Science.gov

Sample records for programmed death type-1

  1. Nivolumab, an Anti-Programmed Cell Death-1 Antibody, Induces Fulminant Type 1 Diabetes.

    PubMed

    Miyoshi, Yuka; Ogawa, Osamu; Oyama, Yu

    2016-01-01

    Programmed cell death-1 (PD-1), an immunoreceptor, is located on T cells and pro-B cells and interacts with its ligands to inhibit T cell activation and proliferation, thereby promoting immunological self-tolerance. Nivolumab, an anti-PD1 antibody, blocks PD-1 and can restore anticancer immune responses by abrogating PD-1 pathway-mediated T-cell inhibition. Autoimmune adverse events are expected with PD-1 therapy. Fulminant type 1 diabetes is the subtype of type 1 diabetes. The clinical feature is the extremely rapid progression of hyperglycemia and ketoacidosis. Here we describe a 66-year-old woman with advanced melanoma who was treated with nivolumab. After 4 months and six doses of the medicine, the patient was admitted to the hospital with complaints of nausea and vomiting. The laboratory data showed ketonuria, hyperglycemia (531 mg/dl), high anion gap metabolic acidosis, HbA1c (7.3%), and absence of insulin-secreting capacity. These data are compatible with the criteria of fulminant type 1 diabetes. The patient was diagnosed with diabetic ketoacidosis because of fulminant type 1 diabetes. The findings of this case indicated that nivolumab can cause fulminant type 1 diabetes. Diabetic ketoacidosis due to fulminant type 1 diabetes is potentially fatal condition. Thus, diabetic ketoacidosis due to fulminant type 1 diabetes should be considered in the differential diagnosis when patients treated with nivolumab complain of gastrointestinal symptoms. PMID:27297738

  2. HIV-1 gp120 induces type-1 programmed cell death through ER stress employing IRE1α, JNK and AP-1 pathway

    PubMed Central

    Shah, Ankit; Vaidya, Naveen K.; Bhat, Hari K.; Kumar, Anil

    2016-01-01

    The ER stress-mediated apoptosis has been implicated in several neurodegenerative diseases; however, its role in HIV/neuroAIDS remains largely unexplored. The present study was undertaken to assess the involvement and detailed mechanism of IRE1α pathway in HIV-1 gp120-mediated ER stress and its possible involvement in cell death. Various signaling molecules for IRE1α pathway were assessed using SVGA cells, primary astrocytes and gp120 transgenic mice, which demonstrated gp120-mediated increase in phosphorylated JNK, XBP-1 and AP-1 leading to upregulation of CHOP. Furthermore, HIV-1 gp120-mediated activation of IRE1α also increased XBP-1 splicing. The functional consequence of gp120-mediated ER stress was determined via assessment of gp120-mediated cell death using PI staining and MTT assay. The gp120-mediated cell death also involved caspase-9/caspase-3-mediated apoptosis. These findings were confirmed with the help of specific siRNA for IRE1α, JNK, AP-1, BiP and CHOP showing significant reduction in gp120-mediated CHOP expression. Additionally, silencing all the intermediates also reduced the gp120-mediated cell death and caspase-9/caspase-3 activation at differential levels. This study provides ER-stress as a novel therapeutic target in the management of gp120-mediated cell death and possibly in the treatment of neuroAIDS. PMID:26740125

  3. Programmed cell death

    SciTech Connect

    1995-12-31

    The purpose of this conference to provide a multidisciplinary forum for exchange of state-of-the-art information on the role programmed cell death plays in normal development and homeostasis of many organisms. This volume contains abstracts of papers in the following areas: invertebrate development; immunology/neurology; bcl-2 family; biochemistry; programmed cell death in viruses; oncogenesis; vertebrate development; and diseases.

  4. Mortality associated with neurofibromatosis type 1: A study based on Italian death certificates (1995-2006)

    PubMed Central

    2011-01-01

    Background Persons affected by neurofibromatosis type 1 (NF1) have a decreased survival, yet information on NF1-associated mortality is limited. Methods/Aim The National Mortality Database and individual Multiple-Causes-of-Death records were used to estimate NF1-associated mortality in Italy in the period 1995-2006, to compare the distribution of age at death (as a proxy of survival) to that of the general population and to evaluate the relation between NF1 and other medical conditions by determining whether the distribution of underlying causes of NF1-associated deaths differs from that of general population. Results Of the nearly 6.75 million deaths in the study period, 632 had a diagnosis of NF1, yet for nearly three-fourths of them the underlying cause was not coded as neurofibromatosis. The age distribution showed that NF1-associated deaths also occurred among the elderly, though mortality in early ages was high. The mean age for NF1-associated death was approximately 20 years lower than that for the general population. The gender differential may suggest that women are affected by more severe NF1-related complications, or they may simply reflect a greater tendency for NF1 to be reported on the death certificates of young women. Regarding the relation with other medical conditions, we found an excess, as the underlying cause of death, for malignant neoplasm of connective and other soft tissue and brain, but not for other sites. We also found an excess for obstructive chronic bronchitis and musculoskeletal system diseases among elderly persons. Conclusion This is the first nationally representative population-based study on NF1-associated mortality in Italy. It stresses the importance of the Multiple-Causes-of-Death Database in providing a more complete picture of mortality for conditions that are frequently not recorded as the underlying cause of death, or to study complex chronic diseases or diseases that have no specific International Classification of

  5. Causes of Death and Prognostic Factors in Multiple Endocrine Neoplasia Type 1: A Prospective Study

    PubMed Central

    Ito, Tetsuhide; Igarashi, Hisato; Uehara, Hirotsugu; Berna, Marc J.; Jensen, Robert T.

    2013-01-01

    Abstract Multiple endocrine neoplasia type 1 (MEN1) is classically characterized by the development of functional or nonfunctional hyperplasia or tumors in endocrine tissues (parathyroid, pancreas, pituitary, adrenal). Because effective treatments have been developed for the hormone excess state, which was a major cause of death in these patients in the past, coupled with the recognition that nonendocrine tumors increasingly develop late in the disease course, the natural history of the disease has changed. An understanding of the current causes of death is important to tailor treatment for these patients and to help identify prognostic factors; however, it is generally lacking. To add to our understanding, we conducted a detailed analysis of the causes of death and prognostic factors from a prospective long-term National Institutes of Health (NIH) study of 106 MEN1 patients with pancreatic endocrine tumors with Zollinger-Ellison syndrome (MEN1/ZES patients) and compared our results to those from the pooled literature data of 227 patients with MEN1 with pancreatic endocrine tumors (MEN1/PET patients) reported in case reports or small series, and to 1386 patients reported in large MEN1 literature series. In the NIH series over a mean follow-up of 24.5 years, 24 (23%) patients died (14 MEN1-related and 10 non-MEN1-related deaths). Comparing the causes of death with the results from the 227 patients in the pooled literature series, we found that no patients died of acute complications due to acid hypersecretion, and 8%–14% died of other hormone excess causes, which is similar to the results in 10 large MEN1 literature series published since 1995. In the 2 series (the NIH and pooled literature series), two-thirds of patients died from an MEN1-related cause and one-third from a non-MEN1-related cause, which agrees with the mean values reported in 10 large MEN1 series in the literature, although in the literature the causes of death varied widely. In the NIH and pooled

  6. Biomarkers of β-Cell Stress and Death in Type 1 Diabetes.

    PubMed

    Mirmira, Raghavendra G; Sims, Emily K; Syed, Farooq; Evans-Molina, Carmella

    2016-10-01

    The hallmark of type 1 diabetes (T1D) is a decline in functional β-cell mass arising as a result of autoimmunity. Immunomodulatory interventions at disease onset have resulted in partial stabilization of β-cell function, but full recovery of insulin secretion has remained elusive. Revised efforts have focused on disease prevention through interventions administered at earlier disease stages. To support this paradigm, there is a parallel effort ongoing to identify circulating biomarkers that have the potential to identify stress and death of the islet β-cells. Whereas no definitive biomarker(s) have been fully validated, several approaches hold promise that T1D can be reliably identified in the pre-symptomatic phase, such that either β-cell preservation or immunomodulatory agents might be employed in at-risk populations. This review summarizes the most promising protein- and nucleic acid-based biomarkers discovered to date and reviews the context in which they have been studied. PMID:27541297

  7. Life and death of β cells in Type 1 diabetes: A comprehensive review.

    PubMed

    Wilcox, Nicholas S; Rui, Jinxiu; Hebrok, Matthias; Herold, Kevan C

    2016-07-01

    Type 1 diabetes (T1D) is an autoimmune disorder characterized by the destruction of insulin-producing pancreatic β cells. Immune modulators have achieved some success in modifying the course of disease progression in T1D. However, there are parallel declines in C-peptide levels in treated and control groups after initial responses. In this review, we discuss mechanisms of β cell death in T1D that involve necrosis and apoptosis. New technologies are being developed to enable visualization of insulitis and β cell mass involving positron emission transmission that identifies β cell ligands and magnetic resonance imaging that can identify vascular leakage. Molecular signatures that identify β cell derived insulin DNA that is released from dying cells have been described and applied to clinical settings. We also consider changes in β cells that occur during disease progression including the induction of DNA methyltransferases that may affect the function and differentiation of β cells. Our findings from newer data suggest that the model of chronic long standing β cell killing should be reconsidered. These studies indicate that the pathophysiology is accelerated in the peridiagnosis period and manifest by increased rates of β cell killing and insulin secretory impairments over a shorter period than previously thought. Finally, we consider cellular explanations to account for the ongoing loss of insulin production despite continued immune therapy that may identify potential targets for treatment. The progressive decline in β cell function raises the question as to whether β cell failure that is independent of immune attack may be involved. PMID:27017348

  8. Effectiveness of a Regional Prepregnancy Care Program in Women With Type 1 and Type 2 Diabetes

    PubMed Central

    Murphy, Helen R.; Roland, Jonathan M; Skinner, Timothy C.; Simmons, David; Gurnell, Eleanor; Morrish, Nicholas J.; Soo, Shiu-Ching; Kelly, Suzannah; Lim, Boon; Randall, Joanne; Thompsett, Sarah; Temple, Rosemary C.

    2010-01-01

    OBJECTIVE To implement and evaluate a regional prepregnancy care program in women with type 1 and type 2 diabetes. RESEARCH DESIGN AND METHODS Prepregnancy care was promoted among patients and health professionals and delivered across 10 regional maternity units. A prospective cohort study of 680 pregnancies in women with type 1 and type 2 diabetes was performed. Primary outcomes were adverse pregnancy outcome (congenital malformation, stillbirth, or neonatal death), congenital malformation, and indicators of pregnancy preparation (5 mg folic acid, gestational age, and A1C). Comparisons were made with a historical cohort (n = 613 pregnancies) from the same units during 1999–2004. RESULTS A total of 181 (27%) women attended, and 499 women (73%) did not attend prepregnancy care. Women with prepregnancy care presented earlier (6.7 vs. 7.7 weeks; P < 0.001), were more likely to take 5 mg preconception folic acid (88.2 vs. 26.7%; P < 0.0001) and had lower A1C levels (A1C 6.9 vs. 7.6%; P < 0.0001). They had fewer adverse pregnancy outcomes (1.3 vs. 7.8%; P = 0.009). Multivariate logistic regression confirmed that in addition to glycemic control, lack of prepregnancy care was independently associated with adverse outcome (odds ratio 0.2 [95% CI 0.05–0.89]; P = 0.03). Compared with 1999–2004, folic acid supplementation increased (40.7 vs. 32.5%; P = 0.006) and congenital malformations decreased (4.3 vs. 7.3%; P = 0.04). CONCLUSIONS Regional prepregnancy care was associated with improved pregnancy preparation and reduced risk of adverse pregnancy outcome in type 1 and type 2 diabetes. Prepregnancy care had benefits beyond improved glycemic control and was a stronger predictor of pregnancy outcome than maternal obesity, ethnicity, or social disadvantage. PMID:21115765

  9. Sudden death due to rupture of the right internal carotid artery in neurofibromatosis type 1: A case report.

    PubMed

    Liang, Yue; Tong, Fang; Zhang, Lin; Li, Wenhe; Zhou, Yiwu

    2016-07-01

    Vascular involvement is a well-recognized manifestation of neurofibromatosis type 1 (NF1) which has the potential to be fatal when disrupted. We here present a case of sudden death due to the fatal arterial rupture resulted from infiltration of the neurofibromas. A 42-year-old man who suffered from NF1 presented a 1-h history of sudden onset of pain in his right cervical region. His condition worsened and became unconscious on his way to the emergency room. Despite resuscitation efforts, he died 30min later without regaining consciousness. Autopsy examination showed that a neurofibroma located around the right internal carotid artery, confirmed immunohistochemically with S-100, vimentin and CD34. Furthermore, proliferation of spindle cells positive for S-100 was seen in the wall of right internal carotid artery, which was disrupted and resulted in a hemorrhage. These findings suggest that the artery was disrupted by neurofibromas in the vascular wall, which led to fragility of the vessel. On the basis of these findings, we concluded that the cause of death was asphyxia resulting from airway obstruction compressed by the hematoma due to the arterial rupture. As the locality of the neurofibroma and hemorrhage were closed to the carotid baroreflex, we considered another possible mechanism of his sudden death, which could be cardiac inhibition induced by vagal stimulation. We hope this case will increase recognition of NF-1 vasculopathy when encountering any sudden death in NF1 patients. PMID:27497331

  10. Unusual cause of aborted sudden cardiac death in a teen athlete: homozygosity for the 4G allele of the plasminogen activase inhibitor type 1 gene.

    PubMed

    Phillips, Susie B; Batlivala, Sarosh; Knudson, Jarrod D

    2015-10-01

    Common aetiologies of sudden cardiac death in children include coronary anomalies, channelopathies, and cardiomyopathies. Less frequently, hypercoagulable states cause sudden arrest. We report an unusual case of aborted sudden cardiac death in a teenager, ultimately found to have homozygosity for the 4G allele of the plasminogen activase inhibitor type 1 gene. PMID:25498839

  11. Programmed Cell Death During Caenorhabditis elegans Development.

    PubMed

    Conradt, Barbara; Wu, Yi-Chun; Xue, Ding

    2016-08-01

    Programmed cell death is an integral component of Caenorhabditis elegans development. Genetic and reverse genetic studies in C. elegans have led to the identification of many genes and conserved cell death pathways that are important for the specification of which cells should live or die, the activation of the suicide program, and the dismantling and removal of dying cells. Molecular, cell biological, and biochemical studies have revealed the underlying mechanisms that control these three phases of programmed cell death. In particular, the interplay of transcriptional regulatory cascades and networks involving multiple transcriptional regulators is crucial in activating the expression of the key death-inducing gene egl-1 and, in some cases, the ced-3 gene in cells destined to die. A protein interaction cascade involving EGL-1, CED-9, CED-4, and CED-3 results in the activation of the key cell death protease CED-3, which is tightly controlled by multiple positive and negative regulators. The activation of the CED-3 caspase then initiates the cell disassembly process by cleaving and activating or inactivating crucial CED-3 substrates; leading to activation of multiple cell death execution events, including nuclear DNA fragmentation, mitochondrial elimination, phosphatidylserine externalization, inactivation of survival signals, and clearance of apoptotic cells. Further studies of programmed cell death in C. elegans will continue to advance our understanding of how programmed cell death is regulated, activated, and executed in general. PMID:27516615

  12. Setting up a Death Row Psychiatry Program

    PubMed Central

    2011-01-01

    Death row psychiatry contains a complex set of clinical, ethical, and legal questions. This Forensic Files column makes a case for correctional institutions starting death row programs to address these issues through uniform policies. A list of the relevant issues is provided. Specific issues discussed include death row psychiatric assessment, considering “justifiable” depression, treating for competency to be executed, and balancing boundaries between clinical and forensic work. PMID:21468293

  13. [Programmed cell death comes in many flavors].

    PubMed

    Cabon, Lauriane; Martinez-Torres, Ana-Carolina; Susin, Santos A

    2013-12-01

    Apoptosis is nowadays what comes first to your scientist mind when someone mentions cellular suicide. However this is not the sole form of programmed cell death and many other alternative or atypical pathways have now been described. These pathways are indeed rather preferred to apoptosis in some instances based on tissue origin, cell type or development stage of the target cell. In this review, we describe many different programmed cell death subtypes according to their characteristics. Discrete, brutal, final or singular cell death pathways all participate in the elimination of unwanted, damaged or dangerous cells in organisms hence contributing to our knowledge of this particular feature of living beings: dying! Through description of anoikis, necroptosis, entosis, netosis, pyroptosis or ferroptosis, we have no choice but to realize that programmed cell death comes in many flavors. PMID:24356142

  14. Feasibility of the SMART Project: A Text Message Program for Adolescents With Type 1 Diabetes

    PubMed Central

    Mehta, Priya; Monaghan, Maureen; Cogen, Fran; Streisand, Randi

    2014-01-01

    Abstract This study investigated response rates to the Self-Management and Research Technology Project, a 6-week text message program for adolescents with type 1 diabetes designed to provide diabetes self-management reminders and education. The rate of response to texts was high, with 78% of texts responded to during the 6-week period. Girls and participants who self-reported sending a large number of personal daily texts had higher response rates; other demographic and medical variables were unrelated to text response rates. Inclusion of mobile health technologies such as text messages in clinical care may be a unique, relevant method of intervention for youths with type 1 diabetes, regardless of age, socioeconomic status, or glycemic control. PMID:25647048

  15. Programmed death phenomena: from organelle to organism.

    PubMed

    Skulachev, Vladimir P

    2002-04-01

    Programmed death phenomena appear to be inherent not only in living cells (apoptosis), but also in subcellular organelles (e.g., self-elimination of mitochondria, called mitoptosis), organs (organoptosis), and even whole organisms (phenoptosis). In all these cases, the "Samurai law of biology"--it is better to die than to be wrong--seems to be operative. The operation of this law helps complicated living systems avoid the risk of ruin when a system of lower hierarchic position makes a significant mistake. Thus, mitoptosis purifies a cell from damaged and hence unwanted mitochondria; apoptosis purifies a tissue from unwanted cells; and phenoptosis purifies a community from unwanted individuals. Defense against reactive oxygen species (ROS) is probably one of the primary evolutionary functions of programmed death mechanisms. So far, it seems that ROS play a key role in the mito-, apo-, organo-, and phenoptoses, which is consistent with Harman's theory of aging. Here a concept is described that tries to unite Weismann's hypothesis of aging as an adaptive programmed death mechanism and the generally accepted alternative point of view that considers aging as an inevitable result of accumulation in an organism of occasional injuries. It is suggested that injury accumulation is monitored by a system(s) actuating a phenoptotic death program when the number of injuries reaches some critical level. The system(s) in question are organized in such a way that the lethal case appears to be a result of phenoptosis long before the occasional injuries make impossible the functioning of the organism. It is stressed that for humans these cruel regulations look like an atavism that, if overcome, might dramatically prolong the human life span. PMID:11976198

  16. Costs of Development and Maintenance of an Internet Program for Teens with Type 1 Diabetes

    PubMed Central

    Grey, Margaret; Liberti, Lauren; Whittemore, Robin

    2015-01-01

    Many adolescents with type 1 diabetes (T1D) have difficulty completing self-management tasks within the context of their social environments. Group-based approaches to psycho-educational support have been shown to prevent declines in glucose control, but are challenging to implement due to youths’ many activities and costs. A novel solution is providing psycho-educational support via the internet. The purpose of this study is to describe the cost of developing and maintaining two internet psycho-educational programs, both of which have been shown to improve health outcomes in adolescents with T1D. We calculated actual costs of personnel and programming in the development of TEENCOPE™ and Managing Diabetes, two highly interactive programs that were evaluated in a multi-site clinical trial (n=320). Cost calculations were set at U.S. dollars and converted to value for 2013 as expenses were incurred over 6 years. Development costs over 1.5 years totaled $324,609, with the majority of costs being for personnel to develop and write content in a creative and engaging format, to get feedback from teens on content and a prototype, and IT programming. Maintenance of the program, including IT support, a part-time moderator to assure safety of the discussion board (0.5–1 hour/week), and yearly update of content was $43,845/year, or $137.00 per youth over 4.5 years. Overall, program and site development were relatively expensive, but the program reach was high, including non-white youth from 4 geographically distinct regions. Once developed, maintenance was minimal. With greater dissemination, cost-per-youth would decrease markedly, beginning to offset the high development expense. PMID:26213677

  17. Drug Monitoring Programs Do Curb Overdose Deaths: Study

    MedlinePlus

    ... 159528.html Drug Monitoring Programs Do Curb Overdose Deaths: Study Opioid epidemic demands such measures, researcher says ... News) -- Drug monitoring programs appear to help reduce deaths from prescription painkillers called opioids, a new study ...

  18. Programmed cell death during quinoa perisperm development

    PubMed Central

    Maldonado, Sara

    2013-01-01

    At seed maturity, quinoa (Chenopodium quinoa Willd.) perisperm consists of uniform, non-living, thin-walled cells full of starch grains. The objective of the present study was to study quinoa perisperm development and describe the programme of cell death that affects the entire tissue. A number of parameters typically measured during programmed cell death (PCD), such as cellular morphological changes in nuclei and cytoplasm, endoreduplication, DNA fragmentation, and the participation of nucleases and caspase-like proteases in nucleus dismantling, were evaluated; morphological changes in cytoplasm included subcellular aspects related to starch accumulation. This study proved that, following fertilization, the perisperm of quinoa simultaneously accumulates storage reserves and degenerates, both processes mediated by a programme of developmentally controlled cell death. The novel findings regarding perisperm development provide a starting point for further research in the Amaranthaceae genera, such as comparing seeds with and without perisperm, and specifying phylogeny and evolution within this taxon. Wherever possible and appropriate, differences between quinoa perisperm and grass starchy endosperm—a morphologically and functionally similar, although genetically different tissue—were highlighted and discussed. PMID:23833197

  19. Cellular functions of programmed cell death 5.

    PubMed

    Li, Ge; Ma, Dalong; Chen, Yingyu

    2016-04-01

    Programmed cell death 5 (PDCD5) was originally identified as an apoptosis-accelerating protein that is widely expressed and has been well conserved during the process of evolution. PDCD5 has complex biological functions, including programmed cell death and immune regulation. It can accelerate apoptosis in different type of cells in response to different stimuli. During this process, PDCD5 rapidly translocates from the cytoplasm to the nucleus. PDCD5 regulates the activities of TIP60, HDAC3, MDM2 and TP53 transcription factors. These proteins form part of a signaling network that is disrupted in most, if not all, cancer cells. Recent evidence suggests that PDCD5 participates in immune regulation by promoting regulatory T cell function via the PDCD5-TIP60-FOXP3 pathway. The stability and expression of PDCD5 are finely regulated by other molecules, such as NF-κB p65, OTUD5, YAF2 and DNAJB1. PDCD5 is phosphorylated by CK2 at Ser119, which is required for nuclear translocation in response to genotoxic stress. In this review, we describe what is known about PDCD5 and its cellular functions. PMID:26775586

  20. The type 1 Interleukin 1 receptor is not required for the death of murine hippocampal dentate granule cells and microglia activation

    PubMed Central

    Harry, G. Jean; Funk, Jason; Lefebvre d’Hellencourt, Christian; Aoyama, Mineyoshi

    2008-01-01

    Alterations in the inflammatory process, neuronal death, and glia response have been observed under manipulation of the interleukin-1 (IL-1) cytokine and subsequent signaling through the type 1 IL-1 receptor (IL-1R1). To investigate the influence of IL-1R1 activation in the pathophysiology of a chemical-induced injury to the murine hippocampus, we examined the level and pattern of neuronal death and neuroinflammation in 25-day-old male mice exposed to trimethyltin hydroxide (2.0 mg/kg, i.p.). In IL-1R1 null (IL-1R1−/−) mice, the pattern and severity of dentate granule cell death was similar as compared to wild type mice. In both groups of mice, mRNA levels for TNFα and MIP-1α were elevated and the early activation of microglia, including their ability to progress to a phagocytic phenotype, was maintained. Compared to WT mice, IL-1R1−/− mice displayed a limited glial fibrillary acidic protein (GFAP) astrocytic response, as well as a preferential induction in mRNA levels of Fas signaling components. Cumulatively, these results indicate that IL-1R1 activation is not necessary for TMT-induced death of dentate granule neurons or local activation of microglia; however, IL-1R1 signaling is involved in mediating the structural response of astrocytes to injury and may also regulate apoptotic mechanisms by influencing Fas signaling components. PMID:18191113

  1. Programmed Cell Death in Unicellular Phytoplankton.

    PubMed

    Bidle, Kay D

    2016-07-11

    Unicellular, planktonic, prokaryotic and eukaryotic photoautotrophs (phytoplankton) have an ancient evolutionary history on Earth during which time they have played key roles in the regulation of marine food webs, biogeochemical cycles, and Earth's climate. Since they represent the basis of aquatic ecosystems, the manner in which phytoplankton die critically determines the flow and fate of photosynthetically fixed organic matter (and associated elements), ultimately constraining nutrient flow. Programmed cell death (PCD) and associated pathway genes, which are triggered by a variety of abiotic (nutrient, light, osmotic) and biotic (virus infection, allelopathy) environmental stresses, have an integral grip on cell fate, and have shaped the ecological success and evolutionary trajectory of diverse phytoplankton lineages. A combination of physiological, biochemical, and genetic techniques in model algal systems has demonstrated a conserved molecular and mechanistic framework of stress surveillance, signaling, and death activation pathways, involving collective and coordinated participation of organelles, redox enzymes, metabolites, and caspase-like proteases. This mechanistic understanding has provided insight into the integration of sensing and transduction of stress signals into cellular responses, and the mechanistic interfaces between PCD, cell stress and virus infection pathways. It has also provided insight into the evolution of PCD in unicellular photoautotrophs, the impact of PCD on the fate of natural phytoplankton assemblages and its role in aquatic biogeochemical cycles. PMID:27404255

  2. Predictive Efficacy Biomarkers of Programmed Cell Death 1/Programmed Cell Death 1 Ligand Blockade Therapy.

    PubMed

    Fang, Xiao-Na; Fu, Li-Wu

    2016-01-01

    Inhibitors of immune check-point molecule, programmed cell death 1 (PD-1) and its ligand, programmed cell death ligand 1 (PD-L1) have attracted much attention in cancer immunotherapy recently due to their durable antitumor effects in various malignances, especially the advanced ones. Unfortunately, only a fraction of patients with advanced tumors could benefit from anti-PD-1/PD-L1 therapy, while others still worsened. The key to this point is that there are no efficient biomarkers for screening anti-PD-1/PD-L1-sensitive patients. In this review, we aim at summarizing the latest advances of anti-PD-1/PDL1 immunotherapy and the potential predictive efficacy biomarkers to provide evidences for identifying anti-PD-1/PDL1- sensitive patients. The present article also includes the patent review coverage on this topic. PMID:26916881

  3. Programmed cell death in the plant immune system

    PubMed Central

    Coll, N S; Epple, P; Dangl, J L

    2011-01-01

    Cell death has a central role in innate immune responses in both plants and animals. Besides sharing striking convergences and similarities in the overall evolutionary organization of their innate immune systems, both plants and animals can respond to infection and pathogen recognition with programmed cell death. The fact that plant and animal pathogens have evolved strategies to subvert specific cell death modalities emphasizes the essential role of cell death during immune responses. The hypersensitive response (HR) cell death in plants displays morphological features, molecular architectures and mechanisms reminiscent of different inflammatory cell death types in animals (pyroptosis and necroptosis). In this review, we describe the molecular pathways leading to cell death during innate immune responses. Additionally, we present recently discovered caspase and caspase-like networks regulating cell death that have revealed fascinating analogies between cell death control across both kingdoms. PMID:21475301

  4. New Areas for Preventive Programing: Sudden Infant Death Syndrome.

    ERIC Educational Resources Information Center

    Lowman, Joseph

    Crisis intervention programs for persons experiencing the sudden death of family members or surviving natural disasters have been advocated as methods of primary prevention, although few have actually been implemented. A program utilizing nurses to deliver grief intervention to parents losing a baby to Sudden Infant Death Syndrome (SIDS) was…

  5. Programmed cell death for defense against anomaly and tumor formation

    SciTech Connect

    Kondo, Sohei; Norimura, Toshiyuki; Nomura, Taisei

    1995-12-31

    Cell death after exposure to low-level radiation is often considered evidence that radiation is poisonous, however small the dose. Evidence has been accumulating to support the notion that cell death after low-level exposure to radiation results from activation of suicidal genes {open_quote}programmed cell death{close_quote} or {open_quote}apoptosis{close_quote} - for the health of the whole body. This paper gives experimental evidence that embryos of fruit flies and mouse fetuses have potent defense mechanisms against teratogenic or tumorigenic injury caused by radiation and carcinogens, which function through programmed cell death.

  6. Regulation of Neuroinflammation through Programed Death-1/Programed Death Ligand Signaling in Neurological Disorders

    PubMed Central

    Zhao, Shangfeng; Li, Fengwu; Leak, Rehana K.; Chen, Jun; Hu, Xiaoming

    2014-01-01

    Immune responses in the central nervous system (CNS), which involve both resident glial cells and infiltrating peripheral immune cells, play critical roles in the progress of brain injuries and neurodegeneration. To avoid inflammatory damage to the compromised brain, the immune cell activities in the CNS are controlled by a plethora of chemical mediators and signal transduction cascades, such as inhibitory signaling through programed death-1 (PD-1) and programed death ligand (PD-L) interactions. An increasing number of recent studies have highlighted the importance of PD-1/PD-L pathway in immune regulation in CNS disorders such as ischemic stroke, multiple sclerosis, and Alzheimer’s disease. Here, we review the current knowledge of the impact of PD-1/PD-L signaling on brain injury and neurodegeneration. An improved understanding of the function of PD-1/PD-L in the cross-talk between peripheral immune cells, CNS glial cells, and non-immune CNS cells is expected to shed further light on immunomodulation and help develop effective and safe immunotherapies for CNS disorders. PMID:25232304

  7. Centenarian Rates and Life Expectancy Related to the Death Rates of Multiple Sclerosis, Asthma, and Rheumatoid Arthritis and the Incidence of Type 1 Diabetes in Children.

    PubMed

    Lens-Pechakova, Lilia S

    2016-02-01

    The autoimmune diseases are among the 10 leading causes of death for women and the number two cause of chronic illness in America as well as a predisposing factor for cardiovascular diseases and cancer. Patients of some autoimmune diseases have shown a shorter life span and are a model of accelerated immunosenescence. Conversely, centenarians are used as a model of successful aging and have shown several immune parameters that are better preserved and lower levels of autoantibodies. The study reported here focused on clarifying the connection between longevity and some autoimmune and allergic diseases in 29 developed Organisation for Economic Co-operation and Development (OECD) countries, because multidisciplinary analyses of the accelerated or delayed aging data could show a distinct relationship pattern, help to identify common factors, and determine new important factors that contribute to longevity and healthy aging. The relationships between the mortality rates data of multiple sclerosis (MS), rheumatoid arthritis (RA), asthma, the incidence of type 1 diabetes (T1D) from one side and centenarian rates (two sets) as well as life expectancy data from the other side were assessed using regression models and Pearson correlation coefficients. The data obtained correspond to an inverse linear correlation with different degrees of linearity. This is the first observation of a clear tendency of diminishing centenarian rates or life expectancy in countries having higher death rates of asthma, MS, and RA and a higher incidence of T1D in children. The conclusion is that most probably there are common mechanistic pathways and factors affecting the above diseases and at the same time but in the opposite direction the processes of longevity. Further study, comparing genetic data, mechanistic pathways, and other factors connected to autoimmune diseases with those of longevity could clarify the processes involved, so as to promote longevity and limit the expansion of those

  8. Expanding roles of programmed cell death in mammalian neurodevelopment.

    PubMed

    De Zio, Daniela; Giunta, Luigi; Corvaro, Marco; Ferraro, Elisabetta; Cecconi, Francesco

    2005-04-01

    Programmed cell death is an orchestrated form of cell death in which cells are actively involved in their own demise. During neural development in mammals, many progenitor cells, immature cells or differentiated cells undergo the most clearly characterized type of cell death, apoptosis. Several pathways of apoptosis have been linked to neural development, but according to the numerous and striking phenotypes observed when apoptotic genes are inactivated, the mitochondrial death-route is the most important pathway in this context. Here, we discuss the relative importance of pro-growth/pro-death factors in the control of neural tissue development. We also discuss the impact of studying programmed cell death in development in order to better understand the basis of several human diseases and embryonic defects of the nervous system. PMID:15797838

  9. Acute exposure to ethanol potentiates human immunodeficiency virus type 1 Tat-induced Ca(2+) overload and neuronal death in cultured rat cortical neurons.

    PubMed

    Brailoiu, Eugen; Brailoiu, G Cristina; Mameli, Giuseppe; Dolei, Antonina; Sawaya, Bassel E; Dun, Nae J

    2006-02-01

    A significant number of human immunodeficiency virus type 1 (HIV-1)-infected patients are alcoholics. Either alcohol or HIV alone induces morphological and functional damage to the nervous system. HIV-1 Tat is a potent transcriptional activator of the viral promoter, with the ability to modulate a number of cellular regulatory circuits including apoptosis and to cause neuronal injury. To further evaluate the involvement of alcohol in neuronal injury, the authors examined the effect of ethanol on Tat-induced calcium responses in rat cerebral cortical neurons, using microfluorimetric calcium determination. HIV Tat protein (10 or 500 nM) elicited two types of calcium responses in cortical neurons: a fast-onset, short-lasting response and a slow-onset, sustained response. The responses were concentration-dependent and diminished in calcium-free saline. A short exposure to ethanol (50 mM) potentiated both types of calcium response, which was markedly decreased when the cells were pretreated with BAPTA-AM (20 microM). In addition, an increase in the neurotoxic effect of Tat, which was assessed by trypan blue exclusion assay, was observed. The result led the authors to conclude that alcohol exposure significantly potentiates Tat-induced calcium overload and neuronal death. PMID:16595370

  10. Death Education in Paramedic Programs: A Nationwide Assessment.

    ERIC Educational Resources Information Center

    Smith, Tracy L.; Walz, Bruce J.

    1995-01-01

    A self-administered survey was sent to all U.S. paramedic programs (n=537) concerning aspects of death education, including method of instruction, educational supplements, assessment techniques, and integration into general course work. Of the 51% that responded, 95% offered death education, with the most common subjects being legal and ethical…

  11. Triggering of Programmed Erythrocyte Death by Alantolactone

    PubMed Central

    Alzoubi, Kousi; Calabrò, Salvatrice; Egler, Jasmin; Faggio, Caterina; Lang, Florian

    2014-01-01

    The sesquiterpene alantolactone counteracts malignancy, an effect at least in part due to stimulation of suicidal death or apoptosis of tumor cells. Signaling of alantolactone induced apoptosis involves altered gene expression and mitochondrial depolarization. Erythrocytes lack mitochondria and nuclei but may enter suicidal death or eryptosis, which is characterized by cell shrinkage and cell membrane scrambling with phosphatidylserine exposure at the erythrocyte surface. Cellular mechanisms involved in triggering of eryptosis include increase of cytosolic Ca2+-activity ([Ca2+]i) and oxidative stress. The present study explored, whether alantolactone stimulates eryptosis. To this end, erythrocyte volume was estimated from forward scatter, phosphatidylserine-exposure at the erythrocyte surface from FITC-annexin-V-binding, [Ca2+]i from Fluo3-fluorescence, ceramide abundance from binding of fluorescent antibodies, and oxidative stress from 2',7'-dichlorodihydrofluorescein-diacetate (DCFDA) fluorescence. As a result, a 48 h exposure of human erythrocytes to alantolactone (≥20 μM) significantly decreased erythrocyte forward scatter and increased the percentage of annexin-V-binding cells. Alantolactone significantly increased Fluo3 fluorescence (60 μM), ceramide abundance (60 μM) and DCFDA fluorescence (≥40 μM). The effect of alantolactone (60 μM) on annexin-V-binding was not significantly modified by removal of extracellular Ca2+. In conclusion, alantolactone stimulates suicidal erythrocyte death or eryptosis, an effect paralleled by increase of [Ca2+]i, ceramide abundance and oxidative stress. PMID:25533522

  12. Programmed cell death: many ways for cells to die decently.

    PubMed

    Jäättelä, Marja

    2002-01-01

    Apoptosis, a cell death programme mediated by the caspase family of cysteine proteases, is essential for appropriate removal of excess cells in many developmental and physiological settings. It would, however, be very dangerous for the organism to depend on a single protease family for clearance of unwanted and potentially dangerous cells. Indeed, the exclusive role of caspases in the execution of programmed cell death (PCD) has been challenged recently, and the understanding of the molecular control of alternative death pathways is emerging. Here, I review recently discovered triggers and molecular regulators of caspase-independent cell death programmes and discuss their potential as therapeutic targets for the treatment of cancer. PMID:12523503

  13. Anti program death-1/anti program death-ligand 1 in digestive cancers

    PubMed Central

    de Guillebon, Eléonore; Roussille, Pauline; Frouin, Eric; Tougeron, David

    2015-01-01

    Human tumors tend to activate the immune system regulatory checkpoints as a means of escaping immunosurveillance. For instance, interaction between program death-1 (PD-1) and program death-ligand 1 (PD-L1) will lead the activated T cell to a state of anergy. PD-L1 is upregulated on a wide range of cancer cells. Anti-PD-1 and anti-PD-L1 monoclonal antibodies (mAbs), called immune checkpoint inhibitors (ICIs), have consequently been designed to restore T cell activity. Accumulating data are in favor of an association between PD-L1 expression in tumors and response to treatment. A PD-L1 expression is present in 30% to 50% of digestive cancers. Multiple anti-PD-1 (nivolumab, pembrolizumab) and anti-PD-L1 mAbs (MPDL3280A, Medi4736) are under evaluation in digestive cancers. Preliminary results in metastatic gastric cancer with pembrolizumab are highly promising and phase II will start soon. In metastatic colorectal cancer (CRC), a phase III trial of MPDL3280A as maintenance therapy will shortly be initiated. Trials are also ongoing in metastatic CRC with high immune T cell infiltration (i.e., microsatellite instability). Major challenges are ahead in order to determine how, when and for which patients we should use these ICIs. New radiologic criteria to evaluate tumor response to ICIs are awaiting prospective validation. The optimal therapeutic sequence and association with cytotoxic chemotherapy needs to be established. Finally, biomarker identification will be crucial to selection of patients likely to benefit from ICIs. PMID:26306141

  14. The evolution of cell death programs as prerequisites of multicellularity.

    PubMed

    Huettenbrenner, Simone; Maier, Susanne; Leisser, Christina; Polgar, Doris; Strasser, Stephan; Grusch, Michael; Krupitza, Georg

    2003-06-01

    One of the hallmarks of multicellularity is that the individual cellular fate is sacrificed for the benefit of a higher order of life-the organism. The accidental death of cells in a multicellular organism results in swelling and membrane-rupture and inevitably spills cell contents into the surrounding tissue with deleterious effects for the organism. To avoid this form of necrotic death the cells of metazoans have developed complex self-destruction mechanisms, collectively called programmed cell death, which see to an orderly removal of superfluous cells. Since evolution never invents new genes but plays variations on old themes by DNA mutations, it is not surprising, that some of the genes involved in metazoan death pathways apparently have evolved from homologues in unicellular organisms, where they originally had different functions. Interestingly some unicellular protozoans have developed a primitive form of non-necrotic cell death themselves, which could mean that the idea of an altruistic death for the benefit of genetically identical cells predated the invention of multicellularity. The cell death pathways of protozoans, however, show no homology to those in metazoans, where several death pathways seem to have evolved in parallel. Mitochondria stands at the beginning of several death pathways and also determines, whether a cell has sufficient energy to complete a death program. However, the endosymbiotic bacterial ancestors of mitochondria are unlikely to have contributed to the recent mitochondrial death machinery and therefore, these components may derive from mutated eukaryotic precursors and might have invaded the respective mitochondrial compartments. Although there is no direct evidence, it seems that the prokaryotic-eukaryotic symbiosis created the space necessary for sophisticated death mechanisms on command, which in their distinct forms are major factors for the evolution of multicellular organisms. PMID:12787815

  15. The chromosome 16q region associated with ankylosing spondylitis includes the candidate gene tumour necrosis factor receptor type 1-associated death domain (TRADD)

    PubMed Central

    Pointon, Jennifer J; Harvey, David; Karaderi, Tugce; Appleton, Louise H; Farrar, Claire; Stone, Millicent A; Sturrock, Roger D; Reveille, John D; Weisman, Michael H; Ward, Michael M; Brown, Matthew A; Wordsworth, B Paul

    2010-01-01

    Objective To replicate and refine the reported association of ankylosing spondylitis (AS) with two non-synonymous single nucleotide polymorphisms (nsSNPs) on chromosome 16q22.1. Methods Firstly, 730 independent UK patients with AS were genotyped for rs9939768 and rs6979 and allele frequencies were compared with 2879 previously typed historic disease controls. Secondly, the two data sets were combined in meta-analyses. Finally, 5 tagging SNPs, located between rs9939768 and rs6979, were analysed in 1604 cases and 1020 controls. Results The association of rs6979 with AS was replicated, p=0.03, OR=1.14 (95% CI 1.01 to 1.28), and a trend for association with rs9939768 detected, p=0.06, OR=1.25 (95% CI 0.99 to 1.57). Meta-analyses revealed association of both SNPs with AS, p=0.0008, OR=1.31 (95% CI 1.12 to 1.54) and p=0.0009, OR=1.15 (95% CI 1.06 to 1.23) for rs9939768 and rs6979, respectively. New associations with rs9033 and rs868213 (p=0.00002, OR=1.23 (95% CI 1.12 to 1.36) and p=0.00002 OR=1.45 (95% CI 1.22 to 1.72), respectively, were identified. Conclusions The region on chromosome 16 that has been replicated in the present work is interesting as the highly plausible candidate gene, tumour necrosis factor receptor type 1 (TNFR1)-associated death domain (TRADD), is located between rs9033 and rs868213. It will require additional work to identify the primary genetic association(s) with AS. PMID:19854717

  16. Programmed Cell Death of Dendritic Cells in Immune Regulation

    PubMed Central

    Chen, Min; Wang, Jin

    2010-01-01

    Summary Programmed cell death is essential for the maintenance of lymphocyte homeostasis and immune tolerance. Dendritic cells (DCs), the most efficient antigen presenting cells, represent a small cell population in the immune system. However, DCs play major roles in the regulation of both innate and adaptive immune responses. Programmed cell death in DCs is essential for regulating DC homeostasis and consequently, the scope of immune responses. Interestingly, different DC subsets show varied turnover rates in vivo. The conventional DCs are relatively short-lived in most lymphoid organs, while plasmacytoid DCs are long-lived cells. Mitochondrion-dependent programmed cell death plays an important role in regulating spontaneous DC turnover. Antigen-specific T cells are also capable of killing DCs, thereby providing a mechanism for negative feedback regulation of immune responses. It has been shown that a surplus of DCs due to defects in programmed cell death leads to overactivation of lymphocytes and the onset of autoimmunity. Studying programmed cell death in DCs will shed light on the roles for DC turnover in the regulation of the duration and magnitude of immune responses in vivo, and in the maintenance of immune tolerance. PMID:20636805

  17. Programmed Cell Death and Complexity in Microbial Systems.

    PubMed

    Durand, Pierre M; Sym, Stuart; Michod, Richard E

    2016-07-11

    Programmed cell death (PCD) is central to organism development and for a long time was considered a hallmark of multicellularity. Its discovery, therefore, in unicellular organisms presents compelling questions. Why did PCD evolve? What is its ecological effect on communities? To answer these questions, one is compelled to consider the impacts of PCD beyond the cell, for death obviously lowers the fitness of the cell. Here, we examine the ecological effects of PCD in different microbial scenarios and conclude that PCD can increase biological complexity. In mixed microbial communities, the mode of death affects the microenvironment, impacting the interactions between taxa. Where the population comprises groups of relatives, death has a more explicit effect. Death by lysis or other means can be harmful, while PCD can evolve by providing advantages to relatives. The synchronization of death between individuals suggests a group level property is being maintained and the mode of death also appears to have had an impact during the origin of multicellularity. PCD can result in the export of fitness from the cell to the group level via re-usable resources and PCD may also provide a mechanism for how groups beget new groups comprising kin. Furthermore, PCD is a means for solving a central problem of group living - the toxic effects of death - by making resources in dying cells beneficial to others. What emerges from the data reviewed here is that while PCD carries an obvious cost to the cell, it can be a driver of complexity in microbial communities. PMID:27404254

  18. Do all programmed cell deaths occur via apoptosis?

    PubMed Central

    Schwartz, L M; Smith, S W; Jones, M E; Osborne, B A

    1993-01-01

    During development, large numbers of cells die by a nonpathological process referred to as programmed cell death. In many tissues, dying cells display similar changes in morphology and chromosomal DNA organization, which has been termed apoptosis. Apoptosis is such a widely documented phenomenon that many authors have assumed all programmed cell deaths occur by this process. Two well-characterized model systems for programmed cell death are (i) the death of T cells during negative selection in the mouse thymus and (ii) the loss of intersegmental muscles of the moth Manduca sexta at the end of metamorphosis. In this report we compare the patterns of cell death displayed by T cells and the intersegmental muscles and find that they differ in terms of cell-surface morphology, nuclear ultrastructure, DNA fragmentation, and polyubiquitin gene expression. Unlike the T cells, which are known to die via apoptosis, we find that the intersegmental muscles display few of the features that characterize apoptosis. These data suggest that more than one cell death mechanism is used during development. Images PMID:8430112

  19. Programed Death is Favored by Natural Selection in Spatial Systems

    NASA Astrophysics Data System (ADS)

    Werfel, Justin; Ingber, Donald E.; Bar-Yam, Yaneer

    2015-06-01

    Standard evolutionary theories of aging and mortality, implicitly based on mean-field assumptions, hold that programed mortality is untenable, as it opposes direct individual benefit. We show that in spatial models with local reproduction, programed deaths instead robustly result in long-term benefit to a lineage, by reducing local environmental resource depletion via spatiotemporal patterns causing feedback over many generations. Results are robust to model variations, implying that direct selection for shorter life span may be quite widespread in nature.

  20. Human Type 1 and 17 Responses in Latent Tuberculosis Are Modulated by Coincident Filarial Infection through Cytotoxic T Lymphocyte Antigen–4 and Programmed Death–1

    PubMed Central

    Babu, Subash; Bhat, Sajid Q.; Kumar, N. Pavan; Jayantasri, S.; Rukmani, S.; Kumaran, Paul; Gopi, P. G.; Kolappan, C.; Kumaraswami, V.; Nutman, Thomas B.

    2010-01-01

    Mycobacterium tuberculosis and filarial coinfection is highly prevalent, and the presence of a tissue-invasive helminth may modulate the predominant type 1 T helper (Th1; interferon [IFN]–γ–mediated) response needed to control M. tuberculosis infection. By analyzing the cellular responses to mycobacterial antigens in patients who had latent tuberculosis with or without filarial infection, we were able to demonstrate that filarial infection coincident with M. tuberculosis infection significantly diminishes M. tuberculosis–specific Th1 (interleukin [IL]–12 and IFN-γ) and type 17 T helper (Th17; IL-23 and IL-17) responses related to increased expression of cytotoxic T lymphocyte antigen (CTLA)–4 and programmed death (PD)–1. Blockade of CTLA-4 restored production of both IFN-γ and IL-17, whereas PD-1 blockade restored IFN-γ production only. Thus, coincident filarial infection exerted a profound inhibitory effect on protective mycobacteria-specific Th1 and Th17 responses in latent tuberculosis, suggesting a mechanism by which concomitant filarial (and other systemic helminth) infections predispose to the development of active tuberculosis in humans. PMID:19505258

  1. Motoneuron Programmed Cell Death in Response to proBDNF

    PubMed Central

    Taylor, AR; Gifondorwa, DJ; Robinson, MB; Strupe, JL; Prevette, D; Johnson, JE; Hempstead, BL; Oppenheim, RW; Milligan, CE

    2011-01-01

    Motoneurons (MN) as well as most neuronal populations undergo a temporally and spatially specific period of programmed cell death (PCD). Several factors have been considered to regulate the survival of MNs during this period, including availability of muscle-derived trophic support and activity. The possibility that target-derived factors may also negatively regulate MN survival has been considered, but not pursued. Neurotrophin precursors, through their interaction with p75NTR and sortilin receptors have been shown to induce cell death during development and following injury in the CNS. In this study, we find that muscle cells produce and secrete proBDNF. ProBDNF through its interaction with p75NTR and sortilin, promotes a caspase-dependent death of MNs in culture. We also provide data to suggest that proBDNF regulates MN PCD during development in vivo. PMID:21834083

  2. Oxidative Stress and Programmed Cell Death in Yeast

    PubMed Central

    Farrugia, Gianluca; Balzan, Rena

    2012-01-01

    Yeasts, such as Saccharomyces cerevisiae, have long served as useful models for the study of oxidative stress, an event associated with cell death and severe human pathologies. This review will discuss oxidative stress in yeast, in terms of sources of reactive oxygen species (ROS), their molecular targets, and the metabolic responses elicited by cellular ROS accumulation. Responses of yeast to accumulated ROS include upregulation of antioxidants mediated by complex transcriptional changes, activation of pro-survival pathways such as mitophagy, and programmed cell death (PCD) which, apart from apoptosis, includes pathways such as autophagy and necrosis, a form of cell death long considered accidental and uncoordinated. The role of ROS in yeast aging will also be discussed. PMID:22737670

  3. CD40L induces functional tunneling nanotube networks exclusively in dendritic cells programmed by mediators of type-1 immunity

    PubMed Central

    Zaccard, Colleen R.; Watkins, Simon C.; Kalinski, Pawel; Fecek, Ronald J.; Yates, Aarika L.; Salter, Russell D.; Ayyavoo, Velpandi; Rinaldo, Charles R.; Mailliard, Robbie B.

    2014-01-01

    The ability of dendritic cells (DC) to mediate CD4+ T cell help for cellular immunity is guided by instructive signals received during DC maturation, and the resulting pattern of DC responsiveness to the Th signal, CD40L. Furthermore, the professional transfer of antigenic information from migratory DC to lymph node-residing DC is critical for the effective induction of cellular immune responses. Here we report that, in addition to their enhanced IL-12p70 producing capacity, human DC matured in the presence of inflammatory mediators of type-1 immunity (DC1) are uniquely programmed to form networks of tunneling nanotube-like structures in response to CD40L-expressing Th cells or recombinant CD40L. This immunologic process of DC ‘reticulation’ facilitates intercellular trafficking of endosome-associated vesicles and Ag, but also pathogens such HIV-1, and is regulated by the opposing roles of IFN-γ and IL-4. The initiation of DC reticulation represents a novel helper function of CD40L and a superior mechanism of intercellular communication possessed by DC1, as well as a target for exploitation by pathogens to enhance direct cell-to-cell spread. PMID:25548234

  4. Programed Death is Favored by Natural Selection in Spatial Systems.

    PubMed

    Werfel, Justin; Ingber, Donald E; Bar-Yam, Yaneer

    2015-06-12

    Standard evolutionary theories of aging and mortality, implicitly based on mean-field assumptions, hold that programed mortality is untenable, as it opposes direct individual benefit. We show that in spatial models with local reproduction, programed deaths instead robustly result in long-term benefit to a lineage, by reducing local environmental resource depletion via spatiotemporal patterns causing feedback over many generations. Results are robust to model variations, implying that direct selection for shorter life span may be quite widespread in nature. PMID:26196833

  5. The Arabidopsis peptide kiss of death is an inducer of programmed cell death

    PubMed Central

    Blanvillain, Robert; Young, Bennett; Cai, Yao-min; Hecht, Valérie; Varoquaux, Fabrice; Delorme, Valérie; Lancelin, Jean-Marc; Delseny, Michel; Gallois, Patrick

    2011-01-01

    Programmed cell death (PCD) has a key role in defence and development of all multicellular organisms. In plants, there is a large gap in our knowledge of the molecular machinery involved at the various stages of PCD, especially the early steps. Here, we identify kiss of death (KOD) encoding a 25-amino-acid peptide that activates a PCD pathway in Arabidopsis thaliana. Two mutant alleles of KOD exhibited a reduced PCD of the suspensor, a single file of cells that support embryo development, and a reduced PCD of root hairs after a 55°C heat shock. KOD expression was found to be inducible by biotic and abiotic stresses. Furthermore, KOD expression was sufficient to cause death in leaves or seedlings and to activate caspase-like activities. In addition, KOD-induced PCD required light in leaves and was repressed by the PCD-suppressor genes AtBax inhibitor 1 and p35. KOD expression resulted in depolarization of the mitochondrial membrane, placing KOD above mitochondria dysfunction, an early step in plant PCD. A KOD∷GFP fusion, however, localized in the cytosol of cells and not mitochondria. PMID:21326210

  6. Necdin Protects Embryonic Motoneurons from Programmed Cell Death

    PubMed Central

    Aebischer, Julianne; Sturny, Rachel; Andrieu, David; Rieusset, Anne; Schaller, Fabienne; Geib, Sandrine; Raoul, Cédric; Muscatelli, Françoise

    2011-01-01

    NECDIN belongs to the type II Melanoma Associated Antigen Gene Expression gene family and is located in the Prader-Willi Syndrome (PWS) critical region. Necdin-deficient mice develop symptoms of PWS, including a sensory and motor deficit. However, the mechanisms underlying the motor deficit remain elusive. Here, we show that the genetic ablation of Necdin, whose expression is restricted to post-mitotic neurons in the spinal cord during development, leads to a loss of 31% of specified motoneurons. The increased neuronal loss occurs during the period of naturally-occurring cell death and is not confined to specific pools of motoneurons. To better understand the role of Necdin during the period of programmed cell death of motoneurons we used embryonic spinal cord explants and primary motoneuron cultures from Necdin-deficient mice. Interestingly, while Necdin-deficient motoneurons present the same survival response to neurotrophic factors, we demonstrate that deletion of Necdin leads to an increased susceptibility of motoneurons to neurotrophic factor deprivation. We show that by neutralizing TNFα this increased susceptibility of Necdin-deficient motoneurons to trophic factor deprivation can be reduced to the normal level. We propose that Necdin is implicated through the TNF-receptor 1 pathway in the developmental death of motoneurons. PMID:21912643

  7. Arabidopsis ACCELERATED CELL DEATH2 Modulates Programmed Cell DeathW⃞

    PubMed Central

    Yao, Nan; Greenberg, Jean T.

    2006-01-01

    The Arabidopsis thaliana chloroplast protein ACCELERATED CELL DEATH2 (ACD2) modulates the amount of programmed cell death (PCD) triggered by Pseudomonas syringae and protoporphyrin IX (PPIX) treatment. In vitro, ACD2 can reduce red chlorophyll catabolite, a chlorophyll derivative. We find that ACD2 shields root protoplasts that lack chlorophyll from light- and PPIX-induced PCD. Thus, chlorophyll catabolism is not obligatory for ACD2 anti-PCD function. Upon P. syringae infection, ACD2 levels and localization change in cells undergoing PCD and in their close neighbors. Thus, ACD2 shifts from being largely in chloroplasts to partitioning to chloroplasts, mitochondria, and, to a small extent, cytosol. ACD2 protects cells from PCD that requires the early mitochondrial oxidative burst. Later, the chloroplasts of dying cells generate NO, which only slightly affects cell viability. Finally, the mitochondria in dying cells have dramatically altered movements and cellular distribution. Overproduction of both ACD2 (localized to mitochondria and chloroplasts) and ascorbate peroxidase (localized to chloroplasts) greatly reduces P. syringae–induced PCD, suggesting a pro-PCD role for mitochondrial and chloroplast events. During infection, ACD2 may bind to and/or reduce PCD-inducing porphyrin-related molecules in mitochondria and possibly chloroplasts that generate reactive oxygen species, cause altered organelle behavior, and activate a cascade of PCD-inducing events. PMID:16387834

  8. Statins and Voriconazole Induce Programmed Cell Death in Acanthamoeba castellanii

    PubMed Central

    López-Arencibia, Atteneri; Sifaoui, Ines; Reyes-Batlle, María; Valladares, Basilio; Martínez-Carretero, Enrique; Piñero, José E.; Maciver, Sutherland K.; Lorenzo-Morales, Jacob

    2015-01-01

    Members of the genus Acanthamoeba are facultative pathogens of humans, causing a sight-threatening keratitis and a life-threatening encephalitis. In order to treat those infections properly, it is necessary to target the treatment not only to the trophozoite but also to the cyst. Furthermore, it may be advantageous to avoid parasite killing by necrosis, which may induce local inflammation. We must also avoid toxicity of host tissue. Many drugs which target eukaryotes are known to induce programmed cell death (PCD), but this process is poorly characterized in Acanthamoeba. Here, we study the processes of programmed cell death in Acanthamoeba, induced by several drugs, such as statins and voriconazole. We tested atorvastatin, fluvastatin, simvastatin, and voriconazole at the 50% inhibitory concentrations (IC50s) and IC90s that we have previously established. In order to evaluate this phenomenon, we investigated the DNA fragmentation, one of the main characteristics of PCD, with quantitative and qualitative techniques. Also, the changes related to phosphatidylserine exposure on the external cell membrane and cell permeability were studied. Finally, because caspases are key to PCD pathways, caspase activity was evaluated in Acanthamoeba. All the drugs assayed in this study induced PCD in Acanthamoeba. To the best of our knowledge, this is the first study where PCD induced by drugs is described quantitatively and qualitatively in Acanthamoeba. PMID:25733513

  9. Perturbations in the Lipid Profile of Individuals with Newly Diagnosed Type 1 Diabetes Mellitus: Lipidomics Analysis of a Diabetes Antibody Standardization Program Sample Subset

    SciTech Connect

    Sorensen, Christina M.; Ding, Jie; Zhang, Qibin; Alquier, Thierry; Zhao, Rui; Mueller, Patricia W.; Smith, Richard D.; Metz, Thomas O.

    2010-08-01

    Objectives: To characterize the lipid profile of individuals with newly diagnosed type 1 diabetes mellitus using LC-MS-based lipidomics and the accurate mass and time (AMT) tag approach. Design and methods: Lipids were extracted from plasma and sera of 10 subjects from the Diabetes Antibody Standardization Program (years 2000-2005) and 10 non-diabetic subjects and analyzed by capillary liquid chromatography coupled with a hybrid ion-trap-Fourier transform ion cyclotron resonance mass spectrometer. Lipids were identified and quantified using the AMT tag approach. Results: Five hundred sixty lipid features differentiated (q < 0.05) diabetic from healthy individuals in a partial least-squares analysis, characterizing of individuals with recently diagnosed type 1 diabetes mellitus. Conclusions: A lipid profile associated with newly diagnosed type 1 diabetes may aid in further characterization of biochemical pathways involved in lipid regulation or mobilization and lipotoxicity of pancreatic beta-cells.

  10. Predictive factors of activity of anti-programmed death-1/programmed death ligand-1 drugs: immunohistochemistry analysis

    PubMed Central

    Chakravarti, Nitin

    2015-01-01

    Anti-programmed death-1 (anti-PD1)/programmed death ligand-1 (PD-L1) therapeutic antibodies targeting regulatory pathways in T cells have recently shown to promising clinical effectiveness in several solid tumors by enhancing antitumor immune response. Immune checkpoint therapy has propelled therapeutic efforts opening a new field in cancer treatment. However, durable clinical response has been educed only in a fraction of patients, underlining the need to predictively select those patients most likely to respond, e.g., by detecting predictive biomarkers. Immunohistochemistry (IHC) detection of PD-L1 in tumor cells has been used in various trials of anti-PD-1/PD-L1 agents to try to select those patients most likely to respond. However, since there are different techniques and scoring systems, results have not been conclusive. Thus efforts are needed to develop standardized IHC assays as well as to explore additional biomarkers to evaluate and predict immune responses elicited by anti-PD-1/PD-L1 therapies. PMID:26798583

  11. Programmed Cell Death Initiation and Execution in Budding Yeast

    PubMed Central

    Strich, Randy

    2015-01-01

    Apoptosis or programmed cell death (PCD) was initially described in metazoans as a genetically controlled process leading to intracellular breakdown and engulfment by a neighboring cell . This process was distinguished from other forms of cell death like necrosis by maintenance of plasma membrane integrity prior to engulfment and the well-defined genetic system controlling this process. Apoptosis was originally described as a mechanism to reshape tissues during development. Given this context, the assumption was made that this process would not be found in simpler eukaryotes such as budding yeast. Although basic components of the apoptotic pathway were identified in yeast, initial observations suggested that it was devoid of prosurvival and prodeath regulatory proteins identified in mammalian cells. However, as apoptosis became extensively linked to the elimination of damaged cells, key PCD regulatory proteins were identified in yeast that play similar roles in mammals. This review highlights recent discoveries that have permitted information regarding PCD regulation in yeast to now inform experiments in animals. PMID:26272996

  12. The Molecular Ecophysiology of Programmed Cell Death in Marine Phytoplankton

    NASA Astrophysics Data System (ADS)

    Bidle, Kay D.

    2015-01-01

    Planktonic, prokaryotic, and eukaryotic photoautotrophs (phytoplankton) share a diverse and ancient evolutionary history, during which time they have played key roles in regulating marine food webs, biogeochemical cycles, and Earth's climate. Because phytoplankton represent the basis of marine ecosystems, the manner in which they die critically determines the flow and fate of photosynthetically fixed organic matter (and associated elements), ultimately constraining upper-ocean biogeochemistry. Programmed cell death (PCD) and associated pathway genes, which are triggered by a variety of nutrient stressors and are employed by parasitic viruses, play an integral role in determining the cell fate of diverse photoautotrophs in the modern ocean. Indeed, these multifaceted death pathways continue to shape the success and evolutionary trajectory of diverse phytoplankton lineages at sea. Research over the past two decades has employed physiological, biochemical, and genetic techniques to provide a novel, comprehensive, mechanistic understanding of the factors controlling this key process. Here, I discuss the current understanding of the genetics, activation, and regulation of PCD pathways in marine model systems; how PCD evolved in unicellular photoautotrophs; how it mechanistically interfaces with viral infection pathways; how stress signals are sensed and transduced into cellular responses; and how novel molecular and biochemical tools are revealing the impact of PCD genes on the fate of natural phytoplankton assemblages.

  13. Programmed cell death and the gene behind spinal muscular atrophy.

    PubMed Central

    Robinson, A

    1995-01-01

    A gene involved in the development of spinal muscular atrophy (SMA) has been found on human chromosome 5 after a 4-year search. Named the neuronal apoptosis inhibitor protein (NAIP) gene, it is believed to inhibit the normal process of apoptosis--the disintegration of single cells that results from programmed cell death--in motor neurons. The researchers who found the NAIP gene also discovered that healthy people carry one complete copy of the gene along with many other partial copies. Many children with SMA have the partial copies but not the complete gene. This discovery facilitates the accurate genetic diagnosis of SMA. But gene therapy for SMA will not be possible until researchers find a suitable vector to stably introduce activated and intact copies of the gene into the motor neurons of children with SMA in time to stop motor neuron loss. Images p1460-a PMID:7585374

  14. Programmed death-1 & its ligands: promising targets for cancer immunotherapy.

    PubMed

    Shrimali, Rajeev K; Janik, John E; Abu-Eid, Rasha; Mkrtichyan, Mikayel; Khleif, Samir N

    2015-01-01

    Novel strategies for cancer treatment involving blockade of immune inhibitors have shown significant progress toward understanding the molecular mechanism of tumor immune evasion. The preclinical findings and clinical responses associated with programmed death-1 (PD-1) and PD-ligand pathway blockade seem promising, making these targets highly sought for cancer immunotherapy. In fact, the anti-PD-1 antibodies, pembrolizumab and nivolumab, were recently approved by the US FDA for the treatment of unresectable and metastatic melanoma resistant to anticytotoxic T-lymphocyte antigen-4 antibody (ipilimumab) and BRAF inhibitor. Here, we discuss strategies of combining PD-1/PD-ligand interaction inhibitors with other immune checkpoint modulators and standard-of-care therapy to break immune tolerance and induce a potent antitumor activity, which is currently a research area of key scientific pursuit. PMID:26250412

  15. A Role for Programmed Cell Death in the Microbial Loop

    PubMed Central

    Durand, Pierre M.; Whitehead, Kenia; Baliga, Nitin S.

    2013-01-01

    The microbial loop is the conventional model by which nutrients and minerals are recycled in aquatic eco-systems. Biochemical pathways in different organisms become metabolically inter-connected such that nutrients are utilized, processed, released and re-utilized by others. The result is that unrelated individuals end up impacting each others' fitness directly through their metabolic activities. This study focused on the impact of programmed cell death (PCD) on a population's growth as well as its role in the exchange of carbon between two naturally co-occurring halophilic organisms. Flow cytometric, biochemical, 14C radioisotope tracing assays, and global transcriptomic analyses show that organic algal photosynthate released by Dunalliela salina cells undergoing PCD complements the nutritional needs of other non-PCD D. salina cells. This occurs in vitro in a carbon limited environment and enhances the growth of the population. In addition, a co-occurring heterotroph Halobacterium salinarum re-mineralizes the carbon providing elemental nutrients for the mixoheterotrophic chlorophyte. The significance of this is uncertain and the archaeon can also subsist entirely on the lysate of apoptotic algae. PCD is now well established in unicellular organisms; however its ecological relevance has been difficult to decipher. In this study we found that PCD in D. salina causes the release of organic nutrients such as glycerol, which can be used by others in the population as well as a co-occurring halophilic archaeon. H. salinarum also re-mineralizes the dissolved material promoting algal growth. PCD in D. salina was the mechanism for the flow of dissolved photosynthate between unrelated organisms. Ironically, programmed death plays a central role in an organism's own population growth and in the exchange of nutrients in the microbial loop. PMID:23667496

  16. Prodigiosin inhibits motility and activates bacterial cell death revealing molecular biomarkers of programmed cell death.

    PubMed

    Darshan, N; Manonmani, H K

    2016-12-01

    The antimicrobial activity of prodigiosin from Serratia nematodiphila darsh1, a bacterial pigment was tested against few food borne bacterial pathogens Bacillus cereus, Staphylococcus aureus, Pseudomonas aeruginosa and Escherichia coli. The mode of action of prodigiosin was studied. Prodigiosin induced bactericidal activity indicating a stereotypical set of biochemical and morphological feature of Programmed cell death (PCD). PCD involves DNA fragmentation, generation of ROS, and expression of a protein with caspase-like substrate specificity in bacterial cells. Prodigiosin was observed to be internalized into bacterial cells and was localized predominantly in the membrane and the nuclear fraction, thus, facilitating intracellular trafficking and then binding of prodigiosin to the bacterial DNA. Corresponding to an increasing concentration of prodigiosin, the level of certain proteases were observed to increase in bacteria studied, thus initiating the onset of PCD. Prodigiosin at a sub-inhibitory concentration inhibits motility of pathogens. Our observations indicated that prodigiosin could be a promising antibacterial agent and could be used in the prevention of bacterial infections. PMID:27460563

  17. Results of clinical trials with anti-programmed death 1/programmed death ligand 1 inhibitors in lung cancer

    PubMed Central

    González-Cao, María; Barrón, Feliciano; Riso, Aldo; Rosell, Rafael

    2015-01-01

    One of the main hallmarks of cancer is the capability of evading immune destruction. In order to drive tumor progression, malignant cells are able to promote immunosuppressive mechanisms avoiding recognition and elimination. Increasing knowledge of the mechanisms of immune tolerance has led to the identification of several membrane receptors strongly implicated in this cancer feature: the immune checkpoints. Among them, programmed death 1 (PD-1) receptors and their ligands have been identified as potential targets for a new anti-cancer therapeutic approach: the use of immune-modulatory monoclonal antibodies designed to interrupt the immune escape activated by the interaction of PD-1 receptors and their ligands. Five of these antibodies are now in their late stages of clinical development and this review will summarize their up-to-date efficacy and toxicity data. PMID:26798585

  18. The Efficacy and Safety of Programmed Cell Death 1 and Programmed Cell Death 1 Ligand Inhibitors for Advanced Melanoma

    PubMed Central

    Guan, Xiuwen; Wang, Haijuan; Ma, Fei; Qian, Haili; Yi, Zongbi; Xu, Binghe

    2016-01-01

    Abstract The purpose of this study was to investigate the efficacy and safety of programmed cell death 1 (PD-1) and programmed cell death 1 ligand (PD-L1) inhibitors using a meta-analysis of present trials for advanced melanoma. A fully recursive literature search of the primary electronic databases for available trials was performed. The objective response rate (ORR) and the median progression-free survival (PFS) of clinical responses were considered the main endpoints to evaluate the efficacy, whereas Grade 3–4 adverse effects (AEs) were analyzed to evaluate safety. The ORR of PD-1 and PD-L1 inhibitors was 30% (95% CI: 25–35%). No significant difference in the ORR was observed after the comparisons of low-dose, median-dose, and high-dose cohorts. In addition, the rate of Grade 3–4 AEs was 9% (95% CI: 6–12%). According to the 3 randomized controlled trials that compared PD-1 inhibitors with chemotherapy, the difference between these 2 groups was found to be statistically significant with respect to the ORR, PFS and the incidence of Grade 3–4 AEs; that is, the relative risk (RR) of the ORR was 3.42 (95% CI: 2.49–4.69, P < 0.001), the hazard ratio (HR) of the PFS was 0.50 (95% CI: 0.44–0.58, P < 0.001), and the RR of Grade 3–4 AEs was 0.45 (95% CI: 0.31–0.65, P < 0.001). According to a meta-analysis of limited concurrent studies, PD-1 and PD-L1 inhibitors appear to be associated with improved response rates, superior response durability and tolerable toxicity in patients with advanced melanoma. PMID:26986169

  19. Protective effect of FGF21 on type 1 diabetes-induced testicular apoptotic cell death probably via both mitochondrial- and endoplasmic reticulum stress-dependent pathways in the mouse model.

    PubMed

    Jiang, Xin; Zhang, Chi; Xin, Ying; Huang, Zhifeng; Tan, Yi; Huang, Yadong; Wang, Yonggang; Feng, Wenke; Li, Xiaokun; Li, Wei; Qu, Yaqin; Cai, Lu

    2013-05-10

    Fibroblast growth factor 21 (FGF21) is a novel member identified and was reported to express predominantly in pancreas, liver and adipose tissue, and relatively less in other organs, such as the testis. However, the role of FGF21 in the testis has never been addressed. The present study examined FGF21 expression at mRNA level by real-time RT-PCR assay in the testis of fasting and non-fasting mice or mice with type 1 diabetes that was induced with streptozotocin. We also examined the effect of Fgf21 gene deletion or supplementation of the exogenous FGF21 on the testicular apoptotic cell death spontaneously or induced by type 1 diabetes in FGF21 knockout (FGF21-KO) mice. Deletion of Fgf21 gene does not affect testicular cell proliferation, but significantly increases the spontaneous incidence of testicular TUNEL positive cells with increases in the Bax/Bcl2 expression ratio and apoptosis-inducing factor (AIF) expression. Diabetes induced significant increases in testicular TUNEL positive cells, Bax/Bcl2 expression ratio, AIF expression, CHOP and cleaved caspase-12 expression, and oxidative damage, but did not change the expression of cleaved caspase-3 and caspase-8. Deletion of Fgf21 gene also significantly enhances diabetes-induced TUNEL positive cells along with the increased expression of Bax/Bcl2 ratio, AIF, CHOP, cleaved caspase-12, and oxidative damage, which was significantly prevented by the supplementation of exogenous FGF21. These results suggest that Fgf21 gene may involve in maintaining normal spermatogenesis and also protect the germ cells from diabetes-induced apoptotic cell death probably via the prevention of diabetes-induced oxidative damage. PMID:23499715

  20. Programmed cell death in plants: A chloroplastic connection

    PubMed Central

    Ambastha, Vivek; Tripathy, Baishnab C; Tiwari, Budhi Sagar

    2015-01-01

    Programmed cell death (PCD) is an integral cellular program by which targeted cells culminate to demise under certain developmental and pathological conditions. It is essential for controlling cell number, removing unwanted diseased or damaged cells and maintaining the cellular homeostasis. The details of PCD process has been very well elucidated and characterized in animals but similar understanding of the process in plants has not been achieved rather the field is still in its infancy that sees some sporadic reports every now and then. The plants have 2 energy generating sub-cellular organelles- mitochondria and chloroplasts unlike animals that just have mitochondria. The presence of chloroplast as an additional energy transducing and ROS generating compartment in a plant cell inclines to advocate the involvement of chloroplasts in PCD execution process. As chloroplasts are supposed to be progenies of unicellular photosynthetic organisms that evolved as a result of endosymbiosis, the possibility of retaining some of the components involved in bacterial PCD by chloroplasts cannot be ruled out. Despite several excellent reviews on PCD in plants, there is a void on an update of information at a place on the regulation of PCD by chloroplast. This review has been written to provide an update on the information supporting the involvement of chloroplast in PCD process and the possible future course of the field. PMID:25760871

  1. The Evaluation of Two Death Education Programs for EMTs Using the Theory of Planned Behavior

    ERIC Educational Resources Information Center

    Smith-Cumberland, Tracy

    2006-01-01

    The goal of this study was to evaluate the effectiveness of two death education programs by comparing pretest and posttest scores of behavioral intentions and (reported) behavior of EMTs when at the scene of a death. After the interventions, the majority of EMTs intended to change their behavior at the scene of a death when compared to the control…

  2. Diabetes Type 1

    MedlinePlus

    ... blood sugar, levels are too high. With type 1 diabetes, your pancreas does not make insulin. Insulin ... eyes, kidneys, nerves, and gums and teeth. Type 1 diabetes happens most often in children and young ...

  3. Temporal rhythm of petal programmed cell death in Ipomoea purpurea.

    PubMed

    Gui, M-Y; Ni, X-L; Wang, H-B; Liu, W-Z

    2016-09-01

    Flowers are the main sexual reproductive organs in plants. The shapes, colours and scents of corolla of plant flowers are involved in attracting insect pollinators and increasing reproductive success. The process of corolla senescence was investigated in Ipomoea purpurea (Convolvulaceae) in this study. In the research methods of plant anatomy, cytology, cell chemistry and molecular biology were used. The results showed that at the flowering stage cells already began to show distortion, chromatin condensation, mitochondrial membrane degradation and tonoplast dissolution and rupture. At this stage genomic DNA underwent massive but gradual random degradation. However, judging from the shape and structure, aging characteristics did not appear until the early flower senescence stage. The senescence process was slow, and it was completed at the late stage of flower senescence with a withering corolla. We may safely arrive at the conclusion that corolla senescence of I. purpurea was mediated by programmed cell death (PCD) that occurred at the flowering stage. The corolla senescence exhibited an obvious temporal rhythm, which demonstrated a high degree of coordination with pollination and fertilization. PMID:27259176

  4. Analysis of Programmed Death-1 in Patients with Psoriatic Arthritis.

    PubMed

    Peled, Michael; Strazza, Marianne; Azoulay-Alfaguter, Inbar; Silverman, Gregg J; Scher, Jose U; Mor, Adam

    2015-08-01

    Programmed death-1 (PD-1) is an inhibitory co-receptor that is highly expressed in T lymphocytes that has been shown to downregulate inflammatory responses in several inflammatory diseases including systemic lupus erythematosus and rheumatoid arthritis. Yet, the role of PD-1 in psoriatic arthritis (PsA) has not been studied. In order to fill this gap, we measured the expression levels of PD-1 in peripheral T cells from patients with active disease. Twenty patients and fifteen age-matched healthy control subjects were recruited. The percentage of CD3(+)PD-1(+) T cells was measured by flow cytometry. Despite normal concentration of peripheral T cells, the expression levels of PD-1 were significantly higher in patients compared to healthy controls. Interestingly, among the patients, the expression levels inversely correlated with disease activity measured by disease activity scores (DAS28). PD-1 expression levels strongly correlated with the number of tender and swollen joints, but not with C-reactive protein (CRP) levels or psoriasis area and severity index (PASI). Functionally, in vitro ligation of PD-1 receptor in PsA T cells inhibited interleukin-2 (IL-2) secretion, Akt phosphorylation, and Rap1 activation. These findings suggest that PD-1 might serve as a biomarker for disease activity in PsA and highlight the need for additional studies in order to establish the role of PD-1 in PsA pathogenesis. PMID:25663558

  5. New-onset toxicity with programmed death-1 inhibitor rechallenge.

    PubMed

    Ludlow, Steven P; Andrews, Stephanie; Pasikhova, Yanina; Hill, Eboné

    2016-06-01

    Immunotherapy has become a mainstay in the treatment of metastatic melanoma. Cytotoxic T-lymphocyte-associated antigen-4 (CTLA-4) inhibitors and programmed death-1 (PD-1) inhibitors, which have been added more recently, represent two of the main classes of immunomodulating agents. PD-1 inhibitors are well tolerated and are known to have a decreased rate of occurrence of adverse effects compared with CTLA-4 inhibitors. However, the risk remains for serious immune-mediated adverse reactions. Given their long half and extended efficacy, treatment with a CTLA-4 inhibitor before use of a PD-1 inhibitor may increase the risk of adverse effects. In addition, caution should be exercised when rechallenging grade 3 or 4 adverse effects with the same agent or a different agent of the same class. The re-emergence of a previous toxicity may occur or, as found in this case, a new severe effect may arise. This article will present a case of fatal immune-related hepatoxicity in a patient treated with a CTLA-4 inhibitor, followed by treatment with a PD-1 inhibitor. The mechanisms of action and safety profiles for both classes of drugs will also be reviewed. PMID:26983078

  6. The p53 family and programmed cell death

    PubMed Central

    Pietsch, E. Christine; Sykes, Stephen M.; McMahon, Steven B.; Murphy, Maureen E.

    2008-01-01

    The p53 tumor suppressor continues to hold distinction as the most frequently mutated gene in human cancer. The ability of p53 to induce programmed cell death, or apoptosis, of cells exposed to environmental or oncogenic stress constitutes a major pathway whereby p53 exerts its tumor suppressor function. In the past decade we have discovered that p53 is not alone in its mission to destroy damaged or aberrantly proliferating cells: it has two homologues, p63 and p73, that in various cellular contexts and stresses contribute to this process. In this review, the mechanisms whereby p53, and in some cases p63 and p73, induce apoptosis are discussed. Whereas other reviews have focused more extensively on the contribution of individual p53-regulated genes to apoptosis induction by this protein, in this review we focus more on those factors that mediate the decision between growth arrest and apoptosis by p53, p63 and p73, and on the post-translational modifications and protein-protein interactions that influence this decision. PMID:18955976

  7. Cytokine induced expression of programmed death ligands in human neutrophils

    PubMed Central

    Bankey, Paul E.; Banerjee, Sanjib; Zucchiatti, Andrea; De, Mita; Sleem, Rami W.; Lin, Chuen-Fu L.; Miller-Graziano, Carol L.; De, Asit K.

    2010-01-01

    1. Summary Recent evidence indicates that human neutrophils can serve as non-professional antigen presenting cells (APC). Although expression of MHC class II and co-stimulatory molecules on human neutrophils is limited, these molecules can be significantly induced following in vitro exposure to the cytokines IFNγ and GM-CSF. Since professional APCs such as dendritic cells express both co-stimulatory and co-inhibitory molecules for activation and regulation of adaptive immunity, we determined whether cytokines induce increased expression of specific co-signaling molecules on human neutrophils. We report here that circulating human neutrophils express co-inhibitory molecules such as immunoglobulin–like transcript (ILT) 4 and 5, and also comparatively low and highly variable levels of ILT2 and 3, but the expression of these ILTs was not significantly changed by cytokine treatment. In contrast, we demonstrate for the first time that human peripheral blood neutrophils, although do not express the co-inhibitory molecule, programmed death ligand (PD-L) 1 on their surface, can express this molecule at moderate levels following cytokine exposure. Although moderate PD-L1 levels on healthy volunteers’ neutrophils were not inhibitory to T cells, our findings do not exclude a possible robust increase in neutrophil PD-L1 expression in pathological conditions with immunosuppressive functions. These results suggest a possible immunoregulatory role for human neutrophils in adaptive immunity. PMID:20123111

  8. A Traumatic Death Support Group Program: Applying an Integrated Conceptual Framework

    ERIC Educational Resources Information Center

    Walijarvi, Corrine M.; Weiss, Ann H.; Weinman, Maxine L.

    2012-01-01

    This article describes an 8-week, curriculum-based traumatic death support group program that is offered at Bo's Place, a grief and bereavement center in Houston, Texas. The program was implemented in 2006 in an effort to help family members who had experienced a death in the family by suicide, murder, accident, or sudden medical problem. The…

  9. Induction of Cell Death in Growing Human T-Cells and Cell Survival in Resting Cells in Response to the Human T-Cell Leukemia Virus Type 1 Tax.

    PubMed

    Mizuguchi, Mariko; Sasaki, Yuka; Hara, Toshifumi; Higuchi, Masaya; Tanaka, Yuetsu; Funato, Noriko; Tanaka, Nobuyuki; Fujii, Masahiro; Nakamura, Masataka

    2016-01-01

    Tax1 encoded by the human T-cell leukemia virus type 1 (HTLV-1) has been believed to dysregulate the expression of cellular genes involved in cell survival and mortality, leading to the development of adult T-cell leukemia (ATL). The function of Tax1 in ATL development however is still controversial, primarily because Tax1 induces cell cycle progression and apoptosis. To systemically understand cell growth phase-dependent induction of cell survival or cell death by Tax1, we established a single experimental system using an interleukin 2 (IL-2)-dependent human T-cell line Kit 225 that can be forced into resting phase by IL-2 deprivation. Introduction of Tax1 and HTLV-2 Tax (Tax2B) decreased mitochondrial activity alongside apoptosis in growing cells but not in resting cells. Cell cycle profile analysis indicated that Tax1 and Tax2B were likely to perturb the S phase in growing cells. Studies with Tax1 mutants and siRNA for NF-κB/RelA revealed that Tax1-mediated cell growth inhibition and apoptosis in growing Kit 225 cells depend on RelA. Interestingly, inactivation of the non-canonical NF-κB and p38 MAPK pathways relieved Tax1-mediated apoptosis, suggesting that the Tax1-NF-κB-p38 MAPK axis may be associated with apoptosis in growing cells. Inflammatory mediators such as CCL3 and CCL4, which are involved in oncogene-induced senescence (OIS), were induced by Tax1 and Tax2B in growing cells. In contrast, RelA silencing in resting cells reduced mitochondrial activity, indicating that NF-κB/RelA is also critical for Tax1-mediated cell survival. These findings suggest that Tax1-mediated cell survival and death depend on the cell growth phase. Both effects of Tax1 may be implicated in the long latency of HTLV-1 infection. PMID:26829041

  10. Induction of Cell Death in Growing Human T-Cells and Cell Survival in Resting Cells in Response to the Human T-Cell Leukemia Virus Type 1 Tax

    PubMed Central

    Mizuguchi, Mariko; Sasaki, Yuka; Hara, Toshifumi; Higuchi, Masaya; Tanaka, Yuetsu; Funato, Noriko; Tanaka, Nobuyuki; Fujii, Masahiro; Nakamura, Masataka

    2016-01-01

    Tax1 encoded by the human T-cell leukemia virus type 1 (HTLV-1) has been believed to dysregulate the expression of cellular genes involved in cell survival and mortality, leading to the development of adult T-cell leukemia (ATL). The function of Tax1 in ATL development however is still controversial, primarily because Tax1 induces cell cycle progression and apoptosis. To systemically understand cell growth phase-dependent induction of cell survival or cell death by Tax1, we established a single experimental system using an interleukin 2 (IL-2)-dependent human T-cell line Kit 225 that can be forced into resting phase by IL-2 deprivation. Introduction of Tax1 and HTLV-2 Tax (Tax2B) decreased mitochondrial activity alongside apoptosis in growing cells but not in resting cells. Cell cycle profile analysis indicated that Tax1 and Tax2B were likely to perturb the S phase in growing cells. Studies with Tax1 mutants and siRNA for NF-κB/RelA revealed that Tax1-mediated cell growth inhibition and apoptosis in growing Kit 225 cells depend on RelA. Interestingly, inactivation of the non-canonical NF-κB and p38 MAPK pathways relieved Tax1-mediated apoptosis, suggesting that the Tax1-NF-κB-p38 MAPK axis may be associated with apoptosis in growing cells. Inflammatory mediators such as CCL3 and CCL4, which are involved in oncogene-induced senescence (OIS), were induced by Tax1 and Tax2B in growing cells. In contrast, RelA silencing in resting cells reduced mitochondrial activity, indicating that NF-κB/RelA is also critical for Tax1-mediated cell survival. These findings suggest that Tax1-mediated cell survival and death depend on the cell growth phase. Both effects of Tax1 may be implicated in the long latency of HTLV-1 infection. PMID:26829041

  11. Role of mitochondrial remodeling in programmed cell death in Drosophila melanogaster.

    PubMed

    Goyal, Gaurav; Fell, Brennan; Sarin, Apurva; Youle, Richard J; Sriram, V

    2007-05-01

    The role of mitochondria in Drosophila programmed cell death remains unclear, although certain gene products that regulate cell death seem to be evolutionarily conserved. We find that developmental programmed cell death stimuli in vivo and multiple apoptotic stimuli ex vivo induce dramatic mitochondrial fragmentation upstream of effector caspase activation, phosphatidylserine exposure, and nuclear condensation in Drosophila cells. Unlike genotoxic stress, a lipid cell death mediator induced an increase in mitochondrial contiguity prior to fragmentation of the mitochondria. Using genetic mutants and RNAi-mediated knockdown of drp-1, we find that Drp-1 not only regulates mitochondrial fission in normal cells, but mediates mitochondrial fragmentation during programmed cell death. Mitochondria in drp-1 mutants fail to fragment, resulting in hyperplasia of tissues in vivo and protection of cells from multiple apoptotic stimuli ex vivo. Thus, mitochondrial remodeling is capable of modifying the propensity of cells to undergo death in Drosophila. PMID:17488630

  12. Signaling through C/EBP homologous protein and death receptor 5 and calpain activation differentially regulate THP-1 cell maturation-dependent apoptosis induced by Shiga toxin type 1.

    PubMed

    Lee, Moo-Seung; Cherla, Rama P; Lentz, Erin K; Leyva-Illades, Dinorah; Tesh, Vernon L

    2010-08-01

    Shiga toxins (Stxs) induce apoptosis via activation of the intrinsic and extrinsic pathways in many cell types. Toxin-mediated activation of the endoplasmic reticulum (ER) stress response was shown to be instrumental in initiating apoptosis in THP-1 myeloid leukemia cells. THP-1 cells responded to Shiga toxin type 1 (Stx1) in a cell maturation-dependent manner, undergoing rapid apoptosis in the undifferentiated state but reduced and delayed apoptosis in differentiated cells. The onset of apoptosis was associated with calpain activation and changes in expression of C/EBP homologous protein (CHOP), Bcl-2 family members, and death receptor 5 (DR5). Ligation of DR5 by tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) activates the extrinsic pathway of apoptosis. We show here that expression of TRAIL and DR5 is increased by Stx1 treatment. Addition of exogenous TRAIL enhances, and anti-TRAIL antibodies inhibit, Stx1-induced apoptosis of THP-1 cells. Silencing of CHOP or DR5 expression selectively prevented caspase activation, loss of mitochondrial membrane potential, and Stx1-induced apoptosis of macrophage-like THP-1 cells. In contrast, the rapid kinetics of apoptosis induction in monocytic THP-1 cells correlated with rates of calpain cleavage. The results suggest that CHOP-DR5 signaling and calpain activation differentially contribute to cell maturation-dependent Stx1-induced apoptosis. Inhibition of these signaling pathways may protect cells from Stx cytotoxicity. PMID:20515924

  13. Programmed death-1/programmed death-L1 signaling pathway and its blockade in hepatitis C virus immunotherapy

    PubMed Central

    Salem, Mohamed L; El-Badawy, Ahmed

    2015-01-01

    Chronic hepatitis C virus (HCV) infection is a public health issue that often progresses to life-threatening complications, including liver cirrhosis, fibrosis, and hepatocellular carcinoma. Impaired immune responses to HCV are key features of chronic HCV infection. Therefore, intervention strategies usually involve enhancing the immune responses against HCV. Cytotoxic CD8+ T lymphocytes (CTLs) play a critical role in the control of HCV infection. However, their cytolytic function can be impaired by the expression of co-inhibitory molecules. Programmed death-1 (PD-1) receptor and its ligand PD-L1 function in a T cell co-inhibitory pathway, which either blocks the function of CTLs or the differentiation of CD8+ T cells. During chronic HCV infection, the immune inhibitory receptor PD-1 is upregulated on dysfunctional HCV-specific CD8+ T cells. As such, blockade of the PD-1/PD-L1 pathway in these CD8+ T cells might restore their functional capabilities. Indeed, clinical trials using therapies to block this pathway have shown promise in the fostering of anti-HCV immunity. Understanding how chronic HCV infection induces upregulation of PD-1 on HCV specific T cells and how the PD-1/PD-L1 interaction develops HCV specific T cell dysfunction will accelerate the development of an efficacious prophylactic and therapeutic vaccination against chronic HCV infections, which will significantly improve HCV treatments and patient survival. In this review, we discuss the relationship between PD-1 expression and clinical responses and the potential use of PD-1 blockade for anti-HCV therapy. PMID:26483866

  14. [Programmed cell death as a target to interrupt the aging program].

    PubMed

    Severin, F F; Skulachev, V P

    2009-01-01

    There are two opposite points of view on aging of organisms. The canonic concept assumes that aging is a stochastic process consisting in age-dependent accumulation of occasional injuries in living systems. However, many pieces of evidence are recently obtained in favor of the alternative scheme suggesting that aging is genetically programmed being the final step of ontogenesis. The latter concept predicts that (i) non-aging species should exist who has lost the aging program and (ii) the program in question can experimentally be interrupted by manipulating with corresponding genes or by low molecules operating as inhibitors of execution of aging program. In this paper, we summarize observations which are consistent with two above predictions. In both cases, interruption of the aging program is based upon inhibition of programmed cell death (apoptosis) mediated by mitochondrial reactive oxygen species (ROS). It is stated that the main difference between young and old multicellular organisms consists in the cellularity, i. e. in number of functional cells in organs or tissues rather than in quality of these cells. The cellularity decreases due to domination of apoptosis over proliferation in aging organisms. This means that apoptosis appears to be the basis for aging program. A pharmacological approach to switch off the aging program is considered, which is used mitochondria-targeted antioxidants and uncouplers. Such compounds prevent mitochondrial oxidative stress increasing with age and stimulating the age-dependent apoptosis. PMID:19827675

  15. A Bereavement Support Program for Survivors of Cancer Deaths: A Description and Evaluation.

    ERIC Educational Resources Information Center

    Souter, Susan J.; Moore, Timothy E.

    1990-01-01

    Describes bereavement support program for survivors of cancer deaths developed by Riverdale Hospital in Toronto, Ontario. Presents detailed program evaluation which asked bereaved survivors who were program participants for one year to evaluate program aspects and facilitation of their grief by volunteers. Recommendations for expansion and…

  16. Diabetes Type 1

    MedlinePlus

    Diabetes means your blood glucose, or blood sugar, levels are too high. With type 1 diabetes, your pancreas does not make insulin. Insulin is ... kidneys, nerves, and gums and teeth. Type 1 diabetes happens most often in children and young adults ...

  17. PROGRAMMED CELL DEATH IN EXTRAOCULAR MUSCLE TENDON/SCLERA PRECURSORS

    EPA Science Inventory

    Abstract

    Purpose: This study was designed to examine the occurrence of natural cell death in the periocular mesenchyme of mouse embryos.

    Methods: Vital staining with LysoTracker Red and Nile blue sulphate as well as terminal nick end labeling (TUNEL) were utiliz...

  18. Type 1 diabetes

    PubMed Central

    Atkinson, Mark A; Eisenbarth, George S; Michels, Aaron W

    2015-01-01

    Over the past decade, knowledge of the pathogenesis and natural history of type 1 diabetes has grown substantially, particularly with regard to disease prediction and heterogeneity, pancreatic pathology, and epidemiology. Technological improvements in insulin pumps and continuous glucose monitors help patients with type 1 diabetes manage the challenge of lifelong insulin administration. Agents that show promise for averting debilitating disease-associated complications have also been identified. However, despite broad organisational, intellectual, and fiscal investments, no means for preventing or curing type 1 diabetes exists, and, globally, the quality of diabetes management remains uneven. This Seminar discusses current progress in epidemiology, pathology, diagnosis, and treatment of type 1 diabetes, and prospects for an improved future for individuals with this disease. PMID:23890997

  19. Implementation Of Prescription Drug Monitoring Programs Associated With Reductions In Opioid-Related Death Rates.

    PubMed

    Patrick, Stephen W; Fry, Carrie E; Jones, Timothy F; Buntin, Melinda B

    2016-07-01

    Over the past two decades the number of opioid pain relievers sold in the United States rose dramatically. This rise in sales was accompanied by an increase in opioid-related overdose deaths. In response, forty-nine states (all but Missouri) created prescription drug monitoring programs to detect high-risk prescribing and patient behaviors. Our objectives were to determine whether the implementation or particular characteristics of the programs were effective in reducing opioid-related overdose deaths. In adjusted analyses we found that a state's implementation of a program was associated with an average reduction of 1.12 opioid-related overdose deaths per 100,000 population in the year after implementation. Additionally, states whose programs had robust characteristics-including monitoring greater numbers of drugs with abuse potential and updating their data at least weekly-had greater reductions in deaths, compared to states whose programs did not have these characteristics. We estimate that if Missouri adopted a prescription drug monitoring program and other states enhanced their programs with robust features, there would be more than 600 fewer overdose deaths nationwide in 2016, preventing approximately two deaths each day. PMID:27335101

  20. Queen pheromone regulates programmed cell death in the honey bee worker ovary.

    PubMed

    Ronai, I; Oldroyd, B P; Vergoz, V

    2016-10-01

    In social insect colonies the presence of a queen, secreting her pheromones, is a key environmental cue for regulating the reproductive state of workers. However, until recently the proximate molecular mechanisms underlying facultative worker sterility were unidentified. Studies into worker oogenesis in the honey bee (Apis mellifera) have indicated that programmed cell death is central to the regulation of oogenesis. Here we investigate how queen pheromone, age of the worker and ovary state affect both programmed cell death and cell number in worker ovaries. We describe a novel method to simultaneously measure programmed cell death (caspase activity) and live cell number (estimated from the amount of adenosine triphosphate) in an insect tissue. Workers exposed to queen pheromone have higher levels of caspase activity in the ovary than those not exposed. Our results suggest that queen pheromone triggers programmed cell death at the mid-oogenesis checkpoint causing the abortion of worker oocytes and reproductive inhibition of the worker caste. Nonetheless, high caspase activity is present in activated ovaries from workers not exposed to queen pheromone. This caspase activity is most likely to be from the nurse cells undergoing programmed cell death, in late oogenesis, for normal oocyte development. Our study shows that the social environment of an organism can influence programmed cell death within a tissue. PMID:27321063

  1. How France launched its donation after cardiac death program.

    PubMed

    Antoine, C; Mourey, F; Prada-Bordenave, E

    2014-02-01

    On the basis of the literature and results presented at the 6th International Conference, donation after cardio-circulatory death provides a significant, practical, additional high quality source of transplantable organs. The vast majority of DCD are 'controlled' Maastricht category III donors. In 2010, the parliamentary information mission on the revision of the bioethics laws invited the Intensive Care Societies to debate and to make recommendations to implement controlled donation after circulatory death. They came to the conclusion that such retrieval is possible in France and insisted on the medical criteria that frame it: the writing of the medical procedures, the ethical aspects and the delay. The major recommendations of the ethics committees were firstly, The WLST decision is independent of the possibility of organ donation; secondly, the strict respect of "The dead donor and organ transplantation rule" and the updated national guidance for the WLST; thirdly, the drafting of a nationally agreed protocol defining the mandatory conditions to determine death and to perform procurement and transplantation. Organ donation after WLST will be authorised only in pilot centres with a locally agreed WLST policy including external second opinion and written transcript of the WLST decision, experienced intensive care staff, a local organ procurement coordination team familiar with DBD and DCD protocols and only in hospitals authorised for organ procurement. It is important to have an optimal and standardized national guidance to limit the known risk factors of graft failure (donor and recipient choice, warm and cold ischemia time), to increase acceptance by medical community and civil society and to improve results and allow more powerful analysis. PMID:24388490

  2. Reducing stress and supporting positive relations in families of young children with type 1 diabetes: A randomized controlled study for evaluating the effects of the DELFIN parenting program

    PubMed Central

    2012-01-01

    Background To assess initial efficacy and feasibility of a structured behavioural group training (DELFIN) for parents of children with diabetes type 1, in order to reduce parenting stress and to improve parenting skills. Methods A randomized controlled study was conducted between July 2008 and September 2010, at a children’s hospital in Hannover with parents of children with type 1 diabetes (2–10 yrs) (intervention group n = 37; control group n = 28). Parenting skills, parents’ psychological burden, children’s behavioural difficulties and quality of metabolic control were assessed before, 3 months after and 12 months after participating in the training program. Results In the intervention group parenting behaviour in conflict situations improved significantly after 3 months (Z = −3.28; p ≤ 0.001). It remained stable over 12 months (Z = −2.94; p ≤ 0.01). Depression and anxiety scores of parents decreased (Z = −1.93; p ≤ .05; Z = −2.02; p ≤ .05). Even though the outcome in the intervention group was more positive, the differences between both study arms failed to reach statistical significance. Unexpectedly parenting behaviour in the control group improved also (Z = −2.45; p ≤ .05). Anxiety as well as stress scores decreased in this group (Z = −2.02; p ≤ .05 and Z = −2.11; p ≤ .05). In both groups the initial metabolic control was good and without significant differences (A1c 7.2±0.8% vs. 7.1±0.4%; p > 0.5). It remained stable in the DELFIN group (A1c 7.1±0.8%; p > 0.5), but it increased slightly in controls (A1c 7.3±0.5%; Z = −2.79; p = .005). Conclusions This study has brought first evidence for the efficacy and feasibility of the program. A multicentre study with a larger sample is necessary to confirm these first results. PMID:22994843

  3. Costimulatory molecule programmed death-1 in the cytotoxic response during chronic hepatitis C.

    PubMed

    Larrubia, Juan-Ramón; Benito-Martínez, Selma; Miquel, Joaquín; Calvino, Miryam; Sanz-de-Villalobos, Eduardo; Parra-Cid, Trinidad

    2009-11-01

    Hepatitis C virus (HCV)-specific CD8(+) T cells play an important role in the resolution of HCV infection. Nevertheless, during chronic hepatitis C these cells lack their effector functions and fail to control the virus. HCV has developed several mechanisms to escape immune control. One of these strategies is the up-regulation of negative co-stimulatory molecules such us programmed death-1 (PD-1). This molecule is up-regulated on intrahepatic and peripheral HCV-specific cytotoxic T cells during acute and chronic phases of the disease, whereas PD-1 expression is low in resolved infection. PD-1 expressing HCV-specific CD8(+) T cells are exhausted with impairment of several effector mechanisms, such as: type-1 cytokine production, expansion ability after antigen encounter and cytotoxic ability. However, PD-1 associated exhaustion can be restored by blocking the interaction between PD-1 and its ligand (PD-L1). After this blockade, HCV-specific CD8(+) T cells reacquire their functionality. Nevertheless, functional restoration depends on PD-1 expression level. High PD-1-expressing intrahepatic HCV-specific CD8(+) T cells do not restore their effector abilities after PD-1/PD-L1 blockade. The mechanisms by which HCV is able to induce PD-1 up-regulation to escape immune control are unknown. Persistent TCR stimulation by a high level of HCV antigens could favour early PD-1 induction, but the interaction between HCV core protein and gC1q receptor could also participate in this process. The PD-1/PD-L1 pathway modulation could be a therapeutic strategy, in conjunction with the regulation of others co-stimulatory pathways, in order to restore immune response against HCV to succeed in clearing the infection. PMID:19891011

  4. Type 1 Diabetes Facts

    MedlinePlus

    ... rid of it. Whom T1D Affects Type 1 diabetes strikes both children and adults at any age. It comes on suddenly, causes ... their children might develop the disease.” — Nicky Hider, adult, New York CDC National Diabetes Statistics Report, 2014 Impreatore, et al. 2012. Diab ...

  5. Baicalein induces programmed cell death in Candida albicans.

    PubMed

    Dai, Bao-Di; Cao, Ying-Ying; Huang, Shan; Xu, Yong-Gang; Gao, Ping-Hui; Wang, Yan; Jiang, Yuan-Ying

    2009-08-01

    Recent evidence has revealed the occurrence of an apoptotic phenotype in Candida albicans that is inducible with environmental stresses such as acetic acid, hydrogen peroxide, and amphotericin B. In the present study, we found that the Chinese herbal medicine Baicalein (BE), which was one of the skullcapflavones, can induce apoptosis in C. albicans. The apoptotic effects of BE were detected by flow cytometry using Annexin V-FITC and DAPI, and it was confirmed by transmission electron microscopy analysis. After exposure to 4 microg/ml BE for 12 h, about 10% of C. albicans cells were apoptotic. Both the increasing intracellular levels of reactive oxygen species (ROS) and upregulation of some redox-related genes (CAP1, SOD2, TRR1) were observed. Furthermore, we compared the survivals of CAP1 deleted, wild-type, and overexpressed strains and found that Cap1p attenuated BE-initiated cell death, which was coherent with a higher mRNA level of the CAP1 gene. In addition, the mitochondrial membrane potential of C. albicans cells changed significantly ( p<0.001) upon BE treatment compared with control. Taken together, our results indicate that BE treatment induces apoptosis in C.albicans cells, and the apoptosis was associated with the breakdown of mitochondrial membrane potential. PMID:19734718

  6. Apoptosis and Beyond: Cytometry in Studies of Programmed Cell Death

    PubMed Central

    Wlodkowic, Donald; Telford, William; Skommer, Joanna; Darzynkiewicz, Zbigniew

    2012-01-01

    A cell undergoing apoptosis demonstrates multitude of characteristic morphological and biochemical features, which vary depending on the inducer of apoptosis, cell type and the “time window” at which the process of apoptosis is observed. Because the gross majority of apoptotic hallmarks can be revealed by flow and image cytometry, the cytometric methods become a technology of choice in diverse studies of cellular demise. Variety of cytometric methods designed to identify apoptotic cells, detect particular events of apoptosis and probe mechanisms associated with this mode of cell death have been developed during the past two decades. In the present review, we outline commonly used methods that are based on the assessment of mitochondrial transmembrane potential, activation of caspases, DNA fragmentation, and plasma membrane alterations. We also present novel developments in the field such as the use of cyanine SYTO and TO-PRO family of probes. Strategies of selecting the optimal multiparameter approaches, as well as potential difficulties in the experimental procedures, are thoroughly summarized. PMID:21722800

  7. Programmed cell death and clearance of cell corpses in Caenorhabditis elegans.

    PubMed

    Wang, Xiaochen; Yang, Chonglin

    2016-06-01

    Programmed cell death is critical to the development of diverse animal species from C. elegans to humans. In C. elegans, the cell death program has three genetically distinguishable phases. During the cell suicide phase, the core cell death machinery is activated through a protein interaction cascade. This activates the caspase CED-3, which promotes numerous pro-apoptotic activities including DNA degradation and exposure of the phosphatidylserine "eat me" signal on the cell corpse surface. Specification of the cell death fate involves transcriptional activation of the cell death initiator EGL-1 or the caspase CED-3 by coordinated actions of specific transcription factors in distinct cell types. In the cell corpse clearance stage, recognition of cell corpses by phagocytes triggers several signaling pathways to induce phagocytosis of apoptotic cell corpses. Cell corpse-enclosing phagosomes ultimately fuse with lysosomes for digestion of phagosomal contents. This article summarizes our current knowledge about programmed cell death and clearance of cell corpses in C. elegans. PMID:27048817

  8. Mastoparan-induced programmed cell death in the unicellular alga Chlamydomonas reinhardtii

    PubMed Central

    Yordanova, Zhenya P.; Woltering, Ernst J.; Kapchina-Toteva, Veneta M.; Iakimova, Elena T.

    2013-01-01

    Background and Aims Under stress-promoting conditions unicellular algae can undergo programmed cell death (PCD) but the mechanisms of algal cellular suicide are still poorly understood. In this work, the involvement of caspase-like proteases, DNA cleavage and the morphological occurrence of cell death in wasp venom mastoparan (MP)-treated Chlamydomonas reinhardtii were studied. Methods Algal cells were exposed to MP and cell death was analysed over time. Specific caspase inhibitors were employed to elucidate the possible role of caspase-like proteases. YVADase activity (presumably a vacuolar processing enzyme) was assayed by using a fluorogenic caspase-1 substrate. DNA breakdown was evaluated by DNA laddering and Comet analysis. Cellular morphology was examined by confocal laser scanning microscopy. Key Results MP-treated C. reinhardtii cells expressed several features of necrosis (protoplast shrinkage) and vacuolar cell death (lytic vesicles, vacuolization, empty cell-walled corpse-containing remains of digested protoplast) sometimes within one single cell and in different individual cells. Nucleus compaction and DNA fragmentation were detected. YVADase activity was rapidly stimulated in response to MP but the early cell death was not inhibited by caspase inhibitors. At later time points, however, the caspase inhibitors were effective in cell-death suppression. Conditioned medium from MP-treated cells offered protection against MP-induced cell death. Conclusions In C. reinhardtii MP triggered PCD of atypical phenotype comprising features of vacuolar and necrotic cell deaths, reminiscent of the modality of hypersensitive response. It was assumed that depending on the physiological state and sensitivity of the cells to MP, the early cell-death phase might be not mediated by caspase-like enzymes, whereas later cell death may involve caspase-like-dependent proteolysis. The findings substantiate the hypothesis that, depending on the mode of induction and sensitivity of

  9. A Conserved Core of Programmed Cell Death Indicator Genes Discriminates Developmentally and Environmentally Induced Programmed Cell Death in Plants1[OPEN

    PubMed Central

    Van Bel, Michiel; Van Hautegem, Tom; Fendrych, Matyáš; Simaskova, Maria; van Durme, Matthias; Buscaill, Pierre; Rivas, Susana; S. Coll, Nuria; Maere, Steven

    2015-01-01

    A plethora of diverse programmed cell death (PCD) processes has been described in living organisms. In animals and plants, different forms of PCD play crucial roles in development, immunity, and responses to the environment. While the molecular control of some animal PCD forms such as apoptosis is known in great detail, we still know comparatively little about the regulation of the diverse types of plant PCD. In part, this deficiency in molecular understanding is caused by the lack of reliable reporters to detect PCD processes. Here, we addressed this issue by using a combination of bioinformatics approaches to identify commonly regulated genes during diverse plant PCD processes in Arabidopsis (Arabidopsis thaliana). Our results indicate that the transcriptional signatures of developmentally controlled cell death are largely distinct from the ones associated with environmentally induced cell death. Moreover, different cases of developmental PCD share a set of cell death-associated genes. Most of these genes are evolutionary conserved within the green plant lineage, arguing for an evolutionary conserved core machinery of developmental PCD. Based on this information, we established an array of specific promoter-reporter lines for developmental PCD in Arabidopsis. These PCD indicators represent a powerful resource that can be used in addition to established morphological and biochemical methods to detect and analyze PCD processes in vivo and in planta. PMID:26438786

  10. Mosaic neurofibromatosis type 1.

    PubMed

    Liang, Christine; Schaffer, Julie V

    2008-01-01

    A 24-year-old man presented with numerous lentigines and multiple cafe-au-lait macules on both sides of the face, neck, and trunk as well as on the proximal area of the upper extremities and in the axillae. The pigmented lesions had a Blaschko-linear distribution on the upper trunk and were limited to the left side of the abdomen, with a sharp demarcation at the midline. Multiple, cutaneous neurofibromas were found on the trunk, and ophthalmologic examination showed a Lisch nodule in the left iris. The clinical findings and their widespread but segmental distribution were consistent with a diagnosis of mosaic neurofibromatosis type 1. PMID:18627742

  11. Ultrastructural patterns of the activated cell death programs in the human brain.

    PubMed

    Pais, Viorel; Danaila, Leon; Pais, Emil

    2013-04-01

    The authors analyzed by transmission electron microscopy (TEM) neurosurgical samples obtained from patients with cerebral tumors, neurotrauma, cerebral ischemia, Moyamoya disease, encephalitis, etc. Their observations concern a variety of dying cell types by different programmed death pathways, including apoptosis, paraptosis, autophagy, autoschizis, programmed necrosis, as well as combined and coexisting forms. This ample work pointed out not only the role of TEM in cell death diagnosis, but the biological differences in cell behavior and beneficial or detrimental effects of suicides for homeostasis, survival, or normal functioning of a tissue, like the integrated vascular tissue and brain parenchyma. PMID:23573891

  12. Programmed necrosis in the Cross Talk of Cell Death and Inflammation

    PubMed Central

    Chan, Francis Ka-Ming; Luz, Nivea Farias; Moriwaki, Kenta

    2015-01-01

    Cell proliferation and cell death are integral elements in maintaining homeostatic balance in metazoans. Disease pathologies ensue when these processes are disturbed. A plethora of evidence indicates that malfunction of cell death can lead to inflammation, autoimmunity or immuno-deficiency. Programmed necrosis or necroptosis is a form of non-apoptotic cell death driven by the receptor interacting protein kinase 3 (RIPK3) and its substrate mixed lineage kinase domain-like (MLKL). RIPK3 partners with its upstream adaptors RIPK1, TRIF or DAI to signal for necroptosis in response to death receptor or toll-like receptor stimulation, pathogen infection, or sterile cell injury. Necroptosis promotes inflammation through leakage of cellular contents from damaged plasma membrane. Intriguingly, many of the signal adaptors of necroptosis have dual functions in innate immune signaling. This unique signature illustrates the cooperative nature of necroptosis and innate inflammatory signaling pathways in managing cell and organismal stresses from pathogen infection and sterile tissue injury. PMID:25493335

  13. The Impact of a Death Education Program for Nurses in a Long-Term Care Hospital.

    ERIC Educational Resources Information Center

    Fleming, Stephen; Brown, Isabel

    1983-01-01

    Assessed the impact of a death education program for nursing staff (N=130) of a long-term care institution. Analysis of nurses' chart entries (problem-oriented record format-POR) revealed a statistically significant increase from pre- to post-course in charting of patients' subjective state. (Author/JAC)

  14. Identification of Neural Programmed Cell Death through the Detection DNA Fragmentation In Situ and by PCR

    PubMed Central

    Yung, Yun C.; Kennedy, Grace; Chun, Jerold

    2009-01-01

    Programmed cell death is a fundamental process for the development and somatic maintenance of organisms. This unit describes methods for visualizing both dying cells in situ and for detection of nucleosomal ladders. A description of various current detection strategies is provided, as well as support protocols for preparing positive and negative controls and for preparing genomic DNA. PMID:18428472

  15. A long-awaited merger of the pathways mediating host defence and programmed cell death.

    PubMed

    Blander, J Magarian

    2014-09-01

    Historically, cell death and inflammation have been closely linked, but the necessary divergence of the fields in the past few decades has enriched our molecular understanding of the signalling pathways that mediate various programmes of cell death and multiple types of inflammatory responses. The fields have now come together again demonstrating a surprising level of integration. Intimate interconnections at multiple levels are revealed between the cell death and inflammatory signal transduction pathways that are mobilized in response to the engagement of pattern recognition receptors during microbial infection. Molecules such as receptor-interacting protein kinase 1 (RIPK1), RIPK3, FAS-associated death domain protein (FADD), FLICE-like inhibitory protein (FLIP) and caspase 8 - which are associated with different forms of cell death - are incorporated into compatible and exceedingly dynamic Toll-like receptor, NOD-like receptor and RIG-I-like receptor signalling modules. These signalling modules have a high capacity to switch from inflammation to cell death, or a programmed execution of both, all in an orchestrated battle for host defence and survival. PMID:25145756

  16. Mitochondrial fusion is regulated by Reaper to modulate Drosophila programmed cell death.

    PubMed

    Thomenius, M; Freel, C D; Horn, S; Krieser, R; Abdelwahid, E; Cannon, R; Balasundaram, S; White, K; Kornbluth, S

    2011-10-01

    In most multicellular organisms, the decision to undergo programmed cell death in response to cellular damage or developmental cues is typically transmitted through mitochondria. It has been suggested that an exception is the apoptotic pathway of Drosophila melanogaster, in which the role of mitochondria remains unclear. Although IAP antagonists in Drosophila such as Reaper, Hid and Grim may induce cell death without mitochondrial membrane permeabilization, it is surprising that all three localize to mitochondria. Moreover, induction of Reaper and Hid appears to result in mitochondrial fragmentation during Drosophila cell death. Most importantly, disruption of mitochondrial fission can inhibit Reaper and Hid-induced cell death, suggesting that alterations in mitochondrial dynamics can modulate cell death in fly cells. We report here that Drosophila Reaper can induce mitochondrial fragmentation by binding to and inhibiting the pro-fusion protein MFN2 and its Drosophila counterpart dMFN/Marf. Our in vitro and in vivo analyses reveal that dMFN overexpression can inhibit cell death induced by Reaper or γ-irradiation. In addition, knockdown of dMFN causes a striking loss of adult wing tissue and significant apoptosis in the developing wing discs. Our findings are consistent with a growing body of work describing a role for mitochondrial fission and fusion machinery in the decision of cells to die. PMID:21475305

  17. Mitochondrial fusion is regulated by Reaper to modulate Drosophila programmed cell death

    PubMed Central

    Thomenius, M; Freel, C D; Horn, S; Krieser, R; Abdelwahid, E; Cannon, R; Balasundaram, S; White, K; Kornbluth, S

    2011-01-01

    In most multicellular organisms, the decision to undergo programmed cell death in response to cellular damage or developmental cues is typically transmitted through mitochondria. It has been suggested that an exception is the apoptotic pathway of Drosophila melanogaster, in which the role of mitochondria remains unclear. Although IAP antagonists in Drosophila such as Reaper, Hid and Grim may induce cell death without mitochondrial membrane permeabilization, it is surprising that all three localize to mitochondria. Moreover, induction of Reaper and Hid appears to result in mitochondrial fragmentation during Drosophila cell death. Most importantly, disruption of mitochondrial fission can inhibit Reaper and Hid-induced cell death, suggesting that alterations in mitochondrial dynamics can modulate cell death in fly cells. We report here that Drosophila Reaper can induce mitochondrial fragmentation by binding to and inhibiting the pro-fusion protein MFN2 and its Drosophila counterpart dMFN/Marf. Our in vitro and in vivo analyses reveal that dMFN overexpression can inhibit cell death induced by Reaper or γ-irradiation. In addition, knockdown of dMFN causes a striking loss of adult wing tissue and significant apoptosis in the developing wing discs. Our findings are consistent with a growing body of work describing a role for mitochondrial fission and fusion machinery in the decision of cells to die. PMID:21475305

  18. Metabolic aspects of programmed cell survival and cell death in the heart.

    PubMed

    Depre, C; Taegtmeyer, H

    2000-02-01

    Normal cardiac function requires a tight interaction between metabolism, contractile function and gene expression. The main perturbation challenging this equilibrium in vivo is ischemia, which alters energy flux through the control of key enzymes. The review highlights metabolic imprints and energetic aspects of programmed cell survival, programmed cell death, and of necrosis. When sustained and severe, ischemia leads to a total collapse of energy transfer, to the accumulation of metabolic endproducts, and to the development of myocardial necrosis. When moderate, ischemia results in a coordinated cellular response including enhanced anaerobic glucose metabolism, a modification of cardiac gene expression, and the development of specific mechanisms for programmed cell survival (preconditioning, stunning, hibernation). Repetitive stress results in a decrease of contractile function, a downregulation of gene expression and an impairment of energy transfer, which eventually cause the heart to fail. When the failing heart becomes energy-depleted, the programs of cell survival are no longer operational and programmed cell death ensues. To define the point of departure from programmed cell survival to cell death remains a major challenge. PMID:10728375

  19. When supply does not meet demand-ER stress and plant programmed cell death

    PubMed Central

    Williams, Brett; Verchot, Jeanmarie; Dickman, Martin B.

    2014-01-01

    The endoplasmic reticulum (ER) is the central organelle in the eukaryotic secretory pathway. The ER functions in protein synthesis and maturation and is crucial for proper maintenance of cellular homeostasis and adaptation to adverse environments. Acting as a cellular sentinel, the ER is exquisitely sensitive to changing environments principally via the ER quality control machinery. When perturbed, ER-stress triggers a tightly regulated and highly conserved, signal transduction pathway known as the unfolded protein response (UPR) that prevents the dangerous accumulation of unfolded/misfolded proteins. In situations where excessive UPR activity surpasses threshold levels, cells deteriorate and eventually trigger programmed cell death (PCD) as a way for the organism to cope with dysfunctional or toxic signals. The programmed cell death that results from excessive ER stress in mammalian systems contributes to several important diseases including hypoxia, neurodegeneration, and diabetes. Importantly, hallmark features and markers of cell death that are associated with ER stress in mammals are also found in plants. In particular, there is a common, conserved set of chaperones that modulate ER cell death signaling. Here we review the elements of plant cell death responses to ER stress and note that an increasing number of plant-pathogen interactions are being identified in which the host ER is targeted by plant pathogens to establish compatibility. PMID:24926295

  20. Glutaric Acidemia Type 1

    PubMed Central

    Hedlund, Gary L.; Longo, Nicola; Pasquali, Marzia

    2008-01-01

    Glutaric acidemias comprise different disorders resulting in an increased urinary excretion of glutaric acid. Glutaric acidemia type 1 (GA-1) is an autosomal recessive disorder of lysine, hydroxylysine, and tryptophan metabolism caused by deficiency of glutaryl-CoA dehydrogenase. It results in the accumulation of 3-hydroxyglutaric and glutaric acid. Affected patients can present with brain atrophy and macrocephaly and with acute dystonia secondary to striatal degeneration in most cases triggered by an intercurrent childhood infection with fever between 6 and 18 months of age. This disorder can be identified by increased glutaryl (C5DC) carnitine on newborn screening. Urine organic acid analysis indicates the presence of excess 3-OH-glutaric acid, and urine acylcarnitine profile shows glutaryl carnitine as the major peak. Therapy consists in carnitine supplementation to remove glutaric acid, a diet restricted in amino acids capable of producing glutaric acid, and prompt treatment of intercurrent illnesses. Early diagnosis and therapy reduce the risk of acute dystonia in patients with GA-1. PMID:16602100

  1. On the origin, evolution, and nature of programmed cell death: a timeline of four billion years.

    PubMed

    Ameisen, J C

    2002-04-01

    Programmed cell death is a genetically regulated process of cell suicide that is central to the development, homeostasis and integrity of multicellular organisms. Conversely, the dysregulation of mechanisms controlling cell suicide plays a role in the pathogenesis of a wide range of diseases. While great progress has been achieved in the unveiling of the molecular mechanisms of programmed cell death, a new level of complexity, with important therapeutic implications, has begun to emerge, suggesting (i) that several different self-destruction pathways may exist and operate in parallel in our cells, and (ii) that molecular effectors of cell suicide may also perform other functions unrelated to cell death induction and crucial to cell survival. In this review, I will argue that this new level of complexity, implying that there may be no such thing as a 'bona fide' genetic death program in our cells, might be better understood when considered in an evolutionary context. And a new view of the regulated cell suicide pathways emerges when one attempts to ask the question of when and how they may have become selected during evolution, at the level of ancestral single-celled organisms. PMID:11965491

  2. In vivo detection and imaging of phosphatidylserine expression during programmed cell death

    PubMed Central

    Blankenberg, Francis G.; Katsikis, Peter D.; Tait, Jonathan F.; Davis, R. Eric; Naumovski, Louis; Ohtsuki, Katsuichi; Kopiwoda, Susan; Abrams, Michael J.; Darkes, Marilyn; Robbins, Robert C.; Maecker, Holden T.; Strauss, H.W.

    1998-01-01

    One of the earliest events in programmed cell death is the externalization of phosphatidylserine, a membrane phospholipid normally restricted to the inner leaflet of the lipid bilayer. Annexin V, an endogenous human protein with a high affinity for membrane bound phosphatidylserine, can be used in vitro to detect apoptosis before other well described morphologic or nuclear changes associated with programmed cell death. We tested the ability of exogenously administered radiolabeled annexin V to concentrate at sites of apoptotic cell death in vivo. After derivatization with hydrazinonicotinamide, annexin V was radiolabeled with technetium 99m. In vivo localization of technetium 99m hydrazinonicotinamide-annexin V was tested in three models: fuminant hepatic apoptosis induced by anti-Fas antibody injection in BALB/c mice; acute rejection in ACI rats with transplanted heterotopic PVG cardiac allografts; and cyclophosphamide treatment of transplanted 38C13 murine B cell lymphomas. External radionuclide imaging showed a two- to sixfold increase in the uptake of radiolabeled annexin V at sites of apoptosis in all three models. Immunohistochemical staining of cardiac allografts for exogenously administered annexin V revealed intense staining of numerous myocytes at the periphery of mononuclear infiltrates of which only a few demonstrated positive apoptotic nuclei by the terminal deoxynucleotidyltransferase-mediated UTP end labeling method. These results suggest that radiolabeled annexin V can be used in vivo as a noninvasive means to detect and serially image tissues and organs undergoing programmed cell death. PMID:9600968

  3. Programmed cell death protein 1 and programmed death-ligand 1 are expressed on the surface of some small-cell lung cancer lines

    PubMed Central

    Yamane, Hiromichi; Isozaki, Hideko; Takeyama, Masami; Ochi, Nobuaki; Kudo, Kenichiro; Honda, Yoshihiro; Yamagishi, Tomoko; Kubo, Toshio; Kiura, Katsuyuki; Takigawa, Nagio

    2015-01-01

    Introduction: Programmed cell death protein 1 (PD-1) and programmed death-ligand 1 (PD-L1) play a major role in suppressing the immune system during the formation of the PD-1/PD-L1 pathway, which transmits an inhibitory signal to reduce T cell activity. PD-L1 is often expressed in various malignant tumors. In contrast, PD-1 is generally observed in activated lymphocytes and myeloid-derived dendritic cells. Of the malignant cells, only Jurkat cells under special conditions and angioimmunoblastic T-cell lymphoma tissue cells express PD-1 on their surface. Methods: To clarify whether the PD-1/PD-L1 pathway participates in the immunotolerance of small-cell lung cancer (SCLC) cells, we examined the expressions of PD-1 and PD-L1 on the cell surface of SCLC cell lines using flow cytometry and reverse transcription polymerase chain reaction. Results: Among the four SCLC cell lines examined, only SBC-3 expressed both PD-1 and PD-L1. Conclusions: We demonstrated that both PD-1 and PD-L1 molecules were co-expressed on the surface of SCLC cells. Although the biological implications of this remain unclear, we speculate that PD-1 and its ligand on the SCLC cells may participate in the growth inhibition of tumor cells as reported in cytotoxic T cells. PMID:26101718

  4. Programmed cell death protein-1/programmed cell death ligand-1 pathway inhibition and predictive biomarkers: understanding transforming growth factor-beta role

    PubMed Central

    González-Cao, María; Viteri, Santiago; Karachaliou, Niki; Altavilla, Giuseppe; Rosell, Rafael

    2015-01-01

    A deeper understanding of the key role of the immune system in regulating tumor growth and progression has led to the development of a number of immunotherapies, including cancer vaccines and immune checkpoint inhibitors. Immune checkpoint inhibitors target molecular pathways involved in immunosuppression, such as cytotoxic T-lymphocyte-associated antigen-4 (CTLA-4) and programmed cell death protein-1 (PD-1)/programmed cell death ligand-1 (PD-L1) pathway, with the goal to enhance the host’s own immune anticancer response. In phase I–III trials, anti-PD-1/PD-L1 antibodies have demonstrated to be effective treatment strategies by inducing significant durable tumor responses, with manageable toxicities, in patients with various malignancies, including those traditionally considered non-immunogenic, such as non-small cell lung cancer (NSCLC). Identification of predictive biomarkers to select patients for immune therapies is currently being investigated to improve their therapeutic efficacy. Transforming growth factor-β (TGF-β), a pleiotropic cytokine with immunosuppressive effects on multiple cell types of the innate and adaptive immune system, has emerged as one of the potential key factors modulating response to immune checkpoint inhibitors. However, due to the complexity of the anti-cancer immune response, the predictive value of many other factors related to cancer cells or tumor microenvironment needs to be further explored. PMID:26798582

  5. The programmed death phenomena, aging, and the Samurai law of biology.

    PubMed

    Skulachev, V P

    2001-07-01

    Analysis of the programmed death phenomena from mitochondria (mitoptosis) to whole organisms (phenoptosis) clearly shows that suicide programs are inherent at various levels of organization of living systems. Such programs perform very important functions, purifying (i) cells from damaged (or unwanted for other reasons) organelles, (ii) tissues from unwanted cells, (iii) organisms from organs transiently appearing during ontogenesis, and (iv) communities of organisms from unwanted individuals. Defence against reactive oxygen species (ROS) is probably one of primary evolutionary functions of programmed death mechanisms. So far, it seems that ROS play a key role in the mito-, apo-, organo- and phenoptoses. Here a concept is described which tries to unite Weismann's concept of aging as an adaptive programmed death mechanism and the alternative point of view considering aging as an inevitable result of accumulation in an organism of occasional injuries. It is suggested that injury accumulation is monitored by special system sending a death signal to actuate a phenoptotic program when the number of injuries reaches some critical level. The system in question is organized in such a way that the lethal case appears to be a result of phenoptosis long before occasional injuries make the functioning of the organism impossible. This strategy is supposed to prevent the appearance of asocial monsters capable to ruining kin, community and entire population. These relationships are regarded as an example of the Samurai law of biology: 'It is better to die than to be wrong'. It is stressed that for humans these cruel regulations look like an atavism that should be overcome to prolong the human life span. PMID:11404047

  6. Molecular mechanisms of Saccharomyces cerevisiae stress adaptation and programmed cell death in response to acetic acid

    PubMed Central

    Giannattasio, Sergio; Guaragnella, Nicoletta; Ždralević, Maša; Marra, Ersilia

    2013-01-01

    Beyond its classical biotechnological applications such as food and beverage production or as a cell factory, the yeast Saccharomyces cerevisiae is a valuable model organism to study fundamental mechanisms of cell response to stressful environmental changes. Acetic acid is a physiological product of yeast fermentation and it is a well-known food preservative due to its antimicrobial action. Acetic acid has recently been shown to cause yeast cell death and aging. Here we shall focus on the molecular mechanisms of S. cerevisiae stress adaptation and programmed cell death in response to acetic acid. We shall elaborate on the intracellular signaling pathways involved in the cross-talk of pro-survival and pro-death pathways underlying the importance of understanding fundamental aspects of yeast cell homeostasis to improve the performance of a given yeast strain in biotechnological applications. PMID:23430312

  7. Molecular mechanisms of Saccharomyces cerevisiae stress adaptation and programmed cell death in response to acetic acid.

    PubMed

    Giannattasio, Sergio; Guaragnella, Nicoletta; Zdralević, Maša; Marra, Ersilia

    2013-01-01

    Beyond its classical biotechnological applications such as food and beverage production or as a cell factory, the yeast Saccharomyces cerevisiae is a valuable model organism to study fundamental mechanisms of cell response to stressful environmental changes. Acetic acid is a physiological product of yeast fermentation and it is a well-known food preservative due to its antimicrobial action. Acetic acid has recently been shown to cause yeast cell death and aging. Here we shall focus on the molecular mechanisms of S. cerevisiae stress adaptation and programmed cell death in response to acetic acid. We shall elaborate on the intracellular signaling pathways involved in the cross-talk of pro-survival and pro-death pathways underlying the importance of understanding fundamental aspects of yeast cell homeostasis to improve the performance of a given yeast strain in biotechnological applications. PMID:23430312

  8. Deciphering the rules of programmed cell death to improve therapy of cancer and other diseases.

    PubMed

    Strasser, Andreas; Cory, Suzanne; Adams, Jerry M

    2011-09-14

    Apoptosis, the major form of programmed cell death in metazoan organisms, plays critical roles in normal development, tissue homeostasis and immunity, and its disturbed regulation contributes to many pathological states, including cancer, autoimmunity, infection and degenerative disorders. In vertebrates, it can be triggered either by engagement of 'death receptors' of the tumour necrosis factor receptor family on the cell surface or by diverse intracellular signals that act upon the Bcl-2 protein family, which controls the integrity of the mitochondrial outer membrane through the complex interactions of family members. Both pathways lead to cellular demolition by dedicated proteases termed caspases. This review discusses the groundbreaking experiments from many laboratories that have clarified cell death regulation and galvanised efforts to translate this knowledge into novel therapeutic strategies for the treatment of malignant and perhaps certain autoimmune and infectious diseases. PMID:21863020

  9. TRPV1 Activation in Primary Cortical Neurons Induces Calcium-Dependent Programmed Cell Death.

    PubMed

    Song, Juhyun; Lee, Jun Hong; Lee, Sung Ho; Park, Kyung Ah; Lee, Won Taek; Lee, Jong Eun

    2013-03-01

    Transient receptor potential cation channel, subfamily V, member 1 (TRPV1, also known as vanilloid receptor 1) is a receptor that detects capsaicin, a pungent component of chili peppers, and noxious heat. Although its function in the primary nociceptor as a pain receptor is well established, whether TRPV1 is expressed in the brain is still under debate. In this study, the responses of primary cortical neurons were investigated. Here, we report that 1) capsaicin induces caspase-3-dependent programmed cell death, which coincides with increased production of nitric oxide and peroxynitrite ; that 2) the prolonged capsaicin treatment induces a steady increase in the degree of capase-3 activation, which is prevented by the removal of capsaicin; 3) and that blocking calcium entry and calcium-mediated signaling prevents capsaicin-induced cell death. These results indicate that cortical neurons express TRPV1 whose prolonged activation causes cell death. PMID:23585723

  10. Analysis of relationship between programmed cell death and cell cycle in limb-bud.

    PubMed

    Toné, S; Tanaka, S

    1997-01-01

    Programmed cell death plays a crucial role in limb morphogenesis of amniote. In this paper, we showed that cell cycle and cell death in limb-buds were closely related events and there existed a critical S-phase, which corresponded to the most sensitive time for inhibition of cell death following administration of an excess dose of 5-bromodeoxyuridine (BrdU). The use of microfluorometry of BrdU incorporation coupled with measurement of DNA amount of individual cells enabled us to consider that cells committed to die were withdrawn from cell cycle at G2-phase. Finally, we will summarize the nuclear events involved in apoptosis in limb morphogenesis in relation to cell cycle. PMID:9267810

  11. The costs of a suburban paramedic program in reducing deaths due to cardiac arrest.

    PubMed

    Urban, N; Bergner, L; Eisenberg, M S

    1981-04-01

    The marginal costs per averted death of a suburban paramedic program are estimated to be approximately $42,000, when program costs are attributed entirely to cardiac arrest cases due to underlying heart disease, and indirect costs attributable to episode-related hospitalization are included, It is suggested that at $42,000 per cardiac arrest death averted the program is cost-beneficial by two criteria. First, it compares favorably with an estimate obtained from the literature of the value to the average individual of saving the life of a myocardial infarction patient. Second, the people of King County passed a cost-commensurate Paramedic Program Property Tax Levy in 1979, revealing their willingness to support the program. Results of the study should be generalized in accordance with the facts that in King County 1) the population density averages approximately 1,300 per square mile; 2) a basic emergency medical system ensures a 4-minute average response time to initiation of cardiopulmonary resuscitation; 3) a citizen-training program in cardiopulmonary resuscitation further reduces average time to initiation of basic life support; and 4) the paramedic program is designed to ensure a 10-minute average time to definitive care. PMID:6785539

  12. Different modes of programmed cell death during oogenesis of the silkmoth Bombyx mori.

    PubMed

    Mpakou, Vicky E; Nezis, Ioannis P; Stravopodis, Dimitrios J; Margaritis, Lukas H; Papassideri, Issidora S

    2008-01-01

    It is increasingly recognized that programmed cell death includes not only apoptosis and autophagy, but also other types of nonapoptotic cell death, such as paraptosis, which are all characterized by distinct morphological features. Our findings indicate that all three types of programmed cell death occur in the ovarian nurse cell cluster during late vitellogenesis (formation of the egg yolk) of Bombyx mori (Lepidoptera), whereas middle vitellogenesis is exclusively characterized by the presence of a nonapoptotic type of cell death, known as paraptosis. During middle vitellogenesis, nurse cells exhibit clearly cytoplasmic vacuolization, as revealed by ultrastructural examination performed through conventional light and transmission electron microscopy, while no signs of apoptotic or autophagic features are detectable. Moreover, nurse cells of developmental stages 7, 8 and 9 contain autophagic compartments, as well as apoptotic characteristics, such as condensed chromatin, fragmented DNA and activated caspases, as revealed by in vitro assays. We propose that paraptosis precedes both apoptosis and autophagy during vitellogenesis, since its initial activation is detectable during middle vitellogenesis, whereas no apoptotic nor autophagic features are observed. In contrast, at the late stages of Bombyx mori oogenesis, paraptosis, autophagy and apoptosis operate synergistically, resulting in a more efficient elimination of the degenerated nurse cells. PMID:17986869

  13. Human salivary histatin 5 fungicidal action does not induce programmed cell death pathways in Candida albicans.

    PubMed

    Wunder, David; Dong, Jin; Baev, Didi; Edgerton, Mira

    2004-01-01

    Salivary histatins (Hsts) are potent candidacidal proteins that induce a nonlytic form of cell death in Candida albicans accompanied by loss of mean cell volume, cell cycle arrest, and elevation of intracellular levels of reactive oxygen species (ROS). Since these phenotypes are often markers of programmed cell death and apoptosis, we investigated whether other classical markers of apoptosis, including generation of intracellular ROS and protein carbonyl groups, chromosomal fragmentation (laddering), and cytochrome c release, are found in Hst 5-mediated cell death. Increased intracellular levels of ROS in C. albicans were detected in cells both following exogenous application of Hst 5 and following intracellular expression of Hst 5. However, Western blot analysis failed to detect specifically increased protein carbonylation in Hst 5-treated cells. There was no evidence of chromosomal laddering and no cytochrome c release was observed following treatment of C. albicans mitochondria with Hst 5. Superoxide dismutase enzymes of C. albicans and Saccharomyces cerevisiae provide essential protection against oxidative stress; therefore, we tested whether SOD mutants have increased susceptibility to Hst 5, as expected if ROS mediate fungicidal effects. Cell survival of S. cerevisiae SOD1/SOD2 mutants and C. albicans SOD1 mutants following Hst 5 treatment (31 micro M) was indistinguishable from the survival of wild-type cells treated with Hst 5. We conclude that ROS may not play a direct role in fungicidal activity and that Hst 5 does not initiate apoptosis or programmed cell death pathways. PMID:14693527

  14. BGP-15 inhibits caspase-independent programmed cell death in acetaminophen-induced liver injury

    SciTech Connect

    Nagy, Gabor; Szarka, Andras; Lotz, Gabor; Doczi, Judit; Wunderlich, Livius; Kiss, Andras; Jemnitz, Katalin; Veres, Zsuzsa; Banhegyi, Gabor; Schaff, Zsuzsa; Suemegi, Balazs; Mandl, Jozsef

    2010-02-15

    It has been recently shown that acute acetaminophen toxicity results in endoplasmic reticulum redox stress and an increase in cells with apoptotic phenotype in liver. Since activation of effector caspases was absent, the relevance of caspase-independent mechanisms in acetaminophen-induced programmed cell death was investigated. BGP-15, a drug with known protective actions in conditions involving redox imbalance, has been co-administered with a single sublethal dose of acetaminophen. Proapoptotic events and outcome of the injury were investigated. ER redox alterations and early ER-stress-related signaling events induced by acetaminophen, such as ER glutathione depletion, phosphorylation of eIF2alpha and JNK and induction of the transcription factor GADD153, were not counteracted by co-treatment with BGP-15. However, BGP-15 prevented AIF mitochondria-to-nucleus translocation and mitochondrial depolarization. BGP-15 co-treatment attenuated the rate of acetaminophen-induced cell death as assessed by apoptotic index and enzyme serum release. These results reaffirm that acute acetaminophen toxicity involves oxidative stress-induced caspase-independent cell death. In addition, pharmacological inhibition of AIF translocation may effectively protect against or at least delay acetaminophen-induced programmed cell death.

  15. Low Frequency of Programmed Death Ligand 1 Expression in Pediatric Cancers.

    PubMed

    Aoki, Takahiro; Hino, Moeko; Koh, Katsuyoshi; Kyushiki, Masashi; Kishimoto, Hiroshi; Arakawa, Yuki; Hanada, Ryoji; Kawashima, Hiroshi; Kurihara, Jun; Shimojo, Naoki; Motohashi, Shinichiro

    2016-08-01

    Programmed death 1 (PD-1)/programmed death ligand 1 (PD-L1) pathway blockade has become a promising therapeutic target in adult cancers. We evaluated PD-L1 expression and tumor-infiltrating CD8(+) T cells in formalin-fixed, paraffin-embedded tumor specimens from 53 untreated pediatric patients with eight cancer types: neuroblastoma, extracranial malignant germ cell tumor, hepatoblastoma, germinoma, medulloblastoma, renal tumor, rhabdomyosarcoma, and atypical teratoid/rhabdoid tumor. One rhabdomyosarcoma with the shortest survival exhibited membranous PD-L1 expression and germinoma contained abundant tumor-infiltrating CD8(+) T cells and PD-L1-positive macrophages. The PD-1/PD-L1 pathway tended to be inactive in pediatric cancers. PMID:27135656

  16. Identification of new modulators and protein alterations in non-apoptotic programmed cell death.

    PubMed

    Sperandio, Sabina; Poksay, Karen S; Schilling, Birgit; Crippen, Danielle; Gibson, Bradford W; Bredesen, Dale E

    2010-12-15

    This study describes the first proteomic analysis of paraptosis--a non-apoptotic form of programmed cell death. As with apoptosis, the first description of paraptosis was based on morphological criteria. Since there are no known markers for paraptosis, the purpose of this study was to dissect changes in the proteome profile occurring during paraptosis. Using one- and two-dimensional SDS-PAGE, Western analysis, and mass spectrometry, we show that during paraptosis, alterations occur mainly in cytoskeletal proteins, signal transduction proteins, mitochondrial proteins, and some metabolic proteins. We also report the identification of: (1) a paraptosis inhibitor, phosphatidylethanolamine binding protein (PEBP-1), and (2) a candidate mediator of paraptosis, prohibitin. Identification of specific paraptotic changes will ultimately lead to tools to detect this type of programmed cell death in in vivo systems and allow for its further characterization. PMID:20830744

  17. Utilization of GaN:Eu 3+ nanocrystals for the detection of programmed cell death

    NASA Astrophysics Data System (ADS)

    Bilyy, R.; Podhorodecki, A.; Nyk, M.; Stoika, R.; Zaichenko, A.; Zatryb, G.; Misiewicz, J.; Strek, W.

    2008-04-01

    In the current study we propose to use a new system for labeling biological processes. Gallium nitride nanocrystals doped by europium ions (nc-GaN:Eu 3+) have been obtained and used to identify the cells undergoing process of programmed cell death. Obtained by combustion method, GaN:Eu 3+ fluorescent nanocrystals have been covered with the polymeric envelope, bearing epoxy groups. Carbohydrate-binding protein-lectin-specifically recognizing cells undergoing programmed cell death was conjugated to the envelope of nanoparticles. Incubation of alive and dead cells with nanoparticles suspension and subsequent analysis using fluorescent and phase-contrast microscopy revealed predominate binding of nanoparticles to dead cells, while intact cell did not bind nanoparticles under the same conditions.

  18. Bereavement support for couples following death of a baby: program development and 14-year exit analysis.

    PubMed

    Reilly-Smorawski, Bernadette; Armstrong, Anne V; Catlin, Elizabeth A

    2002-01-01

    Program development, implementation, and a 14-year exit analysis of a bereavement support program for couples whose baby died in the Neonatal Intensive Care Unit (NICU) is presented. A closed, hospital-based, time-limited (12 weeks) format was used. Team leadership was used and 54% of bereaved NICU parents participated. Each group was structured with a 2-week introductory period, open format grief-focused weekly discussions,evaluation in Week 11, and summary session with termination in Week 12. The exit analysis details program strengths, weaknesses, and recommendations. Bereavement support groups are one part of what we contend should be a comprehensive bereavement program,organized to care for families prior to, during, and after a baby's death. A sensitive, spiritually aware, supportive environment should be maintained throughout with relationship building as a cornerstone of the program. PMID:11865881

  19. Role of mitochondria in the pheromone- and amiodarone-induced programmed death of yeast

    PubMed Central

    Pozniakovsky, Andrei I.; Knorre, Dmitry A.; Markova, Olga V.; Hyman, Anthony A.; Skulachev, Vladimir P.; Severin, Fedor F.

    2005-01-01

    Although programmed cell death (PCD) is extensively studied in multicellular organisms, in recent years it has been shown that a unicellular organism, yeast Saccharomyces cerevisiae, also possesses death program(s). In particular, we have found that a high doses of yeast pheromone is a natural stimulus inducing PCD. Here, we show that the death cascades triggered by pheromone and by a drug amiodarone are very similar. We focused on the role of mitochondria during the pheromone/amiodarone-induced PCD. For the first time, a functional chain of the mitochondria-related events required for a particular case of yeast PCD has been revealed: an enhancement of mitochondrial respiration and of its energy coupling, a strong increase of mitochondrial membrane potential, both events triggered by the rise of cytoplasmic [Ca2+], a burst in generation of reactive oxygen species in center o of the respiratory chain complex III, mitochondrial thread-grain transition, and cytochrome c release from mitochondria. A novel mitochondrial protein required for thread-grain transition is identified. PMID:15657396

  20. T-bet regulates differentiation of forkhead box protein 3+ regulatory T cells in programmed cell death-1-deficient mice.

    PubMed

    Tahara, M; Kondo, Y; Yokosawa, M; Tsuboi, H; Takahashi, S; Shibayama, S; Matsumoto, I; Sumida, T

    2015-02-01

    Programmed cell death-1 (PD-1) plays an important role in peripheral T cell tolerance, but whether or not it affects the differentiation of helper T cell subsets remains elusive. Here we describe the importance of PD-1 in the control of T helper type 1 (Th1) cell activation and development of forkhead box protein 3 (FoxP3(+)) regulatory T cells (Tr(egs)). PD-1-deficient T cell-specific T-bet transgenic (P/T) mice showed growth retardation, and the majority died within 10 weeks. P/T mice showed T-bet over-expression, increased interferon (IFN)-γ production by CD4(+) T cells and significantly low FoxP3(+) T(reg) cell percentage. P/T mice developed systemic inflammation, which was probably induced by augmented Th1 response and low FoxP3(+) T(reg) count. The study identified a unique, previously undescribed role for PD-1 in Th1 and T(reg) differentiation, with potential implication in the development of Th1 cell-targeted therapy. PMID:25219397

  1. Some autophagic and apoptotic features of programmed cell death in the anterior silk glands of the silkworm, Bombyx mori.

    PubMed

    Goncu, Ebru; Parlak, Osman

    2008-11-01

    Programmed cell death has been subdivided into two major groups: apoptosis and autophagic cell death. The anterior silk gland of Bombyx mori degenerates during larval-pupal metamorphosis. Our findings indicate that two types of programmed cell death features are observed during this physiological process. During the prepupal period, pyknosis of the nucleus, cell detachment,and membrane blebbing occur and they are the first signs of programmed cell death in the anterior silk glands. According to previous studies, all of these morphological appearances are common for both cell-death types. Autophagy features are also exhibited during the prepupal period. Levels of one of the lysosomal marker enzymes-acid phosphatase-are high during this period then decrease gradually. Vacuole formation begins to appear first at the basal surface of the cell, then expands to the apical surface just before the larval pupal ecdysis. After larval-pupal ecdysis, DNA fragmentation, which is the obvious biochemical marker of apoptosis, is detected in agarose gel electrophoresis, which also shows that caspase-like enzyme activities occur during the programmed cell death process of the anterior silk glands. Apoptosis and autophagic cell death interact with each other during the degeneration process of the anterior silk gland in Bombyx mori and this interaction occurs at a late phase of cell death. We suggest that apoptotic cell death only is not enough for whole gland degeneration and that more effective degeneration occurs with this cooperation. PMID:18838861

  2. Control of adult neurogenesis by programmed cell death in the mammalian brain.

    PubMed

    Ryu, Jae Ryun; Hong, Caroline Jeeyeon; Kim, Joo Yeon; Kim, Eun-Kyoung; Sun, Woong; Yu, Seong-Woon

    2016-01-01

    The presence of neural stem cells (NSCs) and the production of new neurons in the adult brain have received great attention from scientists and the public because of implications to brain plasticity and their potential use for treating currently incurable brain diseases. Adult neurogenesis is controlled at multiple levels, including proliferation, differentiation, migration, and programmed cell death (PCD). Among these, PCD is the last and most prominent process for regulating the final number of mature neurons integrated into neural circuits. PCD can be classified into apoptosis, necrosis, and autophagic cell death and emerging evidence suggests that all three may be important modes of cell death in neural stem/progenitor cells. However, the molecular mechanisms that regulate PCD and thereby impact the intricate balance between self-renewal, proliferation, and differentiation during adult neurogenesis are not well understood. In this comprehensive review, we focus on the extent, mechanism, and biological significance of PCD for the control of adult neurogenesis in the mammalian brain. The role of intrinsic and extrinsic factors in the regulation of PCD at the molecular and systems levels is also discussed. Adult neurogenesis is a dynamic process, and the signals for differentiation, proliferation, and death of neural progenitor/stem cells are closely interrelated. A better understanding of how adult neurogenesis is influenced by PCD will help lead to important insights relevant to brain health and diseases. PMID:27098178

  3. Programmed Cell Death during Pollination-Induced Petal Senescence in Petunia1

    PubMed Central

    Xu, Yan; Hanson, Maureen R.

    2000-01-01

    Petal senescence, one type of programmed cell death (PCD) in plants, is a genetically controlled sequence of events comprising its final developmental stage. We characterized the pollination-induced petal senescence process in Petunia inflata using a number of cell performance markers, including fresh/dry weight, protein amount, RNA amount, RNase activity, and cellular membrane leakage. Membrane disruption and DNA fragmentation with preferential oligonucleosomal cleavage, events characteristic of PCD, were found to be present in the advanced stage of petal senescence, indicating that plant and animal cell death phenomena share one of the molecular events in the execution phase. As in apoptosis in animals, both single-stranded DNase and double-stranded DNase activities are induced during petal cell death and are enhanced by Ca2+. In contrast, the release of cytochrome c from mitochondria, one commitment step in signaling of apoptosis in animal cells, was found to be dispensable in petal cell death. Some components of the signal transduction pathway for PCD in plants are likely to differ from those in animal cells. PMID:10759529

  4. A putative role for inosine 5' monophosphate dehydrogenase (IMPDH) in Leishmania amazonensis programmed cell death.

    PubMed

    Pitaluga, A N; Moreira, M E C; Traub-Csekö, Y M

    2015-02-01

    Leishmania amazonensis undergoes apoptosis-like programmed cell death (PCD) under heat shock conditions. We identified a potential role for inosine 5' monophosphate dehydrogenase (IMPDH) in L. amazonensis PCD. Trypanosomatids do not have a "de novo" purine synthesis pathway, relying on the salvage pathway for survival. IMPDH, a key enzyme in the purine nucleotide pathway, is related to cell growth and apoptosis. Since guanine nucleotide depletion triggers cell cycle arrest and apoptosis in several organisms we analyzed the correlation between IMPDH and apoptosis-like death in L. amazonensis. The L. amazonensis IMPDH inhibition effect on PCD was evaluated through gene expression analysis, mitochondrial depolarization and detection of Annexin-V labeled parasites. We demonstrated a down-regulation of impdh expression under heat shock treatment, which mimics the natural mammalian host infection. Also, IMPDH inhibitors ribavirin and mycophenolic acid (MPA) prevented cell growth and generated an apoptosis-like phenotype in sub-populations of L. amazonensis promastigotes. Our results are in accordance with previous results showing that a subpopulation of parasites undergoes apoptosis-like cell death in the nutrient poor environment of the vector gut. Here, we suggest the involvement of purine metabolism in previously observed apoptosis-like cell death during Leishmania infection. PMID:25499513

  5. Chloroplast Activity and 3'phosphadenosine 5'phosphate Signaling Regulate Programmed Cell Death in Arabidopsis.

    PubMed

    Bruggeman, Quentin; Mazubert, Christelle; Prunier, Florence; Lugan, Raphaël; Chan, Kai Xun; Phua, Su Yin; Pogson, Barry James; Krieger-Liszkay, Anja; Delarue, Marianne; Benhamed, Moussa; Bergounioux, Catherine; Raynaud, Cécile

    2016-03-01

    Programmed cell death (PCD) is a crucial process both for plant development and responses to biotic and abiotic stress. There is accumulating evidence that chloroplasts may play a central role during plant PCD as for mitochondria in animal cells, but it is still unclear whether they participate in PCD onset, execution, or both. To tackle this question, we have analyzed the contribution of chloroplast function to the cell death phenotype of the myoinositol phosphate synthase1 (mips1) mutant that forms spontaneous lesions in a light-dependent manner. We show that photosynthetically active chloroplasts are required for PCD to occur in mips1, but this process is independent of the redox state of the chloroplast. Systematic genetic analyses with retrograde signaling mutants reveal that 3'-phosphoadenosine 5'-phosphate, a chloroplast retrograde signal that modulates nuclear gene expression in response to stress, can inhibit cell death and compromises plant innate immunity via inhibition of the RNA-processing 5'-3' exoribonucleases. Our results provide evidence for the role of chloroplast-derived signal and RNA metabolism in the control of cell death and biotic stress response. PMID:26747283

  6. Interplay between autophagy and programmed cell death in mammalian neural stem cells

    PubMed Central

    Chung, Kyung Min; Yu, Seong-Woon

    2013-01-01

    Mammalian neural stem cells (NSCs) are of particular interest because of their role in brain development and function. Recent findings suggest the intimate involvement of programmed cell death (PCD) in the turnover of NSCs. However, the underlying mechanisms of PCD are largely unknown. Although apoptosis is the best-defined form of PCD, accumulating evidence has revealed a wide spectrum of PCD encompassing apoptosis, autophagic cell death (ACD) and necrosis. This mini-review aims to illustrate a unique regulation of PCD in NSCs. The results of our recent studies on autophagic death of adult hippocampal neural stem (HCN) cells are also discussed. HCN cell death following insulin withdrawal clearly provides a reliable model that can be used to analyze the molecular mechanisms of ACD in the larger context of PCD. More research efforts are needed to increase our understanding of the molecular basis of NSC turnover under degenerating conditions, such as aging, stress and neurological diseases. Efforts aimed at protecting and harnessing endogenous NSCs will offer novel opportunities for the development of new therapeutic strategies for neuropathologies. [BMB Reports 2013; 46(8): 383-390] PMID:23977985

  7. Stress Management in Cyst-Forming Free-Living Protists: Programmed Cell Death and/or Encystment

    PubMed Central

    Khan, Naveed Ahmed; Iqbal, Junaid

    2015-01-01

    In the face of harsh conditions and given a choice, a cell may (i) undergo programmed cell death, (ii) transform into a cancer cell, or (iii) enclose itself into a cyst form. In metazoans, the available evidence suggests that cellular machinery exists only to execute or avoid programmed cell death, while the ability to form a cyst was either lost or never developed. For cyst-forming free-living protists, here we pose the question whether the ability to encyst was gained at the expense of the programmed cell death or both functions coexist to counter unfavorable environmental conditions with mutually exclusive phenotypes. PMID:25648302

  8. Developmental cell death programs license cytotoxic cells to eliminate histocompatible partners.

    PubMed

    Corey, Daniel M; Rosental, Benyamin; Kowarsky, Mark; Sinha, Rahul; Ishizuka, Katherine J; Palmeri, Karla J; Quake, Stephen R; Voskoboynik, Ayelet; Weissman, Irving L

    2016-06-01

    In a primitive chordate model of natural chimerism, one chimeric partner is often eliminated in a process of allogeneic resorption. Here, we identify the cellular framework underlying loss of tolerance to one partner within a natural Botryllus schlosseri chimera. We show that the principal cell type mediating chimeric partner elimination is a cytotoxic morula cell (MC). Proinflammatory, developmental cell death programs render MCs cytotoxic and, in collaboration with activated phagocytes, eliminate chimeric partners during the "takeover" phase of blastogenic development. Among these genes, the proinflammatory cytokine IL-17 enhances cytotoxicity in allorecognition assays. Cellular transfer of FACS-purified MCs from allogeneic donors into recipients shows that the resorption response can be adoptively acquired. Transfer of 1 × 10(5) allogeneic MCs eliminated 33 of 78 (42%) recipient primary buds and 20 of 76 (20.5%) adult parental adult organisms (zooids) by 14 d whereas transfer of allogeneic cell populations lacking MCs had only minimal effects on recipient colonies. Furthermore, reactivity of transferred cells coincided with the onset of developmental-regulated cell death programs and disproportionately affected developing tissues within a chimera. Among chimeric partner "losers," severe developmental defects were observed in asexually propagating tissues, reflecting a pathologic switch in gene expression in developmental programs. These studies provide evidence that elimination of one partner in a chimera is an immune cell-based rejection that operates within histocompatible pairs and that maximal allogeneic responses involve the coordination of both phagocytic programs and the "arming" of cytotoxic cells. PMID:27217570

  9. Pattern-Triggered Immunity Suppresses Programmed Cell Death Triggered by Fumonisin B1

    PubMed Central

    Igarashi, Daisuke; Bethke, Gerit; Xu, Yuan; Tsuda, Kenichi; Glazebrook, Jane; Katagiri, Fumiaki

    2013-01-01

    Programmed cell death (PCD) is a crucial process for plant innate immunity and development. In plant innate immunity, PCD is believed to prevent the spread of pathogens from the infection site. Although proper control of PCD is important for plant fitness, we have limited understanding of the molecular mechanisms regulating plant PCD. Plant innate immunity triggered by recognition of effectors (effector-triggered immunity, ETI) is often associated with PCD. However pattern-triggered immunity (PTI), which is triggered by recognition of elicitors called microbe-associated molecular patterns (MAMPs), is not. Therefore we hypothesized that PTI might suppress PCD. Here we report that PCD triggered by the mycotoxin fumonisin B1 (FB1) can be suppressed by PTI in Arabidopsis. FB1-triggered cell death was suppressed by treatment with the MAMPs flg22 (a part of bacterial flagellin) or elf18 (a part of the bacterial elongation factor EF-Tu) but not chitin (a component of fungal cell walls). Although plant hormone signaling is associated with PCD and PTI, both FB1-triggered cell death and suppression of cell death by flg22 treatment were still observed in mutants deficient in jasmonic acid (JA), ethylene (ET) and salicylic acid (SA) signaling. The MAP kinases MPK3 and MPK6 are transiently activated and inactivated within one hour during PTI. We found that FB1 activated MPK3 and MPK6 about 36–48 hours after treatment. Interestingly, this late activation was attenuated by flg22 treatment. These results suggest that PTI suppression of FB1-triggered cell death may involve suppression of MPK3/MPK6 signaling but does not require JA/ET/SA signaling. PMID:23560104

  10. Fusaric acid induction of programmed cell death modulated through nitric oxide signalling in tobacco suspension cells.

    PubMed

    Jiao, Jiao; Zhou, Benguo; Zhu, Xiaoping; Gao, Zhengliang; Liang, Yuancun

    2013-10-01

    Fusaric acid (FA) is a nonhost-selective toxin mainly produced by Fusarium oxysporum, the causal agent of plant wilt diseases. We demonstrate that FA can induce programmed cell death (PCD) in tobacco suspension cells and the FA-induced PCD is modulated by nitric oxide (NO) signalling. Cells undergoing cell death induced by FA treatment exhibited typical characteristics of PCD including cytoplasmic shrinkage, chromatin condensation, DNA fragmentation, membrane plasmolysis, and formation of small cytoplasmic vacuoles. In addition, caspase-3-like activity was activated upon the FA treatment. The process of FA-induced PCD was accompanied by a rapid accumulation of NO in a FA dose-dependent manner. Pre-treatment of cells with NO scavenger 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (cPTIO) or NO synthase inhibitor N(G)-monomethyl-arginine monoacetate (L-NMMA) significantly reduced the rate of FA-induced cell death. Furthermore, the caspase-3-like activity and the expression of PAL and Hsr203J genes were alleviated by application of cPTIO or L-NMMA to FA-treated tobacco cells. This indicates that NO is an important factor involved in the FA-induced PCD. Our results also show that pre-treatment of tobacco cells with a caspase-3-specific inhibitor, Ac-DEVD-CHO, can reduce the rate of FA-induced cell death. These results demonstrate that the FA-induced cell death is a PCD and is modulated by NO signalling through caspase-3-like activation. PMID:23838885

  11. Salt stress induces programmed cell death in Thellungiella halophila suspension-cultured cells.

    PubMed

    Wang, Jin; Li, Xinrong; Liu, Yubing; Zhao, Xin

    2010-09-15

    Thellungiella halophila (T. halophila) suspension-cultured cells were used to gain knowledge of the pathway of programmed cell death (PCD) in halophytes under salt stress. Several apoptotic-like features occurred in T. halophila cells after exposure to 300 mM NaCl, including the retraction of the plasma membrane from the cell wall, nuclear condensation, DNA laddering and the release of cytochrome c accompanying the increase of caspase 3-like protease activity. This process resulted in ultrastructural changes of mitochondria and Golgi bodies, and autophagy was also induced by high salinity stress. DNA laddering and caspase 3-like activity were inhibited prior to the inhibition of cell death by a specific caspase 3 inhibitor, Ac-DEVD-CHO. The results indicate that 300 mM NaCl stress-induced PCD in T. halophila is similar to animal apoptosis, and this process occurs partly through a caspase 3-like dependent pathway. PMID:20417988

  12. Programmed cell death during development of cowpea (Vigna unguiculata (L.) Walp.) seed coat.

    PubMed

    Lima, Nathália Bastos; Trindade, Fernanda Gomes; da Cunha, Maura; Oliveira, Antônia Elenir Amâncio; Topping, Jennifer; Lindsey, Keith; Fernandes, Kátia Valevski Sales

    2015-04-01

    The seed coat develops primarily from maternal tissues and comprises multiple cell layers at maturity, providing a metabolically dynamic interface between the developing embryo and the environment during embryogenesis, dormancy and germination of seeds. Seed coat development involves dramatic cellular changes, and the aim of this research was to investigate the role of programmed cell death (PCD) events during the development of seed coats of cowpea [Vigna unguiculata (L.) Walp.]. We demonstrate that cells of the developing cowpea seed coats undergo a programme of autolytic cell death, detected as cellular morphological changes in nuclei, mitochondria, chloroplasts and vacuoles, DNA fragmentation and oligonucleosome accumulation in the cytoplasm, and loss of membrane viability. We show for the first time that classes 6 and 8 caspase-like enzymes are active during seed coat development, and that these activities may be compartmentalized by translocation between vacuoles and cytoplasm during PCD events. PMID:25142352

  13. Programmed death-1 (PD-1), programmed death-ligand 1 (PD-L1), and EBV-encoded RNA (EBER) expression in Hodgkin lymphoma.

    PubMed

    Paydas, Semra; Bağır, Emine; Seydaoglu, Gulsah; Ercolak, Vehbi; Ergin, Melek

    2015-09-01

    Programmed death-1 (PD-1) and programmed death-ligand 1 (PD-L1) are new targets in cancer immunotherapy. PD-1 protein is an immune checkpoint expressed in many tumors. Epstein-Barr virus (EBV) is present in malignant Hodgkin/Reed-Sternberg (HRS) cells in approximately 40-50 % of Hodgkin lymphoma (HL). The aim of this study is to evaluate the clinical and prognostic importance of PD-1 and/or PD-L1 in HL and also to determine the association between EBV-encoded RNA (EBER) and PD-1/PD-L1. Formalin-fixed, paraffin-embedded tissue samples from 87 cases with HL were analyzed in this study. Immunohistochemical staining was performed to detect the PD-1 and PD-L1 expressions. Chromogenic in situ hybridization for EBER was performed using fluorescein-labeled oligonucleotide probes. PD-1 and PD-L1 expressions were found in 20 % of the cases. The EBER positivity was found in 40 cases (45 %). It has been found that co-expression of PD-1 and PD-L1 was associated with shorter survival although PD-1 or PD-L1 expressions were not found to be related with survival. Overall survival (OS) and disease-free survival (DFS) in cases without PD-1 and PD-L1 expressions were 135 and 107 months, respectively. OS and DFS in cases with co-expression for PD-1 and PD-L1 were 24 and 20 months, respectively, and these differences were found to be statistically significant for both OS and DFS (p = 0.002 and p = 0.003, respectively). Cox regression analysis showed that co-expression of PD-1 and PD-L1 was found to be an independent risk factor for prognosis (OR 6.9, 95 % CI 1.9-24.3). Targeting PD-1 and/or PD-L1 is meaningful due to the 20 % expression of each in HL, and we did not find an important association between PD-1 and PD-L1 and EBER expression in HL. Very poor outcome in cases with co-expression of PD-1/PD-L1 suggests new avenues to detect the new prognostic markers and also therapeutic approaches in HL. PMID:26004934

  14. Caspase-Like Activities Accompany Programmed Cell Death Events in Developing Barley Grains

    PubMed Central

    Tran, Van; Weier, Diana; Radchuk, Ruslana; Thiel, Johannes; Radchuk, Volodymyr

    2014-01-01

    Programmed cell death is essential part of development and cell homeostasis of any multicellular organism. We have analyzed programmed cell death in developing barley caryopsis at histological, biochemical and molecular level. Caspase-1, -3, -4, -6 and -8-like activities increased with aging of pericarp coinciding with abundance of TUNEL positive nuclei and expression of HvVPE4 and HvPhS2 genes in the tissue. TUNEL-positive nuclei were also detected in nucellus and nucellar projection as well as in embryo surrounding region during early caryopsis development. Quantitative RT-PCR analysis of micro-dissected grain tissues revealed the expression of HvVPE2a, HvVPE2b, HvVPE2d, HvPhS2 and HvPhS3 genes exclusively in the nucellus/nucellar projection. The first increase in cascade of caspase-1, -3, -4, -6 and -8-like activities in the endosperm fraction may be related to programmed cell death in the nucellus and nucellar projection. The second increase of all above caspase-like activities including of caspase-9-like was detected in the maturating endosperm and coincided with expression of HvVPE1 and HvPhS1 genes as well as with degeneration of nuclei in starchy endosperm and transfer cells. The distribution of the TUNEL-positive nuclei, tissues-specific expression of genes encoding proteases with potential caspase activities and cascades of caspase-like activities suggest that each seed tissue follows individual pattern of development and disintegration, which however harmonizes with growth of the other tissues in order to achieve proper caryopsis development. PMID:25286287

  15. Identification of a novel cell death-inducing domain reveals that fungal amyloid-controlled programmed cell death is related to necroptosis.

    PubMed

    Daskalov, Asen; Habenstein, Birgit; Sabaté, Raimon; Berbon, Mélanie; Martinez, Denis; Chaignepain, Stéphane; Coulary-Salin, Bénédicte; Hofmann, Kay; Loquet, Antoine; Saupe, Sven J

    2016-03-01

    Recent findings have revealed the role of prion-like mechanisms in the control of host defense and programmed cell death cascades. In fungi, HET-S, a cell death-inducing protein containing a HeLo pore-forming domain, is activated through amyloid templating by a Nod-like receptor (NLR). Here we characterize the HELLP protein behaving analogously to HET-S and bearing a new type of N-terminal cell death-inducing domain termed HeLo-like (HELL) and a C-terminal regulatory amyloid motif known as PP. The gene encoding HELLP is part of a three-gene cluster also encoding a lipase (SBP) and a Nod-like receptor, both of which display the PP motif. The PP motif is similar to the RHIM amyloid motif directing formation of the RIP1/RIP3 necrosome in humans. The C-terminal region of HELLP, HELLP(215-278), encompassing the motif, allows prion propagation and assembles into amyloid fibrils, as demonstrated by X-ray diffraction and FTIR analyses. Solid-state NMR studies reveal a well-ordered local structure of the amyloid core residues and a primary sequence that is almost entirely arranged in a rigid conformation, and confirm a β-sheet structure in an assigned stretch of three amino acids. HELLP is activated by amyloid templating and displays membrane-targeting and cell death-inducing activity. HELLP targets the SBP lipase to the membrane, suggesting a synergy between HELLP and SBP in membrane dismantling. Remarkably, the HeLo-like domain of HELLP is homologous to the pore-forming domain of MLKL, the cell death-execution protein in necroptosis, revealing a transkingdom evolutionary relationship between amyloid-controlled fungal programmed cell death and mammalian necroptosis. PMID:26903619

  16. Type 1 Diabetes and Sleep.

    PubMed

    Farabi, Sarah S

    2016-02-01

    IN BRIEF In people with type 1 diabetes, sleep may be disrupted as a result of both behavioral and physiological aspects of diabetes and its management. This sleep disruption may negatively affect disease progression and development of complications. This review highlights key research findings regarding sleep in people with type 1 diabetes. PMID:26912959

  17. DIABETES PREVENTION TRIAL TYPE 1

    EPA Science Inventory

    The Diabetes Prevention Trial--Type 1 (DPT-1) is a nationwide study to see if we can prevent or delay type 1 diabetes, also known as insulin-dependent diabetes. Nine medical centers and more than 350 clinics in the United States and Canada are taking part in the study.

  18. Members of the XB3 Family from Diverse Plant Species Induce Programmed Cell Death in Nicotiana benthamiana

    PubMed Central

    Huang, Xiaoen; Liu, Xueying; Chen, Xiuhua; Snyder, Anita; Song, Wen-Yuan

    2013-01-01

    Programmed cell death has been associated with plant immunity and senescence. The receptor kinase XA21 confers resistance to bacterial blight disease of rice (Oryza sativa) caused by Xanthomonas oryzae pv. oryzae (Xoo). Here we show that the XA21 binding protein 3 (XB3) is capable of inducing cell death when overexpressed in Nicotiana benthamiana. XB3 is a RING finger-containing E3 ubiquitin ligase that has been positively implicated in XA21-mediated resistance. Mutation abolishing the XB3 E3 activity also eliminates its ability to induce cell death. Phylogenetic analysis of XB3-related sequences suggests a family of proteins (XB3 family) with members from diverse plant species. We further demonstrate that members of the XB3 family from rice, Arabidopsis and citrus all trigger a similar cell death response in Nicotiana benthamiana, suggesting an evolutionarily conserved role for these proteins in regulating programmed cell death in the plant kingdom. PMID:23717500

  19. Apaf1-dependent programmed cell death is required for inner ear morphogenesis and growth.

    PubMed

    Cecconi, Francesco; Roth, Kevin A; Dolgov, Oleg; Munarriz, Eliana; Anokhin, Konstantin; Gruss, Peter; Salminen, Marjo

    2004-05-01

    During inner ear development programmed cell death occurs in specific areas of the otic epithelium but the significance of it and the molecules involved have remained unclear. We undertook an analysis of mouse mutants in which genes encoding apoptosis-associated molecules have been inactivated. Disruption of the Apaf1 gene led to a dramatic decrease in apoptosis in the inner ear epithelium, severe morphogenetic defects and a significant size reduction of the membranous labyrinth, demonstrating that an Apaf1-dependent apoptotic pathway is necessary for normal inner ear development. This pathway most probably operates through the apoptosome complex because caspase 9 mutant mice suffered similar defects. Inactivation of the Bcl2-like (Bcl2l) gene led to an overall increase in the number of cells undergoing apoptosis but did not cause any major morphogenetic defects. In contrast, decreased apoptosis was observed in specific locations that suffered from developmental deficits, indicating that proapoptotic isoform(s) produced from Bcl2l might have roles in inner ear development. In Apaf1(-/-)/Bcl2l(-/-) double mutant embryos, no cell death could be detected in the otic epithelium, demonstrating that the cell death regulated by the anti-apoptotic Bcl2l isoform, Bcl-X(L) in the otic epithelium is Apaf1-dependent. Furthermore, the otic vesicle failed to close completely in all double mutant embryos analyzed. These results indicate important roles for both Apaf1 and Bcl2l in inner ear development. PMID:15105372

  20. Type 1 diabetes in Japan.

    PubMed

    Kawasaki, E; Matsuura, N; Eguchi, K

    2006-05-01

    Type 1 diabetes is a multifactorial disease which results from a T-cell-mediated autoimmune destruction of the pancreatic beta cells in genetically predisposed individuals. The risk for individuals of developing type 1 diabetes varies remarkably according to country of residence and race. Japan has one of the lowest incidence rates of type 1 diabetes in the world, and recognises at least three subtypes of the condition: acute-onset ('classical'), slow-onset, and fulminant type 1 diabetes. The incidence rate of type 1 diabetes in children aged 0-14 years in Japan increased over the period from 1973-1992, but remained constant over the last decade, averaging 2.37 cases per 100,000 persons per year; the incidence does not appear to have increased in older age groups. Although there are few reports regarding the incidence and prevalence of type 1 diabetes in adult-onset patients, it appears that the prevalence of type 1 diabetes in adults is more than twice that in childhood-onset patients and that two-thirds of them have a slow-onset form of type 1 diabetes. Differences and similarities in the association of MHC and non-MHC genes with type 1 diabetes are observed in Japan and in countries with Caucasoid populations. Highly susceptible class II HLA haplotypes identified in patients of Caucasoid origin are rarely seen in Japanese patients, whereas protective haplotypes are universal. Non-MHC genes associated with susceptibility to type 1 diabetes in both Japanese and Caucasoid patients include polymorphisms in the insulin gene, the cytotoxic T-lymphocyte antigen 4 (CTLA4) gene, the interleukin-18 (IL18) gene and the major histocompatibility complex class I chain-related gene A (MICA) gene. Fulminant type 1 diabetes is a unique subtype of type 1 diabetes that accounts for about 20% of acute-onset type 1 diabetes, and is seen mainly in adults. The challenge for the future is to investigate the underlying pathogenesis of beta cell destruction, including the genetic or

  1. Why do cells die in HIV infection? Potential mechanisms inducing programmed cell death/apoptosis.

    PubMed

    Del Llano, A M; Lavergne, J A

    1994-06-01

    This work reviews the suggested mechanisms which result in programmed cell death in human HIV infection. Here we present state-of-the-art scientific information related to the newly rediscovered phenomenon of Apoptosis, and to its biological relevance in the pathogenesis of HIV disease. General features of this phenomenon are reviewed, as well as available evidence for its occurrence and possible role in AIDS pathogenesis. A complex series of cellular and molecular events leading to cellular apoptosis are also reviewed and discussed. They include events which take place at the cell membrane level and those which occur at the intramembrane level and cytoplasmic locations, which result from the immunological activation of affected cells. Cellular events which follow and occur within the mitochondrial space and at the nuclear level are also discussed. The biological significance of all these phenomena is summarized in a theoretical scheme, which attempts to integrate all cellular events leading a primed cell into its HIV-induced programmed death. PMID:7938404

  2. Regulation of postsurgical fibrosis by the programmed death-1 inhibitory pathway.

    PubMed

    Holsti, Matthew A; Chitnis, Tanuja; Panzo, Ronald J; Bronson, Roderick T; Yagita, Hideo; Sayegh, Mohamed H; Tzianabos, Arthur O

    2004-05-01

    Surgical adhesions are a common and often severe complication of abdominal or pelvic injury that cause pelvic pain, bowel obstruction, and infertility in women. Current treatments are of limited effectiveness because little is known about the cellular and subcellular processes underlying adhesiogenesis. Recently, we showed that Th1 alpha beta CD4(+) T cells mediate the pathogenesis of adhesion formation in a rodent model of this disease process. In this study, we demonstrate that in mice these T cells home directly to the site of surgically induced adhesions and control local chemokine production in a manner dependent on the CD28 T cell costimulatory pathway. Conversely, the inhibitory programmed death-1 pathway plays a central role in limiting adhesiogenesis, as programmed death-1 blockade was associated with increased T cell infiltration, chemokine production, and a concomitant exacerbation of disease. Our results reveal for the first time that the development of postsurgical fibrosis is under the tight control of positive and negative T cell costimulation, and suggest that targeting these pathways may provide promising therapies for the prevention of adhesion formation. PMID:15100324

  3. Increased programmed death-ligand-1 expression in human gastric epithelial cells in Helicobacter pylori infection

    PubMed Central

    Wu, Y-Y; Lin, C-W; Cheng, K-S; Lin, C; Wang, Y-M; Lin, I-T; Chou, Y-H; Hsu, P-N

    2010-01-01

    B7-H1 [programmed death-ligand-1 (PD-L1)] is a B7-family member that binds to programmed death-1 (PD-1). Recently, deficiency of PD-L1 has been demonstrated to result in accelerated gastric epithelial cell damage in gastritis, and PD-L1 is suggested to play a critical role in regulating T cell homeostasis. Here, we aimed to gain more insight into gastric PD-L1 expression, regulation and function during Helicobacter pylori infection. PD-L1 expression in human gastric epithelial cells was analysed using Western blotting, quantitative polymerase chain reaction and fluorescence activated cell sorter analysis. Furthermore, co-culture experiments of human gastric epithelial cells with primary human T cells or Jurkat T cells were conducted. PD-L1 expression in primary human gastric epithelial cells was strongly enhanced by H. pylori infection and activated T cells, and augmented markedly by further stimulation with interferon-γ or tumour necrosis factor-α. Moreover, PD-L1 expression in gastric epithelial cells significantly induced apoptosis of T cells. Our results indicate that a novel bidirectional interaction between human gastric epithelial cells and lymphocytes modulates PD-L1 expression in human gastric epithelial cells, contributing to the unique immunological properties of the stomach. PMID:20646001

  4. Programmed death 1 protects from fatal circulatory failure during systemic virus infection of mice.

    PubMed

    Frebel, Helge; Nindl, Veronika; Schuepbach, Reto A; Braunschweiler, Thomas; Richter, Kirsten; Vogel, Johannes; Wagner, Carsten A; Loffing-Cueni, Dominique; Kurrer, Michael; Ludewig, Burkhard; Oxenius, Annette

    2012-12-17

    The inhibitory programmed death 1 (PD-1)-programmed death ligand 1 (PD-L1) pathway contributes to the functional down-regulation of T cell responses during persistent systemic and local virus infections. The blockade of PD-1-PD-L1-mediated inhibition is considered as a therapeutic approach to reinvigorate antiviral T cell responses. Yet previous studies reported that PD-L1-deficient mice develop fatal pathology during early systemic lymphocytic choriomeningitis virus (LCMV) infection, suggesting a host protective role of T cell down-regulation. As the exact mechanisms of pathology development remained unclear, we set out to delineate in detail the underlying pathogenesis. Mice deficient in PD-1-PD-L1 signaling or lacking PD-1 signaling in CD8 T cells succumbed to fatal CD8 T cell-mediated immunopathology early after systemic LCMV infection. In the absence of regulation via PD-1, CD8 T cells killed infected vascular endothelial cells via perforin-mediated cytolysis, thereby severely compromising vascular integrity. This resulted in systemic vascular leakage and a consequential collapse of the circulatory system. Our results indicate that the PD-1-PD-L1 pathway protects the vascular system from severe CD8 T cell-mediated damage during early systemic LCMV infection, highlighting a pivotal physiological role of T cell down-regulation and suggesting the potential development of immunopathological side effects when interfering with the PD-1-PD-L1 pathway during systemic virus infections. PMID:23230000

  5. Glycosylation and stabilization of programmed death ligand-1 suppresses T-cell activity.

    PubMed

    Li, Chia-Wei; Lim, Seung-Oe; Xia, Weiya; Lee, Heng-Huan; Chan, Li-Chuan; Kuo, Chu-Wei; Khoo, Kay-Hooi; Chang, Shih-Shin; Cha, Jong-Ho; Kim, Taewan; Hsu, Jennifer L; Wu, Yun; Hsu, Jung-Mao; Yamaguchi, Hirohito; Ding, Qingqing; Wang, Yan; Yao, Jun; Lee, Cheng-Chung; Wu, Hsing-Ju; Sahin, Aysegul A; Allison, James P; Yu, Dihua; Hortobagyi, Gabriel N; Hung, Mien-Chie

    2016-01-01

    Extracellular interaction between programmed death ligand-1 (PD-L1) and programmed cell death protein-1 (PD-1) leads to tumour-associated immune escape. Here we show that the immunosuppression activity of PD-L1 is stringently modulated by ubiquitination and N-glycosylation. We show that glycogen synthase kinase 3β (GSK3β) interacts with PD-L1 and induces phosphorylation-dependent proteasome degradation of PD-L1 by β-TrCP. In-depth analysis of PD-L1 N192, N200 and N219 glycosylation suggests that glycosylation antagonizes GSK3β binding. In this regard, only non-glycosylated PD-L1 forms a complex with GSK3β and β-TrCP. We also demonstrate that epidermal growth factor (EGF) stabilizes PD-L1 via GSK3β inactivation in basal-like breast cancer. Inhibition of EGF signalling by gefitinib destabilizes PD-L1, enhances antitumour T-cell immunity and therapeutic efficacy of PD-1 blockade in syngeneic mouse models. Together, our results link ubiquitination and glycosylation pathways to the stringent regulation of PD-L1, which could lead to potential therapeutic strategies to enhance cancer immune therapy efficacy. PMID:27572267

  6. Ozone-Induced Cell Death in Tobacco Cultivar Bel W3 Plants. The Role of Programmed Cell Death in Lesion Formation

    PubMed Central

    Pasqualini, Stefania; Piccioni, Claudia; Reale, Lara; Ederli, Luisa; Della Torre, Guido; Ferranti, Francesco

    2003-01-01

    Treatment of the ozone-sensitive tobacco (Nicotiana tabacum L. cv Bel W3) with an ozone pulse (150 nL L–1 for 5 h) induced visible injury, which manifested 48 to 72 h from onset of ozone fumigation. The “classical” ozone symptoms in tobacco cv Bel W3 plants occur as sharply defined, dot-like lesions on the adaxial side of the leaf and result from the death of groups of palisade cells. We investigated whether this reaction had the features of a hypersensitive response like that which results from the incompatible plant-pathogen interaction. We detected an oxidative burst, the result of H2O2 accumulation at 12 h from the starting of fumigation. Ozone treatment induced deposition of autofluorescent compounds and callose 24 h from the start of treatment. Total phenolic content was also strongly stimulated at the 10th and 72nd h from starting fumigation, concomitant with an enhancement in phenylalanine ammonia-lyase a and phenylalanine ammonia-lyase b expression, as evaluated by reverse transcriptase-polymerase chain reaction. There was also a marked, but transient, increase in the mRNA level of pathogenesis-related-1a, a typical hypersensitive response marker. Overall, these results are evidence that ozone triggers a hypersensitive response in tobacco cv Bel W3 plants. We adopted four criteria for detecting programmed cell death in ozonated tobacco cv Bel W3 leaves: (a) early release of cytochrome c from mitochondria; (b) activation of protease; (c) DNA fragmentation by terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling of DNA 3′-OH groups; and (d) ultrastructural changes characteristic of programmed cell death, including chromatin condensation and blebbing of plasma membrane. We, therefore, provide evidence that ozone-induced oxidative stress triggers a cell death program in tobacco cv Bel W3. PMID:14612586

  7. Apoptotic-like programed cell death in fungi: the benefits in filamentous species

    PubMed Central

    Shlezinger, Neta; Goldfinger, Nir; Sharon, Amir

    2012-01-01

    Studies conducted in the early 1990s showed for the first time that Saccharomyces cerevisiae can undergo cell death with hallmarks of animal apoptosis. These findings came as a surprise, since suicide machinery was unexpected in unicellular organisms. Today, apoptosis in yeast is well-documented. Apoptotic death of yeast cells has been described under various conditions and S. cerevisiae homologs of human apoptotic genes have been identified and characterized. These studies also revealed fundamental differences between yeast and animal apoptosis; in S. cerevisiae apoptosis is mainly associated with aging and stress adaptation, unlike animal apoptosis, which is essential for proper development. Further, many apoptosis regulatory genes are either missing, or highly divergent in S. cerevisiae. Therefore, in this review we will use the term apoptosis-like programed cell death (PCD) instead of apoptosis. Despite these significant differences, S. cerevisiae has been instrumental in promoting the study of heterologous apoptotic proteins, particularly from human. Work in fungi other than S. cerevisiae revealed differences in the manifestation of PCD in single cell (yeasts) and multicellular (filamentous) species. Such differences may reflect the higher complexity level of filamentous species, and hence the involvement of PCD in a wider range of processes and life styles. It is also expected that differences might be found in the apoptosis apparatus of yeast and filamentous species. In this review we focus on aspects of PCD that are unique or can be better studied in filamentous species. We will highlight the similarities and differences of the PCD machinery between yeast and filamentous species and show the value of using S. cerevisiae along with filamentous species to study apoptosis. PMID:22891165

  8. Human clusterin gene expression is confined to surviving cells during in vitro programmed cell death.

    PubMed Central

    French, L E; Wohlwend, A; Sappino, A P; Tschopp, J; Schifferli, J A

    1994-01-01

    Clusterin is a serum glycoprotein endowed with cell aggregating, complement inhibitory, and lipid binding properties, and is also considered as a specific marker of dying cells, its expression being increased in various tissues undergoing programmed cell death (PCD). However, no study has so far directly shown that cells expressing clusterin in these tissues are actually apoptotic as defined by morphological and biochemical criteria. We have studied cellular clusterin gene expression in vitro using three different models of PCD: (a) ultraviolet B (UV-B) irradiation of human U937, HeLa, and A431 cell lines, (b) in vitro aging of human peripheral blood neutrophils (PMNs), and (c) dexamethasone-induced cell death of the human lymphoblastoid cell line CEM-C7. In all three models, the classical morphological and biochemical features of PCD observed did not correlate with an increase, but with either a marked decrease or an absence of clusterin gene expression as assessed by Northern blot analysis. In situ hybridization of U937 and A431 cells after UV-B irradiation revealed, in addition, that only morphologically normal cells that are surviving continue to express the clusterin gene. Our results demonstrate that in the human myeloid, lymphoid, and epithelial cell types studied, clusterin gene expression is not a prerequisite to their death by apoptosis. In addition, and most interestingly, in situ hybridization of U937 and A431 cells revealed that only surviving cells express the clusterin gene after the induction of PCD, thus providing novel evidence suggesting that clusterin may be associated with cell survival within tissues regressing as a consequence of PCD. Images PMID:8113419

  9. Mefloquine induces ROS mediated programmed cell death in malaria parasite: Plasmodium.

    PubMed

    Gunjan, Sarika; Singh, Sunil Kumar; Sharma, Tanuj; Dwivedi, Hemlata; Chauhan, Bhavana Singh; Imran Siddiqi, Mohammad; Tripathi, Renu

    2016-09-01

    Recent studies pioneer the existence of a novel programmed cell death pathway in malaria parasite plasmodium and suggest that it could be helpful in developing new targeted anti-malarial therapies. Considering this fact, we evaluated the underlying action mechanism of this pathway in mefloquine (MQ) treated parasite. Since cysteine proteases play a key role in apoptosis hence we performed preliminary computational simulations to determine binding affinity of MQ with metacaspase protein model. Binding pocket identified using computational studies, was docked with MQ to identify it's potential to bind with the predicted protein model. We further determined apoptotic markers such as mitochondrial dysregulation, activation of cysteine proteases and in situ DNA fragmentation in MQ treated/untreated parasites by cell based assay. Our results showed low mitochondrial membrane potential, enhanced activity of cysteine protease and increased number of fragmented DNA in treated parasites compared to untreated ones. We next tested the involvement of oxidative stress in MQ mediated cell death and found significant increase in reactive oxygen species generation after 24 h of treatment. Therefore we conclude that apart from hemozoin inhibition, MQ is competent to induce apoptosis in plasmodium by activating metacaspase and ROS production. PMID:27357656

  10. Programmed cell death and adaptation: two different types of abiotic stress response in a unicellular chlorophyte.

    PubMed

    Zuppini, Anna; Gerotto, Caterina; Baldan, Barbara

    2010-06-01

    Eukaryotic microalgae are highly suitable biological indicators of environmental changes because they are exposed to extreme seasonal fluctuations. The biochemical and molecular targets and regulators of key proteins involved in the stress response in microalgae have yet to be elucidated. This study presents morphological and biochemical evidence of programmed cell death (PCD) in a low temperature strain of Chlorella saccharophila induced by exposure to NaCl stress. Morphological characteristics of PCD, including cell shrinkage, detachment of the plasma membrane from the cell wall, nuclear condensation and DNA fragmentation, were observed. Additionally, a significant production of H(2)O(2) and increase in caspase 3-like activity were detected. We demonstrated that singly applied environmental stresses such as warming or salt stress trigger a pathway of PCD. Intriguingly, the prior application of salt stress seems to reduce heat shock-induced cell death significantly, suggesting a combined effect which activates a defense mechanism in algal cells. These results suggest that C. saccharophila can undergo PCD under stress conditions, and that this PCD shares several features with metazoan PCD. Moreover, the simultaneous exposure of this unicellular chlorophyte to different abiotic stresses results in a tolerance mechanism. PMID:20457671

  11. Exploring diabetes type 1-related stigma

    PubMed Central

    Abdoli, Samereh; Abazari, Parvaneh; Mardanian, Leila

    2013-01-01

    Background: Empowerment of people with diabetes means integrating diabetes with identity. However, others’ stigmatization can influence it. Although diabetes is so prevalent among Iranians, there is little knowledge about diabetes-related stigma in Iran. The present study explored diabetes-related stigma in people living with type 1 diabetes in Isfahan. Materials and Methods: A conventional content analysis was used with in-depth interview with 26 people with and without diabetes from November 2011 to July 2012. Results: A person with type 1 diabetes was stigmatized as a miserable human (always sick and unable, death reminder, and intolerable burden), rejected marriage candidate (busy spouse, high-risk pregnant), and deprived of a normal life [prisoner of (to must), deprived of pleasure]. Although, young adults with diabetes undergo all aspects of the social diabetes-related stigma; in their opinion they were just deprived of a normal life Conclusion: It seems that in Isfahan, diabetes-related stigma is of great importance. In this way, conducting an appropriate intervention is necessary to improve the empowerment process in people with type 1 diabetes in order to reduce the stigma in the context. PMID:23983731

  12. Untangling the Roles of Anti-Apoptosis in Regulating Programmed Cell Death using Humanized Yeast Cells

    PubMed Central

    Clapp, Caitlin; Portt, Liam; Khoury, Chamel; Sheibani, Sara; Eid, Rawan; Greenwood, Matthew; Vali, Hojatollah; Mandato, Craig A.; Greenwood, Michael T.

    2012-01-01

    Genetically programmed cell death (PCD) mechanisms, including apoptosis, are important for the survival of metazoans since it allows, among things, the removal of damaged cells that interfere with normal function. Cell death due to PCD is observed in normal processes such as aging and in a number of pathophysiologies including hypoxia (common causes of heart attacks and strokes) and subsequent tissue reperfusion. Conversely, the loss of normal apoptotic responses is associated with the development of tumors. So far, limited success in preventing unwanted PCD has been reported with current therapeutic approaches despite the fact that inhibitors of key apoptotic inducers such as caspases have been developed. Alternative approaches have focused on mimicking anti-apoptotic processes observed in cells displaying increased resistance to apoptotic stimuli. Hormesis and pre-conditioning are commonly observed cellular strategies where sub-lethal levels of pro-apoptotic stimuli lead to increased resistance to higher or lethal levels of stress. Increased expression of anti-apoptotic sequences is a common mechanism mediating these protective effects. The relevance of the latter observation is exemplified by the observation that transgenic mice overexpressing anti-apoptotic genes show significant reductions in tissue damage following ischemia. Thus strategies aimed at increasing the levels of anti-apoptotic proteins, using gene therapy or cell penetrating recombinant proteins are being evaluated as novel therapeutics to decrease cell death following acute periods of cell death inducing stress. In spite of its functional and therapeutic importance, more is known regarding the processes involved in apoptosis than anti-apoptosis. The genetically tractable yeast Saccharomyces cerevisiae has emerged as an exceptional model to study multiple aspects of PCD including the mitochondrial mediated apoptosis observed in metazoans. To increase our knowledge of the process of anti

  13. Early events induced by the toxin deoxynivalenol lead to programmed cell death in Nicotiana tabacum cells.

    PubMed

    Yekkour, Amine; Tran, Daniel; Arbelet-Bonnin, Delphine; Briand, Joël; Mathieu, Florence; Lebrihi, Ahmed; Errakhi, Rafik; Sabaou, Nasserdine; Bouteau, François

    2015-09-01

    Deoxynivalenol (DON) is a mycotoxin affecting animals and plants. This toxin synthesized by Fusarium culmorum and Fusarium graminearum is currently believed to play a decisive role in the fungal phytopathogenesis as a virulence factor. Using cultured cells of Nicotiana tabacum BY2, we showed that DON-induced programmed cell death (PCD) could require transcription and translation processes, in contrast to what was observed in animal cells. DON could induce different cross-linked pathways involving (i) reactive oxygen species (ROS) generation linked, at least partly, to a mitochondrial dysfunction and a transcriptional down-regulation of the alternative oxidase (Aox1) gene and (ii) regulation of ion channel activities participating in cell shrinkage, to achieve PCD. PMID:26259183

  14. On the intrinsic disorder status of the major players in programmed cell death pathways

    PubMed Central

    Uversky, Vladimir N

    2013-01-01

    Earlier computational and bioinformatics analysis of several large protein datasets across 28 species showed that proteins involved in regulation and execution of programmed cell death (PCD) possess substantial amounts of intrinsic disorder. Based on the comprehensive analysis of these datasets by a wide array of modern bioinformatics tools it was concluded that disordered regions of PCD-related proteins are involved in a multitude of biological functions and interactions with various partners, possess numerous posttranslational modification sites, and have specific evolutionary patterns (Peng et al. 2013). This study extends our previous work by providing information on the intrinsic disorder status of some of the major players of the three major PCD pathways: apoptosis, autophagy, and necroptosis. We also present a detailed description of the disorder status and interactomes of selected proteins that are involved in the p53-mediated apoptotic signaling pathways. PMID:24358900

  15. Programmed cell death acts at different stages of Drosophila neurodevelopment to shape the central nervous system.

    PubMed

    Pinto-Teixeira, Filipe; Konstantinides, Nikolaos; Desplan, Claude

    2016-08-01

    Nervous system development is a process that integrates cell proliferation, differentiation, and programmed cell death (PCD). PCD is an evolutionary conserved mechanism and a fundamental developmental process by which the final cell number in a nervous system is established. In vertebrates and invertebrates, PCD can be determined intrinsically by cell lineage and age, as well as extrinsically by nutritional, metabolic, and hormonal states. Drosophila has been an instrumental model for understanding how this mechanism is regulated. We review the role of PCD in Drosophila central nervous system development from neural progenitors to neurons, its molecular mechanism and function, how it is regulated and implemented, and how it ultimately shapes the fly central nervous system from the embryo to the adult. Finally, we discuss ideas that emerged while integrating this information. PMID:27404003

  16. Association of Acute Interstitial Nephritis With Programmed Cell Death 1 Inhibitor Therapy in Lung Cancer Patients.

    PubMed

    Shirali, Anushree C; Perazella, Mark A; Gettinger, Scott

    2016-08-01

    Immune checkpoint inhibitors that target the programmed death 1 (PD-1) signaling pathway have recently been approved for use in advanced pretreated non-small cell lung cancer and melanoma. Clinical trial data suggest that these drugs may have adverse effects on the kidney, but these effects have not been well described. We present 6 cases of acute kidney injury in patients with lung cancer who received anti-PD-1 antibodies, with each case displaying evidence of acute interstitial nephritis (AIN) on kidney biopsy. All patients were also treated with other drugs (proton pump inhibitors and nonsteroidal anti-inflammatory drugs) linked to AIN, but in most cases, use of these drugs long preceded PD-1 inhibitor therapy. The association of AIN with these drugs in our patients raises the possibility that PD-1 inhibitor therapy may release suppression of T-cell immunity that normally permits renal tolerance of drugs known to be associated with AIN. PMID:27113507

  17. Oxidative damage and cell-programmed death induced in Zea mays L. by allelochemical stress.

    PubMed

    Ciniglia, Claudia; Mastrobuoni, Francesco; Scortichini, Marco; Petriccione, Milena

    2015-05-01

    The allelochemical stress on Zea mays was analyzed by using walnut husk washing waters (WHWW), a by-product of Juglans regia post-harvest process, which possesses strong allelopathic potential and phytotoxic effects. Oxidative damage and cell-programmed death were induced by WHWW in roots of maize seedlings. Treatment induced ROS burst, with excess of H2O2 content. Enzymatic activities of catalase were strongly increased during the first hours of exposure. The excess in malonildialdehyde following exposure to WHWW confirmed that oxidative stress severely damaged maize roots. Membrane alteration caused a decrease in NADPH oxidase activity along with DNA damage as confirmed by DNA laddering. The DNA instability was also assessed through sequence-related amplified polymorphism assay, thus suggesting the danger of walnut processing by-product and focusing the attention on the necessity of an efficient treatment of WHWW. PMID:25736610

  18. Pancreatitis Secondary to Anti-Programmed Death Receptor 1 Immunotherapy Diagnosed by FDG PET/CT.

    PubMed

    Alabed, Yazan Z; Aghayev, Ayaz; Sakellis, Christopher; Van den Abbeele, Annick D

    2015-11-01

    A 57-year-old man with metastatic melanoma developed colitis secondary to ipilimumab, a known immune-related adverse event (irAE). The patient then received pembrolizumab immunotherapy, an anti-programmed-death-receptor-1 (PD-1) antibody. Restaging FDG PET/CT study following 3 cycles of therapy demonstrated diffuse increased FDG uptake throughout the body of the pancreas associated with fat stranding in the peripancreatic region, suggestive of pembrolizumab-induced pancreatitis. Although the patient was clinically asymptomatic, diagnosis was biochemically confirmed with elevated amylase and lipase levels. In the era of immunotherapy, it will be critical to recognize irAEs early to allow prompt initiation of appropriate therapy and reduce the risk of long-term sequelae. PMID:26284765

  19. Developmental Coordination of Gamete Differentiation with Programmed Cell Death in Sporulating Yeast.

    PubMed

    Eastwood, Michael D; Meneghini, Marc D

    2015-09-01

    The gametogenesis program of the budding yeast Saccharomyces cerevisiae, also known as sporulation, employs unusual internal meiotic divisions, after which all four meiotic products differentiate within the parental cell. We showed previously that sporulation is typically accompanied by the destruction of discarded immature meiotic products through their exposure to proteases released from the mother cell vacuole, which undergoes an apparent programmed rupture. Here we demonstrate that vacuolar rupture contributes to de facto programmed cell death (PCD) of the meiotic mother cell itself. Meiotic mother cell PCD is accompanied by an accumulation of depolarized mitochondria, organelle swelling, altered plasma membrane characteristics, and cytoplasmic clearance. To ensure that the gametes survive the destructive consequences of developing within a cell that is executing PCD, we hypothesized that PCD is restrained from occurring until spores have attained a threshold degree of differentiation. Consistent with this hypothesis, gene deletions that perturb all but the most terminal postmeiotic spore developmental stages are associated with altered PCD. In these mutants, meiotic mother cells exhibit a delay in vacuolar rupture and then appear to undergo an alternative form of PCD associated with catastrophic consequences for the underdeveloped spores. Our findings reveal yeast sporulation as a context of bona fide PCD that is developmentally coordinated with gamete differentiation. PMID:26092920

  20. Programmed death 1 protects from fatal circulatory failure during systemic virus infection of mice

    PubMed Central

    Frebel, Helge; Nindl, Veronika; Schuepbach, Reto A.; Braunschweiler, Thomas; Richter, Kirsten; Vogel, Johannes; Wagner, Carsten A.; Loffing-Cueni, Dominique; Kurrer, Michael; Ludewig, Burkhard

    2012-01-01

    The inhibitory programmed death 1 (PD-1)–programmed death ligand 1 (PD-L1) pathway contributes to the functional down-regulation of T cell responses during persistent systemic and local virus infections. The blockade of PD-1–PD-L1–mediated inhibition is considered as a therapeutic approach to reinvigorate antiviral T cell responses. Yet previous studies reported that PD-L1–deficient mice develop fatal pathology during early systemic lymphocytic choriomeningitis virus (LCMV) infection, suggesting a host protective role of T cell down-regulation. As the exact mechanisms of pathology development remained unclear, we set out to delineate in detail the underlying pathogenesis. Mice deficient in PD-1–PD-L1 signaling or lacking PD-1 signaling in CD8 T cells succumbed to fatal CD8 T cell–mediated immunopathology early after systemic LCMV infection. In the absence of regulation via PD-1, CD8 T cells killed infected vascular endothelial cells via perforin-mediated cytolysis, thereby severely compromising vascular integrity. This resulted in systemic vascular leakage and a consequential collapse of the circulatory system. Our results indicate that the PD-1–PD-L1 pathway protects the vascular system from severe CD8 T cell–mediated damage during early systemic LCMV infection, highlighting a pivotal physiological role of T cell down-regulation and suggesting the potential development of immunopathological side effects when interfering with the PD-1–PD-L1 pathway during systemic virus infections. PMID:23230000

  1. Nature of type 1 Supernovae

    NASA Technical Reports Server (NTRS)

    Shklovskiy, I. S.

    1980-01-01

    The nature of type 1 supernovae (SN 1) is discussed through a comparison of observational evidence and theoretical perspectives relating to both type 1 and 2 supernovae. In particular two hypotheses relating to SN 1 phenomenon are examined: the first proposing that SN 1 are components of binary systems in which, at a comparatively late stage of evolution, overflow of the mass occurs; the second considers pre-SN 1 to be recently evolved stars with a mass greater than 1.4 solar mass (white dwarfs). In addition, an explanation of the reduced frequency of flares of SN 1 in spiral galaxies as related to that in elliptical galaxies is presented.

  2. Viruses in type 1 diabetes.

    PubMed

    Hyöty, Heikki

    2016-07-01

    Environmental factors play an important role in the pathogenesis of type 1 diabetes and can determine if a genetically susceptible individual develops the disease. Increasing evidence suggest that among other exogenous agents certain virus infections can contribute to the beta-cell damaging process. Possible viral etiology of type 1 diabetes has been explored extensively but the final proof for causality is still lacking. Currently, the group of enteroviruses (EVs) is considered as the strongest candidate. These viruses have been found in the pancreas of type 1 diabetic patients, and epidemiological studies have shown more EV infections in diabetic patients than in controls. Prospective studies, such as the Type 1 Diabetes Prediction and Prevention (DIPP) study in Finland, are of fundamental importance in the evaluation viral effects as they can cover all stages of the beta-cell damaging process, including those preceding the initiation of the process. DIPP study has carried out the most comprehensive virological analyses ever done in prospective cohorts. This article summarizes the findings from these analyses and discuss them in the context of the existing other knowledge and the prospects for intervention studies with EV vaccines or antiviral drugs. PMID:27411438

  3. ROS-mediated abiotic stress-induced programmed cell death in plants

    PubMed Central

    Petrov, Veselin; Hille, Jacques; Mueller-Roeber, Bernd; Gechev, Tsanko S.

    2015-01-01

    During the course of their ontogenesis plants are continuously exposed to a large variety of abiotic stress factors which can damage tissues and jeopardize the survival of the organism unless properly countered. While animals can simply escape and thus evade stressors, plants as sessile organisms have developed complex strategies to withstand them. When the intensity of a detrimental factor is high, one of the defense programs employed by plants is the induction of programmed cell death (PCD). This is an active, genetically controlled process which is initiated to isolate and remove damaged tissues thereby ensuring the survival of the organism. The mechanism of PCD induction usually includes an increase in the levels of reactive oxygen species (ROS) which are utilized as mediators of the stress signal. Abiotic stress-induced PCD is not only a process of fundamental biological importance, but also of considerable interest to agricultural practice as it has the potential to significantly influence crop yield. Therefore, numerous scientific enterprises have focused on elucidating the mechanisms leading to and controlling PCD in response to adverse conditions in plants. This knowledge may help develop novel strategies to obtain more resilient crop varieties with improved tolerance and enhanced productivity. The aim of the present review is to summarize the recent advances in research on ROS-induced PCD related to abiotic stress and the role of the organelles in the process. PMID:25741354

  4. Macromitophagy, neutral lipids synthesis, and peroxisomal fatty acid oxidation protect yeast from "liponecrosis", a previously unknown form of programmed cell death.

    PubMed

    Sheibani, Sara; Richard, Vincent R; Beach, Adam; Leonov, Anna; Feldman, Rachel; Mattie, Sevan; Khelghatybana, Leila; Piano, Amanda; Greenwood, Michael; Vali, Hojatollah; Titorenko, Vladimir I

    2014-01-01

    We identified a form of cell death called "liponecrosis." It can be elicited by an exposure of the yeast Saccharomyces cerevisiae to exogenous palmitoleic acid (POA). Our data imply that liponecrosis is: (1) a programmed, regulated form of cell death rather than an accidental, unregulated cellular process and (2) an age-related form of cell death. Cells committed to liponecrotic death: (1) do not exhibit features characteristic of apoptotic cell death; (2) do not display plasma membrane rupture, a hallmark of programmed necrotic cell death; (3) akin to cells committed to necrotic cell death, exhibit an increased permeability of the plasma membrane for propidium iodide; (4) do not display excessive cytoplasmic vacuolization, a hallmark of autophagic cell death; (5) akin to cells committed to autophagic death, exhibit a non-selective en masse degradation of cellular organelles and require the cytosolic serine/threonine protein kinase Atg1p for executing the death program; and (6) display a hallmark feature that has not been reported for any of the currently known cell death modalities-namely, an excessive accumulation of lipid droplets where non-esterified fatty acids (including POA) are deposited in the form of neutral lipids. We therefore concluded that liponecrotic cell death subroutine differs from the currently known subroutines of programmed cell death. Our data suggest a hypothesis that liponecrosis is a cell death module dynamically integrated into a so-called programmed cell death network, which also includes the apoptotic, necrotic, and autophagic modules of programmed cell death. Based on our findings, we propose a mechanism underlying liponecrosis. PMID:24196447

  5. Live to die another way: modes of programmed cell death and the signals emanating from dying cells

    PubMed Central

    Fuchs, Yaron; Steller, Hermann

    2015-01-01

    Preface All life ends in death, but perhaps one of life’s grander ironies is that it also depends on death. Cell-intrinsic suicide pathways, termed programmed cell death (PCD), are crucial for animal development, tissue homeostasis and pathogenesis. Originally, PCD was virtually synonymous with apoptosis, but recently, alternative PCD mechanisms have been reported. Here, we provide an overview of several distinct PCD mechanisms, namely apoptosis, autophagy and necroptosis. In addition, we discuss the complex signals emanating from dying cells, which can either fuel regeneration or instruct additional killing. Further advances in understanding the physiological role of multiple cell death mechanisms and associated signals will be important to selectively manipulate PCD for therapeutic purposes. PMID:25991373

  6. Death duties

    PubMed Central

    Myers, Kathryn A.; Eden, David

    2007-01-01

    PROBLEM BEING ADDRESSED Family physicians are often called upon to pronounce and certify the deaths of patients. Inadequate knowledge of the Coroners Act (in the province of Ontario) and of the correct process of certifying death can make physicians uncomfortable when confronted with these tasks. OBJECTIVE OF PROGRAM To educate family physicians about how to perform the administrative tasks required of them when patients die. PROGRAM DESCRIPTION The program included an educational video, a tutorial outlining the process of death certification, and discussion with a regional coroner about key features of the Coroners Act. In small groups, participants worked through cases of patient deaths in which they were asked to determine whether a coroner needed to be involved, to determine the manner of death, and to complete a mock death certificate for each case. CONCLUSION All participants reported a high level of satisfaction with the workshop and thought the main objective of the program had been achieved. Results of a test given 3 months after the workshop showed substantial improvement in participants’ knowledge of the coroner’s role and of the process of death certification. PMID:17872782

  7. Ethylene signaling in salt stress- and salicylic acid-induced programmed cell death in tomato suspension cells.

    PubMed

    Poór, Péter; Kovács, Judit; Szopkó, Dóra; Tari, Irma

    2013-02-01

    Salt stress- and salicylic acid (SA)-induced cell death can be activated by various signaling pathways including ethylene (ET) signaling in intact tomato plants. In tomato suspension cultures, a treatment with 250 mM NaCl increased the production of reactive oxygen species (ROS), nitric oxide (NO), and ET. The 10(-3) M SA-induced cell death was also accompanied by ROS and NO production, but ET emanation, the most characteristic difference between the two cell death programs, did not change. ET synthesis was enhanced by addition of ET precursor 1-aminocyclopropane-1-carboxylic acid, which, after 2 h, increased the ROS production in the case of both stressors and accelerated cell death under salt stress. However, it did not change the viability and NO levels in SA-treated samples. The effect of ET induced by salt stress could be blocked with silver thiosulfate (STS), an inhibitor of ET action. STS reduced the death of cells which is in accordance with the decrease in ROS production of cells exposed to high salinity. Unexpectedly, application of STS together with SA resulted in increasing ROS and reduced NO accumulation which led to a faster cell death. NaCl- and SA-induced cell death was blocked by Ca(2+) chelator EGTA and calmodulin inhibitor W-7, or with the inhibitors of ROS. The inhibitor of MAPKs, PD98059, and the cysteine protease inhibitor E-64 reduced cell death in both cases. These results show that NaCl induces cell death mainly by ET-induced ROS production, but ROS generated by SA was not controlled by ET in tomato cell suspension. PMID:22535239

  8. The unique evolution of the programmed cell death 4 protein in plants

    PubMed Central

    2013-01-01

    Background The programmed cell death 4 (PDCD4) protein is induced in animals during apoptosis and functions to inhibit translation and tumor promoter-induced neoplastic transformation. PDCD4 is composed of two MA3 domains that share similarity with the single MA3 domain present in the eukaryotic translation initiation factor (eIF) 4G, which serves as a scaffold protein to assemble several initiation factors needed for the recruitment of the 40S ribosomal subunit to an mRNA. Although eIF4A is an ATP-dependent RNA helicase that binds the MA3 domain of eIF4G to promote translation initiation, binding of eIF4A to the MA3 domains of PDCD4 inhibits protein synthesis. Genes encoding PDCD4 are present in many lower eukaryotes and in plants, but PDCD4 in higher plants is unique in that it contains four MA3 domains and has been implicated in ethylene signaling and abiotic stress responses. Here, we examine the evolution of PDCD4 in plants. Results In older algal lineages, PDCD4 contains two MA3 domains similar to the homolog in animals. By the appearance of early land plants, however, PDCD4 is composed of four MA3 domains which likely is the result of a duplication of the two MA3 domain form of the protein. Evidence from fresh water algae, from which land plants evolved, suggests that the duplication event occurred prior to the colonization of land. PDCD4 in more recently evolved chlorophytes also contains four MA3 domains but this may have resulted from an independent duplication event. Expansion and divergence of the PDCD4 gene family occurred during land plant evolution with the appearance of a distinct gene member following the evolution of basal angiosperms. Conclusions The appearance of a unique form of PDCD4 in plants correlates with the appearance of components of the ethylene signaling pathway, suggesting that it may represent the adaptation of an existing protein involved in programmed cell death to one that functions in abiotic stress responses through hormone

  9. Expression of programmed cell death-ligand 1 and its correlation with clinical outcomes in gliomas

    PubMed Central

    Zeng, Jing; Zhang, Xin-Ke; Chen, Hua-Dong; Zhong, Zhi-Hai; Wu, Qiu-Liang; Lin, Su-Xia

    2016-01-01

    Programmed cell death-ligand 1(PD-L1) was expressed in various malignancies, and interaction with its receptor programmed cell death 1 (PD-1) often contributed to immune evasion of tumor cells. In this study, we explored the expression of PD-L1 and its correlation with clinical outcomes in gliomas. Clinicopathological data of 229 patients with gliomas was collected. PD-L1 expression was assessed by tissue-microarray-based immunohistochemistry. Over 5% of tumor cells with cytoplasm or membrane staining was defined as PD-L1 positive expression. The associations of clinicopathological features with overall survival (OS) and disease-free survival (DFS) were analyzed by univariate analysis and multivariate analysis was further performed by Cox regression model. PD-L1 positive expression was observed in 51.1% gliomas patients and no significant association was verified between PD-L1 expression and pathological grade in 229 gliomas patients. However, PD-L1 expression rate was 49.2%, 53.7% and 68.8% for grade II, III and IV in 161 patients with those ≥ 12 months of OS, respectively. Although no significant discrepancies was displayed, there was a certain degree of differences between PD-L1 expression and pathological grade (49.2% vs. 53.7% vs. 68.8%, P = 0.327). Univariate analysis showed that PD-L1 expression was significantly associated with poor OS in the patients with long-time survival or follow up (OS ≥ 12 months) (P = 0.018), especially in patients with grade IV (P = 0.019). Multivariate analysis revealed that a strong tendency towards statistical significance was found between PD-L1 expression and poor OS (P = 0.081). In gliomas patients with long-time survival or follow up, PD-L1 positive expression could indicate the poor prognosis and it is possible that immunotherapy targeting PD-L1 pathway needed to be determined in the further study. PMID:26771840

  10. Programmed cell death 5 mediates HDAC3 decay to promote genotoxic stress response.

    PubMed

    Choi, Hyo-Kyoung; Choi, Youngsok; Park, Eun Sung; Park, Soo-Yeon; Lee, Seung-Hyun; Seo, Jaesung; Jeong, Mi-Hyeon; Jeong, Jae-Wook; Jeong, Jae-Ho; Lee, Peter C W; Choi, Kyung-Chul; Yoon, Ho-Geun

    2015-01-01

    The inhibition of p53 activity by histone deacetylase 3 (HDAC3) has been reported, but the precise molecular mechanism is unknown. Here we show that programmed cell death 5 (PDCD5) selectively mediates HDAC3 dissociation from p53, which induces HDAC3 cleavage and ubiquitin-dependent proteasomal degradation. Casein kinase 2 alpha phosphorylates PDCD5 at Ser-119 to enhance its stability and importin 13-mediated nuclear translocation of PDCD5. Genetic deletion of PDCD5 abrogates etoposide (ET)-induced p53 stabilization and HDAC3 cleavage, indicating an essential role of PDCD5 in p53 activation. Restoration of PDCD5(WT) in PDCD5(-/-) MEFs restores ET-induced HDAC3 cleavage. Reduction of both PDCD5 and p53, but not reduction of either protein alone, significantly enhances in vivo tumorigenicity of AGS gastric cancer cells and correlates with poor prognosis in gastric cancer patients. Our results define a mechanism for p53 activation via PDCD5-dependent HDAC3 decay under genotoxic stress conditions. PMID:26077467

  11. The N-acetylcysteine-insensitive acetic acid-induced yeast programmed cell death occurs without macroautophagy.

    PubMed

    Antonacci, Lucia; Guaragnella, Nicoletta; Ždralevic, Maša; Passarella, Salvatore; Marra, Ersilia; Giannattasio, Sergio

    2012-12-01

    Programmed cell death can occur through two separate pathways caused by treatment of Saccharomyces cerevisiae with acetic acid (AA-PCD), which differ from one another essentially with respect to their sensitivity to N-acetylcysteine (NAC) and to the role played by cytochrome c and metacaspase YCA1. Moreover, yeast can also undergo macroautophagy which occurs in NAC-insensitive manner. In order to gain some insight into the relationship between AA-PCD and macroautophagy use was made of WT and knock-out cells lacking YCA1 and/or cytochrome c. We show that i. macroautophagy is modulated by YCA1 and by cytochrome c in a negative and positive manner, respectively, ii. the NAC-insensitive AA-PCD and macroautophagy differ from one another and iii. NAC-insensitive AA-PCD pathway takes place essentially without macroautophagy, even if the shift of extracellular pH to acidic values required for AA-PCD to occur leads itself to increased or decreased macroautophagy in YCA1 or cytochrome c-lacking cells. PMID:23072389

  12. Achievements and perspectives in yeast acetic acid-induced programmed cell death pathways.

    PubMed

    Guaragnella, Nicoletta; Antonacci, Lucia; Passarella, Salvatore; Marra, Ersilia; Giannattasio, Sergio

    2011-10-01

    The use of non-mammalian model organisms, including yeast Saccharomyces cerevisiae, can provide new insights into eukaryotic PCD (programmed cell death) pathways. In the present paper, we report recent achievements in the elucidation of the events leading to PCD that occur as a response to yeast treatment with AA (acetic acid). In particular, ROS (reactive oxygen species) generation, cyt c (cytochrome c) release and mitochondrial function and proteolytic activity will be dealt with as they vary along the AA-PCD time course by using both wild-type and mutant yeast cells. Two AA-PCD pathways are described sharing common features, but distinct from one another with respect to the role of ROS and mitochondria, the former in which YCA1 acts upstream of cyt c release and caspase-like activation in a ROS-dependent manner and the latter in which cyt c release does not occur, but caspase-like activity increases, in a ROS-independent manner. PMID:21936848

  13. The prolyl-isomerase Pin1 activates the mitochondrial death program of p53.

    PubMed

    Sorrentino, G; Mioni, M; Giorgi, C; Ruggeri, N; Pinton, P; Moll, U; Mantovani, F; Del Sal, G

    2013-02-01

    In response to intense stress, the tumor protein p53 (p53) tumor suppressor rapidly mounts a direct mitochondrial death program that precedes transcription-mediated apoptosis. By eliminating severely damaged cells, this pathway contributes to tumor suppression as well as to cancer cell killing induced by both genotoxic drugs and non-genotoxic p53-reactivating molecules. Here we have explored the role had in this pathway by the prolyl-isomerase Pin1 (peptidylprolyl cis/trans isomerase, NIMA-interacting 1), a crucial transducer of p53's phosphorylation into conformational changes unleashing its pro-apoptotic activity. We show that Pin1 promotes stress-induced localization of p53 to mitochondria both in vitro and in vivo. In particular, we demonstrate that upon stress-induced phosphorylation of p53 on Ser46 by homeodomain interacting protein kinase 2, Pin1 stimulates its mitochondrial trafficking signal, that is, monoubiquitination. This pathway is induced also by the p53-activating molecule RITA, and we demonstrate the strong requirement of Pin1 for the induction of mitochondrial apoptosis by this compound. These findings have significant implications for treatment of p53-expressing tumors and for prospective use of p53-activating compounds in clinics. PMID:22935610

  14. Intracellular energy depletion triggers programmed cell death during petal senescence in tulip

    PubMed Central

    Azad, A. K.; Ishikawa, Takayuki; Ishikawa, Takahiro; Shibata, H.

    2008-01-01

    Programmed cell death (PCD) in petals provides a model system to study the molecular aspects of organ senescence. In this study, the very early triggering signal for PCD during the senescence process from young green buds to 14-d-old petals of Tulipa gesneriana was determined. The opening and closing movement of petals of intact plants increased for the first 3 d and then gradually decreased. DNA degradation and cytochrome c (Cyt c) release were clearly observed in 6-d-old flowers. Oxidative stress or ethylene production can be excluded as the early signal for petal PCD. In contrast, ATP was dramatically depleted after the first day of flower opening. Sucrose supplementation to cut flowers maintained their ATP levels and the movement ability for a longer time than in those kept in water. The onset of DNA degradation, Cyt c release, and petal senescence was also delayed by sucrose supplementation to cut flowers. These results suggest that intracellular energy depletion, rather than oxidative stress or ethylene production, may be the very early signal to trigger PCD in tulip petals. PMID:18515833

  15. Programmed Cell Death Occurs Asymmetrically during Abscission in Tomato[C][W][OA

    PubMed Central

    Bar-Dror, Tal; Dermastia, Marina; Kladnik, Aleš; Žnidarič, Magda Tušek; Novak, Maruša Pompe; Meir, Shimon; Burd, Shaul; Philosoph-Hadas, Sonia; Ori, Naomi; Sonego, Lilian; Dickman, Martin B.; Lers, Amnon

    2011-01-01

    Abscission occurs specifically in the abscission zone (AZ) tissue as a natural stage of plant development. Previously, we observed delay of tomato (Solanum lycopersicum) leaf abscission when the LX ribonuclease (LX) was inhibited. The known association between LX expression and programmed cell death (PCD) suggested involvement of PCD in abscission. In this study, hallmarks of PCD were identified in the tomato leaf and flower AZs during the late stage of abscission. These included loss of cell viability, altered nuclear morphology, DNA fragmentation, elevated levels of reactive oxygen species and enzymatic activities, and expression of PCD-associated genes. Overexpression of antiapoptotic proteins resulted in retarded abscission, indicating PCD requirement. PCD, LX, and nuclease gene expression were visualized primarily in the AZ distal tissue, demonstrating an asymmetry between the two AZ sides. Asymmetric expression was observed for genes associated with cell wall hydrolysis, leading to AZ, or associated with ethylene biosynthesis, which induces abscission. These results suggest that different abscission-related processes occur asymmetrically between the AZ proximal and distal sides. Taken together, our findings identify PCD as a key mechanism that occurs asymmetrically during normal progression of abscission and suggest an important role for LX in this PCD process. PMID:22128123

  16. Development of amino- and dimethylcarbamate-substituted resorcinol as programmed cell death-1 (PD-1) inhibitor.

    PubMed

    Liu, An; Dong, Lei; Wei, Xiao-Li; Yang, Xiao-Hong; Xiao, Jun-Hai; Liu, Zai-Qun

    2016-06-10

    Blockading the interaction of programmed death-1 (PD-1) protein with its ligands (PD-Ls, such as PD-L1) was proved to be a pathway for suppressing the development of tumors and other degradations of biological species. Thus, finding PD-1 inhibitors situated at the convergence point of drug discovery. In addition to some monoclonal antibodies applied to treat cancers clinically, the screening of organic molecules for hindering the interaction of PD-1 with PD-L1 became an efficient strategy in the development of PD-1 inhibitors. We herein applied resorcinol and 3-hydroxythiophenol as the core to link with N,N-dimethylcarbamate and other alkyl-substituted amines to afford 13 amine-appended phenyl dimethylcarbamates (AAPDs). The test for blockading the combination of PD-1 with PD-L1 revealed that abilities of 13 AAPDs were higher than that of sulfamethizole, a successful PD-1 inhibitor. In particular, large hydrophobic substituents at amine moiety or a nitro at resorcinol skeleton enhanced the inhibitory effect of AAPD even higher than that of sulfamethoxypyridazine, another successful PD-1 inhibitor. The present results may provide valuable information for further investigation on synthetic PD-1 inhibitors. PMID:27063329

  17. Suppression of ceramide-mediated programmed cell death by sphingosine-1-phosphate.

    PubMed

    Cuvillier, O; Pirianov, G; Kleuser, B; Vanek, P G; Coso, O A; Gutkind, S; Spiegel, S

    1996-06-27

    Ceramide is an important regulatory participant of programmed cell death (apoptosis) induced by tumour-necrosis factor (TNF)-alpha and Fas ligand, members of the TNF superfamily. Conversely, sphingosine and sphingosine-1-phosphate, which are metabolites of ceramide, induce mitogenesis and have been implicated as second messengers in cellular proliferation induced by platelet-derived growth factor and serum. Here we report that sphingosine-1-phosphate prevents the appearance of the key features of apoptosis, namely intranucleosomal DNA fragmentation and morphological changes, which result from increased concentrations of ceramide. Furthermore, inhibition of ceramide-mediated apoptosis by activation of protein kinase C results from stimulation of sphingosine kinase and the concomitant increase in intracellular sphingosine-1-phosphate. Finally sphingosine-1-phosphate not only stimulates the extracellular signal-regulated kinase (ERK) pathway, it counteracts the ceramide-induced activation of stress-activated protein kinase (SAPK/JNK). Thus, the balance between the intracellular levels of ceramide and sphingosine-1-phosphate and their regulatory effects on different family members of mitogen-activated protein kinases determines the fate of the cell. PMID:8657285

  18. Programmed cell death 5 mediates HDAC3 decay to promote genotoxic stress response

    PubMed Central

    Choi, Hyo-Kyoung; Choi, Youngsok; Park, Eun Sung; Park, Soo-Yeon; Lee, Seung-Hyun; Seo, Jaesung; Jeong, Mi-Hyeon; Jeong, Jae-Wook; Jeong, Jae-Ho; Lee, Peter C. W.; Choi, Kyung-Chul; Yoon, Ho-Geun

    2015-01-01

    The inhibition of p53 activity by histone deacetylase 3 (HDAC3) has been reported, but the precise molecular mechanism is unknown. Here we show that programmed cell death 5 (PDCD5) selectively mediates HDAC3 dissociation from p53, which induces HDAC3 cleavage and ubiquitin-dependent proteasomal degradation. Casein kinase 2 alpha phosphorylates PDCD5 at Ser-119 to enhance its stability and importin 13-mediated nuclear translocation of PDCD5. Genetic deletion of PDCD5 abrogates etoposide (ET)-induced p53 stabilization and HDAC3 cleavage, indicating an essential role of PDCD5 in p53 activation. Restoration of PDCD5WT in PDCD5−/− MEFs restores ET-induced HDAC3 cleavage. Reduction of both PDCD5 and p53, but not reduction of either protein alone, significantly enhances in vivo tumorigenicity of AGS gastric cancer cells and correlates with poor prognosis in gastric cancer patients. Our results define a mechanism for p53 activation via PDCD5-dependent HDAC3 decay under genotoxic stress conditions. PMID:26077467

  19. Immunotherapy of chronic hepatitis C virus infection with antibodies against programmed cell death-1 (PD-1).

    PubMed

    Fuller, Michael J; Callendret, Benoit; Zhu, Baogong; Freeman, Gordon J; Hasselschwert, Dana L; Satterfield, William; Sharpe, Arlene H; Dustin, Lynn B; Rice, Charles M; Grakoui, Arash; Ahmed, Rafi; Walker, Christopher M

    2013-09-10

    Hepatitis C virus (HCV) persistence is facilitated by exhaustion of CD8+ T cells that express the inhibitory receptor programmed cell death 1 (PD-1). Blockade of PD-1 signaling improves in vitro proliferation of HCV-specific T lymphocytes, but whether antiviral function can be restored in infected individuals is unknown. To address this question, chimpanzees with persistent HCV infection were treated with anti-PD-1 antibodies. A significant reduction in HCV viremia was observed in one of three treated animals without apparent hepatocellular injury. Viremia rebounded in the responder animal when antibody treatment was discontinued. Control of HCV replication was associated with restoration of intrahepatic CD4+ and CD8+ T-cell immunity against multiple HCV proteins. The responder animal had a history of broader T-cell immunity to multiple HCV proteins than the two chimpanzees that did not respond to PD-1 therapy. The results suggest that successful PD-1 blockade likely requires a critical threshold of preexisting virus-specific T cells in liver and warrants consideration of therapeutic vaccination strategies in combination with PD-1 blockade to broaden narrow responses. Anti-PD-1 immunotherapy may also facilitate control of other persistent viruses, notably the hepatitis B virus where options for long-term control of virus replication are limited. PMID:23980172

  20. Inhibition of cathepsin B by caspase-3 inhibitors blocks programmed cell death in Arabidopsis.

    PubMed

    Ge, Y; Cai, Y-M; Bonneau, L; Rotari, V; Danon, A; McKenzie, E A; McLellan, H; Mach, L; Gallois, P

    2016-09-01

    Programmed cell death (PCD) is used by plants for development and survival to biotic and abiotic stresses. The role of caspases in PCD is well established in animal cells. Over the past 15 years, the importance of caspase-3-like enzymatic activity for plant PCD completion has been widely documented despite the absence of caspase orthologues. In particular, caspase-3 inhibitors blocked nearly all plant PCD tested. Here, we affinity-purified a plant caspase-3-like activity using a biotin-labelled caspase-3 inhibitor and identified Arabidopsis thaliana cathepsin B3 (AtCathB3) by liquid chromatography with tandem mass spectrometry (LC-MS/MS). Consistent with this, recombinant AtCathB3 was found to have caspase-3-like activity and to be inhibited by caspase-3 inhibitors. AtCathepsin B triple-mutant lines showed reduced caspase-3-like enzymatic activity and reduced labelling with activity-based caspase-3 probes. Importantly, AtCathepsin B triple mutants showed a strong reduction in the PCD induced by ultraviolet (UV), oxidative stress (H2O2, methyl viologen) or endoplasmic reticulum stress. Our observations contribute to explain why caspase-3 inhibitors inhibit plant PCD and provide new tools to further plant PCD research. The fact that cathepsin B does regulate PCD in both animal and plant cells suggests that this protease may be part of an ancestral PCD pathway pre-existing the plant/animal divergence that needs further characterisation. PMID:27058316

  1. Streptomyces natalensis programmed cell death and morphological differentiation are dependent on oxidative stress

    PubMed Central

    Beites, Tiago; Oliveira, Paulo; Rioseras, Beatriz; Pires, Sílvia D. S.; Oliveira, Rute; Tamagnini, Paula; Moradas-Ferreira, Pedro; Manteca, Ángel; Mendes, Marta V.

    2015-01-01

    Streptomyces are aerobic Gram-positive bacteria characterized by a complex life cycle that includes hyphae differentiation and spore formation. Morphological differentiation is triggered by stressful conditions and takes place in a pro-oxidant environment, which sets the basis for an involvement of the oxidative stress response in this cellular process. Characterization of the phenotypic traits of Streptomyces natalensis ΔkatA1 (mono-functional catalase) and ΔcatR (Fur-like repressor of katA1 expression) strains in solid medium revealed that both mutants had an impaired morphological development process. The sub-lethal oxidative stress caused by the absence of KatA1 resulted in the formation of a highly proliferative and undifferentiated vegetative mycelium, whereas de-repression of CatR regulon, from which KatA1 is the only known representative, resulted in the formation of scarce aerial mycelium. Both mutant strains had the transcription of genes associated with aerial mycelium formation and biosynthesis of the hyphae hydrophobic layer down-regulated. The first round of the programmed cell death (PCD) was inhibited in both strains which caused the prevalence of the transient primary mycelium (MI) over secondary mycelium (MII). Our data shows that the first round of PCD and morphological differentiation in S. natalensis is dependent on oxidative stress in the right amount at the right time. PMID:26256439

  2. YihE kinase is a central regulator of programmed cell death in bacteria

    PubMed Central

    Dorsey-Oresto, Angella; Lu, Tao; Mosel, Michael; Wang, Xiuhong; Salz, Tal; Drlica, Karl; Zhao, Xilin

    2013-01-01

    Stress-mediated programmed cell death (PCD) in bacteria has recently attracted attention, largely because it raises novel possibilities for controlling pathogens. How PCD in bacteria is regulated to avoid population extinction from transient, moderate stress remains a central question. We report that the YihE protein kinase is a key regulator that protects Escherichia coli from antimicrobial and environmental stressors by antagonizing the MazEF toxin-antitoxin module. YihE was linked to a reactive oxygen species (ROS) cascade, and a deficiency of yihE stimulated stress-induced PCD even after stress dissipated. YihE was partially regulated by the Cpx envelope stress-response system, which, along with MazF toxin and superoxide, has both protective and destructive roles that help bacteria make a live-or-die decision in response to stress. YihE probably acts early in the stress response to limit self-sustaining ROS production and PCD. Inhibition of YihE may provide a new way to enhance antimicrobial lethality and attenuate virulence. PMID:23416055

  3. YihE kinase is a central regulator of programmed cell death in bacteria.

    PubMed

    Dorsey-Oresto, Angella; Lu, Tao; Mosel, Michael; Wang, Xiuhong; Salz, Tal; Drlica, Karl; Zhao, Xilin

    2013-02-21

    Stress-mediated programmed cell death (PCD) in bacteria has recently attracted attention, largely because it raises novel possibilities for controlling pathogens. How PCD in bacteria is regulated to avoid population extinction due to transient, moderate stress remains a central question. Here, we report that the YihE protein kinase is a key regulator that protects Escherichia coli from antimicrobial and environmental stressors by antagonizing the MazEF toxin-antitoxin module. YihE was linked to a reactive oxygen species (ROS) cascade, and a deficiency of yihE stimulated stress-induced PCD even after stress dissipated. YihE was partially regulated by the Cpx envelope stress-response system, which, along with MazF toxin and superoxide, has both protective and destructive roles that help bacteria make a live-or-die decision in response to stress. YihE probably acts early in the stress response to limit self-sustaining ROS production and PCD. Inhibition of YihE may provide a way of enhancing antimicrobial lethality and attenuating virulence. PMID:23416055

  4. Programmed cell death 4 (Pdcd4) expression in colorectal adenocarcinoma: Association with clinical stage

    PubMed Central

    LIM, SUNG-CHUL; HONG, RAN

    2011-01-01

    The aim of this study was to examine the role of Programmed cell death 4 (Pdcd4) in colorectal adenocarcinoma (CRA). Pdcd4 expression was observed in both the nucleus and cytoplasm in colorectal adenocarcinoma, whereas Pdcd4 was expressed in the nucleus in normal colonic epithelial cells. Loss or weak expression of Pdcd4 was identified in 44 cases (40.7%) of cancer cells. Pdcd4 expression was associated with an increase in the nodal and clinical stage (p=0.022 and p=0.016, respectively). Nuclear staining was identified in 66 cases (61.15%), with no correlation with clinicopathological factors. Conversely, cytoplasmic staining for Pdcd4 was observed in 45 cases (41.7%), and increased according to nodal and clinical stage (p=0.011 and p=0.009, respectively), indicating that aberrant Pdcd4 expression leads to tumor progression. However, Pdcd4 expression was not correlated to disease-free survival time. This study demonstrated that during the tumorigenesis of CRA, loss of nuclear Pdcd4 expression occurs, and during tumor progression, aberrant cytoplasmic expression is present, suggesting a higher clinical stage. Although loss of Pdcd4 was not significantly correlated with survival time, as the prognosis of colorectal cancer varies depending on clinical stage including invasion depth, nodal status and metastatic status, cytoplasmic Pdcd4 expression may be a favorable prognostic marker in CRA. PMID:23049623

  5. Loss of Programmed cell death 4 (Pdcd4) associates with the progression of ovarian cancer

    PubMed Central

    Wei, Na; Liu, Stephanie S; Leung, Thomas HY; Tam, Kar F; Liao, Xiao Y; Cheung, Annie NY; Chan, Karen KL; Ngan, Hextan YS

    2009-01-01

    Background Programmed cell death 4 (Pdcd4) is a novel tumour suppressor and originally identified as a neoplastic transformation inhibitor. The aim of this study was to investigate the expression, prognostic significance and potential function of Pdcd4 in ovarian cancer. Results The expression of Pdcd4 was examined in 30 normal ovarian tissues, 16 borderline and 93 malignant ovarian tissues. A continuous down regulation of Pdcd4 expression in the sequence of normal, borderline and malignant tissues was observed. The expressions of Pdcd4 in both ovarian borderline tissues and carcinomas were significantly lower than the expression in normal ovarian tissues (p < 0.001). Furthermore, patients with lower Pdcd4 expressions were found to have shorter disease-free survival (p = 0.037). The expression of Pdcd4 was also assessed by immunohistochemical analysis in 13 ovarian normal tissues and 44 carcinomas. Different subcellular localization of Pdcd4 was observed in normal compared to malignant cells. Predominant nuclear localization of Pdcd4 was found in normal ovarian tissues while ovarian carcinomas showed mainly cytoplasmic localization of Pdcd4. Conclusion Our study demonstrated that the loss of Pdcd4 was a common abnormality at molecular level in ovarian cancer and it might be a potential prognostic factor in ovarian cancer patients. PMID:19728867

  6. The prolyl-isomerase Pin1 activates the mitochondrial death program of p53

    PubMed Central

    Sorrentino, G; Mioni, M; Giorgi, C; Ruggeri, N; Pinton, P; Moll, U; Mantovani, F; Del Sal, G

    2013-01-01

    In response to intense stress, the tumor protein p53 (p53) tumor suppressor rapidly mounts a direct mitochondrial death program that precedes transcription-mediated apoptosis. By eliminating severely damaged cells, this pathway contributes to tumor suppression as well as to cancer cell killing induced by both genotoxic drugs and non-genotoxic p53-reactivating molecules. Here we have explored the role had in this pathway by the prolyl-isomerase Pin1 (peptidylprolyl cis/trans isomerase, NIMA-interacting 1), a crucial transducer of p53's phosphorylation into conformational changes unleashing its pro-apoptotic activity. We show that Pin1 promotes stress-induced localization of p53 to mitochondria both in vitro and in vivo. In particular, we demonstrate that upon stress-induced phosphorylation of p53 on Ser46 by homeodomain interacting protein kinase 2, Pin1 stimulates its mitochondrial trafficking signal, that is, monoubiquitination. This pathway is induced also by the p53-activating molecule RITA, and we demonstrate the strong requirement of Pin1 for the induction of mitochondrial apoptosis by this compound. These findings have significant implications for treatment of p53-expressing tumors and for prospective use of p53-activating compounds in clinics. PMID:22935610

  7. Initiation of programmed cell death in the suspensor is predominantly regulated maternally in a tobacco hybrid

    PubMed Central

    Luo, An; Zhao, Peng; Zhang, Li-Yao; Sun, Meng-Xiang

    2016-01-01

    Maternal gene products deposited in the egg regulate early embryogenesis before activation of the embryonic genome in animals. While in higher plants, it is believed that genes of parental origin contribute to early embryogenesis. However, little is known regarding the particular processes in which genes of parental origin are involved during early embryogenesis. Previously, we found that the initiation of programmed cell death (PCD) in the suspensor of the embryo is regulated by the cystatin, NtCYS. Here, we confirmed that both parental transcripts contribute to PCD, but the relative expression level of the maternal NtCYS allele was much higher than that of the paternal allele in early embryos of tobacco interspecific hybrids. The expression level of the maternal NtCYS allele was decreased markedly, which was necessary for the initiation of PCD, while the paternal allele didn’t change. Interestingly, the pattern of PCD in the hybrid suspensor and the morphology of the hybrid suspensor were similar to those of the maternal parent. Our results suggest that NtCYS-mediated PCD initiation in the hybrid suspensor is likely controlled in a maternal dominant manner. This finding represents an example of the involvement of parental transcripts in a specific developmental event during early embryogenesis. PMID:27432530

  8. Glucose oxidase prevents programmed cell death of the silkworm anterior silk gland through hydrogen peroxide production.

    PubMed

    Matsui, Hiroto; Kakei, Motonori; Iwami, Masafumi; Sakurai, Sho

    2011-03-01

    During pupal metamorphosis, the anterior silk glands (ASGs) of the silkworm Bombyx mori degenerate through programmed cell death (PCD), which is triggered by 20-hydroxyecdysone (20E). 20E triggers the PCD of the ASGs of day 7 fifth instar (V7) larvae but not that of V5 larvae. When V7 ASGs were cocultured with V5 ASGs in the presence of 20E, neither culture of ASGs underwent PCD. The 20E-induced PCD of V7 ASGs was also inhibited when they were incubated in conditioned medium that was prepared by incubating V5 ASGs for 48 h, an indication that V5 ASGs released an inhibitor of 20E-induced PCD during incubation. The inhibitor was purified from conditioned medium and identified as glucose oxidase (GOD). GOD catalyzes the oxidation of glucose to gluconolactone, and generates hydrogen peroxide as a byproduct. We found that hydrogen peroxide is the molecule that directly inhibits the action of 20E and may act to protect the ASGs from early execution of PCD during the feeding stage. GOD was localized in the inner cavity of the gland, and was discharged to the outside of the ASGs with the silk thread at the onset of spinning. Thus, the spinning behavior, occurring at the beginning of the prepupal period, plays an important role in controlling the time at which ASGs undergo PCD in response to 20E. PMID:21205208

  9. Microspore embryogenesis and programmed cell death in barley: effects of copper on albinism in recalcitrant cultivars.

    PubMed

    Jacquard, Cédric; Nolin, Frédérique; Hécart, Carine; Grauda, Dace; Rashal, Isaak; Dhondt-Cordelier, Sandrine; Sangwan, Rajbir S; Devaux, Pierre; Mazeyrat-Gourbeyre, Florence; Clément, Christophe

    2009-09-01

    Albinism remains a major problem in cereal improvement programs that rely on doubled haploid (DH) technology, and the factors controlling the phenomenon are not well understood. Here we report on the positive influence of copper on the production of DH plants obtained through microspore embryogenesis (ME) in recalcitrant cultivars of barley (Hordeum vulgare L.). The presence of copper sulphate in the anther pre-treatment medium improved green DH plant regeneration from cultivars known to produce exclusively albino plants using classical procedures. In plastids, the effect of copper was characterized by a decrease in starch and a parallel increase in internal membranes. The addition of copper sulphate in the ME pre-treatment medium should enable breeders to exploit the genetic diversity of recalcitrant cultivars through DH technology. We examined programmed cell death (PCD) during microspore development to determine whether PCD may interfere with the induction of ME and/or the occurrence of albinism. By examining the fate of nuclei in various anther cell layers, we demonstrated that the kinetics of PCD in anthers differed between the barley cultivars Igri and Cork that show a low and a high rate of albinism, respectively. However, no direct correlation between PCD in the anther cell layers and the rate of albinism was observed and copper had no influence on the PCD kinetic in these cultivars. It was concluded that albinism following ME was not due to PCD in anthers, but rather to another unknown phenomenon that appears to specifically affect plastids during microspore/pollen development. PMID:19529940

  10. Senescence and programmed cell death in plants: polyamine action mediated by transglutaminase

    PubMed Central

    Del Duca, Stefano; Serafini-Fracassini, Donatella; Cai, Giampiero

    2014-01-01

    Research on polyamines (PAs) in plants laps a long way of about 50 years and many roles have been discovered for these aliphatic cations. PAs regulate cell division, differentiation, organogenesis, reproduction, dormancy-break and senescence, homeostatic adjustments in response to external stimuli and stresses. Nevertheless, the molecular mechanisms of their multiple activities are still matter of research. PAs are present in free and bound forms and interact with several important cell molecules; some of these interactions may occur by covalent linkages catalyzed by transglutaminase (TGase), giving rise to “cationization” or cross-links among specific proteins. Senescence and programmed cell death (PCD) can be delayed by PAs; in order to re-interpret some of these effects and to obtain new insights into their molecular mechanisms, their conjugation has been revised here. The TGase-mediated interactions between proteins and PAs are the main target of this review. After an introduction on the characteristics of this enzyme, on its catalysis and role in PCD in animals, the plant senescence and PCD models in which TGase has been studied, are presented: the corolla of naturally senescing or excised flowers, the leaves senescing, either excised or not, the pollen during self-incompatible pollination, the hypersensitive response and the tuber storage parenchyma during dormancy release. In all the models examined, TGase appears to be involved by a similar molecular mechanism as described during apoptosis in animal cells, even though several substrates are different. Its effect is probably related to the type of PCD, but mostly to the substrate to be modified in order to achieve the specific PCD program. As a cross-linker of PAs and proteins, TGase is an important factor involved in multiple, sometimes controversial, roles of PAs during senescence and PCD. PMID:24778637

  11. AtPDCD5 Plays a Role in Programmed Cell Death after UV-B Exposure in Arabidopsis1[OPEN

    PubMed Central

    Falcone Ferreyra, María Lorena; D’Andrea, Lucio; AbdElgawad, Hamada

    2016-01-01

    DNA damage responses have evolved to sense and react to DNA damage; the induction of DNA repair mechanisms can lead to genomic restoration or, if the damaged DNA cannot be adequately repaired, to the execution of a cell death program. In this work, we investigated the role of an Arabidopsis (Arabidopsis thaliana) protein, AtPDCD5, which is highly similar to the human PDCD5 protein; it is induced by ultraviolet (UV)-B radiation and participates in programmed cell death in the UV-B DNA damage response. Transgenic plants expressing AtPDCD5 fused to GREEN FLUORESCENT PROTEIN indicate that AtPDCD5 is localized both in the nucleus and the cytosol. By use of pdcd5 mutants, we here demonstrate that these plants have an altered antioxidant metabolism and accumulate higher levels of DNA damage after UV-B exposure, similar to levels in ham1ham2 RNA interference transgenic lines with decreased expression of acetyltransferases from the MYST family. By coimmunoprecipitation and pull-down assays, we provide evidence that AtPDCD5 interacts with HAM proteins, suggesting that both proteins participate in the same pathway of DNA damage responses. Plants overexpressing AtPDCD5 show less DNA damage but more cell death in root tips upon UV-B exposure. Finally, we here show that AtPDCD5 also participates in age-induced programmed cell death. Together, the data presented here demonstrate that AtPDCD5 plays an important role during DNA damage responses induced by UV-B radiation in Arabidopsis and also participates in programmed cell death programs. PMID:26884483

  12. Role of a Transcriptional Regulator in Programmed Cell Death and Plant Development

    SciTech Connect

    Julie M. Stone

    2008-09-13

    The long-term goal of this research is to understand the role(s) and molecular mechanisms of programmed cell death (PCD) in the controlling plant growth, development and responses to biotic and abiotic stress. We developed a genetic selection scheme to identify A. thaliana FB1-resistant (fbr) mutants as a way to find genes involved in PCD (Stone et al., 2000; Stone et al., 2005; Khan and Stone, 2008). The disrupted gene in fbr6 (AtSPL14) responsible for the FB1-insensitivity and plant architecture phenotypes encodes a plant-specific SBP DNA-binding domain transcriptional regulator (Stone et al., 2005; Liang et al., 2008). This research plan is designed to fill gaps in the knowledge about the role of SPL14 in plant growth and development. The work is being guided by three objectives aimed at determining the pathways in which SPL14 functions to modulate PCD and/or plant development: (1) determine how SPL14 functions in plant development, (2) identify target genes that are directly regulated by SPL14, and (3) identify SPL14 modifications and interacting proteins. We made significant progress during the funding period. Briefly, some major accomplishments are highlighted below: (1) To identify potential AtSPL14 target genes, we identified a consensus DNA binding site for the AtSPL14 SBP DNA-binding domain using systematic evolution of ligands by exponential selection (SELEX) and site-directed mutagenesis (Liang et al., 2008). This consensus binding site was used to analyze Affymetrix microarray gene expression data obtained from wild-type and fbr6 mutant plants to find possible AtSPL14-regulated genes. These candidate AtSPL14-regulated genes are providing new information on the molecular mechanisms linking plant PCD and plant development through modulation of the 26S proteasome. (2) Transgenic plants expressing epitope-tagged versions of AtSPL14 are being used to confirm the AtSPL14 targets (by ChIP-PCR) and further dissect the molecular interactions (Nazarenus, Liang

  13. Genetics Home Reference: otopalatodigital syndrome type 1

    MedlinePlus

    ... Conditions otopalatodigital syndrome type 1 otopalatodigital syndrome type 1 Enable Javascript to view the expand/collapse boxes. ... Open All Close All Description Otopalatodigital syndrome type 1 is a disorder primarily involving abnormalities in skeletal ...

  14. Genetics Home Reference: optic atrophy type 1

    MedlinePlus

    ... Conditions optic atrophy type 1 optic atrophy type 1 Enable Javascript to view the expand/collapse boxes. ... Open All Close All Description Optic atrophy type 1 is a condition that affects vision. Individuals with ...

  15. Genetics Home Reference: distal arthrogryposis type 1

    MedlinePlus

    ... Conditions distal arthrogryposis type 1 distal arthrogryposis type 1 Enable Javascript to view the expand/collapse boxes. ... Open All Close All Description Distal arthrogryposis type 1 is a disorder characterized by joint deformities (contractures) ...

  16. Mitochondrial Translocation of High Mobility Group Box 1 Facilitates LIM Kinase 2-Mediated Programmed Necrotic Neuronal Death.

    PubMed

    Hyun, Hye-Won; Ko, Ah-Reum; Kang, Tae-Cheon

    2016-01-01

    High mobility group box 1 (HMGB1) acts a signaling molecule regulating a wide range of inflammatory responses in extracellular space. HMGB1 also stabilizes nucleosomal structure and facilitates gene transcription. Under pathophysiological conditions, nuclear HMGB1 is immediately transported to the cytoplasm through chromosome region maintenance 1 (CRM1). Recently, we have reported that up-regulation of LIM kinase 2 (LIMK2) expression induces HMGB1 export from neuronal nuclei during status epilepticus (SE)-induced programmed neuronal necrosis in the rat hippocampus. Thus, we investigated whether HMGB1 involves LIMK2-mediated programmed neuronal necrosis, but such role is not reported. In the present study, SE was induced by pilocarpine in rats that were intracerebroventricularly infused with saline, control siRNA, LIMK2 siRNA or leptomycin B (LMB, a CRM1 inhibitor) prior to SE induction. Thereafter, we performed Fluoro-Jade B staining, western blots and immunohistochemical studies. LIMK2 knockdown effectively attenuated SE-induced neuronal death and HMGB1 import into mitochondria accompanied by inhibiting nuclear HMGB1 release and abnormal mitochondrial elongation. LMB alleviated SE-induced neuronal death and nuclear HMGB1 release. However, LMB did not prevent mitochondrial elongation induced by SE, but inhibited the HMGB1 import into mitochondria. The efficacy of LMB was less effective to attenuate SE-induced neuronal death than that of LIMK2 siRNA. These findings indicate that nuclear HMGB1 release and the subsequent mitochondrial import may facilitate and deteriorate programmed necrotic neuronal deaths. The present data suggest that the nuclear HMGB1 release via CRM1 may be a potential therapeutic target for the programmed necrotic neuronal death induced by SE. PMID:27147971

  17. Mitochondrial Translocation of High Mobility Group Box 1 Facilitates LIM Kinase 2-Mediated Programmed Necrotic Neuronal Death

    PubMed Central

    Hyun, Hye-Won; Ko, Ah-Reum; Kang, Tae-Cheon

    2016-01-01

    High mobility group box 1 (HMGB1) acts a signaling molecule regulating a wide range of inflammatory responses in extracellular space. HMGB1 also stabilizes nucleosomal structure and facilitates gene transcription. Under pathophysiological conditions, nuclear HMGB1 is immediately transported to the cytoplasm through chromosome region maintenance 1 (CRM1). Recently, we have reported that up-regulation of LIM kinase 2 (LIMK2) expression induces HMGB1 export from neuronal nuclei during status epilepticus (SE)-induced programmed neuronal necrosis in the rat hippocampus. Thus, we investigated whether HMGB1 involves LIMK2-mediated programmed neuronal necrosis, but such role is not reported. In the present study, SE was induced by pilocarpine in rats that were intracerebroventricularly infused with saline, control siRNA, LIMK2 siRNA or leptomycin B (LMB, a CRM1 inhibitor) prior to SE induction. Thereafter, we performed Fluoro-Jade B staining, western blots and immunohistochemical studies. LIMK2 knockdown effectively attenuated SE-induced neuronal death and HMGB1 import into mitochondria accompanied by inhibiting nuclear HMGB1 release and abnormal mitochondrial elongation. LMB alleviated SE-induced neuronal death and nuclear HMGB1 release. However, LMB did not prevent mitochondrial elongation induced by SE, but inhibited the HMGB1 import into mitochondria. The efficacy of LMB was less effective to attenuate SE-induced neuronal death than that of LIMK2 siRNA. These findings indicate that nuclear HMGB1 release and the subsequent mitochondrial import may facilitate and deteriorate programmed necrotic neuronal deaths. The present data suggest that the nuclear HMGB1 release via CRM1 may be a potential therapeutic target for the programmed necrotic neuronal death induced by SE. PMID:27147971

  18. Type 1 diabetes care updates: Tanzania.

    PubMed

    Muze, Kandi Catherine; Majaliwa, Edna Siima

    2015-04-01

    Tanzania is located in east Africa with a population of 45 million. The country's population is growing at 2.5% annually. The International Diabetes Federation Child Sponsorship Program was launched in Tanzania in 2005. The number of type 1 diabetes mellitus children enrolled in the changing diabetes in children program in Tanzania has augmented from almost below 50 in 2005 to over 1200 in 2014. The country had an overall trend of HbA1c value of 14% in 2005 while the same has reduced over the years to 10% in 2012-13. The program has been able to reduce the proportion of patients with HbA1c values of 11-14%; from 71.9% in 2008 to 49.8% in 2012-13. The challenges, which CDiC faces are misdiagnosis, low public awareness, and stigma especially in the reproductive age/adolescent groups. PMID:25941637

  19. Complex Regional Pain Type 1.

    PubMed

    Barrett, Michael Joseph; Barnett, Peter Leslie John

    2016-03-01

    Complex regional pain syndrome is increasingly recognized in the pediatric population. Owing to the nature of presentation with pain, many of these children present to the emergency setting at different stages of the syndrome with or without numerous prior interactions with health professionals. Complex regional pain syndrome type 1 (CRPS1) is a clinical syndrome characterized by amplified musculoskeletal limb pain that is out of proportion to the history and physical findings, or pain due to non-noxious stimuli (allodynia/hyperalgesia), and accompanied by one or more signs of autonomic dysfunction. Differential diagnosis may include significant trauma (eg, fractures), inflammatory conditions, malignancies, and systemic illness. The diagnosis is clinical. The treatment goals for CRPS1 are restoration of function and relief of pain. Education, physical, and occupational therapy with psychotherapy and defined goals of achievement with reward are the mainstay of treatment for this population. Most children with CRPS1 will have a favorable outcome. PMID:26928099

  20. Blockade of the Programmed Death-1 Pathway Restores Sarcoidosis CD4+ T-Cell Proliferative Capacity

    PubMed Central

    Braun, Nicole A.; Celada, Lindsay J.; Herazo-Maya, Jose D.; Abraham, Susamma; Shaginurova, Guzel; Sevin, Carla M.; Grutters, Jan; Culver, Daniel A.; Dworski, Ryszard; Sheller, James; Massion, Pierre P.; Polosukhin, Vasiliy V.; Johnson, Joyce E.; Kaminski, Naftali; Wilkes, David S.; Oswald-Richter, Kyra A.

    2014-01-01

    Rationale: Effective therapeutic interventions for chronic, idiopathic lung diseases remain elusive. Normalized T-cell function is an important contributor to spontaneous resolution of pulmonary sarcoidosis. Up-regulation of inhibitor receptors, such as programmed death-1 (PD-1) and its ligand, PD-L1, are important inhibitors of T-cell function. Objectives: To determine the effects of PD-1 pathway blockade on sarcoidosis CD4+ T-cell proliferative capacity. Methods: Gene expression profiles of sarcoidosis and healthy control peripheral blood mononuclear cells were analyzed at baseline and follow-up. Flow cytometry was used to measure ex vivo expression of PD-1 and PD-L1 on systemic and bronchoalveolar lavage–derived cells of subjects with sarcoidosis and control subjects, as well as the effects of PD-1 pathway blockade on cellular proliferation after T-cell receptor stimulation. Immunohistochemistry analysis for PD-1/PD-L1 expression was conducted on sarcoidosis, malignant, and healthy control lung specimens. Measurements and Main Results: Microarray analysis demonstrates longitudinal increase in PDCD1 gene expression in sarcoidosis peripheral blood mononuclear cells. Immunohistochemistry analysis revealed increased PD-L1 expression within sarcoidosis granulomas and lung malignancy, but this was absent in healthy lungs. Increased numbers of sarcoidosis PD-1+ CD4+ T cells are present systemically, compared with healthy control subjects (P < 0.0001). Lymphocytes with reduced proliferative capacity exhibited increased proliferation with PD-1 pathway blockade. Longitudinal analysis of subjects with sarcoidosis revealed reduced PD-1+ CD4+ T cells with spontaneous clinical resolution but not with disease progression. Conclusions: Analogous to the effects in other chronic lung diseases, these findings demonstrate that the PD-1 pathway is an important contributor to sarcoidosis CD4+ T-cell proliferative capacity and clinical outcome. Blockade of the PD-1 pathway may be a

  1. Programmed Cell Death Progresses Differentially in Epidermal and Mesophyll Cells of Lily Petals.

    PubMed

    Mochizuki-Kawai, Hiroko; Niki, Tomoko; Shibuya, Kenichi; Ichimura, Kazuo

    2015-01-01

    In the petals of some species of flowers, programmed cell death (PCD) begins earlier in mesophyll cells than in epidermal cells. However, PCD progression in each cell type has not been characterized in detail. We separately constructed a time course of biochemical signs and expression patterns of PCD-associated genes in epidermal and mesophyll cells in Lilium cv. Yelloween petals. Before visible signs of senescence could be observed, we found signs of PCD, including DNA degradation and decreased protein content in mesophyll cells only. In these cells, the total proteinase activity increased on the day after anthesis. Within 3 days after anthesis, the protein content decreased by 61.8%, and 22.8% of mesophyll cells was lost. A second peak of proteinase activity was observed on day 6, and the number of mesophyll cells decreased again from days 4 to 7. These biochemical and morphological results suggest that PCD progressed in steps during flower life in the mesophyll cells. PCD began in epidermal cells on day 5, in temporal synchrony with the time course of visible senescence. In the mesophyll cells, the KDEL-tailed cysteine proteinase (LoCYP) and S1/P1 nuclease (LoNUC) genes were upregulated before petal wilting, earlier than in epidermal cells. In contrast, relative to that in the mesophyll cells, the expression of the SAG12 cysteine proteinase homolog (LoSAG12) drastically increased in epidermal cells in the final stage of senescence. These results suggest that multiple PCD-associated genes differentially contribute to the time lag of PCD progression between epidermal and mesophyll cells of lily petals. PMID:26605547

  2. Immunological effects of the anti-programmed death-1 antibody on human peripheral blood mononuclear cells.

    PubMed

    Akiyama, Yasuto; Nonomura, Chizu; Kondou, Ryota; Miyata, Haruo; Ashizawa, Tadashi; Maeda, Chie; Mitsuya, Koichi; Hayashi, Nakamasa; Nakasu, Yoko; Yamaguchi, Ken

    2016-09-01

    Immune checkpoint antibody-mediated blockade has gained attention as a new cancer immunotherapy strategy. Accumulating evidence suggests that this therapy imparts a survival benefit to metastatic melanoma and non-small cell lung cancer patients. A substantial amount of data on immune checkpoint antibodies has been collected from clinical trials; however, the direct effect of the antibodies on human peripheral blood mononuclear cells (PBMCs) has not been exclusively investigated. In this study, we developed an anti-programmed death-1 (PD-1) antibody (with biosimilarity to nivolumab) and examined the effects of the antibody on PBMCs derived from cancer patients. Specifically, we investigated the effects of the anti-PD-1 antibody on proliferation, cytokine production, cytotoxic T lymphocytes (CTL) and regulatory T cells. These investigations yielded several important results. First, the anti-PD-1 antibody had no obvious effect on resting PBMCs; however, high levels of the anti-PD-1 antibody partly stimulated PBMC proliferation when accompanied by an anti-CD3 antibody. Second, the anti-PD-1 antibody restored the growth inhibition of anti-CD3 Ab-stimulated PBMCs mediated by PD-L1. Third, the anti-PD-1 antibody exhibited a moderate inhibitory effect on the induction of myeloid-derived suppressor cells (MDSCs) by anti-CD3 antibody stimulation. Additionally, the presence of the anti-PD-1 antibody promoted antigen-specific CTL induction, which suggests that combining anti-PD-1 antibody and conventional immunotherapy treatments may have beneficial effects. These results indicate that specific cellular immunological mechanisms are partly responsible for the antitumor effect exhibited by the anti-PD-1 antibody against advanced cancers in clinical trials. PMID:27573705

  3. Prognostic and Clinicopathological Value of Programmed Death Ligand-1 in Breast Cancer: A Meta-Analysis

    PubMed Central

    Liu, Zeming; Maimaiti, Yusufu; Wang, Shan; Yin, Xingjie; Liu, Chunping

    2016-01-01

    Recently, the interest in programmed death ligand-1 (PD-L1) as a prognostic marker in several types of malignant tumors has increased. In the present meta-analysis, we aimed to explore the prognostic and clinicopathological value of PD-L1 in breast cancer. We searched Medline/PubMed, Web of Science, EMBASE, the Cochrane Library databases, and grey literature from inception until January 20, 2016. Studies concerning breast cancer that focused on PD-L1 expression and studies reporting survival data were included; two authors independently performed the data extraction. The pooled risk ratio (RR) and 95% confidence interval (CI) were assessed to determine the association between the clinicopathological parameters of patients and PD-L1 expression. Five studies involving 2061 patients were included in this meta-analysis. The results indicated that positive/higher PD-L1 expression was a negative predictor for breast cancer, with an RR of 1.64 (95% CI, 1.14–2.34) for the total mortality risk and an RR of 2.53 (95% CI, 1.78–3.59) for the mortality risk 10 years after surgery. Moreover, positive/higher PD-L1 expression was significantly associated with positive lymph node metastasis (RR, 1.33; 95% CI, 1.04–1.70), poor nuclear grade (RR, 1.24; 95% CI, 1.07–1.43), and negative estrogen receptor status (RR, 2.45; 95% CI, 1.31–4.60) in breast cancer patients. Our findings suggest that PD-L1 can serve as a significant biomarker for poor prognosis and the adverse clinicopathologic features of breast cancer and could facilitate the better management of individual patients. PMID:27227453

  4. Programmed death-ligand 1, 2 expressions are decreased in the psoriatic epidermis.

    PubMed

    Kim, Dae Suk; Je, Jung Hwan; Kim, Sung Hee; Shin, Dongyun; Kim, Tae-Gyun; Kim, Do Young; Kim, Soo Min; Lee, Min-Geol

    2015-08-01

    Psoriatic keratinocytes are one of the key components that amplify and maintain chronic inflammation. We hypothesized that lack of proper regulatory functions of keratinocytes can be responsible for chronic inflammation in psoriasis. Programmed death-ligands (PD-L) 1, 2 are expressed on keratinocytes, and expressions by nonlymphoid cells are important for mediating peripheral T cell tolerance. In our study, we investigated whether PD-L1, 2 expressions are altered in keratinocytes of psoriatic epidermis compared to normal epidermis. Epidermis was separated and analyzed for PD-L1, 2 expressions in mRNA and protein levels. Immunohistochemical stainings were done in skin biopsy samples from psoriasis, normal skin, allergic contact dermatitis (ACD), pityriasis rosea (PR) and lichen planus (LP). Expressions of PD-L1, 2 mRNA levels were significantly decreased in psoriatic epidermis compared to normal epidermis. In protein levels, PD-L1 expression was significantly decreased in psoriatic epidermis. However, PD-L2 expression was not detected in both normal and psoriatic epidermis. Immunohistochemical stainings revealed significantly less PD-L1 expression in psoriatic epidermis compared to normal epidermis. Even compared to other cutaneous inflammatory diseases, psoriatic epidermis showed less expression than ACD, PR and LP. PD-L2 expression was minimally detected in normal epidermis and not in psoriatic epidermis, but its expression was increased in ACD, PR and LP. In conclusion, we demonstrated that PD-L1, 2 are decreased in psoriatic epidermis in mRNA and protein levels. In addition, we showed that their expression was significantly lower than other inflammatory skin diseases. We suggest that decreased expression of PD-L1, 2 on psoriatic epidermis can contribute to its chronic unregulated inflammatory characteristics. PMID:26133691

  5. Programmed cell death 2 functions as a tumor suppressor in osteosarcoma

    PubMed Central

    Yang, Yuanxun; Jin, Yan; Du, Wenxi

    2015-01-01

    Objectives: To investigate the role of programmed cell death 2 (PDCD2) in osteosarcoma (OS), along with correlations between PDCD2 and CD4+/CD8+. Methods: Sprague-Dawley (SD) rats were randomly assigned to control group and OS group. The OS group rats were subjected to induce models of OS by transplantation with UMR106 cells. Peripheral blood was collected to test the percentages of the CD4+ and CD8+ cell subsets using flow cytometry (FCM). Western blotting was performed to determine the PDCD2 protein level. The correlations between PDCD2 and CD4+/CD8+ were analyzed by Pearson correlation coefficient. Besides, specific small interfering RNAs (siRNA) against PDCD2 and nonspecific (NS)-siRNA were transfected into UMR106 cells. Cell viability and invasive ability were determined after transfection. Results: CD4+ cells percentages were significantly decreased in the OS group, while CD8+ cells were significantly increased (P < 0.05). The PDCD2 protein levels were markedly lower than that in the control group (P < 0.05). Additionally, PDCD2 was positively correlated with CD4+ (R2 = 0.66, P < 0.05), but was negatively correlated with CD8+ (R2 = -0.94, P < 0.05). Moreover, the cell viability and invasion ability were significantly higher than that in the control group and the NS siRNA group after transfection with PDCD2 siRNA (P < 0.05). Conclusion: These results suggest that PDCD2 is involved in the pathogenesis of OS, and PDCD2 may play an important role in tumor suppression. These mechanisms might be related to immune response induced by CD4+ and CD8+ T cells. PMID:26617804

  6. Programmed death ligand-1 expression on donor T cells drives graft-versus-host disease lethality.

    PubMed

    Saha, Asim; O'Connor, Roddy S; Thangavelu, Govindarajan; Lovitch, Scott B; Dandamudi, Durga Bhavani; Wilson, Caleph B; Vincent, Benjamin G; Tkachev, Victor; Pawlicki, Jan M; Furlan, Scott N; Kean, Leslie S; Aoyama, Kazutoshi; Taylor, Patricia A; Panoskaltsis-Mortari, Angela; Foncea, Rocio; Ranganathan, Parvathi; Devine, Steven M; Burrill, Joel S; Guo, Lili; Sacristan, Catarina; Snyder, Nathaniel W; Blair, Ian A; Milone, Michael C; Dustin, Michael L; Riley, James L; Bernlohr, David A; Murphy, William J; Fife, Brian T; Munn, David H; Miller, Jeffrey S; Serody, Jonathan S; Freeman, Gordon J; Sharpe, Arlene H; Turka, Laurence A; Blazar, Bruce R

    2016-07-01

    Programmed death ligand-1 (PD-L1) interaction with PD-1 induces T cell exhaustion and is a therapeutic target to enhance immune responses against cancer and chronic infections. In murine bone marrow transplant models, PD-L1 expression on host target tissues reduces the incidence of graft-versus-host disease (GVHD). PD-L1 is also expressed on T cells; however, it is unclear whether PD-L1 on this population influences immune function. Here, we examined the effects of PD-L1 modulation of T cell function in GVHD. In patients with severe GVHD, PD-L1 expression was increased on donor T cells. Compared with mice that received WT T cells, GVHD was reduced in animals that received T cells from Pdl1-/- donors. PD-L1-deficient T cells had reduced expression of gut homing receptors, diminished production of inflammatory cytokines, and enhanced rates of apoptosis. Moreover, multiple bioenergetic pathways, including aerobic glycolysis, oxidative phosphorylation, and fatty acid metabolism, were also reduced in T cells lacking PD-L1. Finally, the reduction of acute GVHD lethality in mice that received Pdl1-/- donor cells did not affect graft-versus-leukemia responses. These data demonstrate that PD-L1 selectively enhances T cell-mediated immune responses, suggesting a context-dependent function of the PD-1/PD-L1 axis, and suggest selective inhibition of PD-L1 on donor T cells as a potential strategy to prevent or ameliorate GVHD. PMID:27294527

  7. Programmed cell death promotes male sterility in the functional dioecious Opuntia stenopetala (Cactaceae)

    PubMed Central

    Flores-Rentería, Lluvia; Orozco-Arroyo, Gregorio; Cruz-García, Felipe; García-Campusano, Florencia; Alfaro, Isabel; Vázquez-Santana, Sonia

    2013-01-01

    Background and Aims The sexual separation in dioecious species has interested biologists for decades; however, the cellular mechanism leading to unisexuality has been poorly understood. In this study, the cellular changes that lead to male sterility in the functionally dioecious cactus, Opuntia stenopetala, are described. Methods The spatial and temporal patterns of programmed cell death (PCD) were determined in the anthers of male and female flowers using scanning electron microscopy analysis and histological observations, focusing attention on the transition from bisexual to unisexual development. In addition, terminal deoxynucleotidyl transferase-mediated dUTP nick-end labelling assays were used as an indicator of DNA fragmentation to corroborate PCD. Key results PCD was detected in anthers of both female and male flowers, but their patterns differed in time and space. Functionally male individuals developed viable pollen, and normal development involved PCD on each layer of the anther wall, which occurred progressively from the inner (tapetum) to the outer layer (epidermis). Conversely, functional female individuals aborted anthers by premature and displaced PCD. In anthers of female flowers, the first signs of PCD, such as a nucleus with irregular shape, fragmented and condensed chromatin, high vacuolization and condensed cytoplasm, occurred at the microspore mother cell stage. Later these features were observed simultaneously in all anther wall layers, connective tissue and filament. Neither pollen formation nor anther dehiscence was detected in female flowers of O. stenopetala due to total anther disruption. Conclusions Temporal and spatial changes in the patterns of PCD are responsible for male sterility of female flowers in O. stenopetala. Male fertility requires the co-ordination of different events, which, when altered, can lead to male sterility and to functionally unisexual individuals. PCD could be a widespread mechanism in the determination of

  8. Programmed Cell Death Progresses Differentially in Epidermal and Mesophyll Cells of Lily Petals

    PubMed Central

    Mochizuki-Kawai, Hiroko; Niki, Tomoko; Shibuya, Kenichi; Ichimura, Kazuo

    2015-01-01

    In the petals of some species of flowers, programmed cell death (PCD) begins earlier in mesophyll cells than in epidermal cells. However, PCD progression in each cell type has not been characterized in detail. We separately constructed a time course of biochemical signs and expression patterns of PCD-associated genes in epidermal and mesophyll cells in Lilium cv. Yelloween petals. Before visible signs of senescence could be observed, we found signs of PCD, including DNA degradation and decreased protein content in mesophyll cells only. In these cells, the total proteinase activity increased on the day after anthesis. Within 3 days after anthesis, the protein content decreased by 61.8%, and 22.8% of mesophyll cells was lost. A second peak of proteinase activity was observed on day 6, and the number of mesophyll cells decreased again from days 4 to 7. These biochemical and morphological results suggest that PCD progressed in steps during flower life in the mesophyll cells. PCD began in epidermal cells on day 5, in temporal synchrony with the time course of visible senescence. In the mesophyll cells, the KDEL-tailed cysteine proteinase (LoCYP) and S1/P1 nuclease (LoNUC) genes were upregulated before petal wilting, earlier than in epidermal cells. In contrast, relative to that in the mesophyll cells, the expression of the SAG12 cysteine proteinase homolog (LoSAG12) drastically increased in epidermal cells in the final stage of senescence. These results suggest that multiple PCD-associated genes differentially contribute to the time lag of PCD progression between epidermal and mesophyll cells of lily petals. PMID:26605547

  9. Ricinosomes: an organelle for developmentally regulated programmed cell death in senescing plant tissues

    NASA Astrophysics Data System (ADS)

    Gietl, C.; Schmid, M.

    2001-02-01

    This review describes aspects of programmed cell death (PCD). Present research maps the enzymes involved and explores the signal transduction pathways involved in their synthesis. A special organelle (the ricinosome) has been discovered in the senescing endosperm of germinating castor beans (Ricinus communis) that develops at the beginning of PCD and delivers large amounts of a papain-type cysteine endopeptidase (CysEP) in the final stages of cellular disintegration. Castor beans store oil and proteins in a living endosperm surrounding the cotyledons. These stores are mobilized during germination and transferred into the cotyledons. PCD is initiated after this transfer is complete. The CysEP is synthesized in the lumen of the endoplasmic reticulum (ER) where it is retained by its C-terminal KDEL peptide as a rather inactive pro-enzyme. Large number of ricinosomes bud from the ER at the same time as the nuclear DNA is characteristically fragmented during PCD. The mitochondria, glyoxysomes and ribosomes are degraded in autophagic vacuoles, while the endopeptidase is activated by removal of the propeptide and the KDEL tail and enters the cytosol. The endosperm dries and detaches from the cotyledons. A homologous KDEL-tailed cysteine endopeptidase has been found in several senescing tissues; it has been localized in ricinosomes of withering day-lily petals and dying seed coats. Three genes for a KDEL-tailed cysteine endopeptidase have been identified in Arabidopsis. One is expressed in senescing ovules, the second in the vascular vessels and the third in maturing siliques. These genes open the way to exploring PCD in plants.

  10. Salicylic acid induced cysteine protease activity during programmed cell death in tomato plants.

    PubMed

    Kovács, Judit; Poór, Péter; Szepesi, Ágnes; Tari, Irma

    2016-06-01

    The hypersensitive response (HR), a type of programmed cell death (PCD) during biotic stress is mediated by salicylic acid (SA). The aim of this work was to reveal the role of proteolysis and cysteine proteases in the execution of PCD in response of SA. Tomato plants were treated with sublethal (0.1 mM) and lethal (1 mM) SA concentrations through the root system. Treatment with 1 mM SA increased the electrolyte leakage and proteolytic activity and reduced the total protein content of roots after 6 h, while the proteolytic activity did not change in the leaves and in plants exposed to 0.1 mM SA. The expression of the papain-type cysteine protease SlCYP1, the vacuolar processing enzyme SlVPE1 and the tomato metacaspase SlMCA1 was induced within the first three hours in the leaves and after 0.5 h in the roots in the presence of 1 mM SA but the transcript levels did not increase significantly at sublethal SA. The Bax inhibitor-1 (SlBI-1), an antiapoptotic gene was over-expressed in the roots after SA treatments and it proved to be transient in the presence of sublethal SA. Protease inhibitors, SlPI2 and SlLTC were upregulated in the roots by sublethal SA but their expression remained low at 1 mM SA concentration. It is concluded that in contrast to leaves the SA-induced PCD is associated with increased proteolytic activity in the root tissues resulting from a fast up-regulation of specific cysteine proteases and down-regulation of protease inhibitors. PMID:27165526

  11. Clinical significance of programmed death ligand-1 (PD-L1) in colorectal serrated adenocarcinoma

    PubMed Central

    Zhu, Hailong; Qin, Huali; Huang, Ziling; Li, Shuai; Zhu, Xuyou; He, Jian; Yang, Jing; Yu, Xiaoting; Yi, Xianghua

    2015-01-01

    Preliminary research results with antibody of the negative costimulatory molecule programmed cell death ligand-1 (PD-L1) suggested its expression on tumor cells associated with various tumor grade and postoperative prognosis. However, to date, there is no information of PD-L1 expression in colorectal serrated adenocarcinoma (SAC) and its clinical relevance. Therefore, the purpose of this study is to investigate the clinical significance of PD-L1 expression in a large cohort of patients with SAC. Here, we first retrospectively identified all SAC collected at our institution between August 2008 and May 2013. The expression levels of PD-L1 were examined by immunohistochemistry in 120 patients with SAC. We further evaluated the correlation between expression data and clinical parameters, including patient age, sex, tumor size, location, grade, primary tumor classification (pT), lymph node metastasis (pN), distant metastases (pM), and vascular invasion. Strong PD-L1 expression was detected in 25% of SAC. Higher expression of PD-L1 was significantly associated with pN (P=0.003) and pM (P=0.014). Survival analysis showed that patients with higher expression of PD-L1 had a poorer prognosis (P=0.045). However, multivariate regression analysis did not support PD-L1 as an independent prognostic factor (P=0.430). Our data suggest that PD-L1 may represent a new biomarker of metastasis and prognosis for patients with SAC, but as a target in the treatment of SAC is less certain. PMID:26464688

  12. Programmed cell death (PCD): an essential process of cereal seed development and germination.

    PubMed

    Domínguez, Fernando; Cejudo, Francisco J

    2014-01-01

    The life cycle of cereal seeds can be divided into two phases, development and germination, separated by a quiescent period. Seed development and germination require the growth and differentiation of new tissues, but also the ordered disappearance of cells, which takes place by a process of programmed cell death (PCD). For this reason, cereal seeds have become excellent model systems for the study of developmental PCD in plants. At early stages of seed development, maternal tissues such as the nucellus, the pericarp, and the nucellar projections undergo a progressive degeneration by PCD, which allows the remobilization of their cellular contents for nourishing new filial tissues such as the embryo and the endosperm. At a later stage, during seed maturation, the endosperm undergoes PCD, but these cells remain intact in the mature grain and their contents will not be remobilized until germination. Thus, the only tissues that remain alive when seed development is completed are the embryo axis, the scutellum and the aleurone layer. In germinating seeds, both the scutellum and the aleurone layer play essential roles in producing the hydrolytic enzymes for the mobilization of the storage compounds of the starchy endosperm, which serve to support early seedling growth. Once this function is completed, scutellum and aleurone cells undergo PCD; their contents being used to support the growth of the germinated embryo. PCD occurs with tightly controlled spatial-temporal patterns allowing coordinated fluxes of nutrients between the different seed tissues. In this review, we will summarize the current knowledge of the tissues undergoing PCD in developing and germinating cereal seeds, focussing on the biochemical features of the process. The effect of hormones and redox regulation on PCD control will be discussed. PMID:25120551

  13. Programmed cell death (PCD): an essential process of cereal seed development and germination

    PubMed Central

    Domínguez, Fernando; Cejudo, Francisco J.

    2014-01-01

    The life cycle of cereal seeds can be divided into two phases, development and germination, separated by a quiescent period. Seed development and germination require the growth and differentiation of new tissues, but also the ordered disappearance of cells, which takes place by a process of programmed cell death (PCD). For this reason, cereal seeds have become excellent model systems for the study of developmental PCD in plants. At early stages of seed development, maternal tissues such as the nucellus, the pericarp, and the nucellar projections undergo a progressive degeneration by PCD, which allows the remobilization of their cellular contents for nourishing new filial tissues such as the embryo and the endosperm. At a later stage, during seed maturation, the endosperm undergoes PCD, but these cells remain intact in the mature grain and their contents will not be remobilized until germination. Thus, the only tissues that remain alive when seed development is completed are the embryo axis, the scutellum and the aleurone layer. In germinating seeds, both the scutellum and the aleurone layer play essential roles in producing the hydrolytic enzymes for the mobilization of the storage compounds of the starchy endosperm, which serve to support early seedling growth. Once this function is completed, scutellum and aleurone cells undergo PCD; their contents being used to support the growth of the germinated embryo. PCD occurs with tightly controlled spatial-temporal patterns allowing coordinated fluxes of nutrients between the different seed tissues. In this review, we will summarize the current knowledge of the tissues undergoing PCD in developing and germinating cereal seeds, focussing on the biochemical features of the process. The effect of hormones and redox regulation on PCD control will be discussed. PMID:25120551

  14. Contribution of programmed cell death receptor (PD)-1 to Kupffer cell dysfunction in murine polymicrobial sepsis.

    PubMed

    Wang, Fei; Huang, Xin; Chung, Chun-Shiang; Chen, Yaping; Hutchins, Noelle A; Ayala, Alfred

    2016-08-01

    Recent studies suggest that coinhibitory receptors appear to be important in contributing sepsis-induced immunosuppression. Our laboratory reported that mice deficient in programmed cell death receptor (PD)-1 have increased bacterial clearance and improved survival in experimental sepsis induced by cecal ligation and puncture (CLP). In response to infection, the liver clears the blood of bacteria and produces cytokines. Kupffer cells, the resident macrophages in the liver, are strategically situated to perform the above functions. However, it is not known if PD-1 expression on Kupffer cells is altered by septic stimuli, let alone if PD-1 ligation contributes to the altered microbial handling seen. Here we report that PD-1 is significantly upregulated on Kupffer cells during sepsis. PD-1-deficient septic mouse Kupffer cells displayed markedly enhanced phagocytosis and restoration of the expression of major histocompatibility complex II and CD86, but reduced CD80 expression compared with septic wild-type (WT) mouse Kupffer cells. In response to ex vivo LPS stimulation, the cytokine productive capacity of Kupffer cells derived from PD-1-/- CLP mice exhibited a marked, albeit partial, restoration of the release of IL-6, IL-12, IL-1β, monocyte chemoattractant protein-1, and IL-10 compared with septic WT mouse Kupffer cells. In addition, PD-1 gene deficiency decreased LPS-induced apoptosis of septic Kupffer cells, as indicated by decreased levels of cleaved caspase-3 and reduced terminal deoxynucleotidyl transferase dUTP nick end-labeling-positive cells. Exploring the signal pathways involved, we found that, after ex vivo LPS stimulation, septic PD-1-/- mouse Kupffer cells exhibited an increased Akt phosphorylation and a reduced p38 phosphorylation compared with septic WT mouse Kupffer cells. Together, these results indicate that PD-1 appears to play an important role in regulating the development of Kupffer cell dysfunction seen in sepsis. PMID:27288425

  15. Programmed cell death activated by Rose Bengal in Arabidopsis thaliana cell suspension cultures requires functional chloroplasts

    PubMed Central

    Gutiérrez, Jorge; González-Pérez, Sergio; García-García, Francisco; Daly, Cara T.; Lorenzo, Óscar; Revuelta, José L.; McCabe, Paul F.; Arellano, Juan B.

    2014-01-01

    Light-grown Arabidopsis thaliana cell suspension culture (ACSC) were subjected to mild photooxidative damage with Rose Bengal (RB) with the aim of gaining a better understanding of singlet oxygen-mediated defence responses in plants. Additionally, ACSC were treated with H2O2 at concentrations that induced comparable levels of protein oxidation damage. Under low to medium light conditions, both RB and H2O2 treatments activated transcriptional defence responses and inhibited photosynthetic activity, but they differed in that programmed cell death (PCD) was only observed in cells treated with RB. When dark-grown ACSC were subjected to RB in the light, PCD was suppressed, indicating that the singlet oxygen-mediated signalling pathway in ACSC requires functional chloroplasts. Analysis of up-regulated transcripts in light-grown ACSC, treated with RB in the light, showed that both singlet oxygen-responsive transcripts and transcripts with a key role in hormone-activated PCD (i.e. ethylene and jasmonic acid) were present. A co-regulation analysis proved that ACSC treated with RB exhibited higher correlation with the conditional fluorescence (flu) mutant than with other singlet oxygen-producing mutants or wild-type plants subjected to high light. However, there was no evidence for the up-regulation of EDS1, suggesting that activation of PCD was not associated with the EXECUTER- and EDS1-dependent signalling pathway described in the flu mutant. Indigo Carmine and Methylene Violet, two photosensitizers unable to enter chloroplasts, did not activate transcriptional defence responses in ACSC; however, whether this was due to their location or to their inherently low singlet oxygen quantum efficiencies was not determined. PMID:24723397

  16. Photoacoustic spectral analysis to sense programmed erythrocyte cell death (eryptosis) for monitoring cancer response to treatment

    NASA Astrophysics Data System (ADS)

    Fadhel, Muhannad N.; Kibria, Fayruz; Kolios, Michael C.

    2016-03-01

    Many types of cancer therapies target the tumor microenvironment, causing biochemical and morphological changes in tissues. In therapies using ultrasound activated microbubbles, vascular collapse is typically reported. Red blood cells (RBCs) that leak out of the vasculature become exposed to the ceramide that is released from damaged endothelial cells. Ceramide can induce programmed cell death in RBCs (eryptosis), and is characterized by cell shrinkage, membrane blebbing and scrambling. Since the effect of eryptotic cells on generated photoacoustics (PA) signals has not been reported, we investigated the potential PA may have for cancer treatment monitoring by using PA spectral analysis to sense eryptosis. To induce eryptosis, C2-ceramide was added to RBC suspensions and that were incubated for 24 hours at 37°C. A control and ceramide-induced sample was imaged in a vessel phantom using a high frequency PA system (VevoLAZR, 10 - 45 MHz bandwidth) irradiated with multiple wavelengths ranging from 680 to 900 nm. PA spectral parameters were measured and linked to changes in RBCs as it underwent eryptosis. These samples were examined using optical microscopy, a blood gas analyzer and an integrating sphere setup to measure optical properties (wavelengths 600 - 900 nm). The results of the experiment demonstrate how PA spectral analysis can be used to identify eryptosis at a depth of more than 1 cm into the phantom using ultrasound derived the y-intercept and mid bandfit (MBF) parameters at optical wavelengths of 800 - 900 nm. These parameters were correlated to the morphological and biochemical changes that eryptotic RBCs display. The results establish the potential of PA in cancer treatment monitoring through sensing treatment induced eryptosis.

  17. The BMP antagonist Gremlin regulates outgrowth, chondrogenesis and programmed cell death in the developing limb.

    PubMed

    Merino, R; Rodriguez-Leon, J; Macias, D; Gañan, Y; Economides, A N; Hurle, J M

    1999-12-01

    In this study, we have analyzed the expression and function of Gremlin in the developing avian limb. Gremlin is a member of the DAN family of BMP antagonists highly conserved through evolution able to bind and block BMP2, BMP4 and BMP7. At early stages of development, gremlin is expressed in the dorsal and ventral mesoderm in a pattern complementary to that of bmp2, bmp4 and bmp7. The maintenance of gremlin expression at these stages is under the control of the AER, ZPA, and BMPs. Exogenous administration of recombinant Gremlin indicates that this protein is involved in the control of limb outgrowth. This function appears to be mediated by the neutralization of BMP function to maintain an active AER, to restrict the extension of the areas of programmed cell death and to confine chondrogenesis to the central core mesenchyme of the bud. At the stages of digit formation, gremlin is expressed in the proximal boundary of the interdigital mesoderm of the chick autopod. The anti-apoptotic influence of exogenous Gremlin, which results in the formation of soft tissue syndactyly in the chick, together with the expression of gremlin in the duck interdigital webs, indicates that Gremlin regulates the regression of the interdigital tissue. At later stages of limb development, gremlin is expressed in association with the differentiating skeletal pieces, muscles and the feather buds. The different expression of Gremlin in relation with other BMP antagonists present in the limb bud, such as Noggin, Chordin and Follistatin indicates that the functions of BMPs are regulated specifically by the different BMP antagonists, acting in a complementary fashion rather than being redundant signals. PMID:10556075

  18. Comprehensive characterization of programmed death ligand structural rearrangements in B-cell non-Hodgkin lymphomas.

    PubMed

    Chong, Lauren C; Twa, David D W; Mottok, Anja; Ben-Neriah, Susana; Woolcock, Bruce W; Zhao, Yongjun; Savage, Kerry J; Marra, Marco A; Scott, David W; Gascoyne, Randy D; Morin, Ryan D; Mungall, Andrew J; Steidl, Christian

    2016-09-01

    Programmed death ligands (PDLs) are immune-regulatory molecules that are frequently affected by chromosomal alterations in B-cell lymphomas. Although PDL copy-number variations are well characterized, a detailed and comprehensive analysis of structural rearrangements (SRs) and associated phenotypic consequences is largely lacking. Here, we used oligonucleotide capture sequencing of 67 formalin-fixed paraffin-embedded tissues derived from primary B-cell lymphomas and 1 cell line to detect and characterize, at base-pair resolution, SRs of the PDL locus (9p24.1; harboring PDL1/CD274 and PDL2/PDCD1LG2). We describe 36 novel PDL SRs, including 17 intrachromosomal events (inversions, duplications, deletions) and 19 translocations involving BZRAP-AS1, CD44, GET4, IL4R, KIAA0226L, MID1, RCC1, PTPN1 and segments of the immunoglobulin loci. Moreover, analysis of the precise chromosomal breakpoints reveals 2 distinct cluster breakpoint regions (CBRs) within either CD274 (CBR1) or PDCD1LG2 (CBR2). To determine the phenotypic consequences of these SRs, we performed immunohistochemistry for CD274 and PDCD1LG2 on primary pretreatment biopsies and found that PDL SRs are significantly associated with PDL protein expression. Finally, stable ectopic expression of wild-type PDCD1LG2 and the PDCD1LG2-IGHV7-81 fusion showed, in coculture, significantly reduced T-cell activation. Taken together, our data demonstrate the complementary utility of fluorescence in situ hybridization and capture sequencing approaches and provide a classification scheme for PDL SRs with implications for future studies using PDL immune-checkpoint inhibitors in B-cell lymphomas. PMID:27268263

  19. Overexpression of Arabidopsis Ceramide Synthases Differentially Affects Growth, Sphingolipid Metabolism, Programmed Cell Death, and Mycotoxin Resistance.

    PubMed

    Luttgeharm, Kyle D; Chen, Ming; Mehra, Amit; Cahoon, Rebecca E; Markham, Jonathan E; Cahoon, Edgar B

    2015-10-01

    Ceramide synthases catalyze an N-acyltransferase reaction using fatty acyl-coenzyme A (CoA) and long-chain base (LCB) substrates to form the sphingolipid ceramide backbone and are targets for inhibition by the mycotoxin fumonisin B1 (FB1). Arabidopsis (Arabidopsis thaliana) contains three genes encoding ceramide synthases with distinct substrate specificities: LONGEVITY ASSURANCE GENE ONE HOMOLOG1 (LOH1; At3g25540)- and LOH3 (At1g19260)-encoded ceramide synthases use very-long-chain fatty acyl-CoA and trihydroxy LCB substrates, and LOH2 (At3g19260)-encoded ceramide synthase uses palmitoyl-CoA and dihydroxy LCB substrates. In this study, complementary DNAs for each gene were overexpressed to determine the role of individual isoforms in physiology and sphingolipid metabolism. Differences were observed in growth resulting from LOH1 and LOH3 overexpression compared with LOH2 overexpression. LOH1- and LOH3-overexpressing plants had enhanced biomass relative to wild-type plants, due in part to increased cell division, suggesting that enhanced synthesis of very-long-chain fatty acid/trihydroxy LCB ceramides promotes cell division and growth. Conversely, LOH2 overexpression resulted in dwarfing. LOH2 overexpression also resulted in the accumulation of sphingolipids with C16 fatty acid/dihydroxy LCB ceramides, constitutive induction of programmed cell death, and accumulation of salicylic acid, closely mimicking phenotypes observed previously in LCB C-4 hydroxylase mutants defective in trihydroxy LCB synthesis. In addition, LOH2- and LOH3-overexpressing plants acquired increased resistance to FB1, whereas LOH1-overexpressing plants showed no increase in FB1 resistance, compared with wild-type plants, indicating that LOH1 ceramide synthase is most strongly inhibited by FB1. Overall, the findings described here demonstrate that overexpression of Arabidopsis ceramide synthases results in strongly divergent physiological and metabolic phenotypes, some of which have significance

  20. Establishment of the milk-borne transmission as a key factor for the peculiar endemicity of human T-lymphotropic virus type 1 (HTLV-1): the ATL Prevention Program Nagasaki

    PubMed Central

    HINO, Shigeo

    2011-01-01

    In late 2010, the nation-wide screening of pregnant women for human T-lymphotropic virus type 1 (HTLV-1) infection was implemented in Japan to prevent milk-borne transmission of HTLV-1. In the late 1970s, recognition of the adult T-cell leukemia (ATL) cluster in Kyushu, Japan, led to the discovery of the first human retrovirus, HTLV-1. In 1980, we started to investigate mother-to-child transmission (MTCT) for explaining the peculiar endemicity of HTLV-1. Retrospective and prospective epidemiological data revealed the MTCT rate at ∼20%. Cell-mediated transmission of HTLV-1 without prenatal infection suggested a possibility of milk-borne transmission. Common marmosets were successfully infected by oral inoculation of HTLV-1 harboring cells. A prefecture-wide intervention study to refrain from breast-feeding by carrier mothers, the ATL Prevention Program Nagasaki, was commenced in July 1987. It revealed a marked reduction of HTLV-1 MTCT by complete bottle-feeding from 20.3% to 2.5%, and a significantly higher risk of short-term breast-feeding (<6 months) than bottle-feeding (7.4% vs. 2.5%, P < 0.001). PMID:21558754

  1. Bmp, Fgf and Wnt signalling in programmed cell death and chondrogenesis during vertebrate limb development: the role of Dickkopf-1.

    PubMed

    Grotewold, Lars; Rüther, Ulrich

    2002-01-01

    Dickkopf-1 (Dkk-1) is a potent head inducer in Xenopus. This effect can be attributed to its capability to specifically inhibit Wnt/beta-catenin signalling. Recent data point to a crucial role for Dkk-1 in the control of programmed cell death during vertebrate limb development. In this paper, we present a comparative expression analysis of Dkk-1, Bmp-4 and Sox-9 as well as data on the regulation of Dkk-1 by Wnt. Finally, we summarize the current knowledge of its potential function in the developing limb and present a model how the interplay of the Bmp, Fgf and Wnt signalling pathways might differentially regulate programmed cell death versus chondrogenic differentiation in limb mesodermal cells. PMID:12455632

  2. Type 1 diabetes associated autoimmunity.

    PubMed

    Kahaly, George J; Hansen, Martin P

    2016-07-01

    Diabetes mellitus is increasing in prevalence worldwide. The economic costs are considerable given the cardiovascular complications and co-morbidities that it may entail. Type 1 diabetes (T1D) is a chronic autoimmune disease characterized by the loss of insulin-producing pancreatic β-cells. The pathogenesis of T1D is complex and multifactorial and involves a genetic susceptibility that predisposes to abnormal immune responses in the presence of ill-defined environmental insults to the pancreatic islets. Genetic background may affect the risk for autoimmune disease and patients with T1D exhibit an increased risk of other autoimmune disorders such as autoimmune thyroid disease, Addison's disease, autoimmune gastritis, coeliac disease and vitiligo. Approximately 20%-25% of patients with T1D have thyroid antibodies, and up to 50% of such patients progress to clinical autoimmune thyroid disease. Approximately 0.5% of diabetic patients have concomitant Addison's disease and 4% have coeliac disease. The prevalence of autoimmune gastritis and pernicious anemia is 5% to 10% and 2.6% to 4%, respectively. Early detection of antibodies and latent organ-specific dysfunction is advocated to alert physicians to take appropriate action in order to prevent full-blown disease. Patients and family members should be educated to be able to recognize signs and symptoms of underlying disease. PMID:26903475

  3. Neurofibromatosis type 1 and pregnancy.

    PubMed

    Dugoff, L; Sujansky, E

    1996-12-01

    Neurofibromatosis Type 1 (NF-1) is an autosomal dominant condition which has markedly variable clinical expression, with manifestations ranging from mild cutaneous lesions to severe orthopedic complications and functional impairment. The current obstetrical literature indicates that women with NF-1 have increased complications associated with pregnancy. However, the majority of publications are case reports involving no more than 11 patients each, and are likely biased toward reporting on cases in which complications occurred. This study presents data on pregnancy outcome in 105 women with NF-1. The data were obtained from questionnaires completed by the study participants, and by review of their pregnancy and peripartum medical records. The 105 women had a total of 247 pregnancies, resulting in 182 live births, 44 first trimester spontaneous abortions, 21 elective terminations, and 2 ectopic pregnancies. There were two sets of twins. The cesarean section rate in our series (36%) was greater than the general population rate (9.1-23.5%). In 7 of these patients, the cesarean section was required because of maternal NF-1 complications. The study did not show the previously reported increased incidence of preeclampsia, preterm delivery, intrauterine growth restriction, pregnancy-induced hypertension, stillbirth, spontaneous abortion, or perinatal mortality. Sixty-four (60%) of the one hundred five women reported growth of new neurofibromas during pregnancy and fifty-five (52%) noted enlargement of existing neurofibromas. Nineteen women observed no changes in the size of their neurofibromas and no growth of new neurofibromas during pregnancy. PMID:8957502

  4. Puberty and type 1 diabetes

    PubMed Central

    Chowdhury, Subhankar

    2015-01-01

    Various data on type 1 diabetes mellitus (T1DM) have showed that the incidence of T1DM peaks at puberty. However, diabetes control and complications could be adversely affected by the physiological changes of puberty. In early years of insulin therapy, severe growth retardation with pubertal delay, like in Mauriac syndrome, have been reported. Insulin and leptin are metabolic factors, circulating in the periphery, which participate in the hypothalamic control of metabolism and reproduction. Insulin may be an important regulator of leptin in humans. Increased levels of advanced glycation end products suppress activation of the gonadotropin-releasing hormone (GnRH) pulse generator, resulting in pubertal delay. Glycemic control deteriorates during puberty as the lean body mass doubles mainly over a period of 25 years, which increases insulin requirement. There is also an increase in insulin resistance over the period of puberty. In normal individuals, fasting and postprandial insulin concentrations reach a peak in both sexes in mid to late puberty. Puberty, at all stages, has the worst insulin resistance. It has been observed that an excessive GH secretion in T1DM during puberty has significant effects on ketogenesis. Adolescent T1DM tends to decompensate very rapidly and develop ketoacidosis when the late night insulin dose is omitted. Adolescence is a critical developmental phase that presents unique challenges and opportunities to individuals with diabetes, their families and their healthcare providers. PMID:25941652

  5. Influence of the programmed cell death of lymphocytes on the immunity of patients with atopic bronchial asthma

    PubMed Central

    2014-01-01

    Background Fairly recent data highlight the role of programmed cell death and autoimmunity, as potentially important factors in the pathogenesis of chronic obstructive airway diseases. The purpose of our research was to determine the influence of apoptotic factors on the immunity of patients with atopic bronchial asthma according to the degree of severity. Method The study was performed on the peripheral blood of patients with atopic bronchial asthma with different severity. The Immunological aspects were determined with ELISA, the fluorimetric method and the method of precipitation with polyethylene glycol. And the quantification of the parameters of the programmed cell death was performed by the method of flow cytometry and electron microscopy method. Results The data obtained from morphological and biochemical parameters show the deregulation of Programmed Death of lymphocytes of patients with atopic bronchial asthma but individual for each group of patients. This dysfunction might induce the secretion of autoantibodies against DNA. This could explain the accumulation of circulating immune complex with average size considered as the most pathogenic in patients with bronchial asthma especially in the patients of serious severity. It should be noted that Patients with bronchial asthma of mild and severe severity had different way and did not have the same degree of deficiency of the immune system. Conclusion These data suggested that apoptotic factor of lymphocytes may play an important role in controlling immunity of patients with atopic bronchial asthma. PMID:24646379

  6. Microautophagy involves programmed cell semi-death of sieve elements in developing caryopsis of Triticum aestivum L.

    PubMed

    Yang, Wenli; Cai, Jingtong; Zhou, Zhuqing; Zhou, Guangsheng; Mei, Fangzhu; Wang, Likai

    2015-12-01

    Differentiation of sieve elements (SEs) involves programmed cell semi-death, in which a small amount of organelles is retained. However, the mechanisms by which a large amount of SE cytoplasm is degraded and the specific proteases involved are not clear. In this study, we confirmed that the degradation of cytoplasm outside of the vacuole was mediated by microautophagy of the vacuole, and that the tonoplast selectively fused with the plasma membrane after most of the cytoplasm in the vacuoles was degraded. The integration of space enclosed a small amount of cytoplasm. Therefore, that fraction of the cytoplasm was preserved. At the same time, the cytosol was weakly acidic during membrane fusion because part of the tonoplast was ruptured. We also demonstrated that wheat aspartic protease (WAP1) and proteases including cathepsin B activity (PICA) were involved in programmed cell semi-death of SEs. PICA showed strongest activity before mass of the cytoplasm was degraded, which might contribute toward SE stability. We found that WAP1 mainly degraded the cytoplasm. Therefore, programmed cell semi-death of SEs might result from the joint action of vacuoles and multiple proteases. PMID:26146941

  7. Characterization of a serine protease-mediated cell death program activated in human leukemia cells

    SciTech Connect

    O'Connell, A.R.; Holohan, C.; Torriglia, A.; Lee, B.F.; Stenson-Cox, C. . E-mail: catherine.stenson@nuigalway.ie

    2006-01-01

    Tightly controlled proteolysis is a defining feature of apoptosis and caspases are critical in this regard. Significant roles for non-caspase proteases in cell death have been highlighted. Staurosporine causes a rapid induction of apoptosis in virtually all mammalian cell types. Numerous studies demonstrate that staurosporine can activate cell death under caspase-inhibiting circumstances. The aim of this study was to investigate the proteolytic mechanisms responsible for cell death under these conditions. To that end, we show that inhibitors of serine proteases can delay cell death in one such system. Furthermore, through profiling of proteolytic activation, we demonstrate, for the first time, that staurosporine activates a chymotrypsin-like serine protease-dependent cell death in HL-60 cells independently, but in parallel with the caspase controlled systems. Features of the serine protease-mediated system include cell shrinkage and apoptotic morphology, regulation of caspase-3, altered nuclear morphology, generation of an endonuclease and DNA degradation. We also demonstrate a staurosporine-induced activation of a putative 16 kDa chymotrypsin-like protein during apoptosis.

  8. Association of programmed death-1 gene polymorphism rs2227981 with tumor: evidence from a meta analysis

    PubMed Central

    Mamat, Umarjan; Arkinjan, Muyassar

    2015-01-01

    To investigate the association of programmed death-1 gene polymorphism rs2227981 with tumor risk. The PubMed, Medline, Ovid Medline, EMBASE, Web of Knowledge were searched. Meta-analyses were conducted using RevMan 5.2.2 software. Total six researches involving in a total of 1427 tumor patients and 1811 healthy control people were included into this meta analysis. There was no association of PD-1 gene polymorphism with total tumor risk under four genetic models. (CT+TT vs CC, OR=1.09, 95% CI=0.80-1.49, P=0.59; CT+CC vs TT, OR=0.93, 95% CI=0.52-1.66, P=0.61; TT vs CC, OR=0.99, 95% CI=0.57-1.72, P=0.97; CT vs CC, OR=1.16, 95% CI=0.80-1.70, P=0.43). The sub-group analysis shown there were a significantly difference on association of PD-1 gene polymorphism with digestive system tumor risk between tumor patients and healthy control people, except recessive model. (CT+TT vs CC, OR=1.57, 95% CI=1.20-2.07, P=0.001; TT vs CC, OR=1.67, 95% CI=1.12-2.49, P=0.01; CT vs CC, OR=1.51, 95% CI=1.13-2.01, P=0.005). Moreover, the meta analysis results shown that there were association of PD-1 gene polymorphism with tumor risk under two models for the tumor specific occurring only in women. (CT+TT vs CC, OR=0.80, 95% CI=0.67-0.95, P=0.01; TT vs CC, OR=0.61, 95% CI=0.44-0.83, P=0.002). This study suggests that PD-1 gene polymorphism rs2227981 is associated with specific tumor types, including digestive system tumor and tumor specific occurring in woman. PMID:26550254

  9. Increased programmed death ligand-1 expression predicts poor prognosis in hepatocellular carcinoma patients

    PubMed Central

    Gu, Xiaobin; Gao, Xian-Shu; Xiong, Wei; Guo, Wei; Han, Linjun; Bai, Yun; Peng, Chuan; Cui, Ming; Xie, Mu

    2016-01-01

    Purpose Accumulating studies have investigated the prognostic and clinical significance of programmed death ligand-1 (PD-L1) expression in patients with hepatocellular carcinoma (HCC); however, the results were conflicting and inconclusive. We conducted a meta-analysis to combine controversial data to precisely evaluate this issue. Methods Relevant studies were thoroughly searched on PubMed, Web of Science, and Embase until April 2016. Eligible studies were evaluated by selection criteria. Hazard ratio (HR) with 95% confidence interval (CI) was used to estimate the prognostic role of PD-L1 for overall survival (OS) and disease-free survival (DFS)/recurrence-free survival (RFS). Odds ratio (OR) with 95% CI were selected to assess the relationship between PD-L1 and clinicopathological features of HCC patients. Publication bias was tested using Begg’s funnel plot. Results A total of seven studies published from 2009 to 2016 were included for meta-analysis. The data showed that high PD-L1 expression was correlated to shorter OS (HR =2.09, 95% CI: 1.66–2.64, P<0.001) as well as poor DFS/RFS (HR =2.3, 95% CI: 1.46–3.62, P<0.001). In addition, increased PD-L1 expression was also associated with tumor differentiation (HR =1.51, 95% CI: 1–2.29, P=0.05), vascular invasion (HR =2.16, 95% CI: 1.43–3.27, P<0.001), and α-fetoprotein (AFP; HR =1.46, 95% CI: 1–2.14, P=0.05), but had no association with tumor stage, tumor size, hepatitis history, sex, age, or tumor multiplicity. No publication bias was found for all analyses. Conclusion This meta-analysis revealed that overexpression of PD-L1 was predictive for shortened OS and DFS/RFS in HCC. Furthermore, increased PD-L1 expression was associated with less differentiation, vascular invasion, and AFP elevation. PMID:27536144

  10. Nitric Oxide Is Involved in Cadmium-Induced Programmed Cell Death in Arabidopsis Suspension Cultures1[C][W

    PubMed Central

    De Michele, Roberto; Vurro, Emanuela; Rigo, Chiara; Costa, Alex; Elviri, Lisa; Di Valentin, Marilena; Careri, Maria; Zottini, Michela; Sanità di Toppi, Luigi; Lo Schiavo, Fiorella

    2009-01-01

    Exposure to cadmium (Cd2+) can result in cell death, but the molecular mechanisms of Cd2+ cytotoxicity in plants are not fully understood. Here, we show that Arabidopsis (Arabidopsis thaliana) cell suspension cultures underwent a process of programmed cell death when exposed to 100 and 150 μm CdCl2 and that this process resembled an accelerated senescence, as suggested by the expression of the marker senescence-associated gene12 (SAG12). CdCl2 treatment was accompanied by a rapid increase in nitric oxide (NO) and phytochelatin synthesis, which continued to be high as long as cells remained viable. Hydrogen peroxide production was a later event and preceded the rise of cell death by about 24 h. Inhibition of NO synthesis by NG-monomethyl-arginine monoacetate resulted in partial prevention of hydrogen peroxide increase, SAG12 expression, and mortality, indicating that NO is actually required for Cd2+-induced cell death. NO also modulated the extent of phytochelatin content, and possibly their function, by S-nitrosylation. These results shed light on the signaling events controlling Cd2+ cytotoxicity in plants. PMID:19261736

  11. A Single-Amino-Acid Substitution in Obg Activates a New Programmed Cell Death Pathway in Escherichia coli

    PubMed Central

    Dewachter, Liselot; Verstraeten, Natalie; Monteyne, Daniel; Kint, Cyrielle Ines; Versées, Wim; Pérez-Morga, David; Fauvart, Maarten

    2015-01-01

    ABSTRACT Programmed cell death (PCD) is an important hallmark of multicellular organisms. Cells self-destruct through a regulated series of events for the benefit of the organism as a whole. The existence of PCD in bacteria has long been controversial due to the widely held belief that only multicellular organisms would profit from this kind of altruistic behavior at the cellular level. However, over the past decade, compelling experimental evidence has established the existence of such pathways in bacteria. Here, we report that expression of a mutant isoform of the essential GTPase ObgE causes rapid loss of viability in Escherichia coli. The physiological changes that occur upon expression of this mutant protein—including loss of membrane potential, chromosome condensation and fragmentation, exposure of phosphatidylserine on the cell surface, and membrane blebbing—point to a PCD mechanism. Importantly, key regulators and executioners of known bacterial PCD pathways were shown not to influence this cell death program. Collectively, our results suggest that the cell death pathway described in this work constitutes a new mode of bacterial PCD. PMID:26695632

  12. Bcl-2 and Hsp27 act at different levels to suppress programmed cell death.

    PubMed

    Guénal, I; Sidoti-de Fraisse, C; Gaumer, S; Mignotte, B

    1997-07-17

    Apoptosis and necrosis, two morphologically distinct forms of cell death, can be induced by common stimuli depending on the doses and the cell type. This study compares the protective effect of oncoprotein Bcl-2 and of the small stress protein Hsp27 on these two types of cell death. We use rat embryo fibroblasts conditionally immortalized by the tsA58 mutant of SV40 large T antigen as parental cells to develop cell lines carrying inducible bcl-2 or hsp27 genes. Two apoptotic stimuli were used: shift to the restrictive temperature that induced p53-mediated apoptosis and treatment with low doses of hydrogen peroxide. Necrosis was induced by high doses of hydrogen peroxide. Although Bcl-2 and Hsp27 protect these cells from necrotic death, only Bcl-2 appears capable of preventing apoptotic death. Bcl-2 protection is not mediated by a negative effect on the induction of the p53 responsive genes bax or waf1 but it slows down at least two stages of apoptosis: decrease of mitochondrial membrane potential and subsequent morphological changes. In contrast, although Hsp27 has been recently shown to inhibit apoptosis induced by various stimuli, its overexpression has no effect on apoptosis in this cell system. It should be also noticed that the apoptotic stimuli (temperature shift or hydrogen peroxide treatment) induce Hsp27, but not Bcl-2 accumulation suggesting that, in parental cells, Hsp27 might already provide some protection. However, taken together these results suggest that Hsp27, as well as Bcl-2, acts at several levels to inhibit cell death, but that their protective functions only partially overlap. PMID:9233769

  13. A Cell-Permeant Amiloride Derivative Induces Caspase-Independent, AIF-Mediated Programmed Necrotic Death of Breast Cancer Cells

    PubMed Central

    Leon, Leonardo J.; Pasupuleti, Nagarekha; Gorin, Fredric; Carraway, Kermit L.

    2013-01-01

    Amiloride is a potassium-sparing diuretic that has been used as an anti-kaliuretic for the chronic management of hypertension and heart failure. Several studies have identified a potential anti-cancer role for amiloride, however the mechanisms underlying its anti-tumor effects remain to be fully delineated. Our group previously demonstrated that amiloride triggers caspase-independent cytotoxic cell death in human glioblastoma cell lines but not in primary astrocytes. To delineate the cellular mechanisms underlying amiloride’s anti-cancer cytotoxicity, cell permeant and cell impermeant derivatives of amiloride were synthesized that exhibit markedly different potencies in cancer cell death assays. Here we compare the cytotoxicities of 5-benzylglycinyl amiloride (UCD38B) and its free acid 5-glycinyl amiloride (UCD74A) toward human breast cancer cells. UCD74A exhibits poor cell permeability and has very little cytotoxic activity, while UCD38B is cell permeant and induces the caspase-independent death of proliferating and non-proliferating breast cancer cells. UCD38B treatment of human breast cancer cells promotes autophagy reflected in LC3 conversion, and induces the dramatic swelling of the endoplasmic reticulum, however these events do not appear to be the cause of cell death. Surprisingly, UCD38B but not UCD74A induces efficient AIF translocation from the mitochondria to the nucleus, and AIF function is necessary for the efficient induction of cancer cell death. Our observations indicate that UCD38B induces programmed necrosis through AIF translocation, and suggest that its cytosolic accessibility may facilitate drug action. PMID:23646172

  14. Programmed cell death-1 is expressed in large retinal ganglion cells and is upregulated after optic nerve crush.

    PubMed

    Wang, Wei; Chan, Ann; Qin, Yu; Kwong, Jacky M K; Caprioli, Joseph; Levinson, Ralph; Chen, Ling; Gordon, Lynn K

    2015-11-01

    Programmed cell death-1 (PD-1) is a key negative receptor inducibly expressed on T cells, B cells and dendritic cells. It was discovered on T cells undergoing classical programmed cell death. Studies showed that PD-1 ligation promotes retinal ganglion cell (RGC) death during retinal development. The purpose of this present study is to characterize PD-1 regulation in the retina after optic nerve crush (ONC). C57BL/6 mice were subjected to ONC and RGC loss was monitored by immunolabelling with RNA-binding protein with multiple splicing (Rbpms). Time course of PD-1 mRNA expression was determined by real-time PCR. PD-1 expression was detected with anti-PD-1 antibody on whole mount retinas. PD-1 staining intensity was quantitated. Colocalization of PD-1 and cleaved-caspase-3 after ONC was analyzed. Real-time PCR results demonstrated that PD-1 gene expression was significantly upregulated at day 1, 3, 7, 10 and 14 after ONC. Immunofluorescent staining revealed a dramatic increase of PD-1 expression following ONC. In both control and injured retinas, PD-1 tended to be up-expressed in a subtype of RGCs, whose somata size were significantly larger than others. Compared to control, PD-1 intensity in large RGCs was increased by 82% in the injured retina. None of the large RGCs expressed cleaved-caspase-3 at day 5 after ONC. Our work presents the first evidence of PD-1 induction in RGCs after ONC. This observation supports further investigation into the role of PD-1 expression during RGC death or survival following injury. PMID:26277582

  15. Type 1 Diabetes: What Is It?

    MedlinePlus

    ... Snowboarding, Skating Crushes What's a Booger? Type 1 Diabetes: What Is It? KidsHealth > For Kids > Type 1 ... What is it? Let's find out. What Is Diabetes? Diabetes is a disease that affects how the ...

  16. Type 1 Diabetes: What Is It?

    MedlinePlus

    ... Things to Know About Zika & Pregnancy Type 1 Diabetes: What Is It? KidsHealth > For Parents > Type 1 ... in learning to live with the disease. About Diabetes Diabetes is a disease that affects how the ...

  17. A Novel Function for Arabidopsis CYCLASE1 in Programmed Cell Death Revealed by Isobaric Tags for Relative and Absolute Quantitation (iTRAQ) Analysis of Extracellular Matrix Proteins*

    PubMed Central

    Smith, Sarah J.; Kroon, Johan T. M.; Simon, William J.; Slabas, Antoni R.; Chivasa, Stephen

    2015-01-01

    Programmed cell death is essential for plant development and stress adaptation. A detailed understanding of the signal transduction pathways that regulate plant programmed cell death requires identification of the underpinning protein networks. Here, we have used a protagonist and antagonist of programmed cell death triggered by fumonisin B1 as probes to identify key cell death regulatory proteins in Arabidopsis. Our hypothesis was that changes in the abundance of cell death-regulatory proteins induced by the protagonist should be blocked or attenuated by concurrent treatment with the antagonist. We focused on proteins present in the mobile phase of the extracellular matrix on the basis that they are important for cell–cell communications during growth and stress-adaptive responses. Salicylic acid, a plant hormone that promotes programmed cell death, and exogenous ATP, which can block fumonisin B1-induced cell death, were used to treat Arabidopsis cell suspension cultures prior to isobaric-tagged relative and absolute quantitation analysis of secreted proteins. A total of 33 proteins, whose response to salicylic acid was suppressed by ATP, were identified as putative cell death-regulatory proteins. Among these was CYCLASE1, which was selected for further analysis using reverse genetics. Plants in which CYCLASE1 gene expression was knocked out by insertion of a transfer-DNA sequence manifested dramatically increased cell death when exposed to fumonisin B1 or a bacterial pathogen that triggers the defensive hypersensitive cell death. Although pathogen inoculation altered CYCLASE1 gene expression, multiplication of bacterial pathogens was indistinguishable between wild type and CYCLASE1 knockout plants. However, remarkably severe chlorosis symptoms developed on gene knockout plants in response to inoculation with either a virulent bacterial pathogen or a disabled mutant that is incapable of causing disease in wild type plants. These results show that CYCLASE1, which

  18. A Program to Teach Residents Humanistic Skills for Notifying Survivors of a Patient's Death.

    ERIC Educational Resources Information Center

    Davis, Wayne K.

    1989-01-01

    A program using role-playing to model humanistic attitudes and encourage humanistic behavior in internal medicine residents is described. Resident attitudes and key features relating to the program's success are noted. (MSE)

  19. Antisense bcl-2 treatment increases programmed cell death in non-small cell lung cancer cell lines.

    PubMed

    Koty, P P; Zhang, H; Levitt, M L

    1999-02-01

    Programmed cell death (PCD) is a genetically regulated pathway that is altered in many cancers. This process is, in part, regulated by the ratio of PCD inducers (Bax) or inhibitors (Bcl-2). An abnormally high ratio of Bcl-2 to Bax prevents PCD, thus contributing to resistance to chemotherapeutic agents, many of which are capable of inducing PCD. Non-small cell lung cancer (NSCLC) cells demonstrate resistance to these PCD-inducing agents. If Bcl-2 prevents NSCLC cells from entering the PCD pathway, then reducing the amount of endogenous Bcl-2 product may allow these cells to spontaneously enter the PCD pathway. Our purpose was to determine the effects of bcl-2 antisense treatment on the levels of programmed cell death in NSCLC cells. First, we determined whether bcl-2 and bax mRNA were expressed in three morphologically distinct NSCLC cell lines: NCI-H226 (squamous), NCI-H358 (adenocarcinoma), and NCI-H596 (adenosquamous). Cells were then exposed to synthetic antisense bcl-2 oligonucleotide treatment, after which programmed cell death was determined, as evidenced by DNA fragmentation. Bcl-2 protein expression was detected immunohistochemically. All three NSCLC cell lines expressed both bcl-2 and bax mRNA and had functional PCD pathways. Synthetic antisense bcl-2 oligonucleotide treatment resulted in decreased Bcl-2 levels, reduced cell proliferation, decreased cell viability, and increased levels of spontaneous PCD. This represents the first evidence that decreasing Bcl-2 in three morphologically distinct NSCLC cell lines allows the cells to spontaneously enter a PCD pathway. It also indicates the potential therapeutic use of antisense bcl-2 in the treatment of NSCLC. PMID:10217615

  20. Developmental Block and Programmed Cell Death in Bos indicus Embryos: Effects of Protein Supplementation Source and Developmental Kinetics

    PubMed Central

    Garcia, Sheila Merlo; Marinho, Luciana Simões Rafagnin; Lunardelli, Paula Alvares; Seneda, Marcelo Marcondes; Meirelles, Flávio Vieira

    2015-01-01

    The aims of this study were to determine if the protein source of the medium influences zebu embryo development and if developmental kinetics, developmental block and programmed cell death are related. The culture medium was supplemented with either fetal calf serum or bovine serum albumin. The embryos were classified as Fast (n = 1,235) or Slow (n = 485) based on the time required to reach the fourth cell cycle (48 h and 90 h post insemination - hpi -, respectively). The Slow group was further separated into two groups: those presenting exactly 4 cells at 48 hpi (Slow/4 cells) and those that reached the fourth cell cycle at 90 hpi (Slow). Blastocyst quality, DNA fragmentation, mitochondrial membrane potential and signs of apoptosis or necrosis were evaluated. The Slow group had higher incidence of developmental block than the Fast group. The embryos supplemented with fetal calf serum had lower quality. DNA fragmentation and mitochondrial membrane potential were absent in embryos at 48 hpi but present at 90 hpi. Early signs of apoptosis were more frequent in the Slow and Slow/4 cell groups than in the Fast group. We concluded that fetal calf serum reduces blastocyst development and quality, but the mechanism appears to be independent of DNA fragmentation. The apoptotic cells detected at 48 hpi reveal a possible mechanism of programmed cell death activation prior to genome activation. The apoptotic cells observed in the slow-developing embryos suggested a relationship between programmed cell death and embryonic developmental kinetics in zebu in vitro-produced embryos. PMID:25760989

  1. Implications of Programmed Cell Death 1 Ligand 1 Heterogeneity in the Selection of Patients With Non-Small Cell Lung Cancer to Receive Immunotherapy.

    PubMed

    Mansfield, A S; Dong, H

    2016-09-01

    The use of programmed cell death 1 ligand 1 (PD-L1) as a predictive biomarker to select patients to receive programmed cell death 1 (PD-1) or PD-L1 inhibitors in non-small cell lung cancer (NSCLC) is limited by the definitions of positivity, interassay agreement, and intra- and intertumoral heterogeneity of expression. Although PD-L1 expression enriches for responses, the lack of expression does not exclude clinical benefit. PMID:26916808

  2. Programmed Cell Death-Involved Aluminum Toxicity in Yeast Alleviated by Antiapoptotic Members with Decreased Calcium Signals1

    PubMed Central

    Zheng, Ke; Pan, Jian-Wei; Ye, Lan; Fu, Yu; Peng, Hua-Zheng; Wan, Bai-Yu; Gu, Qing; Bian, Hong-Wu; Han, Ning; Wang, Jun-Hui; Kang, Bo; Pan, Jun-Hang; Shao, Hong-Hong; Wang, Wen-Zhe; Zhu, Mu-Yuan

    2007-01-01

    The molecular mechanisms of aluminum (Al) toxicity and tolerance in plants have been the focus of ongoing research in the area of stress phytophysiology. Recent studies have described Al-induced apoptosis-like cell death in plant and animal cells. In this study, we show that yeast (Saccharomyces cerevisiae) exposed to low effective concentrations of Al for short times undergoes enhanced cell division in a manner that is dose and cell density dependent. At higher concentrations of Al or longer exposure times, Al induces cell death and growth inhibition. Several apoptotic features appear during Al treatment, including cell shrinkage, vacuolation, chromatin marginalization, nuclear fragmentation, DNA degradation, and DNA strand breaks, as well as concomitant cell aggregation. Yeast strains expressing Ced-9, Bcl-2, and PpBI-1 (a plant Bax inhibitor-1 isolated from Phyllostachys praecox), respectively, display more resistance to Al toxicity compared with control cells. Data from flow cytometric studies show these three antiapoptotic members do not affect reactive oxygen species levels, but decrease calcium ion (Ca2+) signals in response to Al stress, although both intracellular reactive oxygen species and Ca2+ levels were increased. The data presented suggest that manipulation of the negative regulation process of programmed cell death may provide a novel mechanism for conferring Al tolerance. PMID:16861572

  3. Death Valley Lower Carbonate Aquifer Monitoring Program Wells Down gradient of the Proposed Yucca Mountain Nuclear Waste Repository

    SciTech Connect

    Inyo County

    2006-07-26

    Inyo County has participated in oversight activities associated with the Yucca Mountain Nuclear Waste Repository since 1987. The overall goal of these studies are the evaluation of far-field issues related to potential transport, by ground water, or radionuclides into Inyo County, including Death Valley, and the evaluation of a connection between the Lower Carbonate Aquifer (LCA) and the biosphere. Our oversight and completed Cooperative Agreement research, and a number of other investigators research indicate that there is groundwater flow between the alluvial and carbonate aquifers both at Yucca Mountain and in Inyo County. In addition to the potential of radionuclide transport through the LCA, Czarnecki (1997), with the US Geological Survey, research indicate potential radionuclide transport through the shallower Tertiary-age aquifer materials with ultimate discharge into the Franklin Lake Playa in Inyo County. The specific purpose of this Cooperative Agreement drilling program was to acquire geological, subsurface geology, and hydrologic data to: (1) establish the existence of inter-basin flow between the Amargosa Basin and Death Valley Basin; (2) characterize groundwater flow paths in the LCA through Southern Funeral Mountain Range, and (3) Evaluation the hydraulic connection between the Yucca Mountain repository and the major springs in Death Valley through the LCA.

  4. RAD51 plays a crucial role in halting cell death program induced by ionizing radiation in bovine oocytes.

    PubMed

    Kujjo, Loro L; Ronningen, Reg; Ross, Pablo; Pereira, Ricardo J G; Rodriguez, Ramon; Beyhan, Zeki; Goissis, Marcelo D; Baumann, Thomas; Kagawa, Wataru; Camsari, Cagri; Smith, George W; Kurumizaka, Hitoshi; Yokoyama, Shigeyuki; Cibelli, Jose B; Perez, Gloria I

    2012-03-01

    Reproductive health of humans and animals exposed to daily irradiants from solar/cosmic particles remains largely understudied. We evaluated the sensitivities of bovine and mouse oocytes to bombardment by krypton-78 (1 Gy) or ultraviolet B (UV-B; 100 microjoules). Mouse oocytes responded to irradiation by undergoing massive activation of caspases, rapid loss of energy without cytochrome-c release, and subsequent necrotic death. In contrast, bovine oocytes became positive for annexin-V, exhibited cytochrome-c release, and displayed mild activation of caspases and downstream DNAses but with the absence of a complete cell death program; therefore, cytoplasmic fragmentation was never observed. However, massive cytoplasmic fragmentation and increased DNA damage were induced experimentally by both inhibiting RAD51 and increasing caspase 3 activity before irradiation. Microinjection of recombinant human RAD51 prior to irradiation markedly decreased both cytoplasmic fragmentation and DNA damage in both bovine and mouse oocytes. RAD51 response to damaged DNA occurred faster in bovine oocytes than in mouse oocytes. Therefore, we conclude that upon exposure to irradiation, bovine oocytes create a physiologically indeterminate state of partial cell death, attributed to rapid induction of DNA repair and low activation of caspases. The persistence of these damaged cells may represent an adaptive mechanism with potential implications for livestock productivity and long-term health risks associated with human activity in space. PMID:22190703

  5. Type 1 diabetes in India: Overall insights

    PubMed Central

    Das, Ashok Kumar

    2015-01-01

    Type 1 diabetes mellitus (T1DM) is also on increase like type 2 diabetes, even though not in the same proportion, but still with a trend of 3–5% increase/year. India has three new cases of T1DM/100,000 children of 0–14 years. Three sets of prevalence data shows 17.93 cases/100,000 children in Karnataka, 3.2 cases/100,000 children in Chennai, and 10.2 cases/100,000 children in Karnal (Haryana). T1DM may be autoimmune or idiopathic in nature and is present in 9% cases of insulin deficiency. T1DM is primarily caused by genetic factors, environmental factors, and disorder of the immune regulatory mechanism. A combination of all these three factors causes autoimmune disease, which may ultimately result in the destruction of pancreatic beta cells leading to hyperglycemia, ketoacidosis and potentially death, if not treated with insulin. Prediabetes is the phase before the onset of T1DM, which provides a window of opportunity for early intervention. All available interventions including steroids, immunosuppressants, and cyclosporins can be possibly applied during the prediabetes phase. The treatment goals for T1DM are simple and include maintaining near normal blood glucose levels and avoiding long-term complications, which is a constant juggle between insulin and maintaining an appropriate lifestyle. The Indian Council of Medical Research funded Registry of People with diabetes in India with young age at onset (YDR) was started in the year 2006 with 10 collaborating centres across India. This registry is focusing on to provide an overview of diabetes in the young. PMID:25941645

  6. Drug-target interactions: only the first step in the commitment to a programmed cell death?

    PubMed Central

    Dive, C.; Hickman, J. A.

    1991-01-01

    The search for novel antitumour drugs has reached a plateau phase. The carcinomas remain almost as intractable as they did 40 years ago and the need for effective therapy is pressing. There is an argument that the current pharmacopoeia is sufficient but, to be effective, the biochemical mechanisms of drug resistance must be circumvented. In tackling the question of why certain cancer cells are resistant, the converse question of why others are sensitive still remains to be answered fully. Asking the fundamental question of why and how a cell dies may provide clues as to what avenues lie open for improved chemotherapy. In this review we survey the recent literature on cell death and we argue that it is possible that the outcome of chemotherapy may be determined by the response of the cell to the formation of the drug-target complex, and/or its sequellae, rather than to the biochemical changes brought about by the drug alone. One of these responses, determined by the phenotype of the cell, may be activation of a genetic programme for cell death. PMID:1854622

  7. Cytotoxicity of obacunone and obacunone glucoside in human prostate cancer cells involves Akt-mediated programmed cell death.

    PubMed

    Murthy, Kotamballi N Chidambara; Jayaprakasha, Guddadarangavvanahally K; Patil, Bhimanagouda S

    2015-03-01

    Obacunone and obacunone glucoside (OG) are naturally occurring triterpenoids commonly found in citrus and other plants of the Rutaceae family. The current study reports the mechanism of cytotoxicity of citrus-derived obacunone and OG on human androgen-dependent prostate cancer LNCaP cells. Both limonoids exhibited time- and dose-dependent inhibition of cell proliferation, with more than 60% inhibition of cell viability at 100 μM, after 24 and 48 h. Analysis of fragmentation of DNA, activity of caspase-3, and cytosolic cytochrome-c in the cells treated with limonoids provided evidence for activation of programmed cell death by limonoids. Treatment of LNCaP cells with obacunone and OG resulted in dose-dependent changes in expression of proteins responsible for the induction of programmed cell death through the intrinsic pathway and down-regulation of Akt, a key molecule in cell signaling pathways. In addition, obacunone and OG also negatively regulated an inflammation-associated transcription factor, androgen receptor, and prostate-specific antigen, and activated proteins related to the cell cycle, confirming the ability of limonoids to induce cytotoxicity through multiple pathways. The results of this study provided, for the first time, an evidence of the cytotoxicity of obacunone and OG in androgen-dependent human prostate cancer cells. PMID:25592883

  8. Surgical trauma induces postoperative T-cell dysfunction in lung cancer patients through the programmed death-1 pathway.

    PubMed

    Xu, Pingbo; Zhang, Ping; Sun, Zhirong; Wang, Yun; Chen, Jiawei; Miao, Changhong

    2015-11-01

    The programmed death-1 (PD-1) and programmed death ligand-1 (PD-L1) pathway have been shown to be involved in tumor-induced and sepsis-induced immunosuppression. However, whether this pathway is involved in the surgery-induced dysfunction of T lymphocytes is not known. Here, we analyzed expression of PD-1 and PD-L1 on human peripheral mononuclear cells during the perioperative period. We found that surgery increased PD-1/PD-L1 expression on immune cells, which was correlated with the severity of surgical trauma. The count of T lymphocytes and natural killer cells reduced after surgery, probably due to the increased activity of caspase-3. Caspase-3 level was positively correlated with PD-1 expression. Profile of perioperative cytokines and hormones in plasma showed a significantly increased level of interferon-α, as well as various inflammatory cytokines and stress hormones. In ex vivo experiments, administration of anti-PD-1 antibody significantly ameliorated T-cell proliferation and partially reversed the T-cell apoptosis induced by surgical trauma. We provide evidences that surgical trauma can induce immunosuppression through the PD-1/PD-L1 pathway. This pathway could be a target for preventing postoperative cellular immunosuppression. PMID:26183035

  9. Type 1 Diabetes: How Is It Treated?

    MedlinePlus

    ... What's a Booger? Type 1 Diabetes: How Is It Treated? KidsHealth > For Kids > Type 1 Diabetes: How Is It Treated? Print A A A Text Size What's ... glucose can't get into the cells, so it stays in the blood leading to high blood ...

  10. Transcription factor NFAT1 controls allergic contact hypersensitivity through regulation of activation induced cell death program

    PubMed Central

    Kwon, Ho-Keun; Kim, Gi-Cheon; Hwang, Ji Sun; Kim, Young; Chae, Chang-Suk; Nam, Jong Hee; Jun, Chang-Duk; Rudra, Dipayan; Surh, Charles D.; Im, Sin-Hyeog

    2016-01-01

    Allergic contact hypersensitivity (CHS) is an inflammatory skin disease mediated by allergen specific T cells. In this study, we investigated the role of transcription factor NFAT1 in the pathogenesis of contact hypersensitivity. NFAT1 knock out (KO) mice spontaneously developed CHS-like skin inflammation in old age. Healthy young NFAT1 KO mice displayed enhanced susceptibility to hapten-induced CHS. Both CD4+ and CD8+ T cells from NFAT1 KO mice displayed hyper-activated properties and produced significantly enhanced levels of inflammatory T helper 1(Th1)/Th17 type cytokines. NFAT1 KO T cells were more resistant to activation induced cell death (AICD), and regulatory T cells derived from these mice showed a partial defect in their suppressor activity. NFAT1 KO T cells displayed a reduced expression of apoptosis associated BCL-2/BH3 family members. Ectopic expression of NFAT1 restored the AICD defect in NFAT1 KO T cells and increased AICD in normal T cells. Recipient Rag2−/− mice transferred with NFAT1 KO T cells showed more severe CHS sensitivity due to a defect in activation induced hapten-reactive T cell apoptosis. Collectively, our results suggest the NFAT1 plays a pivotal role as a genetic switch in CD4+/CD8+ T cell tolerance by regulating AICD process in the T cell mediated skin inflammation. PMID:26777750

  11. Structure of the CED-4-CED-9 Complex Provides Insights into Programmed Cell Death in Caenorhabditis elegans

    SciTech Connect

    Yan,N.; Chai, J.; Lee, E.; Gu, L.; Liu, Q.; He, J.; Wu, J.; Kokel, D.; Li, H.; et al.

    2005-01-01

    Interplay among four genes-egl-1, ced-9, ced-4 and ced-3-controls the onset of programmed cell death in the nematode Caenorhabditis elegans. Activation of the cell-killing protease CED-3 requires CED-4. However, CED-4 is constitutively inhibited by CED-9 until its release by EGL-1. Here we report the crystal structure of the CED-4-CED-9 complex at 2.6 Angstrom resolution, and a complete reconstitution of the CED-3 activation pathway using homogeneous proteins of CED-4, CED-9 and EGL-1. One molecule of CED-9 binds to an asymmetric dimer of CED-4, but specifically recognizes only one of the two CED-4 molecules. This specific interaction prevents CED-4 from activating CED-3. EGL-1 binding induces pronounced conformational changes in CED-9 that result in the dissociation of the CED-4 dimer from CED-9. The released CED-4 dimer further dimerizes to form a tetramer, which facilitates the autoactivation of CED-3. Together, our studies provide important insights into the regulation of cell death activation in C. elegans.

  12. Comparison of NaCl-induced programmed cell death in the obligate halophyte Cakile maritima and the glycophyte Arabidospis thaliana.

    PubMed

    Ben Hamed-Laouti, Ibtissem; Arbelet-Bonnin, Delphine; De Bont, Linda; Biligui, Bernadette; Gakière, Bertrand; Abdelly, Chedly; Ben Hamed, Karim; Bouteau, François

    2016-06-01

    Salinity represents one of the most important constraints that adversely affect plants growth and productivity. In this study, we aimed at determining possible differences between salt tolerant and salt sensitive species in early salt stress response. To this purpose, we subjected suspension-cultured cells from the halophyte Cakile maritima and the glycophyte Arabidopsis thaliana, two Brassicaceae, to salt stress and compared their behavior. In both species we could observe a time and dose dependent programmed cell death requiring an active metabolism, a dysfunction of mitochondria and caspase-like activation although C. maritima cells appeared less sensitive than A. thaliana cells. This capacity to mitigate salt stress could be due to a higher ascorbate pool that could allow C. maritima reducing the oxidative stress generated in response to NaCl. It further appeared that a higher number of C. maritima cultured cells when compared to A. thaliana could efficiently manage the Na(+) accumulation into the cytoplasm through non selective cation channels allowing also reducing the ROS generation and the subsequent cell death. PMID:27095399

  13. The plant metacaspase AtMC1 in pathogen-triggered programmed cell death and aging: functional linkage with autophagy

    PubMed Central

    Coll, N S; Smidler, A; Puigvert, M; Popa, C; Valls, M; Dangl, J L

    2014-01-01

    Autophagy is a major nutrient recycling mechanism in plants. However, its functional connection with programmed cell death (PCD) is a topic of active debate and remains not well understood. Our previous studies established the plant metacaspase AtMC1 as a positive regulator of pathogen-triggered PCD. Here, we explored the linkage between plant autophagy and AtMC1 function in the context of pathogen-triggered PCD and aging. We observed that autophagy acts as a positive regulator of pathogen-triggered PCD in a parallel pathway to AtMC1. In addition, we unveiled an additional, pro-survival homeostatic function of AtMC1 in aging plants that acts in parallel to a similar pro-survival function of autophagy. This novel pro-survival role of AtMC1 may be functionally related to its prodomain-mediated aggregate localization and potential clearance, in agreement with recent findings using the single budding yeast metacaspase YCA1. We propose a unifying model whereby autophagy and AtMC1 are part of parallel pathways, both positively regulating HR cell death in young plants, when these functions are not masked by the cumulative stresses of aging, and negatively regulating senescence in older plants. PMID:24786830

  14. Deciphering early events involved in hyperosmotic stress-induced programmed cell death in tobacco BY-2 cells

    PubMed Central

    Monetti, Emanuela; Kadono, Takashi; Bouteau, François

    2014-01-01

    Hyperosmotic stresses represent one of the major constraints that adversely affect plants growth, development, and productivity. In this study, the focus was on early responses to hyperosmotic stress- (NaCl and sorbitol) induced reactive oxygen species (ROS) generation, cytosolic Ca2+ concentration ([Ca2+]cyt) increase, ion fluxes, and mitochondrial potential variations, and on their links in pathways leading to programmed cell death (PCD). By using BY-2 tobacco cells, it was shown that both NaCl- and sorbitol-induced PCD seemed to be dependent on superoxide anion (O2·–) generation by NADPH-oxidase. In the case of NaCl, an early influx of sodium through non-selective cation channels participates in the development of PCD through mitochondrial dysfunction and NADPH-oxidase-dependent O2·– generation. This supports the hypothesis of different pathways in NaCl- and sorbitol-induced cell death. Surprisingly, other shared early responses, such as [Ca2+]cyt increase and singlet oxygen production, do not seem to be involved in PCD. PMID:24420571

  15. Dehydroascorbate: a possible surveillance molecule of oxidative stress and programmed cell death in the green alga Chlamydomonas reinhardtii.

    PubMed

    Murik, Omer; Elboher, Ahinoam; Kaplan, Aaron

    2014-04-01

    Chlamydomonas reinhardtii tolerates relatively high H2 O2 levels that induce an array of antioxidant activities. However, rather than rendering the cells more resistant to oxidative stress, the cells become far more sensitive to an additional H2 O2 dose. If H2 O2 is provided 1.5-9 h after an initial dose, it induces programmed cell death (PCD) in the wild-type, but not in the dum1 mutant impaired in the mitochondrial respiratory complex III. This mutant does not exhibit a secondary oxidative burst 4-5 h after the inducing H2 O2 , nor does it activate metacaspase-1 after the second H2 O2 treatment. The intracellular dehydroascorbate level, a product of ascorbate peroxidase, increases under conditions leading to PCD. The addition of dehydroascorbate induces PCD in the wild-type and dum1 cultures, but higher levels are required in dum1 cells, where it is metabolized faster. The application of dehydroascorbate induces the expression of metacaspase-2, which is much stronger than the expression of metacaspase-1. The presence or absence of oxidative stress, in addition to the rise in internal dehydroascorbate, may determine which metacaspase is activated during Chlamydomonas PCD. Cell death is strongly affected by the timing of H2 O2 or dehydroascorbate admission to synchronously grown cultures, suggesting that the cell cycle phase may distinguish cells that perish from those that do not. PMID:24345283

  16. Variability in Immunohistochemical Detection of Programmed Death Ligand 1 (PD-L1) in Cancer Tissue Types.

    PubMed

    Scognamiglio, Giosuè; De Chiara, Anna; Di Bonito, Maurizio; Tatangelo, Fabiana; Losito, Nunzia Simona; Anniciello, Annamaria; De Cecio, Rossella; D'Alterio, Crescenzo; Scala, Stefania; Cantile, Monica; Botti, Gerardo

    2016-01-01

    In normal cell physiology, programmed death 1 (PD-1) and its ligand, PD-L1, play an immunoregulatory role in T-cell activation, tolerance, and immune-mediated tissue damage. The PD-1/PD-L1 pathway also plays a critical role in immune escape of tumor cells and has been demonstrated to correlate with a poor prognosis of patients with several types of cancer. However, recent reports have revealed that the immunohistochemical (IHC) expression of the PD-L1 in tumor cells is not uniform for the use of different antibodies clones, with variable specificity, often doubtful topographical localization, and with a score not uniquely defined. The purpose of this study was to analyze the IHC expression of PD-L1 on a large series of several human tumors to correctly define its staining in different tumor tissues. PMID:27213372

  17. Variability in Immunohistochemical Detection of Programmed Death Ligand 1 (PD-L1) in Cancer Tissue Types

    PubMed Central

    Scognamiglio, Giosuè; De Chiara, Anna; Di Bonito, Maurizio; Tatangelo, Fabiana; Losito, Nunzia Simona; Anniciello, Annamaria; De Cecio, Rossella; D’Alterio, Crescenzo; Scala, Stefania; Cantile, Monica; Botti, Gerardo

    2016-01-01

    In normal cell physiology, programmed death 1 (PD-1) and its ligand, PD-L1, play an immunoregulatory role in T-cell activation, tolerance, and immune-mediated tissue damage. The PD-1/PD-L1 pathway also plays a critical role in immune escape of tumor cells and has been demonstrated to correlate with a poor prognosis of patients with several types of cancer. However, recent reports have revealed that the immunohistochemical (IHC) expression of the PD-L1 in tumor cells is not uniform for the use of different antibodies clones, with variable specificity, often doubtful topographical localization, and with a score not uniquely defined. The purpose of this study was to analyze the IHC expression of PD-L1 on a large series of several human tumors to correctly define its staining in different tumor tissues. PMID:27213372

  18. An orchestrated gene expression component of neuronal programmed cell death revealed by cDNA array analysis

    PubMed Central

    Chiang, Lillian W.; Grenier, Jill M.; Ettwiller, Laurence; Jenkins, Lorayne P.; Ficenec, Dave; Martin, John; Jin, Fenyu; DiStefano, Peter S.; Wood, Andrew

    2001-01-01

    Programmed cell death (PCD) during neuronal development and disease has been shown to require de novo RNA synthesis. However, the time course and regulation of target genes is poorly understood. By using a brain-biased array of over 7,500 cDNAs, we profiled this gene expression component of PCD in cerebellar granule neurons challenged separately by potassium withdrawal, combined potassium and serum withdrawal, and kainic acid administration. We found that hundreds of genes were significantly regulated in discreet waves including known genes whose protein products are involved in PCD. A restricted set of genes was regulated by all models, providing evidence that signals inducing PCD can regulate large assemblages of genes (of which a restricted subset may be shared in multiple pathways). PMID:11226323

  19. Effect of Strychinine, a Glycine Inhibitor, on the Programmed Cell Death of Motoneurons during the Chick Development

    PubMed Central

    Kim, Joo Yeon; Choi, So Yoen; Kim, Hyun

    2011-01-01

    In this study, we report that the treatment of strychinine (STR), an inhibitor of glycine receptor, induced premature onset of programmed cell death (PCD) of developing chick motoneurons (MNs). Treatment of STR on E4 chick embryo increased the apoptosis of MN on E5 when MN PCD does not occur normally. On the other hand, treatment of STR from E3 or E5 for 24 hours did not significantly influence the extent of MN PCD, indicating that the STR effect is developmental stage-specific. However, the expression of glycine receptor isoform was low on E3-4, and other glycine receptor antagonists did not exhibit PCD-promoting activity, suggesting that the STR action on PCD is not related to the glycine receptor activation. Identification of the target molecule for STR action may provide novel mechanism how the onset of developmental PCD is regulated. PMID:22355262

  20. Aerosol delivery of programmed cell death protein 4 using polysorbitol-based gene delivery system for lung cancer therapy.

    PubMed

    Kim, You-Kyoung; Xing, Lei; Chen, Bao-An; Xu, Fengguo; Jiang, Hu-Lin; Zhang, Can

    2014-11-01

    The development of a safe and effective gene delivery system is the most challenging obstacle to the broad application of gene therapy in the clinic. In this study, we report the development of a polysorbitol-based gene delivery system as an alternative gene carrier for lung cancer therapy. The copolymer was prepared by a Michael addition reaction between sorbitol diacrylate (SD) and spermine (SPE); the SD-SPE copolymer effectively condenses with DNA on the nanoscale and protects it from nucleases. SD-SPE/DNA complexes showed excellent transfection with low toxicity both in vitro and in vivo, and aerosol delivery of SD-SPE complexes with programmed cell death protein 4 DNA significantly suppressed lung tumorigenesis in K-ras(LA1) lung cancer model mice. These results demonstrate that SD-SPE has great potential as a gene delivery system based on its excellent biocompatibility and high gene delivery efficiency for lung cancer gene therapy. PMID:24983766

  1. Plant microtubules reorganization under the indirect UV-B exposure and during UV-B-induced programmed cell death

    PubMed Central

    Krasylenko, Yuliya A.; Yemets, Alla I.; Blume, Yaroslav B.

    2013-01-01

    The role of microtubules in cellular pathways of UV-B signaling in plants as well as in related structural cell response become into focus of few last publications. As microtubules in plant cell reorient/reorganize (become randomized, fragmented or depolymerized) in a response to direct UV-B exposure, these cytoskeletal components could be involved into UV-B signaling pathways as highly responsive players. In the current addendum, indirect UV-B-induced microtubules reorganization in cells of shielded Arabidopsis thaliana (GFP-MAP4) primary roots and the correspondence of microtubules depolymerization with the typical hallmarks of the programmed cell death in Nicotiana tabacum BY-2 (GFP-MBD) cells are discussed. PMID:23438586

  2. Calcium and reactive oxygen species in regulation of the mitochondrial permeability transition and of programmed cell death in yeast.

    PubMed

    Carraro, Michela; Bernardi, Paolo

    2016-08-01

    Mitochondria-dependent programmed cell death (PCD) in yeast shares many features with the intrinsic apoptotic pathway of mammals. With many stimuli, increased cytosolic [Ca(2+)] and ROS generation are the triggering signals that lead to mitochondrial permeabilization and release of proapoptotic factors, which initiates yeast PCD. While in mammals the permeability transition pore (PTP), a high-conductance inner membrane channel activated by increased matrix Ca(2+) and oxidative stress, is recognized as part of this signaling cascade, whether a similar process occurs in yeast is still debated. The potential role of the PTP in yeast PCD has generally been overlooked because yeast mitochondria lack the Ca(2+) uniporter, which in mammals allows rapid equilibration of cytosolic Ca(2+) with the matrix. In this short review we discuss the nature of the yeast permeability transition and reevaluate its potential role in the effector phase of yeast PCD triggered by Ca(2+) and oxidative stress. PMID:26995056

  3. A High Soy Diet Reduces Programmed Cell Death and Enhances Bcl-xL Expression In Experimental Stroke

    PubMed Central

    Lovekamp-Swan, Tara; Glendenning, Michele; Schreihofer, Derek A.

    2009-01-01

    Soy phytoestrogens have been proposed as an alternative to estrogen replacement therapy and have demonstrated potential neuroprotective effects in the brain. We have shown that a high soy diet significantly reduces infarct size following permanent middle cerebral artery occlusion (MCAO). Here, we tested the hypothesis that a high soy diet would attenuate programmed cell death after stroke. Adult female Sprague-Dawley rats were ovariectomized and fed either an isoflavone-reduced diet (IFP) or a high soy diet (SP) for 2 weeks before undergoing 90 minutes of transient MCAO (tMCAO) followed by 22.5 hr reperfusion. Infarct size, as assessed by TTC staining, was significantly reduced by a high soy diet (p< 0.05). Apoptosis in the ischemic cortex, measured by TUNEL staining, was significantly reduced by the high soy diet. The number of active caspase-3 positive cells and caspase-mediated α-spectrin cleavage was also significantly decreased in the ischemic cortex of SP rats. Furthermore, nuclear translocation of apoptosis-inducing factor (AIF) was significantly reduced in the ischemic cortex of SP rats. Soy significantly increased bcl-xL mRNA and protein expression in the ischemic cortex compared to IFP rats. Immunohistochemistry revealed increased neuronal expression of bcl-2 and bcl-xL in the ischemic cortex of both IFP and SP rats following tMCAO. These results suggest that a high soy diet decreases both caspase-dependent and caspase-independent programmed cell death following tMCAO. Further, a high soy diet enhances expression of the cell survival factor bcl-xL following tMCAO, contributing to the neuroprotective effects of soy in the ischemic cortex. PMID:17706879

  4. Programmed cell death ligand 1 (PD-L1) expression on gastric cancer and its relationship with clinicopathologic factors

    PubMed Central

    Zhang, Lin; Qiu, Miaozhen; Jin, Ying; Ji, Jiao; Li, Baoxia; Wang, Xueping; Yan, Shumei; Xu, Ruihua; Yang, Dajun

    2015-01-01

    Background: Targeting the immune checkpoints in solid tumors becomes hot recently. Programmed cell death ligand 1 (PD-L1) is ligand for programmed death 1 (PD-1), which is known to negatively regulate T-cell activation. In the present study, we investigated the expression of PD-L1 in tumor specimens of gastric cancer and its relationships with clinicopathological variables and survival. Methods: The expression of PD-L1 in 132 surgically resected specimens of stage II and III gastric cancer was evaluated by immunohistochemistry in microarray tissue. Results: Expression of PD-L1 was observed in 50.8% (67/132) of gastric cancer tumor specimens. Patients whose tumor size over 5cm had a higher positive rate of PD-L1 expression. There was no relationship between the expression of PD-L1 and other clinicopathological variables including age, gender, clinical stage, location as well as histological differentiation. PD-L1 positive patients had significantly poorer survival than negative patients. The 5-year survival rates was 83.1% in those with PD-L1 negative patients and 50.7% for PD-L1 positive patients (P<0.001). The multivariate analysis indicated that both PD-L1 positive and Tumor-node-metastasis stage were independent prognostic factors in gastric cancer patients (P=0.001 and 0.025, respectively). Conclusions: The expression of PD-L1 was found in half of stages II and III gastric cancer patients. Positive of PD-L1 expression indicated poor survival in Chinese stages II and III gastric adenocarcinoma patients. These results may provide the clue for immunotherapy in the adjuvant treatment setting of gastric cancer patients. PMID:26617827

  5. Streptolysin S Promotes Programmed Cell Death and Enhances Inflammatory Signaling in Epithelial Keratinocytes during Group A Streptococcus Infection

    PubMed Central

    Flaherty, Rebecca A.; Puricelli, Jessica M.; Higashi, Dustin L.; Park, Claudia J.

    2015-01-01

    Streptococcus pyogenes, or group A Streptococcus (GAS), is a pathogen that causes a multitude of human diseases from pharyngitis to severe infections such as toxic shock syndrome and necrotizing fasciitis. One of the primary virulence factors produced by GAS is the peptide toxin streptolysin S (SLS). In addition to its well-recognized role as a cytolysin, recent evidence has indicated that SLS may influence host cell signaling pathways at sublytic concentrations during infection. We employed an antibody array-based approach to comprehensively identify global host cell changes in human epithelial keratinocytes in response to the SLS toxin. We identified key SLS-dependent host responses, including the initiation of specific programmed cell death and inflammatory cascades with concomitant downregulation of Akt-mediated cytoprotection. Significant signaling responses identified by our array analysis were confirmed using biochemical and protein identification methods. To further demonstrate that the observed SLS-dependent host signaling changes were mediated primarily by the secreted toxin, we designed a Transwell infection system in which direct bacterial attachment to host cells was prevented, while secreted factors were allowed access to host cells. The results using this approach were consistent with our direct infection studies and reveal that SLS is a bacterial toxin that does not require bacterial attachment to host cells for activity. In light of these findings, we propose that the production of SLS by GAS during skin infection promotes invasive outcomes by triggering programmed cell death and inflammatory cascades in host cells to breach the keratinocyte barrier for dissemination into deeper tissues. PMID:26238711

  6. Entamoeba histolytica: differential gene expression during programmed cell death and identification of early pro- and anti-apoptotic signals.

    PubMed

    Monroy, Virginia Sánchez; Flores, Ma Olivia Medel; Villalba-Magdaleno, José D'Artagnan; Garcia, Consuelo Gómez; Ishiwara, David Guillermo Pérez

    2010-12-01

    We have demonstrated that programmed cell death (PCD) in Entamoeba histolytica is induced in vitro by G418 aminoglycoside antibiotic. To ascertain if biochemical and morphological changes previously observed are paired to molecular changes that reflect a genetic program, we looked here for early differential gene expression during the induction of PCD. Using cDNA-amplified fragment length polymorphisms (AFLPs) and in silico derived analysis we showed in E. histolytica a differential gene expression during PCD induced by G418. The genes identified encoded for proteins homologous to Glutaminyl-tRNA synthase, Ribosomal Subunit Proteins 40S and 18S, Saposin-like, Silent Information Regulator-2 (Sir-2), and Grainins 1 and 2. Using real-time quantitative PCR (RT Q-PCR), we found that glutaminyl-tRNA synthetase, sir-2, grainins and saposin-like genes were strongly overexpressed after 30min of PCD induction, while its expression dramatically decreased up to 60min. On the other hand, overexpression of ribosomal genes increased only 7-fold of basal expression, showing a progressive down-regulation up to 90min. glutaminyl-tRNA synthetase, sir-2 and grainins could act as negative regulators of PCD, trying to control the biochemical changes related to PCD activation. Overexpression of saposin-like gene could act as up-regulator of some cell death pathways. Our results give evidence of the first genes identified during the early stage of PCD in E. histolytica that could be implicated in regulation of apoptotic pathways. PMID:20515683

  7. A Matrix Metalloproteinase Gene Is Expressed at the Boundary of Senescence and Programmed Cell Death in Cucumber1

    PubMed Central

    Delorme, Valérie G.R.; McCabe, Paul F.; Kim, Dae-Jae; Leaver, Christopher J.

    2000-01-01

    Cell-cell and extracellular cell matrix (ECM) interactions provide cells with information essential for controlling morphogenesis, cell-fate specification, and cell death. In animals, one of the major groups of enzymes that degrade the ECM is the matrix metalloproteinases (MMPs). Here, we report the characterization of the cucumber (Cucumis sativus L. cv Marketmore) Cs1-MMP gene encoding such an enzyme likely to play a role in plant ECM degradation. Cs1-MMP has all the hallmark motif characteristics of animal MMPs and is a pre-pro-enzyme having a signal peptide, propeptide, and zinc-binding catalytic domains. Cs1-MMP also displays functional similarities with animal MMPs. For example, it has a collagenase-like activity that can cleave synthetic peptides and type-I collagen, a major component of animal ECM. Cs1-MMP activity is completely inhibited by a hydroxamate-based inhibitor that binds at the active site of MMPs in a stereospecific manner. The Cs1-MMP gene is expressed de novo at the end stage of developmental senescence, prior to the appearance of DNA laddering in cucumber cotyledons leaf discs and male flowers. As the steady-state level of Cs1-MMP mRNA peaks late in senescence and the pro-enzyme must undergo maturation and activation, the protease is probably not involved in nutrient remobilization during senescence but may have another function. The physiological substrates for Cs1-MMP remain to be determined, but the enzyme represents a good candidate for plant ECM degradation and may be involved in programmed cell death (PCD). Our results suggest that PCD occurs only at the culmination of the senescence program or that the processes are distinct with PCD being triggered at the end of senescence. PMID:10889240

  8. Characterization of a synthetic bacterial self-destruction device for programmed cell death and for recombinant proteins release

    PubMed Central

    2011-01-01

    Background Bacterial cell lysis is a widely studied mechanism that can be achieved through the intracellular expression of phage native lytic proteins. This mechanism can be exploited for programmed cell death and for gentle cell disruption to release recombinant proteins when in vivo secretion is not feasible. Several genetic parts for cell lysis have been developed and their quantitative characterization is an essential step to enable the engineering of synthetic lytic systems with predictable behavior. Results Here, a BioBrick™ lysis device present in the Registry of Standard Biological Parts has been quantitatively characterized. Its activity has been measured in E. coli by assembling the device under the control of a well characterized N-3-oxohexanoyl-L-homoserine lactone (HSL) -inducible promoter and the transfer function, lysis dynamics, protein release capability and genotypic and phenotypic stability of the device have been evaluated. Finally, its modularity was tested by assembling the device to a different inducible promoter, which can be triggered by heat induction. Conclusions The studied device is suitable for recombinant protein release as 96% of the total amount of the intracellular proteins was successfully released into the medium. Furthermore, it has been shown that the device can be assembled to different input devices to trigger cell lysis in response to a user-defined signal. For this reason, this lysis device can be a useful tool for the rational design and construction of complex synthetic biological systems composed by biological parts with known and well characterized function. Conversely, the onset of mutants makes this device unsuitable for the programmed cell death of a bacterial population. PMID:21645422

  9. Negative influence of programmed death-1-ligands on the survival of esophageal cancer patients treated with chemotherapy.

    PubMed

    Tanaka, Koji; Miyata, Hiroshi; Sugimura, Keijiro; Kanemura, Takashi; Hamada-Uematsu, Mika; Mizote, Yu; Yamasaki, Makoto; Wada, Hisashi; Nakajima, Kiyokazu; Takiguchi, Shuji; Mori, Masaki; Doki, Yuichiro; Tahara, Hideaki

    2016-06-01

    The programmed death-1/programmed death-1 ligands (PD-1/PD-L) pathway plays an important role in immunological tumor evasion. However, the clinical significance of the PD-L (L1 and L2) expression in esophageal cancer treated with chemotherapy has not been fully investigated. We examined the expression of PD-L of the primary tumors obtained from 180 esophageal cancer patients who underwent radical resection with or without neoadjuvant chemotherapy (NAC) using immunohistochemical staining. The relationship between the expression patterns and clinico-pathological characteristics was examined. In the present study, 53 patients (29.4%) and 88 patients (48.3%) were classified into positive for PD-L1 and PD-L2 expression, respectively. In all the patients examined, overall survival rates of the patients with tumors positive for PD-L1 or PD-L2 were significantly worse than those with tumors negative for PD-L1 or PD-L2 (P = 0.0010 and P = 0.0237, respectively). However, subgroup analysis showed that these tendencies are only found in the patients treated with NAC, and not in those without NAC. The patients with positive PD-L1 expression had a significantly higher rate of NAC history (P = 0.0139), but those with positive PD-L2 expression did not have a significantly high rate of NAC history (P = 0.6127). There is no significant relationship between PD-L1 expression and response to chemotherapy (P = 0.3118), but patients with positive PD-L2 expression had significantly inferior responses to chemotherapy (P = 0.0034). The PD-1/PD-L pathway might be an immunological mechanism associated with the long-term effectiveness of chemotherapy in esophageal cancer patients. Further investigation into the roles of PD-1 pathway in chemotherapy could lead to the development of better treatment options for this disease. PMID:27015293

  10. Environmental risk factors for type 1 diabetes.

    PubMed

    Rewers, Marian; Ludvigsson, Johnny

    2016-06-01

    The incidence of type 1 diabetes has risen considerably in the past 30 years due to changes in the environment that have been only partially identified. In this Series paper, we critically discuss candidate triggers of islet autoimmunity and factors thought to promote progression from autoimmunity to overt type 1 diabetes. We revisit previously proposed hypotheses to explain the growth in the incidence of type 1 diabetes in light of current data. Finally, we suggest a unified model in which immune tolerance to β cells can be broken by several environmental exposures that induce generation of hybrid peptides acting as neoautoantigens. PMID:27302273

  11. Cell proliferation, DNA repair, and p53 function are not required for programmed death of prostatic glandular cells induced by androgen ablation.

    PubMed Central

    Berges, R R; Furuya, Y; Remington, L; English, H F; Jacks, T; Isaacs, J T

    1993-01-01

    Androgen ablation induces programmed death of androgen-dependent prostatic glandular cells, resulting in fragmentation of their genomic DNA and the cells themselves into apoptotic bodies. Twenty percent of prostatic glandular cells undergo programmed death per day between day 2 and 5 after castration. During this same period, < 1% of prostatic glandular cells enter the S phase of the cell cycle, documenting that > 95% of these die in G0. During the programmed death of these G0 glandular cells, a futile DNA repair process is induced secondary to the DNA fragmentation. This futile DNA repair is not required, however, since inhibition of this process by > 90% with an appropriately timed hydroxy-urea dosing regimen had no effect upon the extent of the programmed death of these cells after castration. Likewise, p53 gene expression is not required since the same degree of cell death occurred in prostates and seminal vesicles after castration of wild-type and p53-deficient mice. PMID:8415631

  12. Kenny-Caffey syndrome type 1

    PubMed Central

    El Jabbour, Tony; Aboursheid, Tarek; Keifo, Mohammad Baraa; Maksoud, Ismael; Alasmar, Diana

    2014-01-01

    Kenny-Caffey syndrome type 1 is a rare hereditary skeletal disorder. We present here a documented case of a 7-month-old girl with the characteristic symptoms of growth retardation, dysmorphic features, and hypoparathyroidism. PMID:24982829

  13. Supporting patients with type 1 diabetes.

    PubMed

    Phillips, Anne

    Type 1 diabetes is an autoimmune condition that is mediated by genetic, immunologic and environmental factors. Its prevalence is further complicated by increasing obesity levels, and this can make diagnosis complicated. Health professionals play a key role in enablement and optimising person-centred care approaches to educate and augment the essential skills required for successful self-management of this lifelong condition. This article reflects on the physiology and aetiology of type 1 diabetes and prevalence and considers recent guidance from the National Institute for Health and Care Excellence for adults with type 1 diabetes (NG17) and for children and young people with type 1 and type 2 diabetes (NG18). PMID:27019172

  14. Pilot study on traumatic grief treatment program for Japanese women bereaved by violent death.

    PubMed

    Asukai, Nozomu; Tsuruta, Nobuko; Saito, Azusa

    2011-08-01

    This pilot study aimed to refine a treatment approach for traumatic grief due to violent loss. Our Traumatic Grief Treatment Program, a modification of Shear's complicated grief treatment (Shear et al., 2005), comprises psychoeducation, in vivo exposure, imaginal exposure, discussion of memories about and imaginal conversation with the deceased. Thirteen of 15 Japanese women suffering from posttraumatic stress disorder (PTSD) due to traumatic grief completed 12 to 16 weekly individual sessions based on their therapists' recommendations. Assessment scales included the Inventory of Complicated Grief, the Impact of Event Scale-Revised, and the Center for Epidemiologic Studies Depression Scale. There was significant reduction in symptom severity at treatment end, and symptom levels remained low throughout the 12-month follow-up period. Based on Jacobson's Reliable Change Index, 46% showed change on all 3 measures. These findings suggest that our treatment model may be feasible for treating traumatic grief with PTSD in non-Western settings. PMID:21780192

  15. Explaining the increased mortality in type 1 diabetes

    PubMed Central

    Mameli, Chiara; Mazzantini, Sara; Ben Nasr, Moufida; Fiorina, Paolo; Scaramuzza, Andrea E; Zuccotti, Gian Vincenzo

    2015-01-01

    Despite large improvements in the management of glucose levels and in the treatment of cardiovascular risk factors, the mortality rate in individuals with type 1 diabetes (T1D) is still high. Recently, Lind et al found that T1D individuals with glycated hemoglobin levels of 6.9% or lower had a risk of death from any cause or from cardiovascular causes that is twice as high as the risk for matched controls. T1D is a chronic disease with an early onset (e.g., pediatric age) and thus in order to establish a clear correlation between death rate and the glycometabolic control, the whole history of glycemic control should be considered; particularly in the early years of diabetes. The switch from a normo- to hyperglycemic milieu in an individual with T1D in the pediatric age, represents a stressful event that may impact outcomes and death rate many years later. In this paper we will discuss the aforementioned issues, and offer our view on these findings, paying a particular attention to the several alterations occurring in the earliest phases of T1D and to the many factors that may be associated with the chronic history of T1D. This may help us to better understand the recently published death rate data and to develop future innovative and effective preventive strategies. PMID:26185597

  16. MEF2D deficiency in neonatal cardiomyocytes triggers cell cycle re-entry and programmed cell death in vitro.

    PubMed

    Estrella, Nelsa L; Clark, Amanda L; Desjardins, Cody A; Nocco, Sarah E; Naya, Francisco J

    2015-10-01

    The cardiomyocyte cell cycle is a poorly understood process. Mammalian cardiomyocytes permanently withdraw from the cell cycle shortly after birth but can re-enter the cell cycle and proliferate when subjected to injury within a brief temporal window in the neonatal period. Thus, investigating the mechanisms of cell cycle regulation in neonatal cardiomyocytes may provide critical insight into the molecular events that prevent adult myocytes from proliferating in response to injury or stress. MEF2D is a key transcriptional mediator of pathological remodeling in the adult heart downstream of various stress-promoting insults. However, the specific gene programs regulated by MEF2D in cardiomyocytes are unknown. By performing genome-wide transcriptome analysis using MEF2D-depleted neonatal cardiomyocytes, we found a significant impairment in the cell cycle, characterized by the up-regulation of numerous positive cell cycle regulators. Expression of Pten, the primary negative regulator of PI3K/Akt, was significantly reduced in MEF2D-deficient cardiomyocytes and found to be a direct target gene of MEF2D. Consistent with these findings mutant cardiomyocytes showed activation of the PI3K/Akt survival pathway. Paradoxically, prolonged deficiency of MEF2D in neonatal cardiomyocytes did not trigger proliferation but instead resulted in programmed cell death, which is likely mediated by the E2F transcription factor. These results demonstrate a critical role for MEF2D in cell cycle regulation of post-mitotic, neonatal cardiomyocytes in vitro. PMID:26294766

  17. Programmed death-1 pathway in host tissues ameliorates Th17/Th1-mediated experimental chronic graft-versus-host disease.

    PubMed

    Fujiwara, Hideaki; Maeda, Yoshinobu; Kobayashi, Koichiro; Nishimori, Hisakazu; Matsuoka, Ken-Ichi; Fujii, Nobuharu; Kondo, Eisei; Tanaka, Takehiro; Chen, Lieping; Azuma, Miyuki; Yagita, Hideo; Tanimoto, Mitsune

    2014-09-01

    Chronic graft-versus-host disease (GVHD) is a major cause of late death and morbidity after allogeneic hematopoietic cell transplantation, but its pathogenesis remains unclear. We investigated the role of the programmed death-1 (PD-1) pathway in chronic GVHD using a well-defined mouse model of B10.D2 (H-2(d)) donor to BALB/c (H-2(d)) recipients. PD-1 expression on allogeneic donor T cells was upregulated continuously in chronic GVHD development, whereas PD-L1 expression in host tissues was transiently upregulated and declined to basal levels in the late posttransplant period. Blockade of the PD-1 pathway by anti-PD-1, anti-PD-L1, or anti-PD-L2 mAbs exacerbated clinical and pathologic chronic GVHD. Chimeric mice revealed that PD-L1 expression in host tissues suppressed expansion of IL-17(+)IFN-γ(+) T cells, and that PD-L1 expression on hematopoietic cells plays a role in the development of regulatory T cells only during the early transplantation period but does not affect the severity of chronic GVHD. Administration of the synthetic retinoid Am80 overcame the IL-17(+)IFN-γ(+) T cell expansion caused by PD-L1 deficiency, resulting in reduced chronic GVHD damage in PD-L1(-/-) recipients. Stimulation of the PD-1 pathway also alleviated chronic GVHD. These results suggest that the PD-1 pathway contributes to the suppression of Th17/Th1-mediated chronic GVHD and may represent a new target for the prevention or treatment of chronic GVHD. PMID:25080485

  18. Caspase Dependent Programmed Cell Death in Developing Embryos: A Potential Target for Therapeutic Intervention against Pathogenic Nematodes

    PubMed Central

    Mohapatra, Alok Das; Kumar, Sunil; Satapathy, Ashok Kumar; Ravindran, Balachandran

    2011-01-01

    Background Successful embryogenesis is a critical rate limiting step for the survival and transmission of parasitic worms as well as pathology mediated by them. Hence, blockage of this important process through therapeutic induction of apoptosis in their embryonic stages offers promise for developing effective anti-parasitic measures against these extra cellular parasites. However, unlike in the case of protozoan parasites, induction of apoptosis as a therapeutic approach is yet to be explored against metazoan helminth parasites. Methodology/Principal Findings For the first time, here we developed and evaluated flow cytometry based assays to assess several conserved features of apoptosis in developing embryos of a pathogenic filarial nematode Setaria digitata, in-vitro as well as ex-vivo. We validated programmed cell death in developing embryos by using immuno-fluorescence microscopy and scoring expression profile of nematode specific proteins related to apoptosis [e.g. CED-3, CED-4 and CED-9]. Mechanistically, apoptotic death of embryonic stages was found to be a caspase dependent phenomenon mediated primarily through induction of intracellular ROS. The apoptogenicity of some pharmacological compounds viz. DEC, Chloroquine, Primaquine and Curcumin were also evaluated. Curcumin was found to be the most effective pharmacological agent followed by Primaquine while Chloroquine displayed minimal effect and DEC had no demonstrable effect. Further, demonstration of induction of apoptosis in embryonic stages by lipid peroxidation products [molecules commonly associated with inflammatory responses in filarial disease] and demonstration of in-situ apoptosis of developing embryos in adult parasites in a natural bovine model of filariasis have offered a framework to understand anti-fecundity host immunity operational against parasitic helminths. Conclusions/Significance Our observations have revealed for the first time, that induction of apoptosis in developing embryos can

  19. New Arabidopsis thaliana Cytochrome c Partners: A Look Into the Elusive Role of Cytochrome c in Programmed Cell Death in Plants*

    PubMed Central

    Martínez-Fábregas, Jonathan; Díaz-Moreno, Irene; González-Arzola, Katiuska; Janocha, Simon; Navarro, José A.; Hervás, Manuel; Bernhardt, Rita; Díaz-Quintana, Antonio; De la Rosa, Miguel Á.

    2013-01-01

    Programmed cell death is an event displayed by many different organisms along the evolutionary scale. In plants, programmed cell death is necessary for development and the hypersensitive response to stress or pathogenic infection. A common feature in programmed cell death across organisms is the translocation of cytochrome c from mitochondria to the cytosol. To better understand the role of cytochrome c in the onset of programmed cell death in plants, a proteomic approach was developed based on affinity chromatography and using Arabidopsis thaliana cytochrome c as bait. Using this approach, ten putative new cytochrome c partners were identified. Of these putative partners and as indicated by bimolecular fluorescence complementation, nine of them bind the heme protein in plant protoplasts and human cells as a heterologous system. The in vitro interaction between cytochrome c and such soluble cytochrome c-targets was further corroborated using surface plasmon resonance. Taken together, the results obtained in the study indicate that Arabidopsis thaliana cytochrome c interacts with several distinct proteins involved in protein folding, translational regulation, cell death, oxidative stress, DNA damage, energetic metabolism, and mRNA metabolism. Interestingly, some of these novel Arabidopsis thaliana cytochrome c-targets are closely related to those for Homo sapiens cytochrome c (Martínez-Fábregas et al., unpublished). These results indicate that the evolutionarily well-conserved cytosolic cytochrome c, appearing in organisms from plants to mammals, interacts with a wide range of targets on programmed cell death. The data have been deposited to the ProteomeXchange with identifier PXD000280. PMID:24019145

  20. Expression of Inflammatory and Cell Death Program Genes and Comet DNA Damage Assay Induced by Escherichia coli in Layer Hens

    PubMed Central

    Mehaisen, Gamal M. K.; Eshak, Mariam G.; El Sabry, M. I.; Abass, Ahmed O.

    2016-01-01

    Modern methods of industrial poultry and egg production systems involve stressful practices that stimulate Escherichia coli (E. coli) activity causing endotoxic shock. This investigation was conducted to evaluate the expression of pro-inflammatory cytokines and cell death program genes and DNA damage induced by E. coli in the brain and liver tissues of laying hens. A total of two hundred and ten H&N brown layer hens with 20 week age, were used in this research. First, preliminary experiments were designed (60 hens in total) to establish the optimal exposure dose of E. coli and to determine the nearest time of notable response to be used in the remainder studies of this research. At 35-wk of age, 150 hens were randomly assigned into 2 groups with 3 replicates of 25 birds each; the first group was injected in the brachial wing vein with 107 E. coli colony/hen, while the second group was injected with saline and served as a control. The body temperature and plasma corticosterone concentration were measured 3 hr after injection. Specimens of liver and brain were obtained from each group and the gene expression of p38 mitogen-activated protein kinase, interlukin-1β (IL-1β), tumor necrosis factor alpha (TNF-α), Bax, and caspase-3 genes were measured by quantitative real-time PCR. DNA damage in the brain and liver tissues were also measured by comet assay. Hens treated with E. coli showed significant (P<0.05) increase of body temperature and plasma corticosterone (42.6°C and 14.5 ng/ml, respectively) compared to the control group (41.1°C and 5.5 ng/ml, respectively). Additional remarkable over-inflammation gene expression of p38, IL-1β and TNF-α.genes were also detected in the brain (2.2-fold, 2.0-fold and 3.3-fold, respectively) and the liver (2.1-fold, 1.9-fold and 3.0-fold, respectively) tissues of the infected chickens. It is also important to note that hens injected with E. coli showed an increase in DNA damage in the brain and liver cells (P<0.05). These

  1. Type 1 Diabetes in Young Adulthood

    PubMed Central

    Monaghan, Maureen; Helgeson, Vicki; Wiebe, Deborah

    2015-01-01

    Type 1 diabetes has traditionally been studied as a chronic illness of childhood. However, young adulthood is a critical time for the development and integration of lifelong diabetes management skills, and research is starting to identify unique challenges faced by youth with diabetes as they age into adulthood. Most young adults experience multiple transitions during this unstable developmental period, including changes in lifestyle (e.g., education, occupation, living situation), changes in health care, and shifting relationships with family members, friends, and intimate others. Young adults with type 1 diabetes must navigate these transitions while also assuming increasing responsibility for their diabetes care and overall health. Despite these critical health and psychosocial concerns, there is a notable lack of evidence-based clinical services and supports for young adults with type 1 diabetes. We review relevant evolving concerns for young adults with type 1 diabetes, including lifestyle considerations, health care transitions, psychosocial needs, and changes in supportive networks, and how type 1 diabetes impacts and is impacted by these key developmental considerations. Specific avenues for intervention and future research are offered. PMID:25901502

  2. Programmed Death Ligand-1 Immunohistochemistry--A New Challenge for Pathologists: A Perspective From Members of the Pulmonary Pathology Society.

    PubMed

    Sholl, Lynette M; Aisner, Dara L; Allen, Timothy Craig; Beasley, Mary Beth; Borczuk, Alain C; Cagle, Philip T; Capelozzi, Vera; Dacic, Sanja; Hariri, Lida; Kerr, Keith M; Lantuejoul, Sylvie; Mino-Kenudson, Mari; Raparia, Kirtee; Rekhtman, Natasha; Roy-Chowdhuri, Sinchita; Thunnissen, Eric; Tsao, Ming Sound; Yatabe, Yasushi

    2016-04-01

    The binding of programmed death ligand-1 and ligand-2 (PD-L1 and PD-L2) to PD-1 blocks T-cell-mediated immune response to tumor. Antibodies that target programmed death receptor-1 (PD-1) will block the ligand-receptor interface, thereby allowing T cells to attack the tumor and increase antitumor immune response. In clinical trials, PD-1 inhibitors have been associated with an approximately 20% overall response rate in unselected patients with non-small cell lung cancer, with sustained tumor response in a subset of patients treated by these immune checkpoint inhibitors. Facing a proliferation of PD-L1 immunohistochemistry clones, staining platforms, and scoring criteria, the pathologist must decide on the feasibility of introducing a newly approved companion diagnostic assay that may require purchase not only of a specific antibody kit but of a particular staining platform. Given the likely reality that clinical practice may, in the near future, demand access to 4 different PD-L1 antibodies coupled with different immunohistochemistry platforms, laboratories will be challenged with deciding among this variety of testing methods, each with its own potential benefits. Another immediate challenge to PD-L1 testing in lung cancer patients is that of access to adequate tumor tissue, given that non-small cell lung cancer samples are often extremely limited in size. With PD-L1 testing it has become clear that the historically used US regulatory approach of one assay-one drug will not be sustainable. One evolving concept is that of complementary diagnostics, a novel regulatory pathway initiated by the US Food and Drug Administration, which is distinct from companion diagnostics in that it may present additional flexibility. Although pathologists need to face the practical reality that oncologists will be asking regularly for the PD-L1 immunohistochemistry status of their patients' tumors, we should also keep in mind that there may be room for improvement of biomarkers for

  3. Should Type 1 diabetics fast in Ramadan.

    PubMed

    Mohsin, Fauzia; Azad, Kishwar; Zabeen, Bedowra; Tayyeb, Samin; Baki, Abdul; Nahar, Nazmun

    2015-05-01

    Fasting during the holy month of Ramadan is obligatory for all healthy adult and adolescent Muslims from the age of 12 years. This involves abstaining from eating or drinking from early dawn (Suhur/Sehri) till sunset (Iftar).Fasting is not meant to create excessive hardships or impart any adverse effect to the Muslim individual. As such, Islam has exempted certain categories of people from fasting including young children, travelers, the sick, the elderly,and pregnant and lactating women. According to expert opinion, people with type 1 diabetes who fast during Ramadan are at very high risk of metabolic deterioration. However, some recent studies have demonstrated that individuals with type 1 diabetes who are otherwise healthy and stable, can fast during Ramadan provided they comply with the Ramadan focused management plan and are under close professional supervision. This article discusses how to assess, counsel, monitor and manage people with type 1 diabetes who wish to fast during Ramadan. PMID:26013779

  4. Disruption of the vacuolar calcium-ATPases in arabidopsis results in the activation of a salicylic acid-dependent programmed cell death pathway

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Calcium (Ca2+) signals regulate many aspects of plant development, including the Hypersensitive Response (HR) that triggers a programmed cell death response to protect a plant from a pathogen. A transient increase in cytosolic Ca2+ ([Ca2+]cyt ) results from Ca2+ entry from the apoplast or release fr...

  5. Tomato 14-3-3 protein 7 (TFT7) positively regulates immunity-associated programmed cell death by enhancing accumulation and signaling ability of MAPKKKalpha

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Programmed cell death (PCD) is triggered when Pto, a serine-threonine protein kinase recognizes either the AvrPto or AvrPtoB effector from Pseudomonas syringae pv. tomato. This PCD requires MAPKKKalpha as a positive regulator in tomato and Nicotiana benthamiana. To examine how PCD-eliciting activi...

  6. Glycogenic Hepatopathy in Type 1 Diabetes Mellitus.

    PubMed

    Atmaca, Murat; Ucler, Rifki; Kartal, Mehmet; Seven, Ismet; Alay, Murat; Bayram, Irfan; Olmez, Sehmus

    2015-01-01

    Glycogenic hepatopathy is a rare cause of high transaminase levels in type 1 diabetes mellitus. This condition, characterized by elevated liver enzymes and hepatomegaly, is caused by irreversible and excessive accumulation of glycogen in hepatocytes. This is a case report on a 19-year-old male case, diagnosed with glycogenic hepatopathy. After the diagnosis was documented by liver biopsy, the case was put on glycemic control which led to significant decline in hepatomegaly and liver enzymes. It was emphasized that, in type 1 diabetes mellitus cases, hepatopathy should also be considered in the differential diagnoses of elevated liver enzyme and hepatomegaly. PMID:26347835

  7. Glycogenic Hepatopathy in Type 1 Diabetes Mellitus

    PubMed Central

    Atmaca, Murat; Ucler, Rifki; Kartal, Mehmet; Seven, Ismet; Alay, Murat; Bayram, Irfan; Olmez, Sehmus

    2015-01-01

    Glycogenic hepatopathy is a rare cause of high transaminase levels in type 1 diabetes mellitus. This condition, characterized by elevated liver enzymes and hepatomegaly, is caused by irreversible and excessive accumulation of glycogen in hepatocytes. This is a case report on a 19-year-old male case, diagnosed with glycogenic hepatopathy. After the diagnosis was documented by liver biopsy, the case was put on glycemic control which led to significant decline in hepatomegaly and liver enzymes. It was emphasized that, in type 1 diabetes mellitus cases, hepatopathy should also be considered in the differential diagnoses of elevated liver enzyme and hepatomegaly. PMID:26347835

  8. Fluconazole-Induced Type 1 Kounis Syndrome.

    PubMed

    Singh Mahal, Hardeep

    2016-01-01

    The administration of fluconazole is commonly used in both inpatient and outpatient settings for the management of candidiasis infection. Although it is associated with a relatively safe side effect profile, some patients experience adverse effects associated with increased morbidity. We describe 1 such patient, a 42-year-old woman with a history of severe eczema who developed fluconazole-induced type 1 Kounis syndrome. Review of literature indicates that this as the first case reported of fluconazole-induced type 1 Kounis syndrome. PMID:26938747

  9. Mouse embryonic stem cells undergo charontosis, a novel programmed cell death pathway dependent upon cathepsins, p53, and EndoG, in response to etoposide treatment.

    PubMed

    Tichy, Elisia D; Stephan, Zachary A; Osterburg, Andrew; Noel, Greg; Stambrook, Peter J

    2013-05-01

    Embryonic stem cells (ESCs) are hypersensitive to many DNA damaging agents and can rapidly undergo cell death or cell differentiation following exposure. Treatment of mouse ESCs (mESCs) with etoposide (ETO), a topoisomerase II poison, followed by a recovery period resulted in massive cell death with characteristics of a programmed cell death pathway (PCD). While cell death was both caspase- and necroptosis-independent, it was partially dependent on the activity of lysosomal proteases. A role for autophagy in the cell death process was eliminated, suggesting that ETO induces a novel PCD pathway in mESCs. Inhibition of p53 either as a transcription factor by pifithrin α or in its mitochondrial role by pifithrin μ significantly reduced ESC death levels. Finally, EndoG was newly identified as a protease participating in the DNA fragmentation observed during ETO-induced PCD. We coined the term charontosis after Charon, the ferryman of the dead in Greek mythology, to refer to the PCD signaling events induced by ETO in mESCs. PMID:23500643

  10. Mouse embryonic stem cells undergo Charontosis, a novel programmed cell death pathway dependent upon cathepsins, p53, and EndoG, in response to etoposide treatment

    PubMed Central

    Tichy, Elisia D.; Stephan, Zachary A.; Osterburg, Andrew; Noel, Greg; Stambrook, Peter J.

    2013-01-01

    Embryonic stem cells (ESCs) are hypersensitive to many DNA damaging agents and can rapidly undergo cell death or cell differentiation following exposure. Treatment of mouse ESCs (mESCs) with etoposide (ETO), a topoisomerase II poison, followed by a recovery period resulted in massive cell death with characteristics of a programmed cell death pathway (PCD). While cell death was both caspase- and necroptosis-independent, it was partially dependent on the activity of lysosomal proteases. A role for autophagy in the cell death process was eliminated, suggesting that ETO induces a novel PCD pathway in mESCs. Inhibition of p53 either as a transcription factor by pifithrin α or in its mitochondrial role by pifithrin μ significantly reduced ESC death levels. Finally, EndoG was newly identified as a protease participating in the DNA fragmentation observed during ETO-induced PCD. We coined the term Charontosis after Charon, the ferryman of the dead in Greek mythology, to refer to the PCD signaling events induced by ETO in mESCs. PMID:23500643

  11. Programmed cell death 4 in bacterially-challenged Apostichopus japonicus: Molecular cloning, expression analysis and functional characterization.

    PubMed

    Lv, Zhimeng; Li, Chenghua; Shao, Yina; Zhang, Weiwei; Wang, Zhenhui; Wang, Haihong

    2016-07-01

    Programmed cell death 4 (PDCD4) plays a crucial role in modulating cellular signals, mainly via TOLL cascades during the immune response. In the present study, a novel PDCD4 homologue gene (denoted as AjPDCD4) was cloned from the sea cucumber Apostichopus japonicus using RACE. The full-length AjPDCD4 cDNA comprised a 366bp 5'-UTR, a 418bp 3'-UTR, and a 1353bp open reading frame encoding a 450 amino acid residue protein with two typical MA3 domains. Phylogenetic analysis revealed that AjPDCD4 belonged to the invertebrate PDCD4 family. Spatial expression analysis indicated that AjPDCD4 mRNA transcripts are expressed at a high level in the tentacles and at a low level in muscle compared with coelomocytes. Vibrio splendidus challenge and LPS exposure could both significantly down-regulate AjPDCD4 mRNA expression. More importantly, we found that ultraviolet (UV)-induced ROS production and DNA damage were greatly repressed in AjPDCD4-knockdown coelomocytes. Meanwhile, the expression levels of the NF-kappa B homologue, p105, were synchronously up-regulated in the same conditions. All of these results indicated that AjPDCD4 is involved in modulating DNA damage and ROS production in sea cucumber, perhaps by affecting the TLR pathway. PMID:27262523

  12. Expression analysis of the BFN1 nuclease gene promoter during senescence, abscission, and programmed cell death-related processes

    PubMed Central

    Farage-Barhom, Sarit; Burd, Shaul; Sonego, Lilian; Perl-Treves, Rafael; Lers, Amnon

    2008-01-01

    Little is known about the biological role of nucleases induced during plant senescence and programmed cell death (PCD). Arabidopsis BFN1 has been identified as a senescence-associated type I nuclease, whose protein sequence shares high homology with some other senescence- or PCD-associated plant nucleases. To learn about BFN1 regulation, its expression pattern was analysed. A 2.3 kb portion of the 5′ promoter sequence of BFN1 was cloned and its ability to activate the GUS reporter gene was examined. Transgenic Arabidopsis and tomato plants harbouring this chimeric construct were analysed for GUS expression. In both, the BFN1 promoter was able specifically to direct GUS expression in senescent leaves, differentiating xylem and the abscission zone of flowers. Thus, at least part of the regulation of BFN1 is mediated at the transcriptional level, and the regulatory elements are recognized in the two different plants. In tomato, specific expression was observed in the leaf and the fruit abscission zones. The BFN1 promoter was also active in other tissues, including developing anthers and seeds, and in floral organs after fertilization. PCD has been implicated in all of these processes, suggesting that in addition to senescence, BFN1 is involved in PCD associated with different development processes in Arabidopsis. PMID:18603613

  13. Cytochrome c Trp65Ser substitution results in inhibition of acetic acid-induced programmed cell death in Saccharomyces cerevisiae.

    PubMed

    Guaragnella, Nicoletta; Passarella, Salvatore; Marra, Ersilia; Giannattasio, Sergio

    2011-11-01

    To gain further insight into the role of cytochrome c (cyt c) in yeast programmed cell death induced by acetic acid (AA-PCD), comparison was made between wild type and two mutant cells, one lacking cyt c and the other (W65Scyc1) expressing a mutant iso-1-cyt c in a form unable to reduce cyt c oxidase, with respect to occurrence of AA-PCD, cyt c release, ROS production and caspase-like activity. We show that in W65Scyc1 cells: i. no release of mutant cyt c occurs with inhibition of W65Scyc1 cell AA-PCD shown to be independent on impairment of electron flow, ii. there is a decrease in ROS production and an increase in caspase-like activity. We conclude that cyt c release does not depend on cyt c function as an electron carrier and that when still associated to the mitochondrial membrane, cyt c in its reduced form has a role in AA-PCD, by regulating ROS production and caspase-like activity. PMID:21907312

  14. Direct Evidence of Active and Rapid Nuclear Degradation Triggered by Vacuole Rupture during Programmed Cell Death in Zinnia1

    PubMed Central

    Obara, Keisuke; Kuriyama, Hideo; Fukuda, Hiroo

    2001-01-01

    Differentiation into a tracheary element (TE) is a typical example of programmed cell death (PCD) in the developmental processes of vascular plants. In the PCD process the TE degrades its cellular contents and becomes a hollow corpse that serves as a water conduct. Using a zinnia (Zinnia elegans) cell culture we obtained serial observations of single living cells undergoing TE PCD by confocal laser scanning microscopy. Vital staining was performed and the relative fluorescence intensity was measured, revealing that the tonoplast of the swollen vacuole in TEs loses selective permeability of fluorescein just before its physical rupture. After the vacuole ruptured the nucleus was degraded rapidly within 10 to 20 min. No prominent chromatin condensation or nuclear fragmentation occurred in this process. Nucleoids in chloroplasts were also degraded in a similar time course to that of the nucleus. Degradations did not occur in non-TEs forced to rupture the vacuole by probenecid treatment. These results demonstrate that TE differentiation involves a unique type of PCD in which active and rapid nuclear degradation is triggered by vacuole rupture. PMID:11161019

  15. Mutations in the Novel Membrane Protein Spinster Interfere with Programmed Cell Death and Cause Neural Degeneration in Drosophila melanogaster

    PubMed Central

    Nakano, Yoshiro; Fujitani, Kazuko; Kurihara, Joyce; Ragan, Janet; Usui-Aoki, Kazue; Shimoda, Lori; Lukacsovich, Tamas; Suzuki, Keiko; Sezaki, Mariko; Sano, Yumiko; Ueda, Ryu; Awano, Wakae; Kaneda, Mizuho; Umeda, Masato; Yamamoto, Daisuke

    2001-01-01

    Mutations in the spin gene are characterized by an extraordinarily strong rejection behavior of female flies in response to male courtship. They are also accompanied by decreases in the viability, adult life span, and oviposition rate of the flies. In spin mutants, some oocytes and adult neural cells undergo degeneration, which is preceded by reductions in programmed cell death of nurse cells in ovaries and of neurons in the pupal nervous system, respectively. The central nervous system (CNS) of spin mutant flies accumulates autofluorescent lipopigments with characteristics similar to those of lipofuscin. The spin locus generates at least five different transcripts, with only two of these being able to rescue the spin behavioral phenotype; each encodes a protein with multiple membrane-spanning domains that are expressed in both the surface glial cells in the CNS and the follicle cells in the ovaries. Orthologs of the spin gene have also been identified in a number of species from nematodes to humans. Analysis of the spin mutant will give us new insights into neurodegenerative diseases and aging. PMID:11340170

  16. The role of reactive oxygen species and nitric oxide in programmed cell death associated with self-incompatibility.

    PubMed

    Serrano, Irene; Romero-Puertas, María C; Sandalio, Luisa M; Olmedilla, Adela

    2015-05-01

    Successful sexual reproduction often relies on the ability of plants to recognize self- or genetically-related pollen and prevent pollen tube growth soon after germination in order to avoid self-fertilization. Angiosperms have developed different reproductive barriers, one of the most extended being self-incompatibility (SI). With SI, pistils are able to reject self or genetically-related pollen thus promoting genetic variability. There are basically two distinct systems of SI: gametophytic (GSI) and sporophytic (SSI) based on their different molecular and genetic control mechanisms. In both types of SI, programmed cell death (PCD) has been found to play an important role in the rejection of self-incompatible pollen. Although reactive oxygen species (ROS) were initially recognized as toxic metabolic products, in recent years, a new role for ROS has become apparent: the control and regulation of biological processes such as growth, development, response to biotic and abiotic environmental stimuli, and PCD. Together with ROS, nitric oxide (NO) has become recognized as a key regulator of PCD. PCD is an important mechanism for the controlled elimination of targeted cells in both animals and plants. The major focus of this review is to discuss how ROS and NO control male-female cross-talk during fertilization in order to trigger PCD in self-incompatible pollen, providing a highly effective way to prevent self-fertilization. PMID:25750430

  17. Attenuation of the programmed cell death-1 pathway increases the M1 polarization of macrophages induced by zymosan

    PubMed Central

    Chen, W; Wang, J; Jia, L; Liu, J; Tian, Y

    2016-01-01

    Programmed cell death-1 (PD-1) is a member of the CD28 superfamily that delivers negative signals on interaction with its 2 ligands, PD-L1 and PD-L2. We assessed the contribution of the PD-1 pathway to regulating the polarization of macrophages that promote inflammation induced by zymosan. We found that PD-1−/− mice developed robust peritonitis with more abundant infiltration of M1 macrophages, accompanied by higher levels of pro-inflammation factors, especially monocyte chemotactic protein-1 (MCP-1) compared with wild-type controls ex vivo and in vitro. Our results indicated that PD-1 deficiency promotes M1 rather than M2 polarization of macrophages by enhancing the expression of p-STAT1/p-NF-κB p65 and downregulating p-STAT6. We found that PD-1 engagement followed by zymosan stimulation might primarily attenuate the phosphorylation of tyrosine residue in PD-1 receptor/ligand and the recruitment of SHP-2 to PD-1 receptor/ligand, leading to the reduction of M1 type cytokine production. PMID:26913605

  18. Expression of programmed cell death protein 4 (PDCD4) and miR-21 in urothelial carcinoma

    SciTech Connect

    Fischer, Nicolas; Goeke, Friederike; Splittstoesser, Vera; Lankat-Buttgereit, Brigitte; Mueller, Stefan C.; Ellinger, Joerg

    2012-01-06

    Highlights: Black-Right-Pointing-Pointer The tumor suppressor gene PDCD4 is down-regulated in many tumorous entities. Black-Right-Pointing-Pointer We investigate the impact of PDCD4 and its regulating factor miR-21 in urothelial carcinoma. Black-Right-Pointing-Pointer We confirm PDCD4 as a tumor suppressor gene and it could be a diagnostic marker for this tumor. -- Abstract: Background: We investigated the role of the programmed cell death 4 (PDCD4) tumor suppressor gene in specimens of transitional cell carcinoma and of healthy individuals. Methods: PDCD4 immunohistochemical expression was investigated in 294 cases in histologically proven transitional cell carcinoma in different tumorous stages (28 controls, 122 non-muscle invasive urothelial carcinoma, stages Tis-T1, 119 invasive transitional cell carcinoma stages T2-T4 and 25 metastases). MiR-21 expression, an important PDCD4 regulator, was assessed with real-time PCR analysis and showed inverse correlation to tissue PDCD4 expression. Results: Nuclear and cytoplasmatic PDCD4 immunostaining decreased significantly with histopathological progression of the tumor (p < 0001). Controls showed strong nuclear and cytoplasmatic immunohistochemical staining. MiR-21 up regulation in tissue corresponded to PDCD4 suppression. Conclusions: These data support a decisive role for PDCD4 down regulation in transitional cell carcinoma and confirm miR-21 as a negative regulator for PDCD4. Additionally, PDCD4 immunohistochemical staining turns out to be a possible diagnostic marker for transitional cell carcinoma.

  19. Structural Modifications and Programmed Cell Death of Chili Pepper Fruit Related to Resistance Responses to Colletotrichum gloeosporioides Infection.

    PubMed

    Kim, Kwang-Hyung; Yoon, Jae-Bok; Park, Hyo-Guen; Park, Eun Woo; Kim, Young Ho

    2004-12-01

    ABSTRACT Postharvest (detached) and in planta (attached) fruits of pepper plants, Capsicum annuum cv. Jejujaerae (susceptible) and Capsicum baccatum cv. PBC80 (resistant), inoculated with the anthracnose pathogen Colletotrichum gloeosporioides were examined using light, confocal laser scanning, and electron microscopy to compare the cytological differences between the compatible and incompatible interactions. In nonwound inoculation of postharvest pepper fruit, resistant pepper tissues showed a significant increase in the thickness of the cuticle layer compared with that of the susceptible and noninoculated fruit. Cytological features of programmed cell death (PCD) were observed in the resistant pepper fruit with postharvest inoculation, and these were characterized by positive responses to terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling. The oligonucleosomal fragments of DNA were confirmed electrophoretically as DNA laddering. The PCD-positive responses occurred around the inoculation sites early in in planta wound inoculation in the resistant pepper. Nuclear modifications and structural changes of hypersensitivity were also observed in the resistant fruit, including separation of the plasma membrane from the cell wall, dilation of the endoplasmic reticulum, accumulation of electron-dense inclusions in vacuoles, and cytoplasmic vacuolization accompanying fragmentation of the cytoplasm. These structural changes may also implicate PCD-like host responses. In addition, in planta wound inoculation resulted in cell enlargement and cell division during the later stages of infection to form a periderm-like boundary layer around the inoculation site. PMID:18943699

  20. Aluminum-induced programmed cell death promoted by AhSAG, a senescence-associated gene in Arachis hypoganea L.

    PubMed

    Zhan, Jie; He, Hu-Yi; Wang, Tian-Ju; Wang, Ai-Qin; Li, Chuang-Zhen; He, Long-Fei

    2013-09-01

    Programmed cell death (PCD) is a foundational cellular process in plant development and elimination of damaged cells under environmental stresses. In this study, Al induced PCD in two peanut (Arachis hypoganea L.) cultivars Zhonghua 2 (Al-sensitive) and 99-1507 (Al-tolerant) using DNA ladder, TUNEL detection and electron microscopy. The concentration of Al-induced PCD was lower in Zhonghua 2 than in 99-1507. AhSAG, a senescence-associated gene was isolated from cDNA library of Al-stressed peanut with PCD. Open reading frame (ORF) of AhSAG was 474bp, encoding a SAG protein composed of 157 amino acids. Compared to the control and the antisense transgenic tobacco plants, the fast development and blossom of the sense transgenic plants happened to promote senescence. The ability of Al tolerance in sense transgenic tobacco was lower than in antisense transgenic tobacco according to root elongation and Al content analysis. The expression of AhSAG-GFP was higher in sense transgenic tobacco than in antisense transgenic tobacco. Altogether, these results indicated that there was a negative relationship between Al-induced PCD and Al-resistance in peanut, and the AhSAG could induce or promote the occurrence of PCD in plants. PMID:23849118

  1. Crystal Structure of the Complex Between Programmed Death-1 (PD-1) and its Ligand PD-L2

    SciTech Connect

    Lazar-Molnar,E.; Yan, Q.; Cao, E.; Ramagopal, U.; Nathenson, S.; Almo, S.

    2008-01-01

    Programmed death-1 (PD-1) is a member of the CD28/B7 superfamily that delivers negative signals upon interaction with its two ligands, PD-L1 or PD-L2. The high-resolution crystal structure of the complex formed by the complete ectodomains of murine PD-1 and PD-L2 revealed a 1:1 receptor:ligand stoichiometry and displayed a binding interface and overall molecular organization distinct from that observed in the CTLA-4/B7 inhibitory complexes. Furthermore, our structure also provides insights into the association between PD-1 and PD-L1 and highlights differences in the interfaces formed by the two PD-1 ligands (PD-Ls) Mutagenesis studies confirmed the details of the proposed PD-1/PD-L binding interfaces and allowed for the design of a mutant PD-1 receptor with enhanced affinity. These studies define spatial and organizational constraints that control the localization and signaling of PD-1/PD-L complexes within the immunological synapse and provide a basis for manipulating the PD-1 pathways for immunotherapy.

  2. Thioredoxin-2 Modulates Neuronal Programmed Cell Death in the Embryonic Chick Spinal Cord in Basal and Target-Deprived Conditions

    PubMed Central

    Pirson, Marc; Debrulle, Stéphanie; Clippe, André; Clotman, Frédéric; Knoops, Bernard

    2015-01-01

    Thioredoxin-2 (Trx2) is a mitochondrial protein using a dithiol active site to reduce protein disulfides. In addition to the cytoprotective function of this enzyme, several studies have highlighted the implication of Trx2 in cellular signaling events. In particular, growing evidence points to such roles of redox enzymes in developmental processes taking place in the central nervous system. Here, we investigate the potential implication of Trx2 in embryonic development of chick spinal cord. To this end, we first studied the distribution of the enzyme in this tissue and report strong expression of Trx2 in chick embryo post-mitotic neurons at E4.5 and in motor neurons at E6.5. Using in ovo electroporation, we go on to highlight a cytoprotective effect of Trx2 on the programmed cell death (PCD) of neurons during spinal cord development and in a novel cultured spinal cord explant model. These findings suggest an implication of Trx2 in the modulation of developmental PCD of neurons during embryonic development of the spinal cord, possibly through redox regulation mechanisms. PMID:26540198

  3. Programmed cell death 1 forms negative costimulatory microclusters that directly inhibit T cell receptor signaling by recruiting phosphatase SHP2

    PubMed Central

    Takamatsu, Masako; Kobayashi-Imanishi, Wakana; Hashimoto-Tane, Akiko; Azuma, Miyuki

    2012-01-01

    Programmed cell death 1 (PD-1) is a negative costimulatory receptor critical for the suppression of T cell activation in vitro and in vivo. Single cell imaging elucidated a molecular mechanism of PD-1–mediated suppression. PD-1 becomes clustered with T cell receptors (TCRs) upon binding to its ligand PD-L1 and is transiently associated with the phosphatase SHP2 (Src homology 2 domain–containing tyrosine phosphatase 2). These negative costimulatory microclusters induce the dephosphorylation of the proximal TCR signaling molecules. This results in the suppression of T cell activation and blockade of the TCR-induced stop signal. In addition to PD-1 clustering, PD-1–TCR colocalization within microclusters is required for efficient PD-1–mediated suppression. This inhibitory mechanism also functions in PD-1hi T cells generated in vivo and can be overridden by a neutralizing anti–PD-L1 antibody. Therefore, PD-1 microcluster formation is important for regulation of T cell activation. PMID:22641383

  4. The TUNEL assay suggests mandibular regression by programmed cell death during presoldier differentiation in the nasute termite Nasutitermes takasagoensis

    NASA Astrophysics Data System (ADS)

    Toga, Kouhei; Yoda, Shinichi; Maekawa, Kiyoto

    2011-09-01

    Termite soldiers are the most specialized caste of social insects in terms of their morphology and function. Soldier development requires increased juvenile hormone (JH) titer and the two molts via a presoldier stage. These molts are accompanied by dramatic morphological changes, including the exaggeration and regression of certain organs. Soldiers of the most apical termitid subfamily Nasutitermitinae possess not only a horn-like frontal tube, called the nasus, for the projection of defensive chemicals from the frontal gland reservoir but also regressed mandibles. Although candidate genes regulating soldier mandibular growth were reported in a relatively basal termite species, the regulatory mechanisms of mandibular regression remain unknown. To clarify these mechanisms, we performed morphological and histological examinations of the mandibles during soldier differentiation in Nasutitermes takasagoensis. Mandibular size reduced dramatically during soldier differentiation, and mandibular regression occurred just prior to the presoldier molt. Spotted TUNEL signals were observed in regressing mandibles of presoldiers, suggesting that the regression involved programmed cell death. Because soldiers of N. takasagoensis possess exaggerated organs (nasus and frontal gland), the present results suggest that JH-dependent regressive mechanisms exist in the mandibles without interfering with the formation of the exaggerated organs.

  5. Fragile X Mental Retardation Protein is Required for Programmed Cell Death and Clearance of Developmentally-Transient Peptidergic Neurons

    PubMed Central

    Gatto, Cheryl L.; Broadie, Kendal

    2011-01-01

    Fragile X syndrome (FXS), caused by loss of fragile X mental retardation 1 (FMR1) gene function, is the most common heritable cause of intellectual disability and autism spectrum disorders. The FMR1 product (FMRP) is an RNA-binding protein best established to function in activity-dependent modulation of synaptic connections. In the Drosophila FXS disease model, loss of functionally-conserved dFMRP causes synaptic overgrowth and overelaboration in pigment dispersing factor (PDF) peptidergic neurons in the adult brain. Here, we identify a very different component of PDF neuron misregulation in dfmr1 mutants: the aberrant retention of normally developmentally-transient PDF tritocerebral (PDF-TRI) neurons. In wild-type animals, PDF-TRI neurons in the central brain undergo programmed cell death and complete, processive clearance within days of eclosion. In the absence of dFMRP, a defective apoptotic program leads to constitutive maintenance of these peptidergic neurons. We tested whether this apoptotic defect is circuit-specific by examining crustacean cardioactive peptide (CCAP) and bursicon circuits, which are similarly developmentally-transient and normally eliminated immediately post-eclosion. In dfmr1 null mutants, CCAP/bursicon neurons also exhibit significantly delayed clearance dynamics, but are subsequently eliminated from the nervous system, in contrast to the fully persistent PDF-TRI neurons. Thus, the requirement of dFMRP for the retention of transitory peptidergic neurons shows evident circuit specificity. The novel defect of impaired apoptosis and aberrant neuron persistence in the Drosophila FXS model suggests an entirely new level of “pruning” dysfunction may contribute to the FXS disease state. PMID:21596027

  6. Genetics Home Reference: neurofibromatosis type 1

    MedlinePlus

    ... of neurofibromatosis type 1. Semin Pediatr Neurol. 2006 Mar;13(1):8-20. Review. Citation on PubMed ... PubMed Rose VM. Neurocutaneous syndromes. Mo Med. 2004 Mar-Apr;101(2):112-6. Review. Citation on ...

  7. Genetics Home Reference: pseudohypoaldosteronism type 1

    MedlinePlus

    ... hyperkalaemic acidosis, pseudohypoaldosteronism type 1. Nat Genet. 1996 Mar;12(3):248-53. Citation on PubMed Chen ... sgk. Proc Natl Acad Sci U S A. 1999 Mar 2;96(5):2514-9. Citation on PubMed ...

  8. Experimental Reproduction of Type 1B Chondrules

    NASA Technical Reports Server (NTRS)

    Lofgren, G. E.; Le, L.

    2002-01-01

    We have replicated type 1B chondrule textures and compositions with crystallization experiments in which UOC material was melted at 1400 deg.C and cooled at 5-1000 deg.C/hr using graphite crucibles in evacuated silica tubes to provide a reducing environment. Additional information is contained in the original extended abstract.

  9. ER stress and the decline and fall of pancreatic beta cells in type 1 diabetes

    PubMed Central

    Brozzi, Flora

    2016-01-01

    Components of the unfolded protein response (UPR) modulate beta cell inflammation and death in early type 1 diabetes (T1D). The UPR is a mechanism by which cells react to the accumulation of misfolded proteins in the endoplasmic reticulum (ER). It aims to restore cellular homeostasis, but in case of chronic or overwhelming ER stress the persistent activation of the UPR triggers apoptosis, contributing to the loss of beta cells in both T1D and type 2 diabetes. It remains to be determined how and why the transition from ‘physiological’ to ‘pathological’ UPR takes place. A key component of the UPR is the ER transmembrane protein IRE1α (inositol-requiring enzyme 1α). IRE1α activity is modulated by both intra-ER signals and by the formation of protein complexes at its cytosolic domain. The amplitude and duration of IRE1α signaling is critical for the transition between the adaptive and cell death programs, with particular relevance for the activation of the pro-apoptotic c-Jun N-terminal kinase (JNK) in beta cells. In the present review we discuss the available information on IRE1α-regulating proteins in beta cells and their downstream targets, and the important differences observed between cytokine-induced UPR in human and rodent beta cells. PMID:26899404

  10. Gut Microbiota and Type 1 Diabetes

    PubMed Central

    Vaarala, Outi

    2012-01-01

    The gut immune system has a key role in the development of autoimmune diabetes, and factors that control the gut immune system are also regulators of beta-cell autoimmunity. Gut microbiota modulate the function of the gut immune system by their effect on the innate immune system, such as the intestinal epithelial cells and dendritic cells, and on the adaptive immune system, in particular intestinal T cells. Due to the immunological link between gut and pancreas, e.g. the shared lymphocyte homing receptors, the immunological changes in the gut are reflected in the pancreas. According to animal studies, changes in gut microbiota alter the development of autoimmune diabetes. This has been demonstrated by antibiotics that induce changes in the gut microbiota. Furthermore, gut-colonizing microbes may modify the incidence of autoimmune diabetes in animal models. Deficient toll-like receptor (TLR) signaling, mediating microbial stimulus in immune cells, prevents autoimmune diabetes, which appears to be dependent on alterations in the intestinal microbiota. Although few studies have been conducted in humans, recent studies suggest that the abundance of Bacteroides and lack of butyrate-producing bacteria in fecal microbiota are associated with beta-cell autoimmunity and type 1 diabetes. It is possible that altered gut microbiota are associated with immunological aberrancies in type 1 diabetes. The changes in gut microbiota could lead to alterations in the gut immune system, such as increased gut permeability, small intestinal inflammation, and impaired tolerance to food antigens, all of which are observed in type 1 diabetes. Poor fitness of gut microbiota could explain why children who develop type 1 diabetes are prone to enterovirus infections, and do not develop tolerance to cow milk antigens. These candidate risk factors of type 1 diabetes may imply an increased risk of type 1 diabetes due to the presence of gut microbiota that do not support health. Despite the complex

  11. Induction of multiple programmed cell death pathways by IFN-beta in human non-small-cell lung cancer cell lines.

    PubMed

    Zhang, H; Koty, P P; Mayotte, J; Levitt, M L

    1999-02-25

    Tissue transglutaminase (tTG) and keratinocyte transglutaminase (kTG), as well as the cross-linked envelopes (CLE) that they form, have been associated with squamous differentiation and programmed cell death in epithelial cells. When interferon-beta (IFN-beta) was used to stimulate differentiation and programmed cell death in the human lung cancer cell lines NCI-H596 and NCI-H226, the cells underwent a decrease in cellular density. In NCI-H596 IFN-beta caused an increase in kTG activity and DNA fragmentation in the lower density cells, which were significantly slower growing than control cells. However, in the higher density cells, which were only slightly slower growing than control cells, IFN-beta caused an increase in tTG activity and CLE competence. Dual-parameter flow cytometry demonstrated that IFN-beta-induced squamous differentiation preceded programmed cell death. Treatment of NCI-H596 cells with monodansylcadaverine, a transglutaminase inhibitor, prevented the increase in CLE competence, but did not inhibit DNA fragmentation. These results suggest that IFN-beta can induce NCI-H596 cells to enter multiple cell death pathways and that these pathways are not only differentiation related, but may also be growth driven. PMID:10047455

  12. Resistance exercise in type 1 diabetes.

    PubMed

    Yardley, Jane E; Sigal, Ronald J; Perkins, Bruce A; Riddell, Michael C; Kenny, Glen P

    2013-12-01

    It is relatively well known that moderate-intensity aerobic exercise increases the risk of hypoglycemia in individuals with type 1 diabetes. Conversely, brief high-intensity (anaerobic) activity can cause post-exercise hyperglycemia. Recent evidence has indicated that including small amounts of anaerobic activity, either in the form of short sprints or as resistance exercise (weight lifting), during aerobic exercise sessions may decrease the drop in blood glucose levels associated with moderate-intensity aerobic exercise. This review discusses the recent developments in the area of exercise and type 1 diabetes, with a particular focus on the effects of resistance exercise. Practical exercise recommendations, as well as suggestions for the future direction of research in this area, are also provided. PMID:24321724

  13. Programmed cell death 1 inhibits inflammatory helper T-cell development through controlling the innate immune response.

    PubMed

    Rui, Yuxiang; Honjo, Tasuku; Chikuma, Shunsuke

    2013-10-01

    Programmed cell death 1 (PD-1) is an inhibitory coreceptor on immune cells and is essential for self-tolerance because mice genetically lacking PD-1 (PD-1(-/-)) develop spontaneous autoimmune diseases. PD-1(-/-) mice are also susceptible to severe experimental autoimmune encephalomyelitis (EAE), characterized by a massive production of effector/memory T cells against myelin autoantigen, the mechanism of which is not fully understood. We found that an increased primary response of PD-1(-/-) mice to heat-killed mycobacteria (HKMTB), an adjuvant for EAE, contributed to the enhanced production of T-helper 17 (Th17) cells. Splenocytes from HKMTB-immunized, lymphocyte-deficient PD-1(-/-) recombination activating gene (RAG)2(-/-) mice were found to drive antigen-specific Th17 cell differentiation more efficiently than splenocytes from HKMTB-immunized PD-1(+/+) RAG2(-/-) mice. This result suggested PD-1's involvement in the regulation of innate immune responses. Mice reconstituted with PD-1(-/-) RAG2(-/-) bone marrow and PD-1(+/+) CD4(+) T cells developed more severe EAE compared with the ones reconstituted with PD-1(+/+) RAG2(-/-) bone marrow and PD-1(+/+) CD4(+) T cells. We found that upon recognition of HKMTB, CD11b(+) macrophages from PD-1(-/-) mice produced very high levels of IL-6, which helped promote naive CD4(+) T-cell differentiation into IL-17-producing cells. We propose a model in which PD-1 negatively regulates antimycobacterial responses by suppressing innate immune cells, which in turn prevents autoreactive T-cell priming and differentiation to inflammatory effector T cells. PMID:24043779

  14. Programmed death ligand 1 as an indicator of pre-existing adaptive immune responses in human hepatocellular carcinoma.

    PubMed

    Xie, Qian-Kun; Zhao, Yu-Jie; Pan, Tao; Lyu, Ning; Mu, Lu-Wen; Li, Shao-Long; Shi, Mu-De; Zhang, Zhen-Feng; Zhou, Peng-Hui; Zhao, Ming

    2016-07-01

    It is well known that the aberrant expression of programmed death ligand 1 (PD-L1) on tumor cells impairs antitumor immunity. To date, in hepatocellular carcinoma (HCC), the relationship between PD-L1 expression and host-tumor immunity is not well defined. Here, the expression levels of PD-L1 and CD8(+) T cell infiltration were analyzed by immunohistochemistry (IHC) in formalin fixed paraffin embedded (FFPE) specimens from 167 HCC patients undergoing resection. A significant positive association was found between PD-L1 expression and the presence of CD8(+) T cell (p < 0.0001). Moreover, constitutive PD-L1 protein expression was not detected by western blot in HepG2, Hep3B, and 7402 HCC cancer cell lines; but co-cultured these cell lines with INFγ, a cytokine produced by activated CD8(+) T cells, remarkably upregulated PD-L1 expression. In fresh frozen HCC specimens, INFγ was found to be significantly correlated with PD-L1 and CD8(+) gene expression, as evaluated by quantitative reverse transcriptase polymerase chain reaction (RT-PCR). These findings indicate that increased PD-L1 level may represent an adaptive immune resistance mechanism exerted by tumor cells in response to endogenous antitumor activity. Both increased intratumoral PD-L1 and CD8(+) were significantly associated with superior DFS (CD8(+): p = 0.03; PD-L1: p = 0.023) and OS (CD8(+): p = 0.001 and PD-L1: p = 0.059), but PD-L1 expression was not independently prognostic. In conclusions, PD-L1 upregulation is mainly induced by activated CD8(+) cytotoxic T cells pre-existing in HCC milieu rather than be constitutively expressed by the tumor cells, and it is a favorable prognostic factor for HCC. PMID:27622038

  15. Programmed Cell Death-1 Polymorphisms Decrease the Cancer Risk: A Meta-Analysis Involving Twelve Case-Control Studies

    PubMed Central

    Dong, Wenjing; Gong, Mancheng; Shi, Zhirong; Xiao, Jianjun; Zhang, Junkai; Peng, Jiewen

    2016-01-01

    Programmed cell death-1 (PD-1) plays an important inhibitory role in anti-tumor responses, so it is considered as a powerful candidate gene for individual’s genetic susceptibility to cancer. Recently, some epidemiological studies have evaluated the association between PD-1 polymorphisms and cancer risk. However, the results of the studies are conflicting. Therefore, a meta-analysis was performed. We identified all studies reporting the relationship between PD-1 polymorphisms and cancers by electronically searches. According to the inclusion criteria and the quality assessment of Newcastle-Ottawa Scale (NOS), only high quality studies were included. A total of twelve relevant studies involving 5,206 cases and 5,174 controls were recruited. For PD-1.5 (rs2227981) polymorphism, significantly decreased cancer risks were obtained among overall population, Asians subgroup and population-based subgroup both in TT vs. CC and TT vs. CT+CC genetic models. In addition, a similar result was also found in T vs. C allele for overall population. However, there were no significant associations between either PD-1.9 (rs2227982) or PD-1 rs7421861 polymorphisms and cancer risks in all genetic models and alleles. For PD-1.3 (rs11568821) polymorphism, we found different cancer susceptibilities between GA vs. GG and AA vs. AG+GG genetic models, and no associations between AA vs. GG, AA+AG vs. GG genetic models or A vs. G allele and cancer risks. In general, our results firstly indicated that PD-1.5 (rs2227981) polymorphism is associated a strongly decreased risk of cancers. Additional epidemiological studies are needed to confirm our findings. PMID:27031235

  16. Anti–Programmed Cell Death (PD)-1 Immunotherapy for Malignant Tumor: A Systematic Review and Meta-Analysis1

    PubMed Central

    Chen, Ran; Peng, Pei-Chun; Wen, Bin; Li, Fu-Ying; Xie, Sheng; Chen, Guozhong; Lu, Jiefu; Peng, Zhuoyu; Tang, Shao-Bo; Liang, Yu-Mei; Deng, Xin

    2016-01-01

    This systematic review and meta-analysis evaluated anti–programmed cell death (PD)-1 immunotherapy (nivolumab or pembrolizumab) for overall efficacy, safety, and effective dose relative to standard chemotherapy or other conventional drugs in the treatment of malignant tumors. We searched the following databases, PubMed, Medline, Embase, Cochrane, Wangfang Data, Weipu, and China National Knowledge Infrastructure, and the reference lists of the selected articles for randomized controlled trials (RCTs) of anti–PD-1 therapies in humans. The outcome measures were overall survival, treatment response, and adverse events. Only four randomized controlled trials met our inclusion criteria. Three of these evaluated responses to nivolumab, whereas one tested pembrolizumab. The result of our analysis suggested that nivolumab may improve the overall response rate in treating melanoma relative to chemotherapy and has few associated adverse events. Similarly, in metastatic melanoma patients, nivolumab had a significant advantage over dacarbazine in terms of 1-year survival, progression-free survival, and objective response rate. Regarding dose levels of nivolumab for patients with metastatic renal cell carcinoma, the outcomes in response to 2 and 10 mg/kg were similar, but both had significant advantages over 0.3 mg/kg. In addition, pembrolizumab showed similar outcomes in response to 2- and 10-mg/kg treatment. Anti–PD-1 immunotherapy appears to be safe and effective for patients with melanoma or metastatic renal cell carcinoma. Our meta-analysis is limited, but additional clinical trials are warranted to verify this preliminary evidence of positive outcomes and before anti–PD-1 therapy can be recommended for routine clinical use. PMID:26947879

  17. Apigenin inhibits the inducible expression of programmed death ligand 1 by human and mouse mammary carcinoma cells.

    PubMed

    Coombs, Melanie R Power; Harrison, Megan E; Hoskin, David W

    2016-10-01

    Programmed death ligand 1 (PD-L1) is expressed by many cancer cell types, as well as by activated T cells and antigen-presenting cells. Constitutive and inducible PD-L1 expression contributes to immune evasion by breast cancer (BC) cells. We show here that the dietary phytochemical apigenin inhibited interferon (IFN)-γ-induced PD-L1 upregulation by triple-negative MDA-MB-468 BC cells, HER2(+) SK-BR-3 BC cells, and 4T1 mouse mammary carcinoma cells, as well as human mammary epithelial cells, but did not affect constitutive PD-L1 expression by triple-negative MDA-MB-231 BC cells. IFN-β-induced expression of PD-L1 by MDA-MB-468 cells was also inhibited by apigenin. In addition, luteolin, the major metabolite of apigenin, inhibited IFN-γ-induced PD-L1 expression by MDA-MB-468 cells. Apigenin-mediated inhibition of IFN-γ-induced PD-L1 expression by MDA-MB-468 and 4T1 cells was associated with reduced phosphorylation of STAT1, which was early and transient at Tyr701 and sustained at Ser727. Apigenin-mediated inhibition of IFN-γ-induced PD-L1 expression by MDA-MB-468 cells also increased proliferation and interleukin-2 synthesis by PD-1-expressing Jurkat T cells that were co-cultured with MDA-MB-468 cells. Apigenin therefore has the potential to increase the vulnerability of BC cells to T cell-mediated anti-tumor immune responses. PMID:27378243

  18. Anti-Programmed Cell Death (PD)-1 Immunotherapy for Malignant Tumor: A Systematic Review and Meta-Analysis.

    PubMed

    Chen, Ran; Peng, Pei-Chun; Wen, Bin; Li, Fu-Ying; Xie, Sheng; Chen, Guozhong; Lu, Jiefu; Peng, Zhuoyu; Tang, Shao-Bo; Liang, Yu-Mei; Deng, Xin

    2016-02-01

    This systematic review and meta-analysis evaluated anti-programmed cell death (PD)-1 immunotherapy (nivolumab or pembrolizumab) for overall efficacy, safety, and effective dose relative to standard chemotherapy or other conventional drugs in the treatment of malignant tumors. We searched the following databases, PubMed, Medline, Embase, Cochrane, Wangfang Data, Weipu, and China National Knowledge Infrastructure, and the reference lists of the selected articles for randomized controlled trials (RCTs) of anti-PD-1 therapies in humans. The outcome measures were overall survival, treatment response, and adverse events. Only four randomized controlled trials met our inclusion criteria. Three of these evaluated responses to nivolumab, whereas one tested pembrolizumab. The result of our analysis suggested that nivolumab may improve the overall response rate in treating melanoma relative to chemotherapy and has few associated adverse events. Similarly, in metastatic melanoma patients, nivolumab had a significant advantage over dacarbazine in terms of 1-year survival, progression-free survival, and objective response rate. Regarding dose levels of nivolumab for patients with metastatic renal cell carcinoma, the outcomes in response to 2 and 10 mg/kg were similar, but both had significant advantages over 0.3 mg/kg. In addition, pembrolizumab showed similar outcomes in response to 2- and 10-mg/kg treatment. Anti-PD-1 immunotherapy appears to be safe and effective for patients with melanoma or metastatic renal cell carcinoma. Our meta-analysis is limited, but additional clinical trials are warranted to verify this preliminary evidence of positive outcomes and before anti-PD-1 therapy can be recommended for routine clinical use. PMID:26947879

  19. Programmed cell death in kiwifruit stigmatic arms and its relationship to the effective pollination period and the progamic phase

    PubMed Central

    Ferradás, Yolanda; López, Marián; Rey, Manuel; González, Ma Victoria

    2014-01-01

    Background and Aims Kiwifruit is a crop with a highly successful reproductive performance, which is impaired by the short effective pollination period of female flowers. This study investigates whether the degenerative processes observed in both pollinated and non-pollinated flowers after anthesis may be considered to be programmed cell death (PCD). Methods Features of PCD in kiwifruit, Actinidia chinensis var. deliciosa, were studied in both non-pollinated and pollinated stigmatic arms using transmission electron microscopy, DAPI (4′,6-diamidino-2-phenylindole) staining, TUNEL (terminal deoxynucleotidyl transferase-mediated dUTP nick end labelling) assays, DNA gel electrophoresis and caspase-like activity assays. Key Results In the secretory tissues of the stigmatic arms, cell organelles disintegrated sequentially while progressive vacuolization was detected. At the same time, chromatin condensation, nuclear deformation, and DNA fragmentation and degradation were observed. These features were detected in both non-pollinated and pollinated stigmatic arms; they were evident in the stigmas of pollinated flowers by the second day after anthesis but only by 4 d after anthesis in non-pollinated flowers. In addition, in pollinated stigmatic arms, these features were first initiated in the stigma and gradually progressed through the style, consistent with pollen tube growth. This timing of events was also observed in both non-pollinated and pollinated stigmatic arms for caspase-3-like activity. Conclusions The data provide evidence to support the hypothesis that PCD processes occurring in the secretory tissue of non-pollinated kiwifruit stigmatic arms could be the origin for the observed short effective pollination period. The results obtained in the secretory tissue of pollinated kiwifruit stigmatic arms upon pollination support the idea that PCD might be accelerated by pollination, pointing to the involvement of PCD during the progamic phase. PMID:24782437

  20. Programmed death 1 expression in the peritumoral microenvironment is associated with a poorer prognosis in classical Hodgkin lymphoma.

    PubMed

    Koh, Young Wha; Jeon, Yoon Kyung; Yoon, Dok Hyun; Suh, Cheolwon; Huh, Jooryung

    2016-06-01

    Programmed cell death protein-1 (PD-1) inhibitor may be therapeutic in patients with relapsed or refractory classical Hodgkin's lymphoma (cHL). This study examined the prognostic significance of PD-1 and two PD-1 ligands (PD-L1 and PD-L2) in uniformly treated cHL. Diagnostic tissues from 109 cHL patients treated with a doxorubicin, bleomycin, vinblastine, and dacarbazine regimen were evaluated retrospectively by immunohistochemical analysis of PD-L1, PD-L2, and PD-1 expressions. The median follow-up time was 4.91 years (range, 0.17-17.33 years). Thirteen patients (11 %) expressed PD-1 protein in the peritumoral microenvironment, which was associated with poor overall survival (OS) (P = 0.017). PD-L1 or PD-L2 expression was not associated with OS. There was no correlation between PD-L1 and PD-1 expression or between PD-L2 and PD-1 expression. Multivariate analysis identified PD-1 protein as an independent prognostic factor for OS (P = 0.019). Subgroup analysis according to the Ann Arbor stage of cHL showed that PD-1 protein expression had a prognostic value in limited-stage cHL (P = 0.048). PD-1 is an independent prognostic factor in cHL and may allow the identification of a subgroup of patients with limited-stage cHL who require more intensive therapy and who may benefit from anti-PD-1 agents. PMID:26678894

  1. Ectopic Expression of BnaC.CP20.1 Results in Premature Tapetal Programmed Cell Death in Arabidopsis.

    PubMed

    Song, Liping; Zhou, Zhengfu; Tang, Shan; Zhang, Zhiqiang; Xia, Shengqian; Qin, Maomao; Li, Bao; Wen, Jing; Yi, Bin; Shen, Jinxiong; Ma, Chaozhi; Fu, Tingdong; Tu, Jinxing

    2016-09-01

    Tapetal programmed cell death (PCD) is essential in pollen grain development, and cysteine proteases are ubiquitous enzymes participating in plant PCD. Although the major papain-like cysteine proteases (PLCPs) have been investigated, the exact functions of many PLCPs are still poorly understood in PCD. Here, we identified a PLCP gene, BnaC.CP20.1, which was closely related to XP_013596648.1 from Brassica oleracea. Quantitative real-time PCR analysis revealed that BnaC.CP20.1 expression was down-regulated in male-sterile lines in oilseed rape, suggesting a connection between this gene and male sterility. BnaC.CP20.1 is especially active in the tapetum and microspores in Brassica napus from the uninucleate stage until formation of mature pollen grains during anther development. On expression of BnaC.CP20.1 prior to the tetrad stage, BnA9::BnaC.CP20.1 transgenic lines in Arabidopsis thaliana showed a male-sterile phenotype with shortened siliques containing fewer or no seeds by self-crossing. Scanning electron microscopy indicated that the reticulate exine was defective in aborted microspores. Callose degradation was delayed and microspores were not released from the tetrad in a timely fashion. Additionally, the terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) assay indicated that BnaC.CP20.1 ectopic expression led to premature tapetal PCD. Transmission electron microscopy analyses further demonstrated that the pollen abortion was due to the absence of tectum connections to the bacula in the transgenic anthers. These findings suggest that timely expression of BnaC.CP20.1 is necessary for tapetal degeneration and pollen wall formation. PMID:27388342

  2. Hypoxic stress triggers a programmed cell death pathway to induce vascular cavity formation in Pisum sativum roots.

    PubMed

    Sarkar, Purbasha; Gladish, Daniel K

    2012-12-01

    Flooding at warm temperatures induces hypoxic stress in Pisum sativum seedling roots. In response, some undifferentiated cells in the primary root vascular cylinder start degenerating and form a longitudinal vascular cavity. Changes in cellular morphology and cell wall ultrastructure detected previously in the late stages of cavity formation suggest possible involvement of programmed cell death (PCD). In this study, cytological events occurring in the early stages of cavity formation were investigated. Systematic DNA fragmentation, a feature of many PCD pathways, was detected in the cavity-forming roots after 3 h of flooding in situ by terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling assay and in isolated total DNA by gel electrophoresis. High molecular weight DNA fragments of about 20-30 kb were detected by pulse-field gel electrophoresis, but no low-molecular weight internucleosomal DNA fragments were detected by conventional gel electrophoresis. Release of mitochondrial cytochrome c protein into the cytosol, an integral part of mitochondria-dependent PCD pathways, was detected in the cavity-forming roots within 2 h of flooding by fluorescence microscopy of immunolabeled cytochrome c in situ and in isolated mitochondrial and cytosolic protein fractions by western blotting. DNA fragmentation and cytochrome c release remained confined to the undifferentiated cells in center of the root vascular cylinders, even after 24 h of flooding, while outer vascular cylinder cells and cortical cells maintained cellular integrity and normal activity. These findings confirm that hypoxia-induced vascular cavity formation in P. sativum roots involves PCD, and provides a chronological model of cytological events involved in this rare and understudied PCD system. PMID:22486732

  3. Immune checkpoints programmed death 1 ligand 1 and cytotoxic T lymphocyte associated molecule 4 in gastric adenocarcinoma.

    PubMed

    Schlößer, Hans A; Drebber, Uta; Kloth, Michael; Thelen, Martin; Rothschild, Sacha I; Haase, Simon; Garcia-Marquez, Maria; Wennhold, Kerstin; Berlth, Felix; Urbanski, Alexander; Alakus, Hakan; Schauss, Astrid; Shimabukuro-Vornhagen, Alexander; Theurich, Sebastian; Warnecke-Ebertz, Ute; Stippel, Dirk L; Zippelius, Alfred; Büttner, Reinhard; Hallek, Michael; Hölscher, Arnulf H; Zander, Thomas; Mönig, Stefan P; von Bergwelt-Baildon, Michael

    2016-05-01

    Remarkable efficacy of immune checkpoint inhibition has been reported for several types of solid tumors and early studies in gastric adenocarcinoma are promising. A detailed knowledge about the natural biology of immune checkpoints in gastric adenocarcinoma is essential for clinical and translational evaluation of these drugs. This study is a comprehensive analysis of cytotoxic T lymphocyte associated molecule 4 (CTLA-4) and programmed death 1 ligand 1 (PD-L1) expression in gastric adenocarcinoma. PD-L1 and CTLA-4 were stained on tumor sections of 127 Caucasian patients with gastric adenocarcinoma by immunohistochemistry (IHC) and somatic mutation profiling was performed using targeted next-generation sequencing. Expression of PD-L1 and CTLA-4 on lymphocytes in tumor sections, tumor-draining lymph nodes (TDLN) and peripheral blood were studied by flow-cytometry and immune-fluorescence microscopy in an additional cohort. PD-L1 and CTLA-4 were expressed in 44.9% (57/127) and 86.6% (110/127) of the analyzed gastric adenocarcinoma samples, respectively. Positive tumor cell staining for PD-L1 or CTLA-4 was associated with inferior overall survival. Somatic mutational analysis did not reveal a correlation to expression of PD-L1 or CTLA-4 on tumor cells. Expression of PD-1 (52.2%), PD-L1 (42.2%) and CTLA-4 (1.6%) on tumor infiltrating T cells was significantly elevated compared to peripheral blood. Of note, PD-1 and PD-L1 were expressed far higher by tumor-infiltrating lymphocytes than CTLA-4. In conclusion, specific immune checkpoint-inhibitors should be evaluated in this disease and the combination with molecular targeted therapies might be of benefit. An extensive immune monitoring should accompany these studies to better understand their mode of action in the tumor microenvironment. PMID:27467911

  4. Epigenetic Changes are Associated with Programmed Cell Death Induced by Heat Stress in Seedling Leaves of Zea mays.

    PubMed

    Wang, Pu; Zhao, Lin; Hou, Haoli; Zhang, Hao; Huang, Yan; Wang, Yapei; Li, Hui; Gao, Fei; Yan, Shihan; Li, Lijia

    2015-05-01

    Histone modification plays a crucial role in regulation of chromatin architecture and function, responding to adverse external stimuli. However, little is known about a possible relationship between epigenetic modification and programmed cell death (PCD) in response to environmental stress. Here, we found that heat stress induced PCD in maize seedling leaves which was characterized by chromatin DNA laddering and DNA strand breaks detected by a terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) test. The activities of the reactive oxygen species (ROS)-related enzymes superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT) were progressively increased over time in the heat-treated seedlings. However, the concentration of H2O2 remained at relatively lower levels, while the concentration of superoxide anion ([Formula: see text]) was increased, accompanied by the occurrence of higher ion leakage rates after heat treatment. The total acetylation levels of histones H3K9, H4K5 and H3 were significantly increased, whereas the di-methylation level of histone H3K4 was unchanged and the di-methylation level of histone H3K9 was decreased in the seedling leaves exposed to heat stress compared with the control seedlings, accompanied by increased nucleolus size indicative of chromatin decondensation. Furthermore, treatment of seedlings with trichostatin A (TSA), which always results in genomic histone hyperacetylation, caused an increase in the [Formula: see text] level within the cells. The results suggested that heat stress persistently induced [Formula: see text], leading to PCD in association with histone modification changes in the maize leaves. PMID:25670712

  5. Self-incompatibility-induced programmed cell death in field poppy pollen involves dramatic acidification of the incompatible pollen tube cytosol.

    PubMed

    Wilkins, Katie A; Bosch, Maurice; Haque, Tamanna; Teng, Nianjun; Poulter, Natalie S; Franklin-Tong, Vernonica E

    2015-03-01

    Self-incompatibility (SI) is an important genetically controlled mechanism to prevent inbreeding in higher plants. SI involves highly specific interactions during pollination, resulting in the rejection of incompatible (self) pollen. Programmed cell death (PCD) is an important mechanism for destroying cells in a precisely regulated manner. SI in field poppy (Papaver rhoeas) triggers PCD in incompatible pollen. During SI-induced PCD, we previously observed a major acidification of the pollen cytosol. Here, we present measurements of temporal alterations in cytosolic pH ([pH]cyt); they were surprisingly rapid, reaching pH 6.4 within 10 min of SI induction and stabilizing by 60 min at pH 5.5. By manipulating the [pH]cyt of the pollen tubes in vivo, we show that [pH]cyt acidification is an integral and essential event for SI-induced PCD. Here, we provide evidence showing the physiological relevance of the cytosolic acidification and identify key targets of this major physiological alteration. A small drop in [pH]cyt inhibits the activity of a soluble inorganic pyrophosphatase required for pollen tube growth. We also show that [pH]cyt acidification is necessary and sufficient for triggering several key hallmark features of the SI PCD signaling pathway, notably activation of a DEVDase/caspase-3-like activity and formation of SI-induced punctate actin foci. Importantly, the actin binding proteins Cyclase-Associated Protein and Actin-Depolymerizing Factor are identified as key downstream targets. Thus, we have shown the biological relevance of an extreme but physiologically relevant alteration in [pH]cyt and its effect on several components in the context of SI-induced events and PCD. PMID:25630437

  6. Programmed Death 1 (PD-1) is involved in the development of proliferative diabetic retinopathy by mediating activation-induced apoptosis

    PubMed Central

    Fang, Mengyuan; Meng, Qianli; Wang, Liya; Zhao, Zhaoxia; Zhang, Liang; Kuang, Jian; Cui, Ying; Mai, Liping; Zhu, Jiening

    2015-01-01

    Purpose Recent studies revealed that immunological mechanisms play a prominent role in the pathogenesis of proliferative diabetic retinopathy (PDR). Given the importance of the immune response in PDR and the significance of the programmed death 1 (PD-1) pathway as an immune regulatory pathway, the aim of this study is to determine the expression and functional characteristics of the PD-1 pathway in peripheral blood lymphocytes from patients with PDR. Methods Peripheral blood lymphocytes were obtained from patients with PDR, age-matched patients with diabetes mellitus and no diabetic retinopathy (DM-NDR), and controls. The mRNA expression of PD-1 and its ligands were determined using real-time PCR. The frequencies of PD-1 and its ligands, activation-induced apoptosis, IFN-γ, and IL-4 were determined by flow cytometry. Results The PD-1 mRNA expression markedly decreased, while the frequency of PD-1+ cells increased in the PDR group compared with the DM-NDR and control groups. The expression of PD-ligand 1 (PD-L1) mRNA and PD-L1+ cells in the PDR group was lower than that in the other two groups. In the PDR group, the frequency of Annexin V+PI- and Annexin V+PI-PD-1+ cells increased, while the frequency of Annexin V+PI-PD-L1+ cells decreased. Although their expression was upregulated, the ratio of PD-1+ IFN-γ+ to PD-1+IL-4+ cells in the PDR group was not significantly different to that in the DM-NDR and control groups. Conclusions These results suggest that PD-1 is involved in the development of PDR by mediating activation-induced apoptosis. PMID:26321864

  7. Reactive oxygen species regulate programmed cell death progress of endosperm in winter wheat (Triticum aestivum L.) under waterlogging.

    PubMed

    Cheng, Xiang-Xu; Yu, Min; Zhang, Nan; Zhou, Zhu-Qing; Xu, Qiu-Tao; Mei, Fang-Zhu; Qu, Liang-Huan

    2016-03-01

    Previous studies have proved that waterlogging stress accelerates the programmed cell death (PCD) progress of wheat endosperm cells. A highly waterlogging-tolerant wheat cultivar Hua 8 and a waterlogging susceptible wheat cultivar Hua 9 were treated with different waterlogging durations, and then, dynamic changes of reactive oxygen species (ROS), gene expressions, and activities of antioxidant enzymes in endosperm cells were detected. The accumulation of ROS increased considerably after 7 days of waterlogging treatment (7 DWT) and 12 DWT in both cultivars compared with control group (under non-waterlogged conditions), culminated at 12 DAF (days after flowering) and reduced hereafter. Waterlogging resulted in a great increase of H2O2 and O2 (-) in plasma membranes, cell walls, mitochondrias, and intercellular spaces with ultracytochemical localization. Moreover, the deformation and rupture of cytomembranes as well as the swelling and distortion of mitochondria were obvious. Under waterlogging treatment conditions, catalase (CAT) gene expression increased in endosperm of Hua 8 but activity decreased. In addition, Mn superoxide dismutase (MnSOD) gene expression and superoxide dismutase (SOD) activity increased. Compared with Hua 8, both CAT, MnSOD gene expressions and CAT, SOD activities decreased in Hua 9. Moreover, ascorbic acid and mannitol relieve the intensifying of PCD processes in Hua 8 endosperm cells induced by waterlogging. These results indicate that ROS have important roles in the PCD of endosperm cells, the changes both CAT, MnSOD gene expressions and CAT, SOD activities directly affected the accumulation of ROS in two different wheat cultivars under waterlogging, ultimately led to the PCD acceleration of endosperm. PMID:25854793

  8. Type 1 diabetes and cardiovascular disease.

    PubMed

    Schnell, Oliver; Cappuccio, Francesco; Genovese, Stefano; Standl, Eberhard; Valensi, Paul; Ceriello, Antonio

    2013-01-01

    The presence of cardiovascular disease (CVD) in Type 1 diabetes largely impairs life expectancy. Hyperglycemia leading to an increase in oxidative stress is considered to be the key pathophysiological factor of both micro- and macrovascular complications. In Type 1 diabetes, the presence of coronary calcifications is also related to coronary artery disease. Cardiac autonomic neuropathy, which significantly impairs myocardial function and blood flow, also enhances cardiac abnormalities. Also hypoglycemic episodes are considered to adversely influence cardiac performance. Intensive insulin therapy has been demonstrated to reduce the occurrence and progression of both micro- and macrovascular complications. This has been evidenced by the Diabetes Control and Complications Trial (DCCT) / Epidemiology of Diabetes Interventions and Complications (EDIC) study. The concept of a metabolic memory emerged based on the results of the study, which established that intensified insulin therapy is the standard of treatment of Type 1 diabetes. Future therapies may also include glucagon-like peptide (GLP)-based treatment therapies. Pilot studies with GLP-1-analogues have been shown to reduce insulin requirements. PMID:24165454

  9. PREVENTION OF TYPE 1A DIABETES

    PubMed Central

    Eisenbarth, George S.

    2016-01-01

    Objective Review prediction of Type 1 diabetes in light of current trials for prevention and preclinical novel therapist. Methods We estimate from islet autoantibody testing of random cadaveric donors that approximately ½ million individuals in the United States express multiple islet autoantibodies and are developing Type 1A (immune mediated) diabetes. It is now possible to predict not only risk for Type 1A diabetes but also the approximate age of diabetes onset of children followed from birth. Results In animal models diabetes can be prevented and some of the immunologic therapies effective in animal models are able to delay loss of insulin secretion in man. Conclusion Unfortunately none of the therapies studied to date in man can completely arrest progressive loss of insulin secretion from destruction of islet beta cells. Nevertheless current knowledge of pathogenesis (targeting trimolecular recognition complex: MHC- peptide- T cell receptor) and natural history combined with newer diagnostic methods allows accurate diagnosis and has stimulated the search for novel safe and effective preventive therapies. PMID:22548954

  10. Cardiovascular disease risk in young people with type 1 diabetes.

    PubMed

    Snell-Bergeon, Janet K; Nadeau, Kristen

    2012-08-01

    Cardiovascular disease (CVD) is the most frequent cause of death in people with type 1 diabetes (T1D), despite modern advances in glycemic control and CVD risk factor modification. CVD risk identification is essential in this high-risk population, yet remains poorly understood. This review discusses the risk factors for CVD in young people with T1D, including hyperglycemia, traditional CVD risk factors (dyslipidemia, smoking, physical activity, hypertension), as well as novel risk factors such as insulin resistance, inflammation, and hypoglycemia. We present evidence that adverse changes in cardiovascular function, arterial compliance, and atherosclerosis are present even during adolescence in people with T1D, highlighting the need for earlier intervention. The methods for investigating cardiovascular risk are discussed and reviewed. Finally, we discuss the observational studies and clinical trials which have thus far attempted to elucidate the best targets for early intervention in order to reduce the burden of CVD in people with T1D. PMID:22528676

  11. Cot Deaths.

    ERIC Educational Resources Information Center

    Tyrrell, Shelagh

    1985-01-01

    Addresses the tragedy of crib deaths, giving particular attention to causes, prevention, and medical research on Sudden Infant Death Syndrome (SIDS). Gives anecdotal accounts of coping strategies used by parents and families of SIDS infants. (DT)

  12. Islet neogenesis: a potential therapeutic tool in type 1 diabetes.

    PubMed

    Lipsett, Mark; Aikin, Reid; Castellarin, Mauro; Hanley, Stephen; Jamal, Al-Maleek; Laganiere, Simon; Rosenberg, Lawrence

    2006-01-01

    Current therapies for type 1 diabetes, including fastidious blood glucose monitoring and multiple daily insulin injections, are not sufficient to prevent complications of the disease. Though pancreas and possibly islet transplantation can prevent the progression of complications, the scarcity of donor organs limits widespread application of these approaches. Understanding the mechanisms of beta-cell mass expansion as well as the means to exploit these pathways has enabled researchers to develop new strategies to expand and maintain islet cell mass. Potential new therapeutic avenues include ex vivo islet expansion and improved viability of islets prior to implantation, as well as the endogenous expansion of beta-cell mass within the diabetic patient. Islet neogenesis, through stem cell activation and/or transdifferentiation of mature fully differentiated cells, has been proposed as a means of beta-cell mass expansion. Finally, any successful new therapy for type 1 diabetes via beta-cell mass expansion will require prevention of beta-cell death and maintenance of long-term endocrine function. PMID:16216541

  13. Islet neogenesis: a potential therapeutic tool in type 1 diabetes.

    PubMed

    Lipsett, Mark; Aikin, Reid; Hanley, Stephen; Al-Maleek, Jamal; Laganiere, Simon; Rosenburg, Lawrence

    2006-01-01

    Current therapies for type 1 diabetes, including fastidious blood glucose monitoring and multiple daily insulin injections, are not sufficient to prevent complications of the disease. Though pancreas and possibly islet transplantation can prevent the progression of complications, the scarcity of donor organs limits widespread application of these approaches. Understanding the mechanisms of beta-cell mass expansion as well as the means to exploit these pathways has enabled researchers to develop new strategies to expand and maintain islet cell mass. Potential new therapeutic avenues include ex vivo islet expansion and improved viability of islets prior to implantation, as well as the endogenous expansion of beta-cell mass within the diabetic patient. Islet neogenesis, through stem cell activation and/or transdifferentiation of mature fully differentiated cells, has been proposed as a means of beta-cell mass expansion. Finally, any successful new therapy for type 1 diabetes via beta-cell mass expansion will require prevention of beta-cell death and maintenance of long-term endocrine function. PMID:16607698

  14. Understanding Death.

    ERIC Educational Resources Information Center

    Heath, Charles P.

    1986-01-01

    Bibliotherapy can help children prepare for and understand the death of a loved one. An annotated bibliography lists references with age level information on attitudes toward death and deaths of a father, friend, grandparent, mother, pet, and sibling. (Author/CL)

  15. Type 1 diabetes pathogenesis – Prevention???

    PubMed Central

    Krishna, C. S. Muralidhara; Srikanta, S.

    2015-01-01

    Pathogenesis of type 1 diabetes is multi-faceted, including, autoimmunity, genetics and environment. Autoimmunity directed against pancreatic islet cells results in slowly progressive selective beta-cell destruction (“Primary autoimmune insulitis”), culminating over years in clinically manifested insulin-dependent diabetes mellitus (IDDM). Circulating serum autoantibodies directed against the endocrine cells of the islets of Langerhans (Islet cell autoantibodies - ICAb) are an important hallmark of this disease. Assays for islet cell autoantibodies have facilitated the investigation and understanding of several facets in the pathogenesis of autoimmune diabetes. Their applications have extended into clinical practice and have opened new avenues for early preclinical prediction and preventive prophylaxis in IDDM/type 1 DM. Recently, surprisingly, differences in insulin content between T1DM islets, as well as, ‘patchy’ or ‘lobular’ destruction of islets have been described. These unique pathobiological phenomena, suggest that beta cell destruction may not always be inexorable and inevitably complete/total, and thus raise hopes for possible therapeutic interruption of beta cell autoimmunity – destruction and cure of type 1 diabetes. “Recurrent or secondary autoimmune insulitis” refers to the rapid reappearance of islet cell autoantibodies post pancreas transplant, and selective islet beta cell destruction in the grafted pancreas [never forgetting or “anamnestic” beta cell destructive memory], in the absence of any graft pancreas rejection [monozygotic twin to twin transplantation]. The one definite environmental factor is congenital rubella, because of which a subset of children subsequently develop type 1 diabetes. The putative predisposing factors are viruses, gluten and cow's milk. The putative protective factors include gut flora, helminths, viral infections, and Vitamin D. Prevention of T1DM can include: Primary prevention strategies before

  16. Cardiovascular risk in type 1 diabetes mellitus

    PubMed Central

    Slim, Ines Ben Hadj Slama

    2013-01-01

    Commonly cardiovascular risk (CVR) is linked to type 2 diabetes mellitus as this type is known to be part of the metabolic syndrome, which includes other cardiovascular factors such as hypertension, dyslipidemia. Inversely, CVR of type 1 diabetes mellitus (T1DM) is currently being debated apart from the occurrence of diabetic nephropathy (DN). For this, we did a review of CVR in patients with T1DM complicated or not with DN. The place of novel non-invasive techniques in screening of subclinical vascular damage is also discussed in this review. PMID:24251225

  17. Real life with type 1 diabetes mellitus

    PubMed Central

    Yagnik, Deepak

    2015-01-01

    Type 1 diabetes mellitus (T1DM) is a form of diabetes mellitus that results from the autoimmune destruction of the insulin-producing beta cells in the pancreas. Those affected by this disorder have a challenging life, both in terms of health and social adjustments. Various “alternative medicines” are offered to them in an effort to cure. Research has shown that good control over diabetes can be maintained through regular self-monitoring of blood glucose and frequent checking of diabetic complications. Here, I describe a female with T1DM and her journey with the disorder. PMID:25941661

  18. The 19-kilodalton adenovirus E1B transforming protein inhibits programmed cell death and prevents cytolysis by tumor necrosis factor alpha.

    PubMed Central

    White, E; Sabbatini, P; Debbas, M; Wold, W S; Kusher, D I; Gooding, L R

    1992-01-01

    The adenovirus E1A and E1B proteins are required for transformation of primary rodent cells. When expressed in the absence of the 19,000-dalton (19K) E1B protein, however, the E1A proteins are acutely cytotoxic and induce host cell chromosomal DNA fragmentation and cytolysis, analogous to cells undergoing programmed cell death (apoptosis). E1A alone can efficiently initiate the formation of foci which subsequently undergo abortive transformation whereby stimulation of cell growth is counteracted by continual cell death. Cell lines with an immortalized growth potential eventually arise with low frequency. Coexpression of the E1B 19K protein with E1A is sufficient to overcome abortive transformation to produce high-frequency transformation. Like E1A, the tumoricidal cytokine tumor necrosis factor alpha (TNF-alpha) evokes a programmed cell death response in many tumor cell lines by inducing DNA fragmentation and cytolysis. Expression of the E1B 19K protein by viral infection, by transient expression, or in transformed cells completely and specifically blocks this TNF-alpha-induced DNA fragmentation and cell death. Cosegregation of 19K protein transforming activity with protection from TNF-alpha-mediated cytolysis demonstrates that both activities are likely the consequence of the same function of the protein. Therefore, we propose that by suppressing an intrinsic cell death mechanism activated by TNF-alpha or E1A, the E1B 19K protein enhances the transforming activity of E1A and enables adenovirus to evade TNF-alpha-dependent immune surveillance. Images PMID:1317006

  19. Long-term mortality and retinopathy in type 1 diabetes.

    PubMed

    Grauslund, Jakob

    2010-05-01

    The incidence of type 1 diabetes is increasing in Denmark as well as the rest of the world. Due to diabetes-related micro- and macrovascular complications, the morbidity and the mortality is higher among type 1 diabetic patients. The aim of this thesis was to examine a population-based cohort of 727 type 1 diabetic patients from Fyn County, Denmark, with an onset of diabetes before 1 July 1973 in order to: (1) Evaluate the all-cause mortality rates and the influence of sex, duration of diabetes and calendar year of diagnosis in a 33-year follow-up (Paper I). (2) Examine glycaemic regulation, lipids and renal dysfunction as risk factors for all-cause mortality, cardiovascular mortality and IHD (Paper II). (3) Estimate the prevalence of DR as well as the 25-year incidence of PDR and associated risk factors in long-time surviving patients (Paper III). (4) To compare the grading of DR between ETDRS seven standard field 30 degrees stereoscopic colour films and nine field 45 degrees monoscopic digital colour images in long-term surviving patients (Paper IV). In the years 1973-2006 an overall MR of 22.3 per 1000 person-years was found. Furthermore a relative mortality of 3.4 was found as compared to the general population in Denmark. The relative mortality was especially high for patients aged 30-39 (SMR 9.8). There was a tendency towards a better survival for patients diagnosed after 1964. This was especially seen for men. Diabetes was the most common cause of death for those who died in the group. In 1993-1996 blood samples were drawn and glycaemic regulation, lipids and renal markers were subsequently used as predictors of all-cause mortality, cardiovascular mortality and ischaemic heart disease. Glycaemic regulation, dyslipidaemia and creatinine were all significantly associated with all three endpoints. Furthermore, variations in glycaemic control were also identified as a risk factor for overall mortality. Two hundred and one patients were examined for diabetic

  20. Effect of microRNA-21 on the proliferation of human degenerated nucleus pulposus by targeting programmed cell death 4

    PubMed Central

    Chen, B.; Huang, S.G.; Ju, L.; Li, M.; Nie, F.F.; Zhang, Y.; Zhang, Y.H.; Chen, X.; Gao, F.

    2016-01-01

    This study aims to explore the effect of microRNA-21 (miR-21) on the proliferation of human degenerated nucleus pulposus (NP) by targeting programmed cell death 4 (PDCD4) tumor suppressor. NP tissues were collected from 20 intervertebral disc degeneration (IDD) patients, and from 5 patients with traumatic spine fracture. MiR-21 expressions were tested. NP cells from IDD patients were collected and divided into blank control group, negative control group (transfected with miR-21 negative sequences), miR-21 inhibitor group (transfected with miR-21 inhibitors), miR-21 mimics group (transfected with miR-21 mimics) and PDCD4 siRNA group (transfected with PDCD4 siRNAs). Cell growth was estimated by Cell Counting Kit-8; PDCD4, MMP-2,MMP-9 mRNA expressions were evaluated by qRT-PCR; PDCD4, c-Jun and p-c-Jun expressions were tested using western blot. In IDD patients, the expressions of miR-21 and PDCD4 mRNA were respectively elevated and decreased (both P<0.05). The miR-21 expressions were positively correlated with Pfirrmann grades, but negatively correlated with PDCD4 mRNA (both P<0.001). In miR-21 inhibitor group, cell growth, MMP-2 and MMP-9 mRNA expressions, and p-c-Jun protein expressions were significantly lower, while PDCD4 mRNA and protein expressions were higher than the other groups (all P<0.05). These expressions in the PDCD4 siRNA and miR-21 mimics groups was inverted compared to that in the miR-21 inhibitor group (all P<0.05). MiR-21 could promote the proliferation of human degenerated NP cells by targeting PDCD4, increasing phosphorylation of c-Jun protein, and activating AP-1-dependent transcription of MMPs, indicating that miR-21 may be a crucial biomarker in the pathogenesis of IDD. PMID:27240294

  1. Examination of the leaf proteome during flooding stress and the induction of programmed cell death in maize

    PubMed Central

    2014-01-01

    Background Maize is a major economic crop worldwide, with substantial crop loss attributed to flooding. During a stress response, programmed cell death (PCD) can be an effective way for plants better adapt. To identify flooding stress related PCD proteins in maize leaves, proteomic analysis was performed using two-dimensional fluorescence difference gel electrophoresis (2D-DIGE) and mass spectrometry. Results Comparative proteomics was combined with physiological and biochemical analysis of maize leaves under flooding stress. Fv/Fm, qP, qN and relative water content (RWC) were found to be altered in response to flooding stress, with an increase in H2O2 content noted in vivo. Furthermore, DNA ladder detection indicated that PCD had occurred under flooding treatment. The maize leaf proteome was analyzed via 2D-DIGE gel, with a total of 32 differentially expressed spots isolated, 31 spots were successfully identified via MALDI-TOF/TOF MS which represent 28 proteins. The identified proteins were related to energy metabolism and photosynthesis, PCD, phytohormones and polyamines. To better characterize the role of translationally controlled tumor protein (TCTP) in PCD during a stress response, mRNA expression was examined in different plants by stress-induced PCD. These included heat stress induced rice protoplasts, Tobacco Mosaic Virus infected tobacco leaves and dark induced rice and Arabidopsis thaliana leaves, all of which showed active PCD, and TCTP expression was increased in different degrees. Moreover, S-adenosylmethionine synthase 2 (SAMS2) and S-adenosylmethionine decarboxylase (SAMDC) mRNA expression were also increased, but ACC synthase (ACS) and ACC oxidase (ACO) mRNA expression were not found in maize leaves following flooding. Lastly, ethylene and polyamine concentrations were increased in response to flooding treatment in maize leaves. Conclusions Following flooding stress, the photosynthetic systems were damaged, resulting in a disruption in energy

  2. Mechanisms of Indirect Acute Lung Injury: A Novel Role for the Co-Inhibitory Receptor, Programmed Death-1 (PD-1)

    PubMed Central

    Monaghan, Sean F.; Thakkar, Rajan K.; Heffernan, Daithi S.; Huang, Xin; Chung, Chun-Shiang; Lomas-Neira, Joanne; Cioffi, William G.; Ayala, Alfred

    2011-01-01

    Objective To determine the contribution of PD-1 in the morbidity and mortality associated with the development of indirect-acute lung injury Summary Background Data The immune cell interaction(s) leading to indirect-acute lung injury are not completely understood. In this respect, while we have recently shown that the murine cell surface co-inhibitory receptor, Programmed Cell death receptor (PD)-1, has a role in septic morbidity/mortality that is mediated in part through the effects on the innate immune arm. However, it is not know if PD-1 has a role in the development of indirect-acute lung injury and how this may be mediated at a cellular level. Methods PD-1 −/− mice were used in a murine model of indirect-acute lung injury (hemorrhagic shock followed 24 h after with cecal ligation & puncture-septic challenge) and compared to wild type controls. Groups were initially compared for survival and subsequently for markers of pulmonary inflammation, influx of lymphocytes and neutrophils, and expression of PD-1 and its ligand, PD-L1. In addition, peripheral blood leukocytes of patients with indirect-acute lung injury were examined to assess changes in cellular PD-1 expression relative to mortality. Results PD-1 −/− mice showed improved survival compared to wild type controls. In the mouse lung, CD4+, CD11c+ and Gr-1+ cells showed increased PD-1 expression in response to indirect-acute lung injury. However, while the rise in BAL fluid protein concentrations, lung IL-6, and lung MCP-1 were similar between PD-1 −/− and wild type animals subjected to indirect acute lung injury, the PD-1 −/− animals that were subjected to shock/septic challenge had reduced CD4:CD8 ratios, TNF-α levels, MPO activity, and caspase 3 levels in the lung. Comparatively, we observed that humans, who survived their acute lung injury, had significantly lower expression of PD-1 on T cells. Conclusions PD-1 expression contributes to mortality following the induction of indirect

  3. Programmed death-1 (PD-1) rs2227981 C > T polymorphism is associated with cancer susceptibility: a meta-analysis

    PubMed Central

    Tang, Weifeng; Wang, Yafeng; Jiang, Heping; Liu, Pinghua; Liu, Chao; Gu, Haiyong; Chen, Shuchen; Kang, Mingqiang

    2015-01-01

    Several studies have focused on the correlation between the programmed death-1 (PD-1) rs2227981 C > T polymorphism and the risk of cancer; however, the results of such studies remain conflicting. To address this gap, we performed this meta-analysis to identify the potential association. Search strategies were performed in PubMed and EMBASE using appropriate terms. In total, 2,977 cancer cases and 2,642 controls from seven publications were recruited in our study. According to the seven eligible publications, the odds ratios (ORs) and 95% confidence intervals (CIs) on the risk of cancer for the TT vs. CC and TT vs. CT+CC genotypes were 0.67 and 0.50-0.91 and 0.65 and 0.47-0.90, respectively. In a subgroup analysis by cancer type, PD-1 rs2227981 C > T polymorphism was associated with a significantly decreased risk of breast cancer (OR, 0.82; 95% CI, 0.71-0.95; P = 0.009 for T vs. C and OR, 0.76; 95% CI, 0.63-0.92; P = 0.005 for TT+CT vs. CC) and of other cancer (OR, 0.58; 95% CI, 0.36-0.92; P = 0.004 for TT vs. CT+CC). In a subgroup analysis by ethnicity, a significant decreased cancer risk was identified among Asians (OR, 0.74; 95% CI, 0.63-0.86; P < 0.001 for T vs. C and OR, 0.71; 95% CI, 0.59-0.87; P = 0.001 for TT+CT vs. CC) and among Caucasians (OR, 0.66; 95% CI, 0.44-0.99; P = 0.047 for TT vs. CT+CC). These findings highlight the fact that the T allele of PD-1 rs2227981 C > T polymorphism modestly decreases the susceptibility of cancer. Nevertheless, further large and well-designed studies are needed to enrich the evidence of this association. PMID:26885204

  4. High Specificity in Circulating Tumor Cell Identification Is Required for Accurate Evaluation of Programmed Death-Ligand 1

    PubMed Central

    Schultz, Zachery D.; Warrick, Jay W.; Guckenberger, David J.; Pezzi, Hannah M.; Sperger, Jamie M.; Heninger, Erika; Saeed, Anwaar; Leal, Ticiana; Mattox, Kara; Traynor, Anne M.; Campbell, Toby C.; Berry, Scott M.; Beebe, David J.; Lang, Joshua M.

    2016-01-01

    Background Expression of programmed-death ligand 1 (PD-L1) in non-small cell lung cancer (NSCLC) is typically evaluated through invasive biopsies; however, recent advances in the identification of circulating tumor cells (CTCs) may be a less invasive method to assay tumor cells for these purposes. These liquid biopsies rely on accurate identification of CTCs from the diverse populations in the blood, where some tumor cells share characteristics with normal blood cells. While many blood cells can be excluded by their high expression of CD45, neutrophils and other immature myeloid subsets have low to absent expression of CD45 and also express PD-L1. Furthermore, cytokeratin is typically used to identify CTCs, but neutrophils may stain non-specifically for intracellular antibodies, including cytokeratin, thus preventing accurate evaluation of PD-L1 expression on tumor cells. This holds even greater significance when evaluating PD-L1 in epithelial cell adhesion molecule (EpCAM) positive and EpCAM negative CTCs (as in epithelial-mesenchymal transition (EMT)). Methods To evaluate the impact of CTC misidentification on PD-L1 evaluation, we utilized CD11b to identify myeloid cells. CTCs were isolated from patients with metastatic NSCLC using EpCAM, MUC1 or Vimentin capture antibodies and exclusion-based sample preparation (ESP) technology. Results Large populations of CD11b+CD45lo cells were identified in buffy coats and stained non-specifically for intracellular antibodies including cytokeratin. The amount of CD11b+ cells misidentified as CTCs varied among patients; accounting for 33–100% of traditionally identified CTCs. Cells captured with vimentin had a higher frequency of CD11b+ cells at 41%, compared to 20% and 18% with MUC1 or EpCAM, respectively. Cells misidentified as CTCs ultimately skewed PD-L1 expression to varying degrees across patient samples. Conclusions Interfering myeloid populations can be differentiated from true CTCs with additional staining criteria

  5. Effect of microRNA-21 on the proliferation of human degenerated nucleus pulposus by targeting programmed cell death 4.

    PubMed

    Chen, B; Huang, S G; Ju, L; Li, M; Nie, F F; Zhang, Y; Zhang, Y H; Chen, X; Gao, F

    2016-05-24

    This study aims to explore the effect of microRNA-21 (miR-21) on the proliferation of human degenerated nucleus pulposus (NP) by targeting programmed cell death 4 (PDCD4) tumor suppressor. NP tissues were collected from 20 intervertebral disc degeneration (IDD) patients, and from 5 patients with traumatic spine fracture. MiR-21 expressions were tested. NP cells from IDD patients were collected and divided into blank control group, negative control group (transfected with miR-21 negative sequences), miR-21 inhibitor group (transfected with miR-21 inhibitors), miR-21 mimics group (transfected with miR-21 mimics) and PDCD4 siRNA group (transfected with PDCD4 siRNAs). Cell growth was estimated by Cell Counting Kit-8; PDCD4, MMP-2,MMP-9 mRNA expressions were evaluated by qRT-PCR; PDCD4, c-Jun and p-c-Jun expressions were tested using western blot. In IDD patients, the expressions of miR-21 and PDCD4 mRNA were respectively elevated and decreased (both P<0.05). The miR-21 expressions were positively correlated with Pfirrmann grades, but negatively correlated with PDCD4 mRNA (both P<0.001). In miR-21 inhibitor group, cell growth, MMP-2 and MMP-9 mRNA expressions, and p-c-Jun protein expressions were significantly lower, while PDCD4 mRNA and protein expressions were higher than the other groups (all P<0.05). These expressions in the PDCD4 siRNA and miR-21 mimics groups was inverted compared to that in the miR-21 inhibitor group (all P<0.05). MiR-21 could promote the proliferation of human degenerated NP cells by targeting PDCD4, increasing phosphorylation of c-Jun protein, and activating AP-1-dependent transcription of MMPs, indicating that miR-21 may be a crucial biomarker in the pathogenesis of IDD. PMID:27240294

  6. Genetics Home Reference: autoimmune polyglandular syndrome, type 1

    MedlinePlus

    ... polyglandular syndrome, type 1 autoimmune polyglandular syndrome, type 1 Enable Javascript to view the expand/collapse boxes. ... All Close All Description Autoimmune polyglandular syndrome, type 1 is an inherited condition that affects many of ...

  7. Genetics Home Reference: leukocyte adhesion deficiency type 1

    MedlinePlus

    ... adhesion deficiency type 1 leukocyte adhesion deficiency type 1 Enable Javascript to view the expand/collapse boxes. ... All Close All Description Leukocyte adhesion deficiency type 1 is a disorder that causes the immune system ...

  8. Genetics Home Reference: medullary cystic kidney disease type 1

    MedlinePlus

    ... disease type 1 medullary cystic kidney disease type 1 Enable Javascript to view the expand/collapse boxes. ... Close All Description Medullary cystic kidney disease type 1 (MCKD1) is an inherited condition that affects the ...

  9. Your Guide to Diabetes: Type 1 and Type 2

    MedlinePlus

    ... Language URL Español Your Guide to Diabetes: Type 1 and Type 2 Page Content Learn about Diabetes ... Both women and men can develop diabetes. Type 1 Diabetes Type 1 diabetes, which used to be ...

  10. Genetics Home Reference: congenital bile acid synthesis defect type 1

    MedlinePlus

    ... bile acid synthesis defect type 1 congenital bile acid synthesis defect type 1 Enable Javascript to view ... PDF Open All Close All Description Congenital bile acid synthesis defect type 1 is a disorder characterized ...

  11. Nocturnal Sleep Dynamics Identify Narcolepsy Type 1

    PubMed Central

    Pizza, Fabio; Vandi, Stefano; Iloti, Martina; Franceschini, Christian; Liguori, Rocco; Mignot, Emmanuel; Plazzi, Giuseppe

    2015-01-01

    Study Objectives: To evaluate the reliability of nocturnal sleep dynamics in the differential diagnosis of central disorders of hypersomnolence. Design: Cross-sectional. Setting: Sleep laboratory. Patients: One hundred seventy-five patients with hypocretin-deficient narcolepsy type 1 (NT1, n = 79), narcolepsy type 2 (NT2, n = 22), idiopathic hypersomnia (IH, n = 22), and “subjective” hypersomnolence (sHS, n = 52). Interventions: None. Methods: Polysomnographic (PSG) work-up included 48 h of continuous PSG recording. From nocturnal PSG conventional sleep macrostructure, occurrence of sleep onset rapid eye movement period (SOREMP), sleep stages distribution, and sleep stage transitions were calculated. Patient groups were compared, and receiver operating characteristic (ROC) curve analysis was used to test the diagnostic utility of nocturnal PSG data to identify NT1. Results: Sleep macrostructure was substantially stable in the 2 nights of each diagnostic group. NT1 and NT2 patients had lower latency to rapid eye movement (REM) sleep, and NT1 patients showed the highest number of awakenings, sleep stage transitions, and more time spent in N1 sleep, as well as most SOREMPs at daytime PSG and at multiple sleep latency test (MSLT) than all other groups. ROC curve analysis showed that nocturnal SOREMP (area under the curve of 0.724 ± 0.041, P < 0.0001), percent of total sleep time spent in N1 (0.896 ± 0.023, P < 0.0001), and the wakefulness-sleep transition index (0.796 ± 0.034, P < 0.0001) had a good sensitivity and specificity profile to identify NT1 sleep, especially when used in combination (0.903 ± 0.023, P < 0.0001), similarly to SOREMP number at continuous daytime PSG (0.899 ± 0.026, P < 0.0001) and at MSLT (0.956 ± 0.015, P < 0.0001). Conclusions: Sleep macrostructure (i.e. SOREMP, N1 timing) including stage transitions reliably identifies hypocretin-deficient narcolepsy type 1 among central disorders of hypersomnolence. Citation: Pizza F, Vandi S

  12. Neurofibromatosis Type 1: Modeling CNS Dysfunction

    PubMed Central

    Gutmann, David H.; Parada, Luis F.; Silva, Alcino J.; Ratner, Nancy

    2012-01-01

    Neurofibromatosis type 1 (NF1) is the most common monogenic disorder in which individuals manifest central nervous system (CNS) abnormalities. Affected individuals develop glial neoplasms (optic gliomas, malignant astrocytomas) and neuronal dysfunction (learning disabilities, attention deficits). Nf1 genetically-engineered mouse models have revealed the molecular and cellular underpinnings of gliomagenesis, attention deficit, and learning problems with relevance to basic neurobiology. Using NF1 as a model system, these studies have revealed critical roles for the NF1 gene in non-neoplastic cells in the tumor microenvironment, the importance of brain region heterogeneity, novel mechanisms of glial growth regulation, the neurochemical bases for attention deficit and learning abnormalities, and new insights into neural stem cell function. Here we review recent studies, presented at a symposium at the 2012 Society for Neuroscience annual meeting, that highlight unexpected cell biology insights into RAS and cyclic AMP pathway effects on neural progenitor signaling, neuronal function, and oligodendrocyte lineage differentiation. PMID:23055477

  13. Perioperative Management of Neurofibromatosis Type 1

    PubMed Central

    Fox, Charles J.; Tomajian, Samir; Kaye, Aaron J.; Russo, Stephanie; Abadie, Jacqueline Volpi; Kaye, Alan D.

    2012-01-01

    Neurofibromatosis type 1 (neurofibromatosis-1), a relatively common single-gene disorder, is caused by a mutation of the NF1 gene that results in a loss of activity or in a nonfunctional neurofibromin protein. Clinical anesthesiologists may find patients with neurofibromatosis-1 challenging because this condition may affect most organ systems and result in a wide variety of presentations and clinical implications. Current neurofibromatosis-1 research studies include genotype-phenotype correlations, investigation of the pathoetiology behind the different clinical manifestations of neurofibromatosis-1, and the search for treatment options for the different features of the disorder. Neurofibromatosis-1–associated complications of the central nervous, respiratory, cardiovascular, musculoskeletal, and gastrointestinal and genitourinary systems all present various degrees of considerations for anesthesiologists. Additionally, neurofibromatosis-1 has dramatic implications for pregnant women. PMID:22778675

  14. Microcephalic osteodysplastic primordial dwarfism type 1.

    PubMed

    Ferrell, Steven; Johnson, Aaron; Pearson, Waylon

    2016-01-01

    Microcephalic osteodysplastic primordial dwarfism type 1 (MOPD1) is an uncommon cause of microcephaly and intrauterine growth retardation in a newborn. Early identifying features include but are not limited to sloping forehead, micrognathia, sparse hair, including of eyebrows and short limbs. Immediate radiological findings may include partial or complete agenesis of the corpus callosum, interhemispheric cyst and shallow acetabula leading to dislocation. Genetic testing displaying a mutation in RNU4ATAC gene is necessary for definitive diagnosis. Early identification is important as MOPD1 is an autosomal recessive condition and could present in subsequent pregnancies. The purpose of this case is to both identify and describe some common physical findings related to MOPD1. We present a case of MOPD1 in a girl born to non-consanguineous parents that was distinct for subglottic stenosis and laryngeal cleft. PMID:27312855

  15. Physical Activity and Type 1 Diabetes

    PubMed Central

    Colberg, Sheri R.; Laan, Remmert; Dassau, Eyal; Kerr, David

    2015-01-01

    While being physically active bestows many health benefits on individuals with type 1 diabetes, their overall blood glucose control is not enhanced without an effective balance of insulin dosing and food intake to maintain euglycemia before, during, and after exercise of all types. At present, a number of technological advances are already available to insulin users who desire to be physically active with optimal blood glucose control, although a number of limitations to those devices remain. In addition to continued improvements to existing technologies and introduction of new ones, finding ways to integrate all of the available data to optimize blood glucose control and performance during and following exercise will likely involve development of “smart” calculators, enhanced closed-loop systems that are able to use additional inputs and learn, and social aspects that allow devices to meet the needs of the users. PMID:25568144

  16. Fuelling the athlete with type 1 diabetes.

    PubMed

    Gallen, I W; Hume, C; Lumb, A

    2011-02-01

    People with type 1 diabetes (T1DM) want to enjoy the benefits of sport and exercise, but management of diabetes in this context is complex. An understanding of the physiology of exercise in health, and particularly the control of fuel mobilization and metabolism, gives an idea of problems which may arise in managing diabetes for sport and exercise. Athletes with diabetes need to be advised on appropriate diet to maximize performance and reduce fatigue. Exercise in diabetes is complicated both by hypoglycaemia and hyperglycaemia in particular circumstances and explanations are advanced which can provide a theoretical underpinning for possible management strategies. Management strategies are proposed to improve glycaemic control and performance. PMID:21199264

  17. Camp for Youth With Type 1 Diabetes.

    PubMed

    Fegan-Bohm, Kelly; Weissberg-Benchell, Jill; DeSalvo, Daniel; Gunn, Sheila; Hilliard, Marisa

    2016-08-01

    Camps for youth with type 1 diabetes (T1D) have grown in size and scope since they first emerged in the 1920s. Anecdotal evidence suggests that attending camp with other youth with T1D is beneficial, largely attributed to sharing fun, active experiences and removing the isolation of living with diabetes. However, few studies have evaluated the psychosocial and medical impacts of T1D camp attendance during and after camp sessions. In addition, T1D camps have been a setting for numerous studies on a variety of T1D-related research questions not related to camp itself, such as testing novel diabetes management technologies in an active, non-laboratory setting. This paper reviews the evidence of psychosocial and medical outcomes associated with T1D camp attendance across the globe, provides an overview of other research conducted at camp, and offers recommendations for future research conducted at T1D camp. PMID:27292106

  18. The gut microbiota and Type 1 Diabetes.

    PubMed

    Gülden, Elke; Wong, F Susan; Wen, Li

    2015-08-01

    Type 1 Diabetes (T1D) is a multifactorial, immune-mediated disease, which is characterized by the progressive destruction of autologous insulin-producing beta cells in the pancreas. The risk of developing T1D is determined by genetic, epigenetic and environmental factors. In the past few decades there has been a continuous rise in the incidence of T1D, which cannot be explained by genetic factors alone. Changes in our lifestyle that include diet, hygiene, and antibiotic usage have already been suggested to be causal factors for this rising T1D incidence. Only recently have microbiota, which are affected by all these factors, been recognized as key environmental factors affecting T1D development. In this review we will summarize current knowledge on the impact of gut microbiota on T1D development and give an outlook on the potential to design new microbiota-based therapies in the prevention and treatment of T1D. PMID:26051037

  19. Is the risk and nature of CVD the same in type 1 and type 2 diabetes?

    PubMed

    Duca, Lindsey; Sippl, Rachel; Snell-Bergeon, Janet K

    2013-06-01

    The incidence of both type 1 and type 2 diabetes is increasing globally, most likely explained by environmental changes, such as changing exposures to foods, viruses, and toxins, and by increasing obesity. While cardiovascular disease (CVD) mortality has been declining recently, this global epidemic of diabetes threatens to stall this trend. CVD is the leading cause of death in both type 1 and type 2 diabetes, with at least a two- to fourfold increased risk in patients with diabetes. In this review, the risk factors for CVD are discussed in the context of type 1 and type 2 diabetes. While traditional risk factors such as dyslipidemia, hypertension, and obesity are greater in type 2 patients than in type 1 diabetes, they explain only about half of the increased CVD risk. The role for diabetes-specific risk factors, including hyperglycemia and kidney complications, is discussed in the context of new study findings. PMID:23519720

  20. Lipoatrophy in Children With Type 1 Diabetes

    PubMed Central

    Kordonouri, Olga; Biester, Torben; Schnell, Kerstin; Hartmann, Reinhard; Tsioli, Christiana; Fath, Maryam; Datz, Nicolin; Danne, Thomas

    2014-01-01

    Objectives: The objectives were to evaluate the current prevalence of lipoatrophy at insulin injection sites in young patients with type 1 diabetes. Methods: Standardized examination of insulin injection sites in all 678 patients with type 1 diabetes treated in 2013 in our outpatient clinic were conducted. In case of lipoatrophy photo documentation and standardized interview with parents and patients were performed. Methods: We identified a total of 16 patients (43.8% male) with lipoatrophy (overall prevalence 2.4%). The current mean age (±SD) of the affected patients was 14.4 ± 3.9 years, age and diabetes duration at onset of lipoatrophy were 11.5 ± 3.8 years and 5.4 ± 3.6 years, respectively. All patients were using analogs at the onset of lipoatrophy. In all, 14 of 16 patients (87.5%) were on insulin pump compared with 52% without lipoatrophy (P = .0018). The use of steel needle and Teflon catheter was equal between the pump patients. Concomitant autoimmune diseases were present in 37.5% of the patients (thyroiditis: n = 3, thyroiditis and celiac disease: n = 2, celiac disease: n = 1) compared with 15.0% in those without lipoatrophy (P = .0128). Conclusions: Lipoatrophy was present in young patients treated with modern insulins and pumps; however, the prevalence was relatively low as expected with the use of modern insulins. Our data may support the hypothesis that a constant mechanical element such as a subcutaneous catheter may trigger the development of lipoatrophy, particularly in those patients with more than 1 autoimmune disease. PMID:25411060

  1. Aortic Distensibility in Type 1 Diabetes

    PubMed Central

    Turkbey, Evrim B.; Redheuil, Alban; Backlund, Jye-Yu C.; Small, Alexander C.; Cleary, Patricia A.; Lachin, John M.; Lima, Joao A.C.; Bluemke, David A.

    2013-01-01

    OBJECTIVE To evaluate the relationship between long-term glycemia, traditional cardiovascular disease (CVD) risk factors, and ascending aortic stiffness in type 1 diabetes. RESEARCH DESIGN AND METHODS Eight hundred seventy-nine subjects in the Diabetes Control and Complications Trial (DCCT)/Epidemiology of Diabetes Interventions and Complications (EDIC) study were evaluated. The stiffness/distensibility of the ascending thoracic aorta (AA) was measured with magnetic resonance imaging. Associations of AA distensibility and CVD risk factors, mean HbA1c, and cardiovascular complications including macroalbuminuria were assessed using multivariate linear regression models. RESULTS The mean age of the subjects was 50 ± 7 years (47% women, mean diabetes duration of 28 years). Over 22 years of follow-up, 27% of participants had cardiovascular complications. After adjusting for gender and cohort, AA distensibility was lower with increasing age, mean systolic blood pressure, LDL, and HbA1c measured over an average of 22 years (−26.3% per 10 years, −11.0% per 10 mmHg SBP, −1.8% per 10 mg/dL of LDL, and −9.3% per unit mean HbA1c [%], respectively). Patients with macroalbuminuria had 25% lower AA distensibility compared with those without (P < 0.0001). Lower AA distensibility also was associated with greater ratio of left ventricular mass to volume (−3.4% per 0.1 g/mL; P < 0.0001). CONCLUSIONS Our findings indicate strong adverse effects of hypertension, chronic hyperglycemia and macroalbuminuria on AA stiffness in type 1 diabetes in the DCCT/EDIC cohort. PMID:23474588

  2. The silencing of adenine nucleotide translocase isoform 1 induces oxidative stress and programmed cell death in ADF human glioblastoma cells.

    PubMed

    Lena, Annalisa; Rechichi, Mariarosa; Salvetti, Alessandra; Vecchio, Donatella; Evangelista, Monica; Rainaldi, Giuseppe; Gremigni, Vittorio; Rossi, Leonardo

    2010-07-01

    Adenine nucleotide translocases (ANTs) are multitask proteins involved in several aspects of cell metabolism, as well as in the regulation of cell death/survival processes. We investigated the role played by ANT isoforms 1 and 2 in the growth of a human glioblastoma cell line (ADF cells). The silencing of ANT2 isoform, by small interfering RNA, did not produce significant changes in ADF cell viability. By contrast, the silencing of ANT1 isoform strongly reduced ADF cell viability by inducing a non-apoptotic cell death process resembling paraptosis. We demonstrated that cell death induced by ANT1 depletion cannot be ascribed to the loss of the ATP/ADP exchange function of this protein. By contrast, our findings indicate that ANT1-silenced cells experience oxidative stress, thus allowing us to hypothesize that the effect of ANT1-silencing on ADF is mediated by the loss of the ANT1 uncoupling function. Several studies ascribe a pro-apoptotic role to ANT1 as a result of the observation that ANT1 overexpression sensitizes cells to mitochondrial depolarization or to apoptotic stimuli. In the present study, we demonstrate that, despite its pro-apoptotic function at a high expression level, the reduction of ANT1 density below a physiological baseline impairs fundamental functions of this protein in ADF cells, leading them to undertake a cell death process. PMID:20528917

  3. Multiple Domain Associations within the Arabidopsis Immune Receptor RPP1 Regulate the Activation of Programmed Cell Death

    PubMed Central

    Schreiber, Karl J.; Bentham, Adam; Williams, Simon J.; Kobe, Bostjan; Staskawicz, Brian J.

    2016-01-01

    Upon recognition of pathogen virulence effectors, plant nucleotide-binding leucine-rich repeat (NLR) proteins induce defense responses including localized host cell death. In an effort to understand the molecular mechanisms leading to this response, we examined the Arabidopsis thaliana NLR protein RECOGNITION OF PERONOSPORA PARASITICA1 (RPP1), which recognizes the Hyaloperonospora arabidopsidis effector ARABIDOPSIS THALIANA RECOGNIZED1 (ATR1). Expression of the N-terminus of RPP1, including the Toll/interleukin-1 receptor (TIR) domain (“N-TIR”), elicited an effector-independent cell death response, and we used allelic variation in TIR domain sequences to define the key residues that contribute to this phenotype. Further biochemical characterization indicated that cell death induction was correlated with N-TIR domain self-association. In addition, we demonstrated that the nucleotide-binding (NB)-ARC1 region of RPP1 self-associates and plays a critical role in cell death activation, likely by facilitating TIR:TIR interactions. Structural homology modeling of the NB subdomain allowed us to identify a putative oligomerization interface that was shown to influence NB-ARC1 self-association. Significantly, full-length RPP1 exhibited effector-dependent oligomerization and, although mutations at the NB-ARC1 oligomerization interface eliminated cell death induction, RPP1 self-association was unaffected, suggesting that additional regions contribute to oligomerization. Indeed, the leucine-rich repeat domain of RPP1 also self-associates, indicating that multiple interaction interfaces exist within activated RPP1 oligomers. Finally, we observed numerous intramolecular interactions that likely function to negatively regulate RPP1, and present a model describing the transition to an active NLR protein. PMID:27427964

  4. Spectral Energy Distributions of Type 1 AGNs

    NASA Astrophysics Data System (ADS)

    Hao, Heng

    The spectral energy distributions (SEDs) of active galactic nuclei (AGNs) are essential to understand the physics of supermassive black holes (SMBHs) and their host galaxies. This thesis present a detailed study of AGN SED shapes in the optical-near infrared bands (0.3--3microm) for 413 X-ray selected Type 1 AGNs from the XMM-COSMOS Survey. We define a useful near-IR/optical index-index ('color-color') diagram to investigate the mixture of AGN continuum, host galaxy and reddening contributions. We found that ˜90% of the AGNs lie on mixing curves between the Elvis et al. (1994) mean AGN SED (E94) and a host galaxy, with only the modest reddening [E(B-V)=0.1--0.2] expected in type 1 AGNs. Lower luminosity and Eddington ratio objects have more host galaxy, as expected. The E94 template is remarkably good in describing the SED shape in the 0.3--3microrn decade of the spectrum over a range of 3.2 dex in LOPT, 2.7 dex in L/LEdd, and for redshifts up to 3. The AGN phenomenon is thus insensitive to absolute or relative accretion rate and to cosmic time. However, 10% of the AGNs are inconsistent with any AGN+host+reddening mix. These AGNs have weak or non-existent near-IR bumps, suggesting a lack of the hot dust characteristic of AGNs. The fraction of these hot-dust-poor AGNs evolves with redshift from 6% at low redshift (z < 2) to 20% at moderately high redshift (2 < z < 3.5). A similar fraction of HDP quasars are found in the Elvis et al. 1994 (BQS) and Richards et al. 2006 (SDSS) samples. The 1--3microm emission of the HDP quasars is a factor 2--4 smaller than the typical E94 AGN SED. The implied torus covering factor is 2%--29%, well below the 75% required by unified models. The weak hot dust emission seems to expose an extension of the accretion disk continuum in some of AGNs. For these, we estimate the outer edge of their accretion disks to lie at ˜104 Schwarzschild radii, more than ten times the gravitational stability radii. Either the host-dust is destroyed

  5. Immunogenetics of Type 1 Diabetes Mellitus

    PubMed Central

    Morran, Michael P.; Vonberg, Andrew; Khadra, Anmar; Pietropaolo, Massimo

    2015-01-01

    Type 1 diabetes mellitus (T1DM) is an autoimmune disease arising through a complex interaction of both genetic and immunologic factors. Similar to the majority of autoimmune diseases, T1DM usually has a relapsing remitting disease course with autoantibody and T cellular responses to islet autoantigens, which precede the clinical onset of the disease process. The immunological diagnosis of autoimmune diseases relies primarily on the detection of autoantibodies in the serum of T1DM patients. Although their pathogenic significance remains uncertain, they have the practical advantage of serving as surrogate biomarkers for predicting the clinical onset of T1DM. Type 1 diabetes is a polygenic disease with a small number of genes having large effects, (i.e. HLA) and a large number of genes having small effects. Risk of T1DM progression is conferred by specific HLA DR/DQ alleles [e.g., DRB1*03-DQB1*0201 (DR3) or DRB1*04-DQB1*0302 (DR4)]. In addition, HLA alleles such as DQB1*0602 are associated with dominant protection from T1DM in multiple populations. A discordance rate of greater than 50% between monozygotic twins indicates a potential involvement of environmental factors on disease development. Viral infections may play a role in the chain of events leading to disease, albeit conclusive evidence linking infections with T1DM remains to be firmly established. Two syndromes have been described in which an immune-mediated form of diabetes occurs as the result of a single gene defect. These syndromes are termed autoimmune polyglandular syndrome type I (APS-I) or autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED), and X-linked poyendocrinopathy, immune dysfunction and diarrhea (XPID). These two syndromes are unique models to understand the mechanisms involved in the loss of tolerance to self-antigens in autoimmune diabetes and its associated organ-specific autoimmune disorders. A growing number of animal models of these diseases have greatly helped

  6. Myotonic Dystrophy Type 1 or Steinert's disease.

    PubMed

    Romeo, Vincenzo

    2012-01-01

    Myotonic Dystrophy Type 1 (DM1) is the most common worldwide autosomal dominant muscular dystrophy due to polynucleotide [CTG]( n ) triplet expansion located on the 3'UTR of chromosome 19q13.3. A toxic gain-of-function of abnormally stored RNA in the nuclei of affected cells is assumed to be responsible for several clinical features of the disease. It plays a basic role in deregulating RNA binding protein levels and in several mRNA splicing processes of several genes, thus leading to the multisystemic features typical of DM1. In DM1, the musculoskeletal apparatus, heart, brain, eye, endocrine, respiratory and gastroenteric systems are involved with variable levels of severity. DM1 onset can be congenital, juvenile, adult or late. DM1 can be diagnosed on the grounds of clinical presentation (distal muscular atrophy and weakness, grip and percussion myotonia, ptosis, hatchet face, slurred speech, rhinolalia), EMG myotonic pattern, EKG (such as AV-blocks) or routine blood test abnormalities (such as increased CK values or hypogamma-globulinemia) and history of cataract. Its confirmation can come by DNA analysis. At present, only symptomatic therapy is possible and is addressed at correcting hormonal and glycemic balance, removing cataract, preventing respiratory failure and, above all, major cardiac disturbances. Efficacious therapies targeted at the pathogenic mechanism of DM1 are not yet available, while studies that seek to block toxic RNA intranuclear storage with specific molecules are still ongoing. PMID:22411247

  7. Neurofibromatosis type 1 and malignancy in childhood.

    PubMed

    Varan, A; Şen, H; Aydın, B; Yalçın, B; Kutluk, T; Akyüz, C

    2016-03-01

    Neurofibromatosis type 1 (NF1) is an autosomal dominant hereditary neurocutaneous syndrome characterized by multi-system involvement and an increased incidence of both benign and malignant tumors. In this study, we evaluated the clinical presentation and prognosis of NF1 and malignancy. Between 1975 and 2013, 26 (5%) of the 473 patients with NF1 at our center developed non-neurofibroma neoplasms. The patient files of 26 subjects with tumors, other than optic glioma, were analyzed retrospectively to evaluate clinical features and treatment results. The age at diagnosis of NF1 ranged from 3 months to 16 years (median 5.5 years). The age range at tumor diagnosis was 1.5-33 years (median 8 years) in these 26 patients. The tumor histological subtypes included the following: 12 soft-tissue tumors (6 malignant peripheral nerve sheath tumors (MPNST), 5 rhabdomyosarcomas (RMS) and 1 malignant fibrous histiocytoma), 11 brain tumors (6 low-grade gliomas, 3 high-grade gliomas, and 2 medulloblastoma), 2 neuroblastomas and 1 non-Hodgkin's lymphoma. Twelve of 26 patients were alive at the time of the study. Although benign brain tumors with NF1 are more common, high-grade brain tumors also occur. Thus, careful and regular follow-up is crucial for early detection of malignancy in NF1 patients. PMID:26073032

  8. The Streetlight Effect in Type 1 Diabetes

    PubMed Central

    Battaglia, Manuela

    2015-01-01

    In the nearly 100 years since the discovery of therapeutic insulin, significant research efforts have been directed at finding the underlying cause of type 1 diabetes (T1D) and developing a “cure” for the disease. While progress has clearly been made toward each of these goals, neither vision has been fulfilled. With increasing pressure from both public and private funders of diabetes research, growing impatience of those with T1D at the lack of practical discoveries, increased competition for research funds, uncertainties on the reproducibility of published scientific data, and questions regarding the value of animal models, the current research environment has become extraordinarily difficult to traverse from the perspective of investigators. As a result, there is an increasing pressure toward performance of what might be considered “safe” research, where the aim is to affirm existing dogmas rather than to pioneer efforts involving unconventional thought. Psychologists refer to this practice as “observational bias” while cartoonists label the process the “streetlight effect.” In this Perspective, we consider notions in T1D research that should be subject to bold question and provide additional concepts, many somewhat orphan to research efforts, whose investigation could lead to a means for truly identifying the cause of and a cure for T1D. PMID:25805758

  9. Recent advances in type 1 diabetes.

    PubMed

    Kyi, Mervyn; Wentworth, John M; Nankervis, Alison J; Fourlanos, Spiros; Colman, Peter G

    2015-10-01

    Type 1 diabetes (T1D) is caused by an autoimmune attack on pancreatic beta cells that leads to insulin deficiency. The incidence of T1D in Australia has doubled over the past 20 years. T1D treatment focuses on physiological insulin replacement, aiming for near-normal blood glucose levels. Hypoglycaemia is a significant cause of morbidity and mortality in T1D. Optimal T1D management is complex, and is enhanced by empowering individuals in all aspects of managing diabetes. New technologies, including insulin pumps, continuous glucose monitors and sensor-augmented pumps, can assist people achieve better glycaemic control and reduce the risk of severe hypoglycaemia. Women with T1D can achieve significantly better outcomes during pregnancy and for their infants by planning for their pregnancy and by intensive glycaemic control. Several trials are underway that seek to identify the determinants of autoimmunity and to develop therapies that prevent T1D in at-risk individuals. Pancreatic and islet cell transplants are proven therapies, but are only offered to individuals with diabetes and renal failure (pancreas) or severe hypoglycaemia unawareness (islet cell transplants). Although T1D is still associated with considerable premature mortality, recent findings show that a significant improvement in life expectancy has occurred. PMID:26424063

  10. [NARCOLEPSY WITH CATAPLEXY: TYPE 1 NARCOLEPSY].

    PubMed

    Dauvilliers, Yves; Lopez, Régis

    2016-06-01

    Narcolepsy with cataplexy or narcolepsy type 1 in a rare, disabling sleep disorder, with a prevalence of 20 to 30 per 100,000. Its onset peaks in the second decade. The main features are excessive daytime sleepiness and cataplexy or sudden less of muscle tone triggered by emotional situations. Other less consistent symptoms include hypnagogic hallucinations, sleep paralysis, disturbed nighttime sleep, and weight gain. Narcolepsy with cataplexy remains a clinical diagnosis but nighttime and daytime polysomnography (multiple sleep latency tests) are useful to document mean sleep latency below 8 min and at least two sleep-onset REM periods. HLA typing shows an association with HLA DQB1*0602 in more than 92% of cases but was not included in the new diagnostic criteria. In contrast, a low hypocretin-1/orexin-A levels (values below 110 pg/mL) in the cerebrospinal fluid was highly specific for narcolepsy with cataplexy and was included in the recent diagnostic criteria for narcolepsy. The deficiency of the hypocretin system is well-established in human narcoleptics with a reduction of cerebrospinal fluid hypocretin levels in relation with an early loss of hypocretin neurons. The cause of human narcolepsy remains unknown, however an autoimmune process in most probable acting on a highly genetic background with environmental factors such as streptococcal infections, and H1N1 AS03-adjuvanted vaccine named Pandemrix. PMID:27538328

  11. Mosaic Neurofibromatosis Type 1: A Systematic Review.

    PubMed

    García-Romero, Maria Teresa; Parkin, Patricia; Lara-Corrales, Irene

    2016-01-01

    Confusion is widespread regarding segmental or mosaic neurofibromatosis type 1 (MNF1). Physicians should use the same terms and be aware of its comorbidities and risks. The objective of the current study was to identify and synthesize data for cases of MNF1 published from 1977 to 2012 to better understand its significance and associations. After a literature search in PubMed, we reviewed all available relevant articles and abstracted and synthetized the relevant clinical data about manifestations, associated findings, family history and genetic testing. We identified 111 articles reporting 320 individuals. Most had pigmentary changes or neurofibromas only. Individuals with pigmentary changes alone were identified at a younger age. Seventy-six percent had localized MNF1 restricted to one segment; the remainder had generalized MNF1. Of 157 case reports, 29% had complications associated with NF1. In one large case series, 6.5% had offspring with complete NF1. The terms "segmental" and "type V" neurofibromatosis should be abandoned, and the correct term, mosaic NF1 (MNF1), should be used. All individuals with suspected MNF1 should have a complete physical examination, genetic testing of blood and skin, counseling, and health surveillance. PMID:26338194

  12. Cannabinoid receptor type-1: breaking the dogmas

    PubMed Central

    Busquets Garcia, Arnau; Soria-Gomez, Edgar; Bellocchio, Luigi; Marsicano, Giovanni

    2016-01-01

    The endocannabinoid system (ECS) is abundantly expressed in the brain. This system regulates a plethora of physiological functions and is composed of cannabinoid receptors, their endogenous ligands (endocannabinoids), and the enzymes involved in the metabolism of endocannabinoids. In this review, we highlight the new advances in cannabinoid signaling, focusing on a key component of the ECS, the type-1 cannabinoid receptor (CB 1). In recent years, the development of new imaging and molecular tools has demonstrated that this receptor can be distributed in many cell types (e.g., neuronal or glial cells) and intracellular compartments (e.g., mitochondria). Interestingly, cellular and molecular effects are differentially mediated by CB 1 receptors according to their specific localization (e.g., glutamatergic or GABAergic neurons). Moreover, this receptor is expressed in the periphery, where it can modulate periphery-brain connections. Finally, the better understanding of the CB 1 receptor structure led researchers to propose interesting and new allosteric modulators. Thus, the advances and the new directions of the CB 1 receptor field will provide new insights and better approaches to profit from its interesting therapeutic profile. PMID:27239293

  13. Obesity and type 1 diabetes mellitus management.

    PubMed

    Chillarón, J J; Benaiges, D; Mañé, L; Pedro-Botet, J; Flores Le-Roux, J A

    2015-03-01

    Patients with type 1 diabetes mellitus (T1DM) traditionally had a low body mass index and microangiopathic complications were common. The Diabetes Control and Complications Trial, published in 1993, demonstrated that therapy aimed at maintaining HbA1c levels as close to normal as feasible reduced the incidence of microangiopathy. Since then, the use of intensive insulin therapy to optimise metabolic control became generalised, with two main side effects: a higher rate of severe hypoglycaemia and increased weight gain. Approximately 50% of patients with T1DM are currently obese or overweight, which reduces or nullifies the benefits of good metabolic control, and which has other negative consequences; therefore, strategies to achieve weight control in patients with T1DM are necessary. At present, treatment with GLP-1 and SGLT-2 inhibitors has yielded promising short-term results that need to be confirmed in studies with larger numbers of patients and long-term follow-up. It is possible that, in coming years, the applicability of bariatric surgery in obese patients with T1DM will be similar to that of the general population or T2DM. PMID:25413942

  14. Type 1 diabetes: A predictable disease

    PubMed Central

    Simmons, Kimber M; Michels, Aaron W

    2015-01-01

    Type 1 diabetes (T1D) is an autoimmune disease characterized by loss of insulin producing beta cells and reliance on exogenous insulin for survival. T1D is one of the most common chronic diseases in childhood and the incidence is increasing, especially in children less than 5 years of age. In individuals with a genetic predisposition, an unidentified trigger initiates an abnormal immune response and the development of islet autoantibodies directed against proteins in insulin producing beta cells. There are currently four biochemical islet autoantibodies measured in the serum directed against insulin, glutamic decarboxylase, islet antigen 2, and zinc transporter 8. Development of islet autoantibodies occurs before clinical diagnosis of T1D, making T1D a predictable disease in an individual with 2 or more autoantibodies. Screening for islet autoantibodies is still predominantly done through research studies, but efforts are underway to screen the general population. The benefits of screening for islet autoantibodies include decreasing the incidence of diabetic ketoacidosis that can be life threatening, initiating insulin therapy sooner in the disease process, and evaluating safe and specific therapies in large randomized clinical intervention trials to delay or prevent progression to diabetes onset. PMID:25897349

  15. Outpatient Management of Pediatric Type 1 Diabetes

    PubMed Central

    Cogen, Fran R.

    2015-01-01

    The incidence of both type 1 and type 2 diabetes (T1DM and T2DM) continues to rise within the pediatric population. However, T1DM remains the most prevalent form diagnosed in children. It is critical that health-care professionals understand the types of diabetes diagnosed in pediatrics, especially the distinguishing features between T1DM and T2DM, to ensure proper treatment. Similar to all individuals with T1DM, lifelong administration of exogenous insulin is necessary for survival. However, children have very distinct needs and challenges compared to those in the adult diabetes population. Accordingly, treatment, goals, and age-appropriate requirements must be individually addressed. The main objectives for the treatment of pediatric T1DM include maintaining glucose levels as close to normal as possible, avoiding acute complications, and preventing long-term complications. In addition, unique to pediatrics, facilitating normal growth and development is important to comprehensive care. To achieve these goals, a careful balance of insulin therapy, medical nutrition therapy, and exercise or activity is necessary. Pharmacological treatment options consist of various insulin products aimed at mimicking prior endogenous insulin secretion while minimizing adverse effects. This review focuses on the management of pediatric T1DM in the outpatient environment, highlighting pharmacotherapy management strategies. PMID:26472948

  16. Helminth Infection and Type 1 Diabetes

    PubMed Central

    Zaccone, Paola; Hall, Samuel W.

    2012-01-01

    The increasing incidence of type 1 diabetes (T1D) and autoimmune diseases in industrialized countries cannot be exclusively explained by genetic factors. Human epidemiological studies and animal experimental data provide accumulating evidence for the role of environmental factors, such as infections, in the regulation of allergy and autoimmune diseases. The hygiene hypothesis has formally provided a rationale for these observations, suggesting that our co-evolution with pathogens has contributed to the shaping of the present-day human immune system. Therefore, improved sanitation, together with infection control, has removed immunoregulatory mechanisms on which our immune system may depend. Helminths are multicellular organisms that have developed a wide range of strategies to manipulate the host immune system to survive and complete their reproductive cycles successfully. Immunity to helminths involves profound changes in both the innate and adaptive immune compartments, which can have a protective effect in inflammation and autoimmunity. Recently, helminth-derived antigens and molecules have been tested in vitro and in vivo to explore possible applications in the treatment of inflammatory and autoimmune diseases, including T1D. This exciting approach presents numerous challenges that will need to be addressed before it can reach safe clinical application. This review outlines basic insight into the ability of helminths to modulate the onset and progression of T1D, and frames some of the challenges that helminth-derived therapies may face in the context of clinical translation. PMID:23804266

  17. Type 1 diabetes guidelines: Are they enough?

    PubMed

    Zargar, Abdul Hamid

    2015-04-01

    The discovery of insulin by Banting and Best in 1922 changed the landscape of type 1 diabetes mellitus (T1DM). Guidelines on T1DM should be evidence based and should emphasize comprehensive risk management. Guidelines would improve awareness amongst governments, state health care providers and the general public about the serious long-term implications of poorly managed diabetes and of the essential resources needed for optimal care. T1DM requires lifelong daily medication, regular control as well as access to facilities to manage acute and chronic complications. American Diabetes Association 2014 guidelines recommends annual nephropathy screening for albumin levels; random spot urine sample for albumin-to-creatinine ratio at start of puberty or age ≥10 years, whichever is earlier, once the child has had diabetes for 5 years. Hypertension should be screened for in T1DM patients by measuring blood pressure at each routine visit. Dyslipidemia in T1DM patients is important and patients should be screened if there is a family history of hypercholesterolemia or a cardiovascular event before the age of 55 years exists or if family history is unknown. Retinopathy is another important complication of diabetes and patients should be subjected to an initial dilated and comprehensive eye examination. Basic diabetes training should be provided for school staff, and they should be assigned with responsibilities for the care of diabetic children. Self-management should be allowed at all school settings for students. PMID:25941640

  18. Celiac disease in type 1 diabetes mellitus

    PubMed Central

    2012-01-01

    Celiac Disease (CD) occurs in patients with Type 1 Diabetes (T1D) ranging the prevalence of 4.4-11.1% versus 0.5% of the general population. The mechanism of association of these two diseases involves a shared genetic background: HLA genotype DR3-DQ2 and DR4-DQ8 are strongly associated with T1D, DR3-DQ2 with CD. The classical severe presentation of CD rarely occurs in T1D patients, but more often patients have few/mild symptoms of CD or are completely asymptomatic (silent CD). In fact diagnosis of CD is regularly performed by means of the screening in T1D patients. The effects of gluten-free diet (GFD) on the growth and T1D metabolic control in CD/T1D patient are controversial. Regarding of the GFD composition, there is a debate on the higher glycaemic index of gluten-free foods respect to gluten-containing foods; furthermore GFD could be poorer of fibers and richer of fat. The adherence to GFD by children with CD-T1D has been reported generally below 50%, lower respect to the 73% of CD patients, a lower compliance being more frequent among asymptomatic patients. The more severe problems of GFD adherence usually occur during adolescence when in GFD non compliant subjects the lowest quality of life is reported. A psychological and educational support should be provided for these patients. PMID:22449104

  19. Practicing death.

    PubMed

    Avny, Ohad; Alon, Aya

    2016-07-01

    This narrative describes the struggle of a primary care physician contending with the challenge of remaining committed to his patient's care despite a sense of burnout in relation to an intense period of patient deaths. The story presents two patient deaths and the physician's reflections on how he handled both cases. PMID:26899633

  20. Silencing of Hsp27 and Hsp72 in glioma cells as a tool for programmed cell death induction upon temozolomide and quercetin treatment

    SciTech Connect

    Jakubowicz-Gil, Joanna; Langner, Ewa; Bądziul, Dorota; Wertel, Iwona; Rzeski, Wojciech

    2013-12-15

    The aim of the present study was to investigate whether silencing of Hsp27 or Hsp72 expression in glioblastoma multiforme T98G and anaplastic astrocytoma MOGGCCM cells increases their sensitivity to programmed cell death induction upon temozolomide and/or quercetin treatment. Transfection with specific siRNA was performed for the Hsp gene silencing. As revealed by microscopic observation and flow cytometry, the inhibition of Hsp expression was correlated with severe apoptosis induction upon the drug treatment studied. No signs of autophagy were detected. This was correlated with a decreased mitochondrial membrane potential, increased level of cytochrome c in the cytoplasm, and activation of caspase 3 and caspase 9. All these results suggest that the apoptotic signal was mediated by an internal pathway. Additionally, in a large percentage of cells treated with temozolomide, with or without quercetin, granules within the ER system were found, which was accompanied by an increased level of caspase 12 expression. This might be correlated with ER stress. Quercetin and temozolomide also changed the shape of nuclei from circular to “croissant like” in both transfected cell lines. Our results indicate that blocking of Hsp27 and Hsp72 expression makes T98G cells and MOGGCCM cells extremely vulnerable to apoptosis induction upon temozolomide and quercetin treatment and that programmed cell death is initiated by an internal signal. - Highlights: • Hsps gene silencing induced severe apoptosis upon temozolomide–quercetin treatment • Apoptosis in transfected glioma cells was initiated by internal signal • Programmed cell death was preceded by ER stress • Temozolomide–quercetin treatment changed nuclei shape in transfected glioma cells.

  1. Disruption of the Vacuolar Calcium-ATPases in Arabidopsis Results in the Activation of a Salicylic Acid-Dependent Programmed Cell Death Pathway1[W][OA

    PubMed Central

    Boursiac, Yann; Lee, Sang Min; Romanowsky, Shawn; Blank, Robert; Sladek, Chris; Chung, Woo Sik; Harper, Jeffrey F.

    2010-01-01

    Calcium (Ca2+) signals regulate many aspects of plant development, including a programmed cell death pathway that protects plants from pathogens (hypersensitive response). Cytosolic Ca2+ signals result from a combined action of Ca2+ influx through channels and Ca2+ efflux through pumps and cotransporters. Plants utilize calmodulin-activated Ca2+ pumps (autoinhibited Ca2+-ATPase [ACA]) at the plasma membrane, endoplasmic reticulum, and vacuole. Here, we show that a double knockout mutation of the vacuolar Ca2+ pumps ACA4 and ACA11 in Arabidopsis (Arabidopsis thaliana) results in a high frequency of hypersensitive response-like lesions. The appearance of macrolesions could be suppressed by growing plants with increased levels (greater than 15 mm) of various anions, providing a method for conditional suppression. By removing plants from a conditional suppression, lesion initials were found to originate primarily in leaf mesophyll cells, as detected by aniline blue staining. Initiation and spread of lesions could also be suppressed by disrupting the production or accumulation of salicylic acid (SA), as shown by combining aca4/11 mutations with a sid2 (for salicylic acid induction-deficient2) mutation or expression of the SA degradation enzyme NahG. This indicates that the loss of the vacuolar Ca2+ pumps by itself does not cause a catastrophic defect in ion homeostasis but rather potentiates the activation of a SA-dependent programmed cell death pathway. Together, these results provide evidence linking the activity of the vacuolar Ca2+ pumps to the control of a SA-dependent programmed cell death pathway in plants. PMID:20837703

  2. Variable patterns of programmed death-1 expression on fully functional memory T cells after spontaneous resolution of hepatitis C virus infection.

    PubMed

    Bowen, David G; Shoukry, Naglaa H; Grakoui, Arash; Fuller, Michael J; Cawthon, Andrew G; Dong, Christine; Hasselschwert, Dana L; Brasky, Kathleen M; Freeman, Gordon J; Seth, Nilufer P; Wucherpfennig, Kai W; Houghton, Michael; Walker, Christopher M

    2008-05-01

    The inhibitory receptor programmed death-1 (PD-1) is present on CD8(+) T cells in chronic hepatitis C virus (HCV), but expression patterns in spontaneously resolving infections are incompletely characterized. Here we report that PD-1 was usually absent on memory CD8(+) T cells from chimpanzees with resolved infections, but sustained low-level expression was sometimes observed in the absence of apparent virus replication. PD-1-positive memory T cells expanded and displayed antiviral activity upon reinfection with HCV, indicating conserved function. This animal model should facilitate studies of whether PD-1 differentially influences effector and memory T-cell function in resolved versus persistent human infections. PMID:18337576

  3. Innate inflammation in type 1 diabetes.

    PubMed

    Cabrera, Susanne M; Henschel, Angela M; Hessner, Martin J

    2016-01-01

    Type 1 diabetes mellitus (T1D) is an autoimmune disease often diagnosed in childhood that results in pancreatic β-cell destruction and life-long insulin dependence. T1D susceptibility involves a complex interplay between genetic and environmental factors and has historically been attributed to adaptive immunity, although there is now increasing evidence for a role of innate inflammation. Here, we review studies that define a heightened age-dependent innate inflammatory state in T1D families that is paralleled with high fidelity by the T1D-susceptible biobreeding rat. Innate inflammation may be driven by changes in interactions between the host and environment, such as through an altered microbiome, intestinal hyperpermeability, or viral exposures. Special focus is put on the temporal measurement of plasma-induced transcriptional signatures of recent-onset T1D patients and their siblings as well as in the biobreeding rat as it defines the natural history of innate inflammation. These sensitive and comprehensive analyses have also revealed that those who successfully managed T1D risk develop an age-dependent immunoregulatory state, providing a possible mechanism for the juvenile nature of T1D. Therapeutic targeting of innate inflammation has been proven effective in preventing and delaying T1D in rat models. Clinical trials of agents that suppress innate inflammation have had more modest success, but efficacy may be improved by the addition of combinatorial approaches that target other aspects of T1D pathogenesis. An understanding of innate inflammation and mechanisms by which this susceptibility is both potentiated and mitigated offers important insight into T1D progression and avenues for therapeutic intervention. PMID:25980926

  4. Boston type 1 keratoprosthesis for failed keratoplasty.

    PubMed

    Hager, Jonathan L; Phillips, David L; Goins, Kenneth M; Kitzmann, Anna S; Greiner, Mark A; Cohen, Alex W; Welder, Jeffrey D; Wagoner, Michael D

    2016-02-01

    The purpose of this study was to evaluate the outcomes of the Boston type 1 keratoprosthesis (Kpro-1) in eyes with failed keratoplasty. A retrospective review was performed of every patient treated with a Kpro-1 at a tertiary eye care center between January 1, 2008 and July 1, 2013. Eyes with a failed keratoplasty originally performed for corneal edema, trauma, or keratoconus were included in the statistical analysis. The main outcome measures were visual outcome, prosthesis retention, and postoperative complications. Twenty-four eyes met the inclusion criteria, including 13 eyes with corneal edema, 8 eyes with trauma, and 3 eyes with keratoconus. After a mean follow-up period of 28.9 months (range 7-63 months), the median best corrected visual acuity (BCVA) was 20/125. The BCVA was ≥20/40 in 4 (16.7 %) eyes, ≥20/70 in 9 (37.5 %) eyes, and ≥20/200 in 14 (58.3 %) eyes. Overall, the postoperative BCVA improved in 17 (70.9 %) eyes, was unchanged in 3 (12.5 %) eyes, and was worse in 4 (16.7 %) eyes. The initial Kpro-1 was retained in 22 (91.7 %) eyes, and was successfully repeated in the other 2 eyes. One or more serious prosthesis- or sight-threatening complications occurred in 8 (33.3 %) eyes. These included 1 case of wound dehiscence leading to prosthesis extrusion, 1 case of fungal keratitis leading to prosthesis extrusion, 4 cases of endophthalmitis, and 5 retinal detachments. The Boston Kpro-1 is associated with an excellent prognosis for prosthesis retention and satisfactory visual improvement in eyes with previous failed keratoplasty. PMID:25975459

  5. Mining for Dust in Type 1 Quasars

    NASA Astrophysics Data System (ADS)

    Krawczyk, Coleman M.; Richards, Gordon T.; Gallagher, S. C.; Leighly, Karen M.; Hewett, Paul C.; Ross, Nicholas P.; Hall, P. B.

    2015-06-01

    We explore the extinction/reddening of ˜35,000 uniformly selected quasars with 0\\lt z≤slant 5.3 in order to better understand their intrinsic optical/ultraviolet (UV) spectral energy distributions. Using rest-frame optical-UV photometry taken from the Sloan Digital Sky Survey’s (SDSS) 7th data release, cross-matched to WISE in the mid-infrared, 2MASS and UKIDSS in the near-infrared, and GALEX in the UV, we isolate outliers in the color distribution and find them well described by an SMC-like reddening law. A hierarchical Bayesian model with a Markov Chain Monte Carlo sampling method was used to find distributions of power law indices and E(B-V) consistent with both the broad absorption line (BAL) and non-BAL samples. We find that, of the ugriz color-selected type 1 quasars in SDSS, 2.5% (13%) of the non-BAL (BAL) sample are consistent with E(B-V)\\gt 0.1 and 0.1% (1.3%) with E(B-V)\\gt 0.2. Simulations show both populations of quasars are intrinsically bluer than the mean composite, with a mean spectral index ({{α }λ }) of -1.79 (-1.83). The emission and absorption-line properties of both samples reveal that quasars with intrinsically red continua have narrower Balmer lines and stronger high-ionization emission lines, the latter indicating a harder continuum in the extreme-UV and the former pointing to differences in black hole mass and/or orientation.

  6. Management of Type 1 Diabetes in Pregnancy.

    PubMed

    Feldman, Anna Z; Brown, Florence M

    2016-08-01

    Women with type 1 diabetes (T1DM) have unique needs during the preconception, pregnancy, and postpartum periods. Preconception counseling is essential for women with T1DM to minimize pregnancy risks. The goals of preconception care should be tight glycemic control with a hemoglobin A1c (A1C) < 7 % and as close to 6 % as possible, without significant hypoglycemia. This will lower risks of congenital malformations, preeclampsia, and perinatal mortality. The safety of medications should be assessed prior to conception. Optimal control of retinopathy, hypertension, and nephropathy should be achieved. During pregnancy, the goal A1C is near-normal at <6 %, without excessive hypoglycemia. There is no clear evidence that continuous subcutaneous insulin infusion (CSII) versus multiple daily injections (MDI) is superior in achieving the desired tight glycemic control of T1DM during pregnancy. Data regarding continuous glucose monitoring (CGM) in pregnant women with T1DM is conflicting regarding improved glycemic control. However, a recent CGM study does provide some distinct patterns of glucose levels associated with large for gestational age infants. Frequent eye exams during pregnancy are essential due to risk of progression of retinopathy during pregnancy. Chronic hypertension treatment goals are systolic blood pressure 110-129 mmHg and diastolic blood pressure 65-79 mmHg. Labor and delivery target plasma glucose levels are 80-110 mg/dl, and an insulin drip is recommended to achieve these targets during active labor. Postpartum, insulin doses must be reduced and glucoses closely monitored in women with T1DM because of the enhanced insulin sensitivity after delivery. Breastfeeding is recommended and should be highly encouraged due to maternal benefits including increased insulin sensitivity and weight loss and infant and childhood benefits including reduced prevalence of overweight. In this article, we discuss the care of pregnant patients with T1DM. PMID

  7. Novel Biomarkers in Type 1 Diabetes

    PubMed Central

    Jin, Yulan; She, Jin-Xiong

    2012-01-01

    Biomarkers are useful tools for research into type 1 diabetes (T1D) for a number of purposes, including elucidation of disease pathogenesis, risk prediction, and therapeutic monitoring. Susceptibility genes and islet autoantibodies are currently the most useful biomarkers for T1D risk prediction. However, these markers do not fully meet the needs of scientists and physicians for several reasons. First, improvement of the specificity and sensitivity is still desirable to achieve better positive predictive values. Second, autoantibodies appear relatively late in the disease process, thus limiting their value in early disease prediction. Third, the currently available biomarkers are not useful for assessing therapeutic outcomes because some are not involved in the disease process (autoantibodies) and others do not change during disease progression (susceptibility genes). Therefore, considerable effort has been devoted to the discovery of novel T1D biomarkers in the last three decades. The advent of high-throughput technologies for genetic, transcriptomic, and proteomic studies has allowed genome-wide examinations of genetic polymorphisms, global gene changes, and protein expression changes in T1D patients and prediabetic subjects. These large-scale studies resulted in the discovery of a large number of susceptibility genes and changes in gene and protein expression. While these studies have provided a number of novel biomarker candidates, their clinical benefits remain to be evaluated in prospective studies, and no new "star biomarker" has been identified until now. Previous studies suggest that significant improvements in study design and analytical methodologies have to be made to identify clinically relevant biomarkers. In this review, we discuss progress, opportunities, challenges, and future directions in the development of T1D biomarkers, mainly by focusing on the genetic, transcriptomic, and proteomic aspects. PMID:23804262

  8. Autoimmune mechanisms in type 1 diabetes.

    PubMed

    Knip, Mikael; Siljander, Heli

    2008-07-01

    Type 1 diabetes (T1D) is perceived as a chronic immune-mediated disease with a subclinical prodromal period characterized by selective loss of insulin-producing beta-cells in the pancreatic islets in genetically susceptible subjects. Autoreactive T cells, both CD4 and CD8 cells, have been implicated as active players in beta-cell destruction. A series of autoantigens have been identified in T1D including insulin, glutamic acid decarboxylase (GAD), the protein tyrosine phosphatase-related islet antigen 2 (IA-2), and most recently the zinc transporter Slc30A8 residing in the insulin secretory granule of the beta-cell. The issue whether there is any primary autoantigen in T1D has remained controversial. Given that there are two major HLA haplotypes conferring disease susceptibility, i.e. the DR3-DQ2 haplotype and the DR4-DQ8 haplotype, one may assume that there will be at least two primary antigens in T1D. The first signs of beta-cell autoimmunity might appear already during the first year of life. Autoantibodies may be considered as markers of an ongoing disease process in the pancreatic islets, and they can be used for prediction of T1D in non-diabetic individuals. Autoantigen-specific T-cell responses have been detected from peripheral blood in both patients with T1D and in unaffected subjects, but a clear discrimination between diabetic and non-diabetic subjects have rarely been seen until recently. PMID:18625444

  9. Epilepsy surgery in Neurofibromatosis Type 1.

    PubMed

    Barba, Carmen; Jacques, Thomas; Kahane, Philippe; Polster, Tilman; Isnard, Jean; Leijten, Frans S S; Ozkara, Cigdem; Tassi, Laura; Giordano, Flavio; Castagna, Maura; John, Alison; Oz, Buge; Salon, Caroline; Streichenberger, Nathalie; Cross, Judith Helen; Guerrini, Renzo

    2013-08-01

    Epilepsy is relatively uncommon in patients with Neurofibromatosis Type 1 (NF1) and seizures are usually well controlled with antiepileptic treatment. However, pharmacoresistance has been reported in patients with NF1 and MRI evidence of malformations of cortical development or glioneuronal tumours. Available information on epilepsy surgery in NF1 is limited to a few patients with gliomas and glioneuronal tumours who underwent lesionectomies. We conducted a survey amongst 25 European epilepsy surgery centres to collect patients with NF1 who had undergone surgery for drug-resistant seizures and identified 12 patients from eight centres. MRI abnormalities were present in all patients but one. They were unilateral temporal in eight, bilateral temporal in one and multilobar or hemispheric in two. Seizures originated from the temporal lobe in ten patients, from the temporo-parieto-occipital region in one, and were bitemporal in one. One year after surgery eight patients were seizure free, one had worthwhile improvement and the remaining three had experienced no benefit. Postoperative outcome, available at 2 years in ten patients and at 5 years in three, remained stable in all but one whose seizures reappeared. Histology revealed dysembryoplastic neuroepithelial tumour (DNET) in five patients, hippocampal sclerosis in four, mixed pathology in one and polymicrogyria in one. No histological abnormality was observed in the remaining patient. Epilepsy surgery can be performed effectively in patients with NF1 provided a single and well-delimited epileptogenic zone is recognized. The high prevalence of DNETs in this series might suggest a non-fortuitous association with NF1. PMID:23597854

  10. Synthetic Peptide Ligands of the Antigen Binding Receptor Induce Programmed Cell Death in a Human B-Cell Lymphoma

    NASA Astrophysics Data System (ADS)

    Renschler, Markus F.; Bhatt, Ramesh R.; Dower, William J.; Levy, Ronald

    1994-04-01

    Peptide ligands for the antigen binding site of the surface immunoglobulin receptor of a human B-cell lymphoma cell line were identified with the use of filamentous phage libraries displaying random 8- and 12-amino acid peptides. Corresponding synthetic peptides bound specifically to the antigen binding site of this immunoglobulin receptor and blocked the binding of an anti-idiotype antibody. The ligands, when conjugated to form dimers or tetramers, induced cell death by apoptosis in vitro with an IC50 between 40 and 200 nM. This effect was associated with specific stimulation of intracellular protein tyrosine phosphorylation.

  11. Rescue of platinum-damaged oocytes from programmed cell death through inactivation of the p53 family signaling network

    PubMed Central

    Kim, S-Y; Cordeiro, M H; Serna, V A; Ebbert, K; Butler, L M; Sinha, S; Mills, A A; Woodruff, T K; Kurita, T

    2013-01-01

    Non-proliferating oocytes within avascular regions of the ovary are exquisitely susceptible to chemotherapy. Early menopause and sterility are unintended consequences of chemotherapy, and efforts to understand the oocyte apoptotic pathway may provide new targets for mitigating this outcome. Recently, the c-Abl kinase inhibitor imatinib mesylate (imatinib) has become the focus of research as a fertoprotective drug against cisplatin. However, the mechanism by which imatinib protects oocytes is not fully understood, and reports of the drug's efficacy have been contradictory. Using in vitro culture and subrenal grafting of mouse ovaries, we demonstrated that imatinib inhibits the cisplatin-induced apoptosis of oocytes within primordial follicles. We found that, before apoptosis, cisplatin induces c-Abl and TAp73 expression in the oocyte. Oocytes undergoing apoptosis showed downregulation of TAp63 and upregulation of Bax. While imatinib was unable to block cisplatin-induced DNA damage and damage response, such as the upregulation of p53, imatinib inhibited the cisplatin-induced nuclear accumulation of c-Abl/TAp73 and the subsequent downregulation of TAp63 and upregulation of Bax, thereby abrogating oocyte cell death. Surprisingly, the conditional deletion of Trp63, but not ΔNp63, in oocytes inhibited apoptosis, as well as the accumulation of c-Abl and TAp73 caused by cisplatin. These data suggest that TAp63 is the master regulator of cisplatin-induced oocyte death. The expression kinetics of TAp63, c-Abl and TAp73 suggest that cisplatin activates TAp63-dependent expression of c-Abl and TAp73 and, in turn, the activation of TAp73 by c-Abl-induced BAX expression. Our findings indicate that imatinib protects oocytes from cisplatin-induced cell death by inhibiting c-Abl kinase, which would otherwise activate TAp73-BAX-mediated apoptosis. Thus, imatinib and other c-Abl kinase inhibitors provide an intriguing new way to halt cisplatin-induced oocyte death in early follicles

  12. Pathway of Programmed Cell Death and Oxidative Stress Induced by β-Hydroxybutyrate in Dairy Cow Abomasum Smooth Muscle Cells and in Mouse Gastric Smooth Muscle

    PubMed Central

    Wang, Zhe; Zhang, Naisheng; Xie, Guanghong

    2014-01-01

    The administration of exogenous β-hydroxybutyrate (β-HB), as well as fasting and caloric restriction, is a condition associated with β-HB abundance and decreased appetite in animals. Increased β-HB and decreased appetite exist simultaneously in some diseases, such as bovine left displaced abomasums (LDA) and human chronic gastritis. However, the effects of β-HB on stomach injuries have not been explored. To elucidate the possible effects of exogenous β-HB on the stomach, mice were injected intraperitoneally with β-HB, and bovine abomasum smooth muscle cells (BSMCs) were treated with different concentrations of β-HB. We found that β-HB induced BSMCs endoplasmic reticulum- and mitochondria-mediated apoptotic cell death. β-HB promoted Bax expression and caspase-12, -9, and -3 activation while blocking Bcl-2 expression. β-HB also promoted AIF, EndoG release and p53 expression. β-HB acted on key molecules in the apoptotic cell death pathway and increased p38 and c-June NH2-terminal kinase phosphorylation while inhibiting ERK phosphorylation and PCNA expression. β-HB upregulated P27 and P21 mRNA levels while downregulating cyclin and CDK mRNA levels, arresting the cell cycle. These results suggest that BSMCs treated with β-HB can induce oxidative stress, which can be prevented by intracellular calcium chelators BAPTA/AM but not antioxidant NAC. Additionally, these results suggest that β-HB causes ROS generation through a Ca2+-dependent mechanism and that intracellular Ca2+ levels play a critical role in β-HB -induced apoptotic cell death. The impact of β-HB on programmed cell death and oxidative stress in vivo was confirmed in murine experiments. For the first time, we show oxidative stress effects of β-HB on smooth muscle. We propose that β-HB is a possible cause of some stomach diseases, including bovine LDA. PMID:24801711

  13. Spinal muscular atrophy with respiratory distress type 1 (SMARD1)

    PubMed Central

    San Millan, Beatriz; Fernandez, Jose M.; Navarro, Carmen; Reparaz, Alfredo; Teijeira, Susana

    2016-01-01

    Background: Spinal muscular atrophy with respiratory distress type 1 (SMARD1) is a clinically and genetically distinct and uncommon variant of SMA that results from irreversible degeneration of α-motor neurons in the anterior horns of the spinal cord and in ganglion cells on the spinal root ganglia. Aims: To describe the clinical, electrophysiological, neuropathological, and genetic findings, at different stages from birth to death, of a Spanish child diagnosed with SMARD1. Patient and methods: We report the case of a 3-month-old girl with severe respiratory insufficiency and, later, intense hypotonia. Paraclinical tests included biochemistry, chest X-ray, and electrophysiological studies, among others. Muscle and nerve biopsies were performed at 5 and 10 months and studied under light and electron microscopy. Post-mortem examination and genetic investigations were performed. Results: Pre- and post-mortem histopathological findings demonstrated the disease progression over time. Muscle biopsy at 5 months of age was normal, however a marked neurogenic atrophy was present in post-mortem samples. Peripheral motor and sensory nerves were severely involved likely due to a primary axonal disorder. Automatic sequencing of IGHMBP2 revealed a compound heterozygous mutation. Conclusions: The diagnosis of SMARD1 should be considered in children with early respiratory insufficiency or in cases of atypical SMA. Direct sequencing of the IGHMBP2 gene should be performed. PMID:26709713

  14. Strategies for clinical trials in type 1 diabetes.

    PubMed

    Ehlers, Mario R

    2016-07-01

    During the past one to two decades, substantial progress has been made in our understanding of the immunopathology of type 1 diabetes (T1D) and the potential for immune interventions that can alter the natural history of the disease. This progress has resulted from the use of standardized study designs, endpoints, and, to a certain extent, mechanistic analyses in intervention trials in the setting of new-onset T1D. To date, most of these trials have involved single-agent interventions but, increasingly, future trials will test therapeutic combinations that are based on a compelling scientific rationale and testable mechanistic hypotheses. These increasingly complex trials will benefit from novel trial designs (such as factorial or adaptive designs), enhanced clinical endpoints that more directly assess islet pathology (such as β-cell death assays and islet or pancreatic imaging), improved responder analyses, and sophisticated mechanistic assays that provide deep phenotyping of lymphocyte subsets, gene expression profiling, in vitro T cell functional assessments, and antigen-specific responses. With this developing armamentarium of enhanced trial designs, endpoints, and clinical and mechanistic response analyses, we can expect substantial progress in better understanding the breakdown in immunologic tolerance in T1D and how to restore it to achieve significant and long-lasting preservation of islet function. PMID:27068279

  15. Equid herpesvirus type 1 activates platelets.

    PubMed

    Stokol, Tracy; Yeo, Wee Ming; Burnett, Deborah; DeAngelis, Nicole; Huang, Teng; Osterrieder, Nikolaus; Catalfamo, James

    2015-01-01

    Equid herpesvirus type 1 (EHV-1) causes outbreaks of abortion and neurological disease in horses. One of the main causes of these clinical syndromes is thrombosis in placental and spinal cord vessels, however the mechanism for thrombus formation is unknown. Platelets form part of the thrombus and amplify and propagate thrombin generation. Here, we tested the hypothesis that EHV-1 activates platelets. We found that two EHV-1 strains, RacL11 and Ab4 at 0.5 or higher plaque forming unit/cell, activate platelets within 10 minutes, causing α-granule secretion (surface P-selectin expression) and platelet microvesiculation (increased small events double positive for CD41 and Annexin V). Microvesiculation was more pronounced with the RacL11 strain. Virus-induced P-selectin expression required plasma and 1.0 mM exogenous calcium. P-selectin expression was abolished and microvesiculation was significantly reduced in factor VII- or X-deficient human plasma. Both P-selectin expression and microvesiculation were re-established in factor VII-deficient human plasma with added purified human factor VIIa (1 nM). A glycoprotein C-deficient mutant of the Ab4 strain activated platelets as effectively as non-mutated Ab4. P-selectin expression was abolished and microvesiculation was significantly reduced by preincubation of virus with a goat polyclonal anti-rabbit tissue factor antibody. Infectious virus could be retrieved from washed EHV-1-exposed platelets, suggesting a direct platelet-virus interaction. Our results indicate that EHV-1 activates equine platelets and that α-granule secretion is a consequence of virus-associated tissue factor triggering factor X activation and thrombin generation. Microvesiculation was only partly tissue factor and thrombin-dependent, suggesting the virus causes microvesiculation through other mechanisms, potentially through direct binding. These findings suggest that EHV-1-induced platelet activation could contribute to the thrombosis that occurs in

  16. Transcriptional organization of bovine papillomavirus type 1.

    PubMed

    Engel, L W; Heilman, C A; Howley, P M

    1983-09-01

    Multiple bovine papillomavirus type 1 (BPV-1)-specific polyadenylated RNA species in a BPV-1-infected bovine fibropapilloma were identified and mapped. All of the RNA species were transcribed from the same DNA strand of the BPV-1 genome. Five RNA species previously identified in BPV-1-transformed mouse cells were also present in the bovine fibropapilloma. These five species measured 1,050, 1,150, 1,700, 3,800, and 4,050 bases, mapped within the 69% transforming segment of the BPV-1 genome, and shared a 3' coterminus at 0.53 map units (m.u.). The 5' ends of the bodies of these distinct transcripts were located at ca. 0.03, 0.09, 0.34, 0.39, and 0.41 m.u. Additional polyadenylated RNA species not present in BPV-1-transformed mouse cells were specific for the BPV-1-infected bovine fibropapilloma and measured 1,700, 3,700, 3,800, 6,700, and 8,000 bases. These wart-specific species shared a 3' coterminus at 0.90 m.u. The 5' termini of the bodies of the 1,700- and 3,800-base species mapped at 0.71 and 0.42 m.u., respectively. Exonuclease VII analysis failed to reveal any internal splicing in these two species; however, the presence of small remote 5' leader sequences could not be ruled out. The 3,700-base species hybridized to DNA fragments from the 69% transforming segment as well as from the 31% nontransforming segment of the BPV-1 genome; however, this species was not precisely mapped. The 5' termini of the two largest RNA species (6,700 and 8,000 bases in size) were located at ca. 0.01 and 0.90 m.u., respectively. Since the 5' ends of these mapped adjacent to a TATAAA sequence which could possibly serve as an element of a transcriptional promoter, it is possible that one or both of these species represent nonspliced precursor RNA molecules. PMID:6137574

  17. Neonatal Death

    MedlinePlus

    ... story First Candle Centering Corporation The Compassionate Friends Star Legacy Foundation Last reviewed: November, 2015 Neonatal death ... story First Candle Centering Corporation The Compassionate Friends Star Legacy Foundation Last reviewed: November, 2015 Complications & Loss ...

  18. Type-1 interferon signaling mediates neuro-inflammatory events in models of Alzheimer's disease.

    PubMed

    Taylor, Juliet M; Minter, Myles R; Newman, Andrew G; Zhang, Moses; Adlard, Paul A; Crack, Peter J

    2014-05-01

    A neuro-inflammatory response has been implicated in human patients and animal models of Alzheimer's disease (AD). Type-1 interferons are pleiotropic cytokines involved in the initiation and regulation of the pro-inflammatory response; however, their role in AD is unknown. This study investigated the contribution of type-1 IFN signaling in the neuro-inflammatory response to amyloid-beta (Aβ) in vitro and in the APP/PS1 transgenic mouse model of AD. Enzyme-linked immunosorbent assay confirmed a 2-fold increase in IFNα in APP/PS1 brains compared with control brains. Quantitative polymerase chain reaction also identified increased IFNα and IFNβ expression in human pre-frontal cortex from AD patients. In vitro studies in primary neurons demonstrated Aβ-induced type-1 IFN expression preceded that of other classical pro-inflammatory cytokines, IL1-β, and IL-6. Significantly, ablation of type-1 interferon-α receptor 1 expression in BE(2)M17 neuroblastoma cells and primary neurons afforded protection against Aβ-induced toxicity. This study supports a role for type-1 interferons in the pro-inflammatory response and neuronal cell death in AD and suggests that blocking type-1 interferon-α receptor 1 maybe a therapeutic target to limit the disease progression. PMID:24262201

  19. Transcriptome-Wide Mapping of Pea Seed Ageing Reveals a Pivotal Role for Genes Related to Oxidative Stress and Programmed Cell Death

    PubMed Central

    Colville, Louise; Lorenzo, Oscar; Graeber, Kai; Küster, Helge; Leubner-Metzger, Gerhard; Kranner, Ilse

    2013-01-01

    Understanding of seed ageing, which leads to viability loss during storage, is vital for ex situ plant conservation and agriculture alike. Yet the potential for regulation at the transcriptional level has not been fully investigated. Here, we studied the relationship between seed viability, gene expression and glutathione redox status during artificial ageing of pea (Pisum sativum) seeds. Transcriptome-wide analysis using microarrays was complemented with qRT-PCR analysis of selected genes and a multilevel analysis of the antioxidant glutathione. Partial degradation of DNA and RNA occurred from the onset of artificial ageing at 60% RH and 50°C, and transcriptome profiling showed that the expression of genes associated with programmed cell death, oxidative stress and protein ubiquitination were altered prior to any sign of viability loss. After 25 days of ageing viability started to decline in conjunction with progressively oxidising cellular conditions, as indicated by a shift of the glutathione redox state towards more positive values (>−190 mV). The unravelling of the molecular basis of seed ageing revealed that transcriptome reprogramming is a key component of the ageing process, which influences the progression of programmed cell death and decline in antioxidant capacity that ultimately lead to seed viability loss. PMID:24205239

  20. Spent Pot Liner (SPL) induced DNA damage and nuclear alterations in root tip cells of Allium cepa as a consequence of programmed cell death.

    PubMed

    Andrade-Vieira, L F; Gedraite, L S; Campos, J M S; Davide, L C

    2011-05-01

    There are various toxic effects of environmental pollutants, including apoptosis and carcinogenesis. Spent Pot Liner (SPL) is solid waste from the aluminum industry. It has a highly variable composition, including cyanide, fluoride, organics and metals. Preliminary characterizations of the effect of SPL on Allium cepa show the presence of condensed nuclei. Thus, the aim of this study was to analyze the toxic effect of SPL in A. cepa root meristem in the context of programmed cell death (PCD). A lot of specific features of this process such as DNA fragmentation, condensed chromatin, spherical nuclei and the formation of apoptotic-like bodies were observed in root meristem after SPL treatment. Root meristem treated with SPL 25% solution exhibited an alteration in antioxidant enzyme activities; a reduction in NCR as a consequence of high percentage of condensed nuclei; DNA fragmentation, detected by electrophoresis and TUNEL assay; cytoplasm vacuolization and also a disturbance in root morphology. These features are associated with programmed cell death (PCD) under abiotic stress. Therefore, these data show that SPL induces apoptosis-like PCD in root meristem cells of A. cepa. PMID:21232797

  1. Mutations in the Parkinson’s Disease-Associated PARK2 Gene Are Accompanied by Imbalance in Programmed Cell Death Systems

    PubMed Central

    Konovalova, E. V.; Lopacheva, O. M.; Grivennikov, I. A.; Lebedeva, O. S.; Dashinimaev, E. B.; Khaspekov, L. G.; Fedotova, E. Yu.; Illarioshkin, S. N.

    2015-01-01

    Parkinson’s disease is caused by the degeneration of midbrain dopaminergic neurons. A rare recessive form of the disease may be caused by a mutation in the PARK2 gene, whose product, Parkin, controls mitophagy and programmed cell death. The level of pro- and anti-apoptotic factors of the Bcl-2 family was determined in dopaminergic neurons derived from the induced pluripotent stem cells of a healthy donor and a Parkinson’s disease patient bearing PARK2 mutations. Western blotting was used to study the ratios of Bax, Bak, Bcl-2, Bcl-XL, and Bcl-W proteins. The pro-apoptotic Bak protein level in PARK2-neurons was shown to be two times lower than that in healthy cells. In contrast, the expression of the anti-apoptotic factors Bcl-XL, Bcl-W, and Bcl-2 was statistically significantly higher in the mutant cells compared to healthy dopaminergic neurons. These results indicate that PARK2 mutations are accompanied by an imbalance in programmed cell death systems in which non-apoptotic molecular mechanisms play the leading role. PMID:26798503

  2. Aggressive Behaviour of Metastatic Melanoma in a Patient with Neurofibromatosis Type 1

    PubMed Central

    Foley, Robert W.; Maweni, Robert M.; Fabre, Aurelie; Healy, David G.

    2015-01-01

    Malignant melanoma is a common skin neoplasm bearing poor prognosis when presenting with metastases. Rarely melanoma metastases present without an identifiable primary cutaneous lesion despite exhaustive workup. We describe the case of a solitary lung metastasis in a patient with neurofibromatosis type 1 without an identifiable primary tumour. The rapid progression of this malignant neoplasm that led to the patient's death within 1 year is described. PMID:25893129

  3. Genetics Home Reference: autosomal recessive cerebellar ataxia type 1

    MedlinePlus

    ... Health Conditions ARCA1 autosomal recessive cerebellar ataxia type 1 Enable Javascript to view the expand/collapse boxes. ... Close All Description Autosomal recessive cerebellar ataxia type 1 ( ARCA1 ) is a condition characterized by progressive problems ...

  4. FEATURE B, TYPE 1 PILLBOX, SOUTH AND WEST SIDES, VIEW ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    FEATURE B, TYPE 1 PILLBOX, SOUTH AND WEST SIDES, VIEW FACING NORTH-NORTHEAST. - Naval Air Station Barbers Point, Shore Pillbox Complex-Type 1 Pillbox, Along shoreline, seaward of Coral Sea Road, Ewa, Honolulu County, HI

  5. FEATURE A, TYPE 1 PILLBOX, SOUTH SIDE, REST MOSTLY COVERED ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    FEATURE A, TYPE 1 PILLBOX, SOUTH SIDE, REST MOSTLY COVERED BY VEGETATION AND SAND, VIEW FACING NORTHEAST. - Naval Air Station Barbers Point, Shore Pillbox Complex-Type 1 Pillbox, Along shoreline, seaward of Coral Sea Road, Ewa, Honolulu County, HI

  6. Arrhythmogenic Right Ventricular Dysplasia/Cardiomyopathy Type 1: A Light on Molecular Mechanisms

    PubMed Central

    Vanderschuren, Koen L. A.; Sieverink, Tom; Wilders, Ronald

    2013-01-01

    Arrhythmogenic right ventricular dysplasia/cardiomyopathy (ARVD/C) is an inherited cardiomyopathy associated with cardiac arrhythmias originating in the right ventricle, heart failure, and sudden cardiac death. Development of ARVD/C type 1 has been attributed to differential expression of transforming growth factor beta 3 (TGFβ3). Several mechanisms underlying the molecular basis of ARVD/C type 1 have been proposed. Evaluating previously described mechanisms might elucidate how TGFβ3 contributes to disease progression in ARVD/C type 1. Here we review how TGFβ3 can induce fibrogenesis through Smad and/or β-catenin signaling. Moreover, the role of apoptosis is addressed. Finally the extent to which the immune system has been demonstrated to be a modulating and amplifying agent in the onset and progression of ARVD/C in general is discussed. PMID:24416594

  7. Ultrastructural changes and programmed cell death of trophocytes in the gonad of Isohypsibius granulifer granulifer Thulin, 1928 (Tardigrada, Eutardigrada, Isohypsibiidae).

    PubMed

    Poprawa, Izabela; Hyra, Marta; Kszuk-Jendrysik, Michalina; Rost-Roszkowska, Magdalena Maria

    2015-03-01

    The studies on the fates of the trophocytes, the apoptosis and autophagy in the gonad of Isohypsibius granulifer granulifer have been described using transmission electron microscope, light and fluorescent microscopes. The results presented here are the first that are connected with the cell death of nurse cells in the gonad of tardigrades. However, here we complete the results presented by Węglarska (1987). The reproductive system of I. g. granulifer contains a single sack-like hermaphroditic gonad and a single gonoduct. The gonad is composed of three parts: a germarium filled with proliferating germ cells (oogonia); a vitellarium that has clusters of female germ cells (the region of oocytes development); and a male part filled with male germ cells in which the sperm cells develop. The trophocytes (nurse cells) show distinct alterations during all of the stages of oogenesis: previtello-, vitello- and choriogenesis. During previtellogenesis the female germ cells situated in the vitellarium are connected by cytoplasmic bridges, and form clusters of cells. No ultrastructural differences appear among the germ cells in a cluster during this stage of oogenesis. In early vitellogenesis, the cells in each cluster start to grow and numerous organelles gradually accumulate in their cytoplasm. However, at the beginning of the middle of vitellogenesis, one cell in each cluster starts to grow in order to differentiate into oocyte, while the remaining cells are trophocytes. Eventually, the cytoplasmic bridges between the oocyte and trophocytes disappear. Autophagosomes also appear in the cytoplasm of nurse cells together with many degenerating organelles. The cytoplasm starts to shrink, which causes the degeneration of the cytoplasmic bridges between trophocytes. Apoptosis begins when the cytoplasm of these cells is full of autophagosomes/autolysosomes and causes their death. PMID:25543879

  8. Activity and participation in children with neurofibromatosis type 1.

    PubMed

    Johnson, Barbara A; Sheng, Xiaoming; Perry, Amber S; Stevenson, David A

    2014-10-24

    We describe activity and participation in children and youth with neurofibromatosis type 1 (NF1), and compared an intervention and control group after a strengthening program using the Pediatric Outcomes Data Collection Instrument (PODCI) and the Children's Assessment of Participation and Enjoyment (CAPE). Questionnaires were filled out by parents at baseline, 12-weeks, and 1-year. The intervention group performed a strengthening program twice a week for ten weeks, followed by a 9-month independent program. Thirty-six participants (18 control, 18 intervention) between the ages of 5- and 18-years (mean 10.6 years, SD 4.6 years) were enrolled, and 34 completed the 1-year assessment. There were significant differences between formal and informal participation (p<0.0001) in baseline CAPE scores for the entire cohort. At 12 weeks, PODCI upper extremity function improved in intervention and decreased in controls (p=0.040), while happiness declined in intervention and increased in control (p=0.003). There were no significant differences between control and intervention groups in any of the CAPE or PODCI change scores from baseline to 1-year. Upper extremity function, sport and physical function, comfort/pain and happiness PODCI scores were lower than normative values. The NF1 cohort had low participation in formal active physical and skill-based activities. The companionship and location dimensions suggest participation occurs with family and other relatives in the home or a relative's home and reflects a pattern of social isolation from peers. PMID:25462482

  9. The root hair assay facilitates the use of genetic and pharmacological tools in order to dissect multiple signalling pathways that lead to programmed cell death.

    PubMed

    Kacprzyk, Joanna; Devine, Aoife; McCabe, Paul F

    2014-01-01

    The activation of programmed cell death (PCD) is often a result of complex signalling pathways whose relationship and intersection are not well understood. We recently described a PCD root hair assay and proposed that it could be used to rapidly screen genetic or pharmacological modulators of PCD. To further assess the applicability of the root hair assay for studying multiple signalling pathways leading to PCD activation we have investigated the crosstalk between salicylic acid, autophagy and apoptosis-like PCD (AL-PCD) in Arabidopsis thaliana. The root hair assay was used to determine rates of AL-PCD induced by a panel of cell death inducing treatments in wild type plants treated with chemical modulators of salicylic acid synthesis or autophagy, and in genetic lines defective in autophagy or salicylic acid signalling. The assay demonstrated that PCD induced by exogenous salicylic acid or fumonisin B1 displayed a requirement for salicylic acid signalling and was partially dependent on the salicylic acid signal transducer NPR1. Autophagy deficiency resulted in an increase in the rates of AL-PCD induced by salicylic acid and fumonisin B1, but not by gibberellic acid or abiotic stress. The phenylalanine ammonia lyase-dependent salicylic acid synthesis pathway contributed only to death induced by salicylic acid and fumonisin B1. 3-Methyladenine, which is commonly used as an inhibitor of autophagy, appeared to influence PCD induction in all treatments suggesting a possible secondary, non-autophagic, effect on a core component of the plant PCD pathway. The results suggest that salicylic acid signalling is negatively regulated by autophagy during salicylic acid and mycotoxin-induced AL-PCD. However, this crosstalk does not appear to be directly involved in PCD induced by gibberellic acid or abiotic stress. This study demonstrates that the root hair assay is an effective tool for relatively rapid investigation of complex signalling pathways leading to the activation of

  10. The Root Hair Assay Facilitates the Use of Genetic and Pharmacological Tools in Order to Dissect Multiple Signalling Pathways That Lead to Programmed Cell Death

    PubMed Central

    Kacprzyk, Joanna; Devine, Aoife; McCabe, Paul F.

    2014-01-01

    The activation of programmed cell death (PCD) is often a result of complex signalling pathways whose relationship and intersection are not well understood. We recently described a PCD root hair assay and proposed that it could be used to rapidly screen genetic or pharmacological modulators of PCD. To further assess the applicability of the root hair assay for studying multiple signalling pathways leading to PCD activation we have investigated the crosstalk between salicylic acid, autophagy and apoptosis-like PCD (AL-PCD) in Arabidopsis thaliana. The root hair assay was used to determine rates of AL-PCD induced by a panel of cell death inducing treatments in wild type plants treated with chemical modulators of salicylic acid synthesis or autophagy, and in genetic lines defective in autophagy or salicylic acid signalling. The assay demonstrated that PCD induced by exogenous salicylic acid or fumonisin B1 displayed a requirement for salicylic acid signalling and was partially dependent on the salicylic acid signal transducer NPR1. Autophagy deficiency resulted in an increase in the rates of AL-PCD induced by salicylic acid and fumonisin B1, but not by gibberellic acid or abiotic stress. The phenylalanine ammonia lyase-dependent salicylic acid synthesis pathway contributed only to death induced by salicylic acid and fumonisin B1. 3-Methyladenine, which is commonly used as an inhibitor of autophagy, appeared to influence PCD induction in all treatments suggesting a possible secondary, non-autophagic, effect on a core component of the plant PCD pathway. The results suggest that salicylic acid signalling is negatively regulated by autophagy during salicylic acid and mycotoxin-induced AL-PCD. However, this crosstalk does not appear to be directly involved in PCD induced by gibberellic acid or abiotic stress. This study demonstrates that the root hair assay is an effective tool for relatively rapid investigation of complex signalling pathways leading to the activation of

  11. Beclin-1-independent autophagy mediates programmed cancer cell death through interplays with endoplasmic reticulum and/or mitochondria in colbat chloride-induced hypoxia.

    PubMed

    Sun, Lei; Liu, Ning; Liu, Shan-Shan; Xia, Wu-Yan; Liu, Meng-Yao; Li, Lin-Feng; Gao, Jian-Xin

    2015-01-01

    Autophagy has dual functions in cell survival and death. However, the effects of autophagy on cancer cell survival or death remain controversial. In this study, we show that Autophagy can mediate programmed cell death (PCD) of cancer cells in responding to cobalt chloride (CoCl2)-induced hypoxia in a Beclin-1-independent but autophagy protein 5 (ATG5)-dependent manner. Although ATG5 is not directly induced by CoCl2, its constitutive expression is essential for CoCl2-induced PCD. The ATG5-mediated autophagic PCD requires interplays with endoplasmic reticulum (ER) and/or mitochondria. In this process, ATG5 plays a central role in regulating ER stress protein CCAAT/enhancer-binding protein (C/EBP) homologous protein (CHOP) and mitochondrial protein second mitochondria derived activator of caspases (Smac). Two pathways for autophagic PCD in cancer cells responding to hypoxia have been identified: ATG5/CHOP/Smac pathway and ATG5/Smac pathway, which are probably dependent on the context of cell lines. The former is more potent than the latter for the induction of PCD at the early stage of hypoxia, although the ultimate efficiency of both pathways is comparable. In addition, both pathways may require ATG5-mediated conversion of LC3-I into LC3-II. Therefore, we have defined two autophagy-mediated pathways for the PCD of cancer cells in hypoxia, which are dependent on ATG5, interplayed with ER and mitochondria and tightly regulated by hypoxic status. The findings provide a new evidence that autophagy may inhibit tumor cell proliferation through trigger of PCD, facilitating the development of novel anti-cancer drugs. PMID:26609472

  12. Early risk stratification in pediatric type 1 diabetes.

    PubMed

    Broe, Rebecca

    2015-03-01

    of early glycemic control. Identifying high-risk patients at a very early stage is not only desired for prevention of diabetic retinopathy - neuropathy and nephropathy similarly remain frequent in type 1 diabetes. Early risk stratification will allow for timely implementation of effective interventions and for individualized screening and diabetes care. The second and third studies of this thesis provide the longest prospective studies to date on both retinal vessel calibers and retinal fractal dimensions and their predictive value on diabetic microvascular complications. Semi-automated computer software has been developed to measure smaller changes in the retinal vessels on retinal photographs. Two of the first parameters to be reliably estimated by these programs were retinal vessel calibers and retinal vascular fractal dimensions (a quantitative measure on vascular complexity). There is very limited knowledge on their predictive value on diabetic complications thus far. In the second and third study, a consistent relation between narrower retinal arteriolar calibers, wider retinal venular calibers, lower fractal dimensions and the 16-year incidences of diabetic neuropathy, nephropathy and proliferative retinopathy was found. This has never been shown before. The results on vessel analyzes provides indications of a common pathogenic pathway for diabetic microvascular complications and therefore a possibility of universal risk estimation for development of neuropathy, nephropathy and retinopathy in type 1 diabetes. PMID:25703648

  13. Human IAP-Like Protein Regulates Programmed Cell Death Downstream of Bcl-xL and Cytochrome c

    PubMed Central

    Duckett, Colin S.; Li, Feng; Wang, Yu; Tomaselli, Kevin J.; Thompson, Craig B.; Armstrong, Robert C.

    1998-01-01

    The gene encoding human IAP-like protein (hILP) is one of several mammalian genes with sequence homology to the baculovirus inhibitor-of-apoptosis protein (iap) genes. Here we show that hILP can block apoptosis induced by a variety of extracellular stimuli, including UV light, chemotoxic drugs, and activation of the tumor necrosis factor and Fas receptors. hILP also protected against cell death induced by members of the caspase family, cysteine proteases which are thought to be the principal effectors of apoptosis. hILP and Bcl-xL were compared for their ability to affect several steps in the apoptotic pathway. Redistribution of cytochrome c from mitochondria, an early event in apoptosis, was not blocked by overexpression of hILP but was inhibited by Bcl-xL. In contrast, hILP, but not Bcl-xL, inhibited apoptosis induced by microinjection of cytochrome c. These data suggest that while Bcl-xL may control mitochondrial integrity, hILP can function downstream of mitochondrial events to inhibit apoptosis. PMID:9418907

  14. Type-1 interferons contribute to the neuroinflammatory response and disease progression of the MPTP mouse model of Parkinson's disease.

    PubMed

    Main, Bevan S; Zhang, Moses; Brody, Kate M; Ayton, Scott; Frugier, Tony; Steer, David; Finkelstein, David; Crack, Peter J; Taylor, Juliet M

    2016-09-01

    Type-1 interferons (IFNs) are pleiotropic cytokines with a critical role in the initiation and regulation of the pro-inflammatory response. However, the contribution of the type-1 IFNs to CNS disorders, specifically chronic neuropathologies such as Parkinson's disease is still unknown. Here, we report increased type-1 IFN signaling in both post mortem human Parkinson's disease samples and in the 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP) mouse model. In response to MPTP, mice lacking the type-1 IFN receptor (IFNAR1(-/-) ) displayed decreased type-1 IFN signaling, an attenuated pro-inflammatory response and reduced loss of dopaminergic neurons. The neuroprotective potential of targeting the type-1 IFN pathway was confirmed by reduced neuroinflammation and DA cell death in mice treated with a blocking monoclonal IFNAR1 (MAR-1) antibody. The MPTP/MAR-1 treated mice also displayed increased striatal dopamine levels and improved behavioural outcomes compared to their MPTP/IgG controls. These data, implicate for the first time, a deleterious role for the type-1 IFNs as key modulators of the early neuroinflammatory response and therefore the neuronal cell death in Parkinson's disease. GLIA 2016;64:1590-1604. PMID:27404846

  15. A synthesized nostocionone derivative potentiates programmed cell death in human T-cell leukemia Jurkat cells through mitochondria via the release of endonuclease G.

    PubMed

    Itoh, Tomohiro; Muramatsu, Yuji; Masu, Masayo; Tsuge, Ayaka; Taniguchi, Masaki; Ninomiya, Masayuki; Ando, Masashi; Tsukamasa, Yasuyuki; Koketsu, Mamoru

    2014-01-01

    Nostocionone (Nost), a compound isolated from Nostoc commune, and its synthesized derivatives (NostDs) were evaluated for in vitro cytotoxicity against human T-cell leukemia Jurkat cells. NostD3 [(1E,4E)-1-(3,4-dihydroxyphenyl)-5-(2,6,6-trimethylcyclohex-1-enyl)penta-1,4-dien-3-one] inhibited cell growth more potently than Nost. To elucidate the mechanisms of NostD3-induced cell death, we examined changes in cell morphology, the loss of mitochondrial membrane potential (MMT), and DNA fragmentation. From these results, the cytotoxic effects of NostD3 were found to be mainly due to Type I programmed cell death (PCDI; i.e., apoptosis). Using caspase inhibitors, we further found that NostD-3-induced PCDI occurred through a caspase-independent pathway. Moreover, NostD3 decreased MMT and modulated multiple signaling molecules (MAPKs, Akt, Bcl-2, Bax, and c-Myc) in Jurkat cells, thereby inducing the release of endonuclease G (Endo-G) from mitochondria. The level of intracellular reactive oxygen species (ROS) in cells treated with NostD3 was elevated up to 1 h after the treatment. However, suppression of ROS by N-acetyl-l-cysteine restored Jurkat cell growth. Taken together, our data suggested that ROS production acted as a trigger in NostD3-induced PCDI in Jurkat cells through release of Endo-G from the mitochondria. PMID:25333640

  16. Lesion simulating disease 1 and enhanced disease susceptibility 1 differentially regulate UV-C-induced photooxidative stress signalling and programmed cell death in Arabidopsis thaliana.

    PubMed

    Wituszyńska, Weronika; Szechyńska-Hebda, Magdalena; Sobczak, Mirosław; Rusaczonek, Anna; Kozłowska-Makulska, Anna; Witoń, Damian; Karpiński, Stanisław

    2015-02-01

    As obligate photoautotrophs, plants are inevitably exposed to ultraviolet (UV) radiation. Because of stratospheric ozone depletion, UV has become more and more dangerous to the biosphere. Therefore, it is important to understand UV perception and signal transduction in plants. In the present study, we show that lesion simulating disease 1 (LSD1) and enhanced disease susceptibility 1 (EDS1) are antagonistic regulators of UV-C-induced programmed cell death (PCD) in Arabidopsis thaliana. This regulatory dependence is manifested by a complex deregulation of photosynthesis, reactive oxygen species homeostasis, antioxidative enzyme activity and UV-responsive genes expression. We also prove that a UV-C radiation episode triggers apoptotic-like morphological changes within the mesophyll cells. Interestingly, chloroplasts are the first organelles that show features of UV-C-induced damage, which may indicate their primary role in PCD development. Moreover, we show that Arabidopsis Bax inhibitor 1 (AtBI1), which has been described as a negative regulator of plant PCD, is involved in LSD1-dependent cell death in response to UV-C. Our results imply that LSD1 and EDS1 regulate processes extinguishing excessive energy, reactive oxygen species formation and subsequent PCD in response to different stresses related to impaired electron transport. PMID:24471507

  17. Silencing of T lymphocytes by antigen-driven programmed death in recombinant adeno-associated virus vector–mediated gene therapy

    PubMed Central

    Velazquez, Victoria M.; Bowen, David G.

    2009-01-01

    Recombinant adeno-associated virus (rAAV) vectors are considered promising for human gene replacement because they facilitate stable expression of therapeutic proteins in transduced tissues. Whether the success of gene therapy will be influenced by cellular immune responses targeting transgene-encoded proteins that are potentially immunogenic is unknown. Here we characterized CD8+ T-cell activity against β-galactosidase and enhanced green fluorescent protein, model antigens containing major histocompatibility complex (MHC) class I epitopes that are constitutively produced in murine skeletal muscle after rAAV vector transduction. Antigen-specific CD8+ T cells were detected in the spleen and liver of mice within 7 days of muscle transduction. CD8+ T-cell frequencies in these organs were stable, and effector functions were intact for months despite ongoing antigen production in muscle. CD8+ T cells also infiltrated transduced muscle, where frequencies were at least 5-fold higher than in untransduced spleen and liver. Significantly, the majority of antigen-specific CD8+ T cells in vector-transduced muscle were not functional. Loss of function in the muscle was associated with programmed death of the effector cells. Stable gene expression therefore depended on selective death of CD8+ T cells at the site of antigen production, an effective mechanism for subverting immunity that is also potentially reversible. PMID:18566327

  18. Progress and challenges for treating Type 1 diabetes.

    PubMed

    Garyu, Justin W; Meffre, Eric; Cotsapas, Chris; Herold, Kevan C

    2016-07-01

    It has been more than 30 years since the initial trials of Cyclosporin A to treat patients with new onset Type 1 diabetes (T1D). Since that time, there have been insights into genetic predisposition to the disease, the failures of immune tolerance, and mechanisms that cause the immune mediated β cell destruction. The genetic loci associated affect lymphocyte development and tolerance mechanisms. Discoveries related to the roles of specific immune responses gene such as the major histocompatibility complex, PTPN22, CTLA-4, IL-2RA, as well as the mechanisms of antigen presentation in the thymus have suggested ways in which autoreactivity may follow changes in the functions of these genes that are associated with risk. Antigens that are recognized by the immune system in patients with T1D have been identified. With this information, insights into the novel cellular mechanisms leading to the initiation and orchestration of β cell killing have been developed such as the presentation of unique antigens within the islets. Clinical trials have been performed, some of which have shown efficacy in improving β cell function but none have been able to permanently prevent loss of insulin secretion. The reasons for the lack of long term success are not clear but may include the heterogeneity of the immune response and in individual responses to immune therapies, recurrence of autoimmunity after the initial effects of the therapies, or even intrinsic mechanisms of β cell death that proceeds independently of immune attack after initiation of the disease. In this review, we cover developments that have led to new therapeutics and characteristics of patients who may show the most benefits from therapies. We also identify areas of incomplete understanding that might be addressed to develop more effective therapeutic strategies. PMID:27210268

  19. Abnormalities in synaptic dynamics during development in a mouse model of spinocerebellar ataxia type 1

    PubMed Central

    Hatanaka, Yusuke; Watase, Kei; Wada, Keiji; Nagai, Yoshitaka

    2015-01-01

    Late-onset neurodegenerative diseases are characterized by neurological symptoms and progressive neuronal death. Accumulating evidence suggests that neuronal dysfunction, rather than neuronal death, causes the symptoms of neurodegenerative diseases. However, the mechanisms underlying the dysfunction that occurs prior to cell death remain unclear. To investigate the synaptic basis of this dysfunction, we employed in vivo two-photon imaging to analyse excitatory postsynaptic dendritic protrusions. We used Sca1154Q/2Q mice, an established knock-in mouse model of the polyglutamine disease spinocerebellar ataxia type 1 (SCA1), which replicates human SCA1 features including ataxia, cognitive impairment, and neuronal death. We found that Sca1154Q/2Q mice exhibited greater synaptic instability than controls, without synaptic loss, in the cerebral cortex, where obvious neuronal death is not observed, even before the onset of distinct symptoms. Interestingly, this abnormal synaptic instability was evident in Sca1154Q/2Q mice from the synaptic developmental stage, and persisted into adulthood. Expression of synaptic scaffolding proteins was also lower in Sca1154Q/2Q mice than controls before synaptic maturation. As symptoms progressed, synaptic loss became evident. These results indicate that aberrant synaptic instability, accompanied by decreased expression of scaffolding proteins during synaptic development, is a very early pathology that precedes distinct neurological symptoms and neuronal cell death in SCA1. PMID:26531852

  20. Kupffer cells potentiate liver sinusoidal endothelial cell injury in sepsis by ligating programmed cell death ligand-1

    PubMed Central

    Hutchins, Noelle A.; Wang, Fei; Wang, Yvonne; Chung, Chun-Shiang; Ayala, Alfred

    2013-01-01

    PD-1 and PD-L1 have been reported to provide peripheral tolerance by inhibiting TCR-mediated activation. We have reported that PD-L1−/− animals are protected from sepsis-induced mortality and immune suppression. Whereas studies indicate that LSECs normally express PD-L1, which is also thought to maintain local immune liver tolerance by ligating the receptor PD-1 on T lymphocytes, the role of PD-L1 in the septic liver remains unknown. Thus, we hypothesized initially that PD-L1 expression on LSECs protects them from sepsis-induced injury. We noted that the increased vascular permeability and pSTAT3 protein expression in whole liver from septic animals were attenuated in the absence of PD-L1. Isolated LSECs taken from septic animals, which exhibited increased cell death, declining cell numbers, reduced cellular proliferation, and VEGFR2 expression (an angiogenesis marker), also showed improved cell numbers, proliferation, and percent VEGFR2+ levels in the absence of PD-L1. We also observed that sepsis induced an increase of liver F4/80+PD-1+-expressing KCs and increased PD-L1 expression on LSECs. Interestingly, PD-L1 expression levels on LSECs decreased when PD-1+-expressing KCs were depleted with clodronate liposomes. Contrary to our original hypothesis, we document here that increased interactions between PD-1+ KCs and PD-L1+ LSECs appear to lead to the decline of normal endothelial function—essential to sustain vascular integrity and prevent ALF. Importantly, we uncover an underappreciated pathological aspect of PD-1:PD-L1 ligation during inflammation that is independent of its normal, immune-suppressive activity. PMID:23766529

  1. Development of salinity tolerance in rice by constitutive-overexpression of genes involved in the regulation of programmed cell death.

    PubMed

    Hoang, Thi M L; Moghaddam, Lalehvash; Williams, Brett; Khanna, Harjeet; Dale, James; Mundree, Sagadevan G

    2015-01-01

    Environmental factors contribute to over 70% of crop yield losses worldwide. Of these drought and salinity are the most significant causes of crop yield reduction. Rice is an important staple crop that feeds more than half of the world's population. However among the agronomically important cereals rice is the most sensitive to salinity. In the present study we show that exogenous expression of anti-apoptotic genes from diverse origins, AtBAG4 (Arabidopsis), Hsp70 (Citrus tristeza virus) and p35 (Baculovirus), significantly improves salinity tolerance in rice at the whole plant level. Physiological, biochemical and agronomical analyses of transgenic rice expressing each of the anti-apoptotic genes subjected to salinity treatment demonstrated traits associated with tolerant varieties including, improved photosynthesis, membrane integrity, ion and ROS maintenance systems, growth rate, and yield components. Moreover, FTIR analysis showed that the chemical composition of salinity-treated transgenic plants is reminiscent of non-treated, unstressed controls. In contrast, wild type and vector control plants displayed hallmark features of stress, including pectin degradation upon subjection to salinity treatment. Interestingly, despite their diverse origins, transgenic plants expressing the anti-apoptotic genes assessed in this study displayed similar physiological and biochemical characteristics during salinity treatment thus providing further evidence that cell death pathways are conserved across broad evolutionary kingdoms. Our results reveal that anti-apoptotic genes facilitate maintenance of metabolic activity at the whole plant level to create favorable conditions for cellular survival. It is these conditions that are crucial and conducive to the plants ability to tolerate/adapt to extreme environments. PMID:25870602

  2. Cannabidiol induces programmed cell death in breast cancer cells by coordinating the cross-talk between apoptosis and autophagy.

    PubMed

    Shrivastava, Ashutosh; Kuzontkoski, Paula M; Groopman, Jerome E; Prasad, Anil

    2011-07-01

    Cannabidiol (CBD), a major nonpsychoactive constituent of cannabis, is considered an antineoplastic agent on the basis of its in vitro and in vivo activity against tumor cells. However, the exact molecular mechanism through which CBD mediates this activity is yet to be elucidated. Here, we have shown CBD-induced cell death of breast cancer cells, independent of cannabinoid and vallinoid receptor activation. Electron microscopy revealed morphologies consistent with the coexistence of autophagy and apoptosis. Western blot analysis confirmed these findings. We showed that CBD induces endoplasmic reticulum stress and, subsequently, inhibits AKT and mTOR signaling as shown by decreased levels of phosphorylated mTOR and 4EBP1, and cyclin D1. Analyzing further the cross-talk between the autophagic and apoptotic signaling pathways, we found that beclin1 plays a central role in the induction of CBD-mediated apoptosis in MDA-MB-231 breast cancer cells. Although CBD enhances the interaction between beclin1 and Vps34, it inhibits the association between beclin1 and Bcl-2. In addition, we showed that CBD reduces mitochondrial membrane potential, triggers the translocation of BID to the mitochondria, the release of cytochrome c to the cytosol, and, ultimately, the activation of the intrinsic apoptotic pathway in breast cancer cells. CBD increased the generation of reactive oxygen species (ROS), and ROS inhibition blocked the induction of apoptosis and autophagy. Our study revealed an intricate interplay between apoptosis and autophagy in CBD-treated breast cancer cells and highlighted the value of continued investigation into the potential use of CBD as an antineoplastic agent. PMID:21566064

  3. Development of salinity tolerance in rice by constitutive-overexpression of genes involved in the regulation of programmed cell death

    PubMed Central

    Hoang, Thi M. L.; Moghaddam, Lalehvash; Williams, Brett; Khanna, Harjeet; Dale, James; Mundree, Sagadevan G.

    2015-01-01

    Environmental factors contribute to over 70% of crop yield losses worldwide. Of these drought and salinity are the most significant causes of crop yield reduction. Rice is an important staple crop that feeds more than half of the world’s population. However among the agronomically important cereals rice is the most sensitive to salinity. In the present study we show that exogenous expression of anti-apoptotic genes from diverse origins, AtBAG4 (Arabidopsis), Hsp70 (Citrus tristeza virus) and p35 (Baculovirus), significantly improves salinity tolerance in rice at the whole plant level. Physiological, biochemical and agronomical analyses of transgenic rice expressing each of the anti-apoptotic genes subjected to salinity treatment demonstrated traits associated with tolerant varieties including, improved photosynthesis, membrane integrity, ion and ROS maintenance systems, growth rate, and yield components. Moreover, FTIR analysis showed that the chemical composition of salinity-treated transgenic plants is reminiscent of non-treated, unstressed controls. In contrast, wild type and vector control plants displayed hallmark features of stress, including pectin degradation upon subjection to salinity treatment. Interestingly, despite their diverse origins, transgenic plants expressing the anti-apoptotic genes assessed in this study displayed similar physiological and biochemical characteristics during salinity treatment thus providing further evidence that cell death pathways are conserved across broad evolutionary kingdoms. Our results reveal that anti-apoptotic genes facilitate maintenance of metabolic activity at the whole plant level to create favorable conditions for cellular survival. It is these conditions that are crucial and conducive to the plants ability to tolerate/adapt to extreme environments. PMID:25870602

  4. T lymphocytes bearing the gamma delta T cell receptor are susceptible to steroid-induced programmed cell death.

    PubMed

    Spinozzi, F; Agea, E; Bistoni, O; Travetti, A; Migliorati, G; Moraca, R; Nicoletti, I; Riccardi, C; Paoletti, F P; Vaccaro, R

    1995-05-01

    The mechanisms by which glucocorticoids suppress immune responses have not yet been clearly defined. In steroid-sensitive pathological conditions, an increase in gamma delta T cells can occur in certain untreated systemic autoimmune disorders and seems to be a peristent feature in most cases of systemic lupus erythematosus (SLE). Our previously published data demonstrated that immunosuppressive therapy normalized this expanded SLE T cell subset in parallel with clinical remission of the symptoms. To establish how corticosteroid treatment determines the disappearance of peripheral blood gamma delta T lymphocytes, circulating alpha beta and gamma delta T lymphocytes from seven SLE subjects with active disease and seven healthy individuals were cultured in the presence or absence of 10(-7) M Dexamethasone (DEX). Cell suspensions were then analysed for DNA fragmentation, characteristic of apoptotic cell death, by a new cytofluorimetric method. Conventional agarose-gel electrophoresis on the same T cell populations was carried out for comparison. Regular follow-ups for 6 months revealed in vivo steroid treatment determined a dramatic fall in SLE blood gamma delta T cells, and in vitro experiments seem to indicate that DEX-triggered apoptotic signals are confined to the double negative (CD4-CD8-) gamma delta T cell subpopulation which disappears after in vivo immunosuppressive therapy. Clinical and pathological remission of some autoimmune diseases is often obtained by corticosteroids. Our results offer new insights on the mechanisms through these hormones exert their potent inhibitory activities on immune system cells postulated to play a role in the generation of autoimmune responses. PMID:7725070

  5. Mycelium differentiation and development of Streptomyces coelicolor in lab-scale bioreactors: Programmed cell death, differentiation, and lysis are closely linked to undecylprodigiosin and actinorhodin production

    PubMed Central

    Rioseras, Beatriz; López-García, María Teresa; Yagüe, Paula; Sánchez, Jesús; Manteca, Ángel

    2013-01-01

    Streptomycetes are mycelium-forming bacteria that produce two thirds of clinically relevant secondary metabolites. Secondary metabolite production is activated at specific developmental stages of Streptomyces life cycle. Despite this, Streptomyces differentiation in industrial bioreactors tends to be underestimated and the most important parameters managed are only indirectly related to differentiation: modifications to the culture media, optimization of productive strains by random or directed mutagenesis, analysis of biophysical parameters, etc. In this work the relationship between differentiation and antibiotic production in lab-scale bioreactors was defined. Streptomyces coelicolor was used as a model strain. Morphological differentiation was comparable to that occurring during pre-sporulation stages in solid cultures: an initial compartmentalized mycelium suffers a programmed cell death, and remaining viable segments then differentiate to a second multinucleated antibiotic-producing mycelium. Differentiation was demonstrated to be one of the keys to interpreting biophysical fermentation parameters and to rationalizing the optimization of secondary metabolite production in bioreactors. PMID:24240146

  6. Mycelium differentiation and development of Streptomyces coelicolor in lab-scale bioreactors: programmed cell death, differentiation, and lysis are closely linked to undecylprodigiosin and actinorhodin production.

    PubMed

    Rioseras, Beatriz; López-García, María Teresa; Yagüe, Paula; Sánchez, Jesús; Manteca, Angel

    2014-01-01

    Streptomycetes are mycelium-forming bacteria that produce two thirds of clinically relevant secondary metabolites. Secondary metabolite production is activated at specific developmental stages of Streptomyces life cycle. Despite this, Streptomyces differentiation in industrial bioreactors tends to be underestimated and the most important parameters managed are only indirectly related to differentiation: modifications to the culture media, optimization of productive strains by random or directed mutagenesis, analysis of biophysical parameters, etc. In this work the relationship between differentiation and antibiotic production in lab-scale bioreactors was defined. Streptomyces coelicolor was used as a model strain. Morphological differentiation was comparable to that occurring during pre-sporulation stages in solid cultures: an initial compartmentalized mycelium suffers a programmed cell death, and remaining viable segments then differentiate to a second multinucleated antibiotic-producing mycelium. Differentiation was demonstrated to be one of the keys to interpreting biophysical fermentation parameters and to rationalizing the optimization of secondary metabolite production in bioreactors. PMID:24240146

  7. Decision-making in diabetes mellitus type 1.

    PubMed

    Rustad, James K; Musselman, Dominique L; Skyler, Jay S; Matheson, Della; Delamater, Alan; Kenyon, Norma S; Cáceda, Ricardo; Nemeroff, Charles B

    2013-01-01

    Decreased treatment adherence in patients with diabetes mellitus type 1 (type 1 DM) may reflect impairments in decision-making and underlying associated deficits in working memory and executive functioning. Other factors, including comorbid major depression, may also interfere with decision-making. The authors sought to review the clinically relevant characteristics of decision-making in type 1 DM by surveying the literature on decision-making by patients with type 1 DM. Deficiencies in decision-making in patients with type 1 DM or their caregivers contribute to treatment nonadherence and poorer metabolic control. Animal models of type 1 DM reveal deficits in hippocampal-dependent memory tasks, which are reversible with insulin. Neurocognitive studies of patients with type 1 DM reveal lowered performance on ability to apply knowledge to solve problems in a new situation and acquired scholarly knowledge, psychomotor efficiency, cognitive flexibility, visual perception, speed of information-processing, and sustained attention. Other factors that might contribute to poor decision-making in patients with type 1 DM, include "hypoglycemia unawareness" and comorbid major depression (given its increased prevalence in type 1 DM). Future studies utilizing novel treatment strategies to help patients with type 1 DM make better decisions about their disease may improve their glycemic control and quality of life, while minimizing the impact of end-organ disease. PMID:23487192

  8. The Effect of Ursolic Acid on Leishmania (Leishmania) amazonensis Is Related to Programed Cell Death and Presents Therapeutic Potential in Experimental Cutaneous Leishmaniasis

    PubMed Central

    Yamamoto, Eduardo S.; Campos, Bruno L. S.; Jesus, Jéssica A.; Laurenti, Márcia D.; Ribeiro, Susan P.; Kallás, Esper G.; Rafael-Fernandes, Mariana; Santos-Gomes, Gabriela; Silva, Marcelo S.; Sessa, Deborah P.; Lago, João H. G.; Levy, Débora; Passero, Luiz F. D.

    2015-01-01

    Among neglected tropical diseases, leishmaniasis is one of the most important ones, affecting more than 12 million people worldwide. The available treatments are not well tolerated, and present diverse side effects, justifying the search for new therapeutic compounds. In the present study, the activity of ursolic acid (UA) and oleanolic acid (OA) were assayed in experimental cutaneous leishmaniasis (in vitro and in vivo). Promastigote forms of L. amazonensis were incubated with OA and UA for 24h, and effective concentration 50% (EC50) was estimated. Ultraestructural alterations in Leishmania amazonensis promastigotes after UA treatment were evaluated by transmission electron microscopy, and the possible mode of action was assayed through Annexin V and propidium iodide staining, caspase 3/7 activity, DNA fragmentation and transmembrane mitochondrial potential. The UA potential was evaluated in intracellular amastigotes, and its therapeutic potential was evaluated in L. amazonensis infected BALB/c mice. UA eliminated L. amazonensis promastigotes with an EC50 of 6.4 μg/mL, comparable with miltefosine, while OA presented only a marginal effect on promastigote forms at 100 μg/mL. The possible mechanism by which promastigotes were eliminated by UA was programmed cell death, independent of caspase 3/7, but it was highly dependent on mitochondria activity. UA was not toxic for peritoneal macrophages from BALB/c mice, and it was able to eliminate intracellular amastigotes, associated with nitric oxide (NO) production. OA did not eliminate amastigotes nor trigger NO. L. amazonensis infected BALB/c mice submitted to UA treatment presented lesser lesion size and parasitism compared to control. This study showed, for the first time, that UA eliminate promastigote forms through a mechanism associated with programed cell death, and importantly, was effective in vivo. Therefore, UA can be considered an interesting candidate for future tests as a prototype drug for the treatment

  9. Underdiagnosis of Conditions Associated with Sudden Cardiac Death in Children - Is it the Absence of a Comprehensive Screening Program or a True Low Prevalence?

    PubMed Central

    Takiguchi, Marisa; Knight, Tristan; Nguyen, Tin Toan; Limm, Blair; Hayes, Donald; Reddy, Venu

    2016-01-01

    This study aimed to assess the prevalence of conditions associated with sudden cardiac death (SCD) among all children and children with sudden infant death syndrome (SIDS) in the State of Hawai‘i, where no comprehensive screening program is conducted for such conditions. A retrospective chart review was conducted from the single tertiary pediatric hospital in Hawai‘i, from offices of all pediatric cardiologists in Hawai‘i, and the Hawai‘i State Department of Health from 1/1/2000 to 12/31/2013. Children aged 0–18 years were included in the study. A subset of the study analyzed records of infants aged 0–12 months. SIDS rate was calculated and compared to national data. Prevalence was calculated for known conditions associated with SCD. The identified prevalence was compared to the established prevalence of conditions associated with SCD. In Hawai‘i, the infant SIDS rate (66.4/100,000) was similar to the national rate (54.4/100,000). Over 14 years, only 51 children were diagnosed with a condition associated with SCD; 28 with a cardiomyopathy and 21 with a channelopathy. A 14-year retrospective analysis in the State of Hawai‘i revealed that less than 1 in 30 children, who are expected to harbor a SCD-associated condition, had been appropriately diagnosed. The underdiagnosis of conditions associated with SCD reflects that in the absence of a comprehensive screening program, conditions without obvious signs and symptoms are difficult to diagnose. Many children with these conditions will remain at risk of SCD. PMID:26918207

  10. Comprehensive Immunohistochemical Study of Programmed Cell Death Ligand 1 (PD-L1): Analysis in 5536 Cases Revealed Consistent Expression in Trophoblastic Tumors.

    PubMed

    Inaguma, Shingo; Wang, Zengfeng; Lasota, Jerzy; Sarlomo-Rikala, Maarit; McCue, Peter A; Ikeda, Hiroshi; Miettinen, Markku

    2016-08-01

    Programmed cell death 1/programmed cell death ligand (PD-1/PD-Ls) axis is crucial for the modulation of immune responses and self-tolerance. Also, aberrant PD-L1 expression on the tumor cells or tumor-associated inflammatory cells accelerates immune evasion of tumor cells. In the past decade, PD-1/PD-L immune checkpoint inhibitors were introduced to cancer treatment trials and, in some cases, showed significant anticancer effects. PD-L1 immunohistochemical staining is considered a potential predictor of clinical response to PD-1/PD-L immune checkpoint inhibitor treatment. However, immunohistochemical data on PD-L1 expression in different types of cancer especially rare entities remain incomplete. In this study, PD-L1 expression was immunohistochemically analyzed in 5536 tumors including germ cell, epithelial, mesenchymal, melanocytic/neuroectodermal, and lymphohematopoietic tumors, as well as in a set of human normal tissues including a fetus. Immunohistochemical analysis was performed with E1L3N rabbit monoclonal antibody and Leica Bond Max automation using multitumor blocks containing up to 70 tumor samples. PD-L1 was constitutively and strongly expressed in placental trophoblasts as well as choriocarcinomas and trophoblastic components of germ cell tumors. Also, the neoplastic cells of classical Hodgkin lymphoma, anaplastic large cell lymphoma, schwannoma, thymoma, and squamous cell carcinoma of various sites frequently expressed PD-L1. In gastrointestinal adenocarcinomas, PD-L1-expression was associated with EBER positivity and mismatch-repair deficiency. In addition, PD-L1 was variably expressed in non-neoplastic macrophages and dendritic cells. PD-L1 immunohistochemistry may have some role in the immunophenotypic differential diagnosis of tumors and pinpointing potential candidates for anti-PD-1/PD-L immune checkpoint therapy. PMID:27158757

  11. Type 1 Diabetes--Reaping the Rewards of a Targeted Research Investment.

    PubMed

    Fradkin, Judith E; Wallace, Julie A; Akolkar, Beena; Rodgers, Griffin P

    2016-02-01

    The Diabetes Control and Complications Trial (DCCT) precipitated a major research effort to develop new approaches to achieve near-normal glycemic control in real-world settings in people with type 1 diabetes. Toward that end, a unique funding stream from the U.S. Congress-the Special Statutory Funding Program for Type 1 Diabetes Research-has provided nearly $2.5 billion for research into the prevention, cure, and treatment of type 1 diabetes since 1998. This funding generated a targeted, sustained investment in type 1 diabetes research with six specific goals: identifying new therapeutic targets through the understanding of disease etiology and pathogenesis, preventing or reversing the disease, developing cell replacement therapy, improving management and care, preventing or reducing the complications, and attracting new talent and applying new technologies to type 1 diabetes research. This Perspective describes exciting results that have emerged from the investment and further advances on the horizon, including artificial pancreas technologies, new therapies for diabetic retinopathy, and breakthroughs in laboratory production of β-cells. The recent program extension enables us to build on this foundation and pursue key new initiatives to harness emerging technologies and develop the next generation of type 1 diabetes researchers. PMID:26798117

  12. Predicting major outcomes in type 1 diabetes: a model development and validation study

    PubMed Central

    Soedamah-Muthu, Sabita S.; Vergouwe, Yvonne; Costacou, Tina; Miller, Rachel G.; Zgibor, Janice; Chaturvedi, Nish; Snell-Bergeon, Janet K.; Maahs, David M.; Rewers, Marian; Forsblom, Carol; Harjutsalo, Valma; Groop, Per-Henrik; Fuller, John H.; Moons, Karel G.M.; Orchard, Trevor J.

    2015-01-01

    Aims/hypothesis Type 1 diabetes is associated with a higher risk of major vascular complications and death. A reliable method that predicts these outcomes early in the disease process would be helpful in risk classification. We therefore developed such a prognostic model and quantified its performance in independent cohorts. Methods Data were analysed of 1,973 participants with type 1 diabetes who were followed for seven years in the EURODIAB Prospective Complications Study. Strong prognostic factors of major outcomes were combined in a Weibull regression model. The model performance was tested in three different prospective cohorts: Pittsburgh Epidemiology of Diabetes Complications study (EDC, n=554), Finnish Diabetic Nephropathy study (FinnDiane, n=2,999) and Coronary Artery Calcification in Type 1 Diabetes study (CACTI, n=580). Major outcomes included major coronary heart disease, stroke, end-stage renal failure, amputations, blindness and all-cause death. Results 95 EURODIAB patients with type 1 diabetes developed major outcomes during follow-up. Prognostic factors were age, glycated haemoglobin, waist-hip ratio, albumin/creatinine ratio, and HDL cholesterol. A high risk group could be identified with 15% risk after 3-years of follow-up, 24% after 5-years and 32% after 7-years. The discriminative ability of the model was adequate with a C-statistic of 0.74. Discrimination was similar or even better in the independent cohorts: EDC, C-statistic = 0.79; FinnDiane, 0.82; and CACTI, 0.73. Conclusions/Interpretation Our prognostic model that uses easily accessible clinical features can discriminate between type 1 diabetes patients with good and poor prognosis. Such a prognostic model may be helpful in clinical practice and for risk stratification in clinical trials. PMID:25186291

  13. Impact of neurofibromatosis type 1 on school performance.

    PubMed

    Krab, Lianne C; Aarsen, Femke K; de Goede-Bolder, Arja; Catsman-Berrevoets, Coriene E; Arts, Willem F; Moll, Henriette A; Elgersma, Ype

    2008-09-01

    School functioning of 86 Dutch neurofibromatosis type 1 children (7-17 years) using teacher questionnaires was analyzed to determine the impact of neurofibromatosis type 1 on school performance. In all, 75% of the neurofibromatosis type 1 children performed more than 1 standard deviation below grade peers in at least one of the domains of spelling, mathematics, technical reading or comprehensive reading. Furthermore, neurofibromatosis type 1 children had a 4-fold increased risk for attending special education and a 6-fold increased risk for receiving remedial teaching for learning, behavior, speech, or motor problems. Children without apparent learning disabilities still frequently displayed neuropsychological deficits. Only 10% of the children did not show any school-functioning problems. Finally, it was found that the clinical severity of neurofibromatosis type 1 correlated with the cognitive deficits. Taken together, it was shown that neurofibromatosis type 1 has profound impact on school performance. Awareness of these problems may facilitate timely recognition and appropriate support. PMID:18827266

  14. Brain death.

    PubMed

    Wijdicks, Eelco F M

    2013-01-01

    The diagnosis of brain death should be based on a simple premise. If every possible confounder has been excluded and all possible treatments have been tried or considered, irreversible loss of brain function is clinically recognized as the absence of brainstem reflexes, verified apnea, loss of vascular tone, invariant heart rate, and, eventually, cardiac standstill. This condition cannot be reversed - not even partly - by medical or surgical intervention, and thus is final. Many countries in the world have introduced laws that acknowledge that a patient can be declared brain-dead by neurologic standards. The U.S. law differs substantially from all other brain death legislation in the world because the U.S. law does not spell out details of the neurologic examination. Evidence-based practice guidelines serve as a standard. In this chapter, I discuss the history of development of the criteria, the current clinical examination, and some of the ethical and legal issues that have emerged. Generally, the concept of brain death has been accepted by all major religions. But patients' families may have different ideas and are mostly influenced by cultural attitudes, traditional customs, and personal beliefs. Suggestions are offered to support these families. PMID:24182378

  15. Experimental Therapy Shows Promise for Type 1 Diabetes

    MedlinePlus

    ... Relief Health Capsules Experimental Therapy Shows Promise for Type 1 Diabetes Complementary Approaches for Depression Featured Website: Prescription Drug Abuse Past Issues Most Viewed June 2016 Print RSS ...

  16. Pseudohypoaldosteronism type 1: clinical features and management in infancy

    PubMed Central

    Amin, N; Alvi, N S; Barth, J H; Field, H P; Finlay, E; Tyerman, K; Frazer, S; Savill, G; Wright, N P; Makaya, T; Mushtaq, T

    2013-01-01

    Summary Type 1 pseudohypoaldosteronism (PHA) is a rare heterogeneous group of disorders characterised by resistance to aldosterone action. There is resultant salt wasting in the neonatal period, with hyperkalaemia and metabolic acidosis. Only after results confirm isolated resistance to aldosterone can the diagnosis of type 1 PHA be confidently made. Type 1 PHA can be further classified into i) renal type 1 (autosomal dominant (AD)) and ii) multiple target organ defect/systemic type 1 (autosomal recessive (AR)). The aim of this case series was to characterise the mode of presentation, management and short-term clinical outcomes of patients with PHA type 1. Case notes of newly diagnosed infants presenting with PHA type 1 were reviewed over a 5-year time period. Seven patients were diagnosed with PHA type 1. Initial presentation ranged from 4 to 28 days of age. Six had weight loss as a presenting feature. All subjects had hyperkalaemia, hyponatraemia, with elevated renin and aldosterone levels. Five patients have renal PHA type 1 and two patients have systemic PHA type, of whom one has had genetic testing to confirm the AR gene mutation on the SCNN1A gene. Renal PHA type 1 responds well to salt supplementation, whereas management of patients with systemic PHA type 1 proves more difficult as they are likely to get frequent episodes of electrolyte imbalance requiring urgent correction. Learning points Patients with type 1 PHA are likely to present in the neonatal period with hyponatraemia, hyperkalaemia and metabolic acidosis and can be diagnosed by the significantly elevated plasma renin activity and aldosterone levels.The differential diagnosis of type 1 PHA includes adrenal disorders such as adrenal hypoplasia and congenital adrenal hyperplasia; thus, adrenal function including cortisol levels, 17-hydroxyprogesterone and a urinary steroid profile are required. Secondary (transient) causes of PHA may be due to urinary tract infections or renal anomalies; thus, urine

  17. Lipid Peroxide-Derived Short-Chain Carbonyls Mediate Hydrogen Peroxide-Induced and Salt-Induced Programmed Cell Death in Plants.

    PubMed

    Biswas, Md Sanaullah; Mano, Jun'ichi

    2015-07-01

    Lipid peroxide-derived toxic carbonyl compounds (oxylipin carbonyls), produced downstream of reactive oxygen species (ROS), were recently revealed to mediate abiotic stress-induced damage of plants. Here, we investigated how oxylipin carbonyls cause cell death. When tobacco (Nicotiana tabacum) Bright Yellow-2 (BY-2) cells were exposed to hydrogen peroxide, several species of short-chain oxylipin carbonyls [i.e. 4-hydroxy-(E)-2-nonenal and acrolein] accumulated and the cells underwent programmed cell death (PCD), as judged based on DNA fragmentation, an increase in terminal deoxynucleotidyl transferase dUTP nick end labeling-positive nuclei, and cytoplasm retraction. These oxylipin carbonyls caused PCD in BY-2 cells and roots of tobacco and Arabidopsis (Arabidopsis thaliana). To test the possibility that oxylipin carbonyls mediate an oxidative signal to cause PCD, we performed pharmacological and genetic experiments. Carnosine and hydralazine, having distinct chemistry for scavenging carbonyls, significantly suppressed the increase in oxylipin carbonyls and blocked PCD in BY-2 cells and Arabidopsis roots, but they did not affect the levels of ROS and lipid peroxides. A transgenic tobacco line that overproduces 2-alkenal reductase, an Arabidopsis enzyme to detoxify α,β-unsaturated carbonyls, suffered less PCD in root epidermis after hydrogen peroxide or salt treatment than did the wild type, whereas the ROS level increases due to the stress treatments were not different between the lines. From these results, we conclude that oxylipin carbonyls are involved in the PCD process in oxidatively stressed cells. Our comparison of the ability of distinct carbonyls to induce PCD in BY-2 cells revealed that acrolein and 4-hydroxy-(E)-2-nonenal are the most potent carbonyls. The physiological relevance and possible mechanisms of the carbonyl-induced PCD are discussed. PMID:26025050

  18. Pneumococal Surface Protein A (PspA) Regulates Programmed Death Ligand 1 Expression on Dendritic Cells in a Toll-Like Receptor 2 and Calcium Dependent Manner

    PubMed Central

    Vashishta, Mohit; Khan, Naeem; Mehto, Subhash; Sehgal, Devinder; Natarajan, Krishnamurthy

    2015-01-01

    Pneumonia leads to high mortality in children under the age of five years worldwide, resulting in close to 20 percent of all deaths in this age group. Therefore, investigations into host-pathogen interactions during Streptococcus pneumoniae infection are key in devising strategies towards the development of better vaccines and drugs. To that end, in this study we investigated the role of S. pneumoniae and its surface antigen Pneumococcal surface protein A (PspA) in modulating the expression of co-stimulatory molecule Programmed Death Ligand 1 (PD-L1) expression on dendritic cells (DCs) and the subsequent effects of increased PD-L1 on key defence responses. Our data indicate that stimulation of DCs with PspA increases the surface expression of PD-L1 in a time and dose dependent manner. Characterization of mechanisms involved in PspA induced expression of PD-L1 indicate the involvement of Toll-Like Receptor 2 (TLR2) and calcium homeostasis. While calcium release from intracellular stores positively regulated PD-L1 expression, calcium influx from external milieu negatively regulated PD-L1 expression. Increase in PD-L1 expression, when costimulated with PspA and through TLR2 was higher than when stimulated with PspA or through TLR2. Further, knockdown of TLR2 and the intermediates in the TLR signaling machinery pointed towards the involvement of a MyD88 dependent pathway in PspA induced PD-L1 expression. Incubation of DCs with S. pneumoniae resulted in the up-regulation of PD-L1 expression, while infection with a strain lacking surface PspA failed to do so. Our data also suggests the role of PspA in ROS generation. These results suggest a novel and specific role for PspA in modulating immune responses against S. pneumoniae by regulating PD-L1 expression. PMID:26214513

  19. Lipid Peroxide-Derived Short-Chain Carbonyls Mediate Hydrogen Peroxide-Induced and Salt-Induced Programmed Cell Death in Plants1[OPEN

    PubMed Central

    Biswas, Md. Sanaullah; Mano, Jun’ichi

    2015-01-01

    Lipid peroxide-derived toxic carbonyl compounds (oxylipin carbonyls), produced downstream of reactive oxygen species (ROS), were recently revealed to mediate abiotic stress-induced damage of plants. Here, we investigated how oxylipin carbonyls cause cell death. When tobacco (Nicotiana tabacum) Bright Yellow-2 (BY-2) cells were exposed to hydrogen peroxide, several species of short-chain oxylipin carbonyls [i.e. 4-hydroxy-(E)-2-nonenal and acrolein] accumulated and the cells underwent programmed cell death (PCD), as judged based on DNA fragmentation, an increase in terminal deoxynucleotidyl transferase dUTP nick end labeling-positive nuclei, and cytoplasm retraction. These oxylipin carbonyls caused PCD in BY-2 cells and roots of tobacco and Arabidopsis (Arabidopsis thaliana). To test the possibility that oxylipin carbonyls mediate an oxidative signal to cause PCD, we performed pharmacological and genetic experiments. Carnosine and hydralazine, having distinct chemistry for scavenging carbonyls, significantly suppressed the increase in oxylipin carbonyls and blocked PCD in BY-2 cells and Arabidopsis roots, but they did not affect the levels of ROS and lipid peroxides. A transgenic tobacco line that overproduces 2-alkenal reductase, an Arabidopsis enzyme to detoxify α,β-unsaturated carbonyls, suffered less PCD in root epidermis after hydrogen peroxide or salt treatment than did the wild type, whereas the ROS level increases due to the stress treatments were not different between the lines. From these results, we conclude that oxylipin carbonyls are involved in the PCD process in oxidatively stressed cells. Our comparison of the ability of distinct carbonyls to induce PCD in BY-2 cells revealed that acrolein and 4-hydroxy-(E)-2-nonenal are the most potent carbonyls. The physiological relevance and possible mechanisms of the carbonyl-induced PCD are discussed. PMID:26025050

  20. Determination of ACC-induced cell-programmed death in roots of Vicia faba ssp. minor seedlings by acridine orange and ethidium bromide staining.

    PubMed

    Byczkowska, Anna; Kunikowska, Anita; Kaźmierczak, Andrzej

    2013-02-01

    Fluorescence staining with acridine orange (AO) and ethidium bromide (EB) showed that nuclei of cortex root cells of 1-aminocyclopropane-1-carboxylic acid (ACC)-treated Vicia faba ssp. minor seedlings differed in color. Measurement of resultant fluorescence intensity (RFI) showed that it increased when the color of nuclear chromatin was changed from green to red, indicating that EB moved to the nuclei via the cell membrane which lost its integrity and stained nuclei red. AO/EB staining showed that changes in color of the nuclear chromatin were accompanied by DNA condensation, nuclei fragmentation, and chromatin degradation which were also shown after 4,6-diamidino-2-phenylindol staining. These results indicate that ACC induced programmed cell death. The increasing values of RFI together with the corresponding morphological changes of nuclear chromatin were the basis to prepare the standard curve; cells with green unchanged nuclear chromatin were alive while those with dark orange and bright red nuclei were dead. The cells with nuclei with green-yellow, yellow-orange, and bright orange chromatin with or without their condensation and fragmentation chromatin were dying. The prepared curve has became the basis to draw up the digital method for detection and determination of the number of living, dying, and dead cells in an in planta system and revealed that ACC induced death in about 20% of root cortex cells. This process was accompanied by increase in ion leakage, shortening of cells and whole roots, as well as by increase in weight and width of the apical part of roots and appearance of few aerenchymatic spaces while not by internucleosomal DNA degradation. PMID:22350735

  1. Evidence for caspase-dependent programmed cell death along with repair processes in affected skeletal muscle fibres in patients with mitochondrial disorders.

    PubMed

    Guglielmi, Valeria; Vattemi, Gaetano; Chignola, Roberto; Chiarini, Anna; Marini, Matteo; Dal Prà, Ilaria; Di Chio, Marzia; Chiamulera, Cristiano; Armato, Ubaldo; Tomelleri, Giuliano

    2016-02-01

    Mitochondrial disorders are heterogeneous multisystemic disorders due to impaired oxidative phosphorylation causing defective mitochondrial energy production. Common histological hallmarks of mitochondrial disorders are RRFs (ragged red fibres), muscle fibres with abnormal focal accumulations of mitochondria. In contrast with the growing understanding of the genetic basis of mitochondrial disorders, the fate of phenotypically affected muscle fibres remains largely unknown. We investigated PCD (programmed cell death) in muscle of 17 patients with mitochondrial respiratory chain dysfunction. We documented that in affected muscle fibres, nuclear chromatin is condensed in lumpy irregular masses and cytochrome c is released into the cytosol to activate, along with Apaf-1 (apoptotic protease-activating factor 1), caspase 9 that, in turn, activates effector caspase 3, caspase 6, and caspase 7, suggesting the execution of the intrinsic apoptotic pathway. Whereas active caspase 3 underwent nuclear translocation, AIF (apoptosis-inducing factor) mainly stayed within mitochondria, into which an up-regulated Bax is relocated. The significant increase in caspase 2, caspase 3 and caspase 6 activity strongly suggest that the cell death programme is caspase-dependent and the activation of caspase 2 together with PUMA (p53 up-regulated modulator of apoptosis) up-regulation point to a role for oxidative stress in triggering the intrinsic pathway. Concurrently, in muscle of patients, the number of satellite cells was significantly increased and myonuclei were detected at different stages of myogenic differentiation, indicating that a reparative programme is ongoing in muscle of patients with mitochondrial disorders. Together, these data suggest that, in patients with mitochondrial disorders, affected muscle fibres are trapped in a mitochondria-regulated caspase-dependent PCD while repairing events take place. PMID:26527739

  2. Antigen-Specific Therapeutic Approaches in Type 1 Diabetes

    PubMed Central

    Clemente-Casares, Xavier; Tsai, Sue; Huang, Carol; Santamaria, Pere

    2012-01-01

    Development of strategies capable of specifically curbing pathogenic autoimmune responses in a disease- and organ-specific manner without impairing foreign or tumor antigen-specific immune responses represents a long sought-after goal in autoimmune disease research. Unfortunately, our current understanding of the intricate details of the different autoimmune diseases that affect mankind, including type 1 diabetes, is rudimentary. As a result, progress in the development of the so-called “antigen-specific” therapies for autoimmunity has been slow and fraught with limitations that interfere with bench-to-bedside translation. Absent or incomplete understanding of mechanisms of action and lack of adequate immunological biomarkers, for example, preclude the rational design of effective drug development programs. Here, we provide an overview of antigen-specific approaches that have been tested in preclinical models of T1D and, in some cases, human subjects. The evidence suggests that effective translation of these approaches through clinical trials and into patients will continue to meet with failure unless detailed mechanisms of action at the level of the organism are defined. PMID:22355799

  3. Management of Type 1 Diabetes in Schools: Whose Responsibility?

    ERIC Educational Resources Information Center

    Mandali, Swarna L.; Gordon, Theresa A.

    2009-01-01

    The Centers for Disease Control and Prevention (2008) reports that approximately 0.2% of all persons under the age of 20 have been diagnosed with either type 1 or type 2 diabetes. This represents 186,300 children and young adults. Type 1 diabetes has traditionally been a disease of children and adolescents. Although type 2 diabetes has in the past…

  4. A Neuropsychological Perspective on Attention Problems in Neurofibromatosis Type 1

    ERIC Educational Resources Information Center

    Templer, Alexandra K.; Titus, Jeffrey B.; Gutmann, David H.

    2013-01-01

    Cognitive problems are common in children with neurofibromatosis type 1 and they can often complicate treatment. The current literature review examines cognitive functioning in neurofibromatosis type 1, with a specific focus on executive functioning. This includes exploration of how deficits in executive functioning are expressed in children with…

  5. Type 1 Diabetes Linked to Epilepsy Risk, Study Suggests

    MedlinePlus

    ... nlm.nih.gov/medlineplus/news/fullstory_158067.html Type 1 Diabetes Linked to Epilepsy Risk, Study Suggests But the ... Hypoglycemia Recent Health News Related MedlinePlus Health Topics Diabetes Type 1 Epilepsy Hypoglycemia About MedlinePlus Site Map FAQs Contact ...

  6. Coexistence of coeliac disease and type 1 diabetes

    PubMed Central

    2014-01-01

    There is a selective review of the literature concerning the coexistence of coeliac disease and type 1 diabetes mellitus. This review focuses on the principles of serological tests towards coeliac disease in patients with type 1 diabetes mellitus and metabolic control measures as a result of a gluten-free diet. PMID:24868293

  7. Type 1 Diabetes Genetic Risk Score: A Novel Tool to Discriminate Monogenic and Type 1 Diabetes.

    PubMed

    Patel, Kashyap A; Oram, Richard A; Flanagan, Sarah E; De Franco, Elisa; Colclough, Kevin; Shepherd, Maggie; Ellard, Sian; Weedon, Michael N; Hattersley, Andrew T

    2016-07-01

    Distinguishing patients with monogenic diabetes from those with type 1 diabetes (T1D) is important for correct diagnosis, treatment, and selection of patients for gene discovery studies. We assessed whether a T1D genetic risk score (T1D-GRS) generated from T1D-associated common genetic variants provides a novel way to discriminate monogenic diabetes from T1D. The T1D-GRS was highly discriminative of proven maturity-onset diabetes of young (MODY) (n = 805) and T1D (n = 1,963) (receiver operating characteristic area under the curve 0.87). A T1D-GRS of >0.280 (>50th T1D centile) was indicative of T1D (94% specificity, 50% sensitivity). We then analyzed the T1D-GRS of 242 white European patients with neonatal diabetes (NDM) who had been tested for all known NDM genes. Monogenic NDM was confirmed in 90, 59, and 8% of patients with GRS <5th T1D centile, 50-75th T1D centile, and >75th T1D centile, respectively. Applying a GRS 50th T1D centile cutoff in 48 NDM patients with no known genetic cause identified those most likely to have a novel monogenic etiology by highlighting patients with probable early-onset T1D (GRS >50th T1D centile) who were diagnosed later and had less syndromic presentation but additional autoimmune features compared with those with proven monogenic NDM. The T1D-GRS is a novel tool to improve the use of biomarkers in the discrimination of monogenic diabetes from T1D. PMID:27207547

  8. Type 1 Diabetes Genetic Risk Score: a novel tool to discriminate monogenic and type 1 diabetes

    PubMed Central

    Patel, K A; Oram, R A; Flanagan, S E; De Franco, E; Colclough, K; shepherd, M; Ellard, S

    2016-01-01

    Distinguishing patients with monogenic diabetes from Type 1 diabetes (T1D) is important for correct diagnosis, treatment and to select patients for gene discovery studies. We assessed whether a T1D genetic risk score (T1D-GRS) generated from T1D-associated common genetic variants provides a novel way to discriminate monogenic diabetes from T1D. The T1D-GRS was highly discriminative of proven MODY (n=805) and T1D (n=1963) (ROC-AUC=0.87). A T1D-GRS of >0.280 (>50th T1D centile) was indicative of T1D (94% specificity, 50% sensitivity). We then analyzed the T1D-GRS in 242 White-European patients with neonatal diabetes (NDM) who had been tested for all known neonatal diabetes genes. Monogenic NDM was confirmed in 90%, 59% and 8% in patients with GRS <5th T1D centile, 50-75th T1D centile and >75th T1D centile, respectively. Applying a GRS 50th T1D centile cut-off in 48 NDM patients with no known genetic cause, identified those most likely to have a novel monogenic etiology by highlighting patients with probable early-onset T1D (GRS >50th T1D centile) who were diagnosed later, had less syndromic presentation but had additional autoimmune features compared to proven monogenic NDM. The T1D-GRS is a novel tool to improve the use of biomarkers in the discrimination of monogenic diabetes from T1D. PMID:27207547

  9. Prevalence of celiac disease in adult type 1 patients with diabetes

    PubMed Central

    Dogan, Burcu; Oner, Can; Bayramicli, Oya Uygur; Yorulmaz, Elif; Feyizoglu, Guneş; Oguz, Aytekin

    2015-01-01

    Objectives: Celiac disease, an autoimmune disease, is related to immune mediated intolerance to gluten. Some studies suggest that Celiac Disease was 20 times more frequent in type 1 patients with diabetes. The objective of our study was to evaluate the prevalence of celiac disease in hospital based type 1 diabetic adults. Methods: Our study was carried out retrospectively in Medeniyet University Goztepe Training and Educational Hospital in Istanbul between 2012–2013. The cohort comprised 482 type 1 patients with diabetes attending the diabetes outpatient clinic. The data were analyzed by SPSS 10.5 package program. Student’s t tests is used for comparative analyses. A p-value less than 0.05 was considered statistically significant. Results: The cohort included 482 type 1 patients with diabetes. Fifty seven of them were not evaluated for Endomysium antibody positivity. Fifteen of the remaining 425 patients were positive for anti endomysial antibody (3.5%). The prevalence of biopsy proven celiac disease was 2.3% (10/425). There was no significant difference between Endomysial antibody positive and negative groups in regard of age, sex, or duration of the disease. Conclusion: This study confirms that the celiac disease is common in type 1 diabetic patients. Since a small proportion of celiac patients are symptomatic this disorder should be screened in all adult type 1 patients with diabetes by antiendomysium antibody. PMID:26430419

  10. Biomarkers in Type 1 diabetes: Application to the clinical trial setting

    PubMed Central

    Tooley, James E.; Herold, Kevan C.

    2014-01-01

    Purpose of Review Biomarkers of type 1 diabetes are important for assessing risk of developing disease, monitoring disease progression, and determining responses to clinical treatments. Here we review recent advances in the development of biomarkers of type 1 diabetes with a focus on their utility in clinical trials. Recent Findings Measurements of auto antibodies and metabolic outcomes have been the foundation of monitoring type 1 diabetes for the past 20 years. Recent advancements have lead to improvements in T cell specific assays that have been used in large-scale clinical trials to measure antigen specific T cell responses. Additionally, new tools are being developed for the measurement of β cell mass and death that will allow for more direct measurement of disease activity. Lastly, recent studies have used both immunologic and non-immunologic biomarkers to identify responders to treatments in clinical trials. Summary Use of biomarkers in the study of type 1 diabetes have largely not changed over the past 20 years, however recent advancements in the field are establishing new techniques that allow for more precise monitoring of disease progression. These new tools will ultimately lead to an improvement in understanding of disease and will be utilized in clinical trials. PMID:24937037

  11. Type 1 Diabetes and Sports Participation: Strategies for Training and Competing Safely.

    ERIC Educational Resources Information Center

    Draznin, Martin B.

    2000-01-01

    Athletes with type 1 diabetes require frequent blood glucose checks throughout the day and intensive diabetes management to balance insulin, carbohydrate intake, and the effects of exercise. Effective care begins with a targeted preparticipation examination. Decreasing insulin dosage may be necessary for heavier exercise programs. Analysis of…

  12. Exercise and Diabetes Mellitus: Optimizing Performance in Patients Who Have Type 1 Diabetes.

    ERIC Educational Resources Information Center

    Birrer, Richard B.; Sedaghat, Vahid-David

    2003-01-01

    Asserts that people with type 1 diabetes should include regular sports or recreational activities in their overall health care programs, noting that physicians must provide preparticipation clearance, education about blood glucose self-monitoring, exercise prescription, aggressive dietary and insulin management plans, identification of risk…

  13. Expression of programmed cell death ligand 1 is associated with poor overall survival in patients with diffuse large B-cell lymphoma.

    PubMed

    Kiyasu, Junichi; Miyoshi, Hiroaki; Hirata, Akie; Arakawa, Fumiko; Ichikawa, Ayako; Niino, Daisuke; Sugita, Yasuo; Yufu, Yuji; Choi, Ilseung; Abe, Yasunobu; Uike, Naokuni; Nagafuji, Koji; Okamura, Takashi; Akashi, Koichi; Takayanagi, Ryoichi; Shiratsuchi, Motoaki; Ohshima, Koichi

    2015-11-01

    Programmed cell death ligand 1 (PD-L1) is expressed on both select diffuse large B-cell lymphoma (DLBCL) tumor cells and on tumor-infiltrating nonmalignant cells. The programmed cell death 1 (PD-1)/PD-L1 pathway inhibits host antitumor responses; however, little is known about how this pathway functions in the tumor microenvironment. The aim of this study was to determine the clinicopathological impact of PD-L1(+) DLBCL. We performed PD-L1/PAX5 double immunostaining in 1253 DLBCL biopsy samples and established a new definition of PD-L1(+) DLBCL. We also defined the criteria for microenvironmental PD-L1(+) (mPD-L1(+)) DLBCL (ie, PD-L1(-) DLBCL in which PD-L1(+) nonmalignant cells are abundant in the tumor microenvironment). Of the 273 patients whose clinical information was available, quantitative analysis of PD-1(+) tumor-infiltrating lymphocytes (TILs) was performed. The prevalence rates of PD-L1(+) and mPD-L1(+) DLBCL were 11% and 15.3%, respectively. Both PD-L1(+) and mPD-L1(+) DLBCL were significantly associated with non-germinal center B-cell (GCB) type and Epstein-Barr virus positivity. The number of PD-1(+) TILs was significantly higher in GCB-type tumors and lower in mPD-L1(-) and PD-L1(+) DLBCL. Patients with PD-L1(+) DLBCL had inferior overall survival (OS) compared with that in patients with PD-L1(-) DLBCL (P = .0009). In contrast, there was no significant difference in OS between mPD-L1(+) and mPD-L1(-) DLBCL (P = .31). The expression of PD-L1 maintained prognostic value for OS in multivariate analysis (P = .0323). This is the first report describing the clinicopathological features and outcomes of PD-L1(+) DLBCL. Immunotherapy targeting the PD-1/PD-L1 pathway should be considered in this distinct DLBCL subgroup. PMID:26239088

  14. Programmed Death-Ligand 1 on Antigen-presenting Cells Facilitates the Induction of Antigen-specific Cytotoxic T Lymphocytes: Application to Adoptive T-Cell Immunotherapy.

    PubMed

    Goto, Tatsunori; Nishida, Tetsuya; Takagi, Erina; Miyao, Kotaro; Koyama, Daisuke; Sakemura, Reona; Hanajiri, Ryo; Watanabe, Keisuke; Imahashi, Nobuhiko; Terakura, Seitaro; Murata, Makoto; Kiyoi, Hitoshi

    2016-10-01

    Programmed death-ligand 1 (PD-L1) binds to programmed death-1 (PD-1) on activated T cells and contributes to T-cell exhaustion. PD-L1 expressed on antigen-presenting cells (APCs) could be thought to inhibit the induction of Ag-specific cytotoxic T lymphocytes (CTLs) by transducing negative signal into T cells; however, the roles of PD-L1 on APCs have not yet been well examined. Therefore, we evaluated the roles of PD-L1 on APCs in the induction of Ag-specific CTLs. CD3 T cells isolated from cytomegalovirus (CMV)-seropositive healthy donors were stimulated with mature dendritic cells pulsed with CMV pp65-derived HLA-restricted peptides in the presence of anti-PD-L1 blocking antibody. Unexpectedly, PD-L1 blockade resulted in a less efficient induction of CMV-specific CTLs, suggesting that PD-L1 play a positive role in the induction of Ag-specific CTLs. For further evaluations and application to adoptive immunotherapy, we generated K562-based artificial APCs, which were retrovirally transduced with HLA class I molecules and various combinations of CD80/86 and PD-L1. K562/HLA+CD80/86+PD-L1 cells produced significantly higher induction of CMV-specific CTLs than K562/HLA or K562/HLA+CD80/86 cells without causing excessive differentiation or functional exhaustion of the induced CTLs, whereas PD-L1 itself did not have a stimulatory effect. Furthermore, only K562/HLA+CD80/86+PD-L1 cells pulsed with HLA-A*24:02-restricted Wilms tumor 1 (WT1) peptide clearly expanded WT1-specific CTLs from healthy donors. Our findings presumed that PD-L1 expressed on APCs along with CD80/86 enhanced the induction of Ag-specific CTLs probably depending on fine-tuning excessive stimulation of CD80/86, and that K562/HLA+CD80/86+PD-L1 cells has therapeutic potential as a novel type of artificial APCs for adoptive immunotherapy. PMID:27548033

  15. Expression of programmed cell death ligand 1 is associated with poor overall survival in patients with diffuse large B-cell lymphoma

    PubMed Central

    Kiyasu, Junichi; Miyoshi, Hiroaki; Hirata, Akie; Arakawa, Fumiko; Ichikawa, Ayako; Niino, Daisuke; Sugita, Yasuo; Yufu, Yuji; Choi, Ilseung; Abe, Yasunobu; Uike, Naokuni; Nagafuji, Koji; Okamura, Takashi; Akashi, Koichi; Takayanagi, Ryoichi; Shiratsuchi, Motoaki

    2015-01-01

    Programmed cell death ligand 1 (PD-L1) is expressed on both select diffuse large B-cell lymphoma (DLBCL) tumor cells and on tumor-infiltrating nonmalignant cells. The programmed cell death 1 (PD-1)/PD-L1 pathway inhibits host antitumor responses; however, little is known about how this pathway functions in the tumor microenvironment. The aim of this study was to determine the clinicopathological impact of PD-L1+ DLBCL. We performed PD-L1/PAX5 double immunostaining in 1253 DLBCL biopsy samples and established a new definition of PD-L1+ DLBCL. We also defined the criteria for microenvironmental PD-L1+ (mPD-L1+) DLBCL (ie, PD-L1– DLBCL in which PD-L1+ nonmalignant cells are abundant in the tumor microenvironment). Of the 273 patients whose clinical information was available, quantitative analysis of PD-1+ tumor-infiltrating lymphocytes (TILs) was performed. The prevalence rates of PD-L1+ and mPD-L1+ DLBCL were 11% and 15.3%, respectively. Both PD-L1+ and mPD-L1+ DLBCL were significantly associated with non–germinal center B-cell (GCB) type and Epstein-Barr virus positivity. The number of PD-1+ TILs was significantly higher in GCB-type tumors and lower in mPD-L1– and PD-L1+ DLBCL. Patients with PD-L1+ DLBCL had inferior overall survival (OS) compared with that in patients with PD-L1– DLBCL (P = .0009). In contrast, there was no significant difference in OS between mPD-L1+ and mPD-L1– DLBCL (P = .31). The expression of PD-L1 maintained prognostic value for OS in multivariate analysis (P = .0323). This is the first report describing the clinicopathological features and outcomes of PD-L1+ DLBCL. Immunotherapy targeting the PD-1/PD-L1 pathway should be considered in this distinct DLBCL subgroup. PMID:26239088

  16. FDA Approval Summary: Pembrolizumab for the Treatment of Patients With Metastatic Non-Small Cell Lung Cancer Whose Tumors Express Programmed Death-Ligand 1

    PubMed Central

    Blumenthal, Gideon M.; Jiang, Xiaoping; He, Kun; Keegan, Patricia; Pazdur, Richard

    2016-01-01

    On October 2, 2015, the U.S. Food and Drug Administration (FDA) granted accelerated approval for pembrolizumab, a breakthrough therapy-designated drug, for the treatment of patients with metastatic non-small cell lung cancer (NSCLC) whose tumors express programmed death-ligand 1 (PD-L1), as determined by an FDA-approved test, and who have disease progression on or after platinum-containing chemotherapy or targeted therapy against anaplastic lymphoma kinase or epidermal growth factor receptor, if appropriate. This indication was approved concurrently with the PD-L1 immunohistochemistry 22C3 pharmDx, a companion diagnostic test for patient selection based on PD-L1 tumor expression. The accelerated approval was granted based on durable objective response rate (ORR) and an acceptable toxicity profile demonstrated in a multicenter, open-label trial enrolling 550 patients with metastatic NSCLC. The efficacy population comprised 61 patients with tumors identified as strongly positive for PD-L1, and the confirmed ORR as determined by blinded independent central review was 41% (95% confidence interval: 28.6%, 54.3%); all were partial responses. At the time of the analysis, responses were ongoing in 21 of 25 patients (84%), with 11 patients (44%) having response duration of ≥6 months. The most commonly occurring (≥20%) adverse reactions included fatigue, decreased appetite, dyspnea, and cough. The most frequent (≥2%) serious adverse drug reactions were pleural effusion, pneumonia, dyspnea, pulmonary embolism, and pneumonitis. Immune-mediated adverse reactions occurred in 13% of patients and included pneumonitis, colitis, hypophysitis, and thyroid disorders. The accelerated approval regulations describe approval of drugs and biologic products for serious and life-threatening illnesses based on a surrogate endpoint likely to predict clinical benefit. Under these regulations, a confirmatory trial or trials is required to verify and describe the benefit of pembrolizumab

  17. Potential virulence of viable but nonculturable Shigella dysenteriae type 1.

    PubMed Central

    Rahman, I; Shahamat, M; Chowdhury, M A; Colwell, R R

    1996-01-01

    We examined a virulent strain of Shigella dysenteriae type 1 after induction into the viable but nonculturable (VBNC) state for its ability to (i) maintain the Shiga toxin (stx) gene; (ii) maintain biologically active Shiga toxin (ShT); and (iii) adhere to intestinal epithelial cells (Henle 407 cell line). PCR was used to amplify the stx gene from VBNC cells of S. dysenteriae type 1, thereby establishing its presence even when cells are in the VBNC state. VBNC S. dysenteriae type 1 ShT was monitored by the enzyme-linked immunosorbent assay with mouse monoclonal antibodies against the B subunit of ShT and affinity-purified rabbit polyclonal antibodies against ShT. We used the Henle 407 cell line to study the adhesive property of VBNC S. dysenteriae type 1 cells in a series of tissue culture experiments. Results showed that VBNC S. dysenteriae type 1 not only maintained the stx gene and biologically active ShT but also remained capable of adhering to Henle 407 cells. However, S. dysenteriae type 1 cells lost the ability to invade Henle 407 cells after entering the VBNC state. From results of the study, we conclude that VBNC cells of S. dysenteriae type 1 retain several virulence factors and remain potentially virulent, posing a public health problem. PMID:8572688

  18. Stiffness of modified Type 1a linear external skeletal fixators.

    PubMed

    Reaugh, H F; Rochat, M C; Bruce, C W; Galloway, D S; Payton, M E

    2007-01-01

    Modifications of a Type 1a external skeletal fixator (ESF) frame were evaluated by alternately placing transfixation pins on opposite sides of the connecting rod (Type 1a-MOD) or by placing additional connecting rods on either of the two inside (Type 1a-INSIDE) or two outside (Type 1a-OUTSIDE) transfixation pins. The objective of this study was to evaluate the stiffness of these modifications in terms of axial compression (AC), cranial-caudal bending (CCB), and medial-lateral bending (MLB). We hypothesized that these designs would allow significant increase in unilateral frame stiffness, over Type 1a, without proportional increase in frame complexity or technical difficulty of application. All of the ESF frames were constructed using large IMEX SKtrade mark clamps, 3.2 mm threaded fixation pins, 9.5 mm carbon fibre connecting rods and Delrin rods as bone models. Nine, eight pin frames of each design were constructed, and subjected to repetitive non-destructive loading forces (AC, CCB, MLB) using a materials testing machine. Frame construct stiffness for each force (AC, CCB, MLB) was derived from load-deformation curve analysis and displayed in N/mm. Data revealed the 1a-MOD and 1a-OUTSIDE constructs had significantly increased stiffness in CCB and AC as compared to the Type 1a constructs while all of the modified constructs were significantly stiffer in MLB than the Type 1a constructs. PMID:18038001

  19. Cell death proteomics database: consolidating proteomics data on cell death.

    PubMed

    Arntzen, Magnus Ø; Bull, Vibeke H; Thiede, Bernd

    2013-05-01

    Programmed cell death is a ubiquitous process of utmost importance for the development and maintenance of multicellular organisms. More than 10 different types of programmed cell death forms have been discovered. Several proteomics analyses have been performed to gain insight in proteins involved in the different forms of programmed cell death. To consolidate these studies, we have developed the cell death proteomics (CDP) database, which comprehends data from apoptosis, autophagy, cytotoxic granule-mediated cell death, excitotoxicity, mitotic catastrophe, paraptosis, pyroptosis, and Wallerian degeneration. The CDP database is available as a web-based database to compare protein identifications and quantitative information across different experimental setups. The proteomics data of 73 publications were integrated and unified with protein annotations from UniProt-KB and gene ontology (GO). Currently, more than 6,500 records of more than 3,700 proteins are included in the CDP. Comparing apoptosis and autophagy using overrepresentation analysis of GO terms, the majority of enriched processes were found in both, but also some clear differences were perceived. Furthermore, the analysis revealed differences and similarities of the proteome between autophagosomal and overall autophagy. The CDP database represents a useful tool to consolidate data from proteome analyses of programmed cell death and is available at http://celldeathproteomics.uio.no. PMID:23537399

  20. 20 CFR 638.513 - Death.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 20 Employees' Benefits 3 2010-04-01 2010-04-01 false Death. 638.513 Section 638.513 Employees' Benefits EMPLOYMENT AND TRAINING ADMINISTRATION, DEPARTMENT OF LABOR JOB CORPS PROGRAM UNDER TITLE IV-B OF THE JOB TRAINING PARTNERSHIP ACT Center Operations § 638.513 Death. In each case of student death,...

  1. 7 CFR 707.3 - Death.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 7 2014-01-01 2014-01-01 false Death. 707.3 Section 707.3 Agriculture Regulations of... Death. (a) Where any person who would otherwise be eligible to receive a payment dies before the payment... timely program application has been filed by the deceased before the death or filed in a timely...

  2. 7 CFR 707.3 - Death.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 7 2013-01-01 2013-01-01 false Death. 707.3 Section 707.3 Agriculture Regulations of... Death. (a) Where any person who would otherwise be eligible to receive a payment dies before the payment... timely program application has been filed by the deceased before the death or filed in a timely...

  3. 20 CFR 638.513 - Death.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 20 Employees' Benefits 3 2011-04-01 2011-04-01 false Death. 638.513 Section 638.513 Employees' Benefits EMPLOYMENT AND TRAINING ADMINISTRATION, DEPARTMENT OF LABOR JOB CORPS PROGRAM UNDER TITLE IV-B OF THE JOB TRAINING PARTNERSHIP ACT Center Operations § 638.513 Death. In each case of student death,...

  4. 20 CFR 638.513 - Death.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 20 Employees' Benefits 3 2012-04-01 2012-04-01 false Death. 638.513 Section 638.513 Employees' Benefits EMPLOYMENT AND TRAINING ADMINISTRATION, DEPARTMENT OF LABOR JOB CORPS PROGRAM UNDER TITLE IV-B OF THE JOB TRAINING PARTNERSHIP ACT Center Operations § 638.513 Death. In each case of student death,...

  5. 7 CFR 707.3 - Death.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 7 2011-01-01 2011-01-01 false Death. 707.3 Section 707.3 Agriculture Regulations of... Death. (a) Where any person who would otherwise be eligible to receive a payment dies before the payment... timely program application has been filed by the deceased before the death or filed in a timely...

  6. 7 CFR 707.3 - Death.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 7 2012-01-01 2012-01-01 false Death. 707.3 Section 707.3 Agriculture Regulations of... Death. (a) Where any person who would otherwise be eligible to receive a payment dies before the payment... timely program application has been filed by the deceased before the death or filed in a timely...

  7. Equine Herpesvirus Type 1-Mediated Oncolysis of Human Glioblastoma Multiforme Cells

    PubMed Central

    Courchesne, Michael J.; White, Maria C.; Stanfield, Brent A.

    2012-01-01

    The cytolytic animal virus equine herpesvirus type 1 (EHV-1) was evaluated for its oncolytic potential against five human glioblastoma cell lines. EHV-1 productively infected four of these cell lines, and the degree of infection was positively correlated with glioma cell death. No human major histocompatibility complex class 1 (MHC-I) was detected in the resistant glioma line, while infection of the susceptible glioma cell lines, which expressed human MHC-I, were blocked with antibody to MHC-I, indicating that human MHC-I acts as an EHV-1 entry receptor on glioma cells. PMID:22205738

  8. The maintenance of specific aspects of neuronal function and behavior is dependent on programmed cell death of adult-generated neurons in the dentate gyrus

    PubMed Central

    Kim, Woon Ryoung; Park, Ok-hee; Choi, Sukwoo; Choi, Se-Young; Park, Soon Kwon; Lee, Kea Joo; Rhyu, Im Joo; Kim, Hyun; Lee, Yeon Kyung; Kim, Hyun Taek; Oppenheim, Ronald W; Sun, Woong

    2009-01-01

    A considerable number of new neurons are generated daily in the dentate gyrus (DG) of the adult hippocampus, but only a subset of these survive, as many adult-generated neurons undergo programmed cell death (PCD). However, the significance of PCD in the adult brain for the functionality of DG circuits is not known. Here we examined the electrophysiological and behavioral characteristics of Bax-KO mice in which PCD of post-mitotic neurons is prevented. The continuous increase in DG cell numbers in Bax-KO mice, resulted in the readjustment of afferent and efferent synaptic connections, represented by age-dependent reductions in the dendritic arborization of DG neurons and in the synaptic contact ratio of mossy fibers (MF) with CA3 dendritic spines. These neuroanatomical changes were associated with reductions in synaptic transmission and reduced performance in a contextual fear memory task in 6-month old Bax-KO mice. These results suggest that the elimination of excess DG neurons via Bax-dependent PCD in the adult brain is required for the normal organization and function of the hippocampus. PMID:19519627

  9. Bifurcation analysis and potential landscapes of the p53-Mdm2 module regulated by the co-activator programmed cell death 5.

    PubMed

    Bi, Yuanhong; Yang, Zhuoqin; Zhuge, Changjing; Lei, Jinzhi

    2015-11-01

    The dynamics of p53 play important roles in the regulation of cell fate decisions in response to various stresses, and programmed cell death 5 (PDCD5) functions as a co-activator of p53 that modulates p53 dynamics. In the present paper, we investigated how p53 dynamics are modulated by PDCD5 during the deoxyribose nucleic acid damage response using methods of bifurcation analysis and potential landscape. Our results revealed that p53 activities display rich dynamics under different PDCD5 levels, including monostability, bistability with two stable steady states, oscillations, and the coexistence of a stable steady state (or two states) and an oscillatory state. The physical properties of the p53 oscillations were further demonstrated by the potential landscape in which the potential force attracts the system state to the limit cycle attractor, and the curl flux force drives coherent oscillation along the cyclic trajectory. We also investigated the efficiency with which PDCD5 induced p53 oscillations. We show that Hopf bifurcation can be induced by increasing the PDCD5 efficiency and that the system dynamics exhibited clear transition features in both barrier height and energy dissipation when the efficiency was close to the bifurcation point. PMID:26627563

  10. Simultaneous blockade of programmed death 1 and vascular endothelial growth factor receptor 2 (VEGFR2) induces synergistic anti-tumour effect in vivo

    PubMed Central

    Yasuda, S; Sho, M; Yamato, I; Yoshiji, H; Wakatsuki, K; Nishiwada, S; Yagita, H; Nakajima, Y

    2013-01-01

    Recent basic and clinical studies have shown that the programmed death ligand (PD-L)/PD-1 pathway has a significant role in tumour immunity, and its blockade has a therapeutic potential against several human cancers. We hypothesized that anti-angiogeneic treatment might augment the efficacy of PD-1 blockade. To this end, we evaluated combining the blockade of PD-1 and vascular endothelial growth factor receptor 2 (VEGFR2) in a murine cancer model using Colon-26 adenocarcinoma. Interestingly, simultaneous treatment with anti-PD-1 and anti-VEGFR2 monoclonal antibodies (mAbs) inhibited tumour growth synergistically in vivo without overt toxicity. Blocking VEGFR2 inhibited tumour neovascularization significantly, as demonstrated by the reduced number of microvessels, while PD-1 blockade had no impact on tumour angiogenesis. PD-1 blockade might promote T cell infiltration into tumours and significantly enhanced local immune activation, as shown by the up-regulation of several proinflammatory cytokine expressions. Importantly, VEGFR2 blockade did not interfere with T cell infiltration and immunological activation induced by PD-1 blockade. In conclusion, simultaneous blockade of PD-1 and VEGFR2 induced a synergistic in-vivo anti-tumour effect, possibly through different mechanisms that might not be mutually exclusive. This unique therapeutic strategy may hold significant promise for future clinical application. PMID:23600839

  11. The Expression of Programmed Death-1 in Circulating CD4+ and CD8+ T Cells during Hepatitis B Virus Infection Progression and Its Correlation with Clinical Baseline Characteristics

    PubMed Central

    Xu, Ping; Chen, Yong-Jing; Chen, Hui; Zhu, Xiao-Yan; Song, Hua-Feng; Cao, Li-Juan

    2014-01-01

    Background/Aims Programmed death-1 (PD-1) expression was investigated in CD4+ and CD8+ T cells from hepatitis B virus (HBV)-infected patients at the chronic hepatitis B (CHB) infection, liver cirrhosis (LC), and hepatocellular carcinoma (HCC) stages. Methods PD-1 expression in circulating CD4+ and CD8+ T cells was detected by flow cytometry. The correlations between PD-1 expression and HBV viral load, alanine aminotransaminase (ALT) levels and aspartate aminotransferase (AST) levels were analyzed using GraphPad Prism 5.0. Results PD-1 expression in CD4+ and CD8+ T cells was significantly increased in both the CHB group and advanced-stage group (LC plus HCC). In the CHB group, PD-1 expression in both CD4+ and CD8+ T cells was positively correlated with the HBV viral load, ALT, and AST levels. However, in the LC plus HCC group, significant correlations between PD-1 expression and the clinical parameters were nearly absent. Conclusions PD-1 expression in peripheral CD4+ and CD8+ T cells is dynamic, changes with HBV infection progression, and is related to HBV viral load and liver function, especially in CHB. PD-1 expression could be utilized as a potential clinical indicator to determine the extent of virus replication and liver injury. PMID:24672661

  12. XND1, a member of the NAC domain family in Arabidopsis thaliana, negatively regulates lignocellulose synthesis and programmed cell death in xylem

    SciTech Connect

    Zhao, C.; U. Avci; E. Grant; C.H. Haigler; E.P. Beers

    2007-10-23

    Members of the large Arabidopsis NAC domain transcription factor family are regulators of meristem development, organ elongation and separation, and deposition of patterned secondary cell walls. XYLEM NAC DOMAIN 1 (XND1) is highly expressed in xylem. Changes observed for XND1 knockout plants compared with wild-type Arabidopsis thaliana included a reduction in both plant height and tracheary element length and an increase in metaxylem relative to protoxylem in roots of plants treated with the proteasome inhibitor MG132. Overexpression of XND1 resulted in extreme dwarfism associated with the absence of xylem vessels and little or no expression of tracheary element marker genes. In contrast, phloem marker-gene expression was not altered and phloem-type cells still formed. Transmission electron microscopy showed that parenchyma-like cells in the incipient xylem zone in hypocotyls of XND1 overexpressors lacked secondary wall thickenings and retained their cytoplasmic content. Considered together, these findings suggest that XND1 affects tracheary element growth through regulation of secondary wall synthesis and programmed cell death.

  13. The Cysteine Protease CEP1, a Key Executor Involved in Tapetal Programmed Cell Death, Regulates Pollen Development in Arabidopsis[W][OPEN

    PubMed Central

    Zhang, Dandan; Liu, Di; Lv, Xiaomeng; Wang, Ying; Xun, Zhili; Liu, Zhixiong; Li, Fenglan; Lu, Hai

    2014-01-01

    Tapetal programmed cell death (PCD) is a prerequisite for pollen grain development in angiosperms, and cysteine proteases are the most ubiquitous hydrolases involved in plant PCD. We identified a papain-like cysteine protease, CEP1, which is involved in tapetal PCD and pollen development in Arabidopsis thaliana. CEP1 is expressed specifically in the tapetum from stages 5 to 11 of anther development. The CEP1 protein first appears as a proenzyme in precursor protease vesicles and is then transported to the vacuole and transformed into the mature enzyme before rupture of the vacuole. cep1 mutants exhibited aborted tapetal PCD and decreased pollen fertility with abnormal pollen exine. A transcriptomic analysis revealed that 872 genes showed significantly altered expression in the cep1 mutants, and most of them are important for tapetal cell wall organization, tapetal secretory structure formation, and pollen development. CEP1 overexpression caused premature tapetal PCD and pollen infertility. ELISA and quantitative RT-PCR analyses confirmed that the CEP1 expression level showed a strong relationship to the degree of tapetal PCD and pollen fertility. Our results reveal that CEP1 is a crucial executor during tapetal PCD and that proper CEP1 expression is necessary for timely degeneration of tapetal cells and functional pollen formation. PMID:25035401

  14. Chemotherapy Induces Programmed Cell Death-Ligand 1 Overexpression via the Nuclear Factor-κB to Foster an Immunosuppressive Tumor Microenvironment in Ovarian Cancer.

    PubMed

    Peng, Jin; Hamanishi, Junzo; Matsumura, Noriomi; Abiko, Kaoru; Murat, Kumuruz; Baba, Tsukasa; Yamaguchi, Ken; Horikawa, Naoki; Hosoe, Yuko; Murphy, Susan K; Konishi, Ikuo; Mandai, Masaki

    2015-12-01

    Emerging evidence has highlighted the host immune system in modulating the patient response to chemotherapy, but the mechanism of this modulation remains unclear. The aim of this study was to analyze the effect of chemotherapy on antitumor immunity in the tumor microenvironment of ovarian cancer. Treatment of ovarian cancer cell lines with various chemotherapeutic agents resulted in upregulated expression of MHC class I and programmed cell death 1 ligand 1 (PD-L1) in a NF-κB-dependent manner and suppression of antigen-specific T-cell function in vitro. In a mouse model of ovarian cancer, treatment with paclitaxel increased CD8(+) T-cell infiltration into the tumor site, upregulated PD-L1 expression, and activated NF-κB signaling. In particular, tumor-bearing mice treated with a combination of paclitaxel and a PD-L1/PD-1 signal blockade survived longer than mice treated with paclitaxel alone. In summary, we found that chemotherapy induces local immune suppression in ovarian cancer through NF-κB-mediated PD-L1 upregulation. Thus, a combination of chemotherapy and immunotherapy targeting the PD-L1/PD-1 signaling axis may improve the antitumor response and offers a promising new treatment modality against ovarian cancer. PMID:26573793

  15. Glucosidase II β-subunit, a novel substrate for caspase-3-like activity in rice, plays as a molecular switch between autophagy and programmed cell death

    PubMed Central

    Cui, Jing; Chen, Bing; Wang, Hongjuan; Han, Yue; Chen, Xi; Zhang, Wei

    2016-01-01

    Endoplasmic reticulum (ER) stress activates unfolded protein response (UPR) and autophagy. However, prolonged, severe stresses activate programmed cell death (PCD) in both animal and plant cells. Compared to the well-studied UPR pathway, the molecular mechanisms of ER-stress-induced PCD are less understood. Here, we report the identification of Gas2, the glucosidase II β subunit in the ER, as a potential switch between PCD and autophagy in rice. MS analysis identified Gas2, GRP94, and HSP40 protein in a purified caspase-3-like activity from heat stressed rice cell suspensions. The three corresponding genes were down-regulated under DTT-induced ER stress. Gas2 and GRP94 were localized to the ER, while HSP40 localized to the cytoplasm. Compared to wild-type, a Gas2 RNAi cell line was much sensitive to DTT treatment and had high levels of autophagy. Both caspase-3 and heat-stressed cell suspension lysate could cleave Gas2, producing a 14 kDa N-terminal fragment. Conditional expression of corresponding C-terminal fragment resulted in enhanced caspase-3-like activity in the protoplasts under heat stress. We proposed that mild ER stress causes down-regulation of Gas2 and induces autophagy, while severe stress results in Gas2 cleavage by caspase-3-like activity and the cleavage product amplifies this activity, possibly participating in the initiation of PCD. PMID:27538481

  16. Cadmium telluride quantum dots (CdTe-QDs) and enhanced ultraviolet-B (UV-B) radiation trigger antioxidant enzyme metabolism and programmed cell death in wheat seedlings.

    PubMed

    Chen, Huize; Gong, Yan; Han, Rong

    2014-01-01

    Nanoparticles (NPs) are becoming increasingly widespread in the environment. Free cadmium ions released from commonly used NPs under ultraviolet-B (UV-B) radiation are potentially toxic to living organisms. With increasing levels of UV-B radiation at the Earth's surface due to the depletion of the ozone layer, the potential additive effect of NPs and UV-B radiation on plants is of concern. In this study, we investigated the synergistic effect of CdTe quantum dots (CdTe-QDs), a common form of NP, and UV-B radiation on wheat seedlings. Graded doses of CdTe-QDs and UV-B radiation were tested, either alone or in combination, based on physical characteristics of 5-day-old seedlings. Treatments of wheat seedlings with either CdTe-QDs (200 mg/L) or UV-B radiation (10 KJ/m(2)/d) induced the activation of wheat antioxidant enzymes. CdTe-QDs accumulation in plant root cells resulted in programmed cell death as detected by DNA laddering. CdTe-QDs and UV-B radiation inhibited root and shoot growth, respectively. Additive inhibitory effects were observed in the combined treatment group. This research described the effects of UV-B and CdTe-QDs on plant growth. Furthermore, the finding that CdTe-QDs accumulate during the life cycle of plants highlights the need for sustained assessments of these interactions. PMID:25329900

  17. Mycobacteria-responsive sonic hedgehog signaling mediates programmed death-ligand 1- and prostaglandin E2-induced regulatory T cell expansion.

    PubMed

    Holla, Sahana; Stephen-Victor, Emmanuel; Prakhar, Praveen; Sharma, Meenu; Saha, Chaitrali; Udupa, Vibha; Kaveri, Srinivas V; Bayry, Jagadeesh; Balaji, Kithiganahalli Narayanaswamy

    2016-01-01

    CD4(+)CD25(+)FoxP3(+) regulatory T cells (Tregs) are exploited by mycobacteria to subvert the protective host immune responses. The Treg expansion in the periphery requires signaling by professional antigen presenting cells and in particularly dendritic cells (DC). However, precise molecular mechanisms by which mycobacteria instruct Treg expansion via DCs are not established. Here we demonstrate that mycobacteria-responsive sonic hedgehog (SHH) signaling in human DCs leads to programmed death ligand-1 (PD-L1) expression and cyclooxygenase (COX)-2-catalyzed prostaglandin E2 (PGE2) that orchestrate mycobacterial infection-induced expansion of Tregs. While SHH-responsive transcription factor GLI1 directly arbitrated COX-2 transcription, specific microRNAs, miR-324-5p and miR-338-5p, which target PD-L1 were downregulated by SHH signaling. Further, counter-regulatory roles of SHH and NOTCH1 signaling during mycobacterial-infection of human DCs was also evident. Together, our results establish that Mycobacterium directs a fine-balance of host signaling pathways and molecular regulators in human DCs to expand Tregs that favour immune evasion of the pathogen. PMID:27080341

  18. Glucosidase II β-subunit, a novel substrate for caspase-3-like activity in rice, plays as a molecular switch between autophagy and programmed cell death.

    PubMed

    Cui, Jing; Chen, Bing; Wang, Hongjuan; Han, Yue; Chen, Xi; Zhang, Wei

    2016-01-01

    Endoplasmic reticulum (ER) stress activates unfolded protein response (UPR) and autophagy. However, prolonged, severe stresses activate programmed cell death (PCD) in both animal and plant cells. Compared to the well-studied UPR pathway, the molecular mechanisms of ER-stress-induced PCD are less understood. Here, we report the identification of Gas2, the glucosidase II β subunit in the ER, as a potential switch between PCD and autophagy in rice. MS analysis identified Gas2, GRP94, and HSP40 protein in a purified caspase-3-like activity from heat stressed rice cell suspensions. The three corresponding genes were down-regulated under DTT-induced ER stress. Gas2 and GRP94 were localized to the ER, while HSP40 localized to the cytoplasm. Compared to wild-type, a Gas2 RNAi cell line was much sensitive to DTT treatment and had high levels of autophagy. Both caspase-3 and heat-stressed cell suspension lysate could cleave Gas2, producing a 14 kDa N-terminal fragment. Conditional expression of corresponding C-terminal fragment resulted in enhanced caspase-3-like activity in the protoplasts under heat stress. We proposed that mild ER stress causes down-regulation of Gas2 and induces autophagy, while severe stress results in Gas2 cleavage by caspase-3-like activity and the cleavage product amplifies this activity, possibly participating in the initiation of PCD. PMID:27538481

  19. Effects of interferon-α-transduced tumor cell vaccines and blockade of programmed cell death-1 on the growth of established tumors.

    PubMed

    Omori, R; Eguchi, J; Hiroishi, K; Ishii, S; Hiraide, A; Sakaki, M; Doi, H; Kajiwara, A; Ito, T; Kogo, M; Imawari, M

    2012-09-01

    Interferon-alpha (IFN-α) has strong antitumor effects, and IFN-α gene therapy has been used clinically against some cancers. In this study, we evaluated the efficacy of the combination of IFN-α-transduced tumor cell vaccines and programmed cell death 1 (PD-1) blockade, and investigated the mechanisms of the antitumor effects of the combined therapy. A poorly immunogenic murine colorectal cancer cell line, MC38, was transduced to overexpress IFN-α. In a therapeutic model, parental tumor-bearing mice were inoculated with MC38-IFNα cells and an anti-PD-1 antagonistic antibody. Analyses of immunohistochemistry and tumor-specific lysis were performed. The outgrowth of the established tumors was significantly reduced in mice treated with the combination of IFN-α and anti-PD-1. Immunohistochemical analyses of the therapeutic model showed marked infiltration of CD4(+) cells and CD8(+) cells in the established MC38 tumors of mice treated with both IFN-α and anti-PD-1. Significant tumor-specific cytolysis was detected when splenocytes of mice that were treated with both IFN-α and anti-PD-1 were used as effector cells. These results suggest that blockade of the PD-1 PD-ligand enhanced the Th1-type antitumor immune responses induced by IFN-α. The combination of IFN-α gene-transduced tumor cell vaccines and PD-1 blockade may be a possible candidate for a cancer vaccine for clinical trials. PMID:22790963

  20. Expression of programmed death ligand-1 on tumor cells varies pre and post chemotherapy in non-small cell lung cancer

    PubMed Central

    Sheng, Jin; Fang, Wenfeng; Yu, Juan; Chen, Nan; Zhan, Jianhua; Ma, Yuxiang; Yang, Yunpeng; Yanhuang; Zhao, Hongyun; Zhang, Li

    2016-01-01

    The effects of treatments to programmed death ligand-1 (PD-L1) expression is unknown. The aim of this study was to investigate the impact of neoadjuvant chemotherapy (NACT) on PD-L1 expression in non-small cell lung cancer (NSCLC) patients. PD-L1 expression was detected by immunohistochemistry (IHC) method in 32 paired tumor specimens pre and post-NACT. The positivity of PD-L1 on tumor cells (TCs) changed from 75% to 37.5% after NACT (p = 0.003). Cases with IHC score of 1, 2, 3 all underwent apparent decrease (p = 0.007). However, no significant changes were observed on tumour-infiltrating immune cells (ICs) (p = 0.337). Subgroup and semiquantitative analyses all presented similar results. Moreover, patients with response to NACT presented significantly reduced PD-L1 expression on TCs (p = 0.004). Although it was not confirmed by the Cox proportional hazard regression model, there was an apparent difference in disease-free-survival (DFS) between negative-to-positive switch of PD-L1 status and the contrary group (median DFS: 9.6 versus 25.9, p = 0.005). Our data revealed that antecedent chemotherapy for NSCLC may results in inconsistency of PD-L1 expression. PD-L1 expression is suggested to be monitored around treatment and on serial samples, at least, on the latest tumor specimen. PMID:26822379

  1. Expression of programmed death ligand-1 on tumor cells varies pre and post chemotherapy in non-small cell lung cancer.

    PubMed

    Sheng, Jin; Fang, Wenfeng; Yu, Juan; Chen, Nan; Zhan, Jianhua; Ma, Yuxiang; Yang, Yunpeng; Yanhuang; Zhao, Hongyun; Zhang, Li

    2016-01-01

    The effects of treatments to programmed death ligand-1 (PD-L1) expression is unknown. The aim of this study was to investigate the impact of neoadjuvant chemotherapy (NACT) on PD-L1 expression in non-small cell lung cancer (NSCLC) patients. PD-L1 expression was detected by immunohistochemistry (IHC) method in 32 paired tumor specimens pre and post-NACT. The positivity of PD-L1 on tumor cells (TCs) changed from 75% to 37.5% after NACT (p = 0.003). Cases with IHC score of 1, 2, 3 all underwent apparent decrease (p = 0.007). However, no significant changes were observed on tumour-infiltrating immune cells (ICs) (p = 0.337). Subgroup and semiquantitative analyses all presented similar results. Moreover, patients with response to NACT presented significantly reduced PD-L1 expression on TCs (p = 0.004). Although it was not confirmed by the Cox proportional hazard regression model, there was an apparent difference in disease-free-survival (DFS) between negative-to-positive switch of PD-L1 status and the contrary group (median DFS: 9.6 versus 25.9, p = 0.005). Our data revealed that antecedent chemotherapy for NSCLC may results in inconsistency of PD-L1 expression. PD-L1 expression is suggested to be monitored around treatment and on serial samples, at least, on the latest tumor specimen. PMID:26822379

  2. Programmed death 1 and B and T lymphocyte attenuator immunoreceptors and their association with malignant T-lymphoproliferative disorders: brief review.

    PubMed

    Karakatsanis, Stamatis; Bertsias, George; Roussou, Paraskevi; Boumpas, Dimitrios

    2014-09-01

    Malignant T-cell lymphoproliferative diseases are relatively rare. T cells are activated through the T-cell receptor with the aid of costimulating molecules that can be either excitatory or inhibitory. Such pathways have been also implicated in mechanisms of malignant T-cell lymphoproliferative diseases' persistence and relapse by circumventing immune responses. To date, three major immunoinhibitory molecules have been recognized, namely programmed cell death-1 (PD-1), B and T lymphocyte attenuator (BTLA) and cytotoxic T lymphocyte antigen 4 (CTLA-4). Although CTLA-4 is considered the 'gatekeeper' of immune tolerance, PD-1 negatively regulates immune responses broadly, whereas BTLA activation has been shown to inhibit CD8+ cancer-specific T cells. Both PD-1 and BTLA downregulate proximal T-cell receptor signalling cascade and are involved in immune evasion of leukaemias and lymphomas, even after allogeneic stem cell transplantation. These immunoregulatory molecules can have seemingly a synergistic effect on weakening the immune response of patients with haematological malignancies, and their manipulation represents a very active field of preclinical as well as clinical interest. PMID:24038528

  3. Bifurcation analysis and potential landscapes of the p53-Mdm2 module regulated by the co-activator programmed cell death 5

    NASA Astrophysics Data System (ADS)

    Bi, Yuanhong; Yang, Zhuoqin; Zhuge, Changjing; Lei, Jinzhi

    2015-11-01

    The dynamics of p53 play important roles in the regulation of cell fate decisions in response to various stresses, and programmed cell death 5 (PDCD5) functions as a co-activator of p53 that modulates p53 dynamics. In the present paper, we investigated how p53 dynamics are modulated by PDCD5 during the deoxyribose nucleic acid damage response using methods of bifurcation analysis and potential landscape. Our results revealed that p53 activities display rich dynamics under different PDCD5 levels, including monostability, bistability with two stable steady states, oscillations, and the coexistence of a stable steady state (or two states) and an oscillatory state. The physical properties of the p53 oscillations were further demonstrated by the potential landscape in which the potential force attracts the system state to the limit cycle attractor, and the curl flux force drives coherent oscillation along the cyclic trajectory. We also investigated the efficiency with which PDCD5 induced p53 oscillations. We show that Hopf bifurcation can be induced by increasing the PDCD5 efficiency and that the system dynamics exhibited clear transition features in both barrier height and energy dissipation when the efficiency was close to the bifurcation point.

  4. Mycobacteria-responsive sonic hedgehog signaling mediates programmed death-ligand 1- and prostaglandin E2-induced regulatory T cell expansion

    PubMed Central

    Holla, Sahana; Stephen-Victor, Emmanuel; Prakhar, Praveen; Sharma, Meenu; Saha, Chaitrali; Udupa, Vibha; Kaveri, Srinivas V.; Bayry, Jagadeesh; Balaji, Kithiganahalli Narayanaswamy

    2016-01-01

    CD4+CD25+FoxP3+ regulatory T cells (Tregs) are exploited by mycobacteria to subvert the protective host immune responses. The Treg expansion in the periphery requires signaling by professional antigen presenting cells and in particularly dendritic cells (DC). However, precise molecular mechanisms by which mycobacteria instruct Treg expansion via DCs are not established. Here we demonstrate that mycobacteria-responsive sonic hedgehog (SHH) signaling in human DCs leads to programmed death ligand-1 (PD-L1) expression and cyclooxygenase (COX)-2-catalyzed prostaglandin E2 (PGE2) that orchestrate mycobacterial infection-induced expansion of Tregs. While SHH-responsive transcription factor GLI1 directly arbitrated COX-2 transcription, specific microRNAs, miR-324-5p and miR-338-5p, which target PD-L1 were downregulated by SHH signaling. Further, counter-regulatory roles of SHH and NOTCH1 signaling during mycobacterial-infection of human DCs was also evident. Together, our results establish that Mycobacterium directs a fine-balance of host signaling pathways and molecular regulators in human DCs to expand Tregs that favour immune evasion of the pathogen. PMID:27080341

  5. Caffeine-Induced Premature Chromosome Condensation Results in the Apoptosis-Like Programmed Cell Death in Root Meristems of Vicia faba

    PubMed Central

    Rybaczek, Dorota; Musiałek, Marcelina Weronika; Balcerczyk, Aneta

    2015-01-01

    We have demonstrated that the activation of apoptosis-like programmed cell death (AL-PCD) was a secondary result of caffeine (CF) induced premature chromosome condensation (PCC) in hydroxyurea-synchronized Vicia faba root meristem cells. Initiation of the apoptotic-like cell degradation pathway seemed to be the result of DNA damage generated by treatment with hydroxyurea (HU) [double-stranded breaks (DSBs) mostly] and co-treatment with HU/CF [single-stranded breaks (SSBs) mainly]. A single chromosome comet assay was successfully used to study different types of DNA damage (neutral variant–DSBs versus alkaline–DSBs or SSBs). The immunocytochemical detection of H2AXS139Ph and PARP-2 were used as markers for DSBs and SSBs, respectively. Acridine orange and ethidium bromide (AO/EB) were applied for quantitative immunofluorescence measurements of dead, dying and living cells. Apoptotic-type DNA fragmentation and positive TUNEL reaction finally proved that CF triggers AL-PCD in stressed V. faba root meristem cells. In addition, the results obtained under transmission electron microscopy (TEM) further revealed apoptotic-like features at the ultrastructural level of PCC-type cells: (i) extensive vacuolization; (ii) abnormal chromatin condensation, its marginalization and concomitant degradation; (iii) formation of autophagy-like vesicles (iv) protoplast shrinkage (v) fragmentation of cell nuclei and (vi) extensive degeneration of the cells. The results obtained have been discussed with respect to the vacuolar/autolytic type of plant-specific AL-PCD. PMID:26545248

  6. InPSR26, a Putative Membrane Protein, Regulates Programmed Cell Death during Petal Senescence in Japanese Morning Glory1[W][OA

    PubMed Central

    Shibuya, Kenichi; Yamada, Tetsuya; Suzuki, Tomoko; Shimizu, Keiichi; Ichimura, Kazuo

    2009-01-01

    The onset and progression of petal senescence, which is a type of programmed cell death (PCD), are highly regulated. Genes showing changes in expression during petal senescence in Japanese morning glory (Ipomoea nil) were isolated and examined to elucidate their function in PCD. We show here that a putative membrane protein, InPSR26, regulates progression of PCD during petal senescence in Japanese morning glory. InPSR26 is dominantly expressed in petal limbs and its transcript level increases prior to visible senescence symptoms. Transgenic plants with reduced InPSR26 expression (PSR26r lines) showed accelerated petal wilting, with PCD symptoms including cell collapse, ion and anthocyanin leakage, and DNA degradation accelerated in petals compared to wild-type plants. Transcript levels of autophagy- and PCD-related genes (InATG4, InATG8, InVPE, and InBI-1) were reduced in the petals of PSR26r plants. Autophagy visualized by monodansylcadaverine staining confirmed that autophagy is induced in senescing petal cells of wild-type plants and that the percentage of cells containing monodansylcadaverine-stained structures, most likely autophagosomes, was significantly lower in the petals of PSR26r plants, indicating reduced autophagic activity in the PSR26r plants. These results suggest that InPSR26 acts to delay the progression of PCD during petal senescence, possibly through regulation of the autophagic process. Our data also suggest that autophagy delays PCD in petal senescence. PMID:19036837

  7. Minocycline protects SH-SY5Y cells from 6-hydroxydopamine by inhibiting both caspase-dependent and -independent programmed cell death.

    PubMed

    Ossola, Bernardino; Lantto, Tiina A; Puttonen, Katja A; Tuominen, Raimo K; Raasmaja, Atso; Männistö, Pekka T

    2012-03-01

    Minocycline, a tetracyclic antibiotic, exerts both antiinflammation by acting on microglia and a direct protection on neurons by inhibiting the apoptotic machinery at various levels. However, we are not aware of any study investigating the effects of minocycline on caspase-independent programmed cell death (PCD) pathways. This study investigated these alternative pathways in SH-SY5Y cells, a human dopaminergic cell line, challenged with 6-hydroxydopamine (6-OHDA). Minocycline exhibited neuroprotection and inhibition of the toxin-induced caspase-3-like activity, DNA fragmentation, and chromatin condensation, hallmarks of apoptosis. Moreover, we revealed that 6-OHDA also activated caspase-independent PCDs (such as paraptosis), which required de novo protein synthesis. Additionally, by separately monitoring caspase-dependent and caspase-independent pathways, we showed that inhibition of apoptosis only partially explained the protective effect of minocycline. Moreover, we observed that minocycline reduced the protein content of cells but, unexpectedly, increased the protein synthesis. These findings suggest that minocycline may actually increase protein degradation, so it may also accelerate the clearance of aberrant proteins. In conclusion, we report for the first time evidence indicating that minocycline may inhibit PCD pathways that are additional to conventional apoptosis. PMID:22108958

  8. Bullous pemphigoid, an autoantibody-mediated disease, is a novel immune-related adverse event in patients treated with anti-programmed cell death 1 antibodies.

    PubMed

    Hwang, Shelley J E; Carlos, Giuliana; Chou, Shaun; Wakade, Deepal; Carlino, Matteo S; Fernandez-Penas, Pablo

    2016-08-01

    Anti-programmed cell death 1 (anti-PD1) antibodies such as pembrolizumab have shown improved progression-free and overall survival in patients with advanced melanoma. Of 124 patients reviewed in Westmead Hospital from May 2012 to November 2015, treated with pembrolizumab for advanced melanoma, we encountered three cases of bullous pemphigoid (BP). We have previously reported a case of BP. In two recent cases, BP was diagnosed early and treated promptly with potent topical or oral steroid. Patients on anti-PD1 antibodies are at a higher risk of developing cutaneous immune-related adverse events such as lichenoid reactions, eczema and vitiligo. No cases of BP were encountered in the previously published cohort of 260 melanoma patients treated with BRAF inhibitors; as such, it appears that BP is associated with anti-PD1 treatment rather than metastatic melanoma. BP appears to be another immune-related adverse event, and clinicians should have a low threshold for performing cutaneous biopsies and immunofluorescence studies in patients on anti-PD1 therapies. PMID:27031539

  9. [Increased expressions of programmed death 1 (PD-1) and its ligands in peripheral CD3(+) T cells and CD19(+) B cells in patients with hepatocellular carcinoma].

    PubMed

    Liu, Wei; Chai, Lin; Liang, Junli; Lu, Zhizhong; Yang, Siwei

    2016-09-01

    Objective To investigate the changes of programmed death 1 (PD-1) and ligands, as well as interferon-γ (IFN-γ) in peripheral blood mononuclear cells (PBMCs) of patients with hepatocellular carcinoma (HCC). Methods The peripheral blood was collected from 15 early HCC patients, 13 progressive HCC patients and 12 healthy volunteers. PBMCs was isolated from the peripheral blood. The expressions of PD-1, PD-L1 and PD-L2 in PBMCs were detected by flow cytometry; the serum level of IFN-γ was determined by ELISA; the correlation of PD-1 and IFN-γ was analyzed with Pearson's correlation and One-way ANOVA. Results The expression levels of PD-1, PD-L1 and PD-L2 in CD3(+) T cells and CD19(+) B cells and serum IFN-γ level in progressive HCC patients were significantly higher than those in the healthy group and early HCC patients. The expression levels of PD-1, PD-L1 and PD-L2 in the CD3(+) T cells and CD19(+) B cells of the HCC patients were positively correlated with IFN-γ. Conclusion The expression levels of PD-1, PD-L1 and PD-L2 increase in the PBMCs of HCC patients; PD-1 and PD-L1 are correlated with IFN-γ level. PMID:27609582

  10. Caffeine-Induced Premature Chromosome Condensation Results in the Apoptosis-Like Programmed Cell Death in Root Meristems of Vicia faba.

    PubMed

    Rybaczek, Dorota; Musiałek, Marcelina Weronika; Balcerczyk, Aneta

    2015-01-01

    We have demonstrated that the activation of apoptosis-like programmed cell death (AL-PCD) was a secondary result of caffeine (CF) induced premature chromosome condensation (PCC) in hydroxyurea-synchronized Vicia faba root meristem cells. Initiation of the apoptotic-like cell degradation pathway seemed to be the result of DNA damage generated by treatment with hydroxyurea (HU) [double-stranded breaks (DSBs) mostly] and co-treatment with HU/CF [single-stranded breaks (SSBs) mainly]. A single chromosome comet assay was successfully used to study different types of DNA damage (neutral variant-DSBs versus alkaline-DSBs or SSBs). The immunocytochemical detection of H2AXS139Ph and PARP-2 were used as markers for DSBs and SSBs, respectively. Acridine orange and ethidium bromide (AO/EB) were applied for quantitative immunofluorescence measurements of dead, dying and living cells. Apoptotic-type DNA fragmentation and positive TUNEL reaction finally proved that CF triggers AL-PCD in stressed V. faba root meristem cells. In addition, the results obtained under transmission electron microscopy (TEM) further revealed apoptotic-like features at the ultrastructural level of PCC-type cells: (i) extensive vacuolization; (ii) abnormal chromatin condensation, its marginalization and concomitant degradation; (iii) formation of autophagy-like vesicles (iv) protoplast shrinkage (v) fragmentation of cell nuclei and (vi) extensive degeneration of the cells. The results obtained have been discussed with respect to the vacuolar/autolytic type of plant-specific AL-PCD. PMID:26545248

  11. RNA-binding protein HuR sequesters microRNA-21 to prevent translation repression of proinflammatory tumor suppressor gene programmed cell death 4

    PubMed Central

    Poria, D K; Guha, A; Nandi, I; Ray, P S

    2016-01-01

    Translation control of proinflammatory genes has a crucial role in regulating the inflammatory response and preventing chronic inflammation, including a transition to cancer. The proinflammatory tumor suppressor protein programmed cell death 4 (PDCD4) is important for maintaining the balance between inflammation and tumorigenesis. PDCD4 messenger RNA translation is inhibited by the oncogenic microRNA, miR-21. AU-rich element-binding protein HuR was found to interact with the PDCD4 3′-untranslated region (UTR) and prevent miR-21-mediated repression of PDCD4 translation. Cells stably expressing miR-21 showed higher proliferation and reduced apoptosis, which was reversed by HuR expression. Inflammatory stimulus caused nuclear-cytoplasmic relocalization of HuR, reversing the translation repression of PDCD4. Unprecedentedly, HuR was also found to bind to miR-21 directly, preventing its interaction with the PDCD4 3′-UTR, thereby preventing the translation repression of PDCD4. This suggests that HuR might act as a ‘miRNA sponge‘ to regulate miRNA-mediated translation regulation under conditions of stress-induced nuclear-cytoplasmic translocation of HuR, which would allow fine-tuned gene expression in complex regulatory environments. PMID:26189797

  12. Programmed cell death 4 (PDCD4) mediates the sensitivity of gastric cancer cells to TRAIL-induced apoptosis by down-regulation of FLIP expression.

    PubMed

    Wang, Weiqiang; Zhao, Jingjing; Wang, Hongbin; Sun, Yonggang; Peng, Zhihong; Zhou, Gang; Fan, Lilin; Wang, Xingwei; Yang, Shiming; Wang, Rongquan; Fang, Dianchun

    2010-09-10

    Tumor necrosis factor-related apoptosis induced ligand (TRAIL) is an important apoptosis inducer in a variety of tumor cells. In the present study, we determined the underlying molecular mechanisms by which certain gastric cancer cells are resistant to TRAIL. We first detected expression of programmed cell death 4 (PDCD4) in three gastric cancer cell lines and identified its association with the sensitivity of gastric cancer cells to TRAIL. We then stably transfected PDCD4 cDNA or shRNA into these gastric cell lines. Our data showed that restoration of PDCD4 expression induced TRAIL sensitivity, whereas knockdown of PDCD4 expression reduced the sensitivity of these tumor cells to TRAIL treatment. PDCD4 was able to suppress expression of FLICE-inhibiting protein (FLIP), a negative regulator of apoptosis. Knockdow