  3. 40 CFR 60.392 - Standards for volatile organic compounds

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 6 2011-07-01 2011-07-01 false Standards for volatile organic compounds 60.392 Section 60.392 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Automobile and Light Duty Truck Surface Coating Operations § 60.392 Standards for volatile organic...

  4. 40 CFR 60.432 - Standard for volatile organic compounds.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 7 2013-07-01 2013-07-01 false Standard for volatile organic compounds. 60.432 Section 60.432 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Graphic Arts Industry: Publication Rotogravure Printing § 60.432 Standard for volatile organic...

  5. 40 CFR 60.392 - Standards for volatile organic compounds.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 7 2013-07-01 2013-07-01 false Standards for volatile organic compounds. 60.392 Section 60.392 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Automobile and Light Duty Truck Surface Coating Operations § 60.392 Standards for volatile organic...

  6. 40 CFR 60.392 - Standards for volatile organic compounds

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 7 2012-07-01 2012-07-01 false Standards for volatile organic compounds 60.392 Section 60.392 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Automobile and Light Duty Truck Surface Coating Operations § 60.392 Standards for volatile organic...

  7. 40 CFR 60.432 - Standard for volatile organic compounds.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 7 2014-07-01 2014-07-01 false Standard for volatile organic compounds. 60.432 Section 60.432 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Graphic Arts Industry: Publication Rotogravure Printing § 60.432 Standard for volatile organic...

  8. Studies on volatile organic compounds of Tuber borchii and T. asa-foetida.

    PubMed

    D'Auria, Maurizio; Rana, Gian Luigi; Racioppi, Rocco; Laurita, Alessandro

    2012-10-01

    Ascomata of two truffle species, Tuber borchii and T. asa-foetida, both naturally growing in woodlands of the Basilicata region (southern Italy), were identified on the basis of ascospore morphology and compared under a volatile organic compound profile to determine the particular volatile organic compounds that characterize each taxon. Solid-phase microextraction-gas chromatography-mass spectrometry analysis of the samples showed the presence of 1-methyl-1,3-butadiene as a primary component in both truffles. T. asa-foetida showed a compound, toluene, not present in T. borchii, which creates the penetrating "solvent" smell of the truffle. PMID:22685100

  9. GLOBAL INVENTORY OF VOLATILE ORGANIC COMPOUND EMISSIONS FROM ANTHROPOGENIC SOURCES

    EPA Science Inventory

    The paper discusses the development of a global inventory of anthropogenic volatile organic compound (VOC) emissions. t includes VOC estimates for seven classes of VOCs: paraffins, olefins, aromatics (benzene, toluene, xylene), formaldehyde, other aldehydes, other aromatics, and ...

  10. COMPACT, CONTINUOUS MONITORING FOR VOLATILE ORGANIC COMPOUNDS - PHASE I

    EPA Science Inventory

    Improved methods for onsite measurement of multiple volatile organic compounds are needed for process control, monitoring, and remediation. This Phase I SBIR project sets forth an optical measurement method that meets these needs. The proposed approach provides an instantaneous m...

  11. ODOR AND IRRITATION EFFECTS OF A VOLATILE ORGANIC COMPOUND MIXTURE

    EPA Science Inventory

    Human exposure to volatile organic compounds elicits a variety ofsymptoms, many of which are thought to be mediated by the olfactoryand trigeminal systems. his report describes evidence indicatingthat perceived odor intensity diminishes during prolonged exposure,whearas irritatin...

  12. IMPROVEMENT IN AIR TOXICS METHODS FOR VOLATILE ORGANIC COMPOUNDS

    EPA Science Inventory

    Innovative and customized monitoring methods for air toxic volatile organic compounds (VOCs) are being developed for applications in exposure and trends monitoring. This task addresses the following applications of specific interest:

    o Contributions to EPA Regional Monit...

  13. Volatile organic compound sources for Southern Finland

    NASA Astrophysics Data System (ADS)

    Patokoski, Johanna; Ruuskanen, Taina M.; Kajos, Maija K.; Taipale, Risto; Rantala, Pekka; Aalto, Juho; Ryyppö, Timo; Hakola, Hannele; Rinne, Janne

    2014-05-01

    Volatile organic compounds (VOCs) have several sources, both biogenic and anthropogenic. Emissions of biogenic VOCs in a global scale are estimated to be an order of magnitude higher than anthropogenic ones. However, in densely populated areas and during winter time the anthropogenic VOC emissions dominate over the biogenic ones. The aim of this study was to clarify potential local sources and source areas of VOCs in different seasons. Diurnal behaviour in winter and spring were also compared at two different sites in Finland: SMEAR II and III (Station for Measuring Ecosystem - Atmosphere Relations). SMEAR II is a rural site located in Hyytiälä in Southern Finland 220 km North-West from Helsinki whereas SMEAR III is background urban site located 5 km from the downtown of Helsinki. The volume mixing ratios of VOCs were measured with a proton-transfer-reaction mass spectrometer (PTR-MS, Ionicon Analytik GmbH, Austria) during years 2006-2011. Other trace gases such as CO, NOXand SO2 were also measured in both sites and used for source analysis. Source areas for long term VOC measurements were investigated with trajectory analysis and sources for local and regional concentrations were determined by Unmix multivariate receptor model. Forest fires affect air quality and the biggest smoke plumes can be seen in satellite images and even hinder visibility in the plume areas. They provide temporally and spatially well-defined sources that can be used to verify source area estimates. During the measurement periods two different forest fire episodes with several hotspots, happened in Russia. Forest fires which showed up in these measurements were in 2006 near the border of Finland in Vyborg area and 2010 in Moscow area. Forest fire episodes were clearly observed in trajectory analysis for benzene, toluene and methanol and also CO and NOX. In addition to event sources continuous source areas were determined. Anthropogenic local sources seemed to be dominant during winter in

  14. FIELD SCREENING FOR HALOGENATED VOLATILE ORGANIC COMPOUNDS

    SciTech Connect

    John F. Schabron; Joseph F. Rovani, Jr.; Theresa M. Bomstad

    2003-07-01

    Western Research Institute (WRI) is continuing work toward the development of new screening methodology and a test kit to measure halogenated volatile organic compounds (VOCs) in the field. Heated diode and corona discharge sensors are commonly used to detect leaks of refrigerants from air conditioners, freezers, and refrigerators. They are both selective to the presence of halogens. In prior work, the devices were tested for response to carbon tetrachloride, heptane, toluene, and water vapors. In the current work, sensor response was evaluated with sixteen halogenated VOCs relative to carbon tetrachloride. The results show that the response of the various chlorinated VOCs is within an order of magnitude of the response to carbon tetrachloride for each of the sensors. Thus, for field screening a single response factor can be used. Both types of leak detectors are being further modified to provide an on-board LCD signal readout, which is related to VOC concentration. The units will be fully portable and will operate with 115-V line or battery power. Signal background, noise level, and response data on the Bacharach heated diode detector and the TIF corona discharge detector show that when the response curves are plotted against the log of concentration, the plot is linear to the upper limit for the particular unit, with some curvature at lower levels. When response is plotted directly against concentration, the response is linear at the low end and is curved at the high end. The dynamic ranges for carbon tetrachloride of the two devices from the lower detection limit (S/N=2) to signal saturation are 4-850 vapor parts per million (vppm) for the corona discharge unit and 0.01-70 vppm for the heated diode unit. Additional circuit modifications are being made to lower the detection limit and increase the dynamic response range of the corona discharge unit. The results indicate that both devices show potential utility for future analytical method development work toward

  15. Fate of Volatile Organic Compounds in Constructed Wastewater Treatment Wetlands

    USGS Publications Warehouse

    Keefe, S.H.; Barber, L.B.; Runkel, R.L.; Ryan, J.N.

    2004-01-01

    The fate of volatile organic compounds was evaluated in a wastewater-dependent constructed wetland near Phoenix, AZ, using field measurements and solute transport modeling. Numerically based volatilization rates were determined using inverse modeling techniques and hydraulic parameters established by sodium bromide tracer experiments. Theoretical volatilization rates were calculated from the two-film method incorporating physicochemical properties and environmental conditions. Additional analyses were conducted using graphically determined volatilization rates based on field measurements. Transport (with first-order removal) simulations were performed using a range of volatilization rates and were evaluated with respect to field concentrations. The inverse and two-film reactive transport simulations demonstrated excellent agreement with measured concentrations for 1,4-dichlorobenzene, tetrachloroethene, dichloromethane, and trichloromethane and fair agreement for dibromochloromethane, bromo-dichloromethane, and toluene. Wetland removal efficiencies from inlet to outlet ranged from 63% to 87% for target compounds.

  16. Gas chromatography of volatile organic compounds

    NASA Technical Reports Server (NTRS)

    Zlatkis, A.

    1973-01-01

    System has been used for problems such as analysis of volatile metabolities in human blood and urine, analysis of air pollutants, and in tobacco smoke chemistry. Since adsorbent is reusable after porper reconditioning, method is both convenient and economical. System could be used for large scale on-site sampling programs in which sample is shipped to central location for analysis.

  17. Microbial Volatile Organic Compound Emissions from Stachybotrys chartarum growing on Gypsum Wallboard and Ceiling tile

    EPA Science Inventory

    This study compared seven toxigenic strains of S. chartarum found in water-damaged buildings to characterize the microbial volatile organic compound (MVOC) emissions profile while growing on gypsum wallboard (W) and ceiling tile (C) coupons. The inoculated coupons with their sub...

  18. A retention index calculator simplifies identification of plant volatile organic compounds

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plant volatiles (PVOCs) are important targets for studies in natural products, chemotaxonomy and biochemical ecology. The complexity of PVOC profiles often limits research to studies targeting only easily identified compounds. With the availability of mass spectral libraries and recent growth of ret...

  19. 40 CFR 60.442 - Standard for volatile organic compounds.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 7 2014-07-01 2014-07-01 false Standard for volatile organic compounds. 60.442 Section 60.442 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... compounds. (a) On and after the date on which the performance test required by § 60.8 has been...

  20. 40 CFR 60.442 - Standard for volatile organic compounds.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 6 2011-07-01 2011-07-01 false Standard for volatile organic compounds. 60.442 Section 60.442 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... compounds. (a) On and after the date on which the performance test required by § 60.8 has been...

  1. 40 CFR 60.442 - Standard for volatile organic compounds.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standard for volatile organic compounds. 60.442 Section 60.442 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... compounds. (a) On and after the date on which the performance test required by § 60.8 has been...

  2. 40 CFR 60.442 - Standard for volatile organic compounds.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 7 2012-07-01 2012-07-01 false Standard for volatile organic compounds. 60.442 Section 60.442 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... compounds. (a) On and after the date on which the performance test required by § 60.8 has been...

  3. 40 CFR 60.442 - Standard for volatile organic compounds.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 7 2013-07-01 2013-07-01 false Standard for volatile organic compounds. 60.442 Section 60.442 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... compounds. (a) On and after the date on which the performance test required by § 60.8 has been...

  4. VOLATILE ORGANIC COMPOUNDS MEASURED IN DEARS PASSIVE SAMPLERS

    EPA Science Inventory

    A suite of 27 volatile organic compounds (VOCs) were monitored in personal exposures, indoors and outdoors of participant's residences, and at a central community site during the DEARS summer 2004 monitoring season. The list of VOCs focused on compounds typically associated with ...

  5. Speciation of volatile organic compounds from poultry production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The air consent agreement between EPA and large animal feeding operations (AFO) is designed to determine at what level compounds are being emitted from these facilities. However, the methodology used for quantifying total non-methane hydrocarbons and speciation of volatile organic compounds (VOC) n...

  6. Predicting the emission of volatile organic compounds from silage systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    As a precursor to smog, emission of volatile organic compounds (VOCs) to the atmosphere is an environmental concern in some regions. The major VOC emission source from farms is silage, with emissions coming from the silo face, mixing wagon, and feed bunk. The major compounds emitted are alcohols wit...

  7. DESTRUCTION OF VOLATILE ORGANIC COMPOUNDS VIA CATALYTIC INCINERATION

    EPA Science Inventory

    The paper gives results of an investigation of the effect of catalytic incinerator design and operation the destruction of specific volatile organic compounds (VOCs), both singly and in mixtures. A range of operating and design parameters were tested on a wide variety of compound...

  8. Quantifying commuter exposures to volatile organic compounds

    NASA Astrophysics Data System (ADS)

    Kayne, Ashleigh

    Motor-vehicles can be a predominant source of air pollution in cities. Traffic-related air pollution is often unavoidable for people who live in populous areas. Commuters may have high exposures to traffic-related air pollution as they are close to vehicle tailpipes. Volatile organic compounds (VOCs) are one class of air pollutants of concern because exposure to VOCs carries risk for adverse health effects. Specific VOCs of interest for this work include benzene, toluene, ethylbenzene, and xylenes (BTEX), which are often found in gasoline and combustion products. Although methods exist to measure time-integrated personal exposures to BTEX, there are few practical methods to measure a commuter's time-resolved BTEX exposure which could identify peak exposures that could be concealed with a time-integrated measurement. This study evaluated the ability of a photoionization detector (PID) to measure commuters' exposure to BTEX using Tenax TA samples as a reference and quantified the difference in BTEX exposure between cyclists and drivers with windows open and closed. To determine the suitability of two measurement methods (PID and Tenax TA) for use in this study, the precision, linearity, and limits of detection (LODs) for both the PID and Tenax TA measurement methods were determined in the laboratory with standard BTEX calibration gases. Volunteers commuted from their homes to their work places by cycling or driving while wearing a personal exposure backpack containing a collocated PID and Tenax TA sampler. Volunteers completed a survey and indicated if the windows in their vehicle were open or closed. Comparing pairs of exposure data from the Tenax TA and PID sampling methods determined the suitability of the PID to measure the BTEX exposures of commuters. The difference between BTEX exposures of cyclists and drivers with windows open and closed in Fort Collins was determined. Both the PID and Tenax TA measurement methods were precise and linear when evaluated in the

  9. Quantifying commuter exposures to volatile organic compounds

    NASA Astrophysics Data System (ADS)

    Kayne, Ashleigh

    Motor-vehicles can be a predominant source of air pollution in cities. Traffic-related air pollution is often unavoidable for people who live in populous areas. Commuters may have high exposures to traffic-related air pollution as they are close to vehicle tailpipes. Volatile organic compounds (VOCs) are one class of air pollutants of concern because exposure to VOCs carries risk for adverse health effects. Specific VOCs of interest for this work include benzene, toluene, ethylbenzene, and xylenes (BTEX), which are often found in gasoline and combustion products. Although methods exist to measure time-integrated personal exposures to BTEX, there are few practical methods to measure a commuter's time-resolved BTEX exposure which could identify peak exposures that could be concealed with a time-integrated measurement. This study evaluated the ability of a photoionization detector (PID) to measure commuters' exposure to BTEX using Tenax TA samples as a reference and quantified the difference in BTEX exposure between cyclists and drivers with windows open and closed. To determine the suitability of two measurement methods (PID and Tenax TA) for use in this study, the precision, linearity, and limits of detection (LODs) for both the PID and Tenax TA measurement methods were determined in the laboratory with standard BTEX calibration gases. Volunteers commuted from their homes to their work places by cycling or driving while wearing a personal exposure backpack containing a collocated PID and Tenax TA sampler. Volunteers completed a survey and indicated if the windows in their vehicle were open or closed. Comparing pairs of exposure data from the Tenax TA and PID sampling methods determined the suitability of the PID to measure the BTEX exposures of commuters. The difference between BTEX exposures of cyclists and drivers with windows open and closed in Fort Collins was determined. Both the PID and Tenax TA measurement methods were precise and linear when evaluated in the

  10. Production of Volatile and Sulfur Compounds by 10 Saccharomyces cerevisiae Strains Inoculated in Trebbiano Must.

    PubMed

    Patrignani, Francesca; Chinnici, Fabio; Serrazanetti, Diana I; Vernocchi, Pamela; Ndagijimana, Maurice; Riponi, Claudio; Lanciotti, Rosalba

    2016-01-01

    In wines, the presence of sulfur compounds is the resulting of several contributions among which yeast metabolism. The characterization of the starter Saccharomyces cerevisiae needs to be performed also taking into account this ability even if evaluated together with the overall metabolic profile. In this perspective, principal aim of this experimental research was the evaluation of the volatile profiles, throughout GC/MS technique coupled with solid phase micro extraction, of wines obtained throughout the fermentation of 10 strains of S. cerevisiae. In addition, the production of sulfur compounds was further evaluated by using a gas-chromatograph coupled with a Flame Photometric Detector. Specifically, the 10 strains were inoculated in Trebbiano musts and the fermentations were monitored for 19 days. In the produced wines, volatile and sulfur compounds as well as amino acid concentrations were investigated. Also the physico-chemical characteristics of the wines and their electronic nose profiles were evaluated. PMID:26973621

  11. Production of Volatile and Sulfur Compounds by 10 Saccharomyces cerevisiae Strains Inoculated in Trebbiano Must

    PubMed Central

    Patrignani, Francesca; Chinnici, Fabio; Serrazanetti, Diana I.; Vernocchi, Pamela; Ndagijimana, Maurice; Riponi, Claudio; Lanciotti, Rosalba

    2016-01-01

    In wines, the presence of sulfur compounds is the resulting of several contributions among which yeast metabolism. The characterization of the starter Saccharomyces cerevisiae needs to be performed also taking into account this ability even if evaluated together with the overall metabolic profile. In this perspective, principal aim of this experimental research was the evaluation of the volatile profiles, throughout GC/MS technique coupled with solid phase micro extraction, of wines obtained throughout the fermentation of 10 strains of S. cerevisiae. In addition, the production of sulfur compounds was further evaluated by using a gas-chromatograph coupled with a Flame Photometric Detector. Specifically, the 10 strains were inoculated in Trebbiano musts and the fermentations were monitored for 19 days. In the produced wines, volatile and sulfur compounds as well as amino acid concentrations were investigated. Also the physico-chemical characteristics of the wines and their electronic nose profiles were evaluated. PMID:26973621

  12. Effect of Se treatment on the volatile compounds in broccoli.

    PubMed

    Lv, Jiayu; Wu, Jie; Zuo, Jinhua; Fan, Linlin; Shi, Junyan; Gao, Lipu; Li, Miao; Wang, Qing

    2017-02-01

    Broccoli contains high levels of bioactive compounds but deteriorates and senesces easily. In the present study, freshly harvested broccoli was treated with selenite and stored at two different temperatures. The effect of selenite treatment on sensory quality and postharvest physiology were analyzed. Volatile components were assessed by HS-SPME combined with GC-MS and EN. The metabolism of Se and S was also examined. Results indicated that Se treatment had a significant effect on maintaining the sensory quality, suppressing the respiration intensity and ethylene production, as well as increasing the content of Se and decreasing the content of S. In particular, significant differences in the composition of volatile compounds were present between control and Se-treated. The differences were mainly due to differences in alcohols and sulfide compounds. These results demonstrate that Se treatment can have a positive effect on maintaining quality and enhancing its sensory quality through the release of volatile compounds. PMID:27596413

  13. Guaianolides and volatile compounds in chamomile tea.

    PubMed

    Tschiggerl, Christine; Bucar, Franz

    2012-06-01

    Chamomile (German Chamomile, Matricaria recutita L., Asteraceae) is one of the most popular medicinal plants in use as an herbal tea for food purposes and in folk medicine. Qualitative and semi-quantitative analyses of the volatile fraction of chamomile herbal tea were performed. Volatile constituents of the infusion were isolated by two different methods, namely hydrodistillation and solid phase extraction (SPE), and analysed by GC-MS. The relative proportions of particular chemical classes, present in the essential oil and volatile fractions of the infusion showed remarkable differences. The proportion of mono- and sesquiterpene hydrocarbons in the infusion, as compared to the essential oil, was significantly lower. Strikingly, the dichloromethane extract of the infusion contained a lower amount of bisabolol oxides and chamazulene, but higher amounts of spiroethers, sesquiterpene lactones and coumarins, as compared to the hydrodistillates of the herbal drug and the infusion. In addition to the previously known guaianolides matricarin and achillin, acetoxyachillin and leucodin (= desacetoxymatricarin), corresponding C-11 stereoisomers with various biological activities typically occurring in Achillea species, were identified in the dichloromethane extract of chamomile tea for the first time. PMID:22410959

  14. Biogenic volatile organic compound emissions from vegetation fires

    PubMed Central

    CICCIOLI, PAOLO; CENTRITTO, MAURO; LORETO, FRANCESCO

    2014-01-01

    The aim of this paper was to provide an overview of the current state of the art on research into the emission of biogenic volatile organic compounds (BVOCs) from vegetation fires. Significant amounts of VOCs are emitted from vegetation fires, including several reactive compounds, the majority belonging to the isoprenoid family, which rapidly disappear in the plume to yield pollutants such as secondary organic aerosol and ozone. This makes determination of fire-induced BVOC emission difficult, particularly in areas where the ratio between VOCs and anthropogenic NOx is favourable to the production of ozone, such as Mediterranean areas and highly anthropic temperate (and fire-prone) regions of the Earth. Fire emissions affecting relatively pristine areas, such as the Amazon and the African savannah, are representative of emissions of undisturbed plant communities. We also examined expected BVOC emissions at different stages of fire development and combustion, from drying to flaming, and from heatwaves coming into contact with unburned vegetation at the edge of fires. We conclude that forest fires may dramatically change emission factors and the profile of emitted BVOCs, thereby influencing the chemistry and physics of the atmosphere, the physiology of plants and the evolution of plant communities within the ecosystem. PMID:24689733

  15. Biogenic volatile organic compound emissions from vegetation fires.

    PubMed

    Ciccioli, Paolo; Centritto, Mauro; Loreto, Francesco

    2014-08-01

    The aim of this paper was to provide an overview of the current state of the art on research into the emission of biogenic volatile organic compounds (BVOCs) from vegetation fires. Significant amounts of VOCs are emitted from vegetation fires, including several reactive compounds, the majority belonging to the isoprenoid family, which rapidly disappear in the plume to yield pollutants such as secondary organic aerosol and ozone. This makes determination of fire-induced BVOC emission difficult, particularly in areas where the ratio between VOCs and anthropogenic NOx is favourable to the production of ozone, such as Mediterranean areas and highly anthropic temperate (and fire-prone) regions of the Earth. Fire emissions affecting relatively pristine areas, such as the Amazon and the African savannah, are representative of emissions of undisturbed plant communities. We also examined expected BVOC emissions at different stages of fire development and combustion, from drying to flaming, and from heatwaves coming into contact with unburned vegetation at the edge of fires. We conclude that forest fires may dramatically change emission factors and the profile of emitted BVOCs, thereby influencing the chemistry and physics of the atmosphere, the physiology of plants and the evolution of plant communities within the ecosystem. PMID:24689733

  16. Ripening-dependent metabolic changes in the volatiles of pineapple (Ananas comosus (L.) Merr.) fruit: II. Multivariate statistical profiling of pineapple aroma compounds based on comprehensive two-dimensional gas chromatography-mass spectrometry.

    PubMed

    Steingass, Christof Björn; Jutzi, Manfred; Müller, Jenny; Carle, Reinhold; Schmarr, Hans-Georg

    2015-03-01

    Ripening-dependent changes of pineapple volatiles were studied in a nontargeted profiling analysis. Volatiles were isolated via headspace solid phase microextraction and analyzed by comprehensive 2D gas chromatography and mass spectrometry (HS-SPME-GC×GC-qMS). Profile patterns presented in the contour plots were evaluated applying image processing techniques and subsequent multivariate statistical data analysis. Statistical methods comprised unsupervised hierarchical cluster analysis (HCA) and principal component analysis (PCA) to classify the samples. Supervised partial least squares discriminant analysis (PLS-DA) and partial least squares (PLS) regression were applied to discriminate different ripening stages and describe the development of volatiles during postharvest storage, respectively. Hereby, substantial chemical markers allowing for class separation were revealed. The workflow permitted the rapid distinction between premature green-ripe pineapples and postharvest-ripened sea-freighted fruits. Volatile profiles of fully ripe air-freighted pineapples were similar to those of green-ripe fruits postharvest ripened for 6 days after simulated sea freight export, after PCA with only two principal components. However, PCA considering also the third principal component allowed differentiation between air-freighted fruits and the four progressing postharvest maturity stages of sea-freighted pineapples. PMID:25651901

  17. Volatile compounds and bacterial community dynamics of chestnut-flour-based sourdoughs.

    PubMed

    Aponte, M; Boscaino, F; Sorrentino, A; Coppola, R; Masi, P; Romano, A

    2013-12-01

    The aims of this study were the monitoring of the microbial dynamics by means of a polyphasic approach based on conventional isolation techniques and PCR-DGGE-based methods in different chestnut-based sourdoughs and the evaluation of the impact of fermentation on volatile organic compounds formation during sourdoughs ripening. Members of the Lactobacillus plantarum group and Pediococcus pentosaceous dominated the sourdough ecosystems. Nevertheless, RAPD-PCR allowed recording a relevant genotypic biodiversity among strains coming from gluten-free flour combinations. Volatile compounds were characterised by GC/MS. A total of 59 volatile compounds were identified, mainly alcohols, esters, acids, aldehydes and ketones. Principal component analysis of samples at the beginning and at the end of ripening offered a good separation of the samples and highlighted the effect of fermentation on the sensorial profile. PMID:23870973

  18. A comprehensive screen for volatile organic compounds in biological fluids.

    PubMed

    Sharp, M E

    2001-10-01

    A headspace gas chromatographic (GC) screen for common volatile organic compounds in biological fluids is reported. Common GC phases, DB-1 and DB-WAX, with split injection provide separation and identification of more than 40 compounds in a single 20-min run. In addition, this method easily accommodates quantitation. The screen detects commonly encountered volatile compounds at levels below 4 mg%. A control mixture, providing qualitative and semiquantitative information, is described. For comparison, elution of the volatiles on a specialty phase, DB-624, is reported. This method is an expansion and modification of a screen that had been used for more than 20 years. During its first year of use, the expanded screen has proven to be advantageous in routine forensic casework. PMID:11599614

  19. Volatile halogenated compounds and chlorophenols in the Skagerrak

    NASA Astrophysics Data System (ADS)

    Abrahamsson, Katarina; Ekdahl, Anja

    1996-02-01

    A total of 680 seawater samples were collected and analysed for volatile halogenated organic compounds, and 280 seawater samples were analysed for chlorinated phenols in the Skagerrak. The sampling was done along three transects along the Danish west coast on five occasions during the years 1991 to 1993. Pentachlorophenol (PCP) was the only chlorophenol detected on all occasions, which implies that it is transported as a dissolved species rather than particle bound. The results indicate that the origin of PCP in the Skagerrak is the Baltic and the coastal areas of Sweden and Norway. The biogenic volatile halocarbons constitute the largest fraction of the halocarbons in the area. The data support the findings that volatile chloroethenes are naturally produced. Therefore, the Skagerrak acts as a source for these compounds. The flux of the compounds investigated is directed from the sea to the atmosphere except for carbon tetrachloride.

  20. Key volatile organic compounds emitted from swine nursery house

    NASA Astrophysics Data System (ADS)

    Yao, H. Q.; Choi, H. L.; Zhu, K.; Lee, J. H.

    2011-05-01

    This study was carried out to quantify the concentration and emission levels of key volatile organic compounds (VOCs) - sulfides, indolics, phenolics and volatile fatty acids (VFA) - emitted from swine nursery house, and assess the effect of microclimate (including temperature, relative humidity and air speed) on the key odorous compounds. Samples were collected from the Experimental Farm of Seoul National University in Suwon, South Korea. And the collection took place for four seasons and the sampling time was fixed at 10:30 in the morning. The application of one-way ANOVA and Bonferroni t analyses revealed that, most of the odorous compound concentrations, such as dimethyl sulfide (DMS), dimethyl disulfide (DMDS), indole, p-cresol and all the volatile fatty acids were lowest during the summer ( P < 0.01). Meanwhile, negative correlations were observed between temperature and odorants, as well as air speed and odorants. A possible reason was that high ventilation transferred most of the odors out of the house during the summer. From the whole year data, non-linear multiple regressions were conducted and the equations were proposed depending upon the relationships between microclimate parameters and odorous compounds. The equations were applied in hope of easily calculating the concentrations of the odorous compounds in the commercial farms. The results obtained in this study should be used for reducing the volatile organic compounds by controlling microclimate parameters and also could be helpful in setting a guideline for good management practices in nursery house.

  1. Urinary Volatile Organic Compounds for the Detection of Prostate Cancer

    PubMed Central

    Khalid, Tanzeela; Aggio, Raphael; White, Paul; De Lacy Costello, Ben; Persad, Raj; Al-Kateb, Huda; Jones, Peter; Probert, Chris S.; Ratcliffe, Norman

    2015-01-01

    The aim of this work was to investigate volatile organic compounds (VOCs) emanating from urine samples to determine whether they can be used to classify samples into those from prostate cancer and non-cancer groups. Participants were men referred for a trans-rectal ultrasound-guided prostate biopsy because of an elevated prostate specific antigen (PSA) level or abnormal findings on digital rectal examination. Urine samples were collected from patients with prostate cancer (n = 59) and cancer-free controls (n = 43), on the day of their biopsy, prior to their procedure. VOCs from the headspace of basified urine samples were extracted using solid-phase micro-extraction and analysed by gas chromatography/mass spectrometry. Classifiers were developed using Random Forest (RF) and Linear Discriminant Analysis (LDA) classification techniques. PSA alone had an accuracy of 62–64% in these samples. A model based on 4 VOCs, 2,6-dimethyl-7-octen-2-ol, pentanal, 3-octanone, and 2-octanone, was marginally more accurate 63–65%. When combined, PSA level and these four VOCs had mean accuracies of 74% and 65%, using RF and LDA, respectively. With repeated double cross-validation, the mean accuracies fell to 71% and 65%, using RF and LDA, respectively. Results from VOC profiling of urine headspace are encouraging and suggest that there are other metabolomic avenues worth exploring which could help improve the stratification of men at risk of prostate cancer. This study also adds to our knowledge on the profile of compounds found in basified urine, from controls and cancer patients, which is useful information for future studies comparing the urine from patients with other disease states. PMID:26599280

  2. Effect of fermentation time and drying temperature on volatile compounds in cocoa.

    PubMed

    Rodriguez-Campos, J; Escalona-Buendía, H B; Contreras-Ramos, S M; Orozco-Avila, I; Jaramillo-Flores, E; Lugo-Cervantes, E

    2012-05-01

    The effects of fermentation time and drying temperature on the profile of volatile compounds were evaluated after 2, 4, 6, and 8 fermentation days followed by drying at 60, 70 and 80°C. These treatments were compared with dry cocoa controls produced in a Samoa drier and by a sun-drying process. A total of 58 volatile compounds were identified by SPME-HS/GC-MS and classified as: esters (20), alcohols (12), acids (11), aldehydes and ketones (8), pyrazines (4) and other compounds (3). Six days of fermentation were enough to produce volatile compounds with flavour notes desirable in cocoa beans, as well as to avoid the production of compounds with off-flavour notes. Drying at 70 and 80°C after six fermentation days presented a volatile profile similar to the one obtained by sun drying. However, drying at 70°C represents a lower cost. Given the above results, in the present study the optimal conditions for fermentation and drying of cocoa beans were 6days of fermentation, followed by drying at 70°C. PMID:26434291

  3. Spatial distribution of volatile compounds in graphite composites

    NASA Technical Reports Server (NTRS)

    Grayson, M. A.; Wolf, C. J.; Kourtides, D. A.

    1980-01-01

    The distribution of water and other volatile compounds such as acetone and phenol was measured as a function of depth in four graphite resin matrix composites. Precision abrasion mass spectrometry was used to qualitatively and quantitatively characterize the indigenous volatile compounds in the as received condition and after drying in an environmentally controlled oven. The total amount of water in the composites varied from 0.12 wt% to 1.1 wt% and the times required to dry the samples ranged from less than 96 h to much greater than 555 h.

  4. Exposure to volatile organic compounds in healthcare settings

    PubMed Central

    LeBouf, Ryan F; Virji, M Abbas; Saito, Rena; Henneberger, Paul K; Simcox, Nancy; Stefaniak, Aleksandr B

    2015-01-01

    Objectives To identify and summarise volatile organic compound (VOC) exposure profiles of healthcare occupations. Methods Personal (n=143) and mobile area (n=207) evacuated canisters were collected and analysed by a gas chromatograph/mass spectrometer to assess exposures to 14 VOCs among 14 healthcare occupations in five hospitals. Participants were volunteers identified by their supervisors. Summary statistics were calculated by occupation. Principal component analysis (PCA) was used to reduce the 14 analyte inputs to five orthogonal factors and identify occupations that were associated with these factors. Linear regressions were used to assess the association between personal and mobile area samples. Results Exposure profiles differed among occupations; ethanol had the highest geometric mean (GM) among nursing assistants (~4900 and ~1900 μg/m3, personal and area), and 2-propanol had the highest GM among medical equipment preparers (~4600 and ~2000 μg/m3, personal and area). The highest total personal VOC exposures were among nursing assistants (~9200 μg/m3), licensed practical nurses (~8700 μg/m3) and medical equipment preparers (~7900 μg/m3). The influence of the PCA factors developed from personal exposure estimates varied by occupation, which enabled a comparative assessment of occupations. For example, factor 1, indicative of solvent use, was positively correlated with clinical laboratory and floor stripping/waxing occupations and tasks. Overall, a significant correlation was observed (r=0.88) between matched personal and mobile area samples, but varied considerably by analyte (r=0.23–0.64). Conclusions Healthcare workers are exposed to a variety of chemicals that vary with the activities and products used during activities. These VOC profiles are useful for estimating exposures for occupational hazard ranking for industrial hygienists as well as epidemiological studies. PMID:25011549

  5. Impact of high hydrostatic pressure on non-volatile and volatile compounds of squid muscles.

    PubMed

    Yue, Jin; Zhang, Yifeng; Jin, Yafang; Deng, Yun; Zhao, Yanyun

    2016-03-01

    The effects of high hydrostatic pressure processing (HHP at 200, 400 or 600MPa) on non-volatile and volatile compounds of squid muscles during 10-day storage at 4°C were investigated. HHP increased the concentrations of Cl(-) and volatile compounds, reduced the level of PO4(3-), but did not affect the contents of 5'-uridine monophosphate (UMP), 5'-guanosine monophosphate (GMP), 5'-inosine monophosphate (IMP), Na(+) and Ca(2+) in squids on Day 0. At 600MPa, squids had the highest levels of 5'-adenosine monophosphate, Cl(-) and lactic acid, but the lowest contents of CMP and volatile compounds on Day 10. Essential free amino acids and succinic acids were lower on Day 0 than on Day 10. HHP at 200MPa caused higher equivalent umami concentration (EUC) on Day 0, and the EUC decreased with increasing pressure on Day 10. Generally, HHP at 200MPa was beneficial for improving EUC and volatile compounds of squids. PMID:26471521

  6. Aroma volatile compounds from two fresh pineapple varieties in China.

    PubMed

    Zheng, Liang-Yong; Sun, Guang-Ming; Liu, Yu-Ge; Lv, Ling-Ling; Yang, Wen-Xiu; Zhao, Wei-Feng; Wei, Chang-Bin

    2012-01-01

    Volatile compounds from two pineapples varieties (Tainong No.4 and No.6) were isolated by headspace solid phase microextraction (HS-SPME) and identified and quantified by gas chromatography-mass spectrometry (GC/MS). In the Tainong No. 4 and No. 6 pineapples, a total of 11 and 28 volatile compounds were identified according to their retention time on capillary columns and their mass spectra, and quantified with total concentrations of 1080.44 μg·kg(-1) and 380.66 μg·kg(-1) in the Tainong No.4 and No. 6 pineapples, respectively. The odor active values (OAVs) of volatile compounds from pineapples were also calculated. According to the OAVs, four compounds were defined as the characteristic aroma compounds for the Tainong No. 4 pineapple, including furaneol, 3-(methylthio)propanoic acid methyl ester, 3-(methylthio)propanoic acid ethyl ester and δ-octalactone. The OAVs of five compounds including ethyl-2-methylbutyrate, methyl-2-methylbutyrate, 3-(methylthio)propanoic acid ethyl ester, ethyl hexanoate and decanal were considered to be the characteristic aroma compounds for the Tainong No. 6 pineapple. PMID:22837701

  7. Aroma Volatile Compounds from Two Fresh Pineapple Varieties in China

    PubMed Central

    Zheng, Liang-Yong; Sun, Guang-Ming; Liu, Yu-Ge; Lv, Ling-Ling; Yang, Wen-Xiu; Zhao, Wei-Feng; Wei, Chang-Bin

    2012-01-01

    Volatile compounds from two pineapples varieties (Tainong No.4 and No.6) were isolated by headspace solid phase microextraction (HS-SPME) and identified and quantified by gas chromatography-mass spectrometry (GC/MS). In the Tainong No. 4 and No. 6 pineapples, a total of 11 and 28 volatile compounds were identified according to their retention time on capillary columns and their mass spectra, and quantified with total concentrations of 1080.44 μg·kg−1 and 380.66 μg·kg−1 in the Tainong No.4 and No. 6 pineapples, respectively. The odor active values (OAVs) of volatile compounds from pineapples were also calculated. According to the OAVs, four compounds were defined as the characteristic aroma compounds for the Tainong No. 4 pineapple, including furaneol, 3-(methylthio)propanoic acid methyl ester, 3-(methylthio)propanoic acid ethyl ester and δ-octalactone. The OAVs of five compounds including ethyl-2-methylbutyrate, methyl-2-methylbutyrate, 3-(methylthio)propanoic acid ethyl ester, ethyl hexanoate and decanal were considered to be the characteristic aroma compounds for the Tainong No. 6 pineapple. PMID:22837701

  8. Effect of aging on volatile compounds in cooked beef.

    PubMed

    Watanabe, A; Kamada, G; Imanari, M; Shiba, N; Yonai, M; Muramoto, T

    2015-09-01

    Volatiles in the headspace of beef cooked at 180 °C were analyzed using solid-phase microextraction (SPME) and gas chromatography-mass spectrometry (GC-MS), and the effects of aging were evaluated. Seventy volatile substances including non-aromatic, homocyclic, and heterocyclic compounds were identified. A significant positive regression model for storage could be adopted for toluene, benzeneacetaldehyde, 2-formylfuran, pyrazine, 2,6-dimethylpyrazine, 2,3-dimethylpyrazine, 2-acetylthiazole, and 2-formyl-3-methylthiophene. Increases in the quantity of these compounds, with the exception of toluene, suggest the importance of the Strecker and Maillard reactions in cooked meat previously aged under vacuum conditions. As such, the aging process may lead to an increase not only in the amount of compounds related to the taste of meat, but also in the quantity of odor-active compounds. The increased quantity of toluene during storage seemed to be influenced by lipid oxidation. PMID:25919931

  9. HS-GC/MS volatile profile of different varieties of garlic and their behavior under heating.

    PubMed

    Molina-Calle, María; Priego-Capote, Feliciano; de Castro, María D Luque

    2016-05-01

    Garlic is one of the most used seasonings in the world whose beneficial health effects, mainly ascribed to organosulfur compounds, are shared with the rest of the Allium family. The fact that many of these compounds are volatile makes the evaluation of the volatile profile of garlic interesting. For this purpose, three garlic varieties-White, Purple, and Chinese-cultivated in the South of Spain were analyzed by a method based on a headspace (HS) device coupled to a gas chromatograph and mass detector (HS-GC/MS). The main temperatures in the HS were optimized to achieve the highest concentration of volatiles. A total number of 45 volatiles were tentatively identified (among them 17 were identified for the first time in garlic); then, all were classified, also for the first time, and their relative concentration in three garlic varieties was used to evaluate differences among them and to study their profiles according to the heating time. Chinese garlic was found to be the richest variety in sulfur volatiles, while the three varieties presented a similar trend under preset heating times allowing differentiation between varieties and heating time using principal component analysis. Graphical Abstract HS-GC/MS analysis of the volatile profile of garlic. PMID:27002613

  10. Measurements of volatile organic compounds over West Africa

    NASA Astrophysics Data System (ADS)

    Murphy, J. G.; Oram, D. E.; Reeves, C. E.

    2010-06-01

    In this paper we describe measurements of volatile organic compounds (VOC) made using a Proton Transfer Reaction Mass Spectrometer (PTR-MS) aboard the UK Facility for Atmospheric Airborne Measurements during the African Monsoon Multidisciplinary Analyses (AMMA) campaign. Observations were made during approximately 85 h of flying time between 17 July and 17 August 2006, above an area between 4° N and 18° N and 3° W and 4° E, encompassing ocean, mosaic forest, and the Sahel desert. High time resolution observations of counts at mass to charge (m/z) ratios of 42, 59, 69, 71, and 79 were used to calculate mixing ratios of acetonitrile, acetone, isoprene, the sum of methyl vinyl ketone and methacrolein, and benzene respectively using laboratory-derived humidity-dependent calibration factors. Strong spatial associations between vegetation and isoprene and its oxidation products were observed in the boundary layer, consistent with biogenic emissions followed by rapid atmospheric oxidation. Acetonitrile, benzene, and acetone were all enhanced in airmasses which had been heavily influenced by biomass burning. Benzene and acetone were also elevated in airmasses with urban influence from cities such as Lagos, Cotonou, and Niamey. The observations provide evidence that both deep convection and mixing associated with fair-weather cumulus were responsible for vertical redistribution of VOC emitted from the surface. Profiles over the ocean showed a depletion of acetone in the marine boundary layer, but no significant decrease for acetonitrile.

  11. Measurements of volatile organic compounds over West Africa

    NASA Astrophysics Data System (ADS)

    Murphy, J. G.; Oram, D. E.; Reeves, C. E.

    2010-02-01

    In this paper we describe measurements of volatile organic compounds (VOCs) made using a Proton Transfer Reaction Mass Spectrometer (PTR-MS) aboard the UK Facility for Atmospheric Airborne Measurements during the African Monsoon Multidisciplinary Analyses (AMMA) campaign. Observations were made during approximately 85 h of flying time between 17 July and 17 August 2006, above an area between 4° N and 18° N and 3° W and 4° E, encompassing ocean, mosaic forest, and the Sahel desert. High time resolution observations of counts at mass to charge (m/z) ratios of 42, 59, 69, 71, and 79 were used to calculate mixing ratios of acetonitrile, acetone, isoprene, the sum of methyl vinyl ketone and methacrolein, and benzene, respectively using laboratory-derived humidity-dependent calibration factors. Strong spatial associations between vegetation and isoprene and its oxidation products were observed in the boundary layer, consistent with biogenic emissions followed by rapid atmospheric oxidation. Acetonitrile, benzene, and acetone were all enhanced in airmasses which had been heavily influenced by biomass burning. Benzene and acetone were also elevated in airmasses with urban influence from cities such as Lagos, Cotonou, and Niamey. The observations provide evidence that both deep convection and mixing associated with fair-weather cumulus were responsible for vertical redistribution of VOCs emitted from the surface. Profiles over the ocean showed a depletion of acetone in the marine boundary layer, but no significant decrease for acetonitrile.

  12. Influence of Sensory Stimulation on Exhaled Volatile Organic Compounds.

    PubMed

    Mazzatenta, A; Pokorski, M; Di Tano, A; Cacchio, M; Di Giulio, C

    2016-01-01

    The real-time exhaled volatile organic compounds (VOCs) have been suggested as a new biomarker to detect and monitor physiological processes in the respiratory system. The VOCs profile in exhaled breath reflects the biochemical alterations related to metabolic changes, organ failure, and neuronal activity, which are, at least in part, transmitted via the lungs to the alveolar exhaled breath. Breath analysis has been applied to investigate cancer, lung failure, and neurodegenerative diseases. There are by far no studies on the real-time monitoring of VOCs in sensory stimulation in healthy subjects. Therefore, in this study we investigated the breath parameters and exhaled VOCs in humans during sensory stimulation: smell, hearing, sight, and touch. Responses sensory stimulations were recorded in 12 volunteers using an iAQ-2000 sensor. We found significant effects of sensory stimulation. In particular, olfactory stimulation was the most effective stimulus that elicited the greatest VOCs variations in the exhaled breath. Since the olfactory pathway is distinctly driven by the hypothalamic and limbic circuitry, while other senses project first to the thalamic area and then re-project to other brain areas, the findings suggest the importance of olfaction and chemoreception in the regulation lung gas exchange. VOCs variations during sensory activation may become putative indicators of neural activity. PMID:26453064

  13. Effect of chitosan-lemon essential oil coatings on volatile profile of strawberries during storage.

    PubMed

    Perdones, Ángela; Escriche, Isabel; Chiralt, Amparo; Vargas, Maria

    2016-04-15

    Chitosan coatings containing lemon essential oils were described as effective at controlling fruit fungal decay at 20°C during 7 days. In this work, GC-MS was used to characterise the volatile compounds of strawberries during cold storage in order to analyse the influence of fruit coatings with chitosan, containing or not containing lemon essential oil, on the volatile profile of the fruits. The coatings affected the metabolic pathways and volatile profile of the fruits. Pure chitosan promoted the formation of esters and dimethyl furfural in very short time after coating, while coatings containing lemon essential oil incorporated terpenes (limonene, γ-terpinene, p-cymene and α-citral) to the fruit volatiles and enhanced the fermentative process, modifying the typical fruit aroma composition. No effect of chitosan coatings was sensorially perceived, the changes induced by lemon essential oil were notably appreciated. PMID:26617043

  14. Modeling emissions of volatile organic compounds from silage

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Volatile organic compounds (VOCs), necessary reactants for photochemical smog formation, are emitted from numerous sources. Limited available data suggest that dairy farms emit VOCs with cattle feed, primarily silage, being the primary source. Process-based models of VOC transfer within and from si...

  15. Measuring Emissions of Volatile Organic Compounds from Silage

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Volatile organic compound (VOC) emissions are considered to be important precursors to smog and ozone production. An experimental protocol was developed to obtain undisturbed silage samples from silage storages. Samples were placed in a wind tunnel where temperature, humidity, and air flow were cont...

  16. LEAVES AS INDICATORS OF EXPOSURE TO AIRBORNE VOLATILE ORGANIC COMPOUNDS

    EPA Science Inventory

    The concentration of volatile organic compounds (VOCs) in leaves is primarily a product of airborne exposures and dependent upon bioconcentration factors and release rates. The bioconcentration factors for VOCs in grass are found to be related to their partitioning between octan...

  17. AERATION TO REMOVE VOLATILE ORGANIC COMPOUNDS FROM GROUND WATER

    EPA Science Inventory

    The interim report presents general information on the use of aeration to remove volatile organic compounds from drinking water for public health reasons. The report illustrates the types of aerators, shows where they are being used, presents a means of estimating aeration perfor...

  18. VOLATILE ORGANIC COMPOUND MODEL (VERSION 1.8) (FOR MICROCOMPUTERS)

    EPA Science Inventory

    Future emissions of volatile organic compounds (VOCs) and costs of their control can be estimated by applying growth factors, emission constraints, control cost functions, and capacity retirement rates to the base line estimates of VOC emissions and industrial VOC source capacity...

  19. Modeling emissions of volatile organic compounds from silage

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Photochemical smog is a major air pollution problem and a significant cause of premature death in the U.S. Smog forms in the presence of volatile organic compounds (VOCs), which are emitted primarily from industry and motor vehicles in the U.S. However, dairy farms may be an important source in so...

  20. VOC (VOLATILE ORGANIC COMPOUND) FUGITIVE EMISSION PREDICTIVE MODEL - USER'S GUIDE

    EPA Science Inventory

    The report discusses a mathematical model that can be used to evaluate the effectiveness of various leak detection and repair (LDAR) programs on controlling volatile organic compound (VOC) fugitive emissions from chemical, petroleum, and other process units. The report also descr...

  1. FIELD-DEPLOYABLE MONITORS FOR VOLATILE ORGANIC COMPOUNDS IN AIR

    EPA Science Inventory

    Volatile organic compounds in ambient air are usually estimated by trapping them from air or collecting whole air samples and returning them to a laboratory for analysis by gas chromatography using selective detection. ata do not appear for several days, during which sample integ...

  2. FIELD DEPLOYABLE MONITORS FOR VOLATILE COMPOUNDS IN AIR

    EPA Science Inventory

    Volatile organic compounds in ambient air are usually estimated by trapping them from air or collecting whole air samples and returning them to a laboratory for analysis by gas chromatography using selective detection. ata do not appear for several days, during which sample integ...

  3. PHOTOTHERMAL DESTRUCTION OF THE VAPOR OF VOLATILE ORGANIC COMPOUNDS

    EPA Science Inventory

    The contamination of subsurface soil and groundwater by volatile organic compounds (VOCS) is a pervasive problem in the United States. n-situ soil vapor extraction (SVE) and ex-situ thermal desorption are the most adapted technologies for the remediation of contaminated soil whil...

  4. MICROBIAL VOLATILE ORGANIC COMPOUND EMISSION RATES AND EXPOSURE MODEL

    EPA Science Inventory

    This paper presents the results from a study that examined microbial volatile organic compound (MVOC) emissions from six fungi and one bacterial species (Streptomyces spp.) commonly found in indoor environments. Data are presented on peak emission rates from inoculated agar plate...

  5. Volatile organic compound emissions from dairy facilities in central California

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Emissions of volatile organic compounds (VOCs) from dairy facilities are thought to be an important contributor to high ozone levels in central California, but emissions inventories from these sources contain significant uncertainties. In this work, VOC emissions were measured at two central Califor...

  6. Qualitative analysis of volatile organic compounds on biochar

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Qualitative identification of sorbed volatile organic compounds (VOCs) on biochar was conducted by headspace thermal desorption coupled to capillary gas chromatographic-mass spectrometry. VOCs may have a mechanistic role influencing plant and microbial responses to biochar amendments, since VOCs ca...

  7. Influence of volatile organic compounds on Fusarium graminearum mycotoxin production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Volatile organic compounds (VOCs) are involved in a diverse range of ecological interactions. Due to their low molecular weight, lipophilic nature, and high vapor pressure at ambient temperatures, they can serve as airborne signaling molecules that are capable of mediating inter and intraspecies com...

  8. DESTRUCTION OF VOLATILE ORGANIC COMPOUNDS VIA CATALYTIC INCINERATION (JOURNAL VERSION)

    EPA Science Inventory

    The paper gives results of an investigation of the effect of catalytic incinerator design and operation on the destruction of specific volatile organic compounds (VOCs), both singly and in mixtures. A range of operating and design parameters were tested on a wide variety of compo...

  9. Residential exposure to volatile organic compounds and asthma.

    PubMed

    Dales, Robert; Raizenne, Mark

    2004-01-01

    We critically analysed the literature concerning exposure to volatile organic compounds and asthma. Observational studies have consistently found a relation between volatile organic compounds and indicators of asthma, such as symptoms, peak flows, and objectively measured bronchial reactivity. In contrast, interventional studies have generally failed to find a relation between exposure to residential levels of formaldehyde and other volatile organic compounds and asthma. One hypothesis to explain the discrepancy in findings between interventional and observational studies is that the effect size is small requiring relatively large numbers of study subjects, common in observational studies but often not feasible in interventional studies. Another hypothesis is that longer duration of exposure is important, a common circumstance in observational studies where the home environment is the exposure setting. In contrast, duration of exposure in interventional studies is usually of minutes-to-hours in a chamber. Finally, the observed association in observational studies could be confounded by a factor which is a determinant of asthma and is also associated with exposure to volatile organic compounds. PMID:15260458

  10. Volatile organic compounds in polyethylene bags-A forensic perspective.

    PubMed

    Borusiewicz, Rafał; Kowalski, Rafał

    2016-09-01

    Polyethylene bags, though not recommended, are sometimes used in some countries as improvised packaging for items sent to be analysed for the presence of volatile organic compounds, namely ignitable liquids residues. Sometimes items made of polyethylene constitute the samples themselves. It is well known what kind of volatile organic compounds are produced as a result of polyethylene thermal decomposition, but there is a lack of information relating to if some volatile compounds are present in unheated/unburned items made of polyethylene in detectable amounts and, if so, what those compounds are. The aim of this presented research was to answer these questions. 28 different bags made of polyethylene, representing 9 brands, were purchased in local shops and analysed according to the procedure routinely used for fire debris. The results proved that in almost all bags a distinctive mixture of compounds is present, comprising of n-alkanes and n-alkenes with an even number of carbon atoms in their molecules. Some other compounds (e.g., limonene, 2,2,4,6,6-pentamethylheptane) are also often present, but the presence of even n-alkanes and n-alkenes constitutes the most characteristic feature. PMID:27458996

  11. Capillary gas chromatography-mass spectrometry of volatile and semi-volatile compounds of Salvia officinalis.

    PubMed

    Radulescu, Valeria; Chiliment, Silvia; Oprea, Eliza

    2004-02-20

    The essential oil and infusion of Salvia officinalis leaves have been widely applied in traditional medicine since ancient times and nowadays subjected to extensive research of their antibacterial, antiviral and cytotoxic properties. This paper shows chemical composition data of S. officinalis leaves essential oil isolated by steam distillation using a Clevenger-type apparatus. Also, the paper presents the chemical content of volatile and semi-volatile compounds of S. officinalis leaves infusion. The volatile and semi-volatile compounds of S. officinalis leaves infusion were isolated by solid-phase extraction (SPE) and liquid-liquid extraction with hexane and dichloromethane. SPE was carried out on 500 mg octadecylsilane (C18) cartridges and elution with dichloromethane. Liquid-liquid extraction was performed with hexane and dichloromethane. The essential oil in dichloromethane and infusion extracts in hexane and dichloromethane were analyzed by gas chromatography coupled with mass spectrometry. The quantitative results obtained by solid-phase extraction and liquid-liquid extraction showed that SPE on C18 performed the highest recovery of the volatile compounds from infusion sample. PMID:14971492

  12. Correlation between volatile profiles of Italian fermented sausages and their size and starter culture.

    PubMed

    Montanari, Chiara; Bargossi, Eleonora; Gardini, Aldo; Lanciotti, Rosalba; Magnani, Rudy; Gardini, Fausto; Tabanelli, Giulia

    2016-02-01

    The aroma profiles of 10 traditional Italian fermented sausages were evaluated. The volatile organic compounds (VOCs) obtained by solid-phase microextraction and gas chromatograph-mass spectrometry were analysed using principal component analysis (PCA) and linear discriminant analysis (LDA). PCA allowed an acceptable separation but some sausage typologies were not well separated. On the other hand, the supervised approach of LDA allowed a clear grouping of the samples in relation to sausage size and starter culture. In spite of the extreme variability of the volatile profiles of the sausage typologies, this work showed the influence of diameter on VOC profile. The differences observed can be related to the effects that some fundamental physicochemical characteristics (such as water loss kinetics and oxygen availability) have on the results of ripening processes. Differences in VOC profiles were also observed due to the lactic acid bacteria used as starter cultures, with differences mainly attributable to compounds deriving from pyruvate metabolism. PMID:26304405

  13. Ripening and storage conditions of Chétoui and Arbequina olives: Part I. Effect on olive oils volatiles profile.

    PubMed

    Hachicha Hbaieb, Rim; Kotti, Faten; Gargouri, Mohamed; Msallem, Monji; Vichi, Stefania

    2016-07-15

    The distinctive aroma of virgin olive oil is mainly attributed to its volatile profile including components responsible for positive attributes and others for sensory defects resulting from chemical oxidation and exogenous enzymes. For this reason, the evolution of volatile compounds from Chétoui and Arbequina virgin olive oils during olive ripening and storage (at 4 and 25 °C during 4 weeks) was investigated. The profile of volatile phenols during olive storage was also studied. Quantitative differences in the volatile compounds during olive storage at 4 and 25 °C according to olive cultivar was determined. Concerning the volatile phenols, the Arbequina olives were the most affected by high storage temperature, as the formation of these compounds, especially 4-ethyl and 4-vinyl derivatives of phenol and guaiacol were more noticeable in Arbequina oils extracted from stored fruits at 25 °C. PMID:26948650

  14. Bioactivity of volatile organic compounds produced by Pseudomonas tolaasii

    PubMed Central

    Lo Cantore, Pietro; Giorgio, Annalisa; Iacobellis, Nicola S.

    2015-01-01

    Pseudomonas tolaasii is the main bacterial pathogen of several mushroom species. In this paper we report that strains of P. tolaasii produce volatile substances inducing in vitro mycelia growth inhibition of Pleurotus ostreatus and P. eryngii, and Agaricus bisporus and P. ostreatus basidiome tissue blocks brown discoloration. P. tolaasii strains produced the volatile ammonia but not hydrogen cyanide. Among the volatiles detected by GC–MS, methanethiol, dimethyl disulfide (DMDS), and 1-undecene were identified. The latter, when assayed individually as pure compounds, led to similar effects noticed when P. tolaasii volatiles natural blend was used on mushrooms mycelia and basidiome tissue blocks. Furthermore, the natural volatile mixture resulted toxic toward lettuce and broccoli seedling growth. In contrast, pure volatiles showed different activity according to their nature and/or doses applied. Indeed, methanethiol resulted toxic at all the doses used, while DMDS toxicity was assessed till a quantity of 1.25 μg, below which it caused, together with 1-undecene (≥10 μg), broccoli growth increase. PMID:26500627

  15. Bioactivity of volatile organic compounds produced by Pseudomonas tolaasii.

    PubMed

    Lo Cantore, Pietro; Giorgio, Annalisa; Iacobellis, Nicola S

    2015-01-01

    Pseudomonas tolaasii is the main bacterial pathogen of several mushroom species. In this paper we report that strains of P. tolaasii produce volatile substances inducing in vitro mycelia growth inhibition of Pleurotus ostreatus and P. eryngii, and Agaricus bisporus and P. ostreatus basidiome tissue blocks brown discoloration. P. tolaasii strains produced the volatile ammonia but not hydrogen cyanide. Among the volatiles detected by GC-MS, methanethiol, dimethyl disulfide (DMDS), and 1-undecene were identified. The latter, when assayed individually as pure compounds, led to similar effects noticed when P. tolaasii volatiles natural blend was used on mushrooms mycelia and basidiome tissue blocks. Furthermore, the natural volatile mixture resulted toxic toward lettuce and broccoli seedling growth. In contrast, pure volatiles showed different activity according to their nature and/or doses applied. Indeed, methanethiol resulted toxic at all the doses used, while DMDS toxicity was assessed till a quantity of 1.25 μg, below which it caused, together with 1-undecene (≥10 μg), broccoli growth increase. PMID:26500627

  16. Semivolatile and volatile compounds in combustion of polyethylene.

    PubMed

    Font, Rafael; Aracil, Ignacio; Fullana, Andrés; Conesa, Juan A

    2004-11-01

    The evolution of semivolatile and volatile compounds in the combustion of polyethylene (PE) was studied at different operating conditions in a horizontal quartz reactor. Four combustion runs at 500 and 850 degrees C with two different sample mass/air flow ratios and two pyrolytic runs at the same temperatures were carried out. Thermal behavior of different compounds was analyzed and the data obtained were compared with those of literature. It was observed that alpha,omega-olefins, alpha-olefins and n-paraffins were formed from the pyrolytic decomposition at low temperatures. On the other hand, oxygenated compounds such as aldehydes were also formed in the presence of oxygen. High yields were obtained of carbon oxides and light hydrocarbons, too. At high temperatures, the formation of polycyclic aromatic hydrocarbons (PAHs) took place. These compounds are harmful and their presence in the combustion processes is related with the evolution of pyrolytic puffs inside the combustion chamber with a poor mixture of semivolatile compounds evolved with oxygen. Altogether, the yields of more than 200 compounds were determined. The collection of the semivolatile compounds was carried out with XAD-2 adsorbent and were analyzed by GC-MS, whereas volatile compounds and gases were collected in a Tedlar bag and analyzed by GC with thermal conductivity and flame ionization detectors. PMID:15488924

  17. Encapsulation of Volatile Compounds in Silk Microparticles

    PubMed Central

    Elia, Roberto; Guo, Jin; Budijono, Stephanie; Normand, Valery; Benczédi, Daniel; Omenetto, Fiorenzo

    2015-01-01

    Various techniques have been employed to entrap fragrant oils within microcapsules or microparticles in the food, pharmaceutical, and chemical industries for improved stability and delivery. In the present work we describe the use of silk protein microparticles for encapsulating fragrant oils using ambient processing conditions to form an all-natural biocompatible matrix. These microparticles are stabilized via physical crosslinking, requiring no chemical agents, and are prepared with aqueous and ambient processing conditions using polyvinyl alcohol-silk emulsions. The particles were loaded with fragrant oils via direct immersion of the silk particles within an oil bath. The oil-containing microparticles were coated using alternating silk and polyethylene oxide layers to control the release of the oil from the microspheres. Particle morphology and size, oil loading capacity, release rates as well as silk-oil interactions and coating treatments were characterized. Thermal analysis demonstrated that the silk coatings can be tuned to alter both retention and release profiles of the encapsulated fragrance. These oil containing particles demonstrate the ability to adsorb and controllably release oils, suggesting a range of potential applications including cosmetic and fragrance utility. PMID:26568787

  18. Analysis of black pepper volatiles by solid phase microextraction-gas chromatography: A comparison of terpenes profiles with hydrodistillation.

    PubMed

    Jeleń, Henryk H; Gracka, Anna

    2015-10-30

    Solid phase microextraction (SPME) is widely used in food flavor compounds analysis in majority for profiling volatile compounds. Based on such profiles conclusions are often drawn concerning the percentage composition of volatile compounds in particular food, spices or raw materials. This paper focuses on the usefulness of SPME for the profiling of volatile compounds from spices using black pepper as an example. SPME profiles obtained in different analytical conditions were compared to the profile of pepper volatiles obtained using hydrodistillation in Clevenger apparatus. The profiles of both monoterpenes and sesquiterpenes of black pepper were highly dependent on sample weight (0.1 and 1g samples were tested), and extraction time (durations from 2 to 120min were tested), regardless of the SPME fiber used (PDMS and CAR/PDMS coatings were used). The characteristic phenomenon for extraction from dry ground pepper was the decrease of monoterpenes % share in volatiles with increasing extraction times, whereas at the same time the % contents of sesquiterpenes increased. Addition of water to ground pepper substantially changed extraction kinetics and mutual proportions of mono to sesquiterpenes compared to dry samples by minimizing changes in mono- to sesquiterpenes ratio in different extraction times. Obtained results indicate that SPME can be a fast extraction method for volatiles of black pepper. Short extraction times (2-10min) in conjunction with the fast GC analysis (2.1min) proposed here may offer fast alternative to hydrodistillation allowing black pepper terpenes characterization. PMID:26427328

  19. Transport, behavior, and fate of volatile organic compounds in streams

    USGS Publications Warehouse

    Rathbun, R.E.

    1998-01-01

    Volatile organic compounds (VOCs) are compounds with chemical and physical properties that allow the compounds to move freely between the water and air phases of the environment. VOCs are widespread in the environment because of this mobility. Many VOCs have properties making them suspected or known hazards to the health of humans and aquatic organisms. Consequently, understanding the processes affecting the concentration and distribution VOCs in the environment is necessary. The U.S. Geological Survey selected 55 VOCs for study. This report reviews the characteristics of the various process that could affect the transport, behavior, and fate of these VOCs in streams.

  20. Aroma profile and volatiles odor activity along gold cultivar pineapple flesh.

    PubMed

    Montero-Calderón, Marta; Rojas-Graü, María Alejandra; Martín-Belloso, Olga

    2010-01-01

    Physicochemical attributes, aroma profile, and odor contribution of pineapple flesh were studied for the top, middle, and bottom cross-sections cut along the central axis of Gold cultivar pineapple. Relationships between volatile and nonvolatile compounds were also studied. Aroma profile constituents were determined by headspace solid-phase microextraction at 30 °C, followed by gas chromatography/mass spectrometry analysis. A total of 20 volatile compounds were identified and quantified. Among them, esters were the major components which accounted for 90% of total extracted aroma. Methyl butanoate, methyl 2-methyl butanoate, and methyl hexanoate were the 3 most abundant components representing 74% of total volatiles in pineapple samples. Most odor active contributors were methyl and ethyl 2-methyl butanoate and 2,5-dimethyl 4-methoxy 3(2H)-furanone (mesifuran). Aroma profile components did not vary along the fruit, but volatile compounds content significantly varied (P < 0.05) along the fruit, from 7560 to 10910 μg/kg, from the top to the bottom cross-sections of the fruit, respectively. In addition, most odor-active volatiles concentration increased from the top to the bottom 3rd of the fruit, concurrently with soluble solids content (SSC) and titratable acidity (TA) differences attributed to fruitlets distinct degree of ripening. Large changes in SSC/TA ratio and volatiles content throughout the fruit found through this study are likely to provoke important differences among individual fresh-cut pineapple trays, compromising consumer perception and acceptance of the product. Such finding highlighted the need to include volatiles content and SSC/TA ratio and their variability along the fruit as selection criteria for pineapples to be processed and quality assessment of the fresh-cut fruit. PMID:21535624

  1. New graphene fiber coating for volatile organic compounds analysis.

    PubMed

    Zhang, GuoJuan; Guo, XiaoXi; Wang, ShuLing; Wang, XueLan; Zhou, YanPing; Xu, Hui

    2014-10-15

    In the work, a novel graphene-based solid phase microextraction-gas chromatography/mass spectrometry method was developed for the analysis of trace amount of volatile organic compounds in human exhaled breath vapor. The graphene fiber coating was prepared by a one-step hydrothermal reduction reaction. The fiber with porous and wrinkled structure exhibited excellent extraction efficiency toward eight studied volatile organic compounds (two n-alkanes, five n-aldehydes and one aromatic compound). Meanwhile, remarkable thermal and mechanical stability, long lifespan and low cost were also obtained for the fiber. Under the optimal conditions, the developed method provided low limits of detection (1.0-4.5ngL(-1)), satisfactory reproducibility (3.8-13.8%) and acceptable recoveries (93-122%). The method was applied successfully to the analysis of breath samples of lung cancer patients and healthy individuals. The unique advantage of this approach includes simple setup, non-invasive analysis, cost-efficient and sufficient sensitivity. The proposed method supply us a new possibility to monitor volatile organic compounds in human exhaled breath samples. PMID:25171504

  2. Volatilization of organotin compounds from estuarine and coastal environments

    SciTech Connect

    Amouroux, D.; Tessier, E.; Donard, O.F.X.

    2000-03-15

    The occurrence and speciation of volatile tin compounds (Sn) have been investigated in a contaminated area of the Arcachon Bay (SW France) and in the water column of the Scheldt (Belgium/Netherlands) and Gironde (SW France) estuaries. This paper describes the application of a multi-isotope analytical method, using gas chromatography and inductively coupled plasma-mass spectrometry. Analytes were collected by cryogenic trapping of the gaseous species. This trapping has allowed the authors to probe volatile tin compounds by detecting both {sup 118}Sn and {sup 120}Sn isotopes. Volatile organic tin compounds have been determined in both sediment and water. They could result from both natural methylation and hybridization processes of inorganic tin and from anthropogenic butyltin derivatives released from ship antifouling paintings which have accumulated in sediments. The most ubiquitous species were found to be the methylated forms of butyltin derivatives. These results suggest that biological and/or chemical methylation mechanisms are likely to occur in sediments and to lead to remobilization of tin species into the water column and subsequently to the atmosphere. Finally, sediment-water and water-atmosphere fluxes have been calculated to assess the potential impact of these processes on the fate of organotin compounds in coastal environments.

  3. Determination of some volatile compounds in alcoholic beverage by headspace solid-phase microextraction gas chromatography - mass spectrometry

    NASA Astrophysics Data System (ADS)

    Schmutzer, G.; Avram, V.; Feher, I.; David, L.; Moldovan, Z.

    2012-02-01

    The volatile composition of alcoholic beverage was studied by headspace solid-phase microextraction (HSSPME) method and gas chromatography - mass spectrometry (GC-MS). Some volatile compounds, such as alcohols, esters, terpenes and other are mainly responsible for the flavor of fortified wines and their amounts specify the quality of the alcoholic beverages. From this perspective it is interesting to develop a rapid, selective and sensitive analytical method suitable for simultaneous quantification of the main molecules being responsible for the organoleptic characteristic of alcoholic beverages. Vermouth fortified drink was analyzed in order to characterize the volatile profile. Using the HS-SPME/GC-MS a number of twenty-six volatile compounds from a commercial market alcoholic beverage were identified. The most abundant compounds were m-thymol, o-thymol and eugenol, alongside of the ethyl ester compounds.

  4. Effect of different cooking methods on lipid oxidation and formation of volatile compounds in foal meat.

    PubMed

    Domínguez, Rubén; Gómez, María; Fonseca, Sonia; Lorenzo, José M

    2014-06-01

    The influence of four different cooking methods (roasting, grilling, microwaving and frying) on cooking loss, lipid oxidation and volatile profile of foal meat was studied. Cooking loss were significantly (P<0.001) affected by thermal treatment, being higher (32.5%) after microwaving and lower after grilling (22.5%) and frying (23.8%). As expected, all the cooking methods increased TBARs content, since high temperature during cooking causes increased oxidation in foal steaks, this increase was significantly (P<0.001) higher when foal steaks were microwaved or roasted. The four different cooking methods led to increased total volatile compounds (between 366.7 and 633.1AU×10(6)/g dry matter) compared to raw steaks (216.4AU×10(6)/g dry matter). The roasted steaks showed the highest volatile content, indicating that increased cooking temperature increases the formation of volatile compounds. Aldehydes were the most abundant compounds in cooked samples, with amounts of 217.2, 364.5, 283.5 and 409.1AU×10(6)/g dry matter in grilled, microwaved, fried and roasted samples, respectively, whereas esters were the most abundant compounds in raw samples, with mean amounts of 98.8AU×10(6)/g dry matter. PMID:24583332

  5. Development of a new semi-volatile organic compound sampler

    SciTech Connect

    Sioutas, C.; Koutrakis, P.; Burton, R.M.

    1994-12-31

    A new sampler has been developed to sample semi-volatile organic compounds. The sampler utilizes the principle of virtual impactor to efficiently separate the particulate from the gas phases of organic compounds. The virtual impactor consists of a slit-shaped nozzle where the aerosol is accelerated, and another slit-shaped nozzle that collects the particulate phase of organics (plus a small and known fraction of the gas phase). The acceleration slit is 0.023 cm wide, the collection slit is 0.035 cm wide, and both slits are 11 cm long. The virtual impactor`s 50% cutpoint has been determined experimentally to be 0.12 {micro}m. In addition, interstage losses have been determined (in all configurations tested, particle losses ranged from 5--15%). The impactor`s sampling flow rate is 284 liters/minute, with a corresponding pressure drop of 100 inches H{sub 2}O. Higher or lower sampling flow rates can be achieved by increasing or decreasing the length of the slits. Tests for volatilization losses have been conducted by generating organic aerosols of known volatility, and comparing the impactor`s collection to that of a filter pack sampling in parallel. The experiments demonstrated negligible volatilization losses (< 5%) for the compounds tried. Particles are collected on a filter connected to the minor flow of the impactor, followed by a sorbent bed to collect material that volatilized from the particles. The organic gas phases is collected on a sorbent bed, connected to the major flow of the impactor.

  6. Propolis volatile compounds: chemical diversity and biological activity: a review

    PubMed Central

    2014-01-01

    Propolis is a sticky material collected by bees from plants, and used in the hive as building material and defensive substance. It has been popular as a remedy in Europe since ancient times. Nowadays, propolis use in over-the-counter preparations, “bio”-cosmetics and functional foods, etc., increases. Volatile compounds are found in low concentrations in propolis, but their aroma and significant biological activity make them important for propolis characterisation. Propolis is a plant-derived product: its chemical composition depends on the local flora at the site of collection, thus it offers a significant chemical diversity. The role of propolis volatiles in identification of its plant origin is discussed. The available data about chemical composition of propolis volatiles from different geographic regions are reviewed, demonstrating significant chemical variability. The contribution of volatiles and their constituents to the biological activities of propolis is considered. Future perspectives in research on propolis volatiles are outlined, especially in studying activities other than antimicrobial. PMID:24812573

  7. GCMS investigation of volatile compounds in green coffee affected by potato taste defect and the Antestia bug.

    PubMed

    Jackels, Susan C; Marshall, Eric E; Omaiye, Angelica G; Gianan, Robert L; Lee, Fabrice T; Jackels, Charles F

    2014-10-22

    Potato taste defect (PTD) is a flavor defect in East African coffee associated with Antestiopsis orbitalis feeding and 3-isopropyl-2-methoxypyrazine (IPMP) in the coffee. To elucidate the manifestation of PTD, surface and interior volatile compounds of PTD and non-PTD green coffees were sampled by headspace solid phase microextraction and analyzed by gas chromatography mass spectrometry. Principal component analysis of the chromatographic data revealed a profile of surface volatiles distinguishing PTD from non-PTD coffees dominated by tridecane, dodecane, and tetradecane. While not detected in surface volatiles, IPMP was found in interior volatiles of PTD coffee. Desiccated antestia bugs were analyzed by GCMS, revealing that the three most prevalent volatiles were tridecane, dodecane, and tetradecane, as was found in the surface profile PTD coffee. Coffee having visible insect damage exhibited both a PTD surface volatile profile and IPMP in interior volatiles, supporting the hypothesis linking antestia bug feeding activity with PTD profile compounds on the surface and IPMP in the interior of the beans. PMID:25284290

  8. Volatile and polar compounds in Rosadamascena Mill 1803 cell suspension.

    PubMed

    Pavlov, Atanas; Popov, Simeon; Kovacheva, Elena; Georgiev, Milen; Ilieva, Mladenka

    2005-07-21

    Studies were conducted on low molecular metabolites (volatiles and polar compounds) produced by Rosa damascena Mill 1803 cell suspension culture, cultivated under different regimes: as a free suspension (in flasks and in bioreactor) and in a two-phase system (in the presence of Amberlite XAD-4 as a second phase). It was established that the main groups of volatiles were hydrocarbons and free acids and their esters and only traces of terpenoids were found. The main components of polar fraction were free acids, especially amino acids and oxidized acids. Depending on the culture conditions, significant differences were established in the amounts of all compounds under study in biomasses, culture media and adsorbed on the second phase (Amberlite XAD-4). PMID:15899533

  9. Scalping of light volatile sulfur compounds by wine closures.

    PubMed

    Silva, Maria A; Jourdes, Michaël; Darriet, Philippe; Teissedre, Pierre-Louis

    2012-11-01

    Closures have an important influence on wine quality during aging in a bottle. Closures have a direct impact on oxygen exposure and on volatiles scavenging in wine. Model wine solution soaking assays of several types of closures (i.e., natural and technical cork stoppers, synthetic closures, screw caps) with two important wine volatile sulfur compounds led to a considerable reduction in their levels. After 25 days, cork closures and synthetic closures, to a lesser extent, have significantly scavenged hydrogen sulfide and dimethyl sulfide. These compounds have a determinant impact on wine aging bouquet, being largely responsible for "reduced off-flavors". Hydrogen sulfide levels are often not well correlated with the exposure of wine to oxygen or with the permeability of the closure. Its preferential sorption by some types of closures may explain that behavior. Scalping phenomenon should be taken into account when studying wine post-bottling development. PMID:23072649

  10. Analytical methods for volatile compounds in wheat bread.

    PubMed

    Pico, Joana; Gómez, Manuel; Bernal, José; Bernal, José Luis

    2016-01-01

    Bread aroma is one of the main requirements for its acceptance by consumers, since it is one of the first attributes perceived. Sensory analysis, crucial to be correlated with human perception, presents limitations and needs to be complemented with instrumental analysis. Gas chromatography coupled to mass spectrometry is usually selected as the technique to determine bread volatile compounds, although proton-transfer reaction mass spectrometry begins also to be used to monitor aroma processes. Solvent extraction, supercritical fluid extraction and headspace analysis are the main options for the sample treatment. The present review focuses on the different sample treatments and instrumental alternatives reported in the literature to analyse volatile compounds in wheat bread, providing advantages and limitations. Usual parameters employed in these analytical methods are also described. PMID:26452307

  11. Volatile organic compounds in the atmosphere of forests

    NASA Astrophysics Data System (ADS)

    Isidorov, V. A.; Zenkevich, I. G.; Ioffe, B. V.

    The procedure of sampling and gas chromatographic-mass spectrometric analysis of air containing volatile emissions from living plants has been elaborated. The qualitative composition of volatile organic compounds (VOC) produced by 22 species of plants which are characteristic for Northern hemisphere forests has been studied. The emission rate of isoprene and terpenes for some of them has been determined. Terpene concentrations in coniferous forests of different regions of the U.S.S.R. have been also determined. The list of compounds identified includes more than 70 substances of different classes. Total terpene concentrations in the coniferous forests air usually vary from 3.5 to 35 μg -3. Strong influence of meteorological conditions on the emission rate and terpene concentrations in the air under the forest canopy has been noted.

  12. Odor and irritation effects of a volatile organic compound mixture

    SciTech Connect

    Hudnell, H.K.; Otto, O.D.; Mohave, L.; House, D.E.

    1990-01-01

    Human exposure to volatile organic compounds elicits a variety of symptoms, many of which are thought to be mediated by the olfactory and trigeminal systems. The report describes evidence indicating that perceived odor intensity diminishes during prolonged exposure, whereas irritation of the eyes and throat reaches an asymptotic level. Both odor and irritation appear to influence the assessment of air quality. Results of the study will be used in designing future indoor air studies related to sick building syndrome.

  13. Are Some Fungal Volatile Organic Compounds (VOCs) Mycotoxins?

    PubMed Central

    Bennett, Joan W.; Inamdar, Arati A.

    2015-01-01

    Volatile organic compounds (VOCs) are carbon-compounds that easily evaporate at room temperature. Toxins are biologically produced poisons; mycotoxins are those toxins produced by microscopic fungi. All fungi emit blends of VOCs; the qualitative and quantitative composition of these volatile blends varies with the species of fungus and the environmental situation in which the fungus is grown. These fungal VOCs, produced as mixtures of alcohols, aldehydes, acids, ethers, esters, ketones, terpenes, thiols and their derivatives, are responsible for the characteristic moldy odors associated with damp indoor spaces. There is increasing experimental evidence that some of these VOCs have toxic properties. Laboratory tests in mammalian tissue culture and Drosophila melanogaster have shown that many single VOCs, as well as mixtures of VOCs emitted by growing fungi, have toxic effects. This paper describes the pros and cons of categorizing toxigenic fungal VOCs as mycotoxins, uses genomic data to expand on the definition of mycotoxin, and summarizes some of the linguistic and other conventions that can create barriers to communication between the scientists who study VOCs and those who study toxins. We propose that “volatoxin” might be a useful term to describe biogenic volatile compounds with toxigenic properties. PMID:26402705

  14. Are Some Fungal Volatile Organic Compounds (VOCs) Mycotoxins?

    PubMed

    Bennett, Joan W; Inamdar, Arati A

    2015-09-01

    Volatile organic compounds (VOCs) are carbon-compounds that easily evaporate at room temperature. Toxins are biologically produced poisons; mycotoxins are those toxins produced by microscopic fungi. All fungi emit blends of VOCs; the qualitative and quantitative composition of these volatile blends varies with the species of fungus and the environmental situation in which the fungus is grown. These fungal VOCs, produced as mixtures of alcohols, aldehydes, acids, ethers, esters, ketones, terpenes, thiols and their derivatives, are responsible for the characteristic moldy odors associated with damp indoor spaces. There is increasing experimental evidence that some of these VOCs have toxic properties. Laboratory tests in mammalian tissue culture and Drosophila melanogaster have shown that many single VOCs, as well as mixtures of VOCs emitted by growing fungi, have toxic effects. This paper describes the pros and cons of categorizing toxigenic fungal VOCs as mycotoxins, uses genomic data to expand on the definition of mycotoxin, and summarizes some of the linguistic and other conventions that can create barriers to communication between the scientists who study VOCs and those who study toxins. We propose that "volatoxin" might be a useful term to describe biogenic volatile compounds with toxigenic properties. PMID:26402705

  15. Volatile organic compound (VOC) emissions during malting and beer manufacture

    NASA Astrophysics Data System (ADS)

    Gibson, Nigel B.; Costigan, Gavin T.; Swannell, Richard P. J.; Woodfield, Michael J.

    Estimates have been made of the amounts of volatile organic compounds (VOCs) released during different stages of beer manufacture. The estimates are based on recent measurements and plant specification data supplied by manufacturers. Data were obtained for three main manufacturing processes (malting, wort processing and fermentation) for three commercial beer types. Some data on the speciation of emitted compounds have been obtained. Based on these measurements, an estimate of the total unabated VOC emission. from the U.K. brewing industry was calculated as 3.5 kta -1, over 95% of which was generated during barley malting. This value does not include any correction for air pollution control.

  16. [Binding of Volatile Organic Compounds to Edible Biopolymers].

    PubMed

    Misharina, T A; Terenina, M B; Krikunova, N I; Medvedeva, I B

    2016-01-01

    Capillary gas chromatography was used to study the influence of the composition and structure of different edible polymers (polysaccharides, vegetable fibers, and animal protein gelatin) on the binding of essential oil components. The retention of volatile organic compounds on biopolymers was shown to depend on their molecule structure and the presence, type, and position of a functional group. The maximum extent of the binding was observed for nonpolar terpene and sesquiterpene hydrocarbons, and the minimum extent was observed for alcohols. The components of essential oils were adsorbed due mostly to hydrophobic interactions. It was shown that the composition and structure of a compound, its physico-chemical state, and the presence of functional groups influence the binding. Gum arabic and guar gum were found to bind nonpolar compounds to a maximum and minimum extent, respectively. It was demonstrated the minimum adsorption ability of locust bean gum with respect to all studied compounds. PMID:27266255

  17. Volatile organic compounds in Gulf of Mexico sediments

    SciTech Connect

    McDonald, T.J.

    1988-01-01

    Volatile organic compounds (VOC), concentrations and compositions were documented for estuarine, coastal, shelf, slope, and deep water sediments from the Gulf of Mexico. VOC were measured (detection limit >0.01 ppb) using a closed-loop stripping apparatus with gas chromatography (GC) and flame ionization, flame photometric, and mass spectrometric detectors. The five primary sources of Gulf of Mexico sediment VOC are: (1) planktonic and benthic fauna and flora; (2) terrestrial material from riverine and atmospheric deposition; (3) anthropogenic inputs: (4) upward migration of hydrocarbons; and (5) transport by bottom currents or slumping. Detected organo-sulfur compounds include alkylated sulfides, thiophene, alkylated thiophenes, and benzothiophenes. Benzothiophenes are petroleum related. Low molecular weight organo-sulfur compounds result from the biological oxidation of organic matter. A lack of organosulfur compounds in the reducing environment of the Orca Basin may result from a lack of free sulfides which are necessary for their production.

  18. Characterization of volatile compounds responsible for the aroma in naturally fermented sausages by gas chromatography-olfactometry.

    PubMed

    Olivares, Alicia; Navarro, José Luis; Flores, Mónica

    2015-03-01

    The objective of this study was to characterize naturally fermented dry sausages produced without the use of microbial starters and to determine which odour-active compounds are responsible for their aroma. The traditional manufacture was responsible for different chemical characteristics and consumer's acceptance. The volatile compounds detected in the headspace comprised a complex mixture of volatile compounds derived from bacterial metabolism (mainly esterase activity of Staphyloccoci), spices and lipid auto-oxidation. The odour-active volatile compounds were identified using gas chromatography coupled to olfactometry (GC-O) using the detection frequency method. The aroma profile was characterized by the presence of several compounds such as acetic acid, ethyl butanoate, hexanal, methional, 1-octen-3-ol, benzeneacetaldehyde and 4-methyl-phenol. However, naturally fermented sausages were also characterized by numerous esters, both ethyl and methyl esters, which impart a wide variety of fruity notes. PMID:24334376

  19. Detection of volatile organic compounds using porphyrin derivatives.

    PubMed

    Dunbar, A D F; Brittle, S; Richardson, T H; Hutchinson, J; Hunter, C A

    2010-09-16

    Seven different porphyrin compounds have been investigated as colorimetric gas sensors for a wide range of volatile organic compounds. The porphyrins examined were the free base and Mg, Sn, Zn, Au, Co, and Mn derivatives of 5,10,15,20-tetrakis[3,4-bis(2-ethylhexyloxy)phenyl]-21H,23H-porphine. Chloroform solutions of these materials were prepared and changes in their absorption spectra induced by exposure to various organic compounds measured. The porphyrins that showed strong responses in solution were selected, and Langmuir-Blodgett films were prepared and exposed to the corresponding analytes. This was done to determine whether they are useful materials for solid state thin film colorimetric vapor sensors. Porphyrins that readily coordinate extra ligands are shown to be suitable materials for colorimetric volatile organic compound detectors. However, porphyrins that already have bound axial ligands when synthesized only show a sensor response to those analytes that can substitute these axial ligands. The Co porphyrin displays a considerably larger response than the other porphyrins investigated which is attributed to a switch between Co(II) and Co(III) resulting in a large spectral change. PMID:20735119

  20. Volatile and semivolatile organic compounds in laboratory peat fire emissions

    NASA Astrophysics Data System (ADS)

    George, Ingrid J.; Black, Robert R.; Geron, Chris D.; Aurell, Johanna; Hays, Michael D.; Preston, William T.; Gullett, Brian K.

    2016-05-01

    In this study, volatile and semi-volatile organic compound (VOCs and SVOCs) mass emission factors were determined from laboratory peat fire experiments. The peat samples originated from two National Wildlife Refuges on the coastal plain of North Carolina, U.S.A. Gas- and particle-phase organic compounds were quantified by gas chromatography-mass spectrometry and by high pressure liquid chromatography. Hazardous air pollutants (HAPs) accounted for a large fraction (∼60%) of the speciated VOC emissions from peat burning, including large contributions of acetaldehyde, formaldehyde, benzene, toluene, and chloromethane. In the fine particle mass (PM2.5), the following organic compound classes were dominant: organic acids, levoglucosan, n-alkanes, and n-alkenes. Emission factors for the organic acids in PM2.5 including n-alkanoic acids, n-alkenoic acids, n-alkanedioic acids, and aromatic acids were reported for the first time for peat burning, representing the largest fraction of organic carbon (OC) mass (11-12%) of all speciated compound classes measured in this work. Levoglucosan contributed to 2-3% of the OC mass, while methoxyphenols represented 0.2-0.3% of the OC mass on a carbon mass basis. Retene was the most abundant particulate phase polycyclic aromatic hydrocarbon (PAH). Total HAP VOC and particulate PAH emissions from a 2008 peat wildfire in North Carolina were estimated, suggesting that peat fires can contribute a large fraction of state-wide HAP emissions.

  1. Speciation of volatile organic compounds from poultry production

    NASA Astrophysics Data System (ADS)

    Trabue, Steven; Scoggin, Kenwood; Li, Hong; Burns, Robert; Xin, Hongwei; Hatfield, Jerry

    2010-09-01

    Volatile organic compounds (VOCs) emitted from poultry production are leading source of air quality problems. However, little is known about the speciation and levels of VOCs from poultry production. The objective of this study was the speciation of VOCs from a poultry facility using evacuated canisters and sorbent tubes. Samples were taken during active poultry production cycle and between production cycles. Levels of VOCs were highest in areas with birds and the compounds in those areas had a higher percentage of polar compounds (89%) compared to aliphatic hydrocarbons (2.2%). In areas without birds, levels of VOCs were 1/3 those with birds present and compounds had a higher total percentage of aliphatic hydrocarbons (25%). Of the VOCs quantified in this study, no single sampling method was capable of quantifying more than 55% of compounds and in several sections of the building each sampling method quantified less than 50% of the quantifiable VOCs. Key classes of chemicals quantified using evacuated canisters included both alcohols and ketones, while sorbent tube samples included volatile fatty acids and ketones. The top five compounds made up close to 70% of VOCs and included: 1) acetic acid (830.1 μg m -3); 2) 2,3-butanedione (680.6 μg m -3); 3) methanol (195.8 μg m -3); 4) acetone (104.6 μg m -3); and 5) ethanol (101.9 μg m -3). Location variations for top five compounds averaged 49.5% in each section of the building and averaged 87% for the entire building.

  2. Characteristics of the volatile organic compounds -- Arid Integrated Demonstration Site

    SciTech Connect

    Last, G.V.; Lenhard, R.J.; Bjornstad, B.N.; Evans, J.C.; Roberson, K.R.; Spane, F.A.; Amonette, J.E.; Rockhold, M.L.

    1991-10-01

    The Volatile Organic Compounds -- Arid Integrated Demonstration Program (VOC-Arid ID) is targeted at demonstration and testing of technologies for the evaluation and cleanup of volatile organic compounds and associated contaminants at arid DOE sites. The initial demonstration site is an area of carbon tetrachloride (CCl{sub 4}) contamination located near the center of the Hanford Site. The movement of CCl{sub 4} and other volatile organic contaminants in the subsurface is very complex. The problem at the Hanford Site is further complicated by the concurrent discharge of other waste constituents including acids, lard oil, organic phosphates, and transuranic radionuclides. In addition, the subsurface environment is very complex, with large spatial variabilities in hydraulic properties. A thorough understanding of the problem is essential to the selection of appropriate containment, retrieval, and/or in situ remedial technologies. The effectiveness of remedial technologies depends on knowing where the contaminants are, how they are held up in a given physical and chemical subsurface environment; and knowing the physical, chemical, and microbiological changes that are induced by the various remedial technologies.

  3. Urinary volatile compounds as biomarkers for lung cancer.

    PubMed

    Hanai, Yosuke; Shimono, Ken; Matsumura, Koichi; Vachani, Anil; Albelda, Steven; Yamazaki, Kunio; Beauchamp, Gary K; Oka, Hiroaki

    2012-01-01

    Lung cancer is a leading cause of deaths in cancer. Hence, developing early-stage diagnostic tests that are non-invasive, highly sensitive, and specific is crucial. In this study, we investigated to determine whether biomarkers derived from urinary volatile organic compounds (VOCs) can be used to discriminate between lung cancer patients and normal control patients. The VOCs were extracted from the headspace by solid-phase microextraction and were analyzed by gas chromatography time-of-flight mass spectrometry. Nine putative volatile biomarkers were identified as elevated in the lung cancer group. Receiver operating characteristic curve analysis was also performed, and the markers were found to be highly sensitive and specific. Next we used principal component analysis (PCA) modeling to make comparisons compare within the lung cancer group, and found that 2-pentanone may have utility in differentiating between adenocarcinoma and squamous cell carcinomas. PMID:22484930

  4. Marine Vibrio Species Produce the Volatile Organic Compound Acetone

    PubMed Central

    Nemecek-Marshall, M.; Wojciechowski, C.; Kuzma, J.; Silver, G. M.; Fall, R.

    1995-01-01

    While screening aerobic, heterotrophic marine bacteria for production of volatile organic compounds, we found that a group of isolates produced substantial amounts of acetone. Acetone production was confirmed by gas chromatography, gas chromatography-mass spectrometry, and high-performance liquid chromatography. The major acetone producers were identified as nonclinical Vibrio species. Acetone production was maximal in the stationary phase of growth and was stimulated by addition of l-leucine but not the other common amino acids, suggesting that leucine degradation leads to acetone formation. Acetone production by marine vibrios may contribute to the dissolved organic carbon associated with phytoplankton, and some of the acetone produced may be volatilized to the atmosphere. PMID:16534920

  5. Global inventory of volatile organic compound emissions from anthropogenic sources

    SciTech Connect

    Piccot, S.D.; Watson, J.J.; Jones, J.W.

    1992-01-01

    The paper discusses the development of a global inventory of anthropogenic volatile organic compound (VOC) emissions. It includes VOC estimates for seven classes of VOCs: paraffins, olefins, aromatics (benzene, toluene, xylene), formaldehyde, other aldehydes, other aromatics, and marginally reactive compounds. These classes represent general classes of VOC compounds that possess different chemical reactivities in the atmosphere. The inventory shows total global anthropogenic VOC emissions of about 110,000 Gg/yr, about 10% lower than global VOC inventories developed by other researchers. The study identifies the U.S. as the largest emitter (21% of the total global VOC), followed by the USSR, China, India, and Japan. Globally, fuel wood combustion and savanna burning were among the largest VOC emission sources, accounting for over 35% of the total global VOC emissions. The production and use of gasoline, refuse disposal activities, and organic chemical and rubber manufacturing were also found to be significant sources of global VOC emissions.

  6. Volatile organic compound emissions from Larrea tridentata (creosotebush)

    NASA Astrophysics Data System (ADS)

    Jardine, K.; Abrell, L.; Kurc, S. A.; Huxman, T.; Ortega, J.; Guenther, A.

    2010-12-01

    We present results from the CREosote ATmosphere Interactions through Volatile Emissions (CREATIVE 2009) field study in southern Arizona aimed at quantifying emission rates of VOCs from creosotebush (Larrea tridentata) during the summer 2009 monsoon season. This species was chosen because of its vast distribution in North and South American deserts and because its resins have been reported to contain a rich set of volatile organic compounds (VOC). While a variety of ecosystems have been investigated for VOC emissions, deserts remain essentially unstudied, partially because of their low biomass densities and water limitations. However, during the North American monsoon, a pronounced increase in rainfall from an extremely dry June (<5 mm precipitation) to a rainy July (>80 mm) occurs over large areas of the Sonoran desert in the southwestern United States and northwestern Mexico. We observed a strong diurnal pattern of branch emissions and ambient concentrations of an extensive suite of VOCs with maxima in early afternoon. These include VOCs typically observed in forest sites (oxygenated VOCs and volatile isoprenoids) as well as a large number of other compounds, some of which have not been previously described from any plant including 1-chloro-2-methoxy-benzene and isobutyronitrile. Although generally considered to be derived from anthropogenic sources, we observed emissions of aromatic compounds including benzene, and a broad range of phenolics. Dimethyl sulfide emissions from creosotebush were higher than reported from any previously studied plant suggesting that terrestrial ecosystems should be reconsidered as an important source of this climatically important gas. We also present direct, primary emission measurements of isoprene and its apparent oxidation products methyl vinyl ketone, methacrolein, and 3-methyl furan (the later three compounds are typically assumed to form from secondary reactions within the atmosphere), as well as a group of compounds considered

  7. Volatile organic compound emissions from Larrea tridentata (creosotebush)

    NASA Astrophysics Data System (ADS)

    Jardine, K.; Abrell, L.; Kurc, S. A.; Huxman, T.; Ortega, J.; Guenther, A.

    2010-07-01

    The emission of Volatile Organic Compounds (VOCs) from plants impacts both climate and air quality by fueling atmospheric chemistry and by contributing to aerosol particles. While a variety of ecosystems have been investigated for VOC emissions, deserts remain essentially unstudied, partially because of their low biomass densities and water limitations. However, during the North American monsoon, a pronounced increase in rainfall from an extremely dry June (<5 mm precipitation) to a rainy July (>80 mm) occurs over large areas of the Sonoran desert in the Southwestern United States and Northwestern Mexico. We present results from the CREosote ATmosphere Interactions through Volatile Emissions (CREATIVE 2009) field study in Southern Arizona aimed at quantifying emission rates of VOCs from creosotebush (Larrea tridentata) during the summer 2009 monsoon season. This species was chosen because of its vast distribution in North and South American deserts and because its resins have been reported to contain a rich set of VOCs. We observed a strong diurnal pattern with branch emissions and ambient concentrations of an extensive suite of VOCs with maxima in early afternoon. These include VOCs typically observed in forest sites (oxygenated VOCs and volatile isoprenoids) as well as a large number of other compounds, some of which have not been previously described from any plant including 1-chloro-2-methoxy-benzene and isobutyronitrile. Although generally considered to be derived from anthropogenic sources, we observed emissions of aromatic compounds including benzene, and a broad range of phenolics. Dimethyl sulfide emissions from creosotebush were higher than reported from any previously studied plant suggesting that terrestrial ecosystems should be reconsidered as an important source of this climatically important gas. We also present direct, primary emission measurements of isoprene and its apparent oxidation products methyl vinyl ketone, methacrolein, and 3-methyl furan

  8. Transport, behavior, and fate of volatile organic compounds in streams

    USGS Publications Warehouse

    Rathbun, R.E.

    2000-01-01

    Volatile organic compounds (VOCs) are compounds with chemical and physical properties that allow the compounds to move freely between the water and air phases of the environment. VOCs are widespread in the environment because of this mobility. Many VOCs have properties that make them suspected or known hazards to the health of humans and aquatic organisms. Consequently, understanding the processes affecting the concentration and distribution of VOCs in the environment is necessary. The transport, behavior, and fate of VOCs in streams are determined by combinations of chemical, physical, and biological processes. These processes are volatilization, absorption, wet and dry deposition, microbial degradation, sorption, hydrolysis, aquatic photolysis, oxidation, chemical reaction, biocon-centration, advection, and dispersion. The relative importance of each of these processes depends on the characteristics of the VOC and the stream. The U.S. Geological Survey National Water-Quality Assessment Program selected 55 VOCs for study. This article reviews the characteristics of the various processes that could affect the transport, behavior, and fate of these VOCs in streams.

  9. Airborne flux measurements of biogenic volatile organic compounds over California

    NASA Astrophysics Data System (ADS)

    Misztal, P. K.; Karl, T.; Weber, R.; Jonsson, H. H.; Guenther, A. B.; Goldstein, A. H.

    2014-03-01

    Biogenic Volatile Organic Compound (BVOC) fluxes were measured onboard the CIRPAS Twin Otter aircraft as part of the California Airborne BVOC Emission Research in Natural Ecosystem Transects (CABERNET) campaign during June 2011. The airborne virtual disjunct eddy covariance (AvDEC) approach used measurements from a PTR-MS and a wind radome probe to directly determine fluxes of isoprene, MVK + MAC, methanol, monoterpenes, and MBO over ∼10 000 km of flight paths focusing on areas of California predicted to have the largest emissions of isoprene. The Fast Fourier Transform (FFT) approach was used to calculate fluxes over long transects of more than 15 km, most commonly between 50 and 150 km. The Continuous Wavelet Transformation (CWT) approach was used over the same transects to also calculate "instantaneous" fluxes with localization of both frequency and time independent of non-stationarities. Vertical flux divergence of isoprene is expected due to its relatively short lifetime and was measured directly using "racetrack" profiles at multiple altitudes. It was found to be linear and in the range 5% to 30% depending on the ratio of aircraft altitude to PBL height (z / zi). Fluxes were generally measured by flying consistently at 400 ± 50 m (a.g.l.) altitude, and extrapolated to the surface according to the determined flux divergence. The wavelet-derived surface fluxes of isoprene averaged to 2 km spatial resolution showed good correspondence to Basal Emission Factor (BEF) landcover datasets used to drive biogenic VOC (BVOC) emission models. The surface flux of isoprene was close to zero over Central Valley crops and desert shrublands, but was very high (up to 15 mg m-2 h-1) above oak woodlands, with clear dependence of emissions on temperature and oak density. Isoprene concentrations of up to 8 ppb were observed at aircraft height on the hottest days and over the dominant source regions. While isoprene emissions from agricultural crop regions, shrublands, and

  10. Changes on physico-chemical properties, lipid oxidation and volatile compounds during the manufacture of celta dry-cured loin.

    PubMed

    Pateiro, M; Franco, D; Carril, J A; Lorenzo, J M

    2015-08-01

    The present study deals with the changes on the main technological characteristics and volatile compounds profile of a traditional Spanish dry-ripened loin from Celta pig breed. The evolution of physicochemical properties, colour, texture, free fatty acid profile and volatile compounds were assessed throughout the process seasoning, post-seasoning and after 30 and 60 days of dry-ripening. As it was expected, pH, moisture and activity water were significantly (P < 0.001) influenced by ripening time. Statistical analysis also displayed that colour parameters (lightness, L*; redness, a*; yellowness, b*) decreased significantly (P < 0.001) during the manufacturing process. On the other hand, lipid oxidation reached the highest levels at the end of process with mean values of 0.34 mg MDA/kg. Regarding total FFA, a significant (P < 0.001) increase was observed during the manufacturing process, being MUFA the most abundant at the end of process. Finally, sixty seven volatile compounds were identified during the manufacture of Celta dry-cured loin. At the end of process, volatile compounds from microbial activity were the most abundant followed by volatile compounds from lipid oxidation. PMID:26243901

  11. Apple fruit volatile compound dynamics during storage in low O2 or high CO2 atmospheres

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Long term controlled atmosphere (CA) storage of apples prolongs postharvest life and impacts fruit volatile compound production after fruit are removed from storage. As less is known regarding fruit volatile dynamics during storage, studies were conducted to characterize volatile compounds present ...

  12. Volatile organic compounds in the unsaturated zone from radioactive wastes.

    PubMed

    Baker, Ronald J; Andraski, Brian J; Stonestrom, David A; Luo, Wentai

    2012-01-01

    Volatile organic compounds (VOCs) are often comingled with low-level radioactive wastes (LLRW), but little is known about subsurface VOC emanations from LLRW landfills. The current study systematically quantified VOCs associated with LLRW over an 11-yr period at the USGS Amargosa Desert Research Site (ADRS) in southwestern Nevada. Unsaturated-zone gas samples of VOCs were collected by adsorption on resin cartridges and analyzed by thermal desorption and GC/MS. Sixty of 87 VOC method analytes were detected in the 110-m-thick unsaturated zone surrounding a LLRW disposal facility. Chlorofluorocarbons (CFCs) were detected in 100% of samples collected. Chlorofluorocarbons are powerful greenhouse gases, deplete stratospheric ozone, and are likely released from LLRW facilities worldwide. Soil-gas samples collected from a depth of 24 m and a horizontal distance 100 m south of the nearest waste-disposal trench contained >60,000 ppbv total VOCs, including >37,000 ppbv CFCs. Extensive sampling in the shallow unsaturated zone (0-2 m deep) identified areas where total VOC concentrations exceeded 5000 ppbv at the 1.5-m depth. Volatile organic compound concentrations exceeded background levels up to 300 m from the facility. Maximum vertical diffusive fluxes of total VOCs were estimated to be 1 g m yr. Volatile organic compound distributions were similar but not identical to those previously determined for tritium and elemental mercury. To our knowledge, this study is the first to characterize the unsaturated zone distribution of VOCs emanating from a LLRW landfill. Our results may help explain anomalous transport of radionuclides at the ADRS and elsewhere. PMID:22751077

  13. MEASUREMENTS OF NON-METHANE VOLATILE ORGANIC COMPOUNDS IN THE LOWER TROPOSPHERE FROM TETHERED BALLOON AND KITE SAMPLING PLATFORMS BY INTERNAL STANDARD CALIBRATION USING AMBIENT CFC REFERENCE COMPOUNDS

    EPA Science Inventory

    A new analytical approach for the sampling and analysis of volatile organic compounds (VOCs) from sampling platforms used in the vertical profiling of the lower troposphere, such as kites, balloons, and remotely piloted vehicles will be developed. These sampling platforms a...

  14. An indirect assay for volatile compound production in yeast strains

    PubMed Central

    Ravasio, Davide; Walther, Andrea; Trost, Kajetan; Vrhovsek, Urska; Wendland, Jürgen

    2014-01-01

    Traditional flavor analysis relies on gas chromatography coupled to mass spectrometry (GC-MS) methods. Here we describe an indirect method coupling volatile compound formation to an ARO9-promoter-LacZ reporter gene. The resulting β-galactosidase activity correlated well with headspace solid phase micro extraction (HS/SPME) GC-MS data, particularly with respect to the formation of rose flavor. This tool enables large-scale screening of yeast strains and their progeny to identify the most flavor active strains. PMID:24424137

  15. Multisorbent tubes for collecting volatile organic compounds in spacecraft air

    NASA Technical Reports Server (NTRS)

    Matney, M. L.; Beck, S. W.; Limero, T. F.; James, J. T.

    2000-01-01

    The sampling capability of Tenax-TA tubes, used in the National Aeronautics and Space Administration's solid sorbent air sampler to trap and concentrate contaminants from air aboard spacecraft, was improved by incorporating two sorbents within the tubes. Existing tubes containing only Tenax-TA allowed highly volatile compounds to "break through" during collection of a 1.5 L air sample. First the carbon molecular sieve-type sorbents Carboxen 569 and Carbosieve S-III were tested for their ability to quantitatively trap the highly volatile compounds. Breakthrough volumes were determined with the direct method, whereby low ppm levels of methanol or Freon 12 in nitrogen were flowed through the sorbent tubes at 30 mL/min, and breakthrough was detected by gas chromatography. Breakthrough volumes for methanol were about 9 L/g on Carboxen 569 and 11 L/g on Carbosieve S-III; breakthrough volumes for Freon 12 were about 7 L/g on Carboxen 569 and > 26 L/g on Carbosieve S-III. Next, dual-bed tubes containing either Tenax-TA/Carbosieve S-III, Tenax-TA/Carboxen 569, or Carbotrap/Carboxen 569 to a 10-component gas mixture were exposed, in dry and in humidified air (50% relative humidity), and percentage recoveries of each compound were determined. The Tenax-TA/Carboxen 569 combination gave the best overall recoveries (75-114% for the 10 compounds). Acetaldehyde had the lowest recovery (75%) of the 10 compounds, but this value was still an improvement over either the other two sorbent combinations or the original single-sorbent tubes.

  16. Biocide effects of volatile organic compounds produced by potential biocontrol rhizobacteria on Sclerotinia sclerotiorum

    PubMed Central

    Giorgio, Annalisa; De Stradis, Angelo; Lo Cantore, Pietro; Iacobellis, Nicola S.

    2015-01-01

    Six rhizobacteria isolated from common bean and able to protect bean plants from the common bacterial blight (CBB) causal agent, were in vitro evaluated for their potential antifungal effects toward different plant pathogenic fungi, mostly soil-borne. By dual culture assays, the above bacteria resulted producing diffusible and volatile metabolites which inhibited the growth of the majority of the pathogens under study. In particular, the latter substances highly affected the mycelium growth of Sclerotinia sclerotiorum strains, one of which was selected for further studies either on mycelium or sclerotia. Gas chromatographic analysis of the bacterial volatiles led to the identification of an array of volatile organic compounds (VOCs). Time course studies showed the modification of the VOCs profile along a period of 5 days. In order to evaluate the single detected VOC effects on fungal growth, some of the pure compounds were tested on S. sclerotiorum mycelium and their minimal inhibitory quantities were determined. Similarly, the minimal inhibitory quantities on sclerotia germination were also defined. Moreover, observations by light and transmission electron microscopes highlighted hyphae cytoplasm granulation and ultrastructural alterations at cell organelles, mostly membranes, mitochondria, and endoplasmic reticulum. The membranes appeared one of the primary targets of bacterial volatiles, as confirmed by hemolytic activity observed for the majority of pure VOCs. However, of interest is the alteration observed on mitochondria as well. PMID:26500617

  17. Biocide effects of volatile organic compounds produced by potential biocontrol rhizobacteria on Sclerotinia sclerotiorum.

    PubMed

    Giorgio, Annalisa; De Stradis, Angelo; Lo Cantore, Pietro; Iacobellis, Nicola S

    2015-01-01

    Six rhizobacteria isolated from common bean and able to protect bean plants from the common bacterial blight (CBB) causal agent, were in vitro evaluated for their potential antifungal effects toward different plant pathogenic fungi, mostly soil-borne. By dual culture assays, the above bacteria resulted producing diffusible and volatile metabolites which inhibited the growth of the majority of the pathogens under study. In particular, the latter substances highly affected the mycelium growth of Sclerotinia sclerotiorum strains, one of which was selected for further studies either on mycelium or sclerotia. Gas chromatographic analysis of the bacterial volatiles led to the identification of an array of volatile organic compounds (VOCs). Time course studies showed the modification of the VOCs profile along a period of 5 days. In order to evaluate the single detected VOC effects on fungal growth, some of the pure compounds were tested on S. sclerotiorum mycelium and their minimal inhibitory quantities were determined. Similarly, the minimal inhibitory quantities on sclerotia germination were also defined. Moreover, observations by light and transmission electron microscopes highlighted hyphae cytoplasm granulation and ultrastructural alterations at cell organelles, mostly membranes, mitochondria, and endoplasmic reticulum. The membranes appeared one of the primary targets of bacterial volatiles, as confirmed by hemolytic activity observed for the majority of pure VOCs. However, of interest is the alteration observed on mitochondria as well. PMID:26500617

  18. Emission of volatile organic compounds from silage: compounds, sources, and implications

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Silage, fermented cattle feed, has recently been identified as a significant source of volatile organic compounds (VOCs) emitted to the atmosphere. A small number of studies have measured VOC emission from silage, but not enough is known about the processes involved to accurately quantify emission r...

  19. Online measurements of the emissions of intermediate-volatility and semi-volatile organic compounds from aircraft

    NASA Astrophysics Data System (ADS)

    Cross, E. S.; Hunter, J. F.; Carrasquillo, A. J.; Franklin, J. P.; Herndon, S. C.; Jayne, J. T.; Worsnop, D. R.; Miake-Lye, R. C.; Kroll, J. H.

    2013-03-01

    A detailed understanding of the climate and air quality impacts of aviation requires detailed measurements of the emissions of intermediate-volatility and semi-volatile organic compounds (I/SVOCs) from aircraft. Currently both the amount and chemical composition of aircraft I/SVOC emissions remain poorly characterized. Here we characterize I/SVOC emissions from aircraft, using a novel instrument for the online, quantitative measurement of the mass loading and composition of low-volatility organic vapors. Emissions from the NASA DC8 aircraft were sampled on the ground, 143 m downwind of the engines and characterized as a function of engine power from ground idle (~4% maximum rated thrust) through 85% power. Results show that I/SVOC emissions are highest during engine-idle operating conditions, with decreasing but non-zero I/SVOC emissions at higher engine powers. Comparison of I/SVOC emissions with total hydrocarbon (THC) measurements, VOC measurements, and an established emissions profile indicates that I/SVOCs comprise 10-20% of the total organic gas phase emissions at idle, and an increasing fraction of the total gas phase organic emissions at higher powers. Positive matrix factorization of online mass spectra is used to identify three distinct types of I/SVOC emissions: aliphatic, aromatic and oxygenated. The volatility and chemical composition of the emissions suggest that unburned fuel is the dominant source of I/SVOCs at idle, while pyrolysis products make up an increasing fraction of the I/SVOCs at higher powers. Oxygenated I/SVOC emissions were detected at lower engine powers (≤30%) and may be linked to cracked, partially oxidized or unburned fuel components.

  20. Online measurements of the emissions of intermediate-volatility and semi-volatile organic compounds from aircraft

    NASA Astrophysics Data System (ADS)

    Cross, E. S.; Hunter, J. F.; Carrasquillo, A. J.; Franklin, J. P.; Herndon, S. C.; Jayne, J. T.; Worsnop, D. R.; Miake-Lye, R. C.; Kroll, J. H.

    2013-08-01

    A detailed understanding of the climate and air quality impacts of aviation requires measurements of the emissions of intermediate-volatility and semi-volatile organic compounds (I/SVOCs) from aircraft. Currently both the amount and chemical composition of aircraft I/SVOC emissions remain poorly characterized. Here we characterize I/SVOC emissions from aircraft, using a novel instrument for the online, quantitative measurement of the mass loading and composition of low-volatility organic vapors. Emissions from the NASA DC8 aircraft were sampled on the ground 143 m downwind of the engines and characterized as a function of engine power from idle (4% maximum rated thrust) through 85% power. Results show that I/SVOC emissions are highest during engine idle operating conditions, with decreasing but non-zero I/SVOC emissions at higher engine powers. Comparison of I/SVOC emissions with total hydrocarbon (THC) measurements, VOC measurements, and an established emissions profile indicates that I/SVOCs comprise 10-20% of the total organic gas-phase emissions at idle, and an increasing fraction of the total gas-phase organic emissions at higher powers. Positive matrix factorization of online mass spectra is used to identify three distinct types of I/SVOC emissions: aliphatic, aromatic and oxygenated. The volatility and chemical composition of the emissions suggest that unburned fuel is the dominant source of I/SVOCs at idle, while pyrolysis products make up an increasing fraction of the I/SVOCs at higher powers. Oxygenated I/SVOC emissions were detected at lower engine powers (≤30%) and may be linked to cracked, partially oxidized or unburned fuel components.

  1. SOURCE APPORTIONMENT OF EXPOSURES TO VOLATILE ORGANIC COMPOUNDS: I. EVALUATION OF RECEPTOR MODELS USING SIMULATED EXPOSURE DATA. (R826788)

    EPA Science Inventory

    Four receptor-oriented source apportionment models were evaluated by applying them to simulated personal exposure data for select volatile organic compounds (VOCs) that were generated by Monte Carlo sampling from known source contributions and profiles. The exposure sources mo...

  2. Formation of highly oxidized multifunctional organic compounds from anthropogenic volatile organic compounds

    NASA Astrophysics Data System (ADS)

    Molteni, Ugo; Baltensperger, Urs; Bianchi, Federico; Dommen, Josef; El Haddad, Imad; Frege, Carla; Klein, Felix; Rossi, Michel

    2016-04-01

    Recent studies have shown that highly oxidized multifunctional organic compounds (HOMs) from biogenic volatile organic compounds are important for new particle formation and early particle growth (e.g., Ehn et al., 2014). The formation mechanism has extensively been studied for biogenic precursors like alpha-pinene and was shown to proceed through an initial reaction with either OH radicals or ozone followed by radical propagation in a mechanism that involves O2 attack and hydrogen abstraction (Crounse et al., 2013). While the same processes can be expected for anthropogenic volatile organic compounds (AVOC), few studies have investigated these so far. Here we present the formation of HOMs from a variety of aromatic compounds after reaction with OH. All the compounds analyzed show HOM formation. AVOC could therefore play an important role in new particle formation events that have been detected in urban areas. References Crounse, J.D. et al., Autoxidation of organic compounds in the atmosphere. J. Phys.Chem. Lett. 4, 3513-3520 (2013). Ehn, M., et al. A large source of low-volatility secondary organic aerosol, Nature 506, 476-479 (2014).

  3. Volatile and semi-volatile organic compounds of respiratory health relevance in French dwellings.

    PubMed

    Dallongeville, A; Costet, N; Zmirou-Navier, D; Le Bot, B; Chevrier, C; Deguen, S; Annesi-Maesano, I; Blanchard, O

    2016-06-01

    Over the last decades, the prevalence of childhood respiratory conditions has dramatically increased worldwide. Considering the time spent in enclosed spaces, indoor air pollutants are of major interest to explain part of this increase. This study aimed to measure the concentrations of pollutants known or suspected to affect respiratory health that are present in dwellings in order to assess children's exposure. Measurements were taken in 150 homes with at least one child, in Brittany (western France), to assess the concentrations of 18 volatile organic compounds (among which four aldehydes and four trihalomethanes) and nine semi-volatile organic compounds (seven phthalates and two synthetic musks). In addition to descriptive statistics, a principal component analysis (PCA) was used to investigate grouping of contaminants. Formaldehyde was highly present and above 30 μg/m(3) in 40% of the homes. Diethyl phthalate, diisobutyl phthalate, and dimethylphthalate were quantified in all dwellings, as well as Galaxolide and Tonalide. For each chemical family, the groups appearing in the PCA could be interpreted in term of sources. The high prevalence and the levels of these compounds, with known or suspected respiratory toxicity, should question regulatory agencies to trigger prevention and mitigation actions. PMID:26010323

  4. Identification and Quantification of Volatile Organic Compounds at a Dairy

    NASA Astrophysics Data System (ADS)

    Filipy, J.; Mount, G.; Westberg, H.; Rumburg, B.

    2003-12-01

    Livestock operations in the United States are an escalating environmental concern. The increasing density of livestock within a farm results in an increased emission of odorous gases, which have gained considerable attention by the public in recent years (National Research Council (NRC), 2002). Odorous compounds such as ammonia (NH3), volatile organic compounds (VOC's), and hydrogen sulfide (H2S) were reported to have a major effect on the quality of life of local residents living near livestock facilities (NRC, 2002). There has been little data collected related to identification and quantification of gaseous compounds collected from open stall dairy operations in the United States. The research to be presented identifies and quantifies VOCs produced from a dairy operation that contribute to odor and other air quality problems. Many different VOCs were identified in the air downwind of an open lactating cow stall area and near a waste lagoon at the Washington State University dairy using Gas Chromatography Mass Spectroscopy (GC-MS) analysis techniques. Identified compounds were very diverse and included many alcohols, aldehydes, amines, aromatics, esters, ethers, a fixed gas, halogenated hydrocarbons, hydrocarbons, ketones, other nitrogen containing compounds, sulfur containing compounds, and terpenes. The VOCs directly associated with cattle waste were dependent on ambient temperature, with the highest emissions produced during the summer months. Low to moderate wind speeds were ideal for VOC collection. Concentrations of quantified compounds were mostly below odor detection thresholds found in the literature, however the combined odor magnitude of the large number of compounds detected was most likely above any minimum detection threshold.

  5. Photocatalytic destruction of volatile organic compounds in water. Master's thesis

    SciTech Connect

    Oluic, S.

    1991-12-10

    Ground water at the Anniston Army Depot in Anniston, Alabama has been found to be contaminated with volatile organic compounds. Recent research has indicated that advanced oxidation processes, namely hydrogen peroxide catalyzed by ultraviolet light radiation, can be successful in destroying these contaminants. In this process hydrogen peroxide is decomposed by ultraviolet radiation producing hydroxyl free radicals which in turn oxidize the organic compounds present. A series of batch tests and flow through experiments using this oxidation process was performed on a synthetic wastewater that closely duplicated contaminant concentration levels found at Anniston. These contaminants, 1,2 dichloroethene, trichloroethene, dichloromethane and benzene, were found readily destructed by the UV/H2O2 process both individually and in mixtures during batch testing and in flow-through experiments. All experimentation was performed utilizing a thin film reactor.

  6. Challenges and solutions for biofiltration of hydrophobic volatile organic compounds.

    PubMed

    Cheng, Yan; He, Huijun; Yang, Chunping; Zeng, Guangming; Li, Xiang; Chen, Hong; Yu, Guanlong

    2016-11-01

    Volatile organic compounds (VOCs) emitted to the environment highly probably result in ecological and health risks. Many biotechnologies for waste gases containing hydrophobic VOCs have been developed in recent years. However, these biological processes usually exhibit poor removal performances for hydrophobic VOCs due to the low bioavailability. This review presents an overview of enhanced removal of hydrophobic VOCs in biofilters. Mechanisms and problems relevant to the biological removal of hydrophobic VOCs are reviewed, and then solutions including the addition of surfactants, application of fungal biocatalysts, biofiltration with pretreatment, innovative bioreactors and utilization of hydrophilic compounds are discussed in detail. Future research needs are also proposed. This review provides new insights into hydrophobic VOC removal by biofiltration. PMID:27374790

  7. Comparison of the Profile and Composition of Volatiles in Coniferous Needles According to Extraction Methods.

    PubMed

    Jun, Yonjin; Lee, Sang Mi; Ju, Hyun Kyoung; Lee, Hong Jin; Choi, Hyung-Kyoon; Jo, Gyeong Suk; Kim, Young-Suk

    2016-01-01

    The enantiomeric distribution and profile of volatiles in plants, which affect the biological and organoleptic properties, can be varied depending on extraction methods as well as their cultivars. The secondary volatile components of the needles of three conifer cultivars (Chamaecyparispisifera, Chamaecyparisobtusa, and Thujaorientalis) were compared. Furthermore, the effects of three different extraction methods--solid-phase microextraction (SPME), steam distillation (SD), and solvent extraction (SE)--on the composition and enantiomeric distribution of those volatiles were elucidated. Monoterpene hydrocarbons predominated in all samples, and the compositions of sesquiterpenes and diterpenes differed according to the cultivar. In particular, the yields of oxygenated monoterpenes and sesquiterpenes were greatest for SD, whereas those of sesquiterpenes and diterpenes were highest for SE. On the other hand, more monoterpenes with higher volatility could be obtained with SPME and SD than when using SE. In addition, the enantiomeric composition of nine chiral compounds found in three cultivars differed according to their chemotype. There were also some differences in the yielded oxygenated monoterpenes and sesquiterpene hydrocarbons, but not monoterpene hydrocarbons, according to the extraction method. These results demonstrate that the extraction methods used as well as the cultivars influence the measured volatile profiles and enantiomeric distribution of coniferous needle extracts. PMID:26999095

  8. Volatile compounds of raspberry fruit: from analytical methods to biological role and sensory impact.

    PubMed

    Aprea, Eugenio; Biasioli, Franco; Gasperi, Flavia

    2015-01-01

    Volatile compounds play a key role in the formation of the well-recognized and widely appreciated raspberry aroma. Studies on the isolation and identification of volatile compounds in raspberry fruit (Rubus idaeus L.) are reviewed with a focus on aroma-related compounds. A table is drawn up containing a comprehensive list of the volatile compounds identified so far in raspberry along with main references and quantitative data where available. Two additional tables report the glycosidic bond and enantiomeric distributions of the volatile compounds investigated up to now in raspberry fruit. Studies on the development and evolution of volatile compounds during fruit formation, ripening and senescence, and genetic and environmental influences are also reviewed. Recent investigations showing the potential role of raspberry volatile compounds in cultivar differentiation and fruit resistance to mold disease are reported as well. Finally a summary of research done so far and our vision for future research lines are reported. PMID:25647579

  9. Oceanic Emissions and Atmospheric Depositions of Volatile Organic Compounds

    NASA Astrophysics Data System (ADS)

    Yang, M.; Blomquist, B.; Beale, R.; Nightingale, P. D.; Liss, P. S.

    2015-12-01

    Atmospheric volatile organic compounds (VOCs) affect the tropospheric oxidative capacity due to their ubiquitous abundance and relatively high reactivity towards the hydroxyal radical. Over the ocean and away from terrestrial emission sources, oxygenated volatile organic compounds (OVOCs) make up a large fraction of VOCs as airmasses age and become more oxidized. In addition to being produced or destroyed in the marine atmosphere, OVOCs can also be emitted from or deposited to the surface ocean. Here we first present direct air-sea flux measurements of three of the most abundant OVOCs - methanol, acetone, and acetaldehyde, by the eddy covariance technique from two cruises in the Atlantic: the Atlantic Meridional Transect in 2012 and the High Wind Gas Exchange Study in 2013. The OVOC mixing ratios were quantified by a high resolution proton-reaction-transfer mass spectrometer with isotopically labeled standards and their air-sea (net) fluxes were derived from the eddy covariance technique. Net methanol flux was consistently from the atmosphere to the surface ocean, while acetone varied from supersaturation (emission) in the subtropics to undersaturation (deposition) in the higher latitudes of the North Atlantic. The net air-sea flux of acetaldehyde is near zero through out the Atlantic despite the apparent supersaturation of this compound in the surface ocean. Knowing the dissolved concentrations and in situ production rates of these compounds in seawater, we then estimate their bulk atmospheric depositions and oceanic emissions. Lastly, we summarize the state of knowledge on the air-sea transport of a number of organic gasses, and postulate the magnitude and environmental impact of total organic carbon transfer between the ocean and the atmosphere.

  10. Volatile halocarbon compounds in process water and processed foods

    SciTech Connect

    Uhler, A.D.; Diachenko, G.W.

    1987-10-01

    Volatile halocarbon compounds (VHCs) of low molecular weight are among the most abundant man-made industrial chemicals in the United States. Because of the physical properties of these compounds, in particular their high volatility, they are ubiquitous environmental contaminants. The Environmental Protection Agency (EPA) has detected numerous VHCs in ground water and finished drinking water. The Food and Drug Administration's (FDA's) Division of Contaminants Chemistry, as well as other laboratories, have detected VHCs in foods. These findings of VHCs in foods, coupled with their frequent detection in ground waters, suggested that food contamination by VHCs could be occurring via polluted process waters. The objectives of this investigation were to determine if VHC contamination of food through contact with contaminated process water was widespread, and to ascertain the levels of contamination. The problem was addressed by collecting and analyzing process water and foods from processing plants situated in areas where contamination of the process water was most probable. Recent data from EPA were used to select food processing plants most likely to use VHC-contaminated process water. Processing plants were chosen for study only if they produced a high-fat content food that came in contact with water during processing, or produced a product that contained a high percentage of added water. Findings are reported here in process water and food product analysis from 15 food processing plants located in 9 different states (CA, FL, IL, MA, MI, NY, OH, PA, WI), representing a total of 39 food products.

  11. Diagnosing gastrointestinal illnesses using fecal headspace volatile organic compounds.

    PubMed

    Chan, Daniel K; Leggett, Cadman L; Wang, Kenneth K

    2016-01-28

    Volatile organic compounds (VOCs) emitted from stool are the components of the smell of stool representing the end products of microbial activity and metabolism that can be used to diagnose disease. Despite the abundance of hydrogen, carbon dioxide, and methane that have already been identified in human flatus, the small portion of trace gases making up the VOCs emitted from stool include organic acids, alcohols, esters, heterocyclic compounds, aldehydes, ketones, and alkanes, among others. These are the gases that vary among individuals in sickness and in health, in dietary changes, and in gut microbial activity. Electronic nose devices are analytical and pattern recognition platforms that can utilize mass spectrometry or electrochemical sensors to detect these VOCs in gas samples. When paired with machine-learning and pattern recognition algorithms, this can identify patterns of VOCs, and thus patterns of smell, that can be used to identify disease states. In this review, we provide a clinical background of VOC identification, electronic nose development, and review gastroenterology applications toward diagnosing disease by the volatile headspace analysis of stool. PMID:26819529

  12. Evaporation of volatile organic compounds from human skin in vitro.

    PubMed

    Gajjar, Rachna M; Miller, Matthew A; Kasting, Gerald B

    2013-08-01

    The specific evaporation rates of 21 volatile organic compounds (VOCs) from either human skin or a glass substrate mounted in modified Franz diffusion cells were determined gravimetrically. The diffusion cells were positioned either on a laboratory bench top or in a controlled position in a fume hood, simulating indoor and outdoor environments, respectively. A data set of 54 observations (34 skin and 20 glass) was assembled and subjected to a correlation analysis employing 5 evaporative mass transfer relationships drawn from the literature. Models developed by Nielsen et al. (Prediction of isothermal evaporation rates of pure volatile organic compounds in occupational environments: a theoretical approach based on laminar boundary layer theory. Ann Occup Hyg 1995;39:497-511.) and the U.S. Environmental Protection Agency (Peress, Estimate evaporative losses from spills. Chem Eng Prog 2003; April: 32-34.) were found to be the most effective at correlating observed and calculated evaporation rates under the various conditions. The U.S. EPA model was selected for further use based on its simplicity. This is a turbulent flow model based only on vapor pressure and molecular weight of the VOC and the effective air flow rate u. Optimum values of u for the two laboratory environments studied were 0.23 m s(-1) (bench top) and 0.92 m s(-1) (fume hood). PMID:23609116

  13. Diagnosing gastrointestinal illnesses using fecal headspace volatile organic compounds

    PubMed Central

    Chan, Daniel K; Leggett, Cadman L; Wang, Kenneth K

    2016-01-01

    Volatile organic compounds (VOCs) emitted from stool are the components of the smell of stool representing the end products of microbial activity and metabolism that can be used to diagnose disease. Despite the abundance of hydrogen, carbon dioxide, and methane that have already been identified in human flatus, the small portion of trace gases making up the VOCs emitted from stool include organic acids, alcohols, esters, heterocyclic compounds, aldehydes, ketones, and alkanes, among others. These are the gases that vary among individuals in sickness and in health, in dietary changes, and in gut microbial activity. Electronic nose devices are analytical and pattern recognition platforms that can utilize mass spectrometry or electrochemical sensors to detect these VOCs in gas samples. When paired with machine-learning and pattern recognition algorithms, this can identify patterns of VOCs, and thus patterns of smell, that can be used to identify disease states. In this review, we provide a clinical background of VOC identification, electronic nose development, and review gastroenterology applications toward diagnosing disease by the volatile headspace analysis of stool. PMID:26819529

  14. Anti-Salmonella Activity of Volatile Compounds of Vietnam Coriander.

    PubMed

    Fujita, Ken-Ichi; Chavasiri, Warinthorn; Kubo, Isao

    2015-07-01

    Essential oil derived from the fresh leaves of Polygonum odoratum Lour was tested for their effects on a foodborne bacterium Salmonella choleraesuis subsp. choleraesuis ATCC 35640 using a broth dilution method. This essential oil showed a significant antibacterial activity against S. choleraesuis at the concentration of 200 µg/mL. Twenty-five volatile compounds were characterized from this essential oil by GC-MS, and aldehyde compounds were found abundant and accounted for more than three-fourths of the essential oil. Among the compounds characterized, dodecanal (C12 ) was the most abundant (55.5%), followed by decanal (C10 ) (11.6%). Both alkanals were effective against S. choleraesuis with the minimum growth inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) values of 100 µg/mL. The most potent antibacterial activity against this bacterium was found with two minor compounds, dodecanol (lauryl alcohol) and 2E-dodecenal, both with each MBC of 6.25 µg/mL. Their primary antibacterial action against S. choleraesuis provably comes from their ability to function as nonionic surface-active agents (surfactants), disrupting the native function of integral membrane proteins nonspecifically. Thus, the antibacterial activity is mediated by biophysical processes. In the case of 2E-alkenals, a biochemical mechanism is also somewhat involved, depending on their alkyl chain length. PMID:25870012

  15. Screening of ground water samples for volatile organic compounds using a portable gas chromatograph

    USGS Publications Warehouse

    Buchmiller, R.C.

    1989-01-01

    A portable gas chromatograph was used to screen 32 ground water samples for volatile organic compounds. Seven screened samples were positive; four of the seven samples had volatile organic substances identified by second-column confirmation. Four of the seven positive, screened samples also tested positive in laboratory analyses of duplicate samples. No volatile organic compounds were detected in laboratory analyses of samples that headspace screening indicated to be negative. Samples that contained volatile organic compounds, as identified by laboratory analysis, and that contained a volatile organic compound present in a standard of selected compounds were correctly identified by using the portable gas chromatography. Comparisons of screened-sample data with laboratory data indicate the ability to detect selected volatile organic compounds at concentrations of about 1 microgram per liter in the headspace of water samples by use of a portable gas chromatography. -Author

  16. Qualitative analysis of volatile organic compounds on biochar.

    PubMed

    Spokas, Kurt A; Novak, Jeffrey M; Stewart, Catherine E; Cantrell, Keri B; Uchimiya, Minori; Dusaire, Martin G; Ro, Kyoung S

    2011-10-01

    Qualitative identification of sorbed volatile organic compounds (VOCs) on biochar was conducted by headspace thermal desorption coupled to capillary gas chromatographic-mass spectrometry. VOCs may have a mechanistic role influencing plant and microbial responses to biochar amendments, since VOCs can directly inhibit/stimulate microbial and plant processes. Over 70 biochars encompassing a variety of parent feedstocks and manufacturing processes were evaluated and were observed to possess diverse sorbed VOC composition. There were over 140 individual chemical compounds thermally desorbed from some biochars, with hydrothermal carbonization (HTC) and fast pyrolysis biochars typically possessing the greatest number of sorbed volatiles. In contrast, gasification, thermal or chemical processed biochars, soil kiln mound, and open pit biochars possessed low to non-detectable levels of VOCs. Slow pyrolysis biochars were highly variable in terms of their sorbed VOC content. There were no clear feedstock dependencies to the sorbed VOC composition, suggesting a stronger linkage with biochar production conditions coupled to post-production handling and processing. Lower pyrolytic temperatures (⩽350°C) produced biochars with sorbed VOCs consisting of short carbon chain aldehydes, furans and ketones; elevated temperature biochars (>350°C) typically were dominated by sorbed aromatic compounds and longer carbon chain hydrocarbons. The presence of oxygen during pyrolysis also reduced sorbed VOCs. These compositional results suggest that sorbed VOCs are highly variable and that their chemical dissimilarity could play a role in the wide variety of plant and soil microbial responses to biochar soil amendment noted in the literature. This variability in VOC composition may argue for VOC characterization before land application to predict possible agroecosystem effects. PMID:21788060

  17. Polyphenols and Volatile Compounds in Commercial Chokeberry (Aronia melanocarpa) Products.

    PubMed

    Romani, Annalisa; Vignolini, Pamela; Ieri, Francesca; Heimler, Daniela

    2016-01-01

    Aronia melanocarpa (Michx.) Elliott commercial products (dried fruit, juice and compote) were analyzed for their polyphenol content by chromatographic and spectrophotometric analyses in order to ascertain the fate of this group of compounds when fresh fruit is processed and sold in different forms on the market. Different classes of polyphenols were investigated: hydroxycinnamic derivatives ranged from 0.65 mg/g to 4.30 mg/g, flavonoids from 0.36 mg/g to 1.12 mg/g, and anthocyanins from 0.65 to 7.08 mg/g sample. 4-O-Caffeoyl-quinic acid was tentatively identified for the first time in Aronia. In order to characterize better chokeberry juice, a GC profile of aroma compounds was obtained. The aroma juice compounds belong mainly to the chemical classes of alcohols (48.9%) and ketones (30.28%). The most abundant compound is 3-penthen-2-one (23.6%). PMID:26996031

  18. Commuter exposure to volatile organic compounds under different driving conditions

    NASA Astrophysics Data System (ADS)

    Jo, Wan-Kuen; Park, Kun-Ho

    The driving conditions that were tested for the in-vehicle concentrations of selected volatile organic compounds (VOCs) included transport modes, fuel distributions, vehicle ventilation conditions, driving routes, commute seasons, car models, and driving periods. This study involved two sampling seasons (winter and summer). The in-auto/in-bus/fixed site ratio of the wintertime mean concentrations was about 6/3/1 for total VOCs and 8/3/1 for benzene. On the median, the in-auto/in-bus exposure ratio ranged from 1.5 to 2.8 for the morning commutes, and ranged from 2.4 to 4.5 for evening commutes, depending on the target compounds. The wintertime in-auto concentrations were significantly higher ( p<0.05), on the average 3-5 times higher, in a carbureted engine than in the three electronic fuel-injected cars. For the summertime in-auto concentrations of the target compounds except benzene, there were no significant differences between low and high ventilation conditions on the two urban routes. The urban in-auto benzene concentration was significantly higher ( p<0.05) under the low ventilation condition. For the rural commutes, the in-auto concentrations of all target compounds were significantly higher ( p<0.05) under the low ventilation condition. The in-auto VOC concentrations on the two urban routes did not differ significantly, and they were greater than the rural in-auto concentrations, with the differences being significant ( p<0.05) for all target compounds. The summertime in-auto concentrations of benzene and toluene were greater than the wintertime in-auto concentrations, with the difference being significant ( p<0.05), while the concentrations of the other target compounds were not significantly different between the two seasons. Neither car models nor driving periods influenced the in-auto VOC concentrations.

  19. Pervaporation investigation of recovery of volatile compounds from brown crab boiling juice.

    PubMed

    Martínez, Rodrigo; Sanz, M Teresa; Beltrán, Sagrario

    2014-10-01

    Pervaporation has been used to obtain aroma concentrates from brown crab boiling juice. The boiling juice and the obtained permeate have been analysed by Headspace Solid Phase Dynamic Extraction Gas Chromatography/Mass Spectrometry. The effect of feed temperature on the pervaporation performance of the membrane has been analysed. The permeate aroma profile, at 25 ℃ and 40 ℃, was different from that of the boiling juice. Enrichment factors for some of the volatile compounds were much lower than those obtained in model aqueous dilute solutions. Pervaporation performance can be significantly improved by modifying the permeant circuit to include two condensation stages. PMID:23897977

  20. Essential Oil Chemical Composition and Headspace Volatiles Profile of Achillea coarctata from Serbia.

    PubMed

    Kostevski, Ivana R; Petrović, Goran M; Stojanović, Gordana S; Stamenković, Jelena G; Zlatković, Bojan K

    2016-04-01

    This study reports the essential oil composition and headspace volatiles profile of Achillea coarctata Poir. from Serbia. The inflorescences, stems and leaves, and the aerial parts of A. coarctata were analyzed separately. Germacrene D, α-terpineol and 1,8-cineole were the main constituents of the aerial parts essential oil; 1,8-cineole, cis-cadin-4-en-7-ol and α-terpineol were the most dominant compounds in the inflorescence essential oil, while the most abundant components in the stem and leaf oil were germacrene D, cis-cadin-4-en-7-ol and ledol. The percentages of monoterpenoids and sesquiterpenoids in the aerial parts were the same, while there were differences in distribution of these compound classes in inflorescence and stem and leaf essential oils. The major components of the headspace volatiles were the same for aerial parts, inflorescence and stem and leaves: 1,8-cineole, β-pinene and α-pinene. PMID:27396214

  1. Volatile organic compounds in paper--an approach for identification of markers in aged books.

    PubMed

    Gaspar, Elvira M; Santana, José C; Lopes, João F; Diniz, Marcos B

    2010-05-01

    Volatile organic compounds emitted from historical books made from cotton/linen rag and wood pulp paper have been studied. Different profiles were obtained using different solid-phase microextraction (SPME) fibres to access the compounds involved in the decomposition reactions occurring in cotton/linen rag and wood pulp paper upon natural ageing and precocious/accelerated degradation. Contact headspace solid-phase extraction coupled with gas chromatography/time-of-flight mass spectrometry (GC-TOF-MS) was improved as a non-destructive methodology for the analysis of historical books. Potential markers of cellulose degradation-linear hydrocarbons, linear aldehydes, and 2-furfural-together with potential markers of cotton/linen rag paper (isopropylic esters) were identified. Chiral analysis (SPME-c-GC-TOF-MS) showed that only the enantiomer (S)-2-ethyl-1-hexanol is present as an emanation compound in both types of paper. Validation studies for a larger number of books are being done. PMID:20179913

  2. Volatile and intermediate volatility organic compounds in suburban Paris: variability, origin and importance for SOA formation

    NASA Astrophysics Data System (ADS)

    Ait-Helal, W.; Borbon, A.; Sauvage, S.; de Gouw, J. A.; Colomb, A.; Gros, V.; Freutel, F.; Crippa, M.; Afif, C.; Baltensperger, U.; Beekmann, M.; Doussin, J.-F.; Durand-Jolibois, R.; Fronval, I.; Grand, N.; Leonardis, T.; Lopez, M.; Michoud, V.; Miet, K.; Perrier, S.; Prévôt, A. S. H.; Schneider, J.; Siour, G.; Zapf, P.; Locoge, N.

    2014-10-01

    Measurements of gaseous and particulate organic carbon were performed during the MEGAPOLI experiments, in July 2009 and January-February 2010, at the SIRTA observatory in suburban Paris. Measurements comprise primary and secondary volatile organic compounds (VOCs), of both anthropogenic and biogenic origins, including C12-C16 n-alkanes of intermediate volatility (IVOCs), suspected to be efficient precursors of secondary organic aerosol (SOA). The time series of gaseous carbon are generally consistent with times series of particulate organic carbon at regional scale, and are clearly affected by meteorology and air mass origin. Concentration levels of anthropogenic VOCs in urban and suburban Paris were surprisingly low (2-963 ppt) compared to other megacities worldwide and to rural continental sites. Urban enhancement ratios of anthropogenic VOC pairs agree well between the urban and suburban Paris sites, showing the regional extent of anthropogenic sources of similar composition. Contrary to other primary anthropogenic VOCs (aromatics and alkanes), IVOCs showed lower concentrations in winter (< 5 ppt) compared to summer (13-27 ppt), which cannot be explained by the gas-particle partitioning theory. Higher concentrations of most oxygenated VOCs in winter (18-5984 ppt) suggest their dominant primary anthropogenic origin. The respective role of primary anthropogenic gaseous compounds in regional SOA formation was investigated by estimating the SOA mass concentration expected from the anthropogenic VOCs and IVOCs (I / VOCs) measured at SIRTA. From an integrated approach based on emission ratios and SOA yields, 38 % of the SOA measured at SIRTA is explained by the measured concentrations of I / VOCs, with a 2% contribution by C12-C16 n-alkane IVOCs. From the results of an alternative time-resolved approach, the average IVOC contribution to SOA formation is estimated to be 7%, which is half of the average contribution of the traditional aromatic compounds (15%). Both

  3. Flash pyrolysis of coal, coal maceral, and coal-derived pyrite with on-line characterization of volatile sulfur compounds

    USGS Publications Warehouse

    Chou, I.-Ming; Lake, M.A.; Griffin, R.A.

    1988-01-01

    A Pyroprobe flash pyrolysis-gas chromatograph equipped with a flame photometric detector was used to study volatile sulfur compounds produced during the thermal decomposition of Illinois coal, coal macerals and coal-derived pyrite. Maximum evolution of volatile organic sulfur compounds from all coal samples occurred at a temperature of approximately 700??C. At this temperature, the evolution of thiophene, its alkyl isomers, and short-chain dialkyl sulfide compounds relative to the evolution of benzothiophene and dibenzothiophene compounds was greater from coal high in organic sulfur than from coal low in organic sulfur. The variation in the evolution of sulfur compounds observed for three separate coal macerals (exinite, vitrinite, and inertinite) was similar to that observed for whole coal samples. However, the variation trend for the macerals was much more pronounced. Decomposition of coal-derived pyrite with the evolution of elemental sulfur was detected at a temperature greater than 700??C. The results of this study indicated that the gas chromotographic profile of the volatile sulfur compounds produced during flash pyrolysis of coals and coal macerals varied as a function of the amount of organic sulfur that occurred in the samples. Characterization of these volatile sulfur compounds provides a better understanding of the behavior of sulfur in coal during the thermolysis process, which could be incorporated in the design for coal cleaning using flash pyrolysis techniques. ?? 1988.

  4. Thermogenic respiratory processes drive the exponential increase of volatile organic compound emissions in Macrozamia cycad cones.

    PubMed

    Terry, L Irene; Roemer, Robert B; Booth, David T; Moore, Chris J; Walter, Gimme H

    2016-07-01

    An important outcome of plant thermogenesis is increased emissions of volatiles that mediate pollinator behaviour. We investigated whether the large increase in emissions, mainly the monoterpene ß-myrcene (>90%), during daily thermogenic events of Macrozamia macleayi and lucida cycad cones are due solely to the influence of high cone temperatures or are, instead, a result of increased respiratory rates during thermogenesis. We concurrently measured temperature, oxygen consumption and ß-myrcene emission profiles during thermogenesis of pollen cones under typical environmental temperatures and during experimental manipulations of cone temperatures and aerobic conditions, all in the dark. The exponential rise in ß-myrcene emissions never occurred without a prior, large increase in respiration, whereas an increase in cone temperature alone did not increase emissions. When respiration during thermogenesis was interrupted by anoxic conditions, ß-myrcene emissions decreased. The increased emission rates are not a result of increased cone temperature per se (through increased enzyme activity or volatilization of stored volatiles) but are dependent on biosynthetic pathways associated with increased respiration during thermogenesis that provide the carbon, energy (ATP) and reducing compounds (NADPH) required for ß-myrcene production through the methylerythritol phosphate (MEP) pathway. These findings establish the significant contribution of respiration to volatile production during thermogenesis. PMID:26924274

  5. Volatile compounds and antioxidative activity of Porophyllum tagetoides extracts.

    PubMed

    Jimenez, M; Guzman, A P; Azuara, E; Garcia, O; Mendoza, M R; Beristain, C I

    2012-03-01

    Porophyllum tagetoides is an annual warm-weather herb that has an intense typical smell. Its leaves are commonly used in soup preparation and traditional medicine for treatment of inflammatory diseases. Its volatile compounds and antioxidant properties were evaluated in crude, aqueous and ethanol leaf extract and an oil emulsion using different antioxidant assays in vitro, such as: DPPH radical scavenging activity, redox potential, polyphenol content, reducing power and optical density. A high antioxidative activity was found when comparing leaves with stems. The crude extract from leaves showed a very high reducing power (2.88 ± 0.20 O.D.) and DPPH radical-scavenging activity (54.63 ± 4.80%), in concordance with a major concentration of vitamin C (23.97 ± 0.36 mg/100 g). Instead, the highest polyphenol content (264.54 ± 2.17 mg GAE/g of sample) and redox potential (561.23 ± 0.15 mV) were found by the ethanol and aqueous extract, respectively. Aldehydes and terpenes such as nonanal, decanal, trans-pineno, β-myrcene and D-limonene were the major volatiles found. This study suggests that Porophyllum tagetoides extracts could be used as antioxidants. PMID:22318745

  6. Secondary organic aerosol from biogenic volatile organic compound mixtures

    NASA Astrophysics Data System (ADS)

    Hatfield, Meagan L.; Huff Hartz, Kara E.

    2011-04-01

    The secondary organic aerosol (SOA) yields from the ozonolysis of a Siberian fir needle oil (SFNO), a Canadian fir needle oil (CFNO), and several SOA precursor mixtures containing reactive and non-reactive volatile organic compounds (VOCs) were investigated. The use of precursor mixtures more completely describes the atmosphere where many VOCs exist. The addition of non-reactive VOCs such as bornyl acetate, camphene, and borneol had very little to no effect on SOA yields. The oxidation of VOC mixtures with VOC mass percentages similar to the SFNO produced SOA yields that became more similar to the SOA yield from SFNO as the complexity and concentration of VOCs within the mixture became more similar to overall SFNO composition. The SOA yield produced by the oxidation of CFNO was within the error of the SOA yield produced by the oxidation of SFNO at a similar VOC concentration. The SOA yields from SFNO were modeled using the volatility basis set (VBS), which predicts the SOA yields for a given mass concentration of mixtures containing similar VOCs.

  7. Methods in plant foliar volatile organic compounds research.

    PubMed

    Materić, Dušan; Bruhn, Dan; Turner, Claire; Morgan, Geraint; Mason, Nigel; Gauci, Vincent

    2015-12-01

    Plants are a major atmospheric source of volatile organic compounds (VOCs). These secondary metabolic products protect plants from high-temperature stress, mediate in plant-plant and plant-insect communication, and affect our climate globally. The main challenges in plant foliar VOC research are accurate sampling, the inherent reactivity of some VOC compounds that makes them hard to detect directly, and their low concentrations. Plant VOC research relies on analytical techniques for trace gas analysis, usually based on gas chromatography and soft chemical ionization mass spectrometry. Until now, these techniques (especially the latter one) have been developed and used primarily by physicists and analytical scientists, who have used them in a wide range of scientific research areas (e.g., aroma, disease biomarkers, hazardous compound detection, atmospheric chemistry). The interdisciplinary nature of plant foliar VOC research has recently attracted the attention of biologists, bringing them into the field of applied environmental analytical sciences. In this paper, we review the sampling methods and available analytical techniques used in plant foliar VOC research to provide a comprehensive resource that will allow biologists moving into the field to choose the most appropriate approach for their studies. PMID:26697273

  8. Modeling emissions of volatile organic compounds from new carpets

    NASA Astrophysics Data System (ADS)

    Little, John C.; Hodgson, Alfred T.; Gadgil, Ashok J.

    A simple model is proposed to account for observed emissions of volatile organic compounds (VOCs) from new carpets. The model assumes that the VOCs originate predominantly in a uniform slab of polymer backing material. Parameters for the model (the initial concentration of a VOC in the polymer, a diffusion coefficient and an equilibrium polymer/air partition coefficient) are obtained from experimental data produced by a previous chamber study. The diffusion coefficients generally decrease as the molecular weight of the VOCs increase, while the partition coefficients generally increase as the vapor pressure of the compounds decreases. In addition, for two of the study carpets that have a styrene-butadiene rubber (SBR) backing, the diffusion and partition coefficients are similar to independently reported values for SBR. The results suggest that prediction of VOC emissions from new carpets may be possible based solely on a knowledge of the physical properties of the relevant compounds and the carpet backing material. However, a more rigorous validation of the model is desirable.

  9. Catalytic oxidation of volatile organic compounds (VOCs) - A review

    NASA Astrophysics Data System (ADS)

    Kamal, Muhammad Shahzad; Razzak, Shaikh A.; Hossain, Mohammad M.

    2016-09-01

    Emission of volatile organic compounds (VOCs) is one of the major contributors to air pollution. The main sources of VOCs are petroleum refineries, fuel combustions, chemical industries, decomposition in the biosphere and biomass, pharmaceutical plants, automobile industries, textile manufacturers, solvents processes, cleaning products, printing presses, insulating materials, office supplies, printers etc. The most common VOCs are halogenated compounds, aldehydes, alcohols, ketones, aromatic compounds, and ethers. High concentrations of these VOCs can cause irritations, nausea, dizziness, and headaches. Some VOCs are also carcinogenic for both humans and animals. Therefore, it is crucial to minimize the emission of VOCs. Among the available technologies, the catalytic oxidation of VOCs is the most popular because of its versatility of handling a range of organic emissions under mild operating conditions. Due to that fact, there are numerous research initiatives focused on developing advanced technologies for the catalytic destruction of VOCs. This review discusses recent developments in catalytic systems for the destruction of VOCs. Review also describes various VOCs and their sources of emission, mechanisms of catalytic destruction, the causes of catalyst deactivation, and catalyst regeneration methods.

  10. Modeling Emissions of Volatile Organic Compounds from New Carpets

    SciTech Connect

    Little, J.C.; Hodgson, A.T.; Gadgil, A.J.

    1993-02-01

    A simple model is proposed to account for observed emissions of volatile organic compounds (VOCs) from new carpets. The model assumes that the VOCs originate predominantly in a uniform slab of polymer backing material. Parameters for the model (the initial concentration of a VOC in the polymer, a diffusion coefficient and an equilibrium polymer/air partition coefficient) are obtained from experimental data produced by a previous chamber study. The diffusion coefficients generally decrease as the molecular weight of the VOCs increase, while the polymer/air partition coefficients generally increase as the vapor pressure of the compounds decrease. In addition, for two of the study carpets that have a styrene-butadiene rubber (SBR) backing, the diffusion and partition coefficients are similar to independently reported values for SBR. The results suggest that predictions of VOCs emissions from new carpets may be possible based solely on a knowledge of the physical properties of the relevant compounds and the carpet backing material. However, a more rigorous validation of the model is desirable.

  11. Volatile organic compounds adsorption onto neat and hybrid bacterial cellulose

    NASA Astrophysics Data System (ADS)

    Ion, Violeta Alexandra; Pârvulescu, Oana Cristina; Dobre, Tănase

    2015-04-01

    Adsorption dynamics of VOCs (volatile organic compounds) vapour from air streams onto fixed bed adsorbent were measured and simulated under various operation conditions. Isopropanol (IPA) and n-hexane (HEX) were selected as representatives of polar and nonpolar VOCs, whereas bacterial cellulose (BC) and BC incorporated with magnetite nanoparticles (M/BC), were tested as adsorbents. An experimental study emphasizing the influence of air superficial velocity (0.7 cm/s and 1.7 cm/s), operation temperature (30 °C and 40 °C), adsorbate and adsorbent type, on fixed bed saturation curves was conducted. Optimal adsorption performances evaluated in terms of saturation adsorption capacity were obtained for the adsorption of polar compound (IPA) onto M/BC composite (0.805 g/g) and of nonpolar compound (HEX) onto neat BC (0.795 g/g), respectively, at high values of air velocity and operation temperature. A mathematical model including mass balance of VOC species, whose parameters were fitted based on experimental data, was developed in order to predict the fixed bed saturation curves. A 23 statistical model indicating a significant increase in adsorption performances with process temperature was validated under the experimental conditions.

  12. Aldol Condensation of Volatile Carbonyl Compounds in Acidic Aerosols

    NASA Astrophysics Data System (ADS)

    Noziere, B.; Esteve, W.

    2003-12-01

    Reactions of volatile organic compounds in acidic aerosols have been shown recently to be potentially important for organic aerosol formation and growth. Aldol condensation, the acid-catalyzed polymerization of carbonyl compounds, is a likely candidate to enhance the flux of organic matter from the gas phase to the condensed phase in the atmosphere. Until now these reactions have only been characterized for conditions relevant to synthesis (high acidities and liquid phase systems) and remote from atmospheric ones. In this work, the uptake of gas-phase acetone and 2,4\\-pentanedione by sulfuric acid solutions has been measured at room temperature using a Rotated Wetted Wall Reactor coupled to a Mass Spectrometer. The aldol condensation rate constants for 2,4\\-pentanedione measured so far for sulfuric acid solutions between 96 and 70 % wt. display a variation with acidity in agreement with what predicted in the organic chemical literature. The values of these constants, however, are much lower than expected for this compound, and comparable to the ones of acetone. Experiments are underway to complete this study to lower acidities and understand the discrepancies with the predicted reactivity.

  13. Methods in plant foliar volatile organic compounds research1

    PubMed Central

    Materić, Dušan; Bruhn, Dan; Turner, Claire; Morgan, Geraint; Mason, Nigel; Gauci, Vincent

    2015-01-01

    Plants are a major atmospheric source of volatile organic compounds (VOCs). These secondary metabolic products protect plants from high-temperature stress, mediate in plant–plant and plant–insect communication, and affect our climate globally. The main challenges in plant foliar VOC research are accurate sampling, the inherent reactivity of some VOC compounds that makes them hard to detect directly, and their low concentrations. Plant VOC research relies on analytical techniques for trace gas analysis, usually based on gas chromatography and soft chemical ionization mass spectrometry. Until now, these techniques (especially the latter one) have been developed and used primarily by physicists and analytical scientists, who have used them in a wide range of scientific research areas (e.g., aroma, disease biomarkers, hazardous compound detection, atmospheric chemistry). The interdisciplinary nature of plant foliar VOC research has recently attracted the attention of biologists, bringing them into the field of applied environmental analytical sciences. In this paper, we review the sampling methods and available analytical techniques used in plant foliar VOC research to provide a comprehensive resource that will allow biologists moving into the field to choose the most appropriate approach for their studies. PMID:26697273

  14. Identification and quantification of volatile organic compounds from a dairy

    NASA Astrophysics Data System (ADS)

    Filipy, Jenny; Rumburg, Brian; Mount, George; Westberg, Hal; Lamb, Brian

    Volatile organic compounds (VOCs) that contribute to odor and air quality problems have been identified from the Washington State University Knott Dairy Farm using gas chromatography-mass spectroscopy (GC-MS). Eighty-two VOCs were identified at a lactating cow open stall and 73 were detected from a slurry wastewater lagoon. These compounds included alcohols, aldehydes, ketones, esters, ethers, aromatic hydrocarbons, halogenated hydrocarbons, terpenes, other hydrocarbons, amines, other nitrogen containing compounds, and sulfur-containing compounds. The concentration of VOCs directly associated with cattle waste increased with ambient air temperature, with the highest concentrations present during the summer months. Concentrations of most detected compounds were below published odor detection thresholds. Emission rates of ethanol (1026±513 μg cow -1 s -1) and dimethyl sulfide (DMS) (13.8±10.3 μg cow -1 s -1) were measured from the lactating stall area using an atmospheric tracer method and concentrations were plotted using data over a 2-year period. Emission rates of acetone (3.03±0.85 ng cow -1 s -1), 2-butanone (145±35 ng cow -1 s -1), methyl isobutyl ketone (3.46±1.11 ng cow -1 s -1), 2-methyl-3-pentanone (25.1±8.0 ng cow -1 s -1), DMS (2.19±0.92 ng cow -1 s -1), and dimethyl disulfide (DMDS) (16.1±3.9 ng cow -1 s -1) were measured from the slurry waste lagoon using a laboratory emission chamber.

  15. Sorption of volatile organic compounds on typical carpet fibers.

    PubMed

    Elkilani, A S; Baker, C G J; Al-Shammari, Q H; Bouhamra, W S

    2003-08-01

    Measurements of adsorption isotherms for three volatile organic compounds (VOCs) (toluene, 1,2-dichlorobenzene and 1,1,1-trichloroethane) on polyacrylonitrile carpet fibers over the temperature range 25-45 degrees C were carried out in a thermogravimetric analyzer (TGA). Linear isotherms were observed in all cases with values of the Henry coefficient ranging from 0.063 to 0.941 mm. The results of additional experiments carried out in a simple test chamber containing a single source of VOC showed that the carpet fibers acted as a significant sink causing a prolonged elevation of VOC concentration in the air within the chamber. An unsteady-state model is presented, which adequately described the adsorption and desorption phenomena occurring in the test chamber and yielded realistic values of the adsorption and desorption rate constants. There was good agreement between the equilibrium and kinetic constants obtained in the TGA and test chamber experiments. PMID:12742400

  16. PDMS-coated fiber volatile organic compounds sensors.

    PubMed

    Ning, Xiangping; Yang, Jingyi; Zhao, Chun Liu; Chan, Chi Chiu

    2016-05-01

    The functionality of poly(dimethylsiloxane) (PDMS)-based interferometric fiber sensors for volatile organic compounds (VOCs) detection is investigated and experimentally demonstrated. Two interferometric configurations are considered in this work, namely Fabry-Perot (FP) and Sagnac interferometers (SI). Both sensors are functionalized with a thin layer of VOC-sensitive polymer: PDMS, whose degree of swelling varies as a function of VOC concentrations. This swelling effect will result in an optical path length and birefringence modulation for FP and SI sensors, respectively. In this paper, the two common VOCs, ethanol and 2-propanol, were detected by the proposed sensor and the inverse matrix method was used to differentiate the VOC in gas mixture. PMID:27140369

  17. Source apportionment of volatile organic compounds in Tehran, Iran.

    PubMed

    Sarkhosh, Maryam; Mahvi, Amir Hossein; Yunesian, Masud; Nabizadeh, Ramin; Borji, Saeedeh Hemmati; Bajgirani, Ali Ghiami

    2013-04-01

    Identifying the sources of volatile organic compounds (VOCs) is key issue to reducing ground-level ozone and PAN. A multivariate receptor model (Unmix) was used for the determination of the contributions of VOCs sources in Tehran-Iran. Concentrations of ambient C2-C10 VOCs were measured continuously and online at the center of Tehran city during the winter of 2012. A high correlation coefficient existed between measured and predicted values (R (2) = 0.99), indicating that the data were well modeled. Five possible VOCs source categories were identified and mobile sources such as vehicle exhaust (61 %) and fuel evaporation (12 %) more than half of the total VOC concentration. City gas and CNG sources, biogenic source, and industrial solvent source categories accounted for 17 %, 8 % and 2 % of the total VOC, respectively. Result showed Unmix for VOCs source apportionment can be used to analyze and generate air pollution control strategies and policies. PMID:23283536

  18. Volatile Organic Compound Optical Fiber Sensors: A Review

    PubMed Central

    Elosua, Cesar; Matias, Ignacio R.; Bariain, Candido; Arregui, Francisco J.

    2006-01-01

    Volatile organic compound (VOC) detection is a topic of growing interest with applications in diverse fields, ranging from environmental uses to the food or chemical industries. Optical fiber VOC sensors offering new and interesting properties which overcame some of the inconveniences found on traditional gas sensors appeared over two decades ago. Thanks to its minimum invasive nature and the advantages that optical fiber offers such as light weight, passive nature, low attenuation and the possibility of multiplexing, among others, these sensors are a real alternative to electronic ones in electrically noisy environments where electronic sensors cannot operate correctly. In the present work, a classification of these devices has been made according to the sensing mechanism and taking also into account the sensing materials or the different methods of fabrication. In addition, some solutions already implemented for the detection of VOCs using optical fiber sensors will be described with detail.

  19. Imaging subsurface geology and volatile organic compound plumes

    SciTech Connect

    Qualheim, B.J.; Daley, P.F.; Johnson, V.; McPherrin, R.V.; Laguna, G.

    1992-03-01

    Lawrence Livermore National Laboratory (LLNL) (Fig. 1) is in the final stages of the Superfund decisionmaking process for site remediation and restoration. In the process of characterizing the subsurface of the LLNL site, we have developed unique methods of collecting, storing, retrieving, and imaging geologic and chemical data from more than 350 drill holes. The lateral and vertical continuity of subsurface paleostream channels were mapped for the entire LLNL site using geologic descriptions from core samples, cuttings, and interpretations from geophysical logs. A computer-aided design and drafting program, SLICE, written at LLNL, was used to create two-dimensional maps of subsurface sediments, and state-of-the-art software produced three-dimensional images of the volatile organic compound (VOC) plumes using data from water and core fluid analyses.

  20. Detection of volatile organic compounds using surface enhanced Raman scattering

    SciTech Connect

    Chang, A S; Maiti, A; Ileri, N; Bora, M; Larson, C C; Britten, J A; Bond, T C

    2012-03-22

    The authors present the detection of volatile organic compounds directly in their vapor phase by surface-enhanced Raman scattering (SERS) substrates based on lithographically-defined two-dimensional rectangular array of nanopillars. The type of nanopillars is known as the tapered pillars. For the tapered pillars, SERS enhancement arises from the nanofocusing effect due to the sharp tip on top. SERS experiments were carried out on these substrates using various concentrations of toluene vapor. The results show that SERS signal from a toluene vapor concentration of ppm level can be achieved, and the toluene vapor can be detected within minutes of exposing the SERS substrate to the vapor. A simple adsorption model is developed which gives results matching the experimental data. The results also show promising potential for the use of these substrates in environmental monitoring of gases and vapors.

  1. Subjective reactions to volatile organic compounds as air pollutants

    NASA Astrophysics Data System (ADS)

    Mølhave, Lars; Grønkjær, John; Larsen, Søren

    Human subjective reactions to indoor air pollution in the form of volatile organic compounds in five concentrations ⩽ mg m -3 were examined in a climate chamber under controlled conditions in a balanced experimental design. The reactions of 25 subjects were registered in two questionnaires containing 25 and six questions and on a linear analogue rating scale. Each subject was tested for one day including four runs in each of the five treatments of 50 min duration. Dose effects were found for perceived odour intensity at 3 mgm -3. Air quality, need for ventilation, irritation of eye and nose showed significant effect at 8 mg m -3. Significant reduced well being was reported at 25 mgm -3. The analyses indicated that lower threshold for some of these effects would have been found if more subjects or longer exposure-times had been used. Gender, age, occupational education and smoking habits were co-factors for many of the symptoms reported.

  2. [Definition and Control Indicators of Volatile Organic Compounds in China].

    PubMed

    Jiang, Mei; Zou, Lan; Li, Xiao-qian; Che, Fei; Zhao, Guo-hua; Li, Gang; Zhang, Guo-ning

    2015-09-01

    Volatile organic compounds (VOCs) are the most complex of a wide range of pollutants that harms human health and ecological environment. However, various countries around the world differ on its definition and control indicators. Its definition, control indicators and monitoring methods of our country and local standards were also different. Based on detailed analysis of the definitions and control indicators of VOCs, the recommendations were proposed: the definition of VOCs should be different according to the different concerns between "air quality management" and "pollution emissions management"; base on different control way from production source, technological process, terminal emission, total discharge control, the control indicators system consists of 10 indicators; to formulate industry VOCs emissions standards, the most effective control way and indicators should be chosen according to characteristics of production process, way of VOCs emissions and possible control measures, etc. PMID:26717719

  3. Organic volatile sulfur compounds in inland aquatic systems

    SciTech Connect

    Richards, S.R.

    1991-01-01

    The speciation, concentration, and fluxes of organic volatile sulfur compounds (VSCs) in a wide variety of inland aquatic systems wee studied. Dissolved VSCs were sparged from water samples, trapped cryogenically, and quantified by gas chromatograph equipped with a flame photometric detector. Species detected and mean surface water concentrations were: carbonyl sulfide (COS), 0.091-7.6 nM; methanethiol (MSH), undetected-180 nM; dimethyl sulfide (DMS), 0.48-1290 nM; carbon disulfide (CS[sub 2]), undetected-69 nM; dimethyl disulfide (DMDS), undetected-68 nM. The range in surface water concentrations of over five orders of magnitude was influenced principally by lake depth and sulfate concentration ([SO[sub 4][sup 2[minus

  4. Indoor Volatile Organic Compounds and Chemical Sensitivity Reactions

    PubMed Central

    Win-Shwe, Tin-Tin; Arashidani, Keiichi; Kunugita, Naoki

    2013-01-01

    Studies of unexplained symptoms observed in chemically sensitive subjects have increased the awareness of the relationship between neurological and immunological diseases due to exposure to volatile organic compounds (VOCs). However, there is no direct evidence that links exposure to low doses of VOCs and neurological and immunological dysfunction. We review animal model data to clarify the role of VOCs in neuroimmune interactions and discuss our recent studies that show a relationship between chronic exposure of C3H mice to low levels of formaldehyde and the induction of neural and immune dysfunction. We also consider the possible mechanisms by which VOC exposure can induce the symptoms presenting in patients with a multiple chemical sensitivity. PMID:24228055

  5. Emissions of biogenic volatile organic compounds & their photochemical transformation

    NASA Astrophysics Data System (ADS)

    Yu, Zhujun; Hohaus, Thorsten; Tillmann, Ralf; Andres, Stefanie; Kuhn, Uwe; Rohrer, Franz; Wahner, Andreas; Kiendler-Scharr, Astrid

    2015-04-01

    Natural and anthropogenic activities emit volatile organic compounds (VOC) into the atmosphere. While it is known that land vegetation accounts for 90% of the global VOC emissions, only a few molecules' emission factors are understood. Through VOCs atmospheric oxidation intermediate products are formed. The detailed chemical mechanisms involved are insufficiently known to date and need to be understood for air quality management and climate change predictions. In an experiment using a PTR-ToF-MS with the new-built plant chamber SAPHIR-PLUS in Forschungszentrum Juelich, biogenic emissions of volatile organic compounds (BVOC) from Quercus ilex trees were measured. The BVOC emissions were dominated by monoterpenes, minor emissions of isoprene and methanol were also observed with the overall emission pattern typical for Quercus ilex trees in the growing season. Monoterpenes and isoprene emissions showed to be triggered by light. Additionally, their emissions showed clear exponential temperature dependence under constant light condition as reported in literature. As a tracer for leaf growth, methanol emission showed an abrupt increase at the beginning of light exposure. This is explained as instantaneous release of methanol produced during the night once stomata of leaves open upon light exposure. Emission of methanol showed a near linear increase with temperature in the range of 10 to 35 °C. BVOC were transferred from the plant chamber PLUS to the atmospheric simulation chamber SAPHIR, where their oxidation products from O3 oxidation were measured with PTR-ToF-MS. Gas phase oxidation products such as acetone and acetaldehyde were detected. A quantitative analysis of the data will be presented, including comparison of observations to the Master Chemical Mechanism model.

  6. Analysis of volatile compounds emitted by filamentous fungi using solid-phase microextraction-gas chromatography/mass spectrometry.

    PubMed

    Roze, Ludmila V; Beaudry, Randolph M; Linz, John E

    2012-01-01

    Here, we describe a solid-phase microextraction-gas chromatography/mass spectrometry (SPME-GC/MS) analytical approach that identifies and analyzes volatile compounds in the headspace above a live fungal culture. This approach is a sensitive, solvent-free, robust technique; most importantly from a practical standpoint, this approach is noninvasive and requires minimal sample handling. Aliquots of liquid fungal cultures are placed into vials equipped with inert septa and equilibrated at a constant temperature, and headspace gases are sampled using an SPME fiber inserted through the septum into the headspace above the fungal culture for a standardized period of time. The outer polymer coating of a fused silica fiber absorbs volatiles from the headspace; the volatiles are then desorbed in the hot GC inlet and chromatographed in the usual manner. The separated compounds are subsequently identified by mass spectrometry. All steps in volatile profiling of a single sample from volatile sorption on a fiber to obtaining a list of volatiles can take as little as 15 min or can be extended to several hours if longer sorption is required for compounds present at very low levels and/or have low rates of diffusion. PMID:23065613

  7. Urinary volatile organic compounds as potential biomarkers for renal cell carcinoma

    PubMed Central

    WANG, DONGCHUN; WANG, CHANGSONG; PI, XIN; GUO, LEI; WANG, YUE; LI, MINGJUAN; FENG, YUE; LIN, ZIWEI; HOU, WEI; LI, ENYOU

    2016-01-01

    Currently, there is no adequate, sensitive, reproducible, specific and noninvasive biomarker that can reliably be used to detect renal cell carcinoma (RCC). Previous studies have elucidated the urinary non-volatile metabolic profile of RCC. However, whether urinary volatile organic compound (VOC) profiles are able to identify RCC remains to be elucidated. In the present study, urine was collected from 22 patients with RCC and 25 healthy subjects. Principal component analysis and orthogonal partial least square discriminant analysis were used to compare the data of patients and healthy subjects, and preoperative and postoperative patients undergoing radical nephrectomy. In total, 11 VOC biomarkers were elevated in the RCC patients compared to the healthy subjects, which were phenol; decanal; 1,6-dioxacyclododecane-7,12-dione; 1-bromo-1-(3-methyl-1-pentenylidene)-2,2,3,3-tetramethyl-cyclopropane; nonanal; 3-ethyl-3-methylheptane; isolongifolene-5-ol; 2,5-cyclohexadiene-1,4-dione, 2,6-bis(1,1-dimethylethyl); tetradecane; aniline; and 2,6,10,14-tetramethyl-pentadecane. Three biomarkers were decreased in RCC patients: styrene, 4-heptanone and dimethylsilanediol. In preoperative patients, 2-ethyl-1-hexanol and cyclohexanone were elevated, while 6-t-butyl-2,2,9,9-tetramethyl-3,5-decadien-7-yne were decreased when compared to postoperative patients. Compared with the healthy subjects, RCC has a unique VOC profile, suggesting that VOC profiles may be a useful diagnostic assay for RCC. PMID:27347408

  8. Distribution of aroma volatile compounds in tangerine hybrids and proposed inheritance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    With the desirable combination of sugars and acids, volatile compounds contribute to the essential organoleptic attributes of citrus. This study evaluated the aroma volatiles of 20 tangerine hybrids of the University of Florida breeding program. Volatiles were sampled from hand-squeezed juice by hea...

  9. Assessment of volatile profile as potential marker of chilling injury of basil leaves during postharvest storage.

    PubMed

    Cozzolino, Rosaria; Pace, Bernardo; Cefola, Maria; Martignetti, Antonella; Stocchero, Matteo; Fratianni, Florinda; Nazzaro, Filomena; De Giulio, Beatrice

    2016-12-15

    The volatile profile of three sweet basil cultivars, "Italico a foglia larga", "Cammeo" and "Italiano classico", packaged in air at 4 or 12°C until 9days, was monitored by solid phase microextraction with GC-MS. Chilling injury (CI) score and electrolyte leakage were also assessed. In total, 71 volatile organic compounds (VOCs) were identified in the headspace of basil samples. A preliminary principal component analysis highlighted the dominant effect of the cultivar on VOCs profiles. Data analysis by post-transformation of projection to latent structures regression (ptPLS2) clarified the role played by time and temperature of storage. Temperature influenced the emission of volatiles during storage, with much lower total volatile emissions at 4°C compared to 12°C. Finally, a ptPLS2 regression model performed on VOCs and the two CI parameters allowed selection of 10 metabolites inversely correlated to both CI parameters, which can be considered potential markers of CI in basil leaves. PMID:27451192

  10. Global simulation of aromatic volatile organic compounds in the atmosphere

    NASA Astrophysics Data System (ADS)

    Cabrera Perez, David; Taraborrelli, Domenico; Pozzer, Andrea

    2015-04-01

    Among the large number of chemical compounds in the atmosphere, the organic group plays a key role in the tropospheric chemistry. Specifically the subgroup called aromatics is of great interest. Aromatics are the predominant trace gases in urban areas due to high emissions, primarily by vehicle exhausts and fuel evaporation. They are also present in areas where biofuel is used (i.e residential wood burning). Emissions of aromatic compounds are a substantial fraction of the total emissions of the volatile organic compounds (VOC). Impact of aromatics on human health is very important, as they do not only contribute to the ozone formation in the urban environment, but they are also highly toxic themselves, especially in the case of benzene which is able to trigger a range of illness under long exposure, and of nitro-phenols which cause detrimental for humans and vegetation even at very low concentrations. The aim of this work is to assess the atmospheric impacts of aromatic compounds on the global scale. The main goals are: lifetime and budget estimation, mixing ratios distribution, net effect on ozone production and OH loss for the most emitted aromatic compounds (benzene, toluene, xylenes, ethylbenzene, styrene and trimethylbenzenes). For this purpose, we use the numerical chemistry and climate simulation ECHAM/MESSy Atmospheric Chemistry (EMAC) model to build the global atmospheric budget for the most emitted and predominant aromatic compounds in the atmosphere. A set of emissions was prepared in order to include biomass burning, vegetation and anthropogenic sources of aromatics into the model. A chemical mechanism based on the Master Chemical Mechanism (MCM) was developed to describe the chemical oxidation in the gas phase of these aromatic compounds. MCM have been reduced in terms of number of chemical equation and species in order to make it affordable in a 3D model. Additionally other features have been added, for instance the production of HONO via ortho

  11. Chemical oxidation of volatile and semi-volatile organic compounds in soil

    SciTech Connect

    Gates, D.D.; Siegrist, R.L.; Cline, S.R.

    1995-06-01

    Subsurface contamination with fuel hydrocarbons or chlorinated hydrocarbons is prevalent throughout the Department of Energy (DOE) complex and in many sites managed by the Environmental Protection Agency (EPA) Superfund program. The most commonly reported chlorinated hydrocarbons (occurring > 50% of DOE contaminated sites) were trichloroethylene (TCE), 1, 1, 1,-trichloroethane (TCA), and tetrachloroethylene (PCE) with concentrations in the range of 0.2 {mu}g/kg to 12,000 mg/kg. The fuel hydrocarbons most frequently reported as being present at DOE sites include aromatic compounds and polyaromatic compounds such as phenanthrene, pyrene, and naphthalene. The primary sources of these semi-volatile organic compounds (SVOCs) are coal waste from coal fired electric power plants used at many of these facilities in the past and gasoline spills and leaks. Dense non-aqueous phase liquids (DNAPLs) can migrate within the subsurface for long periods of time along a variety of pathways including fractures, macropores, and micropores. Diffusion of contaminants in the non-aqueous, aqueous, and vapor phase can occur from the fractures and macropores into the matrix of fine-textured media. As a result of these contamination processes, removal of contaminants from the subsurface and the delivery of treatment agents into and throughout contaminated regions are often hindered, making rapid and extensive remediation difficult.

  12. A volatile relationship: profiling an inter-kingdom dialogue between two plant pathogens, Ralstonia Solanacearum and Aspergillus Flavus.

    PubMed

    Spraker, Joseph E; Jewell, Kelsea; Roze, Ludmila V; Scherf, Jacob; Ndagano, Dora; Beaudry, Randolph; Linz, John E; Allen, Caitilyn; Keller, Nancy P

    2014-05-01

    Microbes in the rhizosphere have a suite of extracellular compounds, both primary and secondary, that communicate with other organisms in their immediate environment. Here, we describe a two-way volatile interaction between two widespread and economically important soil-borne pathogens of peanut, Aspergillus flavus and Ralstonia solanacearum, a fungus and bacterium, respectively. In response to A. flavus volatiles, R. solanacearum reduced production of the major virulence factor extracellular polysaccharide (EPS). In parallel, A. flavus responded to R. solanacearum volatiles by reducing conidia production, both on plates and on peanut seeds and by increasing aflatoxin production on peanut. Volatile profiling of these organisms using solid-phase micro-extraction gas chromatography mass spectroscopy (SPME-GCMS) provided a first glimpse at the compounds that may drive these interactions. PMID:24801606

  13. Novel vinegar-derived product enriched with dietary fiber: effect on polyphenolic profile, volatile composition and sensory analysis.

    PubMed

    Marrufo-Curtido, Almudena; Cejudo-Bastante, María Jesús; Rodríguez-Dodero, M Carmen; Natera-Marín, Ramón; Castro-Mejías, Remedios; García-Barroso, Carmelo; Durán-Guerrero, Enrique

    2015-12-01

    Dietary fiber derived from citrus fruits was added to vinegar. Different sources and quantities of fiber and storage conditions have been scrutinized. Formulated vinegars were evaluated on the basis of their phenolic profile, volatile composition and sensory analysis. The addition of citrus fiber enhanced the phenolic and volatile profile of the resulted vinegars. Whereas lemon fiber contributed mostly to the enrichment of the polyphenolic composition, orange fiber was that which increased in a higher way the volatile composition of the vinegars. Moreover, the content of hydroxycinnamic acid derivatives and the majority of volatile compounds decreased as the dose of fiber increased. Furthermore, the judges preferred fiber-enriched vinegars, but in different quantities depending of the fiber source. This preference was mainly based on citric attribute, contributing several terpenes and ketones derived from them. The addition of citrus fiber to vinegar did not result in a marked storage-dependence. PMID:26604338

  14. The emission of volatile compounds during the aerobic and the combined anaerobic/aerobic composting of biowaste

    NASA Astrophysics Data System (ADS)

    Smet, Erik; Van Langenhove, Herman; De Bo, Inge

    Two different biowaste composting techniques were compared with regard to their overall emission of volatile compounds during the active composting period. In the aerobic composting process, the biowaste was aerated during a 12-week period, while the combined anaerobic/aerobic composting process consisted of a sequence of a 3-week anaerobic digestion (phase I) and a 2-week aeration period (phase II). While the emission of volatiles during phase I of the combined anaerobic/aerobic composting process was measured in a full-scale composting plant, the aerobic stages of both composting techniques were performed in pilot-scale composting bins. Similar groups of volatile compounds were analysed in the biogas and the aerobic composting waste gases, being alcohols, carbonyl compounds, terpenes, esters, sulphur compounds and ethers. Predominance of alcohols (38% wt/wt of the cumulative emission) was observed in the exhaust air of the aerobic composting process, while predominance of terpenes (87%) and ammonia (93%) was observed in phases I and II of the combined anaerobic/aerobic composting process, respectively. In the aerobic composting process, 2-propanol, ethanol, acetone, limonene and ethyl acetate made up about 82% of the total volatile organic compounds (VOC)-emission. Next to this, the gas analysis during the aerobic composting process revealed a strong difference in emission profile as a function of time between different groups of volatiles. The total emission of VOC, NH 3 and H 2S during the aerobic composting process was 742 g ton -1 biowaste, while the total emission during phases I and II of the combined anaerobic/aerobic composting process was 236 and 44 g ton -1 biowaste, respectively. Taking into consideration the 99% removal efficiency of volatiles upon combustion of the biogas of phase I in the electricity generator, the combined anaerobic/aerobic composting process can be considered as an attractive alternative for aerobic biowaste composting because of

  15. Striking changes in volatile profiles at sub-zero temperatures during over-ripening of 'Beibinghong' grapes in Northeastern China.

    PubMed

    Lan, Yi-Bin; Qian, Xu; Yang, Zhong-Jun; Xiang, Xiao-Feng; Yang, Wei-Xi; Liu, Tao; Zhu, Bao-Qing; Pan, Qiu-Hong; Duan, Chang-Qing

    2016-12-01

    The evolution of free and glycosidically bound volatile compounds in 'Beibinghong' (Vitis vinifera×Vitis amurensis) grape berries throughout on-vine over-ripening and freezing processes was studied in two vintages. The aroma profiles of 'Beibinghong' icewine berries were characterized by C6 compounds, higher alcohols and terpenoids in free fractions and carbonyl compounds, higher alcohols, C6 alcohols and terpenoids in bound fractions. With regard to free volatile compounds, there was a decrease in the concentration of C6 compounds, terpenols and norisoprenoids and an increase of terpene oxides during over-ripening process. A striking alteration of volatile profile occurred at sub-zero temperatures, particularly for the free fractions such as C6 alcohols, higher alcohols and oxidative terpene derivatives. These changes were attributed to a series of reactions (biotransformation, oxidation and anaerobic metabolism) induced by water loss and especially freeze-thaw cycles. PCA revealed temperature and rainfall affected the accumulation of volatile compounds during over-ripening processes. PMID:27374521

  16. Heterogeneous reactions of volatile organic compounds in the atmosphere

    NASA Astrophysics Data System (ADS)

    Shen, Xiaoli; Zhao, Yue; Chen, Zhongming; Huang, Dao

    2013-04-01

    Volatile organic compounds (VOCs) are of central importance in the atmosphere because of their close relation to air quality and climate change. As a significant sink for VOCs, the fate of VOCs via heterogeneous reactions may explain the big gap between field and model studies. These reactions play as yet unclear but potentially crucial role in atmospheric processes. In order to better evaluate this reaction pathway, we present the first specific review for the progress of heterogeneous reaction studies on VOCs, including carbonyl compounds, organic acids, alcohols, and so on. Our review focuses on the processes for heterogeneous reactions of VOCs under varying experimental conditions, as well as their implications for trace gas and HOx budget, secondary organic aerosol (SOA) formation, physicochemical properties of aerosols, and human health. Finally, we propose the future direction for laboratory studies of heterogeneous chemistry of VOCs that should be carried out under more atmospherically relevant conditions, with a special emphasis on the effects of relative humidity and illumination, the multicomponent reaction systems, and reactivity of aged and authentic particles. In particular, more reliable uptake coefficients, based on the abundant elaborate laboratory studies, appropriate calibration, and logical choice criterion, are urgently required in atmospheric models.

  17. Volatile organic compounds in storm water from a parking lot

    USGS Publications Warehouse

    Lopes, T.J.; Fallon, J.D.; Rutherford, D.W.; Hiatt, M.H.

    2000-01-01

    A mass balance approach was used to determine the most important nonpoint source of volatile organic compounds (VOCs) in storm water from an asphalt parking lot without obvious point sources (e.g., gasoline stations). The parking lot surface and atmosphere are important nonpoint sources of VOCs, with each being important for different VOCs. The atmosphere is an important source of soluble, oxygenated VOCs (e.g., acetone), and the parking lot surface is an important source for the more hydrophobic VOCs (e.g., benzene). VOCs on the parking lot surface appear to be concentrated in oil and grease and organic material in urban particles (e.g., vehicle soot). Except in the case of spills, asphalt does not appear to be an important source of VOCs. The uptake isotherm of gaseous methyl tert-butyl ether on urban particles indicates a mechanism for dry deposition of VOCs from the atmosphere. This study demonstrated that a mass balance approach is a useful means of understanding non-point-source pollution, even for compounds such as VOCs, which are difficult to sample.

  18. Constituents of volatile organic compounds of evaporating essential oil

    NASA Astrophysics Data System (ADS)

    Chiu, Hua-Hsien; Chiang, Hsiu-Mei; Lo, Cho-Ching; Chen, Ching-Yen; Chiang, Hung-Lung

    2009-12-01

    Essential oils containing aromatic compounds can affect air quality when used indoors. Five typical and popular essential oils—rose, lemon, rosemary, tea tree and lavender—were investigated in terms of composition, thermal characteristics, volatile organic compound (VOC) constituents, and emission factors. The activation energy was 6.3-8.6 kcal mol -1, the reaction order was in the range of 0.6-0.8, and the frequency factor was 0.01-0.24 min -1. Toluene, 1,2,3-trimethylbenzene, 1,2,4-trimethylbenzene, n-undecane, p-diethylbenzene and m-diethylbenzene were the predominant VOCs of evaporating gas of essential oils at 40 °C. In addition, n-undecane, p-diethylbenzene, 1,2,4-trimethylbenzene, m-diethylbenzene, and 1,2,3-trimethylbenzene revealed high emission factors during the thermogravimetric (TG) analysis procedures. The sequence of the emission factors of 52 VOCs (137-173 mg g -1) was rose ≈ rosemary > tea tree ≈ lemon ≈ lavender. The VOC group fraction of the emission factor of aromatics was 62-78%, paraffins were 21-37% and olefins were less than 1.5% during the TG process. Some unhealthy VOCs such as benzene and toluene were measured at low temperature; they reveal the potential effect on indoor air quality and human health.

  19. 40 CFR 60.312 - Standard for volatile organic compounds (VOC).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 7 2014-07-01 2014-07-01 false Standard for volatile organic compounds (VOC). 60.312 Section 60.312 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Surface Coating of Metal Furniture § 60.312 Standard for volatile organic compounds (VOC). (a) On...

  20. 40 CFR 60.312 - Standard for volatile organic compounds (VOC).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 6 2011-07-01 2011-07-01 false Standard for volatile organic compounds (VOC). 60.312 Section 60.312 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Surface Coating of Metal Furniture § 60.312 Standard for volatile organic compounds (VOC). (a) On...

  1. 40 CFR 60.112 - Standard for volatile organic compounds (VOC).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 7 2012-07-01 2012-07-01 false Standard for volatile organic compounds (VOC). 60.112 Section 60.112 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... After June 11, 1973, and Prior to May 19, 1978 § 60.112 Standard for volatile organic compounds...

  2. 40 CFR 60.312 - Standard for volatile organic compounds (VOC).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 7 2013-07-01 2013-07-01 false Standard for volatile organic compounds (VOC). 60.312 Section 60.312 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Surface Coating of Metal Furniture § 60.312 Standard for volatile organic compounds (VOC). (a) On...

  3. 40 CFR 60.312 - Standard for volatile organic compounds (VOC).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 7 2012-07-01 2012-07-01 false Standard for volatile organic compounds (VOC). 60.312 Section 60.312 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Surface Coating of Metal Furniture § 60.312 Standard for volatile organic compounds (VOC). (a) On...

  4. 40 CFR 60.312 - Standard for volatile organic compounds (VOC).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standard for volatile organic compounds (VOC). 60.312 Section 60.312 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Surface Coating of Metal Furniture § 60.312 Standard for volatile organic compounds (VOC). (a) On...

  5. 40 CFR 60.542a - Alternate standard for volatile organic compounds.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 7 2013-07-01 2013-07-01 false Alternate standard for volatile organic compounds. 60.542a Section 60.542a Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Rubber Tire Manufacturing Industry § 60.542a Alternate standard for volatile organic compounds. (a)...

  6. 40 CFR 60.542a - Alternate standard for volatile organic compounds.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Alternate standard for volatile organic compounds. 60.542a Section 60.542a Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Rubber Tire Manufacturing Industry § 60.542a Alternate standard for volatile organic compounds. (a)...

  7. 40 CFR 60.542a - Alternate standard for volatile organic compounds.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 7 2014-07-01 2014-07-01 false Alternate standard for volatile organic compounds. 60.542a Section 60.542a Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Rubber Tire Manufacturing Industry § 60.542a Alternate standard for volatile organic compounds. (a)...

  8. 40 CFR 60.542a - Alternate standard for volatile organic compounds.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 6 2011-07-01 2011-07-01 false Alternate standard for volatile organic compounds. 60.542a Section 60.542a Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Rubber Tire Manufacturing Industry § 60.542a Alternate standard for volatile organic compounds. (a)...

  9. 40 CFR 60.542a - Alternate standard for volatile organic compounds.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 7 2012-07-01 2012-07-01 false Alternate standard for volatile organic compounds. 60.542a Section 60.542a Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Rubber Tire Manufacturing Industry § 60.542a Alternate standard for volatile organic compounds. (a)...

  10. 78 FR 11101 - Air Quality: Revision to Definition of Volatile Organic Compounds-Exclusion of trans

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-15

    ... definition was first set forth in the ``Recommended Policy on Control of Volatile Organic Compounds'' (42 FR... Volatile Organic Compounds in Ozone State Implementation Plans'' (Interim Guidance) (70 FR 54046, September...-reviewed journal articles on its atmospheric chemistry, reaction rates, atmospheric lifetimes and...

  11. ESTIMATING TRANSPORT AND DEPOSITION OF A SEMI-VOLATILE COMPOUND WITH A REGIONAL PHOTOCHEMICAL MODEL

    EPA Science Inventory

    To simulate the fate of compounds that are considered semi-volatile and toxic, we have modified a model for regional particulate matter. Our changes introduce a semi-volatile compound into the atmosphere as gaseous emissions from an area source. Once emitted, the gas can transf...

  12. VOLATILE ORGANIC COMPOUND MODEL-QUALITY ASSURANCE AND SENSITIVITY TESTING (VERSION 1.8)

    EPA Science Inventory

    The report describes test runs of the Volatile Organic Compound Model (VOCM), Version 1.8. VOCM predicts future emission levels of volatile organic compounds (VOCs) by projecting uncontrolled base year emissions into the future. These projected emissions are then reduced by const...

  13. Study on photocatalytic degradation of several volatile organic compounds.

    PubMed

    Zuo, Guo-Min; Cheng, Zhen-Xing; Chen, Hong; Li, Guo-Wen; Miao, Ting

    2006-02-01

    The gas-phase photolytic and photocatalytic reactions of several aromatics and chlorohydrocarbons were investigated. The experimental results revealed that chlorohydrocarbons like trichloroethylene, dichloromethane and chloroform could be degraded through either photolysis or photocatalysis under irradiation of germicidal lamp, and the elimination rate of chlorohydrocarbons through photolysis was quicker than that through photocatalysis. UV light from a germicidal lamp could directly lead to degradation of toluene but could hardly act on benzene. The photodegradation rate for these volatile organic compounds (VOCs) through photolysis followed an order: trichloroethylene>chloroform>dichloromethane>toluene>benzene>carbon tetrachloride, and through photocatalysis followed: trichloroethylene>chloroform>toluene>dichloromethane>benzene>carbon tetrachloride. Besides, a series of modified TiO2 photocatalysts were prepared by depositing noble metal, doping with transition metal ion, recombining with metal oxides and modifying with super strong acid. Activity of these catalysts was examined upon photocatalytic degradation of benzene as a typical compound that was hard to be degraded. It indicated that these modification methods could promote the activity of TiO2 catalyst to different extent. The apparent zero-order reaction rate constant for degrading benzene over SnO2/TiO2 catalyst had the highest value, which was nearly three times as that over P25 TiO2. But it simultaneously had the lowest rate for mineralizing the objective compound. In spite that Fe3+/TiO2 catalyst behaved slightly less active than SnO2/TiO2 for degradation of benzene, the mineralization rate over Fe3+/TiO2 was the highest one among the prepared catalysts. PMID:16157448

  14. Multiple microbial activities for volatile organic compounds reduction by biofiltration.

    PubMed

    Civilini, Marcello

    2006-07-01

    In the northeast of Italy, high volatile organic carbon (VOC) emissions originate from small-medium companies producing furniture. In these conditions it is difficult to propose a single, efficient, and economic system to reduce pollution. Among the various choices, the biofiltration method could be a good solution, because microbial populations possess multiple VOC degradation potentials used to oxidize these compounds to CO2. Starting from the air emissions of a typical industrial wood-painting plant, a series of experiments studied in vitro microbial degradation of each individual VOC. Isolated strains were then added to a laboratory-scale biofiltration apparatus filled with an organic matrix, and the different VOC behavior demonstrated the potential of single and/or synergic microbial removal actions. When a single substrate was fed, the removal efficiency of a Pseudomonas aeruginosa inoculated reactor was 1.1, 1.17, and 0.33 g m(-3) hr(-1), respectively, for xylene, toluene, and ethoxy propyl acetate. A VOC mixture composed of butyl acetate, ethyl acetate, diacetin alcohol, ethoxy propanol acetate, methyl ethyl ketone, methyl isobutyl ketone, toluene, and xylene was then fed into a 2-m(3) reactor treating 100 m3 hr(-1) of contaminated air. The reactor was filled with the same mixture of organic matrix, enriched with all of the isolated strains together. During reactor study, different VOC loading rates were used, and the behavior was evaluated continuously. After a short acclimation period, the removal efficiency was > 65% at VOC load of 150-200 g m(-3) hr(-1). Quantification of removal efficiencies and VOC speciation confirmed the relationship among removal efficiencies, compound biodegradability, and the dynamic transport of each mixture component within the organic matrix. Samples of the fixed bed were withdrawn at different intervals and the heterogeneous microbial community evaluated for both total and differential compound counts. PMID:16878585

  15. A survey of household products for volatile organic compounds

    NASA Astrophysics Data System (ADS)

    Sack, Thomas M.; Steele, David H.; Hammerstrom, Karen; Remmers, Janet

    A total of 1159 common household products were analysed for 31 volatile organic compounds as potential sources of indoor air pollution. The products were distributed among 65 product categories within 8 category classes: automotive products (14.4% of the products); household cleaners/polishes (9.6%); paint-related products (39.9%); fabric and leather treatments (7.9%); cleaners for electronic equipment (6.0%); oils, greases and lubricants (9.6%); adhesive-related products (6.6%); and miscellaneous products (6.1%). The study was conducted in two parts. In the first part, or the original study, the products were reanalysed for methylene chloride and five other chlorocarbons using purge-and-trap gas chromatography/mass spectrometry (GC/MS), and a data base containing the analytical results was developed. Because full mass spectra were taken, the original set of GC/MS data also contained information regarding other volatile chemicals in the products. However, this additional data was not reported at that time. In the second part of the study, the GC/MS data were reanalysed to determine the presence and concentrations of an additional 25 volatile chemicals. The 31 chemicals included in both parts of this study were: carbon tetrachloride; methylene chloride; tetrachloroethylene; 1,1,1-trichloroethane; trichlorethylene; 1,1,2-tricholorotrifluoroethane; acetone; benzene; 2-butanone; chlorobenzene; chloroform; cyclohexane; 1,2-dichloroethane; 1,4-dioxane; ethylbenzene; n-hexane; d-limonene; methylcyclohexane; methylcyclopentane; methyl isobutyl ketone; n-nonane; n-octane; α-pinene; propylene oxide; styrene; 1,1,2,2-tetrachloroethane; tetrahydrofuran; toluene; m-mxylene; o-xylene; and p-xylene. Of the 31 chemicals, toluene, the xylenes and methylene chloride were found to occur most frequently—in over 40% of the products tested. Chemicals that were typically found in relatively high concentrations in the samples (i.e. greater than 20% w/w) included acetone, 2-butanone

  16. Urinary volatile compounds differ across reproductive phenotypes and following aggression in male Siberian hamsters.

    PubMed

    Rendon, Nikki M; Soini, Helena A; Scotti, Melissa-Ann L; Novotny, Milos V; Demas, Gregory E

    2016-10-01

    Chemical communication plays an integral role in social behavior by facilitating social encounters, allowing for the evaluation of social partners, defining territories and advertising information such as species and sex. Odors provide information about the social environment for rodents and other mammals; however, studies identifying chemical compounds and their functions have thus far focused primarily on a few species. In addition, considerably less attention has been focused on how environmental factors and behavioral context alter these compounds during periods of reproductive quiescence. We examined the effects of photoperiod and social context on chemical communication in the seasonally breeding Siberian hamster which displays modest territorial aggression during long "summer-like" days, but increased aggression in short "winter-like" days. We collected urine samples from long- and short-day male hamsters to investigate how photoperiod and subsequent changes in reproductive phenotype alter urinary volatile compound profiles. Next, we identified changes in urinary compounds before and after an aggressive encounter. Male hamsters exhibited a diverse urinary profile across photoperiods; however, long-day reproductive males showed higher levels of individual compounds when compared to short-day non-reproductive males. In addition, individual compounds were altered following an aggressive encounter; some changed only in long days whereas others changed regardless of photoperiod. Further, aggression and circulating levels of testosterone were positively correlated with urinary compounds in long-, but not short-day males. These findings suggest both photoperiod- and aggression-specific physiological regulation of urinary compounds in this species and contribute to a greater understanding of chemical communication more broadly. PMID:27212202

  17. In vitro determination of volatile compound development during starter culture-controlled fermentation of Cucurbitaceae cotyledons.

    PubMed

    Kamda, Aristide Guillaume Silapeux; Ramos, Cíntia Lacerda; Fokou, Elie; Duarte, Whasley Ferreira; Mercy, Achu; Germain, Kansci; Dias, Disney Ribeiro; Schwan, Rosane Freitas

    2015-01-01

    The effects of Lactobacillus plantarum UFLA CH3, Pediococcus acidilactici UFLA BFFCX 27.1, and Torulaspora delbrueckii UFLA FFT2.4 inoculation on the volatile compound profile of fermentation of Cucumeropsis mannii cotyledons were investigated. Different microbial associations were used as starters. All associations displayed the ability to ferment the cotyledons as judged by lowering the pH from 6.4 to 4.4-5 within 24h and increasing organic acids such as lactate and acetate. The population of lactic acid bacteria (LAB) and yeasts increased during fermentation. In the fermentation performed without inoculation (control), the LAB and yeast populations were lower than those in inoculated assays at the beginning, but they reached similar populations after 48 h. The Enterobacteriaceae population decreased during the fermentation, and they were not detected at 48 h in the L. plantarum UFLA CH3 and P. acidilactici UFLA BFFCX 27.1 (LP+PA) and L. plantarum UFLA CH3, P. acidilactici UFLA BFFCX 27.1, and T. delbrueckii UFLA FFT2.4 (LP+PA+TD) samples. The assays inoculated with the yeast T. delbrueckii UFLA FFT2.4 exhibited the majority of volatile compounds (13 compounds) characterized by pleasant notes. The LP+PA+TD association seemed to be appropriate to ferment C. mannii cotyledons. It was able to control the Enterobacteriaceae population, and achieved high concentrations of esters and low concentrations of aldehydes and ketones. PMID:25306300

  18. [Source emission characteristics and impact factors of volatile halogenated organic compounds from wastewater treatment plant].

    PubMed

    He, Jie; Wang, Bo-Guang; Liu, Shu-Le; Zhao, De-Jun; Tang, Xiao-Dong; Zou, Yu

    2011-12-01

    A low enrichment method of using Tenax as absorbent and liquid nitrogen as refrigerant has been established to sample the volatile halogenated organic compounds in Guangzhou Liede municipal wastewater treatment plant as well as its ambient air. The composition and concentration of target halogenated hydrocarbons were analyzed by combined thermal desorption/GC-MS to explore its sources profile and impact factors. The result showed that 19 halogenated organic compounds were detected, including 11 halogenated alkanets, 3 halogenated alkenes, 3 halogenated aromatic hydrocarbons and 2 haloesters, with their total concentrations ranged from 34.91 microg x m(-3) to 127.74 microg x m(-3) and mean concentrations ranged from n.d. to 33.39 microg x m(-3). Main pollutants of the studied plant were CH2Cl2, CHCl3, CFC-12, C2H4Cl2, CFC-11, C2HCl3 and C2Cl4, they came from the wastewater by volatilization. Among the six processing units, the dehydration room showed the highest level of halogenated organic compounds, followed by pumping station, while the sludge thickener was the lowest. The emissions from pumping station, aeration tank and biochemical pool were significantly affected by temperature and humidity of environment. PMID:22468521

  19. Clinical Application of Volatile Organic Compound Analysis for Detecting Infectious Diseases

    PubMed Central

    Nanda, Ranjan; Chakraborty, Trinad

    2013-01-01

    SUMMARY This review article introduces the significance of testing of volatile organic compounds (VOCs) in clinical samples and summarizes important features of some of the technologies. Compared to other human diseases such as cancer, studies on VOC analysis in cases of infectious diseases are limited. Here, we have described results of studies which have used some of the appropriate technologies to evaluate VOC biomarkers and biomarker profiles associated with infections. The publications reviewed include important infections of the respiratory tract, gastrointestinal tract, urinary tract, and nasal cavity. The results highlight the use of VOC biomarker profiles resulting from certain infectious diseases in discriminating between infected and healthy subjects. Infection-related VOC profiles measured in exhaled breath as well as from headspaces of feces or urine samples are a source of information with respect to disease detection. The volatiles emitted in clinical matrices may on the one hand represent metabolites of the infecting pathogen or on the other hand reflect pathogen-induced host responses or, indeed, a combination of both. Because exhaled-breath samples are easy to collect and online instruments are commercially available, VOC analysis in exhaled breath appears to be a promising tool for noninvasive detection and monitoring of infectious diseases. PMID:23824368

  20. Effect of pork fat addition on the volatile compounds of foal dry-cured sausage.

    PubMed

    Lorenzo, José M; Montes, Rosa; Purriños, Laura; Franco, Daniel

    2012-08-01

    The effect of fat content on volatile compounds from foal dry-cured sausage was studied. Three batches (10 units per batch) of dry fermented sausages with different pork back fat content (5%, 10% and 20%) were manufactured; low fat (LF), medium fat (MF) and high fat (HF), respectively. A total of 45 volatile compounds were extracted by purge-and-trap and identified by GC-MS in the headspace of the batches. The mixture comprised 11 terpenes, 15 esters, 14 hydrocarbons and 2 alcohols. Spices were responsible for the generation of 14 volatile compounds comprising terpenes and hydrocarbons. After 49 days of ripening volatile compounds from spices represented 52.9, 38.9 and 31.2% of the total area for samples from LF, MF and HF batches, respectively, while lipid autooxidation was responsible for the generation of 8 volatile compounds. The PCA offered a good separation of the mean samples according to their fat content. PMID:22498135

  1. Maximizing Information from Residential Measurements of Volatile Organic Compounds

    SciTech Connect

    Maddalena, Randy; Li, Na; Hodgson, Alfred; Offermann, Francis; Singer, Brett

    2013-02-01

    Continually changing materials used in home construction and finishing can introduce new chemicals or changes in the VOC profile in residential air and the trend towards tighter homes can lead to higher exposure concentrations for many indoor sources. However, the complex mixture of VOCs in residential air makes it difficult to discover emerging contaminants and/or trends in pollutant profiles. The purpose of this study is to prepare a comprehensive library of chemicals found in homes, along with a semi-quantitative approach to maximize the information gained from VOC measurements. We carefully reviewed data from 108 new California homes and identified 238 individual compounds. The majority of the identified VOCs originated indoors. Only 31% were found to have relevant health based exposure guidelines and less than 10% had a chronic reference exposure level (CREL). The finding highlights the importance of extending IAQ studies to include a wider range of VOCs

  2. Compositing water samples for analysis of volatile organic compounds

    USGS Publications Warehouse

    Lopes, T.J.; Fallon, J.D.; Maluk, T.L.

    2000-01-01

    Accurate mean concentrations of volatile organic compounds (VOCs) can easily and economically be obtained from a single VOC analysis by using proven methods of collecting representative, discrete water samples and compositing them with a gas-tight syringe. The technique can be used in conjunction with chemical analysis by a conventional laboratory, field-portable equipment, or a mobile laboratory. The type of mean concentration desired depends on the objectives of monitoring. For example, flow-weighted mean VOC concentrations can be used to estimate mass loadings in wastewater and urban storm water, and spatially integrated mean VOC concentrations can be used to assess sources of drinking water (e.g., reservoirs and rivers). The mean error in a discrete sample due to compositing is about 2% for most VOC concentrations greater than 0.1 ??g/L. The total error depends on the number of discrete samples comprising the composite sample and precision of the chemical analysis.Accurate mean concentrations of volatile organic compounds (VOCs) can easily and economically be obtained from a single VOC analysis by using proven methods of collecting representative, discrete water samples and compositing them with a gas-tight syringe. The technique can be used in conjunction with chemical analysis by a conventional laboratory, field-portable equipment, or a mobile laboratory. The type of mean concentration desired depends on the objectives of monitoring. For example, flow-weighted mean VOC concentrations can be used to estimate mass loadings in wastewater and urban storm water, and spatially integrated mean VOC concentrations can be used to assess sources of drinking water (e.g., reservoirs and rivers). The mean error in a discrete sample due to compositing is about 2% for most VOC concentrations greater than 0.1 ??g/L. The total error depends on the number of discrete samples comprising the composite sample and precision of the chemical analysis.Researchers are able to derive

  3. Source apportionment modeling of volatile organic compounds in streams

    USGS Publications Warehouse

    Pankow, J.F.; Asher, W.E.; Zogorski, J.S.

    2006-01-01

    It often is of interest to understand the relative importance of the different sources contributing to the concentration cw of a contaminant in a stream; the portions related to sources 1, 2, 3, etc. are denoted cw,1, cw,2, cw,3, etc. Like c w, 'he fractions ??1, = cw,1/c w, ??2 = cw,2/cw, ??3 = cw,3/cw, etc. depend on location and time. Volatile organic compounds (VOCs) can undergo absorption from the atmosphere into stream water or loss from stream water to the atmosphere, causing complexities affecting the source apportionment (SA) of VOCs in streams. Two SA rules are elaborated. Rule 1: VOC entering a stream across the air/water interface exclusively is assigned to the atmospheric portion of cw. Rule 2: VOC loss by volatilization, flow loss to groundwater, in-stream degradation, etc. is distributed over cw,1 cw,2, c w,3, etc. in proportion to their corresponding ?? values. How the two SA rules are applied, as well as the nature of the SA output for a given case, will depend on whether transport across the air/water interface is handled using the net flux F convention or using the individual fluxes J convention. Four hypothetical stream cases involving acetone, methyl-tert-butyl ether (MTBE), benzene, chloroform, and perchloroethylene (PCE) are considered. Acetone and MTBE are sufficiently water soluble from air for a domestic atmospheric source to be capable of yielding cw values approaching the common water quality guideline range of 1 to 10 ??g/L. For most other VOCs, such levels cause net outgassing (F > 0). When F > 0 in a given section of stream, in the net flux convention, all of the ??j, for the compound remain unchanged over that section while cw decreases. A characteristic time ??d can be calculated to predict when there will be differences between SA results obtained by the net flux convention versus the individual fluxes convention. Source apportionment modeling provides the framework necessary for comparing different strategies for mitigating

  4. Does the volatile hydrocarbon profile differ between the sexes: a case study on five aphidophagous ladybirds.

    PubMed

    Pattanayak, Rojalin; Mishra, Geetanjali; Omkar; Chanotiya, Chandan Singh; Rout, Prasant Kumar; Mohanty, Chandra Sekhar

    2014-11-01

    Insect hydrocarbons (HCs) primarily serve as a waterproofing cuticular layer and function extensively in chemical communication by facilitating species, sex, and colony recognition. In this study, headspace solid-phase microextraction is employed for investigating the sex-specific volatile HC profile of five ladybirds collected from Lucknow, India namely, Coccinella septempunctata (L.), Coccinella transversalis (Fabr.), Menochilus sexmaculatus (Fabr.), Propylea dissecta (Mulsant), and Anegleis cardoni (Weise) for the first time. Major compounds reported in C. septempunctata, C. transversalis, and A. cardoni are methyl-branched saturated HCs, whereas in M. sexmaculatus, and P. dissecta, they are unsaturated HCs. Other than A. cardoni, both the sexes of the other four ladybirds had similar compounds at highest peak but with statistically significant differences. However, in A. cardoni, which is a beetle with a narrow niche, the major compound in both male and female was different. The difference in volatile HC profile of the sexes of the five ladybirds indicates that gender-specific differences primarily exist due to quantitative differences in chemicals with only very few chemicals being unique to a gender. This variation in semiochemicals might have a role in behavioral or ecological aspects of the studied ladybirds. PMID:25060353

  5. Influence of processing on the volatile profile of strawberry spreads made with isomaltulose.

    PubMed

    Peinado, I; Rosa, E; Heredia, A; Escriche, I; Andrés, A

    2013-05-01

    A new strawberry spread formulated with fructose and isomaltulose (replacing sucrose partially or totally) and a high percentage of fruit was developed in line with the new trend of healthier products. This work studies the influence of some process variables (percentage of sugar, pectin and citric acid, and time of thermal treatment) on the volatile profile of these spreads with different formulations. The ripeness of the raw strawberries influences the concentrations of some of the compounds in the spreads, such as isobutyl acetate, butyl butyrate, 3-hexen-1-yl acetate or propan-2-ol. The process conditions have an important effect on the volatile profiles. Most of the esters and alcohols decreased whereas 13 new compounds appear, mostly furans (furfural, 2-acetylfurane, 5-methyl furfural, mesifurane) and aldehydes (octanal, nonanal, decanal and benzaldeyhde). In general, the spreads formulated with sucrose-isomaltulose that contained higher levels of pectin and citric acid gave better results in the preservation of the original aromatic compounds in raw strawberries. PMID:23265532

  6. Determination of volatile compounds in four commercial samples of Japanese green algae using solid phase microextraction gas chromatography mass spectrometry.

    PubMed

    Yamamoto, Masayoshi; Baldermann, Susanne; Yoshikawa, Keisuke; Fujita, Akira; Mase, Nobuyuki; Watanabe, Naoharu

    2014-01-01

    Green algae are of great economic importance. Seaweed is consumed fresh or as seasoning in Japan. The commercial value is determined by quality, color, and flavor and is also strongly influenced by the production area. Our research, based on solid phase microextraction gas chromatography mass spectrometry (SPME-GC-MS), has revealed that volatile compounds differ intensely in the four varieties of commercial green algae. Accordingly, 41 major volatile compounds were identified. Heptadecene was the most abundant compound from Okayama (Ulva prolifera), Tokushima (Ulva prolifera), and Ehime prefecture (Ulva linza). Apocarotenoids, such as ionones, and their derivatives were prominent volatiles in algae from Okayama (Ulva prolifera) and Tokushima prefecture (Ulva prolifera). Volatile, short chained apocarotenoids are among the most potent flavor components and contribute to the flavor of fresh, processed algae, and algae-based products. Benzaldehyde was predominant in seaweed from Shizuoka prefecture (Monostroma nitidum). Multivariant statistical analysis (PCA) enabled simple discrimination of the samples based on their volatile profiles. This work shows the potential of SPME-GC-MS coupled with multivariant analysis to discriminate between samples of different geographical and botanical origins and form the basis for development of authentication methods of green algae products, including seasonings. PMID:24592162

  7. Volatile Compound-Mediated Interactions between Barley and Pathogenic Fungi in the Soil

    PubMed Central

    Fiers, Marie; Lognay, Georges; Fauconnier, Marie-Laure; Jijakli, M. Haïssam

    2013-01-01

    Plants are able to interact with their environment by emitting volatile organic compounds. We investigated the volatile interactions that take place below ground between barley roots and two pathogenic fungi, Cochliobolus sativus and Fusarium culmorum. The volatile molecules emitted by each fungus, by non-infected barley roots and by barley roots infected with one of the fungi or the two of them were extracted by head-space solid phase micro extraction and analyzed by gas chromatography mass spectrometry. The effect of fungal volatiles on barley growth and the effect of barley root volatiles on fungal growth were assessed by cultivating both organisms in a shared atmosphere without any physical contact. The results show that volatile organic compounds, especially terpenes, are newly emitted during the interaction between fungi and barley roots. The volatile molecules released by non-infected barley roots did not significantly affect fungal growth, whereas the volatile molecules released by pathogenic fungi decreased the length of barley roots by 19 to 21.5% and the surface of aerial parts by 15%. The spectrum of the volatiles released by infected barley roots had no significant effect on F. culmorum growth, but decreased C. sativus growth by 13 to 17%. This paper identifies the volatile organic compounds emitted by two pathogenic fungi and shows that pathogenic fungi can modify volatile emission by infected plants. Our results open promising perspectives concerning the biological control of edaphic diseases. PMID:23818966

  8. The impact of hybridization on the volatile and sensorial profile of Ocimum basilicum L.

    PubMed

    da Costa, Andréa Santos; Arrigoni-Blank, Maria de Fátima; da Silva, Maria Aparecida Azevedo Pereira; Alves, Mércia Freitas; Santos, Darlisson de Alexandria; Alves, Péricles Barreto; Blank, Arie Fitzgerald

    2014-01-01

    The aim of the present study was to investigate the volatile and sensorial profile of basil (Ocimum basilicum L.) by quantitative descriptive analysis (QDA) of the essential oil of three hybrids ("Cinnamon" × "Maria Bonita," "Sweet Dani" × "Cinnamon," and "Sweet Dani" × "Maria Bonita"). Twelve descriptive terms were developed by a selected panel that also generated the definition of each term and the reference samples. The data were subjected to ANOVA, Tukey's test, and principal component analysis. The hybrid "Cinnamon" × "Maria Bonita" exhibited a stronger global aroma that was less citric than the other samples. Hybridization favored the generation of novel compounds in the essential oil of the hybrid "Sweet Dani" × "Maria Bonita," such as canfora and (E)-caryophyllene; (E)-caryophyllene also was a novel compound in the hybrid "Sweet Dani" × "Cinnamon"; this compound was not present in the essential oils of the parents. PMID:24558334

  9. Characterisation of free and bound volatile compounds from six different varieties of citrus fruits.

    PubMed

    Ren, Jing-Nan; Tai, Ya-Nan; Dong, Man; Shao, Jin-Hui; Yang, Shu-Zhen; Pan, Si-Yi; Fan, Gang

    2015-10-15

    Free volatile compounds in six varieties of citrus juices were analyzed by solid-phase microextraction-gas chromatography-mass spectrometry. Bound fractions were isolated and extracted with methanol and Amberlite XAD-2 resin and then hydrolyzed by almond β-glucosidase. A total of 43 free and 17 bound volatile compounds were identified in citrus. Free volatile contents in sweet orange were the most abundant, followed by those in grapefruits and mandarins. Among free volatiles, terpenes were the most abundant in citrus juice. Sensory analysis results showed that the flavor of the same citrus cultivars was similar, but the flavor of different cultivars varied. Among bound volatiles, benzenic compounds were the most abundant in these citrus juices. Bound volatiles also significantly differed among cultivars. In addition, only p-vinylguaiacol were detected in all of the samples. PMID:25952837

  10. Effect of cooking on physicochemical properties and volatile compounds in lotus root (Nelumbo nucifera Gaertn).

    PubMed

    Li, Shuyi; Li, Xiaojin; Lamikanra, Olusola; Luo, Qing; Liu, Zhiwei; Yang, Jun

    2017-02-01

    The effects of boiling and steaming on lotus root volatile compounds and some of its physicochemical properties were determined. A total of 52 compounds identified in the raw tuber by GC-MS were a combination of the rhizome's native compounds and those from the soil and water environment, and are predominantly a mixture of straight chain and cyclic alkanes, and aromatic hydrocarbons. Boiling increased concentrations of most of these compounds, unlike steaming that lowered total volatile components of the tuber. Cooking increased complexity of volatile compounds with the production of new compounds such as methylated derivatives, particularly in steam cooked lotus. Other heat-induced compounds include antioxidants such as butylated hydroxyl compounds and antifungal organic compounds such as dimethyl disulfide. Instrumental texture measurements indicate that the characteristic post-cooked retention of crunchiness in lotus root is likely to be related to retention of its springiness index through the cooking process. PMID:27596426

  11. A global model of natural volatile organic compound emissions

    NASA Astrophysics Data System (ADS)

    Guenther, Alex; Hewitt, C. Nicholas; Erickson, David; Fall, Ray; Geron, Chris; Graedel, Tom; Harley, Peter; Klinger, Lee; Lerdau, Manuel; McKay, W. A.; Pierce, Tom; Scholes, Bob; Steinbrecher, Rainer; Tallamraju, Raja; Taylor, John; Zimmerman, Pat

    1995-05-01

    Numerical assessments of global air quality and potential changes in atmospheric chemical constituents require estimates of the surface fluxes of a variety of trace gas species. We have developed a global model to estimate emissions of volatile organic compounds from natural sources (NVOC). Methane is not considered here and has been reviewed in detail elsewhere. The model has a highly resolved spatial grid (0.5°×0.5° latitude/longitude) and generates hourly average emission estimates. Chemical species are grouped into four categories: isoprene, monoterpenes, other reactive VOC (ORVOC), and other VOC (OVOC). NVOC emissions from oceans are estimated as a function of geophysical variables from a general circulation model and ocean color satellite data. Emissions from plant foliage are estimated from ecosystem specific biomass and emission factors and algorithms describing light and temperature dependence of NVOC emissions. Foliar density estimates are based on climatic variables and satellite data. Temporal variations in the model are driven by monthly estimates of biomass and temperature and hourly light estimates. The annual global VOC flux is estimated to be 1150 Tg C, composed of 44% isoprene, 11% monoterpenes, 22.5% other reactive VOC, and 22.5% other VOC. Large uncertainties exist for each of these estimates and particularly for compounds other than isoprene and monoterpenes. Tropical woodlands (rain forest, seasonal, drought-deciduous, and savanna) contribute about half of all global natural VOC emissions. Croplands, shrublands and other woodlands contribute 10-20% apiece. Isoprene emissions calculated for temperate regions are as much as a factor of 5 higher than previous estimates.

  12. Monitoring the evolution of volatile compounds using gas chromatography during the stages of production of Moscatel sparkling wine.

    PubMed

    Soares, Rafael Dutra; Welke, Juliane Elisa; Nicolli, Karine Primieri; Zanus, Mauro; Caramão, Elina Bastos; Manfroi, Vitor; Zini, Cláudia Alcaraz

    2015-09-15

    This study reports, for the first time, the main changes that occur with some important aroma compounds of Moscatel sparkling wines during winemaking, measured using headspace solid-phase microextraction, one-dimensional and comprehensive two-dimensional gas chromatography (GC×GC) with mass spectrometry detection (MS). The best conditions of volatile extraction included the use of PDMS/DVB fibre, 2mL of wine, 30% of NaCl, 40°C for 30min. The chromatographic profile of sparkling wines showed decreasing amounts of monoterpenes (limonene, 4-terpineol, terpinolene, citronellol, α-terpineol, linalool, hotrienol, and nerol oxide), increasing amounts of esters (terpenyl esters, ethyl octanoate, ethyl decanoate and hexyl acetate) and alcohols (1-nonanol and 2-phenylethanol). Sixty-nine compounds co-eluted in the first dimension; only six co-eluted in the second dimension. GC×GC/TOFMS allows more detailed study of the volatile profile of sparkling wines. PMID:25863638

  13. A biogenic volatile organic compounds emission inventory for Yunnan Province.

    PubMed

    Wang, Zhi-Hui; Bai, Yu-Hua; Zhang, Shu-Yu

    2005-01-01

    The first detailed inventory for volatile organic compounds (VOC) emissions from vegetation over Yunnan Province, China was presented. The spatially and temporally resolved inventory was developed based on a geographic information system (GIS), remote sensing (RS) data and field measurement data, such as digitized land-use data, normalized difference vegetation index (NDVI) and temperature data from direct real-time measurement. The inventory has a spatial resolution of 5 km x 5 km and a time resolution of 1 h. Urban, agriculture, and natural land-use distributions in Yunnan Province were combined with biomass factors for each land-use category to produce a spatially resolved biomass inventory. A biogenic emission inventory was developed by combining the biomass inventory with hourly emission rates for tree, shrub and ground cover species of the study area. Correcting for environmental factors, including light intensity and temperature, a value of 1.1 x 10(12) gC for total annual biogenic VOC emissions from Yunnan Province, including 6.1 x 10(11) gC for isoprene, 2.1 x 10(11) gC for monoterpenes, and 2.6 x 10(11) gC for OVOC was obtained. The highest VOC emissions occurred in the northwestern, southwestern and north region of Yunnan Province. Some uncertainties were also discussed in this study. PMID:16083102

  14. A novel nanostructure for ultrasensitive volatile organic compound sensing

    NASA Astrophysics Data System (ADS)

    Zhao, Huaizhou; Rizal, Binod; Ren, Zhifeng; Naughton, Michael J.; Chiles, Thomas C.; Cai, Dong

    2011-03-01

    We have developed an arrayed nanocoaxial structure for the ultrasensitive sensing detection and identification of volatile organic compounds (VOC) by dielectric impedance spectroscopy. VOC molecules are absorbed into porous dielectric material in the annulus between nanoscale coax electrodes. A theoretical expression for the basic adsorption mechanism agrees with the experimental results. Detection sensitivities at parts-per-billion levels were demonstrated for a variety of VOCs. A limit-of-detection of ethanol reached ~ 100 parts-per-trillion, following a Freundlich power-law isotherm across four decades of ethanol concentration. A linear dependence on VOC dielectric constant was observed. Dielectric impedance nanospectroscopy was also performed by scanning frequency from 10 mHz to 1 MHz, with distinctive spectra of different VOCs discovered. These were utilized to conduct colorimetric identification of VOCs. The results suggest our novel nanocoaxial sensor can be used as a sensitive, broadband, and multimodal sensing platform for chemical detection. The National Cancer Institute CA137681, the Department of Navy, the National Science Foundation PHY-0804718, and the Seaver Institute. Emails: caid@bc.edu; naughton@bc.edu.

  15. Cost effective passive sampling device for volatile organic compounds monitoring

    NASA Astrophysics Data System (ADS)

    Thammakhet, Chongdee; Muneesawang, Vilailuk; Thavarungkul, Panote; Kanatharana, Proespichaya

    A laboratory-built passive sampler was developed as a simple and cost effective device for monitoring volatile organic compounds (VOCs) such as benzene, toluene and xylene (BTX). Common glass bottles (screw cap, 10 ml, 67.6×10.6 mm ID), packed with 75 mg of activated Tenax TA, were used as passive samplers. After exposed to real sample, the adsorbent was desorbed using a laboratory-built thermal desorption device. The analytes were purged to fill a sampling loop and then injected by a gas sampling valve to a gas chromatograph with a flame ionization detector (FID). All parameters, i.e. , desorption time, purge flow rate, gas chromatograph conditions were optimized to obtain high sensitivity, resolution and short analysis time. The system was calibrated by BTX standard gas and the linear regression coefficient of greater than 0.99 was obtained with detection limits 0.3, 0.2 and 0.7 μg m -3 for benzene, toluene and xylene, respectively. The proposed method was implemented for the monitoring of BTX at 10 gasoline stations in Hat Yai, Thailand. The concentrations were found in the range of N.D.-19, 12-200 and 23-200 μg m -3 for benzene, toluene and xylene, respectively.

  16. Evaluation of volatile organic compound reduction technologies for metal coatings

    SciTech Connect

    Wang, Y.; Huang, E.W.

    1997-12-31

    Under the sponsorship of California Air Resources Board, AeroVironment Environmental Services, Inc. (AVES) is currently conducting a study to demonstrate a new zero-VOC Industrial Maintenance Metal Coating. This new technology can help the coating industry reduce emissions of volatile organic compounds (VOCs) and hazardous air pollutants (HAPs). In a previous study conducted by AVES, current VOCs technologies available on the market for metal parts and product coatings were evaluated for compliance with the South Coast Air Quality Management District (SCAQMD) proposed Rule 1107 (Metal Parts and Product Coatings). There are low-VOC coating products available for industries of interest. For general metal coating applications, certain coating products can comply with current SCAQMD Rule 1107 VOC limits. Some of the low-VOC products that are considered as a substitute or an alternative to high-VOC petroleum-based products are summarized. The current available emerging technologies offer a great opportunity for emission reduction through a gradual shift from high to low/no VOC coatings. By phasing in low/no VOC coatings, industries will be able to reduce energy use and air emissions without installation of add-on controls.

  17. Elimination of volatile organic compounds by biofiltration: a review.

    PubMed

    Nikiema, Josiane; Dastous, Paul-André; Heitz, Michèle

    2007-01-01

    Volatile organic compounds (VOCs) are pollutants that are responsible for the formation of the tropospheric ozone, one of the precursors of smog. VOCs are emitted by various industries including chemical plants, pulp and paper mills, pharmaceuticals, cosmetics, electronics and agri-food industries. Some VOCs cause odor pollution while many of them are harmful to environment and human or animal health. For the removal of VOCs, biofiltration, a biological process, has proved to be reliable when properly operated. This process has therefore been widely applied in Europe and North America. The main advantages associated with the use of biofiltration are related to its set-up, maintenance, and operating costs which are usually lower than those related to other VOCs control technologies and because it is less harmful for the environment than conventional processes like incineration. In the present paper, the main parameters (type, moisture, pH, and temperature of filter bed, microbial population, nutrients concentrations, and VOCs' inlet load) to be controlled during the biofiltration are identified and described in detail. The main phenomena involved in biofiltration are also discussed. For improving the efficiency of VOC control biotechnology, new techniques are now proposed that include the use of membranes, biphasic reactors, UV photolysis, and many others. PMID:18351227

  18. Sources of volatile organic compounds in Cairo's ambient air.

    PubMed

    Abu-Allaban, M; Lowenthal, D H; Gertler, A W; Labib, M

    2009-10-01

    The greater Cairo area suffers from extreme levels of gas and particulate phase air pollutants. In order to reduce the levels of ambient pollution, the USAID and the Egyptian Environmental Affairs Agency (EEAA) have supported the Cairo Air Improvement Project (CAIP). As part of this project, two intensive ambient monitoring studies were carried out during the period of February 22 to March 4 and October 27 to November 27, 1999. Volatile organic compounds (VOCs) were measured on a 24-h basis at six sampling stations during each of the intensive periods. During the February/March study, samples were collected daily, while in the October/November study samples were collected every other day. The six intensive measurement sites represented background levels, mobile source impacts, industrial impacts, and residential exposure. High levels of NMHC were observed at all locations. NMHC concentrations ranged from 365 ppb C at Helwan to 1,848 ppb C at El Qualaly during winter, 1999 and from 461 ppb C at Kaha to 2,037 ppb C at El Qualaly during fall, 1999. El Qualaly, the site chosen to represent mobile emissions, displayed the highest average NMHC concentrations of any site, by a factor of 2 or more. The highest mobile source contributions were estimated at this site. The major contributors to NMHC at all sites were mobile emissions, lead smelting, and compressed natural gas. PMID:18843549

  19. Factors controlling volatile organic compounds in dwellings in Melbourne, Australia.

    PubMed

    Cheng, M; Galbally, I E; Molloy, S B; Selleck, P W; Keywood, M D; Lawson, S J; Powell, J C; Gillett, R W; Dunne, E

    2016-04-01

    This study characterized indoor volatile organic compounds (VOCs) and investigated the effects of the dwelling characteristics, building materials, occupant activities, and environmental conditions on indoor VOC concentrations in 40 dwellings located in Melbourne, Australia, in 2008 and 2009. A total of 97 VOCs were identified. Nine VOCs, n-butane, 2-methylbutane, toluene, formaldehyde, acetaldehyde, d-limonene, ethanol, 2-propanol, and acetic acid, accounted for 68% of the sum of all VOCs. The median indoor concentrations of all VOCs were greater than those measured outdoors. The occupant density was positively associated with indoor VOC concentrations via occupant activities, including respiration and combustion. Terpenes were associated with the use of household cleaning and laundry products. A petroleum-like indoor VOC signature of alkanes and aromatics was associated with the proximity of major roads. The indoor VOC concentrations were negatively correlated (P < 0.05) with ventilation. Levels of VOCs in these Australian dwellings were lower than those from previous studies in North America and Europe, probably due to a combination of an ongoing temporal decrease in indoor VOC concentrations and the leakier nature of Australian dwellings. PMID:25788118

  20. Volatile organic silicon compounds: the most undesirable contaminants in biogases.

    PubMed

    Ohannessian, Aurélie; Desjardin, Valérie; Chatain, Vincent; Germain, Patrick

    2008-01-01

    Recently a lot of attention has been focused on volatile organic silicon compounds (VOSiC) present in biogases. They induce costly problems due to silicate formation during biogas combustion in valorisation engine. The cost of converting landfill gas and digester gas into electricity is adversely affected by this undesirable presence. VOSiC in biogases spark off formation of silicate deposits in combustion chambers. They engender abrasion of the inner surfaces leading to serious damage, which causes frequent service interruptions, thus reducing the economic benefit of biogases. It is already known that these VOSiC originate from polydimethylsiloxanes (PDMS) hydrolysis. PDMS (silicones) are used in a wide range of consumer and industrial applications. PDMS are released into the environment through landfills and wastewater treatment plants. There is a lack of knowledge concerning PDMS biodegradation during waste storage. Consequently, understanding PDMS behaviour in landfill cells and in sludge digester is particularly important. In this article, we focused on microbial degradation of PDMS through laboratory experiments. Preliminary test concerning anaerobic biodegradation of various PDMS have been investigated. Results demonstrate that the biotic step has an obvious influence on PDMS biodegradation. PMID:19029718

  1. Evolution of Volatile Sulfur Compounds during Wine Fermentation.

    PubMed

    Kinzurik, Matias I; Herbst-Johnstone, Mandy; Gardner, Richard C; Fedrizzi, Bruno

    2015-09-16

    Volatile sulfur compounds (VSCs) play a significant role in the aroma of foods and beverages. With very low sensory thresholds and strong unpleasant aromas, most VSCs are considered to have a negative impact on wine quality. In this study, headspace solid phase microextraction coupled with gas chromatography-mass spectrometry (HS-SPME/GC-MS) was used to analyze the time course of the biosynthesis of 12 VSCs formed during wine fermentation. Two different strains of Saccharomyces cerevisiae, the laboratory strain BY4743 and a commercial strain, F15, were assessed using two media: synthetic grape media and Sauvignon Blanc juice. Seven VSCs were detected above background, with three rising above their sensory thresholds. The data revealed remarkable differences in the timing and evolution of production during fermentation, with a transient spike in methanethiol production early during anaerobic growth. Heavier VSCs such as benzothiazole and S-ethyl thioacetate were produced at a steady rate throughout grape juice fermentation, whereas others, such as diethyl sulfide, appear toward the very end of the winemaking process. The results also demonstrate significant differences between yeast strains and fermentation media. PMID:26271945

  2. Remediation of ground water containing volatile organic compounds and tritium

    SciTech Connect

    Shukla, S.N.; Folsom, E.N.

    1994-03-01

    The Trailer 5475 (T-5475) East Taxi Strip Area at Lawrence Livermore National Laboratory (LLNL), Livermore, California was used as a taxi strip by the US Navy to taxi airplanes to the runway from 1942 to 1947. Solvents were used in some unpaved areas adjacent to the East Taxi Strip for cleaning airplanes. From 1953 through 1976, the area was used to store and treat liquid waste. From 1962 to 1976 ponds were constructed and used for evaporation of liquid waste. As a result, the ground water in this area contains volatile organic compounds (VOCs) and tritium. The ground water in this area is also known to contain hexavalent chromium that is probably naturally occurring. Therefore, LLNL has proposed ``pump-and-treat`` technology above grade in a completely closed loop system. The facility will be designed to remove the VOCs and hexavalent chromium, if any, from the ground water, and the treated ground water containing tritium will be reinjected where it will decay naturally in the subsurface. Ground water containing tritium will be reinjected into areas with equal or higher tritium concentrations to comply with California regulations.

  3. Volatile Organic Compounds: Characteristics, distribution and sources in urban schools

    NASA Astrophysics Data System (ADS)

    Mishra, Nitika; Bartsch, Jennifer; Ayoko, Godwin A.; Salthammer, Tunga; Morawska, Lidia

    2015-04-01

    Long term exposure to organic pollutants, both inside and outside school buildings may affect children's health and influence their learning performance. Since children spend significant amount of time in school, air quality, especially in classrooms plays a key role in determining the health risks associated with exposure at schools. Within this context, the present study investigated the ambient concentrations of Volatile Organic Compounds (VOCs) in 25 primary schools in Brisbane with the aim to quantify the indoor and outdoor VOCs concentrations, identify VOCs sources and their contribution, and based on these; propose mitigation measures to reduce VOCs exposure in schools. One of the most important findings is the occurrence of indoor sources, indicated by the I/O ratio >1 in 19 schools. Principal Component Analysis with Varimax rotation was used to identify common sources of VOCs and source contribution was calculated using an Absolute Principal Component Scores technique. The result showed that outdoor 47% of VOCs were contributed by petrol vehicle exhaust but the overall cleaning products had the highest contribution of 41% indoors followed by air fresheners and art and craft activities. These findings point to the need for a range of basic precautions during the selection, use and storage of cleaning products and materials to reduce the risk from these sources.

  4. Production of volatile organic compounds by cyanobacteria Synechococcus sp.

    NASA Astrophysics Data System (ADS)

    Hiraiwa, M.; Abe, M.; Hashimoto, S.

    2014-12-01

    Phytoplankton are known to produce volatile organic compounds (VOCs), which contribute to environmental problems such as global warming and decomposition of stratospheric ozone. For example, picophytoplankton, such as Prochlorococcus and Synechococcus, are distributed in freshwater and oceans worldwide, accounting for a large proportion of biomass and primary production in the open ocean. However, to date, little is known about the production of VOCs by picophytoplankton. In this study, VOCs production by cyanobacteria Synechococcus sp. (NIES-981) was investigated. Synechococcus sp. was obtained from the National Institute for Environmental Studies (NIES), Japan, and cultured at 24°C in autoclaved f/2-Si medium under 54 ± 3 µE m-2 s-1 (1 E = 1 mol of photons) with a 12-h light and 12-h dark cycle. VOCs concentrations were determined using a purge-and-trap gas chromatograph-mass spectrometer (Agilent 5973). The concentrations of chlorophyll a (Chl a) were also determined using a fluorometer (Turner TD-700). Bromomethane (CH3Br) and isoprene were produced by Synechococcus sp. Isoprene production was similar to those of other phytoplankton species reported earlier. Isoprene was produced when Chl a was increasing in the early stage of the incubation period (5-15 days of incubation time, exponential phase), but CH3Br was produced when Chl a was reduced in the late stage of the incubation period (30-40 days of incubation time, death phase).

  5. Development and Mining of a Volatile Organic Compound Database

    PubMed Central

    Abdullah, Azian Azamimi; Altaf-Ul-Amin, Md.; Ono, Naoaki; Sato, Tetsuo; Sugiura, Tadao; Morita, Aki Hirai; Katsuragi, Tetsuo; Muto, Ai; Nishioka, Takaaki; Kanaya, Shigehiko

    2015-01-01

    Volatile organic compounds (VOCs) are small molecules that exhibit high vapor pressure under ambient conditions and have low boiling points. Although VOCs contribute only a small proportion of the total metabolites produced by living organisms, they play an important role in chemical ecology specifically in the biological interactions between organisms and ecosystems. VOCs are also important in the health care field as they are presently used as a biomarker to detect various human diseases. Information on VOCs is scattered in the literature until now; however, there is still no available database describing VOCs and their biological activities. To attain this purpose, we have developed KNApSAcK Metabolite Ecology Database, which contains the information on the relationships between VOCs and their emitting organisms. The KNApSAcK Metabolite Ecology is also linked with the KNApSAcK Core and KNApSAcK Metabolite Activity Database to provide further information on the metabolites and their biological activities. The VOC database can be accessed online. PMID:26495281

  6. Volatile organic compound monitoring by photo acoustic radiometry

    SciTech Connect

    Sollid, J.E.; Trujillo, V.L.; Limback, S.P.; Woloshun, K.A.

    1995-12-01

    Two methods for sampling and analyzing volatile organics in subsurface pore gas were developed for use at the Hazardous Waste Disposal Site at Los Alamos National Laboratory. One is Thermal Desorption Gas Chromatography Mass Spectrometry (TDGCMS), the other is Photoacoustic Radiometry (PAR). Presented here are two years worth of experience and lessons learned as both techniques matured. The sampling technique is equally as important as the analysis method. PAR is a nondispersive infrared technique utilizing band pass filters in the region from 1 to 15 {mu}m. A commercial instrument, the Model 1302 Multigas Analyzer, made by Bruel and Kjaer, was adapted for field use. To use the PAR there must be some a priori knowledge of the constellation of analytes to be measured. The TDGCMS method is sensitive to 50 analytes. Hence TDGCMS is used in an initial survey of the site to determine what compounds are present and at what concentration. Once the major constituents of the soil-gas vapor plume are known the PAR can be configured to monitor for the five analytes of most interest. The PAR can analyse a sample in minutes, while in the field. The PAR is also quite precise in controlled situations.

  7. Advanced heat pump for the recovery of volatile organic compounds

    SciTech Connect

    Not Available

    1992-03-01

    Emissions of Volatile Organic Compounds (VOC) from stationary industrial and commercial sources represent a substantial portion of the total US VOC emissions. The Toxic-Release Inventory'' of The US Environmental Protection Agency estimates this to be at about 3 billion pounds per year (1987 estimates). The majority of these VOC emissions are from coating processes, cleaning processes, polymer production, fuel production and distribution, foam blowing,refrigerant production, and wood products production. The US Department of Energy's (DOE) interest in the recovery of VOC stems from the energy embodied in the recovered solvents and the energy required to dispose of them in an environmentally acceptable manner. This Phase I report documents 3M's work in close working relationship with its subcontractor Nuclear Consulting Services (Nucon) for the preliminary conceptual design of an advanced Brayton cycle heat pump for the recovery of VOC. Nucon designed Brayton cycle heat pump for the recovery of methyl ethyl ketone and toluene from coating operations at 3M Weatherford, OK, was used as a base line for the work under cooperative agreement between 3M and ODE. See appendix A and reference (4) by Kovach of Nucon. This cooperative agreement report evaluates and compares an advanced Brayton cycle heat pump for solvent recovery with other competing technologies for solvent recovery and reuse. This advanced Brayton cycle heat pump is simple (very few components), highly reliable (off the shelf components), energy efficient and economically priced.

  8. Volatile organic compounds in the atmosphere of Mexico City

    NASA Astrophysics Data System (ADS)

    Garzón, Jessica P.; Huertas, José I.; Magaña, Miguel; Huertas, María E.; Cárdenas, Beatriz; Watanabe, Takuro; Maeda, Tsuneaki; Wakamatsu, Shinji; Blanco, Salvador

    2015-10-01

    The Mexico City Metropolitan Area (MCMA) is one of the most polluted megacities in North America. Therefore, it is an excellent benchmark city to understand atmospheric chemistry and to implement pilot countermeasures. Air quality in the MCMA is not within acceptable levels, mainly due to high ground levels of ozone (O3). Tropospheric O3 is a secondary pollutant formed from the oxidation of volatile organic compounds (VOCs) in the presence of nitrogen oxides and sunlight. To gain a better understanding of O3 formation in megacities, evaluate the effectiveness of already-implemented countermeasures, and identify new cost-effective alternatives to reduce tropospheric O3 concentrations, researchers and environmental authorities require updated concentrations for a broader range of VOCs. Moreover, in an effort to protect human health and the environment, it is important to understand which VOCs exceed reference safe values or most contribute to O3 formation, as well as to identify the most probable emission sources of those VOCs. In this work, 64 VOCs, including 36 toxic VOCs, were measured at four sites in the MCMA during 2011-2012. VOCs related to liquefied petroleum gas leakages exhibited the highest concentrations. Toxic VOCs with the highest average concentrations were acetone and ethanol. The toxic VOC benzene represented the highest risk to Mexican citizens, and toluene contributed the most to O3 formation. Correlation analysis indicated that the measured VOCs come from vehicular emissions and solvent-related industrial sources.

  9. [Volatile organic compounds (VOCs) emitted from furniture and electrical appliances].

    PubMed

    Tanaka-Kagawa, Toshiko; Jinno, Hideto; Furukawa, Yoko; Nishimura, Tetsuji

    2010-01-01

    Organic chemicals are widely used as ingredients in household products. Therefore, furniture and other household products as well as building products may influence the indoor air quality. This study was performed to estimate quantitatively influence of household products on indoor air quality. Volatile organic compound (VOC) emissions were investigated for 10 products including furniture (chest, desk, dining table, sofa, cupboard) and electrical appliances (refrigerator, electric heater, desktop personal computer, liquid crystal display television and audio) by the large chamber test method (JIS A 1912) under the standard conditions of 28 degrees C, 50% relative humidity and 0.5 times/h ventilation. Emission rate of total VOC (TVOC) from the sofa showed the highest; over 7900 microg toluene-equivalent/unit/h. Relatively high TVOC emissions were observed also from desk and chest. Based on the emission rates, the impacts on the indoor TVOC were estimated by the simple model with a volume of 17.4 m3 and ventilation frequency of 0.5 times/h. The estimated TVOC increment for the sofa was 911 microg/m3, accounting for almost 230% of the provisional target value, 400 microg/m3. The values of estimated increment of toluene emitted from cupboard and styrene emitted from refrigerator were 10% and 16% of guideline values, respectively. These results revealed that VOC emissions from household products may influence significantly indoor air quality. PMID:21381398

  10. Identification of sulphur volatiles and GC-olfactometry aroma profiling in two fresh tomato cultivars.

    PubMed

    Du, Xiaofen; Song, Mei; Baldwin, Elizabeth; Rouseff, Russell

    2015-03-15

    Ten sulphur volatiles were observed in two Florida tomato cultivars ('Tasti-Lee' and 'FL 47') harvested at three maturity stages (breaker, turning, and pink) using gas chromatography with a pulsed flame photometric detector (GC-PFPD). Eight PFPD peaks were identified using retention values from authentic sulphur standards and GC-MS characteristic masses. Seven were quantified using an internal standard combined with external calibration curves. Dimethyl sulphide, dimethyl disulphide, dimethyl trisulphide 2-propylthiazole and 2-s-butylthiazole were newly identified in fresh tomatoes. Principal component analysis of sulphur volatiles indicated that there were appreciable maturity stage differences clustered in separate quadrants. GC-olfactometry (GC-O) identified 50 aroma-active compounds in 'Tasti-Lee', with 10 reported as odorants in fresh tomatoes for the first time. Four sulphur volatiles exhibited aroma activity, including two of the newly-reported fresh tomato sulphur volatiles, 2-s-butylthiazole and dimethyl sulphide. GC-O aroma profiling indicated that the most intense aroma category was earthy-musty, followed by fruity-floral, green-grassy, sweet-candy and sweaty-stale-sulphurous. PMID:25308674

  11. Integrative Analyses of Nontargeted Volatile Profiling and Transcriptome Data Provide Molecular Insight into VOC Diversity in Cucumber Plants (Cucumis sativus).

    PubMed

    Wei, Guo; Tian, Peng; Zhang, Fengxia; Qin, Hao; Miao, Han; Chen, Qingwen; Hu, Zhongyi; Cao, Li; Wang, Meijiao; Gu, Xingfang; Huang, Sanwen; Chen, Mingsheng; Wang, Guodong

    2016-09-01

    Plant volatile organic compounds, which are generated in a tissue-specific manner, play important ecological roles in the interactions between plants and their environments, including the well-known functions of attracting pollinators and protecting plants from herbivores/fungi attacks. However, to date, there have not been reports of holistic volatile profiling of the various tissues of a single plant species, even for the model plant species. In this study, we qualitatively and quantitatively analyzed 85 volatile chemicals, including 36 volatile terpenes, in 23 different tissues of cucumber (Cucumis sativus) plants using solid-phase microextraction combined with gas chromatography-mass spectrometry. Most volatile chemicals were found to occur in a highly tissue-specific manner. The consensus transcriptomes for each of the 23 cucumber tissues were generated with RNA sequencing data and used in volatile organic compound-gene correlation analysis to screen for candidate genes likely to be involved in cucumber volatile biosynthetic pathways. In vitro biochemical characterization of the candidate enzymes demonstrated that TERPENE SYNTHASE11 (TPS11)/TPS14, TPS01, and TPS15 were responsible for volatile terpenoid production in the roots, flowers, and fruit tissues of cucumber plants, respectively. A functional heteromeric geranyl(geranyl) pyrophosphate synthase, composed of an inactive small subunit (type I) and an active large subunit, was demonstrated to play a key role in monoterpene production in cucumber. In addition to establishing a standard workflow for the elucidation of plant volatile biosynthetic pathways, the knowledge generated from this study lays a solid foundation for future investigations of both the physiological functions of cucumber volatiles and aspects of cucumber flavor improvement. PMID:27457123

  12. Changes in volatile compounds and some physicochemical properties of European cranberrybush (Viburnum opulus L.) during ripening through traditional fermentation.

    PubMed

    Yilmaztekin, Murat; Sislioglu, Kubra

    2015-04-01

    The changes in volatile compounds and some physicochemical properties of European Cranberrybush (Viburnum opulus L.) were investigated during traditional fermentation. Using the principal component analysis (PCA), relations between volatile compounds and fermentation were associated with dynamics of these compounds. In total, 58 volatile compounds were identified, 3-methylbutanoic acid (25.4% to 66.4% of identified volatile compounds) being the major constituent in raw, 2-, 3-, and 4-mo fermented European Cranberrybush fruits, while 2-octanone was dominant in 1-mo fermented sample with a 30% of the total identified volatiles. The amount of total volatile compounds was increased in the 1st month of fermentation and then decreased gradually in the following months. Acids were the dominant volatile compounds in raw and 3- to 4-mo fermented European Cranberrybush. Ketones and alcohols had the highest percentage in total volatile compounds in the 2nd and 3rd months of fermentation, respectively. PMID:25808206

  13. Flowers volatile profile of a rare red apple tree from Marche region (Italy).

    PubMed

    Fraternale, Daniele; Flamini, Guido; Ricci, Donata; Giomaro, Giovanna

    2014-01-01

    In this paper, the volatiles emitted by flowers and various parts of the flower of a rare spontaneous Italian red (peel and flesh) apple named "Pelingo", were analyzed by SPME with the aim of identifying the contribution of each one to the whole aroma profile. Linalool was the most abundant volatile of flowers: from 43.0% in the flower buds, to 17.6% in the stylus and stigma headspace. The second most represented volatile was (E,E)-α-farnesene mainly emitted by the mature flowers (32.2%). Benzenoid compounds also have been identified: benzyl-alcohol is the most representative (1.0-16.5%) in all the samples except flower buds, while benzyl acetate (5.7%) and methyl salicylate (7.7%) are mainly present in the calyx and in the mature flowers respectively but not in the flower buds. Benzenoid compounds are the attractors for pollinator, probably for this reason were not detected in the headspace of flower buds. PMID:25354879

  14. Soil sampling and analysis for volatile organic compounds.

    PubMed

    Lewis, T E; Crockett, A B; Siegrist, R L

    1994-05-01

    Concerns over data quality have raised many questions related to sampling soils for volatile organic compounds (VOCs). This paper was prepared in response to some of these questions and concerns expressed by Remedial Project Managers (RPMs) and On-Scene Coordinators (OSCs). The following questions are frequently asked: 1. Is there a specific device suggested for sampling soils for VOCs? 2. Are there significant losses of VOCs when transferring a soil sample from a sampling device (e.g., split spoon) into the sample container? 3. What is the best method for getting the sample from the split spoon (or other device) into the sample container? 4. Are there smaller devices such as subcore samplers available for collecting aliquots from the larger core and efficiently transferring the sample into the sample container? 5. Are certain containers better than others for shipping and storing soil samples for VOC analysis? 6. Are there any reliable preservation procedures for reducing VOC losses from soil samples and for extending holding times? Guidance is provided for selecting the most effective sampling device for collecting samples from soil matrices. The techniques for sample collection, sample handling, containerizing, shipment, and storage described in this paper reduce VOC losses and generally provide more representative samples for volatile organic analyses (VOA) than techniques in current use. For a discussion on the proper use of sampling equipment the reader should refer to other sources (Acker, 1974; U.S. EPA, 1983; U.S. EPA, 1986a).Soil, as referred to in this report, encompasses the mass (surface and subsurface) of unconsolidated mantle of weathered rock and loose material lying above solid rock. Further, a distinction must be made as to what fraction of the unconsolidated material is soil and what fraction is not. The soil component here is defined as all mineral and naturally occurring organic material that is 2 mm or less in size. This is the size normally

  15. Exchange of volatile organic compounds in the boreal forest floor

    NASA Astrophysics Data System (ADS)

    Aaltonen, Hermanni; Bäck, Jaana; Pumpanen, Jukka; Pihlatie, Mari; Hakola, Hannele; Hellén, Heidi; Aalto, Juho; Heinonsalo, Jussi; Kajos, Maija K.; Kolari, Pasi; Taipale, Risto; Vesala, Timo

    2013-04-01

    Terrestrial ecosystems, mainly plants, emit large amounts of volatile organic compounds (VOCs) into the atmosphere. In addition to plants, VOCs also have less-known sources, such as soil. VOCs are a very diverse group of reactive compounds, including terpenoids, alcohols, aldehydes and ketones. Due to their high reactivity, VOCs take part in formation and growth of secondary organic aerosols in the atmosphere and thus affect also Earth's radiation balance (Kulmala et al. 2004). We have studied boreal soil and forest floor VOC fluxes with chamber and snow gradient techniques we were developed. Spatial and temporal variability in VOC fluxes was studied with year-round measurements in the field and the sources of boreal soil VOCs in the laboratory with fungal isolates. Determination of the compounds was performed mass spectrometrically. Our results reveal that VOCs from soil are mainly emitted by living roots, above- and belowground litter and microbes. The strongest source appears to be litter, in which both plant residuals and decomposers play a role in the emissions. Soil fungi showed high emissions of lighter VOCs, like acetone, acetaldehyde and methanol, from isolates. Temperature and moisture are the most critical physical factors driving VOC fluxes. Since the environment in boreal forests undergoes strong seasonal changes, the VOC flux strength of the forest floor varies markedly during the year, being highest in spring and autumn. The high spatial heterogeneity of the forest floor was also clearly visible in VOC fluxes. The fluxes of other trace gases (CO2, CH4 and N2O) from soil, which are also related to the soil biological activity and physical conditions, did not show correlations with the VOC fluxes. These results indicate that emissions of VOCs from the boreal forest floor account for as much as several tens of percent, depending on the season, of the total forest ecosystem VOC emissions. This emphasises that forest floor compartment should be taken into

  16. Exposure to volatile organic compounds: Comparison among different transportation modes

    NASA Astrophysics Data System (ADS)

    Do, Duc Hoai; Van Langenhove, Herman; Chigbo, Stephen Izuchukwu; Amare, Abebech Nuguse; Demeestere, Kristof; Walgraeve, Christophe

    2014-09-01

    The increasing trend of promoting public transportation (bus tram, metro, train) and more environmental friendly and sustainable non fossil-fuel alternatives (walking, cycling etc) as substitutes for auto vehicles brings forward new questions with regard to pollutant levels to which commuters are exposed. In this study, three transportation modes (tram, auto vehicle and bicycle) are studied and concentration levels of 84 volatile organic compounds (VOCs) (hydrocarbons, aromatic hydrocarbons, oxygen containing hydrocarbons, terpenes and halogenated compounds) are measured along a route in the city of Ghent, Belgium. The concentration levels are obtained by active sampling on Tenax TA sorbent tubes followed by thermal desorption gas chromatography mass spectrometry (TD-GC-MS) using deuterated toluene as an internal standard. The median total VOC concentrations for the tram mode (33 μg/m³) is 1.7 times higher than that of the bicycle mode (20 μg/m³) and 1.5 times higher than for the car mode (22 μg/m³). It is found that aromatic hydrocarbons account for a significant proportion in the total VOCs concentration (TVOCs) being as high as 41-57%, 59-72% and 58-72% for the tram, car and bicycle respectively. In all transportation modes, there was a high (r > 0.6) degree of correlation between BTEX compounds, isopropylbenzene, n-propylbenzene, 1,3,5-trimethylbenzene and 1,2,4-trimethylbenzene. When comparing time weighed average concentrations along a fixed route in Ghent, it is found that commuters using the tram mode experience the highest TVOCs concentration levels. However, next to the concentration level to which commuters are exposed, the physical activity level involving the mode of transportation is important to assess the exposure to toxic VOCs. It is proven that the commuter using a bicycle (4.3 ± 1.5 μg) inhales seven and nine times more benzene compared to the commuter using the car and tram respectively, when the same route is followed.

  17. Assessment of bacterial mutagenicity methods for volatile and semi-volatile compounds and mixtures

    SciTech Connect

    Claxton, L.D.

    1985-01-01

    Extensive effort has been given to identifying and quantitating the organic genotoxins associated with airborne particles; however, very little is known about the mutagenicity of vapors and gases, especially those associated with ambient air samples. This overview of the literature and recent U.S. Environmental Protection Agency efforts examines some of the critical aspects associated with the bacterial mutagenicity testing of gases and vapors. For example, the sensitivity of the test system depends upon the method of exposure (preincubation, gases over plates, liquid suspension, etc.); and the method-of-choice appears to depend upon vapor pressure and the solubility of the compound under investigation. Also, the selection of test chamber and other materials is very important since plastic petri dishes have been shown to absorb up to 85% of any haloalkane vapors within an exposure chamber. Investigations have also shown the importance of exposure rates, method of gas mixing, role of metabolic activation systems, the occurrence of photoactivation. In ambient studies, the identification and quantitation of volatile organic mutagens is quite difficult; however, due to their abundance these efforts are very important.

  18. Multiple effects of Bacillus amyloliquefaciens volatile compounds: plant growth promotion and growth inhibition of phytopathogens.

    PubMed

    Asari, Shashidar; Matzén, Staffan; Petersen, Mikael Agerlin; Bejai, Sarosh; Meijer, Johan

    2016-06-01

    Biotic interactions through volatile organic compounds (VOC) are frequent in nature. This investigation aimed to study the role of ITALIC! BacillusVOC for the beneficial effects on plants observed as improved growth and pathogen control. Four ITALIC! Bacillus amyloliquefacienssubsp. ITALIC! plantarumstrains were screened for VOC effects on ITALIC! Arabidopsis thalianaCol-0 seedlings and ITALIC! Brassicafungal phytopathogens. VOC from all four ITALIC! Bacillusstrains could promote growth of ITALIC! Arabidopsisplants resulting in increased shoot biomass but the effects were dependent on the growth medium. Dose response studies with UCMB5113 on MS agar with or without root exudates showed significant plant growth promotion even at low levels of bacteria. ITALIC! BacillusVOC antagonized growth of several fungal pathogens ITALIC! in vitro However, the plant growth promotion efficacy and fungal inhibition potency varied among the ITALIC! Bacillusstrains. VOC inhibition of several phytopathogens indicated efficient microbial antagonism supporting high rhizosphere competence of the ITALIC! Bacillusstrains. GC-MS analysis identified several VOC structures where the profiles differed depending on the growth medium. The ability of ITALIC! Bacillusstrains to produce both volatile and soluble compounds for plant growth promotion and disease biocontrol provides examples of rhizosphere microbes as an important ecosystem service with high potential to support sustainable crop production. PMID:27053756

  19. Novel Set-Up for Low-Disturbance Sampling of Volatile and Non-volatile Compounds from Plant Roots.

    PubMed

    Eilers, Elisabeth J; Pauls, Gerhard; Rillig, Matthias C; Hansson, Bill S; Hilker, Monika; Reinecke, Andreas

    2015-03-01

    Most studies on rhizosphere chemicals are carried out in substrate-free set-ups or in artificial substrates using sampling methods that require an air flow and may thus cause disturbance to the rhizosphere. Our study aimed to develop a simplified and inexpensive system that allows analysis of rhizosphere chemicals at experimentally less disturbed conditions. We designed a mesocosm in which volatile rhizosphere chemicals were sampled passively (by diffusion) without air- and water flow on polydimethylsiloxane-(PDMS) tubes. Dandelion (Taraxacum sect. ruderalia) was used as model plant; roots were left undamaged. Fifteen volatiles were retrieved from the sorptive material by thermal desorption for analysis by gas chromatography/mass spectrometry (GC/MS). Furthermore, three sugars were collected from the rhizosphere substrate by aqueous extraction and derivatized prior to GC/MS analysis. In order to study how the quantity of detected rhizosphere compounds depends on the type of soil or substrate, we determined the matrix-dependent recovery of synthetic rhizosphere chemicals. Furthermore, we compared sorption of volatiles on PDMS tubes with and without direct contact to the substrate. The results show that the newly designed mesocosm is suitable for low-invasive extraction of volatile and non-volatile compounds from rhizospheres. We further highlight how strongly the type of substrate and contact of PDMS tubes to the substrate affect the detectability of compounds from rhizospheres. PMID:25795090

  20. Inter-year repeatability study of volatile organic compounds from surface decomposition of human analogues.

    PubMed

    Stadler, Sonja; Desaulniers, Jean-Paul; Forbes, Shari L

    2015-05-01

    Decomposition odour and volatile organic compounds (VOCs) have gained considerable attention recently due to their use by insects and scent detection canines to locate remains. However, a comprehensive and accurate profile of decomposition odour is yet to be confirmed. This is, in part, due to the geographical diversity in the studies conducted and the variation in the methodology and compounds being reported. To date, no repeatability studies of decomposition odour have been conducted in the same environment. In order to address this current gap in the scientific literature, this study conducted three replicate trials in order to evaluate the inter-year repeatability of the decomposition VOC profile in a southern Canadian environment. Surface decomposition trials were conducted during the spring and summer months and the VOCs were analysed by thermal desorption-gas chromatography-mass spectrometry (TD-GC-MS). This study was able to demonstrate that decomposition VOCs are produced consistently during their characteristic stages and that this relationship is maintained under varying environmental factors which influence the rate of decomposition. This consistent production of decomposition VOCs can lead to a better understanding of the mechanisms of soft tissue decomposition and their sources of variation, and it could potentially lead to improved applications of these compounds for the detection of decomposed remains. PMID:24867182

  1. Quantitative analysis of volatile organic compounds released and consumed by rat L6 skeletal muscle cells in vitro

    PubMed Central

    Mochalski, Paweł; Al-Zoairy, Ramona; Niederwanger, Andreas; Unterkofler, Karl; Amann, Anton

    2016-01-01

    Knowledge of the release of volatile organic compounds (VOCs) by cells provides important information on the origin of VOCs in exhaled breath. Muscle cells are particularly important, since their release of volatiles during the exertion of an effort contributes considerably to breath concentration profiles. Presently, the cultivation of human skeletal muscle cells is encountering a number of obstacles, necessitating the use of animal muscle cells in in vitro studies. Rat L6 skeletal muscle cells are therefore commonly used as a model for studying the molecular mechanisms of human skeletal muscle differentiation and functions, and facilitate the study of the origin and metabolic fate of the endogenously produced compounds observed in breath and skin emanations. Within this study the production and uptake of VOCs by rat L6 skeletal muscle cells were investigated using gas chromatography with mass spectrometric detection, combined with head-space needle trap extraction as the pre-concentration technique (HS-NTE-GC-MS). Seven compounds were found to be produced, whereas sixteen species were consumed (Wilcoxon signed-rank test, p < 0.05) by the cells being studied. The set of released volatiles included two ketones (2-pentanone and 2-nonanone), two volatile sulphur compounds (dimethyl sulfide and methyl 5-methyl-2-furyl sulphide), and three hydrocarbons (2-methyl 1-propene, n-pentane and isoprene). Of the metabolized species there were thirteen aldehydes (2-propenal, 2-methyl 2-propenal, 2-methyl propanal, 2-butenal, 2-methyl butanal, 3-methyl butanal, n-pentanal, 2-methyl 2-butenal, n-hexanal, benzaldehyde, n-octanal, n-nonanal and n-decanal), two esters (n-propyl propionate and n-butyl acetate), and one volatile sulphur compound (dimethyl disulfide). The possible metabolic pathways leading to the uptake and release of these compounds by L6 cells are proposed and discussed. An analysis of the VOCs showed them to have huge potential for the identification and monitoring

  2. Climatic factors directly impact the volatile organic compound fingerprint in green Arabica coffee bean as well as coffee beverage quality.

    PubMed

    Bertrand, B; Boulanger, R; Dussert, S; Ribeyre, F; Berthiot, L; Descroix, F; Joët, T

    2012-12-15

    Coffee grown at high elevations fetches a better price than that grown in lowland regions. This study was aimed at determining whether climatic conditions during bean development affected sensory perception of the coffee beverage and combinations of volatile compounds in green coffee. Green coffee samples from 16 plots representative of the broad range of climatic variations in Réunion Island were compared by sensory analysis. Volatiles were extracted by solid phase micro-extraction and the volatile compounds were analysed by GC-MS. The results revealed that, among the climatic factors, the mean air temperature during seed development greatly influenced the sensory profile. Positive quality attributes such as acidity, fruity character and flavour quality were correlated and typical of coffees produced at cool climates. Two volatile compounds (ethanal and acetone) were identified as indicators of these cool temperatures. Among detected volatiles, most of the alcohols, aldehydes, hydrocarbons and ketones appeared to be positively linked to elevated temperatures and high solar radiation, while the sensory profiles displayed major defects (i.e. green, earthy flavour). Two alcohols (butan-1,3-diol and butan-2,3-diol) were closely correlated with a reduction in aromatic quality, acidity and an increase in earthy and green flavours. We assumed that high temperatures induce accumulation of these compounds in green coffee, and would be detected as off-flavours, even after roasting. Climate change, which generally involves a substantial increase in average temperatures in mountainous tropical regions, could be expected to have a negative impact on coffee quality. PMID:22980845

  3. 40 CFR Table 1 to Subpart D of... - Volatile Organic Compound (VOC), Content Limits for Architectural Coatings

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 6 2013-07-01 2013-07-01 false Volatile Organic Compound (VOC... ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL VOLATILE ORGANIC COMPOUND EMISSION STANDARDS FOR CONSUMER AND COMMERCIAL PRODUCTS National Volatile Organic Compound Emission Standards...

  4. Source apportionment of ambient volatile organic compounds in Hong Kong.

    PubMed

    Lau, Alexis Kai Hon; Yuan, Zibing; Yu, Jian Zhen; Louie, Peter K K

    2010-09-01

    Volatile organic compounds (VOCs) were measured at four stations with different environments in Hong Kong (HK) during two sampling campaigns. Positive matrix factorization was applied to characterize major VOC sources in HK. Nine sources were identified, and the spatial and seasonal variations of their contributions were derived. The most significant local VOC sources are vehicle and marine vessel exhausts or liquefied petroleum gas (LPG) at different stations. Vehicle- and marine vessel-related sources accounted for 2.9-12.7ppbv in 2002-2003 and increased to 4.3-15.2ppbv in 2006-2007. Different from the emission inventory, solvent-related sources only contributed 11- 19% at both sampling campaigns. Therefore, emission control from transport sector should be prioritized to alleviate ambient local VOC levels. Additionally, the contribution of aged VOC, which roughly represents contributions from regional and super-regional transport, also showed moderate increase during the four years, indicating cooperation with environmental authorities in the Pearl River Delta and beyond should be strengthened. All the anthropogenic sources contribute most to Yuen Long and least to Tap Mun. However, Tap Mun exhibited different trends in comparison with the other three stations, especially for sources of vehicle and marine vessel exhausts, LPG and paint solvents. When the local source contributions were incorporated with wind data to derive the directional dependences of sources, we may conclude that the rapid development of Yantian Container Terminal, the associated emissions from marine vessels around the Terminal and the on-site activities were likely responsible for the distinct VOC features at Tap Mun. The current impact from the Terminal is mainly concentrated in the northeastern corner of HK; however, it has the potential threat to other locations if the Terminal continues to expand in such a rapid speed in the coming years. More stringent VOC control measures on activities

  5. Volatile Organic Compounds in the Global Atmosphere (Invited)

    NASA Astrophysics Data System (ADS)

    Helmig, D.; Bottenheim, J. W.; Galbally, I.; Lewis, A. C.; Masarie, K.; Milton, M.; Penkett, S.; Plass-Duelmer, C.; Reimann, S.; Steinbrecher, R.; Tans, P. P.; Thiel, S.

    2010-12-01

    The World Meteorological Organization (WMO) - Global Atmospheric Watch (GAW) has been guiding the implementation of a global program for the monitoring of atmospheric volatile organic compounds (VOC). Essential features are 1. regular, in-situ, high temporal resolution measurements of VOC at surface stations, 2. VOC analyses in samples collected within flask sampling networks for wide geographical coverage, and 3. a concerted calibration and data quality control effort. A centerpiece of the flask sampling component builds upon the US NOAA Earth System Research Laboratory - Global Cooperative Air Sampling Network. Nine non-methane hydrocarbon species (NMHC; ethane, propane, iso-butane, n-butane, iso-pentane, n-pentane, isoprene, benzene, toluene) are currently analyzed by an automated gas chromatography system at the University of Colorado’s Institute of Arctic and Alpine Research (INSTAAR) in pairs of samples collected bi-weekly at 41 global background monitoring sites. Since the implementation of this program in 2004 more than 7000 measurements have been obtained. The obtained data allow elucidating the geographical and seasonal behavior of atmospheric NMHC, as well as interannual variations. Results show a wide dynamic range of mixing ratio changes. Concentration maxima and seasonal cycles are most pronounced in regions of highest emission sources and highest changes in the seasonal OH radical sink, i.e. the northern high and mid-latitudes. Seasonal southern hemisphere (SH) maxima are ~7 times and ~20 times lower for ethane and propane than in the northern hemisphere, which mainly reflects the smaller source strength of these gases in the SH. The richness of information in these data will help constraining the variability in global atmospheric oxidation chemistry and regional budgets of greenhouse gases, such as of methane and CO2, and most certainly stimulate further interests and applications in many fields of atmospheric chemistry and climate research

  6. Sources of Volatile Organic Compounds (VOCs) in the UAE

    NASA Astrophysics Data System (ADS)

    Abbasi, Naveed; Majeed, Tariq; Iqbal, Mazhar; Riemer, Daniel; Apel, Eric; Lootah, Nadia

    The gas chromatography-flame ionization detection/mass spectrometry system has been used to identify major volatile organic compounds (VOCs) sources in the UAE (latitude 24.45N; longitude 54.22E). VOCs are emitted from an extensive number of sources in urban environments including fuel production, distribution, and consumption. Transport sources contribute a substantial portion of the VOC burden to the urban atmosphere in developed regions. UAE is located at the edge of the Persian Gulf and is highly affected by emissions from petrochemical industries in neighbouring Saudi Arabia, Qatar, and Iran. VOCs emerging from these industries can be transported to the UAE with jet streams. The analysis of the collected air samples at three locations in Sharjah, UAE during the autumn and winter seasons indicates the presence of more than 100 VOC species. The concentrations of these species vary in magnitudes but the most prominent are: acetylene, ethane, propane, butane, pentane, benzene, and toluene. The possible tracers for various emission sources have also been identified such as 2-methylpentane, 1, 3-butadiene and 2, 2-dimethlybutane for vehicle exhaust, the light hydrocarbons, namely n-butane, trans-2-butene, and n-pentane for gasoline vapor, and n-nonane, n-decane, and n-undecane for diesel vapor and asphalt application processes. As various emission sources are characterized by overlapping VOC species, the ratio of possible VOC tracers are used to quantify the contribution of different sources. Our aim in this paper is to explore and discuss possible impacts of transported emissions on the local VOC emission inventory from various sources for the UAE. This work is partially supported by Office of Development and Alumni Affairs at the American University of Sharjah, U.A.E.

  7. Measuring concentrations of volatile organic compounds in vinyl flooring.

    PubMed

    Cox, S S; Little, J C; Hodgson, A T

    2001-08-01

    The initial solid-phase concentration of volatile organic compounds (VOCs) is a key parameter influencing the emission characteristics of many indoor materials. Solid-phase measurements are typically made using solvent extraction or thermal headspace analysis. The high temperatures and chemical solvents associated with these methods can modify the physical structure of polymeric materials and, consequently, affect mass transfer characteristics. To measure solid-phase concentrations under conditions resembling those in which the material would be installed in an indoor environment, a new technique was developed for measuring VOC concentrations in vinyl flooring (VF) and similar materials. A 0.09-m2 section of new VF was punched randomly to produce -200 0.78-cm2 disks. The disks were milled to a powder at -140 degrees C to simultaneously homogenize the material and reduce the diffusion path length without loss of VOCs. VOCs were extracted from the VF particles at room temperature by fluidized-bed desorption (FBD) and by direct thermal desorption (DTD) at elevated temperatures. The VOCs in the extraction gas from FBD and DTD were collected on sorbent tubes and analyzed by gas chromatography/mass spectrometry (GC/MS). Seven VOCs emitted by VF were quantified. Concentration measurements by FBD ranged from 5.1 microg/g VF for n-hexadecane to 130 microg/g VF for phenol. Concentrations measured by DTD were higher than concentrations measured by FBD. Differences between FBD and DTD results may be explained using free-volume and dual-mobility sorption theory, but further research is necessary to more completely characterize the complex nature of a diffusant in a polymer matrix. PMID:11518293

  8. Production of volatile organic compounds in cultures of cryptophytes

    NASA Astrophysics Data System (ADS)

    Yamakoshi, T.; Kurihara, M.; Hashimoto, S.

    2010-12-01

    Volatile organic compounds (VOCs) are known to be produced by macroalgae, phytoplankton and bacteria in the ocean. Some phytoplankton species are known for the production of VOCs such as halomethanes and isoprene in cultures. To discuss the diversity of VOCs production among phytoplankton species, we incubated the strains of cryptophytes and measured concentrations of VOCs and chlorophyll a. Because VOCs productions of cryptophytes were poorly understood, we selected them to cover the lack of data for VOCs production. Phytoplankton cultures were grown in autoclaved f/2-Si medium with GF/F filtered aged seawater. Culture temperature and light conditions were 24.1 ± 0.2°C and 78 ± 4 μE m-2 s-1 (1 E = 1 mol of photons) from full-spectrum vita-lite fluorescent lamp (12 h light:12 h dark cycle). VOCs concentrations in the medium were measured using a purge and trap (Tekmar PT 5000J)- gas chromatograph (Agilent 6890N)- mass spectrometer (Agilent 5973N). The concentrations of chlorophyll a was also measured using fluorometer (Turner TD-700). Isoprene concentrations were increased to 290 pmol L-1 during the exponential phase in Rhodomonas salina culture. Isoprene production rate was 0.78 μmol g chl.a-1 day-1. This value is within the range of isoprene production by other phytoplankton species reported in the previous paper. As for halomethanes, dibromomethane concentrations were increased during the incubation time. Some iodohalomethanes were also increased during the death phase. We are currently examining the production of halomethanes in other strains of Cryptophyta.

  9. Passive remediation of chlorinated volatile organic compounds using barometric pumping

    SciTech Connect

    Rossabi, J.; Looney, B.B.; Dilek, C.A.E.; Riha, B.; Rohay, V.J.

    1993-12-31

    The purpose of the Savannah River Integrated Demonstration Program, sponsored by the Department of Energy, is to demonstrate new subsurface characterization, monitoring, and remediation technologies. The interbedded clay and sand layers at the Integrated Demonstration Site (IDS) are contaminated with chlorinated volatile organic compounds (CVOCs). Characterization studies show that the bulk of the contamination is located in the approximately 40 m thick vadose zone. The most successful strategy for removing contaminants of this type from this environment is vapor extraction alone or in combination with other methods such as air sparging or enhanced bioremediation. Preliminary work at the IDS has indicated that natural pressure differences between surface and subsurface air caused by surface barometric fluctuations can produce enough gas flow to make barometric pumping a viable method for subsurface remediation. Air flow and pressure were measured in wells that are across three stratigraphic intervals in the vadose zone` The subsurface pressures were correlated to surface pressure fluctuations but were damped and lagging in phase corresponding to depth and stratum permeability. Piezometer wells screened at lower elevations exhibited a greater phase lag and damping than wells screened at higher elevations where the pressure wave from barometric fluctuations passes through a smaller number of low permeable layers. The phase lag between surface and subsurface pressures results in significant fluxes through these wells. The resultant air flows through the subsurface impacts CVOC fate and transport. With the appropriate controls (e.g. solenoid valves) a naturally driven vapor extraction system can be implemented requiring negligible operating costs yet capable of a large CVOC removal rate (as much as 1--2 kg/day in each well at the IDS).

  10. Characterisation of volatile profile and sensory analysis of fresh-cut "Radicchio di Chioggia" stored in air or modified atmosphere.

    PubMed

    Cozzolino, Rosaria; Martignetti, Antonella; Pellicano, Mario Paolo; Stocchero, Matteo; Cefola, Maria; Pace, Bernardo; De Giulio, Beatrice

    2016-02-01

    The volatile profile of two hybrids of "Radicchio di Chioggia", Corelli and Botticelli, stored in air or passive modified atmosphere (MAP) during 12 days of cold storage, was monitored by solid phase micro-extraction (SPME) GC-MS. Botticelli samples were also subjected to sensory analysis. Totally, 61 volatile organic compounds (VOCs) were identified in the headspace of radicchio samples. Principal component analysis (PCA) showed that fresh product possessed a metabolic content similar to that of the MAP samples after 5 and 8 days of storage. Projection to latent structures by partial least squares (PLS) regression analysis showed the volatiles content of the samples varied depending only on the packaging conditions. Specifically, 12 metabolites describing the time evolution and explaining the effects of the different storage conditions were highlighted. Finally, a PCA analysis revealed that VOCs profile significantly correlated with sensory attributes. PMID:26304389

  11. Dynamic transcriptome analysis and volatile profiling of Gossypium hirsutum in response to the cotton bollworm Helicoverpa armigera

    PubMed Central

    Huang, Xin-Zheng; Chen, Jie-Yin; Xiao, Hai-Jun; Xiao, Yu-Tao; Wu, Juan; Wu, Jun-Xiang; Zhou, Jing-Jiang; Zhang, Yong-Jun; Guo, Yu-Yuan

    2015-01-01

    In response to insect herbivory, plants emit elevated levels of volatile organic compounds for direct and indirect resistance. However, little is known about the molecular and genomic basis of defense response that insect herbivory trigger in cotton plants and how defense mechanisms are orchestrated in the context of other biological processes. Here we monitored the transcriptome changes and volatile characteristics of cotton plants in response to cotton bollworm (CBW; Helicoverpa armigera) larvae infestation. Analysis of samples revealed that 1,969 transcripts were differentially expressed (log2|Ratio| ≥ 2; q ≤ 0.05) after CBW infestation. Cluster analysis identified several distinct temporal patterns of transcriptome changes. Among CBW-induced genes, those associated with indirect defense and jasmonic acid pathway were clearly over-represented, indicating that these genes play important roles in CBW-induced defenses. The gas chromatography-mass spectrometry (GC-MS) analyses revealed that CBW infestation could induce cotton plants to release volatile compounds comprised lipoxygenase-derived green leaf volatiles and a number of terpenoid volatiles. Responding to CBW larvae infestation, cotton plants undergo drastic reprogramming of the transcriptome and the volatile profile. The present results increase our knowledge about insect herbivory-induced metabolic and biochemical processes in plants, which may help improve future studies on genes governing processes. PMID:26148847

  12. Volatile profiling of aromatic traditional medicinal plant, Polygonum minus in different tissues and its biological activities.

    PubMed

    Ahmad, Rafidah; Baharum, Syarul Nataqain; Bunawan, Hamidun; Lee, Minki; Mohd Noor, Normah; Rohani, Emelda Roseleena; Ilias, Norashikin; Zin, Noraziah Mohamad

    2014-01-01

    The aim of this research was to identify the volatile metabolites produced in different organs (leaves, stem and roots) of Polygonum minus, an important essential oil producing crop in Malaysia. Two methods of extraction have been applied: Solid Phase Microextraction (SPME) and hydrodistillation coupled with Gas Chromatography-Mass Spectrometry (GC-MS). Approximately, 77 metabolites have been identified and aliphatic compounds contribute significantly towards the aroma and flavour of this plant. Two main aliphatic compounds: decanal and dodecanal were found to be the major contributor. Terpenoid metabolites were identified abundantly in leaves but not in the stem and root of this plant. Further studies on antioxidant, total phenolic content, anticholinesterase and antimicrobial activities were determined in the essential oil and five different extracts. The plant showed the highest DPPH radical scavenging activity in polar (ethanol) extract for all the tissues tested. For anti-acetylcholinesterase activity, leaf in aqueous extract and methanol extract showed the best acetylcholinesterase inhibitory activities. However, in microbial activity, the non-polar extracts (n-hexane) showed high antimicrobial activity against Methicillin-resistant Staphylococcus aureus (MRSA) compared to polar extracts. This study could provide the first step in the phytochemical profiles of volatile compounds and explore the additional value of pharmacology properties of this essential oil producing crop Polygonum minus. PMID:25420073

  13. 40 CFR 60.112a - Standard for volatile organic compounds (VOC).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 7 2012-07-01 2012-07-01 false Standard for volatile organic compounds (VOC). 60.112a Section 60.112a Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... Commenced After May 18, 1978, and Prior to July 23, 1984 § 60.112a Standard for volatile organic...

  14. 40 CFR 60.112a - Standard for volatile organic compounds (VOC).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standard for volatile organic compounds (VOC). 60.112a Section 60.112a Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... Commenced After May 18, 1978, and Prior to July 23, 1984 § 60.112a Standard for volatile organic...

  15. 40 CFR 60.112a - Standard for volatile organic compounds (VOC).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 7 2014-07-01 2014-07-01 false Standard for volatile organic compounds (VOC). 60.112a Section 60.112a Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... Commenced After May 18, 1978, and Prior to July 23, 1984 § 60.112a Standard for volatile organic...

  16. 40 CFR 60.112a - Standard for volatile organic compounds (VOC).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 7 2013-07-01 2013-07-01 false Standard for volatile organic compounds (VOC). 60.112a Section 60.112a Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... Commenced After May 18, 1978, and Prior to July 23, 1984 § 60.112a Standard for volatile organic...

  17. 40 CFR 60.112a - Standard for volatile organic compounds (VOC).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 6 2011-07-01 2011-07-01 false Standard for volatile organic compounds (VOC). 60.112a Section 60.112a Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... Commenced After May 18, 1978, and Prior to July 23, 1984 § 60.112a Standard for volatile organic...

  18. Field sampling method for quantifying volatile sulfur compounds from animal feeding operations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Volatile sulfur compounds (VSCs) are a major class of chemicals associated with odor from animal feeding operations (AFO). Identifying and quantifying VSCs in air is challenging due to their volatility, reactivity, and low concentrations in ambient air. In the present study, a canister based metho...

  19. Comparison of methods for determining volatile compounds in cheese, milk, and whey powder

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Solid phase microextraction (SPME) and gas chromatography-mass spectrometry (GC-MS) are commonly used for qualitative and quantitative analysis of volatile compounds in various dairy products, but selecting the proper procedures presents challenges. Heat is applied to drive volatiles from the samp...

  20. Volatile profile characterisation of Chilean sparkling wines produced by traditional and Charmat methods via sequential stir bar sorptive extraction.

    PubMed

    Ubeda, C; Callejón, R M; Troncoso, A M; Peña-Neira, A; Morales, M L

    2016-09-15

    The volatile compositions of Charmat and traditional Chilean sparkling wines were studied for the first time. For this purpose, EG-Silicone and PDMS polymeric phases were compared and, afterwards, the most adequate was selected. The best extraction method turned out to be a sequential extraction in the headspace and by immersion using two PDMS twisters. A total of 130 compounds were determined. In traditional Chilean sparkling wines, ethyl esters were significantly higher, while acetic esters and ketones were predominant in the Charmat wines. PCA and LDA confirmed the differences in the volatile profiles between the production methods (traditional vs. Charmat). PMID:27080904

  1. 40 CFR 60.502 - Standard for Volatile Organic Compound (VOC) emissions from bulk gasoline terminals.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standard for Volatile Organic Compound... Compound (VOC) emissions from bulk gasoline terminals. On and after the date on which § 60.8(a) requires a... with a vapor collection system designed to collect the total organic compounds vapors displaced...

  2. 40 CFR 60.502 - Standard for Volatile Organic Compound (VOC) emissions from bulk gasoline terminals.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 7 2014-07-01 2014-07-01 false Standard for Volatile Organic Compound... Compound (VOC) emissions from bulk gasoline terminals. On and after the date on which § 60.8(a) requires a... with a vapor collection system designed to collect the total organic compounds vapors displaced...

  3. 40 CFR 60.502 - Standard for Volatile Organic Compound (VOC) emissions from bulk gasoline terminals.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 7 2012-07-01 2012-07-01 false Standard for Volatile Organic Compound... Compound (VOC) emissions from bulk gasoline terminals. On and after the date on which § 60.8(a) requires a... with a vapor collection system designed to collect the total organic compounds vapors displaced...

  4. 40 CFR 60.502 - Standard for Volatile Organic Compound (VOC) emissions from bulk gasoline terminals.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 6 2011-07-01 2011-07-01 false Standard for Volatile Organic Compound... Compound (VOC) emissions from bulk gasoline terminals. On and after the date on which § 60.8(a) requires a... with a vapor collection system designed to collect the total organic compounds vapors displaced...

  5. 75 FR 57412 - Approval and Promulgation of Implementation Plans Alabama: Volatile Organic Compounds

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-21

    ... Compounds AGENCY: Environmental Protection Agency (EPA). ACTION: Proposed rule. SUMMARY: EPA is proposing to... ``volatile organic compounds'' (VOCs) found at Alabama Administrative Code section 335-3-1-.02(gggg). Specifically, the revision would add two compounds (propylene carbonate and dimethyl carbonate) to the list...

  6. 40 CFR 60.502 - Standard for Volatile Organic Compound (VOC) emissions from bulk gasoline terminals.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 7 2013-07-01 2013-07-01 false Standard for Volatile Organic Compound... Compound (VOC) emissions from bulk gasoline terminals. On and after the date on which § 60.8(a) requires a... with a vapor collection system designed to collect the total organic compounds vapors displaced...

  7. Partition of volatile compounds in pea globulin-maltodextrin aqueous two-phase system.

    PubMed

    Nguyen, Thanh Dat; Lafarge, Céline; Murat, Chloé; Mession, Jean-Luc; Cayot, Nathalie; Saurel, Rémi

    2014-12-01

    This study is based on the assumption that the off-flavour of pea proteins might be decreased using the retention of volatile compounds by a mixture with another biopolymer. The partition of volatile compounds in an aqueous system containing pea protein and maltodextrins was followed under thermodynamic incompatibility conditions. Firstly, the phase diagram of the system was established. Then, the partition of aroma compounds between the phase rich in protein and the phase rich in maltodextrin was measured by SPME-GC-MS. There was a transfer of volatile compounds during phase separation. Variations of pH were also used to vary the retention of volatile compounds by proteins. The concentration of volatile compounds in protein solution at pH 2.4 was higher than at pH 7.2. It was possible to increase the transfer of volatile compounds from the phase rich in protein to the phase rich in maltodextrin using the effect of pH on protein denaturation. PMID:24996351

  8. Analysis of volatile compounds of Malaysian Tualang (Koompassia excelsa) honey using gas chromatography mass spectrometry.

    PubMed

    Nurul Syazana, M S; Gan, S H; Halim, A S; Shah, Nurul Syazana Mohamad; Gan, Siew Hua; Sukari, Halim Ahmad

    2013-01-01

    The constituents of honey's volatile compounds depend on the nectar source and differ depending on the place of origin. To date, the volatile constituents of Tualang honey have never been investigated. The objective of this study was to analyze the volatile compounds in local Malaysian Tualang honey. A continuous extraction of Tualang honey using five organic solvents was carried out starting from non-polar to polar solvents and the extracted samples were analysed using gas chromatography-mass spectrometry (GC-MS). Overall, 35 volatile compounds were detected. Hydrocarbons constitute 58.5% of the composition of Tualang honey. Other classes of chemical compounds detected included acids, aldehydes, alcohols, ketones, terpenes, furans and a miscellaneous group. Methanol yielded the highest number of extracted compounds such as acids and 5-(Hydroxymethyl) furfural (HMF). This is the first study to describe the volatile compounds in Tualang honey. The use of a simple one tube, stepwise, non-thermal liquid-liquid extraction of honey is a advantageous as it prevents sample loss. Further research to test the clinical benefits of these volatile compounds is recommended. PMID:24146441

  9. Effect of γ-irradiation on volatile compounds of dried Welsh onion ( Allium fistulosum L.)

    NASA Astrophysics Data System (ADS)

    Gyawali, Rajendra; Seo, Hye-Young; Lee, Hyun-Ju; Song, Hyun-Pa; Kim, Dong-Ho; Byun, Myung-Woo; Kim, Kyong-Su

    2006-02-01

    The volatile compounds of γ-irradiated dried Welsh onion were isolated by simultaneous distillation-extraction (SDE) technique and then analyzed by gas chromatography-mass spectrometry (GC-MS) along with their non-irradiated counterparts. A total of 35 volatile compounds were identified in non-irradiated and 1 kGy irradiated samples and 36 volatile compounds were identified in 3, 5, 10 and 20 kGy irradiated samples so far belong to chemical classes of acid, alcohol, aldehyde, ester, furan, ketone and S-containing compound. S-containing compounds were detected as major volatile compounds of all experimental samples. Though the content of several compounds was increased after irradiation, content of major S-containing compounds was found to decreased in the process. Application of high-dose irradiation if required for microbial decontamination of dried Welsh onion is feasible as it enhanced the total concentration of volatile compounds by 31.60% and 24.85% at 10 and 20 kGy, respectively.

  10. Volatile profile and sensory property of Gardenia jasminoides aroma extracts.

    PubMed

    Kanlayavattanakul, Mayuree; Lourith, Nattaya

    2015-01-01

    The volatile profiles of aroma extracts prepared from the flower of Gardenia jasminoides by different methods were investigated using gas chromatography-mass spectrometry. The enfleurage extraction using spermaceti wax and palm oil afforded the best aroma extract with a preference that was significantly (p < 0.05) better than those from solvent extractions, as sensorially evaluated in 43 volunteers. The odor quality of the absolute de enfleurage was similar to the floral scent of fresh gardenia, as confirmed in 152 volunteers. Although female volunteers were insignificantly (p > 0.05) better sensed than male volunteers, age was significant (p < 0.05). The nuance gardenia floral scent was contributed by farnesene, Z-3-hexenyl tiglate, Z-3-hexenyl benzoate, and indole. The relaxing and refreshing sensations of the gardenia odor suggest its applications in body care, cleansing products, and perfume. This study addresses the increasing interest in floral fragrances. The aroma profile and sensory property of this sweet and elegant scent flower will strengthen and expand the applications of gardenia from traditional medicine to those of perfumery and the field of phytochemistry. PMID:27125012

  11. COMPARISON OF PROCEDURES TO DETERMINE ADSORPTION CAPACITY OF VOLATILE ORGANIC COMPOUNDS ON ACTIVATED CARBON

    EPA Science Inventory

    Numerous volatile organic compounds (VOCs) are under regulatory consideration for inclusion in the National Primary Drinking Water Standards. Adsorption is a cost-effective treatment technology for control of VOCs. Adsorption capacities were determined for fifteen VOCs in distill...

  12. VOLATILE ORGANIC COMPOUND EMISSION RATES FROM MIXED DECIDUOUS AND CONIFEROUS FORESTS IN NORTHERN WISCONSIN, USA

    EPA Science Inventory

    Biogenic emissions of volatile organic compounds (VOC) from forests play an important role in regulating the atmospheric trace gas composition including global tropospheric ozone concentrations. However, more information is needed on VOC emission rates from different forest regio...

  13. Analysis of breath volatile organic compounds as a screening tool for detection of Tuberculosis in cattle

    Technology Transfer Automated Retrieval System (TEKTRAN)

    • Keywords: bovine tuberculosis; Mycobacterium bovis; breath analysis; volatile organic compound; gas chromatography; mass spectrometry; NaNose • Introduction: This presentation describes two studies exploring the use of breath VOCs to identify Mycobacterium bovis infection in cattle. • Methods: ...

  14. HS-GC-MS volatile compounds recovered in freshly pressed 'Wonderful' cultivar and commercial pomegranate juices.

    PubMed

    Beaulieu, John C; Stein-Chisholm, R E

    2016-01-01

    Consumption and production of superfruits has been increasing. Highly colored fruits often have bitter and astringent components that may make them undesirable, especially when processed. Many pomegranate volatile reports involved commercial samples, complicated isolation methods, or blending and concentrating that were from arils only, cultivars other than 'Wonderful', or mixed cultivars. Solid phase microextraction (SPME), polydimethylsiloxane stir bar sorptive extraction, and Tenax adsorption were performed with freshly pressed 'Wonderful' juices, commercial juices and concentrates. Using SPME, 36 compounds were isolated in whole pressed 'Wonderful' juices, including 18 of the 21 consensus compounds. In arils-only juices, 41 compounds were isolated by SPME, including 17 of the consensus volatiles. Dramatic variation existed in volatiles recovered in commercial juices and isolation of consensus compounds was sporadic. This article and summary of the literature serves to possibly deliver an improved volatile data set via a rapid method for fresh and partially processed (pressed) pomegranates. PMID:26213022

  15. NEUROTOXIC EFFECTS OF CONTROLLED EXPOSURE TO A COMPLEX MIXTURE OF VOLATILE ORGANIC COMPOUNDS

    EPA Science Inventory

    Subjective reactions of discomfort, impaired air quality, irritation of mucosal membranes, and impaired memory have been reported in chemically sensitive subjects during exposure to volatile organic compounds (VOC's) found in new buildings. 6 normal healthy male subjects aged 18-...

  16. EVALUATION OF THE WALKTHROUGH SURVEY METHOD FOR DETECTION OF VOLATILE ORGANIC COMPOUND LEAKS

    EPA Science Inventory

    During 1978 and 1979, the Emission Standards and Engineering Division of EPA's Office of Air Quality Planning and Standards conducted a fugitive volatile organic compound (VOC) emission sampling program in organic chemical manufacturing plants and petroleum refineries. As a part ...

  17. Recovery of several volatile organic compounds from simulated water samples: Effect of transport and storage

    USGS Publications Warehouse

    Friedman, L.C.; Schroder, L.J.; Brooks, M.G.

    1986-01-01

    Solutions containing volatile organic compounds were prepared in organic-free water and 2% methanol and submitted to two U.S. Geological Survey laboratories. Data from the determination of volatile compounds in these samples were compared to analytical data for the same volatile compounds that had been kept in solutions 100 times more concentrated until immediately before analysis; there was no statistically significant difference in the analytical recoveries. Addition of 2% methanol to the storage containers hindered the recovery of bromomethane and vinyl chloride. Methanol addition did not enhance sample stability. Further, there was no statistically significant difference in results from the two laboratories, and the recovery efficiency was more than 80% in more than half of the determinations made. In a subsequent study, six of eight volatile compounds showed no significant loss of recovery after 34 days.

  18. VOLATILE ORGANIC COMPOUND DETERMINATIONS USING SURROGATE-BASED CORRECTION FOR METHOD AND MATRIX EFFECTS

    EPA Science Inventory

    The principal properties related to analyte recovery in a vacuum distillate are boiling point and relative volatility. The basis for selecting compounds to measure the relationship between these properties and recovery for a vacuum distillation is presented. Surrogates are incorp...

  19. HENRY'S LAW CONSTANTS AND MICELLAR PARTITIONING OF VOLATILE ORGANIC COMPOUNDS IN SURFACTANT SOLUTIONS

    EPA Science Inventory

    Partitioning of volatile organic compounds (VOCs) into surfactant micelles affects the apparent vapor-liquid equilibrium of VOCs in surfactant solutions. This partitioning will complicate removal of VOCs from surfactant solutions by standard separation processes. Headspace expe...

  20. Characterization of the volatile profile of Antarctic bacteria by using solid-phase microextraction-gas chromatography-mass spectrometry.

    PubMed

    Romoli, Riccardo; Papaleo, Maria Cristiana; de Pascale, Donatella; Tutino, Maria Luisa; Michaud, Luigi; LoGiudice, Angelina; Fani, Renato; Bartolucci, Gianluca

    2011-10-01

    Bacteria belonging to the Burkholderia cepacia complex (Bcc) are significant pathogens in Cystic Fibrosis (CF) patients and are resistant to a plethora of antibiotics. In this context, microorganisms from Antarctica are interesting because they produce antimicrobial compounds inhibiting the growth of other bacteria. This is particularly true for bacteria isolated from Antarctic sponges. The aim of this work was to characterize a set of Antarctic bacteria for their ability to produce new natural drugs that could be exploited in the control of infections in CF patients by Bcc bacteria. Hence, 11 bacterial strains allocated to different genera (e.g., Pseudoalteromonas, Arthrobacter and Psychrobacter) were tested for their ability to inhibit the growth of 21 Bcc strains and some other human pathogens. All these bacteria completely inhibited the growth of most, if not all, Bcc strains, suggesting a highly specific activity toward Bcc strains. Experimental evidences showed that the antimicrobial compounds are small volatile organic compounds, and are constitutively produced via an unknown pathway. The microbial volatile profile was obtained by SPME-GC-MS within the m/z interval of 40-450. Solid phase micro extraction technique affords the possibility to extract the volatile compounds in head space with a minimal sample perturbation. Principal component analysis and successive cluster discriminant analysis was applied to evaluate the relationships among the volatile organic compounds with the aim of classifying the microorganisms by their volatile profile. These data highlight the potentiality of Antarctic bacteria as novel sources of antibacterial substances to face Bcc infections in CF patients. PMID:22012672

  1. Volatile Organic Compound Investigation Results, 300 Area, Hanford Site, Washington

    SciTech Connect

    Peterson, Robert E.; Williams, Bruce A.; Smith, Ronald M.

    2008-07-07

    Unexpectedly high concentrations of volatile organic compounds (VOC) were discovered while drilling in the unconfined aquifer beneath the Hanford Site’s 300 Area during 2006. The discovery involved an interval of relatively finer-grained sediment within the unconfined aquifer, an interval that is not sampled by routine groundwater monitoring. Although VOC contamination in the unconfined aquifer has been identified and monitored, the concentrations of newly discovered contamination are much higher than encountered previously, with some new results significantly higher than the drinking water standards. The primary contaminant is trichloroethene, with lesser amounts of tetrachloroethene. Both chemicals were used extensively as degreasing agents during the fuels fabrication process. A biological degradation product of these chemicals, 1,2-dichloroethene, was also detected. To further define the nature and extent of this contamination, additional characterization drilling was undertaken during 2007. Four locations were drilled to supplement the information obtained at four locations drilled during the earlier investigation in 2006. The results of the combined drilling indicate that the newly discovered contamination is limited to a relatively finer-grained interval of Ringold Formation sediment within the unconfined aquifer. The extent of this contamination appears to be the area immediately east and south of the former South Process Pond. Samples collected from the finer-grained sediment at locations along the shoreline confirm the presence of the contamination near the groundwater/river interface. Contamination was not detected in river water that flows over the area where the river channel potentially incises the finer-grained interval of aquifer sediment. The source for this contamination is not readily apparent. A search of historical documents and the Hanford Waste Information Data System did not provide definitive clues as to waste disposal operations and

  2. Biological aspects of constructing volatile organic compound emission inventories

    NASA Astrophysics Data System (ADS)

    Monson, Russell K.; Lerdau, Manuel T.; Sharkey, Thomas D.; Schimel, David S.; Fall, Ray

    The: emission of volatile organic compounds (VOCs) from vegetation is subject to numerous biological controls. Past inventories have relied heavily on empirical models which are limited in their ability to simulate the response of organisms to short- and long-term changes in their growth environment. In this review we consider the principal biochemical, physiological and ecological controls over VOC emission with specific reference to how such controls can be included in ecosystem-level inventories. A distinction is made between longer-term biological controls over basal VOC emission rates (rates determined under a standard set of environmental conditions) and instantaneous biological and environmental controls over instantaneous VOC emission rates (rates determined at the prevailing, instantaneous set of environmental conditions). Emphasis is placed on the emission of isoprene and monoterpenes. Isoprene emission occurs essentially without a leaf reservoir and is tightly linked to instantaneous photosynthetic metabolism and the activity of isoprene synthase, the enzyme that underlies isoprene production. At present, there are still large uncertainties about which of these controls dominates isoprene emission rate. Ecosystem-level inventories of isoprene emission would be best handled through consideration of (1) the early season induction of isoprene emission, (2) seasonal and spatial variability in light, nitrogen and water availability and their influences on the basal emission rate, and (3) the influence of instantaneous changes in light and temperature on the basal emission rate. Monoterpene emission occurs from a large leaf reservoir, is uncoupled from instantaneous controls over biosynthesis, and is likely linked to whole-plant carbon allocation patterns. Because of the well-defined role of monoterpenes as herbivore deterrents and their linkage to plant carbon balance, there is promise for ecosystem-level inventories based on biological resource allocation

  3. Volatile organic compounds in asthma diagnosis: a systematic review and meta-analysis.

    PubMed

    Rufo, J Cavaleiro; Madureira, J; Fernandes, E Oliveira; Moreira, A

    2016-02-01

    We aimed to assess the value and classification rate of exhaled volatile organic compounds (VOCs) in asthma diagnosis. A PRISMA-oriented systematic search for published studies regarding exhaled VOCs in asthma diagnosis was conducted based on predefined criteria. Studies presenting sensitivity and specificity values for the test were included in the meta-analysis. Pooled diagnosis odds ratios (DOR), area under the curve (AUC) and positive and negative likelihood ratios (LR) for exhaled VOC profiles were calculated; and publication bias, threshold effect and heterogeneity were estimated. Eighteen studies were selected for the qualitative analysis and six met the criteria for inclusion in the quantitative analysis. Mean (95% CI) pooled DOR, positive and negative LR were 49.3 (15.9-153.3), 5.86 (3.07-11.21) and 0.16 (0.10-0.26), respectively. The AUC value was 0.94. Only three of the 18 reviewed studies performed an external validation of the model using a different data set. The results from the revised studies suggest that exhaled VOCs are promising biomarkers for asthma diagnosis and that several compounds, mainly alkanes, may be significantly associated with asthma inflammation. However, there are still various constraints associated with standardization and externally validated studies are needed to introduce exhaled VOC profiling in a clinical scenario. PMID:26476125

  4. Degradation of C2-C15 volatile organic compounds in a landfill cover soil.

    PubMed

    Tassi, Franco; Montegrossi, Giordano; Vaselli, Orlando; Liccioli, Caterina; Moretti, Sandro; Nisi, Barbara

    2009-07-15

    The composition of non-methane volatile organic compounds (hereafter VOCs) in i) the cover soil, at depths of 30, 50 and 70 cm, and ii) gas recovery wells from Case Passerini landfill site, (Florence, Italy) was determined by GC-MS. The study, based on the analysis of interstitial gases sampled along vertical profiles within the cover soil, was aimed to investigate the VOC behaviour as biogas transits from a reducing to a relatively more oxidizing environment. A total of 48 and 63 different VOCs were identified in the soil and well gases, respectively. Aromatics represent the dominant group (71.5% of total VOC) in soil gases, followed by alkanes (6.8%), ketones (5.7%), organic acids (5.2%), aldehydes (3.0%), esters (2.6%), halogenated compounds (2.1%) and terpenes (1.3%). Cyclics, heterocyclics, S-bearing compounds and phenols are compounds (2%) and lower concentrations of O-bearing compounds. The vertical distribution of VOCs in the cover soil shows significant variations: alkanes, aromatics and cyclics decrease at decreasing depth, whereas an inverse trend is displayed by the O-bearing species. Total VOC and CH(4) concentrations at a depth of 30 cm in the soil are comparable, inferring that microbial activity is likely affecting VOCs at a very minor extent with respect to CH(4). According to these considerations, to assess the biogas emission impact, usually carried out on the sole basis of CO(2) and CH(4) emission rates, the physical-chemical behaviour of VOCs in the cover soil, regulating the discharge of these highly contaminant compounds in ambient air, has to be taken into account. The soil vertical distribution of these species can be used to better evaluate the efficiency of oxidative capability of intermediate and final covers. PMID:19446310

  5. Emission of volatile organic compounds from silage: Compounds, sources, and implications

    NASA Astrophysics Data System (ADS)

    Hafner, Sasha D.; Howard, Cody; Muck, Richard E.; Franco, Roberta B.; Montes, Felipe; Green, Peter G.; Mitloehner, Frank; Trabue, Steven L.; Rotz, C. Alan

    2013-10-01

    Silage, fermented cattle feed, has recently been identified as a significant source of volatile organic compounds (VOCs) to the atmosphere. A small number of studies have measured VOC emission from silage, but not enough is known about the processes involved to accurately quantify emission rates and identify practices that could reduce emissions. Through a literature review, we have focused on identifying the most important compounds emitted from corn silage (the most common type of silage in the US) and the sources of these compounds by quantifying their production and emission potential in silage and describing production pathways. We reviewed measurements of VOC emission from silage and assessed the importance of individual silage VOCs through a quantitative analysis of VOC concentrations within silage. Measurements of VOC emission from silage and VOCs present within silage indicated that alcohols generally make the largest contribution to emission from corn silage, in terms of mass emitted and potential ozone formation. Ethanol is the dominant alcohol in corn silage; excluding acids, it makes up more than half of the mean mass of VOCs present. Acids, primarily acetic acid, may be important when emission is high and all VOCs are nearly depleted by emission. Aldehydes and esters, which are more volatile than acids and alcohols, are important when exposure is short, limiting emission of more abundant but less volatile compounds. Variability in silage VOC concentrations is very high; for most alcohols and acids, tolerance intervals indicate that 25% of silages have concentrations a factor of two away from median values, and possibly much further. This observation suggests that management practices can significantly influence VOC concentrations. Variability also makes prediction of emissions difficult. The most important acids, alcohols, and aldehydes present in silage are probably produced by bacteria (and, in the case of ethanol, yeasts) during fermentation and

  6. High throughput volatile fatty acid skin metabolite profiling by thermal desorption secondary electrospray ionisation mass spectrometry.

    PubMed

    Martin, Helen J; Reynolds, James C; Riazanskaia, Svetlana; Thomas, C L Paul

    2014-09-01

    The non-invasive nature of volatile organic compound (VOC) sampling from skin makes this a priority in the development of new screening and diagnostic assays. Evaluation of recent literature highlights the tension between the analytical utility of ambient ionisation approaches for skin profiling and the practicality of undertaking larger campaigns (higher statistical power), or undertaking research in remote locations. This study describes how VOC may be sampled from skin and recovered from a polydimethylsilicone sampling coupon and analysed by thermal desorption (TD) interfaced to secondary electrospray ionisation (SESI) time-of-flight mass spectrometry (MS) for the high throughput screening of volatile fatty acids (VFAs) from human skin. Analysis times were reduced by 79% compared to gas chromatography-mass spectrometry methods (GC-MS) and limits of detection in the range 300 to 900 pg cm(-2) for VFA skin concentrations were obtained. Using body odour as a surrogate model for clinical testing 10 Filipino participants, 5 high and 5 low odour, were sampled in Manilla and the samples returned to the UK and screened by TD-SESI-MS and TD-GC-MS for malodour precursors with greater than >95% agreement between the two analytical techniques. Eight additional VFAs were also identified by both techniques with chains 4 to 15 carbons long being observed. TD-SESI-MS appears to have significant potential for the high throughput targeted screening of volatile biomarkers in human skin. PMID:24992564

  7. Consumer palatability scores and volatile beef flavor compounds of five USDA quality grades and four muscles.

    PubMed

    Legako, J F; Brooks, J C; O'Quinn, T G; Hagan, T D J; Polkinghorne, R; Farmer, L J; Miller, M F

    2015-02-01

    Proximate data, consumer palatability scores and volatile compounds were investigated for four beef muscles (Longissimus lumborum, Psoas major, Semimembranosus and Gluteus medius) and five USDA quality grades(Prime, Upper 2/3 Choice, Low Choice, Select, and Standard). Quality grade did not directly affect consumer scores or volatiles but interactions (P < 0.05) between muscle and grade were determined. Consumer scores and volatiles differed (P < 0.05) between muscles. Consumers scored Psoas major highest for tenderness, juiciness, flavor liking and overall liking, followed by Longissimus lumborum, Gluteus medius, and Semimembranosus (P < 0.05). Principal component analysis revealed clustering of compound classes, formed by related mechanisms. Volatile n-aldehydes were inversely related to percent fat. Increases in lipid oxidation compounds were associated with Gluteus medius and Semimembranosus, while greater quantities of sulfur-containing compounds were associated with Psoas major. Relationships between palatability scores and volatile compound classes suggest that differences in the pattern of volatile compounds may play a valuable role in explaining consumer liking. PMID:25460139

  8. Analysis of volatile organic compounds of ‘Fuji’ apples following electron beam irradiation and storage

    NASA Astrophysics Data System (ADS)

    Song, Hyun-Pa; Shim, Sung-Lye; Lee, Sun-Im; Kim, Dong-Ho; Kwon, Joong-Ho; Kim, Kyong-Su

    2012-08-01

    The volatile organic compounds of non-irradiated and electron-beam irradiated 'Fuji' apples (Malus domestica Borkh.) at 0, 0.5, and 1 kGy were isolated through simultaneous distillation extractions and analyzed using gas chromatograph-mass spectrometry. A total of 53 volatile organic compounds were characterized in 0 and 1 kGy irradiated samples, whereas two more compounds related to ketone and terpenoid group were identified in 0.5 kGy irradiated samples. The contents of volatile compounds were 24.33, 36.49, and 35.28 mg/kg in 0, 0.5, and 1 kGy irradiated samples, respectively. The major compounds identified were butanol, hexanal, [E]-2-hexenal, and hexanol in all samples. The relative content of alcohol increased after 30 days of storage in all samples, whereas that of aldehyde decreased. Although the contents of some volatile compounds were changed by electron-beam irradiation, the total yield and major flavor compounds of irradiated 'Fuji' apples were similar to, or even greater than, those of the control. Therefore, the application of e-beam irradiation if required for microbial decontamination of 'Fuji' apples is an acceptable method as it does not bring about any major quantitative changes of volatile organic compounds.

  9. Duration of emission of volatile organic compounds from mechanically damaged plant leaves.

    PubMed

    Smith, Lincoln; Beck, John J

    2015-09-01

    Classical biological control of invasive alien weeds depends on the use of arthropod herbivores that are sufficiently host specific to avoid risk of injuring nontarget plants. Host plant specificity is usually evaluated by using a combination of behavioral and developmental experiments under choice, no-choice and field conditions. Secondary plant compounds are likely to have an important influence on host plant specificity. However, relatively little is known about the volatile organic compounds (VOCs) that are emitted by target and nontarget plants, and how environmental conditions may affect their emission. Previous studies have shown that mechanical damage of leaves increases the composition and content of VOCs emitted. In this study we measured the VOC emissions of five species of plants in the subtribe Centaureinae (Asteraceae)--Carthamus tinctorius, Centaurea cineraria, Centaurea melitensis, Centaurea rothrockii, and Centaurea solstitialis--that have previously been used in host specificity experiments for a prospective biological control agent of yellow starthistle (C. solstitialis). Leaves of each plant were punctured with a needle and the VOCs were collected by solid-phase microextraction (SPME) periodically over 48 h and analyzed by GC-MS. A total of 49 compounds were detected. Damage caused an immediate increase of 200-600% in the composition of VOCs emitted from each plant species, and the amounts generally remained high for at least 48 h. The results indicate that a very unspecific mechanical damage can cause a prolonged change in the VOC profile of plants. PMID:26398629

  10. Exhaled volatile organic compounds as lung cancer biomarkers during one-lung ventilation

    PubMed Central

    Wang, Changsong; Dong, Ran; Wang, Xiaoyang; Lian, Ailing; Chi, Chunjie; Ke, Chaofu; Guo, Lei; Liu, Shanshan; Zhao, Wei; Xu, Guowang; Li, Enyou

    2014-01-01

    In this study, single-lung ventilation was used to detect differences in the volatile organic compound (VOCs) profiles between lung tissues in healthy and affected lungs. In addition, changes that occurred after lung cancer resection in both the VOCs profiles of exhaled breath from ipsilateral and contralateral lungs and the VOCs profiles of exhaled breath and blood sample headspaces were also determined. Eighteen patients with non-small cell carcinoma were enrolled. Alveolar breath samples were taken separately from healthy and diseased lungs before and after the tumor resection. Solid phase microextraction–gas chromatography/mass spectrometry was used to assess the exhaled VOCs of the study participants. The VOCs exhibited significant differences between the contralateral and ipsilateral lungs before surgery, the contralateral and ipsilateral lungs after surgery, the ipsilateral lungs before and after surgery, and the blood samples from before and after surgery; 12, 19, 12 and 5 characteristic metabolites played decisive roles in sample classification, respectively. 2,2-Dimethyldecane, tetradecane, 2,2,4,6,6-pentamethylheptane, 2,3,4-trimethyldecane, nonane, 3,4,5,6-tetramethyloctane, and hexadecane may be generated from lipid peroxidation during surgery. Caprolactam and propanoic acid may be more promising exhaled breath biomarkers for lung cancer. PMID:25482491

  11. Phenolic Compounds, Volatiles, and Sensory Characteristics of Twelve Sweet Cherry (Prunus avium L.) Cultivars Grown in Turkey.

    PubMed

    Hayaloglu, Ali Adnan; Demir, Nurullah

    2016-01-01

    The paper reports the phenolic, anthocyanin, and volatile compounds and sensory characteristics of 12 cultivars of sweet cherries including cvs. Belge, Bing, Dalbasti, Durona di Cesena, Lambert, Merton Late, Starks Gold, Summit, Sweetheart, Van, Vista, and 0-900 Ziraat. Eight individual phenolic compounds were determined by the HPLC-DAD method. Among these cherries, cvs. Bing, Durona di Cesena, and Lambert contained higher levels of total individual phenolic compounds than the other cultivars. Six anthocyanins were detected in cherries and cyanidin-3-O-rutinoside was principal and it was the highest level in cv. Bing. The major volatiles found were 1-hexanol, (E)-2-hexen-1-ol, benzylalcohol, hexenal, (E)-2-hexenal, and benzaldehyde. Sensory evaluation of the cherries showed that cvs. Belge, Bing, Dalbasti, and Summit have higher textural and flavor scores than others. It was concluded that the same compounds for phenolic or volatiles profiles of sweet cherries were similar in qualitative; however, quantitative differences were observed in these cultivars. PMID:26646816

  12. Volatile profile of cashew apple juice fibers from different production steps.

    PubMed

    Nobre, Ana Carolina de Oliveira; de Almeida, Áfia Suely Santos da Silva; Lemos, Ana Paula Dajtenko; Magalhães, Hilton César Rodrigues; Garruti, Deborah dos Santos

    2015-01-01

    This study aimed to determine the volatile profile of cashew apple fibers to verify which compounds are still present after successive washings and thus might be responsible for the undesirable remaining cashew-like aroma present in this co-product, which is used to formulate food products like vegetarian burgers and cereal bars. Fibers were obtained from cashew apple juice processing and washed five times in an expeller press. Compounds were analyzed by the headspace solid-phase micro extraction technique (HS-SPME) and gas chromatography-mass spectrometry (GC-MS), using a DB-5 column. Sensory analysis was also performed to compare the intensity of the cashew-like aroma of the fibers with the original juice. Altogether, 80 compounds were detected, being esters and terpenes the major chemical classes. Among the identified substances, 14 were classified as odoriferous in the literature, constituting the matrix used in the Principal Component Analysis (PCA). Odoriferous esters were substantially reduced, but many compounds were extracted by the strength used in the expeller press and remained until the last wash. Among them are the odoriferous compounds ethyl octanoate, γ-dodecalactone, (E)-2-decenal, copaene, and caryophyllene that may contribute for the mild but still perceptible cashew apple aroma in the fibers that have been pressed and washed five times. Development of a deodorization process should include reduction of pressing force and stop at the second wash, to save water and energy, thus reducing operational costs and contributing to process sustainability. PMID:26023940

  13. Removal of volatile organic compounds using amphiphilic cyclodextrin-coated polypropylene.

    PubMed

    Lumholdt, Ludmilla; Fourmentin, Sophie; Nielsen, Thorbjørn T; Larsen, Kim L

    2014-01-01

    Polypropylene nonwovens were functionalised using a self-assembled, amphiphilic cyclodextrin coating and the potential for water purification by removal of pollutants was studied. As benzene is one of the problematic compounds in the Water Framework Directive, six volatile organic compounds (benzene and five benzene-based substances) were chosen as model compounds. The compounds were tested as a mixture in order to provide a more realistic situation since the wastewater will be a complex mixture containing multiple pollutants. The volatile organic compounds are known to form stable inclusion complexes with cyclodextrins. Six different amphiphilic cyclodextrin derivatives were synthesised in order to elucidate whether or not the uptake abilities of the coating depend on the structure of the derivative. Headspace gas chromatography was used for quantification of the uptake exploiting the volatile nature of benzene and its derivatives. The capacity was shown to increase beyond the expected stoichiometries of guest-host complexes with ratios of up to 16:1. PMID:25550739

  14. Effect of γ-irradiation on the volatile compounds of medicinal herb, Paeoniae Radix

    NASA Astrophysics Data System (ADS)

    Shim, Sung-Lye; Hwang, In-Min; Ryu, Keun-Young; Jung, Min-Seok; Seo, Hye-young; Kim, Hee-Yeon; Song, Hyun-Pa; Kim, Jae-Hun; Lee, Ju-Woon; Byun, Myung-Woo; Kwon, Joong-Ho; Kim, Kyong-Su

    2009-07-01

    A study was carried out to find the effect of γ-irradiation on contents of volatile compounds from medicinal herb, Paeoniae Radix ( Paenia albiflora Pallas var. trichocarpa Bunge). The volatile compounds of control, 1, 3, 5 and 10 kGy irradiated samples were extracted by simultaneous steam distillation and extraction (SDE) method and analyzed by gas chromatograph-mass spectrometer. The major volatile compounds were paeonol, ( E)-carveol, ( E, E)-2,4-octadienal, methyl salicylate, myrtanol and eugenol acetate. Volatile compounds belonging to chemical classes of acids, alcohols, aldehydes, esters, hydrocarbons and miscellaneous were identified in all experimental samples. The types of volatile compounds in irradiated samples were similar to those of non-irradiated sample and the concentrations of these compounds differed between treatments. 1,3-Bis (1,1-dimethylethyl)-benzene was identified by using the selected ion monitoring (GC/MS-SIM) mode. The concentration of this compound increased with the increase of irradiation dose level. These results suggest that it could be used as the base data for the effect of γ-irradiation on medicinal herb.

  15. The Influence of Spices on the Volatile Compounds of Cooked Beef Patty.

    PubMed

    Jung, Samooel; Jo, Cheorun; Kim, Il Suk; Nam, Ki Chang; Ahn, Dong Uk; Lee, Kyung Heang

    2014-01-01

    The aim of this study is to examine the influences of spices on the amounts and compositions of volatile compounds released from cooked beef patty. Beef patty with 0.5% of spice (nutmeg, onion, garlic, or ginger powder, w/w) was cooked by electronic pan until they reached an internal temperature of 75℃. A total of 46 volatile compounds (6 alcohols, 6 aldehydes, 5 hydrocarbons, 6 ketones, 9 sulfur compounds, and 14 terpenes) from cooked beef patties were detected by using purgeand- trap GC/MS. The addition of nutmeg, onion, or ginger powder significantly reduced the production of the volatile compounds via lipid oxidation in cooked beef patty when compared to those from the control. Also, the addition of nutmeg and garlic powder to beef patty generated a lot of trepans or sulfur volatile compounds, respectively. From these results, the major proportion by chemical classes such as alcohols, aldehydes, hydrocarbons, ketones, sulfur compounds, and terpenes was different depending on the spice variations. The results indicate that addition of spices to the beef patty meaningfully changes the volatile compounds released from within. Therefore, it can be concluded that spices can interact with meat aroma significantly, and thus, the character of each spice should be considered before adding to the beef patty. PMID:26760934

  16. Metal organic frameworks as sorption media for volatile and semi-volatile organic compounds at ambient conditions

    NASA Astrophysics Data System (ADS)

    Vellingiri, Kowsalya; Szulejko, Jan E.; Kumar, Pawan; Kwon, Eilhann E.; Kim, Ki-Hyun; Deep, Akash; Boukhvalov, Danil W.; Brown, Richard J. C.

    2016-06-01

    In this research, we investigated the sorptive behavior of a mixture of 14 volatile and semi-volatile organic compounds (four aromatic hydrocarbons (benzene, toluene, p-xylene, and styrene), six C2-C5 volatile fatty acids (VFAs), two phenols, and two indoles) against three metal-organic frameworks (MOFs), i.e., MOF-5, Eu-MOF, and MOF-199 at 5 to 10 mPa VOC partial pressures (25 °C). The selected MOFs exhibited the strongest affinity for semi-volatile (polar) VOC molecules (skatole), whereas the weakest affinity toward was volatile (non-polar) VOC molecules (i.e., benzene). Our experimental results were also supported through simulation analysis in which polar molecules were bound most strongly to MOF-199, reflecting the presence of strong interactions of Cu2+ with polar VOCs. In addition, the performance of selected MOFs was compared to three well-known commercial sorbents (Tenax TA, Carbopack X, and Carboxen 1000) under the same conditions. The estimated equilibrium adsorption capacity (mg.g‑1) for the all target VOCs was in the order of; MOF-199 (71.7) >Carboxen-1000 (68.4) >Eu-MOF (27.9) >Carbopack X (24.3) >MOF-5 (12.7) >Tenax TA (10.6). Hopefully, outcome of this study are expected to open a new corridor to expand the practical application of MOFs for the treatment diverse VOC mixtures.

  17. Metal organic frameworks as sorption media for volatile and semi-volatile organic compounds at ambient conditions

    PubMed Central

    Vellingiri, Kowsalya; Szulejko, Jan E.; Kumar, Pawan; Kwon, Eilhann E.; Kim, Ki-Hyun; Deep, Akash; Boukhvalov, Danil W.; Brown, Richard J. C.

    2016-01-01

    In this research, we investigated the sorptive behavior of a mixture of 14 volatile and semi-volatile organic compounds (four aromatic hydrocarbons (benzene, toluene, p-xylene, and styrene), six C2-C5 volatile fatty acids (VFAs), two phenols, and two indoles) against three metal-organic frameworks (MOFs), i.e., MOF-5, Eu-MOF, and MOF-199 at 5 to 10 mPa VOC partial pressures (25 °C). The selected MOFs exhibited the strongest affinity for semi-volatile (polar) VOC molecules (skatole), whereas the weakest affinity toward was volatile (non-polar) VOC molecules (i.e., benzene). Our experimental results were also supported through simulation analysis in which polar molecules were bound most strongly to MOF-199, reflecting the presence of strong interactions of Cu2+ with polar VOCs. In addition, the performance of selected MOFs was compared to three well-known commercial sorbents (Tenax TA, Carbopack X, and Carboxen 1000) under the same conditions. The estimated equilibrium adsorption capacity (mg.g−1) for the all target VOCs was in the order of; MOF-199 (71.7) >Carboxen-1000 (68.4) >Eu-MOF (27.9) >Carbopack X (24.3) >MOF-5 (12.7) >Tenax TA (10.6). Hopefully, outcome of this study are expected to open a new corridor to expand the practical application of MOFs for the treatment diverse VOC mixtures. PMID:27324522

  18. Metal organic frameworks as sorption media for volatile and semi-volatile organic compounds at ambient conditions.

    PubMed

    Vellingiri, Kowsalya; Szulejko, Jan E; Kumar, Pawan; Kwon, Eilhann E; Kim, Ki-Hyun; Deep, Akash; Boukhvalov, Danil W; Brown, Richard J C

    2016-01-01

    In this research, we investigated the sorptive behavior of a mixture of 14 volatile and semi-volatile organic compounds (four aromatic hydrocarbons (benzene, toluene, p-xylene, and styrene), six C2-C5 volatile fatty acids (VFAs), two phenols, and two indoles) against three metal-organic frameworks (MOFs), i.e., MOF-5, Eu-MOF, and MOF-199 at 5 to 10 mPa VOC partial pressures (25 °C). The selected MOFs exhibited the strongest affinity for semi-volatile (polar) VOC molecules (skatole), whereas the weakest affinity toward was volatile (non-polar) VOC molecules (i.e., benzene). Our experimental results were also supported through simulation analysis in which polar molecules were bound most strongly to MOF-199, reflecting the presence of strong interactions of Cu(2+) with polar VOCs. In addition, the performance of selected MOFs was compared to three well-known commercial sorbents (Tenax TA, Carbopack X, and Carboxen 1000) under the same conditions. The estimated equilibrium adsorption capacity (mg.g(-1)) for the all target VOCs was in the order of; MOF-199 (71.7) >Carboxen-1000 (68.4) >Eu-MOF (27.9) >Carbopack X (24.3) >MOF-5 (12.7) >Tenax TA (10.6). Hopefully, outcome of this study are expected to open a new corridor to expand the practical application of MOFs for the treatment diverse VOC mixtures. PMID:27324522

  19. SAW/GC detection of taggants and other volatile compounds associated with contraband materials

    NASA Astrophysics Data System (ADS)

    Staples, Edward J.; Watson, Gary W.; McGuirre, David S.; Williams, Dudley

    1997-02-01

    Research on a Surface Acoustic Wave (SAW) Gas Chromatography (GC) non-intrusive inspection system has demonstrated the ability to identify and quantify the presence of non- volatile contraband vapors in less than 10 seconds. The technique can be used to detect volatile compounds associated with the contraband compound as well. This is important because volatile taggants in explosives make them easy to detect and volatile organic compounds are routinely used in the manufacturing of illicit drugs. The results of tests with volatile organic compounds associated with drugs of abuse, and volatile taggants for explosives are presented. The latter materials are particularly useful in detecting plastic explosives and results for Semtex and C-4 spiked with a taggant show that detectability is improved. Similar testing protocols and methods for drugs, currency, organo-phosphate agents, and taggant compounds have also been demonstrated. The SAW/GC method needs no high voltages, utilizes essentially all solid state devices, and involves no radioactive or hazardous materials SAW detection systems have demonstrated dynamic ranges greater than 1,000,000 and the ability to selectively screen for vapors from explosive and drugs of abuse at the part per billion level with little or no interference. Most important for law-enforcement, SAW/GC devices can be produced in small packages at low cost.

  20. EFFECTS IN HUMANS OF A VOLATILE ORGANIC COMPOUND MIXTURE: SENSORY

    EPA Science Inventory

    Time-course actions for symptoms of the sick building syndrome were derived from 66 healthy males exposed to clean air and a volatile organic (VOC) mixture in separate sessions. he mixture contained 22 VOCs (25 mg/m3 total concentration) commonly found air-borne in new or recentl...

  1. Annual cycle of volatile organic compound exchange between a boreal pine forest and the atmosphere

    NASA Astrophysics Data System (ADS)

    Rantala, P.; Aalto, J.; Taipale, R.; Ruuskanen, T. M.; Rinne, J.

    2015-06-01

    Long-term flux measurements of volatile organic compounds (VOC) over boreal forests are rare, although the forests are known to emit considerable amounts of VOCs into the atmosphere. Thus, we measured fluxes of several VOCs and oxygenated VOCs over a Scots pine dominated boreal forest semi-continuously between May 2010 and December 2013. The VOC profiles were obtained with a proton-transfer-reaction mass-spectrometry, and the fluxes were calculated using vertical concentration profiles and the surface layer profile method connected to the Monin-Obukhov similarity theory. In total fluxes that differed significantly from zero on a monthly basis were observed for 14 out 27 measured masses. Monoterpenes had the highest net emission in all seasons and statistically significant positive fluxes were detected from March until November. Other important compounds emitted were methanol, ethanol/formic acid, acetone and isoprene/MBO. Oxygenated VOCs showed also deposition fluxes that were statistically different from zero. Isoprene/methylbutenol and monoterpene fluxes followed well the traditional isoprene algorithm and the hybrid algorithm, respectively. Emission potentials of monoterpenes were largest in late spring and fall which was possibly driven by growth processes and decaying of soil litter, respectively. Conversely, largest emission potentials of isoprene/methylbutenol were found in July. Thus, we concluded that most of the emissions of m/z 69 at the site consisted of isoprene that originated from broadleaved trees. Methanol had deposition fluxes especially before sunrise. This can be connected to water films on surfaces. Based on this assumption, we were able to build an empirical algorithm for bi-directional methanol exchange that described both emission term and deposition term. Methanol emissions were highest in May and June and deposition level increased towards fall, probably as a result of increasing relative humidity levels leading to predominance of

  2. Annual cycle of volatile organic compound exchange between a boreal pine forest and the atmosphere

    NASA Astrophysics Data System (ADS)

    Rantala, P.; Aalto, J.; Taipale, R.; Ruuskanen, T. M.; Rinne, J.

    2015-10-01

    Long-term flux measurements of volatile organic compounds (VOC) over boreal forests are rare, although the forests are known to emit considerable amounts of VOCs into the atmosphere. Thus, we measured fluxes of several VOCs and oxygenated VOCs over a Scots-pine-dominated boreal forest semi-continuously between May 2010 and December 2013. The VOC profiles were obtained with a proton transfer reaction mass spectrometry, and the fluxes were calculated using vertical concentration profiles and the surface layer profile method connected to the Monin-Obukhov similarity theory. In total fluxes that differed significantly from zero on a monthly basis were observed for 13 out of 27 measured masses. Monoterpenes had the highest net emission in all seasons and statistically significant positive fluxes were detected from March until October. Other important compounds emitted were methanol, ethanol+formic acid, acetone and isoprene+methylbutenol. Oxygenated VOCs showed also deposition fluxes that were statistically different from zero. Isoprene+methylbutenol and monoterpene fluxes followed well the traditional isoprene algorithm and the hybrid algorithm, respectively. Emission potentials of monoterpenes were largest in late spring and autumn which was possibly driven by growth processes and decaying of soil litter, respectively. Conversely, largest emission potentials of isoprene+methylbutenol were found in July. Thus, we concluded that most of the emissions of m/z 69 at the site consisted of isoprene that originated from broadleaved trees. Methanol had deposition fluxes especially before sunrise. This can be connected to water films on surfaces. Based on this assumption, we were able to build an empirical algorithm for bi-directional methanol exchange that described both emission term and deposition term. Methanol emissions were highest in May and June and deposition level increased towards autumn, probably as a result of increasing relative humidity levels leading to

  3. [Health effect of volatile aldehyde compounds in photocatalytic oxidation of aromatics compounds].

    PubMed

    Zhao, Wei-rong; Liao, Qiu-wen; Yang, Ya-nan; Dai, Jiu-song

    2013-05-01

    Photocatalytic oxidation (PCO) of toluene and benzaldehyde in indoor air by N doped TiO2 (N-TiO2) was conducted under UV irradiation of 254 nm. The intermediates were identified and monitored on real-time by proton transfer reaction-mass spectrometry. The health risks of PCO of toluene and benzaldehyde were assessed based on health risk influence index (eta). Results indicated that both the conversion rate and mineralization rate of toluene and benzaldehyde were relatively high, however, the volatile aldehyde compounds (VAs), including acetaldehyde and formaldehyde generated from ring-opening, significantly influenced the health risks of PCO of toluene and benzaldehyde. Acetaldehyde played a crucial role on health risks, which was inclined to desorb from the surface of catalysts, accumulate in gas-phase, and increase the health risks of PCO of the aromatic compounds. The concentration of formaldehyde kept stable at a relatively low level, however its impact cannot be neglected. In the PCO process of toluene and benzaldehyde, eta reached the maximum values of 8 499.68 and 21.43, with the eta(VAs), contribution of VAs to the health risk influence index of outlet, reaching 99.3% and 98.3%, respectively. The average values of eta in the PCO process of 30 min were 932.86 and 8.52, and for which eta(VAs), reached 98.5% and 98.0%, respectively. When PCO of toluene and benzaldehyde reached steady state, eta were 236.09 and 2.30, and eta(VAs) reached 97.9% and 97.8%, respectively. Hence, eta(VAs), can be taken as a characteristic parameter in assessment of health risks of PCO of aromatic compounds. PMID:23914541

  4. Sensory characteristics and volatile profiles of parsley ( Petroselinum crispum [Mill.] Nym.) in correlation to resistance properties against Septoria Blight ( Septoria petroselini ).

    PubMed

    Ulrich, Detlef; Bruchmüller, Tobias; Krüger, Hans; Marthe, Frank

    2011-10-12

    Sixteen different genotypes of parsley, including two cultivars, six populations, and eight inbred lines, were investigated regarding their sensory characteristics in relation to the volatile patterns and resistance to Septoria petroselini . The sensory quality was determined by a combination of profile analysis and preference test, whereas the volatile patterns were analyzed by headspace-SPME-GC of leaf homogenates with subsequent nontargeted data processing to prevent a possible overlooking of volatile compounds. The more resistant genotypes are characterized by several negative sensory characteristics such as bitter, grassy, herbaceous, pungent, chemical, and harsh. In contrast, the contents of some volatile compounds correlate highly and significantly either with resistance (e.g., hexanal and α-copaene) or with susceptibility (e.g., p-menthenol). Some of these compounds with very strong correlation to resistance are still unidentified and are presumed to act as resistance markers. PMID:21834559

  5. REVIEW OF VOLATILE ORGANIC COMPOUND SOURCE APPORTIONMENT BY CHEMICAL MASS BALANCE. (R826237)

    EPA Science Inventory

    The chemical mass balance (CMB) receptor model has apportioned volatile organic compounds (VOCs) in more than 20 urban areas, mostly in the United States. These applications differ in terms of the total fraction apportioned, the calculation method, the chemical compounds used ...

  6. DETERMINATION OF POLAR VOLATILE ORGANIC COMPOUNDS IN WATER BY MEMBRANE PERMEATE AND TRAP GC-MS

    EPA Science Inventory

    A novel approach is presented combining semipermeable membranes with the accepted purge and trap gas chromatography-mass spectrometry (GC-MS) technology to produce a method of selectively extracting polar, volatile organic compounds from water, particularly those compounds not am...

  7. Performance of commercial non-methane hydrocarbon analyzers in monitoring polar volatile organic compounds

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Quantifying non-methane hydrocarbons (NMHC) from animal feeding operations (AFOs) is challenging due to the broad spectrum of compounds and the polar nature of the most abundant compounds. The purpose of this study was to determine the performance of commercial NMHC analyzers for measuring volatile ...

  8. Volatile compounds from roots, stems and leaves of Angelica acutiloba growing in Taiwan.

    PubMed

    Chen, Hsin-Chun; Tsaia, Yi-; Linb, Li-Yun; Wu, Chin-Sheng; Tai, Shan-Pao; Chen, Yu-Chang; Chiang, Hsiu-Mei

    2014-04-01

    The present study analyzed and compared the volatile compounds in fresh Angelica acutiloba roots, stems and leaves both qualitatively and quantitatively. The volatile compounds were isolated by either steam distillation (SD) or headspace-solid phase microextraction (HS-SPME). A total of 61 compounds were identified using gas chromatography/mass spectrometry (GC/MS). All 61 compounds were verified by SD, with 3n-butyl phthalide, gamma-terpinene, p-cymene and cis-beta-ocimene as the main compounds. Thirty-three compounds were verified by HS-SPME, with gamma-terpinene and p-cymene as the main compounds. The leaf samples contained the highest essential oil content. Compared with SD, HS-SPME sampling resulted in relatively higher amounts of highly volatile monoterpenes and lower amounts of less volatile compounds such as 3n-butyl phthalide. These findings demonstrate that A. acutiloba roots, stems and leaves have high 3n-butyl phthalide contents; thus, all parts of A. acutiloba may be used for further application and development. PMID:24868890

  9. Comparison of methods for determining volatile compounds in milk, cheese, and whey powder

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Solid phase microextraction (SPME) and gas chromatography-mass spectrometry (GC-MS) are commonly used for qualitative and quantitative analysis of volatile compounds in various dairy products, but conditions have to be adjusted for optimal SPME release while not generating new compounds that are abs...

  10. 77 FR 14279 - National Volatile Organic Compound Emission Standards for Aerosol Coatings-Addition of Dimethyl...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-09

    ...The EPA is taking direct final action to amend the National Volatile Organic Compound Emission Standards for Aerosol Coatings final rule, which is a rule that establishes national reactivity-based emission standards for the aerosol coatings category (aerosol spray paints) under the Clean Air Act, published elsewhere in the Federal Register. This direct final action adds three compounds:......

  11. Improvement of a headspace solid phase microextraction-gas chromatography/mass spectrometry method for the analysis of wheat bread volatile compounds.

    PubMed

    Raffo, Antonio; Carcea, Marina; Castagna, Claudia; Magrì, Andrea

    2015-08-01

    An improved method based on headspace solid phase microextraction combined with gas chromatography-mass spectrometry (HS-SPME/GC-MS) was proposed for the semi-quantitative determination of wheat bread volatile compounds isolated from both whole slice and crust samples. A DVB/CAR/PDMS fibre was used to extract volatiles from the headspace of a bread powdered sample dispersed in a sodium chloride (20%) aqueous solution and kept for 60min at 50°C under controlled stirring. Thirty-nine out of all the extracted volatiles were fully identified, whereas for 95 other volatiles a tentative identification was proposed, to give a complete as possible profile of wheat bread volatile compounds. The use of an array of ten structurally and physicochemically similar internal standards allowed to markedly improve method precision with respect to previous HS-SPME/GC-MS methods for bread volatiles. Good linearity of the method was verified for a selection of volatiles from several chemical groups by calibration with matrix-matched extraction solutions. This simple, rapid, precise and sensitive method could represent a valuable tool to obtain semi-quantitative information when investigating the influence of technological factors on volatiles formation in wheat bread and other bakery products. PMID:26118802

  12. Volatile compounds, odor, and aroma of La Serena cheese high-pressure treated at two different stages of ripening.

    PubMed

    Arqués, J L; Garde, S; Fernández-García, E; Gaya, P; Nuñez, M

    2007-08-01

    La Serena cheeses made from raw Merino ewe's milk were high-pressure (HP) treated at 300 or 400 MPa for 10 min on d 2 or 50 after manufacture. Ripening of HP-treated and control cheeses proceeded until d 60 at 8 degrees C. Volatile compounds were determined throughout ripening, and analysis of related sensory characteristics was carried out on ripe cheeses. High-pressure treatments on d 2 enhanced the formation of branched-chain aldehydes and of 2-alcohols except 2-butanol, but retarded that of n-aldehydes, 2-methyl ketones, dihydroxy-ketones, n-alcohols, unsaturated alcohols, ethyl esters, propyl esters, and branched-chain esters. Differences between HP-treated and control cheeses in the levels of some volatile compounds tended to disappear during ripening. The odor of ripe cheeses was scarcely affected by HP treatments on d 2, but aroma quality and intensity scores were lowered in comparison with control cheese of the same age. On the other hand, HP treatments on d 50 did not influence either the volatile compound profile or the sensory characteristics of 60-d-old cheese. PMID:17638973

  13. Drosophila melanogaster as a model to characterize fungal volatile organic compounds.

    PubMed

    Inamdar, Arati A; Zaman, Taslim; Morath, Shannon U; Pu, David C; Bennett, Joan W

    2014-05-01

    Fungi are implicated in poor indoor air quality and may pose a potential risk factor for building/mold related illnesses. Fungi emit numerous volatile organic compounds (VOCs) as alcohols, esters, ethers, ketones, aldehydes, terpenoids, thiols, and their derivatives. The toxicity profile of these VOCs has never been explored in a model organism, which could enable the performance of high throughput toxicological assays and lead to a better understanding of the mechanism of toxicity. We have established a reductionist Drosophila melanogaster model to evaluate the toxicity of fungal VOCs. In this report, we assessed the toxicity of fungal VOCs emitted from living cultures of species in the genera, Trichoderma, Aspergillus, and Penicillium and observed a detrimental effect on larval survival. We then used chemical standards of selected fungal VOCs to assess their toxicity on larval and adult Drosophila. We compared the survival of adult flies exposed to these fungal VOCs with known industrial toxic chemicals (formaldehyde [37%], xylene, benzene, and toluene). Among the tested fungal VOC standards, the compounds with eight carbons (C8) caused greater truncation of fly lifespan than tested non-C8 fungal VOCs and industrial toxins. Our data validate the use of Drosophila melanogaster as a model with the potential to elucidate the mechanistic attributes of different toxic VOCs emitted by fungi and also to explore the potential link between reported human illnesses/symptoms and exposure to water damaged and mold contaminated buildings. PMID:23139201

  14. Generation of volatile compounds in litchi wine during winemaking and short-term bottle storage.

    PubMed

    Wu, Yuwen; Zhu, Baoqing; Tu, Cui; Duan, Changqing; Pan, Qiuhong

    2011-05-11

    Evolution of volatile components during litchi (Litchi chinensis Sonn.) winemaking was monitored, and aroma profiles of litchi wines bottle aged for 5 months at ambient temperature (25-28 °C) and low temperature (8-10 °C) were compared via headspace solid phase microextraction (SPME) coupled with gas chromatography-mass spectrometry (GC-MS). The majority of terpenoids deriving from litchi juice decreased, even disappeared along with alcoholic fermentation, while terpenol oxides, ethers, and acetates came into being and increased. Ethyl octanote, isoamyl acetate, ethyl hexanoate, ethyl butanoate, cis-rose oxide, and trans-rose oxide had the highest odor activity values (OAVs) in young litchi wines. Six aromatic series were obtained by grouping OAVs of odor-active compounds with similar odor descriptions to establish the aroma profile for young litchi wines, and floral and fruity attributes were two major aroma series. Compared to ambient temperature when bottle aging, lower temperature benefited key aroma retention and expectantly extended the shelf life of young litchi wines. PMID:21456617

  15. Identification of characteristic molecular signature for volatile organic compounds in peripheral blood of rat

    SciTech Connect

    Kim, Jeong Kyu; Jung, Kwang Hwa; Noh, Ji Heon; Eun, Jung Woo; Bae, Hyun Jin; Xie, Hong Jian; Jang, Ja-June; Ryu, Jae Chun; Park, Won Sang; Lee, Jung Young; Nam, Suk Woo

    2011-01-15

    In a previous report we demonstrated that the transcriptomic response of liver tissue was specific to toxicants, and a characteristic molecular signature could be used as an early prognostic biomarker in rats. It is necessary to determine the transcriptomic response to toxicants in peripheral blood for application to the human system. Volatile organic compounds (VOCs) comprise a major group of pollutants which significantly affect the chemistry of the atmosphere and human health. In this study we identified and validated the specific molecular signatures of toxicants in rat whole blood as early predictors of environmental toxicants. VOCs (dichloromethane, ethylbenzene, and trichloroethylene) were administered to 11-week-old SD male rats after 48 h of exposure, peripheral whole blood was subjected to expression profiling analysis. Unsupervised gene expression analysis resulted in a characteristic molecular signature for each toxicant, and supervised analysis identified 1,217 outlier genes as distinct molecular signatures discerning VOC exposure from healthy controls. Further analysis of multi-classification suggested 337 genes as early detective molecular markers for three VOCs with 100% accuracy. A large-scale gene expression analysis of a different VOC exposure animal model suggested that characteristic expression profiles exist in blood cells and multi-classification of this VOC-specific molecular signature can discriminate each toxicant at an early exposure time. This blood expression signature can thus be used as discernable surrogate marker for detection of biological responses to VOC exposure in an environment.

  16. Characterisation of volatile organic compounds and polycyclic aromatic hydrocarbons in the ambient air of steelworks

    NASA Astrophysics Data System (ADS)

    Ciaparra, Diane; Aries, Eric; Booth, Marie-Jo; Anderson, David R.; Almeida, Susana Marta; Harrad, Stuart

    Investigations have been undertaken at two integrated steelworks in the UK to characterise airborne organic micro-pollutants and to assess the contribution of iron ore sintering and coke making operations on the air quality. Concentrations of volatile organic compounds (VOCs), namely benzene, toluene and p-xylene, were measured continuously within the boundary of a coking plant using for the first time differential optical absorption spectrometry (DOAS) between 2004 and 2006. Concentrations were obtained along two monitoring paths surrounding the coke plant and the average benzene concentration measured along both paths over the campaign was 28 μg m -3. Highest benzene concentrations were associated with winds downwind of the coke oven batteries. Concentrations of polycyclic aromatic hydrocarbons (PAHs) in ambient air were measured during 27 consecutive days in 2005 at three different locations on an integrated steelworks. PAH profiles were determined for each sampling point and compared to coke oven and sinter plant emission profiles showing an impact from the steelworks. The mean benzo [ a] pyrene concentration determined in the immediate vicinity of the coke ovens downwind from the battery was 19 ng m -3, whereas for the two other sites average benzo [ a] pyrene concentrations were much lower (around 1 ng m -3). Data were analysed using principal components analysis (PCA) and results showed that coke making and iron ore sintering were responsible for most of the variation in the PAH concentrations in the vicinity of the investigated plant.

  17. Volatile Profile Comparison of USDA Sweet-Orange-Like Hybrids and Standard Sweet Oranges

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Volatiles of six hybrids (‘Ambersweet’ orange crossed with one of three different orange hybrids) were analyzed using gas chromatography – mass spectrometry (GC-MS) to compare the volatile profiles with ‘Hamlin’, the most widely grown early sweet orange in Florida, and ‘Ambersweet’. All hybrids are ...

  18. Environmental Aspects of Two Volatile Organic Compound Groundwater Treatment Designs at the Rocky Flats Site - 13135

    SciTech Connect

    Michalski, Casey C.; DiSalvo, Rick; Boylan, John

    2013-07-01

    DOE's Rocky Flats Site in Colorado is a former nuclear weapons production facility that began operations in the early 1950's. Because of releases of hazardous substances to the environment, the federally owned property and adjacent offsite areas were placed on the CERCLA National Priorities List in 1989. The final remedy was selected in 2006. Engineered components of the remedy include four groundwater treatment systems that were installed before closure as CERCLA-accelerated actions. Two of the systems, the Mound Site Plume Treatment System and the East Trenches Plume Treatment System, remove low levels of volatile organic compounds using zero-valent iron media, thereby reducing the loading of volatile organic compounds in surface water resulting from the groundwater pathway. However, the zero-valent iron treatment does not reliably reduce all volatile organic compounds to consistently meet water quality goals. While adding additional zero-valent iron media capacity could improve volatile organic compound removal capability, installation of a solar powered air-stripper has proven an effective treatment optimization in further reducing volatile organic compound concentrations. A comparison of the air stripper to the alternative of adding additional zero-valent iron capacity to improve Mound Site Plume Treatment System and East Trenches Plume Treatment System treatment based on several key sustainable remediation aspects indicates the air stripper is also more 'environmentally friendly'. These key aspects include air pollutant emissions, water quality, waste management, transportation, and costs. (authors)

  19. Potential Signatures of Semi-volatile Compounds Associated With Nuclear Processing

    SciTech Connect

    Probasco, Kathleen M.; Birnbaum, Jerome C.; Maughan, A. D.

    2002-06-01

    Semi-volatile chemicals associated with nuclear processes (e.g., the reprocessing of uranium to produce plutonium for nuclear weapons, or the separation of actinides from processing waste streams), can provide sticky residues or signatures that will attach to piping, ducting, soil, water, or other surface media. Volatile compounds, that are more suitable for electro-optical sensing, have been well studied. However, the semi-volatile compounds have not been well documented or studied. A majority of these semi-volatile chemicals are more robust than typical gaseous or liquid chemicals and can have lifetimes of several weeks, months, or years in the environment. However, large data gaps exist concerning these potential signature compounds and more research is needed to fill these data gaps so that important signature information is not overlooked or discarded. This report investigates key semi-volatile compounds associated with nuclear separations, identifies available chemical and physical properties, and discusses the degradation products that would result from hydrolysis, radiolysis and oxidation reactions on these compounds.

  20. Development of a novel headspace sorptive extraction method to study the aging of volatile compounds in spent handgun cartridges.

    PubMed

    Gallidabino, M; Romolo, F S; Bylenga, K; Weyermann, C

    2014-05-01

    Estimating the time since the last discharge of firearms and/or spent cartridges may be a useful piece of information in forensic firearm-related cases. The current approach consists of studying the diffusion of selected volatile organic compounds (such as naphthalene) released during the shooting using solid-phase microextraction (SPME). However, this technique works poorly on handgun cartridges because the extracted quantities quickly fall below the limit of detection. In order to find more effective solutions and further investigate the aging of organic gunshot residue after the discharge of handgun cartridges, an extensive study was carried out in this work using a novel approach based on high-capacity headspace sorptive extraction (HSSE). By adopting this technique, for the first time 51 gunshot residue (GSR) volatile organic compounds could be simultaneously detected from fired handgun cartridge cases. Application to aged specimens showed that many of those compounds presented significant and complementary aging profiles. Compound-to-compound ratios were also tested and proved to be beneficial both in reducing the variability of the aging curves and in enlarging the time window useful in a forensic casework perspective. The obtained results were thus particularly promising for the development of a new complete forensic dating methodology. PMID:24684369

  1. Effect of toasting on non-volatile and volatile vine-shoots low molecular weight phenolic compounds.

    PubMed

    Sánchez-Gómez, R; Zalacain, A; Alonso, G L; Salinas, M R

    2016-08-01

    Low molecular weight phenolic compounds (LMWPC), including non-volatile and volatile, of Airén and Moscatel vine-shoot cultivars waste submitted to different toasting conditions (light, 180°/15min; medium, 180°/30min; high 180°/45min) were studied in order to exploit them with oenological purposes. The LMWPC differences were mainly due to the toasting times rather than vine-shoot variety. In non-volatile LMWPC fraction, flavanols and almost all phenolic acids decreased by toasting. The presence of trans-resveratrol has a special relevance at light toasting: 14 times more concentrated in Airén and 6 times in Moscatel vine-shoots, than their respective non-toasted samples. The volatile LMWPC showed a significant increment with toasting, being vanillin the one with the highest difference respect to non-toasted samples at high conditions: more than 15 times in Airén and 11 in Moscatel. Although toasting reduced some LMWPC, particular characteristics of these vine-shoots must be taken into account when considering its future use. PMID:26988529

  2. Volatile organic compounds in truffle (Tuber magnatum Pico): comparison of samples from different regions of Italy and from different seasons.

    PubMed

    Federico, Vita; Cosimo, Taiti; Antonio, Pompeiano; Nadia, Bazihizina; Valentina, Lucarotti; Stefano, Mancuso; Amedeo, Alpi

    2015-01-01

    In this paper volatile organic compounds (VOCs) from Tuber magnatum fruiting bodies were analyzed using a PTR-TOF-MS instrument. The aim was to characterize the VOC's profile of the fruiting bodies and identify if any VOCs were specific to a season and geographical areas. Multiple factorial analysis (MFA) was carried out on the signals obtained by MS. Experiments using ITS region sequencing proved that the T. magnatum life cycle includes the formation of fruiting bodies at two different times of the year. The VOCs profiles diverge when different seasonal and geographical productions are considered. Using PTR-TOF-MS, compounds present at levels as low pptv were detected. This made it possible to determine both the origin of fruiting bodies (Alba and San Miniato) and the two biological phases of fruiting bodies formation in San Miniato truffles. PMID:26224388

  3. Volatile organic compounds in truffle (Tuber magnatum Pico): comparison of samples from different regions of Italy and from different seasons

    PubMed Central

    Federico, Vita; Cosimo, Taiti; Antonio, Pompeiano; Nadia, Bazihizina; Valentina, Lucarotti; Stefano, Mancuso; Amedeo, Alpi

    2015-01-01

    In this paper volatile organic compounds (VOCs) from Tuber magnatum fruiting bodies were analyzed using a PTR-TOF-MS instrument. The aim was to characterize the VOC's profile of the fruiting bodies and identify if any VOCs were specific to a season and geographical areas. Multiple factorial analysis (MFA) was carried out on the signals obtained by MS. Experiments using ITS region sequencing proved that the T. magnatum life cycle includes the formation of fruiting bodies at two different times of the year. The VOCs profiles diverge when different seasonal and geographical productions are considered. Using PTR-TOF-MS, compounds present at levels as low pptv were detected. This made it possible to determine both the origin of fruiting bodies (Alba and San Miniato) and the two biological phases of fruiting bodies formation in San Miniato truffles. PMID:26224388

  4. Emission of volatile sulfur compounds during composting of municipal solid waste (MSW)

    SciTech Connect

    Zhang, Hongyu; Schuchardt, Frank; Li, Guoxue; Yang, Jinbing; Yang, Qingyuan

    2013-04-15

    Highlights: ► We compare the volatile sulfur compounds (VSCs) emissions during three types of municipal solid wastes (MSWs) composting. ► The VSCs released from the kitchen waste composting was significantly higher than that from 15–80 mm fraction of MSW. ► Among the five VSCs, H{sub 2}S was the most abundant compound with 39.0–43.0% of total VSCs released. ► Addition of 20% cornstalks could significantly reduce the VSCs emissions during kitchen waste composting. - Abstract: Volatile sulfur compounds (VSCs) are the main source for malodor from composting plants. In this study, the VSCs generated from composting of 15–80 mm municipal solid waste (T0), kitchen waste (T1) and kitchen waste mixed dry cornstalks (T2) were measured in 60 L reactors with forced aeration for a period of 30 days. The VSCs detected in all treatments were hydrogen sulfide (H{sub 2}S), methyl mercaptan (MM), dimethyl sulfide (DMS), carbon bisulfide (CS{sub 2}) and dimethyl disulfide (DMDS). Over 90% of the VSCs emissions occurred during the first 15 days, and reached their peak values at days 4–7. The emission profiles of five VSCs species were significantly correlated with internal materials temperature and outlet O{sub 2} concentration (p < 0.05). Total emissions of the VSCs were 216.1, 379.3 and 126.0 mg kg{sup −1} (dry matter) for T0, T1 and T2, respectively. Among the five VSCs, H{sub 2}S was the most abundant compound with 39.0–43.0% of total VSCs released. Composting of kitchen waste from separate collection posed a negative influence on the VSC and leachate production because of its high moisture content. An addition of dry cornstalks at a mixing ratio of 4:1 (wet weight) could significantly reduce the VSCs emissions and avoid leachate. Compared to pure kitchen waste, VSCs were reduced 66.8%.

  5. AN IMPROVED METHOD FOR THE BIOLOGICAL MONITORING OF VOLATILE COMPOUNDS

    SciTech Connect

    Thrall, Karla D.

    2006-01-01

    Exposure assessment is a critical component in estimating health risk. The analysis of exhaled breath offers an ideal non-invasive matrix for measuring volatile biomarkers associated with the absorption, distribution, metabolism and elimination of chemicals under a variety of environmental conditions. A real-time, field-portable system was developed to directly analyze undiluted exhaled air from experimental animals and humans. The exhaled breath data is evaluated using a physiologically based pharmacokinetic model to estimate total exposure, internal target tissue dosimetry, and to describe kinetic changes. To date, the system has been used to conduct occupational exposure assessments and dermal bioavailability studies.

  6. PLANT VOLATILES. Biosynthesis of monoterpene scent compounds in roses.

    PubMed

    Magnard, Jean-Louis; Roccia, Aymeric; Caissard, Jean-Claude; Vergne, Philippe; Sun, Pulu; Hecquet, Romain; Dubois, Annick; Hibrand-Saint Oyant, Laurence; Jullien, Frédéric; Nicolè, Florence; Raymond, Olivier; Huguet, Stéphanie; Baltenweck, Raymonde; Meyer, Sophie; Claudel, Patricia; Jeauffre, Julien; Rohmer, Michel; Foucher, Fabrice; Hugueney, Philippe; Bendahmane, Mohammed; Baudino, Sylvie

    2015-07-01

    The scent of roses (Rosa x hybrida) is composed of hundreds of volatile molecules. Monoterpenes represent up to 70% percent of the scent content in some cultivars, such as the Papa Meilland rose. Monoterpene biosynthesis in plants relies on plastid-localized terpene synthases. Combining transcriptomic and genetic approaches, we show that the Nudix hydrolase RhNUDX1, localized in the cytoplasm, is part of a pathway for the biosynthesis of free monoterpene alcohols that contribute to fragrance in roses. The RhNUDX1 protein shows geranyl diphosphate diphosphohydrolase activity in vitro and supports geraniol biosynthesis in planta. PMID:26138978

  7. Substitution of carcinogenic solvent dichloromethane for the extraction of volatile compounds in a fat-free model food system.

    PubMed

    Cayot, Nathalie; Lafarge, Céline; Bou-Maroun, Elias; Cayot, Philippe

    2016-07-22

    Dichloromethane is known as a very efficient solvent, but, as other halogenated solvents, is recognized as a hazardous product (CMR substance). The objective of the present work is to propose substitution solvent for the extraction of volatile compounds. The most important physico-chemical parameters in the choice of an appropriate extraction solvent of volatile compounds are reviewed. Various solvents are selected on this basis and on their hazard characteristics. The selected solvents, safer than dichloromethane, are compared using the extraction efficiency of volatile compounds from a model food product able to interact with volatile compounds. Volatile compounds with different hydrophobicity are used. High extraction yields were positively correlated with high boiling points and high Log Kow values of volatile compounds. Mixtures of solvents such as azeotrope propan-2-one/cyclopentane, azeotrope ethyl acetate/ethanol, and mixture ethyl acetate/ethanol (3:1, v/v) gave higher extraction yields than those obtained with dichloromethane. PMID:27320380

  8. Volatile profiling reveals intracellular metabolic changes in Aspergillus parasiticus: veA regulates branched chain amino acid and ethanol metabolism

    PubMed Central

    2010-01-01

    Background Filamentous fungi in the genus Aspergillus produce a variety of natural products, including aflatoxin, the most potent naturally occurring carcinogen known. Aflatoxin biosynthesis, one of the most highly characterized secondary metabolic pathways, offers a model system to study secondary metabolism in eukaryotes. To control or customize biosynthesis of natural products we must understand how secondary metabolism integrates into the overall cellular metabolic network. By applying a metabolomics approach we analyzed volatile compounds synthesized by Aspergillus parasiticus in an attempt to define the association of secondary metabolism with other metabolic and cellular processes. Results Volatile compounds were examined using solid phase microextraction - gas chromatography/mass spectrometry. In the wild type strain Aspergillus parasiticus SU-1, the largest group of volatiles included compounds derived from catabolism of branched chain amino acids (leucine, isoleucine, and valine); we also identified alcohols, esters, aldehydes, and lipid-derived volatiles. The number and quantity of the volatiles produced depended on media composition, time of incubation, and light-dark status. A block in aflatoxin biosynthesis or disruption of the global regulator veA affected the volatile profile. In addition to its multiple functions in secondary metabolism and development, VeA negatively regulated catabolism of branched chain amino acids and synthesis of ethanol at the transcriptional level thus playing a role in controlling carbon flow within the cell. Finally, we demonstrated that volatiles generated by a veA disruption mutant are part of the complex regulatory machinery that mediates the effects of VeA on asexual conidiation and sclerotia formation. Conclusions 1) Volatile profiling provides a rapid, effective, and powerful approach to identify changes in intracellular metabolic networks in filamentous fungi. 2) VeA coordinates the biosynthesis of secondary

  9. A correlation of fecal volatiles and steroid hormone profiles with behavioral expression during estrous cycle of goat, Capra hircus.

    PubMed

    SankarGanesh, Devaraj; Ramachandran, Rajamanickam; Muniasamy, Samuthirapandi; Saravanakumar, Veluchamy Ramesh; Suriyakalaa, Udhayaraj; Kannan, Soundarapandian; Archunan, Govindaraju; Achiraman, Shanmugam

    2014-09-15

    Chemical signals (both volatile and non-volatile) form the major communication channels in animals. These signals are transferred mainly through excretory sources to facilitate inter-individual communication. In particular, the reproductive cycle of female mammals, including goats, exhibits significant changes in the constituents of their excretory products, and female mammals also express different behavioral patterns. We propose that feces is one of the important sources of chemo-signals in goats. However, the behavioral patterns and analysis of excretory sources based on chemical communication have not yet been studied in the Indian goat, Capra hircus. To validate our hypothesis, we analyzed the behavioral patterns and the volatiles and steroid hormone profiles in the feces samples of female goats during the estrous cycle. Here, we synchronized the estrous cycle in six female goats and obtained feces samples. The samples were extracted with dichloromethane and analyzed using gas chromatography-mass spectrometry. A portion of the sample was used for hormone assay to confirm the phases in the estrous cycle. Induction of she-goats into estrus was detected from the vaginal swelling, mucus discharge, restlessness, reduced milk secretion, bellowing, bleating, frequent urination, standing heat, allowing the male to mount, mounting on other females and teasing of males. The repeated male behaviors viz., flehmen, mounting, penile protrusion, body rubbing, dominance over other males and finally coitus with estrus female by male goats were observed. Analysis of volatiles revealed a total of twenty-four compounds combining all the phases in the estrous cycle. Among those, some of the volatile compounds and two antioxidants (ascorbic acid and vitamin E) were estrus-specific. Based on the fecal steroid analysis, higher level of estradiol during estrus and higher level of progesterone during post-estrus were observed. The behavioral patterns of female and male goats combined

  10. Laboratory and field screening strategies for measuring volatile organic compounds in landfill gas

    SciTech Connect

    Emerson, C.W.

    1999-11-01

    Distinct patterns often exist in the presence and absence of hazardous contaminants in the environment. These patterns can be used to select efficient screening tools, or groups of compounds that provide the most information on overall occurrences of a larger target group of compounds. By using these screens to indicate whether a sample is contaminated with detectable amounts of the compounds of interest, attention can be focused on those samples considered most likely to contain measurable concentrations of targeted compounds. The cost savings that result from eliminating samples that are most likely uncontaminated can be applied to obtaining additional samples that more accurately characterize the spatial or temporal variability of the environmental problem. In a retrospective application of screening techniques to the State of California's database of volatile organic compounds in landfill gas, two laboratory screening compounds, perchloroethylene and methylene chloride, represent over 95% of the total number of positive detections of a target group of 10 volatile organic compounds. Benzene and vinyl chloride, two field screening compounds that were selected using the characteristics of commercially available colorimetric detector tubes, recorded 74% of the total contaminant detections and a 52% savings in analytical costs as compared to an exhaustive analysis of every sample for all 10 volatile organic compounds. The number of detections recorded could have been improved if more sensitive and less selective field screening devices were available.

  11. Analyzing Strawberry Spoilage via its Volatile Compounds Using Longpath Fourier Transform Infrared Spectroscopy

    PubMed Central

    Dong, Daming; Zhao, Chunjiang; Zheng, Wengang; Wang, Wenzhong; Zhao, Xiande; Jiao, Leizi

    2013-01-01

    The volatile compounds from fruits vary based on the spoilage stage. We used FTIR spectroscopy to analyze and to attempt to identify the spoilage process of strawberries. To enhance the sensitivity of the measuring system, we increased the optical pathlength by using multi-reflecting mirrors. The volatile compounds that were vaporized from strawberries in different spoilage stages were tested. We analyzed the spectra and found that the concentrations of esters, alcohols, ethylene, and similar compounds changed with deterioration. The change patterns of the infrared spectra for the volatiles were further examined using 2D correlation spectroscopy. We analyzed the spectral data using PCA and were able to distinguish the fresh, slightly spoiled strawberries from the seriously spoiled strawberries. This study demonstrates that FTIR is an effective tool for monitoring strawberry spoilage and for providing status alerts. PMID:24002611

  12. Volatile profile analysis and quality prediction of Longjing tea (Camellia sinensis) by HS-SPME/GC-MS

    PubMed Central

    Lin, Jie; Dai, Yi; Guo, Ya-nan; Xu, Hai-rong; Wang, Xiao-chang

    2012-01-01

    This study aimed to analyze the volatile chemical profile of Longjing tea, and further develop a prediction model for aroma quality of Longjing tea based on potent odorants. A total of 21 Longjing samples were analyzed by headspace solid phase microextraction (HS-SPME) coupled with gas chromatography-mass spectrometry (GC-MS). Pearson’s linear correlation analysis and partial least square (PLS) regression were applied to investigate the relationship between sensory aroma scores and the volatile compounds. Results showed that 60 volatile compounds could be commonly detected in this famous green tea. Terpenes and esters were two major groups characterized, representing 33.89% and 15.53% of the total peak area respectively. Ten compounds were determined to contribute significantly to the perceived aroma quality of Longjing tea, especially linalool (0.701), nonanal (0.738), (Z)-3-hexenyl hexanoate (−0.785), and β-ionone (−0.763). On the basis of these 10 compounds, a model (correlation coefficient of 89.4% and cross-validated correlation coefficient of 80.4%) was constructed to predict the aroma quality of Longjing tea. Summarily, this study has provided a novel option for quality prediction of green tea based on HS-SPME/GC-MS technique. PMID:23225852

  13. Analysis of volatile compounds responsible for kiwifruit aroma by desiccated headspace gas chromatography-mass spectrometry.

    PubMed

    Zhang, Chun-Yun; Zhang, Qiong; Zhong, Cai-Hong; Guo, Ming-Quan

    2016-04-01

    A new method for desiccated headspace (DHS) sampling of aqueous sample to GC-MS for the analysis of volatile compounds responsible for kiwifruit aroma in different kiwifruit cultivars has been developed based on the complete hydrate formation between the sample solvent (water) with anhydrous salt (calcium chloride) at an elevated temperature (above the boiling point of the aqueous sample) in a non-contact format, which overcame the water-effect challenge to directly introduce aqueous sample into GC-MS analysis. By means of DHS, the volatile compounds in three different kiwifruit cultivars were analyzed and compared under the optimized operating conditions, mainly time and temperature for headspace equilibration, column temperature program for GC-MS measurement. As a result, 20 peaks of volatile compounds responsible for kiwifruit aroma were detected and remarkable differences were found in the relative contents of three major volatile compounds among the three different kiwifruit cultivars, i.e., acetaldehyde, ethanol and furfural. The DHS sampling technique used in the present method can make the GC-MS analysis of volatile compounds in the aqueous sample within complex matrix possible without contaminating the GC-MS instrument. In terms of the analysis of volatile compounds in kiwifruit, the present method enabled a direct measurement on the filtrate of the aqueous kiwifruit pulp, without intermediate trap phase for the extraction of analytes, which will be more reliable and simpler as compared with any other headspace method in use. Thus, DHS coupled with GC-MS will be a new valuable tool available for the kiwifruit related research and organoleptic quality control. PMID:26922094

  14. The Impact of Hybridization on the Volatile and Sensorial Profile of Ocimum basilicum L.

    PubMed Central

    da Costa, Andréa Santos; Arrigoni-Blank, Maria de Fátima; da Silva, Maria Aparecida Azevedo Pereira; Alves, Mércia Freitas; Santos, Darlisson de Alexandria; Alves, Péricles Barreto; Blank, Arie Fitzgerald

    2014-01-01

    The aim of the present study was to investigate the volatile and sensorial profile of basil (Ocimum basilicum L.) by quantitative descriptive analysis (QDA) of the essential oil of three hybrids (“Cinnamon” × “Maria Bonita,” “Sweet Dani” × “Cinnamon,” and “Sweet Dani” × “Maria Bonita”). Twelve descriptive terms were developed by a selected panel that also generated the definition of each term and the reference samples. The data were subjected to ANOVA, Tukey's test, and principal component analysis. The hybrid “Cinnamon” × “Maria Bonita” exhibited a stronger global aroma that was less citric than the other samples. Hybridization favored the generation of novel compounds in the essential oil of the hybrid “Sweet Dani” × “Maria Bonita,” such as canfora and (E)-caryophyllene; (E)-caryophyllene also was a novel compound in the hybrid “Sweet Dani” × “Cinnamon”; this compound was not present in the essential oils of the parents. PMID:24558334

  15. Detection of volatile organic compounds indicative of human presence in the air.

    PubMed

    Kwak, Jae; Geier, Brian A; Fan, Maomian; Gogate, Sanjay A; Rinehardt, Sage A; Watts, Brandy S; Grigsby, Claude C; Ott, Darrin K

    2015-07-01

    Volatile organic compounds were collected and analyzed from a variety of indoor and outdoor air samples to test whether human-derived compounds can be readily detected in the air and if they can be associated with human occupancy or presence. Compounds were captured with thermal desorption tubes and then analyzed by gas chromatography with mass spectrometry. Isoprene, a major volatile organic compound in exhaled breath, was shown to be the best indicator of human presence. Acetone, another major breath-borne compound, was higher in unoccupied or minimally occupied areas than in human-occupied areas, indicating that its majority may be derived from exogenous sources. The association of endogenous skin-derived compounds with human occupancy was not significant. In contrast, numerous compounds that are found in foods and consumer products were detected at elevated levels in the occupied areas. Our results revealed that isoprene and many exogenous volatile organic compounds consumed by humans are emitted at levels sufficient for detection in the air, which may be indicative of human presence. PMID:25944350

  16. Changes in profiles of substrates and volatile emissions of individual species and mixed consortia from the poultry production and processing environment

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Analysis of diverse profiles of volatile compounds emitted from single bacteria and from mixed populations demonstrate changes that occur when pathogens are introduced into communities of normal bacterial flora. Responses of bacteria within a biofilm to stimuli from external bacteria sets the stage ...

  17. Thermal engine driven heat pump for recovery of volatile organic compounds

    DOEpatents

    Drake, Richard L.

    1991-01-01

    The present invention relates to a method and apparatus for separating volatile organic compounds from a stream of process gas. An internal combustion engine drives a plurality of refrigeration systems, an electrical generator and an air compressor. The exhaust of the internal combustion engine drives an inert gas subsystem and a heater for the gas. A water jacket captures waste heat from the internal combustion engine and drives a second heater for the gas and possibly an additional refrigeration system for the supply of chilled water. The refrigeration systems mechanically driven by the internal combustion engine effect the precipitation of volatile organic compounds from the stream of gas.

  18. Atmospheric PM and volatile organic compounds released from Mediterranean shrubland wildfires

    NASA Astrophysics Data System (ADS)

    Garcia-Hurtado, Elisa; Pey, Jorge; Borrás, Esther; Sánchez, Pilar; Vera, Teresa; Carratalá, Adoración; Alastuey, Andrés; Querol, Xavier; Vallejo, V. Ramon

    2014-06-01

    Wildfires produce a significant release of gases and particles affecting climate and air quality. In the Mediterranean region, shrublands significantly contribute to burned areas and may show specific emission profiles. Our objective was to depict and quantify the primary-derived aerosols and precursors of secondary particulate species released during shrubland experimental fires, in which fire-line intensity values were equivalent to those of moderate shrubland wildfires, by using a number of different methodologies for the characterization of organic and inorganic compounds in both gas-phase and particulate-phase. Emissions of PM mass, particle number concentrations and organic and inorganic PMx components during flaming and smouldering phases were characterized in a field shrubland fire experiment. Our results revealed a clear prevalence of K+ and SO42- as inorganic ions released during the flaming-smouldering processes, accounting for 68-80% of the inorganic soluble fraction. During the residual-smouldering phases, in addition to K+ and SO42-, Ca2+ was found in significant amounts probably due the predominance of re-suspension processes (ashes and soil dust) over other emission sources during this stage. Concerning organic markers, the chromatograms were dominated by phenols, n-alkanals and n-alkanones, as well as by alcohol biomarkers in all the PMx fractions investigated. Levoglucosan was the most abundant degradation compound with maximum emission factors between 182 and 261 mg kg-1 in PM2.5 and PM10 respectively. However, levoglucosan was also observed in significant amounts in the gas-phase. The most representative organic volatile constituents in the smoke samples were alcohols, carbonyls, acids, monocyclic and bicyclic arenes, isoprenoids and alkanes compounds. The emission factors obtained in this study may contribute to the validation and improvement of national and international emission inventories of this intricate and diffuse emission source.

  19. Asplenioideae Species as a Reservoir of Volatile Organic Compounds with Potential Therapeutic Properties.

    PubMed

    Froissard, Didier; Rapior, Sylvie; Bessière, Jean-Marie; Buatois, Bruno; Fruchier, Alain; Sol, Vincent; Fons, Françoise

    2015-06-01

    Twelve French Asplenioideae ferns (genera Asplenium and subgenera Ceterach and Phyllitis) were investigated for the first time for volatile organic compounds (VOC) using GC-MS. Sixty-two VOC biosynthesized from the lipidic, shikimic, terpenic and carotenoid pathways were identified. Several VOC profiles can be highlighted from Asplenium jahandiezii and A. xalternifolium with exclusively lipidic derivatives to A. onopteris with an equal ratio of lipidic/shikimic compounds. Very few terpenes as caryophyllene derivatives were identified, but only in A. obovatum subsp. bilotii. The main odorous lipidic derivatives were (E)-2-decenal (waxy and fatty odor), nonanal (aldehydic and waxy odor with a fresh green nuance), (E)-2-heptenal (green odor with a fatty note) and 1-octen-3-ol (mushroom-like odor), reported for all species. A few VOC are present in several species in high content, i.e., 9-oxononanoic acid used as a precursor for biopolymers (19% in A. jahandiezii), 4-hydroxyacetophenone with a sweet and heavy floral odor (17.1% in A. onopteris), and 4-hydroxybenzoic acid used as a precursor in the synthesis of parabens (11.3% in A. foreziense). Most of the identified compounds have pharmacological activities, i.e., octanoic acid as antimicrobial, in particular against Salmonellas, with fatty and waxy odor (41.1% in A. petrarchae), tetradecanoic acid with trypanocidal activity (13.3% in A. obovatum subsp. bilotii), 4-hydroxybenzoic acid (8.7% in A. onopteris) with antimicrobial and anti-aging effects, 3,4-dihydroxybenzaldehyde as an inhibitor of growth of human cancer cells (6.7% in Ceterach officinarum), and phenylacetic acid with antifungal and antibacterial activities (5.8% in A. onopteris). Propionylfilicinic acid was identified in the twelve species. The broad spectrum of odorous and bioactive VOC identified from the Asplenium, Ceterach and Phyllitis species are indeed of great interest to the cosmetic and food industries. PMID:26197556

  20. Diel and seasonal changes of Biogenic Volatile Organic Compounds within and above an Amazonian rainforest site

    NASA Astrophysics Data System (ADS)

    Yañez-Serrano, A. M.; Nölscher, A. C.; Williams, J.; Wolff, S.; Alves, E.; Martins, G. A.; Bourtsoukidis, E.; Brito, J.; Jardine, K.; Artaxo, P.; Kesselmeier, J.

    2014-11-01

    The Amazonian rainforest is a large tropical ecosystem, and is one of the last pristine continental terrains. This ecosystem is ideally located for the study of diel and seasonal behaviour of Biogenic Volatile Organic Compounds (BVOC) in the absence of local human interference. In this study, we report the first atmospheric BVOC measurements at the Amazonian Tall Tower Observatory (ATTO) site, located in Central Amazonia. A quadrupole Proton Transfer Reaction Mass Spectrometer (PTR-MS) with 7 ambient air inlets, positioned from near the ground to about 80 m (0.05, 0.5, 4, 24, 38, 53 and 79 m above the forest floor), was deployed for BVOC monitoring. We report diel and seasonal (February/March 2013 and September 2013) ambient mixing ratios for isoprene, monoterpenes, methyl vinyl ketone (MVK) + methacrolein (MACR), acetaldehyde, acetone, methyl ethyl ketone (MEK), methanol and acetonitrile. Clear diel and seasonal patterns were observed for all compounds during the study. In general, lower mixing ratios were observed during night, while maximum mixing ratios were observed with the peak in solar irradiation at 12:00 LT during the wet season (February/March 2013), and with the peak in temperature at 16:00 LT during the dry season (September 2013). Isoprene mixing ratios were highest within the canopy with a median of 7.6 ppb and interquartile range (IQR) of 6.1 ppb (dry season at 24 m, from 12:00-15:00). Monoterpene mixing ratios were higher than previously reported for any Amazonian rainforest ecosystem (median 1 ppb, IQR 0.38 ppb during the dry season at 24 m from 15:00-18:00). Oxygenated Volatile Organic Compound (OVOC) patterns indicated a transition from dominating forest emissions during the wet season to a blend of biogenic emission, photochemical production, and advection during the dry season. This was inferred from the high mixing ratios found within the canopy, and those obtained above the canopy for the wet and dry season, respectively. Our observations

  1. Diversity and functions of volatile organic compounds produced by Streptomyces from a disease-suppressive soil

    PubMed Central

    Cordovez, Viviane; Carrion, Victor J.; Etalo, Desalegn W.; Mumm, Roland; Zhu, Hua; van Wezel, Gilles P.; Raaijmakers, Jos M.

    2015-01-01

    In disease-suppressive soils, plants are protected from infections by specific root pathogens due to the antagonistic activities of soil and rhizosphere microorganisms. For most disease-suppressive soils, however, the microorganisms and mechanisms involved in pathogen control are largely unknown. Our recent studies identified Actinobacteria as the most dynamic phylum in a soil suppressive to the fungal root pathogen Rhizoctonia solani. Here we isolated and characterized 300 isolates of rhizospheric Actinobacteria from the Rhizoctonia-suppressive soil. Streptomyces species were the most abundant, representing approximately 70% of the isolates. Streptomyces are renowned for the production of an exceptionally large number of secondary metabolites, including volatile organic compounds (VOCs). VOC profiling of 12 representative Streptomyces isolates by SPME-GC-MS allowed a more refined phylogenetic delineation of the Streptomyces isolates than the sequencing of 16S rRNA and the house-keeping genes atpD and recA only. VOCs of several Streptomyces isolates inhibited hyphal growth of R. solani and significantly enhanced plant shoot and root biomass. Coupling of Streptomyces VOC profiles with their effects on fungal growth, pointed to VOCs potentially involved in antifungal activity. Subsequent assays with five synthetic analogs of the identified VOCs showed that methyl 2-methylpentanoate, 1,3,5-trichloro-2-methoxy benzene and the VOCs mixture have antifungal activity. In conclusion, our results point to a potential role of VOC-producing Streptomyces in disease suppressive soils and show that VOC profiling of rhizospheric Streptomyces can be used as a complementary identification tool to construct strain-specific metabolic signatures. PMID:26500626

  2. Characteristics of volatile organic compounds (VOCs) emitted from a petroleum refinery in Beijing, China

    NASA Astrophysics Data System (ADS)

    Wei, Wei; Cheng, Shuiyuan; Li, Guohao; Wang, Gang; Wang, Haiyan

    2014-06-01

    This study made a field VOCs (volatile organic compounds) measurement for a petroleum refinery in Beijing by determining 56 PAMS VOCs, which are demanded for photochemical assessment in US, and obtained the characteristics of VOCs emitted from the whole refinery and from its inner main devices. During the monitoring period, this refinery brought about an average increase of 61 ppbv in the ambient TVOCs (sum of the PAMS VOCs) at the refinery surrounding area, while the background of TVOCs there was only 10-30 ppbv. In chemical profile, the VOCs emitted from the whole refinery was characteristic by isobutane (8.7%), n-butane (7.9%), isopentane (6.3%), n-pentane (4.9%%), n-hexane (7.6%), C6 branched alkanes (6.0%), propene (12.7%), 1-butene (4.1%), benzene (7.8%), and toluene (5.9%). On the other hand, the measurement for the inner 5 devices, catalytic cracking units (CCU2 and CCU3), catalytic reforming unit (CRU), tank farm (TF), and wastewater treatment(WT), revealed the higher level of VOCs pollutions (about several hundred ppbv of TVOCs), and the individual differences in VOCs chemical profiles. Based on the measured speciated VOCs data at the surrounding downwind area, PMF receptor model was applied to identify the VOCs sources in the refinery. Then, coupling with the VOCs chemical profiles measured at the device areas, we concluded that CCU1/3 contributes to 25.9% of the TVOCs at the surrounding downwind area by volume, followed by CCU2 (24.7%), CRU (18.9%), TF (18.3%) and WT (12.0%), which was accordant with the research of US EPA (2008). Finally, ozone formation potentials of the 5 devices were also calculated by MIR technique, which showed that catalytic cracking units, accounting for about 55.6% to photochemical ozone formation, should be given the consideration of VOCs control firstly.

  3. Physicochemical properties and volatile profile of chili shrimp paste as affected by irradiation and heat.

    PubMed

    Cheok, Choon Yoong; Sobhi, Babak; Mohd Adzahan, Noranizan; Bakar, Jamilah; Abdul Rahman, Russly; Ab Karim, Muhammad Shahrim; Ghazali, Zulkafli

    2017-02-01

    Chili shrimp paste (CSP) is an exotic traditional Southeast Asian condiment prepared using mainly fresh chilies and fermented shrimp paste (belacan) which attributed to strong pungent fishy odor. This study aims to evaluate the effectiveness of electron beam irradiation (EBI) exposure on CSP for microorganisms decontamination, and its physicochemical qualities changes. Changes in capsaicinoid contents and volatile compounds were analyzed using HPLC and GC-MS. Mesophilic bacteria, yeast, mold and pathogenic Enterobacteriaceae decreased as irradiation dose increasing from 0 to 10kGy. EBI at 10kGy effectively decontaminated the samples with no significant effects on phenolic and capsaicinoids contents compared to the fresh samples. From 24 compounds, irradiated CSP retained 23 volatile compounds, while thermally treated CSP has only 19 compounds. EBI at 10kGy is effective for decontamination in CSP with lesser destructive effect on volatile compounds and texture compared to thermal treatment. PMID:27596386

  4. Chemotaxonomic Study of Citrus, Poncirus and Fortunella Genotypes Based on Peel Oil Volatile Compounds - Deciphering the Genetic Origin of Mangshanyegan (Citrus nobilis Lauriro)

    PubMed Central

    Liu, Cuihua; Jiang, Dong; Cheng, Yunjiang; Deng, Xiuxin; Chen, Feng; Fang, Liu; Ma, Zhaocheng; Xu, Juan

    2013-01-01

    Volatile profiles yielded from gas chromatography-mass spectrometry (GC-MS) analysis provide abundant information not only for metabolism-related research, but also for chemotaxonomy. To study the chemotaxonomy of Mangshanyegan, its volatile profiles of fruit and leaf and those of 29 other genotypes of Citrus, Poncirus, and Fortunella were subjected to phylogenetic analyses. Results showed that 145 identified (including 64 tentatively identified) and 15 unidentified volatile compounds were detected from their peel oils. The phylogenetic analysis of peel oils based on hierarchical cluster analysis (HCA) demonstrated a good agreement with the Swingle taxonomy system, in which the three genera of Citrus, Poncirus, and Fortunella were almost completely separated. As to Citrus, HCA indicated that Citrophorum, Cephalocitrus, and Sinocitrus fell into three subgroups, respectively. Also, it revealed that Mangshanyegan contain volatile compounds similar to those from pummelo, though it is genetically believed to be a mandarin. These results were further supported by the principal component analysis of the peel oils and the HCA results of volatile profiles of leaves in the study. PMID:23516475

  5. Volatile fingerprint of Brazilian defective coffee seeds: corroboration of potential marker compounds and identification of new low quality indicators.

    PubMed

    Toci, Aline T; Farah, Adriana

    2014-06-15

    In the present work, the volatile profiles of green and roasted Brazilian defective coffee seeds and their controls were characterised, totalling 159 compounds. Overall, defective seeds showed higher number and concentration of volatile compounds compared to those of control seeds, especially pyrazines, pyrroles and phenols. Corroborating our previous results, butyrolactone and hexanoic acid, previously considered as potential defective seeds' markers, were observed only in raw and roasted defective seeds, respectively, and not in control seeds. New compounds were suggested as potential defective seeds' markers: hexanoic acid (for raw and roasted defective seeds in general), butyrolactone (for raw defective seeds in general), and 3-ethyl-2-methyl-1,3-hexadiene (for raw black seeds); β-linalool and 2-butyl-3,5-dimethylpyrazine (for roasted defective seeds in general), and 2-pentylfuran (for roasted black seeds). Additional compounds suggested as low quality indicators were 2,3,5,6-tetramethylpyrazine,2,3-butanediol and 4-ethylguaiacol, β-linalool, 2-,3-dimethylbutyl butanoate, 2-phenylethyl acetate, 2,3-butanedione, hexanedioic acid, guaiacol, 2,3-dihydro-2-methyl-1H-benzopyrrol, 3-methylpiperidine, 2-pentylpiperidine, 3-octen-2-one, 2-octenal, 2-pentylfuran and 2-butyl-3-methylpyrazine. PMID:24491734

  6. Volatile metabolites in occupational exposure to organic sulfur compounds.

    PubMed

    Jäppinen, P; Kangas, J; Silakoski, L; Savolainen, H

    1993-01-01

    Dimethyl sulfide in breath was determined by the gas chromatographic method in 14 persons exposed to organic reduced sulfur compounds in sulfate pulp mills. Dimethyl sulfide concentrations in breath (range 0.04-0.69 cm3/m3 were compared to the combined workplace concentrations of methyl mercaptan, dimethyl sulfide and dimethyl disulfide. This method of analysis proved to be a practical noninvasive way to assess recent exposure, and therefore it should be applicable to workplaces contaminated with organic sulfur compounds in the pulp industry. PMID:8481097

  7. Calculated volatilization rates of fuel oxygenate compounds and other gasoline-related compounds from rivers and streams

    USGS Publications Warehouse

    Pankow, J.F.; Rathbun, R.E.; Zogorski, J.S.

    1996-01-01

    Large amounts of the 'fuel-oxygenate' compound methyl-tert-butyl ether (MTBE) are currently being used in gasoline to reduce carbon monoxide and ozone in urban air and to boost fuel octane. Because MTBE can be transported to surface waters in various ways, established theory was used to calculate half-lives for MTBE volatilizing from flowing surface waters. Similar calculations were made for benzene as a representative of the 'BTEX' group of compounds (benzene, toluene, ethyl benzene, and the xylenes), and for tert-butyl alcohol (TBA). The calculations were made as a function of the mean flow velocity u (m/day), the mean flow depth h (m), the ambient temperature, and the wind speed. In deep, slow-moving flows, MTBE volatilizes at rates which are similar to those for the BTEX compounds. In shallow, fast-moving flows, MTBE volatilizes more slowly than benzene, though in such flows both MTBE and benzene volatilize quickly enough that these differences may often not have much practical significance. TBA was found to be essentially nonvolatile from water.

  8. Mycofumigation by the Volatile Organic Compound-Producing Fungus Muscodor albus Induces Bacterial Cell Death through DNA Damage

    PubMed Central

    Alpha, Cambria J.; Campos, Manuel; Jacobs-Wagner, Christine

    2014-01-01

    Muscodor albus belongs to a genus of endophytic fungi that inhibit and kill other fungi, bacteria, and insects through production of a complex mixture of volatile organic compounds (VOCs). This process of mycofumigation has found commercial application for control of human and plant pathogens, but the mechanism of the VOC toxicity is unknown. Here, the mode of action of these volatiles was investigated through a series of genetic screens and biochemical assays. A single-gene knockout screen revealed high sensitivity for Escherichia coli lacking enzymes in the pathways of DNA repair, DNA metabolic process, and response to stress when exposed to the VOCs of M. albus. Furthermore, the sensitivity of knockouts involved in the repair of specific DNA alkyl adducts suggests that the VOCs may induce alkylation. Evidence of DNA damage suggests that these adducts lead to breaks during DNA replication or transcription if not properly repaired. Additional cytotoxicity profiling indicated that during VOC exposure, E. coli became filamentous and demonstrated an increase in cellular membrane fluidity. The volatile nature of the toxic compounds produced by M. albus and their broad range of inhibition make this fungus an attractive biological agent. Understanding the antimicrobial effects and the VOC mode of action will inform the utility and safety of potential mycofumigation applications for M. albus. PMID:25452287

  9. Identification and quantification of volatile organic compounds using systematic single-ion chromatograms

    SciTech Connect

    Tsuchiya, Yoshio; Kanabus-Kaminska, J.M.

    1996-12-31

    In order to determine the background level of volatile organic compounds (VOCs) in Canadian indoor air, a method of identification and quantification at a level of 0.3 {micro}g/m{sup 3} using systematic single-ion chromatograms (SICs) has been developed. The compounds selected for measurement included several halogenated compounds, oxygen compounds, terpenes, and C8 to C16 n-alkanes. Air samples were taken in 3-layered sorbent tubes and trapped compounds were thermally desorbed into the helium stream of a gas chromatograph/mass spectrometer (GC/MS) analytical system. Total quantities of volatile organic compounds (TVOCs) were measured using a flame ionization detector (FID). Individual compounds were analyzed by a GC/MS. For the identification of compounds in the main stream GC effluent, both the specific GC retention and mass spectra were used. About 50 selected SICs were routinely extracted from a total ion chromatogram (TIC) to detect and quantify compounds. For each compound, a single representative ion was selected. The specific retention was calculated from the elution time on the SIC. For quantification, ion counts under a peak in the SIC were measured. The single-ion MS response factor for some of the compounds was experimentally determined using a dynamic reference procedure.

  10. Distribution of volatile organic compounds in a New Jersey coastal plain aquifer system

    USGS Publications Warehouse

    Fusillo, T.V.; Hochreiter, J.J., Jr.; Lord, D.G.

    1985-01-01

    Samples for analysis of volatile organic compounds were collected from 315 wells in the Potomac-Raritan-Magothy aquifer system in southwestern New Jersey and a small adjacent area in Pennsylvania during 1980-82. Volatile organic compounds were detected in all three aquifer units of the Potomac-Raritan-Magoth aquifer system in the study area. Most of the contamination appears to be confined to the outcrop area at present. Low levels of contamination, however, were found downdip of the outcrop area in the upper and middle aquifers. Trichloroethylene, tetrachloroethylene, and benzene were the most frequently detected compounds. Differences in the areal distributions of light chlorinated hydrocarbons, such as trichloroethylene, and aromatic hydrocarbons, such as benzene, were noted and are probably due to differences in the uses of the compounds and the distribution patterns of potential contamination sources. The distribution patterns of volatile organic compounds differed greatly among the three aquifer units. The upper aquifer, which crops out mostly in less-developed areas, had the lowest percentage of wells with volatile organic compounds detected (10 percent of wells sampled). The concentrations in most wells in the upper aquifer which had detectable levels were less than 10 ??g/l. In the middle aquifer, which crops out beneath much of the urban and industrial area adjacent to the Delaware River, detectable levels of volatile organic compounds were found in 22 percent of wells sampled, and several wells contained concentrations above 100 ??g/l. The lower aquifer, which is confined beneath much of the outcrop area of the aquifer system, had the highest percentage of wells (28 percent) with detectable levels. This is probably due to (1) vertical leakage of contamination from the middle aquifer, and (2) the high percentage of wells tapping the lower aquifer in the most heavily developed areas of the outcrop.

  11. Influence of rearing conditions on the volatile compounds of cooked fillets of Silurus glanis (European catfish).

    PubMed

    Hallier, Arnaud; Prost, Carole; Serot, Thierry

    2005-09-01

    Volatile compounds of cooked fillets of Silurus glanis reared under two conditions occurring in France were studied. They were extracted by dynamic headspace, identified by gas chromatography/mass spectrometry, and quantified by gas chromatography-flame ionization detection. Odor active volatile compounds were characterized by gas chromatography-olfactometry. Sixty volatile compounds were detected in dynamic headspace extracts, among which 33 were odor active. Rearing conditions affected their estimated concentrations and their odor intensities, but very few qualitative differences were exhibited (only seven volatile compounds were concerned). A good correlation between quantitative and olfactometric results is shown. 2-Methylisoborneol and (E)-2-hexenal were less represented in OUTDOOR extracts, while 2-butanone was less represented in INDOOR extracts. In addition, olfactometric results can be closely related to those previously obtained by sensory analysis. Boiled potato sensory odor of the silurus cooked fillets can be related to (Z)-4-heptenal and methional, and buttery odor can be related to 2,3-butanedione, an unknown compound (RI = 1010), and 2,3-pentadione. PMID:16131131

  12. Lipid oxidation in baked products: impact of formula and process on the generation of volatile compounds.

    PubMed

    Maire, Murielle; Rega, Barbara; Cuvelier, Marie-Elisabeth; Soto, Paola; Giampaoli, Pierre

    2013-12-15

    This paper investigates the effect of ingredients on the reactions occurring during the making of sponge cake and leading to the generation of volatile compounds related to flavour quality. To obtain systems sensitive to lipid oxidation (LO), a formulation design was applied varying the composition of fatty matter and eggs. Oxidation of polyunsaturated fatty acids (PUFA) and formation of related volatile compounds were followed at the different steps of cake-making. Optimised dynamic Solid Phase Micro Extraction was applied to selectively extract either volatile or semi-volatile compounds directly from the baking vapours. We show for the first time that in the case of alveolar baked products, lipid oxidation occurs very early during the step of dough preparation and to a minor extent during the baking process. The generation of lipid oxidation compounds depends on PUFA content and on the presence of endogenous antioxidants in the raw matter. Egg yolk seemed to play a double role on reactivity: protecting unsaturated lipids from oxidation and being necessary to generate a broad class of compounds of the Maillard reaction during baking and linked to the typical flavour of sponge cake. PMID:23993514

  13. Characterization of wood plastic composites made from landfill-derived plastic and sawdust: Volatile compounds and olfactometric analysis

    SciTech Connect

    Félix, Juliana S.; Domeño, Celia; Nerín, Cristina

    2013-03-15

    Graphical abstract: This work details the characterization of VOCs of WPC, produced from residual materials which would have landfills as current destination, and evaluates their odor profile. Highlights: ► More than 140 volatile compounds were identified in raw materials and WPC products. ► Markers were related to the thermal degradation, sawdust or coupling agents. ► WPC prototype showed a characteristic odor profile of burnt, sweet and wax-like. ► Aldehydes, carboxylic acids, ketones and phenols were odor descriptors of WPC. - Abstract: Application of wood plastic composites (WPCs) obtained from recycled materials initially intended for landfill is usually limited by their composition, mainly focused on release of volatile organic compounds (VOCs) which could affect quality or human safety. The study of the VOCs released by a material is a requirement for new composite materials. Characterization and quantification of VOCs of several WPC produced with low density polyethylene (LDPE) and polyethylene/ethylene vinyl acetate (PE/EVA) films and sawdust were carried out, in each stage of production, by solid phase microextraction in headspace mode (HS-SPME) and gas chromatography–mass spectrometry (GC–MS). An odor profile was also obtained by HS-SPME and GC–MS coupled with olfactometry analysis. More than 140 compounds were observed in the raw materials and WPC samples. Some quantified compounds were considered WPC markers such as furfural, 2-methoxyphenol, N-methylphthalimide and 2,4-di-tert-butylphenol. Hexanoic acid, acetic acid, 2-methoxyphenol, acetylfuran, diacetyl, and aldehydes were the most important odorants. None of the VOCs were found to affect human safety for use of the WPC.

  14. Blood and breath levels of selected volatile organic compounds in healthy volunteers

    PubMed Central

    King, Julian; Klieber, Martin; Unterkofler, Karl; Hinterhuber, Hartmann; Baumann, Matthias

    2016-01-01

    Gas chromatography with mass spectrometric detection (GC-MS) was used to identify and quantify volatile organic compounds in the blood and breath of healthy individuals. Blood and breath volatiles were preconcentrated using headspace solid phase micro-extraction (HS-SPME) and needle trap devices (NTDs), respectively. The study involved a group of 28 healthy test subjects and resulted in the quantification of a total of 74 compounds in both types of samples. The concentrations of the species under study varied between 0.01 and 6700 nmol L−1 in blood and between 0.02 and 2500 ppb in exhaled air. Limits of detection (LOD) ranged from 0.01 to 270 nmol L−1 for blood compounds and from 0.01 to 0.7 ppb for breath species. Relative standard deviations for both measurement regimes varied from 1.5 to 14%. The predominant chemical classes among the compounds quantified were hydrocarbons (24), ketones (10), terpenes (8), heterocyclic compounds (7) and aromatic compounds (7). Twelve analytes were found to be highly present in both blood and exhaled air (with incidence rates higher than 80%) and for 32 species significant differences (Wilcoxon signed-rank test) between room air and exhaled breath were observed. By comparing blood, room air and breath levels in parallel, a tentative classification of volatiles into endogenous and exogenous compounds can be achieved. PMID:23435188

  15. Diet-induced and mono-genetic obesity alter volatile organic compound signature in mice.

    PubMed

    Kistler, Martin; Muntean, Andreea; Szymczak, Wilfried; Rink, Nadine; Fuchs, Helmut; Gailus-Durner, Valerie; Wurst, Wolfgang; Hoeschen, Christoph; Klingenspor, Martin; Hrabě de Angelis, Martin; Rozman, Jan

    2016-03-01

    The prevalence of obesity is still rising in many countries, resulting in an increased risk of associated metabolic diseases. In this study we aimed to describe the volatile organic compound (VOC) patterns symptomatic for obesity. We analyzed high fat diet (HFD) induced obese and mono-genetic obese mice (global knock-in mutation in melanocortin-4 receptor MC4R-ki). The source strengths of 208 VOCs were analyzed in ad libitum fed mice and after overnight food restriction. Volatiles relevant for a random forest-based separation of obese mice were detected (26 in MC4R-ki, 22 in HFD mice). Eight volatiles were found to be important in both obesity models. Interestingly, by creating a partial correlation network of the volatile metabolites, the chemical and metabolic origins of several volatiles were identified. HFD-induced obese mice showed an elevation in the ketone body acetone and acrolein, a marker of lipid peroxidation, and several unidentified volatiles. In MC4R-ki mice, several yet-unidentified VOCs were found to be altered. Remarkably, the pheromone (methylthio)methanethiol was found to be reduced, linking metabolic dysfunction and reproduction. The signature of volatile metabolites can be instrumental in identifying and monitoring metabolic disease states, as shown in the screening of the two obese mouse models in this study. Our findings show the potential of breath gas analysis to non-invasively assess metabolic alterations for personalized diagnosis. PMID:26860833

  16. Flavour compounds in tomato fruits: identification of loci and potential pathways affecting volatile composition.

    PubMed

    Mathieu, Sandrine; Cin, Valeriano Dal; Fei, Zhangjun; Li, Hua; Bliss, Peter; Taylor, Mark G; Klee, Harry J; Tieman, Denise M

    2009-01-01

    The unique flavour of a tomato fruit is the sum of a complex interaction among sugars, acids, and a large set of volatile compounds. While it is generally acknowledged that the flavour of commercially produced tomatoes is inferior, the biochemical and genetic complexity of the trait has made breeding for improved flavour extremely difficult. The volatiles, in particular, present a major challenge for flavour improvement, being generated from a diverse set of lipid, amino acid, and carotenoid precursors. Very few genes controlling their biosynthesis have been identified. New quantitative trait loci (QTLs) that affect the volatile emissions of red-ripe fruits are described here. A population of introgression lines derived from a cross between the cultivated tomato Solanum lycopersicum and its wild relative, S. habrochaites, was characterized over multiple seasons and locations. A total of 30 QTLs affecting the emission of one or more volatiles were mapped. The data from this mapping project, combined with previously collected data on an IL population derived from a cross between S. lycopersicum and S. pennellii populations, were used to construct a correlational database. A metabolite tree derived from these data provides new insights into the pathways for the synthesis of several of these volatiles. One QTL is a novel locus affecting fruit carotenoid content on chromosome 2. Volatile emissions from this and other lines indicate that the linear and cyclic apocarotenoid volatiles are probably derived from separate carotenoid pools. PMID:19088332

  17. Flow-modulated targeted signal enhancement for volatile organic compounds.

    PubMed

    Hayward, Taylor; Gras, Ronda; Luong, Jim

    2016-06-01

    Comprehensive two-dimensional gas chromatography is a technique that is becoming more widespread within the analytical community, especially in the separation of complex mixtures. Modulation in comprehensive two-dimensional gas chromatography can be achieved by manipulating temperature or flow and offers many advantages such as increased separation power, but one underutilized advantage is increased detectability due to the reduction of peak width from the use of a modulator. A flow modulator was used to selectively target analytes for increased detectability with a standard flame ionization detector operated at 100 Hz, without the need for cryogens or advanced modulation software. By the collection of the entire peak volume followed by peak transfer rather than further separation, an increase of 12 times in peak height and detectability was realized for the analytes tested using an internal loop modulator configuration. An external loop flow modulator configuration allowed for more volatile analytes (with k < 5), and demonstrated an analyte detectability enhancement factor of at least 6. The collection loop size can be readily increased with an external loop configuration to accommodate for these naturally broader peaks. This novel flow modulated targeted signal enhancement approach was applied to industrially significant analyses like the analysis of methanol in a hydrocarbon streams. Methanol was detected at 7 ppb with a conventional flame ionization detector and without the need for pre-concentration. PMID:27120133

  18. Effect of high-pressure-moderate-temperature processing on the volatile profile of milk.

    PubMed

    Vazquez-Landaverde, Pedro A; Torres, J Antonio; Qian, Michael C

    2006-11-29

    The effects of high hydrostatic pressure on volatile generation in milk were investigated in this study. Raw milk samples were treated under different pressures (482, 586, and 620 MPa), temperatures (25 and 60 degrees C), and holding times (1, 3, and 5 min). Samples submitted to heat treatments alone (25, 60, and 80 degrees C for 1, 3, and 5 min) were used for comparison. Trace volatile sulfur compounds were analyzed using solid-phase microextraction (SPME) and gas chromatography (GC) with pulsed-flame photometric detection (PFPD), whereas the rest of the volatile compounds were analyzed using SPME-GC with flame ionization detection (FID). Multivariate analysis of variance (MANOVA) and principal component analysis (PCA) were used to study the effect of pressure, temperature, and time on volatile generation. Relative concentration increases of 27 selected volatile compounds were compared to an untreated sample. It was found that pressure, temperature, and time, as well as their interactions, all had significant effects (P < 0.001) on volatile generation in milk. Pressure and time effects were significant at 60 degrees C, whereas their effects were almost negligible at 25 degrees C. The PCA plot indicated that the volatile generation of pressure-heated samples at 60 degrees C was different from that of heated-alone samples. Heat treatment tended to promote the formation of methanethiol, hydrogen sulfide, methyl ketones, and aldehydes, whereas high-pressure treatment favored the formation of hydrogen sulfide and aldehydes. PMID:17117808

  19. Effect of muscle type and vacuum chiller aging period on the chemical compositions, meat quality, sensory attributes and volatile compounds of Korean native cattle beef.

    PubMed

    Ba, Hoa Van; Park, KyoungMi; Dashmaa, Dashdorj; Hwang, Inho

    2014-02-01

    The present study demonstrates the effects of different muscle types and chiller ageing periods on the chemical composition, meat quality parameters, sensory characteristics and volatile compounds of Karean native cattle beed. Longissimus dorsi (LD) and Semitendinosus (ST) muscles aged for 7 days and 28 days were used. Moisture, cooking loss, total collagen and Warner-Bratzler shear force (WBSF) values for the ST were higher than the LD muscle regardless of ageing period (P < 0.05). The LD muscle had higher intramuscular fat (IMF) (P < 0.05). Ageing for 28 days decreased WBSF values whereas it increased thiobarbituric acid of both muscles. Moreover, tenderness, juiciness and flavor scores were significantly higher for the LD muscle at both ageing periods. Increased ageing time improved tenderness of both muscles, and increased juiciness of the LD muscle, whereas there was decreased flavor score of ST muscle (P < 0.05). The majority of the volatile compounds formed from the oxidation of lipids showed differences between the two muscles. Ageing for 28 days increased in the amounts of many volatile compounds; however, the amounts of some important volatile compounds were decreased. These results clearly demonstrate that muscle type and ageing have a potential effect on meat quality, sensory characteristics and volatile profile. PMID:23911040

  20. Identification of microorganisms based on headspace analysis of volatile organic compounds by gas chromatography-mass spectrometry.

    PubMed

    Boots, A W; Smolinska, A; van Berkel, J J B N; Fijten, R R R; Stobberingh, E E; Boumans, M L L; Moonen, E J; Wouters, E F M; Dallinga, J W; Van Schooten, F J

    2014-06-01

    The identification of specific volatile organic compounds (VOCs) produced by microorganisms may assist in developing a fast and accurate methodology for the determination of pulmonary bacterial infections in exhaled air. As a first step, pulmonary bacteria were cultured and their headspace analyzed for the total amount of excreted VOCs to select those compounds which are exclusively associated with specific microorganisms. Development of a rapid, noninvasive methodology for identification of bacterial species may improve diagnostics and antibiotic therapy, ultimately leading to controlling the antibiotic resistance problem. Two hundred bacterial headspace samples from four different microorganisms (Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus and Klebsiella pneumoniae) were analyzed by gas chromatography-mass spectrometry to detect a wide array of VOCs. Statistical analysis of these volatiles enabled the characterization of specific VOC profiles indicative for each microorganism. Differences in VOC abundance between the bacterial types were determined using ANalysis of VAriance-principal component analysis (ANOVA-PCA). These differences were visualized with PCA. Cross validation was applied to validate the results. We identified a large number of different compounds in the various headspaces, thus demonstrating a highly significant difference in VOC occurrence of bacterial cultures compared to the medium and between the cultures themselves. Additionally, a separation between a methicillin-resistant and a methicillin-sensitive isolate of S. aureus could be made due to significant differences between compounds. ANOVA-PCA analysis showed that 25 VOCs were differently profiled across the various microorganisms, whereas a PCA score plot enabled the visualization of these clear differences between the bacterial types. We demonstrated that identification of the studied microorganisms, including an antibiotic susceptible and resistant S. aureus substrain