Science.gov

Sample records for progenitor cell origin

  1. Establishment of Human Neural Progenitor Cells from Human Induced Pluripotent Stem Cells with Diverse Tissue Origins

    PubMed Central

    Fukusumi, Hayato; Shofuda, Tomoko; Bamba, Yohei; Yamamoto, Atsuyo; Kanematsu, Daisuke; Handa, Yukako; Okita, Keisuke; Nakamura, Masaya; Yamanaka, Shinya; Okano, Hideyuki; Kanemura, Yonehiro

    2016-01-01

    Human neural progenitor cells (hNPCs) have previously been generated from limited numbers of human induced pluripotent stem cell (hiPSC) clones. Here, 21 hiPSC clones derived from human dermal fibroblasts, cord blood cells, and peripheral blood mononuclear cells were differentiated using two neural induction methods, an embryoid body (EB) formation-based method and an EB formation method using dual SMAD inhibitors (dSMADi). Our results showed that expandable hNPCs could be generated from hiPSC clones with diverse somatic tissue origins. The established hNPCs exhibited a mid/hindbrain-type neural identity and uniform expression of neural progenitor genes. PMID:27212953

  2. Establishment of Human Neural Progenitor Cells from Human Induced Pluripotent Stem Cells with Diverse Tissue Origins.

    PubMed

    Fukusumi, Hayato; Shofuda, Tomoko; Bamba, Yohei; Yamamoto, Atsuyo; Kanematsu, Daisuke; Handa, Yukako; Okita, Keisuke; Nakamura, Masaya; Yamanaka, Shinya; Okano, Hideyuki; Kanemura, Yonehiro

    2016-01-01

    Human neural progenitor cells (hNPCs) have previously been generated from limited numbers of human induced pluripotent stem cell (hiPSC) clones. Here, 21 hiPSC clones derived from human dermal fibroblasts, cord blood cells, and peripheral blood mononuclear cells were differentiated using two neural induction methods, an embryoid body (EB) formation-based method and an EB formation method using dual SMAD inhibitors (dSMADi). Our results showed that expandable hNPCs could be generated from hiPSC clones with diverse somatic tissue origins. The established hNPCs exhibited a mid/hindbrain-type neural identity and uniform expression of neural progenitor genes. PMID:27212953

  3. Adrenocortical Stem and Progenitor Cells: Unifying Model of Two Proposed Origins

    PubMed Central

    Wood, Michelle A.; Hammer, Gary D.

    2010-01-01

    The origins of our understanding of the cellular and molecular mechanisms by which signaling pathways and downstream transcription factors coordinate the specification of adrenocortical cells within the adrenal gland have arisen from studies on the role of Sf1 in steroidogenesis and adrenal development initiated 20 years ago in the laboratory of Dr. Keith Parker. Adrenocortical stem/progenitor cells have been predicted to be undifferentiated and quiescent cells that remain at the periphery of the cortex until needed to replenish the organ, at which time they undergo proliferation and terminal differentiation. Identification of these stem/progenitor cells has only recently been explored. Recent efforts have examined signaling molecules, including Wnt, Shh, and Dax1, which may coordinate intricate lineage and signaling relationships between the adrenal capsule (stem cell niche) and underlying cortex (progenitor cell pool) to maintain organ homeostasis in the adrenal gland. PMID:21094677

  4. Characterization of two distinct liver progenitor cell subpopulations of hematopoietic and hepatic origins

    SciTech Connect

    Corcelle, V.; Stieger, B.; Gjinovci, A.; Wollheim, C.B.; Gauthier, B.R. . E-mail: Benoit.Gauthier@medecine.unige.ch

    2006-09-10

    Despite extensive studies, the hematopoietic versus hepatic origin of liver progenitor oval cells remains controversial. The aim of this study was to determine the origin of such cells after liver injury and to establish an oval cell line. Rat liver injury was induced by subcutaneous insertion of 2-AAF pellets for 7 days with subsequent injection of CCl{sub 4}. Livers were removed 9 to 13 days post-CCl{sub 4} treatment. Immunohistochemistry was performed using anti-c-kit, OV6, Thy1, CK19, AFP, vWF and Rab3b. Isolated non-parenchymal cells were grown on mouse embryonic fibroblast, and their gene expression profile was characterized by RT-PCR. We identified a subpopulation of OV6/CK19/Rab3b-expressing cells that was activated in the periportal region of traumatized livers. We also characterized a second subpopulation that expressed the HSCs marker c-kit but not Thy1. Although we successfully isolated both cell types, OV6/CK19/Rab3b{sup +} cells fail to propagate while c-kit {sup +}-HSCs appeared to proliferate for up to 7 weeks. Cells formed clusters which expressed c-kit, Thy1 and albumin. Our results indicate that a bona fide oval progenitor cell population resides within the liver and is distinct from c-kit {sup +}-HSCs. Oval cells require the hepatic niche to proliferate, while cells mobilized from the circulation proliferate and transdifferentiate into hepatocytes without evidence of cell fusion.

  5. Origin and function of cartilage stem/progenitor cells in osteoarthritis.

    PubMed

    Jiang, Yangzi; Tuan, Rocky S

    2015-04-01

    Articular cartilage is a physiologically non-self-renewing avascular tissue with a singular cell type, the chondrocyte, which functions as the load-bearing surface of the arthrodial joint. Injury to cartilage often progresses spatiotemporally from the articular surface to the subchondral bone, leading to development of degenerative joint diseases such as osteoarthritis (OA). Although lacking intrinsic reparative ability, articular cartilage has been shown to contain a population of stem cells or progenitor cells, similar to those found in many other adult tissues, that are thought to be involved in the maintenance of tissue homeostasis. These so-called cartilage-derived stem/progenitor cells (CSPCs) have been observed in human, equine and bovine articular cartilage, and have been identified, isolated and characterized on the basis of expression of stem-cell-related surface markers, clonogenicity and multilineage differentiation ability. However, the origin and functions of CSPCs are incompletely understood. We review here the current status of CSPC research and discuss the possible origin of these cells, what role they might have in cartilage repair, and their therapeutic potential in OA. PMID:25536487

  6. Advances in Liver Regeneration: Revisiting Hepatic Stem/Progenitor Cells and Their Origin.

    PubMed

    Sadri, Ali-Reza; Jeschke, Marc G; Amini-Nik, Saeid

    2016-01-01

    The liver has evolved to become a highly plastic organ with extraordinary regenerative capabilities. What drives liver regeneration is still being debated. Adult liver stem/progenitor cells have been characterized and used to produce functional hepatocytes and biliary cells in vitro. However, in vivo, numerous studies have questioned whether hepatic progenitor cells have a significant role in liver regeneration. Mature hepatocytes have recently been shown to be more plastic than previously believed and give rise to new hepatocytes after acute and chronic injury. In this review, we discuss current knowledge in the field of liver regeneration and the importance of the serotonin pathway as a clinical target for patients with liver dysfunction. PMID:26798363

  7. Advances in Liver Regeneration: Revisiting Hepatic Stem/Progenitor Cells and Their Origin

    PubMed Central

    Jeschke, Marc G.; Amini-Nik, Saeid

    2016-01-01

    The liver has evolved to become a highly plastic organ with extraordinary regenerative capabilities. What drives liver regeneration is still being debated. Adult liver stem/progenitor cells have been characterized and used to produce functional hepatocytes and biliary cells in vitro. However, in vivo, numerous studies have questioned whether hepatic progenitor cells have a significant role in liver regeneration. Mature hepatocytes have recently been shown to be more plastic than previously believed and give rise to new hepatocytes after acute and chronic injury. In this review, we discuss current knowledge in the field of liver regeneration and the importance of the serotonin pathway as a clinical target for patients with liver dysfunction. PMID:26798363

  8. Defined conditions for the isolation and expansion of basal prostate progenitor cells of mouse and human origin.

    PubMed

    Höfner, Thomas; Eisen, Christian; Klein, Corinna; Rigo-Watermeier, Teresa; Goeppinger, Stephan M; Jauch, Anna; Schoell, Brigitte; Vogel, Vanessa; Noll, Elisa; Weichert, Wilko; Baccelli, Irène; Schillert, Anja; Wagner, Steve; Pahernik, Sascha; Sprick, Martin R; Trumpp, Andreas

    2015-03-10

    Methods to isolate and culture primary prostate epithelial stem/progenitor cells (PESCs) have proven difficult and ineffective. Here, we present a method to grow and expand both murine and human basal PESCs long term in serum- and feeder-free conditions. The method enriches for adherent mouse basal PESCs with a Lin(-)SCA-1(+)CD49f(+)TROP2(high) phenotype. Progesterone and sodium selenite are additionally required for the growth of human Lin(-)CD49f(+)TROP2(high) PESCs. The gene-expression profiles of expanded basal PESCs show similarities to ESCs, and NF-kB function is critical for epithelial differentiation of sphere-cultured PESCs. When transplanted in combination with urogenital sinus mesenchyme, expanded mouse and human PESCs generate ectopic prostatic tubules, demonstrating their stem cell activity in vivo. This novel method will facilitate the molecular, genomic, and functional characterization of normal and pathologic prostate glands of mouse and human origin. PMID:25702639

  9. Defined Conditions for the Isolation and Expansion of Basal Prostate Progenitor Cells of Mouse and Human Origin

    PubMed Central

    Höfner, Thomas; Eisen, Christian; Klein, Corinna; Rigo-Watermeier, Teresa; Goeppinger, Stephan M.; Jauch, Anna; Schoell, Brigitte; Vogel, Vanessa; Noll, Elisa; Weichert, Wilko; Baccelli, Irène; Schillert, Anja; Wagner, Steve; Pahernik, Sascha; Sprick, Martin R.; Trumpp, Andreas

    2015-01-01

    Summary Methods to isolate and culture primary prostate epithelial stem/progenitor cells (PESCs) have proven difficult and ineffective. Here, we present a method to grow and expand both murine and human basal PESCs long term in serum- and feeder-free conditions. The method enriches for adherent mouse basal PESCs with a Lin−SCA-1+CD49f+TROP2high phenotype. Progesterone and sodium selenite are additionally required for the growth of human Lin−CD49f+TROP2high PESCs. The gene-expression profiles of expanded basal PESCs show similarities to ESCs, and NF-kB function is critical for epithelial differentiation of sphere-cultured PESCs. When transplanted in combination with urogenital sinus mesenchyme, expanded mouse and human PESCs generate ectopic prostatic tubules, demonstrating their stem cell activity in vivo. This novel method will facilitate the molecular, genomic, and functional characterization of normal and pathologic prostate glands of mouse and human origin. PMID:25702639

  10. Evidence that osteogenic progenitor cells in the human tunica albuginea may originate from stem cells: implications for peyronie disease.

    PubMed

    Vernet, Dolores; Nolazco, Gaby; Cantini, Liliana; Magee, Thomas R; Qian, Ansha; Rajfer, Jacob; Gonzalez-Cadavid, Nestor F

    2005-12-01

    Tissue ossification in Peyronie disease (commonly known as Peyronie's disease [PD]), a localized fibrotic lesion within the tunica albuginea (TA) of the penis, may result from osteogenic differentiation of fibroblasts, myofibroblasts, and/or adult stem cells in the TA, and may be triggered by chronic inflammation, oxidative stress, and profibrotic factors like transforming growth factor beta 1 (TGFB1). In this study, we have investigated whether cultures of cells from normal TA and PD plaques undergo osteogenesis, express markers for stem cells, and originate other cell lineages via processes modulated by TGFB1. We found that TA and PD cells in osteogenic medium (OM) expressed osteogenic markers, alkaline phosphatase, and osteopontin and underwent calcification. PD cells, but not TA cells, formed foci in soft agar that were positive for alkaline phosphatase and calcification and expressed the mRNAs for osteoblast-specific factors pleiotrophin and periostin and bone morphogenic protein 2. Both cultures expressed stem cell marker CD34 antigen but not protein tyrosine phosphatase, receptor type c. TA and PD cells expressed smooth-muscle cell markers smoothelin and transgelin. None of the cultures underwent adipogenesis in adipogenic medium. Incubation with TGFB1 increased osteogenesis and myofibroblast differentiation and reduced CD34 antigen expression in both cultures. TA and PD cells modulated the differentiation of the multipotent C3H 10T(1/2) cells in dual cultures, into osteoblasts and myofibroblasts. In conclusion, both TA and PD cultures contain cells, presumably stem cells, that undergo osteogenic and myofibroblast differentiation, and may induce these processes by paracrine interactions. This may explain progression of fibrosis in the PD plaque and its eventual calcification. PMID:16093362

  11. Endothelial progenitor cells: identity defined?

    PubMed Central

    Timmermans, Frank; Plum, Jean; Yöder, Mervin C; Ingram, David A; Vandekerckhove, Bart; Case, Jamie

    2009-01-01

    Abstract In the past decade, researchers have gained important insights on the role of bone marrow (BM)-derived cells in adult neovascularization. A subset of BM-derived cells, called endothelial progenitor cells (EPCs), has been of particular interest, as these cells were suggested to home to sites of neovascularization and neoendothelialization and differentiate into endothelial cells (ECs) in situ, a process referred to as postnatal vasculogenesis. Therefore, EPCs were proposed as a potential regenerative tool for treating human vascular disease and a possible target to restrict vessel growth in tumour pathology. However, conflicting results have been reported in the field, and the identification, characterization, and exact role of EPCs in vascular biology is still a subject of much discussion. The focus of this review is on the controversial issues in the field of EPCs which are related to the lack of a unique EPC marker, identification challenges related to the paucity of EPCs in the circulation, and the important phenotypical and functional overlap between EPCs, haematopoietic cells and mature ECs. We also discuss our recent findings on the origin of endothelial outgrowth cells (EOCs), showing that this in vitro defined EC population does not originate from circulating CD133+ cells or CD45+ haematopoietic cells. PMID:19067770

  12. No Identical "Mesenchymal Stem Cells" at Different Times and Sites: Human Committed Progenitors of Distinct Origin and Differentiation Potential Are Incorporated as Adventitial Cells in Microvessels.

    PubMed

    Sacchetti, Benedetto; Funari, Alessia; Remoli, Cristina; Giannicola, Giuseppe; Kogler, Gesine; Liedtke, Stefanie; Cossu, Giulio; Serafini, Marta; Sampaolesi, Maurilio; Tagliafico, Enrico; Tenedini, Elena; Saggio, Isabella; Robey, Pamela G; Riminucci, Mara; Bianco, Paolo

    2016-06-14

    A widely shared view reads that mesenchymal stem/stromal cells ("MSCs") are ubiquitous in human connective tissues, can be defined by a common in vitro phenotype, share a skeletogenic potential as assessed by in vitro differentiation assays, and coincide with ubiquitous pericytes. Using stringent in vivo differentiation assays and transcriptome analysis, we show that human cell populations from different anatomical sources, regarded as "MSCs" based on these criteria and assumptions, actually differ widely in their transcriptomic signature and in vivo differentiation potential. In contrast, they share the capacity to guide the assembly of functional microvessels in vivo, regardless of their anatomical source, or in situ identity as perivascular or circulating cells. This analysis reveals that muscle pericytes, which are not spontaneously osteochondrogenic as previously claimed, may indeed coincide with an ectopic perivascular subset of committed myogenic cells similar to satellite cells. Cord blood-derived stromal cells, on the other hand, display the unique capacity to form cartilage in vivo spontaneously, in addition to an assayable osteogenic capacity. These data suggest the need to revise current misconceptions on the origin and function of so-called "MSCs," with important applicative implications. The data also support the view that rather than a uniform class of "MSCs," different mesoderm derivatives include distinct classes of tissue-specific committed progenitors, possibly of different developmental origin. PMID:27304917

  13. Nutritional regulation of stem and progenitor cells in Drosophila

    PubMed Central

    Shim, Jiwon; Gururaja-Rao, Shubha; Banerjee, Utpal

    2013-01-01

    Stem cells and their progenitors are maintained within a microenvironment, termed the niche, through local cell-cell communication. Systemic signals originating outside the niche also affect stem cell and progenitor behavior. This review summarizes studies that pertain to nutritional effects on stem and progenitor cell maintenance and proliferation in Drosophila. Multiple tissue types are discussed that utilize the insulin-related signaling pathway to convey nutritional information either directly to these progenitors or via other cell types within the niche. The concept of systemic control of these cell types is not limited to Drosophila and may be functional in vertebrate systems, including mammals. PMID:24255094

  14. cKit+ cardiac progenitors of neural crest origin

    PubMed Central

    Hatzistergos, Konstantinos E.; Takeuchi, Lauro M.; Saur, Dieter; Seidler, Barbara; Dymecki, Susan M.; Mai, Jia Jia; White, Ian A.; Balkan, Wayne; Kanashiro-Takeuchi, Rosemeire M.; Schally, Andrew V.; Hare, Joshua M.

    2015-01-01

    The degree to which cKit-expressing progenitors generate cardiomyocytes in the heart is controversial. Genetic fate-mapping studies suggest minimal contribution; however, whether or not minimal contribution reflects minimal cardiomyogenic capacity is unclear because the embryonic origin and role in cardiogenesis of these progenitors remain elusive. Using high-resolution genetic fate-mapping approaches with cKitCreERT2/+ and Wnt1::Flpe mouse lines, we show that cKit delineates cardiac neural crest progenitors (CNCkit). CNCkit possess full cardiomyogenic capacity and contribute to all CNC derivatives, including cardiac conduction system cells. Furthermore, by modeling cardiogenesis in cKitCreERT2-induced pluripotent stem cells, we show that, paradoxically, the cardiogenic fate of CNCkit is regulated by bone morphogenetic protein antagonism, a signaling pathway activated transiently during establishment of the cardiac crescent, and extinguished from the heart before CNC invasion. Together, these findings elucidate the origin of cKit+ cardiac progenitors and suggest that a nonpermissive cardiac milieu, rather than minimal cardiomyogenic capacity, controls the degree of CNCkit contribution to myocardium. PMID:26438843

  15. Progenitor cells for ocular surface regenerative therapy.

    PubMed

    Casaroli-Marano, Ricardo P; Nieto-Nicolau, Nuria; Martínez-Conesa, Eva M

    2013-01-01

    The integrity and normal function of the corneal epithelium are essential for maintaining the cornea's transparency and vision. The existence of a cell population with progenitor characteristics in the limbus maintains a dynamic of constant epithelial repair and renewal. Currently, cell-based therapies for bio-replacement, such as cultured limbal epithelial transplantation and cultured oral mucosal epithelial transplantation, present very encouraging clinical results for treating limbal stem cell deficiencies. Another emerging therapeutic strategy consists of obtaining and implementing human progenitor cells of different origins using tissue engineering methods. The development of cell-based therapies using stem cells, such as human adult mesenchymal stromal cells, represents a significant breakthrough in the treatment of certain eye diseases and also offers a more rational, less invasive and more physiological approach to ocular surface regeneration. PMID:23257987

  16. Cardiac progenitor cells for heart repair

    PubMed Central

    Le, TYL; Chong, JJH

    2016-01-01

    Stem cell therapy is being investigated as an innovative and promising strategy to restore cardiac function in patients with heart failure. Several stem cell populations, including adult (multipotent) stem cells from developed organs and tissues, have been tested for cardiac repair with encouraging clinical and pre-clinical results. The heart has been traditionally considered a post-mitotic organ, however, this view has recently changed with the identification of stem/progenitor cells residing within the adult heart. Given their cardiac developmental origins, these endogenous cardiac progenitor cells (CPCs) may represent better candidates for cardiac cell therapy compared with stem cells from other organs such as the bone marrow and adipose tissue. This brief review will outline current research into CPC populations and their cardiac repair/regenerative potential. PMID:27551540

  17. Hepatocellular carcinoma originates from hepatocytes and not from the progenitor/biliary compartment

    PubMed Central

    Mu, Xueru; Español-Suñer, Regina; Mederacke, Ingmar; Affò, Silvia; Manco, Rita; Sempoux, Christine; Lemaigre, Frédéric P.; Adili, Arlind; Yuan, Detian; Weber, Achim; Unger, Kristian; Heikenwälder, Mathias; Leclercq, Isabelle A.; Schwabe, Robert F.

    2015-01-01

    In many organs, including the intestine and skin, cancers originate from cells of the stem or progenitor compartment. Despite its nomenclature, the cellular origin of hepatocellular carcinoma (HCC) remains elusive. In contrast to most organs, the liver lacks a defined stem cell population for organ maintenance. Previous studies suggest that both hepatocytes and facultative progenitor cells within the biliary compartment are capable of generating HCC. As HCCs with a progenitor signature carry a worse prognosis, understanding the origin of HCC is of clinical relevance. Here, we used complementary fate-tracing approaches to label the progenitor/biliary compartment and hepatocytes in murine hepatocarcinogenesis. In genotoxic and genetic models, HCCs arose exclusively from hepatocytes but never from the progenitor/biliary compartment. Cytokeratin 19–, A6- and α-fetoprotein–positive cells within tumors were hepatocyte derived. In summary, hepatocytes represent the cell of origin for HCC in mice, and a progenitor signature does not reflect progenitor origin, but dedifferentiation of hepatocyte-derived tumor cells. PMID:26348897

  18. Progenitor Cells and Podocyte Regeneration

    PubMed Central

    Shankland, Stuart J.; Pippin, Jeffrey W.; Duffield, Jeremy S.

    2014-01-01

    The very limited ability of adult podocytes to proliferate in vivo is clinically significant because: podocytes form a vascular barrier which is functionally critical to the nephron; podocyte hypoplasia is a characteristic of disease; and inadequate regeneration of podocytes is a major cause of persistent podocyte hypoplasia. Excessive podocyte loss or inadequate replacement leads to glomerulosclerosis in many progressive kidney diseases. Thus, restoration of podocyte cell density is almost certainly reliant on regeneration by podocyte progenitors. However such putative progenitors have remained elusive until recently. In this review we describe the developmental processes leading to podocyte and parietal epithelial cell (PEC) formation during glomerulogenesis. We compare evidence that in normal human kidneys PECs expressing ‘progenitor’ markers CD133 and CD24 can differentiate into podocytes in vitro and in vivo with evidence from animal models suggesting a more limited role of PEC-capacity to serve as podocyte progenitors in adults. We will highlight tantalizing new evidence that specialized vascular wall cells of afferent arterioles including those which produce renin in healthy kidney, provide a novel local progenitor source of new PECs and podocytes in response to podocyte hypoplasia in the adult, and draw comparisons with glomerulogenesis. PMID:25217270

  19. The dynamics of murine mammary stem/progenitor cells

    PubMed Central

    DONG, Qiaoxiang; SUN, Lu-Zhe

    2014-01-01

    The stem/progenitor cells in the murine mammary gland are a highly dynamic population of cells that are responsible for ductal elongation in puberty, homeostasis maintenance in adult, and lobulo-alveolar genesis during pregnancy. In recent years understanding the epithelial cell hierarchy within the mammary gland is becoming particularly important as these different stem/progenitor cells were perceived to be the cells of origin for various subtypes of breast cancer. Although significant advances have been made in enrichment and isolation of stem/progenitor cells by combinations of antibodies against cell surface proteins together with flow cytometry, and in identification of stem/progenitor cells with multi-lineage differentiation and self-renewal using mammary fat pad reconstitution assay and in vivo genetic labeling technique, a clear understanding of how these different stem/progenitors are orchestrated in the mammary gland is still lacking. Here we discuss the different in vivo and in vitro methods currently available for stem/progenitor identification, their associated caveats, and a possible new hierarchy model to reconcile various putative stem/progenitor cell populations identified by different research groups. PMID:25580105

  20. Gene Expression Profiling Supports the Neural Crest Origin of Adult Rodent Carotid Body Stem Cells and Identifies CD10 as a Marker for Mesectoderm-Committed Progenitors.

    PubMed

    Navarro-Guerrero, Elena; Platero-Luengo, Aida; Linares-Clemente, Pedro; Cases, Ildefonso; López-Barneo, José; Pardal, Ricardo

    2016-06-01

    Neural stem cells (NSCs) are promising tools for understanding nervous system plasticity and repair, but their use is hampered by the lack of markers suitable for their prospective isolation and characterization. The carotid body (CB) contains a population of peripheral NSCs, which support organ growth during acclimatization to hypoxia. We have set up CB neurosphere (NS) cultures enriched in differentiated neuronal (glomus) cells versus undifferentiated progenitors to investigate molecular hallmarks of cell classes within the CB stem cell (CBSC) niche. Microarray gene expression analysis in NS is compatible with CBSCs being neural crest derived-multipotent progenitor cells able to sustain CB growth upon exposure to hypoxia. Moreover, we have identified CD10 as a marker suitable for isolation of a population of CB mesectoderm-committed progenitor cells. CD10 + cells are resting in normoxia, and during hypoxia they are activated to proliferate and to eventually complete maturation into mesectodermal cells, thus participating in the angiogenesis necessary for CB growth. Our results shed light into the molecular and cellular mechanisms involved in CBSC fate choice, favoring a potential use of these cells for cell therapy. Stem Cells 2016;34:1637-1650. PMID:26866353

  1. Hepatic cancer stem cells may arise from adult ductal progenitors

    PubMed Central

    Nikolaou, Kostas C; Talianidis, Iannis

    2016-01-01

    Cancer stem cells (CSCs) are defined as cells within tumors that can self-renew and differentiate into heterogeneous lineages of cancerous cells. The origin of CSCs is not well understood. Recent evidence suggests that CSCs in hepatocellular carcinoma could be generated via oncogenic transformation and partial differentiation of adult hepatic ductal progenitor cells.

  2. Redefining endothelial progenitor cells via clonal analysis and hematopoietic stem/progenitor cell principals

    PubMed Central

    Mead, Laura E.; Prater, Daniel; Krier, Theresa R.; Mroueh, Karim N.; Li, Fang; Krasich, Rachel; Temm, Constance J.; Prchal, Josef T.

    2007-01-01

    The limited vessel-forming capacity of infused endothelial progenitor cells (EPCs) into patients with cardiovascular dysfunction may be related to a misunderstanding of the biologic potential of the cells. EPCs are generally identified by cell surface antigen expression or counting in a commercially available kit that identifies “endothelial cell colony-forming units” (CFU-ECs). However, the origin, proliferative potential, and differentiation capacity of CFU-ECs is controversial. In contrast, other EPCs with blood vessel-forming ability, termed endothelial colony-forming cells (ECFCs), have been isolated from human peripheral blood. We compared the function of CFU-ECs and ECFCs and determined that CFU-ECs are derived from the hematopoietic system using progenitor assays, and analysis of donor cells from polycythemia vera patients harboring a Janus kinase 2 V617F mutation in hematopoietic stem cell clones. Further, CFU-ECs possess myeloid progenitor cell activity, differentiate into phagocytic macrophages, and fail to form perfused vessels in vivo. In contrast, ECFCs are clonally distinct from CFU-ECs, display robust proliferative potential, and form perfused vessels in vivo. Thus, these studies establish that CFU-ECs are not EPCs and the role of these cells in angiogenesis must be re-examined prior to further clinical trials, whereas ECFCs may serve as a potential therapy for vascular regeneration. PMID:17053059

  3. Redefining endothelial progenitor cells via clonal analysis and hematopoietic stem/progenitor cell principals.

    PubMed

    Yoder, Mervin C; Mead, Laura E; Prater, Daniel; Krier, Theresa R; Mroueh, Karim N; Li, Fang; Krasich, Rachel; Temm, Constance J; Prchal, Josef T; Ingram, David A

    2007-03-01

    The limited vessel-forming capacity of infused endothelial progenitor cells (EPCs) into patients with cardiovascular dysfunction may be related to a misunderstanding of the biologic potential of the cells. EPCs are generally identified by cell surface antigen expression or counting in a commercially available kit that identifies "endothelial cell colony-forming units" (CFU-ECs). However, the origin, proliferative potential, and differentiation capacity of CFU-ECs is controversial. In contrast, other EPCs with blood vessel-forming ability, termed endothelial colony-forming cells (ECFCs), have been isolated from human peripheral blood. We compared the function of CFU-ECs and ECFCs and determined that CFU-ECs are derived from the hematopoietic system using progenitor assays, and analysis of donor cells from polycythemia vera patients harboring a Janus kinase 2 V617F mutation in hematopoietic stem cell clones. Further, CFU-ECs possess myeloid progenitor cell activity, differentiate into phagocytic macrophages, and fail to form perfused vessels in vivo. In contrast, ECFCs are clonally distinct from CFU-ECs, display robust proliferative potential, and form perfused vessels in vivo. Thus, these studies establish that CFU-ECs are not EPCs and the role of these cells in angiogenesis must be re-examined prior to further clinical trials, whereas ECFCs may serve as a potential therapy for vascular regeneration. PMID:17053059

  4. Murine Hematopoietic Stem cells and Progenitors Express Adrenergic Receptors

    PubMed Central

    Muthu, Kuzhali; Iyer, Sivaraman; He, L-K.; Szilagyi, Andrea; Gamelli, Richard L; Shankar, Ravi; Jones, Stephen B

    2007-01-01

    Association between the nervous and immune system is well documented. Immune cells originate within the bone marrow that is innervated. Thermal injury induces adrenergic stimulation, augments monocytopoiesis and alters the β-adrenergic receptor (AR) profile of bone marrow monocyte committed progenitors. This provides an impetus to study AR expression in hematopoietic progenitors along myeloid lineage. Using FACS analysis and confocal microscopy, we report the expression of α1-, α2- and β2- AR in enriched populations of ER-MP20+ and ER-MP12+ myeloid progenitors, CD117+ and CD34+ multi-potential progenitors and more importantly pluripotent stem cells suggesting a plausible role for catecholamine in hematopoietic development. PMID:17428548

  5. Progenitor cells in the adult pancreas.

    PubMed

    Holland, Andrew M; Góñez, L Jorge; Harrison, Leonard C

    2004-01-01

    The beta-cell mass in the adult pancreas possesses the ability to undergo limited regeneration following injury. Identifying the progenitor cells involved in this process and understanding the mechanisms leading to their maturation will open new avenues for the treatment of type 1 diabetes. However, despite steady advances in determining the molecular basis of early pancreatic development, the identification of pancreatic stem cells or beta-cell progenitors and the molecular mechanisms underlying beta-cell regeneration remain unclear. Recent advances in the directed differentiation of embryonic and adult stem cells has heightened interest in the possible application of stem cell therapy in the treatment of type 1 diabetes. Drawing on the expanding knowledge of pancreas development, beta-cell regeneration and stem cell research, this review focuses on progenitor cells in the adult pancreas as a potential source of beta-cells. PMID:14737742

  6. Analysing human neural stem cell ontogeny by consecutive isolation of Notch active neural progenitors

    PubMed Central

    Edri, Reuven; Yaffe, Yakey; Ziller, Michael J.; Mutukula, Naresh; Volkman, Rotem; David, Eyal; Jacob-Hirsch, Jasmine; Malcov, Hagar; Levy, Carmit; Rechavi, Gideon; Gat-Viks, Irit; Meissner, Alexander; Elkabetz, Yechiel

    2015-01-01

    Decoding heterogeneity of pluripotent stem cell (PSC)-derived neural progeny is fundamental for revealing the origin of diverse progenitors, for defining their lineages, and for identifying fate determinants driving transition through distinct potencies. Here we have prospectively isolated consecutively appearing PSC-derived primary progenitors based on their Notch activation state. We first isolate early neuroepithelial cells and show their broad Notch-dependent developmental and proliferative potential. Neuroepithelial cells further yield successive Notch-dependent functional primary progenitors, from early and midneurogenic radial glia and their derived basal progenitors, to gliogenic radial glia and adult-like neural progenitors, together recapitulating hallmarks of neural stem cell (NSC) ontogeny. Gene expression profiling reveals dynamic stage-specific transcriptional patterns that may link development of distinct progenitor identities through Notch activation. Our observations provide a platform for characterization and manipulation of distinct progenitor cell types amenable for developing streamlined neural lineage specification paradigms for modelling development in health and disease. PMID:25799239

  7. Regional differences in stem cell/progenitor cell populations from the mouse achilles tendon.

    PubMed

    Mienaltowski, Michael J; Adams, Sheila M; Birk, David E

    2013-01-01

    Specific niches may affect how cells from different regions contribute to tendon biology, particularly in regard to the healing of certain tendinopathies. The objectives of this study are to determine whether distinct subpopulations of stem/progenitor cells are found within the tendon proper and the epi- and paratenon, the peritenon, as well as to characterize these stem/progenitor cell populations. In this study, we hypothesized that tendon stem/progenitor cells exist in each region, that these populations possess distinct features, and that these populations while multipotent could have differing potentials. To test this hypothesis, stem/progenitor cells were isolated and characterized from the peritenon and tendon proper of mouse Achilles tendons. Colony-forming unit and multipotency assays, as well as flow cytometry, and real-time quantitative polymerase chain reaction analyses of stem cell markers were performed. Significantly, more stem/progenitor cell colonies were observed from cells derived from the tendon proper relative to the peritenon. Analysis of surface markers for stem/progenitor cells from both regions indicated that they were Sca1(+) (stem cell marker), Cd90(+) and Cd44(+) (fibroblast markers), Cd18(-) (leukocyte marker), Cd34(-) (hematopoietic and vascular marker), and Cd133(-) (perivascular marker). Tendon proper stem/progenitor cells had increased expression levels for tenomodulin (Tnmd) and scleraxis (Scx), indicative of enrichment of stem/progenitor cells of a tendon origin. In contrast, cells of the peritenon demonstrated relative increases in the vascular (endomucin) and pericyte (Cd133) markers relative to cells from the tendon proper. Stem/progenitor cells from both regions were multipotent (adipogenic, chondrogenic, osteogenic, and tenogenic). These findings demonstrated that different progenitor populations exist within discrete niches of the Achilles tendon-tendon proper versus peritenon. Overall, these data support the hypothesis that

  8. Osteocytes serve as a progenitor cell of osteosarcoma

    PubMed Central

    Sottnik, Joseph L; Campbell, Brittany; Mehra, Rohit; Behbahani-Nejad, Omid; Hall, Christopher L.; Keller, Evan T.

    2016-01-01

    Osteosarcoma (OSA) is the most common primary bone tumor in humans. However, the cell of origin of OSA is not clearly defined although there is evidence that osteoblasts may serve as OSA progenitors. The role of osteocytes, terminally differentiated osteoblasts, as OSA progenitors has yet to be described. Analysis of patient cDNA from publicly available microarray data revealed that patients with OSA have increased expression of dentin matrix phosphoprotein 1 (DMP1), a marker of osteocytes. Analysis of multiple murine, human, and canine OSA cell lines revealed DMP1 expression. To test the tumorigenic potential of osteocytes, MLO-Y4, an SV-40 immortalized murine osteocyte cell line, was injected into subcutaneous and orthotopic (intratibial) sites of mice. Tumor growth occurred in both locations. Orthotopic MLO-Y4 tumors produced mixed osteoblastic/osteolytic radiographic lesions; a hallmark of OSA. Together, these data demonstrate for the first time that osteocytes can serve as OSA progenitors. PMID:24700678

  9. Osteocytes serve as a progenitor cell of osteosarcoma.

    PubMed

    Sottnik, Joseph L; Campbell, Brittany; Mehra, Rohit; Behbahani-Nejad, Omid; Hall, Christopher L; Keller, Evan T

    2014-08-01

    Osteosarcoma (OSA) is the most common primary bone tumor in humans. However, the cell of origin of OSA is not clearly defined although there is evidence that osteoblasts may serve as OSA progenitors. The role of osteocytes, terminally differentiated osteoblasts, as OSA progenitors has yet to be described. Analysis of patient cDNA from publicly available microarray data revealed that patients with OSA have increased expression of dentin matrix phosphoprotein 1 (DMP1), a marker of osteocytes. Analysis of multiple murine, human, and canine OSA cell lines revealed DMP1 expression. To test the tumorigenic potential of osteocytes, MLO-Y4, a SV-40 immortalized murine osteocyte cell line, was injected into subcutaneous and orthotopic (intratibial) sites of mice. Tumor growth occurred in both locations. Orthotopic MLO-Y4 tumors produced mixed osteoblastic/osteolytic radiographic lesions; a hallmark of OSA. Together, these data demonstrate for the first time that osteocytes can serve as OSA progenitors. PMID:24700678

  10. Cell culture: Progenitor cells from human brain after death

    NASA Astrophysics Data System (ADS)

    Palmer, Theo D.; Schwartz, Philip H.; Taupin, Philippe; Kaspar, Brian; Stein, Stuart A.; Gage, Fred H.

    2001-05-01

    Culturing neural progenitor cells from the adult rodent brain has become routine and is also possible from human fetal tissue, but expansion of these cells from postnatal and adult human tissue, although preferred for ethical reasons, has encountered problems. Here we describe the isolation and successful propagation of neural progenitor cells from human postmortem tissues and surgical specimens. Although the relative therapeutic merits of adult and fetal progenitor cells still need to be assessed, our results may extend the application of these progenitor cells in the treatment of neurodegenerative diseases.

  11. Human Liver Progenitor Cells for Liver Repair

    PubMed Central

    Lombard, Catherine A.; Prigent, Julie; Sokal, Etienne M.

    2013-01-01

    Because of their high proliferative capacity, resistance to cryopreservation, and ability to differentiate into hepatocyte-like cells, stem and progenitor cells have recently emerged as attractive cell sources for liver cell therapy, a technique used as an alternative to orthotopic liver transplantation in the treatment of various hepatic ailments ranging from metabolic disorders to end-stage liver disease. Although stem and progenitor cells have been isolated from various tissues, obtaining them from the liver could be an advantage for the treatment of hepatic disorders. However, the techniques available to isolate these stem/progenitor cells are numerous and give rise to cell populations with different morphological and functional characteristics. In addition, there is currently no established consensus on the tests that need to be performed to ensure the quality and safety of these cells when used clinically. The purpose of this review is to describe the different types of liver stem/progenitor cells currently reported in the literature, discuss their suitability and limitations in terms of clinical applications, and examine how the culture and transplantation techniques can potentially be improved to achieve a better clinical outcome. PMID:26858860

  12. Restricted dendritic cell and monocyte progenitors in human cord blood and bone marrow

    PubMed Central

    Lee, Jaeyop; Breton, Gaëlle; Oliveira, Thiago Yukio Kikuchi; Zhou, Yu Jerry; Aljoufi, Arafat; Puhr, Sarah; Cameron, Mark J.; Sékaly, Rafick-Pierre

    2015-01-01

    In mice, two restricted dendritic cell (DC) progenitors, macrophage/dendritic progenitors (MDPs) and common dendritic progenitors (CDPs), demonstrate increasing commitment to the DC lineage, as they sequentially lose granulocyte and monocyte potential, respectively. Identifying these progenitors has enabled us to understand the role of DCs and monocytes in immunity and tolerance in mice. In humans, however, restricted monocyte and DC progenitors remain unknown. Progress in studying human DC development has been hampered by lack of an in vitro culture system that recapitulates in vivo DC hematopoiesis. Here we report a culture system that supports development of CD34+ hematopoietic stem cell progenitors into the three major human DC subsets, monocytes, granulocytes, and NK and B cells. Using this culture system, we defined the pathway for human DC development and revealed the sequential origin of human DCs from increasingly restricted progenitors: a human granulocyte-monocyte-DC progenitor (hGMDP) that develops into a human monocyte-dendritic progenitor (hMDP), which in turn develops into monocytes, and a human CDP (hCDP) that is restricted to produce the three major DC subsets. The phenotype of the DC progenitors partially overlaps with granulocyte-macrophage progenitors (GMPs). These progenitors reside in human cord blood and bone marrow but not in the blood or lymphoid tissues. PMID:25687283

  13. Tissue-resident macrophages originate from yolk-sac-derived erythro-myeloid progenitors.

    PubMed

    Gomez Perdiguero, Elisa; Klapproth, Kay; Schulz, Christian; Busch, Katrin; Azzoni, Emanuele; Crozet, Lucile; Garner, Hannah; Trouillet, Celine; de Bruijn, Marella F; Geissmann, Frederic; Rodewald, Hans-Reimer

    2015-02-26

    Most haematopoietic cells renew from adult haematopoietic stem cells (HSCs), however, macrophages in adult tissues can self-maintain independently of HSCs. Progenitors with macrophage potential in vitro have been described in the yolk sac before emergence of HSCs, and fetal macrophages can develop independently of Myb, a transcription factor required for HSC, and can persist in adult tissues. Nevertheless, the origin of adult macrophages and the qualitative and quantitative contributions of HSC and putative non-HSC-derived progenitors are still unclear. Here we show in mice that the vast majority of adult tissue-resident macrophages in liver (Kupffer cells), brain (microglia), epidermis (Langerhans cells) and lung (alveolar macrophages) originate from a Tie2(+) (also known as Tek) cellular pathway generating Csf1r(+) erythro-myeloid progenitors (EMPs) distinct from HSCs. EMPs develop in the yolk sac at embryonic day (E) 8.5, migrate and colonize the nascent fetal liver before E10.5, and give rise to fetal erythrocytes, macrophages, granulocytes and monocytes until at least E16.5. Subsequently, HSC-derived cells replace erythrocytes, granulocytes and monocytes. Kupffer cells, microglia and Langerhans cells are only marginally replaced in one-year-old mice, whereas alveolar macrophages may be progressively replaced in ageing mice. Our fate-mapping experiments identify, in the fetal liver, a sequence of yolk sac EMP-derived and HSC-derived haematopoiesis, and identify yolk sac EMPs as a common origin for tissue macrophages. PMID:25470051

  14. In vivo identification of periodontal progenitor cells.

    PubMed

    Roguljic, H; Matthews, B G; Yang, W; Cvija, H; Mina, M; Kalajzic, I

    2013-08-01

    The periodontal ligament contains progenitor cells; however, their identity and differentiation potential in vivo remain poorly characterized. Previous results have suggested that periodontal tissue progenitors reside in perivascular areas. Therefore, we utilized a lineage-tracing approach to identify and track periodontal progenitor cells from the perivascular region in vivo. We used an alpha-smooth muscle actin (αSMA) promoter-driven and tamoxifen-inducible Cre system (αSMACreERT2) that, in combination with a reporter mouse line (Ai9), permanently labels a cell population, termed 'SMA9'. To trace the differentiation of SMA9-labeled cells into osteoblasts/cementoblasts, we utilized a Col2.3GFP transgene, while expression of Scleraxis-GFP was used to follow differentiation into periodontal ligament fibroblasts during normal tissue formation and remodeling following injury. In uninjured three-week-old SMA9 mice, tamoxifen labeled a small population of cells in the periodontal ligament that expanded over time, particularly in the apical region of the root. By 17 days and 7 weeks after labeling, some SMA9-labeled cells expressed markers indicating differentiation into mature lineages, including cementocytes. Following injury, SMA9 cells expanded, and differentiated into cementoblasts, osteoblasts, and periodontal ligament fibroblasts. SMA9-labeled cells represent a source of progenitors that can give rise to mature osteoblasts, cementoblasts, and fibroblasts within the periodontium. PMID:23735585

  15. Noninvasive Imaging of Administered Progenitor Cells

    SciTech Connect

    Steven R Bergmann, M.D., Ph.D.

    2012-12-03

    The objective of this research grant was to develop an approach for labeling progenitor cells, specifically those that we had identified as being able to replace ischemic heart cells, so that the distribution could be followed non-invasively. In addition, the research was aimed at determining whether administration of progenitor cells resulted in improved myocardial perfusion and function. The efficiency and toxicity of radiolabeling of progenitor cells was to be evaluated. For the proposed clinical protocol, subjects with end-stage ischemic coronary artery disease were to undergo a screening cardiac positron emission tomography (PET) scan using N-13 ammonia to delineate myocardial perfusion and function. If they qualified based on their PET scan, they would undergo an in-hospital protocol whereby CD34+ cells were stimulated by the administration of granulocytes-colony stimulating factor (G-CSF). CD34+ cells would then be isolated by apharesis, and labeled with indium-111 oxine. Cells were to be re-infused and subjects were to undergo single photon emission computed tomography (SPECT) scanning to evaluate uptake and distribution of labeled progenitor cells. Three months after administration of progenitor cells, a cardiac PET scan was to be repeated to evaluate changes in myocardial perfusion and/or function. Indium oxine is a radiopharmaceutical for labeling of autologous lymphocytes. Indium-111 (In-111) decays by electron capture with a t{sub ½} of 67.2 hours (2.8 days). Indium forms a saturated complex that is neutral, lipid soluble, and permeates the cell membrane. Within the cell, the indium-oxyquinolone complex labels via indium intracellular chelation. Following leukocyte labeling, ~77% of the In-111 is incorporated in the cell pellet. The presence of red cells and /or plasma reduces the labeling efficacy. Therefore, the product needed to be washed to eliminate plasma proteins. This repeated washing can damage cells. The CD34 selected product was a 90

  16. Pigment Cell Progenitors in Zebrafish Remain Multipotent through Metamorphosis.

    PubMed

    Singh, Ajeet Pratap; Dinwiddie, April; Mahalwar, Prateek; Schach, Ursula; Linker, Claudia; Irion, Uwe; Nüsslein-Volhard, Christiane

    2016-08-01

    The neural crest is a transient, multipotent embryonic cell population in vertebrates giving rise to diverse cell types in adults via intermediate progenitors. The in vivo cell-fate potential and lineage segregation of these postembryonic progenitors is poorly understood, and it is unknown if and when the progenitors become fate restricted. We investigate the fate restriction in the neural crest-derived stem cells and intermediate progenitors in zebrafish, which give rise to three distinct adult pigment cell types: melanophores, iridophores, and xanthophores. By inducing clones in sox10-expressing cells, we trace and quantitatively compare the pigment cell progenitors at four stages, from embryogenesis to metamorphosis. At all stages, a large fraction of the progenitors are multipotent. These multipotent progenitors have a high proliferation ability, which diminishes with fate restriction. We suggest that multipotency of the nerve-associated progenitors lasting into metamorphosis may have facilitated the evolution of adult-specific traits in vertebrates. PMID:27453500

  17. Tendon proper- and peritenon-derived progenitor cells have unique tenogenic properties

    PubMed Central

    2014-01-01

    Introduction Multipotent progenitor populations exist within the tendon proper and peritenon of the Achilles tendon. Progenitor populations derived from the tendon proper and peritenon are enriched with distinct cell types that are distinguished by expression of markers of tendon and vascular or pericyte origins, respectively. The objective of this study was to discern the unique tenogenic properties of tendon proper- and peritenon-derived progenitors within an in vitro model. We hypothesized that progenitors from each region contribute differently to tendon formation; thus, when incorporated into a regenerative model, progenitors from each region will respond uniquely. Moreover, we hypothesized that cell populations like progenitors were capable of stimulating tenogenic differentiation, so we generated conditioned media from these cell types to analyze their stimulatory potentials. Methods Isolated progenitors were seeded within fibrinogen/thrombin gel-based constructs with or without supplementation with recombinant growth/differentiation factor-5 (GDF5). Early and late in culture, gene expression of differentiation markers and matrix assembly genes was analyzed. Tendon construct ultrastructure was also compared after 45 days. Moreover, conditioned media from tendon proper-derived progenitors, peritenon-derived progenitors, or tenocytes was applied to each of the three cell types to determine paracrine stimulatory effects of the factors secreted from each of the respective cell types. Results The cell orientation, extracellular domain and fibril organization of constructs were comparable to embryonic tendon. The tendon proper-derived progenitors produced a more tendon-like construct than the peritenon-derived progenitors. Seeded tendon proper-derived progenitors expressed greater levels of tenogenic markers and matrix assembly genes, relative to peritenon-derived progenitors. However, GDF5 supplementation improved expression of matrix assembly genes in peritenon

  18. Chondrogenic Progenitor Cells Respond to Cartilage Injury

    PubMed Central

    Choe, Hyeonghun; Zheng, Hongjun; Yu, Yin; Jang, Keewoong; Walter, Morgan W.; Lehman, Abigail D.; Ding, Lei; Buckwalter, Joseph A.; Martin, James A.

    2014-01-01

    Objective Hypocellularity resulting from chondrocyte death in the aftermath of mechanical injury is thought to contribute to posttraumatic osteoarthritis. However, we observed that nonviable areas in cartilage injured by blunt impact were repopulated within 7–14 days by cells that appeared to migrate from the surrounding matrix. The aim of this study was to assess our hypothesis that the migrating cell population included chondrogenic progenitor cells that were drawn to injured cartilage by alarmins. Methods Osteochondral explants obtained from mature cattle were injured by blunt impact or scratching, resulting in localized chondrocyte death. Injured sites were serially imaged by confocal microscopy, and migrating cells were evaluated for chondrogenic progenitor characteristics. Chemotaxis assays were used to measure the responses to chemokines, injury-conditioned medium, dead cell debris, and high mobility group box chromosomal protein 1 (HMGB-1). Results Migrating cells were highly clonogenic and multipotent and expressed markers associated with chondrogenic progenitor cells. Compared with chondrocytes, these cells overexpressed genes involved in proliferation and migration and underexpressed cartilage matrix genes. They were more active than chondrocytes in chemotaxis assays and responded to cell lysates, conditioned medium, and HMGB-1. Glycyrrhizin, a chelator of HMGB-1 and a blocking antibody to receptor for advanced glycation end products (RAGE), inhibited responses to cell debris and conditioned medium and reduced the numbers of migrating cells on injured explants. Conclusion Injuries that caused chondrocyte death stimulated the emergence and homing of chondrogenic progenitor cells, in part via HMGB-1 release and RAGE-mediated chemotaxis. Their repopulation of the matrix could promote the repair of chondral damage that might otherwise contribute to progressive cartilage loss. PMID:22777600

  19. Human progenitor cells for bone engineering applications.

    PubMed

    de Peppo, G M; Thomsen, P; Karlsson, C; Strehl, R; Lindahl, A; Hyllner, J

    2013-06-01

    In this report, the authors review the human skeleton and the increasing burden of bone deficiencies, the limitations encountered with the current treatments and the opportunities provided by the emerging field of cell-based bone engineering. Special emphasis is placed on different sources of human progenitor cells, as well as their pros and cons in relation to their utilization for the large-scale construction of functional bone-engineered substitutes for clinical applications. It is concluded that, human pluripotent stem cells represent a valuable source for the derivation of progenitor cells, which combine the advantages of both embryonic and adult stem cells, and indeed display high potential for the construction of functional substitutes for bone replacement therapies. PMID:23642054

  20. Endothelial progenitor cells in hematologic malignancies

    PubMed Central

    Saulle, Ernestina; Castelli, Germana; Pelosi, Elvira

    2016-01-01

    Studies carried out in the last years have improved the understanding of the cellular and molecular mechanisms controlling angiogenesis during adult life in normal and pathological conditions. Some of these studies have led to the identification of some progenitor cells that sustain angiogenesis through indirect, paracrine mechanisms (hematopoietic angiogenic cells) and through direct mechanisms, i.e., through their capacity to generate a progeny of phenotypically and functionally competent endothelial cells [endothelial colony forming cells (ECFCs)]. The contribution of these progenitors to angiogenetic processes under physiological and pathological conditions is intensively investigated. Angiogenetic mechanisms are stimulated in various hematological malignancies, including chronic myeloid leukemia (CML), acute myeloid leukemia (AML), myelodysplastic syndromes and multiple myeloma, resulting in an increased angiogenesis that contributes to disease progression. In some of these conditions there is preliminary evidence that some endothelial cells could derive from the malignant clone, thus leading to the speculation that the leukemic cell derives from the malignant transformation of a hemangioblastic progenitor, i.e., of a cell capable of differentiation to the hematopoietic and to the endothelial cell lineages. Our understanding of the mechanisms underlying increased angiogenesis in these malignancies not only contributed to a better knowledge of the mechanisms responsible for tumor progression, but also offered the way for the discovery of new therapeutic targets. PMID:27583252

  1. Endothelial progenitor cells in hematologic malignancies.

    PubMed

    Testa, Ugo; Saulle, Ernestina; Castelli, Germana; Pelosi, Elvira

    2016-01-01

    Studies carried out in the last years have improved the understanding of the cellular and molecular mechanisms controlling angiogenesis during adult life in normal and pathological conditions. Some of these studies have led to the identification of some progenitor cells that sustain angiogenesis through indirect, paracrine mechanisms (hematopoietic angiogenic cells) and through direct mechanisms, i.e., through their capacity to generate a progeny of phenotypically and functionally competent endothelial cells [endothelial colony forming cells (ECFCs)]. The contribution of these progenitors to angiogenetic processes under physiological and pathological conditions is intensively investigated. Angiogenetic mechanisms are stimulated in various hematological malignancies, including chronic myeloid leukemia (CML), acute myeloid leukemia (AML), myelodysplastic syndromes and multiple myeloma, resulting in an increased angiogenesis that contributes to disease progression. In some of these conditions there is preliminary evidence that some endothelial cells could derive from the malignant clone, thus leading to the speculation that the leukemic cell derives from the malignant transformation of a hemangioblastic progenitor, i.e., of a cell capable of differentiation to the hematopoietic and to the endothelial cell lineages. Our understanding of the mechanisms underlying increased angiogenesis in these malignancies not only contributed to a better knowledge of the mechanisms responsible for tumor progression, but also offered the way for the discovery of new therapeutic targets. PMID:27583252

  2. Hematopoietic stem/progenitor cell commitment to the megakaryocyte lineage.

    PubMed

    Woolthuis, Carolien M; Park, Christopher Y

    2016-03-10

    The classical model of hematopoiesis has long held that hematopoietic stem cells (HSCs) sit at the apex of a developmental hierarchy in which HSCs undergo long-term self-renewal while giving rise to cells of all the blood lineages. In this model, self-renewing HSCs progressively lose the capacity for self-renewal as they transit into short-term self-renewing and multipotent progenitor states, with the first major lineage commitment occurring in multipotent progenitors, thus giving rise to progenitors that initiate the myeloid and lymphoid branches of hematopoiesis. Subsequently, within the myeloid lineage, bipotent megakaryocyte-erythrocyte and granulocyte-macrophage progenitors give rise to unipotent progenitors that ultimately give rise to all mature progeny. However, over the past several years, this developmental scheme has been challenged, with the origin of megakaryocyte precursors being one of the most debated subjects. Recent studies have suggested that megakaryocytes can be generated from multiple pathways and that some differentiation pathways do not require transit through a requisite multipotent or bipotent megakaryocyte-erythrocyte progenitor stage. Indeed, some investigators have argued that HSCs contain a subset of cells with biased megakaryocyte potential, with megakaryocytes directly arising from HSCs under steady-state and stress conditions. In this review, we discuss the evidence supporting these nonclassical megakaryocytic differentiation pathways and consider their relative strengths and weaknesses as well as the technical limitations and potential pitfalls in interpreting these studies. Ultimately, such pitfalls will need to be overcome to provide a comprehensive and definitive understanding of megakaryopoiesis. PMID:26787736

  3. Progenitor endothelial cell involvement in Alzheimer's disease

    SciTech Connect

    Budinger, Thomas F.

    2003-05-01

    There is compelling evidence that endothelial cells of the brain and periphery are dysfunctional in Alzheimer's Disease. There is evidence for a fundamental defect in, or abnormal aging of, endothelial progenitor cells in atherosclerosis. The possibility that endothelial cell defects are a primary cause for Alzheimer's Disease or other dementias can be researched by molecular and cell biology studies as well as cell trafficking studies using recently demonstrated molecular imaging methods. The evidence for abnormal endothelial function and the methods to explore this hypothesis are presented.

  4. Adult Stem and Progenitor Cells

    NASA Astrophysics Data System (ADS)

    Geraerts, Martine; Verfaillie, Catherine M.

    The discovery of adult stem cells in most adult tissues is the basis of a number of clinical studies that are carried out, with therapeutic use of hematopoietic stem cells as a prime example. Intense scientific debate is still ongoing as to whether adult stem cells may have a greater plasticity than previously thought. Although cells with some features of embryonic stem cells that, among others, express Oct4, Nanog and SSEA1 are isolated from fresh tissue, it is not clear if the greater differentiation potential is acquired during cell culture. Moreover, adult more pluripotent cells do not have all pluripotent characteristics typical for embryonic stem cells. Recently, some elegant studies were published in which adult cells could be completely reprogrammed to embryonic stem cell-like cells by overexpression of some key transcription factors for pluripotency (Oct4, Sox2, Klf4 and c-Myc). It will be interesting for the future to investigate the exact mechanisms underlying this reprogramming and whether similar transcription factor pathways are present and/or can be activated in adult more pluripotent stem cells.

  5. Single cell sorting identifies progenitor cell population from full thickness bovine articular cartilage

    PubMed Central

    Yu, Yin; Zheng, Hongjun; Buckwalter, Joseph A.; Martin, James A.

    2014-01-01

    Objective To date, no approved clinical intervention successfully prevents the progressive degradation of injured articular cartilage that leads to osteoarthritis (OA). Stem/progenitor cell populations within tissues of diarthrodial joint have shown their therapeutic potential in treating OA. However, this potential has not been fully realized due in part to the heterogeneity of these subpopulations. Characterization of clonal populations derived from a single cell may help identify more homogenous stem/progenitor populations within articular cartilage. Moreover, chondrogenic potential of clonal populations from different zones could be further examined to elucidate their differential roles in maintaining articular cartilage homeostasis. Method We combined FACS (Fluorescence-activated cell sorting) and clonogenicity screening to identify stem/progenitor cells cloned from single cells. High-efficiency colony-forming cells (HCCs) were isolated, and evaluated for stem/progenitor cell characteristics. HCCs were also isolated from different zones of articular cartilage. Their function was compared by lineage-specific gene expression, and differentiation potential. Results A difference in colony-forming efficiency was observed in terms of colony sizes. HCCs were highly clonogenic and multipotent, and overexpressed stem/progenitor cell markers. Also, proliferation and migration associated genes were over-expressed in HCCs. HCCs showed zonal differences with deep HCCs more chondrogenic and osteogenic than superficial HCCs. Conclusion Our approach is a simple yet practical way to identify homogeneous stem/progenitor cell populations with clonal origin. The discovery of progenitor cells demonstrates the intrinsic self-repairing potential of articular cartilage. Differences in differentiation potential may represent the distinct roles of superficial and deep zone stem/progenitor cells in the maintenance of articular cartilage homeostasis. PMID:25038490

  6. Two Origins of Blastemal Progenitors Define Blastemal Regeneration of Zebrafish Lower Jaw

    PubMed Central

    Tang, Wenqiao; Zhang, Xin A.; Hua, Xianxin; Yan, Jizhou

    2012-01-01

    Zebrafish possess a remarkable ability to regenerate complicated structures by formation of a mass of undifferentiated mesenchymal cells called blastema. To understand how the blastema retains the original structural form, we investigate cellular transitions and transcriptional characteristics of cell identity genes during all stages of regeneration of an amputated lower jaw. We find that mesenchymal blastema originates from multiple sources including nucleated blood cells, fibroblasts, damaged muscle cells and pigment cells. These cells are transformed into two populations of blastemal progenitors: foxi1-expression and isl1-expression, before giving rise to cartilage, bone, and muscle. Time point- based transcriptomal analysis of 45 annotated Hox genes reveal that five 3′-end Hox genes and an equal number of 5′-end Hox genes are activated largely at the stage of blastema reformation. RNA in situ hybridization shows that foxi1 and pax3a are respectively expressed in the presumptive mandible skeletal region and regenerating muscle at 5 dpa. In contrast, hoxa2b and hoxa11b are widely expressed with different domain in chondrogenic blastema and blastema mesenchyme. Knockdown foxi1 changes the expression patterns of sox9a and hoxa2b in chondrogenic blastema. From these results we propose that two origins of blastemal progenitors define blastema skeleton and muscle respecifications through distinct signaling pathways. Meanwhile, the positional identity of blastema reformation is implicated in mesenchymal segmentation and characteristic expression pattern of Hox genes. PMID:23028974

  7. Bone marrow–derived progenitor cells in pulmonary fibrosis

    PubMed Central

    Hashimoto, Naozumi; Jin, Hong; Liu, Tianju; Chensue, Stephen W.; Phan, Sem H.

    2004-01-01

    The origin of fibroblasts in pulmonary fibrosis is assumed to be intrapulmonary, but their extrapulmonary origin and especially derivation from bone marrow (BM) progenitor cells has not been ruled out. To examine this possibility directly, adult mice were durably engrafted with BM isolated from transgenic mice expressing enhanced GFP. Induction of pulmonary fibrosis in such chimera mice by endotracheal bleomycin (BLM) injection caused large numbers of GFP+ cells to appear in active fibrotic lesions, while only a few GFP+ cells could be identified in control lungs. Flow-cytometric analysis of lung cells confirmed the BLM-induced increase in GFP+ cells in chimera mice and revealed a significant increase in GFP+ cells that also express type I collagen. GFP+ lung fibroblasts isolated from chimera mice expressed collagen and telomerase reverse transcriptase but not α-smooth muscle actin. Treatment of isolated GFP+ fibroblasts with TGF-β failed to induce myofibroblast differentiation. Cultured lung fibroblasts expressed the chemokine receptors CXCR4 and CCR7 and responded chemotactically to their cognate ligands, stromal cell–derived factor-1α and secondary lymphoid chemokine, respectively. Thus the collagen-producing lung fibroblasts in pulmonary fibrosis can also be derived from BM progenitor cells. PMID:14722616

  8. PET imaging of adoptive progenitor cell therapies.

    SciTech Connect

    Gelovani, Juri G.

    2008-05-13

    Objectives. The overall objective of this application is to develop novel technologies for non-invasive imaging of adoptive stem cell-based therapies with positron emission tomography (PET) that would be applicable to human patients. To achieve this objective, stem cells will be genetically labeled with a PET-reporter gene and repetitively imaged to assess their distribution, migration, differentiation, and persistence using a radiolabeled reporter probe. This new imaging technology will be tested in adoptive progenitor cell-based therapy models in animals, including: delivery pro-apoptotic genes to tumors, and T-cell reconstitution for immunostimulatory therapy during allogeneic bone marrow progenitor cell transplantation. Technical and Scientific Merits. Non-invasive whole body imaging would significantly aid in the development and clinical implementation of various adoptive progenitor cell-based therapies by providing the means for non-invasive monitoring of the fate of injected progenitor cells over a long period of observation. The proposed imaging approaches could help to address several questions related to stem cell migration and homing, their long-term viability, and their subsequent differentiation. The ability to image these processes non-invasively in 3D and repetitively over a long period of time is very important and will help the development and clinical application of various strategies to control and direct stem cell migration and differentiation. Approach to accomplish the work. Stem cells will be genetically with a reporter gene which will allow for repetitive non-invasive “tracking” of the migration and localization of genetically labeled stem cells and their progeny. This is a radically new approach that is being developed for future human applications and should allow for a long term (many years) repetitive imaging of the fate of tissues that develop from the transplanted stem cells. Why the approach is appropriate. The novel approach to

  9. Smooth muscle progenitor cells from peripheral blood promote the neovascularization of endothelial colony-forming cells

    SciTech Connect

    Joo, Hyung Joon; Seo, Ha-Rim; Jeong, Hyo Eun; Choi, Seung-Cheol; Park, Jae Hyung; Yu, Cheol Woong; Hong, Soon Jun; Chung, Seok; Lim, Do-Sun

    2014-07-11

    Highlights: • Two distinct vascular progenitor cells are induced from adult peripheral blood. • ECFCs induce vascular structures in vitro and in vivo. • SMPCs augment the in vitro and in vivo angiogenic potential of ECFCs. • Both cell types have synergistic therapeutic potential in ischemic hindlimb model. - Abstract: Proangiogenic cell therapy using autologous progenitors is a promising strategy for treating ischemic disease. Considering that neovascularization is a harmonized cellular process that involves both endothelial cells and vascular smooth muscle cells, peripheral blood-originating endothelial colony-forming cells (ECFCs) and smooth muscle progenitor cells (SMPCs), which are similar to mature endothelial cells and vascular smooth muscle cells, could be attractive cellular candidates to achieve therapeutic neovascularization. We successfully induced populations of two different vascular progenitor cells (ECFCs and SMPCs) from adult peripheral blood. Both progenitor cell types expressed endothelial-specific or smooth muscle-specific genes and markers, respectively. In a protein array focused on angiogenic cytokines, SMPCs demonstrated significantly higher expression of bFGF, EGF, TIMP2, ENA78, and TIMP1 compared to ECFCs. Conditioned medium from SMPCs and co-culture with SMPCs revealed that SMPCs promoted cell proliferation, migration, and the in vitro angiogenesis of ECFCs. Finally, co-transplantation of ECFCs and SMPCs induced robust in vivo neovascularization, as well as improved blood perfusion and tissue repair, in a mouse ischemic hindlimb model. Taken together, we have provided the first evidence of a cell therapy strategy for therapeutic neovascularization using two different types of autologous progenitors (ECFCs and SMPCs) derived from adult peripheral blood.

  10. Stem cells and progenitor cells in renal disease.

    PubMed

    Haller, Hermann; de Groot, Kirsten; Bahlmann, Ferdinand; Elger, Marlies; Fliser, Danilo

    2005-11-01

    Stem cells and progenitor cells are necessary for repair and regeneration of injured renal tissue. Infiltrating or resident stem cells can contribute to the replacement of lost or damaged tissue. However, the regulation of circulating progenitor cells is not well understood. We have analyzed the effects of erythropoietin on circulating progenitor cells and found that low levels of erythropoietin induce mobilization and differentiation of endothelial progenitor cells. In an animal model of 5/6 nephrectomy we could demonstrate that erythropoietin ameliorates tissue injury. Full regeneration of renal tissue demands the existence of stem cells and an adequate local "milieu," a so-called stem cell niche. We have previously described a stem cell niche in the kidneys of the dogfish, Squalus acanthus. Further analysis revealed that in the regenerating zone of the shark kidney, stem cells exist that can be induced by loss of renal tissue to form new glomeruli. Such animal models improve our understanding of stem cell behavior in the kidney and may eventually contribute to novel therapies. PMID:16221168

  11. TWEAK induces liver progenitor cell proliferation.

    PubMed

    Jakubowski, Aniela; Ambrose, Christine; Parr, Michael; Lincecum, John M; Wang, Monica Z; Zheng, Timothy S; Browning, Beth; Michaelson, Jennifer S; Baetscher, Manfred; Baestcher, Manfred; Wang, Bruce; Bissell, D Montgomery; Burkly, Linda C

    2005-09-01

    Progenitor ("oval") cell expansion accompanies many forms of liver injury, including alcohol toxicity and submassive parenchymal necrosis as well as experimental injury models featuring blocked hepatocyte replication. Oval cells can potentially become either hepatocytes or biliary epithelial cells and may be critical to liver regeneration, particularly when hepatocyte replication is impaired. The regulation of oval cell proliferation is incompletely understood. Herein we present evidence that a TNF family member called TWEAK (TNF-like weak inducer of apoptosis) stimulates oval cell proliferation in mouse liver through its receptor Fn14. TWEAK has no effect on mature hepatocytes and thus appears to be selective for oval cells. Transgenic mice overexpressing TWEAK in hepatocytes exhibit periportal oval cell hyperplasia. A similar phenotype was obtained in adult wild-type mice, but not Fn14-null mice, by administering TWEAK-expressing adenovirus. Oval cell expansion induced by 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) was significantly reduced in Fn14-null mice as well as in adult wild-type mice with a blocking anti-TWEAK mAb. Importantly, TWEAK stimulated the proliferation of an oval cell culture model. Finally, we show increased Fn14 expression in chronic hepatitis C and other human liver diseases relative to its expression in normal liver, which suggests a role for the TWEAK/Fn14 pathway in human liver injury. We conclude that TWEAK has a selective mitogenic effect for liver oval cells that distinguishes it from other previously described growth factors. PMID:16110324

  12. Defining human dendritic cell progenitors by multiparametric flow cytometry.

    PubMed

    Breton, Gaëlle; Lee, Jaeyop; Liu, Kang; Nussenzweig, Michel C

    2015-09-01

    Human dendritic cells (DCs) develop from progressively restricted bone marrow (BM) progenitors: these progenitor cells include granulocyte, monocyte and DC progenitor (GMDP) cells; monocyte and DC progenitor (MDP) cells; and common DC progenitor (CDP) and DC precursor (pre-DC) cells. These four DC progenitors can be defined on the basis of the expression of surface markers such as CD34 and hematopoietin receptors. In this protocol, we describe five multiparametric flow cytometry panels that can be used as a tool (i) to simultaneously detect or phenotype the four DC progenitors, (ii) to isolate DC progenitors to enable in vitro differentiation or (iii) to assess the in vitro differentiation and proliferation of DC progenitors. The entire procedure from isolation of cells to flow cytometry can be completed in 3-7 h. This protocol provides optimized antibody panels, as well as gating strategies, for immunostaining of BM and cord blood specimens to study human DC hematopoiesis in health, disease and vaccine settings. PMID:26292072

  13. Defining human dendritic cell progenitors by multiparametric flow cytometry

    PubMed Central

    Breton, Gaëlle; Lee, Jaeyop; Liu, Kang; Nussenzweig, Michel C

    2015-01-01

    Human dendritic cells (DCs) develop from progressively restricted bone marrow (BM) progenitors: these progenitor cells include granulocyte, monocyte and DC progenitor (GMDP) cells; monocyte and DC progenitor (MDP) cells; and common DC progenitor (CDP) and DC precursor (pre-DC) cells. These four DC progenitors can be defined on the basis of the expression of surface markers such as CD34 and hematopoietin receptors. In this protocol, we describe five multiparametric flow cytometry panels that can be used as a tool (i) to simultaneously detect or phenotype the four DC progenitors, (ii) to isolate DC progenitors to enable in vitro differentiation or (iii) to assess the in vitro differentiation and proliferation of DC progenitors. The entire procedure from isolation of cells to flow cytometry can be completed in 3–7 h. This protocol provides optimized antibody panels, as well as gating strategies, for immunostaining of BM and cord blood specimens to study human DC hematopoiesis in health, disease and vaccine settings. PMID:26292072

  14. Cardiogenic Differentiation and Transdifferentiation of Progenitor Cells

    PubMed Central

    Reinecke, Hans; Minami, Elina; Zhu, Wei-Zhong; Laflamme, Michael A.

    2009-01-01

    In recent years, cell transplantation has drawn tremendous interest as a novel approach to preserving or even restoring contractile function to infarcted hearts. A typical human infarct involves the loss of approximately one billion cardiomyocytes, and so many investigators have sought to identify endogenous or exogenous stem cells with the capacity to differentiate into committed cardiomyocytes and repopulate lost myocardium. As a result of these efforts, dozens of stem cell types have been reported to have cardiac potential. These include pluripotent embryonic stem cells as well various adult stem cells resident in compartments including bone marrow, peripheral tissues, and the heart itself. Some of these cardiogenic progenitors have been reported to contribute replacement muscle through endogenous reparative processes or via cell transplantation in preclinical cardiac injury models. However, considerable disagreement exists regarding the efficiency and even the reality of cardiac differentiation by many of these stem cell types, making these issues a continuing source of controversy in the field. In this review, we consider approaches to cell fate mapping and establishing the cardiac phenotype, as well as the current state of the evidence for the cardiogenic and regenerative potential of the major candidate stem cell types. PMID:18988903

  15. Murine Mueller cells are progenitor cells for neuronal cells and fibrous tissue cells

    SciTech Connect

    Florian, Christian; Langmann, Thomas; Weber, Bernhard H.F.; Morsczeck, Christian

    2008-09-19

    Mammalian Mueller cells have been reported to possess retinal progenitor cell properties and generate new neurons after injury. This study investigates murine Mueller cells under in vitro conditions for their capability of dedifferentiation into retinal progenitor cells. Mueller cells were isolated from mouse retina, and proliferating cells were expanded in serum-containing medium. For dedifferentiation, the cultured cells were transferred to serum-replacement medium (SRM) at different points in time after their isolation. Interestingly, early cell passages produced fibrous tissue in which extracellular matrix proteins and connective tissue markers were differentially expressed. In contrast, aged Mueller cell cultures formed neurospheres in SRM that are characteristic for neuronal progenitor cells. These neurospheres differentiated into neuron-like cells after cultivation on laminin/ornithine cell culture substrate. Here, we report for the first time that murine Mueller cells can be progenitors for both, fibrous tissue cells and neuronal cells, depending on the age of the cell culture.

  16. Caspase-1 mediates hyperlipidemia-weakened progenitor cell vessel repair

    PubMed Central

    Li, Ya-Feng; Huang, Xiao; Li, Xinyuan; Gong, Ren; Yin, Ying; Nelson, Jun; Gao, Erhe; Zhang, Hongyu; Hoffman, Nicholas E.; Houser, Steven R.; Madesh, Muniswamy; Tilley, Douglas G.; Choi, Eric T.; Jiang, Xiaohua; Huang, Cong-Xin; Wang, Hong; Yang, Xiao-Feng

    2015-01-01

    Caspase-1 activation senses metabolic danger-associated molecular patterns (DAMPs) and mediates the initiation of inflammation in endothelial cells. Here, we examined whether the caspase-1 pathway is responsible for sensing hyperlipidemia as a DAMP in bone marrow (BM)-derived Stem cell antigen-1 positive (Sca-1+) stem/progenitor cells and weakening their angiogenic ability. Using biochemical methods, gene knockout, cell therapy and myocardial infarction (MI) models, we had the following findings: 1) Hyperlipidemia induces caspase-1 activity in mouse Sca-1+ progenitor cells in vivo; 2) Caspase-1 contributes to hyperlipidemia-induced modulation of vascular cell death-related gene expression in vivo; 3) Injection of Sca-1+ progenitor cells from caspase-1−/− mice improves endothelial capillary density in heart and decreases cardiomyocyte death in a mouse model of MI; and 4) Caspase-1−/− Sca-1+ progenitor cell therapy improves mouse cardiac function after MI. Our results provide insight on how hyperlipidemia activates caspase-1 in Sca-1+ progenitor cells, which subsequently weakens Sca-1+ progenitor cell repair of vasculature injury. These results demonstrate the therapeutic potential of caspase-1 inhibition in improving progenitor cell therapy for MI. PMID:26709768

  17. Acquisition of granule neuron precursor identity is a critical determinant of progenitor cell competence to form Hedgehog-induced medulloblastoma

    PubMed Central

    Schüller, Ulrich; Heine, Vivi M.; Mao, Junhao; Kho, Alvin T.; Dillon, Allison K.; Han, Young-Goo; Huillard, Emmanuelle; Sun, Tao; Ligon, Azra H.; Qian, Ying; Ma, Qiufu; Alvarez-Buylla, Arturo; McMahon, Andrew P.; Rowitch, David H.; Ligon, Keith L.

    2008-01-01

    Origins of the brain tumor, medulloblastoma, from stem cells or restricted progenitor cells are unclear. To investigate this, we activated oncogenic Hedgehog (Hh) signaling in multipotent and lineage-restricted CNS progenitors. We observed that normal unipotent cerebellar granule neuron precursors (CGNP) derive from hGFAP+ and Olig2+ RL progenitors. Hh activation in a spectrum of early and late stage CNS progenitors generated similar medulloblastomas, but not other brain cancers, indicating that acquisition of CGNP identity is essential for tumorigenesis. We show in human and mouse medulloblastoma that cells expressing the glia-associated markers Gfap and Olig2 are neoplastic and that they retain features of embryonic-type granule lineage progenitors. Thus, oncogenic Hh signaling promotes medulloblastoma from lineage-restricted granule cell progenitors. PMID:18691547

  18. Foetal hepatic progenitor cells assume a cholangiocytic cell phenotype during two-dimensional pre-culture

    PubMed Central

    Anzai, Kazuya; Chikada, Hiromi; Tsuruya, Kota; Ida, Kinuyo; Kagawa, Tatehiro; Inagaki, Yutaka; Mine, Tesuya; Kamiya, Akihide

    2016-01-01

    Liver consists of parenchymal hepatocytes and other cells. Liver progenitor cell (LPC) is the origin of both hepatocytes and cholangiocytic cells. The analyses of mechanism regulating differentiation of LPCs into these functional cells are important for liver regenerative therapy using progenitor cells. LPCs in adult livers were found to form cysts with cholangiocytic characteristics in 3D culture. In contrast, foetal LPCs cannot form these cholangiocytic cysts in the same culture. Thus, the transition of foetal LPCs into cholangiocytic progenitor cells might occur during liver development. Primary CD45−Ter119−Dlk1+ LPCs derived from murine foetal livers formed ALBUMIN (ALB)+CYTOKERATIN (CK)19− non-cholangiocytic cysts within 3D culture. In contrast, when foetal LPCs were pre-cultured on gelatine-coated dishes, they formed ALB−CK19+ cholangiocytic cysts. When hepatocyte growth factor or oncostatin M, which are inducers of hepatocytic differentiation, was added to pre-culture, LPCs did not form cholangiocytic cysts. These results suggest that the pre-culture on gelatine-coated dishes changed the characteristics of foetal LPCs into cholangiocytic cells. Furthermore, neonatal liver progenitor cells were able to form cholangiocytic cysts in 3D culture without pre-culture. It is therefore possible that the pre-culture of mid-foetal LPCs in vitro functioned as a substitute for the late-foetal maturation step in vivo. PMID:27335264

  19. Differential Effects of Isoxazole-9 on Neural Stem/Progenitor Cells, Oligodendrocyte Precursor Cells, and Endothelial Progenitor Cells

    PubMed Central

    Maki, Takakuni; Shindo, Akihiro; Osumi, Noriko; Zhao, Jing; Lin, Hong; Holder, Julie C.; Chuang, Tsu Tshen; McNeish, John D.; Arai, Ken; Lo, Eng H.

    2015-01-01

    Adult mammalian brain can be plastic after injury and disease. Therefore, boosting endogenous repair mechanisms would be a useful therapeutic approach for neurological disorders. Isoxazole-9 (Isx-9) has been reported to enhance neurogenesis from neural stem/progenitor cells (NSPCs). However, the effects of Isx-9 on other types of progenitor/precursor cells remain mostly unknown. In this study, we investigated the effects of Isx-9 on the three major populations of progenitor/precursor cells in brain: NSPCs, oligodendrocyte precursor cells (OPCs), and endothelial progenitor cells (EPCs). Cultured primary NSPCs, OPCs, or EPCs were treated with various concentrations of Isx-9 (6.25, 12.5, 25, 50 μM), and their cell numbers were counted in a blinded manner. Isx-9 slightly increased the number of NSPCs and effectively induced neuronal differentiation of NSPCs. However, Isx-9 significantly decreased OPC number in a concentration-dependent manner, suggesting cytotoxicity. Isx-9 did not affect EPC cell number. But in a matrigel assay of angiogenesis, Isx-9 significantly inhibited tube formation in outgrowth endothelial cells derived from EPCs. This potential anti-tube-formation effect of Isx-9 was confirmed in a brain endothelial cell line. Taken together, our data suggest that mechanisms and targets for promoting stem/progenitor cells in the central nervous system may significantly differ between cell types. PMID:26407349

  20. Myofibroblasts in Murine Cutaneous Fibrosis Originate From Adiponectin-Positive Intradermal Progenitors

    PubMed Central

    Marangoni, Roberta Goncalves; Korman, Benjamin D.; Wei, Jun; Wood, Tammara A.; Graham, Lauren V.; Whitfield, Michael L.; Scherer, Philipp E.; Tourtellotte, Warren G.; Varga, John

    2015-01-01

    Objective Accumulation of myofibroblasts in fibrotic skin is a hallmark of systemic sclerosis (SSc; scleroderma), but the origins of these cells remain unknown. Because loss of intradermal adipose tissue is a consistent feature of cutaneous fibrosis, we sought to examine the hypothesis that myofibroblasts populating fibrotic dermis derive from adipocytic progenitors. Methods We performed genetic fate mapping studies to investigate the loss of intradermal adipose tissue and its potential role in fibrosis in mice with bleomycin-induced scleroderma. Modulation of adipocytic phenotypes ex vivo was investigated in adipose tissue–derived cells in culture. Results A striking loss of intradermal adipose tissue and its replacement with fibrous tissue were consistently observed in mice with bleomycin-induced fibrosis. Loss of adipose tissue and a decline in the expression of canonical adipogenic markers in lesional skin preceded the onset of dermal fibrosis and expression of fibrogenic markers. Ex vivo, subcutaneous adipocytes were driven by transforming growth factor β to preferentially undergo fibrogenic differentiation. Cell fate mapping studies in mice with the adiponectin promoter–driven Cre recombinase transgenic construct indicated that adiponectin-positive progenitors that are normally confined to the intradermal adipose tissue compartment were distributed throughout the lesional dermis over time, lost their adipocytic markers, and expressed myofibroblast markers in bleomycin-treated mice. Conclusion These observations establish a novel link between intradermal adipose tissue loss and dermal fibrosis and demonstrate that adiponectin-positive intradermal progenitors give rise to dermal myofibroblasts. Adipose tissue loss and adipocyte–myofibroblast transition might be primary events in the pathogenesis of cutaneous fibrosis that represent novel potential targets for therapeutic intervention. PMID:25504959

  1. Use of long-term human marrow cultures to demonstrate progenitor cell precursors in marrow treated with 4-hydroperoxycyclophosphamide

    SciTech Connect

    Winton, E.F.; Colenda, K.W.

    1987-07-01

    The continued retrieval of progenitor cells (CFU-GEMM, BFU-E, CFU-E, CFU-GM) from human long-term marrow cultures (LTMC) is not uncommonly used as evidence that proliferation and differentiation are occurring in more primitive hematopoietic stem cells (HSC) in these cultures. Alternatively, the continued presence of progenitors in LTMC could be the result of survival and/or limited self-renewal of progenitor cells present when the culture was initiated, and such progenitors would have little relevance to the parent HSC. The following studies were designed to determine the relative contributions of precursors of progenitor cells to the total progenitor cells present in LTMC using a two-stage regeneration model. The adherent layer in LTMC was established over 3 weeks, irradiated (875 rad) to permanently eliminate resident hematopoietic cells, and recharged with autologous cryo-preserved marrow that was either treated or not treated (control) with 4-hydroperoxycyclophosphamide (4-HC, 100 micrograms/ml for 30 min). The 4-HC-treated marrow contained no progenitor cells, yet based on clinical autologous bone marrow transplant experience, has intact HSC. Within 1-3 weeks, progenitor cells reappeared in the irradiated LTMC recharged with 4-HC-treated marrow, and were preferentially located in the adherent layer. By 2-6 weeks, the number of progenitor cells in the adherent layer of LTMC recharged with 4-HC marrow was equivalent to control LTMC. The progenitors regenerating in the irradiated LTMC recharged with 4-HC-treated marrow appear to originate from precursors of progenitor cells, perhaps HSC. We propose this model may be useful in elucidating cellular and molecular correlates of progenitor cell regeneration from precursors.

  2. Motor neurons and oligodendrocytes arise from distinct cell lineages by progenitor recruitment

    PubMed Central

    Ravanelli, Andrew M.; Appel, Bruce

    2015-01-01

    During spinal cord development, ventral neural progenitor cells that express the transcription factors Olig1 and Olig2, called pMN progenitors, produce motor neurons and then oligodendrocytes. Whether motor neurons and oligodendrocytes arise from common or distinct progenitors in vivo is not known. Using zebrafish, we found that motor neurons and oligodendrocytes are produced sequentially by distinct progenitors that have distinct origins. When olig2+ cells were tracked during the peak period of motor neuron formation, most differentiated as motor neurons without further cell division. Using time-lapse imaging, we found that, as motor neurons differentiated, more dorsally positioned neuroepithelial progenitors descended to the pMN domain and initiated olig2 expression. Inhibition of Hedgehog signaling during motor neuron differentiation blocked the ventral movement of progenitors, the progressive initiation of olig2 expression, and oligodendrocyte formation. We therefore propose that the motor neuron-to-oligodendrocyte switch results from Hedgehog-mediated recruitment of glial-fated progenitors to the pMN domain subsequent to neurogenesis. PMID:26584621

  3. DISTINCT PROGENITOR POPULATIONS IN SKELETAL MUSCLE ARE BONE MARROW DERIVED AND EXHIBIT DIFFERENT CELL FATES DURING VASCULAR REGENERATION

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Vascular progenitors were previously isolated from blood and bone marrow; herein, we define the presence, phenotype, potential, and origin of vascular progenitors resident within adult skeletal muscle. Two distinct populations of cells were simultaneously isolated from hindlimb muscle: the side popu...

  4. Cell-Surface Protein Profiling Identifies Distinctive Markers of Progenitor Cells in Human Skeletal Muscle.

    PubMed

    Uezumi, Akiyoshi; Nakatani, Masashi; Ikemoto-Uezumi, Madoka; Yamamoto, Naoki; Morita, Mitsuhiro; Yamaguchi, Asami; Yamada, Harumoto; Kasai, Takehiro; Masuda, Satoru; Narita, Asako; Miyagoe-Suzuki, Yuko; Takeda, Shin'ichi; Fukada, So-Ichiro; Nishino, Ichizo; Tsuchida, Kunihiro

    2016-08-01

    Skeletal muscle contains two distinct stem/progenitor populations. One is the satellite cell, which acts as a muscle stem cell, and the other is the mesenchymal progenitor, which contributes to muscle pathogeneses such as fat infiltration and fibrosis. Detailed and accurate characterization of these progenitors in humans remains elusive. Here, we performed comprehensive cell-surface protein profiling of the two progenitor populations residing in human skeletal muscle and identified three previously unrecognized markers: CD82 and CD318 for satellite cells and CD201 for mesenchymal progenitors. These markers distinguish myogenic and mesenchymal progenitors, and enable efficient isolation of the two types of progenitors. Functional study revealed that CD82 ensures expansion and preservation of myogenic progenitors by suppressing excessive differentiation, and CD201 signaling favors adipogenesis of mesenchymal progenitors. Thus, cell-surface proteins identified here are not only useful markers but also functionally important molecules, and provide valuable insight into human muscle biology and diseases. PMID:27509136

  5. Donor origin of circulating endothelial progenitors after allogeneic bone marrow transplantation.

    PubMed

    Ikpeazu, C; Davidson, M K; Halteman, D; Browning, P J; Brandt, S J

    2000-01-01

    Endothelial cell precursors circulate in blood and express antigens found on hematopoietic stem cells, suggesting that such precursors might be subject to transplantation. To investigate, we obtained adherence-depleted peripheral blood mononuclear cells from 3 individuals who had received a sex-mismatched allogeneic bone marrow transplant (BMT) and cultured the cells on fibronectin-coated plates with endothelial growth factors. The phenotype of the spindle-shaped cells that emerged in culture was characterized by immunofluorescent staining, and the origin of the cells was determined using a polymerase chain reaction (PCR)-based assay for polymorphic short tandem repeats (STRs). The cells manifested a number of endothelial characteristics-such as von Wlllebrand factor, CD31, and Flk-1/KDR expression; Bandeiraea simplicifolia lectin 1 binding; and acetylated low-density lipoprotein uptake-but lacked expression of certain markers of activation or differentiation, including intercellular adhesion molecule-1, vascular cell adhesion molecule-1, and the epitope for the anti-endothelial cell antibody P1H12. For each patient and at all time points studied (ranging from 5 to 52 months after transplantation), STR-PCR analysis showed that cultured cells and nucleated blood cells came exclusively from the bone marrow donor. These results demonstrate that circulating endothelial progenitors are both transplantable and capable of long-term repopulation of human allogeneic BMT recipients. PMID:10905767

  6. Effective Mobilization of Very Small Embryonic-Like Stem Cells and Hematopoietic Stem/Progenitor Cells but Not Endothelial Progenitor Cells by Follicle-Stimulating Hormone Therapy

    PubMed Central

    Zbucka-Kretowska, Monika; Eljaszewicz, Andrzej; Lipinska, Danuta; Grubczak, Kamil; Rusak, Malgorzata; Mrugacz, Grzegorz; Dabrowska, Milena; Ratajczak, Mariusz Z.; Moniuszko, Marcin

    2016-01-01

    Recently, murine hematopoietic progenitor stem cells (HSCs) and very small embryonic-like stem cells (VSELs) were demonstrated to express receptors for sex hormones including follicle-stimulating hormone (FSH). This raised the question of whether FSH therapy at clinically applied doses can mobilize stem/progenitor cells in humans. Here we assessed frequencies of VSELs (referred to as Lin−CD235a−CD45−CD133+ cells), HSPCs (referred to as Lin−CD235a−CD45+CD133+ cells), and endothelial progenitor cells (EPCs, identified as CD34+CD144+, CD34+CD133+, and CD34+CD309+CD133+ cells) in fifteen female patients subjected to the FSH therapy. We demonstrated that FSH therapy resulted in statistically significant enhancement in peripheral blood (PB) number of both VSELs and HSPCs. In contrast, the pattern of responses of EPCs delineated by different cell phenotypes was not uniform and we did not observe any significant changes in EPC numbers following hormone therapy. Our data indicate that FSH therapy mobilizes VSELs and HSPCs into peripheral blood that on one hand supports their developmental origin from germ lineage, and on the other hand FSH can become a promising candidate tool for mobilizing HSCs and stem cells with VSEL phenotype in clinical settings. PMID:26635885

  7. Effective Mobilization of Very Small Embryonic-Like Stem Cells and Hematopoietic Stem/Progenitor Cells but Not Endothelial Progenitor Cells by Follicle-Stimulating Hormone Therapy.

    PubMed

    Zbucka-Kretowska, Monika; Eljaszewicz, Andrzej; Lipinska, Danuta; Grubczak, Kamil; Rusak, Malgorzata; Mrugacz, Grzegorz; Dabrowska, Milena; Ratajczak, Mariusz Z; Moniuszko, Marcin

    2016-01-01

    Recently, murine hematopoietic progenitor stem cells (HSCs) and very small embryonic-like stem cells (VSELs) were demonstrated to express receptors for sex hormones including follicle-stimulating hormone (FSH). This raised the question of whether FSH therapy at clinically applied doses can mobilize stem/progenitor cells in humans. Here we assessed frequencies of VSELs (referred to as Lin(-)CD235a(-)CD45(-)CD133(+) cells), HSPCs (referred to as Lin(-)CD235a(-)CD45(+)CD133(+) cells), and endothelial progenitor cells (EPCs, identified as CD34(+)CD144(+), CD34(+)CD133(+), and CD34(+)CD309(+)CD133(+) cells) in fifteen female patients subjected to the FSH therapy. We demonstrated that FSH therapy resulted in statistically significant enhancement in peripheral blood (PB) number of both VSELs and HSPCs. In contrast, the pattern of responses of EPCs delineated by different cell phenotypes was not uniform and we did not observe any significant changes in EPC numbers following hormone therapy. Our data indicate that FSH therapy mobilizes VSELs and HSPCs into peripheral blood that on one hand supports their developmental origin from germ lineage, and on the other hand FSH can become a promising candidate tool for mobilizing HSCs and stem cells with VSEL phenotype in clinical settings. PMID:26635885

  8. Harnessing endogenous stem/progenitor cells for tendon regeneration

    PubMed Central

    Lee, Chang H.; Lee, Francis Y.; Tarafder, Solaiman; Kao, Kristy; Jun, Yena; Yang, Guodong; Mao, Jeremy J.

    2015-01-01

    Current stem cell–based strategies for tissue regeneration involve ex vivo manipulation of these cells to confer features of the desired progenitor population. Recently, the concept that endogenous stem/progenitor cells could be used for regenerating tissues has emerged as a promising approach that potentially overcomes the obstacles related to cell transplantation. Here we applied this strategy for the regeneration of injured tendons in a rat model. First, we identified a rare fraction of tendon cells that was positive for the known tendon stem cell marker CD146 and exhibited clonogenic capacity, as well as multilineage differentiation ability. These tendon-resident CD146+ stem/progenitor cells were selectively enriched by connective tissue growth factor delivery (CTGF delivery) in the early phase of tendon healing, followed by tenogenic differentiation in the later phase. The time-controlled proliferation and differentiation of CD146+ stem/progenitor cells by CTGF delivery successfully led to tendon regeneration with densely aligned collagen fibers, normal level of cellularity, and functional restoration. Using siRNA knockdown to evaluate factors involved in tendon generation, we demonstrated that the FAK/ERK1/2 signaling pathway regulates CTGF-induced proliferation and differentiation of CD146+ stem/progenitor cells. Together, our findings support the use of endogenous stem/progenitor cells as a strategy for tendon regeneration without cell transplantation and suggest this approach warrants exploration in other tissues. PMID:26053662

  9. Circulating Progenitor Cells and Vascular Dysfunction in Chronic Obstructive Pulmonary Disease

    PubMed Central

    Pizarro, Sandra; García-Lucio, Jéssica; Peinado, Víctor I.; Tura-Ceide, Olga; Díez, Marta; Blanco, Isabel; Sitges, Marta; Petriz, Jordi; Torralba, Yolanda; Marín, Pedro; Roca, Josep; Barberà, Joan Albert

    2014-01-01

    Background In chronic obstructive pulmonary disease (COPD), decreased progenitor cells and impairment of systemic vascular function have been suggested to confer higher cardiovascular risk. The origin of these changes and their relationship with alterations in the pulmonary circulation are unknown. Objectives To investigate whether changes in the number of circulating hematopoietic progenitor cells are associated with pulmonary hypertension or changes in endothelial function. Methods 62 COPD patients and 35 controls (18 non-smokers and 17 smokers) without cardiovascular risk factors other than cigarette smoking were studied. The number of circulating progenitors was measured as CD45+CD34+CD133+ labeled cells by flow cytometry. Endothelial function was assessed by flow-mediated dilation. Markers of inflammation and angiogenesis were also measured in all subjects. Results Compared with controls, the number of circulating progenitor cells was reduced in COPD patients. Progenitor cells did not differ between control smokers and non-smokers. COPD patients with pulmonary hypertension showed greater number of progenitor cells than those without pulmonary hypertension. Systemic endothelial function was worse in both control smokers and COPD patients. Interleukin-6, fibrinogen, high sensitivity C-reactive protein, vascular endothelial growth factor and tumor necrosis factor were increased in COPD. In COPD patients, the number of circulating progenitor cells was inversely related to the flow-mediated dilation of systemic arteries. Conclusions Pulmonary and systemic vascular impairment in COPD is associated with cigarette smoking but not with the reduced number of circulating hematopoietic progenitors. The latter appears to be a consequence of the disease itself not related to smoking habit. PMID:25171153

  10. [Umbilical cord hematopoietic progenitor cells bank].

    PubMed

    Morales, V H; Milone, J; Etchegoyen, O; Bordone, J; Uranga, A

    2001-01-01

    Transplantation of hematopoietic progenitor cells (HPC) from bone marrow and mobilized peripheral blood is a standard therapy in malignant and non malignant diseases. The lack of suitable donors is an important limitation. The discovery that umbilical cord blood (CB) contains high numbers of HPC that can be used as an alternative source for allogeneic stem cell transplantation led ITMO to establish BANCEL, the first Argentine and Latinoamerican experience of its kind. The blood remaining in the umbilical cord and in the placenta was requested from women who were in the last quarter of pregnancy. An informed consent together with a medical record focused on family disease was completed. Out of 65 donations, 55 (85%) were collected and 51 (78%) were cryopreserved. Mean collected volume was 110 ml with 68% (75 ml) reduction and mean cryopreservation of 35 ml; ABO and Rh blood group systems were determined, HLA, class I, A and B loci, and class II, DR locus were typed by molecular biology methods using PCR-SSOP. Infectious disease screening was carried out for brucellosis, syphilis, Chagas, hepatitis B and C, HIV I and II, HTLV I and II, toxoplasmosis and cytomegalovirus. Two positive units for hepatitis B (anticore) and two positive units for Chagas were discarded. The quantity of total nucleated cells (TNC), CD34+ cells and the clonogenic capacity were determined twice at the collection and after the procedures of volume reduction previous to cryopreservation. A 5% reduction in both TNC and CD34 cells and a 10% in the colony forming units (CFU) were detected. A good correlation coefficient between TNC and CFU was obtained. PMID:11808425

  11. Retinal progenitor cells, differentiation, and barriers to cell cycle reentry.

    PubMed

    Davis, Denise M; Dyer, Michael A

    2010-01-01

    Neurogenesis in the retina occurs via the coordination of proliferation, cell cycle exit and differentiation of retinal progenitor cells. Until recently, it was widely assumed that once a retinal progenitor cell produced a postmitotic neuron, there was no possibility for cell-cycle re-entry. However, recent studies have shown that mature differentiated horizontal neurons with reduced Rb pathway function can re-enter the cell cycle and proliferate while maintaining their differentiated features. This chapter will explore the molecular and cellular mechanisms that help to keep differentiated retinal neurons and glia postmitotic. We propose that there are cell-type specific barriers to cell-cycle re-entry by differentiated neurons and these may include apoptosis, chromatin/epigenetics mechanisms, cellular morphology and/or metabolic demands that are distinct across cell populations. Our data suggest that differentiated neurons span a continuum of cellular properties related to their ability to re-enter the cell cycle and undergo cytokinesis while maintaining their differentiated features. A deeper understanding of these processes may allow us to begin to explain the cell type specificity of neuronal cell death and tumor susceptibility. For example, neurons that have more barriers to cell-cycle re-entry may be less likely to form tumors but more likely to undergo degeneration. Conversely, neurons that have fewer barriers to cell-cycle re-entry may be more likely to form tumors but less likely to undergo degeneration. PMID:20959166

  12. Lineage Tracing of Resident Tendon Progenitor Cells during Growth and Natural Healing

    PubMed Central

    Dyment, Nathaniel A.; Hagiwara, Yusuke; Matthews, Brya G.; Li, Yingcui; Kalajzic, Ivo; Rowe, David W.

    2014-01-01

    Unlike during embryogenesis, the identity of tissue resident progenitor cells that contribute to postnatal tendon growth and natural healing is poorly characterized. Therefore, we utilized 1) an inducible Cre driven by alpha smooth muscle actin (SMACreERT2), that identifies mesenchymal progenitors, 2) a constitutively active Cre driven by growth and differentiation factor 5 (GDF5Cre), a critical regulator of joint condensation, in combination with 3) an Ai9 Cre reporter to permanently label SMA9 and GDF5-9 populations and their progeny. In growing mice, SMA9+ cells were found in peritendinous structures and scleraxis-positive (ScxGFP+) cells within the tendon midsubstance and myotendinous junction. The progenitors within the tendon midsubstance were transiently labeled as they displayed a 4-fold expansion from day 2 to day 21 but reduced to baseline levels by day 70. SMA9+ cells were not found within tendon entheses or ligaments in the knee, suggesting a different origin. In contrast to the SMA9 population, GDF5-9+ cells extended from the bone through the enthesis and into a portion of the tendon midsubstance. GDF5-9+ cells were also found throughout the length of the ligaments, indicating a significant variation in the progenitors that contribute to tendons and ligaments. Following tendon injury, SMA9+ paratenon cells were the main contributors to the healing response. SMA9+ cells extended over the defect space at 1 week and differentiated into ScxGFP+ cells at 2 weeks, which coincided with increased collagen signal in the paratenon bridge. Thus, SMA9-labeled cells represent a unique progenitor source that contributes to the tendon midsubstance, paratenon, and myotendinous junction during growth and natural healing, while GDF5 progenitors contribute to tendon enthesis and ligament development. Understanding the mechanisms that regulate the expansion and differentiation of these progenitors may prove crucial to improving future repair strategies. PMID:24759953

  13. Endothelial Progenitor Cells in Diabetic Retinopathy

    PubMed Central

    Lois, Noemi; McCarter, Rachel V.; O’Neill, Christina; Medina, Reinhold J.; Stitt, Alan W.

    2014-01-01

    Diabetic retinopathy (DR) is a leading cause of visual impairment worldwide. Patients with DR may irreversibly lose sight as a result of the development of diabetic macular edema (DME) and/or proliferative diabetic retinopathy (PDR); retinal blood vessel dysfunction and degeneration plays an essential role in their pathogenesis. Although new treatments have been recently introduced for DME, including intravitreal vascular endothelial growth factor inhibitors (anti-VEGFs) and steroids, a high proportion of patients (~40–50%) do not respond to these therapies. Furthermore, for people with PDR, laser photocoagulation remains a mainstay therapy despite this being an inherently destructive procedure. Endothelial progenitor cells (EPCs) are a low-frequency population of circulating cells known to be recruited to sites of vessel damage and tissue ischemia where they promote vascular healing and re-perfusion. A growing body of evidence suggests that the number and function of EPCs are altered in patients with varying degrees of diabetes duration, metabolic control, and in the presence or absence of DR. Although there are no clear-cut outcomes from these clinical studies, there is mounting evidence that some EPC sub-types may be involved in the pathogenesis of DR and may also serve as biomarkers for disease progression and stratification. Moreover, some EPC sub-types have considerable potential as therapeutic modalities for DME and PDR in the context of cell therapy. This study presents basic clinical concepts of DR and combines this with a general insight on EPCs and their relation to future directions in understanding and treating this important diabetic complication. PMID:24782825

  14. Progenitors of skeletal muscle satellite cells express the muscle determination gene, MyoD

    PubMed Central

    Kanisicak, Onur; Mendez, Julio J.; Yamamoto, Shoko; Yamamoto, Masakazu; Goldhamer, David J.

    2009-01-01

    Satellite cells are tissue-specific stem cells responsible for skeletal muscle growth and regeneration. Although satellite cells were identified almost 50 years ago, the identity of progenitor populations from which they derive remains controversial. We developed MyoDiCre knockin mice, and used Cre/lox lineage analysis to determine whether satellite cell progenitors express MyoD, a marker of myogenic commitment. Recombination status of satellite cells was determined by confocal microscopy of isolated muscle fibers and by electron microscopic observation of muscle tissue fixed immediately following isolation, using R26R-EYFP and R26R (β-gal) reporter mice, respectively. We show that essentially all adult satellite cells associated with limb and body wall musculature, as well as the diaphragm and extraocular muscles, originate from MyoD+ progenitors. Neonatal satellite cells were Cre-recombined, but only a small minority exhibited ongoing Cre expression, indicating that most satellite cells had expressed MyoD prenatally. We also show that satellite cell development in MyoD-null mice is not due to functional compensation by MyoD non-expressing lineages. The results suggest that satellite cells are derived from committed myogenic progenitors, irrespective of the anatomical location, embryological origin, or physiological properties of associated musculature. PMID:19464281

  15. Analysis of the Contribution of Nonresident Progenitor Cells and Hematopoietic Cells to Reparative Dentinogenesis Using Parabiosis Model in Mice

    PubMed Central

    Frozoni, Marcos; Zaia, Alexandre Augusto; Line, Sergio Roberto Peres; Mina, Mina

    2013-01-01

    Introduction The aim of this study was to analyze the contribution of nonresident progenitor/stem cells and hematopoietic cells to reparative dentinogenesis. Methods Parabiosis was established between C57BL/6-TgN(ACTbEGFP)10sb/J transgenic mice (GFP+) and C57BL/6 wild-type mice (GFP−) to ensure blood cross-circulation between animals. Reparative dentinogenesis was stimulated by pulp exposures and capping on the first maxillary molar in the GFP− mice. Histologic sections of injured molars from GFP− mice were analyzed by epifluorescence microscopy to examine the contributions of GFP+ cells (nonresident progenitor cells and hematopoietic cells originating from GFP+ mice) to reparative dentinogenesis. Results GFP+ cells were detected in close association with reparative dentin formed at the site of pulp exposure in the maxillary first molars of the GFP− mice. Conclusions The present study suggests the participation of the nonresident progenitor cells and hematopoietic cells in reparative dentinogenesis. PMID:22892738

  16. Development and specification of cerebellar stem and progenitor cells in zebrafish: from embryo to adult

    PubMed Central

    2013-01-01

    Background Teleost fish display widespread post-embryonic neurogenesis originating from many different proliferative niches that are distributed along the brain axis. During the development of the central nervous system (CNS) different cell types are produced in a strict temporal order from increasingly committed progenitors. However, it is not known whether diverse neural stem and progenitor cell types with restricted potential or stem cells with broad potential are maintained in the teleost fish brain. Results To study the diversity and output of neural stem and progenitor cell populations in the zebrafish brain the cerebellum was used as a model brain region, because of its well-known architecture and development. Transgenic zebrafish lines, in vivo imaging and molecular markers were used to follow and quantify how the proliferative activity and output of cerebellar progenitor populations progress. This analysis revealed that the proliferative activity and progenitor marker expression declines in juvenile zebrafish before they reach sexual maturity. Furthermore, this correlated with the diminished repertoire of cell types produced in the adult. The stem and progenitor cells derived from the upper rhombic lip were maintained into adulthood and they actively produced granule cells. Ventricular zone derived progenitor cells were largely quiescent in the adult cerebellum and produced a very limited number of glia and inhibitory inter-neurons. No Purkinje or Eurydendroid cells were produced in fish older than 3 months. This suggests that cerebellar cell types are produced in a strict temporal order from distinct pools of increasingly committed stem and progenitor cells. Conclusions Our results in the zebrafish cerebellum show that neural stem and progenitor cell types are specified and they produce distinct cell lineages and sub-types of brain cells. We propose that only specific subtypes of brain cells are continuously produced throughout life in the teleost fish

  17. Stem and progenitor cell dysfunction in human trisomies

    PubMed Central

    Liu, Binbin; Filippi, Sarah; Roy, Anindita; Roberts, Irene

    2015-01-01

    Trisomy 21, the commonest constitutional aneuploidy in humans, causes profound perturbation of stem and progenitor cell growth, which is both cell context dependent and developmental stage specific and mediated by complex genetic mechanisms beyond increased Hsa21 gene dosage. While proliferation of fetal hematopoietic and testicular stem/progenitors is increased and may underlie increased susceptibility to childhood leukemia and testicular cancer, fetal stem/progenitor proliferation in other tissues is markedly impaired leading to the characteristic craniofacial, neurocognitive and cardiac features in individuals with Down syndrome. After birth, trisomy 21-mediated premature aging of stem/progenitor cells may contribute to the progressive multi-system deterioration, including development of Alzheimer's disease. PMID:25520324

  18. Myogenic Progenitors from Mouse Pluripotent Stem Cells for Muscle Regeneration.

    PubMed

    Magli, Alessandro; Incitti, Tania; Perlingeiro, Rita C R

    2016-01-01

    Muscle homeostasis is maintained by resident stem cells which, in both pathologic and non-pathologic conditions, are able to repair or generate new muscle fibers. Although muscle stem cells have tremendous regenerative potential, their application in cell therapy protocols is prevented by several restrictions, including the limited ability to grow ex vivo. Since pluripotent stem cells have the unique potential to both self-renew and expand almost indefinitely, they have become an attractive source of progenitors for regenerative medicine studies. Our lab has demonstrated that embryonic stem cell (ES)-derived myogenic progenitors retain the ability to repair existing muscle fibers and contribute to the pool of resident stem cells. Because of their relevance in both cell therapy and disease modeling, in this chapter we describe the protocol to derive myogenic progenitors from murine ES cells followed by their intramuscular delivery in a murine muscular dystrophy model. PMID:27492174

  19. Development and molecular composition of the hepatic progenitor cell niche.

    PubMed

    Vestentoft, Peter Siig

    2013-05-01

    End-stage liver diseases represent major health problems that are currently treated by liver transplantation. However, given the world-wide shortage of donor livers novel strategies are needed for therapeutic treatment. Adult stem cells have the ability to self-renew and differentiate into the more specialized cell types of a given organ and are found in tissues throughout the body. These cells, whose progeny are termed progenitor cells in human liver and oval cells in rodents, have the potential to treat patients through the generation of hepatic parenchymal cells, even from the patient's own tissue. Little is known regarding the nature of the hepatic progenitor cells. Though they are suggested to reside in the most distal part of the biliary tree, the canal of Hering, the lack of unique surface markers for these cells has hindered their isolation and characterization. Upon activation, they proliferate and form ductular structures, termed "ductular reactions", which radiate into the hepatic parenchyma. The ductular reactions contain activated progenitor cells that not only acquire a phenotype resembling that observed in developing liver but also display markers of differentiation shared with the cholangiocytic or hepatocytic lineages, the two parenchymal hepatic cell types. Interactions between the putative progenitor cells, the surrounding support cells and the extracellular matrix scaffold, all constituting the progenitor cell niche, are likely to be important for regulating progenitor cell activity and differentiation. Therefore, identifying novel progenitor cell markers and deciphering their microenvironment could facilitate clinical use. The aims of the present PhD thesis were to expand knowledge of the hepatic progenitor cell niche and characterize it both during development and in disease. Several animal models of hepatic injury are known to induce activation of the progenitor cells. In order to identify possible progenitor cell markers and niche components

  20. Circulating Hematopoietic Progenitor Cells are Decreased in COPD

    PubMed Central

    Janssen, William J.; Yunt, Zulma X.; Muldrow, Alaina; Kearns, Mark T.; Kloepfer, Angela; Barthel, Lea; Bratton, Donna L.; Bowler, Russell P.; Henson, Peter M.

    2014-01-01

    Rationale Bone marrow derived progenitor cells participate in the repair of injured vessels. The lungs of individuals with emphysema have reduced alveolar capillary density and increased endothelial apoptosis. We hypothesized that circulating levels of endothelial and hematopoietic progenitor cells would be reduced in this group of patients. Objectives The goal of this study was to measure circulating levels of endothelial progenitor cells (EPCs) and hematopoietic progenitor cells (HPCs) in subjects with COPD and to determine if progenitor levels correlated with disease severity and the presence of emphysema. Methods Peripheral blood mononuclear cells were isolated from 61 patients with COPD and 32 control subjects. Levels of EPCs (CD45dim CD34+ ) and HPCs (CD45+ CD34+ VEGF-R2+) were quantified using multi-parameter flow cytometry. Progenitor cell function was assessed using cell culture assays. All subjects were evaluated with spirometry and CT scanning. Measurements and Main Results HPC levels were reduced in subjects with COPD compared to controls, whereas circulating EPC levels were similar between the two groups. HPC levels correlated with severity of obstruction and were lowest in subjects with severe emphysema. These associations remained after correction for factors known to affect progenitor cell levels including age, smoking status, the use of statin medications and the presence of coronary artery disease. The ability of mononuclear cells to form endothelial cell colony forming units (EC-CFU) was also reduced in subjects with COPD. Conclusions HPC levels are reduced in subjects with COPD and correlate with emphysema phenotype and severity of obstruction. Reduction of HPCs may disrupt maintenance of the capillary endothelium, thereby contributing to the pathogenesis of COPD. PMID:24182349

  1. Signaling pathways implicated in hematopoietic progenitor cell proliferation and differentiation.

    PubMed

    Bugarski, Diana; Krstic, Aleksandra; Mojsilovic, Slavko; Vlaski, Marija; Petakov, Marijana; Jovcic, Gordana; Stojanovic, Nevenka; Milenkovic, Pavle

    2007-01-01

    The objective of this study was to investigate the signal transduction pathways associated with the clonal development of myeloid and erythroid progenitor cells. The contribution of particular signaling molecules of protein tyrosine kinases (PTKs), mitogen-activated protein (MAP) kinase, and PI-3 kinase signaling to the growth of murine bone marrow colony forming unit-granulocyte-macrophage (CFU-GM) and erythroid (burst forming unit-erythroid [BFU-E] and colony forming unit-erythroid [CFU-E]) progenitors was examined in studies performed in the presence or absence of specific signal transduction inhibitors. The results clearly pointed to different signal transducing intermediates that are involved in cell proliferation and differentiation depending on the cell lineage, as well as on the progenitors' maturity. Lineage-specific differences were obtained when chemical inhibitors specific for receptor- or nonreceptor-PTKs, as well as for the main groups of distinctly regulated MAPK cascades, were used because all of these compounds suppressed the growth of erythroid progenitors, with no major effects on myeloid progenitors. At the same time, differential involvement of MEK/extracellular signal-regulated kinase (ERK) MAPK transduction pathway was observed in the proliferation and/or differentiation of early, BFU-E, and late, CFU-E, erythroid progenitor cells. The results also demonstrated that phosphatydylinositol (PI)-3 kinase and nuclear factor kappaB (NF-kappaB) transcriptional factor were required for maintenance of both myeloid and erythroid progenitor cell function. Overall, the data obtained indicated that committed hematopoietic progenitors express a certain level of constitutive signaling activity that participates in the regulation of normal steady-state hematopoiesis and point to the importance of evaluating the impact of signal transduction inhibitors on normal bone marrow when used as potential therapeutic agents. PMID:17202596

  2. Potential role of endometrial stem/progenitor cells in the pathogenesis of early-onset endometriosis.

    PubMed

    Gargett, C E; Schwab, K E; Brosens, J J; Puttemans, P; Benagiano, G; Brosens, I

    2014-07-01

    The pathogenesis of early-onset endometriosis has recently been revisited, sparked by the discovery of endometrial stem/progenitor cells and their possible role in endometriosis, and because maternal pregnancy hormone withdrawal following delivery induces uterine bleeding in the neonate. The neonatal uterus has a large cervix to corpus ratio which is functionally blocked with mucous, supporting the concept of retrograde shedding of neonatal endometrium. Only 5% show overt bleeding. Furthermore, the presence of endometriosis in pre-menarcheal girls and even in severe stage in adolescents supports the theory that early-onset endometriosis may originate from retrograde uterine bleeding soon after birth. Endometrial stem/progenitor cells have been identified in menstrual blood suggesting that they may also be shed during neonatal uterine bleeding. Thus, we hypothesized that stem/progenitor cells present in shedding endometrium may have a role in the pathogenesis of early-onset endometriosis through retrograde neonatal uterine bleeding. During the neonatal and pre-pubertal period, shed endometrial stem/progenitor cells are postulated to survive in the pelvic cavity in the absence of circulating estrogens supported by niche cells also shed during neonatal uterine bleeding. According to this hypothesis, during thelarche, under the influence of rising estrogen levels, endometrial stem/progenitor cells proliferate and establish ectopic endometrial lesions characteristic of endometriosis. This New Research Horizon review builds on recent discussions on the pathogenesis of early-onset endometriosis and raises new avenues for research into this costly condition. PMID:24674992

  3. Endothelial progenitor cells in acute ischemic stroke

    PubMed Central

    Martí-Fàbregas, Joan; Crespo, Javier; Delgado-Mederos, Raquel; Martínez-Ramírez, Sergi; Peña, Esther; Marín, Rebeca; Dinia, Lavinia; Jiménez-Xarrié, Elena; Fernández-Arcos, Ana; Pérez-Pérez, Jesús; Querol, Luis; Suárez-Calvet, Marc; Badimon, Lina

    2013-01-01

    Objectives The levels of circulating endothelial progenitor cells (EPCs) in ischemic stroke have not been studied extensively and reported results are inconsistent. We aimed to investigate the time course, the prognostic relevance, and the variables associated with EPC counts in patients with ischemic stroke at different time points. Material and methods We studied prospectively 146 consecutive patients with ischemic stroke within the first 48 h from the onset of symptoms (baseline). We evaluated demographic data, classical vascular risk factors, treatment with thrombolysis and statins, stroke etiology, National Institute of Health and Stroke Scale score and outcome (favorable when Rankin scale score 0–2). Blood samples were collected at baseline, at day 7 after stroke (n = 121) and at 3 months (n = 92). The EPC were measured by flow cytometry. Results We included 146 patients with a mean age of 70.8 ± 12.2 years. The circulating EPC levels were higher on day 7 than at baseline or at 3 months (P = 0.045). Pretreatment with statins (odds ratio [OR] 3.11, P = 0.008) and stroke etiology (P = 0.032) were predictive of EPC counts in the baseline sample. EPC counts were not associated with stroke severity or functional outcome in all the patients. However, using multivariate analyses, a better functional outcome was found in patients with higher EPC counts in large-artery atherosclerosis and small-vessel disease etiologic subtypes. Conclusions After acute ischemic stroke, circulating EPC counts peaked at day 7. Pretreatment with statins increased the levels of EPC. In patients with large-artery atherosclerosis and small-vessel disease subtypes, higher counts were related to better outcome at 3 months. PMID:24363968

  4. Lineage tracing of Sox2-expressing progenitor cells in the mouse inner ear reveals a broad contribution to non-sensory tissues and insights into the origin of the organ of Corti.

    PubMed

    Gu, Rende; Brown, Rogers M; Hsu, Chih-Wei; Cai, Tiantian; Crowder, Alyssa L; Piazza, Victor G; Vadakkan, Tegy J; Dickinson, Mary E; Groves, Andrew K

    2016-06-01

    The transcription factor Sox2 is both necessary and sufficient for the generation of sensory regions of the inner ear. It regulates expression of the Notch ligand Jag1 in prosensory progenitors, which signal to neighboring cells to up-regulate Sox2 and sustain prosensory identity. However, the expression pattern of Sox2 in the early inner ear is very broad, suggesting that Sox2-expressing progenitors form a wide variety of cell types in addition to generating the sensory regions of the ear. We used Sox2-CreER mice to follow the fates of Sox2-expressing cells at different stages in ear development. We find that Sox2-expressing cells in the early otocyst give rise to large numbers of non-sensory structures throughout the inner ear, and that Sox2 only becomes a truly prosensory marker at embryonic day (E)11.5. Our fate map reveals the organ of Corti derives from a central domain on the medial side of the otocyst and shows that a significant amount of the organ of Corti derives from a Sox2-negative population in this region. PMID:27090805

  5. Langerhans cell origin and regulation

    PubMed Central

    Collin, Matthew; Milne, Paul

    2015-01-01

    Purpose To summarize recent research on the ontogeny of Langerhans cells and regulation of their homeostasis in quiescent and inflamed conditions Recent findings Langerhans cells (LCs) originate pre-natally and may endure throughout life, independently of bone marrow derived precursors. Fate mapping experiments have recently resolved the relative contribution of primitive yolk sac and fetal liver hematopoiesis to the initial formation of LCs. In post-natal life, local self-renewal restores LC numbers following chronic or low grade inflammatory insults. However, severe inflammation recruits de novo bone marrow derived precursors in two waves; a transient population of classical monocytes followed by uncharacterized myeloid precursors that form a stable self-renewing LC network as inflammation subsides. Human CD1c+ dendritic cells have LC potential in vitro, raising the possibility that DC progenitors provide the second wave. LC development depends upon TGFβ receptor signaling with distinct pathways active during differentiation and homeostasis. LC survival is mediated by multiple pathways including mTOR and ERK signaling, mechanisms that become highly relevant in LC neoplasia. Summary The study of LCs continues to provide novel and unexpected insights into the origin and regulation of myeloid cell populations. The melding of macrophage and DC biology, shaped by a unique habitat, is a special feature of LCs. PMID:26554892

  6. Simultaneous characterization of progenitor cell compartments in adult human liver.

    PubMed

    Porretti, Laura; Cattaneo, Alessandra; Colombo, Federico; Lopa, Raffaella; Rossi, Giorgio; Mazzaferro, Vincenzo; Battiston, Carlo; Svegliati-Baroni, Gianluca; Bertolini, Francesco; Rebulla, Paolo; Prati, Daniele

    2010-01-01

    The human liver is a complex tissue consisting of epithelial, endothelial, hematopoietic, and mesenchymal elements that probably derive from multiple lineage-committed progenitors, but no comprehensive study aimed at identifying and characterizing intrahepatic precursors has yet been published. Cell suspensions for this study were obtained by enzymatic digestion of liver specimens taken from 20 patients with chronic liver disease and 13 multiorgan donors. Stem and progenitor cells were first isolated, amplified, and characterized ex vivo according to previously validated methods, and then optimized flow cytometry was used to assess their relative frequencies and characterize their immunophenotypes in the clinical specimens. Stem and progenitor cells committed to hematopoietic, endothelial, epithelial, and mesenchymal lineages were clearly identifiable in livers from both healthy and diseased subjects. Within the mononuclear liver cell compartment, epithelial progenitors [epithelial cell adhesion molecule (EpCAM)(+)/CD49f(+)/CD29(+)/CD45(-)] accounted for 2.7-3.5% whereas hematopoietic (CD34(+)/CD45(+)), endothelial [vascular endothelial growth factor-2 (KDR)(+)/CD146(+)/CD45(-)], and mesenchymal [CD73(+)/CD105(+)/CD90 (Thy-1)(+)/CD45 (-)] stem cells and progenitors accounted for smaller fractions (0.02-0.6%). The patients' livers had higher percentages of hematopoietic and endothelial precursors than those of the donors. In conclusion, we identified and characterized precursors committed to four different lineages in adult human liver. We also optimized a flow cytometry approach that will be useful in exploring the contribution of these cells to the pathogenesis of liver disease. PMID:19960544

  7. Inhibition of cyclooxygenase (COX)-2 affects endothelial progenitor cell proliferation

    SciTech Connect

    Colleselli, Daniela; Bijuklic, Klaudija; Mosheimer, Birgit A.; Kaehler, Christian M. . E-mail: C.M.Kaehler@uibk.ac.at

    2006-09-10

    Growing evidence indicates that inducible cyclooxygenase-2 (COX-2) is involved in the pathogenesis of inflammatory disorders and various types of cancer. Endothelial progenitor cells recruited from the bone marrow have been shown to be involved in the formation of new vessels in malignancies and discussed for being a key point in tumour progression and metastasis. However, until now, nothing is known about an interaction between COX and endothelial progenitor cells (EPC). Expression of COX-1 and COX-2 was detected by semiquantitative RT-PCR and Western blot. Proliferation kinetics, cell cycle distribution and rate of apoptosis were analysed by MTT test and FACS analysis. Further analyses revealed an implication of Akt phosphorylation and caspase-3 activation. Both COX-1 and COX-2 expression can be found in bone-marrow-derived endothelial progenitor cells in vitro. COX-2 inhibition leads to a significant reduction in proliferation of endothelial progenitor cells by an increase in apoptosis and cell cycle arrest. COX-2 inhibition leads further to an increased cleavage of caspase-3 protein and inversely to inhibition of Akt activation. Highly proliferating endothelial progenitor cells can be targeted by selective COX-2 inhibition in vitro. These results indicate that upcoming therapy strategies in cancer patients targeting COX-2 may be effective in inhibiting tumour vasculogenesis as well as angiogenic processes.

  8. Adipose Tissue Residing Progenitors (Adipocyte Lineage Progenitors and Adipose Derived Stem Cells (ADSC)

    PubMed Central

    Berry, Ryan; Rodeheffer, Matthew S.; Rosen, Clifford J.; Horowitz, Mark C.

    2015-01-01

    The formation of brown, white and beige adipocytes have been a subject of intense scientific interest in recent years due to the growing obesity epidemic in the United States and around the world. This interest has led to the identification and characterization of specific tissue resident progenitor cells that give rise to each adipocyte population in vivo. However, much still remains to be discovered about each progenitor population in terms of their “niche” within each tissue and how they are regulated at the cellular and molecular level during healthy and diseased states. While our knowledge of brown, white and beige adipose tissue is rapidly increasing, little is still known about marrow adipose tissue and its progenitor despite recent studies demonstrating possible roles for marrow adipose tissue in regulating the hematopoietic space and systemic metabolism at large. This chapter focuses on our current knowledge of brown, white, beige and marrow adipose tissue with a specific focus on the formation of each tissue from tissue resident progenitor cells. PMID:26526875

  9. Leukaemia cell of origin identified by chromatin landscape of bulk tumour cells.

    PubMed

    George, Joshy; Uyar, Asli; Young, Kira; Kuffler, Lauren; Waldron-Francis, Kaiden; Marquez, Eladio; Ucar, Duygu; Trowbridge, Jennifer J

    2016-01-01

    The precise identity of a tumour's cell of origin can influence disease prognosis and outcome. Methods to reliably define tumour cell of origin from primary, bulk tumour cell samples has been a challenge. Here we use a well-defined model of MLL-rearranged acute myeloid leukaemia (AML) to demonstrate that transforming haematopoietic stem cells (HSCs) and multipotent progenitors results in more aggressive AML than transforming committed progenitor cells. Transcriptome profiling reveals a gene expression signature broadly distinguishing stem cell-derived versus progenitor cell-derived AML, including genes involved in immune escape, extravasation and small GTPase signal transduction. However, whole-genome profiling of open chromatin reveals precise and robust biomarkers reflecting each cell of origin tested, from bulk AML tumour cell sampling. We find that bulk AML tumour cells exhibit distinct open chromatin loci that reflect the transformed cell of origin and suggest that open chromatin patterns may be leveraged as prognostic signatures in human AML. PMID:27397025

  10. Endometrial stem/progenitor cells: the first 10 years

    PubMed Central

    Gargett, Caroline E.; Schwab, Kjiana E.; Deane, James A.

    2016-01-01

    BACKGROUND The existence of stem/progenitor cells in the endometrium was postulated many years ago, but the first functional evidence was only published in 2004. The identification of rare epithelial and stromal populations of clonogenic cells in human endometrium has opened an active area of research on endometrial stem/progenitor cells in the subsequent 10 years. METHODS The published literature was searched using the PubMed database with the search terms ‘endometrial stem cells and menstrual blood stem cells' until December 2014. RESULTS Endometrial epithelial stem/progenitor cells have been identified as clonogenic cells in human and as label-retaining or CD44+ cells in mouse endometrium, but their characterization has been modest. In contrast, endometrial mesenchymal stem/stromal cells (MSCs) have been well characterized and show similar properties to bone marrow MSCs. Specific markers for their enrichment have been identified, CD146+PDGFRβ+ (platelet-derived growth factor receptor beta) and SUSD2+ (sushi domain containing-2), which detected their perivascular location and likely pericyte identity in endometrial basalis and functionalis vessels. Transcriptomics and secretomics of SUSD2+ cells confirm their perivascular phenotype. Stromal fibroblasts cultured from endometrial tissue or menstrual blood also have some MSC characteristics and demonstrate broad multilineage differentiation potential for mesodermal, endodermal and ectodermal lineages, indicating their plasticity. Side population (SP) cells are a mixed population, although predominantly vascular cells, which exhibit adult stem cell properties, including tissue reconstitution. There is some evidence that bone marrow cells contribute a small population of endometrial epithelial and stromal cells. The discovery of specific markers for endometrial stem/progenitor cells has enabled the examination of their role in endometrial proliferative disorders, including endometriosis, adenomyosis and Asherman

  11. Impaired DNA replication within progenitor cell pools promotes leukemogenesis.

    PubMed

    Bilousova, Ganna; Marusyk, Andriy; Porter, Christopher C; Cardiff, Robert D; DeGregori, James

    2005-12-01

    Impaired cell cycle progression can be paradoxically associated with increased rates of malignancies. Using retroviral transduction of bone marrow progenitors followed by transplantation into mice, we demonstrate that inhibition of hematopoietic progenitor cell proliferation impairs competition, promoting the expansion of progenitors that acquire oncogenic mutations which restore cell cycle progression. Conditions that impair DNA replication dramatically enhance the proliferative advantage provided by the expression of Bcr-Abl or mutant p53, which provide no apparent competitive advantage under conditions of healthy replication. Furthermore, for the Bcr-Abl oncogene the competitive advantage in contexts of impaired DNA replication dramatically increases leukemogenesis. Impaired replication within hematopoietic progenitor cell pools can select for oncogenic events and thereby promote leukemia, demonstrating the importance of replicative competence in the prevention of tumorigenesis. The demonstration that replication-impaired, poorly competitive progenitor cell pools can promote tumorigenesis provides a new rationale for links between tumorigenesis and common human conditions of impaired DNA replication such as dietary folate deficiency, chemotherapeutics targeting dNTP synthesis, and polymorphisms in genes important for DNA metabolism. PMID:16277552

  12. Erythropoietin guides multipotent hematopoietic progenitor cells toward an erythroid fate

    PubMed Central

    Grover, Amit; Mancini, Elena; Moore, Susan; Mead, Adam J.; Atkinson, Deborah; Rasmussen, Kasper D.; O’Carroll, Donal; Jacobsen, Sten Eirik W.

    2014-01-01

    The erythroid stress cytokine erythropoietin (Epo) supports the development of committed erythroid progenitors, but its ability to act on upstream, multipotent cells remains to be established. We observe that high systemic levels of Epo reprogram the transcriptomes of multi- and bipotent hematopoietic stem/progenitor cells in vivo. This induces erythroid lineage bias at all lineage bifurcations known to exist between hematopoietic stem cells (HSCs) and committed erythroid progenitors, leading to increased erythroid and decreased myeloid HSC output. Epo, therefore, has a lineage instructive role in vivo, through suppression of non-erythroid fate options, demonstrating the ability of a cytokine to systematically bias successive lineage choices in favor of the generation of a specific cell type. PMID:24493804

  13. Myocardial infarction activates CCR2+ hematopoietic stem and progenitor cells

    PubMed Central

    Dutta, Partha; Sager, Hendrik B.; Stengel, Kristy R.; Naxerova, Kamila; Courties, Gabriel; Saez, Borja; Silberstein, Lev; Heidt, Timo; Sebas, Matthew; Sun, Yuan; Wojtkiewicz, Gregory; Feruglio, Paolo Fumene; King, Kevin; Baker, Joshua N.; van der Laan, Anja M.; Borodovsky, Anna; Fitzgerald, Kevin; Hulsmans, Maarten; Hoyer, Friedrich; Iwamoto, Yoshiko; Vinegoni, Claudio; Brown, Dennis; Di Carli, Marcelo; Libby, Peter; Hiebert, Scott; Scadden, David; Swirski, Filip K.; Weissleder, Ralph; Nahrendorf, Matthias

    2015-01-01

    SUMMARY Following myocardial infarction (MI), myeloid cells derived from the hematopoietic system drive a sharp increase in systemic leukocyte levels that correlate closely with mortality. The origin of these myeloid cells, and the response of hematopoietic stem and progenitor cells (HSPCs) to MI, however, is unclear. Here, we identify a CCR2+CD150+CD48− LSK hematopoietic subset as the most upstream contributor to emergency myelopoiesis after ischemic organ injury. CCR2+ HSPC have fourfold higher proliferation rates than CCR2−CD150+CD48− LSK cells, display a myeloid differentiation bias, and dominate the migratory HSPC population. We further demonstrate the myeloid translocation gene 16 (Mtg16) regulates CCR2+ HSPC emergence. Mtg16−/− mice have decreased levels of systemic monocytes and infarct-associated macrophages and display compromised tissue healing and post-MI heart failure. Together, these data provide insights into regulation of emergency hematopoiesis after ischemic injury, and identify potential therapeutic targets to modulate leukocyte output after MI. PMID:25957903

  14. Epithelial Sodium Channels in Pulmonary Epithelial Progenitor and Stem Cells

    PubMed Central

    Liu, Yang; Jiang, Bi-Jie; Zhao, Run-Zhen; Ji, Hong-Long

    2016-01-01

    Regeneration of the epithelium of mammalian lungs is essential for restoring normal function following injury, and various cells and mechanisms contribute to this regeneration and repair. Club cells, bronchioalveolar stem cells (BASCs), and alveolar type II epithelial cells (ATII) are dominant stem/progenitor cells for maintaining epithelial turnover and repair. Epithelial Na+ channels (ENaC), a critical pathway for transapical salt and fluid transport, are expressed in lung epithelial progenitors, including club and ATII cells. Since ENaC activity and expression are development- and differentiation-dependent, apically located ENaC activity has therefore been used as a functional biomarker of lung injury repair. ENaC activity may be involved in the migration and differentiation of local and circulating stem/progenitor cells with diverse functions, eventually benefiting stem cells spreading to re-epithelialize injured lungs. This review summarizes the potential roles of ENaC expressed in native progenitor and stem cells in the development and regeneration of the respiratory epithelium. PMID:27570489

  15. The Mammary Gland Microenvironment Directs Progenitor Cell Fate In Vivo

    PubMed Central

    Bussard, Karen M.; Smith, Gilbert H.

    2011-01-01

    The mammary gland is a unique organ that continually undergoes postnatal developmental changes. In mice, the mammary gland is formed via signals from terminal end buds, which direct ductal growth and elongation. Intriguingly, it is likely that the entire cellular repertoire of the mammary gland is formed from a single antecedent cell. Furthermore, in order to produce progeny of varied lineages (e.g., luminal and myoepithelial cells), signals from the local tissue microenvironment influence mammary stem/progenitor cell fate. Data have shown that cells from the mammary gland microenvironment reprogram adult somatic cells from other organs (testes, nerve) into cells that produce milk and express mammary epithelial cell proteins. Similar results were found for human tumorigenic epithelial carcinoma cells. Presently, it is unclear how the deterministic power of the mammary gland microenvironment controls epithelial cell fate. Regardless, signals generated by the microenvironment have a profound influence on progenitor cell differentiation in vivo. PMID:21647291

  16. Derivation and Isolation of NKX2.1-Positive Basal Forebrain Progenitors from Human Embryonic Stem Cells

    PubMed Central

    Germain, Noélle D.; Banda, Erin C.; Becker, Sandy; Naegele, Janice R.

    2013-01-01

    Gamma aminobutyric acid (GABA)-expressing interneurons are the major inhibitory cells of the cerebral cortex and hippocampus. These interneurons originate in the medial ganglionic eminence (MGE) and lateral ganglionic eminence of the ventral forebrain during embryonic development and show reduced survival and function in a variety of neurological disorders, including temporal lobe epilepsy. We and others have proposed that embryonic stem cell (ESC)–derived ventral forebrain progenitors might provide a source of new GABAergic interneurons for cell-based therapies. While human ESCs (hESCs) are readily differentiated in vitro into dorsal telencephalic neural progenitors, standard protocols for generating ventral subtypes of telencephalic progenitors are less effective. We now report efficient derivation of GABAergic progenitors using an established hESC reporter line that expresses green fluorescent protein (GFP) under the control of an endogenous NKX2.1 promoter. GABAergic progenitors were derived from this hESC line by a modified monolayer neural differentiation protocol. Consistent with sonic hedgehog (SHH)-dependent specification of NKX2.1-positive progenitors in the embryonic MGE, we show a dose-dependent increase in the generation of NKX2.1:GFP-positive progenitors after SHH treatment in vitro. Characterization of NKX2.1:GFP-positive cells confirms their identity as MGE-like neural progenitors, based on gene expression profiles and their ability to differentiate into GABAergic interneurons. We are also able to generate highly enriched populations of NKX2.1:GFP-positive progenitors, including cells with telencephalic identity, by fluorescence-activated cell sorting. These hESC-derived ventral forebrain progenitors are suitable candidates for cell-based therapies that aim at replacing dysfunctional or damaged cortical or hippocampal GABAergic interneurons. PMID:23351095

  17. Endothelial progenitor cells and burn injury - exploring the relationship.

    PubMed

    Banyard, Derek A; Adnani, Blake O; Melkumyan, Satenik; Araniego, Cheryl Ann; Widgerow, Alan D

    2016-01-01

    Burn wounds result in varying degrees of soft tissue damage that are typically graded clinically. Recently a key participant in neovascularization, the endothelial progenitor cell, has been the subject of intense cardiovascular research to explore whether it can serve as a biomarker for vascular injury. In this review, we examine the identity of the endothelial progenitor cell as well as the evidence that support its role as a key responder after burn insult. While there is conflicting evidence with regards to the delta of endothelial progenitor cell mobilization and burn severity, it is clear that they play an important role in wound healing. Systematic and controlled studies are needed to clarify this relationship, and whether this population can serve as a biomarker for burn severity. PMID:27574674

  18. Multipotent progenitor cells isolated from adult human pancreatic tissue.

    PubMed

    Todorov, I; Nair, I; Ferreri, K; Rawson, J; Kuroda, A; Pascual, M; Omori, K; Valiente, L; Orr, C; Al-Abdullah, I; Riggs, A; Kandeel, F; Mullen, Y

    2005-10-01

    The supply of islet cells is a limiting factor for the widespread application of islet transplantation of type-1 diabetes. Islets constitute 1% to 2% of pancreatic tissue, leaving approximately 98% as discard after islet isolation and purification. In this report we present our data on the isolation of multipotent progenitor cells from discarded adult human pancreatic tissue. The collected cells from discarded nonislet fractions, after enzymatic digestion and gradient purification of islets, were dissociated for suspension culture in a serum-free medium. The cell clusters grown to a size of 100 to 150 mum contained cells staining for stage-specific embryonic antigens, but not insulin or C-peptide. To direct cell differentiation toward islets, clusters were recultured in a pancreatic differentiation medium. Insulin and C-peptide-positive cells by immunocytochemistry appeared within a week, reaching over 10% of the cell population. Glucagon and somatostatin-positive cells were also detected. The cell clusters were found to secrete insulin in response to glucose stimulation. Cells from the same clusters also had the capacity for differentiation into neural cells, as documented by staining for neural and glial cell markers when cultured as monolayers in media containing neurotrophic factors. These data suggest that multipotent pancreatic progenitor cells exist within the human pancreatic tissue that is typically discarded during islet isolation procedures. These adult progenitor cells can be successfully differentiated into insulin-producing cells, and thus they have the potential for treatment of type-1 diabetes mellitus. PMID:16298614

  19. Neural stem and progenitor cells in health and disease

    PubMed Central

    Ladran, Ian; Tran, Ngoc; Topol, Aaron; Brennand, Kristen J.

    2014-01-01

    Neural stem/progenitor cells (NSPCs) have the potential to differentiate into neurons, astrocytes, and/or oligodendrocytes. Because these cells can be expanded in culture, they represent a vast source of neural cells. With the recent discovery that patient fibroblasts can be reprogrammed directly into induced NSPCs, the regulation of NSPC fate and function, in the context of cell-based disease models and patient-specific cell-replacement therapies, warrants review. PMID:24068527

  20. FGF-dependent midline-derived progenitor cells in hypothalamic infundibular development.

    PubMed

    Pearson, Caroline Alayne; Ohyama, Kyoji; Manning, Liz; Aghamohammadzadeh, Soheil; Sang, Helen; Placzek, Marysia

    2011-06-01

    The infundibulum links the nervous and endocrine systems, serving as a crucial integrating centre for body homeostasis. Here we describe that the chick infundibulum derives from two subsets of anterior ventral midline cells. One set remains at the ventral midline and forms the posterior-ventral infundibulum. A second set migrates laterally, forming a collar around the midline. We show that collar cells are composed of Fgf3(+) SOX3(+) proliferating progenitors, the induction of which is SHH dependent, but the maintenance of which requires FGF signalling. Collar cells proliferate late into embryogenesis, can generate neurospheres that passage extensively, and differentiate to distinct fates, including hypothalamic neuronal fates and Fgf10(+) anterior-dorsal infundibular cells. Together, our study shows that a subset of anterior floor plate-like cells gives rise to Fgf3(+) SOX3(+) progenitor cells, demonstrates a dual origin of infundibular cells and reveals a crucial role for FGF signalling in governing extended infundibular growth. PMID:21610037

  1. FGF-dependent midline-derived progenitor cells in hypothalamic infundibular development

    PubMed Central

    Pearson, Caroline Alayne; Ohyama, Kyoji; Manning, Liz; Aghamohammadzadeh, Soheil; Sang, Helen; Placzek, Marysia

    2011-01-01

    The infundibulum links the nervous and endocrine systems, serving as a crucial integrating centre for body homeostasis. Here we describe that the chick infundibulum derives from two subsets of anterior ventral midline cells. One set remains at the ventral midline and forms the posterior-ventral infundibulum. A second set migrates laterally, forming a collar around the midline. We show that collar cells are composed of Fgf3+ SOX3+ proliferating progenitors, the induction of which is SHH dependent, but the maintenance of which requires FGF signalling. Collar cells proliferate late into embryogenesis, can generate neurospheres that passage extensively, and differentiate to distinct fates, including hypothalamic neuronal fates and Fgf10+ anterior-dorsal infundibular cells. Together, our study shows that a subset of anterior floor plate-like cells gives rise to Fgf3+ SOX3+ progenitor cells, demonstrates a dual origin of infundibular cells and reveals a crucial role for FGF signalling in governing extended infundibular growth. PMID:21610037

  2. FGF-2 signal promotes proliferation of cerebellar progenitor cells and their oligodendrocytic differentiation at early postnatal stage

    SciTech Connect

    Naruse, Masae; Shibasaki, Koji; Ishizaki, Yasuki

    2015-08-07

    The origins and developmental regulation of cerebellar oligodendrocytes are largely unknown, although some hypotheses of embryonic origins have been suggested. Neural stem cells exist in the white matter of postnatal cerebellum, but it is unclear whether these neural stem cells generate oligodendrocytes at postnatal stages. We previously showed that cerebellar progenitor cells, including neural stem cells, widely express CD44 at around postnatal day 3. In the present study, we showed that CD44-positive cells prepared from the postnatal day 3 cerebellum gave rise to neurospheres, while CD44-negative cells prepared from the same cerebellum did not. These neurospheres differentiated mainly into oligodendrocytes and astrocytes, suggesting that CD44-positive neural stem/progenitor cells might generate oligodendrocytes in postnatal cerebellum. We cultured CD44-positive cells from the postnatal day 3 cerebellum in the presence of signaling molecules known as mitogens or inductive differentiation factors for oligodendrocyte progenitor cells. Of these, only FGF-2 promoted survival and proliferation of CD44-positive cells, and these cells differentiated into O4+ oligodendrocytes. Furthermore, we examined the effect of FGF-2 on cerebellar oligodendrocyte development ex vivo. FGF-2 enhanced proliferation of oligodendrocyte progenitor cells and increased the number of O4+ and CC1+ oligodendrocytes in slice cultures. These results suggest that CD44-positive cells might be a source of cerebellar oligodendrocytes and that FGF-2 plays important roles in their development at an early postnatal stage. - Highlights: • CD44 is expressed in cerebellar neural stem/progenitor cells at postnatal day 3 (P3). • FGF-2 promoted proliferation of CD44-positive progenitor cells from P3 cerebellum. • FGF-2 promoted oligodendrocytic differentiation of CD44-positive progenitor cells. • FGF-2 increased the number of oligodendrocytes in P3 cerebellar slice culture.

  3. Characterization of reversibly immortalized calvarial mesenchymal progenitor cells

    PubMed Central

    Shenaq, Deana S.; Teven, Chad M.; Seitz, Iris A.; Rastegar, Farbod; Greives, Matthew R.; He, Tong-Chuan; Reid, Russell R.

    2015-01-01

    Background Bone morphogenetic proteins (BMPs) play a sentinel role in osteoblastic differentiation, and their implementation into clinical practice can revolutionize cranial reconstruction. Preliminary data suggest a therapeutic role of adenoviral gene delivery of BMPs in murine calvarial defect healing. Poor transgene expression inherent in direct adenoviral therapy prompted investigation of cell-based strategies. Objective To isolate and immortalize calvarial cells as a potential progenitor source for osseous tissue engineering. Materials & Methods Cells were isolated from murine skulls, cultured, and transduced with a retroviral vector bearing the loxP-flanked SV40 large T antigen. Immortalized calvarial cells (iCALs) were evaluated via light microscopy, immunohistochemistry, and flow cytometry to determine whether the immortalization process altered cell morphology or progenitor cell profile. iCALs were then infected with adenoviral vectors encoding BMP-2 or GFP and assessed for early and late stages of osteogenic differentiation. Results Immortalization of calvarial cells did not alter cell morphology as demonstrated by phase contrast microscopy. Mesenchymal progenitor cell markers CD166, CD73, CD44, and CD105 were detected at varying levels in both primary cells and iCALs. Significant elevations in alkaline phosphatase activity, osteocalcin mRNA transcription, and matrix mineralization were detected in BMP-2 treated iCALs compared to GFP treated cells. Gross and histological analyses revealed ectopic bone production from treated cells compared to controls in an in vivo stem cell implantation assay. Conclusion We have established an immortalized osteoprogenitor cell line from juvenile calvarial cells that retain a progenitor cell phenotype and can successfully undergo osteogenic differentiation upon BMP-2 stimulation. These cells provide a valuable platform to investigate the molecular mechanisms underlying intramembranous bone formation and to screen for

  4. Secondary Sphere Formation Enhances the Functionality of Cardiac Progenitor Cells

    PubMed Central

    Cho, Hyun-Jai; Lee, Ho-Jae; Youn, Seock-Won; Koh, Seok-Jin; Won, Joo-Yun; Chung, Yeon-Ju; Cho, Hyun-Ju; Yoon, Chang-Hwan; Lee, Sae-Won; Lee, Eun Ju; Kwon, Yoo-Wook; Lee, Hae-Young; Lee, Sang Hun; Ho, Won-Kyung; Park, Young-Bae; Kim, Hyo-Soo

    2012-01-01

    Loss of cardiomyocytes impairs cardiac function after myocardial infarction (MI). Recent studies suggest that cardiac stem/progenitor cells could repair the damaged heart. However, cardiac progenitor cells are difficult to maintain in terms of purity and multipotency when propagated in two-dimensional culture systems. Here, we investigated a new strategy that enhances potency and enriches progenitor cells. We applied the repeated sphere formation strategy (cardiac explant → primary cardiosphere (CS) formation → sphere-derived cells (SDCs) in adherent culture condition → secondary CS formation by three-dimensional culture). Cells in secondary CS showed higher differentiation potentials than SDCs. When transplanted into the infarcted myocardium, secondary CSs engrafted robustly, improved left ventricular (LV) dysfunction, and reduced infarct sizes more than SDCs did. In addition to the cardiovascular differentiation of transplanted secondary CSs, robust vascular endothelial growth factor (VEGF) synthesis and secretion enhanced neovascularization in the infarcted myocardium. Microarray pathway analysis and blocking experiments using E-selectin knock-out hearts, specific chemicals, and small interfering RNAs (siRNAs) for each pathway revealed that E-selectin was indispensable to sphere initiation and ERK/Sp1/VEGF autoparacrine loop was responsible for sphere maturation. These results provide a simple strategy for enhancing cellular potency for cardiac repair. Furthermore, this strategy may be implemented to other types of stem/progenitor cell-based therapy. PMID:22713697

  5. Mesenchymal cells. Defining a mesenchymal progenitor niche at single-cell resolution.

    PubMed

    Kumar, Maya E; Bogard, Patrick E; Espinoza, F Hernán; Menke, Douglas B; Kingsley, David M; Krasnow, Mark A

    2014-11-14

    Most vertebrate organs are composed of epithelium surrounded by support and stromal tissues formed from mesenchyme cells, which are not generally thought to form organized progenitor pools. Here, we use clonal cell labeling with multicolor reporters to characterize individual mesenchymal progenitors in the developing mouse lung. We observe a diversity of mesenchymal progenitor populations with different locations, movements, and lineage boundaries. Airway smooth muscle (ASM) progenitors map exclusively to mesenchyme ahead of budding airways. Progenitors recruited from these tip pools differentiate into ASM around airway stalks; flanking stalk mesenchyme can be induced to form an ASM niche by a lateral bud or by an airway tip plus focal Wnt signal. Thus, mesenchymal progenitors can be organized into localized and carefully controlled domains that rival epithelial progenitor niches in regulatory sophistication. PMID:25395543

  6. Clonal analysis of human dendritic cell progenitor using a stromal cell culture

    PubMed Central

    Lee, Jaeyop; Breton, Gaëlle; Aljoufi, Arafat; Zhou, Yu Jerry; Puhr, Sarah; Nussenzweig, Michel C.; Liu, Kang

    2015-01-01

    Different dendritic cell (DC) subsets co-exist in humans and coordinate the immune response. Having a short life, DCs must be constantly replenished from their progenitors in the bone marrow through hematopoiesis. Identification of a DC-restricted progenitor in mouse has improved our understanding of how DC lineage diverges from myeloid and lymphoid lineages. However, identification of the DC-restricted progenitor in humans has not been possible because a system that simultaneously nurtures differentiation of human DCs, myeloid and lymphoid cells, is lacking. Here we report a cytokine and stromal cell culture that allows evaluation of CD34+ progenitor potential to all three DC subsets as well as other myeloid and lymphoid cells, at a single cell level. Using this system, we show that human granulocyte–macrophage progenitors are heterogeneous and contain restricted progenitors to DCs. PMID:26056939

  7. Making Skeletal Muscle from Progenitor and Stem Cells: Development versus Regeneration

    PubMed Central

    Li, Lydia; Rozo, Michelle E.; Lepper, Christoph

    2012-01-01

    For locomotion, vertebrate animals use the force generated by contractile skeletal muscles. These muscles form an actin/myosin-based bio-machinery that is attached to skeletal elements to effect body movement and maintain posture. The mechanics, physiology, and homeostasis of skeletal muscles in normal and disease states are of significant clinical interest. How muscles originate from progenitors during embryogenesis has attracted considerable attention from developmental biologists. How skeletal muscles regenerate and repair themselves after injury by the use of stem cells is an important process to maintain muscle homeostasis throughout lifetime. In recent years, much progress has been made towards uncovering the origins of myogenic progenitors and stem cells as well as the regulation of these cells during development and regeneration. PMID:22737183

  8. LPS induces pulp progenitor cell recruitment via complement activation.

    PubMed

    Chmilewsky, F; Jeanneau, C; Laurent, P; About, I

    2015-01-01

    Complement system, a major component of the natural immunity, has been recently identified as an important mediator of the dentin-pulp regeneration process through STRO-1 pulp cell recruitment by the C5a active fragment. Moreover, it has been shown recently that under stimulation with lipoteichoic acid, a complex component of the Gram-positive bacteria cell wall, human pulp fibroblasts are able to synthesize all proteins required for complement activation. However, Gram-negative bacteria, which are also involved in tooth decay, are known as powerful activators of complement system and inflammation. Here, we investigated the role of Gram-negative bacteria-induced complement activation on the pulp progenitor cell recruitment using lipopolysaccharide (LPS), a major component of all Gram-negative bacteria. Our results show that incubating pulp fibroblasts with LPS induced membrane attack complex formation and C5a release in serum-free fibroblast cultures. The produced C5a binds to the pulp progenitor cells' membrane and induces their migration toward the LPS stimulation chamber, as revealed by the dynamic transwell migration assays. The inhibition of this migration by the C5aR-specific antagonist W54011 indicates that the pulp progenitor migration is mediated by the interaction between C5a and C5aR. Our findings demonstrate, for the first time, a direct interaction between the recruitment of progenitor pulp cells and the activation of complement system generated by pulp fibroblast stimulation with LPS. PMID:25359783

  9. Fascia Origin of Adipose Cells.

    PubMed

    Su, Xueying; Lyu, Ying; Wang, Weiyi; Zhang, Yanfei; Li, Danhua; Wei, Suning; Du, Congkuo; Geng, Bin; Sztalryd, Carole; Xu, Guoheng

    2016-05-01

    Adipocytes might arise from vascular stromal cells, pericytes and endothelia within adipose tissue or from bone marrow cells resident in nonadipose tissue. Here, we identified adipose precursor cells resident in fascia, an uninterrupted sheet of connective tissue that extends throughout the body. The cells and fragments of superficial fascia from the rat hindlimb were highly capable of spontaneous and induced adipogenic differentiation but not myogenic and osteogenic differentiation. Fascial preadipocytes expressed multiple markers of adipogenic progenitors, similar to subcutaneous adipose-derived stromal cells (ASCs) but discriminative from visceral ASCs. Such preadipocytes resided in fascial vasculature and were physiologically active in vivo. In growing rats, adipocytes dynamically arose from the adventitia to form a thin adipose layer in the fascia. Later, some adipocytes appeared to overlay on top of other adipocytes, an early sign for the formation of three-dimensional adipose tissue in fascia. The primitive adipose lobules extended invariably along blood vessels toward the distal fascia areas. At the lobule front, nascent capillaries wrapped and passed ahead of mature adipocytes to form the distal neovasculature niche, which might replenish the pool of preadipocytes and supply nutrients and hormones necessary for continuous adipogenesis. Our findings suggest a novel model for the origin of adipocytes from the fascia, which explains both neogenesis and expansion of adipose tissue. Fascial preadipocytes generate adipose cells to form primitive adipose lobules in superficial fascia, a subcutaneous nonadipose tissue. With continuous adipogenesis, these primitive adipose lobules newly formed in superficial fascia may be the rudiment of subcutaneous adipose tissue. Stem Cells 2016;34:1407-1419. PMID:26867029

  10. A Progenitor Cell Expressing Transcription Factor RORγt Generates All Human Innate Lymphoid Cell Subsets.

    PubMed

    Scoville, Steven D; Mundy-Bosse, Bethany L; Zhang, Michael H; Chen, Li; Zhang, Xiaoli; Keller, Karen A; Hughes, Tiffany; Chen, Luxi; Cheng, Stephanie; Bergin, Stephen M; Mao, Hsiaoyin C; McClory, Susan; Yu, Jianhua; Carson, William E; Caligiuri, Michael A; Freud, Aharon G

    2016-05-17

    The current model of murine innate lymphoid cell (ILC) development holds that mouse ILCs are derived downstream of the common lymphoid progenitor through lineage-restricted progenitors. However, corresponding lineage-restricted progenitors in humans have yet to be discovered. Here we identified a progenitor population in human secondary lymphoid tissues (SLTs) that expressed the transcription factor RORγt and was unique in its ability to generate all known ILC subsets, including natural killer (NK) cells, but not other leukocyte populations. In contrast to murine fate-mapping data, which indicate that only ILC3s express Rorγt, these human progenitor cells as well as human peripheral blood NK cells and all mature ILC populations expressed RORγt. Thus, all human ILCs can be generated through an RORγt(+) developmental pathway from a common progenitor in SLTs. These findings help establish the developmental signals and pathways involved in human ILC development. PMID:27178467

  11. Endothelial cells are progenitors of cardiac pericytes and vascular smooth muscle cells

    PubMed Central

    Chen, Qi; Zhang, Hui; Liu, Yang; Adams, Susanne; Eilken, Hanna; Stehling, Martin; Corada, Monica; Dejana, Elisabetta; Zhou, Bin; Adams, Ralf H.

    2016-01-01

    Mural cells of the vessel wall, namely pericytes and vascular smooth muscle cells, are essential for vascular integrity. The developmental sources of these cells and molecular mechanisms controlling their progenitors in the heart are only partially understood. Here we show that endocardial endothelial cells are progenitors of pericytes and vascular smooth muscle cells in the murine embryonic heart. Endocardial cells undergo endothelial–mesenchymal transition and convert into primitive mesenchymal progenitors expressing the platelet-derived growth factor receptors, PDGFRα and PDGFRβ. These progenitors migrate into the myocardium, differentiate and assemble the wall of coronary vessels, which requires canonical Wnt signalling involving Frizzled4, β-catenin and endothelial cell-derived Wnt ligands. Our findings identify a novel and unexpected population of progenitors for coronary mural cells with potential relevance for heart function and disease conditions. PMID:27516371

  12. Endothelial cells are progenitors of cardiac pericytes and vascular smooth muscle cells.

    PubMed

    Chen, Qi; Zhang, Hui; Liu, Yang; Adams, Susanne; Eilken, Hanna; Stehling, Martin; Corada, Monica; Dejana, Elisabetta; Zhou, Bin; Adams, Ralf H

    2016-01-01

    Mural cells of the vessel wall, namely pericytes and vascular smooth muscle cells, are essential for vascular integrity. The developmental sources of these cells and molecular mechanisms controlling their progenitors in the heart are only partially understood. Here we show that endocardial endothelial cells are progenitors of pericytes and vascular smooth muscle cells in the murine embryonic heart. Endocardial cells undergo endothelial-mesenchymal transition and convert into primitive mesenchymal progenitors expressing the platelet-derived growth factor receptors, PDGFRα and PDGFRβ. These progenitors migrate into the myocardium, differentiate and assemble the wall of coronary vessels, which requires canonical Wnt signalling involving Frizzled4, β-catenin and endothelial cell-derived Wnt ligands. Our findings identify a novel and unexpected population of progenitors for coronary mural cells with potential relevance for heart function and disease conditions. PMID:27516371

  13. Fetal adrenal capsular cells serve as progenitor cells for steroidogenic and stromal adrenocortical cell lineages in M. musculus

    PubMed Central

    Wood, Michelle A.; Acharya, Asha; Finco, Isabella; Swonger, Jessica M.; Elston, Marlee J.; Tallquist, Michelle D.; Hammer, Gary D.

    2013-01-01

    The lineage relationships of fetal adrenal cells and adrenal capsular cells to the differentiated adrenal cortex are not fully understood. Existing data support a role for each cell type as a progenitor for cells of the adult cortex. This report reveals that subsets of capsular cells are descendants of fetal adrenocortical cells that once expressed Nr5a1. These fetal adrenocortical cell descendants within the adrenal capsule express Gli1, a known marker of progenitors of steroidogenic adrenal cells. The capsule is also populated by cells that express Tcf21, a known inhibitor of Nr5a1 gene expression. We demonstrate that Tcf21-expressing cells give rise to Nr5a1-expressing cells but only before capsular formation. After the capsule has formed, capsular Tcf21-expressing cells give rise only to non-steroidogenic stromal adrenocortical cells, which also express collagen 1a1, desmin and platelet-derived growth factor (alpha polypeptide) but not Nr5a1. These observations integrate prior observations that define two separate origins of adult adrenocortical steroidogenic cells (fetal adrenal cortex and/or the adrenal capsule). Thus, these observations predict a unique temporal and/or spatial role of adult cortical cells that arise directly from either fetal cortical cells or from fetal cortex-derived capsular cells. Last, the data uncover the mechanism by which two populations of fetal cells (fetal cortex derived Gli1-expressing cells and mesenchymal Tcf21-expressing mesenchymal cells) participate in the establishment of the homeostatic capsular progenitor cell niche of the adult cortex. PMID:24131628

  14. Sox2 in the differentiation of cochlear progenitor cells

    PubMed Central

    Kempfle, Judith S.; Turban, Jack L.; Edge, Albert S. B.

    2016-01-01

    HMG domain transcription factor, Sox2, is a critical gene for the development of cochlear hair cells, the receptor cells for hearing, but this has been ascribed to expansion of the progenitors that become hair cells. Here, we show that Sox2 activated Atoh1, a transcription factor important for hair cell differentiation, through an interaction with the 3′ enhancer of Atoh1. Binding to consensus sequences in the Atoh1 enhancer was dependent on the level of Sox2, and the extent of enhancer binding correlated to the extent of activation. Atoh1 activation by Sox2 was required for embryonic hair cell development: deletion of Sox2 in an inducible mutant, even after progenitor cells were fully established, halted development of hair cells, and silencing also inhibited postnatal differentiation of hair cells induced by inhibition of γ-secretase. Sox2 is thus required in the cochlea to both expand the progenitor cells and initiate their differentiation to hair cells. PMID:26988140

  15. Sox2 in the differentiation of cochlear progenitor cells.

    PubMed

    Kempfle, Judith S; Turban, Jack L; Edge, Albert S B

    2016-01-01

    HMG domain transcription factor, Sox2, is a critical gene for the development of cochlear hair cells, the receptor cells for hearing, but this has been ascribed to expansion of the progenitors that become hair cells. Here, we show that Sox2 activated Atoh1, a transcription factor important for hair cell differentiation, through an interaction with the 3' enhancer of Atoh1. Binding to consensus sequences in the Atoh1 enhancer was dependent on the level of Sox2, and the extent of enhancer binding correlated to the extent of activation. Atoh1 activation by Sox2 was required for embryonic hair cell development: deletion of Sox2 in an inducible mutant, even after progenitor cells were fully established, halted development of hair cells, and silencing also inhibited postnatal differentiation of hair cells induced by inhibition of γ-secretase. Sox2 is thus required in the cochlea to both expand the progenitor cells and initiate their differentiation to hair cells. PMID:26988140

  16. Adult Thymic Medullary Epithelium Is Maintained and Regenerated by Lineage-Restricted Cells Rather Than Bipotent Progenitors.

    PubMed

    Ohigashi, Izumi; Zuklys, Saulius; Sakata, Mie; Mayer, Carlos E; Hamazaki, Yoko; Minato, Nagahiro; Hollander, Georg A; Takahama, Yousuke

    2015-11-17

    Medullary thymic epithelial cells (mTECs) play an essential role in establishing self-tolerance in T cells. mTECs originate from bipotent TEC progenitors that generate both mTECs and cortical TECs (cTECs), although mTEC-restricted progenitors also have been reported. Here, we report in vivo fate-mapping analysis of cells that transcribe β5t, a cTEC trait expressed in bipotent progenitors, during a given period in mice. We show that, in adult mice, most mTECs are derived from progenitors that transcribe β5t during embryogenesis and the neonatal period up to 1 week of age. The contribution of adult β5t(+) progenitors was minor even during injury-triggered regeneration. Our results further demonstrate that adult mTEC-restricted progenitors are derived from perinatal β5t(+) progenitors. These results indicate that the adult thymic medullary epithelium is maintained and regenerated by mTEC-lineage cells that pass beyond the bipotent stage during early ontogeny. PMID:26549457

  17. Centroacinar Cells Are Progenitors That Contribute to Endocrine Pancreas Regeneration.

    PubMed

    Delaspre, Fabien; Beer, Rebecca L; Rovira, Meritxell; Huang, Wei; Wang, Guangliang; Gee, Stephen; Vitery, Maria del Carmen; Wheelan, Sarah J; Parsons, Michael J

    2015-10-01

    Diabetes is associated with a paucity of insulin-producing β-cells. With the goal of finding therapeutic routes to treat diabetes, we aim to find molecular and cellular mechanisms involved in β-cell neogenesis and regeneration. To facilitate discovery of such mechanisms, we use a vertebrate organism where pancreatic cells readily regenerate. The larval zebrafish pancreas contains Notch-responsive progenitors that during development give rise to adult ductal, endocrine, and centroacinar cells (CACs). Adult CACs are also Notch responsive and are morphologically similar to their larval predecessors. To test our hypothesis that adult CACs are also progenitors, we took two complementary approaches: 1) We established the transcriptome for adult CACs. Using gene ontology, transgenic lines, and in situ hybridization, we found that the CAC transcriptome is enriched for progenitor markers. 2) Using lineage tracing, we demonstrated that CACs do form new endocrine cells after β-cell ablation or partial pancreatectomy. We concluded that CACs and their larval predecessors are the same cell type and represent an opportune model to study both β-cell neogenesis and β-cell regeneration. Furthermore, we show that in cftr loss-of-function mutants, there is a deficiency of larval CACs, providing a possible explanation for pancreatic complications associated with cystic fibrosis. PMID:26153247

  18. Human neural progenitor cells in central nervous system lesions.

    PubMed

    Åkesson, Elisabet; Sundström, Erik

    2016-02-01

    Various immature cells can be isolated from human embryonic and fetal central nervous system (CNS) residual tissue and potentially be used in cell therapy for a number of neurological diseases and CNS insults. Transplantation of neural stem and progenitor cells is essential for replacing lost cells, particularly in the CNS with very limited endogenous regenerative capacity. However, while dopamine released from transplanted cells can substitute the lost dopamine neurons in the experimental models of Parkinson's disease, stem and progenitor cells primarily have a neuroprotective effect, probably through the release of trophic factors. Understanding the therapeutic effects of transplanted cells is crucial to determine the design of clinical trials. During the last few years, a number of clinical trials for CNS diseases and insults such as amyotrophic lateral sclerosis (ALS), stroke, and spinal cord trauma using neural progenitor cells have been initiated. Data from these early studies will provide vital information on the safety of transplanting these cells, which still is a major concern. That the beneficial results observed in experimental models also can be repeated in the clinical setting is highly hoped for. PMID:26803559

  19. Expression of glypican-4 in haematopoietic-progenitor and bone-marrow-stromal cells.

    PubMed Central

    Siebertz, B; Stöcker, G; Drzeniek, Z; Handt, S; Just, U; Haubeck, H D

    1999-01-01

    Heparan sulphate proteoglycans and the extracellular matrix of bone-marrow-stromal cells are important components of the microenvironment of haematopoietic tissues and are involved in the interaction of haematopoietic stem and stromal cells. Previous studies have emphasized the role of heparan sulphate proteoglycan synthesis by bone-marrow-stromal cells. In the present study we describe the expression of glypican-4 (GPC-4), belonging to the glypican family, in bone-marrow-stromal cells and haematopoietic-progenitor cells of human and murine origin. Expression of GPC-4 was shown on the mRNA-level by reverse transcription-PCR and Northern blot analysis. Amplification products were cloned and sequenced, to confirm these results. To analyze the expression of GPC-4 on the protein level, polyclonal antibodies against selected peptides were raised in rabbits. Western blot analysis showed expression of GPC-4 as a heparan sulphate proteoglycan in the human haematopoietic-progenitor cell line TF-1 and normal human bone marrow. These results were confirmed by FACS analysis of TF-1 cells. Furthermore, GPC-4-positive progenitor cells and stromal cells were enriched from normal human bone marrow by magnetic-cell sorting and analysed by confocal laser-scanning microscopy. PMID:10585884

  20. Properties of Adult Lung Stem and Progenitor Cells.

    PubMed

    Bertoncello, Ivan

    2016-12-01

    The last decade has seen significant progress in understanding the organisation of regenerative cells in the adult lung. Cell-lineage tracing and in vitro clonogenic assays have enabled the identification and characterisation of endogenous lung epithelial stem and progenitor cells. Selective lung injury models, and genetically engineered mice have revealed highly conserved gene networks, factors, signalling pathways, and cellular interactions important in maintaining lung homeostasis and regulating lung regeneration and repair following injury. This review describes the current models of lung epithelial stem and progenitor cell organisation in adult mice, and the impediments encountered in translational studies aiming to identify and characterise their human homologs. J. Cell. Physiol. 231: 2582-2589, 2016. © 2016 Wiley Periodicals, Inc. PMID:27062064

  1. Hepatic progenitor cells, stem cells, and AFP expression in models of liver injury

    PubMed Central

    Kuhlmann, Wolf D; Peschke, Peter

    2006-01-01

    Adult hepatocytes and liver-cell progenitors play a role in restoring liver tissue after injury. For the study of progenitor cells in liver repair, experimental models included (a) surgical removal of liver tissue by partial hepatectomy; (b) acute injury by carbontetrachloride; (c) acute injury by d-galactosamine (GalN) and N-nitrosomorpholine (NNM); and (d) chemical hepatocarcinogenesis by feeding NNM in low and high doses. Serological and immunohistological detection of alpha-fetoprotein gene expression served to follow pathways of cellular differentiation. Stem cells were not required in models of surgical removal of parenchyma and in carbon tetrachloride intoxication of adult hepatocytes. In contrast, regeneration of liver occurred through biliary epithelial cells in injuries induced by GalN and NNM. These biliary epithelial cells, collectively called oval cells, are most probably derived from the canals of Hering. Proliferating bile duct cells reached a level of differentiation with reactivation of foetal genes and significant alpha-1-fetoprotein (AFP) synthesis signalling a certain degree of retrodifferentiation with potential stemness. Due to the same embryonic origin of bile ducts and hepatocytes, biliary epithelium and its proliferating progeny (oval cells) have a defined role in liver regeneration as a transit and amplification compartment. In their early proliferation stage, oval cells were heavily engaged in DNA synthesis ([3H]thymidine labelling). Pulse-chase experiments during experimental hepatocarcinogenesis exhibited their development into hepatocytes with high risk for transformation and leading to foci of altered hepatocytes. Hepatocellular carcinomas may arise either from proliferating/differentiating oval cells or from adult hepatocytes; both cell types have stem-like properties. AFP-positive and AFP-negative carcinomas occurred in the same liver. They may represent random clonal origin. The heterogeneity of phenotypic marker (AFP) correlated

  2. Vascular smooth muscle cell differentiation from human stem/progenitor cells.

    PubMed

    Steinbach, Sarah K; Husain, Mansoor

    2016-05-15

    Transplantation of vascular smooth muscle cells (VSMCs) is a promising cellular therapy to promote angiogenesis and wound healing. However, VSMCs are derived from diverse embryonic sources which may influence their role in the development of vascular disease and in its therapeutic modulation. Despite progress in understanding the mechanisms of VSMC differentiation, there remains a shortage of robust methods for generating lineage-specific VSMCs from pluripotent and adult stem/progenitor cells in serum-free conditions. Here we describe a method for differentiating pluripotent stem cells, such as embryonic and induced pluripotent stem cells, as well as skin-derived precursors, into lateral plate-derived VSMCs including 'coronary-like' VSMCs and neural crest-derived VSMC, respectively. We believe this approach will have broad applications in modeling origin-specific disease vulnerability and in developing personalized cell-based vascular grafts for regenerative medicine. PMID:26678794

  3. Lung microvascular endothelium is enriched with progenitor cells that exhibit vasculogenic capacity.

    PubMed

    Alvarez, Diego F; Huang, Lan; King, Judy A; ElZarrad, M Khair; Yoder, Mervin C; Stevens, Troy

    2008-03-01

    Endothelial progenitor cells (EPCs) have been isolated postnatally from bone marrow, blood, and both the intima and adventitia of conduit vessels. However, it is unknown whether EPCs can be isolated from the lung microcirculation. Thus we sought to determine whether the microvasculature possesses EPCs capable of de novo vasculogenesis. Rat pulmonary artery (PAEC) and microvascular (PMVEC) endothelial cells were isolated and selected by using a single-cell clonogenic assay. Whereas the majority of PAECs (approximately 60%) were fully differentiated, the majority of PMVECs (approximately 75%) divided, with approximately 50% of the single cells giving rise to large colonies (>2,000 cells/colony). These highly proliferative cells exhibited the capacity to reconstitute the entire proliferative hierarchy of PMVECs, unveiling the existence of resident microvascular endothelial progenitor cells (RMEPCs). RMEPCs expressed endothelial cell markers (CD31, CD144, endothelial nitric oxide synthase, and von Willenbrand factor) and progenitor cell antigens (CD34 and CD309) but did not express the leukocyte marker CD45. Consistent with their origin, RMEPCs interacted with Griffonia simplicifolia and displayed restrictive barrier properties. In vitro and in vivo Matrigel assays revealed that RMEPCs possess vasculogenic capacity, forming ultrastructurally normal de novo vessels. Thus the pulmonary microcirculation is enriched with EPCs that display vasculogenic competence while maintaining functional endothelial microvascular specificity. PMID:18065657

  4. Endocrine-committed progenitor cells retain their differentiation potential in the absence of neurogenin-3 expression

    PubMed Central

    Prasadan, Krishna; Tulachan, Sidhartha; Guo, Ping; Shiota, Chiyo; Shah, Sohail; Gittes, George

    2016-01-01

    Neurogenin-3 (ngn-3) expression is critical for endocrine development in the developing pancreas. We found that when ngn-3 was inhibited in an E11.5 pancreas, using either morpholino antisense or siRNA, it led to a significant decrease in endocrine differentiation after seven days in culture. Endocrine differentiation was rescued when ngn-3 inhibition was withdrawn after three days of culture, suggesting that the embryonic pancreas retains progenitor cells with the ability to differentiate into endocrine cell types when ngn-3 expression recurs. To determine whether the rescue phenomenon observed after withdrawing ngn-3 antisense treatment was the result of the original endocrine-committed cells reinitiating endocrine differentiation, or was instead due to new recruitment of later progenitor cells, we blocked ngn-3 expression for only the last four days of a seven-day culture. Here, insulin-positive differentiation was slightly reduced, but there was a normal number of glucagon-positive cells. In addition, there was an increase in SOX9-positive cells in ngn-3 inhibited, as well as in ngn-3 rescued pancreata, with a significant proportion of these SOX9-positive cells co-localized with DBA, an early ductal marker. This increased number of cells with co-localization of SOX9 and DBA could indicate an increased numbers of endocrine progenitor cells. PMID:20471370

  5. Evaluating the Progenitor Cells of Ovarian Cancer: Analysis of Current Animal Models

    PubMed Central

    King, Shelby M.; Burdette, Joanna E.

    2013-01-01

    Serous ovarian cancer is one of the most lethal gynecological malignancies. Progress on effective diagnostics and therapeutics for this disease are hampered by ambiguity as to the cellular origins of this histotype of ovarian cancer, as well as limited suitable animal models to analyze early stages of disease. In this report, we will review current animal models with respect to the two proposed progenitor cells for serous ovarian cancer, the ovarian surface epithelium and the fallopian tube epithelium. PMID:21777513

  6. Pericardial patch venoplasty heals via attraction of venous progenitor cells.

    PubMed

    Bai, Hualong; Wang, Mo; Foster, Trenton R; Hu, Haidi; He, Hao; Hashimoto, Takuya; Hanisch, Jesse J; Santana, Jeans M; Xing, Ying; Dardik, Alan

    2016-06-01

    Pericardial patches are commonly used during cardiovascular surgery to close blood vessels. In arteries, patches accumulate arterial progenitor cells; we hypothesized that venous patches would accumulate venous progenitor cells, in the absence of arterial pressure. We developed a novel rat inferior vena cava (IVC) venotomy model and repaired it with a pericardial patch. Cells infiltrated the patch to form a thick neointima by day 7; some cells were CD34(+)/VEGFR2(+) and CD31(+)/Eph-B4(+) consistent with development of venous identity in the healing patch. Compared to arterial patches, the venous patches had increased neointimal thickness at day 7 without any pseudoaneurysms. Addition of an arteriovenous fistula (AVF) to increase blood flow on the patch resulted in reduced patch neointimal thickness and proliferation, but neointimal thickness was not reversible with AVF ligation. These results show that rat patch venoplasty is a novel model of aggressive venous neointimal hyperplasia. PMID:27354544

  7. Transplantation of Adrenal Cortical Progenitor Cells Enriched by Nile Red

    PubMed Central

    Dunn, James C.Y.; Chu, Yinting; Qin, Harry H.; Zupekan, Tatiana

    2009-01-01

    Background The adrenal cortex may contain progenitor cells useful for tissue regeneration. Currently there are no established methods to isolate these cells. Material and Methods Murine adrenal cells were sorted into a Nile-Red-bright (NRbright) and a Nile-Red-dim (NRdim) population of cells according to their degree of cholesterol content revealed by Nile Red fluorescence. The cells were transplanted under the renal capsule to determine their ability for regeneration. Results The NRbright cells contained an abundance of lipid droplets, whereas the NRdim cells contained little. The NRbright cells expressed Sf1 and the more differentiated adrenal cortical genes including Cyp11a1, Cyp11b1, and Cyp11b2, whereas the NRdim cells expressed Sf1 but not the more differentiated adrenal cortical genes. After 56 days of implantation in unilateral adrenalectomized mice, the NRdim cells expressed Sf1 and the more differentiated adrenal cortical genes, whereas the NRbright cells ceased to express Sf1 as well as the more differentiated adrenal cortical genes. NRdim cells also proliferated in the presence of basic fibroblast growth factor. Conclusions The population of NRdim cells contained adrenal cortical progenitor cells that can proliferate and give rise to differentiated daughter cells. These cells may be useful for adrenal cortical regeneration. PMID:19592014

  8. Isolating Mesangiogenic Progenitor Cells (MPCs) from Human Bone Marrow.

    PubMed

    Montali, Marina; Barachini, Serena; Pacini, Simone; Panvini, Francesca M; Petrini, Mario

    2016-01-01

    In a research study aimed to isolate human bone marrow (hBM)-derived Mesenchymal Stromal Cells (MSCs) for clinical applications, we identified a novel cell population specifically selected for growth in human serum supplemented medium. These cells are characterized by morphological, phenotypic, and molecular features distinct from MSCs and we named them Mesodermal Progenitor Cells (MPCs). MPCs are round, with a thick highly refringent core region; they show strong, trypsin resistant adherence to plastic. Failure to expand MPCs directly revealed that they are slow in cycling. This is as also suggested by Ki-67 negativity. On the other hand, culturing MPCs in standard medium designed for MSC expansion, gave rise to a population of exponentially growing MSC-like cells. Besides showing mesenchymal differentiation capacity MPCs retained angiogenic potential, confirming their multiple lineage progenitor nature. Here we describe an optimized highly reproducible protocol to isolate and characterize hBM-MPCs by flow cytometry (CD73, CD90, CD31, and CD45), nestin expression, and F-actin organization. Protocols for mesengenic and angiogenic differentiation of MPCs are also provided. Here we also suggest a more appropriate nomenclature for these cells, which has been re-named as "Mesangiogenic Progenitor Cells". PMID:27500428

  9. Selection of Phage Display Peptides Targeting Human Pluripotent Stem Cell-Derived Progenitor Cell Lines.

    PubMed

    Bignone, Paola A; Krupa, Rachel A; West, Michael D; Larocca, David

    2016-01-01

    The ability of human pluripotent stem cells (hPS) to both self-renew and differentiate into virtually any cell type makes them a promising source of cells for cell-based regenerative therapies. However, stem cell identity, purity, and scalability remain formidable challenges that need to be overcome for translation of pluripotent stem cell research into clinical applications. Directed differentiation from hPS cells is inefficient and residual contamination with pluripotent cells that have the potential to form tumors remains problematic. The derivation of scalable (self-renewing) embryonic progenitor stem cell lines offers a solution because they are well defined and clonally pure. Clonally pure progenitor stem cell lines also provide a means for identifying cell surface targeting reagents that are useful for identification, tracking, and repeated derivation of the corresponding progenitor stem cell types from additional hPS cell sources. Such stem cell targeting reagents can then be applied to the manufacture of genetically diverse banks of human embryonic progenitor cell lines for drug screening, disease modeling, and cell therapy. Here we present methods to identify human embryonic progenitor stem cell targeting peptides by selection of phage display libraries on clonal embryonic progenitor cell lines and demonstrate their use for targeting quantum dots (Qdots) for stem cell labeling. PMID:25410289

  10. Alteration of cardiac progenitor cell potency in GRMD dogs.

    PubMed

    Cassano, M; Berardi, E; Crippa, S; Toelen, J; Barthelemy, I; Micheletti, R; Chuah, M; Vandendriessche, T; Debyser, Z; Blot, S; Sampaolesi, M

    2012-01-01

    Among the animal models of Duchenne muscular dystrophy (DMD), the Golden Retriever muscular dystrophy (GRMD) dog is considered the best model in terms of size and pathological onset of the disease. As in human patients presenting with DMD or Becker muscular dystrophies (BMD), the GRMD is related to a spontaneous X-linked mutation of dystrophin and is characterized by myocardial lesions. In this respect, GRMD is a useful model to explore cardiac pathogenesis and for the development of therapeutic protocols. To investigate whether cardiac progenitor cells (CPCs) isolated from healthy and GRMD dogs may differentiate into myocardial cell types and to test the feasibility of cell therapy for cardiomyopathies in a preclinical model of DMD, CPCs were isolated from cardiac biopsies of healthy and GRMD dogs. Gene profile analysis revealed an active cardiac transcription network in both healthy and GRMD CPCs. However, GRMD CPCs showed impaired self-renewal and cardiac differentiation. Population doubling and telomerase analyses highlighted earlier senescence and proliferation impairment in progenitors isolated from GRMD cardiac biopsies. Immunofluorescence analysis revealed that only wt CPCs showed efficient although not terminal cardiac differentiation, consistent with the upregulation of cardiac-specific proteins and microRNAs. Thus, the pathological condition adversely influences the cardiomyogenic differentiation potential of cardiac progenitors. Using PiggyBac transposon technology we marked CPCs for nuclear dsRed expression, providing a stable nonviral gene marking method for in vivo tracing of CPCs. Xenotransplantation experiments in neonatal immunodeficient mice revealed a valuable contribution of CPCs to cardiomyogenesis with homing differences between wt and dystrophic progenitors. These results suggest that cardiac degeneration in dystrophinopathies may account for the progressive exhaustion of local cardiac progenitors and shed light on cardiac stemness in

  11. Identification of three molecular and functional subtypes in canine hemangiosarcoma through gene expression profiling and progenitor cell characterization.

    PubMed

    Gorden, Brandi H; Kim, Jong-Hyuk; Sarver, Aaron L; Frantz, Aric M; Breen, Matthew; Lindblad-Toh, Kerstin; O'Brien, Timothy D; Sharkey, Leslie C; Modiano, Jaime F; Dickerson, Erin B

    2014-04-01

    Canine hemangiosarcomas have been ascribed to an endothelial origin based on histologic appearance; however, recent findings suggest that these tumors may arise instead from hematopoietic progenitor cells. To clarify this ontogenetic dilemma, we used genome-wide expression profiling of primary hemangiosarcomas and identified three distinct tumor subtypes associated with angiogenesis (group 1), inflammation (group 2), and adipogenesis (group 3). Based on these findings, we hypothesized that a common progenitor may differentiate into the three tumor subtypes observed in our gene profiling experiment. To investigate this possibility, we cultured hemangiosarcoma cell lines under normal and sphere-forming culture conditions to enrich for tumor cell progenitors. Cells from sphere-forming cultures displayed a robust self-renewal capacity and exhibited genotypic, phenotypic, and functional properties consistent with each of the three molecular subtypes seen in primary tumors, including expression of endothelial progenitor cell (CD133 and CD34) and endothelial cell (CD105, CD146, and αvβ3 integrin) markers, expression of early hematopoietic (CD133, CD117, and CD34) and myeloid (CD115 and CD14) differentiation markers in parallel with increased phagocytic capacity, and acquisition of adipogenic potential. Collectively, these results suggest that canine hemangiosarcomas arise from multipotent progenitors that differentiate into distinct subtypes. Improved understanding of the mechanisms that determine the molecular and phenotypic differentiation of tumor cells in vivo could change paradigms regarding the origin and progression of endothelial sarcomas. PMID:24525151

  12. Identification of Three Molecular and Functional Subtypes in Canine Hemangiosarcoma through Gene Expression Profiling and Progenitor Cell Characterization

    PubMed Central

    Gorden, Brandi H.; Kim, Jong-Hyuk; Sarver, Aaron L.; Frantz, Aric M.; Breen, Matthew; Lindblad-Toh, Kerstin; O'Brien, Timothy D.; Sharkey, Leslie C.; Modiano, Jaime F.; Dickerson, Erin B.

    2015-01-01

    Canine hemangiosarcomas have been ascribed to an endothelial origin based on histologic appearance; however, recent findings suggest that these tumors may arise instead from hematopoietic progenitor cells. To clarify this ontogenetic dilemma, we used genome-wide expression profiling of primary hemangiosarcomas and identified three distinct tumor subtypes associated with angiogenesis (group 1), inflammation (group 2), and adipogenesis (group 3). Based on these findings, we hypothesized that a common progenitor may differentiate into the three tumor subtypes observed in our gene profiling experiment. To investigate this possibility, we cultured hemangiosarcoma cell lines under normal and sphere-forming culture conditions to enrich for tumor cell progenitors. Cells from sphere-forming cultures displayed a robust self-renewal capacity and exhibited genotypic, phenotypic, and functional properties consistent with each of the three molecular subtypes seen in primary tumors, including expression of endothelial progenitor cell (CD133 and CD34) and endothelial cell (CD105, CD146, and αvβ3 integrin) markers, expression of early hematopoietic (CD133, CD117, and CD34) and myeloid (CD115 and CD14) differentiation markers in parallel with increased phagocytic capacity, and acquisition of adipogenic potential. Collectively, these results suggest that canine hemangiosarcomas arise from multipotent progenitors that differentiate into distinct subtypes. Improved understanding of the mechanisms that determine the molecular and phenotypic differentiation of tumor cells in vivo could change paradigms regarding the origin and progression of endothelial sarcomas. PMID:24525151

  13. Minor histocompatibility antigens on canine hemopoietic progenitor cells.

    PubMed

    Weber, Martin; Lange, Claudia; Günther, Wolfgang; Franz, Monika; Kremmer, Elisabeth; Kolb, Hans-Jochem

    2003-06-15

    Adoptive immunotherapy with CTL against minor histocompatibility Ags (mHA) provides a promising way to treat leukemia relapse in allogeneic chimeras. Here we describe the in vitro generation of CTL against mHA in the dog. We tested their inhibitory effect on the growth of hemopoietic progenitor cells stimulated by hemopoietic growth factors in a 4-day suspension culture. CTL were produced by coculture of donor PBMC with bone marrow-derived dendritic cells (DCs). These DCs were characterized by morphology, high expression of MHC class II and CD1a, and the absence of the monocyte-specific marker CD14. Characteristically these cells stimulated allogeneic lymphocytes (MLR) and, after pulsing with a foreign Ag (keyhole limpet hemocyanin), autologous T cells. CTL were generated either ex vivo by coculture with DCs of DLA-identical littermates or in vivo by immunization of the responder with DCs obtained from a DLA-identical littermate. In suspension culture assays the growth of hemopoietic progenitor cells was inhibited in 53% of DLA-identical littermate combinations. In canine families mHA segregated with DLA as restriction elements. One-way reactivity against mHA was found in five littermate combinations. In two cases mHA might be Y chromosome associated, in three cases autosomally inherited alleles were detected. We conclude that CTL can be produced in vitro and in vivo against mHA on canine hemopoietic progenitor cells using bone marrow-derived DCs. PMID:12794111

  14. Dentin regeneration using deciduous pulp stem/progenitor cells.

    PubMed

    Zheng, Y; Wang, X Y; Wang, Y M; Liu, X Y; Zhang, C M; Hou, B X; Wang, S L

    2012-07-01

    Reparative dentin formation is essential for maintaining the integrity of dentin structure during disease or trauma. In this study, we investigated stem/progenitor cell-based tissue engineering for dentin regeneration in a large animal model. Porcine deciduous pulp stem/progenitor cells (PDPSCs) were mixed with a beta-tricalcium phosphate (β-TCP) scaffold for dentin regeneration. Different concentrations of PDPSCs were tested to determine the optimal density for dentin regeneration. Aliquots of 5×10(5) PDPSCs in 1 mL resulted in the highest number of cells attached to the scaffold and the greatest alkaline phosphatase activity. We labeled PDPSCs with green fluorescent protein (GFP) and used the optimal cell numbers mixed with β-TCP to repair pulp chamber roof defects in the premolars of swine. Four weeks after transplantation, GFP-positive PDPSCs were observed in PDPSC-embedded scaffold constructs. At 16 weeks after transplantation, the PDPSCs mixed with β-TCP significantly regenerated the dentin-like structures and nearly completely restored the pulp chamber roof defects. This study demonstrated that the PDPSC/scaffold construct was useful in direct pulp-capping and provides pre-clinical evidence for stem/progenitor cell-based dentin regeneration. PMID:22660968

  15. Efficacy and Safety of Human Retinal Progenitor Cells

    PubMed Central

    Semo, Ma'ayan; Haamedi, Nasrin; Stevanato, Lara; Carter, David; Brooke, Gary; Young, Michael; Coffey, Peter; Sinden, John; Patel, Sara; Vugler, Anthony

    2016-01-01

    Purpose We assessed the long-term efficacy and safety of human retinal progenitor cells (hRPC) using established rodent models. Methods Efficacy of hRPC was tested initially in Royal College of Surgeons (RCS) dystrophic rats immunosuppressed with cyclosporine/dexamethasone. Due to adverse effects of dexamethasone, this drug was omitted from a subsequent dose-ranging study, where different hRPC doses were tested for their ability to preserve visual function (measured by optokinetic head tracking) and retinal structure in RCS rats at 3 to 6 months after grafting. Safety of hRPC was assessed by subretinal transplantation into wild type (WT) rats and NIH-III nude mice, with analysis at 3 to 6 and 9 months after grafting, respectively. Results The optimal dose of hRPC for preserving visual function/retinal structure in dystrophic rats was 50,000 to 100,000 cells. Human retinal progenitor cells integrated/survived in dystrophic and WT rat retina up to 6 months after grafting and expressed nestin, vimentin, GFAP, and βIII tubulin. Vision and retinal structure remained normal in WT rats injected with hRPC and there was no evidence of tumors. A comparison between dexamethasone-treated and untreated dystrophic rats at 3 months after grafting revealed an unexpected reduction in the baseline visual acuity of dexamethasone-treated animals. Conclusions Human retinal progenitor cells appear safe and efficacious in the preclinical models used here. Translational Relevance Human retinal progenitor cells could be deployed during early stages of retinal degeneration or in regions of intact retina, without adverse effects on visual function. The ability of dexamethasone to reduce baseline visual acuity in RCS dystrophic rats has important implications for the interpretation of preclinical and clinical cell transplant studies. PMID:27486556

  16. Stem Cells, Progenitor Cells, and Lineage Decisions in the Ovary

    PubMed Central

    Hummitzsch, Katja; Anderson, Richard A.; Wilhelm, Dagmar; Wu, Ji; Telfer, Evelyn E.; Russell, Darryl L.; Robertson, Sarah A.

    2015-01-01

    Exploring stem cells in the mammalian ovary has unleashed a Pandora's box of new insights and questions. Recent evidence supports the existence of stem cells of a number of the different cell types within the ovary. The evidence for a stem cell model producing mural granulosa cells and cumulus cells is strong, despite a limited number of reports. The recent identification of a precursor granulosa cell, the gonadal ridge epithelial-like cell, is exciting and novel. The identification of female germline (oogonial) stem cells is still very new and is currently limited to just a few species. Their origins and physiological roles, if any, are unknown, and their potential to produce oocytes and contribute to follicle formation in vivo lacks robust evidence. The precursor of thecal cells remains elusive, and more compelling data are needed. Similarly, claims of very small embryonic-like cells are also preliminary. Surface epithelial cells originating from gonadal ridge epithelial-like cells and from the mesonephric epithelium at the hilum of the ovary have also been proposed. Another important issue is the role of the stroma in guiding the formation of the ovary, ovigerous cords, follicles, and surface epithelium. Immune cells may also play key roles in developmental patterning, given their critical roles in corpora lutea formation and regression. Thus, while the cellular biology of the ovary is extremely important for its major endocrine and fertility roles, there is much still to be discovered. This review draws together the current evidence and perspectives on this topic. PMID:25541635

  17. Marrow cells as progenitors of lung tissue.

    PubMed

    Fine, Alan

    2004-01-01

    There is accumulating evidence showing that marrow-derived cells can engraft as differentiated epithelial cells of various tissues, including the lung. These findings challenge long-held views regarding the basic biology of stem cells. Elucidating the fundamental mechanisms controlling these processes is the major challenge of this field. Regardless, these experiments suggest new strategies for the treatment of chronic diseases. PMID:14757420

  18. Retinal Endothelial Cell Apoptosis Stimulates Recruitment of Endothelial Progenitor Cells

    PubMed Central

    Bhatwadekar, Ashay D.; Glenn, Josephine V.; Curtis, Tim M.; Grant, Maria B.; Stitt, Alan W.; Gardiner, Tom A.

    2013-01-01

    Purpose Bone marrow–derived endothelial progenitor cells (EPCs) contribute to vascular repair although it is uncertain how local endothelial cell apoptosis influences their reparative function. This study was conducted to determine how the presence of apoptotic bodies at sites of endothelial damage may influence participation of EPCs in retinal microvascular repair. Methods Microlesions of apoptotic cell death were created in monolayers of retinal microvascular endothelial cells (RMECs) by using the photodynamic drug verteporfin. The adhesion of early-EPCs to these lesions was studied before detachment of the apoptotic cells or after their removal from the wound site. Apoptotic bodies were fed to normal RMECs and mRNA levels for adhesion molecules were analyzed. Results Endothelial lesions where apoptotic bodies were left attached at the wound site showed a fivefold enhancement in EPC recruitment (P < 0.05) compared with lesions where the apoptotic cells had been removed. In intact RMEC monolayers exposed to apoptotic bodies, expression of ICAM, VCAM, and E-selectin was upregulated by 5- to 15-fold (P < 0.05– 0.001). EPCs showed a characteristic chemotactic response (P < 0.05) to conditioned medium obtained from apoptotic bodies, whereas analysis of the medium showed significantly increased levels of VEGF, IL-8, IL-6, and TNF-α when compared to control medium; SDF-1 remained unchanged. Conclusions The data indicate that apoptotic bodies derived from retinal capillary endothelium mediate release of proangiogenic cytokines and chemokines and induce adhesion molecule expression in a manner that facilitates EPC recruitment. PMID:19474402

  19. Tissue-Derived Stem and Progenitor Cells

    PubMed Central

    Tesche, Leora J.; Gerber, David A.

    2010-01-01

    The characterization and isolation of various stem cell populations, from embryonic through tissue-derived stem cells, have led a rapid growth in the field of stem cell research. These research efforts have often been interrelated as to the markers that identify a select cell population are frequently analyzed to determine their expression in cells of distinct organs/tissues. In this review, we will expand the current state of research involving select tissue-derived stem cell populations including the liver, central nervous system, and cardiac tissues as examples of the success and challenges in this field of research. Lastly, the challenges of clinical therapies will be discussed as it applies to these unique cell populations. PMID:21048854

  20. Isolation of Enteric Nervous System Progenitor Cells from the Aganglionic Gut of Patients with Hirschsprung’s Disease

    PubMed Central

    Wilkinson, David J.; Bethell, George S.; Shukla, Rajeev; Kenny, Simon E.; Edgar, David H.

    2015-01-01

    Enteric nervous system progenitor cells isolated from postnatal human gut and cultured as neurospheres can then be transplanted into aganglionic gut to restore normal patterns of contractility. These progenitor cells may be of future use to treat patients with Hirschprung’s disease, a congenital condition characterized by hindgut dysmotility due to the lack of enteric nervous system ganglia. Here we demonstrate that progenitor cells can also be isolated from aganglionic gut removed during corrective surgery for Hirschsprung’s disease. Although the enteric nervous system marker calretinin is not expressed in the aganglionic gut region, de novo expression is initiated in cultured neurosphere cells isolated from aganglionic Hirschsprung bowel. Furthermore, expression of the neural markers NOS, VIP and GFAP also increased during culture of aganglionic gut neurospheres which we show can be transplantation into cultured embryonic mouse gut explants to restore a normal frequency of contractility. To determine the origin of the progenitor cells in aganglionic region, we used fluorescence-activated cell sorting to demonstrate that only p75-positive neural crest-derived cells present in the thickened nerve trunks characteristic of the aganglionic region of Hirschsprung gut gave rise to neurons in culture. The derivation of enteric nervous system progenitors in the aganglionic gut region of Hirschprung’s patients not only means that this tissue is a potential source of cells for future autologous transplantation, but it also raises the possibility of inducing the differentiation of these endogenous cells in situ to compensate for the aganglionosis. PMID:25992739

  1. Intrinsic Age-Dependent Changes and Cell-Cell Contacts Regulate Nephron Progenitor Lifespan.

    PubMed

    Chen, Shuang; Brunskill, Eric W; Potter, S Steven; Dexheimer, Phillip J; Salomonis, Nathan; Aronow, Bruce J; Hong, Christian I; Zhang, Tongli; Kopan, Raphael

    2015-10-12

    During fetal development, nephrons of the metanephric kidney form from a mesenchymal progenitor population that differentiates en masse before or shortly after birth. We explored intrinsic and extrinsic mechanisms controlling progenitor lifespan in a transplantation assay that allowed us to compare engraftment of old and young progenitors into the same young niche. The progenitors displayed an age-dependent decrease in proliferation and concomitant increase in niche exit rates. Single-cell transcriptome profiling revealed progressive age-dependent changes, with heterogeneity increasing in older populations. Age-dependent elevation in mTor and reduction in Fgf20 could contribute to increased exit rates. Importantly, 30% of old progenitors remained in the niche for up to 1 week post engraftment, a net gain of 50% to their lifespan, but only if surrounded by young neighbors. We provide evidence in support of a model in which intrinsic age-dependent changes affect inter-progenitor interactions that drive cessation of nephrogenesis. PMID:26460946

  2. Mesp1 Marked Cardiac Progenitor Cells Repair Infarcted Mouse Hearts

    PubMed Central

    Liu, Yu; Chen, Li; Diaz, Andrea Diaz; Benham, Ashley; Xu, Xueping; Wijaya, Cori S.; Fa’ak, Faisal; Luo, Weijia; Soibam, Benjamin; Azares, Alon; Yu, Wei; Lyu, Qiongying; Stewart, M. David; Gunaratne, Preethi; Cooney, Austin; McConnell, Bradley K.; Schwartz, Robert J.

    2016-01-01

    Mesp1 directs multipotential cardiovascular cell fates, even though it’s transiently induced prior to the appearance of the cardiac progenitor program. Tracing Mesp1-expressing cells and their progeny allows isolation and characterization of the earliest cardiovascular progenitor cells. Studying the biology of Mesp1-CPCs in cell culture and ischemic disease models is an important initial step toward using them for heart disease treatment. Because of Mesp1’s transitory nature, Mesp1-CPC lineages were traced by following EYFP expression in murine Mesp1Cre/+; Rosa26EYFP/+ ES cells. We captured EYFP+ cells that strongly expressed cardiac mesoderm markers and cardiac transcription factors, but not pluripotent or nascent mesoderm markers. BMP2/4 treatment led to the expansion of EYFP+ cells, while Wnt3a and Activin were marginally effective. BMP2/4 exposure readily led EYFP+ cells to endothelial and smooth muscle cells, but inhibition of the canonical Wnt signaling was required to enter the cardiomyocyte fate. Injected mouse pre-contractile Mesp1-EYFP+ CPCs improved the survivability of injured mice and restored the functional performance of infarcted hearts for at least 3 months. Mesp1-EYFP+ cells are bona fide CPCs and they integrated well in infarcted hearts and emerged de novo into terminally differentiated cardiac myocytes, smooth muscle and vascular endothelial cells. PMID:27538477

  3. Mesp1 Marked Cardiac Progenitor Cells Repair Infarcted Mouse Hearts.

    PubMed

    Liu, Yu; Chen, Li; Diaz, Andrea Diaz; Benham, Ashley; Xu, Xueping; Wijaya, Cori S; Fa'ak, Faisal; Luo, Weijia; Soibam, Benjamin; Azares, Alon; Yu, Wei; Lyu, Qiongying; Stewart, M David; Gunaratne, Preethi; Cooney, Austin; McConnell, Bradley K; Schwartz, Robert J

    2016-01-01

    Mesp1 directs multipotential cardiovascular cell fates, even though it's transiently induced prior to the appearance of the cardiac progenitor program. Tracing Mesp1-expressing cells and their progeny allows isolation and characterization of the earliest cardiovascular progenitor cells. Studying the biology of Mesp1-CPCs in cell culture and ischemic disease models is an important initial step toward using them for heart disease treatment. Because of Mesp1's transitory nature, Mesp1-CPC lineages were traced by following EYFP expression in murine Mesp1(Cre/+); Rosa26(EYFP/+) ES cells. We captured EYFP+ cells that strongly expressed cardiac mesoderm markers and cardiac transcription factors, but not pluripotent or nascent mesoderm markers. BMP2/4 treatment led to the expansion of EYFP+ cells, while Wnt3a and Activin were marginally effective. BMP2/4 exposure readily led EYFP+ cells to endothelial and smooth muscle cells, but inhibition of the canonical Wnt signaling was required to enter the cardiomyocyte fate. Injected mouse pre-contractile Mesp1-EYFP+ CPCs improved the survivability of injured mice and restored the functional performance of infarcted hearts for at least 3 months. Mesp1-EYFP+ cells are bona fide CPCs and they integrated well in infarcted hearts and emerged de novo into terminally differentiated cardiac myocytes, smooth muscle and vascular endothelial cells. PMID:27538477

  4. Endothelial progenitor cells accelerate the resolution of deep vein thrombosis.

    PubMed

    Li, Wen-Dong; Li, Xiao-Qiang

    2016-08-01

    Deep vein thrombosis (DVT) causes high morbidity and mortality. Successful resolution of DVT-related thrombi is the key point in the treatment of DVT. Recently, endothelial progenitor cells (EPCs) which are multipotent progenitor cells mainly residing in human bone marrow have emerged as a promising therapeutic choice for DVT-related thrombus resolution. In this review, we discussed the mobilization and homing property of EPCs into the sites of thrombosis, mechanisms of EPCs in DVT-related thrombus resolution from the aspects of promoting endothelial regeneration, revascularization, vasoactive and angiogenic factor secretion, proteinase generation, thrombus propagation and recurrence prevention, and vein wall remodeling. In addition, we also provide suggestions on EPCs as a therapeutic choice for thrombus resolution. PMID:26187355

  5. Proliferation control in neural stem and progenitor cells

    PubMed Central

    Homem, Catarina CF; Repic, Marko; Knoblich, Juergen A

    2015-01-01

    Neural circuit function can be drastically affected by variations in the number of cells that are produced during development or by a reduction in adult cell number due to disease. Unlike many other organs, the brain is unable to compensate for such changes by increasing cell numbers or altering the size of the cells. For this reason, unique cell cycle and cell growth control mechanisms operate in the developing and adult brain. In Drosophila melanogaster and mammalian neural stem and progenitor cells these mechanisms are intricately coordinated with the developmental age and the nutritional, metabolic and hormonal state of the animal. Defects in neural stem cell proliferation that result in the generation of incorrect cell numbers or defects in neural stem cell differentiation can cause microcephaly or megalencephaly. PMID:26420377

  6. Isolation and Characterization of Distal Lung Progenitor Cells

    PubMed Central

    Driscoll, Barbara; Kikuchi, Alex; Lau, Allison N.; Lee, Jooeun; Reddy, Raghava; Jesudason, Edwin; Kim, Carla F.; Warburton, David

    2013-01-01

    The majority of epithelial cells in the distal lung of rodents and humans are quiescent in vivo, yet certain cell populations retain an intrinsic capacity to proliferate and differentiate in response to lung injury or in appropriate culture settings, thus giving them properties of stem/progenitor cells. Here, we describe the isolation of two such populations from adult mouse lung: alveolar epithelial type 2 cells (AEC2), which can generate alveolar epithelial type 1 cells, and bronchioalveolar stem cells (BASCs), which in culture can reproduce themselves, as well as generate a small number of other distal lung epithelial cell types. These primary epithelial cells are typically isolated using enzyme digestion, mechanical disruption, and serial filtration. AEC2 and BASCs are distinguished from other distal lung cells by expression of specific markers as detected by fluorescence-activated cell sorting, immunohistochemistry, or a combination of both of these techniques. PMID:22610556

  7. Detection of human myeloid progenitor cells in a murine background.

    PubMed

    Carow, C E; Harrington, M A; Broxmeyer, H E

    1993-01-01

    Cell-mixing experiments were performed to determine whether human (hu) peripheral blood plasma would select for the growth of hu myeloid progenitor cells in vitro. Mixtures of hu male umbilical cord blood and murine (mu) female bone marrow (100% hu, 100% mu, 1.0% hu or 10% hu and 50% hu) were plated in methylcellulose cultures that contained either hu plasma or fetal bovine serum (FBS). Cultures were supplemented with recombinant (r) hu erythropoietin (Epo) alone or in combination with rhu granulocyte-macrophage colony stimulating factor (GM-CSF), rmuGM-CSF or rhu steel factor (SLF). DNA was extracted from day 14 colonies and clusters, and the polymerase chain reaction (PCR) was used to detect the hu Y-chromosome satellite DNA sequence. Results of these studies revealed that hu plasma used in combination with hu growth factors selected for the growth of hu progenitor cells. Mu cells grew in hu plasma only at high cell-plating concentrations. This selective effect was due to a heat labile factor or factors, since mu cells grew equally well in heat-inactivated hu plasma and FBS. Cells in individual progenitor cell colonies and clusters cultured in hu plasma contained hu Y-chromosome-specific DNA sequences that were detectable after PCR-mediated amplification, thus eliminating the need for time-consuming Southern transfer. This study describes a method whereby hu/immune-deficient mice can be screened rapidly for hu myeloid engraftment. These results also indicate that the hu identity of colonies and clusters cultured in hu plasma must be genetically confirmed, especially when hu cells may represent a low percentage of the total cells plated. PMID:7678088

  8. PDGFRα signaling drives adipose tissue fibrosis by targeting progenitor cell plasticity.

    PubMed

    Iwayama, Tomoaki; Steele, Cameron; Yao, Longbiao; Dozmorov, Mikhail G; Karamichos, Dimitris; Wren, Jonathan D; Olson, Lorin E

    2015-06-01

    Fibrosis is a common disease process in which profibrotic cells disturb organ function by secreting disorganized extracellular matrix (ECM). Adipose tissue fibrosis occurs during obesity and is associated with metabolic dysfunction, but how profibrotic cells originate is still being elucidated. Here, we use a developmental model to investigate perivascular cells in white adipose tissue (WAT) and their potential to cause organ fibrosis. We show that a Nestin-Cre transgene targets perivascular cells (adventitial cells and pericyte-like cells) in WAT, and Nestin-GFP specifically labels pericyte-like cells. Activation of PDGFRα signaling in perivascular cells causes them to transition into ECM-synthesizing profibrotic cells. Before this transition occurs, PDGFRα signaling up-regulates mTOR signaling and ribosome biogenesis pathways and perturbs the expression of a network of epigenetically imprinted genes that have been implicated in cell growth and tissue homeostasis. Isolated Nestin-GFP(+) cells differentiate into adipocytes ex vivo and form WAT when transplanted into recipient mice. However, PDGFRα signaling opposes adipogenesis and generates profibrotic cells instead, which leads to fibrotic WAT in transplant experiments. These results identify perivascular cells as fibro/adipogenic progenitors in WAT and show that PDGFRα targets progenitor cell plasticity as a profibrotic mechanism. PMID:26019175

  9. PDGFRα signaling drives adipose tissue fibrosis by targeting progenitor cell plasticity

    PubMed Central

    Iwayama, Tomoaki; Steele, Cameron; Yao, Longbiao; Dozmorov, Mikhail G.; Karamichos, Dimitris; Wren, Jonathan D.

    2015-01-01

    Fibrosis is a common disease process in which profibrotic cells disturb organ function by secreting disorganized extracellular matrix (ECM). Adipose tissue fibrosis occurs during obesity and is associated with metabolic dysfunction, but how profibrotic cells originate is still being elucidated. Here, we use a developmental model to investigate perivascular cells in white adipose tissue (WAT) and their potential to cause organ fibrosis. We show that a Nestin-Cre transgene targets perivascular cells (adventitial cells and pericyte-like cells) in WAT, and Nestin-GFP specifically labels pericyte-like cells. Activation of PDGFRα signaling in perivascular cells causes them to transition into ECM-synthesizing profibrotic cells. Before this transition occurs, PDGFRα signaling up-regulates mTOR signaling and ribosome biogenesis pathways and perturbs the expression of a network of epigenetically imprinted genes that have been implicated in cell growth and tissue homeostasis. Isolated Nestin-GFP+ cells differentiate into adipocytes ex vivo and form WAT when transplanted into recipient mice. However, PDGFRα signaling opposes adipogenesis and generates profibrotic cells instead, which leads to fibrotic WAT in transplant experiments. These results identify perivascular cells as fibro/adipogenic progenitors in WAT and show that PDGFRα targets progenitor cell plasticity as a profibrotic mechanism. PMID:26019175

  10. Mesenchymal markers on human adipose stem/progenitor cells

    PubMed Central

    Zimmerlin, Ludovic; Donnenberg, Vera S.; Rubin, J. Peter; Donnenberg, Albert D.

    2014-01-01

    The stromal-vascular fraction (SVF) of adipose tissue is a rich source of multipotent stem cells. We and others have described 3 major populations of stem/progenitor cells in this fraction, all closely associated with small blood vessels: endothelial progenitor cells (EPC, CD45−/CD31+/CD34+), pericytes (CD45−/CD31−/CD146+) and supra-adventitial adipose stromal cells (SA-ASC, CD45−/CD31−/CD146−/CD34+). EPC are luminal, pericytes are adventitial and SA-ASC surround the vessel like a sheath. The multipotency of the pericytes and SA-ASC compartments is strikingly similar to that of CD45−/CD34−/CD73+/CD105+/CD90+ bone marrow-derived mesenchymal stem cells (BM-MSC). Here we determine the extent to which this mesenchymal expression pattern is expressed on the 3 adipose stem/progenitor populations. Eight independent adipose tissue samples were analyzed in a single tube (CD105-FITC/CD73-PE/CD146-PETXR/CD14-PECY5/CD33-PECY5/CD235A-PECY5/CD31-PECY7/CD90-APC/CD34-A700/CD45-APCCY7/DAPI). Adipose EPC were highly proliferative with 14.3±2.8% (mean ± SEM) having >2N DNA. About half (53.1±7.6%) coexpressed CD73 and CD105, and 71.9±7.4% expressed CD90. Pericytes were less proliferative (8.2±3.4% >2N DNA) with a smaller proportion (29.6±6.9% CD73+/CD105+, 60.5±10.2% CD90+) expressing mesenchymal associated markers. However, the CD34+ subset of CD146+ pericytes, were both highly proliferative (15.1±3.6% with >2N DNA) and of uniform mesenchymal phenotype (93.3±3.7% CD73+/CD105+, 97.8±0.7% CD90+), suggesting transit amplifying progenitor cells. SA-ASC were the least proliferative (3.7 ± 0.8%>2N DNA) but were also highly mesenchymal in phenotype (94.4±3.2% CD73+/CD105+, 95.5±1.2% CD90+). These data imply a progenitor/progeny relationship between pericytes and SA-ASC, the most mesenchymal of SVF cells. Despite phenotypic and functional similarities to BM-MSC, SA-ASC are distinguished by CD34 expression. PMID:23184564

  11. Endothelial Progenitor Cells for Diagnosis and Prognosis in Cardiovascular Disease

    PubMed Central

    Cairo, Valentina; D'Ascola, Angela; Scuruchi, Michele; Basile, Giorgio; Mandraffino, Giuseppe

    2016-01-01

    Objective. To identify, evaluate, and synthesize evidence on the predictive power of circulating endothelial progenitor cells (EPCs) in cardiovascular disease, through a systematic review of quantitative studies. Data Sources. MEDLINE was searched using keywords related to “endothelial progenitor cells” and “endothelium” and, for the different categories, respectively, “smoking”; “blood pressure”; “diabetes mellitus” or “insulin resistance”; “dyslipidemia”; “aging” or “elderly”; “angina pectoris” or “myocardial infarction”; “stroke” or “cerebrovascular disease”; “homocysteine”; “C-reactive protein”; “vitamin D”. Study Selection. Database hits were evaluated against explicit inclusion criteria. From 927 database hits, 43 quantitative studies were included. Data Syntheses. EPC count has been suggested for cardiovascular risk estimation in the clinical practice, since it is currently accepted that EPCs can work as proangiogenic support cells, maintaining their importance as regenerative/reparative potential, and also as prognostic markers. Conclusions. EPCs showed an important role in identifying cardiovascular risk conditions, and to suggest their evaluation as predictor of outcomes appears to be reasonable in different defined clinical settings. Due to their capability of proliferation, circulation, and the development of functional progeny, great interest has been directed to therapeutic use of progenitor cells in atherosclerotic diseases. This trial is registered with registration number: Prospero CRD42015023717. PMID:26839569

  12. Role of intermediate progenitor cells in cerebral cortex development.

    PubMed

    Pontious, Adria; Kowalczyk, Tom; Englund, Chris; Hevner, Robert F

    2008-01-01

    Intermediate progenitor cells (IPCs) are a type of neurogenic transient amplifying cells in the developing cerebral cortex. IPCs divide symmetrically at basal (abventricular) positions in the neuroepithelium to produce pairs of new neurons or, in amplifying divisions, pairs of new IPCs. In contrast, radial unit progenitors (neuroepithelial cells and radial glia) divide at the apical (ventricular) surface and produce only single neurons or single IPCs by asymmetric division, or self-amplify by symmetric division. Histologically, IPCs are most prominent during the middle and late stages of neurogenesis, when they accumulate in the subventricular zone, a progenitor compartment linked to the genesis of upper neocortical layers (II-IV). Nevertheless, IPCs are present throughout cortical neurogenesis and produce neurons for all layers. In mice, changes in the abundance of IPCs caused by mutations of Pax6, Ngn2, Id4 and other genes are associated with parallel changes in cortical thickness but not surface area. In gyrencephalic brains, IPCs may play broader roles in determining not only laminar thickness, but also cortical surface area and gyral patterns. We propose that regulation of IPC genesis and amplification across developmental stages and regional subdivisions modulates laminar neurogenesis and contributes to the cytoarchitectonic differentiation of cortical areas. PMID:18075251

  13. Turning terminally differentiated skeletal muscle cells into regenerative progenitors.

    PubMed

    Wang, Heng; Lööf, Sara; Borg, Paula; Nader, Gustavo A; Blau, Helen M; Simon, András

    2015-01-01

    The ability to repeatedly regenerate limbs during the entire lifespan of an animal is restricted to certain salamander species among vertebrates. This ability involves dedifferentiation of post-mitotic cells into progenitors that in turn form new structures. A long-term enigma has been how injury leads to dedifferentiation. Here we show that skeletal muscle dedifferentiation during newt limb regeneration depends on a programmed cell death response by myofibres. We find that programmed cell death-induced muscle fragmentation produces a population of 'undead' intermediate cells, which have the capacity to resume proliferation and contribute to muscle regeneration. We demonstrate the derivation of proliferating progeny from differentiated, multinucleated muscle cells by first inducing and subsequently intercepting a programmed cell death response. We conclude that cell survival may be manifested by the production of a dedifferentiated cell with broader potential and that the diversion of a programmed cell death response is an instrument to achieve dedifferentiation. PMID:26243583

  14. Murine mammary stem/progenitor cell isolation: Different method matters?

    PubMed

    Gao, Hui; Dong, Qiaoxiang; Chen, Yuanhong; Zhang, Fuchuang; Wu, Anqi; Shi, Yuanshuo; Bandyopadhyay, Abhik; Daniel, Benjamin J; Huang, Changjiang; Sun, Lu-Zhe

    2016-01-01

    Murine mammary stem/progenitor cell isolation has been routinely used in many laboratories, yet direct comparison among different methods is lacking. In this study, we compared two frequently used digestion methods and three sets of frequently used surface markers for their efficiency in enriching mammary stem and progenitor cells in two commonly used mouse strains, C57BL/6J and FVB. Our findings revealed that the slow overnight digestion method using gentle collagenase/hyaluronidase could be easily adopted and yielded reliable and consistent results in different batches of animals. In contrast, the different fast digestion protocols, as described in published studies, yielded high percent of non-epithelial cells with very few basal epithelial cells liberated in our hands. The three sets of markers tested in our hands reveal rather equally efficiency in separating luminal and basal cells if same fluorochrome conjugations were used. However, the tendency of non-epithelial cell inclusion in the basal cell gate was highest in samples profiled by CD24/CD29 and lowest in samples profiled by CD49f/EpCAM, this is especially true in mammary cells isolated from C57BL/6J mice. This finding will have significant implication when sorted basal cells are used for subsequent gene expression analysis. PMID:26933638

  15. Tracking of Normal and Malignant Progenitor Cell Cycle Transit in a Defined Niche

    PubMed Central

    Pineda, Gabriel; Lennon, Kathleen M.; Delos Santos, Nathaniel P.; Lambert-Fliszar, Florence; Riso, Gennarina L.; Lazzari, Elisa; Marra, Marco A.; Morris, Sheldon; Sakaue-Sawano, Asako; Miyawaki, Atsushi; Jamieson, Catriona H. M.

    2016-01-01

    While implicated in therapeutic resistance, malignant progenitor cell cycle kinetics have been difficult to quantify in real-time. We developed an efficient lentiviral bicistronic fluorescent, ubiquitination-based cell cycle indicator reporter (Fucci2BL) to image live single progenitors on a defined niche coupled with cell cycle gene expression analysis. We have identified key differences in cell cycle regulatory gene expression and transit times between normal and chronic myeloid leukemia progenitors that may inform cancer stem cell eradication strategies. PMID:27041210

  16. β-Cell regeneration through the transdifferentiation of pancreatic cells: Pancreatic progenitor cells in the pancreas.

    PubMed

    Kim, Hyo-Sup; Lee, Moon-Kyu

    2016-05-01

    Pancreatic progenitor cell research has been in the spotlight, as these cells have the potential to replace pancreatic β-cells for the treatment of type 1 and 2 diabetic patients with the absence or reduction of pancreatic β-cells. During the past few decades, the successful treatment of diabetes through transplantation of the whole pancreas or isolated islets has nearly been achieved. However, novel sources of pancreatic islets or insulin-producing cells are required to provide sufficient amounts of donor tissues. To overcome this limitation, the use of pancreatic progenitor cells is gaining more attention. In particular, pancreatic exocrine cells, such as duct epithelial cells and acinar cells, are attractive candidates for β-cell regeneration because of their differentiation potential and pancreatic lineage characteristics. It has been assumed that β-cell neogenesis from pancreatic progenitor cells could occur in pancreatic ducts in the postnatal stage. Several studies have shown that insulin-producing cells can arise in the duct tissue of the adult pancreas. Acinar cells also might have the potential to differentiate into insulin-producing cells. The present review summarizes recent progress in research on the transdifferentiation of pancreatic exocrine cells into insulin-producing cells, especially duct and acinar cells. PMID:27330712

  17. The proteome of the differentiating mesencephalic progenitor cell line CSM14.1 in vitro.

    PubMed

    Weiss, B; Haas, S; Lessner, G; Mikkat, S; Kreutzer, M; Glocker, M O; Wree, A; Schmitt, O

    2014-01-01

    The treatment of Parkinson's disease by transplantation of dopaminergic (DA) neurons from human embryonic mesencephalic tissue is a promising approach. However, the origin of these cells causes major problems: availability and standardization of the graft. Therefore, the generation of unlimited numbers of DA neurons from various types of stem or progenitor cells has been brought into focus. A source for DA neurons might be conditionally immortalized progenitor cells. The temperature-sensitive immortalized cell line CSM14.1 derived from the mesencephalon of an embryonic rat has been used successfully for transplantation experiments. This cell line was analyzed by unbiased stereology of cell type specific marker proteins and 2D-gel electrophoresis followed by mass spectrometry to characterize the differentially expressed proteome. Undifferentiated CSM14.1 cells only expressed the stem cell marker nestin, whereas differentiated cells expressed GFAP or NeuN and tyrosine hydroxylase. An increase of the latter cells during differentiation could be shown. By using proteomics an explanation on the protein level was found for the observed changes in cell morphology during differentiation, when CSM14.1 cells possessed the morphology of multipolar neurons. The results obtained in this study confirm the suitability of CSM14.1 cells as an in vitro model for the study of neuronal and dopaminergic differentiation in rats. PMID:24592386

  18. Evidence of progenitor cells of glandular and myoepithelial cell lineages in the human adult female breast epithelium: a new progenitor (adult stem) cell concept.

    PubMed

    Boecker, Werner; Buerger, Horst

    2003-10-01

    Although experimental data clearly confirm the existence of self-renewing mammary stem cells, the characteristics of such progenitor cells have never been satisfactorily defined. Using a double immunofluorescence technique for simultaneous detection of the basal cytokeratin 5, the glandular cytokeratins 8/18 and the myoepithelial differentiation marker smooth muscle actin (SMA), we were able to demonstrate the presence of CK5+ cells in human adult breast epithelium. These cells have the potential to differentiate to either glandular (CK8/18+) or myoepithelial cells (SMA+) through intermediary cells (CK5+ and CK8/18+ or SMA+). We therefore proceeded on the assumption that the CK5+ cells are phenotypically and behaviourally progenitor (committed adult stem) cells of human breast epithelium. Furthermore, we furnish evidence that most of these progenitor cells are located in the luminal epithelium of the ductal lobular tree. Based on data obtained in extensive analyses of proliferative breast disease lesions, we have come to regard usual ductal hyperplasia as a progenitor cell-derived lesion, whereas most breast cancers seem to evolve from differentiated glandular cells. Double immunofluorescence experiments provide a new tool to characterize phenotypically progenitor (adult stem) cells and their progenies. This model has been shown to be of great value for a better understanding not only of normal tissue regeneration but also of proliferative breast disease. Furthermore, this model provides a new tool for unravelling further the regulatory mechanisms that govern normal and pathological cell growth. PMID:14521517

  19. The Earliest Thymic T Cell Progenitors Sustain B Cell and Myeloid Lineage Potentials

    PubMed Central

    Luc, Sidinh; Luis, Tiago C.; Boukarabila, Hanane; Macaulay, Iain C.; Buza-Vidas, Natalija; Bouriez-Jones, Tiphaine; Lutteropp, Michael; Woll, Petter S.; Loughran, Stephen J.; Mead, Adam J.; Hultquist, Anne; Brown, John; Mizukami, Takuo; Matsuoka, Sahoko; Ferry, Helen; Anderson, Kristina; Duarte, Sara; Atkinson, Deborah; Soneji, Shamit; Domanski, Aniela; Farley, Alison; Sanjuan-Pla, Alejandra; Carella, Cintia; Patient, Roger; de Bruijn, Marella; Enver, Tariq; Nerlov, Claus; Blackburn, Clare; Godin, Isabelle; Jacobsen, Sten Eirik W.

    2012-01-01

    The stepwise commitment from hematopoietic stem cells in the bone marrow (BM) to T lymphocyte-restricted progenitors in the thymus represents a paradigm for understanding the requirement for distinct extrinsic cues during different stages of lineage restriction from multipotent to lineage restricted progenitors. However, the commitment stage at which progenitors migrate from the BM to the thymus remains unclear. Here we provide functional and molecular evidence at the single cell level that the earliest progenitors in the neonatal thymus possessed combined granulocyte-monocyte, T and B lymphocyte, but not megakaryocyte-erythroid lineage potential. These potentials were identical to those of thymus-seeding progenitors in the BM, which were closely related at the molecular level. These findings establish the distinct lineage-restriction stage at which the T lineage commitment transits from the BM to the remote thymus. PMID:22344248

  20. Endometrial regeneration and endometrial stem/progenitor cells.

    PubMed

    Gargett, Caroline E; Nguyen, Hong P T; Ye, Louie

    2012-12-01

    The functional layer of the human endometrium is a highly regenerative tissue undergoing monthly cycles of growth, differentiation and shedding during a woman's reproductive years. Fluctuating levels of circulating estrogen and progesterone orchestrate this dramatic remodeling of human endometrium. The thin inactive endometrium of postmenopausal women which resembles the permanent basal layer of cycling endometrium retains the capacity to respond to exogenous sex steroid hormones to regenerate into a thick functional endometrium capable of supporting pregnancy. Endometrial regeneration also follows parturition and endometrial resection. In non menstruating rodents, endometrial epithelium undergoes rounds of proliferation and apoptosis during estrus cycles. The recent identification of adult stem cells in both human and mouse endometrium suggests that epithelial progenitor cells and the mesenchymal stem/stromal cells have key roles in the cyclical regeneration of endometrial epithelium and stroma. This review will summarize the evidence for endometrial stem/progenitor cells, examine their role in mouse models of endometrial epithelial repair and estrogen-induced endometrial regeneration, and also describe the generation of endometrial-like epithelium from human embryonic stem cells. With markers now available for identifying endometrial mesenchymal stem/stromal cells, their possible role in gynecological diseases associated with abnormal endometrial proliferation and their potential application in cell-based therapies to regenerate reproductive and other tissues will be discussed. PMID:22847235

  1. Presence of Stem/Progenitor Cells in the Rat Penis

    PubMed Central

    Lin, Guiting; Zhang, Xiaoyu; Wang, Jianwen; Wang, Lin; Li, Huixi; Wang, Guifang; Ning, Hongxiu; Lin, Ching-Shwun; Xin, Zhongcheng

    2015-01-01

    Tissue resident stem cells are believed to exist in every organ, and their identification is commonly done using a combination of immunostaining for putative stem cell markers and label-retaining cell (LRC) strategy. In this study, we employed these approaches to identify potential stem cells in the penis. Newborn rats were intraperitoneally injected with thymidine analog, 5-ethynyl-2-deoxyuridine (EdU), and their penis was harvested at 7 h, 3 days, 1 week, and 4 weeks. It was processed for EdU stains and immunofluorescence staining for stem cell markers A2B5, PCNA, and c-kit. EdU-positive cells were counted for each time point and co-localized with each stem cell marker, then isolated and cultured in vitro followed by their characterization using flowcytometry and immunofluorescence. At 7 h post-EdU injection, 410±105.3 penile corporal cells were labeled in each cross-section (∼28%). The number of EdU-positive cells at 3 days increased to 536±115.6, while their percentage dropped to 25%. Progressively fewer EdU-positive cells were present in the sacrificed rat penis at longer time points (1 and 4 weeks). They were mainly distributed in the subtunic and perisinusoidal spaces, and defined as subtunic penile progenitor cells (STPCs) and perisinusoidal penile progenitor cells (PPCs). These cells expressed c-kit, A2B5, and PCNA. After culturing in vitro, only ∼0.324% corporal cells were EdU-labeled LRCs and expressed A2B5/PCNA. Therefore, labeling of penis cells by EdU occurred randomly, and label retaining was not associated with expression of c-kit, A2B5, or PCNA. The penile LRCs are mainly distributed within the subtunic and perisinusoidal space. PMID:25162971

  2. How do I perform hematopoietic progenitor cell selection?

    PubMed

    Avecilla, Scott T; Goss, Cheryl; Bleau, Sharon; Tonon, Jo-Ann; Meagher, Richard C

    2016-05-01

    Graft-versus-host disease remains the most important source of morbidity and mortality associated with allogeneic stem cell transplantation. The implementation of hematopoietic progenitor cell (HPC) selection is employed by some stem cell processing facilities to mitigate this complication. Current cell selection methods include reducing the number of unwanted T cells (negative selection) and/or enriching CD34+ hematopoietic stem/progenitors (positive selection) using immunomagnetic beads subjected to magnetic fields within columns to separate out targeted cells. Unwanted side effects of cell selection as a result of T-cell reduction are primary graft failure, increased infection rates, delayed immune reconstitution, possible disease relapse, and posttransplant lymphoproliferative disease. The Miltenyi CliniMACS cell isolation system is the only device currently approved for clinical use by the Food and Drug Administration. It uses magnetic microbeads conjugated with a high-affinity anti-CD34 monoclonal antibody capable of binding to HPCs in marrow, peripheral blood, or umbilical cord blood products. The system results in significantly improved CD34+ cell recoveries (50%-100%) and consistent 3-log CD3+ T-cell reductions compared to previous generations of CD34+ cell selection procedures. In this article, the CliniMACS procedure is described in greater detail and the authors provide useful insight into modifications of the system. Successful implementation of cell selection procedures can have a significant positive clinical effect by greatly increasing the pool of donors for recipients requiring transplants. However, before a program implements cell selection techniques, it is important to consider the time and financial resources required to properly and safely perform these procedures. PMID:26919388

  3. MiR-128-2 inhibits common lymphoid progenitors from developing into progenitor B cells

    PubMed Central

    Chen, Huo; Fei, Xia; Tang, YuXu; Yan, Yunqiu; Zhang, Huimin; Zhang, Jinping

    2016-01-01

    A considerable number of studies revealed that B cell development is finely regulated by transcription factors (TFs). Recent studies suggested that TFs are coordinated with microRNAs to control the development of B cells in numerous checkpoints. In the present study, we first found that miR-128-2 was differentially expressed in various immune organs and immunocytes. B cell development was inhibited in miR-128-2-overexpressed chimera and transgenic (TG) mice in bone marrow with decreased preproB, preB, proB, immature B, and recirculating B cells, as well as increased common lymphoid progenitors (CLPs). Further experiments showed that the apoptosis of CLP decreased, but proliferation was not altered in miR-128-2-overexpressed mice. Extensive studies suggested that the inhibition of apoptosis of CLP may be caused by miR-128-2 targeting A2B and MALT1, thereby increasing the phosphorylation of ERK and P38 MAPK. Such findings have prompted future investigations on the function of miR-128-2 in lymph genesis. PMID:27008703

  4. Astrocyte-Secreted Factors Selectively Alter Neural Stem and Progenitor Cell Proliferation in the Fragile X Mouse

    PubMed Central

    Sourial, Mary; Doering, Laurie C.

    2016-01-01

    An increasing body of evidence indicates that astrocytes contribute to the governance and fine tuning of stem and progenitor cell production during brain development. The effect of astrocyte function in cell production in neurodevelopmental disorders is unknown. We used the Neural Colony Forming Cell assay to determine the effect of astrocyte conditioned media (ACM) on the generation of neurospheres originating from either progenitor cells or functional stem cells in the knock out (KO) Fragile X mouse model. ACM from both normal and Fmr1-KO mice generated higher percentages of smaller neurospheres indicative of restricted proliferation of the progenitor cell population in Fmr1-KO brains. Wild type (WT) neurospheres, but not KO neurospheres, showed enhanced responses to ACM from the Fmr1-KO mice. In particular, Fmr1-KO ACM increased the percentage of large neurospheres generated, representative of spheres produced from neural stem cells. We also used 2D DIGE to initiate identification of the astrocyte-secreted proteins with differential expression between Fmr1-KO and WT cortices and hippocampi. The results further support the critical role of astrocytes in governing neural cell production in brain development and point to significant alterations in neural cell proliferation due to astrocyte secreted factors from the Fragile X brain. Highlights: • We studied the proliferation of neural stem and progenitor cells in Fragile X. • We examined the role of astrocyte-secreted factors in neural precursor cell biology. • Astrocyte-secreted factors with differential expression in Fragile X identified. PMID:27242437

  5. Circulating progenitor epithelial cells traffic via CXCR4/CXCL12 in response to airway injury.

    PubMed

    Gomperts, Brigitte N; Belperio, John A; Rao, P Nagesh; Randell, Scott H; Fishbein, Michael C; Burdick, Marie D; Strieter, Robert M

    2006-02-01

    Recipient airway epithelial cells are found in human sex-mismatched lung transplants, implying that circulating progenitor epithelial cells contribute to the repair of the airway epithelium. Markers of circulating progenitor epithelial cells and mechanisms for their trafficking remain to be elucidated. We demonstrate that a population of progenitor epithelial cells exists in the bone marrow and the circulation of mice that is positive for the early epithelial marker cytokeratin 5 (CK5) and the chemokine receptor CXCR4. We used a mouse model of sex-mismatched tracheal transplantation and found that CK5+ circulating progenitor epithelial cells contribute to re-epithelialization of the airway and re-establishment of the pseudostratified epithelium. The presence of CXCL12 in tracheal transplants provided a mechanism for CXCR4+ circulating progenitor epithelial cell recruitment to the airway. Depletion of CXCL12 resulted in the epithelium defaulting to squamous metaplasia, which was derived solely from the resident tissue progenitor epithelial cells. Our findings demonstrate that CK5+CXCR4+ cells are markers of circulating progenitor epithelial cells in the bone marrow and circulation and that CXCR4/CXCL12-mediated recruitment of circulating progenitor epithelial cells is necessary for the re-establishment of a normal pseudostratified epithelium after airway injury. These findings support a novel paradigm for the development of squamous metaplasia of the airway epithelium and for developing therapeutic strategies for circulating progenitor epithelial cells in airway diseases. PMID:16424223

  6. Human Mammary Luminal Epithelial Cells Contain Progenitors to Myoepithelial Cells

    SciTech Connect

    Pechoux, Christine; Gudjonsson, Thorarinn; Ronnov-Jessen, Lone; Bissell, Mina J; Petersen, Ole

    1999-02-01

    The origin of the epithelial and myoepithelial cells in the human breast has not been delineated. In this study we have addressed whether luminal epithelial cells and myoepithelial cells are vertically connected, i.e., whether one is the precursor for the other. We used a primary culture assay allowing preservation of basic phenotypic traits of luminal epithelial and myoepithelial cells in culture. The two cell types were then separated immunomagnetically using antibodies directed against lineage-specific cell surface antigens into at best 100% purity. The cellular identity was ascertained by cytochemistry, immunoblotting, and 2-D gel electrophoresis. Luminal epithelial cells were identified by strong expression of cytokeratins 18 and 19 while myoepithelial cells were recognized by expression of vimentin and {alpha}-smooth muscle actin. We used a previously devised culture medium (CDM4) that allows vigorous expansion of proliferative myoepithelial cells and also devised a medium (CDM6) that allowed sufficient expansion of differentiated luminal epithelial cells based on addition of hepatocyte growth factor/scatter factor. The two different culture media supported each lineage for at least five passages without signs of interconversion. We used parallel cultures where we switched culture media, thus testing the ability of each lineage to convert to the other. Whereas the myoepithelial lineage showed no signs of interconversion, a subset of luminal epithelial cells, gradually, but distinctly, converted to myoepithelial cells. We propose that in the mature human breast, it is the luminal epithelial cell compartment that gives rise to myoepithelial cells rather than the other way around.

  7. Biology of hematopoietic stem cells and progenitors: implications for clinical application.

    PubMed

    Kondo, Motonari; Wagers, Amy J; Manz, Markus G; Prohaska, Susan S; Scherer, David C; Beilhack, Georg F; Shizuru, Judith A; Weissman, Irving L

    2003-01-01

    Stem cell biology is scientifically, clinically, and politically a current topic. The hematopoietic stem cell, the common ancestor of all types of blood cells, is one of the best-characterized stem cells in the body and the only stem cell that is clinically applied in the treatment of diseases such as breast cancer, leukemias, and congenital immunodeficiencies. Multicolor cell sorting enables the purification not only of hematopoietic stem cells, but also of their downstream progenitors such as common lymphoid progenitors and common myeloid progenitors. Recent genetic approaches including gene chip technology have been used to elucidate the gene expression profile of hematopoietic stem cells and other progenitors. Although the mechanisms that control self-renewal and lineage commitment of hematopoietic stem cells are still ambiguous, recent rapid advances in understanding the biological nature of hematopoietic stem and progenitor cells have broadened the potential application of these cells in the treatment of diseases. PMID:12615892

  8. Role of stem and progenitor cells in postmyocardial infarction patients.

    PubMed

    Liu, X; Dauwe, D; Patel, A; Janssens, S

    2009-04-01

    Despite state-of-the-art therapy, clinical outcome remains poor in myocardial infarction (MI) patients with reduced left ventricular (LV) function. Stem cell-mediated repair of the damaged heart is a promising new development in cardiovascular medicine. Embryonic stem cells and adult progenitor cells have been extensively studied for their capacity to improve LV function recovery in preclinical MI models but underlying mechanisms remain incompletely understood. Recent placebo-controlled, randomized bone marrow cell transfer trials in MI patients have shown mixed results with cell-mediated effects on global or regional LV function recovery of variable magnitude and duration. There is now growing consensus that the observed effects of bone marrow-(BM)-derived progenitor cell transfer, as applied in post-MI patients thus far, occur independently of cardiomyocyte formation. Subgroup and meta-analysis of currently available randomized and observational pilot trials have highlighted limitations of current cell-based cardiac repair and provided suggestions for future focused clinical trial design. However, the two most recently reported randomized clinical trials failed to confirm a significant biological effect. A better understanding of underlying molecular mechanisms and modalities of cell-based repair is therefore mandatory to facilitate translation of innovative cell-mediated therapies for functional recovery after MI in the years to come. Rapidly growing insights in the biology of cardiac resident cells and technological advances in generation of patient-specific induced pluripotent stem cells may hold great promise to accomplish cardio-myogenesis and directly restore contractile force generation capacity. PMID:19274031

  9. Circulating Progenitor Cells in Regenerative Technologies: A Realistic Strategy in Bone Regeneration?

    PubMed Central

    Chang, Jessica B.; Lee, Justine C.

    2016-01-01

    Strategies in skeletal regeneration research have been primarily focused on optimization of three components: cellular progenitors, biomaterials, and growth factors. With the increased understanding that circulating progenitor cells exist in peripheral blood, the question arises whether such cell types would allow for adequate osteogenesis and mineralization. In this review, we discuss the current literature on circulating progenitor cells in in vitro and in vivo studies on bone regeneration. PMID:27331195

  10. In Vitro Modeling of Brain Progenitor Cell Development under the Effect of Environmental Factors.

    PubMed

    Kuvacheva, N V; Morgun, A V; Komleva, Yu K; Khilazheva, E D; Gorina, Ya V; Lopatina, O L; Arutyunyan, S A; Salmina, A B

    2015-08-01

    We studied in vitro development of brain progenitor cells isolated from healthy 7-9-month-old Wistar rats and rats with experimental Alzheimer's disease kept under standard conditions and in enriched (multistimulus) environment in vivo. Progenitor cells from healthy animals more rapidly formed neurospheres. Considerable changes at the early stages of in vitro development of brain progenitor cells were observed in both groups kept in enriched environment. PMID:26395632

  11. Latent progenitor cells as potential regulators for tympanic membrane regeneration

    NASA Astrophysics Data System (ADS)

    Kim, Seung Won; Kim, Jangho; Seonwoo, Hoon; Jang, Kyung-Jin; Kim, Yeon Ju; Lim, Hye Jin; Lim, Ki-Taek; Tian, Chunjie; Chung, Jong Hoon; Choung, Yun-Hoon

    2015-06-01

    Tympanic membrane (TM) perforation, in particular chronic otitis media, is one of the most common clinical problems in the world and can present with sensorineural healing loss. Here, we explored an approach for TM regeneration where the latent progenitor or stem cells within TM epithelial layers may play an important regulatory role. We showed that potential TM stem cells present highly positive staining for epithelial stem cell markers in all areas of normal TM tissue. Additionally, they are present at high levels in perforated TMs, especially in proximity to the holes, regardless of acute or chronic status, suggesting that TM stem cells may be a potential factor for TM regeneration. Our study suggests that latent TM stem cells could be potential regulators of regeneration, which provides a new insight into this clinically important process and a potential target for new therapies for chronic otitis media and other eardrum injuries.

  12. 5-azacytidine promotes terminal differentiation of hepatic progenitor cells.

    PubMed

    He, Yun; Cui, Jiejie; He, Tongchuan; Bi, Yang

    2015-08-01

    5-azacytidine (5-azaC) is known to induce cardiomyocyte differentiation. However, its function in hepatocyte differentiation is unclear. The present study investigated the in vitro capability of 5-azaC to promote maturation and differentiation of mouse embryonic hepatic progenitor cells, with the aim of developing an approach for improving hepatic differentiation. Mouse embryonic hepatic progenitor cells (HP14.5 cells) were treated with 5-azaC at concentrations from 0 to 20 μmol/l, in addition to hepatocyte induction culture medium. Hepatocyte induction medium induces HP14.5 cell differentiation. 5-azaC may enhance the albumin promotor-driven Gaussia luciferase (ALB-GLuc) activity in induced HP14.5 cells. In the present study 2 μmol/l was found to be the optimum concentration with which to achieve this. The expression of hepatocyte-associated factors was not significantly different between the group treated with 5-azaC alone and the control group. The mRNA levels of ALB; cytokeratin 18 (CK18); tyrosine aminotransferase (TAT); and cytochrome p450, family 1, member A1 (CYP1A1); in addition to the protein levels of ALB, CK18 and uridine diphosphate glucuronyltransferase 1A (UGT1A) in the induced group with 5-azaC, were higher than those in the induced group without 5-azaC, although no significant differences were detected in expression of the hepatic stem cell markers, DLK and α-fetoprotein, between the two groups. Treatment with 5-azaC alone did not affect glycogen synthesis or indocyanine green (ICG) metabolic function in HP14.5 cells, although it significantly increased ICG uptake and periodic acid-Schiff-positive cell numbers amongst HP14.5 cells. Therefore, the present study demonstrated that treatment with 5-azaC alone exerted no effects on the maturation and differentiation of HP14.5 cells. However, 5-azaC exhibited a synergistic effect on the terminal differentiation of induced hepatic progenitor cells in association with a hepatic induction medium. PMID

  13. Stem cell biology is population biology: differentiation of hematopoietic multipotent progenitors to common lymphoid and myeloid progenitors

    PubMed Central

    2013-01-01

    The hematopoietic stem cell (HSC) system is a demand control system, with the demand coming from the organism, since the products of the common myeloid and lymphoid progenitor (CMP, CLP respectively) cells are essential for activity and defense against disease. We show how ideas from population biology (combining population dynamics and evolutionary considerations) can illuminate the feedback control of the HSC system by the fully differentiated products, which has recently been verified experimentally. We develop models for the penultimate differentiation of HSC Multipotent Progenitors (MPPs) into CLP and CMP and introduce two concepts from population biology into stem cell biology. The first concept is the Multipotent Progenitor Commitment Response (MPCR) which is the probability that a multipotent progenitor cell follows a CLP route rather than a CMP route. The second concept is the link between the MPCR and a measure of Darwinian fitness associated with organismal performance and the levels of differentiated lymphoid and myeloid cells. We show that many MPCRs are consistent with homeostasis, but that they will lead to different dynamics of cells and signals following a wound or injury and thus have different consequences for Darwinian fitness. We show how coupling considerations of life history to dynamics of the HSC system and its products allows one to compute the selective pressures on cellular processes. We discuss ways that this framework can be used and extended. PMID:23327512

  14. Kinematics and host-galaxy properties suggest a nuclear origin for calcium-rich supernova progenitors

    NASA Astrophysics Data System (ADS)

    Foley, Ryan J.

    2015-09-01

    Calcium-rich supernovae (Ca-rich SNe) are peculiar low-luminosity SNe Ib with relatively strong Ca spectral lines at ˜2 months after peak brightness. This class also has an extended projected offset distribution, with several members of the class offset from their host galaxies by 30-150 kpc. There is no indication of any stellar population at the SN positions. Using a sample of 13 Ca-rich SNe, we present kinematic evidence that the progenitors of Ca-rich SNe originate near the centres of their host galaxies and are kicked to the locations of the SN explosions. Specifically, SNe with small projected offsets have large line-of-sight velocity shifts as determined by nebular lines, while those with large projected offsets have no significant velocity shifts. Therefore, the velocity shifts must not be primarily the result of the SN explosion. Additionally, nearly every Ca-rich SN is hosted by a galaxy with indications of a recent merger and/or is in a dense environment. We propose a progenitor model which fits all current data: the progenitor system for a Ca-rich SN is a double white dwarf (WD) system where at least one WD has a significant He abundance. This system, through an interaction with a super-massive black hole (SMBH) is ejected from its host galaxy and the binary is hardened, significantly reducing the merger time. After 10-100 Myr (on average), the system explodes with a large physical offset. The rate for such events is significantly enhanced for galaxies which have undergone recent mergers, potentially making Ca-rich SNe new probes of both the galaxy merger rate and (binary) SMBH population.

  15. Isolation and expansion of functionally-competent cardiac progenitor cells directly from heart biopsies

    PubMed Central

    Davis, Darryl R; Kizana, Eddy; Terrovitis, John; Barth, Andreas S.; Zhang, Yiqiang; Smith, Rachel Ruckdeschel; Miake, Junichiro; Marbán, Eduardo

    2010-01-01

    The adult heart contains reservoirs of progenitor cells that express embryonic and stem cell-related antigens. While these antigenically-purified cells are promising candidates for autologous cell therapy, clinical application is hampered by their limited abundance and tedious isolation methods. Methods that involve an intermediate cardiosphere-forming step have proven successful and are being tested clinically, but it is unclear whether the cardiosphere step is necessary. Accordingly, we investigated the molecular profile and functional benefit of cells that spontaneously emigrate from cardiac tissue in primary culture. Adult Wistar-Kyoto rat hearts were minced, digested and cultured as separate anatomical regions. Loosely-adherent cells that surround the plated tissue were harvested weekly for a total of five harvests. Genetic lineage tracing demonstrated that a small proportion of the direct outgrowth from cardiac samples originates from myocardial cells. This outgrowth contains sub-populations of cells expressing embryonic (SSEA-1) and stem cell-related antigens (c-Kit, abcg2) that varied with time in culture but not with the cardiac chamber of origin. This direct outgrowth, and its expanded progeny, underwent marked in vitro angiogenic/cardiogenic differentiation and cytokine secretion (IGF-1, VGEF). In vivo effects included long-term functional benefits as gauged by MRI following cell injection in a rat model of myocardial infarction. Outgrowth cells afforded equivalent functional benefits to cardiosphere-derived cells, which require more processing steps to manufacture. These results provide the basis for a simplified and efficient process to generate autologous cardiac progenitor cells (and mesenchymal supporting cells) to augment clinically-relevant approaches for myocardial repair. PMID:20211627

  16. ECM-Dependence of Endothelial Progenitor Cell Features.

    PubMed

    Siavashi, Vahid; Nassiri, Seyed Mahdi; Rahbarghazi, Reza; Vafaei, Rana; Sariri, Reyhaneh

    2016-08-01

    Preserving self-renewal, multipotent capacity, and large-scale expansion of highly functional progenitor cells, including endothelial progenitor cells (EPCs), is a controversial issue. These current limitations, therefore, raise the need of developing promising in vitro conditions for prolonged expansion of EPCs without loss of their stemness feature. In the current study, the possible role of three different natural extracellular substrates, including collagen, gelatin, and fibronectin, on multiple parameters of EPCs such as cell morphology, phenotype, clonogenic, and vasculogenic properties was scrutinized. Next, EPCs from GFP-positive mice were pre-expanded on each of these ECM substrates and then systemically transplanted into sublethaly irradiated mice to analyze the potency of these cells for marrow reconstitution. Our results revealed considerable promise for fibronectin for EPC expansion with maintenance of stemness characteristics, whereas gelatin and collagen matrices directed the cells toward a mature endothelial phenotype. Transplantation of EPCs pre-expanded on fibronectin resulted in widespread distribution and appropriate engraftment to various tissues with habitation in close association with the microvasculature. In addition, fibronectin pre-expanded cells were gradually enriched in the bone marrow after transplantation, resulting in marrow repopulation and hematologic recovery, leading to improved survival of recipient mice whereas gelatin- and collagen-expanded cells failed to reconstitute the bone marrow. This study demonstrated that, cell characteristics of in vitro expanded EPCs are determined by the subjacent matrix. Fibronectin-expanded EPCs are heralded as a source of great promise for bone marrow reconstitution and neo-angiogenesis in therapeutic bone marrow transplantation. J. Cell. Biochem. 117: 1934-1946, 2016. © 2016 Wiley Periodicals, Inc. PMID:26756870

  17. Perivascular support of human hematopoietic stem/progenitor cells

    PubMed Central

    Corselli, Mirko; Chin, Chee Jia; Parekh, Chintan; Sahaghian, Arineh; Wang, Wenyuan; Ge, Shundi; Evseenko, Denis; Wang, Xiaoyan; Montelatici, Elisa; Lazzari, Lorenza; Crooks, Gay M.

    2013-01-01

    Hematopoietic stem and progenitor cells (HSPCs) emerge and develop adjacent to blood vessel walls in the yolk sac, aorta-gonad-mesonephros region, embryonic liver, and fetal bone marrow. In adult mouse bone marrow, perivascular cells shape a “niche” for HSPCs. Mesenchymal stem/stromal cells (MSCs), which support hematopoiesis in culture, are themselves derived in part from perivascular cells. In order to define their direct role in hematopoiesis, we tested the ability of purified human CD146+ perivascular cells, as compared with unfractionated MSCs and CD146− cells, to sustain human HSPCs in coculture. CD146+ perivascular cells support the long-term persistence, through cell-to-cell contact and at least partly via Notch activation, of human myelolymphoid HSPCs able to engraft primary and secondary immunodeficient mice. Conversely, unfractionated MSCs and CD146− cells induce differentiation and compromise ex vivo maintenance of HSPCs. Moreover, CD146+ perivascular cells express, natively and in culture, molecular markers of the vascular hematopoietic niche. Unexpectedly, this dramatic, previously undocumented ability to support hematopoietic stem cells is present in CD146+ perivascular cells extracted from the nonhematopoietic adipose tissue. PMID:23412095

  18. Hypothyroidism Impairs Human Stem Cell-Derived Pancreatic Progenitor Cell Maturation in Mice.

    PubMed

    Bruin, Jennifer E; Saber, Nelly; O'Dwyer, Shannon; Fox, Jessica K; Mojibian, Majid; Arora, Payal; Rezania, Alireza; Kieffer, Timothy J

    2016-05-01

    Pancreatic progenitors derived from human embryonic stem cells (hESCs) are a potential source of transplantable cells for treating diabetes and are currently being tested in clinical trials. Yet, how the milieu of pancreatic progenitor cells, including exposure to different factors after transplant, may influence their maturation remains unclear. Here, we examined the effect of thyroid dysregulation on the development of hESC-derived progenitor cells in vivo. Hypothyroidism was generated in SCID-beige mice using an iodine-deficient diet containing 0.15% propyl-2-thiouracil, and hyperthyroidism was generated by addition of L-thyroxine (T4) to drinking water. All mice received macroencapsulated hESC-derived progenitor cells, and thyroid dysfunction was maintained for the duration of the study ("chronic") or for 4 weeks posttransplant ("acute"). Acute hyperthyroidism did not affect graft function, but acute hypothyroidism transiently impaired human C-peptide secretion at 16 weeks posttransplant. Chronic hypothyroidism resulted in severely blunted basal human C-peptide secretion, impaired glucose-stimulated insulin secretion, and elevated plasma glucagon levels. Grafts from chronic hypothyroid mice contained fewer β-cells, heterogenous MAFA expression, and increased glucagon(+) and ghrelin(+) cells compared to grafts from euthyroid mice. Taken together, these data suggest that long-term thyroid hormone deficiency may drive the differentiation of human pancreatic progenitor cells toward α- and ε-cell lineages at the expense of β-cell formation. PMID:26740603

  19. The Novel Methods for Analysis of Exosomes Released from Endothelial Cells and Endothelial Progenitor Cells

    PubMed Central

    Wang, Jinju; Guo, Runmin; Yang, Yi; Jacobs, Bradley; Chen, Suhong; Iwuchukwu, Ifeanyi; Gaines, Kenneth J.; Chen, Yanfang; Simman, Richard; Lv, Guiyuan; Wu, Keng; Bihl, Ji C.

    2016-01-01

    Exosomes (EXs) are cell-derived vesicles that mediate cell-cell communication and could serve as biomarkers. Here we described novel methods for purification and phenotyping of EXs released from endothelial cells (ECs) and endothelial progenitor cells (EPCs) by combining microbeads and fluorescence quantum dots (Q-dots®) techniques. EXs from the culture medium of ECs and EPCs were isolated and detected with cell-specific antibody conjugated microbeads and second antibody conjugated Q-dots by using nanoparticle tracking analysis (NTA) system. The sensitivities of the cell origin markers for ECs (CD105, CD144) and EPCs (CD34, KDR) were evaluated. The sensitivity and specificity were determined by using positive and negative markers for EXs (CD63), platelets (CD41), erythrocytes (CD235a), and microvesicles (Annexin V). Moreover, the methods were further validated in particle-free plasma and patient samples. Results showed that anti-CD105/anti-CD144 and anti-CD34/anti-KDR had the highest sensitivity and specificity for isolating and detecting EC-EXs and EPC-EXs, respectively. The methods had the overall recovery rate of over 70% and were able to detect the dynamical changes of circulating EC-EXs and EPC-EXs in acute ischemic stroke. In conclusion, we have developed sensitive and specific microbeads/Q-dots fluorescence NTA methods for EC-EX and EPC-EX isolation and detection, which will facilitate the functional study and biomarker discovery. PMID:27118976

  20. Microtubules CLASP to Adherens Junctions in epidermal progenitor cells.

    PubMed

    Shahbazi, Marta N; Perez-Moreno, Mirna

    2014-01-01

    Cadherin-mediated cell adhesion at Adherens Junctions (AJs) and its dynamic connections with the microtubule (MT) cytoskeleton are important regulators of cellular architecture. However, the functional relevance of these interactions and the molecular players involved in different cellular contexts and cellular compartments are still not completely understood. Here, we comment on our recent findings showing that the MT plus-end binding protein CLASP2 interacts with the AJ component p120-catenin (p120) specifically in progenitor epidermal cells. Absence of either protein leads to alterations in MT dynamics and AJ functionality. These findings represent a novel mechanism of MT targeting to AJs that may be relevant for the maintenance of proper epidermal progenitor cell homeostasis. We also discuss the potential implication of other MT binding proteins previously associated to AJs in the wider context of epithelial tissues. We hypothesize the existence of adaptation mechanisms that regulate the formation and stability of AJs in different cellular contexts to allow the dynamic behavior of these complexes during tissue homeostasis and remodeling. PMID:24522006

  1. Microtubules CLASP to Adherens Junctions in epidermal progenitor cells

    PubMed Central

    Shahbazi, Marta N; Perez-Moreno, Mirna

    2014-01-01

    Cadherin-mediated cell adhesion at Adherens Junctions (AJs) and its dynamic connections with the microtubule (MT) cytoskeleton are important regulators of cellular architecture. However, the functional relevance of these interactions and the molecular players involved in different cellular contexts and cellular compartments are still not completely understood. Here, we comment on our recent findings showing that the MT plus-end binding protein CLASP2 interacts with the AJ component p120-catenin (p120) specifically in progenitor epidermal cells. Absence of either protein leads to alterations in MT dynamics and AJ functionality. These findings represent a novel mechanism of MT targeting to AJs that may be relevant for the maintenance of proper epidermal progenitor cell homeostasis. We also discuss the potential implication of other MT binding proteins previously associated to AJs in the wider context of epithelial tissues. We hypothesize the existence of adaptation mechanisms that regulate the formation and stability of AJs in different cellular contexts to allow the dynamic behavior of these complexes during tissue homeostasis and remodeling. PMID:24522006

  2. From Here to There, Progenitor Cells and Stem Cells Are Everywhere in Lung Vascular Remodeling.

    PubMed

    Heise, Rebecca L; Link, Patrick A; Farkas, Laszlo

    2016-01-01

    The field of stem cell biology, cell therapy, and regenerative medicine has expanded almost exponentially, in the last decade. Clinical trials are evaluating the potential therapeutic use of stem cells in many adult and pediatric lung diseases with vascular component, such as bronchopulmonary dysplasia (BPD), chronic obstructive pulmonary disease (COPD), idiopathic pulmonary fibrosis (IPF), or pulmonary arterial hypertension (PAH). Extensive research activity is exploring the lung resident and circulating progenitor cells and their contribution to vascular complications of chronic lung diseases, and researchers hope to use resident or circulating stem/progenitor cells to treat chronic lung diseases and their vascular complications. It is becoming more and more clear that progress in mechanobiology will help to understand the various influences of physical forces and extracellular matrix composition on the phenotype and features of the progenitor cells and stem cells. The current review provides an overview of current concepts in the field. PMID:27583245

  3. From Here to There, Progenitor Cells and Stem Cells Are Everywhere in Lung Vascular Remodeling

    PubMed Central

    Heise, Rebecca L.; Link, Patrick A.; Farkas, Laszlo

    2016-01-01

    The field of stem cell biology, cell therapy, and regenerative medicine has expanded almost exponentially, in the last decade. Clinical trials are evaluating the potential therapeutic use of stem cells in many adult and pediatric lung diseases with vascular component, such as bronchopulmonary dysplasia (BPD), chronic obstructive pulmonary disease (COPD), idiopathic pulmonary fibrosis (IPF), or pulmonary arterial hypertension (PAH). Extensive research activity is exploring the lung resident and circulating progenitor cells and their contribution to vascular complications of chronic lung diseases, and researchers hope to use resident or circulating stem/progenitor cells to treat chronic lung diseases and their vascular complications. It is becoming more and more clear that progress in mechanobiology will help to understand the various influences of physical forces and extracellular matrix composition on the phenotype and features of the progenitor cells and stem cells. The current review provides an overview of current concepts in the field. PMID:27583245

  4. Comparative Quantification of the Surfaceome of Human Multipotent Mesenchymal Progenitor Cells

    PubMed Central

    Holley, Rebecca J.; Tai, Guangping; Williamson, Andrew J.K.; Taylor, Samuel; Cain, Stuart A.; Richardson, Stephen M.; Merry, Catherine L.R.; Whetton, Anthony D.; Kielty, Cay M.; Canfield, Ann E.

    2015-01-01

    Summary Mesenchymal progenitor cells have great therapeutic potential, yet incomplete characterization of their cell-surface interface limits their clinical exploitation. We have employed subcellular fractionation with quantitative discovery proteomics to define the cell-surface interface proteome of human bone marrow mesenchymal stromal/stem cells (MSCs) and human umbilical cord perivascular cells (HUCPVCs). We compared cell-surface-enriched fractions from MSCs and HUCPVCs (three donors each) with adult mesenchymal fibroblasts using eight-channel isobaric-tagging mass spectrometry, yielding relative quantification on >6,000 proteins with high confidence. This approach identified 186 upregulated mesenchymal progenitor biomarkers. Validation of 10 of these markers, including ROR2, EPHA2, and PLXNA2, confirmed upregulated expression in mesenchymal progenitor populations and distinct roles in progenitor cell proliferation, migration, and differentiation. Our approach has delivered a cell-surface proteome repository that now enables improved selection and characterization of human mesenchymal progenitor populations. PMID:25684225

  5. Functional Genetic Targeting of Embryonic Kidney Progenitor Cells Ex Vivo

    PubMed Central

    Junttila, Sanna; Saarela, Ulla; Halt, Kimmo; Manninen, Aki; Pärssinen, Heikki; Lecca, M. Rita; Brändli, André W.; Sims-Lucas, Sunder; Skovorodkin, Ilya

    2015-01-01

    The embryonic mammalian metanephric mesenchyme (MM) is a unique tissue because it is competent to generate the nephrons in response to Wnt signaling. An ex vivo culture in which the MM is separated from the ureteric bud (UB), the natural inducer, can be used as a classic tubule induction model for studying nephrogenesis. However, technological restrictions currently prevent using this model to study the molecular genetic details before or during tubule induction. Using nephron segment-specific markers, we now show that tubule induction in the MM ex vivo also leads to the assembly of highly segmented nephrons. This induction capacity was reconstituted when MM tissue was dissociated into a cell suspension and then reaggregated (drMM) in the presence of human recombinant bone morphogenetic protein 7/human recombinant fibroblast growth factor 2 for 24 hours before induction. Growth factor–treated drMM also recovered the capacity for organogenesis when recombined with the UB. Cell tracking and time-lapse imaging of chimeric drMM cultures indicated that the nephron is not derived from a single progenitor cell. Furthermore, viral vector-mediated transduction of green fluorescent protein was much more efficient in dissociated MM cells than in intact mesenchyme, and the nephrogenic competence of transduced drMM progenitor cells was preserved. Moreover, drMM cells transduced with viral vectors mediating Lhx1 knockdown were excluded from the nephric tubules, whereas cells transduced with control vectors were incorporated. In summary, these techniques allow reproducible cellular and molecular examinations of the mechanisms behind nephrogenesis and kidney organogenesis in an ex vivo organ culture/organoid setting. PMID:25201883

  6. Multipotent adult progenitor cells on an allograft scaffold facilitate the bone repair process

    PubMed Central

    LoGuidice, Amanda; Houlihan, Alison; Deans, Robert

    2016-01-01

    Multipotent adult progenitor cells are a recently described population of stem cells derived from the bone marrow stroma. Research has demonstrated the potential of multipotent adult progenitor cells for treating ischemic injury and cardiovascular repair; however, understanding of multipotent adult progenitor cells in orthopedic applications remains limited. In this study, we evaluate the osteogenic and angiogenic capacity of multipotent adult progenitor cells, both in vitro and loaded onto demineralized bone matrix in vivo, with comparison to mesenchymal stem cells, as the current standard. When compared to mesenchymal stem cells, multipotent adult progenitor cells exhibited a more robust angiogenic protein release profile in vitro and developed more extensive vasculature within 2 weeks in vivo. The establishment of this vascular network is critical to the ossification process, as it allows nutrient exchange and provides an influx of osteoprogenitor cells to the wound site. In vitro assays confirmed the multipotency of multipotent adult progenitor cells along mesodermal lineages and demonstrated the enhanced expression of alkaline phosphatase and production of calcium-containing mineral deposits by multipotent adult progenitor cells, necessary precursors for osteogenesis. In combination with a demineralized bone matrix scaffold, multipotent adult progenitor cells demonstrated enhanced revascularization and new bone formation in vivo in an orthotopic defect model when compared to mesenchymal stem cells on demineralized bone matrix or demineralized bone matrix–only control groups. The potent combination of angiogenic and osteogenic properties provided by multipotent adult progenitor cells appears to create a synergistic amplification of the bone healing process. Our results indicate that multipotent adult progenitor cells have the potential to better promote tissue regeneration and healing and to be a functional cell source for use in orthopedic applications

  7. Multipotent adult progenitor cells on an allograft scaffold facilitate the bone repair process.

    PubMed

    LoGuidice, Amanda; Houlihan, Alison; Deans, Robert

    2016-01-01

    Multipotent adult progenitor cells are a recently described population of stem cells derived from the bone marrow stroma. Research has demonstrated the potential of multipotent adult progenitor cells for treating ischemic injury and cardiovascular repair; however, understanding of multipotent adult progenitor cells in orthopedic applications remains limited. In this study, we evaluate the osteogenic and angiogenic capacity of multipotent adult progenitor cells, both in vitro and loaded onto demineralized bone matrix in vivo, with comparison to mesenchymal stem cells, as the current standard. When compared to mesenchymal stem cells, multipotent adult progenitor cells exhibited a more robust angiogenic protein release profile in vitro and developed more extensive vasculature within 2 weeks in vivo. The establishment of this vascular network is critical to the ossification process, as it allows nutrient exchange and provides an influx of osteoprogenitor cells to the wound site. In vitro assays confirmed the multipotency of multipotent adult progenitor cells along mesodermal lineages and demonstrated the enhanced expression of alkaline phosphatase and production of calcium-containing mineral deposits by multipotent adult progenitor cells, necessary precursors for osteogenesis. In combination with a demineralized bone matrix scaffold, multipotent adult progenitor cells demonstrated enhanced revascularization and new bone formation in vivo in an orthotopic defect model when compared to mesenchymal stem cells on demineralized bone matrix or demineralized bone matrix-only control groups. The potent combination of angiogenic and osteogenic properties provided by multipotent adult progenitor cells appears to create a synergistic amplification of the bone healing process. Our results indicate that multipotent adult progenitor cells have the potential to better promote tissue regeneration and healing and to be a functional cell source for use in orthopedic applications. PMID

  8. Cis-regulatory mechanisms governing stem and progenitor cell transitions

    PubMed Central

    Johnson, Kirby D.; Kong, Guangyao; Gao, Xin; Chang, Yuan-I; Hewitt, Kyle J.; Sanalkumar, Rajendran; Prathibha, Rajalekshmi; Ranheim, Erik A.; Dewey, Colin N.; Zhang, Jing; Bresnick, Emery H.

    2015-01-01

    Cis-element encyclopedias provide information on phenotypic diversity and disease mechanisms. Although cis-element polymorphisms and mutations are instructive, deciphering function remains challenging. Mutation of an intronic GATA motif (+9.5) in GATA2, encoding a master regulator of hematopoiesis, underlies an immunodeficiency associated with myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML). Whereas an inversion relocalizes another GATA2 cis-element (−77) to the proto-oncogene EVI1, inducing EVI1 expression and AML, whether this reflects ectopic or physiological activity is unknown. We describe a mouse strain that decouples −77 function from proto-oncogene deregulation. The −77−/− mice exhibited a novel phenotypic constellation including late embryonic lethality and anemia. The −77 established a vital sector of the myeloid progenitor transcriptome, conferring multipotentiality. Unlike the +9.5−/− embryos, hematopoietic stem cell genesis was unaffected in −77−/− embryos. These results illustrate a paradigm in which cis-elements in a locus differentially control stem and progenitor cell transitions, and therefore the individual cis-element alterations cause unique and overlapping disease phenotypes. PMID:26601269

  9. Role of osteoclasts in regulating hematopoietic stem and progenitor cells

    PubMed Central

    Miyamoto, Takeshi

    2013-01-01

    Bone marrow (BM) cavities are utilized for hematopoiesis and to maintain hematopoietic stem cells (HSCs). HSCs have the ability to self-renew as well as to differentiate into multiple different hematopoietic lineage cells. HSCs produce their daughter cells throughout the lifespan of individuals and thus, maintaining HSCs is crucial for individual life. BM cavities provide a specialized microenvironment termed “niche” to support HSCs. Niches are composed of various types of cells such as osteoblasts, endothelial cells and reticular cells. Osteoclasts are unique cells which resorb bones and are required for BM cavity formation. Loss of osteoclast function or differentiation results in inhibition of BM cavity formation, an osteopetrotic phenotype. Osteoclasts are also reportedly required for hematopoietic stem and progenitor cell (HSPC) mobilization to the periphery from BM cavities. Thus, lack of osteoclasts likely results in inhibition of HSC maintenance and HSPC mobilization. However, we found that osteoclasts are dispensable for hematopoietic stem cell maintenance and mobilization by using three independent osteoclast-less animal models. In this review, I will discuss the roles of osteoclasts in hematopoietic stem cell maintenance and mobilization. PMID:24147255

  10. CXCR4 and Gab1 cooperate to control the development of migrating muscle progenitor cells

    PubMed Central

    Vasyutina, Elena; Stebler, Jürg; Brand-Saberi, Beate; Schulz, Stefan; Raz, Erez; Birchmeier, Carmen

    2005-01-01

    Long-range migrating progenitor cells generate hypaxial muscle, for instance the muscle of the limbs, hypoglossal cord, and diaphragm. We show here that migrating muscle progenitors express the chemokine receptor CXCR4. The corresponding ligand, SDF1, is expressed in limb and branchial arch mesenchyme; i.e., along the routes and at the targets of the migratory cells. Ectopic application of SDF1 in the chick limb attracts muscle progenitor cells. In CXCR4 mutant mice, the number of muscle progenitors that colonize the anlage of the tongue and the dorsal limb was reduced. Changes in the distribution of the muscle progenitor cells were accompanied by increased apoptosis, indicating that CXCR4 signals provide not only attractive cues but also control survival. Gab1 encodes an adaptor protein that transduces signals elicited by tyrosine kinase receptors, for instance the c-Met receptor, and plays a role in the migration of muscle progenitor cells. We found that CXCR4 and Gab1 interact genetically. For instance, muscle progenitors do not reach the anlage of the tongue in CXCR4;Gab1 double mutants; this target is colonized in either of the single mutants. Our analysis reveals a role of SDF1/CXCR4 signaling in the development of migrating muscle progenitors and shows that a threshold number of progenitor cells is required to generate muscle of appropriate size. PMID:16166380

  11. CXCR4 and Gab1 cooperate to control the development of migrating muscle progenitor cells.

    PubMed

    Vasyutina, Elena; Stebler, Jürg; Brand-Saberi, Beate; Schulz, Stefan; Raz, Erez; Birchmeier, Carmen

    2005-09-15

    Long-range migrating progenitor cells generate hypaxial muscle, for instance the muscle of the limbs, hypoglossal cord, and diaphragm. We show here that migrating muscle progenitors express the chemokine receptor CXCR4. The corresponding ligand, SDF1, is expressed in limb and branchial arch mesenchyme; i.e., along the routes and at the targets of the migratory cells. Ectopic application of SDF1 in the chick limb attracts muscle progenitor cells. In CXCR4 mutant mice, the number of muscle progenitors that colonize the anlage of the tongue and the dorsal limb was reduced. Changes in the distribution of the muscle progenitor cells were accompanied by increased apoptosis, indicating that CXCR4 signals provide not only attractive cues but also control survival. Gab1 encodes an adaptor protein that transduces signals elicited by tyrosine kinase receptors, for instance the c-Met receptor, and plays a role in the migration of muscle progenitor cells. We found that CXCR4 and Gab1 interact genetically. For instance, muscle progenitors do not reach the anlage of the tongue in CXCR4;Gab1 double mutants; this target is colonized in either of the single mutants. Our analysis reveals a role of SDF1/CXCR4 signaling in the development of migrating muscle progenitors and shows that a threshold number of progenitor cells is required to generate muscle of appropriate size. PMID:16166380

  12. Antidepressants increase neural progenitor cells in the human hippocampus

    PubMed Central

    Boldrini, Maura; Underwood, Mark D.; Hen, René; Rosoklija, Gorazd B.; Dwork, Andrew J.; Mann, J. John; Arango, Victoria

    2009-01-01

    Selective serotonin reuptake inhibitors (SSRIs) and tricyclic antidepressants (TCAs) increase neurogenesis in the dentate gyrus (DG) of rodents and nonhuman primates. We determined whether SSRIs or TCAs increase neural progenitor (NPCs) and dividing cells in the human DG in major depressive disorder (MDD). Whole frozen hippocampi from untreated subjects with MDD (N = 5), antidepressant-treated MDD (MDDT, N = 7), and controls (C, N = 7) were fixed, sectioned and immunostained for NPCs and dividing cell markers (nestin and Ki-67 respectively), NeuN and GFAP, in single and double labeling. NPC and dividing cell numbers in the DG were estimated by stereology. Clinical data were obtained by psychological autopsy and toxicological and neuropathological examination performed in all subjects. NPCs decreased with age (p = 0.034). Females had more NPCs than males (p = 0.023). Correcting for age and sex, MDDT receiving SSRIs had more NPCs than untreated MDD (p ≤ 0.001) and controls (p ≤ 0.001), NPCs were not different in SSRIs- and TCAs-treated MDDT (p = 0.169). Dividing cell number, unaffected by age or sex, was greater in MDDT receiving TCAs than in untreated MDD (p ≤ 0.001), SSRI-treated MDD (p = 0.001) and controls (p ≤ 0.001). The NPCs and dividing cells increase in MDDT was localized to the rostral DG. MDDT had a larger DG volume compared with untreated MDD or controls (p = 0.009). Antidepressants increase neural progenitor cell number in the anterior human dentate gyrus. Whether this finding is critical or necessary for the antidepressants effect remains to be determined. PMID:19606083

  13. Endothelial Progenitor Cells in Sprouting Angiogenesis: Proteases Pave the Way.

    PubMed

    Laurenzana, A; Fibbi, G; Margheri, F; Biagioni, A; Luciani, C; Del Rosso, M; Chillà, A

    2015-01-01

    Sprouting angiogenesis consists of the expansion and remodelling of existing vessels, where the vascular sprouts connect each other to form new vascular loops. Endothelial Progenitor Cells (EPCs) are a subtype of stem cells, with high proliferative potential, able to differentiate into mature Endothelial Cells (ECs) during the neovascularization process. In addition to this direct structural role EPCs improve neovascularization, also secreting numerous pro-angiogenic factors able to enhance the proliferation, survival and function of mature ECs, and other surrounding progenitor cells. While sprouting angiogenesis by mature ECs involves resident ECs, the vasculogenic contribution of EPCs is a high hurdle race. Bone marrowmobilized EPCs have to detach from the stem cell niche, intravasate into bone marrow vessels, reach the hypoxic area or tumour site, extravasate and incorporate into the new vessel lumen, thus complementing the resident mature ECs in sprouting angiogenesis. The goal of this review is to highlight the role of the main protease systems able to control each of these steps. The pivotal protease systems here described, involved in vascular patterning in sprouting angiogenesis, are the matrix-metalloproteinases (MMPs), the serineproteinases urokinase-type plasminogen activator (uPA) associated with its receptor (uPAR) and receptorassociated plasminogen/plasmin, the neutrophil elastase and the cathepsins. Since angiogenesis plays a critical role not only in physiological but also in pathological processes, such as in tumours, controlling the contribution of EPCs to the angiogenic process, through the regulation of the protease systems involved, could yield new opportunities for the therapeutic prospect of efficient control of pathological angiogenesis. PMID:26321757

  14. TLR2 Activation Inhibits Embryonic Neural Progenitor Cell Proliferation

    PubMed Central

    Okun, Eitan; Griffioen, Kathleen J.; Gen-Son, Tae; Lee, Jong-Hwan; Roberts, Nicholas J.; Mughal, Mohamed R.; Hutchison, Emmette; Cheng, Aiwu; Arumugam, Thiruma V.; Lathia, Justin D.; van Praag, Henriette; Mattson, Mark P.

    2010-01-01

    Toll-like receptors (TLRs) play essential roles in innate immunity, and increasing evidence indicates that these receptors are expressed in neurons, astrocytes and microglia in the brain, where they mediate responses to infection, stress and injury. To address the possibility that TLR2 heterodimer activation could affect progenitor cells in the developing brain, we analyzed the expression of TLR2 throughout the mouse cortical development, and assessed the role of TLR2 heterodimer activation in neural progenitor cell (NPC) proliferation. TLR2 mRNA and protein was expressed in the cortex in embryonic and early postnatal stages of development, and in cultured cortical NPC. While NPC from TLR2-deficient and wild type embryos had the same proliferative capacity, TLR2 activation by the synthetic bacterial lipopeptides Pam3CSK4 and FSL1, or low molecular weight hyaluronan, an endogenous ligand for TLR2, inhibited neurosphere formation in vitro. Intracerebral in utero administration of TLR2 ligands resulted in ventricular dysgenesis characterized by increased ventricle size, reduced proliferative area around the ventricles, increased cell density, an increase in PH3+ cells and a decrease in BrdU+ cells in the sub-ventricular zone. Our findings indicate that loss of TLR2 does not result in defects in cerebral development. However, TLR2 is expressed and functional in the developing telencephalon from early embryonic stages and infectious agent-related activation of TLR2 inhibits NPC proliferation. TLR2–mediated inhibition of NPC proliferation may therefore be a mechanism by which infection, ischemia and inflammation adversely affect brain development. PMID:20456021

  15. The role of mesenchymal stem/progenitor cells in sarcoma: update and dispute

    PubMed Central

    Ren, Zhiwu; Du, Xiaoling; Hao, Mengze; Zhou, Wenya

    2014-01-01

    Sarcoma is the collective name for a relatively rare, yet heterogeneous group of cancers, most probably derived from mesenchymal tissues. There are currently over 50 sarcoma subtypes described underscoring the clinical and biologic diversity of this group of malignant cancers. This wide lineage range might suggest that sarcomas originate from either many committed different cell types or from a multipotent cell. Mesenchymal stem/progenitor cells (MSCs) are able to differentiate into many cell types and these multipotent cells have been isolated from several adult human tumors, making them available for research as well as potential beneficial therapeutical agents. Recent accomplishments in the field have broadened our knowledge of MSCs in relation to sarcoma origin and sarcoma treatment in therapeutic settings. However, numerous concerns and disputes have been raised about whether they are the putative originating cells of sarcoma and their questionable role in sarcomagenesis and progression. We summarize the update and dispute about MSC investigations in sarcomas including the definition, cell origin hypothesis, functional and descriptive assays, roles in sarcomagenesis and targeted therapy, with the purpose to give a comprehensive view of the role of MSCs in sarcomas.

  16. Integrated Genomic Analysis of Diverse Induced Pluripotent Stem Cells from the Progenitor Cell Biology Consortium.

    PubMed

    Salomonis, Nathan; Dexheimer, Phillip J; Omberg, Larsson; Schroll, Robin; Bush, Stacy; Huo, Jeffrey; Schriml, Lynn; Ho Sui, Shannan; Keddache, Mehdi; Mayhew, Christopher; Shanmukhappa, Shiva Kumar; Wells, James; Daily, Kenneth; Hubler, Shane; Wang, Yuliang; Zambidis, Elias; Margolin, Adam; Hide, Winston; Hatzopoulos, Antonis K; Malik, Punam; Cancelas, Jose A; Aronow, Bruce J; Lutzko, Carolyn

    2016-07-12

    The rigorous characterization of distinct induced pluripotent stem cells (iPSC) derived from multiple reprogramming technologies, somatic sources, and donors is required to understand potential sources of variability and downstream potential. To achieve this goal, the Progenitor Cell Biology Consortium performed comprehensive experimental and genomic analyses of 58 iPSC from ten laboratories generated using a variety of reprogramming genes, vectors, and cells. Associated global molecular characterization studies identified functionally informative correlations in gene expression, DNA methylation, and/or copy-number variation among key developmental and oncogenic regulators as a result of donor, sex, line stability, reprogramming technology, and cell of origin. Furthermore, X-chromosome inactivation in PSC produced highly correlated differences in teratoma-lineage staining and regulator expression upon differentiation. All experimental results, and raw, processed, and metadata from these analyses, including powerful tools, are interactively accessible from a new online portal at https://www.synapse.org to serve as a reusable resource for the stem cell community. PMID:27293150

  17. Effects of physical activity on endothelial progenitor cells (EPCs)

    PubMed Central

    De Biase, Chiara; De Rosa, Roberta; Luciano, Rossella; De Luca, Stefania; Capuano, Ernesto; Trimarco, Bruno; Galasso, Gennaro

    2014-01-01

    Physical activity has a therapeutic role in cardiovascular disease (CVD), through its beneficial effects on endothelial function and cardiovascular system. Circulating endothelial progenitor cells (EPCs) are bone marrow (BM) derived cells that represent a novel therapeutic target in CVD patients, because of their ability to home to sites of ischemic injury and repair the damaged vessels. Several studies show that physical activity results in a significant increase in circulating EPCs, and, in particular, there are some evidence of the beneficial exercise-induced effects on EPCs activity in CVD settings, including coronary artery disease (CAD), heart failure (HF), and peripheral artery disease (PAD). The aim of this paper is to review the current evidence about the beneficial effects of physical exercise on endothelial function and EPCs levels and activity in both healthy subjects and patients with CVD. PMID:24550833

  18. Osteopontin Neutralization Abrogates the Liver Progenitor Cell Response and Fibrogenesis in Mice

    PubMed Central

    Coombes, J; Swiderska-Syn, M; Dollé, L; Reid, D; Eksteen, B; Claridge, L; Briones-Orta, MA; Shetty, S; Oo, YH; Riva, A; Chokshi, S; Papa, S; Mi, Z; Kuo, PC; Williams, R; Canbay, A; Adams, DH; Diehl, AM; van Grunsven, LA; Choi, SS; Syn, WK

    2015-01-01

    Background Chronic liver injury triggers a progenitor-cell repair-response, and liver fibrosis occurs when repair becomes de-regulated. Previously, we reported that reactivation of the Hedgehog (Hh) pathway promotes fibrogenic liver-repair. Osteopontin (OPN) is a Hh-target, and a cytokine that is highly upregulated in fibrotic tissues, and regulates stem-cell fate. Thus, we hypothesized that OPN may modulate liver progenitor-cell response, and thereby, modulate fibrotic outcomes. We further evaluated the impact of OPN-neutralization on murine liver fibrosis. Methods Liver progenitors (603B and BMOL) were treated with OPN-neutralizing aptamers in the presence or absence of TGF–β, to determine if (and how) OPN modulates liver progenitor function. Effects of OPN-neutralization (using OPN-aptamers or OPN-neutralizing antibodies) on liver progenitor-cell response and fibrogenesis were assessed in three models of liver fibrosis (carbon tetrachloride, methionine-choline deficient diet, 3, 5,-diethoxycarbonyl-1,4-dihydrocollidine diet) by qRTPCR, Sirius-Red staining, hydroxyproline assay, and semi-quantitative double-immunohistochemistry. Finally, OPN expression and liver progenitor response were corroborated in liver tissues obtained from patients with chronic liver disease. Results OPN is over-expressed by liver progenitors in humans and mice. In cultured progenitors, OPN enhances viability and wound-healing by modulating TGF-β signaling. In vivo, OPN-neutralization attenuates the liver progenitor-cell response, reverses epithelial-mesenchymal-transition in Sox9+ cells, and abrogates liver fibrogenesis. Conclusions OPN upregulation during liver injury is a conserved repair-response, and influences liver progenitor-cell function. OPN-neutralization abrogates the liver progenitor-cell response and fibrogenesis in mouse models of liver fibrosis. PMID:24902765

  19. Circulating endothelial cells and their progenitors in acute myeloid leukemia

    PubMed Central

    Zahran, Asmaa Mohammed; Aly, Sanaa Shaker; Altayeb, Hanan Ahmed; Ali, Arwa Mohammed

    2016-01-01

    Acute myeloid leukemia (AML) is an aggressive hematological malignancy characterized by the accumulation of immature myeloid progenitor cells in the bone marrow. Studies are required to investigate the prognostic and predictive value of surrogate biomarkers. Given the importance of angiogenesis in oncology in terms of pathogenesis as well as being a target for treatment, circulating endothelial cells (CECs) and endothelial progenitor cells (EPCs) are promising candidates to serve as such markers. The aim of the present study was to quantify CECs and EPCs in patients with AML at initial diagnosis and following induction chemotherapy, and to correlate these findings with the response to treatment in AML patients. The present study included 40 patients with de novo AML and 20 age- and gender-matched healthy controls. CECs and EPCs were evaluated by flow cytometry at initial diagnosis and after induction chemotherapy (3+7 protocol for AML other than M3 and all-trans-retinoic acid plus anthracycline for M3 disease). CECs and EPCs were significantly higher in AML patients at diagnosis and after induction chemotherapy than in controls. After induction chemotherapy, CECs and EPCs were significantly decreased compared with the levels at initial diagnosis. Patients who achieved complete response (n=28) had lower initial CEC and EPC levels compared with patients who did not respond to treatment. These results suggest that CEC levels are higher in AML patients and may correlate with disease status and treatment response. Further investigations are required to better determine the predictive value and implication of these cells in AML management. PMID:27602121

  20. CD133 positive progenitor endothelial cell lines from human cord blood.

    PubMed

    Paprocka, Maria; Krawczenko, Agnieszka; Dus, Danuta; Kantor, Aneta; Carreau, Aude; Grillon, Catherine; Kieda, Claudine

    2011-08-01

    Endothelial progenitor cells (EPCs) modulate postnatal vascularization and contribute to vessel regeneration in adults. Stem cells and progenitor cells were found in umbilical cord blood, bone marrow, and mobilized peripheral blood cells, from where they were isolated and cultured. However, the yield of progenitor cells is usually not sufficient for clinical application and the quality of progenitor cells varies. The aim of the study was the immortalization of early progenitor cells with high proliferative potential, capable to differentiate to EPCs and, further, toward endothelial cells. Two cell lines, namely HEPC-CB.1 and HEPC-CB.2 (human endothelial progenitor cells-cord blood) were isolated. As assessed by specific antibody labeling and flow cytometric analysis, they express a panel of stem cell markers: CD133, CD13, CD271, CD90 and also endothelial cell markers: CD202b, CD309 (VEGFR2), CD146, CD105, and CD143 but they do not present markers of finally differentiated endothelial cells: CD31, vWf, nor CD45 which is a specific hematopoietic cell marker. Using the multiplex Cytometric Bead Assay, the simultaneous production of proangiogenic cytokines IL8, angiogenin, and VEGF was demonstrated in normoxia and was shown to be increased by hypoxia. Both cell lines, similarly as mature endothelial cells, underwent in vitro pre-angiogenic process, formed pseudovessel structures and present an accelerated angiogenesis in hypoxic conditions. To date, these are the first CD133 positive established cell lines from human cord blood cells. PMID:21710642

  1. Autologous Stem Cell Therapy: How Aging and Chronic Diseases Affect Stem and Progenitor Cells

    PubMed Central

    Efimenko, Anastasia Yu.; Kochegura, Tatiana N.; Akopyan, Zhanna A.; Parfyonova, Yelena V.

    2015-01-01

    Abstract During recent years different types of adult stem/progenitor cells have been successfully applied for the treatment of many pathologies, including cardiovascular diseases. The regenerative potential of these cells is considered to be due to their high proliferation and differentiation capacities, paracrine activity, and immunologic privilege. However, therapeutic efficacy of the autologous stem/progenitor cells for most clinical applications remains modest, possibly because of the attenuation of their regenerative potential in aged patients with chronic diseases such as cardiovascular diseases and metabolic disorders. In this review we will discuss the risk factors affecting the therapeutic potential of adult stem/progenitor cells as well as the main approaches to mitigating them using the methods of regenerative medicine. PMID:26309780

  2. Islet Cells Serve as Cells of Origin of Pancreatic Gastrin-Positive Endocrine Tumors.

    PubMed

    Bonnavion, Rémy; Teinturier, Romain; Jaafar, Rami; Ripoche, Doriane; Leteurtre, Emmanuelle; Chen, Yuan-Jia; Rehfeld, Jens F; Lepinasse, Florian; Hervieu, Valérie; Pattou, François; Vantyghem, Marie-Christine; Scoazec, Jean-Yves; Bertolino, Philippe; Zhang, Chang Xian

    2015-10-01

    The cells of origin of pancreatic gastrinomas remain an enigma, since no gastrin-expressing cells are found in the normal adult pancreas. It was proposed that the cellular origin of pancreatic gastrinomas may come from either the pancreatic cells themselves or gastrin-expressing cells which have migrated from the duodenum. In the current study, we further characterized previously described transient pancreatic gastrin-expressing cells using cell lineage tracing in a pan-pancreatic progenitor and a pancreatic endocrine progenitor model. We provide evidence showing that pancreatic gastrin-expressing cells, found from embryonic day 12.5 until postnatal day 7, are derived from pancreatic Ptf1a(+) and neurogenin 3-expressing (Ngn3(+)) progenitors. Importantly, the majority of them coexpress glucagon, with 4% coexpressing insulin, indicating that they are a temporary subpopulation of both alpha and beta cells. Interestingly, Men1 disruption in both Ngn3 progenitors and beta and alpha cells resulted in the development of pancreatic gastrin-expressing tumors, suggesting that the latter developed from islet cells. Finally, we detected gastrin expression using three human cohorts with pancreatic endocrine tumors (pNETs) that have not been diagnosed as gastrinomas (in 9/34 pNETs from 6/14 patients with multiple endocrine neoplasia type 1, in 5/35 sporadic nonfunctioning pNETs, and in 2/20 sporadic insulinomas), consistent with observations made in mouse models. Our work provides insight into the histogenesis of pancreatic gastrin-expressing tumors. PMID:26169832

  3. Islet Cells Serve as Cells of Origin of Pancreatic Gastrin-Positive Endocrine Tumors

    PubMed Central

    Bonnavion, Rémy; Teinturier, Romain; Jaafar, Rami; Ripoche, Doriane; Leteurtre, Emmanuelle; Chen, Yuan-Jia; Rehfeld, Jens F.; Lepinasse, Florian; Hervieu, Valérie; Pattou, François; Vantyghem, Marie-Christine; Scoazec, Jean-Yves; Bertolino, Philippe

    2015-01-01

    The cells of origin of pancreatic gastrinomas remain an enigma, since no gastrin-expressing cells are found in the normal adult pancreas. It was proposed that the cellular origin of pancreatic gastrinomas may come from either the pancreatic cells themselves or gastrin-expressing cells which have migrated from the duodenum. In the current study, we further characterized previously described transient pancreatic gastrin-expressing cells using cell lineage tracing in a pan-pancreatic progenitor and a pancreatic endocrine progenitor model. We provide evidence showing that pancreatic gastrin-expressing cells, found from embryonic day 12.5 until postnatal day 7, are derived from pancreatic Ptf1a+ and neurogenin 3-expressing (Ngn3+) progenitors. Importantly, the majority of them coexpress glucagon, with 4% coexpressing insulin, indicating that they are a temporary subpopulation of both alpha and beta cells. Interestingly, Men1 disruption in both Ngn3 progenitors and beta and alpha cells resulted in the development of pancreatic gastrin-expressing tumors, suggesting that the latter developed from islet cells. Finally, we detected gastrin expression using three human cohorts with pancreatic endocrine tumors (pNETs) that have not been diagnosed as gastrinomas (in 9/34 pNETs from 6/14 patients with multiple endocrine neoplasia type 1, in 5/35 sporadic nonfunctioning pNETs, and in 2/20 sporadic insulinomas), consistent with observations made in mouse models. Our work provides insight into the histogenesis of pancreatic gastrin-expressing tumors. PMID:26169832

  4. Nitrative Stress Participates in Endothelial Progenitor Cell Injury in Hyperhomocysteinemia

    PubMed Central

    Dong, Yu; Sun, Qi; Liu, Teng; Wang, Huanyuan; Jiao, Kun; Xu, Jiahui; Liu, Xin; Liu, Huirong; Wang, Wen

    2016-01-01

    In order to investigate the role of nitrative stress in vascular endothelial injury in hyperhomocysteinemia (HHcy), thirty healthy adult female Wistar rats were randomly divided into three groups: control, hyperhomocysteinemia model, and hyperhomocysteinemia with FeTMPyP (peroxynitrite scavenger) treatment. The endothelium-dependent dilatation of thoracic aorta in vitro was determined by response to acetylcholine (ACh). The histological changes in endothelium were assessed by HE staining and scanning electron microscopy (SEM). The expression of 3-nitrotyrosine (NT) in thoracic aorta was demonstrated by immunohistochemistry and immunofluorescence, and the number of circulating endothelial progenitor cells (EPCs) was quantified by flow cytometry. Hyperhomocysteinemia caused significant endothelial injury and dysfunction including vasodilative and histologic changes, associated with higher expression of NT in thoracic aorta. FeTMPyP treatment reversed these injuries significantly. Further, the effect of nitrative stress on cultured EPCs in vitro was investigated by administering peroxynitrite donor (3-morpholino-sydnonimine, SIN-1) and peroxynitrite scavenger (FeTMPyP). The roles of nitrative stress on cell viability, necrosis and apoptosis were evaluated with 3-(4,5-dimethylthiazol)-2,5-diphenyl tetrazolium (MTT) assay, lactate dehydrogenase (LDH) release assay and terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) assay, respectively. Also, the phospho-eNOS expression and tube formation in Matrigel of cultured EPCs was detected. Our data showed that the survival of EPCs was much lower in SIN-1 group than in vehicle group, both the apoptosis and necrosis of EPCs were much more severe, and the p-eNOS expression and tube formation in Matrigel were obviously declined. Subsequent pretreatment with FeTMPyP reversed these changes. Further, pretreatment with FeTMPyP reversed homocysteine-induced EPC injury. In conclusion, this study indicates that

  5. Nitrative Stress Participates in Endothelial Progenitor Cell Injury in Hyperhomocysteinemia.

    PubMed

    Dong, Yu; Sun, Qi; Liu, Teng; Wang, Huanyuan; Jiao, Kun; Xu, Jiahui; Liu, Xin; Liu, Huirong; Wang, Wen

    2016-01-01

    In order to investigate the role of nitrative stress in vascular endothelial injury in hyperhomocysteinemia (HHcy), thirty healthy adult female Wistar rats were randomly divided into three groups: control, hyperhomocysteinemia model, and hyperhomocysteinemia with FeTMPyP (peroxynitrite scavenger) treatment. The endothelium-dependent dilatation of thoracic aorta in vitro was determined by response to acetylcholine (ACh). The histological changes in endothelium were assessed by HE staining and scanning electron microscopy (SEM). The expression of 3-nitrotyrosine (NT) in thoracic aorta was demonstrated by immunohistochemistry and immunofluorescence, and the number of circulating endothelial progenitor cells (EPCs) was quantified by flow cytometry. Hyperhomocysteinemia caused significant endothelial injury and dysfunction including vasodilative and histologic changes, associated with higher expression of NT in thoracic aorta. FeTMPyP treatment reversed these injuries significantly. Further, the effect of nitrative stress on cultured EPCs in vitro was investigated by administering peroxynitrite donor (3-morpholino-sydnonimine, SIN-1) and peroxynitrite scavenger (FeTMPyP). The roles of nitrative stress on cell viability, necrosis and apoptosis were evaluated with 3-(4,5-dimethylthiazol)-2,5-diphenyl tetrazolium (MTT) assay, lactate dehydrogenase (LDH) release assay and terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) assay, respectively. Also, the phospho-eNOS expression and tube formation in Matrigel of cultured EPCs was detected. Our data showed that the survival of EPCs was much lower in SIN-1 group than in vehicle group, both the apoptosis and necrosis of EPCs were much more severe, and the p-eNOS expression and tube formation in Matrigel were obviously declined. Subsequent pretreatment with FeTMPyP reversed these changes. Further, pretreatment with FeTMPyP reversed homocysteine-induced EPC injury. In conclusion, this study indicates that

  6. Isolation, characterization, and differentiation of progenitor cells from human adult adrenal medulla.

    PubMed

    Santana, Magda M; Chung, Kuei-Fang; Vukicevic, Vladimir; Rosmaninho-Salgado, Joana; Kanczkowski, Waldemar; Cortez, Vera; Hackmann, Klaus; Bastos, Carlos A; Mota, Alfredo; Schrock, Evelin; Bornstein, Stefan R; Cavadas, Cláudia; Ehrhart-Bornstein, Monika

    2012-11-01

    Chromaffin cells, sympathetic neurons of the dorsal ganglia, and the intermediate small intensely fluorescent cells derive from a common neural crest progenitor cell. Contrary to the closely related sympathetic nervous system, within the adult adrenal medulla a subpopulation of undifferentiated progenitor cells persists, and recently, we established a method to isolate and differentiate these progenitor cells from adult bovine adrenals. However, no studies have elucidated the existence of adrenal progenitor cells within the human adrenal medulla. Here we describe the isolation, characterization, and differentiation of chromaffin progenitor cells obtained from adult human adrenals. Human chromaffin progenitor cells were cultured in low-attachment conditions for 10-12 days as free-floating spheres in the presence of fibroblast growth factor-2 (FGF-2) and epidermal growth factor. These primary human chromosphere cultures were characterized by the expression of several progenitor markers, including nestin, CD133, Notch1, nerve growth factor receptor, Snai2, Sox9, Sox10, Phox2b, and Ascl1 on the molecular level and of Sox9 on the immunohistochemical level. In opposition, phenylethanolamine N-methyltransferase (PNMT), a marker for differentiated chromaffin cells, significantly decreased after 12 days in culture. Moreover, when plated on poly-l-lysine/laminin-coated slides in the presence of FGF-2, human chromaffin progenitor cells were able to differentiate into two distinct neuron-like cell types, tyrosine hydroxylase (TH)(+)/β-3-tubulin(+) cells and TH(-)/β-3-tubulin(+) cells, and into chromaffin cells (TH(+)/PNMT(+)). This study demonstrates the presence of progenitor cells in the human adrenal medulla and reveals their potential use in regenerative medicine, especially in the treatment of neuroendocrine and neurodegenerative diseases. PMID:23197690

  7. Isolation, Characterization, and Differentiation of Progenitor Cells from Human Adult Adrenal Medulla

    PubMed Central

    Santana, Magda M.; Chung, Kuei-Fang; Vukicevic, Vladimir; Rosmaninho-Salgado, Joana; Kanczkowski, Waldemar; Cortez, Vera; Hackmann, Karl; Bastos, Carlos A.; Mota, Alfredo; Schrock, Evelin; Bornstein, Stefan R.; Cavadas, Cláudia

    2012-01-01

    Chromaffin cells, sympathetic neurons of the dorsal ganglia, and the intermediate small intensely fluorescent cells derive from a common neural crest progenitor cell. Contrary to the closely related sympathetic nervous system, within the adult adrenal medulla a subpopulation of undifferentiated progenitor cells persists, and recently, we established a method to isolate and differentiate these progenitor cells from adult bovine adrenals. However, no studies have elucidated the existence of adrenal progenitor cells within the human adrenal medulla. Here we describe the isolation, characterization, and differentiation of chromaffin progenitor cells obtained from adult human adrenals. Human chromaffin progenitor cells were cultured in low-attachment conditions for 10–12 days as free-floating spheres in the presence of fibroblast growth factor-2 (FGF-2) and epidermal growth factor. These primary human chromosphere cultures were characterized by the expression of several progenitor markers, including nestin, CD133, Notch1, nerve growth factor receptor, Snai2, Sox9, Sox10, Phox2b, and Ascl1 on the molecular level and of Sox9 on the immunohistochemical level. In opposition, phenylethanolamine N-methyltransferase (PNMT), a marker for differentiated chromaffin cells, significantly decreased after 12 days in culture. Moreover, when plated on poly-l-lysine/laminin-coated slides in the presence of FGF-2, human chromaffin progenitor cells were able to differentiate into two distinct neuron-like cell types, tyrosine hydroxylase (TH)+/β-3-tubulin+ cells and TH−/β-3-tubulin+ cells, and into chromaffin cells (TH+/PNMT+). This study demonstrates the presence of progenitor cells in the human adrenal medulla and reveals their potential use in regenerative medicine, especially in the treatment of neuroendocrine and neurodegenerative diseases. PMID:23197690

  8. Recent advances in cancer stem/progenitor cell research: therapeutic implications for overcoming resistance to the most aggressive cancers.

    PubMed

    Mimeault, M; Hauke, R; Mehta, P P; Batra, S K

    2007-01-01

    Overcoming intrinsic and acquired resistance of cancer stem/progenitor cells to current clinical treatments represents a major challenge in treating and curing the most aggressive and metastatic cancers. This review summarizes recent advances in our understanding of the cellular origin and molecular mechanisms at the basis of cancer initiation and progression as well as the heterogeneity of cancers arising from the malignant transformation of adult stem/progenitor cells. We describe the critical functions provided by several growth factor cascades, including epidermal growth factor receptor (EGFR), platelet-derived growth factor receptor (PDGFR), stem cell factor (SCF) receptor (KIT), hedgehog and Wnt/beta-catenin signalling pathways that are frequently activated in cancer progenitor cells and are involved in their sustained growth, survival, invasion and drug resistance. Of therapeutic interest, we also discuss recent progress in the development of new drug combinations to treat the highly aggressive and metastatic cancers including refractory/relapsed leukaemias, melanoma and head and neck, brain, lung, breast, ovary, prostate, pancreas and gastrointestinal cancers which remain incurable in the clinics. The emphasis is on new therapeutic strategies consisting of molecular targeting of distinct oncogenic signalling elements activated in the cancer progenitor cells and their local microenvironment during cancer progression. These new targeted therapies should improve the efficacy of current therapeutic treatments against aggressive cancers, and thereby preventing disease relapse and enhancing patient survival. PMID:17979879

  9. Proteomic Cornerstones of Hematopoietic Stem Cell Differentiation: Distinct Signatures of Multipotent Progenitors and Myeloid Committed Cells*

    PubMed Central

    Klimmeck, Daniel; Hansson, Jenny; Raffel, Simon; Vakhrushev, Sergey Y.; Trumpp, Andreas; Krijgsveld, Jeroen

    2012-01-01

    Regenerative tissues such as the skin epidermis, the intestinal mucosa or the hematopoietic system are organized in a hierarchical manner with stem cells building the top of this hierarchy. Somatic stem cells harbor the highest self-renewal activity and generate a series of multipotent progenitors which differentiate into lineage committed progenitors and subsequently mature cells. In this report, we applied an in-depth quantitative proteomic approach to analyze and compare the full proteomes of ex vivo isolated and FACS-sorted populations highly enriched for either multipotent hematopoietic stem/progenitor cells (HSPCs, LinnegSca-1+c-Kit+) or myeloid committed precursors (LinnegSca-1−c-Kit+). By employing stable isotope dimethyl labeling and high-resolution mass spectrometry, more than 5000 proteins were quantified. From biological triplicate experiments subjected to rigorous statistical evaluation, 893 proteins were found differentially expressed between multipotent and myeloid committed cells. The differential protein content in these cell populations points to a distinct structural organization of the cytoskeleton including remodeling activity. In addition, we found a marked difference in the expression of metabolic enzymes, including a clear shift of specific protein isoforms of the glycolytic pathway. Proteins involved in translation showed a collective higher expression in myeloid progenitors, indicating an increased translational activity. Strikingly, the data uncover a unique signature related to immune defense mechanisms, centering on the RIG-I and type-1 interferon response systems, which are installed in multipotent progenitors but not evident in myeloid committed cells. This suggests that specific, and so far unrecognized, mechanisms protect these immature cells before they mature. In conclusion, this study indicates that the transition of hematopoietic stem/progenitors toward myeloid commitment is accompanied by a profound change in processing of

  10. Connective tissue progenitor cell growth characteristics on textured substrates.

    PubMed

    Mata, Alvaro; Boehm, Cynthia; Fleischman, Aaron J; Muschler, George F; Roy, Shuvo

    2007-01-01

    Growth characteristics of human connective tissue progenitor (CTP) cells were investigated on smooth and textured substrates, which were produced using MEMS (microelectromechanical systems) fabrication technology. Human bone marrow derived cells were cultured for 9 days under conditions promoting osteoblastic differentiation on polydimethylsiloxane (PDMS) substrates comprising smooth (non-patterned) surfaces (SMOOTH), 4 different cylindrical post micro-textures (POSTS) that were 7-10 microm high and 5, 10, 20, and 40 microm diameter, respectively, and channel micro-textures (CHANNELS) with curved cross-sections that were 11 microm high, 45 microm wide, and separated by 5 microm wide ridges. Standard glass-tissue culture surfaces were used as controls. Micro-textures resulted in the modification of CTP morphology, attachment, migration, and proliferation characteristics. Specifically, cells on POSTS exhibited more contoured morphology with closely packed cytoskeletal actin microfilaments compared to the more random orientation in cells grown on SMOOTH. CTP colonies on 10 gm-diameter POSTS exhibited higher cell number than any other POSTS, and a significant increase in cell number (442%) compared to colonies on SMOOTH (71%). On CHANNELS, colonies tended to be denser (229%) than on POSTS (up to 140% on 10 microm POSTS), and significantly more so compared to those on SMOOTH (104%). PMID:18019838

  11. Generation and In Vitro Expansion of Hepatic Progenitor Cells from Human iPS Cells.

    PubMed

    Yanagida, Ayaka; Nakauchi, Hiromitsu; Kamiya, Akihide

    2016-01-01

    Stem cells have the unique properties of self-renewal and multipotency (producing progeny belonging to two or more lineages). Induced pluripotent stem (iPS) cells can be generated from somatic cells by simultaneous expression of pluripotent factors (Oct3/4, Klf4, Sox2, and c-Myc). They share the same properties as embryonic stem (ES) cells and can differentiate into several tissue cells, i.e., neurons, hematopoietic cells, and liver cells. Therefore, iPS cells are suitable candidate cells for regenerative medicine and analyses of disease mechanisms.The liver is the major organ that regulates a multitude of metabolic functions. Hepatocytes are the major cell type populating the liver parenchyma and express several metabolic enzymes that are necessary for liver functions. Although hepatocytes are essential for maintaining homeostasis, it is difficult to alter artificial and transplanted cells because of their multifunctionality, donor shortage, and immunorejection risk. During liver development, hepatic progenitor cells in the fetal liver differentiate into both mature hepatocytes and cholangiocytes. As hepatic progenitor cells have bipotency and high proliferation ability, they could present a potential source for generating transplantable cells or as a liver study model. Here we describe the induction and purification of hepatic progenitor cells derived from human iPS cells. These cells can proliferate for a long term under suitable culture conditions. PMID:25697415

  12. Mast cells and basophils: trojan horses of conventional lin- stem/progenitor cell isolates.

    PubMed

    Heneberg, Petr

    2011-11-01

    Cancer microenvironment is increasingly recognized as an important factor affecting cancer onset and progression. Since Wirchow reported in 1863 that tumors contain inflammatory cells, the field shifted significantly forward, and immune cells residing in tumors appear to be attractive targets of cancer therapies. For some methods, such as stem/progenitor cell isolation from both cancer and healthy tissues, removal of contaminating immune cells is crucial to achieve consistent, reproducible and accurate results. Despite current methods of lineage negative selection accounts for removal of over 99 % of immune cells from stem/progenitor cell isolates, the vast majority of lineage antibody cocktails retain basophils, dendritic cells, and mast cells. Here we discuss the ability of the most commonly used lineage markers to bind to the plasma membrane of mast cells and/or basophils, and suggest alternatives, which may be used for negative selection of these cellular populations. Both, mast cells and basophils, were shown to participate actively in cancer-associated angiogenesis, tissue remodeling and recruitment of other immune cell types, including eosinophils, B cells, memory T cells and Treg cells. In turn, tumor-derived peptides and chemotactic factors are known to recruit and activate mast cells in neoplasias, resulting in altered tumor progression. Repeated findings of CD34+ populations of mast cells and basophils further highlight necessity of their separation from stem/progenitor cell isolates in both, preclinical experiments and clinical praxis. PMID:22103846

  13. Generation of an expandable intermediate mesoderm restricted progenitor cell line from human pluripotent stem cells.

    PubMed

    Kumar, Nathan; Richter, Jenna; Cutts, Josh; Bush, Kevin T; Trujillo, Cleber; Nigam, Sanjay K; Gaasterland, Terry; Brafman, David; Willert, Karl

    2015-01-01

    The field of tissue engineering entered a new era with the development of human pluripotent stem cells (hPSCs), which are capable of unlimited expansion whilst retaining the potential to differentiate into all mature cell populations. However, these cells harbor significant risks, including tumor formation upon transplantation. One way to mitigate this risk is to develop expandable progenitor cell populations with restricted differentiation potential. Here, we used a cellular microarray technology to identify a defined and optimized culture condition that supports the derivation and propagation of a cell population with mesodermal properties. This cell population, referred to as intermediate mesodermal progenitor (IMP) cells, is capable of unlimited expansion, lacks tumor formation potential, and, upon appropriate stimulation, readily acquires properties of a sub-population of kidney cells. Interestingly, IMP cells fail to differentiate into other mesodermally-derived tissues, including blood and heart, suggesting that these cells are restricted to an intermediate mesodermal fate. PMID:26554899

  14. Neonatal Heart-Enriched miR-708 Promotes Differentiation of Cardiac Progenitor Cells in Rats

    PubMed Central

    Deng, Shengqiong; Zhao, Qian; Zhou, Xianjin; Zhang, Lin; Bao, Luer; Zhen, Lixiao; Zhang, Yuzhen; Fan, Huimin; Liu, Zhongmin; Yu, Zuoren

    2016-01-01

    Cardiovascular disease is becoming the leading cause of death throughout the world. However, adult hearts have limited potential for regeneration after pathological injury, partly due to the quiescent status of stem/progenitor cells. Reactivation of cardiac stem/progenitor cells to create more myocyte progeny is one of the key steps in the regeneration of a damaged heart. In this study, miR-708 was identified to be enriched in the neonatal cardiomyocytes of rats, but this has not yet been proven in adult humans. A lower level of miR-708 in c-kit(+) stem/progenitor cells was detected compared to non-progenitors. Overexpression of miR-708 induced cardiomyocyte differentiation of cardiac stem/progenitor cells. This finding strengthened the potential of applying miRNAs in the regeneration of injured hearts, and this indicates that miR-708 could be a novel candidate for treatment of heart diseases. PMID:27338347

  15. Neonatal Heart-Enriched miR-708 Promotes Differentiation of Cardiac Progenitor Cells in Rats.

    PubMed

    Deng, Shengqiong; Zhao, Qian; Zhou, Xianjin; Zhang, Lin; Bao, Luer; Zhen, Lixiao; Zhang, Yuzhen; Fan, Huimin; Liu, Zhongmin; Yu, Zuoren

    2016-01-01

    Cardiovascular disease is becoming the leading cause of death throughout the world. However, adult hearts have limited potential for regeneration after pathological injury, partly due to the quiescent status of stem/progenitor cells. Reactivation of cardiac stem/progenitor cells to create more myocyte progeny is one of the key steps in the regeneration of a damaged heart. In this study, miR-708 was identified to be enriched in the neonatal cardiomyocytes of rats, but this has not yet been proven in adult humans. A lower level of miR-708 in c-kit(+) stem/progenitor cells was detected compared to non-progenitors. Overexpression of miR-708 induced cardiomyocyte differentiation of cardiac stem/progenitor cells. This finding strengthened the potential of applying miRNAs in the regeneration of injured hearts, and this indicates that miR-708 could be a novel candidate for treatment of heart diseases. PMID:27338347

  16. De novo generation of adipocytes from circulating progenitor cells in mouse and human adipose tissue.

    PubMed

    Gavin, Kathleen M; Gutman, Jonathan A; Kohrt, Wendy M; Wei, Qi; Shea, Karen L; Miller, Heidi L; Sullivan, Timothy M; Erickson, Paul F; Helm, Karen M; Acosta, Alistaire S; Childs, Christine R; Musselwhite, Evelyn; Varella-Garcia, Marileila; Kelly, Kimberly; Majka, Susan M; Klemm, Dwight J

    2016-03-01

    White adipocytes in adults are typically derived from tissue resident mesenchymal progenitors. The recent identification of de novo production of adipocytes from bone marrow progenitor-derived cells in mice challenges this paradigm and indicates an alternative lineage specification that adipocytes exist. We hypothesized that alternative lineage specification of white adipocytes is also present in human adipose tissue. Bone marrow from transgenic mice in which luciferase expression is governed by the adipocyte-restricted adiponectin gene promoter was adoptively transferred to wild-type recipient mice. Light emission was quantitated in recipients by in vivo imaging and direct enzyme assay. Adipocytes were also obtained from human recipients of hematopoietic stem cell transplantation. DNA was isolated, and microsatellite polymorphisms were exploited to quantify donor/recipient chimerism. Luciferase emission was detected from major fat depots of transplanted mice. No light emission was observed from intestines, liver, or lungs. Up to 35% of adipocytes in humans were generated from donor marrow cells in the absence of cell fusion. Nontransplanted mice and stromal-vascular fraction samples were used as negative and positive controls for the mouse and human experiments, respectively. This study provides evidence for a nontissue resident origin of an adipocyte subpopulation in both mice and humans. PMID:26581599

  17. L-arginine is a radioprotector for hematopoietic progenitor cells.

    PubMed

    Pearce, Linda L; Zheng, Xichen; Martinez-Bosch, Sandra; Kerr, Patrick P; Khlangwiset, Pornsri; Epperly, Michael W; Fink, Mitchell P; Greenberger, Joel S; Peterson, Jim

    2012-06-01

    L-arginine is shown to protect hematopoietic progenitor (32D cl 3) cells from death due to exposure to γ radiation ((137)Cs). Some of the other intermediates in the urea cycle, namely ornithine and citrulline, plus urea itself, were not found to have any significant impact on cell survival after irradiation. Intriguingly, supplementation of irradiated cells with L-arginine results in decreased production of peroxynitrite, suggesting that suppression of superoxide generation by nitric oxide synthase in one or more microenvironments is an important factor in the observed radioprotection. The absence of any radioprotective effect of L-arginine in cells at 3% oxygen also confirms the involvement of one or more oxygen-derived species. Knockdown experiments with nitric oxide synthase (NOS) siRNAs in cells and NOS knockout animals confirm that the observed radioprotection is associated with nNOS (NOS-1). L-arginine also ameliorates the transient inhibition of the electron-transport chain complex I that occurs within 30 min of completing the dose (10 Gy) and that appears to be a functional marker for postirradiation mitochondrial oxidant production. PMID:22175298

  18. Transdifferentiation of human endothelial progenitors into smooth muscle cells.

    PubMed

    Ji, HaYeun; Atchison, Leigh; Chen, Zaozao; Chakraborty, Syandan; Jung, Youngmee; Truskey, George A; Christoforou, Nicolas; Leong, Kam W

    2016-04-01

    Access to smooth muscle cells (SMC) would create opportunities for tissue engineering, drug testing, and disease modeling. Herein we report the direct conversion of human endothelial progenitor cells (EPC) to induced smooth muscle cells (iSMC) by induced expression of MYOCD. The EPC undergo a cytoskeletal rearrangement resembling that of mesenchymal cells within 3 days post initiation of MYOCD expression. By day 7, the reprogrammed cells show upregulation of smooth muscle markers ACTA2, MYH11, and TAGLN by qRT-PCR and ACTA2 and MYH11 expression by immunofluorescence. By two weeks, they resemble umbilical artery SMC in microarray gene expression analysis. The iSMC, in contrast to EPC control, show calcium transients in response to phenylephrine stimulation and a contractility an order of magnitude higher than that of EPC as determined by traction force microscopy. Tissue-engineered blood vessels constructed using iSMC show functionality with respect to flow- and drug-mediated vasodilation and vasoconstriction. PMID:26874281

  19. Microenvironment influences vascular differentiation of murine cardiovascular progenitor cells.

    PubMed

    Gluck, Jessica M; Delman, Connor; Chyu, Jennifer; MacLellan, W Robb; Shemin, Richard J; Heydarkhan-Hagvall, Sepideh

    2014-11-01

    We examined the effects of the microenvironment on vascular differentiation of murine cardiovascular progenitor cells (CPCs). We isolated CPCs and seeded them in culture exposed to the various extracellular matrix (ECM) proteins in both two-dimensional (2D) and 3D culture systems. To better understand the contribution of the microenvironment to vascular differentiation, we analyzed endothelial and smooth muscle cell differentiation at both day 7 and day 14. We found that laminin and vitronectin enhanced vascular endothelial cell differentiation while fibronectin enhanced vascular smooth muscle cell differentiation. We also observed that the effects of the 3D electrospun scaffolds were delayed and not noticeable until the later time point (day 14), which may be due to the amount of time necessary for the cells to migrate to the interior of the scaffold. The study characterized the contributions of both ECM proteins and the addition of a 3D culture system to continued vascular differentiation. Additionally, we demonstrated the capability bioengineer a CPC-derived vascular graft. PMID:24687591

  20. l-Arginine is a Radioprotector for Hematopoietic Progenitor Cells

    PubMed Central

    Pearce, Linda L.; Zheng, Xichen; Martinez-Bosch, Sandra; Kerr, Patrick P.; Khlangwiset, Pornsri; Epperly, Michael W.; Fink, Mitchell P.; Greenberger, Joel S.; Peterson, Jim

    2012-01-01

    l-Arginine is shown to protect hematopoietic progenitor (32D cl 3) cells from death due to exposure to γ radiation (137Cs). Some of the other intermediates in the urea cycle, namely ornithine and citrulline, plus urea itself, were not found to have any significant impact on cell survival after irradiation. Intriguingly, supplementation of irradiated cells with l-arginine results in decreased production of peroxynitrite, suggesting that suppression of superoxide generation by nitric oxide synthase in one or more microenvironments is an important factor in the observed radioprotection. The absence of any radioprotective effect of l-arginine in cells at 3% oxygen also confirms the involvement of one or more oxygen-derived species. Knockdown experiments with nitric oxide synthase (NOS) siRNAs in cells and NOS knockout animals confirm that the observed radioprotection is associated with nNOS (NOS-1). l-Arginine also ameliorates the transient inhibition of the electron-transport chain complex I that occurs within 30 min of completing the dose (10 Gy) and that appears to be a functional marker for postirradiation mitochondrial oxidant production. PMID:22175298

  1. Circulating Progenitor and Mature Endothelial Cells in Deep Vein Thrombosis

    PubMed Central

    Alessio, Aline M; Beltrame, Miriam P; Nascimento, Mariane C Flores; Vicente, Cristina P; de Godoy, Juliana AP; Silva, Junia CR Santos; Bittar, Luis Fernando; Lorand-Metze, Irene; de Paula, Erich V; Annichino-Bizzacchi, Joyce M

    2013-01-01

    Introduction: Mature circulating endothelial cells (CEC) and circulating endothelial progenitor cells (EPC) have been described in several conditions associated with endothelial injury. Their role in deep vein thrombosis (DVT) has not been previously evaluated. Patients and Methods: In this pilot study we evaluated the time course of CEC and EPC release after vena cava experimental DVT in mice, using the FeCl3 model. We also evaluated their presence in patients with DVT at different phases of the disease (acute and chronic phase). CEC and EPC were evaluated by Flow Cytometry. Results: In mice, both CEC and EPC were increased 24 hours after DVT induction, peaking 48 hours thereafter. After 72 hours, CEC counts decreased sharply, whereas EPC counts decreased less substantially. In DVT patients we observed a significant increase in CEC counts immediately after DVT compared to healthy individuals. Patients with chronic disease also presented a significant elevation of these cell count. In a subgroup of patients for whom serial samples were available, CEC counts decreased significantly after 9-15 months of the acute event. Conclusions: Our results suggest the participation of these cells in the reparative processes that follows DVT, both at immediate and late time-points. The different kinetics of CEC and EPC release in experimental DVT suggests a heterogeneous role for these cells in the reparative events after DVT. PMID:24155660

  2. Type 2 Diabetes Dysregulates Glucose Metabolism in Cardiac Progenitor Cells.

    PubMed

    Salabei, Joshua K; Lorkiewicz, Pawel K; Mehra, Parul; Gibb, Andrew A; Haberzettl, Petra; Hong, Kyung U; Wei, Xiaoli; Zhang, Xiang; Li, Qianhong; Wysoczynski, Marcin; Bolli, Roberto; Bhatnagar, Aruni; Hill, Bradford G

    2016-06-24

    Type 2 diabetes is associated with increased mortality and progression to heart failure. Recent studies suggest that diabetes also impairs reparative responses after cell therapy. In this study, we examined potential mechanisms by which diabetes affects cardiac progenitor cells (CPCs). CPCs isolated from the diabetic heart showed diminished proliferation, a propensity for cell death, and a pro-adipogenic phenotype. The diabetic CPCs were insulin-resistant, and they showed higher energetic reliance on glycolysis, which was associated with up-regulation of the pro-glycolytic enzyme 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB3). In WT CPCs, expression of a mutant form of PFKFB, which mimics PFKFB3 activity and increases glycolytic rate, was sufficient to phenocopy the mitochondrial and proliferative deficiencies found in diabetic cells. Consistent with activation of phosphofructokinase in diabetic cells, stable isotope carbon tracing in diabetic CPCs showed dysregulation of the pentose phosphate and glycero(phospho)lipid synthesis pathways. We describe diabetes-induced dysregulation of carbon partitioning using stable isotope metabolomics-based coupling quotients, which relate relative flux values between metabolic pathways. These findings suggest that diabetes causes an imbalance in glucose carbon allocation by uncoupling biosynthetic pathway activity, which could diminish the efficacy of CPCs for myocardial repair. PMID:27151219

  3. Effects of shear stress on endothelial progenitor cells.

    PubMed

    Obi, Syotaro; Yamamoto, Kimiko; Ando, Joji

    2014-10-01

    Endothelial progenitor cells (EPCs) are adult stem cells that play a central role in neovascularization. EPCs are mobilized from bone marrow into peripheral blood, attach to existing endothelial cells, and then transmigrate across the endothelium into tissues, where they proliferate, differentiate, and form new blood vessels. In the process, EPCs are exposed to shear stress, a biomechanical force generated by flowing blood and tissue fluid flow. When cultured EPCs are exposed to controlled levels of shear stress in a flow-loading device, their bioactivities in terms of proliferation, anti-apoptosis, migration, production of bioactive substances, anti-thrombosis, and tube formation increase markedly. Expression of endothelial marker genes and proteins by EPCs also increases in response to shear stress, and they differentiate into mature endothelial cells. Great advances have been made in elucidating the mechanisms by which mature endothelial cells sense and respond to shear stress, but not in EPCs. Further study of EPC responses to shear stress will be necessary to better understand the physiological and pathophysiological roles of EPCs and to apply EPCs to new therapies in the field of regenerative medicine. PMID:25992410

  4. Transcriptional Profiling of Bipotential Embryonic Liver Cells to Identify Liver Progenitor Cell Surface Markers

    PubMed Central

    Ochsner, Scott A.; Strick-Marchand, Hélène; Qiu, Qiong; Venable, Susan; Dean, Adam; Wilde, Margaret; Weiss, Mary C.; Darlington, Gretchen J.

    2010-01-01

    The ability to purify to homogeneity a population of hepatic progenitor cells from adult liver is critical for their characterization prior to any therapeutic application. As a step in this direction, we have used a bipotential liver cell line from 14 days postcoitum mouse embryonic liver to compile a list of cell surface markers expressed specifically by liver progenitor cells. These cells, known as bipotential mouse embryonic liver (BMEL) cells, proliferate in an undifferentiated state and are capable of differentiating into hepatocyte-like and cholangiocyte-like cells in vitro. Upon transplantation, BMEL cells are capable of differentiating into hepatocytes and cholangiocytes in vivo. Microarray and Gene Ontology (GO) analysis of gene expression in the 9A1 and 14B3 BMEL cell lines grown under proliferating and differentiating conditions was used to identify cell surface markers preferentially expressed in the bipotential undifferentiated state. This analysis revealed that proliferating BMEL cells express many genes involved in cell cycle regulation, whereas differentiation of BMEL cells by cell aggregation causes a switch in gene expression to functions characteristic of mature hepatocytes. In addition, microarray data and protein analysis indicated that the Notch signaling pathway could be involved in maintaining BMEL cells in an undifferentiated stem cell state. Using GO annotation, a list of cell surface markers preferentially expressed on undifferentiated BMEL cells was generated. One marker, Cd24a, is specifically expressed on progenitor oval cells in livers of diethyl 1,4-dihydro-2,4,6-trimethyl-3,5-pyridinedicarboxylate-treated animals. We therefore consider Cd24a expression a candidate molecule for purification of hepatic progenitor cells. PMID:17641245

  5. Low- and high-LET radiation drives clonal expansion of lung progenitor cells in vivo.

    PubMed

    Farin, Alicia M; Manzo, Nicholas D; Kirsch, David G; Stripp, Barry R

    2015-01-01

    Abundant populations of epithelial progenitor cells maintain the epithelium along the proximal-to-distal axis of the airway. Exposure of lung tissue to ionizing radiation leads to tissue remodeling and potential cancer initiation or progression. However, little is known about the effects of ionizing radiation on airway epithelial progenitor cells. We hypothesized that ionizing radiation exposure will alter the behavior of airway epithelial progenitor cells in a radiation dose- and quality-dependent manner. To address this hypothesis, we cultured primary airway epithelial cells isolated from mice exposed to various doses of 320 kVp X ray or 600 MeV/nucleon (56)Fe ions in a 3D epithelial-fibroblast co-culture system. Colony-forming efficiency of the airway epithelial progenitor cells was assessed at culture day 14. In vivo clonogenic and proliferative potentials of airway epithelial progenitor cells were measured after exposure to ionizing radiation by lineage tracing and IdU incorporation. Exposure to both X rays and (56)Fe resulted in a dose-dependent decrease in the ability of epithelial progenitors to form colonies in vitro. In vivo evidence for increased clonogenic expansion of epithelial progenitors was observed after exposure to both X rays and (56)Fe. Interestingly, we found no significant increase in the epithelial proliferative index, indicating that ionizing radiation does not promote increased turnover of the airway epithelium. Therefore, we propose a model in which radiation induces a dose-dependent decrease in the pool of available progenitor cells, leaving fewer progenitors able to maintain the airway long-term. This work provides novel insights into the effects of ionizing radiation exposure on airway epithelial progenitor cell behavior. PMID:25564721

  6. Signals that regulate the oncogenic fate of neural stem cells and progenitors.

    PubMed

    Swartling, Fredrik J; Bolin, Sara; Phillips, Joanna J; Persson, Anders I

    2014-10-01

    Brain tumors have frequently been associated with a neural stem cell (NSC) origin and contain stem-like tumor cells, so-called brain tumor stem cells (BTSCs) that share many features with normal NSCs. A stem cell state of BTSCs confers resistance to radiotherapy and treatment with alkylating agents. It is also a hallmark of aggressive brain tumors and is maintained by transcriptional networks that are also active in embryonic stem cells. Advances in reprogramming of somatic cells into induced pluripotent stem (iPS) cells have further identified genes that drive stemness. In this review, we will highlight the possible drivers of stemness in medulloblastoma and glioma, the most frequent types of primary malignant brain cancer in children and adults, respectively. Signals that drive expansion of developmentally defined neural precursor cells are also active in corresponding brain tumors. Transcriptomal subgroups of human medulloblastoma and glioma match features of NSCs but also more restricted progenitors. Lessons from genetically-engineered mouse (GEM) models show that temporally and regionally defined NSCs can give rise to distinct subgroups of medulloblastoma and glioma. We will further discuss how acquisition of stem cell features may drive brain tumorigenesis from a non-NSC origin. Genetic alterations, signaling pathways, and therapy-induced changes in the tumor microenvironment can drive reprogramming networks and induce stemness in brain tumors. Finally, we propose a model where dysregulation of microRNAs (miRNAs) that normally provide barriers against reprogramming plays an integral role in promoting stemness in brain tumors. PMID:23376224

  7. Concise Review: Chemical Approaches for Modulating Lineage-Specific Stem Cells and Progenitors

    PubMed Central

    Xu, Tao; Zhang, Mingliang; Laurent, Timothy; Xie, Min

    2013-01-01

    Generation and manipulation of lineage-restricted stem and progenitor cells in vitro and/or in vivo are critical for the development of stem cell-based clinical therapeutics. Lineage-restricted stem and progenitor cells have many advantageous qualities, including being able to efficiently engraft and differentiate into desirable cell types in vivo after transplantation, and they are much less tumorigenic than pluripotent cells. Generation of lineage-restricted stem and progenitor cells can be achieved by directed differentiation from pluripotent stem cells or lineage conversion from easily obtained somatic cells. Small molecules can be very helpful in these processes since they offer several important benefits. For example, the risk of tumorigenesis is greatly reduced when small molecules are used to replace integrated transcription factors, which are widely used in cell fate conversion. Furthermore, small molecules are relatively easy to apply, optimize, and manufacture, and they can more readily be developed into conventional pharmaceuticals. Alternatively, small molecules can be used to expand or selectively control the differentiation of lineage-restricted stem and progenitor cells for desirable therapeutics purposes in vitro or in vivo. Here we summarize recent progress in the use of small molecules for the expansion and generation of desirable lineage-restricted stem and progenitor cells in vitro and for selectively controlling cell fate of lineage-restricted stem and progenitor cells in vivo, thereby facilitating stem cell-based clinical applications. PMID:23580542

  8. MicroRNA-194 Regulates Hepatocytic Differentiation of Progenitor Cells by Targeting YAP1

    PubMed Central

    Jung, Kwang Hwa; McCarthy, Ryan L.; Zhou, Chong; Uprety, Nadima; Barton, Michelle Craig; Beretta, Laura

    2015-01-01

    MicroRNA expression profiling in human liver progenitor cells following hepatocytic differentiation identified miR-122 and miR-194 as the microRNAs most strongly upregulated during hepatocytic differentiation of progenitor cells. MiR-194 was also highly upregulated following hepatocytic differentiation of human embryonic stem cells (hESCs). Overexpression of miR-194 in progenitor cells accelerated their differentiation into hepatocytes, as measured by morphological features such as canaliculi and expression of hepatocytic markers. Overexpression of miR-194 in hESCs induced their spontaneous differentiation, a phenotype accompanied with accelerated loss of the pluripotent factors OCT4 and NANOG and decrease in mesoderm marker HAND1 expression. We then identified YAP1 as a direct target of miR-194. Inhibition of YAP1 strongly induced hepatocytic differentiation of progenitor cells and YAP1 over expression reversed the miR-194-induced hepatocytic differentiation of progenitor cells. In conclusion, we identified miR-194 as a potent inducer of hepatocytic differentiation of progenitor cells and further identified YAP1 as a mediator of miR-194's effects on hepatocytic differentiation and liver progenitor cell fate. PMID:26731713

  9. Origin and differentiation of vascular smooth muscle cells

    PubMed Central

    Wang, Gang; Jacquet, Laureen; Karamariti, Eirini; Xu, Qingbo

    2015-01-01

    Vascular smooth muscle cells (SMCs), a major structural component of the vessel wall, not only play a key role in maintaining vascular structure but also perform various functions. During embryogenesis, SMC recruitment from their progenitors is an important step in the formation of the embryonic vascular system. SMCs in the arterial wall are mostly quiescent but can display a contractile phenotype in adults. Under pathophysiological conditions, i.e. vascular remodelling after endothelial dysfunction or damage, contractile SMCs found in the media switch to a secretory type, which will facilitate their ability to migrate to the intima and proliferate to contribute to neointimal lesions. However, recent evidence suggests that the mobilization and recruitment of abundant stem/progenitor cells present in the vessel wall are largely responsible for SMC accumulation in the intima during vascular remodelling such as neointimal hyperplasia and arteriosclerosis. Therefore, understanding the regulatory mechanisms that control SMC differentiation from vascular progenitors is essential for exploring therapeutic targets for potential clinical applications. In this article, we review the origin and differentiation of SMCs from stem/progenitor cells during cardiovascular development and in the adult, highlighting the environmental cues and signalling pathways that control phenotypic modulation within the vasculature. PMID:25952975

  10. Progenitor cell maintenance and neurogenesis in sympathetic ganglia involves Notch signaling.

    PubMed

    Tsarovina, Konstantina; Schellenberger, Jens; Schneider, Carolin; Rohrer, Hermann

    2008-01-01

    Differentiation of noradrenergic neurons from neural crest-derived precursors results in the formation of primary sympathetic ganglia. As sympathetic neurons continue to divide after the acquisition of adrenergic and neuronal properties it was unclear, whether the increase in neuron number during neurogenesis is due to neuron proliferation rather than differentiation of progenitor cells. Here, we demonstrate Sox10-positive neural crest progenitor cells and continuous sympathetic neuron generation from Phox2b-positive autonomic progenitors during early chick sympathetic ganglion development. In vivo activation of Notch signaling resulted in a decreased neuronal population, whereas expression of the Notch signaling inhibitor Su(H)(DBM) increased the proportion of Scg10-positive neurons. Similar results were obtained for sensory dorsal root ganglia (DRG). The effects of Notch gain- and loss-of-function experiments support the notion that progenitor maintenance and neuron differentiation from progenitor cells are essential for neurogenesis also during early sympathetic ganglion development. PMID:17920293

  11. Interleukin 17 inhibits progenitor cells in rheumatoid arthritis cartilage.

    PubMed

    Schminke, Boris; Trautmann, Sandra; Mai, Burkhard; Miosge, Nicolai; Blaschke, Sabine

    2016-02-01

    Mesenchymal stem cells are known to exert immunomodulatory effects in inflammatory diseases. Immuneregulatory cells lead to progressive joint destruction in rheumatoid arthritis (RA). Proinflammatory cytokines, such as tumour necrosis factor α (TNF-α) and interleukins (ILs) are the main players. Here, we studied progenitor cells from RA cartilage (RA-CPCs) that are positive for IL-17 receptors to determinate the effects of inflammation on their chondrogenic potenial. IL-17A/F reduced the chondrogenic potential of these cells via the upregulation of RUNX2 protein and enhanced IL-6 protein and MMP3 mRNA levels. Blocking antibodies against IL-17 positively influenced their repair potential. Furthermore, treating the RA-CPCs with the anti-human IL-17 antibody secukinumab or the anti-TNF-α antibody adalimumab reduced the proinflammatory IL-6 protein level and positively influenced the secretion of anti-inflammatory IL-10 protein. Additionally, adalimumab and secukinumab in particular reduced RUNX2 protein to promote chondrogenesis. The amelioration of inflammation, particularly via IL-17 antagonism, might be a new therapeutic approach for enhancing intrinsic cartilage repair mechanisms in RA patients. PMID:26558442

  12. Epigenomic Reprogramming of Adult Cardiomyocyte-Derived Cardiac Progenitor Cells.

    PubMed

    Zhang, Yiqiang; Zhong, Jiang F; Qiu, Hongyu; MacLellan, W Robb; Marbán, Eduardo; Wang, Charles

    2015-01-01

    It has been believed that mammalian adult cardiomyocytes (ACMs) are terminally-differentiated and are unable to proliferate. Recently, using a bi-transgenic ACM fate mapping mouse model and an in vitro culture system, we demonstrated that adult mouse cardiomyocytes were able to dedifferentiate into cardiac progenitor-like cells (CPCs). However, little is known about the molecular basis of their intrinsic cellular plasticity. Here we integrate single-cell transcriptome and whole-genome DNA methylation analyses to unravel the molecular mechanisms underlying the dedifferentiation and cell cycle reentry of mouse ACMs. Compared to parental cardiomyocytes, dedifferentiated mouse cardiomyocyte-derived CPCs (mCPCs) display epigenomic reprogramming with many differentially-methylated regions, both hypermethylated and hypomethylated, across the entire genome. Correlated well with the methylome, our transcriptomic data showed that the genes encoding cardiac structure and function proteins are remarkably down-regulated in mCPCs, while those for cell cycle, proliferation, and stemness are significantly up-regulated. In addition, implantation of mCPCs into infarcted mouse myocardium improves cardiac function with augmented left ventricular ejection fraction. Our study demonstrates that the cellular plasticity of mammalian cardiomyocytes is the result of a well-orchestrated epigenomic reprogramming and a subsequent global transcriptomic alteration. PMID:26657817

  13. Epigenomic Reprogramming of Adult Cardiomyocyte-Derived Cardiac Progenitor Cells

    PubMed Central

    Zhang, Yiqiang; Zhong, Jiang F; Qiu, Hongyu; Robb MacLellan, W.; Marbán, Eduardo; Wang, Charles

    2015-01-01

    It has been believed that mammalian adult cardiomyocytes (ACMs) are terminally-differentiated and are unable to proliferate. Recently, using a bi-transgenic ACM fate mapping mouse model and an in vitro culture system, we demonstrated that adult mouse cardiomyocytes were able to dedifferentiate into cardiac progenitor-like cells (CPCs). However, little is known about the molecular basis of their intrinsic cellular plasticity. Here we integrate single-cell transcriptome and whole-genome DNA methylation analyses to unravel the molecular mechanisms underlying the dedifferentiation and cell cycle reentry of mouse ACMs. Compared to parental cardiomyocytes, dedifferentiated mouse cardiomyocyte-derived CPCs (mCPCs) display epigenomic reprogramming with many differentially-methylated regions, both hypermethylated and hypomethylated, across the entire genome. Correlated well with the methylome, our transcriptomic data showed that the genes encoding cardiac structure and function proteins are remarkably down-regulated in mCPCs, while those for cell cycle, proliferation, and stemness are significantly up-regulated. In addition, implantation of mCPCs into infarcted mouse myocardium improves cardiac function with augmented left ventricular ejection fraction. Our study demonstrates that the cellular plasticity of mammalian cardiomyocytes is the result of a well-orchestrated epigenomic reprogramming and a subsequent global transcriptomic alteration. PMID:26657817

  14. Distribution and Characterization of Progenitor Cells within the Human Filum Terminale

    PubMed Central

    Jaff, Nasren; Ossoinak, Amina; Jansson, Katarina; Hägerstrand, Anders; Johansson, Clas B.; Brundin, Lou; Svensson, Mikael

    2011-01-01

    Background Filum terminale (FT) is a structure that is intimately associated with conus medullaris, the most caudal part of the spinal cord. It is well documented that certain regions of the adult human central nervous system contains undifferentiated, progenitor cells or multipotent precursors. The primary objective of this study was to describe the distribution and progenitor features of this cell population in humans, and to confirm their ability to differentiate within the neuroectodermal lineage. Methodology/Principal Findings We demonstrate that neural stem/progenitor cells are present in FT obtained from patients treated for tethered cord. When human or rat FT-derived cells were cultured in defined medium, they proliferated and formed neurospheres in 13 out of 21 individuals. Cells expressing Sox2 and Musashi-1 were found to outline the central canal, and also to be distributed in islets throughout the whole FT. Following plating, the cells developed antigen profiles characteristic of astrocytes (GFAP) and neurons (β-III-tubulin). Addition of PDGF-BB directed the cells towards a neuronal fate. Moreover, the cells obtained from young donors shows higher capacity for proliferation and are easier to expand than cells derived from older donors. Conclusion/Significance The identification of bona fide neural progenitor cells in FT suggests a possible role for progenitor cells in this extension of conus medullaris and may provide an additional source of such cells for possible therapeutic purposes. Filum terminale, human, progenitor cells, neuron, astrocytes, spinal cord. PMID:22096566

  15. Sox17 regulates organ lineage segregation of ventral foregut progenitor cells

    PubMed Central

    Spence, Jason R.; Lange, Alex W.; Lin, Suh-Chin J.; Kaestner, Klaus H.; Lowy, Andrew M.; Kim, Injune; Whitsett, Jeffrey A.; Wells, James M.

    2009-01-01

    SUMMARY The ventral pancreas, biliary system and liver arise from the posterior ventral foregut, but the cell-intrinsic pathway by which these organ lineages are separated is not known. Here we show that the extrahepatobiliary system shares a common origin with the ventral pancreas and not the liver, as previously thought. These pancreatobiliary progenitor cells coexpress the transcription factors Pdx1 and Sox17 at e8.5 and their segregation into a Pdx1+ ventral pancreas and a Sox17+ biliary primordium is Sox17-dependant. Deletion of Sox17 at e8.5 results in the loss of biliary structures and ectopic pancreatic tissue in the liver bud and common duct, while Sox17 overexpression suppresses pancreas development and promotes ectopic biliary-like tissue throughout the Pdx1+ domain. Restricting Sox17+ biliary progenitor cells to the ventral region of the gut requires the notch effector Hes1. Our results highlight the role of Sox17 and Hes1 in patterning and morphogenetic segregation of ventral foregut lineages. PMID:19619492

  16. Myeloid-derived suppressor cells function as novel osteoclast progenitors enhancing bone loss in breast cancer

    PubMed Central

    Sawant, Anandi; Deshane, Jessy; Jules, Joel; Lee, Carnella M.; Harris, Brittney A.; Feng, Xu; Ponnazhagan, Selvarangan

    2012-01-01

    Enhanced bone destruction is a hallmark of various carcinomas such as breast cancer, where osteolytic bone metastasis is associated with increased morbidity and mortality. Immune cells contribute to osteolysis in cancer growth but the factors contributing to aggressive bone destruction are not well understood. In this study, we demonstrate the importance of myeloid-derived suppressor cells (MDSC) in this process at bone metastatic sites. Since MDSC originate from the same myeloid lineage as macrophages, which are osteoclast precursors, we hypothesized that MDSC may undergo osteoclast differentiation and contribute to enhanced bone destruction and tumor growth. Using an immunocompetent mouse model of breast cancer bone metastasis, we confirmed that MDSC isolated from the tumor-bone microenvironment differentiated into functional osteoclasts both in vitro and in vivo. Mechanistic investigations revealed that nitric oxide signaling was critical for differentiation of MDSC into osteoclasts. Remarkably, osteoclast differentiation did not occur in MDSC isolated from control or tumor-bearing mice that lacked bone metastasis, signifying the essential cross-talk between tumor cells and myeloid progenitors in the bone microenvironment as a requirement for osteoclast differentiation of MDSC. Overall, our results identify a wholly new facet to the multifunctionality of MDSC in driving tumor progression, in this case as a novel osteoclast progenitor that specifically drives bone metastasis during cancer progression. PMID:23243021

  17. Injury induces direct lineage segregation of functionally distinct airway basal stem/progenitor cell subpopulations.

    PubMed

    Pardo-Saganta, Ana; Law, Brandon M; Tata, Purushothama Rao; Villoria, Jorge; Saez, Borja; Mou, Hongmei; Zhao, Rui; Rajagopal, Jayaraj

    2015-02-01

    Following injury, stem cells restore normal tissue architecture by producing the proper number and proportions of differentiated cells. Current models of airway epithelial regeneration propose that distinct cytokeratin 8-expressing progenitor cells, arising from p63(+) basal stem cells, subsequently differentiate into secretory and ciliated cell lineages. We now show that immediately following injury, discrete subpopulations of p63(+) airway basal stem/progenitor cells themselves express Notch pathway components associated with either secretory or ciliated cell fate commitment. One basal cell population displays intracellular Notch2 activation and directly generates secretory cells; the other expresses c-myb and directly yields ciliated cells. Furthermore, disrupting Notch ligand activity within the basal cell population at large disrupts the normal pattern of lineage segregation. These non-cell-autonomous effects demonstrate that effective airway epithelial regeneration requires intercellular communication within the broader basal stem/progenitor cell population. These findings have broad implications for understanding epithelial regeneration and stem cell heterogeneity. PMID:25658372

  18. Efficient generation of retinal progenitor cells from human embryonic stem cells

    PubMed Central

    Lamba, Deepak A.; Karl, Mike O.; Ware, Carol B.; Reh, Thomas A.

    2006-01-01

    The retina is subject to degenerative conditions, leading to blindness. Although retinal regeneration is robust in lower vertebrates, regeneration does not occur in the adult mammalian retina. Thus, we have developed efficient methods for deriving retinal neurons from human embryonic stem (hES) cells. Under appropriate culture conditions, up to 80% of the H1 line can be directed to the retinal progenitor fate, and express a gene expression profile similar to progenitors derived from human fetal retina. The hES cell-derived progenitors differentiate primarily into inner retinal neurons (ganglion and amacrine cells), with functional glutamate receptors. Upon coculture with retinas derived from a mouse model of retinal degeneration, the hES cell derived retinal progenitors integrate with the degenerated mouse retina and increase in their expression of photoreceptor-specific markers. These results demonstrate that human ES cells can be selectively directed to a neural retinal cell fate and thus may be useful in the treatment of retinal degenerations. PMID:16908856

  19. Cardiac Progenitor Cell Commitment is Inhibited by Nuclear Akt Expression

    PubMed Central

    Fischer, Kimberlee M.; Din, Shabana; Gude, Natalie; Konstandin, Mathias H.; Wu, Weitao; Quijada, Pearl; Sussman, Mark A.

    2011-01-01

    Rationale Stem cell therapies to regenerate damaged cardiac tissue represent a novel approach to treat heart disease. However, the majority of adoptively transferred stem cells delivered to damaged myocardium do not survive long enough to impart protective benefits, resulting in modest functional improvements. Strategies to improve survival and proliferation of stem cells show promise for significantly enhancing cardiac function and regeneration. Objective Determine if injected cardiac progenitor cells (CPCs) genetically modified to overexpress nuclear Akt (CPCeA) increase structural and functional benefits to infarcted myocardium relative to control CPCs. Methods and Results CPCeA exhibit significantly increased proliferation and secretion of paracrine factors compared to CPCs. However, CPCeA exhibit impaired capacity for lineage commitment in vitro. Infarcted hearts receiving intramyocardial injection of CPCeA have increased recruitment of endogenous c-kit cells compared to CPCs, but neither population provides long-term functional and structural improvements compared to saline injected controls. Pharmacologic inhibition of Akt alleviated blockade of lineage commitment in CPCeA. Conclusions Although overexpression of nuclear Akt promotes rapid proliferation and secretion of protective paracrine factors, the inability of CPCeA to undergo lineage commitment hinders their capacity to provide functional or structural benefits to infarcted hearts. Despite enhanced recruitment of endogenous CPCs, lack of functional improvement in CPCeA treated hearts demonstrates CPC lineage commitment is essential to the regenerative response. Effective stem cell therapies must promote cellular survival and proliferation without inhibiting lineage commitment. Since CPCeA exhibit remarkable proliferative potential, an inducible system mediating nuclear Akt expression could be useful to augment cell therapy approaches. PMID:21350213

  20. Rapid Selection of Mesenchymal Stem and Progenitor Cells in Primary Prostate Stromal Cultures

    PubMed Central

    Brennen, W. Nathaniel; Kisteman, L. Nelleke; Isaacs, John T.

    2016-01-01

    BACKGROUND Carcinoma-associated fibroblasts (CAFs) are a dominant component of the tumor microenvironment with pro-tumorigenic properties. Despite this knowledge, their physiologic origins remain poorly understood. Mesenchymal stem cells (MSCs) can be recruited from the bone marrow to areas of tissue damage and inflammation, including prostate cancer. MSCs can generate and have many overlapping properties with CAFs in preclinical models. METHODS Multiparameter flow cytometry and multipotent differentiation assays used to define MSCs in primary prostate stromal cultures derived from young (>25 yrs) organ donors and prostate cancer patients compared with bone marrow-derived stromal cultures. Population doubling times, population doublings, cell size, and differentiation potential determined under multiple culture conditions, including normoxia, hypoxia, and a variety of media. TGF-β measured by ELISA. RESULTS MSCs and stromal progenitors are not only present in normal and malignant prostate tissue, but are quickly selected for in primary stromal cultures derived from these tissues; becoming the dominant population within just a few passages. Growth potential inversely associated with TGF-β concentrations. All conditions generated populations with an average cell diameter >15 μm. All cultures tested had the ability to undergo osteogenic and chondrogenic differentiation, but unlike bone marrow-derived MSCs, primary stromal cultures derived from normal prostate tissue lack adipogenic differentiation potential. In contrast, a subset of stromal cultures derived from prostate cancer patients retain the ability to differentiate into adipocytes; a property that is significantly suppressed under hypoxic conditions in both bone marrow- and prostate-derived MSCs. CONCLUSIONS Primary prostate stromal cultures are highly enriched in cells with an MSC or stromal progenitor phenotype. The use of primary cultures such as these to study CAFs raises interesting implications when

  1. Therapeutic Roles of Tendon Stem/Progenitor Cells in Tendinopathy

    PubMed Central

    Zhang, Xin; Lin, Yu-cheng; Rui, Yun-feng; Xu, Hong-liang; Chen, Hui; Wang, Chen; Teng, Gao-jun

    2016-01-01

    Tendinopathy is a tendon disorder characterized by activity-related pain, local edema, focal tenderness to palpation, and decreased strength in the affected area. Tendinopathy is prevalent in both athletes and the general population, highlighting the need to elucidate the pathogenesis of this disorder. Current treatments of tendinopathy are both conservative and symptomatic. The discovery of tendon stem/progenitor cells (TSPCs) and erroneous differentiation of TSPCs have provided new insights into the pathogenesis of tendinopathy. In this review, we firstly present the histopathological characteristics of tendinopathy and explore the cellular and molecular cues in the pathogenesis of tendinopathy. Current evidence of the depletion of the stem cell pool and altered TSPCs fate in the pathogenesis of tendinopathy has been presented. The potential regulatory factors for either tenogenic or nontenogenic differentiation of TSPCs are also summarized. The regulation of endogenous TSPCs or supplementation with exogenous TSPCs as therapeutic targets for the treatment of tendinopathy is proposed. Therefore, inhibiting the erroneous differentiation of TSPCs and regulating the differentiation of TSPCs into tendon cells might be important areas of future research and could provide new clinical treatments for tendinopathy. The current evidence suggests that TSPCs are promising therapeutic targets for the management of tendinopathy. PMID:27195010

  2. Endothelial progenitor cells regenerate infracted myocardium with neovascularisation development.

    PubMed

    Abd El Aziz, M T; Abd El Nabi, E A; Abd El Hamid, M; Sabry, D; Atta, H M; Rahed, L A; Shamaa, A; Mahfouz, S; Taha, F M; Elrefaay, S; Gharib, D M; Elsetohy, Khaled A

    2015-03-01

    We achieved possibility of isolation, characterization human umbilical cord blood endothelial progenitor cells (EPCs), examination potency of EPCs to form new blood vessels and differentiation into cardiomyoctes in canines with acute myocardial infarction (AMI). EPCs were separated and cultured from umbilical cord blood. Their phenotypes were confirmed by uptake of double stains dioctadecyl tetramethylindocarbocyanine-labeled acetylated LDL and FITC-labeled Ulex europaeus agglutinin 1 (DILDL-UEA-1). EPCs of cord blood were counted. Human VEGFR-2 and eNOS from the cultured EPCs were assessed by qPCR. Human EPCs was transplanted intramyocardially in canines with AMI. ECG and cardiac enzymes (CK-MB and Troponin I) were measured to assess severity of cellular damage. Histopathology was done to assess neovascularisation. Immunostaining was done to detect EPCs transdifferentiation into cardiomyocytes in peri-infarct cardiac tissue. qPCR for human genes (hVEGFR-2, and eNOS) was done to assess homing and angiogenic function of transplanted EPCs. Cultured human cord blood exhibited an increased number of EPCs and significant high expression of hVEGFR-2 and eNOS genes in the culture cells. Histopathology showed increased neovascularization and immunostaining showed presence of EPCs newly differentiated into cardiomyocyte-like cells. Our findings suggested that hEPCs can mediate angiogenesis and differentiate into cardiomyoctes in canines with AMI. PMID:25750747

  3. Endothelial progenitor cells regenerate infracted myocardium with neovascularisation development☆

    PubMed Central

    Abd El Aziz, M.T.; Abd El Nabi, E.A.; Abd El Hamid, M.; Sabry, D.; Atta, H.M.; Rahed, L.A.; Shamaa, A.; Mahfouz, S.; Taha, F.M.; Elrefaay, S.; Gharib, D.M.; Elsetohy, Khaled A.

    2013-01-01

    We achieved possibility of isolation, characterization human umbilical cord blood endothelial progenitor cells (EPCs), examination potency of EPCs to form new blood vessels and differentiation into cardiomyoctes in canines with acute myocardial infarction (AMI). EPCs were separated and cultured from umbilical cord blood. Their phenotypes were confirmed by uptake of double stains dioctadecyl tetramethylindocarbocyanine-labeled acetylated LDL and FITC-labeled Ulex europaeus agglutinin 1 (DILDL-UEA-1). EPCs of cord blood were counted. Human VEGFR-2 and eNOS from the cultured EPCs were assessed by qPCR. Human EPCs was transplanted intramyocardially in canines with AMI. ECG and cardiac enzymes (CK-MB and Troponin I) were measured to assess severity of cellular damage. Histopathology was done to assess neovascularisation. Immunostaining was done to detect EPCs transdifferentiation into cardiomyocytes in peri-infarct cardiac tissue. qPCR for human genes (hVEGFR-2, and eNOS) was done to assess homing and angiogenic function of transplanted EPCs. Cultured human cord blood exhibited an increased number of EPCs and significant high expression of hVEGFR-2 and eNOS genes in the culture cells. Histopathology showed increased neovascularization and immunostaining showed presence of EPCs newly differentiated into cardiomyocyte-like cells. Our findings suggested that hEPCs can mediate angiogenesis and differentiate into cardiomyoctes in canines with AMI. PMID:25750747

  4. Estrogen Stimulates Homing of Endothelial Progenitor Cells to Endometriotic Lesions.

    PubMed

    Rudzitis-Auth, Jeannette; Nenicu, Anca; Nickels, Ruth M; Menger, Michael D; Laschke, Matthias W

    2016-08-01

    The incorporation of endothelial progenitor cells (EPCs) into microvessels contributes to the vascularization of endometriotic lesions. Herein, we analyzed whether this vasculogenic process is regulated by estrogen. Estrogen- and vehicle-treated human EPCs were analyzed for migration and tube formation. Endometriotic lesions were induced in irradiated FVB/N mice, which were reconstituted with bone marrow from FVB/N-TgN (Tie2/green fluorescent protein) 287 Sato mice. The animals were treated with 100 μg/kg β-estradiol 17-valerate or vehicle (control) over 7 and 28 days. Lesion growth, cyst formation, homing of green fluorescent protein(+)/Tie2(+) EPCs, vascularization, cell proliferation, and apoptosis were analyzed by high-resolution ultrasonography, caliper measurements, histology, and immunohistochemistry. Numbers of blood circulating EPCs were assessed by flow cytometry. In vitro, estrogen-treated EPCs exhibited a higher migratory and tube-forming capacity when compared with controls. In vivo, numbers of circulating EPCs were not affected by estrogen. However, estrogen significantly increased the number of EPCs incorporated into the lesions' microvasculature, resulting in an improved early vascularization. Estrogen further stimulated the growth of lesions, which exhibited massively dilated glands with a flattened layer of stroma. This was mainly because of an increased glandular secretory activity, whereas cell proliferation and apoptosis were not markedly affected. These findings indicate that vasculogenesis in endometriotic lesions is dependent on estrogen, which adds a novel hormonally regulated mechanism to the complex pathophysiology of endometriosis. PMID:27315780

  5. Mpath maps multi-branching single-cell trajectories revealing progenitor cell progression during development

    PubMed Central

    Chen, Jinmiao; Schlitzer, Andreas; Chakarov, Svetoslav; Ginhoux, Florent; Poidinger, Michael

    2016-01-01

    Single-cell RNA-sequencing offers unprecedented resolution of the continuum of state transition during cell differentiation and development. However, tools for constructing multi-branching cell lineages from single-cell data are limited. Here we present Mpath, an algorithm that derives multi-branching developmental trajectories using neighborhood-based cell state transitions. Applied to mouse conventional dendritic cell (cDC) progenitors, Mpath constructs multi-branching trajectories spanning from macrophage/DC progenitors through common DC progenitor to pre-dendritic cells (preDC). The Mpath-generated trajectories detect a branching event at the preDC stage revealing preDC subsets that are exclusively committed to cDC1 or cDC2 lineages. Reordering cells along cDC development reveals sequential waves of gene regulation and temporal coupling between cell cycle and cDC differentiation. Applied to human myoblasts, Mpath recapitulates the time course of myoblast differentiation and isolates a branch of non-muscle cells involved in the differentiation. Our study shows that Mpath is a useful tool for constructing cell lineages from single-cell data. PMID:27356503

  6. Mpath maps multi-branching single-cell trajectories revealing progenitor cell progression during development.

    PubMed

    Chen, Jinmiao; Schlitzer, Andreas; Chakarov, Svetoslav; Ginhoux, Florent; Poidinger, Michael

    2016-01-01

    Single-cell RNA-sequencing offers unprecedented resolution of the continuum of state transition during cell differentiation and development. However, tools for constructing multi-branching cell lineages from single-cell data are limited. Here we present Mpath, an algorithm that derives multi-branching developmental trajectories using neighborhood-based cell state transitions. Applied to mouse conventional dendritic cell (cDC) progenitors, Mpath constructs multi-branching trajectories spanning from macrophage/DC progenitors through common DC progenitor to pre-dendritic cells (preDC). The Mpath-generated trajectories detect a branching event at the preDC stage revealing preDC subsets that are exclusively committed to cDC1 or cDC2 lineages. Reordering cells along cDC development reveals sequential waves of gene regulation and temporal coupling between cell cycle and cDC differentiation. Applied to human myoblasts, Mpath recapitulates the time course of myoblast differentiation and isolates a branch of non-muscle cells involved in the differentiation. Our study shows that Mpath is a useful tool for constructing cell lineages from single-cell data. PMID:27356503

  7. HDAC3 is essential for DNA replication in hematopoietic progenitor cells

    PubMed Central

    Summers, Alyssa R.; Fischer, Melissa A.; Stengel, Kristy R.; Zhao, Yue; Kaiser, Jonathan F.; Wells, Christina E.; Hunt, Aubrey; Bhaskara, Srividya; Luzwick, Jessica W.; Sampathi, Shilpa; Chen, Xi; Thompson, Mary Ann; Cortez, David; Hiebert, Scott W.

    2013-01-01

    Histone deacetylase 3 (HDAC3) contributes to the regulation of gene expression, chromatin structure, and genomic stability. Because HDAC3 associates with oncoproteins that drive leukemia and lymphoma, we engineered a conditional deletion allele in mice to explore the physiological roles of Hdac3 in hematopoiesis. We used the Vav-Cre transgenic allele to trigger recombination, which yielded a dramatic loss of lymphoid cells, hypocellular bone marrow, and mild anemia. Phenotypic and functional analysis suggested that Hdac3 was required for the formation of the earliest lymphoid progenitor cells in the marrow, but that the marrow contained 3–5 times more multipotent progenitor cells. Hdac3–/– stem cells were severely compromised in competitive bone marrow transplantation. In vitro, Hdac3–/– stem and progenitor cells failed to proliferate, and most cells remained undifferentiated. Moreover, one-third of the Hdac3–/– stem and progenitor cells were in S phase 2 hours after BrdU labeling in vivo, suggesting that these cells were impaired in transit through the S phase. DNA fiber-labeling experiments indicated that Hdac3 was required for efficient DNA replication in hematopoietic stem and progenitor cells. Thus, Hdac3 is required for the passage of hematopoietic stem/progenitor cells through the S phase, for stem cell functions, and for lymphopoiesis. PMID:23921131

  8. Nucleostemin Rejuvenates Cardiac Progenitor Cells and Antagonizes Myocardial Aging

    PubMed Central

    Hariharan, Nirmala; Quijada, Pearl; Mohsin, Sadia; Joyo, Anya; Samse, Kaitlen; Monsanto, Megan; De La Torre, Andrea; Avitabile, Daniele; Ormachea, Lucia; McGregor, Michael J.; Tsai, Emily J; Sussman, Mark A.

    2015-01-01

    BACKGROUND Functional decline in stem cell-mediated regeneration contributes to aging associated with cellular senescence in c-kit+ cardiac progenitor cells (CPCs). Clinical implementation of CPC-based therapy with elderly patients would benefit tremendously from understanding molecular characteristics of senescence to antagonize aging. Nucleostemin (NS) is a nucleolar protein regulating stem cell proliferation and pluripotency. OBJECTIVES The goal is to demonstrate that NS preserves characteristics associated with “stemness” in CPCs and antagonizes myocardial senescence and aging. METHODS CPCs isolated from human fetal (FhCPC) and adult failing (AhCPC) hearts, as well as young (YCPC) and old mice (OCPC), were studied for senescence characteristics and NS expression. Heterozygous knockout mice with one functional allele of NS (NS+/−) were used to demonstrate that NS preserves myocardial structure and function and slows characteristics of aging. RESULTS NS expression is decreased in AhCPCs relative to FhCPC, correlating with lowered proliferation potential and shortened telomere length. AhCPC characteristics resemble OCPCs, which have a phenotype induced by NS silencing, resulting in cell flattening, senescence, multinucleated cells, decreased S phase progression, diminished expression of stemness markers and up-regulation of p53 and p16. CPC senescence resulting from NS loss is partially p53 dependent and is rescued by concurrent silencing of p53. Mechanistically, NS induction correlates with Pim-1 kinase-mediated stabilization of c-Myc. Engineering OCPCs and AhCPCs to overexpress NS decreases senescent and multinucleated cells, restores morphology, and antagonizes senescence, thereby preserving phenotypic properties of “stemness.” Early cardiac aging with decline in cardiac function, increase in senescence markers p53 and p16, telomere attrition, and accompanied CPC exhaustion is evident in NS+/− mice. CONCLUSIONS Youthful properties and antagonism of

  9. Heterogeneity of neural progenitor cells revealed by enhancers in the nestin gene

    PubMed Central

    Yaworsky, Paul J.; Kappen, Claudia

    2014-01-01

    Using transgenic embryos, we have identified two distinct CNS progenitor cell-specific enhancers, each requiring the cooperation of at least two independent regulatory sites, within the second intron of the rat nestin gene. One enhancer is active throughout the developing CNS while the other is specifically active in the ventral midbrain. These experiments demonstrate that neural progenitor cells in the midbrain constitute a unique subpopulation based upon their ability to activate the midbrain regulatory elements. Our finding of differential enhancer activity from a gene encoding a structural protein reveals a previously unrecognized diversity in neural progenitor cell populations. PMID:9917366

  10. Low Immunogenicity of Neural Progenitor Cells Differentiated from Induced Pluripotent Stem Cells Derived from Less Immunogenic Somatic Cells

    PubMed Central

    Li, Xiang; Qin, Li; Huang, Ke; Wang, Lihui; Huang, Wenhao; Li, Shengbiao; Jia, Bei; Zhong, Mei; Pan, Guangjin; Cai, Jinglei; Pei, Duanqing

    2013-01-01

    The groundbreaking discovery of induced pluripotent stem cells (iPS cells) provides a new source for cell therapy. However, whether the iPS derived functional lineages from different cell origins have different immunogenicity remains unknown. It had been known that the cells isolated from extra-embryonic tissues, such as umbilical cord mesenchymal cells (UMCs), are less immunogenic than other adult lineages such as skin fibroblasts (SFs). In this report, we differentiated iPS cells from human UMCs and SFs into neural progenitor cells (NPCs) and analyzed their immunogenicity. Through co-culture with allologous peripheral blood mononuclear cells (PBMCs), we showed that UMCs were indeed less immunogenic than skin cells to simulate proliferation of PBMCs. Surprisingly, we found that the NPCs differentiated from UMC-iPS cells retained low immunogenicity as the parental UMCs based on the PBMC proliferation assay. In cytotoxic expression assay, reactions in most kinds of immune effector cells showed more perforin and granzyme B expression with SF-NPCs stimulation than that with UMC-NPCs stimulation in PBMC co-culture system, in T cell co-culture system as well. Furthermore, through whole genome expression microarray analysis, we showed that over 70 immune genes, including all members of HLA-I, were expressed at lower levels in NPCs derived from UMC-iPS cells than that from SF-iPS cells. Our results demonstrated a phenomenon that the low immunogenicity of the less immunogenic cells could be retained after cell reprogramming and further differentiation, thus provide a new concept to generate functional lineages with lower immunogenicity for regenerative medicine. PMID:23922758

  11. Epigenetic therapy of cancer stem and progenitor cells by targeting DNA methylation machineries.

    PubMed

    Wongtrakoongate, Patompon

    2015-01-26

    Recent advances in stem cell biology have shed light on how normal stem and progenitor cells can evolve to acquire malignant characteristics during tumorigenesis. The cancer counterparts of normal stem and progenitor cells might be occurred through alterations of stem cell fates including an increase in self-renewal capability and a decrease in differentiation and/or apoptosis. This oncogenic evolution of cancer stem and progenitor cells, which often associates with aggressive phenotypes of the tumorigenic cells, is controlled in part by dysregulated epigenetic mechanisms including aberrant DNA methylation leading to abnormal epigenetic memory. Epigenetic therapy by targeting DNA methyltransferases (DNMT) 1, DNMT3A and DNMT3B via 5-Azacytidine (Aza) and 5-Aza-2'-deoxycytidine (Aza-dC) has proved to be successful toward treatment of hematologic neoplasms especially for patients with myelodysplastic syndrome. In this review, I summarize the current knowledge of mechanisms underlying the inhibition of DNA methylation by Aza and Aza-dC, and of their apoptotic- and differentiation-inducing effects on cancer stem and progenitor cells in leukemia, medulloblastoma, glioblastoma, neuroblastoma, prostate cancer, pancreatic cancer and testicular germ cell tumors. Since cancer stem and progenitor cells are implicated in cancer aggressiveness such as tumor formation, progression, metastasis and recurrence, I propose that effective therapeutic strategies might be achieved through eradication of cancer stem and progenitor cells by targeting the DNA methylation machineries to interfere their "malignant memory". PMID:25621113

  12. Fetal Leydig Cells: Progenitor Cell Review Maintenance and Differentiation

    PubMed Central

    BARSOUM, IVRAYM B.; YAO, HUMPHREY H.-C.

    2012-01-01

    In most eutherian mammals, sexually dimorphic masculinization is established by androgen-producing fetal Leydig cells in the embryonic testis. Fetal Leydig cells, which lack expression of the testis-determining gene SRY, arise after the appearance of SRY-expressing Sertoli cells. Therefore, the appearance and differentiation of fetal Leydig cells are probably regulated by factors derived from Sertoli cells. Results from mouse genetic models have revealed that maintenance and differentiation of fetal Leydig cell population depends upon a balance between differentiation-promoting and differentiation-suppressing mechanisms. Although paracrine signaling via Sertoli cell–derived Hedgehog ligands is necessary and sufficient for fetal Leydig cell formation, cell-cell interaction via Notch signaling and intracellular transcription factors such as POD1 are implicated as suppressors of fetal Leydig cell differentiation. This review provides a model that summarizes the recent findings in fetal Leydig cell development. PMID:19875489

  13. Stem/Progenitor Cell Niches Involved in Hepatic and Biliary Regeneration

    PubMed Central

    Carpino, Guido; Renzi, Anastasia; Franchitto, Antonio; Cardinale, Vincenzo; Onori, Paolo; Reid, Lola; Alvaro, Domenico; Gaudio, Eugenio

    2016-01-01

    Niches containing stem/progenitor cells are present in different anatomical locations along the human biliary tree and within liver acini. The most primitive stem/progenitors, biliary tree stem/progenitor cells (BTSCs), reside within peribiliary glands located throughout large extrahepatic and intrahepatic bile ducts. BTSCs are multipotent and can differentiate towards hepatic and pancreatic cell fates. These niches' matrix chemistry and other characteristics are undefined. Canals of Hering (bile ductules) are found periportally and contain hepatic stem/progenitor cells (HpSCs), participating in the renewal of small intrahepatic bile ducts and being precursors to hepatocytes and cholangiocytes. The niches also contain precursors to hepatic stellate cells and endothelia, macrophages, and have a matrix chemistry rich in hyaluronans, minimally sulfated proteoglycans, fetal collagens, and laminin. The microenvironment furnishes key signals driving HpSC activation and differentiation. Newly discovered third niches are pericentral within hepatic acini, contain Axin2+ unipotent hepatocytic progenitors linked on their lateral borders to endothelia forming the central vein, and contribute to normal turnover of mature hepatocytes. Their relationship to the other stem/progenitors is undefined. Stem/progenitor niches have important implications in regenerative medicine for the liver and biliary tree and in pathogenic processes leading to diseases of these tissues. PMID:26880956

  14. Neural stem/progenitor cells in Alzheimer’s disease

    PubMed Central

    Tincer, Gizem; Mashkaryan, Violeta; Bhattarai, Prabesh; Kizil, Caghan

    2016-01-01

    Alzheimer’s disease (AD) is the most prevalent neurodegenerative disease and a worldwide health challenge. Different therapeutic approaches are being developed to reverse or slow the loss of affected neurons. Another plausible therapeutic way that may complement the studies is to increase the survival of existing neurons by mobilizing the existing neural stem/progenitor cells (NSPCs) — i.e. “induce their plasticity” — to regenerate lost neurons despite the existing pathology and unfavorable environment. However, there is controversy about how NSPCs are affected by the unfavorable toxic environment during AD. In this review, we will discuss the use of stem cells in neurodegenerative diseases and in particular how NSPCs affect the AD pathology and how neurodegeneration affects NSPCs. In the end of this review, we will discuss how zebrafish as a useful model organism with extensive regenerative ability in the brain might help to address the molecular programs needed for NSPCs to respond to neurodegeneration by enhanced neurogenesis. PMID:27505014

  15. Endothelial progenitor cell recruitment in a microfluidic vascular model.

    PubMed

    Lewis, Daniel M; Abaci, Hasan E; Xu, Yu; Gerecht, Sharon

    2015-12-01

    During vessel injury, endothelial progenitors cells (EPCs) are recruited from bone marrow and directed to the hypoxic injury site. The hypoxic conditions in the damaged blood vessel promote TNF-α, which upregulates intercellular adhesion molecule-1 (ICAM-1). EPCs attach to endothelial cell lining using ICAM-1. Here we aimed to examine EPC attachment to ECs in an injured-blood vessel conditions. We first determined ICAM-1 expression in stimulated HUVECs. We stimulated HUVECs with 21% oxygen (atmospheric), atmospheric with TNF-α-supplemented media, 1% oxygen (hypoxia), and hypoxia with TNF-α-supplemented media and found the highest ECFC attachment on HUVECs stimulated with TNF-α and hypoxia, correlating with the highest ICAM-1 expression. We next designed, fabricated and tested a three-dimensional microbioreactor (3D MBR) system with precise control and monitoring of dissolve oxygen and media flow rate in the cellular environment. We utilized a step-wise seeding approach, producing monolayer of HUVECs on all four walls. When stimulated with both TNF-α and hypoxia, ECFC retention on HUVECs was significantly increased under low shear stress compared to static controls. Overall, the 3D MBR system mimics the pathological oxygen tension and shear stress in the damaged vasculature, providing a platform to model vascular-related disorders. PMID:26693599

  16. Genomic characterization of Wilms' tumor suppressor 1 targets in nephron progenitor cells during kidney development

    PubMed Central

    Hartwig, Sunny; Ho, Jacqueline; Pandey, Priyanka; MacIsaac, Kenzie; Taglienti, Mary; Xiang, Michael; Alterovitz, Gil; Ramoni, Marco; Fraenkel, Ernest; Kreidberg, Jordan A.

    2010-01-01

    Summary The Wilms' tumor suppressor 1 (WT1) gene encodes a DNA- and RNA-binding protein that plays an essential role in nephron progenitor differentiation during renal development. To identify WT1 target genes that might regulate nephron progenitor differentiation in vivo, we performed chromatin immunoprecipitation (ChIP) coupled to mouse promoter microarray (ChIP-chip) using chromatin prepared from embryonic mouse kidney tissue. We identified 1663 genes bound by WT1, 86% of which contain a previously identified, conserved, high-affinity WT1 binding site. To investigate functional interactions between WT1 and candidate target genes in nephron progenitors, we used a novel, modified WT1 morpholino loss-of-function model in embryonic mouse kidney explants to knock down WT1 expression in nephron progenitors ex vivo. Low doses of WT1 morpholino resulted in reduced WT1 target gene expression specifically in nephron progenitors, whereas high doses of WT1 morpholino arrested kidney explant development and were associated with increased nephron progenitor cell apoptosis, reminiscent of the phenotype observed in Wt1−/− embryos. Collectively, our results provide a comprehensive description of endogenous WT1 target genes in nephron progenitor cells in vivo, as well as insights into the transcriptional signaling networks controlled by WT1 that might direct nephron progenitor fate during renal development. PMID:20215353

  17. Human mammary progenitor cell fate decisions are products of interactions with combinatorial microenvironments

    SciTech Connect

    LaBarge, Mark A; Nelson, Celeste M; Villadsen, Rene; Fridriksdottir, Agla; Ruth, Jason R; Stampfer, Martha R; Petersen, Ole W; Bissell, Mina J

    2008-09-19

    In adult tissues, multi-potent progenitor cells are some of the most primitive members of the developmental hierarchies that maintain homeostasis. That progenitors and their more mature progeny share identical genomes, suggests that fate decisions are directed by interactions with extrinsic soluble factors, ECM, and other cells, as well as physical properties of the ECM. To understand regulation of fate decisions, therefore, would require a means of understanding carefully choreographed combinatorial interactions. Here we used microenvironment protein microarrays to functionally identify combinations of cell-extrinsic mammary gland proteins and ECM molecules that imposed specific cell fates on bipotent human mammary progenitor cells. Micropatterned cell culture surfaces were fabricated to distinguish between the instructive effects of cell-cell versus cell-ECM interactions, as well as constellations of signaling molecules; and these were used in conjunction with physiologically relevant 3 dimensional human breast cultures. Both immortalized and primary human breast progenitors were analyzed. We report on the functional ability of those proteins of the mammary gland that maintain quiescence, maintain the progenitor state, and guide progenitor differentiation towards myoepithelial and luminal lineages.

  18. Adrenocortical Cells with Stem/Progenitor Cell Properties: Recent Advances

    PubMed Central

    Kim, Alex; Hammer, Gary D.

    2007-01-01

    The existence and location of undifferentiated cells with the capability of maintaining the homeostasis of the adrenal cortex have long been sought. These cells are thought to remain mostly quiescent with a potential to commit to self-renewal processes or terminal differentiation to homeostatically repopulate the organ. In addition, in response to physiologic stress, the undifferentiated cells undergo rapid proliferation to accommodate organismic need. Sufficient adrenocortical proliferative capacity lasting the lifespan of the host has been demonstrated through cell transplantation and enucleation experiments. Labeling experiments with tritium, BrdU, or trypan blue, as well as transgenic assays support the clonogenic identity and location of these undefined cells within the gland periphery. We define undifferentiated adrenocortical cells as cells devoid of steroidogenic gene expression, and differentiated cells as cells with steroidogenic capacity. In this review, we discuss historic developmental studies together with recent molecular examinations that aim to characterize such populations of cells. PMID:17240045

  19. Effects of Ti surface treatments with silane and arginylglycylaspartic acid peptide on bone cell progenitors.

    PubMed

    Chen, Wen-Cheng; Lo, Yang; Chen, Hong-Sen

    2015-09-01

    Achieving optimal aesthetic appearance is a major objective in dental implant design, and the interaction between the materials and the bone cell progenitors is an important factor in the attainment of this objective. In this study, a novel concept was evaluated by varying the surface modifications on titanium (Ti). Different levels of roughness can be attained by machine grinding (M), sand blasting, and acid etching (SLA) of the samples. The behavior of bone cell progenitors (D1) on the surfaces of Ti disks with different surface modifications was investigated. The surfaces of M or SLA disks were silanized (MS or SLAS group) through treatment with silane/Gly-Arg-Gly-Asp-Ser (GRGDS) peptide (MSP or SLASP group) and anchored particles of tetracalcium phosphate (TTCP) on the specimen surfaces (SLA-TTCP group). Physicochemical analysis was performed by metallographic microscopy, scanning electron microscopy, and contact angle analysis. The proliferation and the quantitative alkaline phosphatase (ALP) production of D1 cells on the surface of different sample groups were determined. The SLASP group had a significantly larger D1 cell proliferation than the other groups after 4 and 7 d of incubation (p < 0.05). ALP expression was a very early marker of differentiation, and was the first indication of the increasing number of cells at 7 d of culture. Among the groups in the M substrate series (i.e., M, MS, and MSP) and in the SLA series (i.e., SLA, SLAS, and SLASP), the MSP and SLASP specimens exhibited superior differentiation abilities on respective cultures until day 7 and day 10. A high number of hydrophilic surfaces dominated cell proliferation in the early stage of cell attachment. However, factors affecting the pore structure and the surface morphology can improve cell proliferation and differentiation. According to analyses of proliferation and ALP expression of bone cell progenitors D1, the original SLA implant surface can be improved with surface treatment

  20. Regulation of human endothelial progenitor cell maturation by polyurethane nanocomposites.

    PubMed

    Hung, Huey-Shan; Yang, Yi-Chun; Lin, Yu-Chun; Lin, Shinn-Zong; Kao, Wei-Chien; Hsieh, Hsien-Hsu; Chu, Mei-Yun; Fu, Ru-Huei; Hsu, Shan-hui

    2014-08-01

    The mobilization and homing of endothelial progenitor cells (EPCs) are critical to the development of an antithrombotic cardiovascular prosthesis. Polyurethane (PU) with superior elasticity may provide a mechanical environment resembling that of the natural vascular tissues. The topographical cues of PU were maximized by making nanocomposites with a small amount of gold nanoparticles (AuNPs). The nanocomposites of PU-AuNPs ("PU-Au") with a favorable response of endothelial cells were previously established. In the current study, the effect of PU and PU-Au nanocomposites on the behavior of human peripheral blood EPCs was investigated in vitro and in vivo. It was found that PU-Au promoted EPCs to become differentiated endothelial cells in vitro, confirmed by the increased expressions of CD31 and VEGF-R2 surface markers. The increased maturation of EPCs was significantly more remarkable on PU-Au, probably through the stromal derived factor 1α (SDF-1α)/CXCR4 signaling pathway. In vivo experiments showed that EPCs seeded on PU-Au coated catheters effectively reduced thrombosis by differentiation into endothelial cells. Surface endothelialization with CD31 and CD34 expression as well as intimal formation with α-SMA expression was significantly accelerated in the group receiving EPC-seeded PU-Au catheters. Moreover, the analysis of collagen deposition revealed a reduction of fibrosis in the group receiving EPC-seeded PU-Au catheters as compared to the other groups. These results suggest that EPCs engineered with a proper elastic substrate may provide unique endothelialization and antithrombogenic properties that benefit vascular tissue regeneration. PMID:24836305

  1. Cardiac Progenitor Cell Cycling Stimulated by Pim-1 Kinase

    PubMed Central

    Cottage, Christopher T.; Bailey, Brandi; Fischer, Kimberlee M.; Avitable, Daniele; Collins, Brett; Tuck, Savilla; Quijada, Pearl; Gude, Natalie; Alvarez, Roberto; Muraski, John; Sussman, Mark A.

    2011-01-01

    Rationale Cardioprotective effects of Pim-1 kinase have been previously reported but the underlying mechanistic basis may involve a combination of cellular and molecular mechanisms that remain unresolved. The elucidation of the mechanistic basis for Pim-1 mediated cardioprotection provides important insights for designing therapeutic interventional strategies to treat heart disease. Objective Effects of cardiac-specific Pim-1 kinase expression on the cardiac progenitor cell (CPC) population were examined to determine whether Pim-1 mediates beneficial effects through augmenting CPC activity. Methods and Results Transgenic mice created with cardiac-specific Pim-1 overexpression (Pim-wt) exhibit enhanced Pim-1 expression in both cardiomyocytes and CPCs, both of which show increased proliferative activity assessed using 5-bromodeoxyuridine (BrdU), Ki-67, and c-Myc relative to nontransgenic controls. However, the total number of CPCs was not increased in the Pim-wt hearts during normal postnatal growth or after infarction challenge. These results suggest that Pim-1 overexpression leads to asymmetric division resulting in maintenance of the CPC population. Localization and quantitation of cell fate determinants Numb and α-adaptin by confocal microscopy were used to assess frequency of asymmetric division in the CPC population. Polarization of Numb in mitotic phospho-histone positive cells demonstrates asymmetric division in 65% of the CPC population in hearts of Pim-wt mice versus 26% in nontransgenic hearts after infarction challenge. Similarly, Pim-wt hearts had fewer cells with uniform α-adaptin staining indicative of symmetrically dividing CPCs, with 36% of the CPCs versus 73% in nontransgenic sections. Conclusions These findings define a mechanistic basis for enhanced myocardial regeneration in transgenic mice overexpressing Pim-1 kinase. PMID:20075333

  2. Endothelial progenitor cells and asymmetric dimethylarginine after renal transplantation.

    PubMed

    Teplan, Vladimír; Mahrová, Andrea; Králová-Lesná, Ivana; Racek, Jaroslav; Valkovský, Ivo; Štollová, Milena

    2015-03-01

    Levels of the endogenous nitric oxide synthase inhibitor asymmetrical dimethylarginine (ADMA) are elevated and endothelial progenitor cells (EPCs) decreased in patients undergoing renal transplantation (Tx) and may contribute to cardiovascular complications. In this study, we tested the hypothesis that elevated ADMA and decreased EPC can be positively influenced with regular physical exercise early after Tx. Blood samples for analysis of ADMA and EPC were obtained from randomly selected 64 patients after Tx who agreed to participate in a supervised aerobic exercise program for 6 months (group I). Samples were collected before the training began, 1 month after surgery (with stabilized renal function), and at 6 months after initiation. Sixty-two age, sex, human leukocyte antigens (HLA) typing, duration of previous dialysis, history of cardiovascular disease, and immunosupression regimen-matched transplant patients who did not exercise regularly were examined as controls (group II). There were no differences in ADMA levels and EPC count between both groups before the training program began. After 6 months of exercise, ADMA concentration in the group I decreased (3.50 ± 0.45 vs. 2.11 ± 0.35 μmol/L; P < .01) and was also lower comparing with group II (2.11 ± 0.23 vs. 3.25 ± 0.35 μmol/L; P < .01). In the same period, EPC cells increased from 2.085 ± 650 cells/mL versus 3.991 ± 560 cells/mL, P < .01 in group I; but in group II, changes were nonsignificant (P = .11). Blood lipids, HbA1c, insulin, and systolic blood pressure were also affected by the training program. Elevated ADMA level and decreased EPC count were significantly influenced by early regular exercise in patients after Tx. PMID:25576240

  3. Aging-associated inflammation promotes selection for adaptive oncogenic events in B cell progenitors

    PubMed Central

    Henry, Curtis J.; Casás-Selves, Matias; Kim, Jihye; Zaberezhnyy, Vadym; Aghili, Leila; Daniel, Ashley E.; Jimenez, Linda; Azam, Tania; McNamee, Eoin N.; Clambey, Eric T.; Klawitter, Jelena; Serkova, Natalie J.; Tan, Aik Choon; Dinarello, Charles A.; DeGregori, James

    2015-01-01

    The incidence of cancer is higher in the elderly; however, many of the underlying mechanisms for this association remain unexplored. Here, we have shown that B cell progenitors in old mice exhibit marked signaling, gene expression, and metabolic defects. Moreover, B cell progenitors that developed from hematopoietic stem cells (HSCs) transferred from young mice into aged animals exhibited similar fitness defects. We further demonstrated that ectopic expression of the oncogenes BCR-ABL, NRASV12, or Myc restored B cell progenitor fitness, leading to selection for oncogenically initiated cells and leukemogenesis specifically in the context of an aged hematopoietic system. Aging was associated with increased inflammation in the BM microenvironment, and induction of inflammation in young mice phenocopied aging-associated B lymphopoiesis. Conversely, a reduction of inflammation in aged mice via transgenic expression of α-1-antitrypsin or IL-37 preserved the function of B cell progenitors and prevented NRASV12-mediated oncogenesis. We conclude that chronic inflammatory microenvironments in old age lead to reductions in the fitness of B cell progenitor populations. This reduced progenitor pool fitness engenders selection for cells harboring oncogenic mutations, in part due to their ability to correct aging-associated functional defects. Thus, modulation of inflammation — a common feature of aging — has the potential to limit aging-associated oncogenesis. PMID:26551682

  4. Targeting HIV latency: resting memory T cells, hematopoietic progenitor cells, and future directions

    PubMed Central

    Sebastian, Nadia T.; Collins, Kathleen L.

    2014-01-01

    Current therapy for HIV effectively suppresses viral replication and prolongs life, but the infection persists due, at least in part, to latent infection of long-lived cells. One favored strategy towards a cure targets latent virus in resting memory CD4+ T cells by stimulating viral production. However, the existence of an additional reservoir in bone marrow hematopoietic progenitor cells has been detected in some treated HIV-infected people. This review describes approaches investigators have used to reactivate latent proviral genomes in resting CD4+ T cells and hematopoietic progenitor cells. In addition, we review approaches for clearance of these reservoirs along with other important topics related to HIV eradication. PMID:25189526

  5. Update on the pathogenesis of Scleroderma: focus on circulating progenitor cells.

    PubMed

    Brunasso, Alexandra Maria Giovanna; Massone, Cesare

    2016-01-01

    In systemic sclerosis (SSc), the development of fibrosis seems to be a consequence of the initial ischemic process related to an endothelial injury. The initial trigger event in SSc is still unknown, but circulating progenitor cells (CPCs) might play a key role. Such cells have the ability to traffic into injury sites, exhibiting inflammatory features of macrophages, tissue remodeling properties of fibroblasts, and vasculogenesis functions of endothelial cells. The different subsets of CPCs described thus far in SSc arise from a pool of circulating monocyte precursors (CD14 (+) cells) and probably correspond to a different degree of differentiation of a single cell of origin. Several subsets of CPCs have been described in patients with SSc, all have a monocytic origin but may or may not express CD14, and all of these cells have the ability to give origin to endothelial cells, or collagen (Col)-producing cells, or both. We were able to identify six subsets of CPCs: pluripotent stem cells (CD14 (+), CD45 (+), and CD34 (+)), monocyte-derived multipotential cells (MOMCs) or monocyte-derived mesenchymal progenitors (CD14 (+), CD45 (+), CD34 (+), Col I (+), CD11b (+), CD68 (+), CD105 (+), and VEGFR1 (+)), early endothelial progenitor cells (EPCs) or monocytic pro-angiogenic hematopoietic cells or circulating hematopoietic cells (CD14 (+), CD45 (+), CD34 (low/-), VEGFR2 (+/-), CXCR4 (+), c-kit (+), and DC117 (+)), late EPCs (CD14 (-), CD133 (+), VEGFR2 (+), CD144 (+) [VE-cadherin (+)], and CD146 (+)), fibroblast-like cells (FLCs)/circulating Col-producing monocytes (CD14 (+), CD45 (+), CD34 (+/-), and Col I (+)), and fibrocytes (CD14 (-), CD45 (+), CD34 (+), Col I (+), and CXCR4 (+)). It has been demonstrated that circulating CD14 (+) monocytes with an activated phenotype are increased in patients with SSc when compared with normal subjects. CD14 (+), CD34 (+), and Col I (+) spindle-shaped cells have been found in increased numbers in lungs of SSc patients with

  6. Update on the pathogenesis of Scleroderma: focus on circulating progenitor cells

    PubMed Central

    Brunasso, Alexandra Maria Giovanna; Massone, Cesare

    2016-01-01

    In systemic sclerosis (SSc), the development of fibrosis seems to be a consequence of the initial ischemic process related to an endothelial injury. The initial trigger event in SSc is still unknown, but circulating progenitor cells (CPCs) might play a key role. Such cells have the ability to traffic into injury sites, exhibiting inflammatory features of macrophages, tissue remodeling properties of fibroblasts, and vasculogenesis functions of endothelial cells. The different subsets of CPCs described thus far in SSc arise from a pool of circulating monocyte precursors (CD14 + cells) and probably correspond to a different degree of differentiation of a single cell of origin. Several subsets of CPCs have been described in patients with SSc, all have a monocytic origin but may or may not express CD14, and all of these cells have the ability to give origin to endothelial cells, or collagen (Col)-producing cells, or both. We were able to identify six subsets of CPCs: pluripotent stem cells (CD14 +, CD45 +, and CD34 +), monocyte-derived multipotential cells (MOMCs) or monocyte-derived mesenchymal progenitors (CD14 +, CD45 +, CD34 +, Col I +, CD11b +, CD68 +, CD105 +, and VEGFR1 +), early endothelial progenitor cells (EPCs) or monocytic pro-angiogenic hematopoietic cells or circulating hematopoietic cells (CD14 +, CD45 +, CD34 low/−, VEGFR2 +/−, CXCR4 +, c-kit +, and DC117 +), late EPCs (CD14 −, CD133 +, VEGFR2 +, CD144 + [VE-cadherin +], and CD146 +), fibroblast-like cells (FLCs)/circulating Col-producing monocytes (CD14 +, CD45 +, CD34 +/−, and Col I +), and fibrocytes (CD14 −, CD45 +, CD34 +, Col I +, and CXCR4 +). It has been demonstrated that circulating CD14 + monocytes with an activated phenotype are increased in patients with SSc when compared with normal subjects. CD14 +, CD34 +, and Col I + spindle-shaped cells have been found in increased numbers in lungs of SSc patients with interstitial lung disease. Elevated blood amounts of early EPCs have been

  7. High Glucose Causes Human Cardiac Progenitor Cell Dysfunction by Promoting Mitochondrial Fission: Role of a GLUT1 Blocker.

    PubMed

    Choi, He Yun; Park, Ji Hye; Jang, Woong Bi; Ji, Seung Taek; Jung, Seok Yun; Kim, Da Yeon; Kang, Songhwa; Kim, Yeon Ju; Yun, Jisoo; Kim, Jae Ho; Baek, Sang Hong; Kwon, Sang-Mo

    2016-07-01

    Cardiovascular disease is the most common cause of death in diabetic patients. Hyperglycemia is the primary characteristic of diabetes and is associated with many complications. The role of hyperglycemia in the dysfunction of human cardiac progenitor cells that can regenerate damaged cardiac tissue has been investigated, but the exact mechanism underlying this association is not clear. Thus, we examined whether hyperglycemia could regulate mitochondrial dynamics and lead to cardiac progenitor cell dysfunction, and whether blocking glucose uptake could rescue this dysfunction. High glucose in cardiac progenitor cells results in reduced cell viability and decreased expression of cell cycle-related molecules, including CDK2 and cyclin E. A tube formation assay revealed that hyperglycemia led to a significant decrease in the tube-forming ability of cardiac progenitor cells. Fluorescent labeling of cardiac progenitor cell mitochondria revealed that hyperglycemia alters mitochondrial dynamics and increases expression of fission-related proteins, including Fis1 and Drp1. Moreover, we showed that specific blockage of GLUT1 improved cell viability, tube formation, and regulation of mitochondrial dynamics in cardiac progenitor cells. To our knowledge, this study is the first to demonstrate that high glucose leads to cardiac progenitor cell dysfunction through an increase in mitochondrial fission, and that a GLUT1 blocker can rescue cardiac progenitor cell dysfunction and downregulation of mitochondrial fission. Combined therapy with cardiac progenitor cells and a GLUT1 blocker may provide a novel strategy for cardiac progenitor cell therapy in cardiovascular disease patients with diabetes. PMID:27350339

  8. High Glucose Causes Human Cardiac Progenitor Cell Dysfunction by Promoting Mitochondrial Fission: Role of a GLUT1 Blocker

    PubMed Central

    Choi, He Yun; Park, Ji Hye; Jang, Woong Bi; Ji, Seung Taek; Jung, Seok Yun; Kim, Da Yeon; Kang, Songhwa; Kim, Yeon Ju; Yun, Jisoo; Kim, Jae Ho; Baek, Sang Hong; Kwon, Sang-Mo

    2016-01-01

    Cardiovascular disease is the most common cause of death in diabetic patients. Hyperglycemia is the primary characteristic of diabetes and is associated with many complications. The role of hyperglycemia in the dysfunction of human cardiac progenitor cells that can regenerate damaged cardiac tissue has been investigated, but the exact mechanism underlying this association is not clear. Thus, we examined whether hyperglycemia could regulate mitochondrial dynamics and lead to cardiac progenitor cell dysfunction, and whether blocking glucose uptake could rescue this dysfunction. High glucose in cardiac progenitor cells results in reduced cell viability and decreased expression of cell cycle-related molecules, including CDK2 and cyclin E. A tube formation assay revealed that hyperglycemia led to a significant decrease in the tube-forming ability of cardiac progenitor cells. Fluorescent labeling of cardiac progenitor cell mitochondria revealed that hyperglycemia alters mitochondrial dynamics and increases expression of fission-related proteins, including Fis1 and Drp1. Moreover, we showed that specific blockage of GLUT1 improved cell viability, tube formation, and regulation of mitochondrial dynamics in cardiac progenitor cells. To our knowledge, this study is the first to demonstrate that high glucose leads to cardiac progenitor cell dysfunction through an increase in mitochondrial fission, and that a GLUT1 blocker can rescue cardiac progenitor cell dysfunction and downregulation of mitochondrial fission. Combined therapy with cardiac progenitor cells and a GLUT1 blocker may provide a novel strategy for cardiac progenitor cell therapy in cardiovascular disease patients with diabetes. PMID:27350339

  9. Immortalization and Characterization of Lineage-restricted Neuronal Progenitor Cells Derived From the Procine Olfactory Bulb

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Crucial aspects in the development of in vitro neuropathogenic disease model systems are the identification, characterization, and continuous mitotic expansion of cultured neuronal cells. To facilitate long-term cultivation, we immortalized cultured porcine olfactory neuronally restricted progenitor...

  10. Innate lymphoid cell development requires TOX-dependent generation of a common ILC progenitor

    PubMed Central

    Seehus, Corey R.; Aliahmad, Parinaz; de la Torre, Brian; Iliev, Iliyan D.; Spurka, Lindsay; Funari, Vincent A.; Kaye, Jonathan

    2015-01-01

    Diverse innate lymphoid cell (ILC) subtypes have been defined, based on effector function and transcription factor expression. ILCs derive from common lymphoid progenitors, although the transcriptional pathways leading to ILC lineage specification remain poorly characterized. Here we demonstrate that transcriptional regulator TOX is required for the in vivo differentiation of common lymphoid progenitors to ILC lineage-restricted cells. In vitro modeling demonstrates that TOX deficiency results in early defects in progenitor cell survival or expansion as well as later stage ILC differentiation. In addition, comparative transcriptome analysis of bone marrow progenitors reveals that TOX-deficient cells fail to upregulate many aspects of the ILC gene program, including Notch gene targets, implicating TOX as a key determinant of early ILC lineage specification. PMID:25915732

  11. Acquisition of tumorigenic potential and enhancement of angiogenesis in pulmonary stem/progenitor cells through Oct-4 hyperexpression

    PubMed Central

    Gu, Sing-Yi; Ho, Choa-Chi; Huang, Yung-Kang; Chen, Huei-Wen; Wang, Yu-Chi; Kuo, Chia-Yu; Teng, Shu-Chun; Fu, Wen-Mei; Yang, Pan-Chyr; Wu, Cheng-Wen; Peng, Fu-Chuo; Ling, Thai-Yen

    2016-01-01

    Cancer stem cells, also known as cancer initiating cells (CICs), are considered to be responsible for tumor growth and chemoresistance. Different hypotheses have been proposed to explain the origin of CICs, including mutations in adult stem/progenitor cells or the acquisition of stem-like characteristics in differentiated cells; however, studies have yielded conflicting identification for CICs and have little information for the origin to generate CICs. Part of the difficulty in identifying CICs may stem from the fact that the CICs studied have been largely derived from cancer cell lines or well-developed tumors. In previous studies, we have reported the enrichment of mouse pulmonary stem/progenitor cells (mPSCs) by using serum-free primary selection culture followed by FACS isolation using the coxsackievirus/adenovirus receptor (CAR) as the positive selection marker. Here, we demonstrated that overexpression of the pluripotent transcription factor Oct-4 is sufficient to induce CAR+/mPSCs transformation, which we name CAR+/mPSCsOct-4_hi. These transformed cells possess cancer initiating and chemoresistance potential, as well as exhibiting remarkable expression of certain proangiogenic factors, including angiopoietins (ANGs) and VEGF, and enhanced angiogenic potential. Moreover, CAR+/mPSCsOct-4_hi actively participated in tumor blood vessel formation and triggered a novel angiogenic mechanism, the angiopoietins/Tie2 signaling pathway. These study provide critical evidence supporting the possible origin to generate CICs, and help elucidate the pathways responsible for CICs-mediated blood vessel formation. PMID:26871601

  12. The progenitor cell compartment in the feline liver: an (immuno)histochemical investigation.

    PubMed

    Ijzer, J; Kisjes, J R; Penning, L C; Rothuizen, J; van den Ingh, T S G A M

    2009-07-01

    The hepatic progenitor compartment is of vital importance in liver regeneration when hepatocellular replication is impaired, as it occurs in acute fulminant hepatitis or severe liver fibrosis. It consists of resident progenitor cells in the normal liver, and ductular reaction and intermediate hepatobiliary cells in diseased livers. An histologic and immunohistochemical study was conducted to demonstrate putative hepatic progenitor cells in the normal liver (n = 5) and in a range of hepatic diseases (n = 13) in the cat. Formalin-fixed, paraffin-embedded specimens were stained with HE, the van Gieson stain, and the reticulin stain according to Gordon and Sweet, and immunohistochemically stained for cytokeratin-7 (CK7), human hepatocyte marker 1 (Hepar1), and multidrug resistance-binding protein-2/ATP binding cassette C2 (MRP2). The normal feline liver contains a liver progenitor cell morphologically similar to humans and dogs, which resides in the canal of Hering. In acute and chronic feline liver diseases a ductular reaction is present, whether in the parenchyma or in a portal or septal location. The putative progenitor cells could easily be demonstrated by staining for CK7, whereas they were generally negative for Hepar1 and MRP2. In a parenchymal ductular reaction mitotic figures and cells with an intermediate hepatobiliary phenotype could be demonstrated. This is the first account of hepatic progenitor cells in feline liver. PMID:19329493

  13. Endothelial Progenitor Cells in Diabetic Microvascular Complications: Friends or Foes?

    PubMed Central

    Yu, Cai-Guo; Zhang, Ning; Yuan, Sha-Sha; Ma, Yan; Yang, Long-Yan; Feng, Ying-Mei; Zhao, Dong

    2016-01-01

    Despite being featured as metabolic disorder, diabetic patients are largely affected by hyperglycemia-induced vascular abnormality. Accumulated evidence has confirmed the beneficial effect of endothelial progenitor cells (EPCs) in coronary heart disease. However, antivascular endothelial growth factor (anti-VEGF) treatment is the main therapy for diabetic retinopathy and nephropathy, indicating the uncertain role of EPCs in the pathogenesis of diabetic microvascular disease. In this review, we first illustrate how hyperglycemia induces metabolic and epigenetic changes in EPCs, which exerts deleterious impact on their number and function. We then discuss how abnormal angiogenesis develops in eyes and kidneys under diabetes condition, focusing on “VEGF uncoupling with nitric oxide” and “competitive angiopoietin 1/angiopoietin 2” mechanisms that are shared in both organs. Next, we dissect the nature of EPCs in diabetic microvascular complications. After we overview the current EPCs-related strategies, we point out new EPCs-associated options for future exploration. Ultimately, we hope that this review would uncover the mysterious nature of EPCs in diabetic microvascular disease for therapeutics. PMID:27313624

  14. Endothelial Progenitor Cells in Diabetic Microvascular Complications: Friends or Foes?

    PubMed

    Yu, Cai-Guo; Zhang, Ning; Yuan, Sha-Sha; Ma, Yan; Yang, Long-Yan; Feng, Ying-Mei; Zhao, Dong

    2016-01-01

    Despite being featured as metabolic disorder, diabetic patients are largely affected by hyperglycemia-induced vascular abnormality. Accumulated evidence has confirmed the beneficial effect of endothelial progenitor cells (EPCs) in coronary heart disease. However, antivascular endothelial growth factor (anti-VEGF) treatment is the main therapy for diabetic retinopathy and nephropathy, indicating the uncertain role of EPCs in the pathogenesis of diabetic microvascular disease. In this review, we first illustrate how hyperglycemia induces metabolic and epigenetic changes in EPCs, which exerts deleterious impact on their number and function. We then discuss how abnormal angiogenesis develops in eyes and kidneys under diabetes condition, focusing on "VEGF uncoupling with nitric oxide" and "competitive angiopoietin 1/angiopoietin 2" mechanisms that are shared in both organs. Next, we dissect the nature of EPCs in diabetic microvascular complications. After we overview the current EPCs-related strategies, we point out new EPCs-associated options for future exploration. Ultimately, we hope that this review would uncover the mysterious nature of EPCs in diabetic microvascular disease for therapeutics. PMID:27313624

  15. Hyperoxia, Endothelial Progenitor Cell Mobilization, and Diabetic Wound Healing

    PubMed Central

    Liu, Zhao-Jun

    2008-01-01

    Abstract Diabetic foot disease is a major health problem, which affects 15% of the 200 million patients with diabetes worldwide. Diminished peripheral blood flow and decreased local neovascularization are critical factors that contribute to the delayed or nonhealing wounds in these patients. The correction of impaired local angiogenesis may be a key component in developing therapeutic protocols for treating chronic wounds of the lower extremity and diabetic foot ulcers. Endothelial progenitor cells (EPCs) are the key cellular effectors of postnatal neovascularization and play a central role in wound healing, but their circulating and wound-level numbers are decreased in diabetes, implicating an abnormality in EPC mobilization and homing mechanisms. The deficiency in EPC mobilization is presumably due to impairment of eNOS-NO cascade in bone marrow (BM). Hyperoxia, induced by a clinically relevant hyperbaric oxygen therapy (HBO) protocol, can significantly enhance the mobilization of EPCs from the BM into peripheral blood. However, increased circulating EPCs failed to reach to wound tissues. This is partly a result of downregulated production of SDF-1α in local wound lesions with diabetes. Administration of exogenous SDF-1α into wounds reversed the EPC homing impairment and, with hyperoxia, synergistically enhanced EPC mobilization, homing, neovascularization, and wound healing. Antioxid. Redox Signal. 10, 1869–1882. PMID:18627349

  16. Tbx16 regulates hox gene activation in mesodermal progenitor cells.

    PubMed

    Payumo, Alexander Y; McQuade, Lindsey E; Walker, Whitney J; Yamazoe, Sayumi; Chen, James K

    2016-09-01

    The transcription factor T-box 16 (Tbx16, or Spadetail) is an essential regulator of paraxial mesoderm development in zebrafish (Danio rerio). Mesodermal progenitor cells (MPCs) fail to differentiate into trunk somites in tbx16 mutants and instead accumulate within the tailbud in an immature state. However, the mechanisms by which Tbx16 controls mesoderm patterning have remained enigmatic. We describe here the use of photoactivatable morpholino oligonucleotides to determine the Tbx16 transcriptome in MPCs. We identified 124 Tbx16-regulated genes that were expressed in zebrafish gastrulae, including several developmental signaling proteins and regulators of gastrulation, myogenesis and somitogenesis. Unexpectedly, we observed that a loss of Tbx16 function precociously activated posterior hox genes in MPCs, and overexpression of a single posterior hox gene was sufficient to disrupt MPC migration. Our studies support a model in which Tbx16 regulates the timing of collinear hox gene activation to coordinate the anterior-posterior fates and positions of paraxial MPCs. PMID:27376691

  17. Ca(2+) Signalling in Endothelial Progenitor Cells: Friend or Foe?

    PubMed

    Moccia, Francesco; Guerra, Germano

    2016-02-01

    Endothelial progenitor cells (EPCs) are mobilized either from the bone marrow and/or the arterial to replace dysfunctional endothelial cells and rescue blood perfusion in ischemic tissues. In addition, they may contribute to the angiogenic switch, thereby sustaining tumour growth and metastatization. Understanding the molecular mechanisms utilized by vascular endothelial growth factor (VEGF) to stimulate EPCs might unveil novel targets to enhance their clinical outcome in regenerative medicine and to adverse tumour vascularisation. VEGF stimulates peripheral blood-derived EPCs to undergo repetitive Ca(2+) oscillations shaped by the interaction between inositol-1,4,5-trisphosphate (InsP3 )-dependent Ca(2+) release and store-operated Ca(2+) entry (SOCE). However, the Ca(2+) machinery underlying VEGF-induced Ca(2+) spikes changes in umbilical cord blood-derived EPCs, which require TRPC3-mediated Ca(2+) entry to trigger the interplay between InsP3 and SOCE. Surprisingly, VEGF fails to elicit pro-angiogenic Ca(2+) signals when EPCs derive from renal cellular carcinoma patients, thus questioning the suitability of VEGFR-2 as a target for anti-angiogenic treatments in these individuals. The lack of response to VEGF is likely due to the dramatic rearrangement of the Ca(2+) toolkit occurring in RCC-derived EPCs. Finally, primary myelofibrosis-derived EPCs display a further pattern of reorganization of the Ca(2+) machinery and proliferate independently of SOCE. Thus, the Ca(2+) machinery in human ECFCs is extremely plastic and may change depending on the physio-pathological background of the donor. As a consequence, the Ca(2+) toolkit could properly be used to enhance the regenerative outcome of cell-based therapy or adverse tumor vascularisation. PMID:26247172

  18. Repurposing Treprostinil for Enhancing Hematopoietic Progenitor Cell Transplantation

    PubMed Central

    Kazemi, Zahra; Bergmayr, Christian; Prchal-Murphy, Michaela; Javaheri, Tahereh; Themanns, Madeleine; Pham, Ha T. T.; Strohmaier, Wolfgang; Sexl, Veronika; Zebedin-Brandl, Eva

    2016-01-01

    Activation of Gs-coupled receptors enhances engraftment of hematopoietic stem and progenitor cells (HSPCs). We tested the hypothesis that treprostinil, a prostacyclin analog approved for the treatment of pulmonary hypertension, can be repurposed to improve hematopoietic stem cell transplantation. Murine and human HSPCs were isolated from bone marrow and umbilical cord blood, respectively. Prostanoid receptor agonists and the combination thereof with forskolin were tested for their capacity to stimulate [3H]cAMP accumulation in HSPCs. Three independent approaches were employed to verify the ability of agonist-activated HSPCs to reconstitute the bone marrow in lethally irradiated recipient mice. The underlying mechanism was explored in cellular migration assays and by blocking C-X-C motif chemokine receptor 4 (CXCR4). Among several prostanoid agonists tested in combination with forskolin, treprostinil was most efficacious in raising intracellular cAMP levels in murine and human HPSCs. Injection of murine and human HSPCs, which had been pretreated with treprostinil and forskolin, enhanced survival of lethally irradiated recipient mice. Survival was further improved if recipient mice were subcutaneously administered treprostinil (0.15 mg kg−1 8 h−1) for 10 days. This regimen also reduced the number of HSPCs required to rescue lethally irradiated mice. Enhanced survival of recipient mice was causally related to treprostinil-enhanced CXCR4-dependent migration of HSPCs. Treprostinil stimulates the engraftment of human and murine hematopoietic stem cells without impairing their capacity for self-renewal. The investigated dose range corresponds to the dose approved for human use. Hence, these findings may be readily translated into a clinical application. PMID:26989084

  19. Repurposing Treprostinil for Enhancing Hematopoietic Progenitor Cell Transplantation.

    PubMed

    Kazemi, Zahra; Bergmayr, Christian; Prchal-Murphy, Michaela; Javaheri, Tahereh; Themanns, Madeleine; Pham, Ha T T; Strohmaier, Wolfgang; Sexl, Veronika; Freissmuth, Michael; Zebedin-Brandl, Eva

    2016-06-01

    Activation of Gs-coupled receptors enhances engraftment of hematopoietic stem and progenitor cells (HSPCs). We tested the hypothesis that treprostinil, a prostacyclin analog approved for the treatment of pulmonary hypertension, can be repurposed to improve hematopoietic stem cell transplantation. Murine and human HSPCs were isolated from bone marrow and umbilical cord blood, respectively. Prostanoid receptor agonists and the combination thereof with forskolin were tested for their capacity to stimulate [(3)H]cAMP accumulation in HSPCs. Three independent approaches were employed to verify the ability of agonist-activated HSPCs to reconstitute the bone marrow in lethally irradiated recipient mice. The underlying mechanism was explored in cellular migration assays and by blocking C-X-C motif chemokine receptor 4 (CXCR4). Among several prostanoid agonists tested in combination with forskolin, treprostinil was most efficacious in raising intracellular cAMP levels in murine and human HPSCs. Injection of murine and human HSPCs, which had been pretreated with treprostinil and forskolin, enhanced survival of lethally irradiated recipient mice. Survival was further improved if recipient mice were subcutaneously administered treprostinil (0.15 mg kg(-1) 8 h(-1)) for 10 days. This regimen also reduced the number of HSPCs required to rescue lethally irradiated mice. Enhanced survival of recipient mice was causally related to treprostinil-enhanced CXCR4-dependent migration of HSPCs. Treprostinil stimulates the engraftment of human and murine hematopoietic stem cells without impairing their capacity for self-renewal. The investigated dose range corresponds to the dose approved for human use. Hence, these findings may be readily translated into a clinical application. PMID:26989084

  20. Use of spleen organ cultures to monitor hemopoietic progenitor cell regeneration following irradiation and marrow transplantation

    SciTech Connect

    von Melchner, H.; Metcalf, D.; Mandel, T.E.

    1980-11-01

    After lethal irradiation of C57BL mice followed by the injection of 10/sup 7/ marrow cells, total cellularity and progenitor cell levels exceeded pretreatment levels within 12 days in the spleen, but regeneration remained incomplete in the marrow. The exceptional regenerative capacity of progenitor populations in the spleen was observed in organ cultures of spleen slices prepared 24 h after irradiation and transplantation, excluding continuous repopulation from the marrow as a significant factor in splenic regeneration.

  1. Boron neutron capture therapy induces cell cycle arrest and cell apoptosis of glioma stem/progenitor cells in vitro

    PubMed Central

    2013-01-01

    Background Glioma stem cells in the quiescent state are resistant to clinical radiation therapy. An almost inevitable glioma recurrence is due to the persistence of these cells. The high linear energy transfer associated with boron neutron capture therapy (BNCT) could kill quiescent and proliferative cells. Methods The present study aimed to evaluate the effects of BNCT on glioma stem/progenitor cells in vitro. The damage induced by BNCT was assessed using cell cycle progression, apoptotic cell ratio and apoptosis-associated proteins expression. Results The surviving fraction and cell viability of glioma stem/progenitor cells were decreased compared with differentiated glioma cells using the same boronophenylalanine pretreatment and the same dose of neutron flux. BNCT induced cell cycle arrest in the G2/M phase and cell apoptosis via the mitochondrial pathway, with changes in the expression of associated proteins. Conclusions Glioma stem/progenitor cells, which are resistant to current clinical radiotherapy, could be effectively killed by BNCT in vitro via cell cycle arrest and apoptosis using a prolonged neutron irradiation, although radiosensitivity of glioma stem/progenitor cells was decreased compared with differentiated glioma cells when using the same dose of thermal neutron exposure and boronophenylalanine pretreatment. Thus, BNCT could offer an appreciable therapeutic advantage to prevent tumor recurrence, and may become a promising treatment in recurrent glioma. PMID:23915425

  2. Functional Kidney Bioengineering with Pluripotent Stem-Cell-Derived Renal Progenitor Cells and Decellularized Kidney Scaffolds.

    PubMed

    Du, Chan; Narayanan, Karthikeyan; Leong, Meng Fatt; Ibrahim, Mohammed Shahrudin; Chua, Ying Ping; Khoo, Vanessa Mei Hui; Wan, Andrew C A

    2016-08-01

    Recent advances in developmental biology and stem cell technology have led to the engineering of functional organs in a dish. However, the limited size of these organoids and absence of a large circulatory system poses limits to its clinical translation. To overcome these issues, decellularized whole kidney scaffolds with native microstructure and extracellular matrix (ECM) are employed for kidney bioengineering, using human-induced pluripotent-stem-cell-derived renal progenitor cells and endothelial cells. To demonstrate ECM-guided cellular assembly, the present work is focused on generating the functional unit of the kidney, the glomerulus. In the repopulated organ, the presence of endothelial cells broadly upregulates the expression level of genes related to renal development. When the cellularized native scaffolds are implanted in SCID mice, glomeruli assembly can be achieved by co-culture of the renal progenitors and endothelial cells. These individual glomerular units are shown to be functional in the context of the whole organ using a simulated bio-reactor set-up with urea and creatinine excretion and albumin reabsorption. Our results indicate that the repopulation of decellularized native kidney using clinically relevant, expandable patient-specific renal progenitors and endothelial cells may be a viable approach for the generation of a functional whole kidney. PMID:27294565

  3. Induced Pluripotent Stem Cell-Derived Cardiac Progenitors Differentiate to Cardiomyocytes and Form Biosynthetic Tissues

    PubMed Central

    Chakraborty, Syandan; Chellapan, Malathi; Bursac, Nenad; Leong, Kam W.

    2013-01-01

    The mammalian heart has little capacity to regenerate, and following injury the myocardium is replaced by non-contractile scar tissue. Consequently, increased wall stress and workload on the remaining myocardium leads to chamber dilation, dysfunction, and heart failure. Cell-based therapy with an autologous, epigenetically reprogrammed, and cardiac-committed progenitor cell source could potentially reverse this process by replacing the damaged myocardium with functional tissue. However, it is unclear whether cardiac progenitor cell-derived cardiomyocytes are capable of attaining levels of structural and functional maturity comparable to that of terminally-fated cardiomyocytes. Here, we first describe the derivation of mouse induced pluripotent stem (iPS) cells, which once differentiated allow for the enrichment of Nkx2-5(+) cardiac progenitors, and the cardiomyocyte-specific expression of the red fluorescent protein. We show that the cardiac progenitors are multipotent and capable of differentiating into endothelial cells, smooth muscle cells and cardiomyocytes. Moreover, cardiac progenitor selection corresponds to cKit(+) cell enrichment, while cardiomyocyte cell-lineage commitment is concomitant with dual expression of either cKit/Flk1 or cKit/Sca-1. We proceed to show that the cardiac progenitor-derived cardiomyocytes are capable of forming electrically and mechanically coupled large-scale 2D cell cultures with mature electrophysiological properties. Finally, we examine the cell progenitors’ ability to form electromechanically coherent macroscopic tissues, using a physiologically relevant 3D culture model and demonstrate that following long-term culture the cardiomyocytes align, and form robust electromechanical connections throughout the volume of the biosynthetic tissue construct. We conclude that the iPS cell-derived cardiac progenitors are a robust cell source for tissue engineering applications and a 3D culture platform for pharmacological screening and

  4. Human Breast Progenitor Cell Numbers Are Regulated by WNT and TBX3

    PubMed Central

    Arendt, Lisa M.; St. Laurent, Jessica; Wronski, Ania; Caballero, Silvia; Lyle, Stephen R.; Naber, Stephen P.; Kuperwasser, Charlotte

    2014-01-01

    Background Although human breast development is mediated by hormonal and non-hormonal means, the mechanisms that regulate breast progenitor cell activity remain to be clarified. This limited understanding of breast progenitor cells has been due in part to the lack of appropriate model systems to detect and characterize their properties. Methods To examine the effects of WNT signaling and TBX3 expression on progenitor activity in the breast, primary human mammary epithelial cells (MEC) were isolated from reduction mammoplasty tissues and transduced with lentivirus to overexpress WNT1 or TBX3 or reduce expression of their cognate receptors using shRNA. Changes in progenitor activity were quantified using characterized assays. We identified WNT family members expressed by cell populations within the epithelium and assessed alterations in expression of WNT family ligands by MECs in response to TBX3 overexpression and treatment with estrogen and progesterone. Results Growth of MECs on collagen gels resulted in the formation of distinct luminal acinar and basal ductal colonies. Overexpression of TBX3 in MECs resulted in increased ductal colonies, while shTBX3 expression diminished both colony types. Increased WNT1 expression led to enhanced acinar colony formation, shLRP6 decreased both types of colonies. Estrogen stimulated the formation of acinar colonies in control MEC, but not shLRP6 MEC. Formation of ductal colonies was enhanced in response to progesterone. However, while shLRP6 decreased MEC responsiveness to progesterone, shTBX3 expression did not alter this response. Conclusions We identified two phenotypically distinguishable lineage-committed progenitor cells that contribute to different structural elements and are regulated via hormonal and non-hormonal mechanisms. WNT signaling regulates both types of progenitor activity. Progesterone favors the expansion of ductal progenitor cells, while estrogen stimulates the expansion of acinar progenitor cells. Paracrine

  5. Molecular imaging to target transplanted muscle progenitor cells.

    PubMed

    Gutpell, Kelly; McGirr, Rebecca; Hoffman, Lisa

    2013-01-01

    Duchenne muscular dystrophy (DMD) is a severe genetic neuromuscular disorder that affects 1 in 3,500 boys, and is characterized by progressive muscle degeneration. In patients, the ability of resident muscle satellite cells (SCs) to regenerate damaged myofibers becomes increasingly inefficient. Therefore, transplantation of muscle progenitor cells (MPCs)/myoblasts from healthy subjects is a promising therapeutic approach to DMD. A major limitation to the use of stem cell therapy, however, is a lack of reliable imaging technologies for long-term monitoring of implanted cells, and for evaluating its effectiveness. Here, we describe a non-invasive, real-time approach to evaluate the success of myoblast transplantation. This method takes advantage of a unified fusion reporter gene composed of genes (firefly luciferase [fluc], monomeric red fluorescent protein [mrfp] and sr39 thymidine kinase [sr39tk]) whose expression can be imaged with different imaging modalities. A variety of imaging modalities, including positron emission tomography (PET), single-photon emission computed tomography (SPECT), magnetic resonance imaging (MRI), optical imaging, and high frequency 3D-ultrasound are now available, each with unique advantages and limitations. Bioluminescence imaging (BLI) studies, for example, have the advantage of being relatively low cost and high-throughput. It is for this reason that, in this study, we make use of the firefly luciferase (fluc) reporter gene sequence contained within the fusion gene and bioluminescence imaging (BLI) for the short-term localization of viable C2C12 myoblasts following implantation into a mouse model of DMD (muscular dystrophy on the X chromosome [mdx] mouse). Importantly, BLI provides us with a means to examine the kinetics of labeled MPCs post-implantation, and will be useful to track cells repeatedly over time and following migration. Our reporter gene approach further allows us to merge multiple imaging modalities in a single living

  6. Reduced circulating endothelial progenitor cells in reversible cerebral vasoconstriction syndrome

    PubMed Central

    2014-01-01

    Background The pathophysiology of reversible cerebral vasoconstriction syndrome (RCVS) remains elusive. Endothelial dysfunction might play a role, but direct evidence is lacking. This study aimed to explore whether patients with RCVS have a reduced level of circulating circulating endothelial progenitor cells (EPCs) to repair the dysfunctional endothelial vasomotor control. Methods We prospectively recruited 24 patients with RCVS within one month of disease onset and 24 healthy age- and sex-matched controls. Flow cytometry was used to quantify the numbers of circulating EPCs, defined as KDR+CD133+, CD34+CD133+, and CD34+KDR+ double-positive mononuclear cells. The Lindegaard index, an index of vasoconstriction, was calculated by measuring the mean flow velocity of middle cerebral arteries and distal extracranial internal carotid arteries via color-coded sonography on the same day as blood drawing. A Lindegaard index of 2 was chosen as the cutoff value for significant vasoconstriction of middle cerebral arteries based on our previous study. Results Patients with RCVS had a reduced number of CD34+KDR+ cells (0.009 ± 0.006% vs. 0.014 ± 0.010%, p = 0.031) but not KDR+CD133+ cells or CD34+CD133+ EPCs, in comparison with controls. The number of CD34+KDR+ cells was inversely correlated with the Lindegaard index (rs = -0.418, p = 0.047). Of note, compared to controls, patients with a Lindegaard index > 2 (n = 13) had a reduced number of CD34+KDR+ cells (0.007 ± 0.005% vs. 0.014 ± 0.010%, p = 0.010), but those with a Lindegaard index ≤ 2 did not. Conclusions Patients with RCVS had reduced circulating CD34+KDR+ EPCs, which were correlated with the severity of vasoconstriction. Endothelial dysfunction might contribute to the pathogenesis of RCVS. PMID:25466718

  7. Characterization of TLX Expression in Neural Stem Cells and Progenitor Cells in Adult Brains

    PubMed Central

    Li, Shengxiu; Sun, Guoqiang; Murai, Kiyohito; Ye, Peng; Shi, Yanhong

    2012-01-01

    TLX has been shown to play an important role in regulating the self-renewal and proliferation of neural stem cells in adult brains. However, the cellular distribution of endogenous TLX protein in adult brains remains to be elucidated. In this study, we used immunostaining with a TLX-specific antibody to show that TLX is expressed in both neural stem cells and transit-amplifying neural progenitor cells in the subventricular zone (SVZ) of adult mouse brains. Then, using a double thymidine analog labeling approach, we showed that almost all of the self-renewing neural stem cells expressed TLX. Interestingly, most of the TLX-positive cells in the SVZ represented the thymidine analog-negative, relatively quiescent neural stem cell population. Using cell type markers and short-term BrdU labeling, we demonstrated that TLX was also expressed in the Mash1+ rapidly dividing type C cells. Furthermore, loss of TLX expression dramatically reduced BrdU label-retaining neural stem cells and the actively dividing neural progenitor cells in the SVZ, but substantially increased GFAP staining and extended GFAP processes. These results suggest that TLX is essential to maintain the self-renewing neural stem cells in the SVZ and that the GFAP+ cells in the SVZ lose neural stem cell property upon loss of TLX expression.Understanding the cellular distribution of TLX and its function in specific cell types may provide insights into the development of therapeutic tools for neurodegenerative diseases by targeting TLX in neural stem/progenitors cells. PMID:22952666

  8. Transplantation of neural progenitor cells in chronic spinal cord injury.

    PubMed

    Jin, Y; Bouyer, J; Shumsky, J S; Haas, C; Fischer, I

    2016-04-21

    Previous studies demonstrated that neural progenitor cells (NPCs) transplanted into a subacute contusion injury improve motor, sensory, and bladder function. In this study we tested whether transplanted NPCs can also improve functional recovery after chronic spinal cord injury (SCI) alone or in combination with the reduction of glial scar and neurotrophic support. Adult rats received a T10 moderate contusion. Thirteen weeks after the injury they were divided into four groups and received either: 1. Medium (control), 2. NPC transplants, 3. NPC+lentivirus vector expressing chondroitinase, or 4. NPC+lentivirus vectors expressing chondroitinase and neurotrophic factors. During the 8weeks post-transplantation the animals were tested for functional recovery and eventually analyzed by anatomical and immunohistochemical assays. The behavioral tests for motor and sensory function were performed before and after injury, and weekly after transplantation, with some animals also tested for bladder function at the end of the experiment. Transplant survival in the chronic injury model was variable and showed NPCs at the injury site in 60% of the animals in all transplantation groups. The NPC transplants comprised less than 40% of the injury site, without significant anatomical or histological differences among the groups. All groups also showed similar patterns of functional deficits and recovery in the 12weeks after injury and in the 8weeks after transplantation using the Basso, Beattie, and Bresnahan rating score, the grid test, and the Von Frey test for mechanical allodynia. A notable exception was group 4 (NPC together with chondroitinase and neurotrophins), which showed a significant improvement in bladder function. This study underscores the therapeutic challenges facing transplantation strategies in a chronic SCI in which even the inclusion of treatments designed to reduce scarring and increase neurotrophic support produce only modest functional improvements. Further

  9. Cardiomyocyte proliferation vs progenitor cells in myocardial regeneration: The debate continues

    PubMed Central

    Malliaras, Konstantinos; Terrovitis, John

    2013-01-01

    In recent years, several landmark studies have provided compelling evidence that cardiomyogenesis occurs in the adult mammalian heart. However, the rate of new cardiomyocyte formation is inadequate for complete restoration of the normal mass of myocardial tissue, should a significant myocardial injury occur, such as myocardial infarction. The cellular origin of postnatal cardiomyogenesis in mammals remains a controversial issue and two mechanisms seem to be participating, proliferation of pre-existing cardiomyocytes and myogenic differentiation of progenitor cells. We will discuss the relative importance of these two processes in different settings, such as normal ageing and post-myocardial injury, as well as the strengths and limitations of the existing experimental methodologies used in the relevant studies. Further clarification of the mechanisms underlying cardiomyogenesis in mammals will open the way for their therapeutic exploitation in the clinical field, with the scope of myocardial regeneration. PMID:24689031

  10. Directed Endothelial Progenitor Differentiation from Human Pluripotent Stem Cells Via Wnt Activation Under Defined Conditions.

    PubMed

    Bao, Xiaoping; Lian, Xiaojun; Palecek, Sean P

    2016-01-01

    Efficient derivation of endothelial cells and their progenitors from human pluripotent stem cells (hPSCs) can facilitate studies of human vascular development, disease modeling, drug discovery, and cell-based therapy. Here we provide a detailed protocol for directing hPSCs to functional endothelial cells and their progenitors in a completely defined, growth factor- and serum-free system by temporal modulation of Wnt/β-catenin signaling via small molecules. We demonstrate a 10-day, two-stage process that recapitulates endothelial cell development, in which hPSCs first differentiate to endothelial progenitors that then generate functional endothelial cells and smooth muscle cells. Methods to characterize endothelial cell identity and function are also described. PMID:27590162

  11. Cell-cycle-independent transitions in temporal identity of mammalian neural progenitor cells

    PubMed Central

    Okamoto, Mayumi; Miyata, Takaki; Konno, Daijiro; Ueda, Hiroki R.; Kasukawa, Takeya; Hashimoto, Mitsuhiro; Matsuzaki, Fumio; Kawaguchi, Ayano

    2016-01-01

    During cerebral development, many types of neurons are sequentially generated by self-renewing progenitor cells called apical progenitors (APs). Temporal changes in AP identity are thought to be responsible for neuronal diversity; however, the mechanisms underlying such changes remain largely unknown. Here we perform single-cell transcriptome analysis of individual progenitors at different developmental stages, and identify a subset of genes whose expression changes over time but is independent of differentiation status. Surprisingly, the pattern of changes in the expression of such temporal-axis genes in APs is unaffected by cell-cycle arrest. Consistent with this, transient cell-cycle arrest of APs in vivo does not prevent descendant neurons from acquiring their correct laminar fates. Analysis of cultured APs reveals that transitions in AP gene expression are driven by both cell-intrinsic and -extrinsic mechanisms. These results suggest that the timing mechanisms controlling AP temporal identity function independently of cell-cycle progression and Notch activation mode. PMID:27094546

  12. Cell-cycle-independent transitions in temporal identity of mammalian neural progenitor cells.

    PubMed

    Okamoto, Mayumi; Miyata, Takaki; Konno, Daijiro; Ueda, Hiroki R; Kasukawa, Takeya; Hashimoto, Mitsuhiro; Matsuzaki, Fumio; Kawaguchi, Ayano

    2016-01-01

    During cerebral development, many types of neurons are sequentially generated by self-renewing progenitor cells called apical progenitors (APs). Temporal changes in AP identity are thought to be responsible for neuronal diversity; however, the mechanisms underlying such changes remain largely unknown. Here we perform single-cell transcriptome analysis of individual progenitors at different developmental stages, and identify a subset of genes whose expression changes over time but is independent of differentiation status. Surprisingly, the pattern of changes in the expression of such temporal-axis genes in APs is unaffected by cell-cycle arrest. Consistent with this, transient cell-cycle arrest of APs in vivo does not prevent descendant neurons from acquiring their correct laminar fates. Analysis of cultured APs reveals that transitions in AP gene expression are driven by both cell-intrinsic and -extrinsic mechanisms. These results suggest that the timing mechanisms controlling AP temporal identity function independently of cell-cycle progression and Notch activation mode. PMID:27094546

  13. Ex Vivo and In Vivo Lentivirus-Mediated Transduction of Airway Epithelial Progenitor Cells.

    PubMed

    Leoni, Giulia; Wasowicz, Marguerite Y; Chan, Mario; Meng, Cuixiang; Farley, Raymond; Brody, Steven L; Inoue, Makoto; Hasegawa, Mamoru; Alton, Eric W F W; Griesenbach, Uta

    2015-01-01

    A key challenge in pulmonary gene therapy for cystic fibrosis is to provide long-term correction of the genetic defect. This may be achievable by targeting airway epithelial stem/progenitor cells with an integrating vector. Here, we evaluated the ability of a lentiviral vector, derived from the simian immunodeficiency virus and pseudotyped with F and HN envelope proteins from Sendai virus, to transduce progenitor basal cells of the mouse nasal airways. We first transduced basal cell-enriched cultures ex vivo and confirmed efficient transduction of cytokeratin-5 positive cells. We next asked whether progenitor cells could be transduced in vivo. We evaluated the transduction efficiency in mice pretreated by intranasal administration of polidocanol to expose the progenitor cell layer. Compared to control mice, polidocanol treated mice demonstrated a significant increase in the number of transduced basal cells at 3 and 14 days post vector administration. At 14 days, the epithelium of treated mice contained clusters (4 to 8 adjacent cells) of well differentiated ciliated, as well as basal cells suggesting a clonal expansion. These results indicate that our lentiviral vector can transduce progenitor basal cells in vivo, although transduction required denudation of the surface epithelium prior to vector administration. PMID:26471068

  14. Lineage-instructive function of C/EBPα in multipotent hematopoietic cells and early thymic progenitors.

    PubMed

    Wölfler, Albert; Danen-van Oorschot, Astrid A; Haanstra, Jurgen R; Valkhof, Marijke; Bodner, Claudia; Vroegindeweij, Eric; van Strien, Paulette; Novak, Alexandra; Cupedo, Tom; Touw, Ivo P

    2010-11-18

    Hematopoiesis is tightly controlled by transcription regulatory networks, but how and when specific transcription factors control lineage commitment are still largely unknown. Within the hematopoietic stem cell (Lin(-)Sca-1(+)c-Kit(+)) compartment these lineage-specific transcription factors are expressed at low levels but are up-regulated with the process of lineage specification. CCAAT/enhancer binding protein α (C/EBPα) represents one of these factors and is involved in myeloid development and indispensable for formation of granulocytes. To track the cellular fate of stem and progenitor cells, which express C/EBPα, we developed a mouse model expressing Cre recombinase from the Cebpa promoter and a conditional EYFP allele. We show that Cebpa/EYFP(+) cells represent a significant subset of multipotent hematopoietic progenitors, which predominantly give rise to myeloid cells in steady-state hematopoiesis. C/EBPα induced a strong myeloid gene expression signature and down-regulated E2A-induced regulators of early lymphoid development. In addition, Cebpa/EYFP(+) cells compose a fraction of early thymic progenitors with robust myeloid potential. However, Cebpa/EYFP(+) multipotent hematopoietic progenitors and early thymic progenitors retained the ability to develop into erythroid and T-lymphoid lineages, respectively. These findings support an instructive but argue against a lineage-restrictive role of C/EBPα in multipotent hematopoietic and thymic progenitors. PMID:20807890

  15. Aristaless Related Homeobox Gene, Arx, Is Implicated in Mouse Fetal Leydig Cell Differentiation Possibly through Expressing in the Progenitor Cells

    PubMed Central

    Miyabayashi, Kanako; Katoh-Fukui, Yuko; Ogawa, Hidesato; Baba, Takashi; Shima, Yuichi; Sugiyama, Noriyuki; Kitamura, Kunio; Morohashi, Ken-ichirou

    2013-01-01

    Development of the testis begins with the expression of the SRY gene in pre-Sertoli cells. Soon after, testis cords containing Sertoli and germ cells are formed and fetal Leydig cells subsequently develop in the interstitial space. Studies using knockout mice have indicated that multiple genes encoding growth factors and transcription factors are implicated in fetal Leydig cell differentiation. Previously, we demonstrated that the Arx gene is implicated in this process. However, how ARX regulates Leydig cell differentiation remained unknown. In this study, we examined Arx KO testes and revealed that fetal Leydig cell numbers largely decrease throughout the fetal life. Since our study shows that fetal Leydig cells rarely proliferate, this decrease in the KO testes is thought to be due to defects of fetal Leydig progenitor cells. In sexually indifferent fetal gonads of wild type, ARX was expressed in the coelomic epithelial cells and cells underneath the epithelium as well as cells at the gonad-mesonephros border, both of which have been described to contain progenitors of fetal Leydig cells. After testis differentiation, ARX was expressed in a large population of the interstitial cells but not in fetal Leydig cells, raising the possibility that ARX-positive cells contain fetal Leydig progenitor cells. When examining marker gene expression, we observed cells as if they were differentiating into fetal Leydig cells from the progenitor cells. Based on these results, we propose that ARX acts as a positive factor for differentiation of fetal Leydig cells through functioning at the progenitor stage. PMID:23840809

  16. Substrate elasticity provides mechanical signals for the expansion of hemopoietic stem and progenitor cells.

    PubMed

    Holst, Jeff; Watson, Sarah; Lord, Megan S; Eamegdool, Steven S; Bax, Daniel V; Nivison-Smith, Lisa B; Kondyurin, Alexey; Ma, Liang; Oberhauser, Andres F; Weiss, Anthony S; Rasko, John E J

    2010-10-01

    Surprisingly little is known about the effects of the physical microenvironment on hemopoietic stem and progenitor cells. To explore the physical effects of matrix elasticity on well-characterized primitive hemopoietic cells, we made use of a uniquely elastic biomaterial, tropoelastin. Culturing mouse or human hemopoietic cells on a tropoelastin substrate led to a two- to threefold expansion of undifferentiated cells, including progenitors and mouse stem cells. Treatment with cytokines in the presence of tropoelastin had an additive effect on this expansion. These biological effects required substrate elasticity, as neither truncated nor cross-linked tropoelastin reproduced the phenomenon, and inhibition of mechanotransduction abrogated the effects. Our data suggest that substrate elasticity and tensegrity are important mechanisms influencing hemopoietic stem and progenitor cell subsets and could be exploited to facilitate cell culture. PMID:20890282

  17. Progenitor cells for regenerative medicine and consequences of ART and cloning-associated epimutations.

    PubMed

    Laprise, Shari L

    2010-06-01

    The "holy grail" of regenerative medicine is the identification of an undifferentiated progenitor cell that is pluripotent, patient specific, and ethically unambiguous. Such a progenitor cell must also be able to differentiate into functional, transplantable tissue, while avoiding the risks of immune rejection. With reports detailing aberrant genomic imprinting associated with assisted reproductive technologies (ART) and reproductive cloning, the idea that human embryonic stem cells (hESCs) derived from surplus in vitro fertilized embryos or nuclear transfer ESCs (ntESCs) harvested from cloned embryos may harbor dangerous epigenetic errors has gained attention. Various progenitor cell sources have been proposed for human therapy, from hESCs to ntESCs, and from adult stem cells to induced pluripotent stem cells (iPS and piPS cells). This review highlights the advantages and disadvantages of each of these technologies, with particular emphasis on epigenetic stability. PMID:20162468

  18. Characterization of stem/progenitor cell cycle using murine circumvallate papilla taste bud organoid

    PubMed Central

    Aihara, Eitaro; Mahe, Maxime M.; Schumacher, Michael A.; Matthis, Andrea L.; Feng, Rui; Ren, Wenwen; Noah, Taeko K.; Matsu-ura, Toru; Moore, Sean R.; Hong, Christian I.; Zavros, Yana; Herness, Scott; Shroyer, Noah F.; Iwatsuki, Ken; Jiang, Peihua; Helmrath, Michael A.; Montrose, Marshall H.

    2015-01-01

    Leucine-rich repeat-containing G-protein coupled receptor 5-expressing (Lgr5+) cells have been identified as stem/progenitor cells in the circumvallate papillae, and single cultured Lgr5+ cells give rise to taste cells. Here we use circumvallate papilla tissue to establish a three-dimensional culture system (taste bud organoids) that develops phenotypic characteristics similar to native tissue, including a multilayered epithelium containing stem/progenitor in the outer layers and taste cells in the inner layers. Furthermore, characterization of the cell cycle of the taste bud progenitor niche reveals striking dynamics of taste bud development and regeneration. Using this taste bud organoid culture system and FUCCI2 transgenic mice, we identify the stem/progenitor cells have at least 5 distinct cell cycle populations by tracking within 24-hour synchronized oscillations of proliferation. Additionally, we demonstrate that stem/progenitor cells have motility to form taste bud organoids. Taste bud organoids provides a system for elucidating mechanisms of taste signaling, disease modeling, and taste tissue regeneration. PMID:26597788

  19. Basic fibroblast growth factor is pro-adipogenic in rat skeletal muscle progenitor clone, 2G11 cells.

    PubMed

    Nakano, Shin-ichi; Nakamura, Katsuyuki; Teramoto, Naomi; Yamanouchi, Keitaro; Nishihara, Masugi

    2016-01-01

    Intramuscular adipose tissue (IMAT) formation is a hallmark of marbling in cattle. IMAT is considered to originate from skeletal muscle progenitor cells with adipogenic potential. However, the mechanism involved in IMAT formation from these progenitor cells in vivo remains unclear. In the present study, among the growth factors tested, which were known to be expressed in skeletal muscle, we found only basic fibroblast growth factor (bFGF) has a pro-adipogenic effect on skeletal muscle derived adipogenic progenitor clone, 2G11 cells. Pre-exposure of 2G11 cells to bFGF did not affect initial gene expressions of CCAAT/enhancer-binding protein (C/EBP)β and C/EBPδ, while resulting in an enhancement of subsequent expressions of C/EBPα and proliferator-activated receptor gamma (PPARγ) during adipogenesis, indicating that bFGF is acting on the transcriptional regulation of C/EBPα and PPARγ. In addition, the effect of bFGF is mediated via two types of FGF receptor (FGFR) isoforms: FGFR1 and FGFR2 IIIc, and both receptors are prerequisite for bFGF to express its pro-adipogenic effect. These results suggest that bFGF plays an important role as a key trigger of IMAT formation in vivo. PMID:26154243

  20. Repulsive cues combined with physical barriers and cell-cell adhesion determine progenitor cell positioning during organogenesis.

    PubMed

    Paksa, Azadeh; Bandemer, Jan; Hoeckendorf, Burkhard; Razin, Nitzan; Tarbashevich, Katsiaryna; Minina, Sofia; Meyen, Dana; Biundo, Antonio; Leidel, Sebastian A; Peyrieras, Nadine; Gov, Nir S; Keller, Philipp J; Raz, Erez

    2016-01-01

    The precise positioning of organ progenitor cells constitutes an essential, yet poorly understood step during organogenesis. Using primordial germ cells that participate in gonad formation, we present the developmental mechanisms maintaining a motile progenitor cell population at the site where the organ develops. Employing high-resolution live-cell microscopy, we find that repulsive cues coupled with physical barriers confine the cells to the correct bilateral positions. This analysis revealed that cell polarity changes on interaction with the physical barrier and that the establishment of compact clusters involves increased cell-cell interaction time. Using particle-based simulations, we demonstrate the role of reflecting barriers, from which cells turn away on contact, and the importance of proper cell-cell adhesion level for maintaining the tight cell clusters and their correct positioning at the target region. The combination of these developmental and cellular mechanisms prevents organ fusion, controls organ positioning and is thus critical for its proper function. PMID:27088892

  1. Bovine Posterior Limbus: An Evaluation of an Alternative Source for Corneal Endothelial and Trabecular Meshwork Stem/Progenitor Cells

    PubMed Central

    Yu, Wing Yan; Grierson, Ian; Sheridan, Carl; Lo, Amy Cheuk-Yin

    2015-01-01

    A growing body of evidence has revealed that stem-like cells in the posterior limbus of the eye between the corneal endothelium (CE) and trabecular meshwork (TM) may be able to rejuvenate these tissues in disease. However, these cells have not been clearly defined and we have named them PET cells (progenitor cells of the endothelium and trabeculum). A good and inexpensive animal model for PET cells is lacking, so we investigated bovine eyes as an effective large tissue source. We showed the presence of stem/progenitor cells in the bovine CE, transition zone, and TM in situ. Floating spheres cultured from the CE and TM showed similar stem cell marker expression patterns. Both the CE and TM spheres were bipotent and highly proliferative, but with limited secondary sphere-forming capability. They were highly prone to differentiate back into the cell type of their tissue of origin. It is speculated that the PET cells become more tissue-specific as they migrate away from their niche. Here, we showed that PET cells are present in the posterior limbus of bovine eyes and that they can be successfully cultured and expanded. PET cells represent an attractive target for developing new treatments to regenerate both the CE and TM, thereby reducing the requirement for donor tissue for corneal transplant and invasive treatments for glaucomatous patients. PMID:25323922

  2. Label-Retaining Cells in the Adult Murine Salivary Glands Possess Characteristics of Adult Progenitor Cells

    PubMed Central

    Chibly, Alejandro M.; Querin, Lauren; Harris, Zoey; Limesand, Kirsten H.

    2014-01-01

    Radiotherapy is the primary treatment for patients with head and neck cancer, which account for roughly 500,000 annual cases worldwide. Dysfunction of the salivary glands and associated conditions like xerostomia and dysphagia are often developed by these patients, greatly diminishing their life quality. Current preventative and palliative care fail to deliver an improvement in the quality of life, thus accentuating the need for regenerative therapies. In this study, a model of label retaining cells (LRCs) in murine salivary glands was developed, in which LRCs demonstrated proliferative potential and possessed markers of putative salivary progenitors. Mice were labeled with 5-Ethynyl-2′-deoxyuridine (EdU) at postnatal day 10 and chased for 8 weeks. Tissue sections from salivary glands obtained at the end of chase demonstrated co-localization between LRCs and the salivary progenitor markers keratin 5 and keratin 14, as well as kit mRNA, indicating that LRCs encompass a heterogeneous population of salivary progenitors. Proliferative potential of LRCs was demonstrated by a sphere assay, in which LRCs were found in primary and secondary spheres and they co-localized with the proliferation marker Ki67 throughout sphere formation. Surprisingly, LRCs were shown to be radio-resistant and evade apoptosis following radiation treatment. The clinical significance of these findings lie in the potential of this model to study the mechanisms that prevent salivary progenitors from maintaining homeostasis upon exposure to radiation, which will in turn facilitate the development of regenerative therapies for salivary gland dysfunction. PMID:25238060

  3. Dysregulation of Vascular Endothelial Progenitor Cells Lung-Homing in Subjects with COPD

    PubMed Central

    Salter, Brittany M.; Manzoor, Fizza; Beaudin, Suzanne; Kjarsgaard, Melanie; Nair, Parameswaran; Gauvreau, Gail M.; Sehmi, Roma

    2016-01-01

    Chronic obstructive pulmonary disease (COPD) is characterized by fixed airflow limitation and progressive decline of lung function and punctuated by occasional exacerbations. The disease pathogenesis may involve activation of the bone marrow stimulating mobilization and lung-homing of progenitor cells. We investigated the hypothesis that lower circulating numbers of vascular endothelial progenitor cells (VEPCs) are a consequence of increased lung-sequestration in COPD. Nonatopic, current or ex-smokers with diagnosed COPD and nonatopic, nonsmoking normal controls were enrolled. Blood and induced sputum extracted primitive hemopoietic progenitors (HPCs) and VEPC were enumerated by flow cytometry. Migration and adhesive responses to fibronectin were assessed. In sputum, VEPC numbers were significantly greater in COPD compared to normal controls. In blood, VEPCs were significantly lower in COPD versus normal controls. There were no differences in HPC levels between the two groups in either compartment. Functionally, there was a greater migrational responsiveness of progenitors from COPD subjects to stromal cell-derived factor-1alpha (SDF-1α) compared to normal controls. This was associated with greater numbers of CXCR4+ progenitors in sputum from COPD. Increased migrational responsiveness of progenitor cells may promote lung-homing of VEPC in COPD which may disrupt maintenance and repair of the airways and contribute to COPD disease pathogenesis. PMID:27445517

  4. Exercise-Induced Skeletal Muscle Adaptations Alter the Activity of Adipose Progenitor Cells

    PubMed Central

    Graff, Jonathan M.

    2016-01-01

    Exercise decreases adiposity and improves metabolic health; however, the physiological and molecular underpinnings of these phenomena remain unknown. Here, we investigate the effect of endurance training on adipose progenitor lineage commitment. Using mice with genetically labeled adipose progenitors, we show that these cells react to exercise by decreasing their proliferation and differentiation potential. Analyses of mouse models that mimic the skeletal muscle adaptation to exercise indicate that muscle, in a non-autonomous manner, regulates adipose progenitor homeostasis, highlighting a role for muscle-derived secreted factors. These findings support a humoral link between skeletal muscle and adipose progenitors and indicate that manipulation of adipose stem cell function may help address obesity and diabetes. PMID:27015423

  5. Exercise-Induced Skeletal Muscle Adaptations Alter the Activity of Adipose Progenitor Cells.

    PubMed

    Zeve, Daniel; Millay, Douglas P; Seo, Jin; Graff, Jonathan M

    2016-01-01

    Exercise decreases adiposity and improves metabolic health; however, the physiological and molecular underpinnings of these phenomena remain unknown. Here, we investigate the effect of endurance training on adipose progenitor lineage commitment. Using mice with genetically labeled adipose progenitors, we show that these cells react to exercise by decreasing their proliferation and differentiation potential. Analyses of mouse models that mimic the skeletal muscle adaptation to exercise indicate that muscle, in a non-autonomous manner, regulates adipose progenitor homeostasis, highlighting a role for muscle-derived secreted factors. These findings support a humoral link between skeletal muscle and adipose progenitors and indicate that manipulation of adipose stem cell function may help address obesity and diabetes. PMID:27015423

  6. Characterization of Endothelial Progenitor Cell Interactions with Human Tropoelastin

    PubMed Central

    Yu, Young; Wise, Steven G.; Michael, Praveesuda L.; Bax, Daniel V.; Yuen, Gloria S. C.; Hiob, Matti A.; Yeo, Giselle C.; Filipe, Elysse C.; Dunn, Louise L.; Chan, Kim H.; Hajian, Hamid; Celermajer, David S.; Weiss, Anthony S.; Ng, Martin K. C.

    2015-01-01

    The deployment of endovascular implants such as stents in the treatment of cardiovascular disease damages the vascular endothelium, increasing the risk of thrombosis and promoting neointimal hyperplasia. The rapid restoration of a functional endothelium is known to reduce these complications. Circulating endothelial progenitor cells (EPCs) are increasingly recognized as important contributors to device re-endothelialization. Extracellular matrix proteins prominent in the vessel wall may enhance EPC-directed re-endothelialization. We examined attachment, spreading and proliferation on recombinant human tropoelastin (rhTE) and investigated the mechanism and site of interaction. EPCs attached and spread on rhTE in a dose dependent manner, reaching a maximal level of 56±3% and 54±3%, respectively. EPC proliferation on rhTE was comparable to vitronectin, fibronectin and collagen. EDTA, but not heparan sulfate or lactose, reduced EPC attachment by 81±3%, while full attachment was recovered after add-back of manganese, inferring a classical integrin-mediated interaction. Integrin αVβ3 blocking antibodies decreased EPC adhesion and spreading on rhTE by 39±3% and 56±10% respectively, demonstrating a large contribution from this specific integrin. Attachment of EPCs on N-terminal rhTE constructs N25 and N18 accounted for most of this interaction, accompanied by comparable spreading. In contrast, attachment and spreading on N10 was negligible. αVβ3 blocking antibodies reduced EPC spreading on both N25 and N18 by 45±4% and 42±14%, respectively. In conclusion, rhTE supports EPC binding via an integrin mechanism involving αVβ3. N25 and N18, but not N10 constructs of rhTE contribute to EPC binding. The regulation of EPC activity by rhTE may have implications for modulation of the vascular biocompatibility of endovascular implants. PMID:26115013

  7. Characterization of Endothelial Progenitor Cell Interactions with Human Tropoelastin.

    PubMed

    Yu, Young; Wise, Steven G; Michael, Praveesuda L; Bax, Daniel V; Yuen, Gloria S C; Hiob, Matti A; Yeo, Giselle C; Filipe, Elysse C; Dunn, Louise L; Chan, Kim H; Hajian, Hamid; Celermajer, David S; Weiss, Anthony S; Ng, Martin K C

    2015-01-01

    The deployment of endovascular implants such as stents in the treatment of cardiovascular disease damages the vascular endothelium, increasing the risk of thrombosis and promoting neointimal hyperplasia. The rapid restoration of a functional endothelium is known to reduce these complications. Circulating endothelial progenitor cells (EPCs) are increasingly recognized as important contributors to device re-endothelialization. Extracellular matrix proteins prominent in the vessel wall may enhance EPC-directed re-endothelialization. We examined attachment, spreading and proliferation on recombinant human tropoelastin (rhTE) and investigated the mechanism and site of interaction. EPCs attached and spread on rhTE in a dose dependent manner, reaching a maximal level of 56±3% and 54±3%, respectively. EPC proliferation on rhTE was comparable to vitronectin, fibronectin and collagen. EDTA, but not heparan sulfate or lactose, reduced EPC attachment by 81±3%, while full attachment was recovered after add-back of manganese, inferring a classical integrin-mediated interaction. Integrin αVβ3 blocking antibodies decreased EPC adhesion and spreading on rhTE by 39±3% and 56±10% respectively, demonstrating a large contribution from this specific integrin. Attachment of EPCs on N-terminal rhTE constructs N25 and N18 accounted for most of this interaction, accompanied by comparable spreading. In contrast, attachment and spreading on N10 was negligible. αVβ3 blocking antibodies reduced EPC spreading on both N25 and N18 by 45±4% and 42±14%, respectively. In conclusion, rhTE supports EPC binding via an integrin mechanism involving αVβ3. N25 and N18, but not N10 constructs of rhTE contribute to EPC binding. The regulation of EPC activity by rhTE may have implications for modulation of the vascular biocompatibility of endovascular implants. PMID:26115013

  8. Stem Cells and Progenitor Cells for Tissue-Engineered Solutions to Congenital Heart Defects

    PubMed Central

    Gao, Yang; Jacot, Jeffrey G

    2015-01-01

    Synthetic patches and fixed grafts currently used in the repair of congenital heart defects are nonliving, noncontractile, and not electrically responsive, leading to increased risk of complication, reoperation, and sudden cardiac death. Studies suggest that tissue-engineered patches made from living, functional cells could grow with the patient, facilitate healing, and help recover cardiac function. In this paper, we review the research into possible sources of cardiomyocytes and other cardiac cells, including embryonic stem cells, induced pluripotent stem cells, mesenchymal stem cells, adipose-derived stem cells, umbilical cord blood cells, amniotic fluid-derived stem cells, and cardiac progenitor cells. Each cell source has advantages, but also has technical hurdles to overcome, including heterogeneity, functional maturity, immunogenicity, and pathogenicity. Additionally, biomaterials used as patch materials will need to attract and support desired cells and induce minimal immune responses. PMID:26379417

  9. Tissue-resident mesenchymal stem/progenitor cells in skeletal muscle: collaborators or saboteurs?

    PubMed Central

    Judson, Robert N.; Zhang, Regan-Heng; Rossi, Fabio M. A.

    2016-01-01

    Although the regenerative potential of adult skeletal muscle is maintained by satellite cells, other stem/progenitor cell populations also reside in skeletal muscle. These heterogeneous cellular pools with mesenchymal lineage potentially play important roles in tissue homeostasis, with reciprocal collaborations between these cells and satellite cells appearing critical for effective regeneration. However, in disease settings, these mesenchymal stem/progenitors adopt a more sinister role – likely providing a major source of fibrosis, fatty tissue and extracellular matrix protein deposition in dystrophic tissue. Development of therapies for muscle degeneration therefore requires complete understanding of the multiple cell types involved and their complex interactions. PMID:23763717

  10. Clonal Analysis and Hierarchy of Human Bone Marrow Mesenchymal Stem and Progenitor Cells

    PubMed Central

    Lee, C. Chang I.; Christensen, Jared E.; Yoder, Mervin C.; Tarantal, Alice F.

    2009-01-01

    Objective This study was performed to assess adult human bone marrow mesenchymal stem/progenitor cells at a single cell level and to determine a hierarchy based on proliferative potential. Methods Adult bone marrow mesenchymal cells expressing the enhanced green fluorescent protein (EGFP) were sorted as single cells into 24-well plates, each well confirmed with single EGFP-positive cells by fluorescence microscopy, and counted every three days. Colonies derived from single cells were expanded then sorted and evaluated using established differentiation protocols for adipogenic, chondrogenic, and osteogenic lineages. Cells were further analyzed by real-time RT-PCR (PPARγ2, LEP, LPL, LUM, COMP, BIG, CBFA1, IBSP, BGLAP) and immunocytochemistry (PPARγ1/2, Collagen II, Bone Sialoprotein II) specific for tri-lineage differentiation. Results Bone marrow mesenchymal cells were found to contain high proliferative potential-mesenchymal colony-forming cells (HPP-MCFC, 7%), low proliferative potential-mesenchymal colony-forming cells (LPP-MCFC, 29%), mesenchymal cell clusters (MCC, 26%), and mature mesenchymal cells (MMC, 38%). All LPP-MCFC, MCC, and MMC colonies reached senescence at the end of the evaluation period. However, HPP-MCFC continued to grow, showed differentiation toward all three lineages, and demonstrated the capacity to give rise to secondary HPP-MCFC upon replating at a clonal level. Conclusion These findings suggest that there is a low frequency of bone marrow derived HPP-MCFC that can both self-renew at a single cell level and differentiate toward multiple lineages of mesenchymal origin. PMID:19900502

  11. Calorie Restriction Alleviates Age-Related Decrease in Neural Progenitor Cell Division in the Aging Brain

    PubMed Central

    Park, June-Hee; Glass, Zachary; Sayed, Kasim; Michurina, Tatyana V.; Lazutkin, Alexander; Mineyeva, Olga; Velmeshev, Dmitry; Ward, Walter F.; Richardson, Arlan; Enikolopov, Grigori

    2013-01-01

    Production of new neurons from stem cells is important for cognitive function, and the reduction of neurogenesis in the aging brain may contribute to the accumulation of age-related cognitive deficits. Restriction of calorie intake and prolonged treatment with rapamycin have been shown to extend the lifespan of animals and delay the onset of age-related decline in tissue and organ function. Using a reporter line in which neural stem and progenitor cells are marked by the expression of GFP, we examined the effect of prolonged exposure to calorie restriction (CR) or rapamycin on hippocampal neural stem and progenitor cell proliferation in aging mice. We show that CR increases the number of dividing cells in the dentate gyrus (DG) of female mice. The majority of these cells corresponded to Nestin-GFP-expressing neural stem or progenitor cells; however, this increased proliferative activity of stem and progenitor cells did not result in a significant increase in the number of doublecortin-positive newborn neurons. Our results suggest that restricted calorie intake may increase the number of divisions that neural stem and progenitor cells undergo in the aging brain of females. PMID:23773068

  12. Postnatal epithelium and mesenchyme stem/progenitor cells in bioengineered amelogenesis and dentinogenesis.

    PubMed

    Jiang, Nan; Zhou, Jian; Chen, Mo; Schiff, Michael D; Lee, Chang H; Kong, Kimi; Embree, Mildred C; Zhou, Yanheng; Mao, Jeremy J

    2014-02-01

    Rodent incisors provide a classic model for studying epithelial-mesenchymal interactions in development. However, postnatal stem/progenitor cells in rodent incisors have not been exploited for tooth regeneration. Here, we characterized postnatal rat incisor epithelium and mesenchyme stem/progenitor cells and found that they formed enamel- and dentin-like tissues in vivo. Epithelium and mesenchyme cells were harvested separately from the apical region of postnatal 4-5 day rat incisors. Epithelial and mesenchymal phenotypes were confirmed by immunocytochemistry, CFU assay and/or multi-lineage differentiation. CK14+, Sox2+ and Lgr5+ epithelium stem cells from the cervical loop enhanced amelogenin and ameloblastin expression upon BMP4 or FGF3 stimulation, signifying their differentiation towards ameloblast-like cells, whereas mesenchyme stem/progenitor cells upon BMP4, BMP7 and Wnt3a treatment robustly expressed Dspp, a hallmark of odontoblastic differentiation. We then control-released microencapsulated BMP4, BMP7 and Wnt3a in transplants of epithelium and mesenchyme stem/progenitor cells in the renal capsule of athymic mice in vivo. Enamel and dentin-like tissues were generated in two integrated layers with specific expression of amelogenin and ameloblastin in the newly formed, de novo enamel-like tissue, and DSP in dentin-like tissue. These findings suggest that postnatal epithelium and mesenchyme stem/progenitor cells can be primed towards bioengineered tooth regeneration. PMID:24345734

  13. Isolation and characterization of portal branch ligation-stimulated Hmga2-positive bipotent hepatic progenitor cells

    SciTech Connect

    Sakai, Hiroshi; Tagawa, Yoh-ichi; Tamai, Miho; Motoyama, Hiroaki; Ogawa, Shinichiro; Soeda, Junpei; Nakata, Takenari; Miyagawa, Shinichi

    2010-12-17

    Research highlights: {yields} Hepatic progenitor cells were isolated from the portal branch-ligated liver of mice. {yields} Portal branch ligation-stimulated hepatic progenitor cells (PBLHCs) express Hmga2. {yields} PBLHCs have bidirectional differentiation capability in vitro. -- Abstract: Hepatic stem/progenitor cells are one of several cell sources that show promise for restoration of liver mass and function. Although hepatic progenitor cells (HPCs), including oval cells, are induced by administration of certain hepatotoxins in experimental animals, such a strategy would be inappropriate in a clinical setting. Here, we investigated the possibility of isolating HPCs in a portal branch-ligated liver model without administration of any chemical agents. A non-parenchymal cell fraction was prepared from the portal branch-ligated or non-ligated lobe, and seeded onto plates coated with laminin. Most of the cells died, but a small number were able to proliferate. These proliferating cells were cloned as portal branch ligation-stimulated hepatic cells (PBLHCs) by the limiting dilution method. The PBLHCs expressed cytokeratin19, albumin, and Hmga2. The PBLHCs exhibited metabolic functions such as detoxification of ammonium ions and synthesis of urea on Matrigel-coated plates in the presence of oncostatin M. In Matrigel mixed with type I collagen, the PBLHCs became rearranged into cystic and tubular structures. Immunohistochemical staining demonstrated the presence of Hmga2-positive cells around the interlobular bile ducts in the portal branch-ligated liver lobes. In conclusion, successful isolation of bipotent hepatic progenitor cell clones, PBLHCs, from the portal branch-ligated liver lobes of mice provides the possibility of future clinical application of portal vein ligation to induce hepatic progenitor cells.

  14. The number of fetal nephron progenitor cells limits ureteric branching and adult nephron endowment.

    PubMed

    Cebrian, Cristina; Asai, Naoya; D'Agati, Vivette; Costantini, Frank

    2014-04-10

    Nephrons, the functional units of the kidney, develop from progenitor cells (cap mesenchyme [CM]) surrounding the epithelial ureteric bud (UB) tips. Reciprocal signaling between UB and CM induces nephrogenesis and UB branching. Although low nephron number is implicated in hypertension and renal disease, the mechanisms that determine nephron number are obscure. To test the importance of nephron progenitor cell number, we genetically ablated 40% of these cells, asking whether this would limit kidney size and nephron number or whether compensatory mechanisms would allow the developing organ to recover. The reduction in CM cell number decreased the rate of branching, which in turn allowed the number of CM cells per UB tip to normalize, revealing a self-correction mechanism. However, the retarded UB branching impaired kidney growth, leaving a permanent nephron deficit. Thus, the number of fetal nephron progenitor cells is an important determinant of nephron endowment, largely via its effect on UB branching. PMID:24656820

  15. Response of hemopoietic, progenitor, and multipotent mesenchymal stromal cells to administration of ketanserin during pulmonary fibrosis.

    PubMed

    Dygai, A M; Skurikhin, E G; Pershina, O V; Stepanova, I E; Khmelevskaya, E S; Ermakova, N N; Reztsova, A M; Krupin, V A; Reikhart, D V; Goldberg, V E

    2014-11-01

    We studied the effect of ketanserin on hemopoietic progenitor cells (Lin(-)Sca-1(+)c-Kit(+)CD34- and Lin(-)Sca-1(+)c-Kit(+)CD34(+)), progenitor hemopoietic cells (Lin(-)Sca-1(+)c-kit(+)), and multipotent mesenchymal stromal cells (CD45(-)CD73(+)CD106(+)) in C57Bl/6 mice during pulmonary fibrosis. It was shown that the blocker of 5-HT2A receptors lowers the activity of bleomycin-induced inflammation in the lungs and prevents the infiltration of alveolar interstitium and alveolar ducts by hemopoietic stem and hemopoietic progenitor cells; in this case, they are more numerous in the bone marrow of sick animals. Ketanserin reduces the capacity for self-renewal of lung multipotent mesenchymal stromal cells in the fibrotic phase of the disease and inhibits their differentiation into stromal cell lines (adipocytes, chondrocytes, and fibroblasts) simultaneously with the decrease in the percentage of connective tissue in the lung parenchyma. PMID:25403389

  16. Human mesenchymal and murine stromal cells support human lympho-myeloid progenitor expansion but not maintenance of multipotent haematopoietic stem and progenitor cells.

    PubMed

    Radtke, Stefan; Görgens, André; Liu, Bing; Horn, Peter A; Giebel, Bernd

    2016-02-16

    A major goal in haematopoietic stem cell (HSC) research is to define conditions for the expansion of HSCs or multipotent progenitor cells (MPPs). Since human HSCs/MPPs cannot be isolated, NOD/SCID repopulating cell (SRC) assays emerged as the standard for the quantification of very primitive haematopoietic cell. However, in addition to HSCs/MPPs, lympho-myeloid primed progenitors (LMPPs) were recently found to contain SRC activities, challenging this assay as clear HSC/MPP readout. Because our revised model of human haematopoiesis predicts that HSCs/MPPs can be identified as CD133(+)CD34(+) cells containing erythroid potentials, we investigated the potential of human mesenchymal and conventional murine stromal cells to support expansion of HSCs/MPPs. Even though all stromal cells supported expansion of CD133(+)CD34(+) progenitors with long-term myeloid and long-term lymphoid potentials, erythroid potentials were exclusively found within erythro-myeloid CD133(low)CD34(+) cell fractions. Thus, our data demonstrate that against the prevailing assumption co-cultures on human mesenchymal and murine stromal cells neither promote expansion nor maintenance of HSCs and MPPs. PMID:26818432

  17. Isolation, Expansion and Transplantation of Postnatal Murine Progenitor Cells of the Enteric Nervous System

    PubMed Central

    Dettmann, Heike Monika; Zhang, Ying; Wronna, Nadine; Kraushaar, Udo; Guenther, Elke; Mohr, Roland; Neckel, Peter Helmut; Mack, Andreas; Fuchs, Joerg; Just, Lothar; Obermayr, Florian

    2014-01-01

    Neural stem or progenitor cells have been proposed to restore gastrointestinal function in patients suffering from congenital or acquired defects of the enteric nervous system. Various, mainly embryonic cell sources have been identified for this purpose. However, immunological and ethical issues make a postnatal cell based therapy desirable. We therefore evaluated and quantified the potential of progenitor cells of the postnatal murine enteric nervous system to give rise to neurons and glial cells in vitro. Electrophysiological analysis and BrdU uptake studies provided direct evidence that generated neurons derive from expanded cells in vitro. Transplantation of isolated and expanded postnatal progenitor cells into the distal colon of adult mice demonstrated cell survival for 12 weeks (end of study). Implanted cells migrated within the gut wall and differentiated into neurons and glial cells, both of which were shown to derive from proliferated cells by BrdU uptake. This study indicates that progenitor cells isolated from the postnatal enteric nervous system might have the potential to serve as a source for a cell based therapy for neurogastrointestinal motility disorders. However, further studies are necessary to provide evidence that the generated cells are capable to positively influence the motility of the diseased gastrointestinal tract. PMID:24871092

  18. In Vitro Differentiation and Expansion of Human Pluripotent Stem Cell-Derived Pancreatic Progenitors

    PubMed Central

    Chmielowiec, Jolanta; Borowiak, Malgorzata

    2014-01-01

    Recent progress in understanding stem cell biology has been remarkable, especially in deciphering signals that support differentiation towards tissue-specific lineages. This achievement positions us firmly at the beginning of an era of patient-specific regenerative medicine and human disease modeling. It will be necessary to equip the progress in this era with a reliable source of self-renewing progenitor cells that differentiate into functional target cells. The generation of pancreatic progenitors that mature in vivo into functional beta-cells has raised the hope for new therapeutic options in diabetes, but key challenges still remain including the production of sufficient numbers of cells for research and transplantation. Recent approaches to this problem have shown that the presence of organ- and stage-specific mesenchyme improves the generation of progenitors, from endoderm to endocrine cells. Alternatively, utilization of three-dimensional culture may improve the efficiency and yield of directed differentiation. Here, we review the current knowledge of pancreatic directed differentiation and ex vivo expansion of pancreatic progenitors, including recent advances in differentiation strategies for the generation of pancreatic progenitors, and we discuss persistent challenges which will need to be overcome before personalized cell-based therapy becomes a practical strategy. PMID:25148365

  19. Myelination in vitro of rodent dorsal root ganglia by glial progenitor cells.

    PubMed

    Zajicek, J; Compston, A

    1994-12-01

    Oligodendrocytes synthesize myelin in the mammalian central nervous system; they develop from glial progenitors which, at least in vitro, are bipotential and also differentiate into astrocytes. Maturation of these O-2A progenitors is known to be influenced by growth factors and by extracellular matrix molecules. We investigated the effect of neurons on glial development by co-culturing highly purified rodent embryonic dorsal root ganglia with neonatal O-2A progenitors. Neurons produce signals, including platelet-derived growth factor BB and basic fibroblast growth factor, which stimulate progenitor cells to synthesize DNA; axonal contact is associated with down-regulation in the expression of complex ganglioside surface molecules on O-2A progenitors; with maturation, many of these cells develop into oligodendrocytes allowing the normal process of myelination to take place, but neurons also promote the differentiation of type 2 astrocytes. This orchestration of proliferation and differentiation in O-2A progenitor cells favours the development of glial-neuronal interactions needed for saltatory conduction of the nerve impulse. PMID:7820570

  20. Origin and development of neuropil glia of the Drosophila larval and adult brain: two distinct glial populations derived from separate progenitors

    PubMed Central

    Omoto, Jaison Jiro; Yogi, Puja; Hartenstein, Volker

    2015-01-01

    Glia comprise a conspicuous population of non-neuronal cells in vertebrate and invertebrate nervous systems. Drosophila serves as a favorable model to elucidate basic principles of glial biology in vivo. The Drosophila neuropil glia (NPG), subdivided into astrocyte-like (ALG) and ensheathing glia (EG), extend reticular processes which associate with synapses and sheath-like processes which surround neuropil compartments, respectively. In this paper we characterize the development of NPG throughout fly brain development. We find that differentiated neuropil glia of the larval brain originate as a cluster of precursors derived from embryonic progenitors located in the basal brain. These precursors undergo a characteristic migration to spread over the neuropil surface while specifying/differentiating into primary ALG and EG. Embryonically-derived primary NPG are large cells which are few in number, and occupy relatively stereotyped positions around the larval neuropil surface. During metamorphosis, primary NPG undergo cell death. Neuropil glia of the adult (secondary NPG) are derived from type II lineages during the postembryonic phase of neurogliogenesis. These secondary NPG are much smaller in size but greater in number than primary NPG. Lineage tracing reveals that both NPG subtypes derive from intermediate neural progenitors of multipotent type II lineages. Taken together, this study reveals previously uncharacterized dynamics of NPG development and provides a framework for future studies utilizing Drosophila glia as a model. PMID:25779704

  1. Origin and development of neuropil glia of the Drosophila larval and adult brain: Two distinct glial populations derived from separate progenitors.

    PubMed

    Omoto, Jaison Jiro; Yogi, Puja; Hartenstein, Volker

    2015-08-15

    Glia comprise a conspicuous population of non-neuronal cells in vertebrate and invertebrate nervous systems. Drosophila serves as a favorable model to elucidate basic principles of glial biology in vivo. The Drosophila neuropil glia (NPG), subdivided into astrocyte-like (ALG) and ensheathing glia (EG), extend reticular processes which associate with synapses and sheath-like processes which surround neuropil compartments, respectively. In this paper we characterize the development of NPG throughout fly brain development. We find that differentiated neuropil glia of the larval brain originate as a cluster of precursors derived from embryonic progenitors located in the basal brain. These precursors undergo a characteristic migration to spread over the neuropil surface while specifying/differentiating into primary ALG and EG. Embryonically-derived primary NPG are large cells which are few in number, and occupy relatively stereotyped positions around the larval neuropil surface. During metamorphosis, primary NPG undergo cell death. Neuropil glia of the adult (secondary NPG) are derived from type II lineages during the postembryonic phase of neurogliogenesis. These secondary NPG are much smaller in size but greater in number than primary NPG. Lineage tracing reveals that both NPG subtypes derive from intermediate neural progenitors of multipotent type II lineages. Taken together, this study reveals previously uncharacterized dynamics of NPG development and provides a framework for future studies utilizing Drosophila glia as a model. PMID:25779704

  2. Generation of an expandable intermediate mesoderm restricted progenitor cell line from human pluripotent stem cells

    PubMed Central

    Kumar, Nathan; Richter, Jenna; Cutts, Josh; Bush, Kevin T; Trujillo, Cleber; Nigam, Sanjay K; Gaasterland, Terry; Brafman, David; Willert, Karl

    2015-01-01

    The field of tissue engineering entered a new era with the development of human pluripotent stem cells (hPSCs), which are capable of unlimited expansion whilst retaining the potential to differentiate into all mature cell populations. However, these cells harbor significant risks, including tumor formation upon transplantation. One way to mitigate this risk is to develop expandable progenitor cell populations with restricted differentiation potential. Here, we used a cellular microarray technology to identify a defined and optimized culture condition that supports the derivation and propagation of a cell population with mesodermal properties. This cell population, referred to as intermediate mesodermal progenitor (IMP) cells, is capable of unlimited expansion, lacks tumor formation potential, and, upon appropriate stimulation, readily acquires properties of a sub-population of kidney cells. Interestingly, IMP cells fail to differentiate into other mesodermally-derived tissues, including blood and heart, suggesting that these cells are restricted to an intermediate mesodermal fate. DOI: http://dx.doi.org/10.7554/eLife.08413.001 PMID:26554899

  3. The in vitro generation of lung and airway progenitor cells from human pluripotent stem cells

    PubMed Central

    Huang, Sarah X L; Green, Michael D; de Carvalho, Ana Toste; Mumau, Melanie; Chen, Ya-Wen; D’Souza, Sunita L.; Snoeck, Hans-Willem

    2015-01-01

    Lung and airway epithelial cells generated in vitro from human pluripotent stem cells have applications in regenerative medicine, modeling of lung disease, drug screening and studies of human lung development. Here we describe a strategy for directed differentiation of human pluripotent stem cells into developmental lung progenitors, and their subsequent differentiation into predominantly distal lung epithelial cells. The protocol entails four stages that recapitulate lung development and takes approximately 50 days. First, definitive endoderm is induced in the presence of high concentrations of Activin A. Subsequently, lung-biased anterior foregut endoderm is specified by sequential inhibition of BMP, TGF-β and Wnt signaling. Anterior foregut endoderm is then ventralized by applying Wnt, BMP, FGF and RA signaling to obtain lung and airway progenitors. Finally, these are further differentiated into more mature epithelial cells types using Wnt, FGF, c-AMP and glucocorticoid agonism. This protocol is conducted in defined conditions, does not involve genetic manipulation of the cells, and results in cultures where the majority of the cells express markers of various lung and airway epithelial cells, with a predominance of cells identifiable as functional type II alveolar epithelial cells. PMID:25654758

  4. JAK-STAT and AKT pathway-coupled genes in erythroid progenitor cells through ontogeny

    PubMed Central

    2012-01-01

    Background It has been reported that the phosphatidylinositol 3-kinase (PI3K)-AKT signaling pathway regulates erythropoietin (EPO)-induced survival, proliferation, and maturation of early erythroid progenitors. Erythroid cell proliferation and survival have also been related to activation of the JAK-STAT pathway. The goal of this study was to observe the function of EPO activation of JAK-STAT and PI3K/AKT pathways in the development of erythroid progenitors from hematopoietic CD34+ progenitor cells, as well as to distinguish early EPO target genes in human erythroid progenitors during ontogeny. Methods Hematopoietic CD34+ progenitor cells, isolated from fetal and adult hematopoietic tissues, were differentiated into erythroid progenitor cells. We have used microarray analysis to examine JAK-STAT and PI3K/AKT related genes, as well as broad gene expression modulation in these human erythroid progenitor cells. Results In microarray studies, a total of 1755 genes were expressed in fetal liver, 3844 in cord blood, 1770 in adult bone marrow, and 1325 genes in peripheral blood-derived erythroid progenitor cells. The erythroid progenitor cells shared 1011 common genes. Using the Ingenuity Pathways Analysis software, we evaluated the network pathways of genes linked to hematological system development, cellular growth and proliferation. The KITLG, EPO, GATA1, PIM1 and STAT3 genes represent the major connection points in the hematological system development linked genes. Some JAK-STAT signaling pathway-linked genes were steadily upregulated throughout ontogeny (PIM1, SOCS2, MYC, PTPN11), while others were downregulated (PTPN6, PIAS, SPRED2). In addition, some JAK-STAT pathway related genes are differentially expressed only in some stages of ontogeny (STATs, GRB2, CREBB). Beside the continuously upregulated (AKT1, PPP2CA, CHUK, NFKB1) and downregulated (FOXO1, PDPK1, PIK3CG) genes in the PI3K-AKT signaling pathway, we also observed intermittently regulated gene expression

  5. Characterization of interstitial Cajal progenitors cells and their changes in Hirschsprung's disease.

    PubMed

    Chen, Zhi-Hua; Zhang, Yong-Chang; Jiang, Wei-Fang; Yang, Cissy; Zou, Gang-Ming; Kong, Yu; Cai, Wei

    2014-01-01

    Interstitial cells of Cajal (ICC) are critical to gastrointestinal motility. The phenotypes of ICC progenitors have been observed in the mouse gut, but whether they exist in the human colon and what abnormal changes in their quantity and ultrastructure are present in Hirschsprung's disease (HSCR) colon remains uncertain. In this study, we collected the surgical resection of colons, both proximal and narrow segments, from HSCR patients and normal controls. First, we identified the progenitor of ICC in normal adult colon using immunofluorescent localization techniques with laser confocal microscopy. Next, the progenitors were sorted to observe their morphology. We further applied flow cytometry to examine the content of ICC progenitors in these fresh samples. The ultrastructural changes in the narrow and proximal parts of the HSCR colon were observed using transmission electron microscopy (TEM) and were compared with the normal adult colon. The presumed early progenitor (c-Kit(low)CD34(+)Igf1r(+)) and committed progenitor (c-Kit(+)CD34(+)Igf1r(+)) of ICC exist in adult normal colon as well as in the narrow and proximal parts of the HSCR colon. However, the proportions of mature, early and committed progenitors of ICC were dramatically reduced in the narrow segment of the HSCR colon. The proportions of mature and committed progenitors of ICC in the proximal segment of the HSCR colon were lower than in the adult normal colon. Ultrastructurally, ICC, enteric nerves, and smooth muscle in the narrow segment of the HSCR colon showed severe injury, including swollen vacuola or ted mitochondria, disappearance of mitochondrial cristae, dilated rough endoplasmic reticulum, vesiculation and degranulation, and disappearance of the caveolae on the ICC membrane surface. The contents of ICC and its progenitors in the narrow part of the HSCR colon were significantly decreased than those of adult colon, which may be associated with HSCR pathogenesis. PMID:24475076

  6. Brief Azacytidine Step Allows The Conversion of Suspension Human Fibroblasts into Neural Progenitor-Like Cells

    PubMed Central

    Mirakhori, Fahimeh; Zeynali, Bahman; Kiani, Sahar; Baharvand, Hossein

    2015-01-01

    In recent years transdifferentiation technology has enabled direct conversion of human fibroblasts to become a valuable, abundant and accessible cell source for patient-specific induced cell generation in biomedical research. The majority of transdifferentiation approaches rely upon viral gene delivery which due to random integration with the host genome can cause genome instability and tumorigenesis upon transplantation. Here, we provide a simple way to induce neural progenitor-like cells from human fibroblasts without genetic manipulation by changing physicochemical culture properties from monolayer culture into a suspension in the presence of a chemical DNA methyltransferase inhibitor agent, Azacytidine. We have demonstrated the expression of neural progenitor-like markers, morphology and the ability to spontaneously differentiate into neural-like cells. This approach is simple, inexpensive, lacks genetic manipulation and could be a foundation for future chemical neural transdifferentiation and a safe induction of neural progenitor cells from human fibroblasts for clinical applications. PMID:25870845

  7. Eupalinilide E inhibits erythropoiesis and promotes the expansion of hematopoietic progenitor cells.

    PubMed

    de Lichtervelde, Lorenzo; Boitano, Anthony E; Wang, Ying; Krastel, Philipp; Petersen, Frank; Cooke, Michael P; Schultz, Peter G

    2013-05-17

    Hematopoietic stem cells (HSCs) are the progenitor cells that give rise to all blood cells. The ability to control HSC differentiation has the potential to improve the success of bone marrow transplants and the production of functional blood cells ex vivo. Here we performed an unbiased screen using primary human CD34(+) hematopoietic stem and progenitor cells (HSPCs) to identify natural products that selectively control their differentiation. We identified a plant-derived natural product, eupalinilide E, that promotes the ex vivo expansion of HSPCs and hinders the in vitro development of erythrocytes. This activity was additive with aryl hydrocarbon receptor (AhR) antagonists, which are also known to expand HSCs and currently in clinical development. These findings reveal a new activity for eupalinilide E, and suggest that it may be a useful tool to probe the mechanisms of hematopoiesis and improve the ex vivo production of progenitors for therapeutic purposes. PMID:23441826

  8. Hypoxia affects in vitro proliferation and differentiation of mouse corneal epithelial progenitor cell.

    PubMed

    Dong, Nuo; Qin, Wenjuan; Xue, Yuhua; Li, Cheng; Liu, Zuguo

    2013-08-01

    This study was to investigate the proliferation and differentiation of mouse corneal epithelial progenitor cell in hypoxic airlift culture. Mouse corneal epithelial progenitor cell line progenitor cells were cultured under airlift with normoxic and hypoxic conditions for various durations up to 2 wk. Under normoxic conditions when exposed to air, the hyperproliferation and abnormal epidermal-like differentiation of mouse corneal epithelium was induced, whereas when exposed to air under hypoxic conditions, although we observed augmented proliferation, the abnormal differentiation was inhibited. The mechanism by which hypoxia prevents abnormal differentiation may involve downregulation of Wnt signaling pathways, which were inhibited in cells cultured with hypoxic airlift technique. In conclusion, hypoxia can prevent abnormal differentiation while enhancing the proliferation of corneal epithelial cells by blocking Wnt/β-catenin signaling pathway. PMID:23739874

  9. Rat Embryonic Mast Cells Originate in the AGM

    PubMed Central

    Guiraldelli, Michel Farchi; França, Carolina Nunes; de Souza, Devandir Antonio; da Silva, Elaine Zayas Marcelino; Toso, Vanina Danuza; Carvalho, Celiane Cardoso; Jamur, Maria Célia; Oliver, Constance

    2013-01-01

    Mast cells originate from pluripotent hematopoietic stem cells. Two mast cell specific antibodies, mAbsAA4 and BGD6, have previously been used to identify and study committed mast cell precursors (MCcps) in the bone marrow of adult mice and rats. However, the embryonic origin of MCcps is still not known. In the present study, we identified MCcps in rat embryos using these previously characterized mast cell specific antibodies. The MCcps were found in the AGM (aorta-gonad-mesonephros) region of rat embryos at E11.5. These cells were BGD6+, CD34+, c-kit+, CD13+, FcεRI−, AA4− CD40−, and Thy-1−. By PCR the cells contained message for the α and β subunits of FcεRI and mast cell specific proteases. In vitro, the MCcps differentiated into metachromatic mast cells. With age of gestation the percent of MCcps diminished while the percent of mast cell progenitors increased. An increased knowledge of the biology and embryonic origin of mast cells may contribute to a greater understanding of allergy, asthma, and other mast cell related diseases. PMID:23505443

  10. Endothelin-1 supports clonal derivation and expansion of cardiovascular progenitors derived from human embryonic stem cells.

    PubMed

    Soh, Boon-Seng; Ng, Shi-Yan; Wu, Hao; Buac, Kristina; Park, Joo-Hye C; Lian, Xiaojun; Xu, Jiejia; Foo, Kylie S; Felldin, Ulrika; He, Xiaobing; Nichane, Massimo; Yang, Henry; Bu, Lei; Li, Ronald A; Lim, Bing; Chien, Kenneth R

    2016-01-01

    Coronary arteriogenesis is a central step in cardiogenesis, requiring coordinated generation and integration of endothelial cell and vascular smooth muscle cells. At present, it is unclear whether the cell fate programme of cardiac progenitors to generate complex muscular or vascular structures is entirely cell autonomous. Here we demonstrate the intrinsic ability of vascular progenitors to develop and self-organize into cardiac tissues by clonally isolating and expanding second heart field cardiovascular progenitors using WNT3A and endothelin-1 (EDN1) human recombinant proteins. Progenitor clones undergo long-term expansion and differentiate primarily into endothelial and smooth muscle cell lineages in vitro, and contribute extensively to coronary-like vessels in vivo, forming a functional human-mouse chimeric circulatory system. Our study identifies EDN1 as a key factor towards the generation and clonal derivation of ISL1(+) vascular intermediates, and demonstrates the intrinsic cell-autonomous nature of these progenitors to differentiate and self-organize into functional vasculatures in vivo. PMID:26952167

  11. Endothelin-1 supports clonal derivation and expansion of cardiovascular progenitors derived from human embryonic stem cells

    PubMed Central

    Soh, Boon-Seng; Ng, Shi-Yan; Wu, Hao; Buac, Kristina; Park, Joo-Hye C.; Lian, Xiaojun; Xu, Jiejia; Foo, Kylie S.; Felldin, Ulrika; He, Xiaobing; Nichane, Massimo; Yang, Henry; Bu, Lei; Li, Ronald A.; Lim, Bing; Chien, Kenneth R.

    2016-01-01

    Coronary arteriogenesis is a central step in cardiogenesis, requiring coordinated generation and integration of endothelial cell and vascular smooth muscle cells. At present, it is unclear whether the cell fate programme of cardiac progenitors to generate complex muscular or vascular structures is entirely cell autonomous. Here we demonstrate the intrinsic ability of vascular progenitors to develop and self-organize into cardiac tissues by clonally isolating and expanding second heart field cardiovascular progenitors using WNT3A and endothelin-1 (EDN1) human recombinant proteins. Progenitor clones undergo long-term expansion and differentiate primarily into endothelial and smooth muscle cell lineages in vitro, and contribute extensively to coronary-like vessels in vivo, forming a functional human–mouse chimeric circulatory system. Our study identifies EDN1 as a key factor towards the generation and clonal derivation of ISL1+ vascular intermediates, and demonstrates the intrinsic cell-autonomous nature of these progenitors to differentiate and self-organize into functional vasculatures in vivo. PMID:26952167

  12. Induction of Excess Centrosomes in Neural Progenitor Cells during the Development of Radiation-Induced Microcephaly

    PubMed Central

    Shimada, Mikio; Matsuzaki, Fumio; Kato, Akihiro; Kobayashi, Junya; Matsumoto, Tomohiro; Komatsu, Kenshi

    2016-01-01

    The embryonic brain is one of the tissues most vulnerable to ionizing radiation. In this study, we showed that ionizing radiation induces apoptosis in the neural progenitors of the mouse cerebral cortex, and that the surviving progenitor cells subsequently develop a considerable amount of supernumerary centrosomes. When mouse embryos at Day 13.5 were exposed to γ-rays, brains sizes were reduced markedly in a dose-dependent manner, and these size reductions persisted until birth. Immunostaining with caspase-3 antibodies showed that apoptosis occurred in 35% and 40% of neural progenitor cells at 4 h after exposure to 1 and 2 Gy, respectively, and this was accompanied by a disruption of the apical layer in which mitotic spindles were positioned in unirradiated mice. At 24 h after 1 Gy irradiation, the apoptotic cells were completely eliminated and proliferation was restored to a level similar to that of unirradiated cells, but numerous spindles were localized outside the apical layer. Similarly, abnormal cytokinesis, which included multipolar division and centrosome clustering, was observed in 19% and 24% of the surviving neural progenitor cells at 48 h after irradiation with 1 and 2 Gy, respectively. Because these cytokinesis aberrations derived from excess centrosomes result in growth delay and mitotic catastrophe-mediated cell elimination, our findings suggest that, in addition to apoptosis at an early stage of radiation exposure, radiation-induced centrosome overduplication could contribute to the depletion of neural progenitors and thereby lead to microcephaly. PMID:27367050

  13. EMT Involved in Migration of Stem/Progenitor Cells for Pituitary Development and Regeneration

    PubMed Central

    Yoshida, Saishu; Kato, Takako; Kato, Yukio

    2016-01-01

    Epithelial–mesenchymal transition (EMT) and cell migration are important processes in embryonic development of many tissues as well as oncogenesis. The pituitary gland is a master endocrine tissue and recent studies indicate that Sox2-expressing stem/progenitor cells actively migrate and develop this tissue during embryogenesis. Notably, although migration activity of stem/progenitor cells in the postnatal period seems to be reduced compared to that in the embryonic period, it is hypothesized that stem/progenitor cells in the adult pituitary re-migrate from their microenvironment niche to contribute to the regeneration system. Therefore, elucidation of EMT in the pituitary stem/progenitor cells will promote understanding of pituitary development and regeneration, as well as diseases such as pituitary adenoma. In this review, so as to gain more insights into the mechanisms of pituitary development and regeneration, we summarize the EMT in the pituitary by focusing on the migration of pituitary stem/progenitor cells during both embryonic and postnatal organogenesis. PMID:27058562

  14. EMT Involved in Migration of Stem/Progenitor Cells for Pituitary Development and Regeneration.

    PubMed

    Yoshida, Saishu; Kato, Takako; Kato, Yukio

    2016-01-01

    Epithelial-mesenchymal transition (EMT) and cell migration are important processes in embryonic development of many tissues as well as oncogenesis. The pituitary gland is a master endocrine tissue and recent studies indicate that Sox2-expressing stem/progenitor cells actively migrate and develop this tissue during embryogenesis. Notably, although migration activity of stem/progenitor cells in the postnatal period seems to be reduced compared to that in the embryonic period, it is hypothesized that stem/progenitor cells in the adult pituitary re-migrate from their microenvironment niche to contribute to the regeneration system. Therefore, elucidation of EMT in the pituitary stem/progenitor cells will promote understanding of pituitary development and regeneration, as well as diseases such as pituitary adenoma. In this review, so as to gain more insights into the mechanisms of pituitary development and regeneration, we summarize the EMT in the pituitary by focusing on the migration of pituitary stem/progenitor cells during both embryonic and postnatal organogenesis. PMID:27058562

  15. Corneal Development: Different Cells from a Common Progenitor.

    PubMed

    Lwigale, Peter Y

    2015-01-01

    Development of the vertebrate cornea is a multistep process that involves cellular interactions between various ectodermal-derived tissues. Bilateral interactions between the neural ectoderm-derived optic vesicles and the cranial ectoderm give rise to the presumptive corneal epithelium and other epithelia of the ocular surface. Interactions between the neural tube and the adjacent ectoderm give rise to the neural crest cells, a highly migratory and multipotent cell population. Neural crest cells migrate between the lens and presumptive corneal epithelium to form the corneal endothelium and the stromal keratocytes. The sensory nerves that abundantly innervate the corneal stroma and epithelium originate from the neural crest- and ectodermal placode-derived trigeminal ganglion. Concomitant with corneal innervation is the formation of the limbal vascular plexus and the establishment of corneal avascularity. This review summarizes historical and current research to provide an overview of the genesis of the cellular layers of the cornea, corneal innervation, and avascularity. PMID:26310148

  16. Ancient origin of mast cells.

    PubMed

    Wong, G William; Zhuo, Lisheng; Kimata, Koji; Lam, Bing K; Satoh, Nori; Stevens, Richard L

    2014-08-22

    The sentinel roles of mammalian mast cells (MCs) in varied infections raised the question of their evolutionary origin. We discovered that the test cells in the sea squirt Ciona intestinalis morphologically and histochemically resembled cutaneous human MCs. Like the latter, C. intestinalis test cells stored histamine and varied heparin·serine protease complexes in their granules. Moreover, they exocytosed these preformed mediators when exposed to compound 48/80. In support of the histamine data, a C. intestinalis-derived cDNA was isolated that resembled that which encodes histidine decarboxylase in human MCs. Like heparin-expressing mammalian MCs, activated test cells produced prostaglandin D2 and contained cDNAs that encode a protein that resembles the synthase needed for its biosynthesis in human MCs. The accumulated morphological, histochemical, biochemical, and molecular biology data suggest that the test cells in C. intestinalis are the counterparts of mammalian MCs that reside in varied connective tissues. The accumulated data point to an ancient origin of MCs that predates the emergence of the chordates >500million years ago, well before the development of adaptive immunity. The remarkable conservation of MCs throughout evolution is consistent with their importance in innate immunity. PMID:25094046

  17. Progenitor Cell Mobilization by Gamma-tocotrienol: A Promising Radiation Countermeasure

    PubMed Central

    Singh, Vijay K.; Fatanmi, Oluseyi O.; Verma, Amit; Newman, Victoria L.; Wise, Stephen Y.; Romaine, Patricia L.P.; Berg, Allison N.

    2016-01-01

    Abstract This article reviews studies of progenitor mobilization with gamma-tocotrienol (GT3), a tocol under advanced development as a radiation countermeasure for acute radiation syndrome (ARS). GT3 protects mice against high doses of ionizing radiation and induces high levels of granulocyte colony-stimulating factor (G-CSF). GT3‐induced G-CSF in conjunction with AMD3100 (a chemokine receptor antagonist clinically used to improve the yield of mobilized progenitors) mobilizes progenitors; these mobilized progenitors mitigate injury when infused to mice exposed to acute, high-dose ionizing radiation. The administration of a G-CSF antibody to GT3‐injected donor mice abrogated the radiomitigative efficacy of blood or peripheral blood mononuclear cells (PBMC) in irradiated recipient mice. The efficacy of GT3‐injected donor mice blood or PBMC was comparable to a recently published article involving blood or mononuclear cells obtained from mice injected with G-CSF. The injected progenitors were found to localize in various tissues of irradiated hosts. The authors demonstrate the efficacy of a bridging therapy in a preclinical animal model that allows the lymphohematopoietic system of severely immunocompromised mice to recover. This suggests that GT3 is a highly effective agent for radioprotection and mobilizing progenitors with significant therapeutic potential. Therefore, GT3 may be considered for further translational development and ultimately for use in humans. PMID:27356050

  18. Progenitor Cell Mobilization by Gamma-tocotrienol: A Promising Radiation Countermeasure.

    PubMed

    Singh, Vijay K; Fatanmi, Oluseyi O; Verma, Amit; Newman, Victoria L; Wise, Stephen Y; Romaine, Patricia L P; Berg, Allison N

    2016-08-01

    This article reviews studies of progenitor mobilization with gamma-tocotrienol (GT3), a tocol under advanced development as a radiation countermeasure for acute radiation syndrome (ARS). GT3 protects mice against high doses of ionizing radiation and induces high levels of granulocyte colony-stimulating factor (G-CSF). GT3-induced G-CSF in conjunction with AMD3100 (a chemokine receptor antagonist clinically used to improve the yield of mobilized progenitors) mobilizes progenitors; these mobilized progenitors mitigate injury when infused to mice exposed to acute, high-dose ionizing radiation. The administration of a G-CSF antibody to GT3-injected donor mice abrogated the radiomitigative efficacy of blood or peripheral blood mononuclear cells (PBMC) in irradiated recipient mice. The efficacy of GT3-injected donor mice blood or PBMC was comparable to a recently published article involving blood or mononuclear cells obtained from mice injected with G-CSF. The injected progenitors were found to localize in various tissues of irradiated hosts. The authors demonstrate the efficacy of a bridging therapy in a preclinical animal model that allows the lymphohematopoietic system of severely immunocompromised mice to recover. This suggests that GT3 is a highly effective agent for radioprotection and mobilizing progenitors with significant therapeutic potential. Therefore, GT3 may be considered for further translational development and ultimately for use in humans. PMID:27356050

  19. Generation of Stratified Squamous Epithelial Progenitor Cells from Mouse Induced Pluripotent Stem Cells

    PubMed Central

    Yoshida, Satoru; Yasuda, Miyuki; Miyashita, Hideyuki; Ogawa, Yoko; Yoshida, Tetsu; Matsuzaki, Yumi; Tsubota, Kazuo; Okano, Hideyuki; Shimmura, Shigeto

    2011-01-01

    Background Application of induced pluripotent stem (iPS) cells in regenerative medicine will bypass ethical issues associated with use of embryonic stem cells. In addition, patient-specific IPS cells can be useful to elucidate the pathophysiology of genetic disorders, drug screening, and tailor-made medicine. However, in order to apply iPS cells to mitotic tissue, induction of tissue stem cells that give rise to progeny of the target organ is required. Methodology/Principal Findings We induced stratified epithelial cells from mouse iPS cells by co-culture with PA6 feeder cells (SDIA-method) with use of BMP4. Clusters of cells positive for the differentiation markers KRT1 or KRT12 were observed in KRT14-positive colonies. We successfully cloned KRT14 and p63 double-positive stratified epithelial progenitor cells from iPS-derived epithelial cells, which formed stratified epithelial sheets consisting of five- to six-polarized epithelial cells in vitro. When these clonal cells were cultured on denuded mouse corneas, a robust stratified epithelial layer was observed with physiological cell polarity including high levels of E-cadherin, p63 and K15 expression in the basal layer and ZO-1 in the superficial layer, recapitulating the apico-basal polarity of the epithelium in vivo. Conclusions/Significance These results suggest that KRT14 and p63 double-positive epithelial progenitor cells can be cloned from iPS cells in order to produce polarized multilayer epithelial cell sheets. PMID:22174914

  20. Comparative Analysis of the Hematopoietic Progenitor Cells from Placenta, Cord Blood, and Fetal Liver, Based on Their Immunophenotype

    PubMed Central

    Kuchma, Maria D.; Kyryk, Vitaliy M.; Svitina, Hanna M.; Shablii, Yulia M.; Lukash, Lubov L.; Lobyntseva, Galina S.; Shablii, Volodymyr A.

    2015-01-01

    We have investigated the characteristics of human hematopoietic progenitor cells (HPCs) with the CD34+CD45lowSSClow phenotype from full-term placental tissue (FTPT) as compared to cord blood (CB) and fetal liver (FL) cells. We demonstrated the presence of cell subpopulations at various stages of the differentiation with such immunophenotypes as CD34+/lowCD45low/−, CD34++CD45low/−, CD34+++CD45low/−, CD34+/lowCD45hi, and CD34++CD45hi in both first trimester placental tissue (FiTPT) and FTPT which implies their higher phenotypic heterogeneity compared to CB. HPCs of the FTPT origin expressed the CD90 antigen at a higher level compared to its expression by the CB HPCs and the CD133 antigen expression being at the same level in both cases. The HPCs compartment of FTPT versus CB contained higher number of myeloid and erythroid committed cells but lower number of myeloid and lymphoid ones compared to FL HPCs. HPCs of the FTPT and CB origin possess similar potentials for the multilineage differentiation in vitro and similar ratios of myeloid and erythroid progenitors among the committed cells. This observation suggests that the active hematopoiesis occurs in the FTPT. We obtained viable HPCs from cryopreserved placental tissue fragments allowing us to develop procedures for banking and testing of placenta-derived HPCs for clinical use. PMID:26347038

  1. The EBF transcription factor Collier directly promotes Drosophila blood cell progenitor maintenance independently of the niche

    PubMed Central

    Benmimoun, Billel; Polesello, Cédric; Haenlin, Marc; Waltzer, Lucas

    2015-01-01

    The maintenance of stem or progenitor cell fate relies on intrinsic factors as well as local cues from the cellular microenvironment and systemic signaling. In the lymph gland, an hematopoietic organ in Drosophila larva, a group of cells called the Posterior Signaling Centre (PSC), whose specification depends on the EBF transcription factor Collier (Col) and the HOX factor Antennapedia (Antp), has been proposed to form a niche required to maintain the pool of hematopoietic progenitors (prohemocytes). In contrast with this model, we show here that genetic ablation of the PSC does not cause an increase in blood cell differentiation or a loss of blood cell progenitors. Furthermore, although both col and Antp mutant larvae are devoid of PSC, the massive prohemocyte differentiation observed in col mutant is not phenocopied in Antp mutant. Interestingly, beside its expression in the PSC, Col is also expressed at low levels in prohemocytes and we show that this expression persists in PSC-ablated and Antp mutant larvae. Moreover, targeted knockdown and rescue experiments indicate that Col expression is required in the prohemocytes to prevent their differentiation. Together, our findings show that the PSC is dispensable for blood cell progenitor maintenance and reveal the key role of the conserved transcription factor Col as an intrinsic regulator of hematopoietic progenitor fate. PMID:26150488

  2. Nucleic Acid Encoding A Lectin-Derived Progenitor Cell Preservation Factor

    DOEpatents

    Colucci, M. Gabriella; Chrispeels, Maarten J.; Moore, Jeffrey G.

    2001-10-30

    The invention relates to an isolated nucleic acid molecule that encodes a protein that is effective to preserve progenitor cells, such as hematopoietic progenitor cells. The nucleic acid comprises a sequence defined by SEQ ID NO:1, a homolog thereof, or a fragment thereof. The encoded protein has an amino acid sequence that comprises a sequence defined by SEQ ID NO:2, a homolog thereof, or a fragment thereof that contains an amino acid sequence TNNVLQVT. Methods of using the encoded protein for preserving progenitor cells in vitro, ex vivo, and in vivo are also described. The invention, therefore, include methods such as myeloablation therapies for cancer treatment wherein myeloid reconstitution is facilitated by means of the specified protein. Other therapeutic utilities are also enabled through the invention, for example, expanding progenitor cell populations ex vivo to increase chances of engraftation, improving conditions for transporting and storing progenitor cells, and facilitating gene therapy to treat and cure a broad range of life-threatening hematologic diseases.

  3. Dextran induces differentiation of circulating endothelial progenitor cells

    PubMed Central

    Obi, Syotaro; Masuda, Haruchika; Akimaru, Hiroshi; Shizuno, Tomoko; Yamamoto, Kimiko; Ando, Joji; Asahara, Takayuki

    2014-01-01

    Abstract Endothelial progenitor cells (EPCs) have been demonstrated to be effective for the treatment of cardiovascular diseases. However, the differentiation process from circulation to adhesion has not been clarified because circulating EPCs rarely attached to dishes in EPC cultures previously. Here we investigated whether immature circulating EPCs differentiate into mature adhesive EPCs in response to dextran. When floating‐circulating EPCs derived from ex vivo expanded human cord blood were cultured with 5% and 10% dextran, they attached to fibronectin‐coated dishes and grew exponentially. The bioactivities of adhesion, proliferation, migration, tube formation, and differentiated type of EPC colony formation increased in EPCs exposed to dextran. The surface protein expression rate of the endothelial markers vascular endothelial growth factor (VEGF)‐R1/2, VE‐cadherin, Tie2, ICAM1, VCAM1, and integrin αv/β3 increased in EPCs exposed to dextran. The mRNA levels of VEGF‐R1/2, VE‐cadherin, Tie2, endothelial nitric oxide synthase, MMP9, and VEGF increased in EPCs treated with dextran. Those of endothelium‐related transcription factors ID1/2, FOXM1, HEY1, SMAD1, FOSL1, NFkB1, NRF2, HIF1A, EPAS1 increased in dextran‐treated EPCs; however, those of hematopoietic‐ and antiangiogenic‐related transcription factors TAL1, RUNX1, c‐MYB, GATA1/2, ERG, FOXH1, HHEX, SMAD2/3 decreased in dextran‐exposed EPCs. Inhibitor analysis showed that PI3K/Akt, ERK1/2, JNK, and p38 signal transduction pathways are involved in the differentiation in response to dextran. In conclusion, dextran induces differentiation of circulating EPCs in terms of adhesion, migration, proliferation, and vasculogenesis. The differentiation mechanism in response to dextran is regulated by multiple signal transductions including PI3K/Akt, ERK1/2, JNK, and p38. These findings indicate that dextran is an effective treatment for EPCs in regenerative medicines. PMID:24760515

  4. Oestrogen signalling in white adipose progenitor cells inhibits differentiation into brown adipose and smooth muscle cells.

    PubMed

    Lapid, Kfir; Lim, Ajin; Clegg, Deborah J; Zeve, Daniel; Graff, Jonathan M

    2014-01-01

    Oestrogen, often via oestrogen receptor alpha (ERα) signalling, regulates metabolic physiology, highlighted by post-menopausal temperature dysregulation (hot flashes), glucose intolerance, increased appetite and reduced metabolic rate. Here we show that ERα signalling has a role in adipose lineage specification in mice. ERα regulates adipose progenitor identity and potency, promoting white adipogenic lineage commitment. White adipose progenitors lacking ERα reprogramme and enter into smooth muscle and brown adipogenic fates. Mechanistic studies highlight a TGFβ programme involved in progenitor reprogramming downstream of ERα signalling. The observed reprogramming has profound metabolic outcomes; both female and male adipose-lineage ERα-mutant mice are lean, have improved glucose sensitivity and are resistant to weight gain on a high-fat diet. Further, they are hypermetabolic, hyperphagic and hyperthermic, all consistent with a brown phenotype. Together, these findings indicate that ERα cell autonomously regulates adipose lineage commitment, brown fat and smooth muscle cell formation, and systemic metabolism, in a manner relevant to prevalent metabolic diseases. PMID:25330806

  5. Oestrogen signalling in white adipose progenitor cells inhibits differentiation into brown adipose and smooth muscle cells

    PubMed Central

    Clegg, Deborah J.; Zeve, Daniel; Graff, Jonathan M.

    2016-01-01

    Oestrogen, often via oestrogen receptor alpha (ERα) signalling, regulates metabolic physiology, highlighted by post-menopausal temperature dysregulation (hot flashes), glucose intolerance, increased appetite and reduced metabolic rate. Here we show that ERα signalling has a role in adipose lineage specification in mice. ERα regulates adipose progenitor identity and potency, promoting white adipogenic lineage commitment. White adipose progenitors lacking ERα reprogramme and enter into smooth muscle and brown adipogenic fates. Mechanistic studies highlight a TGFβ programme involved in progenitor reprogramming downstream of ERα signalling. The observed reprogramming has profound metabolic outcomes; both female and male adipose-lineage ERα-mutant mice are lean, have improved glucose sensitivity and are resistant to weight gain on a high-fat diet. Further, they are hypermetabolic, hyperphagic and hyperthermic, all consistent with a brown phenotype. Together, these findings indicate that ERα cell autonomously regulates adipose lineage commitment, brown fat and smooth muscle cell formation, and systemic metabolism, in a manner relevant to prevalent metabolic diseases. PMID:25330806

  6. HDAC inhibition amplifies gap junction communication in neural progenitors: Potential for cell-mediated enzyme prodrug therapy

    SciTech Connect

    Khan, Zahidul . E-mail: Zahidul.Khan@ki.se; Akhtar, Monira; Asklund, Thomas; Juliusson, Bengt . E-mail: Tomas.Ekstrom@ki.se

    2007-08-01

    Enzyme prodrug therapy using neural progenitor cells (NPCs) as delivery vehicles has been applied in animal models of gliomas and relies on gap junction communication (GJC) between delivery and target cells. This study investigated the effects of histone deacetylase (HDAC) inhibitors on GJC for the purpose of facilitating transfer of therapeutic molecules from recombinant NPCs. We studied a novel immortalized midbrain cell line, NGC-407 of embryonic human origin having neural precursor characteristics, as a potential delivery vehicle. The expression of gap junction protein connexin 43 (C x 43) was analyzed by western blot and immunocytochemistry. While C x 43 levels were decreased in untreated differentiating NGC-407 cells, the HDAC inhibitor 4-phenylbutyrate (4-PB) increased C x 43 expression along with increased membranous deposition in both proliferating and differentiating cells. Simultaneously, Ser 279/282-phosphorylated form of C x 43 was declined in both culture conditions by 4-PB. The 4-PB effect in NGC-407 cells was verified by using HNSC.100 human neural progenitors and Trichostatin A. Improved functional GJC is of imperative importance for therapeutic strategies involving intercellular transport of low molecular-weight compounds. We show here an enhancement by 4-PB, of the functional GJC among NGC-407 cells, as well as between NGC-407 and human glioma cells, as indicated by increased fluorescent dye transfer.

  7. A Novel Selectable Islet 1 Positive Progenitor Cell Reprogrammed to Expandable and Functional Smooth Muscle Cells.

    PubMed

    Turner, Elizabeth C; Huang, Chien-Ling; Sawhney, Neha; Govindarajan, Kalaimathi; Clover, Anthony J P; Martin, Kenneth; Browne, Tara C; Whelan, Derek; Kumar, Arun H S; Mackrill, John J; Wang, Shaohua; Schmeckpeper, Jeffrey; Stocca, Alessia; Pierce, William G; Leblond, Anne-Laure; Cai, Liquan; O'Sullivan, Donnchadh M; Buneker, Chirlei K; Choi, Janet; MacSharry, John; Ikeda, Yasuhiro; Russell, Stephen J; Caplice, Noel M

    2016-05-01

    Disorders affecting smooth muscle structure/function may require technologies that can generate large scale, differentiated and contractile smooth muscle cells (SMC) suitable for cell therapy. To date no clonal precursor population that provides large numbers of differentiated SMC in culture has been identified in a rodent. Identification of such cells may also enhance insight into progenitor cell fate decisions and the relationship between smooth muscle precursors and disease states that implicate differentiated SMC.  In this study, we used classic clonal expansion techniques to identify novel self-renewing Islet 1 (Isl-1) positive primitive progenitor cells (PPC) within rat bone marrow that exhibited canonical stem cell markers and preferential differentiation towards a smooth muscle-like fate. We subsequently used molecular tagging to select Isl-1 positive clonal populations from expanded and de novo marrow cell populations. We refer to these previously undescribed cells as the PPC given its stem cell marker profile, and robust self-renewal capacity. PPC could be directly converted into induced smooth muscle cells (iSMC) using single transcription factor (Kruppel-like factor 4) knockdown or transactivator (myocardin) overexpression in contrast to three control cells (HEK 293, endothelial cells and mesenchymal stem cells) where such induction was not possible. iSMC exhibited immuno- and cytoskeletal-phenotype, calcium signaling profile and contractile responses similar to bona fide SMC. Passaged iSMC could be expanded to a scale sufficient for large scale tissue replacement.  PPC and reprogramed iSMC so derived may offer future opportunities to investigate molecular, structure/function and cell-based replacement therapy approaches to diverse cardiovascular, respiratory, gastrointestinal, and genitourinary diseases that have as their basis smooth muscle cell functional aberrancy or numerical loss. Stem Cells 2016;34:1354-1368. PMID:26840832

  8. Human primordial germ cell-derived progenitors give rise to neurons and glia in vivo

    SciTech Connect

    Teng, Yincheng; Chen, Bin; Tao, Minfang

    2009-12-18

    We derived a cell population from cultured human primordial germ cells from early human embryos. The derivates, termed embryoid body-derived (EBD) cells, displayed an extensive capacity for proliferation and expressed a panel of markers in all three germ layers. Interestingly, EBD cells were also positive for markers of neural stem/progenitor cells, such as nestin and glial fibrillary acidic protein. When these cells were transplanted into the brain cavities of fetal sheep and postnatal NOD-SCID mice or nerve-degenerated tibialis anterior muscles, they readily gave rise to neurons or glial cells. To our knowledge, our data are the first to demonstrate that EBD cells can undergo further neurogenesis under suitable environments in vivo. Hence, with the abilities of extensive expansion, self-renewal, and differentiation, EBD cells may provide a useful donor source for neural stem/progenitor cells to be used in cell-replacement therapies for diseases of the nervous system.

  9. Skeletal Myogenic Progenitors Originating from Embryonic Dorsal Aorta Coexpress Endothelial and Myogenic Markers and Contribute to Postnatal Muscle Growth and Regeneration

    PubMed Central

    De Angelis, Luciana; Berghella, Libera; Coletta, Marcello; Lattanzi, Laura; Zanchi, Malvina; Gabriella, M.; Ponzetto, Carola; Cossu, Giulio

    1999-01-01

    Skeletal muscle in vertebrates is derived from somites, epithelial structures of the paraxial mesoderm, yet many unrelated reports describe the occasional appearance of myogenic cells from tissues of nonsomite origin, suggesting either transdifferentiation or the persistence of a multipotent progenitor. Here, we show that clonable skeletal myogenic cells are present in the embryonic dorsal aorta of mouse embryos. This finding is based on a detailed clonal analysis of different tissue anlagen at various developmental stages. In vitro, these myogenic cells show the same morphology as satellite cells derived from adult skeletal muscle, and express a number of myogenic and endothelial markers. Surprisingly, the latter are also expressed by adult satellite cells. Furthermore, it is possible to clone myogenic cells from limbs of mutant c-Met−/− embryos, which lack appendicular muscles, but have a normal vascular system. Upon transplantation, aorta-derived myogenic cells participate in postnatal muscle growth and regeneration, and fuse with resident satellite cells. The potential of the vascular system to generate skeletal muscle cells may explain observations of nonsomite skeletal myogenesis and raises the possibility that a subset of satellite cells may derive from the vascular system. PMID:10562287

  10. Differentiation of pancreatic stem and progenitor β-cells into insulin secreting cells in mice with diabetes mellitus.

    PubMed

    Skurikhin, E G; Ermakova, N N; Khmelevskaya, E S; Pershina, O V; Krupin, V A; Ermolaeva, L A; Dygai, A M

    2014-04-01

    We studied in vitro differentiation of pancreatic stem and progenitor cells into insulin secreting cells in the model of streptozotocin-induced diabetes in C57Bl/6 mice. Streptozotocin was shown to increase the population of pancreatic oligopotent β-cell precursors (CD45(-), TER119(-), CD133(+), and CD49f(low)) and did not affect multipotent (stem) progenitor cells (CD45(-), TER119(-), CD17(-), CD309(-)). During long-term culturing, diabetic multipotent progenitor cells showed high capacity for self-renewal. A population of dithizone-positive (insulin secreting cells) mononuclear cells was obtained releasing insulin after prolonged culturing in suspension enriched with diabetic CD45(-), TER119(-), CD17(-), and CD309(-) cells. The rate of generation of "new" insulin-producing cells and insulin release in the samples of experimental group considerably exceeded activity of the corresponding processes in the control group. PMID:24824681

  11. Clinical-scale cultures of cord blood CD34(+) cells to amplify committed progenitors and maintain stem cell activity.

    PubMed

    Ivanovic, Zoran; Duchez, Pascale; Chevaleyre, Jean; Vlaski, Marija; Lafarge, Xavier; Dazey, Bernard; Robert-Richard, Elodie; Mazurier, Frédéric; Boiron, Jean-Michel

    2011-01-01

    We developed a clinical-scale cord blood (CB) cell ex vivo procedure to enable an extensive expansion of committed progenitors--colony-forming cells (CFCs) without impairing very primitive hematopoietic stem cells (HSCs). CD34(++) cells, selected from previously cryopreserved and thawed CB units, were cultured in two steps (diluted 1:4 after 6 days) in the presence of stem cell factor (SCF), fms-related tyrosine kinase 3 ligand (Flt-3L), megakaryocyte growth and development factor (MGDF) (100 ng/ml each), granulocyte-colony stimulating factor (G-CSF) (10 ng/ml) in HP01 serum-free medium. HSC activity was evaluated in a serial transplantation assay, by detection of human cells (CD45, CD33, CD19 and CFC of human origin) in bone marrow (BM) of primary and secondary recipient NOD/SCID mice 6-8 weeks after transplantation. A wide amplification of total cells (∼350-fold), CD34(+) cells (∼100-fold), and CFC (∼130-fold) without impairing the HSC activity was obtained. The activity of a particular HSC subpopulation (SRC(CFC)) was even enhanced.Thus, an extensive ex vivo expansion of CFCs is feasible without impairing the activity of HSCs. This result was enabled by associating antioxidant power of medium with an appropriate cytokine cocktail (i.e., mimicking physiologic effects of a weak oxygenation in hematopoietic environment). PMID:21294956

  12. Human neural progenitors express functional lysophospholipid receptors that regulate cell growth and morphology

    PubMed Central

    Hurst, Jillian H; Mumaw, Jennifer; Machacek, David W; Sturkie, Carla; Callihan, Phillip; Stice, Steve L; Hooks, Shelley B

    2008-01-01

    Background Lysophospholipids regulate the morphology and growth of neurons, neural cell lines, and neural progenitors. A stable human neural progenitor cell line is not currently available in which to study the role of lysophospholipids in human neural development. We recently established a stable, adherent human embryonic stem cell-derived neuroepithelial (hES-NEP) cell line which recapitulates morphological and phenotypic features of neural progenitor cells isolated from fetal tissue. The goal of this study was to determine if hES-NEP cells express functional lysophospholipid receptors, and if activation of these receptors mediates cellular responses critical for neural development. Results Our results demonstrate that Lysophosphatidic Acid (LPA) and Sphingosine-1-phosphate (S1P) receptors are functionally expressed in hES-NEP cells and are coupled to multiple cellular signaling pathways. We have shown that transcript levels for S1P1 receptor increased significantly in the transition from embryonic stem cell to hES-NEP. hES-NEP cells express LPA and S1P receptors coupled to Gi/o G-proteins that inhibit adenylyl cyclase and to Gq-like phospholipase C activity. LPA and S1P also induce p44/42 ERK MAP kinase phosphorylation in these cells and stimulate cell proliferation via Gi/o coupled receptors in an Epidermal Growth Factor Receptor (EGFR)- and ERK-dependent pathway. In contrast, LPA and S1P stimulate transient cell rounding and aggregation that is independent of EGFR and ERK, but dependent on the Rho effector p160 ROCK. Conclusion Thus, lysophospholipids regulate neural progenitor growth and morphology through distinct mechanisms. These findings establish human ES cell-derived NEP cells as a model system for studying the role of lysophospholipids in neural progenitors. PMID:19077254

  13. Alterations of circulating lymphoid committed progenitor cellular metabolism after allogeneic stem cell transplantation in humans.

    PubMed

    Glauzy, Salomé; Peffault de Latour, Régis; André-Schmutz, Isabelle; Lachuer, Joël; Servais, Sophie; Socié, Gérard; Clave, Emmanuel; Toubert, Antoine

    2016-09-01

    Lymphoid-committed CD34(+)lin(-)CD10(+)CD24(-) progenitors undergo a rebound at month 3 after allogeneic hematopoietic stem cell transplantation (allo-HSCT) in the absence of acute graft-versus-host disease (aGVHD). Here, we analyzed transcriptional programs of cell-sorted circulating lymphoid-committed progenitors and CD34(+)Lin(-)CD10(-) nonlymphoid progenitors in 11 allo-HSCT patients who had (n = 5) or had not (n = 6) developed grade 2 or 3 aGVHD and in 7 age-matched healthy donors. Major upregulated pathways include protein synthesis, energy production, cell cycle regulation, and cytoskeleton organization. Notably, genes from protein biogenesis, translation machinery, and cell cycle (CDK6) were overexpressed in progenitors from patients in the absence of aGVHD compared with healthy donors and patients affected by aGVHD. Expression of many genes from the mitochondrial oxidative phosphorylation metabolic pathway leading to ATP production were more specifically increased in lymphoid-committed progenitors in the absence of aGVHD. This was also the case for genes involved in cell mobilization such as those regulating Rho GTPase activity. In all, we found that circulating lymphoid-committed progenitors undergo profound changes in metabolism, favoring cell proliferation, energy production, and cell mobilization after allo-HSCT in humans. These mechanisms are abolished in the case of aGVHD or its treatment, indicating a persistent cell-intrinsic defect after exit from the bone marrow. PMID:27321893

  14. Bifurcation dynamics and determination of alternate cell fates in bipotent progenitor cells.

    PubMed

    Li, Shanshan; Liu, Yanwei; Liu, Zengrong; Wang, Ruiqi

    2015-04-01

    The gene regulatory networks in which two lineage-affiliated transcription factors, such as GATA1 and PU.1, inhibit each other but activate themselves so as to regulate the choice between alternative cell fates have been extensively studied. These simple networks can generate bistability and explain the transitions between the alternative cell fates. The commitment of a progenitor cell to a new fate corresponds to the occurrence of different types of bifurcations, depending on if a system is symmetrical and how perturbations affect the system. Here we take a general modeling and analyzing approach and show that the lateral inhibition with symmetry and asymmetry can lead to different bifurcation dynamics. Especially, if cell fate decision-making is initiated with asymmetry or symmetry-breaking perturbations, a progenitor cell pre-patterns itself into a polarized cell, depending on the asymmetry or symmetry-breaking perturbations. This study may help us understand the fundamental features of binary cell fate decisions more clearly and further apply to a wider range of decision-making processes. PMID:25852780

  15. Transient inactivation of Notch signaling synchronizes differentiation of neural progenitor cells

    PubMed Central

    Nelson, Branden R.; Hartman, Byron H.; Georgi, Sean A.; Lan, Michael S.; Reh, Thomas A.

    2007-01-01

    Summary In the developing nervous system, the balance between proliferation and differentiation is critical to generate the appropriate numbers and types of neurons and glia. Notch signaling maintains the progenitor pool throughout this process. While many components of the Notch pathway have been identified, the downstream molecular events leading to neural differentiation are not well understood. We have taken advantage of a small molecule inhibitor, DAPT, to block Notch activity in retinal progenitor cells, and analyzed the resulting molecular and cellular changes over time. DAPT treatment causes a massive, coordinated differentiation of progenitors that produces cell types appropriate for their developmental stage. Transient exposure of retina to DAPT for specific time periods allowed us to define the period of Notch inactivation that is required for a permanent commitment to differentiate. Inactivation of Notch signaling revealed a cascade of proneural bHLH transcription factor gene expression that correlates with stages in progenitor cell differentiation. Microarray/QPCR analysis confirms the changes in Notch signaling components, and reveals new molecular targets for investigating neuronal differentiation. Thus, transient inactivation of Notch signaling synchronizes progenitor cell differentiation, and allows for a systematic analysis of key steps in this process. PMID:17280659

  16. S-phase duration is the main target of cell cycle regulation in neural progenitors of developing ferret neocortex.

    PubMed

    Turrero García, Miguel; Chang, YoonJeung; Arai, Yoko; Huttner, Wieland B

    2016-02-15

    The evolutionary expansion of the neocortex primarily reflects increases in abundance and proliferative capacity of cortical progenitors and in the length of the neurogenic period during development. Cell cycle parameters of neocortical progenitors are an important determinant of cortical development. The ferret (Mustela putorius furo), a gyrencephalic mammal, has gained increasing importance as a model for studying corticogenesis. Here, we have studied the abundance, proliferation, and cell cycle parameters of different neural progenitor types, defined by their differential expression of the transcription factors Pax6 and Tbr2, in the various germinal zones of developing ferret neocortex. We focused our analyses on postnatal day 1, a late stage of cortical neurogenesis when upper-layer neurons are produced. Based on cumulative 5-ethynyl-2'-deoxyuridine (EdU) labeling as well as Ki67 and proliferating cell nuclear antigen (PCNA) immunofluorescence, we determined the duration of the various cell cycle phases of the different neocortical progenitor subpopulations. Ferret neocortical progenitors were found to exhibit longer cell cycles than those of rodents and little variation in the duration of G1 among distinct progenitor types, also in contrast to rodents. Remarkably, the main difference in cell cycle parameters among the various progenitor types was the duration of S-phase, which became shorter as progenitors progressively changed transcription factor expression from patterns characteristic of self-renewal to those of neuron production. Hence, S-phase duration emerges as major target of cell cycle regulation in cortical progenitors of this gyrencephalic mammal. PMID:25963823

  17. Isolation, Culture, and Characterization of Chicken Cartilage Stem/Progenitor Cells

    PubMed Central

    Li, Lu; Ma, Yuehui; Li, Xianglong; Li, Xiangchen; Bai, Chunyu; Ji, Meng; Zhang, Shuang; Guan, Weijun; Li, Junjie

    2015-01-01

    A chondrocyte progenitor population isolated from the surface zone of articular cartilage has become a promising cell source for cell-based cartilage repair. The cartilage-derived stem/progenitor cells are multipotent stem cells, which can differentiate into three cell types in vitro including adipocytes, osteoblasts, and chondrocytes. Much work has been done on cartilage stem/progenitor cells (CSPCs) from people, horses, and cattle, but the relatively little literature has been published about these cells in chickens. In our work, CSPCs were isolated from chicken embryos in incubated eggs for 20 days. In order to inquire into the biological characteristics of chicken CSPCs, immunofluorescence, reverse transcription-polymerase chain reaction (RT-PCR), and flow cytometry were adopted to detect the characteristic surface markers of CSPCs. Primary CSPCs were subcultured to passage 22 and, for purpose of knowing the change of cell numbers, we drew the growth curves. Isolated CSPCs were induced to adipocytes, osteoblasts, and chondrocytes. Our results suggest that we have identified and characterised a novel cartilage progenitor population resident in chicken articular cartilage and CSPCs isolated from chickens possess similar biological characteristics to those from other species, which will greatly benefit future cell-based cartilage repair therapies. PMID:26351636

  18. Restricted differentiation potential of progenitor cell populations obtained from the equine superficial digital flexor tendon (SDFT)

    PubMed Central

    Humphreys, William James Edward; Comerford, Eithne Josephine Veronica; Clegg, Peter David; Canty‐Laird, Elizabeth Gail

    2015-01-01

    ABSTRACT The aim of this study was to characterize stem and progenitor cell populations from the equine superficial digital flexor tendon, an energy‐storing tendon with similarities to the human Achilles tendon, which is frequently injured. Using published methods for the isolation of tendon‐derived stem/progenitor cells by low‐density plating we found that isolated cells possessed clonogenicity but were unable to fully differentiate towards mesenchymal lineages using trilineage differentiation assays. In particular, adipogenic differentiation appeared to be restricted, as assessed by Oil Red O staining of stem/progenitor cells cultured in adipogenic medium. We then assessed whether differential adhesion to fibronectin substrates could be used to isolate a population of cells with broader differentiation potential. However we found little difference in the stem and tenogenic gene expression profile of these cells as compared to tenocytes, although the expression of thrombospondin‐4 was significantly reduced in hypoxic conditions. Tendon‐derived stem/progenitor cells isolated by differential adhesion to fibronectin had a similar differentiation potential to cells isolated by low density plating, and when grown in either normoxic or hypoxic conditions. In summary, we have found a restricted differentiation potential of cells isolated from the equine superficial digital flexor tendon despite evidence for stem/progenitor‐like characteristics. © 2015 The Authors. Journal of Orthopaedic Research Published by Wiley Periodicals, Inc. on behalf of Orthopaedic Research Society. J Orthop Res 33:849–858, 2015. PMID:25877997

  19. Isolation, Culture, and Characterization of Chicken Cartilage Stem/Progenitor Cells.

    PubMed

    Li, Lu; Ma, Yuehui; Li, Xianglong; Li, Xiangchen; Bai, Chunyu; Ji, Meng; Zhang, Shuang; Guan, Weijun; Li, Junjie

    2015-01-01

    A chondrocyte progenitor population isolated from the surface zone of articular cartilage has become a promising cell source for cell-based cartilage repair. The cartilage-derived stem/progenitor cells are multipotent stem cells, which can differentiate into three cell types in vitro including adipocytes, osteoblasts, and chondrocytes. Much work has been done on cartilage stem/progenitor cells (CSPCs) from people, horses, and cattle, but the relatively little literature has been published about these cells in chickens. In our work, CSPCs were isolated from chicken embryos in incubated eggs for 20 days. In order to inquire into the biological characteristics of chicken CSPCs, immunofluorescence, reverse transcription-polymerase chain reaction (RT-PCR), and flow cytometry were adopted to detect the characteristic surface markers of CSPCs. Primary CSPCs were subcultured to passage 22 and, for purpose of knowing the change of cell numbers, we drew the growth curves. Isolated CSPCs were induced to adipocytes, osteoblasts, and chondrocytes. Our results suggest that we have identified and characterised a novel cartilage progenitor population resident in chicken articular cartilage and CSPCs isolated from chickens possess similar biological characteristics to those from other species, which will greatly benefit future cell-based cartilage repair therapies. PMID:26351636

  20. Stem and progenitor cell division kinetics during postnatal mouse mammary gland development.

    PubMed

    Giraddi, Rajshekhar R; Shehata, Mona; Gallardo, Mercedes; Blasco, Maria A; Simons, Benjamin D; Stingl, John

    2015-01-01

    The cycling properties of mammary stem and progenitor cells is not well understood. To determine the division properties of these cells, we administered synthetic nucleosides for varying periods of time to mice at different stages of postnatal development and monitored the rate of uptake of these nucleosides in the different mammary cell compartments. Here we show that most cell division in the adult virgin gland is restricted to the oestrogen receptor-expressing luminal cell lineage. Our data also demonstrate that the oestrogen receptor-expressing, milk and basal cell subpopulations have telomere lengths and cell division kinetics that are not compatible with these cells being hierarchically organized; instead, our data indicate that in the adult homeostatic gland, each cell type is largely maintained by its own restricted progenitors. We also observe that transplantable stem cells are largely quiescent during oestrus, but are cycling during dioestrus when progesterone levels are high. PMID:26511661

  1. Estrogen regulates luminal progenitor cell differentiation through H19 gene expression

    PubMed Central

    Basak, Pratima; Chatterjee, Sumanta; Weger, Steven; Bruce, M Christine; Murphy, Leigh C; Raouf, Afshin

    2015-01-01

    Although the role of estrogen signaling in breast cancer development has been extensively studied, the mechanisms that regulate the indispensable role of estrogen in normal mammary gland development have not been well studied. Because of the unavailability of culture system to maintain estrogen-receptor-positive (ERα+) cells in vitro, the molecular mechanisms that regulate estrogen/ERα signaling in the normal human breast are unknown. In the present study, we examined the effects of estrogen signaling on ERα+ human luminal progenitors using a modified matrigel assay and found that estrogen signaling increased the expansion potential of these progenitors. Furthermore, we found that blocking ERα attenuated luminal progenitor expansion and decreased the luminal colony-forming potential of these progenitors. Additionally, blocking ERα decreased H19 expression in the luminal progenitors and led to the development of smaller luminal colonies. We further showed that knocking down the H19 gene in the luminal progenitors significantly decreased the colony-forming potential of the luminal progenitors, and this phenotype could not be rescued by the addition of estrogen. Lastly, we explored the clinical relevance of the estrogen–H19 signaling axis in breast tumors and found that ERα+ tumors exhibited a higher expression of H19 as compared with ERα− tumors and that H19 expression showed a positive correlation with ERα expression in those tumors. Taken together, the present results indicate that the estrogen–ERα–H19 signaling axis plays a role in regulating the proliferation and differentiation potentials of the normal luminal progenitors and that this signaling network may also be important in the development of ER+ breast cancer tumors. PMID:25944846

  2. Mesenchymal Stem Cell Therapy Stimulates Endogenous Host Progenitor Cells to Improve Colonic Epithelial Regeneration

    PubMed Central

    Sémont, Alexandra; Demarquay, Christelle; Bessout, Raphaëlle; Durand, Christelle; Benderitter, Marc; Mathieu, Noëlle

    2013-01-01

    Patients who undergo pelvic radiotherapy may develop severe and chronic complications resulting from gastrointestinal alterations. The lack of curative treatment highlights the importance of novel and effective therapeutic strategies. We thus tested the therapeutic benefit of mesenchymal stem cells (MSC) treatment and proposed molecular mechanisms of action. MSC efficacy was tested in an experimental model of radiation-induced severe colonic ulceration histologically similar to that observed in patients. In this model, MSC from bone marrow were administered intravenously, immediately or three weeks (established lesions) after irradiation. MSC therapy reduces radiation-induced colonic ulceration and increases animal survival. MSC treatment induces therapeutic efficacy whatever the time of cell infusion. Infused-MSC engraft in the colon but also increase endogenous MSC mobilization in blood that have lasting benefits over time. In vitro analysis demonstrates that the MSC effect is mediated by paracrine mechanisms through the non-canonical WNT (Wingless integration site) pathway. In irradiated rat colons, MSC treatment increases the expression of the non-canonical WNT4 ligand by epithelial cells. The epithelial regenerative process is improved after MSC injection by stimulation of colonic epithelial cells positive for SOX9 (SRY-box containing gene 9) progenitor/stem cell markers. This study demonstrates that MSC treatment induces stimulation of endogenous host progenitor cells to improve the regenerative process and constitutes an initial approach to arguing in favor of the use of MSC to limit/reduce colorectal damage induced by radiation. PMID:23922953

  3. Discovery of progenitor cell signatures by time-series synexpression analysis during Drosophila embryonic cell immortalization

    PubMed Central

    Dequéant, Mary-Lee; Fagegaltier, Delphine; Hu, Yanhui; Spirohn, Kerstin; Simcox, Amanda; Hannon, Gregory J.; Perrimon, Norbert

    2015-01-01

    The use of time series profiling to identify groups of functionally related genes (synexpression groups) is a powerful approach for the discovery of gene function. Here we apply this strategy during RasV12 immortalization of Drosophila embryonic cells, a phenomenon not well characterized. Using high-resolution transcriptional time-series datasets, we generated a gene network based on temporal expression profile similarities. This analysis revealed that common immortalized cells are related to adult muscle precursors (AMPs), a stem cell-like population contributing to adult muscles and sharing properties with vertebrate satellite cells. Remarkably, the immortalized cells retained the capacity for myogenic differentiation when treated with the steroid hormone ecdysone. Further, we validated in vivo the transcription factor CG9650, the ortholog of mammalian Bcl11a/b, as a regulator of AMP proliferation predicted by our analysis. Our study demonstrates the power of time series synexpression analysis to characterize Drosophila embryonic progenitor lines and identify stem/progenitor cell regulators. PMID:26438832

  4. Effects of Substrate and Co-Culture on Neural Progenitor Cell Differentiation

    SciTech Connect

    Jones, Erin Boote

    2008-01-01

    In recent years the study of stem and progenitor cells has moved to the forefront of research. Since the isolation of human hematopoietic stem cells in 1988 and the subsequent discovery of a self renewing population of multipotent cells in many tissues, many researchers have envisioned a better understanding of development and potential clinical usage in intractable diseases. Both these goals, however, depend on a solid understanding of the intracellular and extracellular forces that cause stem cells to differentiate to a specific cell fate. Many diseases of large scale cell loss have been suggested as candidates for stem cell based treatments. It is proposed that replacing the function of the damaged or defective cells by specific differentiation of stem or progenitor cells could treat the disease. Before cells can be directed to specific lineages, the mechanisms of differentiation must be better understood. Differentiation in vivo is an intensively complex system that is difficult to study. The goal of this research is to develop further understanding of the effects of soluble and extracellular matrix (ECM) cues on the differentiation of neural progenitor cells with the use of a simplified in vitro culture system. Specific research objectives are to study the differentiation of neural progenitor cells in response to astrocyte conditioned medium and protein substrate composition and concentration. In an effort to reveal the mechanism of the conditioned medium interaction, a test for the presence of a feedback loop between progenitor cells and astrocytes is presented along with an examination of conditioned medium storage temperature, which can reveal enzymatic dependencies. An examination of protein substrate composition and concentration will help to reveal the role of any ECM interactions on differentiation. This thesis is organized into a literature review covering recent advances in use of external modulators of differentiation such as surface coatings, co

  5. Regenerative medicine: Hepatic progenitor cells up their game in the therapeutic stakes.

    PubMed

    Alison, Malcolm R; Lin, Wey-Ran

    2015-11-01

    Bipotential hepatic progenitor cells (HPCs) are recognized as making modest contributions to hepatocyte regeneration, though never credited with major liver repopulation. A new study in mice demonstrates HPCs can make a massive contribution to hepatocyte replacement, suggesting HPCs have the potential to be an effective cell therapy for liver failure. PMID:26441248

  6. Mammalian Par3 regulates progenitor cell asymmetric division via Notch signaling in the developing neocortex

    PubMed Central

    Bultje, Ronald S.; Castaneda-Castellanos, David R.; Jan, Lily Yeh; Jan, Yuh-Nung; Kriegstein, Arnold R.; Shi, Song-Hai

    2009-01-01

    Asymmetric cell division of radial glial progenitors produces neurons while allowing self-renewal; however, little is known about the mechanism that generates asymmetry in daughter cell fate specification. Here we found that mammalian partition defective protein 3 (mPar3), a key cell polarity determinant, exhibits dynamic distribution in radial glial progenitors. While it is enriched at the lateral membrane domain in the ventricular endfeet during interphase, mPar3 becomes dispersed and shows asymmetric localization as cell cycle progresses. Either removal or ectopic expression of mPar3 prevents radial glial progenitors from dividing asymmetrically yet generates different outcomes in daughter cell fate specification. Furthermore, the expression level of mPar3 affects Notch signaling, and manipulations of Notch signaling or Numb expression suppress mPar3 regulation of radial glial cell division and daughter cell fate specification. These results reveal a critical molecular pathway underlying asymmetric cell division of radial glial progenitors in the mammalian neocortex. PMID:19640478

  7. Control of AC133/CD133 and impact on human hematopoietic progenitor cells through nucleolin.

    PubMed

    Bhatia, S; Reister, S; Mahotka, C; Meisel, R; Borkhardt, A; Grinstein, E

    2015-11-01

    AC133 is a prominent surface marker of CD34+ and CD34- hematopoietic stem/progenitor cell (HSPC) subsets. AC133+ HSPCs contain high progenitor cell activity and are capable of hematopoietic reconstitution. Furthermore, AC133 is used for prospective isolation of tumor-initiating cells in several hematological malignancies. Nucleolin is a multifunctional factor of growing and cancer cells, which is aberrantly active in certain hematological neoplasms, and serves as a candidate molecular target for cancer therapy. Nucleolin is involved in gene transcription and RNA metabolism and is prevalently expressed in HSPCs, as opposed to differentiated hematopoietic tissue. The present study dissects nucleolin-mediated activation of surface AC133 and its cognate gene CD133, via specific interaction of nucleolin with the tissue-dependent CD133 promoter P1, as a mechanism that crucially contributes to AC133 expression in CD34+ HSPCs. In mobilized peripheral blood (MPB)-derived HSPCs, nucleolin elevates colony-forming unit (CFU) frequencies and enriches granulocyte-macrophage CFUs. Furthermore, nucleolin amplifies long-term culture-initiating cells and also promotes long-term, cytokine-dependent maintenance of hematopoietic progenitor cells. Active β-catenin, active Akt and Bcl-2 levels in MPB-derived HSPCs are nucleolin-dependent, and effects of nucleolin on these cells partially rely on β-catenin activity. The study provides new insights into molecular network relevant to stem/progenitor cells in normal and malignant hematopoiesis. PMID:26183533

  8. The Lysine Acetyltransferase Activator Brpf1 Governs Dentate Gyrus Development through Neural Stem Cells and Progenitors

    PubMed Central

    You, Linya; Yan, Kezhi; Zhou, Jinfeng; Zhao, Hong; Bertos, Nicholas R.; Park, Morag; Wang, Edwin; Yang, Xiang-Jiao

    2015-01-01

    Lysine acetylation has recently emerged as an important post-translational modification in diverse organisms, but relatively little is known about its roles in mammalian development and stem cells. Bromodomain- and PHD finger-containing protein 1 (BRPF1) is a multidomain histone binder and a master activator of three lysine acetyltransferases, MOZ, MORF and HBO1, which are also known as KAT6A, KAT6B and KAT7, respectively. While the MOZ and MORF genes are rearranged in leukemia, the MORF gene is also mutated in prostate and other cancers and in four genetic disorders with intellectual disability. Here we show that forebrain-specific inactivation of the mouse Brpf1 gene causes hypoplasia in the dentate gyrus, including underdevelopment of the suprapyramidal blade and complete loss of the infrapyramidal blade. We trace the developmental origin to compromised Sox2+ neural stem cells and Tbr2+ intermediate neuronal progenitors. We further demonstrate that Brpf1 loss deregulates neuronal migration, cell cycle progression and transcriptional control, thereby causing abnormal morphogenesis of the hippocampus. These results link histone binding and acetylation control to hippocampus development and identify an important epigenetic regulator for patterning the dentate gyrus, a brain structure critical for learning, memory and adult neurogenesis. PMID:25757017

  9. The lysine acetyltransferase activator Brpf1 governs dentate gyrus development through neural stem cells and progenitors.

    PubMed

    You, Linya; Yan, Kezhi; Zou, Jinfeng; Zhou, Jinfeng; Zhao, Hong; Bertos, Nicholas R; Park, Morag; Wang, Edwin; Yang, Xiang-Jiao

    2015-03-01

    Lysine acetylation has recently emerged as an important post-translational modification in diverse organisms, but relatively little is known about its roles in mammalian development and stem cells. Bromodomain- and PHD finger-containing protein 1 (BRPF1) is a multidomain histone binder and a master activator of three lysine acetyltransferases, MOZ, MORF and HBO1, which are also known as KAT6A, KAT6B and KAT7, respectively. While the MOZ and MORF genes are rearranged in leukemia, the MORF gene is also mutated in prostate and other cancers and in four genetic disorders with intellectual disability. Here we show that forebrain-specific inactivation of the mouse Brpf1 gene causes hypoplasia in the dentate gyrus, including underdevelopment of the suprapyramidal blade and complete loss of the infrapyramidal blade. We trace the developmental origin to compromised Sox2+ neural stem cells and Tbr2+ intermediate neuronal progenitors. We further demonstrate that Brpf1 loss deregulates neuronal migration, cell cycle progression and transcriptional control, thereby causing abnormal morphogenesis of the hippocampus. These results link histone binding and acetylation control to hippocampus development and identify an important epigenetic regulator for patterning the dentate gyrus, a brain structure critical for learning, memory and adult neurogenesis. PMID:25757017

  10. Specific bone cells produce DLL4 to generate thymus-seeding progenitors from bone marrow

    PubMed Central

    Yu, Vionnie W.C.; Saez, Borja; Cook, Colleen; Lotinun, Sutada; Pardo-Saganta, Ana; Wang, Ying-Hua; Lymperi, Stefania; Ferraro, Francesca; Raaijmakers, Marc H.G.P.; Wu, Joy Y.; Zhou, Lan; Rajagopal, Jayaraj; Kronenberg, Henry M.; Baron, Roland

    2015-01-01

    Production of the cells that ultimately populate the thymus to generate α/β T cells has been controversial, and their molecular drivers remain undefined. Here, we report that specific deletion of bone-producing osteocalcin (Ocn)-expressing cells in vivo markedly reduces T-competent progenitors and thymus-homing receptor expression among bone marrow hematopoietic cells. Decreased intrathymic T cell precursors and decreased generation of mature T cells occurred despite normal thymic function. The Notch ligand DLL4 is abundantly expressed on bone marrow Ocn+ cells, and selective depletion of DLL4 from these cells recapitulated the thymopoietic abnormality. These data indicate that specific mesenchymal cells in bone marrow provide key molecular drivers enforcing thymus-seeding progenitor generation and thereby directly link skeletal biology to the production of T cell–based adaptive immunity. PMID:25918341

  11. Identification and characterization of a non-satellite cell muscle resident progenitor during postnatal development.

    PubMed

    Mitchell, Kathryn J; Pannérec, Alice; Cadot, Bruno; Parlakian, Ara; Besson, Vanessa; Gomes, Edgar R; Marazzi, Giovanna; Sassoon, David A

    2010-03-01

    Satellite cells are resident myogenic progenitors in postnatal skeletal muscle involved in muscle postnatal growth and adult regenerative capacity. Here, we identify and describe a population of muscle-resident stem cells, which are located in the interstitium, that express the cell stress mediator PW1 but do not express other markers of muscle stem cells such as Pax7. PW1(+)/Pax7(-) interstitial cells (PICs) are myogenic in vitro and efficiently contribute to skeletal muscle regeneration in vivo as well as generating satellite cells and PICs. Whereas Pax7 mutant satellite cells show robust myogenic potential, Pax7 mutant PICs are unable to participate in myogenesis and accumulate during postnatal growth. Furthermore, we found that PICs are not derived from a satellite cell lineage. Taken together, our findings uncover a new and anatomically identifiable population of muscle progenitors and define a key role for Pax7 in a non-satellite cell population during postnatal muscle growth. PMID:20118923

  12. 12-Deoxyphorbols Promote Adult Neurogenesis by Inducing Neural Progenitor Cell Proliferation via PKC Activation

    PubMed Central

    Geribaldi-Doldán, Noelia; Flores-Giubi, Eugenia; Murillo-Carretero, Maribel; García-Bernal, Francisco; Carrasco, Manuel; Macías-Sánchez, Antonio J.; Domínguez-Riscart, Jesús; Verástegui, Cristina; Hernández-Galán, Rosario

    2016-01-01

    Background: Neuropsychiatric and neurological disorders frequently occur after brain insults associated with neuronal loss. Strategies aimed to facilitate neuronal renewal by promoting neurogenesis constitute a promising therapeutic option to treat neuronal death-associated disorders. In the adult brain, generation of new neurons occurs physiologically throughout the entire life controlled by extracellular molecules coupled to intracellular signaling cascades. Proteins participating in these cascades within neurogenic regions constitute potential pharmacological targets to promote neuronal regeneration of injured areas of the central nervous system. Methodology: We have performed in vitro and in vivo approaches to determine neural progenitor cell proliferation to understand whether activation of kinases of the protein kinase C family facilitates neurogenesis in the adult brain. Results: We have demonstrated that protein kinase C activation by phorbol-12-myristate-13-acetate induces neural progenitor cell proliferation in vitro. We also show that the nontumorogenic protein kinase C activator prostratin exerts a proliferative effect on neural progenitor cells in vitro. This effect can be reverted by addition of the protein kinase C inhibitor G06850, demonstrating that the effect of prostratin is mediated by protein kinase C activation. Additionally, we show that prostratin treatment in vivo induces proliferation of neural progenitor cells within the dentate gyrus of the hippocampus and the subventricular zone. Finally, we describe a library of diterpenes with a 12-deoxyphorbol structure similar to that of prostratin that induces a stronger effect than prostratin on neural progenitor cell proliferation both in vitro and in vivo. Conclusions: This work suggests that protein kinase C activation is a promising strategy to expand the endogenous neural progenitor cell population to promote neurogenesis and highlights the potential of 12-deoxyphorbols as pharmaceutical

  13. An insulin signaling feedback loop regulates pancreas progenitor cell differentiation during islet development and regeneration.

    PubMed

    Ye, Lihua; Robertson, Morgan A; Mastracci, Teresa L; Anderson, Ryan M

    2016-01-15

    As one of the key nutrient sensors, insulin signaling plays an important role in integrating environmental energy cues with organism growth. In adult organisms, relative insufficiency of insulin signaling induces compensatory expansion of insulin-secreting pancreatic beta (β) cells. However, little is known about how insulin signaling feedback might influence neogenesis of β cells during embryonic development. Using genetic approaches and a unique cell transplantation system in developing zebrafish, we have uncovered a novel role for insulin signaling in the negative regulation of pancreatic progenitor cell differentiation. Blocking insulin signaling in the pancreatic progenitors hastened the expression of the essential β cell genes insulin and pdx1, and promoted β cell fate at the expense of alpha cell fate. In addition, loss of insulin signaling promoted β cell regeneration and destabilization of alpha cell character. These data indicate that insulin signaling constitutes a tunable mechanism for β cell compensatory plasticity during early development. Moreover, using a novel blastomere-to-larva transplantation strategy, we found that loss of insulin signaling in endoderm-committed blastomeres drove their differentiation into β cells. Furthermore, the extent of this differentiation was dependent on the function of the β cell mass in the host. Altogether, our results indicate that modulation of insulin signaling will be crucial for the development of β cell restoration therapies for diabetics; further clarification of the mechanisms of insulin signaling in β cell progenitors will reveal therapeutic targets for both in vivo and in vitro β cell generation. PMID:26658317

  14. An insulin signaling feedback loop regulates pancreas progenitor cell differentiation during islet development and regeneration

    PubMed Central

    Ye, Lihua; Robertson, Morgan A.; Mastracci, Teresa L.; Anderson, Ryan M.

    2016-01-01

    As one of the key nutrient sensors, insulin signaling plays an important role in integrating environmental energy cues with organism growth. In adult organisms, relative insufficiency of insulin signaling induces compensatory expansion of insulin-secreting pancreatic beta (β) cells. However, little is known about how insulin signaling feedback might influence neogenesis of β cells during embryonic development. Using genetic approaches and a unique cell transplantation system in developing zebrafish, we have uncovered a novel role for insulin signaling in the negative regulation of pancreatic progenitor cell differentiation. Blocking insulin signaling in the pancreatic progenitors hastened the expression of the essential β cell genes insulin and pdx1, and promoted β cell fate at the expense of alpha cell fate. In addition, loss of insulin signaling promoted β cell regeneration and destabilization of alpha cell character. These data indicate that insulin signaling constitutes a tunable mechanism for β cell compensatory plasticity during early development. Moreover, using a novel blastomere-to-larva transplantation strategy, we found that loss of insulin signaling in endoderm-committed blastomeres drove their differentiation into β cells. Furthermore, the extent of this differentiation was dependent on the function of the β cell mass in the host. Altogether, our results indicate that modulation of insulin signaling will be crucial for the development of β cell restoration therapies for diabetics; further clarification of the mechanisms of insulin signaling in β cell progenitors will reveal therapeutic targets for both in vivo and in vitro β cell generation. PMID:26658317

  15. c-Myc–mediated control of cell fate in megakaryocyte-erythrocyte progenitors

    PubMed Central

    Guo, Yinshi; Niu, Chao; Breslin, Peter; Tang, Minghui; Zhang, Shubin; Wei, Wei; Kini, Ameet R.; Paner, Gladell P.; Alkan, Serhan; Morris, Stephan W.; Diaz, Manuel; Stiff, Patrick J.

    2009-01-01

    It has been found that c-Myc protein plays a critical role in controlling self-renewal versus differentiation in hematopoietic stem cells. We report that c-Myc also controls the fate of megakaryocyte-erythrocyte progenitors through regulating the differentiation of erythroid and megakaryocytic progenitors. In addition to the significant reduction of granulocytes/macrophages and B and T lymphocytes because of the reduction of their corresponding progenitors, we found significantly increased numbers of megakaryocytic progenitors and mature megakaryocytes in bone marrow and spleens of c-Myc-knockout (c-Myc−/−) mice. Differentiation of erythrocytes was blocked at the erythroid progenitor stage. This increased megakaryocytopoiesis is a cell-intrinsic defect of c-Myc-mutant hematopoietic stem cells, as shown by transplantation studies. Furthermore, we found that c-Myc is required for polyploidy formation but not for cytoplasmic maturation of megakaryocytes. Megakaryocytes from c-Myc−/− mice are significantly smaller in size and lower in ploidy than those of control mice; however, because of the dramatic increase in megakaryocyte number, although fewer platelets are produced by each megakaryocyte, a greater than 3-fold increase in platelet number was consistently observed in c-Myc−/− mice. Thus, c-Myc−/− mice develop a syndrome of severe thrombocytosis-anemia-leukopenia because of significant increases in megakaryocytopoiesis and concomitant blockage of erythrocyte differentiation and reductions in myelolymphopoiesis. PMID:19372257

  16. TRPM7 maintains progenitor-like features of neuroblastoma cells: implications for metastasis formation

    PubMed Central

    Middelbeek, Jeroen; Kamermans, Alwin; Kuipers, Arthur J.; Hoogerbrugge, Peter M.; Jalink, Kees; van Leeuwen, Frank N.

    2015-01-01

    Neuroblastoma is an embryonal tumor derived from poorly differentiated neural crest cells. Current research is aimed at identifying the molecular mechanisms that maintain the progenitor state of neuroblastoma cells and to develop novel therapeutic strategies that induce neuroblastoma cell differentiation. Mechanisms controlling neural crest development are typically dysregulated during neuroblastoma progression, and provide an appealing starting point for drug target discovery. Transcriptional programs involved in neural crest development act as a context dependent gene regulatory network. In addition to BMP, Wnt and Notch signaling, activation of developmental gene expression programs depends on the physical characteristics of the tissue microenvironment. TRPM7, a mechanically regulated TRP channel with kinase activity, was previously found essential for embryogenesis and the maintenance of undifferentiated neural crest progenitors. Hence, we hypothesized that TRPM7 may preserve progenitor-like, metastatic features of neuroblastoma cells. Using multiple neuroblastoma cell models, we demonstrate that TRPM7 expression closely associates with the migratory and metastatic properties of neuroblastoma cells in vitro and in vivo. Moreover, microarray-based expression profiling on control and TRPM7 shRNA transduced neuroblastoma cells indicates that TRPM7 controls a developmental transcriptional program involving the transcription factor SNAI2. Overall, our data indicate that TRPM7 contributes to neuroblastoma progression by maintaining progenitor-like features. PMID:25797249

  17. Periodontal Bioengineering: A Discourse in Surface Topographies, Progenitor Cells and Molecular Profiles

    NASA Astrophysics Data System (ADS)

    Dangaria, Smit J.

    2011-12-01

    Stem/progenitor cells are a population of cells capable of providing replacement cells for a given differentiated cell type. We have applied progenitor cell-based technologies to generate novel tissue-engineered implants that use biomimetic strategies with the ultimate goal of achieving full regeneration of lost periodontal tissues. Mesenchymal periodontal tissues such as cementum, alveolar bone (AB), and periodontal ligament (PDL) are neural crest-derived entities that emerge from the dental follicle (DF) at the onset of tooth root formation. Using a systems biology approach we have identified key differences between these periodontal progenitors on the basis of global gene expression profiles, gene cohort expression levels, and epigenetic modifications, in addition to differences in cellular morphologies. On an epigenetic level, DF progenitors featured high levels of the euchromatin marker H3K4me3, whereas PDL cells, AB osteoblasts, and cementoblasts contained high levels of the transcriptional repressor H3K9me3. Secondly, we have tested the influence of natural extracellular hydroxyapatite matrices on periodontal progenitor differentiation. Dimension and structure of extracellular matrix surfaces have powerful influences on cell shape, adhesion, and gene expression. Here we show that natural tooth root topographies induce integrin-mediated extracellular matrix signaling cascades in tandem with cell elongation and polarization to generate physiological periodontium-like tissues. In this study we replanted surface topography instructed periodontal ligament progenitors (PDLPs) into rat alveolar bone sockets for 8 and 16 weeks, resulting in complete attachment of tooth roots to the surrounding alveolar bone with a periodontal ligament fiber apparatus closely matching physiological controls along the entire root surface. Displacement studies and biochemical analyses confirmed that progenitor-based engineered periodontal tissues were similar to control teeth and

  18. The isolation and in vitro expansion of hepatic Sca-1 progenitor cells

    SciTech Connect

    Clayton, Elizabeth

    2009-04-17

    The intra-hepatic population of liver progenitor cells expands during liver injury when hepatocyte proliferation is inhibited. These cells can be purified by density gradient centrifugation and cultured. Separated by size only this population contains small cells of hematopoietic, epithelial and endothelial lineages and is thought to contain liver stem cells. The identity of liver stem cells remains unknown although there is some evidence that tissue Sca1{sup +} CD45{sup -} cells display progenitor cell characteristics. We identified both intra-hepatic and gall bladder Sca1{sup +} cells following liver injury and expanded ex vivo Sca1 cells as part of heterogenous cell culture or as a purified population. We found significant difference between the proliferation of Sca-1 cells when plated on laminin or collagen I while proliferation of heterogenous population was not affected by the extracellular matrix indicating the necessity for culture of Sca1{sup +} cells with laminin matrix or laminin producing cells in long term liver progenitor cell cultures.

  19. p53 Enables metabolic fitness and self-renewal of nephron progenitor cells.

    PubMed

    Li, Yuwen; Liu, Jiao; Li, Wencheng; Brown, Aaron; Baddoo, Melody; Li, Marilyn; Carroll, Thomas; Oxburgh, Leif; Feng, Yumei; Saifudeen, Zubaida

    2015-04-01

    Contrary to its classic role in restraining cell proliferation, we demonstrate here a divergent function of p53 in the maintenance of self-renewal of the nephron progenitor pool in the embryonic mouse kidney. Nephron endowment is regulated by progenitor availability and differentiation potential. Conditional deletion of p53 in nephron progenitor cells (Six2Cre(+);p53(fl/fl)) induces progressive depletion of Cited1(+)/Six2(+) self-renewing progenitors and loss of cap mesenchyme (CM) integrity. The Six2(p53-null) CM is disorganized, with interspersed stromal cells and an absence of a distinct CM-epithelia and CM-stroma interface. Impaired cell adhesion and epithelialization are indicated by decreased E-cadherin and NCAM expression and by ineffective differentiation in response to Wnt induction. The Six2Cre(+);p53(fl/fl) cap has 30% fewer Six2(GFP(+)) cells. Apoptotic index is unchanged, whereas proliferation index is significantly reduced in accordance with cell cycle analysis showing disproportionately fewer Six2Cre(+);p53(fl/fl) cells in the S and G2/M phases compared with Six2Cre(+);p53(+/+) cells. Mutant kidneys are hypoplastic with fewer generations of nascent nephrons. A significant increase in mean arterial pressure is observed in early adulthood in both germline and conditional Six2(p53-null) mice, linking p53-mediated defects in kidney development to hypertension. RNA-Seq analyses of FACS-isolated wild-type and Six2(GFP(+)) CM cells revealed that the top downregulated genes in Six2Cre(+);p53(fl/fl) CM belong to glucose metabolism and adhesion and/or migration pathways. Mutant cells exhibit a ∼ 50% decrease in ATP levels and a 30% decrease in levels of reactive oxygen species, indicating energy metabolism dysfunction. In summary, our data indicate a novel role for p53 in enabling the metabolic fitness and self-renewal of nephron progenitors. PMID:25804735

  20. Brain tumor specifies intermediate progenitor cell identity by attenuating β-catenin/Armadillo activity

    PubMed Central

    Komori, Hideyuki; Xiao, Qi; McCartney, Brooke M.; Lee, Cheng-Yu

    2014-01-01

    During asymmetric stem cell division, both the daughter stem cell and the presumptive intermediate progenitor cell inherit cytoplasm from their parental stem cell. Thus, proper specification of intermediate progenitor cell identity requires an efficient mechanism to rapidly extinguish the activity of self-renewal factors, but the mechanisms remain unknown in most stem cell lineages. During asymmetric division of a type II neural stem cell (neuroblast) in the Drosophila larval brain, the Brain tumor (Brat) protein segregates unequally into the immature intermediate neural progenitor (INP), where it specifies INP identity by attenuating the function of the self-renewal factor Klumpfuss (Klu), but the mechanisms are not understood. Here, we report that Brat specifies INP identity through its N-terminal B-boxes via a novel mechanism that is independent of asymmetric protein segregation. Brat-mediated specification of INP identity is critically dependent on the function of the Wnt destruction complex, which attenuates the activity of β-catenin/Armadillo (Arm) in immature INPs. Aberrantly increasing Arm activity in immature INPs further exacerbates the defects in the specification of INP identity and enhances the supernumerary neuroblast mutant phenotype in brat mutant brains. By contrast, reducing Arm activity in immature INPs suppresses supernumerary neuroblast formation in brat mutant brains. Finally, reducing Arm activity also strongly suppresses supernumerary neuroblasts induced by overexpression of klu. Thus, the Brat-dependent mechanism extinguishes the function of the self-renewal factor Klu in the presumptive intermediate progenitor cell by attenuating Arm activity, balancing stem cell maintenance and progenitor cell specification. PMID:24257623

  1. p53 enables metabolic fitness and self-renewal of nephron progenitor cells

    PubMed Central

    Li, Yuwen; Liu, Jiao; Li, Wencheng; Brown, Aaron; Baddoo, Melody; Li, Marilyn; Carroll, Thomas; Oxburgh, Leif; Feng, Yumei; Saifudeen, Zubaida

    2015-01-01

    Contrary to its classic role in restraining cell proliferation, we demonstrate here a divergent function of p53 in the maintenance of self-renewal of the nephron progenitor pool in the embryonic mouse kidney. Nephron endowment is regulated by progenitor availability and differentiation potential. Conditional deletion of p53 in nephron progenitor cells (Six2Cre+;p53fl/fl) induces progressive depletion of Cited1+/Six2+ self-renewing progenitors and loss of cap mesenchyme (CM) integrity. The Six2(p53-null) CM is disorganized, with interspersed stromal cells and an absence of a distinct CM-epithelia and CM-stroma interface. Impaired cell adhesion and epithelialization are indicated by decreased E-cadherin and NCAM expression and by ineffective differentiation in response to Wnt induction. The Six2Cre+;p53fl/fl cap has 30% fewer Six2(GFP+) cells. Apoptotic index is unchanged, whereas proliferation index is significantly reduced in accordance with cell cycle analysis showing disproportionately fewer Six2Cre+;p53fl/fl cells in the S and G2/M phases compared with Six2Cre+;p53+/+ cells. Mutant kidneys are hypoplastic with fewer generations of nascent nephrons. A significant increase in mean arterial pressure is observed in early adulthood in both germline and conditional Six2(p53-null) mice, linking p53-mediated defects in kidney development to hypertension. RNA-Seq analyses of FACS-isolated wild-type and Six2(GFP+) CM cells revealed that the top downregulated genes in Six2Cre+;p53fl/fl CM belong to glucose metabolism and adhesion and/or migration pathways. Mutant cells exhibit a ∼50% decrease in ATP levels and a 30% decrease in levels of reactive oxygen species, indicating energy metabolism dysfunction. In summary, our data indicate a novel role for p53 in enabling the metabolic fitness and self-renewal of nephron progenitors. PMID:25804735

  2. Neural stem/progenitor cell properties of glial cells in the adult mouse auditory nerve

    PubMed Central

    Lang, Hainan; Xing, Yazhi; Brown, LaShardai N.; Samuvel, Devadoss J.; Panganiban, Clarisse H.; Havens, Luke T.; Balasubramanian, Sundaravadivel; Wegner, Michael; Krug, Edward L.; Barth, Jeremy L.

    2015-01-01

    The auditory nerve is the primary conveyor of hearing information from sensory hair cells to the brain. It has been believed that loss of the auditory nerve is irreversible in the adult mammalian ear, resulting in sensorineural hearing loss. We examined the regenerative potential of the auditory nerve in a mouse model of auditory neuropathy. Following neuronal degeneration, quiescent glial cells converted to an activated state showing a decrease in nuclear chromatin condensation, altered histone deacetylase expression and up-regulation of numerous genes associated with neurogenesis or development. Neurosphere formation assays showed that adult auditory nerves contain neural stem/progenitor cells (NSPs) that were within a Sox2-positive glial population. Production of neurospheres from auditory nerve cells was stimulated by acute neuronal injury and hypoxic conditioning. These results demonstrate that a subset of glial cells in the adult auditory nerve exhibit several characteristics of NSPs and are therefore potential targets for promoting auditory nerve regeneration. PMID:26307538

  3. Immunological characteristics of human mesenchymal stem cells and multipotent adult progenitor cells.

    PubMed

    Jacobs, Sandra A; Roobrouck, Valerie D; Verfaillie, Catherine M; Van Gool, Stefaan W

    2013-01-01

    Somatic, also termed adult, stem cells are highly attractive biomedical cell candidates because of their extensive replication potential and functional multilineage differentiation capacity. They can be used for drug and toxicity screenings in preclinical studies, as in vitro model to study differentiation or for regenerative medicine to aid in the repair of tissues or replace tissues that are lost upon disease, injury or ageing. Multipotent adult progenitor cells (MAPCs) and mesenchymal stem cells (MSCs) are two types of adult stem cells derived from bone marrow that are currently being used clinically for tissue regeneration and for their immunomodulatory and trophic effects. This review will give an overview of the phenotypic and functional differences between human MAPCs and MSCs, with a strong emphasis on their immunological characteristics. Finally, we will discuss the clinical studies in which MSCs and MAPCs are already used. PMID:23295415

  4. Identification of a Cell-of-Origin for Fibroblasts Comprising the Fibrotic Reticulum in Idiopathic Pulmonary Fibrosis

    PubMed Central

    Xia, Hong; Bodempudi, Vidya; Benyumov, Alexey; Hergert, Polla; Tank, Damien; Herrera, Jeremy; Braziunas, Jeff; Larsson, Ola; Parker, Matthew; Rossi, Daniel; Smith, Karen; Peterson, Mark; Limper, Andrew; Jessurun, Jose; Connett, John; Ingbar, David; Phan, Sem; Bitterman, Peter B.; Henke, Craig A.

    2015-01-01

    Idiopathic pulmonary fibrosis (IPF) is a progressive disease of the middle aged and elderly with a prevalence of one million persons worldwide. The fibrosis spreads from affected alveoli into contiguous alveoli, creating a reticular network that leads to death by asphyxiation. Lung fibroblasts from patients with IPF have phenotypic hallmarks, distinguishing them from their normal counterparts: pathologically activated Akt signaling axis, increased collagen and α-smooth muscle actin expression, distinct gene expression profile, and ability to form fibrotic lesions in model organisms. Despite the centrality of these fibroblasts in disease pathogenesis, their origin remains uncertain. Here, we report the identification of cells in the lungs of patients with IPF with the properties of mesenchymal progenitors. In contrast to progenitors isolated from nonfibrotic lungs, IPF mesenchymal progenitor cells produce daughter cells manifesting the full spectrum of IPF hallmarks, including the ability to form fibrotic lesions in zebrafish embryos and mouse lungs, and a transcriptional profile reflecting these properties. Morphological analysis of IPF lung tissue revealed that mesenchymal progenitor cells and cells with the characteristics of their progeny comprised the fibrotic reticulum. These data establish that the lungs of patients with IPF contain pathological mesenchymal progenitor cells that are cells of origin for fibrosis-mediating fibroblasts. These fibrogenic mesenchymal progenitors and their progeny represent an unexplored target for novel therapies to interdict fibrosis. PMID:24631025

  5. Optimization of surface-immobilized extracellular matrices for the proliferation of neural progenitor cells derived from induced pluripotent stem cells.

    PubMed

    Komura, Takashi; Kato, Koichi; Konagaya, Shuhei; Nakaji-Hirabayashi, Tadashi; Iwata, Hiroo

    2015-11-01

    Neural progenitor cells derived from induced pluripotent stem cells have been considered as a potential source for cell-transplantation therapy of central nervous disorders. However, efficient methods to expand neural progenitor cells are further required for their clinical applications. In this study, a protein array was fabricated with nine extracellular matrices and used to screen substrates suitable for the expansion of neural progenitor cells derived from mouse induced pluripotent stem cells. The results showed that neural progenitor cells efficiently proliferated on substrates with immobilized laminin-1, laminin-5, or Matrigel. Based on this result, further attempts were made to develop clinically compliant substrates with immobilized polypeptides that mimic laminin-1, one of the most effective extracellular matrices as identified in the array-based screening. We used here recombinant DNA technology to prepare polypeptide containing the globular domain 3 of laminin-1 and immobilized it onto glass-based substrates. Our results showed that neural progenitor cells selectively proliferated on substrate with the immobilized polypeptide while maintaining their differentiated state. PMID:25943789

  6. Fibronectin promotes differentiation of neural crest progenitors endowed with smooth muscle cell potential

    SciTech Connect

    Costa-Silva, Bruno; Coelho da Costa, Meline; Melo, Fernanda Rosene; Neves, Cynara Mendes; Alvarez-Silva, Marcio; Calloni, Giordano Wosgrau; Trentin, Andrea Goncalves

    2009-04-01

    The neural crest (NC) is a model system used to investigate multipotency during vertebrate development. Environmental factors control NC cell fate decisions. Despite the well-known influence of extracellular matrix molecules in NC cell migration, the issue of whether they also influence NC cell differentiation has not been addressed at the single cell level. By analyzing mass and clonal cultures of mouse cephalic and quail trunk NC cells, we show for the first time that fibronectin (FN) promotes differentiation into the smooth muscle cell phenotype without affecting differentiation into glia, neurons, and melanocytes. Time course analysis indicated that the FN-induced effect was not related to massive cell death or proliferation of smooth muscle cells. Finally, by comparing clonal cultures of quail trunk NC cells grown on FN and collagen type IV (CLIV), we found that FN strongly increased both NC cell survival and the proportion of unipotent and oligopotent NC progenitors endowed with smooth muscle potential. In contrast, melanocytic progenitors were prominent in clonogenic NC cells grown on CLIV. Taken together, these results show that FN promotes NC cell differentiation along the smooth muscle lineage, and therefore plays an important role in fate decisions of NC progenitor cells.

  7. Hematopoietic Signaling Mechanism Revealed from a Stem/Progenitor Cell Cistrome.

    PubMed

    Hewitt, Kyle J; Kim, Duk Hyoung; Devadas, Prithvia; Prathibha, Rajalekshmi; Zuo, Chandler; Sanalkumar, Rajendran; Johnson, Kirby D; Kang, Yoon-A; Kim, Jin-Soo; Dewey, Colin N; Keles, Sunduz; Bresnick, Emery H

    2015-07-01

    Thousands of cis-elements in genomes are predicted to have vital functions. Although conservation, activity in surrogate assays, polymorphisms, and disease mutations provide functional clues, deletion from endogenous loci constitutes the gold-standard test. A GATA-2-binding, Gata2 intronic cis-element (+9.5) required for hematopoietic stem cell genesis in mice is mutated in a human immunodeficiency syndrome. Because +9.5 is the only cis-element known to mediate stem cell genesis, we devised a strategy to identify functionally comparable enhancers ("+9.5-like") genome-wide. Gene editing revealed +9.5-like activity to mediate GATA-2 occupancy, chromatin opening, and transcriptional activation. A +9.5-like element resided in Samd14, which encodes a protein of unknown function. Samd14 increased hematopoietic progenitor levels/activity and promoted signaling by a pathway vital for hematopoietic stem/progenitor cell regulation (stem cell factor/c-Kit), and c-Kit rescued Samd14 loss-of-function phenotypes. Thus, the hematopoietic stem/progenitor cell cistrome revealed a mediator of a signaling pathway that has broad importance for stem/progenitor cell biology. PMID:26073540

  8. CXCR4-Related Increase of Circulating Human Lymphoid Progenitors after Allogeneic Hematopoietic Stem Cell Transplantation

    PubMed Central

    Glauzy, Salomé; André-Schmutz, Isabelle; Larghero, Jérôme; Ezine, Sophie; de Latour, Régis Peffault; Moins-Teisserenc, Hélène; Servais, Sophie; Robin, Marie; Socié, Gérard

    2014-01-01

    Immune recovery after profound lymphopenia is a major challenge in many clinical situations, such as allogeneic hematopoietic stem cell transplantation (allo-HSCT). Recovery depends, in a first step, on hematopoietic lymphoid progenitors production in the bone marrow (BM). In this study, we characterized CD34+Lin−CD10+ lymphoid progenitors in the peripheral blood of allo-HSCT patients. Our data demonstrate a strong recovery of this population 3 months after transplantation. This rebound was abolished in patients who developed acute graft-versus-host disease (aGVHD). A similar recovery profile was found for both CD24+ and CD24− progenitor subpopulations. CD34+lin−CD10+CD24− lymphoid progenitors sorted from allo-HSCT patients preserved their T cell potentiel according to in vitro T-cell differentiation assay and the expression profile of 22 genes involved in T-cell differentiation and homing. CD34+lin−CD10+CD24− cells from patients without aGVHD had reduced CXCR4 gene expression, consistent with an enhanced egress from the BM. CCR7 gene expression was reduced in patients after allo-HSCT, as were its ligands CCL21 and CCL19. This reduction was particularly marked in patients with aGVHD, suggesting a possible impact on thymic homing. Thus, the data presented here identify this population as an important early step in T cell reconstitution in humans and so, an important target when seeking to enhance immune reconstitution. PMID:24621606

  9. Tolerance of human embryonic stem cell derived islet progenitor cells to vitrification-relevant solutions.

    PubMed

    Lahmy, Reyhaneh; Bolyukh, Vladimir F; Castilla, Sergio Mora; Laurent, Louise C; Katkov, Igor I; Itkin-Ansari, Pamela

    2015-06-01

    We have previously shown that human embryonic stem cell derived islet progenitors (hESC-IPs), encapsulated inside an immunoprotective device, mature in vivo and ameliorate diabetes in mice. The ability to cryopreserve hESC-IPs preloaded in these devices would enhance consistency and portability, but traditional 'slow freezing' methods did not work well for cells encapsulated in the device. Vitrification is an attractive alternative cryopreservation approach. To assess the tolerance of hESC-IPs to vitrification relevant conditions, we here are reporting cell survival following excursions in tonicity, exposure to fifteen 40% v/v combinations of 4 cryoprotectants, and varied methods for addition and elution. We find that 78% survival is achieved using a protocol in which cells are abruptly (in one step) exposed to a solution containing 10% v/v each dimethyl sulfoxide, propylene glycol, ethylene glycol, and glycerol on ice, and eluted step-wise with DPBS+0.5M sucrose at 37°C. Importantly, the hESC-IPs also maintain expression of the critical islet progenitor markers PDX-1, NKX6.1, NGN3 and NEURO-D1. Thus, hESC-IPs exhibit robust tolerance to exposure to vitrification solutions in relevant conditions. PMID:25817378

  10. Heterogeneity of cultured leukemic lymphoid progenitor cells from B cell precursor acute lymphoblastic leukemia (ALL) patients.

    PubMed Central

    Uckun, F M; Kersey, J H; Gajl-Peczalska, K J; Heerema, N A; Provisor, A J; Haag, D; Gilchrist, G; Song, C W; Arthur, D C; Roloff, J

    1987-01-01

    Colony assays were performed for 50 patients with B cell precursor acute lymphoblastic leukemia (ALL). Blast colony formation was observed for 33 patients, and the plating efficiency (PE) showed a marked interpatient variation, which indicates a pronounced biological heterogeneity at the level of leukemic progenitor cells. Notably, the mean PE of leukemic B cell precursors from patients with a pseudodiploid or near-diploid karyotype with structural chromosomal abnormalities (SCA) was significantly higher than the mean PE of normal diploid or hyperdiploid cases. All patients who had SCA involving 7p13, 11q23-24, or 12p11-13, and patients with a Philadelphia chromosome had high PE values. The S phase percentage, expression of CD19 antigen, and relapse status were also correlated with PE. Significantly, colony blasts had slightly different surface marker profiles in each case and were common ALL antigen negative in 33% of cases, which indicates the existence of a marked immunological heterogeneity at the level of leukemic progenitor cells. PMID:3497949

  11. Histone demethylase Lsd1 represses hematopoietic stem and progenitor cell signatures during blood cell maturation

    PubMed Central

    Kerenyi, Marc A; Shao, Zhen; Hsu, Yu-Jung; Guo, Guoji; Luc, Sidinh; O'Brien, Kassandra; Fujiwara, Yuko; Peng, Cong; Nguyen, Minh; Orkin, Stuart H

    2013-01-01

    Here, we describe that lysine-specific demethylase 1 (Lsd1/KDM1a), which demethylates histone H3 on Lys4 or Lys9 (H3K4/K9), is an indispensible epigenetic governor of hematopoietic differentiation. Integrative genomic analysis, combining global occupancy of Lsd1, genome-wide analysis of its substrates H3K4 monomethylation and dimethylation, and gene expression profiling, reveals that Lsd1 represses hematopoietic stem and progenitor cell (HSPC) gene expression programs during hematopoietic differentiation. We found that Lsd1 acts at transcription start sites, as well as enhancer regions. Loss of Lsd1 was associated with increased H3K4me1 and H3K4me2 methylation on HSPC genes and gene derepression. Failure to fully silence HSPC genes compromised differentiation of hematopoietic stem cells as well as mature blood cell lineages. Collectively, our data indicate that Lsd1-mediated concurrent repression of enhancer and promoter activity of stem and progenitor cell genes is a pivotal epigenetic mechanism required for proper hematopoietic maturation. DOI: http://dx.doi.org/10.7554/eLife.00633.001 PMID:23795291

  12. Effects of Erythropoietin in Murine-Induced Pluripotent Cell-Derived Panneural Progenitor Cells

    PubMed Central

    Offen, Nils; Flemming, Johannes; Kamawal, Hares; Ahmad, Ruhel; Wolber, Wanja; Geis, Christian; Zaehres, Holm; Schöler, Hans R; Ehrenreich, Hannelore; Müller, Albrecht M; Sirén, Anna-Leena

    2013-01-01

    Induced cell fate changes by reprogramming of somatic cells offers an efficient strategy to generate autologous pluripotent stem (iPS) cells from any adult cell type. The potential of iPS cells to differentiate into various cell types is well established, however the efficiency to produce functional neurons from iPS cells remains modest. Here, we generated panneural progenitor cells (pNPCs) from mouse iPS cells and investigated the effect of the neurotrophic growth factor erythropoietin (EPO) on their survival, proliferation and neurodifferentiation. Under neural differentiation conditions, iPS-derived pNPCs gave rise to microtubule-associated protein-2 positive neuronlike cells (34% to 43%) and platelet-derived growth factor receptor positive oligodendrocytelike cells (21% to 25%) while less than 1% of the cells expressed the astrocytic marker glial fibrillary acidic protein. Neuronlike cells generated action potentials and developed active presynaptic terminals. The pNPCs expressed EPO receptor (EPOR) mRNA and displayed functional EPOR signaling. In proliferating cultures, EPO (0.1–3 U/mL) slightly improved pNPC survival but reduced cell proliferation and neurosphere formation in a concentration-dependent manner. In differentiating cultures EPO facilitated neurodifferentiation as assessed by the increased number of β-III-tubulin positive neurons. Our results show that EPO inhibits iPS pNPC self-renewal and promotes neurogenesis. PMID:24408113

  13. PDGFRα demarcates the cardiogenic clonogenic Sca1+ stem/progenitor cell in adult murine myocardium

    PubMed Central

    Noseda, Michela; Harada, Mutsuo; McSweeney, Sara; Leja, Thomas; Belian, Elisa; Stuckey, Daniel J.; Abreu Paiva, Marta S.; Habib, Josef; Macaulay, Iain; de Smith, Adam J.; al-Beidh, Farah; Sampson, Robert; Lumbers, R. Thomas; Rao, Pulivarthi; Harding, Sian E.; Blakemore, Alexandra I. F.; Eirik Jacobsen, Sten; Barahona, Mauricio; Schneider, Michael D.

    2015-01-01

    Cardiac progenitor/stem cells in adult hearts represent an attractive therapeutic target for heart regeneration, though (inter)-relationships among reported cells remain obscure. Using single-cell qRT–PCR and clonal analyses, here we define four subpopulations of cardiac progenitor/stem cells in adult mouse myocardium all sharing stem cell antigen-1 (Sca1), based on side population (SP) phenotype, PECAM-1 (CD31) and platelet-derived growth factor receptor-α (PDGFRα) expression. SP status predicts clonogenicity and cardiogenic gene expression (Gata4/6, Hand2 and Tbx5/20), properties segregating more specifically to PDGFRα+ cells. Clonal progeny of single Sca1+ SP cells show cardiomyocyte, endothelial and smooth muscle lineage potential after cardiac grafting, augmenting cardiac function although durable engraftment is rare. PDGFRα− cells are characterized by Kdr/Flk1, Cdh5, CD31 and lack of clonogenicity. PDGFRα+/CD31− cells derive from cells formerly expressing Mesp1, Nkx2-5, Isl1, Gata5 and Wt1, distinct from PDGFRα−/CD31+ cells (Gata5 low; Flk1 and Tie2 high). Thus, PDGFRα demarcates the clonogenic cardiogenic Sca1+ stem/progenitor cell. PMID:25980517

  14. PDGFRα demarcates the cardiogenic clonogenic Sca1+ stem/progenitor cell in adult murine myocardium.

    PubMed

    Noseda, Michela; Harada, Mutsuo; McSweeney, Sara; Leja, Thomas; Belian, Elisa; Stuckey, Daniel J; Abreu Paiva, Marta S; Habib, Josef; Macaulay, Iain; de Smith, Adam J; al-Beidh, Farah; Sampson, Robert; Lumbers, R Thomas; Rao, Pulivarthi; Harding, Sian E; Blakemore, Alexandra I F; Jacobsen, Sten Eirik; Barahona, Mauricio; Schneider, Michael D

    2015-01-01

    Cardiac progenitor/stem cells in adult hearts represent an attractive therapeutic target for heart regeneration, though (inter)-relationships among reported cells remain obscure. Using single-cell qRT-PCR and clonal analyses, here we define four subpopulations of cardiac progenitor/stem cells in adult mouse myocardium all sharing stem cell antigen-1 (Sca1), based on side population (SP) phenotype, PECAM-1 (CD31) and platelet-derived growth factor receptor-α (PDGFRα) expression. SP status predicts clonogenicity and cardiogenic gene expression (Gata4/6, Hand2 and Tbx5/20), properties segregating more specifically to PDGFRα(+) cells. Clonal progeny of single Sca1(+) SP cells show cardiomyocyte, endothelial and smooth muscle lineage potential after cardiac grafting, augmenting cardiac function although durable engraftment is rare. PDGFRα(-) cells are characterized by Kdr/Flk1, Cdh5, CD31 and lack of clonogenicity. PDGFRα(+)/CD31(-) cells derive from cells formerly expressing Mesp1, Nkx2-5, Isl1, Gata5 and Wt1, distinct from PDGFRα(-)/CD31(+) cells (Gata5 low; Flk1 and Tie2 high). Thus, PDGFRα demarcates the clonogenic cardiogenic Sca1(+) stem/progenitor cell. PMID:25980517

  15. Lineage Reprogramming of Fibroblasts into Proliferative Induced Cardiac Progenitor Cells by Defined Factors.

    PubMed

    Lalit, Pratik A; Salick, Max R; Nelson, Daryl O; Squirrell, Jayne M; Shafer, Christina M; Patel, Neel G; Saeed, Imaan; Schmuck, Eric G; Markandeya, Yogananda S; Wong, Rachel; Lea, Martin R; Eliceiri, Kevin W; Hacker, Timothy A; Crone, Wendy C; Kyba, Michael; Garry, Daniel J; Stewart, Ron; Thomson, James A; Downs, Karen M; Lyons, Gary E; Kamp, Timothy J

    2016-03-01

    Several studies have reported reprogramming of fibroblasts into induced cardiomyocytes; however, reprogramming into proliferative induced cardiac progenitor cells (iCPCs) remains to be accomplished. Here we report that a combination of 11 or 5 cardiac factors along with canonical Wnt and JAK/STAT signaling reprogrammed adult mouse cardiac, lung, and tail tip fibroblasts into iCPCs. The iCPCs were cardiac mesoderm-restricted progenitors that could be expanded extensively while maintaining multipotency to differentiate into cardiomyocytes, smooth muscle cells, and endothelial cells in vitro. Moreover, iCPCs injected into the cardiac crescent of mouse embryos differentiated into cardiomyocytes. iCPCs transplanted into the post-myocardial infarction mouse heart improved survival and differentiated into cardiomyocytes, smooth muscle cells, and endothelial cells. Lineage reprogramming of adult somatic cells into iCPCs provides a scalable cell source for drug discovery, disease modeling, and cardiac regenerative therapy. PMID:26877223

  16. In vitro Differentiation of Murine Innate Lymphoid Cells from Common Lymphoid Progenitor Cells

    PubMed Central

    Seehus, Corey; Kaye, Jonathan

    2016-01-01

    Subtypes of innate lymphoid cells (ILC), defined based on their cytokine secretion profiles and transcription factor expression, are important for host protection from pathogens and maintaining tissue homeostasis. ILCs develop from common lymphoid progenitors (CLP) in the bone marrow. Using the methods described here, we have previously shown that loss of the transcriptional regulator TOX (Thymocyte-selection associated HMG-box protein) leads to specific changes in ILC development and differentiation. Here, we describe how to obtain ILCs from in vivo isolated CLP grown in vitro. PMID:27239483

  17. Advances in Progenitor Cell Therapy Using Scaffolding Constructs for Central Nervous System Injury

    PubMed Central

    Walker, Peter A.; Aroom, Kevin R.; Jimenez, Fernando; Shah, Shinil K.; Harting, Matthew T.; Gill, Brijesh S.

    2010-01-01

    Traumatic brain injury (TBI) is a major cause of morbidity and mortality in the United States. Current clinical therapy is focused on optimization of the acute/subacute intracerebral milieu, minimizing continued cell death, and subsequent intense rehabilitation to ameliorate the prolonged physical, cognitive, and psychosocial deficits that result from TBI. Adult progenitor (stem) cell therapies have shown promise in pre-clinical studies and remain a focus of intense scientific investigation. One of the fundamental challenges to successful translation of the large body of pre-clinical work is the delivery of progenitor cells to the target location/organ. Classically used vehicles such as intravenous and intra arterial infusion have shown low engraftment rates and risk of distal emboli. Novel delivery methods such as nanofiber scaffold implantation could provide the structural and nutritive support required for progenitor cell proliferation, engraftment, and differentiation. The focus of this review is to explore the current state of the art as it relates to current and novel progenitor cell delivery methods. PMID:19644777

  18. Meis1 regulates Foxn4 expression during retinal progenitor cell differentiation

    PubMed Central

    Islam, Mohammed M.; Li, Ying; Luo, Huijun; Xiang, Mengqing; Cai, Li

    2013-01-01

    Summary The transcription factor forkhead box N4 (Foxn4) is a key regulator in a variety of biological processes during development. In particular, Foxn4 plays an essential role in the genesis of horizontal and amacrine neurons from neural progenitors in the vertebrate retina. Although the functions of Foxn4 have been well established, the transcriptional regulation of Foxn4 expression during progenitor cell differentiation remains unclear. Here, we report that an evolutionarily conserved 129 bp noncoding DNA fragment (Foxn4CR4.2 or CR4.2), located ∼26 kb upstream of Foxn4 transcription start site, functions as a cis-element for Foxn4 regulation. CR4.2 directs gene expression in Foxn4-positive cells, primarily in progenitors, differentiating horizontal and amacrine cells. We further determined that the gene regulatory activity of CR4.2 is modulated by Meis1 binding motif, which is bound and activated by Meis1 transcription factor. Deletion of the Meis1 binding motif or knockdown of Meis1 expression abolishes the gene regulatory activity of CR4.2. In addition, knockdown of Meis1 expression diminishes the endogenous Foxn4 expression and affects cell lineage development. Together, we demonstrate that CR4.2 and its interacting Meis1 transcription factor play important roles in regulating Foxn4 expression during early retinogenesis. These findings provide new insights into molecular mechanisms that govern gene regulation in retinal progenitors and specific cell lineage development. PMID:24244849

  19. Characterization of mammary epithelial stem/progenitor cells and their changes with aging in common marmosets

    PubMed Central

    Wu, Anqi; Dong, Qiaoxiang; Gao, Hui; Shi, Yuanshuo; Chen, Yuanhong; Zhang, Fuchuang; Bandyopadhyay, Abhik; Wang, Danhan; Gorena, Karla M.; Huang, Changjiang; Tardif, Suzette; Nathanielsz, Peter W.; Sun, Lu-Zhe

    2016-01-01

    Age is the number one risk factor for breast cancer, yet the underlying mechanisms are unexplored. Age-associated mammary stem cell (MaSC) dysfunction is thought to play an important role in breast cancer carcinogenesis. Non-human primates with their close phylogenetic relationship to humans provide a powerful model system to study the effects of aging on human MaSC. In particular, the common marmoset monkey (Callithrix jacchus) with a relatively short life span is an ideal model for aging research. In the present study, we characterized for the first time the mammary epithelial stem/progenitor cells in the common marmoset. The MaSC-enriched cells formed four major types of morphologically distinct colonies when cultured on plates pre-seeded with irradiated NIH3T3 fibroblasts, and were also capable of forming mammospheres in suspension culture and subsequent formation of 3D organoids in Matrigel culture. Most importantly, these 3D organoids were found to contain stem/progenitor cells that can undergo self-renewal and multi-lineage differentiation both in vitro and in vivo. We also observed a significant decrease of luminal-restricted progenitors with age. Our findings demonstrate that common marmoset mammary stem/progenitor cells can be isolated and quantified with established in vitro and in vivo assays used for mouse and human studies. PMID:27558284

  20. Characterization of mammary epithelial stem/progenitor cells and their changes with aging in common marmosets.

    PubMed

    Wu, Anqi; Dong, Qiaoxiang; Gao, Hui; Shi, Yuanshuo; Chen, Yuanhong; Zhang, Fuchuang; Bandyopadhyay, Abhik; Wang, Danhan; Gorena, Karla M; Huang, Changjiang; Tardif, Suzette; Nathanielsz, Peter W; Sun, Lu-Zhe

    2016-01-01

    Age is the number one risk factor for breast cancer, yet the underlying mechanisms are unexplored. Age-associated mammary stem cell (MaSC) dysfunction is thought to play an important role in breast cancer carcinogenesis. Non-human primates with their close phylogenetic relationship to humans provide a powerful model system to study the effects of aging on human MaSC. In particular, the common marmoset monkey (Callithrix jacchus) with a relatively short life span is an ideal model for aging research. In the present study, we characterized for the first time the mammary epithelial stem/progenitor cells in the common marmoset. The MaSC-enriched cells formed four major types of morphologically distinct colonies when cultured on plates pre-seeded with irradiated NIH3T3 fibroblasts, and were also capable of forming mammospheres in suspension culture and subsequent formation of 3D organoids in Matrigel culture. Most importantly, these 3D organoids were found to contain stem/progenitor cells that can undergo self-renewal and multi-lineage differentiation both in vitro and in vivo. We also observed a significant decrease of luminal-restricted progenitors with age. Our findings demonstrate that common marmoset mammary stem/progenitor cells can be isolated and quantified with established in vitro and in vivo assays used for mouse and human studies. PMID:27558284

  1. Transient, afferent input-dependent, postnatal niche for neural progenitor cells in the cochlear nucleus

    PubMed Central

    Volkenstein, Stefan; Oshima, Kazuo; Sinkkonen, Saku T.; Corrales, C. Eduardo; Most, Sam P.; Chai, Renjie; Jan, Taha A.; van Amerongen, Renée; Cheng, Alan G.; Heller, Stefan

    2013-01-01

    In the cochlear nucleus (CN), the first central relay of the auditory pathway, the survival of neurons during the first weeks after birth depends on afferent innervation from the cochlea. Although input-dependent neuron survival has been extensively studied in the CN, neurogenesis has not been evaluated as a possible mechanism of postnatal plasticity. Here we show that new neurons are born in the CN during the critical period of postnatal plasticity. Coincidently, we found a population of neural progenitor cells that are controlled by a complex interplay of Wnt, Notch, and TGFβ/BMP signaling, in which low levels of TGFβ/BMP signaling are permissive for progenitor proliferation that is promoted by Wnt and Notch activation. We further show that cells with activated Wnt signaling reside in the CN and that these cells have high propensity for neurosphere formation. Cochlear ablation resulted in diminishment of progenitors and Wnt/β-catenin-active cells, suggesting that the neonatal CN maintains an afferent innervation-dependent population of progenitor cells that display active canonical Wnt signaling. PMID:23940359

  2. Mammalian Cardiac Regeneration After Fetal Myocardial Infarction Requires Cardiac Progenitor Cell Recruitment

    PubMed Central

    Allukian, Myron; Xu, Junwang; Morris, Michael; Caskey, Robert; Dorsett-Martin, Wanda; Plappert, Theodore; Griswold, Michael; Gorman, Joseph H.; Gorman, Robert C.; Liechty, Kenneth W.

    2013-01-01

    Background In contrast to the adult, fetal sheep consistently regenerate functional myocardium after myocardial infarction. We hypothesize that this regeneration is due to the recruitment of cardiac progenitor cells to the infarct by stromal-derived factor-1α (SDF-1α) and that its competitive inhibition will block the regenerative fetal response. Methods A 20% apical infarct was created in adult and fetal sheep by selective permanent coronary artery ligation. Lentiviral overexpression of mutant SDF-1α competitively inhibited SDF-1α in fetal infarcts. Echocardiography was performed to assess left ventricular function and infarct size. Cardiac progenitor cell recruitment and proliferation was assessed in fetal infarcts at 1 month by immunohistochemistry for nkx2.5 and 5-bromo-2-deoxyuridine. Results Competitive inhibition of SDF-1α converted the regenerative fetal response into a reparative response, similar to the adult. SDF-inhibited fetal infarcts demonstrated significant infarct expansion by echocardiography (p < 0.001) and a significant decrease in the number of nkx2.5+ cells repopulating the infarct (p < 0.001). Conclusions The fetal regenerative response to myocardial infarction requires the recruitment of cardiac progenitor cells and is dependent on SDF1α. This novel model of mammalian cardiac regeneration after myocardial infarction provides a powerful tool to better understand cardiac progenitor cell biology and to develop strategies to cardiac regeneration in the adult. PMID:23816072

  3. Generation of Murine Sympathoadrenergic Progenitor-Like Cells from Embryonic Stem Cells and Postnatal Adrenal Glands

    PubMed Central

    Saxena, Shobhit; Wahl, Joachim; Huber-Lang, Markus S.; Stadel, Dominic; Braubach, Peter; Debatin, Klaus-Michael; Beltinger, Christian

    2013-01-01

    Sympathoadrenergic progenitor cells (SAPs) of the peripheral nervous system (PNS) are important for normal development of the sympathetic PNS and for the genesis of neuroblastoma, the most common and often lethal extracranial solid tumor in childhood. However, it remains difficult to isolate sufficient numbers of SAPs for investigations. We therefore set out to improve generation of SAPs by using two complementary approaches, differentiation from murine embryonic stem cells (ESCs) and isolation from postnatal murine adrenal glands. We provide evidence that selecting for GD2 expression enriches for ESC-derived SAP-like cells and that proliferating SAP-like cells can be isolated from postnatal adrenal glands of mice. These advances may facilitate investigations about the development and malignant transformation of the sympathetic PNS. PMID:23675538

  4. Regulatory System for Stem/Progenitor Cell Niches in the Adult Rodent Pituitary

    PubMed Central

    Yoshida, Saishu; Kato, Takako; Kato, Yukio

    2016-01-01

    The anterior lobe of the pituitary gland is a master endocrine tissue composed of five types of endocrine cells. Although the turnover rate of pituitary endocrine cells is as low as about 1.6% per day, recent studies have demonstrated that Sex-determining region Y-box 2 (SOX2)+-cells exist as pituitary stem/progenitor cells in the adult anterior lobe and contribute to cell regeneration. Notably, SOX2+-pituitary stem/progenitor cells form two types of niches in this tissue: the marginal cell layer (MCL-niche) and the dense cell clusters scattering in the parenchyma (parenchymal-niche). However, little is known about the mechanisms and factors for regulating the pituitary stem/progenitor cell niches, as well as the functional differences between the two types of niches. Elucidation of the regulatory mechanisms in the niches might enable us to understand the cell regeneration system that acts in accordance with physiological demands in the adult pituitary. In this review, so as to reveal the regulatory mechanisms of the two types of niche, we summarize the regulatory factors and their roles in the adult rodent pituitary niches by focusing on three components: soluble factors, cell surface proteins and extracellular matrixes. PMID:26761002

  5. Hhex is Required at Multiple Stages of Adult Hematopoietic Stem and Progenitor Cell Differentiation

    PubMed Central

    Goodings, Charnise; Smith, Elizabeth; Mathias, Elizabeth; Elliott, Natalina; Cleveland, Susan M.; Tripathi, Rati M.; Layer, Justin H.; Chen, Xi; Guo, Yan; Shyr, Yu; Hamid, Rizwan; Du, Yang; Davé, Utpal P.

    2015-01-01

    Hhex encodes a homeodomain transcription factor that is widely expressed in hematopoietic stem and progenitor cell populations. Its enforced expression induces T-cell leukemia and we have implicated it as an important oncogene in early T-cell precursor leukemias where it is immediately downstream of an LMO2-associated protein complex. Conventional Hhex knockouts cause embryonic lethality precluding analysis of adult hematopoiesis. Thus, we induced highly efficient conditional knockout (cKO) using vav-Cre transgenic mice. Hhex cKO mice were viable and born at normal litter sizes. At steady state, we observed a defect in B-cell development that we localized to the earliest B-cell precursor, the pro-B-cell stage. Most remarkably, bone marrow transplantation using Hhex cKO donor cells revealed a more profound defect in all hematopoietic lineages. In contrast, sublethal irradiation resulted in normal myeloid cell repopulation of the bone marrow but markedly impaired repopulation of T- and B-cell compartments. We noted that Hhex cKO stem and progenitor cell populations were skewed in their distribution and showed enhanced proliferation compared to WT cells. Our results implicate Hhex in the maintenance of LT-HSCs and in lineage allocation from multipotent progenitors especially in stress hematopoiesis. PMID:25968920

  6. A novel method of mouse ex utero transplantation of hepatic progenitor cells into the fetal liver

    SciTech Connect

    Shikanai, Mima; Asahina, Kinji; Iseki, Sachiko Teramoto, Kenichi; Nishida, Tomohiro; Shimizu-Saito, Keiko; Ota, Masato; Eto, Kazuhiro; Teraoka, Hirobumi

    2009-04-03

    Avoiding the limitations of the adult liver niche, transplantation of hepatic stem/progenitor cells into fetal liver is desirable to analyze immature cells in a hepatic developmental environment. Here, we established a new monitor tool for cell fate of hepatic progenitor cells transplanted into the mouse fetal liver by using ex utero surgery. When embryonic day (ED) 14.5 hepatoblasts were injected into the ED14.5 fetal liver, the transplanted cells expressed albumin abundantly or {alpha}-fetoprotein weakly, and contained glycogen in the neonatal liver, indicating that transplanted hepatoblasts can proliferate and differentiate in concord with surrounding recipient parenchymal cells. The transplanted cells became mature in the liver of 6-week-old mice. Furthermore, this method was applicable to transplantation of hepatoblast-like cells derived from mouse embryonic stem cells. These data indicate that this unique technique will provide a new in vivo experimental system for studying cell fate of hepatic stem/progenitor cells and liver organogenesis.

  7. Regulatory System for Stem/Progenitor Cell Niches in the Adult Rodent Pituitary.

    PubMed

    Yoshida, Saishu; Kato, Takako; Kato, Yukio

    2016-01-01

    The anterior lobe of the pituitary gland is a master endocrine tissue composed of five types of endocrine cells. Although the turnover rate of pituitary endocrine cells is as low as about 1.6% per day, recent studies have demonstrated that Sex-determining region Y-box 2 (SOX2)⁺-cells exist as pituitary stem/progenitor cells in the adult anterior lobe and contribute to cell regeneration. Notably, SOX2⁺-pituitary stem/progenitor cells form two types of niches in this tissue: the marginal cell layer (MCL-niche) and the dense cell clusters scattering in the parenchyma (parenchymal-niche). However, little is known about the mechanisms and factors for regulating the pituitary stem/progenitor cell niches, as well as the functional differences between the two types of niches. Elucidation of the regulatory mechanisms in the niches might enable us to understand the cell regeneration system that acts in accordance with physiological demands in the adult pituitary. In this review, so as to reveal the regulatory mechanisms of the two types of niche, we summarize the regulatory factors and their roles in the adult rodent pituitary niches by focusing on three components: soluble factors, cell surface proteins and extracellular matrixes. PMID:26761002

  8. Characterization of CD133{sup +} hepatocellular carcinoma cells as cancer stem/progenitor cells

    SciTech Connect

    Suetsugu, Atsushi; Nagaki, Masahito . E-mail: mnagaki@cc.gifu-u.ac.jp; Aoki, Hitomi; Motohashi, Tsutomu; Kunisada, Takahiro; Moriwaki, Hisataka

    2006-12-29

    The CD133 antigen, identified as a hematopoietic stem cell marker, appears in various human embryonic epithelia including the neural tube, gut, and kidney. We herein investigated whether CD133{sup +} cells isolated from human hepatocellular carcinoma cell lines possess cancer stem/progenitor cell-like properties. Among the three cell lines studied, the CD133 antigen was found to be expressed only on the surface of Huh-7 cells. CD133{sup +} cells from Huh-7 performed a higher in vitro proliferative potential and lower mRNA expressions of mature hepatocyte markers, glutamine synthetase and cytochrome P450 3A4, than CD133{sup -} population of Huh-7 cells. When either CD133{sup +} or CD133{sup -} cells were subcutaneously injected into SCID mice, CD133{sup +} cells formed tumors, whereas CD133{sup -} cells induced either a very small number of tumors or none at all. Taken together, the identification of CD133{sup +} cells could thus be a potentially powerful tool to investigate the tumorigenic process in the hepatoma system and to also develop effective therapies targeted against hepatocellular carcinoma.

  9. Metabolic profiling of hematopoietic stem and progenitor cells during proliferation and differentiation into red blood cells.

    PubMed

    Daud, Hasbullah; Browne, Susan; Al-Majmaie, Rasoul; Murphy, William; Al-Rubeai, Mohamed

    2016-01-25

    An understanding of the metabolic profile of cell proliferation and differentiation should support the optimization of culture conditions for hematopoietic stem and progenitor cell (HSPC) proliferation, differentiation, and maturation into red blood cells. We have evaluated the key metabolic parameters during each phase of HSPC culture for red blood cell production in serum-supplemented (SS) and serum-free (SF) conditions. A simultaneous decrease in growth rate, total protein content, cell size, and the percentage of cells in the S/G2 phase of cell cycle, as well as an increase in the percentage of cells with a CD71(-)/GpA(+) surface marker profile, indicates HSPC differentiation into red blood cells. Compared with proliferating HSPCs, differentiating HSPCs showed significantly lower glucose and glutamine consumption rates, lactate and ammonia production rates, and amino acid consumption and production rates in both SS and SF conditions. Furthermore, extracellular acidification was associated with late proliferation phase, suggesting a reduced cellular metabolic rate during the transition from proliferation to differentiation. Under both SS and SF conditions, cells demonstrated a high metabolic rate with a mixed metabolism of both glycolysis and oxidative phosphorylation (OXPHOS) in early and late proliferation, an increased dependence on OXPHOS activity during differentiation, and a shift to glycolytic metabolism only during maturation phase. These changes indicate that cell metabolism may have an important impact on the ability of HSPCs to proliferate and differentiate into red blood cells. PMID:26013297

  10. The role of biosimilar granulocyte colony stimulating factor (GCSF) Zarzio for progenitor cell mobilization and the treatment of therapy-induced neutropenia in adult hematopoietic stem cell transplantation.

    PubMed

    Severson, Cherie C

    2015-01-01

    Originator GCSF (Neupogen) has been used to mobilize progenitor stem cells and treat therapy-induced neutropenia in Canadian stem cell transplant settings for years. Although its benefit is not in question, viable alternatives are available. Biosimilar GCSF (Zarzio) is widely in use in Europe since 2009 and was recently approved in the U.S.for the same five indications as Neupogen. Zarzio is reported as safe, equally efficacious, more accessible and cost effective without negatively impacting patient outcomes. This paper summarizes the supporting evidence. PMID:26897866

  11. Transmission of clonal chromosomal abnormalities in human hematopoietic stem and progenitor cells surviving radiation exposure.

    PubMed

    Kraft, Daniela; Ritter, Sylvia; Durante, Marco; Seifried, Erhard; Fournier, Claudia; Tonn, Torsten

    2015-07-01

    In radiation-induced acute myeloid leukemia (rAML), clonal chromosomal abnormalities are often observed in bone marrow cells of patients, suggesting that their formation is crucial in the development of the disease. Since rAML is considered to originate from hematopoietic stem and progenitor cells (HSPC), we investigated the frequency and spectrum of radiation-induced chromosomal abnormalities in human CD34(+) cells. We then measured stable chromosomal abnormalities, a possible biomarker of leukemia risk, in clonally expanded cell populations which were grown for 14 days in a 3D-matrix (CFU-assay). We compared two radiation qualities used in radiotherapy, sparsely ionizing X-rays and densely ionizing carbon ions (29 and 60-85 keV/μm, doses between 0.5 and 4 Gy). Only a negligible number of de novo arising, unstable aberrations (≤ 0.05 aberrations/cell, 97% breaks) were measured in the descendants of irradiated HSPC. However, stable aberrations were detected in colonies formed by irradiated HSPC. All cells of the affected colonies exhibited one or more identical aberrations, indicating their clonal origin. The majority of the clonal rearrangements (92%) were simple exchanges such as translocations (77%) and pericentric inversions (15%), which are known to contribute to the development of rAML. Carbon ions were more efficient in inducing cell killing (maximum of ∼ 30-35% apoptotic cells for 2 Gy carbon ions compared to ∼ 25% for X-rays) and chromosomal aberrations in the first cell-cycle after exposure (∼ 70% and ∼ 40% for 1 Gy of carbon ions and X-rays, respectively), with a higher fraction of non-transmissible aberrations. In contrast, for both radiation qualities the percentage of clones with chromosomal abnormalities was similar (40%). Using the frequency of colonies with clonal aberrations as a surrogate marker for the leukemia risk following radiotherapy of solid tumors, charged particle therapy is not expected to lead to an increased risk of

  12. Mesenchymal progenitor cell markers in human articular cartilage: normal distribution and changes in osteoarthritis

    PubMed Central

    Grogan, Shawn P; Miyaki, Shigeru; Asahara, Hiroshi; D'Lima, Darryl D; Lotz, Martin K

    2009-01-01

    Introduction Recent findings suggest that articular cartilage contains mesenchymal progenitor cells. The aim of this study was to examine the distribution of stem cell markers (Notch-1, Stro-1 and VCAM-1) and of molecules that modulate progenitor differentiation (Notch-1 and Sox9) in normal adult human articular cartilage and in osteoarthritis (OA) cartilage. Methods Expression of the markers was analyzed by immunohistochemistry (IHC) and flow cytometry. Hoechst 33342 dye was used to identify and sort the cartilage side population (SP). Multilineage differentiation assays including chondrogenesis, osteogenesis and adipogenesis were performed on SP and non-SP (NSP) cells. Results A surprisingly high number (>45%) of cells were positive for Notch-1, Stro-1 and VCAM-1 throughout normal cartilage. Expression of these markers was higher in the superficial zone (SZ) of normal cartilage as compared to the middle zone (MZ) and deep zone (DZ). Non-fibrillated OA cartilage SZ showed reduced Notch-1 and Sox9 staining frequency, while Notch-1, Stro-1 and VCAM-1 positive cells were increased in the MZ. Most cells in OA clusters were positive for each molecule tested. The frequency of SP cells in cartilage was 0.14 ± 0.05% and no difference was found between normal and OA. SP cells displayed chondrogenic and osteogenic but not adipogenic differentiation potential. Conclusions These results show a surprisingly high number of cells that express putative progenitor cell markers in human cartilage. In contrast, the percentage of SP cells is much lower and within the range of expected stem cell frequency. Thus, markers such as Notch-1, Stro-1 or VCAM-1 may not be useful to identify progenitors in cartilage. Instead, their increased expression in OA cartilage implicates involvement in the abnormal cell activation and differentiation process characteristic of OA. PMID:19500336

  13. Transplanted Neural Progenitor Cells from Distinct Sources Migrate Differentially in an Organotypic Model of Brain Injury

    PubMed Central

    Ngalula, Kapinga P.; Cramer, Nathan; Schell, Michael J.; Juliano, Sharon L.

    2015-01-01

    Brain injury is a major cause of long-term disability. The possibility exists for exogenously derived neural progenitor cells to repair damage resulting from brain injury, although more information is needed to successfully implement this promising therapy. To test the ability of neural progenitor cells (NPCs) obtained from rats to repair damaged neocortex, we transplanted neural progenitor cell suspensions into normal and injured slice cultures of the neocortex acquired from rats on postnatal day 0–3. Donor cells from E16 embryos were obtained from either the neocortex, including the ventricular zone (VZ) for excitatory cells, ganglionic eminence (GE) for inhibitory cells or a mixed population of the two. Cells were injected into the ventricular/subventricular zone (VZ/SVZ) or directly into the wounded region. Transplanted cells migrated throughout the cortical plate with GE and mixed population donor cells predominately targeting the upper cortical layers, while neocortically derived NPCs from the VZ/SVZ migrated less extensively. In the injured neocortex, transplanted cells moved predominantly into the wounded area. NPCs derived from the GE tended to be immunoreactive for GABAergic markers while those derived from the neocortex were more strongly immunoreactive for other neuronal markers such as MAP2, TUJ1, or Milli-Mark. Cells transplanted in vitro acquired the electrophysiological characteristics of neurons, including action potential generation and reception of spontaneous synaptic activity. This suggests that transplanted cells differentiate into neurons capable of functionally integrating with the host tissue. Together, our data suggest that transplantation of neural progenitor cells holds great potential as an emerging therapeutic intervention for restoring function lost to brain damage. PMID:26500604

  14. Controlled skeletal progenitor cell migration on nanostructured porous silicon/silicon micropatterns

    NASA Astrophysics Data System (ADS)

    Torres-Costa, V.; Sánchez-Vaquero, V.; Muñoz-Noval, Á.; González-Méndez, L.; Punzón-Quijorna, E.; Gallach-Pérez, D.; Manso-Silván, M.; Martínez-Muñoz, G.; Climent-Font, A.; García-Ruiz, J. P.; Martín-Palma, R. J.

    2011-10-01

    In this work nanostructured porous silicon (nanoPS) was used for the fabrication of surface micropatterns aiming at controlling cell adhesion and migration. In particular, surface patterns of nanoPS and Si were engineered by high-energy ion-beam irradiation and subsequent anodization. It was found that human skeletal progenitor cells are sensitive to oneand two-dimensional patterns and that focal adhesion is inhibited on nanoPS areas. In spite of this anti-fouling characteristics, studies on patterns with reduced Si areas show that cells conform to nanoPS pathways favoring migration through cell protrusion, body translocation and tail retraction from two parallel Si traction rails. Moreover, migration can be blocked and cells tend to arrange when grid patterns with the appropriate dimensions are fabricated. The experimental results confirm that progenitor cells are able to exploit nanoPS anti-fouling designs by adapting to it for migration purposes.

  15. Tissue Engineering Special Feature: A macroporous hydrogel for the coculture of neural progenitor and endothelial cells to form functional vascular networks in vivo

    NASA Astrophysics Data System (ADS)

    Ford, Millicent C.; Bertram, James P.; Royce Hynes, Sara; Michaud, Michael; Li, Qi; Young, Michael; Segal, Steven S.; Madri, Joseph A.; Lavik, Erin B.

    2006-02-01

    A microvascular network is critical for the survival and function of most tissues. We have investigated the potential of neural progenitor cells to augment the formation and stabilization of microvascular networks in a previously uncharacterized three-dimensional macroporous hydrogel and the ability of this engineered system to develop a functional microcirculation in vivo. The hydrogel is synthesized by cross-linking polyethylene glycol with polylysine around a salt-leached polylactic-co-glycolic acid scaffold that is degraded in a sodium hydroxide solution. An open macroporous network is formed that supports the efficient formation of tubular structures by brain endothelial cells. After subcutaneous implantation of hydrogel cocultures in mice, blood flow in new microvessels was apparent at 2 weeks with perfused networks established on the surface of implants at 6 weeks. Compared to endothelial cells cultured alone, cocultures of endothelial cells and neural progenitor cells had a significantly greater density of tubular structures positive for platelet endothelial cell adhesion molecule-1 at the 6-week time point. In implant cross sections, the presence of red blood cells in vessel lumens confirmed a functional microcirculation. These findings indicate that neural progenitor cells promote the formation of endothelial cell tubes in coculture and the development of a functional microcirculation in vivo. We demonstrate a previously undescribed strategy for creating stable microvascular networks to support engineered tissues of desired parenchymal cell origin. microvasculature | neural stem cells | polymer | scaffold

  16. Optimizing Culture Medium Composition to Improve Oligodendrocyte Progenitor Cell Yields In Vitro from Subventricular Zone-Derived Neural Progenitor Cell Neurospheres

    PubMed Central

    Franco, Paula G.; Pasquini, Juana M.; Silvestroff, Lucas

    2015-01-01

    Neural Stem and Progenitor Cells (NSC/NPC) are gathering tangible recognition for their uses in cell therapy and cell replacement therapies for human disease, as well as a model system to continue research on overall neural developmental processes in vitro. The Subventricular Zone is one of the largest NSC/NPC niches in the developing mammalian Central Nervous System, and persists through to adulthood. Oligodendrocyte progenitor cell (OPC) enriched cultures are usefull tools for in vitro studies as well as for cell replacement therapies for treating demyelination diseases. We used Subventricular Zone-derived NSC/NPC primary cultures from newborn mice and compared the effects of different growth factor combinations on cell proliferation and OPC yield. The Platelet Derived Growth Factor-AA and BB homodimers had a positive and significant impact on OPC generation. Furthermore, heparin addition to the culture media contributed to further increase overall culture yields. The OPC generated by this protocol were able to mature into Myelin Basic Protein-expressing cells and to interact with neurons in an in vitro co-culture system. As a whole, we describe an optimized in vitro method for increasing OPC. PMID:25837625

  17. Secreted proteome of the murine multipotent hematopoietic progenitor cell line DKmix.

    PubMed

    Luecke, Nina; Templin, Christian; Muetzelburg, Marika Victoria; Neumann, Detlef; Just, Ingo; Pich, Andreas

    2010-03-15

    Administration of the multipotent hematopoietic progenitor cell (HPC) line DKmix improved cardiac function after myocardial infarction and accelerated dermal wound healing due to paracrine mechanisms. The aim of this study was to analyse the secreted proteins of DKmix cells in order to identify the responsible paracrine factors and assess their relevance to the wide spectrum of therapeutic effects. A mass spectrometry (MS)-based approach was used to identify secreted proteins of DKmix cells. Serum free culture supernatants of DKmix-conditioned medium were collected and the proteins present were separated, digested by trypsin and the resulting peptides were then analyzed by matrix-assisted laser desorption/ionization tandem time-of-flight (MALDI-TOF/TOF) MS. Overall 95 different proteins were identified. Among them, secretory proteins galectin-3 and gelsolin were identified. These proteins are known to stimulate cell migration and influence wound healing and cardiac remodelling. The remaining proteins originate from intracellular compartments like cytoplasm (69%), nucleus (12%), mitochondria (4%), and cytoplasmic membrane (3%) indicating permeable or leaky DKmix cells in the conditioned medium. Additionally, a sandwich immunoassay was used to detect and quantify cytokines and chemokines. Interleukin-6 (IL-6), interleukin-13 (IL-13), monocyte-chemoattractant protein-1 (MCP-1), monocyte-chemoattractant protein-3 (MCP-3), monocyte-chemoattractant protein-1alpha (MIP-1alpha) and monocyte-chemoattractant protein-1beta (MIP-1beta) were detected in low concentrations. This study identified a subset of proteins present in the DKmix-conditioned medium that act as paracrine modulators of tissue repair. Moreover, it suggests that DKmix-derived conditioned medium might have therapeutic potency by promoting tissue regeneration. PMID:20127908

  18. Leptin changes differentiation fate and induces senescence in chondrogenic progenitor cells

    PubMed Central

    Zhao, X; Dong, Y; Zhang, J; Li, D; Hu, G; Yao, J; Li, Y; Huang, P; Zhang, M; Zhang, J; Huang, Z; Zhang, Y; Miao, Y; Xu, Q; Li, H

    2016-01-01

    Body weight is a component of the mechanical theory of OA (osteoarthritis) pathogenesis. Obesity was also found to be a risk factor for digital OA involving non-weight-bearing joints, which suggested that metabolism influences the occurrence and progression of OA. The metabolic origin of OA has been partially attributed to the involvement of adipokines, such as leptin, the levels of which are significantly and positively correlated with cartilage degeneration in OA patients. However, the mechanisms by which leptin-induced cartilage degeneration occurs are poorly understood. The discovery of chondrogenic progenitor cells (CPCs) opened up new opportunities for investigation. Investigating the effects of leptin on differentiation and proliferation in CPCs would increase our understanding of the roles played by leptin in the aetiology and development of OA. Here, CPCs were harvested using single-cell sorting from rat cartilage tissues to obtain mesenchymal stem-like cells, which possess clonogenicity, proliferation and stemness. High doses of leptin decreased the ability of the CPCs to migrate, inhibited their chondrogenic potential and increased their osteogenic potential, suggesting that leptin changes differentiation fates in CPCs. High doses of leptin induced cell cycle arrest and senescence in CPCs by activating the p53/p21 pathway and inhibiting the Sirt1 pathway. Inhibiting the Sirt1 pathway accelerated cartilage senescence in knockout (KO) mice. Activating the leptin pathway induced higher Ob-Rb expression and was significantly correlated with cartilage degeneration (lower levels of Coll-2) and tissue senescence (higher levels of p53/p21 and lower levels of Sirt1) in OA patients, suggesting that leptin-induced CPCs senescence contributes to the development of OA. Taken together, our results reveal new links between obesity and cartilage damage that are induced by leptin-mediated effects on cell behaviour and senescence. PMID:27077804

  19. Lipidome of midbody released from neural stem and progenitor cells during mammalian cortical neurogenesis

    PubMed Central

    Arai, Yoko; Sampaio, Julio L.; Wilsch-Bräuninger, Michaela; Ettinger, Andreas W.; Haffner, Christiane; Huttner, Wieland B.

    2015-01-01

    Midbody release from proliferative neural progenitor cells is tightly associated with the neuronal commitment of neural progenitor cells during the progression of neurogenesis in the mammalian cerebral cortex. While the central portion of the midbody, a cytoplasmic bridge between nascent daughter cells, is engulfed by one of the daughter cell by most cells in vitro, it is shown to be released into the extracellular cerebrospinal fluid (CF) in vivo in mouse embryos. Several proteins have been involved in midbody release; however, few studies have addressed the participation of the plasma membrane's lipids in this process. Here, we show by Shotgun Lipidomic analysis that phosphatydylserine (PS), among other lipids, is enriched in the released midbodies compared to lipoparticles and cellular membranes, both collected from the CF of the developing mouse embryos. Moreover, the developing mouse embryo neural progenitor cells released two distinct types of midbodies carrying either internalized PS or externalized PS on their membrane. This strongly suggests that phagocytosis and an alternative fate of released midbodies exists. HeLa cells, which are known to mainly engulf the midbody show almost no PS exposure, if any, on the outer leaflet of the midbody membrane. These results point toward that PS exposure might be involved in the selection of recipients of released midbodies, either to be engulfed by daughter cells or phagocytosed by non-daughter cells or another cell type in the developing cerebral cortex. PMID:26379497

  20. Otospheres derived from neonatal mouse cochleae retain the progenitor cell phenotype after ex vivo expansions.

    PubMed

    Lou, Xiang-Xin; Nakagawa, Takayuki; Ohnishi, Hiroe; Nishimura, Koji; Ito, Juichi

    2013-02-01

    Because of their limited regenerative potential, cochlear hair cell loss is one of the major causes of permanent hearing loss in mammals. However, recent studies have shown that postnatal cochlear epithelia retain the progenitor cells that form otospheres. Otospheres are capable of self-renewing and differentiating into inner ear cell lineages, thereby suggesting a promising source for hair cell regeneration. We investigated retention of the progenitor cell phenotype in otospheres after ex vivo expansion, which is crucial for transplantation approaches. Reverse transcriptase-polymerase chain reaction and immunocytochemical analyses showed that otospheres derived from neonatal mice retained expression of stem and cochlear cell markers. After in vitro differentiation, otosphere-consisting cells differentiated into hair cell phenotypes after ex vivo expansion. However, the capacity of otospheres for self-renewal weakened with subsequent generations of ex vivo expansion. Our results indicate that ex vivo expanded-otospheres are useful experimental tools for studying hair cell regeneration in transplantation approaches and that the mechanisms for retention of the progenitor cell phenotype in otospheres should be investigated. PMID:23238450

  1. Eotaxin-Rich Proangiogenic Hematopoietic Progenitor Cells and CCR3+ Endothelium in the Atopic Asthmatic Response.

    PubMed

    Asosingh, Kewal; Vasanji, Amit; Tipton, Aaron; Queisser, Kimberly; Wanner, Nicholas; Janocha, Allison; Grandon, Deepa; Anand-Apte, Bela; Rothenberg, Marc E; Dweik, Raed; Erzurum, Serpil C

    2016-03-01

    Angiogenesis is closely linked to and precedes eosinophilic infiltration in asthma. Eosinophils are recruited into the airway by chemoattractant eotaxins, which are expressed by endothelial cells, smooth muscles cells, epithelial cells, and hematopoietic cells. We hypothesized that bone marrow-derived proangiogenic progenitor cells that contain eotaxins contribute to the initiation of angiogenesis and inflammation in asthma. Whole-lung allergen challenge of atopic asthma patients revealed vascular activation occurs within hours of challenge and before airway inflammation. The eotaxin receptor CCR3 was expressed at high levels on submucosal endothelial cells in patients and a murine model of asthma. Ex vivo exposure of murine endothelial cells to eotaxins induced migration and angiogenesis. In mechanistic studies, wild-type mice transplanted with eotaxin-1/2-deficient bone marrow had markedly less angiogenesis and inflammation in an atopic asthma model, whereas adoptive transfer of proangiogenic progenitor cells from wild-type mice in an atopic asthma model into the eotaxin-1/2-deficient mice led to angiogenesis and airway inflammation. The findings indicate that Th2-promoting hematopoietic progenitor cells are rapidly recruited to the lung upon allergen exposure and release eotaxins that coordinately activate endothelial cells, angiogenesis, and airway inflammation. PMID:26810221

  2. The Phosphatases STS1 and STS2 Regulate Hematopoietic Stem and Progenitor Cell Fitness

    PubMed Central

    Zhang, Jing; Vakhrusheva, Olesya; Bandi, Srinivasa Rao; Demirel, Özlem; Kazi, Julhash U.; Fernandes, Ramona Gomes; Jakobi, Katja; Eichler, Astrid; Rönnstrand, Lars; Rieger, Michael A.; Carpino, Nick; Serve, Hubert; Brandts, Christian H.

    2015-01-01

    Summary FLT3 and c-KIT are crucial regulators of hematopoietic stem and progenitor cells. We investigated the role of STS1 and STS2 on FLT3 and c-KIT phosphorylation, activity, and function in normal and stress-induced hematopoiesis. STS1/STS2-deficient mice show a profound expansion of multipotent progenitor and lymphoid primed multipotent progenitor cells with elevated colony-forming capacity. Although long-term hematopoietic stem cells are not increased in numbers, lack of STS1 and STS2 significantly promotes long-term repopulation activity, demonstrating a pivotal role of STS1/STS2 in regulating hematopoietic stem and progenitor cell fitness. Biochemical analysis identified STS1/STS2 as direct phosphatases of FLT3 and c-KIT. Loss of STS1/STS2 induces hyperphosphorylation of FLT3, enhances AKT signaling, and confers a strong proliferative advantage. Therefore, our study reveals that STS1 and STS2 may serve as novel pharmaceutical targets to improve hematopoietic recovery after bone marrow transplantation. PMID:26365512

  3. The Phosphatases STS1 and STS2 Regulate Hematopoietic Stem and Progenitor Cell Fitness.

    PubMed

    Zhang, Jing; Vakhrusheva, Olesya; Bandi, Srinivasa Rao; Demirel, Özlem; Kazi, Julhash U; Fernandes, Ramona Gomes; Jakobi, Katja; Eichler, Astrid; Rönnstrand, Lars; Rieger, Michael A; Carpino, Nick; Serve, Hubert; Brandts, Christian H

    2015-10-13

    FLT3 and c-KIT are crucial regulators of hematopoietic stem and progenitor cells. We investigated the role of STS1 and STS2 on FLT3 and c-KIT phosphorylation, activity, and function in normal and stress-induced hematopoiesis. STS1/STS2-deficient mice show a profound expansion of multipotent progenitor and lymphoid primed multipotent progenitor cells with elevated colony-forming capacity. Although long-term hematopoietic stem cells are not increased in numbers, lack of STS1 and STS2 significantly promotes long-term repopulation activity, demonstrating a pivotal role of STS1/STS2 in regulating hematopoietic stem and progenitor cell fitness. Biochemical analysis identified STS1/STS2 as direct phosphatases of FLT3 and c-KIT. Loss of STS1/STS2 induces hyperphosphorylation of FLT3, enhances AKT signaling, and confers a strong proliferative advantage. Therefore, our study reveals that STS1 and STS2 may serve as novel pharmaceutical targets to improve hematopoietic recovery after bone marrow transplantation. PMID:26365512

  4. A Progesterone-CXCR4 Axis Controls Mammary Progenitor Cell Fate in the Adult Gland

    PubMed Central

    Shiah, Yu-Jia; Tharmapalan, Pirashaanthy; Casey, Alison E.; Joshi, Purna A.; McKee, Trevor D.; Jackson, Hartland W.; Beristain, Alexander G.; Chan-Seng-Yue, Michelle A.; Bader, Gary D.; Lydon, John P.; Waterhouse, Paul D.; Boutros, Paul C.; Khokha, Rama

    2015-01-01

    Summary Progesterone drives mammary stem and progenitor cell dynamics through paracrine mechanisms that are currently not well understood. Here, we demonstrate that CXCR4, the receptor for stromal-derived factor 1 (SDF-1; CXC12), is a crucial instructor of hormone-induced mammary stem and progenitor cell function. Progesterone elicits specific changes in the transcriptome of basal and luminal mammary epithelial populations, where CXCL12 and CXCR4 represent a putative ligand-receptor pair. In situ, CXCL12 localizes to progesterone-receptor-positive luminal cells, whereas CXCR4 is induced in both basal and luminal compartments in a progesterone-dependent manner. Pharmacological inhibition of CXCR4 signaling abrogates progesterone-directed expansion of basal (CD24+CD49fhi) and luminal (CD24+CD49flo) subsets. This is accompanied by a marked reduction in CD49b+SCA-1− luminal progenitors, their functional capacity, and lobuloalveologenesis. These findings uncover CXCL12 and CXCR4 as novel paracrine effectors of hormone signaling in the adult mammary gland, and present a new avenue for potentially targeting progenitor cell growth and malignant transformation in breast cancer.

  5. Characterization of Human Neural Progenitor Cell Models for Developmental Neurotoxicity Screening

    EPA Science Inventory

    Current testing methods for developmental neurotoxicity (DNT) make evaluation of the effects of large numbers of chemicals impractical and prohibitively expensive. As such, we are evaluating two different human neural progenitor cell (hNPC) models for their utility in screens for...

  6. Transcriptional mechanisms link epithelial plasticity to adhesion and differentiation of epidermal progenitor cells

    PubMed Central

    Lee, Briana; Villarreal-Ponce, Alvaro; Fallahi, Magid; Ovadia, Jeremy; Sun, Peng; Yu, Qian-Chun; Ito, Seiji; Sinha, Satrajit; Nie, Qing; Dai, Xing

    2014-01-01

    During epithelial tissue morphogenesis, developmental progenitor cells undergo dynamic adhesive and cytoskeletal remodeling to trigger proliferation and migration. Transcriptional mechanisms that restrict such mild form of epithelial plasticity to maintain lineage-restricted differentiation in committed epithelial tissues are poorly understood. Here we report that simultaneous ablation of transcriptional repressor-encoding Ovol1 and Ovol2 results in expansion and blocked terminal differentiation of embryonic epidermal progenitor cells. Conversely, mice overexpressing Ovol2 in their skin epithelia exhibit precocious differentiation accompanied by smaller progenitor cell compartments. We show that Ovol1/2-deficient epidermal cells fail to undertake α-catenin–driven actin cytoskeletal reorganization and adhesive maturation, and exhibit changes that resemble epithelial-to-mesenchymal transition (EMT). Remarkably, these alterations as well as defective terminal differentiation are reversed upon depletion of EMT-promoting transcriptional factor Zeb1. Collectively, our findings reveal Ovol-Zeb1-α-catenin sequential repression and highlight functions of Ovol as gatekeepers of epithelial adhesion and differentiation by inhibiting progenitor-like traits and epithelial plasticity. PMID:24735878

  7. BSHI Guideline: HLA matching and donor selection for haematopoietic progenitor cell transplantation.

    PubMed

    Little, A-M; Green, A; Harvey,