Science.gov

Sample records for programmed death type-1

  1. Nivolumab, an Anti-Programmed Cell Death-1 Antibody, Induces Fulminant Type 1 Diabetes.

    PubMed

    Miyoshi, Yuka; Ogawa, Osamu; Oyama, Yu

    2016-01-01

    Programmed cell death-1 (PD-1), an immunoreceptor, is located on T cells and pro-B cells and interacts with its ligands to inhibit T cell activation and proliferation, thereby promoting immunological self-tolerance. Nivolumab, an anti-PD1 antibody, blocks PD-1 and can restore anticancer immune responses by abrogating PD-1 pathway-mediated T-cell inhibition. Autoimmune adverse events are expected with PD-1 therapy. Fulminant type 1 diabetes is the subtype of type 1 diabetes. The clinical feature is the extremely rapid progression of hyperglycemia and ketoacidosis. Here we describe a 66-year-old woman with advanced melanoma who was treated with nivolumab. After 4 months and six doses of the medicine, the patient was admitted to the hospital with complaints of nausea and vomiting. The laboratory data showed ketonuria, hyperglycemia (531 mg/dl), high anion gap metabolic acidosis, HbA1c (7.3%), and absence of insulin-secreting capacity. These data are compatible with the criteria of fulminant type 1 diabetes. The patient was diagnosed with diabetic ketoacidosis because of fulminant type 1 diabetes. The findings of this case indicated that nivolumab can cause fulminant type 1 diabetes. Diabetic ketoacidosis due to fulminant type 1 diabetes is potentially fatal condition. Thus, diabetic ketoacidosis due to fulminant type 1 diabetes should be considered in the differential diagnosis when patients treated with nivolumab complain of gastrointestinal symptoms. PMID:27297738

  2. HIV-1 gp120 induces type-1 programmed cell death through ER stress employing IRE1α, JNK and AP-1 pathway

    PubMed Central

    Shah, Ankit; Vaidya, Naveen K.; Bhat, Hari K.; Kumar, Anil

    2016-01-01

    The ER stress-mediated apoptosis has been implicated in several neurodegenerative diseases; however, its role in HIV/neuroAIDS remains largely unexplored. The present study was undertaken to assess the involvement and detailed mechanism of IRE1α pathway in HIV-1 gp120-mediated ER stress and its possible involvement in cell death. Various signaling molecules for IRE1α pathway were assessed using SVGA cells, primary astrocytes and gp120 transgenic mice, which demonstrated gp120-mediated increase in phosphorylated JNK, XBP-1 and AP-1 leading to upregulation of CHOP. Furthermore, HIV-1 gp120-mediated activation of IRE1α also increased XBP-1 splicing. The functional consequence of gp120-mediated ER stress was determined via assessment of gp120-mediated cell death using PI staining and MTT assay. The gp120-mediated cell death also involved caspase-9/caspase-3-mediated apoptosis. These findings were confirmed with the help of specific siRNA for IRE1α, JNK, AP-1, BiP and CHOP showing significant reduction in gp120-mediated CHOP expression. Additionally, silencing all the intermediates also reduced the gp120-mediated cell death and caspase-9/caspase-3 activation at differential levels. This study provides ER-stress as a novel therapeutic target in the management of gp120-mediated cell death and possibly in the treatment of neuroAIDS. PMID:26740125

  3. Programmed cell death

    SciTech Connect

    1995-12-31

    The purpose of this conference to provide a multidisciplinary forum for exchange of state-of-the-art information on the role programmed cell death plays in normal development and homeostasis of many organisms. This volume contains abstracts of papers in the following areas: invertebrate development; immunology/neurology; bcl-2 family; biochemistry; programmed cell death in viruses; oncogenesis; vertebrate development; and diseases.

  4. Mortality associated with neurofibromatosis type 1: A study based on Italian death certificates (1995-2006)

    PubMed Central

    2011-01-01

    Background Persons affected by neurofibromatosis type 1 (NF1) have a decreased survival, yet information on NF1-associated mortality is limited. Methods/Aim The National Mortality Database and individual Multiple-Causes-of-Death records were used to estimate NF1-associated mortality in Italy in the period 1995-2006, to compare the distribution of age at death (as a proxy of survival) to that of the general population and to evaluate the relation between NF1 and other medical conditions by determining whether the distribution of underlying causes of NF1-associated deaths differs from that of general population. Results Of the nearly 6.75 million deaths in the study period, 632 had a diagnosis of NF1, yet for nearly three-fourths of them the underlying cause was not coded as neurofibromatosis. The age distribution showed that NF1-associated deaths also occurred among the elderly, though mortality in early ages was high. The mean age for NF1-associated death was approximately 20 years lower than that for the general population. The gender differential may suggest that women are affected by more severe NF1-related complications, or they may simply reflect a greater tendency for NF1 to be reported on the death certificates of young women. Regarding the relation with other medical conditions, we found an excess, as the underlying cause of death, for malignant neoplasm of connective and other soft tissue and brain, but not for other sites. We also found an excess for obstructive chronic bronchitis and musculoskeletal system diseases among elderly persons. Conclusion This is the first nationally representative population-based study on NF1-associated mortality in Italy. It stresses the importance of the Multiple-Causes-of-Death Database in providing a more complete picture of mortality for conditions that are frequently not recorded as the underlying cause of death, or to study complex chronic diseases or diseases that have no specific International Classification of

  5. Causes of Death and Prognostic Factors in Multiple Endocrine Neoplasia Type 1: A Prospective Study

    PubMed Central

    Ito, Tetsuhide; Igarashi, Hisato; Uehara, Hirotsugu; Berna, Marc J.; Jensen, Robert T.

    2013-01-01

    Abstract Multiple endocrine neoplasia type 1 (MEN1) is classically characterized by the development of functional or nonfunctional hyperplasia or tumors in endocrine tissues (parathyroid, pancreas, pituitary, adrenal). Because effective treatments have been developed for the hormone excess state, which was a major cause of death in these patients in the past, coupled with the recognition that nonendocrine tumors increasingly develop late in the disease course, the natural history of the disease has changed. An understanding of the current causes of death is important to tailor treatment for these patients and to help identify prognostic factors; however, it is generally lacking. To add to our understanding, we conducted a detailed analysis of the causes of death and prognostic factors from a prospective long-term National Institutes of Health (NIH) study of 106 MEN1 patients with pancreatic endocrine tumors with Zollinger-Ellison syndrome (MEN1/ZES patients) and compared our results to those from the pooled literature data of 227 patients with MEN1 with pancreatic endocrine tumors (MEN1/PET patients) reported in case reports or small series, and to 1386 patients reported in large MEN1 literature series. In the NIH series over a mean follow-up of 24.5 years, 24 (23%) patients died (14 MEN1-related and 10 non-MEN1-related deaths). Comparing the causes of death with the results from the 227 patients in the pooled literature series, we found that no patients died of acute complications due to acid hypersecretion, and 8%–14% died of other hormone excess causes, which is similar to the results in 10 large MEN1 literature series published since 1995. In the 2 series (the NIH and pooled literature series), two-thirds of patients died from an MEN1-related cause and one-third from a non-MEN1-related cause, which agrees with the mean values reported in 10 large MEN1 series in the literature, although in the literature the causes of death varied widely. In the NIH and pooled

  6. Biomarkers of β-Cell Stress and Death in Type 1 Diabetes.

    PubMed

    Mirmira, Raghavendra G; Sims, Emily K; Syed, Farooq; Evans-Molina, Carmella

    2016-10-01

    The hallmark of type 1 diabetes (T1D) is a decline in functional β-cell mass arising as a result of autoimmunity. Immunomodulatory interventions at disease onset have resulted in partial stabilization of β-cell function, but full recovery of insulin secretion has remained elusive. Revised efforts have focused on disease prevention through interventions administered at earlier disease stages. To support this paradigm, there is a parallel effort ongoing to identify circulating biomarkers that have the potential to identify stress and death of the islet β-cells. Whereas no definitive biomarker(s) have been fully validated, several approaches hold promise that T1D can be reliably identified in the pre-symptomatic phase, such that either β-cell preservation or immunomodulatory agents might be employed in at-risk populations. This review summarizes the most promising protein- and nucleic acid-based biomarkers discovered to date and reviews the context in which they have been studied. PMID:27541297

  7. Life and death of β cells in Type 1 diabetes: A comprehensive review.

    PubMed

    Wilcox, Nicholas S; Rui, Jinxiu; Hebrok, Matthias; Herold, Kevan C

    2016-07-01

    Type 1 diabetes (T1D) is an autoimmune disorder characterized by the destruction of insulin-producing pancreatic β cells. Immune modulators have achieved some success in modifying the course of disease progression in T1D. However, there are parallel declines in C-peptide levels in treated and control groups after initial responses. In this review, we discuss mechanisms of β cell death in T1D that involve necrosis and apoptosis. New technologies are being developed to enable visualization of insulitis and β cell mass involving positron emission transmission that identifies β cell ligands and magnetic resonance imaging that can identify vascular leakage. Molecular signatures that identify β cell derived insulin DNA that is released from dying cells have been described and applied to clinical settings. We also consider changes in β cells that occur during disease progression including the induction of DNA methyltransferases that may affect the function and differentiation of β cells. Our findings from newer data suggest that the model of chronic long standing β cell killing should be reconsidered. These studies indicate that the pathophysiology is accelerated in the peridiagnosis period and manifest by increased rates of β cell killing and insulin secretory impairments over a shorter period than previously thought. Finally, we consider cellular explanations to account for the ongoing loss of insulin production despite continued immune therapy that may identify potential targets for treatment. The progressive decline in β cell function raises the question as to whether β cell failure that is independent of immune attack may be involved. PMID:27017348

  8. Effectiveness of a Regional Prepregnancy Care Program in Women With Type 1 and Type 2 Diabetes

    PubMed Central

    Murphy, Helen R.; Roland, Jonathan M; Skinner, Timothy C.; Simmons, David; Gurnell, Eleanor; Morrish, Nicholas J.; Soo, Shiu-Ching; Kelly, Suzannah; Lim, Boon; Randall, Joanne; Thompsett, Sarah; Temple, Rosemary C.

    2010-01-01

    OBJECTIVE To implement and evaluate a regional prepregnancy care program in women with type 1 and type 2 diabetes. RESEARCH DESIGN AND METHODS Prepregnancy care was promoted among patients and health professionals and delivered across 10 regional maternity units. A prospective cohort study of 680 pregnancies in women with type 1 and type 2 diabetes was performed. Primary outcomes were adverse pregnancy outcome (congenital malformation, stillbirth, or neonatal death), congenital malformation, and indicators of pregnancy preparation (5 mg folic acid, gestational age, and A1C). Comparisons were made with a historical cohort (n = 613 pregnancies) from the same units during 1999–2004. RESULTS A total of 181 (27%) women attended, and 499 women (73%) did not attend prepregnancy care. Women with prepregnancy care presented earlier (6.7 vs. 7.7 weeks; P < 0.001), were more likely to take 5 mg preconception folic acid (88.2 vs. 26.7%; P < 0.0001) and had lower A1C levels (A1C 6.9 vs. 7.6%; P < 0.0001). They had fewer adverse pregnancy outcomes (1.3 vs. 7.8%; P = 0.009). Multivariate logistic regression confirmed that in addition to glycemic control, lack of prepregnancy care was independently associated with adverse outcome (odds ratio 0.2 [95% CI 0.05–0.89]; P = 0.03). Compared with 1999–2004, folic acid supplementation increased (40.7 vs. 32.5%; P = 0.006) and congenital malformations decreased (4.3 vs. 7.3%; P = 0.04). CONCLUSIONS Regional prepregnancy care was associated with improved pregnancy preparation and reduced risk of adverse pregnancy outcome in type 1 and type 2 diabetes. Prepregnancy care had benefits beyond improved glycemic control and was a stronger predictor of pregnancy outcome than maternal obesity, ethnicity, or social disadvantage. PMID:21115765

  9. Sudden death due to rupture of the right internal carotid artery in neurofibromatosis type 1: A case report.

    PubMed

    Liang, Yue; Tong, Fang; Zhang, Lin; Li, Wenhe; Zhou, Yiwu

    2016-07-01

    Vascular involvement is a well-recognized manifestation of neurofibromatosis type 1 (NF1) which has the potential to be fatal when disrupted. We here present a case of sudden death due to the fatal arterial rupture resulted from infiltration of the neurofibromas. A 42-year-old man who suffered from NF1 presented a 1-h history of sudden onset of pain in his right cervical region. His condition worsened and became unconscious on his way to the emergency room. Despite resuscitation efforts, he died 30min later without regaining consciousness. Autopsy examination showed that a neurofibroma located around the right internal carotid artery, confirmed immunohistochemically with S-100, vimentin and CD34. Furthermore, proliferation of spindle cells positive for S-100 was seen in the wall of right internal carotid artery, which was disrupted and resulted in a hemorrhage. These findings suggest that the artery was disrupted by neurofibromas in the vascular wall, which led to fragility of the vessel. On the basis of these findings, we concluded that the cause of death was asphyxia resulting from airway obstruction compressed by the hematoma due to the arterial rupture. As the locality of the neurofibroma and hemorrhage were closed to the carotid baroreflex, we considered another possible mechanism of his sudden death, which could be cardiac inhibition induced by vagal stimulation. We hope this case will increase recognition of NF-1 vasculopathy when encountering any sudden death in NF1 patients. PMID:27497331

  10. Unusual cause of aborted sudden cardiac death in a teen athlete: homozygosity for the 4G allele of the plasminogen activase inhibitor type 1 gene.

    PubMed

    Phillips, Susie B; Batlivala, Sarosh; Knudson, Jarrod D

    2015-10-01

    Common aetiologies of sudden cardiac death in children include coronary anomalies, channelopathies, and cardiomyopathies. Less frequently, hypercoagulable states cause sudden arrest. We report an unusual case of aborted sudden cardiac death in a teenager, ultimately found to have homozygosity for the 4G allele of the plasminogen activase inhibitor type 1 gene. PMID:25498839

  11. Programmed Cell Death During Caenorhabditis elegans Development.

    PubMed

    Conradt, Barbara; Wu, Yi-Chun; Xue, Ding

    2016-08-01

    Programmed cell death is an integral component of Caenorhabditis elegans development. Genetic and reverse genetic studies in C. elegans have led to the identification of many genes and conserved cell death pathways that are important for the specification of which cells should live or die, the activation of the suicide program, and the dismantling and removal of dying cells. Molecular, cell biological, and biochemical studies have revealed the underlying mechanisms that control these three phases of programmed cell death. In particular, the interplay of transcriptional regulatory cascades and networks involving multiple transcriptional regulators is crucial in activating the expression of the key death-inducing gene egl-1 and, in some cases, the ced-3 gene in cells destined to die. A protein interaction cascade involving EGL-1, CED-9, CED-4, and CED-3 results in the activation of the key cell death protease CED-3, which is tightly controlled by multiple positive and negative regulators. The activation of the CED-3 caspase then initiates the cell disassembly process by cleaving and activating or inactivating crucial CED-3 substrates; leading to activation of multiple cell death execution events, including nuclear DNA fragmentation, mitochondrial elimination, phosphatidylserine externalization, inactivation of survival signals, and clearance of apoptotic cells. Further studies of programmed cell death in C. elegans will continue to advance our understanding of how programmed cell death is regulated, activated, and executed in general. PMID:27516615

  12. Setting up a Death Row Psychiatry Program

    PubMed Central

    2011-01-01

    Death row psychiatry contains a complex set of clinical, ethical, and legal questions. This Forensic Files column makes a case for correctional institutions starting death row programs to address these issues through uniform policies. A list of the relevant issues is provided. Specific issues discussed include death row psychiatric assessment, considering “justifiable” depression, treating for competency to be executed, and balancing boundaries between clinical and forensic work. PMID:21468293

  13. [Programmed cell death comes in many flavors].

    PubMed

    Cabon, Lauriane; Martinez-Torres, Ana-Carolina; Susin, Santos A

    2013-12-01

    Apoptosis is nowadays what comes first to your scientist mind when someone mentions cellular suicide. However this is not the sole form of programmed cell death and many other alternative or atypical pathways have now been described. These pathways are indeed rather preferred to apoptosis in some instances based on tissue origin, cell type or development stage of the target cell. In this review, we describe many different programmed cell death subtypes according to their characteristics. Discrete, brutal, final or singular cell death pathways all participate in the elimination of unwanted, damaged or dangerous cells in organisms hence contributing to our knowledge of this particular feature of living beings: dying! Through description of anoikis, necroptosis, entosis, netosis, pyroptosis or ferroptosis, we have no choice but to realize that programmed cell death comes in many flavors. PMID:24356142

  14. Feasibility of the SMART Project: A Text Message Program for Adolescents With Type 1 Diabetes

    PubMed Central

    Mehta, Priya; Monaghan, Maureen; Cogen, Fran; Streisand, Randi

    2014-01-01

    Abstract This study investigated response rates to the Self-Management and Research Technology Project, a 6-week text message program for adolescents with type 1 diabetes designed to provide diabetes self-management reminders and education. The rate of response to texts was high, with 78% of texts responded to during the 6-week period. Girls and participants who self-reported sending a large number of personal daily texts had higher response rates; other demographic and medical variables were unrelated to text response rates. Inclusion of mobile health technologies such as text messages in clinical care may be a unique, relevant method of intervention for youths with type 1 diabetes, regardless of age, socioeconomic status, or glycemic control. PMID:25647048

  15. Programmed death phenomena: from organelle to organism.

    PubMed

    Skulachev, Vladimir P

    2002-04-01

    Programmed death phenomena appear to be inherent not only in living cells (apoptosis), but also in subcellular organelles (e.g., self-elimination of mitochondria, called mitoptosis), organs (organoptosis), and even whole organisms (phenoptosis). In all these cases, the "Samurai law of biology"--it is better to die than to be wrong--seems to be operative. The operation of this law helps complicated living systems avoid the risk of ruin when a system of lower hierarchic position makes a significant mistake. Thus, mitoptosis purifies a cell from damaged and hence unwanted mitochondria; apoptosis purifies a tissue from unwanted cells; and phenoptosis purifies a community from unwanted individuals. Defense against reactive oxygen species (ROS) is probably one of the primary evolutionary functions of programmed death mechanisms. So far, it seems that ROS play a key role in the mito-, apo-, organo-, and phenoptoses, which is consistent with Harman's theory of aging. Here a concept is described that tries to unite Weismann's hypothesis of aging as an adaptive programmed death mechanism and the generally accepted alternative point of view that considers aging as an inevitable result of accumulation in an organism of occasional injuries. It is suggested that injury accumulation is monitored by a system(s) actuating a phenoptotic death program when the number of injuries reaches some critical level. The system(s) in question are organized in such a way that the lethal case appears to be a result of phenoptosis long before the occasional injuries make impossible the functioning of the organism. It is stressed that for humans these cruel regulations look like an atavism that, if overcome, might dramatically prolong the human life span. PMID:11976198

  16. Costs of Development and Maintenance of an Internet Program for Teens with Type 1 Diabetes

    PubMed Central

    Grey, Margaret; Liberti, Lauren; Whittemore, Robin

    2015-01-01

    Many adolescents with type 1 diabetes (T1D) have difficulty completing self-management tasks within the context of their social environments. Group-based approaches to psycho-educational support have been shown to prevent declines in glucose control, but are challenging to implement due to youths’ many activities and costs. A novel solution is providing psycho-educational support via the internet. The purpose of this study is to describe the cost of developing and maintaining two internet psycho-educational programs, both of which have been shown to improve health outcomes in adolescents with T1D. We calculated actual costs of personnel and programming in the development of TEENCOPE™ and Managing Diabetes, two highly interactive programs that were evaluated in a multi-site clinical trial (n=320). Cost calculations were set at U.S. dollars and converted to value for 2013 as expenses were incurred over 6 years. Development costs over 1.5 years totaled $324,609, with the majority of costs being for personnel to develop and write content in a creative and engaging format, to get feedback from teens on content and a prototype, and IT programming. Maintenance of the program, including IT support, a part-time moderator to assure safety of the discussion board (0.5–1 hour/week), and yearly update of content was $43,845/year, or $137.00 per youth over 4.5 years. Overall, program and site development were relatively expensive, but the program reach was high, including non-white youth from 4 geographically distinct regions. Once developed, maintenance was minimal. With greater dissemination, cost-per-youth would decrease markedly, beginning to offset the high development expense. PMID:26213677

  17. Drug Monitoring Programs Do Curb Overdose Deaths: Study

    MedlinePlus

    ... 159528.html Drug Monitoring Programs Do Curb Overdose Deaths: Study Opioid epidemic demands such measures, researcher says ... News) -- Drug monitoring programs appear to help reduce deaths from prescription painkillers called opioids, a new study ...

  18. Programmed cell death during quinoa perisperm development

    PubMed Central

    Maldonado, Sara

    2013-01-01

    At seed maturity, quinoa (Chenopodium quinoa Willd.) perisperm consists of uniform, non-living, thin-walled cells full of starch grains. The objective of the present study was to study quinoa perisperm development and describe the programme of cell death that affects the entire tissue. A number of parameters typically measured during programmed cell death (PCD), such as cellular morphological changes in nuclei and cytoplasm, endoreduplication, DNA fragmentation, and the participation of nucleases and caspase-like proteases in nucleus dismantling, were evaluated; morphological changes in cytoplasm included subcellular aspects related to starch accumulation. This study proved that, following fertilization, the perisperm of quinoa simultaneously accumulates storage reserves and degenerates, both processes mediated by a programme of developmentally controlled cell death. The novel findings regarding perisperm development provide a starting point for further research in the Amaranthaceae genera, such as comparing seeds with and without perisperm, and specifying phylogeny and evolution within this taxon. Wherever possible and appropriate, differences between quinoa perisperm and grass starchy endosperm—a morphologically and functionally similar, although genetically different tissue—were highlighted and discussed. PMID:23833197

  19. Cellular functions of programmed cell death 5.

    PubMed

    Li, Ge; Ma, Dalong; Chen, Yingyu

    2016-04-01

    Programmed cell death 5 (PDCD5) was originally identified as an apoptosis-accelerating protein that is widely expressed and has been well conserved during the process of evolution. PDCD5 has complex biological functions, including programmed cell death and immune regulation. It can accelerate apoptosis in different type of cells in response to different stimuli. During this process, PDCD5 rapidly translocates from the cytoplasm to the nucleus. PDCD5 regulates the activities of TIP60, HDAC3, MDM2 and TP53 transcription factors. These proteins form part of a signaling network that is disrupted in most, if not all, cancer cells. Recent evidence suggests that PDCD5 participates in immune regulation by promoting regulatory T cell function via the PDCD5-TIP60-FOXP3 pathway. The stability and expression of PDCD5 are finely regulated by other molecules, such as NF-κB p65, OTUD5, YAF2 and DNAJB1. PDCD5 is phosphorylated by CK2 at Ser119, which is required for nuclear translocation in response to genotoxic stress. In this review, we describe what is known about PDCD5 and its cellular functions. PMID:26775586

  20. The type 1 Interleukin 1 receptor is not required for the death of murine hippocampal dentate granule cells and microglia activation

    PubMed Central

    Harry, G. Jean; Funk, Jason; Lefebvre d’Hellencourt, Christian; Aoyama, Mineyoshi

    2008-01-01

    Alterations in the inflammatory process, neuronal death, and glia response have been observed under manipulation of the interleukin-1 (IL-1) cytokine and subsequent signaling through the type 1 IL-1 receptor (IL-1R1). To investigate the influence of IL-1R1 activation in the pathophysiology of a chemical-induced injury to the murine hippocampus, we examined the level and pattern of neuronal death and neuroinflammation in 25-day-old male mice exposed to trimethyltin hydroxide (2.0 mg/kg, i.p.). In IL-1R1 null (IL-1R1−/−) mice, the pattern and severity of dentate granule cell death was similar as compared to wild type mice. In both groups of mice, mRNA levels for TNFα and MIP-1α were elevated and the early activation of microglia, including their ability to progress to a phagocytic phenotype, was maintained. Compared to WT mice, IL-1R1−/− mice displayed a limited glial fibrillary acidic protein (GFAP) astrocytic response, as well as a preferential induction in mRNA levels of Fas signaling components. Cumulatively, these results indicate that IL-1R1 activation is not necessary for TMT-induced death of dentate granule neurons or local activation of microglia; however, IL-1R1 signaling is involved in mediating the structural response of astrocytes to injury and may also regulate apoptotic mechanisms by influencing Fas signaling components. PMID:18191113

  1. Programmed Cell Death in Unicellular Phytoplankton.

    PubMed

    Bidle, Kay D

    2016-07-11

    Unicellular, planktonic, prokaryotic and eukaryotic photoautotrophs (phytoplankton) have an ancient evolutionary history on Earth during which time they have played key roles in the regulation of marine food webs, biogeochemical cycles, and Earth's climate. Since they represent the basis of aquatic ecosystems, the manner in which phytoplankton die critically determines the flow and fate of photosynthetically fixed organic matter (and associated elements), ultimately constraining nutrient flow. Programmed cell death (PCD) and associated pathway genes, which are triggered by a variety of abiotic (nutrient, light, osmotic) and biotic (virus infection, allelopathy) environmental stresses, have an integral grip on cell fate, and have shaped the ecological success and evolutionary trajectory of diverse phytoplankton lineages. A combination of physiological, biochemical, and genetic techniques in model algal systems has demonstrated a conserved molecular and mechanistic framework of stress surveillance, signaling, and death activation pathways, involving collective and coordinated participation of organelles, redox enzymes, metabolites, and caspase-like proteases. This mechanistic understanding has provided insight into the integration of sensing and transduction of stress signals into cellular responses, and the mechanistic interfaces between PCD, cell stress and virus infection pathways. It has also provided insight into the evolution of PCD in unicellular photoautotrophs, the impact of PCD on the fate of natural phytoplankton assemblages and its role in aquatic biogeochemical cycles. PMID:27404255

  2. Predictive Efficacy Biomarkers of Programmed Cell Death 1/Programmed Cell Death 1 Ligand Blockade Therapy.

    PubMed

    Fang, Xiao-Na; Fu, Li-Wu

    2016-01-01

    Inhibitors of immune check-point molecule, programmed cell death 1 (PD-1) and its ligand, programmed cell death ligand 1 (PD-L1) have attracted much attention in cancer immunotherapy recently due to their durable antitumor effects in various malignances, especially the advanced ones. Unfortunately, only a fraction of patients with advanced tumors could benefit from anti-PD-1/PD-L1 therapy, while others still worsened. The key to this point is that there are no efficient biomarkers for screening anti-PD-1/PD-L1-sensitive patients. In this review, we aim at summarizing the latest advances of anti-PD-1/PDL1 immunotherapy and the potential predictive efficacy biomarkers to provide evidences for identifying anti-PD-1/PDL1- sensitive patients. The present article also includes the patent review coverage on this topic. PMID:26916881

  3. Programmed cell death in the plant immune system

    PubMed Central

    Coll, N S; Epple, P; Dangl, J L

    2011-01-01

    Cell death has a central role in innate immune responses in both plants and animals. Besides sharing striking convergences and similarities in the overall evolutionary organization of their innate immune systems, both plants and animals can respond to infection and pathogen recognition with programmed cell death. The fact that plant and animal pathogens have evolved strategies to subvert specific cell death modalities emphasizes the essential role of cell death during immune responses. The hypersensitive response (HR) cell death in plants displays morphological features, molecular architectures and mechanisms reminiscent of different inflammatory cell death types in animals (pyroptosis and necroptosis). In this review, we describe the molecular pathways leading to cell death during innate immune responses. Additionally, we present recently discovered caspase and caspase-like networks regulating cell death that have revealed fascinating analogies between cell death control across both kingdoms. PMID:21475301

  4. New Areas for Preventive Programing: Sudden Infant Death Syndrome.

    ERIC Educational Resources Information Center

    Lowman, Joseph

    Crisis intervention programs for persons experiencing the sudden death of family members or surviving natural disasters have been advocated as methods of primary prevention, although few have actually been implemented. A program utilizing nurses to deliver grief intervention to parents losing a baby to Sudden Infant Death Syndrome (SIDS) was…

  5. Programmed cell death for defense against anomaly and tumor formation

    SciTech Connect

    Kondo, Sohei; Norimura, Toshiyuki; Nomura, Taisei

    1995-12-31

    Cell death after exposure to low-level radiation is often considered evidence that radiation is poisonous, however small the dose. Evidence has been accumulating to support the notion that cell death after low-level exposure to radiation results from activation of suicidal genes {open_quote}programmed cell death{close_quote} or {open_quote}apoptosis{close_quote} - for the health of the whole body. This paper gives experimental evidence that embryos of fruit flies and mouse fetuses have potent defense mechanisms against teratogenic or tumorigenic injury caused by radiation and carcinogens, which function through programmed cell death.

  6. Regulation of Neuroinflammation through Programed Death-1/Programed Death Ligand Signaling in Neurological Disorders

    PubMed Central

    Zhao, Shangfeng; Li, Fengwu; Leak, Rehana K.; Chen, Jun; Hu, Xiaoming

    2014-01-01

    Immune responses in the central nervous system (CNS), which involve both resident glial cells and infiltrating peripheral immune cells, play critical roles in the progress of brain injuries and neurodegeneration. To avoid inflammatory damage to the compromised brain, the immune cell activities in the CNS are controlled by a plethora of chemical mediators and signal transduction cascades, such as inhibitory signaling through programed death-1 (PD-1) and programed death ligand (PD-L) interactions. An increasing number of recent studies have highlighted the importance of PD-1/PD-L pathway in immune regulation in CNS disorders such as ischemic stroke, multiple sclerosis, and Alzheimer’s disease. Here, we review the current knowledge of the impact of PD-1/PD-L signaling on brain injury and neurodegeneration. An improved understanding of the function of PD-1/PD-L in the cross-talk between peripheral immune cells, CNS glial cells, and non-immune CNS cells is expected to shed further light on immunomodulation and help develop effective and safe immunotherapies for CNS disorders. PMID:25232304

  7. Centenarian Rates and Life Expectancy Related to the Death Rates of Multiple Sclerosis, Asthma, and Rheumatoid Arthritis and the Incidence of Type 1 Diabetes in Children.

    PubMed

    Lens-Pechakova, Lilia S

    2016-02-01

    The autoimmune diseases are among the 10 leading causes of death for women and the number two cause of chronic illness in America as well as a predisposing factor for cardiovascular diseases and cancer. Patients of some autoimmune diseases have shown a shorter life span and are a model of accelerated immunosenescence. Conversely, centenarians are used as a model of successful aging and have shown several immune parameters that are better preserved and lower levels of autoantibodies. The study reported here focused on clarifying the connection between longevity and some autoimmune and allergic diseases in 29 developed Organisation for Economic Co-operation and Development (OECD) countries, because multidisciplinary analyses of the accelerated or delayed aging data could show a distinct relationship pattern, help to identify common factors, and determine new important factors that contribute to longevity and healthy aging. The relationships between the mortality rates data of multiple sclerosis (MS), rheumatoid arthritis (RA), asthma, the incidence of type 1 diabetes (T1D) from one side and centenarian rates (two sets) as well as life expectancy data from the other side were assessed using regression models and Pearson correlation coefficients. The data obtained correspond to an inverse linear correlation with different degrees of linearity. This is the first observation of a clear tendency of diminishing centenarian rates or life expectancy in countries having higher death rates of asthma, MS, and RA and a higher incidence of T1D in children. The conclusion is that most probably there are common mechanistic pathways and factors affecting the above diseases and at the same time but in the opposite direction the processes of longevity. Further study, comparing genetic data, mechanistic pathways, and other factors connected to autoimmune diseases with those of longevity could clarify the processes involved, so as to promote longevity and limit the expansion of those

  8. Expanding roles of programmed cell death in mammalian neurodevelopment.

    PubMed

    De Zio, Daniela; Giunta, Luigi; Corvaro, Marco; Ferraro, Elisabetta; Cecconi, Francesco

    2005-04-01

    Programmed cell death is an orchestrated form of cell death in which cells are actively involved in their own demise. During neural development in mammals, many progenitor cells, immature cells or differentiated cells undergo the most clearly characterized type of cell death, apoptosis. Several pathways of apoptosis have been linked to neural development, but according to the numerous and striking phenotypes observed when apoptotic genes are inactivated, the mitochondrial death-route is the most important pathway in this context. Here, we discuss the relative importance of pro-growth/pro-death factors in the control of neural tissue development. We also discuss the impact of studying programmed cell death in development in order to better understand the basis of several human diseases and embryonic defects of the nervous system. PMID:15797838

  9. Acute exposure to ethanol potentiates human immunodeficiency virus type 1 Tat-induced Ca(2+) overload and neuronal death in cultured rat cortical neurons.

    PubMed

    Brailoiu, Eugen; Brailoiu, G Cristina; Mameli, Giuseppe; Dolei, Antonina; Sawaya, Bassel E; Dun, Nae J

    2006-02-01

    A significant number of human immunodeficiency virus type 1 (HIV-1)-infected patients are alcoholics. Either alcohol or HIV alone induces morphological and functional damage to the nervous system. HIV-1 Tat is a potent transcriptional activator of the viral promoter, with the ability to modulate a number of cellular regulatory circuits including apoptosis and to cause neuronal injury. To further evaluate the involvement of alcohol in neuronal injury, the authors examined the effect of ethanol on Tat-induced calcium responses in rat cerebral cortical neurons, using microfluorimetric calcium determination. HIV Tat protein (10 or 500 nM) elicited two types of calcium responses in cortical neurons: a fast-onset, short-lasting response and a slow-onset, sustained response. The responses were concentration-dependent and diminished in calcium-free saline. A short exposure to ethanol (50 mM) potentiated both types of calcium response, which was markedly decreased when the cells were pretreated with BAPTA-AM (20 microM). In addition, an increase in the neurotoxic effect of Tat, which was assessed by trypan blue exclusion assay, was observed. The result led the authors to conclude that alcohol exposure significantly potentiates Tat-induced calcium overload and neuronal death. PMID:16595370

  10. Death Education in Paramedic Programs: A Nationwide Assessment.

    ERIC Educational Resources Information Center

    Smith, Tracy L.; Walz, Bruce J.

    1995-01-01

    A self-administered survey was sent to all U.S. paramedic programs (n=537) concerning aspects of death education, including method of instruction, educational supplements, assessment techniques, and integration into general course work. Of the 51% that responded, 95% offered death education, with the most common subjects being legal and ethical…

  11. Triggering of Programmed Erythrocyte Death by Alantolactone

    PubMed Central

    Alzoubi, Kousi; Calabrò, Salvatrice; Egler, Jasmin; Faggio, Caterina; Lang, Florian

    2014-01-01

    The sesquiterpene alantolactone counteracts malignancy, an effect at least in part due to stimulation of suicidal death or apoptosis of tumor cells. Signaling of alantolactone induced apoptosis involves altered gene expression and mitochondrial depolarization. Erythrocytes lack mitochondria and nuclei but may enter suicidal death or eryptosis, which is characterized by cell shrinkage and cell membrane scrambling with phosphatidylserine exposure at the erythrocyte surface. Cellular mechanisms involved in triggering of eryptosis include increase of cytosolic Ca2+-activity ([Ca2+]i) and oxidative stress. The present study explored, whether alantolactone stimulates eryptosis. To this end, erythrocyte volume was estimated from forward scatter, phosphatidylserine-exposure at the erythrocyte surface from FITC-annexin-V-binding, [Ca2+]i from Fluo3-fluorescence, ceramide abundance from binding of fluorescent antibodies, and oxidative stress from 2',7'-dichlorodihydrofluorescein-diacetate (DCFDA) fluorescence. As a result, a 48 h exposure of human erythrocytes to alantolactone (≥20 μM) significantly decreased erythrocyte forward scatter and increased the percentage of annexin-V-binding cells. Alantolactone significantly increased Fluo3 fluorescence (60 μM), ceramide abundance (60 μM) and DCFDA fluorescence (≥40 μM). The effect of alantolactone (60 μM) on annexin-V-binding was not significantly modified by removal of extracellular Ca2+. In conclusion, alantolactone stimulates suicidal erythrocyte death or eryptosis, an effect paralleled by increase of [Ca2+]i, ceramide abundance and oxidative stress. PMID:25533522

  12. Programmed cell death: many ways for cells to die decently.

    PubMed

    Jäättelä, Marja

    2002-01-01

    Apoptosis, a cell death programme mediated by the caspase family of cysteine proteases, is essential for appropriate removal of excess cells in many developmental and physiological settings. It would, however, be very dangerous for the organism to depend on a single protease family for clearance of unwanted and potentially dangerous cells. Indeed, the exclusive role of caspases in the execution of programmed cell death (PCD) has been challenged recently, and the understanding of the molecular control of alternative death pathways is emerging. Here, I review recently discovered triggers and molecular regulators of caspase-independent cell death programmes and discuss their potential as therapeutic targets for the treatment of cancer. PMID:12523503

  13. Anti program death-1/anti program death-ligand 1 in digestive cancers

    PubMed Central

    de Guillebon, Eléonore; Roussille, Pauline; Frouin, Eric; Tougeron, David

    2015-01-01

    Human tumors tend to activate the immune system regulatory checkpoints as a means of escaping immunosurveillance. For instance, interaction between program death-1 (PD-1) and program death-ligand 1 (PD-L1) will lead the activated T cell to a state of anergy. PD-L1 is upregulated on a wide range of cancer cells. Anti-PD-1 and anti-PD-L1 monoclonal antibodies (mAbs), called immune checkpoint inhibitors (ICIs), have consequently been designed to restore T cell activity. Accumulating data are in favor of an association between PD-L1 expression in tumors and response to treatment. A PD-L1 expression is present in 30% to 50% of digestive cancers. Multiple anti-PD-1 (nivolumab, pembrolizumab) and anti-PD-L1 mAbs (MPDL3280A, Medi4736) are under evaluation in digestive cancers. Preliminary results in metastatic gastric cancer with pembrolizumab are highly promising and phase II will start soon. In metastatic colorectal cancer (CRC), a phase III trial of MPDL3280A as maintenance therapy will shortly be initiated. Trials are also ongoing in metastatic CRC with high immune T cell infiltration (i.e., microsatellite instability). Major challenges are ahead in order to determine how, when and for which patients we should use these ICIs. New radiologic criteria to evaluate tumor response to ICIs are awaiting prospective validation. The optimal therapeutic sequence and association with cytotoxic chemotherapy needs to be established. Finally, biomarker identification will be crucial to selection of patients likely to benefit from ICIs. PMID:26306141

  14. The evolution of cell death programs as prerequisites of multicellularity.

    PubMed

    Huettenbrenner, Simone; Maier, Susanne; Leisser, Christina; Polgar, Doris; Strasser, Stephan; Grusch, Michael; Krupitza, Georg

    2003-06-01

    One of the hallmarks of multicellularity is that the individual cellular fate is sacrificed for the benefit of a higher order of life-the organism. The accidental death of cells in a multicellular organism results in swelling and membrane-rupture and inevitably spills cell contents into the surrounding tissue with deleterious effects for the organism. To avoid this form of necrotic death the cells of metazoans have developed complex self-destruction mechanisms, collectively called programmed cell death, which see to an orderly removal of superfluous cells. Since evolution never invents new genes but plays variations on old themes by DNA mutations, it is not surprising, that some of the genes involved in metazoan death pathways apparently have evolved from homologues in unicellular organisms, where they originally had different functions. Interestingly some unicellular protozoans have developed a primitive form of non-necrotic cell death themselves, which could mean that the idea of an altruistic death for the benefit of genetically identical cells predated the invention of multicellularity. The cell death pathways of protozoans, however, show no homology to those in metazoans, where several death pathways seem to have evolved in parallel. Mitochondria stands at the beginning of several death pathways and also determines, whether a cell has sufficient energy to complete a death program. However, the endosymbiotic bacterial ancestors of mitochondria are unlikely to have contributed to the recent mitochondrial death machinery and therefore, these components may derive from mutated eukaryotic precursors and might have invaded the respective mitochondrial compartments. Although there is no direct evidence, it seems that the prokaryotic-eukaryotic symbiosis created the space necessary for sophisticated death mechanisms on command, which in their distinct forms are major factors for the evolution of multicellular organisms. PMID:12787815

  15. The chromosome 16q region associated with ankylosing spondylitis includes the candidate gene tumour necrosis factor receptor type 1-associated death domain (TRADD)

    PubMed Central

    Pointon, Jennifer J; Harvey, David; Karaderi, Tugce; Appleton, Louise H; Farrar, Claire; Stone, Millicent A; Sturrock, Roger D; Reveille, John D; Weisman, Michael H; Ward, Michael M; Brown, Matthew A; Wordsworth, B Paul

    2010-01-01

    Objective To replicate and refine the reported association of ankylosing spondylitis (AS) with two non-synonymous single nucleotide polymorphisms (nsSNPs) on chromosome 16q22.1. Methods Firstly, 730 independent UK patients with AS were genotyped for rs9939768 and rs6979 and allele frequencies were compared with 2879 previously typed historic disease controls. Secondly, the two data sets were combined in meta-analyses. Finally, 5 tagging SNPs, located between rs9939768 and rs6979, were analysed in 1604 cases and 1020 controls. Results The association of rs6979 with AS was replicated, p=0.03, OR=1.14 (95% CI 1.01 to 1.28), and a trend for association with rs9939768 detected, p=0.06, OR=1.25 (95% CI 0.99 to 1.57). Meta-analyses revealed association of both SNPs with AS, p=0.0008, OR=1.31 (95% CI 1.12 to 1.54) and p=0.0009, OR=1.15 (95% CI 1.06 to 1.23) for rs9939768 and rs6979, respectively. New associations with rs9033 and rs868213 (p=0.00002, OR=1.23 (95% CI 1.12 to 1.36) and p=0.00002 OR=1.45 (95% CI 1.22 to 1.72), respectively, were identified. Conclusions The region on chromosome 16 that has been replicated in the present work is interesting as the highly plausible candidate gene, tumour necrosis factor receptor type 1 (TNFR1)-associated death domain (TRADD), is located between rs9033 and rs868213. It will require additional work to identify the primary genetic association(s) with AS. PMID:19854717

  16. Programmed Cell Death of Dendritic Cells in Immune Regulation

    PubMed Central

    Chen, Min; Wang, Jin

    2010-01-01

    Summary Programmed cell death is essential for the maintenance of lymphocyte homeostasis and immune tolerance. Dendritic cells (DCs), the most efficient antigen presenting cells, represent a small cell population in the immune system. However, DCs play major roles in the regulation of both innate and adaptive immune responses. Programmed cell death in DCs is essential for regulating DC homeostasis and consequently, the scope of immune responses. Interestingly, different DC subsets show varied turnover rates in vivo. The conventional DCs are relatively short-lived in most lymphoid organs, while plasmacytoid DCs are long-lived cells. Mitochondrion-dependent programmed cell death plays an important role in regulating spontaneous DC turnover. Antigen-specific T cells are also capable of killing DCs, thereby providing a mechanism for negative feedback regulation of immune responses. It has been shown that a surplus of DCs due to defects in programmed cell death leads to overactivation of lymphocytes and the onset of autoimmunity. Studying programmed cell death in DCs will shed light on the roles for DC turnover in the regulation of the duration and magnitude of immune responses in vivo, and in the maintenance of immune tolerance. PMID:20636805

  17. Programmed Cell Death and Complexity in Microbial Systems.

    PubMed

    Durand, Pierre M; Sym, Stuart; Michod, Richard E

    2016-07-11

    Programmed cell death (PCD) is central to organism development and for a long time was considered a hallmark of multicellularity. Its discovery, therefore, in unicellular organisms presents compelling questions. Why did PCD evolve? What is its ecological effect on communities? To answer these questions, one is compelled to consider the impacts of PCD beyond the cell, for death obviously lowers the fitness of the cell. Here, we examine the ecological effects of PCD in different microbial scenarios and conclude that PCD can increase biological complexity. In mixed microbial communities, the mode of death affects the microenvironment, impacting the interactions between taxa. Where the population comprises groups of relatives, death has a more explicit effect. Death by lysis or other means can be harmful, while PCD can evolve by providing advantages to relatives. The synchronization of death between individuals suggests a group level property is being maintained and the mode of death also appears to have had an impact during the origin of multicellularity. PCD can result in the export of fitness from the cell to the group level via re-usable resources and PCD may also provide a mechanism for how groups beget new groups comprising kin. Furthermore, PCD is a means for solving a central problem of group living - the toxic effects of death - by making resources in dying cells beneficial to others. What emerges from the data reviewed here is that while PCD carries an obvious cost to the cell, it can be a driver of complexity in microbial communities. PMID:27404254

  18. Do all programmed cell deaths occur via apoptosis?

    PubMed Central

    Schwartz, L M; Smith, S W; Jones, M E; Osborne, B A

    1993-01-01

    During development, large numbers of cells die by a nonpathological process referred to as programmed cell death. In many tissues, dying cells display similar changes in morphology and chromosomal DNA organization, which has been termed apoptosis. Apoptosis is such a widely documented phenomenon that many authors have assumed all programmed cell deaths occur by this process. Two well-characterized model systems for programmed cell death are (i) the death of T cells during negative selection in the mouse thymus and (ii) the loss of intersegmental muscles of the moth Manduca sexta at the end of metamorphosis. In this report we compare the patterns of cell death displayed by T cells and the intersegmental muscles and find that they differ in terms of cell-surface morphology, nuclear ultrastructure, DNA fragmentation, and polyubiquitin gene expression. Unlike the T cells, which are known to die via apoptosis, we find that the intersegmental muscles display few of the features that characterize apoptosis. These data suggest that more than one cell death mechanism is used during development. Images PMID:8430112

  19. Programed Death is Favored by Natural Selection in Spatial Systems

    NASA Astrophysics Data System (ADS)

    Werfel, Justin; Ingber, Donald E.; Bar-Yam, Yaneer

    2015-06-01

    Standard evolutionary theories of aging and mortality, implicitly based on mean-field assumptions, hold that programed mortality is untenable, as it opposes direct individual benefit. We show that in spatial models with local reproduction, programed deaths instead robustly result in long-term benefit to a lineage, by reducing local environmental resource depletion via spatiotemporal patterns causing feedback over many generations. Results are robust to model variations, implying that direct selection for shorter life span may be quite widespread in nature.

  20. Human Type 1 and 17 Responses in Latent Tuberculosis Are Modulated by Coincident Filarial Infection through Cytotoxic T Lymphocyte Antigen–4 and Programmed Death–1

    PubMed Central

    Babu, Subash; Bhat, Sajid Q.; Kumar, N. Pavan; Jayantasri, S.; Rukmani, S.; Kumaran, Paul; Gopi, P. G.; Kolappan, C.; Kumaraswami, V.; Nutman, Thomas B.

    2010-01-01

    Mycobacterium tuberculosis and filarial coinfection is highly prevalent, and the presence of a tissue-invasive helminth may modulate the predominant type 1 T helper (Th1; interferon [IFN]–γ–mediated) response needed to control M. tuberculosis infection. By analyzing the cellular responses to mycobacterial antigens in patients who had latent tuberculosis with or without filarial infection, we were able to demonstrate that filarial infection coincident with M. tuberculosis infection significantly diminishes M. tuberculosis–specific Th1 (interleukin [IL]–12 and IFN-γ) and type 17 T helper (Th17; IL-23 and IL-17) responses related to increased expression of cytotoxic T lymphocyte antigen (CTLA)–4 and programmed death (PD)–1. Blockade of CTLA-4 restored production of both IFN-γ and IL-17, whereas PD-1 blockade restored IFN-γ production only. Thus, coincident filarial infection exerted a profound inhibitory effect on protective mycobacteria-specific Th1 and Th17 responses in latent tuberculosis, suggesting a mechanism by which concomitant filarial (and other systemic helminth) infections predispose to the development of active tuberculosis in humans. PMID:19505258

  1. Oxidative Stress and Programmed Cell Death in Yeast

    PubMed Central

    Farrugia, Gianluca; Balzan, Rena

    2012-01-01

    Yeasts, such as Saccharomyces cerevisiae, have long served as useful models for the study of oxidative stress, an event associated with cell death and severe human pathologies. This review will discuss oxidative stress in yeast, in terms of sources of reactive oxygen species (ROS), their molecular targets, and the metabolic responses elicited by cellular ROS accumulation. Responses of yeast to accumulated ROS include upregulation of antioxidants mediated by complex transcriptional changes, activation of pro-survival pathways such as mitophagy, and programmed cell death (PCD) which, apart from apoptosis, includes pathways such as autophagy and necrosis, a form of cell death long considered accidental and uncoordinated. The role of ROS in yeast aging will also be discussed. PMID:22737670

  2. Motoneuron Programmed Cell Death in Response to proBDNF

    PubMed Central

    Taylor, AR; Gifondorwa, DJ; Robinson, MB; Strupe, JL; Prevette, D; Johnson, JE; Hempstead, BL; Oppenheim, RW; Milligan, CE

    2011-01-01

    Motoneurons (MN) as well as most neuronal populations undergo a temporally and spatially specific period of programmed cell death (PCD). Several factors have been considered to regulate the survival of MNs during this period, including availability of muscle-derived trophic support and activity. The possibility that target-derived factors may also negatively regulate MN survival has been considered, but not pursued. Neurotrophin precursors, through their interaction with p75NTR and sortilin receptors have been shown to induce cell death during development and following injury in the CNS. In this study, we find that muscle cells produce and secrete proBDNF. ProBDNF through its interaction with p75NTR and sortilin, promotes a caspase-dependent death of MNs in culture. We also provide data to suggest that proBDNF regulates MN PCD during development in vivo. PMID:21834083

  3. CD40L induces functional tunneling nanotube networks exclusively in dendritic cells programmed by mediators of type-1 immunity

    PubMed Central

    Zaccard, Colleen R.; Watkins, Simon C.; Kalinski, Pawel; Fecek, Ronald J.; Yates, Aarika L.; Salter, Russell D.; Ayyavoo, Velpandi; Rinaldo, Charles R.; Mailliard, Robbie B.

    2014-01-01

    The ability of dendritic cells (DC) to mediate CD4+ T cell help for cellular immunity is guided by instructive signals received during DC maturation, and the resulting pattern of DC responsiveness to the Th signal, CD40L. Furthermore, the professional transfer of antigenic information from migratory DC to lymph node-residing DC is critical for the effective induction of cellular immune responses. Here we report that, in addition to their enhanced IL-12p70 producing capacity, human DC matured in the presence of inflammatory mediators of type-1 immunity (DC1) are uniquely programmed to form networks of tunneling nanotube-like structures in response to CD40L-expressing Th cells or recombinant CD40L. This immunologic process of DC ‘reticulation’ facilitates intercellular trafficking of endosome-associated vesicles and Ag, but also pathogens such HIV-1, and is regulated by the opposing roles of IFN-γ and IL-4. The initiation of DC reticulation represents a novel helper function of CD40L and a superior mechanism of intercellular communication possessed by DC1, as well as a target for exploitation by pathogens to enhance direct cell-to-cell spread. PMID:25548234

  4. Programed Death is Favored by Natural Selection in Spatial Systems.

    PubMed

    Werfel, Justin; Ingber, Donald E; Bar-Yam, Yaneer

    2015-06-12

    Standard evolutionary theories of aging and mortality, implicitly based on mean-field assumptions, hold that programed mortality is untenable, as it opposes direct individual benefit. We show that in spatial models with local reproduction, programed deaths instead robustly result in long-term benefit to a lineage, by reducing local environmental resource depletion via spatiotemporal patterns causing feedback over many generations. Results are robust to model variations, implying that direct selection for shorter life span may be quite widespread in nature. PMID:26196833

  5. The Arabidopsis peptide kiss of death is an inducer of programmed cell death

    PubMed Central

    Blanvillain, Robert; Young, Bennett; Cai, Yao-min; Hecht, Valérie; Varoquaux, Fabrice; Delorme, Valérie; Lancelin, Jean-Marc; Delseny, Michel; Gallois, Patrick

    2011-01-01

    Programmed cell death (PCD) has a key role in defence and development of all multicellular organisms. In plants, there is a large gap in our knowledge of the molecular machinery involved at the various stages of PCD, especially the early steps. Here, we identify kiss of death (KOD) encoding a 25-amino-acid peptide that activates a PCD pathway in Arabidopsis thaliana. Two mutant alleles of KOD exhibited a reduced PCD of the suspensor, a single file of cells that support embryo development, and a reduced PCD of root hairs after a 55°C heat shock. KOD expression was found to be inducible by biotic and abiotic stresses. Furthermore, KOD expression was sufficient to cause death in leaves or seedlings and to activate caspase-like activities. In addition, KOD-induced PCD required light in leaves and was repressed by the PCD-suppressor genes AtBax inhibitor 1 and p35. KOD expression resulted in depolarization of the mitochondrial membrane, placing KOD above mitochondria dysfunction, an early step in plant PCD. A KOD∷GFP fusion, however, localized in the cytosol of cells and not mitochondria. PMID:21326210

  6. Necdin Protects Embryonic Motoneurons from Programmed Cell Death

    PubMed Central

    Aebischer, Julianne; Sturny, Rachel; Andrieu, David; Rieusset, Anne; Schaller, Fabienne; Geib, Sandrine; Raoul, Cédric; Muscatelli, Françoise

    2011-01-01

    NECDIN belongs to the type II Melanoma Associated Antigen Gene Expression gene family and is located in the Prader-Willi Syndrome (PWS) critical region. Necdin-deficient mice develop symptoms of PWS, including a sensory and motor deficit. However, the mechanisms underlying the motor deficit remain elusive. Here, we show that the genetic ablation of Necdin, whose expression is restricted to post-mitotic neurons in the spinal cord during development, leads to a loss of 31% of specified motoneurons. The increased neuronal loss occurs during the period of naturally-occurring cell death and is not confined to specific pools of motoneurons. To better understand the role of Necdin during the period of programmed cell death of motoneurons we used embryonic spinal cord explants and primary motoneuron cultures from Necdin-deficient mice. Interestingly, while Necdin-deficient motoneurons present the same survival response to neurotrophic factors, we demonstrate that deletion of Necdin leads to an increased susceptibility of motoneurons to neurotrophic factor deprivation. We show that by neutralizing TNFα this increased susceptibility of Necdin-deficient motoneurons to trophic factor deprivation can be reduced to the normal level. We propose that Necdin is implicated through the TNF-receptor 1 pathway in the developmental death of motoneurons. PMID:21912643

  7. Arabidopsis ACCELERATED CELL DEATH2 Modulates Programmed Cell DeathW⃞

    PubMed Central

    Yao, Nan; Greenberg, Jean T.

    2006-01-01

    The Arabidopsis thaliana chloroplast protein ACCELERATED CELL DEATH2 (ACD2) modulates the amount of programmed cell death (PCD) triggered by Pseudomonas syringae and protoporphyrin IX (PPIX) treatment. In vitro, ACD2 can reduce red chlorophyll catabolite, a chlorophyll derivative. We find that ACD2 shields root protoplasts that lack chlorophyll from light- and PPIX-induced PCD. Thus, chlorophyll catabolism is not obligatory for ACD2 anti-PCD function. Upon P. syringae infection, ACD2 levels and localization change in cells undergoing PCD and in their close neighbors. Thus, ACD2 shifts from being largely in chloroplasts to partitioning to chloroplasts, mitochondria, and, to a small extent, cytosol. ACD2 protects cells from PCD that requires the early mitochondrial oxidative burst. Later, the chloroplasts of dying cells generate NO, which only slightly affects cell viability. Finally, the mitochondria in dying cells have dramatically altered movements and cellular distribution. Overproduction of both ACD2 (localized to mitochondria and chloroplasts) and ascorbate peroxidase (localized to chloroplasts) greatly reduces P. syringae–induced PCD, suggesting a pro-PCD role for mitochondrial and chloroplast events. During infection, ACD2 may bind to and/or reduce PCD-inducing porphyrin-related molecules in mitochondria and possibly chloroplasts that generate reactive oxygen species, cause altered organelle behavior, and activate a cascade of PCD-inducing events. PMID:16387834

  8. Statins and Voriconazole Induce Programmed Cell Death in Acanthamoeba castellanii

    PubMed Central

    López-Arencibia, Atteneri; Sifaoui, Ines; Reyes-Batlle, María; Valladares, Basilio; Martínez-Carretero, Enrique; Piñero, José E.; Maciver, Sutherland K.; Lorenzo-Morales, Jacob

    2015-01-01

    Members of the genus Acanthamoeba are facultative pathogens of humans, causing a sight-threatening keratitis and a life-threatening encephalitis. In order to treat those infections properly, it is necessary to target the treatment not only to the trophozoite but also to the cyst. Furthermore, it may be advantageous to avoid parasite killing by necrosis, which may induce local inflammation. We must also avoid toxicity of host tissue. Many drugs which target eukaryotes are known to induce programmed cell death (PCD), but this process is poorly characterized in Acanthamoeba. Here, we study the processes of programmed cell death in Acanthamoeba, induced by several drugs, such as statins and voriconazole. We tested atorvastatin, fluvastatin, simvastatin, and voriconazole at the 50% inhibitory concentrations (IC50s) and IC90s that we have previously established. In order to evaluate this phenomenon, we investigated the DNA fragmentation, one of the main characteristics of PCD, with quantitative and qualitative techniques. Also, the changes related to phosphatidylserine exposure on the external cell membrane and cell permeability were studied. Finally, because caspases are key to PCD pathways, caspase activity was evaluated in Acanthamoeba. All the drugs assayed in this study induced PCD in Acanthamoeba. To the best of our knowledge, this is the first study where PCD induced by drugs is described quantitatively and qualitatively in Acanthamoeba. PMID:25733513

  9. Perturbations in the Lipid Profile of Individuals with Newly Diagnosed Type 1 Diabetes Mellitus: Lipidomics Analysis of a Diabetes Antibody Standardization Program Sample Subset

    SciTech Connect

    Sorensen, Christina M.; Ding, Jie; Zhang, Qibin; Alquier, Thierry; Zhao, Rui; Mueller, Patricia W.; Smith, Richard D.; Metz, Thomas O.

    2010-08-01

    Objectives: To characterize the lipid profile of individuals with newly diagnosed type 1 diabetes mellitus using LC-MS-based lipidomics and the accurate mass and time (AMT) tag approach. Design and methods: Lipids were extracted from plasma and sera of 10 subjects from the Diabetes Antibody Standardization Program (years 2000-2005) and 10 non-diabetic subjects and analyzed by capillary liquid chromatography coupled with a hybrid ion-trap-Fourier transform ion cyclotron resonance mass spectrometer. Lipids were identified and quantified using the AMT tag approach. Results: Five hundred sixty lipid features differentiated (q < 0.05) diabetic from healthy individuals in a partial least-squares analysis, characterizing of individuals with recently diagnosed type 1 diabetes mellitus. Conclusions: A lipid profile associated with newly diagnosed type 1 diabetes may aid in further characterization of biochemical pathways involved in lipid regulation or mobilization and lipotoxicity of pancreatic beta-cells.

  10. Predictive factors of activity of anti-programmed death-1/programmed death ligand-1 drugs: immunohistochemistry analysis

    PubMed Central

    Chakravarti, Nitin

    2015-01-01

    Anti-programmed death-1 (anti-PD1)/programmed death ligand-1 (PD-L1) therapeutic antibodies targeting regulatory pathways in T cells have recently shown to promising clinical effectiveness in several solid tumors by enhancing antitumor immune response. Immune checkpoint therapy has propelled therapeutic efforts opening a new field in cancer treatment. However, durable clinical response has been educed only in a fraction of patients, underlining the need to predictively select those patients most likely to respond, e.g., by detecting predictive biomarkers. Immunohistochemistry (IHC) detection of PD-L1 in tumor cells has been used in various trials of anti-PD-1/PD-L1 agents to try to select those patients most likely to respond. However, since there are different techniques and scoring systems, results have not been conclusive. Thus efforts are needed to develop standardized IHC assays as well as to explore additional biomarkers to evaluate and predict immune responses elicited by anti-PD-1/PD-L1 therapies. PMID:26798583

  11. Programmed Cell Death Initiation and Execution in Budding Yeast

    PubMed Central

    Strich, Randy

    2015-01-01

    Apoptosis or programmed cell death (PCD) was initially described in metazoans as a genetically controlled process leading to intracellular breakdown and engulfment by a neighboring cell . This process was distinguished from other forms of cell death like necrosis by maintenance of plasma membrane integrity prior to engulfment and the well-defined genetic system controlling this process. Apoptosis was originally described as a mechanism to reshape tissues during development. Given this context, the assumption was made that this process would not be found in simpler eukaryotes such as budding yeast. Although basic components of the apoptotic pathway were identified in yeast, initial observations suggested that it was devoid of prosurvival and prodeath regulatory proteins identified in mammalian cells. However, as apoptosis became extensively linked to the elimination of damaged cells, key PCD regulatory proteins were identified in yeast that play similar roles in mammals. This review highlights recent discoveries that have permitted information regarding PCD regulation in yeast to now inform experiments in animals. PMID:26272996

  12. The Molecular Ecophysiology of Programmed Cell Death in Marine Phytoplankton

    NASA Astrophysics Data System (ADS)

    Bidle, Kay D.

    2015-01-01

    Planktonic, prokaryotic, and eukaryotic photoautotrophs (phytoplankton) share a diverse and ancient evolutionary history, during which time they have played key roles in regulating marine food webs, biogeochemical cycles, and Earth's climate. Because phytoplankton represent the basis of marine ecosystems, the manner in which they die critically determines the flow and fate of photosynthetically fixed organic matter (and associated elements), ultimately constraining upper-ocean biogeochemistry. Programmed cell death (PCD) and associated pathway genes, which are triggered by a variety of nutrient stressors and are employed by parasitic viruses, play an integral role in determining the cell fate of diverse photoautotrophs in the modern ocean. Indeed, these multifaceted death pathways continue to shape the success and evolutionary trajectory of diverse phytoplankton lineages at sea. Research over the past two decades has employed physiological, biochemical, and genetic techniques to provide a novel, comprehensive, mechanistic understanding of the factors controlling this key process. Here, I discuss the current understanding of the genetics, activation, and regulation of PCD pathways in marine model systems; how PCD evolved in unicellular photoautotrophs; how it mechanistically interfaces with viral infection pathways; how stress signals are sensed and transduced into cellular responses; and how novel molecular and biochemical tools are revealing the impact of PCD genes on the fate of natural phytoplankton assemblages.

  13. Programmed cell death and the gene behind spinal muscular atrophy.

    PubMed Central

    Robinson, A

    1995-01-01

    A gene involved in the development of spinal muscular atrophy (SMA) has been found on human chromosome 5 after a 4-year search. Named the neuronal apoptosis inhibitor protein (NAIP) gene, it is believed to inhibit the normal process of apoptosis--the disintegration of single cells that results from programmed cell death--in motor neurons. The researchers who found the NAIP gene also discovered that healthy people carry one complete copy of the gene along with many other partial copies. Many children with SMA have the partial copies but not the complete gene. This discovery facilitates the accurate genetic diagnosis of SMA. But gene therapy for SMA will not be possible until researchers find a suitable vector to stably introduce activated and intact copies of the gene into the motor neurons of children with SMA in time to stop motor neuron loss. Images p1460-a PMID:7585374

  14. Programmed death-1 & its ligands: promising targets for cancer immunotherapy.

    PubMed

    Shrimali, Rajeev K; Janik, John E; Abu-Eid, Rasha; Mkrtichyan, Mikayel; Khleif, Samir N

    2015-01-01

    Novel strategies for cancer treatment involving blockade of immune inhibitors have shown significant progress toward understanding the molecular mechanism of tumor immune evasion. The preclinical findings and clinical responses associated with programmed death-1 (PD-1) and PD-ligand pathway blockade seem promising, making these targets highly sought for cancer immunotherapy. In fact, the anti-PD-1 antibodies, pembrolizumab and nivolumab, were recently approved by the US FDA for the treatment of unresectable and metastatic melanoma resistant to anticytotoxic T-lymphocyte antigen-4 antibody (ipilimumab) and BRAF inhibitor. Here, we discuss strategies of combining PD-1/PD-ligand interaction inhibitors with other immune checkpoint modulators and standard-of-care therapy to break immune tolerance and induce a potent antitumor activity, which is currently a research area of key scientific pursuit. PMID:26250412

  15. A Role for Programmed Cell Death in the Microbial Loop

    PubMed Central

    Durand, Pierre M.; Whitehead, Kenia; Baliga, Nitin S.

    2013-01-01

    The microbial loop is the conventional model by which nutrients and minerals are recycled in aquatic eco-systems. Biochemical pathways in different organisms become metabolically inter-connected such that nutrients are utilized, processed, released and re-utilized by others. The result is that unrelated individuals end up impacting each others' fitness directly through their metabolic activities. This study focused on the impact of programmed cell death (PCD) on a population's growth as well as its role in the exchange of carbon between two naturally co-occurring halophilic organisms. Flow cytometric, biochemical, 14C radioisotope tracing assays, and global transcriptomic analyses show that organic algal photosynthate released by Dunalliela salina cells undergoing PCD complements the nutritional needs of other non-PCD D. salina cells. This occurs in vitro in a carbon limited environment and enhances the growth of the population. In addition, a co-occurring heterotroph Halobacterium salinarum re-mineralizes the carbon providing elemental nutrients for the mixoheterotrophic chlorophyte. The significance of this is uncertain and the archaeon can also subsist entirely on the lysate of apoptotic algae. PCD is now well established in unicellular organisms; however its ecological relevance has been difficult to decipher. In this study we found that PCD in D. salina causes the release of organic nutrients such as glycerol, which can be used by others in the population as well as a co-occurring halophilic archaeon. H. salinarum also re-mineralizes the dissolved material promoting algal growth. PCD in D. salina was the mechanism for the flow of dissolved photosynthate between unrelated organisms. Ironically, programmed death plays a central role in an organism's own population growth and in the exchange of nutrients in the microbial loop. PMID:23667496

  16. Prodigiosin inhibits motility and activates bacterial cell death revealing molecular biomarkers of programmed cell death.

    PubMed

    Darshan, N; Manonmani, H K

    2016-12-01

    The antimicrobial activity of prodigiosin from Serratia nematodiphila darsh1, a bacterial pigment was tested against few food borne bacterial pathogens Bacillus cereus, Staphylococcus aureus, Pseudomonas aeruginosa and Escherichia coli. The mode of action of prodigiosin was studied. Prodigiosin induced bactericidal activity indicating a stereotypical set of biochemical and morphological feature of Programmed cell death (PCD). PCD involves DNA fragmentation, generation of ROS, and expression of a protein with caspase-like substrate specificity in bacterial cells. Prodigiosin was observed to be internalized into bacterial cells and was localized predominantly in the membrane and the nuclear fraction, thus, facilitating intracellular trafficking and then binding of prodigiosin to the bacterial DNA. Corresponding to an increasing concentration of prodigiosin, the level of certain proteases were observed to increase in bacteria studied, thus initiating the onset of PCD. Prodigiosin at a sub-inhibitory concentration inhibits motility of pathogens. Our observations indicated that prodigiosin could be a promising antibacterial agent and could be used in the prevention of bacterial infections. PMID:27460563

  17. Results of clinical trials with anti-programmed death 1/programmed death ligand 1 inhibitors in lung cancer

    PubMed Central

    González-Cao, María; Barrón, Feliciano; Riso, Aldo; Rosell, Rafael

    2015-01-01

    One of the main hallmarks of cancer is the capability of evading immune destruction. In order to drive tumor progression, malignant cells are able to promote immunosuppressive mechanisms avoiding recognition and elimination. Increasing knowledge of the mechanisms of immune tolerance has led to the identification of several membrane receptors strongly implicated in this cancer feature: the immune checkpoints. Among them, programmed death 1 (PD-1) receptors and their ligands have been identified as potential targets for a new anti-cancer therapeutic approach: the use of immune-modulatory monoclonal antibodies designed to interrupt the immune escape activated by the interaction of PD-1 receptors and their ligands. Five of these antibodies are now in their late stages of clinical development and this review will summarize their up-to-date efficacy and toxicity data. PMID:26798585

  18. Protective effect of FGF21 on type 1 diabetes-induced testicular apoptotic cell death probably via both mitochondrial- and endoplasmic reticulum stress-dependent pathways in the mouse model.

    PubMed

    Jiang, Xin; Zhang, Chi; Xin, Ying; Huang, Zhifeng; Tan, Yi; Huang, Yadong; Wang, Yonggang; Feng, Wenke; Li, Xiaokun; Li, Wei; Qu, Yaqin; Cai, Lu

    2013-05-10

    Fibroblast growth factor 21 (FGF21) is a novel member identified and was reported to express predominantly in pancreas, liver and adipose tissue, and relatively less in other organs, such as the testis. However, the role of FGF21 in the testis has never been addressed. The present study examined FGF21 expression at mRNA level by real-time RT-PCR assay in the testis of fasting and non-fasting mice or mice with type 1 diabetes that was induced with streptozotocin. We also examined the effect of Fgf21 gene deletion or supplementation of the exogenous FGF21 on the testicular apoptotic cell death spontaneously or induced by type 1 diabetes in FGF21 knockout (FGF21-KO) mice. Deletion of Fgf21 gene does not affect testicular cell proliferation, but significantly increases the spontaneous incidence of testicular TUNEL positive cells with increases in the Bax/Bcl2 expression ratio and apoptosis-inducing factor (AIF) expression. Diabetes induced significant increases in testicular TUNEL positive cells, Bax/Bcl2 expression ratio, AIF expression, CHOP and cleaved caspase-12 expression, and oxidative damage, but did not change the expression of cleaved caspase-3 and caspase-8. Deletion of Fgf21 gene also significantly enhances diabetes-induced TUNEL positive cells along with the increased expression of Bax/Bcl2 ratio, AIF, CHOP, cleaved caspase-12, and oxidative damage, which was significantly prevented by the supplementation of exogenous FGF21. These results suggest that Fgf21 gene may involve in maintaining normal spermatogenesis and also protect the germ cells from diabetes-induced apoptotic cell death probably via the prevention of diabetes-induced oxidative damage. PMID:23499715

  19. The Efficacy and Safety of Programmed Cell Death 1 and Programmed Cell Death 1 Ligand Inhibitors for Advanced Melanoma

    PubMed Central

    Guan, Xiuwen; Wang, Haijuan; Ma, Fei; Qian, Haili; Yi, Zongbi; Xu, Binghe

    2016-01-01

    Abstract The purpose of this study was to investigate the efficacy and safety of programmed cell death 1 (PD-1) and programmed cell death 1 ligand (PD-L1) inhibitors using a meta-analysis of present trials for advanced melanoma. A fully recursive literature search of the primary electronic databases for available trials was performed. The objective response rate (ORR) and the median progression-free survival (PFS) of clinical responses were considered the main endpoints to evaluate the efficacy, whereas Grade 3–4 adverse effects (AEs) were analyzed to evaluate safety. The ORR of PD-1 and PD-L1 inhibitors was 30% (95% CI: 25–35%). No significant difference in the ORR was observed after the comparisons of low-dose, median-dose, and high-dose cohorts. In addition, the rate of Grade 3–4 AEs was 9% (95% CI: 6–12%). According to the 3 randomized controlled trials that compared PD-1 inhibitors with chemotherapy, the difference between these 2 groups was found to be statistically significant with respect to the ORR, PFS and the incidence of Grade 3–4 AEs; that is, the relative risk (RR) of the ORR was 3.42 (95% CI: 2.49–4.69, P < 0.001), the hazard ratio (HR) of the PFS was 0.50 (95% CI: 0.44–0.58, P < 0.001), and the RR of Grade 3–4 AEs was 0.45 (95% CI: 0.31–0.65, P < 0.001). According to a meta-analysis of limited concurrent studies, PD-1 and PD-L1 inhibitors appear to be associated with improved response rates, superior response durability and tolerable toxicity in patients with advanced melanoma. PMID:26986169

  20. Programmed cell death in plants: A chloroplastic connection

    PubMed Central

    Ambastha, Vivek; Tripathy, Baishnab C; Tiwari, Budhi Sagar

    2015-01-01

    Programmed cell death (PCD) is an integral cellular program by which targeted cells culminate to demise under certain developmental and pathological conditions. It is essential for controlling cell number, removing unwanted diseased or damaged cells and maintaining the cellular homeostasis. The details of PCD process has been very well elucidated and characterized in animals but similar understanding of the process in plants has not been achieved rather the field is still in its infancy that sees some sporadic reports every now and then. The plants have 2 energy generating sub-cellular organelles- mitochondria and chloroplasts unlike animals that just have mitochondria. The presence of chloroplast as an additional energy transducing and ROS generating compartment in a plant cell inclines to advocate the involvement of chloroplasts in PCD execution process. As chloroplasts are supposed to be progenies of unicellular photosynthetic organisms that evolved as a result of endosymbiosis, the possibility of retaining some of the components involved in bacterial PCD by chloroplasts cannot be ruled out. Despite several excellent reviews on PCD in plants, there is a void on an update of information at a place on the regulation of PCD by chloroplast. This review has been written to provide an update on the information supporting the involvement of chloroplast in PCD process and the possible future course of the field. PMID:25760871

  1. The Evaluation of Two Death Education Programs for EMTs Using the Theory of Planned Behavior

    ERIC Educational Resources Information Center

    Smith-Cumberland, Tracy

    2006-01-01

    The goal of this study was to evaluate the effectiveness of two death education programs by comparing pretest and posttest scores of behavioral intentions and (reported) behavior of EMTs when at the scene of a death. After the interventions, the majority of EMTs intended to change their behavior at the scene of a death when compared to the control…

  2. Diabetes Type 1

    MedlinePlus

    ... blood sugar, levels are too high. With type 1 diabetes, your pancreas does not make insulin. Insulin ... eyes, kidneys, nerves, and gums and teeth. Type 1 diabetes happens most often in children and young ...

  3. Temporal rhythm of petal programmed cell death in Ipomoea purpurea.

    PubMed

    Gui, M-Y; Ni, X-L; Wang, H-B; Liu, W-Z

    2016-09-01

    Flowers are the main sexual reproductive organs in plants. The shapes, colours and scents of corolla of plant flowers are involved in attracting insect pollinators and increasing reproductive success. The process of corolla senescence was investigated in Ipomoea purpurea (Convolvulaceae) in this study. In the research methods of plant anatomy, cytology, cell chemistry and molecular biology were used. The results showed that at the flowering stage cells already began to show distortion, chromatin condensation, mitochondrial membrane degradation and tonoplast dissolution and rupture. At this stage genomic DNA underwent massive but gradual random degradation. However, judging from the shape and structure, aging characteristics did not appear until the early flower senescence stage. The senescence process was slow, and it was completed at the late stage of flower senescence with a withering corolla. We may safely arrive at the conclusion that corolla senescence of I. purpurea was mediated by programmed cell death (PCD) that occurred at the flowering stage. The corolla senescence exhibited an obvious temporal rhythm, which demonstrated a high degree of coordination with pollination and fertilization. PMID:27259176

  4. Analysis of Programmed Death-1 in Patients with Psoriatic Arthritis.

    PubMed

    Peled, Michael; Strazza, Marianne; Azoulay-Alfaguter, Inbar; Silverman, Gregg J; Scher, Jose U; Mor, Adam

    2015-08-01

    Programmed death-1 (PD-1) is an inhibitory co-receptor that is highly expressed in T lymphocytes that has been shown to downregulate inflammatory responses in several inflammatory diseases including systemic lupus erythematosus and rheumatoid arthritis. Yet, the role of PD-1 in psoriatic arthritis (PsA) has not been studied. In order to fill this gap, we measured the expression levels of PD-1 in peripheral T cells from patients with active disease. Twenty patients and fifteen age-matched healthy control subjects were recruited. The percentage of CD3(+)PD-1(+) T cells was measured by flow cytometry. Despite normal concentration of peripheral T cells, the expression levels of PD-1 were significantly higher in patients compared to healthy controls. Interestingly, among the patients, the expression levels inversely correlated with disease activity measured by disease activity scores (DAS28). PD-1 expression levels strongly correlated with the number of tender and swollen joints, but not with C-reactive protein (CRP) levels or psoriasis area and severity index (PASI). Functionally, in vitro ligation of PD-1 receptor in PsA T cells inhibited interleukin-2 (IL-2) secretion, Akt phosphorylation, and Rap1 activation. These findings suggest that PD-1 might serve as a biomarker for disease activity in PsA and highlight the need for additional studies in order to establish the role of PD-1 in PsA pathogenesis. PMID:25663558

  5. New-onset toxicity with programmed death-1 inhibitor rechallenge.

    PubMed

    Ludlow, Steven P; Andrews, Stephanie; Pasikhova, Yanina; Hill, Eboné

    2016-06-01

    Immunotherapy has become a mainstay in the treatment of metastatic melanoma. Cytotoxic T-lymphocyte-associated antigen-4 (CTLA-4) inhibitors and programmed death-1 (PD-1) inhibitors, which have been added more recently, represent two of the main classes of immunomodulating agents. PD-1 inhibitors are well tolerated and are known to have a decreased rate of occurrence of adverse effects compared with CTLA-4 inhibitors. However, the risk remains for serious immune-mediated adverse reactions. Given their long half and extended efficacy, treatment with a CTLA-4 inhibitor before use of a PD-1 inhibitor may increase the risk of adverse effects. In addition, caution should be exercised when rechallenging grade 3 or 4 adverse effects with the same agent or a different agent of the same class. The re-emergence of a previous toxicity may occur or, as found in this case, a new severe effect may arise. This article will present a case of fatal immune-related hepatoxicity in a patient treated with a CTLA-4 inhibitor, followed by treatment with a PD-1 inhibitor. The mechanisms of action and safety profiles for both classes of drugs will also be reviewed. PMID:26983078

  6. Cytokine induced expression of programmed death ligands in human neutrophils

    PubMed Central

    Bankey, Paul E.; Banerjee, Sanjib; Zucchiatti, Andrea; De, Mita; Sleem, Rami W.; Lin, Chuen-Fu L.; Miller-Graziano, Carol L.; De, Asit K.

    2010-01-01

    1. Summary Recent evidence indicates that human neutrophils can serve as non-professional antigen presenting cells (APC). Although expression of MHC class II and co-stimulatory molecules on human neutrophils is limited, these molecules can be significantly induced following in vitro exposure to the cytokines IFNγ and GM-CSF. Since professional APCs such as dendritic cells express both co-stimulatory and co-inhibitory molecules for activation and regulation of adaptive immunity, we determined whether cytokines induce increased expression of specific co-signaling molecules on human neutrophils. We report here that circulating human neutrophils express co-inhibitory molecules such as immunoglobulin–like transcript (ILT) 4 and 5, and also comparatively low and highly variable levels of ILT2 and 3, but the expression of these ILTs was not significantly changed by cytokine treatment. In contrast, we demonstrate for the first time that human peripheral blood neutrophils, although do not express the co-inhibitory molecule, programmed death ligand (PD-L) 1 on their surface, can express this molecule at moderate levels following cytokine exposure. Although moderate PD-L1 levels on healthy volunteers’ neutrophils were not inhibitory to T cells, our findings do not exclude a possible robust increase in neutrophil PD-L1 expression in pathological conditions with immunosuppressive functions. These results suggest a possible immunoregulatory role for human neutrophils in adaptive immunity. PMID:20123111

  7. The p53 family and programmed cell death

    PubMed Central

    Pietsch, E. Christine; Sykes, Stephen M.; McMahon, Steven B.; Murphy, Maureen E.

    2008-01-01

    The p53 tumor suppressor continues to hold distinction as the most frequently mutated gene in human cancer. The ability of p53 to induce programmed cell death, or apoptosis, of cells exposed to environmental or oncogenic stress constitutes a major pathway whereby p53 exerts its tumor suppressor function. In the past decade we have discovered that p53 is not alone in its mission to destroy damaged or aberrantly proliferating cells: it has two homologues, p63 and p73, that in various cellular contexts and stresses contribute to this process. In this review, the mechanisms whereby p53, and in some cases p63 and p73, induce apoptosis are discussed. Whereas other reviews have focused more extensively on the contribution of individual p53-regulated genes to apoptosis induction by this protein, in this review we focus more on those factors that mediate the decision between growth arrest and apoptosis by p53, p63 and p73, and on the post-translational modifications and protein-protein interactions that influence this decision. PMID:18955976

  8. A Traumatic Death Support Group Program: Applying an Integrated Conceptual Framework

    ERIC Educational Resources Information Center

    Walijarvi, Corrine M.; Weiss, Ann H.; Weinman, Maxine L.

    2012-01-01

    This article describes an 8-week, curriculum-based traumatic death support group program that is offered at Bo's Place, a grief and bereavement center in Houston, Texas. The program was implemented in 2006 in an effort to help family members who had experienced a death in the family by suicide, murder, accident, or sudden medical problem. The…

  9. Induction of Cell Death in Growing Human T-Cells and Cell Survival in Resting Cells in Response to the Human T-Cell Leukemia Virus Type 1 Tax.

    PubMed

    Mizuguchi, Mariko; Sasaki, Yuka; Hara, Toshifumi; Higuchi, Masaya; Tanaka, Yuetsu; Funato, Noriko; Tanaka, Nobuyuki; Fujii, Masahiro; Nakamura, Masataka

    2016-01-01

    Tax1 encoded by the human T-cell leukemia virus type 1 (HTLV-1) has been believed to dysregulate the expression of cellular genes involved in cell survival and mortality, leading to the development of adult T-cell leukemia (ATL). The function of Tax1 in ATL development however is still controversial, primarily because Tax1 induces cell cycle progression and apoptosis. To systemically understand cell growth phase-dependent induction of cell survival or cell death by Tax1, we established a single experimental system using an interleukin 2 (IL-2)-dependent human T-cell line Kit 225 that can be forced into resting phase by IL-2 deprivation. Introduction of Tax1 and HTLV-2 Tax (Tax2B) decreased mitochondrial activity alongside apoptosis in growing cells but not in resting cells. Cell cycle profile analysis indicated that Tax1 and Tax2B were likely to perturb the S phase in growing cells. Studies with Tax1 mutants and siRNA for NF-κB/RelA revealed that Tax1-mediated cell growth inhibition and apoptosis in growing Kit 225 cells depend on RelA. Interestingly, inactivation of the non-canonical NF-κB and p38 MAPK pathways relieved Tax1-mediated apoptosis, suggesting that the Tax1-NF-κB-p38 MAPK axis may be associated with apoptosis in growing cells. Inflammatory mediators such as CCL3 and CCL4, which are involved in oncogene-induced senescence (OIS), were induced by Tax1 and Tax2B in growing cells. In contrast, RelA silencing in resting cells reduced mitochondrial activity, indicating that NF-κB/RelA is also critical for Tax1-mediated cell survival. These findings suggest that Tax1-mediated cell survival and death depend on the cell growth phase. Both effects of Tax1 may be implicated in the long latency of HTLV-1 infection. PMID:26829041

  10. Induction of Cell Death in Growing Human T-Cells and Cell Survival in Resting Cells in Response to the Human T-Cell Leukemia Virus Type 1 Tax

    PubMed Central

    Mizuguchi, Mariko; Sasaki, Yuka; Hara, Toshifumi; Higuchi, Masaya; Tanaka, Yuetsu; Funato, Noriko; Tanaka, Nobuyuki; Fujii, Masahiro; Nakamura, Masataka

    2016-01-01

    Tax1 encoded by the human T-cell leukemia virus type 1 (HTLV-1) has been believed to dysregulate the expression of cellular genes involved in cell survival and mortality, leading to the development of adult T-cell leukemia (ATL). The function of Tax1 in ATL development however is still controversial, primarily because Tax1 induces cell cycle progression and apoptosis. To systemically understand cell growth phase-dependent induction of cell survival or cell death by Tax1, we established a single experimental system using an interleukin 2 (IL-2)-dependent human T-cell line Kit 225 that can be forced into resting phase by IL-2 deprivation. Introduction of Tax1 and HTLV-2 Tax (Tax2B) decreased mitochondrial activity alongside apoptosis in growing cells but not in resting cells. Cell cycle profile analysis indicated that Tax1 and Tax2B were likely to perturb the S phase in growing cells. Studies with Tax1 mutants and siRNA for NF-κB/RelA revealed that Tax1-mediated cell growth inhibition and apoptosis in growing Kit 225 cells depend on RelA. Interestingly, inactivation of the non-canonical NF-κB and p38 MAPK pathways relieved Tax1-mediated apoptosis, suggesting that the Tax1-NF-κB-p38 MAPK axis may be associated with apoptosis in growing cells. Inflammatory mediators such as CCL3 and CCL4, which are involved in oncogene-induced senescence (OIS), were induced by Tax1 and Tax2B in growing cells. In contrast, RelA silencing in resting cells reduced mitochondrial activity, indicating that NF-κB/RelA is also critical for Tax1-mediated cell survival. These findings suggest that Tax1-mediated cell survival and death depend on the cell growth phase. Both effects of Tax1 may be implicated in the long latency of HTLV-1 infection. PMID:26829041

  11. Role of mitochondrial remodeling in programmed cell death in Drosophila melanogaster.

    PubMed

    Goyal, Gaurav; Fell, Brennan; Sarin, Apurva; Youle, Richard J; Sriram, V

    2007-05-01

    The role of mitochondria in Drosophila programmed cell death remains unclear, although certain gene products that regulate cell death seem to be evolutionarily conserved. We find that developmental programmed cell death stimuli in vivo and multiple apoptotic stimuli ex vivo induce dramatic mitochondrial fragmentation upstream of effector caspase activation, phosphatidylserine exposure, and nuclear condensation in Drosophila cells. Unlike genotoxic stress, a lipid cell death mediator induced an increase in mitochondrial contiguity prior to fragmentation of the mitochondria. Using genetic mutants and RNAi-mediated knockdown of drp-1, we find that Drp-1 not only regulates mitochondrial fission in normal cells, but mediates mitochondrial fragmentation during programmed cell death. Mitochondria in drp-1 mutants fail to fragment, resulting in hyperplasia of tissues in vivo and protection of cells from multiple apoptotic stimuli ex vivo. Thus, mitochondrial remodeling is capable of modifying the propensity of cells to undergo death in Drosophila. PMID:17488630

  12. Signaling through C/EBP homologous protein and death receptor 5 and calpain activation differentially regulate THP-1 cell maturation-dependent apoptosis induced by Shiga toxin type 1.

    PubMed

    Lee, Moo-Seung; Cherla, Rama P; Lentz, Erin K; Leyva-Illades, Dinorah; Tesh, Vernon L

    2010-08-01

    Shiga toxins (Stxs) induce apoptosis via activation of the intrinsic and extrinsic pathways in many cell types. Toxin-mediated activation of the endoplasmic reticulum (ER) stress response was shown to be instrumental in initiating apoptosis in THP-1 myeloid leukemia cells. THP-1 cells responded to Shiga toxin type 1 (Stx1) in a cell maturation-dependent manner, undergoing rapid apoptosis in the undifferentiated state but reduced and delayed apoptosis in differentiated cells. The onset of apoptosis was associated with calpain activation and changes in expression of C/EBP homologous protein (CHOP), Bcl-2 family members, and death receptor 5 (DR5). Ligation of DR5 by tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) activates the extrinsic pathway of apoptosis. We show here that expression of TRAIL and DR5 is increased by Stx1 treatment. Addition of exogenous TRAIL enhances, and anti-TRAIL antibodies inhibit, Stx1-induced apoptosis of THP-1 cells. Silencing of CHOP or DR5 expression selectively prevented caspase activation, loss of mitochondrial membrane potential, and Stx1-induced apoptosis of macrophage-like THP-1 cells. In contrast, the rapid kinetics of apoptosis induction in monocytic THP-1 cells correlated with rates of calpain cleavage. The results suggest that CHOP-DR5 signaling and calpain activation differentially contribute to cell maturation-dependent Stx1-induced apoptosis. Inhibition of these signaling pathways may protect cells from Stx cytotoxicity. PMID:20515924

  13. Programmed death-1/programmed death-L1 signaling pathway and its blockade in hepatitis C virus immunotherapy

    PubMed Central

    Salem, Mohamed L; El-Badawy, Ahmed

    2015-01-01

    Chronic hepatitis C virus (HCV) infection is a public health issue that often progresses to life-threatening complications, including liver cirrhosis, fibrosis, and hepatocellular carcinoma. Impaired immune responses to HCV are key features of chronic HCV infection. Therefore, intervention strategies usually involve enhancing the immune responses against HCV. Cytotoxic CD8+ T lymphocytes (CTLs) play a critical role in the control of HCV infection. However, their cytolytic function can be impaired by the expression of co-inhibitory molecules. Programmed death-1 (PD-1) receptor and its ligand PD-L1 function in a T cell co-inhibitory pathway, which either blocks the function of CTLs or the differentiation of CD8+ T cells. During chronic HCV infection, the immune inhibitory receptor PD-1 is upregulated on dysfunctional HCV-specific CD8+ T cells. As such, blockade of the PD-1/PD-L1 pathway in these CD8+ T cells might restore their functional capabilities. Indeed, clinical trials using therapies to block this pathway have shown promise in the fostering of anti-HCV immunity. Understanding how chronic HCV infection induces upregulation of PD-1 on HCV specific T cells and how the PD-1/PD-L1 interaction develops HCV specific T cell dysfunction will accelerate the development of an efficacious prophylactic and therapeutic vaccination against chronic HCV infections, which will significantly improve HCV treatments and patient survival. In this review, we discuss the relationship between PD-1 expression and clinical responses and the potential use of PD-1 blockade for anti-HCV therapy. PMID:26483866

  14. [Programmed cell death as a target to interrupt the aging program].

    PubMed

    Severin, F F; Skulachev, V P

    2009-01-01

    There are two opposite points of view on aging of organisms. The canonic concept assumes that aging is a stochastic process consisting in age-dependent accumulation of occasional injuries in living systems. However, many pieces of evidence are recently obtained in favor of the alternative scheme suggesting that aging is genetically programmed being the final step of ontogenesis. The latter concept predicts that (i) non-aging species should exist who has lost the aging program and (ii) the program in question can experimentally be interrupted by manipulating with corresponding genes or by low molecules operating as inhibitors of execution of aging program. In this paper, we summarize observations which are consistent with two above predictions. In both cases, interruption of the aging program is based upon inhibition of programmed cell death (apoptosis) mediated by mitochondrial reactive oxygen species (ROS). It is stated that the main difference between young and old multicellular organisms consists in the cellularity, i. e. in number of functional cells in organs or tissues rather than in quality of these cells. The cellularity decreases due to domination of apoptosis over proliferation in aging organisms. This means that apoptosis appears to be the basis for aging program. A pharmacological approach to switch off the aging program is considered, which is used mitochondria-targeted antioxidants and uncouplers. Such compounds prevent mitochondrial oxidative stress increasing with age and stimulating the age-dependent apoptosis. PMID:19827675

  15. Diabetes Type 1

    MedlinePlus

    Diabetes means your blood glucose, or blood sugar, levels are too high. With type 1 diabetes, your pancreas does not make insulin. Insulin is ... kidneys, nerves, and gums and teeth. Type 1 diabetes happens most often in children and young adults ...

  16. A Bereavement Support Program for Survivors of Cancer Deaths: A Description and Evaluation.

    ERIC Educational Resources Information Center

    Souter, Susan J.; Moore, Timothy E.

    1990-01-01

    Describes bereavement support program for survivors of cancer deaths developed by Riverdale Hospital in Toronto, Ontario. Presents detailed program evaluation which asked bereaved survivors who were program participants for one year to evaluate program aspects and facilitation of their grief by volunteers. Recommendations for expansion and…

  17. PROGRAMMED CELL DEATH IN EXTRAOCULAR MUSCLE TENDON/SCLERA PRECURSORS

    EPA Science Inventory

    Abstract

    Purpose: This study was designed to examine the occurrence of natural cell death in the periocular mesenchyme of mouse embryos.

    Methods: Vital staining with LysoTracker Red and Nile blue sulphate as well as terminal nick end labeling (TUNEL) were utiliz...

  18. Type 1 diabetes

    PubMed Central

    Atkinson, Mark A; Eisenbarth, George S; Michels, Aaron W

    2015-01-01

    Over the past decade, knowledge of the pathogenesis and natural history of type 1 diabetes has grown substantially, particularly with regard to disease prediction and heterogeneity, pancreatic pathology, and epidemiology. Technological improvements in insulin pumps and continuous glucose monitors help patients with type 1 diabetes manage the challenge of lifelong insulin administration. Agents that show promise for averting debilitating disease-associated complications have also been identified. However, despite broad organisational, intellectual, and fiscal investments, no means for preventing or curing type 1 diabetes exists, and, globally, the quality of diabetes management remains uneven. This Seminar discusses current progress in epidemiology, pathology, diagnosis, and treatment of type 1 diabetes, and prospects for an improved future for individuals with this disease. PMID:23890997

  19. Implementation Of Prescription Drug Monitoring Programs Associated With Reductions In Opioid-Related Death Rates.

    PubMed

    Patrick, Stephen W; Fry, Carrie E; Jones, Timothy F; Buntin, Melinda B

    2016-07-01

    Over the past two decades the number of opioid pain relievers sold in the United States rose dramatically. This rise in sales was accompanied by an increase in opioid-related overdose deaths. In response, forty-nine states (all but Missouri) created prescription drug monitoring programs to detect high-risk prescribing and patient behaviors. Our objectives were to determine whether the implementation or particular characteristics of the programs were effective in reducing opioid-related overdose deaths. In adjusted analyses we found that a state's implementation of a program was associated with an average reduction of 1.12 opioid-related overdose deaths per 100,000 population in the year after implementation. Additionally, states whose programs had robust characteristics-including monitoring greater numbers of drugs with abuse potential and updating their data at least weekly-had greater reductions in deaths, compared to states whose programs did not have these characteristics. We estimate that if Missouri adopted a prescription drug monitoring program and other states enhanced their programs with robust features, there would be more than 600 fewer overdose deaths nationwide in 2016, preventing approximately two deaths each day. PMID:27335101

  20. Queen pheromone regulates programmed cell death in the honey bee worker ovary.

    PubMed

    Ronai, I; Oldroyd, B P; Vergoz, V

    2016-10-01

    In social insect colonies the presence of a queen, secreting her pheromones, is a key environmental cue for regulating the reproductive state of workers. However, until recently the proximate molecular mechanisms underlying facultative worker sterility were unidentified. Studies into worker oogenesis in the honey bee (Apis mellifera) have indicated that programmed cell death is central to the regulation of oogenesis. Here we investigate how queen pheromone, age of the worker and ovary state affect both programmed cell death and cell number in worker ovaries. We describe a novel method to simultaneously measure programmed cell death (caspase activity) and live cell number (estimated from the amount of adenosine triphosphate) in an insect tissue. Workers exposed to queen pheromone have higher levels of caspase activity in the ovary than those not exposed. Our results suggest that queen pheromone triggers programmed cell death at the mid-oogenesis checkpoint causing the abortion of worker oocytes and reproductive inhibition of the worker caste. Nonetheless, high caspase activity is present in activated ovaries from workers not exposed to queen pheromone. This caspase activity is most likely to be from the nurse cells undergoing programmed cell death, in late oogenesis, for normal oocyte development. Our study shows that the social environment of an organism can influence programmed cell death within a tissue. PMID:27321063

  1. How France launched its donation after cardiac death program.

    PubMed

    Antoine, C; Mourey, F; Prada-Bordenave, E

    2014-02-01

    On the basis of the literature and results presented at the 6th International Conference, donation after cardio-circulatory death provides a significant, practical, additional high quality source of transplantable organs. The vast majority of DCD are 'controlled' Maastricht category III donors. In 2010, the parliamentary information mission on the revision of the bioethics laws invited the Intensive Care Societies to debate and to make recommendations to implement controlled donation after circulatory death. They came to the conclusion that such retrieval is possible in France and insisted on the medical criteria that frame it: the writing of the medical procedures, the ethical aspects and the delay. The major recommendations of the ethics committees were firstly, The WLST decision is independent of the possibility of organ donation; secondly, the strict respect of "The dead donor and organ transplantation rule" and the updated national guidance for the WLST; thirdly, the drafting of a nationally agreed protocol defining the mandatory conditions to determine death and to perform procurement and transplantation. Organ donation after WLST will be authorised only in pilot centres with a locally agreed WLST policy including external second opinion and written transcript of the WLST decision, experienced intensive care staff, a local organ procurement coordination team familiar with DBD and DCD protocols and only in hospitals authorised for organ procurement. It is important to have an optimal and standardized national guidance to limit the known risk factors of graft failure (donor and recipient choice, warm and cold ischemia time), to increase acceptance by medical community and civil society and to improve results and allow more powerful analysis. PMID:24388490

  2. Reducing stress and supporting positive relations in families of young children with type 1 diabetes: A randomized controlled study for evaluating the effects of the DELFIN parenting program

    PubMed Central

    2012-01-01

    Background To assess initial efficacy and feasibility of a structured behavioural group training (DELFIN) for parents of children with diabetes type 1, in order to reduce parenting stress and to improve parenting skills. Methods A randomized controlled study was conducted between July 2008 and September 2010, at a children’s hospital in Hannover with parents of children with type 1 diabetes (2–10 yrs) (intervention group n = 37; control group n = 28). Parenting skills, parents’ psychological burden, children’s behavioural difficulties and quality of metabolic control were assessed before, 3 months after and 12 months after participating in the training program. Results In the intervention group parenting behaviour in conflict situations improved significantly after 3 months (Z = −3.28; p ≤ 0.001). It remained stable over 12 months (Z = −2.94; p ≤ 0.01). Depression and anxiety scores of parents decreased (Z = −1.93; p ≤ .05; Z = −2.02; p ≤ .05). Even though the outcome in the intervention group was more positive, the differences between both study arms failed to reach statistical significance. Unexpectedly parenting behaviour in the control group improved also (Z = −2.45; p ≤ .05). Anxiety as well as stress scores decreased in this group (Z = −2.02; p ≤ .05 and Z = −2.11; p ≤ .05). In both groups the initial metabolic control was good and without significant differences (A1c 7.2±0.8% vs. 7.1±0.4%; p > 0.5). It remained stable in the DELFIN group (A1c 7.1±0.8%; p > 0.5), but it increased slightly in controls (A1c 7.3±0.5%; Z = −2.79; p = .005). Conclusions This study has brought first evidence for the efficacy and feasibility of the program. A multicentre study with a larger sample is necessary to confirm these first results. PMID:22994843

  3. Costimulatory molecule programmed death-1 in the cytotoxic response during chronic hepatitis C.

    PubMed

    Larrubia, Juan-Ramón; Benito-Martínez, Selma; Miquel, Joaquín; Calvino, Miryam; Sanz-de-Villalobos, Eduardo; Parra-Cid, Trinidad

    2009-11-01

    Hepatitis C virus (HCV)-specific CD8(+) T cells play an important role in the resolution of HCV infection. Nevertheless, during chronic hepatitis C these cells lack their effector functions and fail to control the virus. HCV has developed several mechanisms to escape immune control. One of these strategies is the up-regulation of negative co-stimulatory molecules such us programmed death-1 (PD-1). This molecule is up-regulated on intrahepatic and peripheral HCV-specific cytotoxic T cells during acute and chronic phases of the disease, whereas PD-1 expression is low in resolved infection. PD-1 expressing HCV-specific CD8(+) T cells are exhausted with impairment of several effector mechanisms, such as: type-1 cytokine production, expansion ability after antigen encounter and cytotoxic ability. However, PD-1 associated exhaustion can be restored by blocking the interaction between PD-1 and its ligand (PD-L1). After this blockade, HCV-specific CD8(+) T cells reacquire their functionality. Nevertheless, functional restoration depends on PD-1 expression level. High PD-1-expressing intrahepatic HCV-specific CD8(+) T cells do not restore their effector abilities after PD-1/PD-L1 blockade. The mechanisms by which HCV is able to induce PD-1 up-regulation to escape immune control are unknown. Persistent TCR stimulation by a high level of HCV antigens could favour early PD-1 induction, but the interaction between HCV core protein and gC1q receptor could also participate in this process. The PD-1/PD-L1 pathway modulation could be a therapeutic strategy, in conjunction with the regulation of others co-stimulatory pathways, in order to restore immune response against HCV to succeed in clearing the infection. PMID:19891011

  4. Type 1 Diabetes Facts

    MedlinePlus

    ... rid of it. Whom T1D Affects Type 1 diabetes strikes both children and adults at any age. It comes on suddenly, causes ... their children might develop the disease.” — Nicky Hider, adult, New York CDC National Diabetes Statistics Report, 2014 Impreatore, et al. 2012. Diab ...

  5. Apoptosis and Beyond: Cytometry in Studies of Programmed Cell Death

    PubMed Central

    Wlodkowic, Donald; Telford, William; Skommer, Joanna; Darzynkiewicz, Zbigniew

    2012-01-01

    A cell undergoing apoptosis demonstrates multitude of characteristic morphological and biochemical features, which vary depending on the inducer of apoptosis, cell type and the “time window” at which the process of apoptosis is observed. Because the gross majority of apoptotic hallmarks can be revealed by flow and image cytometry, the cytometric methods become a technology of choice in diverse studies of cellular demise. Variety of cytometric methods designed to identify apoptotic cells, detect particular events of apoptosis and probe mechanisms associated with this mode of cell death have been developed during the past two decades. In the present review, we outline commonly used methods that are based on the assessment of mitochondrial transmembrane potential, activation of caspases, DNA fragmentation, and plasma membrane alterations. We also present novel developments in the field such as the use of cyanine SYTO and TO-PRO family of probes. Strategies of selecting the optimal multiparameter approaches, as well as potential difficulties in the experimental procedures, are thoroughly summarized. PMID:21722800

  6. Baicalein induces programmed cell death in Candida albicans.

    PubMed

    Dai, Bao-Di; Cao, Ying-Ying; Huang, Shan; Xu, Yong-Gang; Gao, Ping-Hui; Wang, Yan; Jiang, Yuan-Ying

    2009-08-01

    Recent evidence has revealed the occurrence of an apoptotic phenotype in Candida albicans that is inducible with environmental stresses such as acetic acid, hydrogen peroxide, and amphotericin B. In the present study, we found that the Chinese herbal medicine Baicalein (BE), which was one of the skullcapflavones, can induce apoptosis in C. albicans. The apoptotic effects of BE were detected by flow cytometry using Annexin V-FITC and DAPI, and it was confirmed by transmission electron microscopy analysis. After exposure to 4 microg/ml BE for 12 h, about 10% of C. albicans cells were apoptotic. Both the increasing intracellular levels of reactive oxygen species (ROS) and upregulation of some redox-related genes (CAP1, SOD2, TRR1) were observed. Furthermore, we compared the survivals of CAP1 deleted, wild-type, and overexpressed strains and found that Cap1p attenuated BE-initiated cell death, which was coherent with a higher mRNA level of the CAP1 gene. In addition, the mitochondrial membrane potential of C. albicans cells changed significantly ( p<0.001) upon BE treatment compared with control. Taken together, our results indicate that BE treatment induces apoptosis in C.albicans cells, and the apoptosis was associated with the breakdown of mitochondrial membrane potential. PMID:19734718

  7. Programmed cell death and clearance of cell corpses in Caenorhabditis elegans.

    PubMed

    Wang, Xiaochen; Yang, Chonglin

    2016-06-01

    Programmed cell death is critical to the development of diverse animal species from C. elegans to humans. In C. elegans, the cell death program has three genetically distinguishable phases. During the cell suicide phase, the core cell death machinery is activated through a protein interaction cascade. This activates the caspase CED-3, which promotes numerous pro-apoptotic activities including DNA degradation and exposure of the phosphatidylserine "eat me" signal on the cell corpse surface. Specification of the cell death fate involves transcriptional activation of the cell death initiator EGL-1 or the caspase CED-3 by coordinated actions of specific transcription factors in distinct cell types. In the cell corpse clearance stage, recognition of cell corpses by phagocytes triggers several signaling pathways to induce phagocytosis of apoptotic cell corpses. Cell corpse-enclosing phagosomes ultimately fuse with lysosomes for digestion of phagosomal contents. This article summarizes our current knowledge about programmed cell death and clearance of cell corpses in C. elegans. PMID:27048817

  8. Mastoparan-induced programmed cell death in the unicellular alga Chlamydomonas reinhardtii

    PubMed Central

    Yordanova, Zhenya P.; Woltering, Ernst J.; Kapchina-Toteva, Veneta M.; Iakimova, Elena T.

    2013-01-01

    Background and Aims Under stress-promoting conditions unicellular algae can undergo programmed cell death (PCD) but the mechanisms of algal cellular suicide are still poorly understood. In this work, the involvement of caspase-like proteases, DNA cleavage and the morphological occurrence of cell death in wasp venom mastoparan (MP)-treated Chlamydomonas reinhardtii were studied. Methods Algal cells were exposed to MP and cell death was analysed over time. Specific caspase inhibitors were employed to elucidate the possible role of caspase-like proteases. YVADase activity (presumably a vacuolar processing enzyme) was assayed by using a fluorogenic caspase-1 substrate. DNA breakdown was evaluated by DNA laddering and Comet analysis. Cellular morphology was examined by confocal laser scanning microscopy. Key Results MP-treated C. reinhardtii cells expressed several features of necrosis (protoplast shrinkage) and vacuolar cell death (lytic vesicles, vacuolization, empty cell-walled corpse-containing remains of digested protoplast) sometimes within one single cell and in different individual cells. Nucleus compaction and DNA fragmentation were detected. YVADase activity was rapidly stimulated in response to MP but the early cell death was not inhibited by caspase inhibitors. At later time points, however, the caspase inhibitors were effective in cell-death suppression. Conditioned medium from MP-treated cells offered protection against MP-induced cell death. Conclusions In C. reinhardtii MP triggered PCD of atypical phenotype comprising features of vacuolar and necrotic cell deaths, reminiscent of the modality of hypersensitive response. It was assumed that depending on the physiological state and sensitivity of the cells to MP, the early cell-death phase might be not mediated by caspase-like enzymes, whereas later cell death may involve caspase-like-dependent proteolysis. The findings substantiate the hypothesis that, depending on the mode of induction and sensitivity of

  9. A Conserved Core of Programmed Cell Death Indicator Genes Discriminates Developmentally and Environmentally Induced Programmed Cell Death in Plants1[OPEN

    PubMed Central

    Van Bel, Michiel; Van Hautegem, Tom; Fendrych, Matyáš; Simaskova, Maria; van Durme, Matthias; Buscaill, Pierre; Rivas, Susana; S. Coll, Nuria; Maere, Steven

    2015-01-01

    A plethora of diverse programmed cell death (PCD) processes has been described in living organisms. In animals and plants, different forms of PCD play crucial roles in development, immunity, and responses to the environment. While the molecular control of some animal PCD forms such as apoptosis is known in great detail, we still know comparatively little about the regulation of the diverse types of plant PCD. In part, this deficiency in molecular understanding is caused by the lack of reliable reporters to detect PCD processes. Here, we addressed this issue by using a combination of bioinformatics approaches to identify commonly regulated genes during diverse plant PCD processes in Arabidopsis (Arabidopsis thaliana). Our results indicate that the transcriptional signatures of developmentally controlled cell death are largely distinct from the ones associated with environmentally induced cell death. Moreover, different cases of developmental PCD share a set of cell death-associated genes. Most of these genes are evolutionary conserved within the green plant lineage, arguing for an evolutionary conserved core machinery of developmental PCD. Based on this information, we established an array of specific promoter-reporter lines for developmental PCD in Arabidopsis. These PCD indicators represent a powerful resource that can be used in addition to established morphological and biochemical methods to detect and analyze PCD processes in vivo and in planta. PMID:26438786

  10. Mosaic neurofibromatosis type 1.

    PubMed

    Liang, Christine; Schaffer, Julie V

    2008-01-01

    A 24-year-old man presented with numerous lentigines and multiple cafe-au-lait macules on both sides of the face, neck, and trunk as well as on the proximal area of the upper extremities and in the axillae. The pigmented lesions had a Blaschko-linear distribution on the upper trunk and were limited to the left side of the abdomen, with a sharp demarcation at the midline. Multiple, cutaneous neurofibromas were found on the trunk, and ophthalmologic examination showed a Lisch nodule in the left iris. The clinical findings and their widespread but segmental distribution were consistent with a diagnosis of mosaic neurofibromatosis type 1. PMID:18627742

  11. Ultrastructural patterns of the activated cell death programs in the human brain.

    PubMed

    Pais, Viorel; Danaila, Leon; Pais, Emil

    2013-04-01

    The authors analyzed by transmission electron microscopy (TEM) neurosurgical samples obtained from patients with cerebral tumors, neurotrauma, cerebral ischemia, Moyamoya disease, encephalitis, etc. Their observations concern a variety of dying cell types by different programmed death pathways, including apoptosis, paraptosis, autophagy, autoschizis, programmed necrosis, as well as combined and coexisting forms. This ample work pointed out not only the role of TEM in cell death diagnosis, but the biological differences in cell behavior and beneficial or detrimental effects of suicides for homeostasis, survival, or normal functioning of a tissue, like the integrated vascular tissue and brain parenchyma. PMID:23573891

  12. Programmed necrosis in the Cross Talk of Cell Death and Inflammation

    PubMed Central

    Chan, Francis Ka-Ming; Luz, Nivea Farias; Moriwaki, Kenta

    2015-01-01

    Cell proliferation and cell death are integral elements in maintaining homeostatic balance in metazoans. Disease pathologies ensue when these processes are disturbed. A plethora of evidence indicates that malfunction of cell death can lead to inflammation, autoimmunity or immuno-deficiency. Programmed necrosis or necroptosis is a form of non-apoptotic cell death driven by the receptor interacting protein kinase 3 (RIPK3) and its substrate mixed lineage kinase domain-like (MLKL). RIPK3 partners with its upstream adaptors RIPK1, TRIF or DAI to signal for necroptosis in response to death receptor or toll-like receptor stimulation, pathogen infection, or sterile cell injury. Necroptosis promotes inflammation through leakage of cellular contents from damaged plasma membrane. Intriguingly, many of the signal adaptors of necroptosis have dual functions in innate immune signaling. This unique signature illustrates the cooperative nature of necroptosis and innate inflammatory signaling pathways in managing cell and organismal stresses from pathogen infection and sterile tissue injury. PMID:25493335

  13. The Impact of a Death Education Program for Nurses in a Long-Term Care Hospital.

    ERIC Educational Resources Information Center

    Fleming, Stephen; Brown, Isabel

    1983-01-01

    Assessed the impact of a death education program for nursing staff (N=130) of a long-term care institution. Analysis of nurses' chart entries (problem-oriented record format-POR) revealed a statistically significant increase from pre- to post-course in charting of patients' subjective state. (Author/JAC)

  14. Identification of Neural Programmed Cell Death through the Detection DNA Fragmentation In Situ and by PCR

    PubMed Central

    Yung, Yun C.; Kennedy, Grace; Chun, Jerold

    2009-01-01

    Programmed cell death is a fundamental process for the development and somatic maintenance of organisms. This unit describes methods for visualizing both dying cells in situ and for detection of nucleosomal ladders. A description of various current detection strategies is provided, as well as support protocols for preparing positive and negative controls and for preparing genomic DNA. PMID:18428472

  15. A long-awaited merger of the pathways mediating host defence and programmed cell death.

    PubMed

    Blander, J Magarian

    2014-09-01

    Historically, cell death and inflammation have been closely linked, but the necessary divergence of the fields in the past few decades has enriched our molecular understanding of the signalling pathways that mediate various programmes of cell death and multiple types of inflammatory responses. The fields have now come together again demonstrating a surprising level of integration. Intimate interconnections at multiple levels are revealed between the cell death and inflammatory signal transduction pathways that are mobilized in response to the engagement of pattern recognition receptors during microbial infection. Molecules such as receptor-interacting protein kinase 1 (RIPK1), RIPK3, FAS-associated death domain protein (FADD), FLICE-like inhibitory protein (FLIP) and caspase 8 - which are associated with different forms of cell death - are incorporated into compatible and exceedingly dynamic Toll-like receptor, NOD-like receptor and RIG-I-like receptor signalling modules. These signalling modules have a high capacity to switch from inflammation to cell death, or a programmed execution of both, all in an orchestrated battle for host defence and survival. PMID:25145756

  16. Mitochondrial fusion is regulated by Reaper to modulate Drosophila programmed cell death.

    PubMed

    Thomenius, M; Freel, C D; Horn, S; Krieser, R; Abdelwahid, E; Cannon, R; Balasundaram, S; White, K; Kornbluth, S

    2011-10-01

    In most multicellular organisms, the decision to undergo programmed cell death in response to cellular damage or developmental cues is typically transmitted through mitochondria. It has been suggested that an exception is the apoptotic pathway of Drosophila melanogaster, in which the role of mitochondria remains unclear. Although IAP antagonists in Drosophila such as Reaper, Hid and Grim may induce cell death without mitochondrial membrane permeabilization, it is surprising that all three localize to mitochondria. Moreover, induction of Reaper and Hid appears to result in mitochondrial fragmentation during Drosophila cell death. Most importantly, disruption of mitochondrial fission can inhibit Reaper and Hid-induced cell death, suggesting that alterations in mitochondrial dynamics can modulate cell death in fly cells. We report here that Drosophila Reaper can induce mitochondrial fragmentation by binding to and inhibiting the pro-fusion protein MFN2 and its Drosophila counterpart dMFN/Marf. Our in vitro and in vivo analyses reveal that dMFN overexpression can inhibit cell death induced by Reaper or γ-irradiation. In addition, knockdown of dMFN causes a striking loss of adult wing tissue and significant apoptosis in the developing wing discs. Our findings are consistent with a growing body of work describing a role for mitochondrial fission and fusion machinery in the decision of cells to die. PMID:21475305

  17. Mitochondrial fusion is regulated by Reaper to modulate Drosophila programmed cell death

    PubMed Central

    Thomenius, M; Freel, C D; Horn, S; Krieser, R; Abdelwahid, E; Cannon, R; Balasundaram, S; White, K; Kornbluth, S

    2011-01-01

    In most multicellular organisms, the decision to undergo programmed cell death in response to cellular damage or developmental cues is typically transmitted through mitochondria. It has been suggested that an exception is the apoptotic pathway of Drosophila melanogaster, in which the role of mitochondria remains unclear. Although IAP antagonists in Drosophila such as Reaper, Hid and Grim may induce cell death without mitochondrial membrane permeabilization, it is surprising that all three localize to mitochondria. Moreover, induction of Reaper and Hid appears to result in mitochondrial fragmentation during Drosophila cell death. Most importantly, disruption of mitochondrial fission can inhibit Reaper and Hid-induced cell death, suggesting that alterations in mitochondrial dynamics can modulate cell death in fly cells. We report here that Drosophila Reaper can induce mitochondrial fragmentation by binding to and inhibiting the pro-fusion protein MFN2 and its Drosophila counterpart dMFN/Marf. Our in vitro and in vivo analyses reveal that dMFN overexpression can inhibit cell death induced by Reaper or γ-irradiation. In addition, knockdown of dMFN causes a striking loss of adult wing tissue and significant apoptosis in the developing wing discs. Our findings are consistent with a growing body of work describing a role for mitochondrial fission and fusion machinery in the decision of cells to die. PMID:21475305

  18. When supply does not meet demand-ER stress and plant programmed cell death

    PubMed Central

    Williams, Brett; Verchot, Jeanmarie; Dickman, Martin B.

    2014-01-01

    The endoplasmic reticulum (ER) is the central organelle in the eukaryotic secretory pathway. The ER functions in protein synthesis and maturation and is crucial for proper maintenance of cellular homeostasis and adaptation to adverse environments. Acting as a cellular sentinel, the ER is exquisitely sensitive to changing environments principally via the ER quality control machinery. When perturbed, ER-stress triggers a tightly regulated and highly conserved, signal transduction pathway known as the unfolded protein response (UPR) that prevents the dangerous accumulation of unfolded/misfolded proteins. In situations where excessive UPR activity surpasses threshold levels, cells deteriorate and eventually trigger programmed cell death (PCD) as a way for the organism to cope with dysfunctional or toxic signals. The programmed cell death that results from excessive ER stress in mammalian systems contributes to several important diseases including hypoxia, neurodegeneration, and diabetes. Importantly, hallmark features and markers of cell death that are associated with ER stress in mammals are also found in plants. In particular, there is a common, conserved set of chaperones that modulate ER cell death signaling. Here we review the elements of plant cell death responses to ER stress and note that an increasing number of plant-pathogen interactions are being identified in which the host ER is targeted by plant pathogens to establish compatibility. PMID:24926295

  19. Metabolic aspects of programmed cell survival and cell death in the heart.

    PubMed

    Depre, C; Taegtmeyer, H

    2000-02-01

    Normal cardiac function requires a tight interaction between metabolism, contractile function and gene expression. The main perturbation challenging this equilibrium in vivo is ischemia, which alters energy flux through the control of key enzymes. The review highlights metabolic imprints and energetic aspects of programmed cell survival, programmed cell death, and of necrosis. When sustained and severe, ischemia leads to a total collapse of energy transfer, to the accumulation of metabolic endproducts, and to the development of myocardial necrosis. When moderate, ischemia results in a coordinated cellular response including enhanced anaerobic glucose metabolism, a modification of cardiac gene expression, and the development of specific mechanisms for programmed cell survival (preconditioning, stunning, hibernation). Repetitive stress results in a decrease of contractile function, a downregulation of gene expression and an impairment of energy transfer, which eventually cause the heart to fail. When the failing heart becomes energy-depleted, the programs of cell survival are no longer operational and programmed cell death ensues. To define the point of departure from programmed cell survival to cell death remains a major challenge. PMID:10728375

  20. Glutaric Acidemia Type 1

    PubMed Central

    Hedlund, Gary L.; Longo, Nicola; Pasquali, Marzia

    2008-01-01

    Glutaric acidemias comprise different disorders resulting in an increased urinary excretion of glutaric acid. Glutaric acidemia type 1 (GA-1) is an autosomal recessive disorder of lysine, hydroxylysine, and tryptophan metabolism caused by deficiency of glutaryl-CoA dehydrogenase. It results in the accumulation of 3-hydroxyglutaric and glutaric acid. Affected patients can present with brain atrophy and macrocephaly and with acute dystonia secondary to striatal degeneration in most cases triggered by an intercurrent childhood infection with fever between 6 and 18 months of age. This disorder can be identified by increased glutaryl (C5DC) carnitine on newborn screening. Urine organic acid analysis indicates the presence of excess 3-OH-glutaric acid, and urine acylcarnitine profile shows glutaryl carnitine as the major peak. Therapy consists in carnitine supplementation to remove glutaric acid, a diet restricted in amino acids capable of producing glutaric acid, and prompt treatment of intercurrent illnesses. Early diagnosis and therapy reduce the risk of acute dystonia in patients with GA-1. PMID:16602100

  1. On the origin, evolution, and nature of programmed cell death: a timeline of four billion years.

    PubMed

    Ameisen, J C

    2002-04-01

    Programmed cell death is a genetically regulated process of cell suicide that is central to the development, homeostasis and integrity of multicellular organisms. Conversely, the dysregulation of mechanisms controlling cell suicide plays a role in the pathogenesis of a wide range of diseases. While great progress has been achieved in the unveiling of the molecular mechanisms of programmed cell death, a new level of complexity, with important therapeutic implications, has begun to emerge, suggesting (i) that several different self-destruction pathways may exist and operate in parallel in our cells, and (ii) that molecular effectors of cell suicide may also perform other functions unrelated to cell death induction and crucial to cell survival. In this review, I will argue that this new level of complexity, implying that there may be no such thing as a 'bona fide' genetic death program in our cells, might be better understood when considered in an evolutionary context. And a new view of the regulated cell suicide pathways emerges when one attempts to ask the question of when and how they may have become selected during evolution, at the level of ancestral single-celled organisms. PMID:11965491

  2. In vivo detection and imaging of phosphatidylserine expression during programmed cell death

    PubMed Central

    Blankenberg, Francis G.; Katsikis, Peter D.; Tait, Jonathan F.; Davis, R. Eric; Naumovski, Louis; Ohtsuki, Katsuichi; Kopiwoda, Susan; Abrams, Michael J.; Darkes, Marilyn; Robbins, Robert C.; Maecker, Holden T.; Strauss, H.W.

    1998-01-01

    One of the earliest events in programmed cell death is the externalization of phosphatidylserine, a membrane phospholipid normally restricted to the inner leaflet of the lipid bilayer. Annexin V, an endogenous human protein with a high affinity for membrane bound phosphatidylserine, can be used in vitro to detect apoptosis before other well described morphologic or nuclear changes associated with programmed cell death. We tested the ability of exogenously administered radiolabeled annexin V to concentrate at sites of apoptotic cell death in vivo. After derivatization with hydrazinonicotinamide, annexin V was radiolabeled with technetium 99m. In vivo localization of technetium 99m hydrazinonicotinamide-annexin V was tested in three models: fuminant hepatic apoptosis induced by anti-Fas antibody injection in BALB/c mice; acute rejection in ACI rats with transplanted heterotopic PVG cardiac allografts; and cyclophosphamide treatment of transplanted 38C13 murine B cell lymphomas. External radionuclide imaging showed a two- to sixfold increase in the uptake of radiolabeled annexin V at sites of apoptosis in all three models. Immunohistochemical staining of cardiac allografts for exogenously administered annexin V revealed intense staining of numerous myocytes at the periphery of mononuclear infiltrates of which only a few demonstrated positive apoptotic nuclei by the terminal deoxynucleotidyltransferase-mediated UTP end labeling method. These results suggest that radiolabeled annexin V can be used in vivo as a noninvasive means to detect and serially image tissues and organs undergoing programmed cell death. PMID:9600968

  3. Programmed cell death protein 1 and programmed death-ligand 1 are expressed on the surface of some small-cell lung cancer lines

    PubMed Central

    Yamane, Hiromichi; Isozaki, Hideko; Takeyama, Masami; Ochi, Nobuaki; Kudo, Kenichiro; Honda, Yoshihiro; Yamagishi, Tomoko; Kubo, Toshio; Kiura, Katsuyuki; Takigawa, Nagio

    2015-01-01

    Introduction: Programmed cell death protein 1 (PD-1) and programmed death-ligand 1 (PD-L1) play a major role in suppressing the immune system during the formation of the PD-1/PD-L1 pathway, which transmits an inhibitory signal to reduce T cell activity. PD-L1 is often expressed in various malignant tumors. In contrast, PD-1 is generally observed in activated lymphocytes and myeloid-derived dendritic cells. Of the malignant cells, only Jurkat cells under special conditions and angioimmunoblastic T-cell lymphoma tissue cells express PD-1 on their surface. Methods: To clarify whether the PD-1/PD-L1 pathway participates in the immunotolerance of small-cell lung cancer (SCLC) cells, we examined the expressions of PD-1 and PD-L1 on the cell surface of SCLC cell lines using flow cytometry and reverse transcription polymerase chain reaction. Results: Among the four SCLC cell lines examined, only SBC-3 expressed both PD-1 and PD-L1. Conclusions: We demonstrated that both PD-1 and PD-L1 molecules were co-expressed on the surface of SCLC cells. Although the biological implications of this remain unclear, we speculate that PD-1 and its ligand on the SCLC cells may participate in the growth inhibition of tumor cells as reported in cytotoxic T cells. PMID:26101718

  4. Programmed cell death protein-1/programmed cell death ligand-1 pathway inhibition and predictive biomarkers: understanding transforming growth factor-beta role

    PubMed Central

    González-Cao, María; Viteri, Santiago; Karachaliou, Niki; Altavilla, Giuseppe; Rosell, Rafael

    2015-01-01

    A deeper understanding of the key role of the immune system in regulating tumor growth and progression has led to the development of a number of immunotherapies, including cancer vaccines and immune checkpoint inhibitors. Immune checkpoint inhibitors target molecular pathways involved in immunosuppression, such as cytotoxic T-lymphocyte-associated antigen-4 (CTLA-4) and programmed cell death protein-1 (PD-1)/programmed cell death ligand-1 (PD-L1) pathway, with the goal to enhance the host’s own immune anticancer response. In phase I–III trials, anti-PD-1/PD-L1 antibodies have demonstrated to be effective treatment strategies by inducing significant durable tumor responses, with manageable toxicities, in patients with various malignancies, including those traditionally considered non-immunogenic, such as non-small cell lung cancer (NSCLC). Identification of predictive biomarkers to select patients for immune therapies is currently being investigated to improve their therapeutic efficacy. Transforming growth factor-β (TGF-β), a pleiotropic cytokine with immunosuppressive effects on multiple cell types of the innate and adaptive immune system, has emerged as one of the potential key factors modulating response to immune checkpoint inhibitors. However, due to the complexity of the anti-cancer immune response, the predictive value of many other factors related to cancer cells or tumor microenvironment needs to be further explored. PMID:26798582

  5. The programmed death phenomena, aging, and the Samurai law of biology.

    PubMed

    Skulachev, V P

    2001-07-01

    Analysis of the programmed death phenomena from mitochondria (mitoptosis) to whole organisms (phenoptosis) clearly shows that suicide programs are inherent at various levels of organization of living systems. Such programs perform very important functions, purifying (i) cells from damaged (or unwanted for other reasons) organelles, (ii) tissues from unwanted cells, (iii) organisms from organs transiently appearing during ontogenesis, and (iv) communities of organisms from unwanted individuals. Defence against reactive oxygen species (ROS) is probably one of primary evolutionary functions of programmed death mechanisms. So far, it seems that ROS play a key role in the mito-, apo-, organo- and phenoptoses. Here a concept is described which tries to unite Weismann's concept of aging as an adaptive programmed death mechanism and the alternative point of view considering aging as an inevitable result of accumulation in an organism of occasional injuries. It is suggested that injury accumulation is monitored by special system sending a death signal to actuate a phenoptotic program when the number of injuries reaches some critical level. The system in question is organized in such a way that the lethal case appears to be a result of phenoptosis long before occasional injuries make the functioning of the organism impossible. This strategy is supposed to prevent the appearance of asocial monsters capable to ruining kin, community and entire population. These relationships are regarded as an example of the Samurai law of biology: 'It is better to die than to be wrong'. It is stressed that for humans these cruel regulations look like an atavism that should be overcome to prolong the human life span. PMID:11404047

  6. TRPV1 Activation in Primary Cortical Neurons Induces Calcium-Dependent Programmed Cell Death.

    PubMed

    Song, Juhyun; Lee, Jun Hong; Lee, Sung Ho; Park, Kyung Ah; Lee, Won Taek; Lee, Jong Eun

    2013-03-01

    Transient receptor potential cation channel, subfamily V, member 1 (TRPV1, also known as vanilloid receptor 1) is a receptor that detects capsaicin, a pungent component of chili peppers, and noxious heat. Although its function in the primary nociceptor as a pain receptor is well established, whether TRPV1 is expressed in the brain is still under debate. In this study, the responses of primary cortical neurons were investigated. Here, we report that 1) capsaicin induces caspase-3-dependent programmed cell death, which coincides with increased production of nitric oxide and peroxynitrite ; that 2) the prolonged capsaicin treatment induces a steady increase in the degree of capase-3 activation, which is prevented by the removal of capsaicin; 3) and that blocking calcium entry and calcium-mediated signaling prevents capsaicin-induced cell death. These results indicate that cortical neurons express TRPV1 whose prolonged activation causes cell death. PMID:23585723

  7. Analysis of relationship between programmed cell death and cell cycle in limb-bud.

    PubMed

    Toné, S; Tanaka, S

    1997-01-01

    Programmed cell death plays a crucial role in limb morphogenesis of amniote. In this paper, we showed that cell cycle and cell death in limb-buds were closely related events and there existed a critical S-phase, which corresponded to the most sensitive time for inhibition of cell death following administration of an excess dose of 5-bromodeoxyuridine (BrdU). The use of microfluorometry of BrdU incorporation coupled with measurement of DNA amount of individual cells enabled us to consider that cells committed to die were withdrawn from cell cycle at G2-phase. Finally, we will summarize the nuclear events involved in apoptosis in limb morphogenesis in relation to cell cycle. PMID:9267810

  8. Molecular mechanisms of Saccharomyces cerevisiae stress adaptation and programmed cell death in response to acetic acid

    PubMed Central

    Giannattasio, Sergio; Guaragnella, Nicoletta; Ždralević, Maša; Marra, Ersilia

    2013-01-01

    Beyond its classical biotechnological applications such as food and beverage production or as a cell factory, the yeast Saccharomyces cerevisiae is a valuable model organism to study fundamental mechanisms of cell response to stressful environmental changes. Acetic acid is a physiological product of yeast fermentation and it is a well-known food preservative due to its antimicrobial action. Acetic acid has recently been shown to cause yeast cell death and aging. Here we shall focus on the molecular mechanisms of S. cerevisiae stress adaptation and programmed cell death in response to acetic acid. We shall elaborate on the intracellular signaling pathways involved in the cross-talk of pro-survival and pro-death pathways underlying the importance of understanding fundamental aspects of yeast cell homeostasis to improve the performance of a given yeast strain in biotechnological applications. PMID:23430312

  9. Molecular mechanisms of Saccharomyces cerevisiae stress adaptation and programmed cell death in response to acetic acid.

    PubMed

    Giannattasio, Sergio; Guaragnella, Nicoletta; Zdralević, Maša; Marra, Ersilia

    2013-01-01

    Beyond its classical biotechnological applications such as food and beverage production or as a cell factory, the yeast Saccharomyces cerevisiae is a valuable model organism to study fundamental mechanisms of cell response to stressful environmental changes. Acetic acid is a physiological product of yeast fermentation and it is a well-known food preservative due to its antimicrobial action. Acetic acid has recently been shown to cause yeast cell death and aging. Here we shall focus on the molecular mechanisms of S. cerevisiae stress adaptation and programmed cell death in response to acetic acid. We shall elaborate on the intracellular signaling pathways involved in the cross-talk of pro-survival and pro-death pathways underlying the importance of understanding fundamental aspects of yeast cell homeostasis to improve the performance of a given yeast strain in biotechnological applications. PMID:23430312

  10. Deciphering the rules of programmed cell death to improve therapy of cancer and other diseases.

    PubMed

    Strasser, Andreas; Cory, Suzanne; Adams, Jerry M

    2011-09-14

    Apoptosis, the major form of programmed cell death in metazoan organisms, plays critical roles in normal development, tissue homeostasis and immunity, and its disturbed regulation contributes to many pathological states, including cancer, autoimmunity, infection and degenerative disorders. In vertebrates, it can be triggered either by engagement of 'death receptors' of the tumour necrosis factor receptor family on the cell surface or by diverse intracellular signals that act upon the Bcl-2 protein family, which controls the integrity of the mitochondrial outer membrane through the complex interactions of family members. Both pathways lead to cellular demolition by dedicated proteases termed caspases. This review discusses the groundbreaking experiments from many laboratories that have clarified cell death regulation and galvanised efforts to translate this knowledge into novel therapeutic strategies for the treatment of malignant and perhaps certain autoimmune and infectious diseases. PMID:21863020

  11. The costs of a suburban paramedic program in reducing deaths due to cardiac arrest.

    PubMed

    Urban, N; Bergner, L; Eisenberg, M S

    1981-04-01

    The marginal costs per averted death of a suburban paramedic program are estimated to be approximately $42,000, when program costs are attributed entirely to cardiac arrest cases due to underlying heart disease, and indirect costs attributable to episode-related hospitalization are included, It is suggested that at $42,000 per cardiac arrest death averted the program is cost-beneficial by two criteria. First, it compares favorably with an estimate obtained from the literature of the value to the average individual of saving the life of a myocardial infarction patient. Second, the people of King County passed a cost-commensurate Paramedic Program Property Tax Levy in 1979, revealing their willingness to support the program. Results of the study should be generalized in accordance with the facts that in King County 1) the population density averages approximately 1,300 per square mile; 2) a basic emergency medical system ensures a 4-minute average response time to initiation of cardiopulmonary resuscitation; 3) a citizen-training program in cardiopulmonary resuscitation further reduces average time to initiation of basic life support; and 4) the paramedic program is designed to ensure a 10-minute average time to definitive care. PMID:6785539

  12. BGP-15 inhibits caspase-independent programmed cell death in acetaminophen-induced liver injury

    SciTech Connect

    Nagy, Gabor; Szarka, Andras; Lotz, Gabor; Doczi, Judit; Wunderlich, Livius; Kiss, Andras; Jemnitz, Katalin; Veres, Zsuzsa; Banhegyi, Gabor; Schaff, Zsuzsa; Suemegi, Balazs; Mandl, Jozsef

    2010-02-15

    It has been recently shown that acute acetaminophen toxicity results in endoplasmic reticulum redox stress and an increase in cells with apoptotic phenotype in liver. Since activation of effector caspases was absent, the relevance of caspase-independent mechanisms in acetaminophen-induced programmed cell death was investigated. BGP-15, a drug with known protective actions in conditions involving redox imbalance, has been co-administered with a single sublethal dose of acetaminophen. Proapoptotic events and outcome of the injury were investigated. ER redox alterations and early ER-stress-related signaling events induced by acetaminophen, such as ER glutathione depletion, phosphorylation of eIF2alpha and JNK and induction of the transcription factor GADD153, were not counteracted by co-treatment with BGP-15. However, BGP-15 prevented AIF mitochondria-to-nucleus translocation and mitochondrial depolarization. BGP-15 co-treatment attenuated the rate of acetaminophen-induced cell death as assessed by apoptotic index and enzyme serum release. These results reaffirm that acute acetaminophen toxicity involves oxidative stress-induced caspase-independent cell death. In addition, pharmacological inhibition of AIF translocation may effectively protect against or at least delay acetaminophen-induced programmed cell death.

  13. Human salivary histatin 5 fungicidal action does not induce programmed cell death pathways in Candida albicans.

    PubMed

    Wunder, David; Dong, Jin; Baev, Didi; Edgerton, Mira

    2004-01-01

    Salivary histatins (Hsts) are potent candidacidal proteins that induce a nonlytic form of cell death in Candida albicans accompanied by loss of mean cell volume, cell cycle arrest, and elevation of intracellular levels of reactive oxygen species (ROS). Since these phenotypes are often markers of programmed cell death and apoptosis, we investigated whether other classical markers of apoptosis, including generation of intracellular ROS and protein carbonyl groups, chromosomal fragmentation (laddering), and cytochrome c release, are found in Hst 5-mediated cell death. Increased intracellular levels of ROS in C. albicans were detected in cells both following exogenous application of Hst 5 and following intracellular expression of Hst 5. However, Western blot analysis failed to detect specifically increased protein carbonylation in Hst 5-treated cells. There was no evidence of chromosomal laddering and no cytochrome c release was observed following treatment of C. albicans mitochondria with Hst 5. Superoxide dismutase enzymes of C. albicans and Saccharomyces cerevisiae provide essential protection against oxidative stress; therefore, we tested whether SOD mutants have increased susceptibility to Hst 5, as expected if ROS mediate fungicidal effects. Cell survival of S. cerevisiae SOD1/SOD2 mutants and C. albicans SOD1 mutants following Hst 5 treatment (31 micro M) was indistinguishable from the survival of wild-type cells treated with Hst 5. We conclude that ROS may not play a direct role in fungicidal activity and that Hst 5 does not initiate apoptosis or programmed cell death pathways. PMID:14693527

  14. Different modes of programmed cell death during oogenesis of the silkmoth Bombyx mori.

    PubMed

    Mpakou, Vicky E; Nezis, Ioannis P; Stravopodis, Dimitrios J; Margaritis, Lukas H; Papassideri, Issidora S

    2008-01-01

    It is increasingly recognized that programmed cell death includes not only apoptosis and autophagy, but also other types of nonapoptotic cell death, such as paraptosis, which are all characterized by distinct morphological features. Our findings indicate that all three types of programmed cell death occur in the ovarian nurse cell cluster during late vitellogenesis (formation of the egg yolk) of Bombyx mori (Lepidoptera), whereas middle vitellogenesis is exclusively characterized by the presence of a nonapoptotic type of cell death, known as paraptosis. During middle vitellogenesis, nurse cells exhibit clearly cytoplasmic vacuolization, as revealed by ultrastructural examination performed through conventional light and transmission electron microscopy, while no signs of apoptotic or autophagic features are detectable. Moreover, nurse cells of developmental stages 7, 8 and 9 contain autophagic compartments, as well as apoptotic characteristics, such as condensed chromatin, fragmented DNA and activated caspases, as revealed by in vitro assays. We propose that paraptosis precedes both apoptosis and autophagy during vitellogenesis, since its initial activation is detectable during middle vitellogenesis, whereas no apoptotic nor autophagic features are observed. In contrast, at the late stages of Bombyx mori oogenesis, paraptosis, autophagy and apoptosis operate synergistically, resulting in a more efficient elimination of the degenerated nurse cells. PMID:17986869

  15. Low Frequency of Programmed Death Ligand 1 Expression in Pediatric Cancers.

    PubMed

    Aoki, Takahiro; Hino, Moeko; Koh, Katsuyoshi; Kyushiki, Masashi; Kishimoto, Hiroshi; Arakawa, Yuki; Hanada, Ryoji; Kawashima, Hiroshi; Kurihara, Jun; Shimojo, Naoki; Motohashi, Shinichiro

    2016-08-01

    Programmed death 1 (PD-1)/programmed death ligand 1 (PD-L1) pathway blockade has become a promising therapeutic target in adult cancers. We evaluated PD-L1 expression and tumor-infiltrating CD8(+) T cells in formalin-fixed, paraffin-embedded tumor specimens from 53 untreated pediatric patients with eight cancer types: neuroblastoma, extracranial malignant germ cell tumor, hepatoblastoma, germinoma, medulloblastoma, renal tumor, rhabdomyosarcoma, and atypical teratoid/rhabdoid tumor. One rhabdomyosarcoma with the shortest survival exhibited membranous PD-L1 expression and germinoma contained abundant tumor-infiltrating CD8(+) T cells and PD-L1-positive macrophages. The PD-1/PD-L1 pathway tended to be inactive in pediatric cancers. PMID:27135656

  16. Utilization of GaN:Eu 3+ nanocrystals for the detection of programmed cell death

    NASA Astrophysics Data System (ADS)

    Bilyy, R.; Podhorodecki, A.; Nyk, M.; Stoika, R.; Zaichenko, A.; Zatryb, G.; Misiewicz, J.; Strek, W.

    2008-04-01

    In the current study we propose to use a new system for labeling biological processes. Gallium nitride nanocrystals doped by europium ions (nc-GaN:Eu 3+) have been obtained and used to identify the cells undergoing process of programmed cell death. Obtained by combustion method, GaN:Eu 3+ fluorescent nanocrystals have been covered with the polymeric envelope, bearing epoxy groups. Carbohydrate-binding protein-lectin-specifically recognizing cells undergoing programmed cell death was conjugated to the envelope of nanoparticles. Incubation of alive and dead cells with nanoparticles suspension and subsequent analysis using fluorescent and phase-contrast microscopy revealed predominate binding of nanoparticles to dead cells, while intact cell did not bind nanoparticles under the same conditions.

  17. Identification of new modulators and protein alterations in non-apoptotic programmed cell death.

    PubMed

    Sperandio, Sabina; Poksay, Karen S; Schilling, Birgit; Crippen, Danielle; Gibson, Bradford W; Bredesen, Dale E

    2010-12-15

    This study describes the first proteomic analysis of paraptosis--a non-apoptotic form of programmed cell death. As with apoptosis, the first description of paraptosis was based on morphological criteria. Since there are no known markers for paraptosis, the purpose of this study was to dissect changes in the proteome profile occurring during paraptosis. Using one- and two-dimensional SDS-PAGE, Western analysis, and mass spectrometry, we show that during paraptosis, alterations occur mainly in cytoskeletal proteins, signal transduction proteins, mitochondrial proteins, and some metabolic proteins. We also report the identification of: (1) a paraptosis inhibitor, phosphatidylethanolamine binding protein (PEBP-1), and (2) a candidate mediator of paraptosis, prohibitin. Identification of specific paraptotic changes will ultimately lead to tools to detect this type of programmed cell death in in vivo systems and allow for its further characterization. PMID:20830744

  18. Bereavement support for couples following death of a baby: program development and 14-year exit analysis.

    PubMed

    Reilly-Smorawski, Bernadette; Armstrong, Anne V; Catlin, Elizabeth A

    2002-01-01

    Program development, implementation, and a 14-year exit analysis of a bereavement support program for couples whose baby died in the Neonatal Intensive Care Unit (NICU) is presented. A closed, hospital-based, time-limited (12 weeks) format was used. Team leadership was used and 54% of bereaved NICU parents participated. Each group was structured with a 2-week introductory period, open format grief-focused weekly discussions,evaluation in Week 11, and summary session with termination in Week 12. The exit analysis details program strengths, weaknesses, and recommendations. Bereavement support groups are one part of what we contend should be a comprehensive bereavement program,organized to care for families prior to, during, and after a baby's death. A sensitive, spiritually aware, supportive environment should be maintained throughout with relationship building as a cornerstone of the program. PMID:11865881

  19. Role of mitochondria in the pheromone- and amiodarone-induced programmed death of yeast

    PubMed Central

    Pozniakovsky, Andrei I.; Knorre, Dmitry A.; Markova, Olga V.; Hyman, Anthony A.; Skulachev, Vladimir P.; Severin, Fedor F.

    2005-01-01

    Although programmed cell death (PCD) is extensively studied in multicellular organisms, in recent years it has been shown that a unicellular organism, yeast Saccharomyces cerevisiae, also possesses death program(s). In particular, we have found that a high doses of yeast pheromone is a natural stimulus inducing PCD. Here, we show that the death cascades triggered by pheromone and by a drug amiodarone are very similar. We focused on the role of mitochondria during the pheromone/amiodarone-induced PCD. For the first time, a functional chain of the mitochondria-related events required for a particular case of yeast PCD has been revealed: an enhancement of mitochondrial respiration and of its energy coupling, a strong increase of mitochondrial membrane potential, both events triggered by the rise of cytoplasmic [Ca2+], a burst in generation of reactive oxygen species in center o of the respiratory chain complex III, mitochondrial thread-grain transition, and cytochrome c release from mitochondria. A novel mitochondrial protein required for thread-grain transition is identified. PMID:15657396

  20. T-bet regulates differentiation of forkhead box protein 3+ regulatory T cells in programmed cell death-1-deficient mice.

    PubMed

    Tahara, M; Kondo, Y; Yokosawa, M; Tsuboi, H; Takahashi, S; Shibayama, S; Matsumoto, I; Sumida, T

    2015-02-01

    Programmed cell death-1 (PD-1) plays an important role in peripheral T cell tolerance, but whether or not it affects the differentiation of helper T cell subsets remains elusive. Here we describe the importance of PD-1 in the control of T helper type 1 (Th1) cell activation and development of forkhead box protein 3 (FoxP3(+)) regulatory T cells (Tr(egs)). PD-1-deficient T cell-specific T-bet transgenic (P/T) mice showed growth retardation, and the majority died within 10 weeks. P/T mice showed T-bet over-expression, increased interferon (IFN)-γ production by CD4(+) T cells and significantly low FoxP3(+) T(reg) cell percentage. P/T mice developed systemic inflammation, which was probably induced by augmented Th1 response and low FoxP3(+) T(reg) count. The study identified a unique, previously undescribed role for PD-1 in Th1 and T(reg) differentiation, with potential implication in the development of Th1 cell-targeted therapy. PMID:25219397

  1. Some autophagic and apoptotic features of programmed cell death in the anterior silk glands of the silkworm, Bombyx mori.

    PubMed

    Goncu, Ebru; Parlak, Osman

    2008-11-01

    Programmed cell death has been subdivided into two major groups: apoptosis and autophagic cell death. The anterior silk gland of Bombyx mori degenerates during larval-pupal metamorphosis. Our findings indicate that two types of programmed cell death features are observed during this physiological process. During the prepupal period, pyknosis of the nucleus, cell detachment,and membrane blebbing occur and they are the first signs of programmed cell death in the anterior silk glands. According to previous studies, all of these morphological appearances are common for both cell-death types. Autophagy features are also exhibited during the prepupal period. Levels of one of the lysosomal marker enzymes-acid phosphatase-are high during this period then decrease gradually. Vacuole formation begins to appear first at the basal surface of the cell, then expands to the apical surface just before the larval pupal ecdysis. After larval-pupal ecdysis, DNA fragmentation, which is the obvious biochemical marker of apoptosis, is detected in agarose gel electrophoresis, which also shows that caspase-like enzyme activities occur during the programmed cell death process of the anterior silk glands. Apoptosis and autophagic cell death interact with each other during the degeneration process of the anterior silk gland in Bombyx mori and this interaction occurs at a late phase of cell death. We suggest that apoptotic cell death only is not enough for whole gland degeneration and that more effective degeneration occurs with this cooperation. PMID:18838861

  2. Interplay between autophagy and programmed cell death in mammalian neural stem cells

    PubMed Central

    Chung, Kyung Min; Yu, Seong-Woon

    2013-01-01

    Mammalian neural stem cells (NSCs) are of particular interest because of their role in brain development and function. Recent findings suggest the intimate involvement of programmed cell death (PCD) in the turnover of NSCs. However, the underlying mechanisms of PCD are largely unknown. Although apoptosis is the best-defined form of PCD, accumulating evidence has revealed a wide spectrum of PCD encompassing apoptosis, autophagic cell death (ACD) and necrosis. This mini-review aims to illustrate a unique regulation of PCD in NSCs. The results of our recent studies on autophagic death of adult hippocampal neural stem (HCN) cells are also discussed. HCN cell death following insulin withdrawal clearly provides a reliable model that can be used to analyze the molecular mechanisms of ACD in the larger context of PCD. More research efforts are needed to increase our understanding of the molecular basis of NSC turnover under degenerating conditions, such as aging, stress and neurological diseases. Efforts aimed at protecting and harnessing endogenous NSCs will offer novel opportunities for the development of new therapeutic strategies for neuropathologies. [BMB Reports 2013; 46(8): 383-390] PMID:23977985

  3. Chloroplast Activity and 3'phosphadenosine 5'phosphate Signaling Regulate Programmed Cell Death in Arabidopsis.

    PubMed

    Bruggeman, Quentin; Mazubert, Christelle; Prunier, Florence; Lugan, Raphaël; Chan, Kai Xun; Phua, Su Yin; Pogson, Barry James; Krieger-Liszkay, Anja; Delarue, Marianne; Benhamed, Moussa; Bergounioux, Catherine; Raynaud, Cécile

    2016-03-01

    Programmed cell death (PCD) is a crucial process both for plant development and responses to biotic and abiotic stress. There is accumulating evidence that chloroplasts may play a central role during plant PCD as for mitochondria in animal cells, but it is still unclear whether they participate in PCD onset, execution, or both. To tackle this question, we have analyzed the contribution of chloroplast function to the cell death phenotype of the myoinositol phosphate synthase1 (mips1) mutant that forms spontaneous lesions in a light-dependent manner. We show that photosynthetically active chloroplasts are required for PCD to occur in mips1, but this process is independent of the redox state of the chloroplast. Systematic genetic analyses with retrograde signaling mutants reveal that 3'-phosphoadenosine 5'-phosphate, a chloroplast retrograde signal that modulates nuclear gene expression in response to stress, can inhibit cell death and compromises plant innate immunity via inhibition of the RNA-processing 5'-3' exoribonucleases. Our results provide evidence for the role of chloroplast-derived signal and RNA metabolism in the control of cell death and biotic stress response. PMID:26747283

  4. Control of adult neurogenesis by programmed cell death in the mammalian brain.

    PubMed

    Ryu, Jae Ryun; Hong, Caroline Jeeyeon; Kim, Joo Yeon; Kim, Eun-Kyoung; Sun, Woong; Yu, Seong-Woon

    2016-01-01

    The presence of neural stem cells (NSCs) and the production of new neurons in the adult brain have received great attention from scientists and the public because of implications to brain plasticity and their potential use for treating currently incurable brain diseases. Adult neurogenesis is controlled at multiple levels, including proliferation, differentiation, migration, and programmed cell death (PCD). Among these, PCD is the last and most prominent process for regulating the final number of mature neurons integrated into neural circuits. PCD can be classified into apoptosis, necrosis, and autophagic cell death and emerging evidence suggests that all three may be important modes of cell death in neural stem/progenitor cells. However, the molecular mechanisms that regulate PCD and thereby impact the intricate balance between self-renewal, proliferation, and differentiation during adult neurogenesis are not well understood. In this comprehensive review, we focus on the extent, mechanism, and biological significance of PCD for the control of adult neurogenesis in the mammalian brain. The role of intrinsic and extrinsic factors in the regulation of PCD at the molecular and systems levels is also discussed. Adult neurogenesis is a dynamic process, and the signals for differentiation, proliferation, and death of neural progenitor/stem cells are closely interrelated. A better understanding of how adult neurogenesis is influenced by PCD will help lead to important insights relevant to brain health and diseases. PMID:27098178

  5. Programmed Cell Death during Pollination-Induced Petal Senescence in Petunia1

    PubMed Central

    Xu, Yan; Hanson, Maureen R.

    2000-01-01

    Petal senescence, one type of programmed cell death (PCD) in plants, is a genetically controlled sequence of events comprising its final developmental stage. We characterized the pollination-induced petal senescence process in Petunia inflata using a number of cell performance markers, including fresh/dry weight, protein amount, RNA amount, RNase activity, and cellular membrane leakage. Membrane disruption and DNA fragmentation with preferential oligonucleosomal cleavage, events characteristic of PCD, were found to be present in the advanced stage of petal senescence, indicating that plant and animal cell death phenomena share one of the molecular events in the execution phase. As in apoptosis in animals, both single-stranded DNase and double-stranded DNase activities are induced during petal cell death and are enhanced by Ca2+. In contrast, the release of cytochrome c from mitochondria, one commitment step in signaling of apoptosis in animal cells, was found to be dispensable in petal cell death. Some components of the signal transduction pathway for PCD in plants are likely to differ from those in animal cells. PMID:10759529

  6. A putative role for inosine 5' monophosphate dehydrogenase (IMPDH) in Leishmania amazonensis programmed cell death.

    PubMed

    Pitaluga, A N; Moreira, M E C; Traub-Csekö, Y M

    2015-02-01

    Leishmania amazonensis undergoes apoptosis-like programmed cell death (PCD) under heat shock conditions. We identified a potential role for inosine 5' monophosphate dehydrogenase (IMPDH) in L. amazonensis PCD. Trypanosomatids do not have a "de novo" purine synthesis pathway, relying on the salvage pathway for survival. IMPDH, a key enzyme in the purine nucleotide pathway, is related to cell growth and apoptosis. Since guanine nucleotide depletion triggers cell cycle arrest and apoptosis in several organisms we analyzed the correlation between IMPDH and apoptosis-like death in L. amazonensis. The L. amazonensis IMPDH inhibition effect on PCD was evaluated through gene expression analysis, mitochondrial depolarization and detection of Annexin-V labeled parasites. We demonstrated a down-regulation of impdh expression under heat shock treatment, which mimics the natural mammalian host infection. Also, IMPDH inhibitors ribavirin and mycophenolic acid (MPA) prevented cell growth and generated an apoptosis-like phenotype in sub-populations of L. amazonensis promastigotes. Our results are in accordance with previous results showing that a subpopulation of parasites undergoes apoptosis-like cell death in the nutrient poor environment of the vector gut. Here, we suggest the involvement of purine metabolism in previously observed apoptosis-like cell death during Leishmania infection. PMID:25499513

  7. Stress Management in Cyst-Forming Free-Living Protists: Programmed Cell Death and/or Encystment

    PubMed Central

    Khan, Naveed Ahmed; Iqbal, Junaid

    2015-01-01

    In the face of harsh conditions and given a choice, a cell may (i) undergo programmed cell death, (ii) transform into a cancer cell, or (iii) enclose itself into a cyst form. In metazoans, the available evidence suggests that cellular machinery exists only to execute or avoid programmed cell death, while the ability to form a cyst was either lost or never developed. For cyst-forming free-living protists, here we pose the question whether the ability to encyst was gained at the expense of the programmed cell death or both functions coexist to counter unfavorable environmental conditions with mutually exclusive phenotypes. PMID:25648302

  8. Developmental cell death programs license cytotoxic cells to eliminate histocompatible partners.

    PubMed

    Corey, Daniel M; Rosental, Benyamin; Kowarsky, Mark; Sinha, Rahul; Ishizuka, Katherine J; Palmeri, Karla J; Quake, Stephen R; Voskoboynik, Ayelet; Weissman, Irving L

    2016-06-01

    In a primitive chordate model of natural chimerism, one chimeric partner is often eliminated in a process of allogeneic resorption. Here, we identify the cellular framework underlying loss of tolerance to one partner within a natural Botryllus schlosseri chimera. We show that the principal cell type mediating chimeric partner elimination is a cytotoxic morula cell (MC). Proinflammatory, developmental cell death programs render MCs cytotoxic and, in collaboration with activated phagocytes, eliminate chimeric partners during the "takeover" phase of blastogenic development. Among these genes, the proinflammatory cytokine IL-17 enhances cytotoxicity in allorecognition assays. Cellular transfer of FACS-purified MCs from allogeneic donors into recipients shows that the resorption response can be adoptively acquired. Transfer of 1 × 10(5) allogeneic MCs eliminated 33 of 78 (42%) recipient primary buds and 20 of 76 (20.5%) adult parental adult organisms (zooids) by 14 d whereas transfer of allogeneic cell populations lacking MCs had only minimal effects on recipient colonies. Furthermore, reactivity of transferred cells coincided with the onset of developmental-regulated cell death programs and disproportionately affected developing tissues within a chimera. Among chimeric partner "losers," severe developmental defects were observed in asexually propagating tissues, reflecting a pathologic switch in gene expression in developmental programs. These studies provide evidence that elimination of one partner in a chimera is an immune cell-based rejection that operates within histocompatible pairs and that maximal allogeneic responses involve the coordination of both phagocytic programs and the "arming" of cytotoxic cells. PMID:27217570

  9. Pattern-Triggered Immunity Suppresses Programmed Cell Death Triggered by Fumonisin B1

    PubMed Central

    Igarashi, Daisuke; Bethke, Gerit; Xu, Yuan; Tsuda, Kenichi; Glazebrook, Jane; Katagiri, Fumiaki

    2013-01-01

    Programmed cell death (PCD) is a crucial process for plant innate immunity and development. In plant innate immunity, PCD is believed to prevent the spread of pathogens from the infection site. Although proper control of PCD is important for plant fitness, we have limited understanding of the molecular mechanisms regulating plant PCD. Plant innate immunity triggered by recognition of effectors (effector-triggered immunity, ETI) is often associated with PCD. However pattern-triggered immunity (PTI), which is triggered by recognition of elicitors called microbe-associated molecular patterns (MAMPs), is not. Therefore we hypothesized that PTI might suppress PCD. Here we report that PCD triggered by the mycotoxin fumonisin B1 (FB1) can be suppressed by PTI in Arabidopsis. FB1-triggered cell death was suppressed by treatment with the MAMPs flg22 (a part of bacterial flagellin) or elf18 (a part of the bacterial elongation factor EF-Tu) but not chitin (a component of fungal cell walls). Although plant hormone signaling is associated with PCD and PTI, both FB1-triggered cell death and suppression of cell death by flg22 treatment were still observed in mutants deficient in jasmonic acid (JA), ethylene (ET) and salicylic acid (SA) signaling. The MAP kinases MPK3 and MPK6 are transiently activated and inactivated within one hour during PTI. We found that FB1 activated MPK3 and MPK6 about 36–48 hours after treatment. Interestingly, this late activation was attenuated by flg22 treatment. These results suggest that PTI suppression of FB1-triggered cell death may involve suppression of MPK3/MPK6 signaling but does not require JA/ET/SA signaling. PMID:23560104

  10. Fusaric acid induction of programmed cell death modulated through nitric oxide signalling in tobacco suspension cells.

    PubMed

    Jiao, Jiao; Zhou, Benguo; Zhu, Xiaoping; Gao, Zhengliang; Liang, Yuancun

    2013-10-01

    Fusaric acid (FA) is a nonhost-selective toxin mainly produced by Fusarium oxysporum, the causal agent of plant wilt diseases. We demonstrate that FA can induce programmed cell death (PCD) in tobacco suspension cells and the FA-induced PCD is modulated by nitric oxide (NO) signalling. Cells undergoing cell death induced by FA treatment exhibited typical characteristics of PCD including cytoplasmic shrinkage, chromatin condensation, DNA fragmentation, membrane plasmolysis, and formation of small cytoplasmic vacuoles. In addition, caspase-3-like activity was activated upon the FA treatment. The process of FA-induced PCD was accompanied by a rapid accumulation of NO in a FA dose-dependent manner. Pre-treatment of cells with NO scavenger 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (cPTIO) or NO synthase inhibitor N(G)-monomethyl-arginine monoacetate (L-NMMA) significantly reduced the rate of FA-induced cell death. Furthermore, the caspase-3-like activity and the expression of PAL and Hsr203J genes were alleviated by application of cPTIO or L-NMMA to FA-treated tobacco cells. This indicates that NO is an important factor involved in the FA-induced PCD. Our results also show that pre-treatment of tobacco cells with a caspase-3-specific inhibitor, Ac-DEVD-CHO, can reduce the rate of FA-induced cell death. These results demonstrate that the FA-induced cell death is a PCD and is modulated by NO signalling through caspase-3-like activation. PMID:23838885

  11. Programmed cell death during development of cowpea (Vigna unguiculata (L.) Walp.) seed coat.

    PubMed

    Lima, Nathália Bastos; Trindade, Fernanda Gomes; da Cunha, Maura; Oliveira, Antônia Elenir Amâncio; Topping, Jennifer; Lindsey, Keith; Fernandes, Kátia Valevski Sales

    2015-04-01

    The seed coat develops primarily from maternal tissues and comprises multiple cell layers at maturity, providing a metabolically dynamic interface between the developing embryo and the environment during embryogenesis, dormancy and germination of seeds. Seed coat development involves dramatic cellular changes, and the aim of this research was to investigate the role of programmed cell death (PCD) events during the development of seed coats of cowpea [Vigna unguiculata (L.) Walp.]. We demonstrate that cells of the developing cowpea seed coats undergo a programme of autolytic cell death, detected as cellular morphological changes in nuclei, mitochondria, chloroplasts and vacuoles, DNA fragmentation and oligonucleosome accumulation in the cytoplasm, and loss of membrane viability. We show for the first time that classes 6 and 8 caspase-like enzymes are active during seed coat development, and that these activities may be compartmentalized by translocation between vacuoles and cytoplasm during PCD events. PMID:25142352

  12. Salt stress induces programmed cell death in Thellungiella halophila suspension-cultured cells.

    PubMed

    Wang, Jin; Li, Xinrong; Liu, Yubing; Zhao, Xin

    2010-09-15

    Thellungiella halophila (T. halophila) suspension-cultured cells were used to gain knowledge of the pathway of programmed cell death (PCD) in halophytes under salt stress. Several apoptotic-like features occurred in T. halophila cells after exposure to 300 mM NaCl, including the retraction of the plasma membrane from the cell wall, nuclear condensation, DNA laddering and the release of cytochrome c accompanying the increase of caspase 3-like protease activity. This process resulted in ultrastructural changes of mitochondria and Golgi bodies, and autophagy was also induced by high salinity stress. DNA laddering and caspase 3-like activity were inhibited prior to the inhibition of cell death by a specific caspase 3 inhibitor, Ac-DEVD-CHO. The results indicate that 300 mM NaCl stress-induced PCD in T. halophila is similar to animal apoptosis, and this process occurs partly through a caspase 3-like dependent pathway. PMID:20417988

  13. Programmed death-1 (PD-1), programmed death-ligand 1 (PD-L1), and EBV-encoded RNA (EBER) expression in Hodgkin lymphoma.

    PubMed

    Paydas, Semra; Bağır, Emine; Seydaoglu, Gulsah; Ercolak, Vehbi; Ergin, Melek

    2015-09-01

    Programmed death-1 (PD-1) and programmed death-ligand 1 (PD-L1) are new targets in cancer immunotherapy. PD-1 protein is an immune checkpoint expressed in many tumors. Epstein-Barr virus (EBV) is present in malignant Hodgkin/Reed-Sternberg (HRS) cells in approximately 40-50 % of Hodgkin lymphoma (HL). The aim of this study is to evaluate the clinical and prognostic importance of PD-1 and/or PD-L1 in HL and also to determine the association between EBV-encoded RNA (EBER) and PD-1/PD-L1. Formalin-fixed, paraffin-embedded tissue samples from 87 cases with HL were analyzed in this study. Immunohistochemical staining was performed to detect the PD-1 and PD-L1 expressions. Chromogenic in situ hybridization for EBER was performed using fluorescein-labeled oligonucleotide probes. PD-1 and PD-L1 expressions were found in 20 % of the cases. The EBER positivity was found in 40 cases (45 %). It has been found that co-expression of PD-1 and PD-L1 was associated with shorter survival although PD-1 or PD-L1 expressions were not found to be related with survival. Overall survival (OS) and disease-free survival (DFS) in cases without PD-1 and PD-L1 expressions were 135 and 107 months, respectively. OS and DFS in cases with co-expression for PD-1 and PD-L1 were 24 and 20 months, respectively, and these differences were found to be statistically significant for both OS and DFS (p = 0.002 and p = 0.003, respectively). Cox regression analysis showed that co-expression of PD-1 and PD-L1 was found to be an independent risk factor for prognosis (OR 6.9, 95 % CI 1.9-24.3). Targeting PD-1 and/or PD-L1 is meaningful due to the 20 % expression of each in HL, and we did not find an important association between PD-1 and PD-L1 and EBER expression in HL. Very poor outcome in cases with co-expression of PD-1/PD-L1 suggests new avenues to detect the new prognostic markers and also therapeutic approaches in HL. PMID:26004934

  14. Caspase-Like Activities Accompany Programmed Cell Death Events in Developing Barley Grains

    PubMed Central

    Tran, Van; Weier, Diana; Radchuk, Ruslana; Thiel, Johannes; Radchuk, Volodymyr

    2014-01-01

    Programmed cell death is essential part of development and cell homeostasis of any multicellular organism. We have analyzed programmed cell death in developing barley caryopsis at histological, biochemical and molecular level. Caspase-1, -3, -4, -6 and -8-like activities increased with aging of pericarp coinciding with abundance of TUNEL positive nuclei and expression of HvVPE4 and HvPhS2 genes in the tissue. TUNEL-positive nuclei were also detected in nucellus and nucellar projection as well as in embryo surrounding region during early caryopsis development. Quantitative RT-PCR analysis of micro-dissected grain tissues revealed the expression of HvVPE2a, HvVPE2b, HvVPE2d, HvPhS2 and HvPhS3 genes exclusively in the nucellus/nucellar projection. The first increase in cascade of caspase-1, -3, -4, -6 and -8-like activities in the endosperm fraction may be related to programmed cell death in the nucellus and nucellar projection. The second increase of all above caspase-like activities including of caspase-9-like was detected in the maturating endosperm and coincided with expression of HvVPE1 and HvPhS1 genes as well as with degeneration of nuclei in starchy endosperm and transfer cells. The distribution of the TUNEL-positive nuclei, tissues-specific expression of genes encoding proteases with potential caspase activities and cascades of caspase-like activities suggest that each seed tissue follows individual pattern of development and disintegration, which however harmonizes with growth of the other tissues in order to achieve proper caryopsis development. PMID:25286287

  15. Identification of a novel cell death-inducing domain reveals that fungal amyloid-controlled programmed cell death is related to necroptosis.

    PubMed

    Daskalov, Asen; Habenstein, Birgit; Sabaté, Raimon; Berbon, Mélanie; Martinez, Denis; Chaignepain, Stéphane; Coulary-Salin, Bénédicte; Hofmann, Kay; Loquet, Antoine; Saupe, Sven J

    2016-03-01

    Recent findings have revealed the role of prion-like mechanisms in the control of host defense and programmed cell death cascades. In fungi, HET-S, a cell death-inducing protein containing a HeLo pore-forming domain, is activated through amyloid templating by a Nod-like receptor (NLR). Here we characterize the HELLP protein behaving analogously to HET-S and bearing a new type of N-terminal cell death-inducing domain termed HeLo-like (HELL) and a C-terminal regulatory amyloid motif known as PP. The gene encoding HELLP is part of a three-gene cluster also encoding a lipase (SBP) and a Nod-like receptor, both of which display the PP motif. The PP motif is similar to the RHIM amyloid motif directing formation of the RIP1/RIP3 necrosome in humans. The C-terminal region of HELLP, HELLP(215-278), encompassing the motif, allows prion propagation and assembles into amyloid fibrils, as demonstrated by X-ray diffraction and FTIR analyses. Solid-state NMR studies reveal a well-ordered local structure of the amyloid core residues and a primary sequence that is almost entirely arranged in a rigid conformation, and confirm a β-sheet structure in an assigned stretch of three amino acids. HELLP is activated by amyloid templating and displays membrane-targeting and cell death-inducing activity. HELLP targets the SBP lipase to the membrane, suggesting a synergy between HELLP and SBP in membrane dismantling. Remarkably, the HeLo-like domain of HELLP is homologous to the pore-forming domain of MLKL, the cell death-execution protein in necroptosis, revealing a transkingdom evolutionary relationship between amyloid-controlled fungal programmed cell death and mammalian necroptosis. PMID:26903619

  16. DIABETES PREVENTION TRIAL TYPE 1

    EPA Science Inventory

    The Diabetes Prevention Trial--Type 1 (DPT-1) is a nationwide study to see if we can prevent or delay type 1 diabetes, also known as insulin-dependent diabetes. Nine medical centers and more than 350 clinics in the United States and Canada are taking part in the study.

  17. Type 1 Diabetes and Sleep.

    PubMed

    Farabi, Sarah S

    2016-02-01

    IN BRIEF In people with type 1 diabetes, sleep may be disrupted as a result of both behavioral and physiological aspects of diabetes and its management. This sleep disruption may negatively affect disease progression and development of complications. This review highlights key research findings regarding sleep in people with type 1 diabetes. PMID:26912959

  18. Members of the XB3 Family from Diverse Plant Species Induce Programmed Cell Death in Nicotiana benthamiana

    PubMed Central

    Huang, Xiaoen; Liu, Xueying; Chen, Xiuhua; Snyder, Anita; Song, Wen-Yuan

    2013-01-01

    Programmed cell death has been associated with plant immunity and senescence. The receptor kinase XA21 confers resistance to bacterial blight disease of rice (Oryza sativa) caused by Xanthomonas oryzae pv. oryzae (Xoo). Here we show that the XA21 binding protein 3 (XB3) is capable of inducing cell death when overexpressed in Nicotiana benthamiana. XB3 is a RING finger-containing E3 ubiquitin ligase that has been positively implicated in XA21-mediated resistance. Mutation abolishing the XB3 E3 activity also eliminates its ability to induce cell death. Phylogenetic analysis of XB3-related sequences suggests a family of proteins (XB3 family) with members from diverse plant species. We further demonstrate that members of the XB3 family from rice, Arabidopsis and citrus all trigger a similar cell death response in Nicotiana benthamiana, suggesting an evolutionarily conserved role for these proteins in regulating programmed cell death in the plant kingdom. PMID:23717500

  19. Type 1 diabetes in Japan.

    PubMed

    Kawasaki, E; Matsuura, N; Eguchi, K

    2006-05-01

    Type 1 diabetes is a multifactorial disease which results from a T-cell-mediated autoimmune destruction of the pancreatic beta cells in genetically predisposed individuals. The risk for individuals of developing type 1 diabetes varies remarkably according to country of residence and race. Japan has one of the lowest incidence rates of type 1 diabetes in the world, and recognises at least three subtypes of the condition: acute-onset ('classical'), slow-onset, and fulminant type 1 diabetes. The incidence rate of type 1 diabetes in children aged 0-14 years in Japan increased over the period from 1973-1992, but remained constant over the last decade, averaging 2.37 cases per 100,000 persons per year; the incidence does not appear to have increased in older age groups. Although there are few reports regarding the incidence and prevalence of type 1 diabetes in adult-onset patients, it appears that the prevalence of type 1 diabetes in adults is more than twice that in childhood-onset patients and that two-thirds of them have a slow-onset form of type 1 diabetes. Differences and similarities in the association of MHC and non-MHC genes with type 1 diabetes are observed in Japan and in countries with Caucasoid populations. Highly susceptible class II HLA haplotypes identified in patients of Caucasoid origin are rarely seen in Japanese patients, whereas protective haplotypes are universal. Non-MHC genes associated with susceptibility to type 1 diabetes in both Japanese and Caucasoid patients include polymorphisms in the insulin gene, the cytotoxic T-lymphocyte antigen 4 (CTLA4) gene, the interleukin-18 (IL18) gene and the major histocompatibility complex class I chain-related gene A (MICA) gene. Fulminant type 1 diabetes is a unique subtype of type 1 diabetes that accounts for about 20% of acute-onset type 1 diabetes, and is seen mainly in adults. The challenge for the future is to investigate the underlying pathogenesis of beta cell destruction, including the genetic or

  20. Apaf1-dependent programmed cell death is required for inner ear morphogenesis and growth.

    PubMed

    Cecconi, Francesco; Roth, Kevin A; Dolgov, Oleg; Munarriz, Eliana; Anokhin, Konstantin; Gruss, Peter; Salminen, Marjo

    2004-05-01

    During inner ear development programmed cell death occurs in specific areas of the otic epithelium but the significance of it and the molecules involved have remained unclear. We undertook an analysis of mouse mutants in which genes encoding apoptosis-associated molecules have been inactivated. Disruption of the Apaf1 gene led to a dramatic decrease in apoptosis in the inner ear epithelium, severe morphogenetic defects and a significant size reduction of the membranous labyrinth, demonstrating that an Apaf1-dependent apoptotic pathway is necessary for normal inner ear development. This pathway most probably operates through the apoptosome complex because caspase 9 mutant mice suffered similar defects. Inactivation of the Bcl2-like (Bcl2l) gene led to an overall increase in the number of cells undergoing apoptosis but did not cause any major morphogenetic defects. In contrast, decreased apoptosis was observed in specific locations that suffered from developmental deficits, indicating that proapoptotic isoform(s) produced from Bcl2l might have roles in inner ear development. In Apaf1(-/-)/Bcl2l(-/-) double mutant embryos, no cell death could be detected in the otic epithelium, demonstrating that the cell death regulated by the anti-apoptotic Bcl2l isoform, Bcl-X(L) in the otic epithelium is Apaf1-dependent. Furthermore, the otic vesicle failed to close completely in all double mutant embryos analyzed. These results indicate important roles for both Apaf1 and Bcl2l in inner ear development. PMID:15105372

  1. Regulation of postsurgical fibrosis by the programmed death-1 inhibitory pathway.

    PubMed

    Holsti, Matthew A; Chitnis, Tanuja; Panzo, Ronald J; Bronson, Roderick T; Yagita, Hideo; Sayegh, Mohamed H; Tzianabos, Arthur O

    2004-05-01

    Surgical adhesions are a common and often severe complication of abdominal or pelvic injury that cause pelvic pain, bowel obstruction, and infertility in women. Current treatments are of limited effectiveness because little is known about the cellular and subcellular processes underlying adhesiogenesis. Recently, we showed that Th1 alpha beta CD4(+) T cells mediate the pathogenesis of adhesion formation in a rodent model of this disease process. In this study, we demonstrate that in mice these T cells home directly to the site of surgically induced adhesions and control local chemokine production in a manner dependent on the CD28 T cell costimulatory pathway. Conversely, the inhibitory programmed death-1 pathway plays a central role in limiting adhesiogenesis, as programmed death-1 blockade was associated with increased T cell infiltration, chemokine production, and a concomitant exacerbation of disease. Our results reveal for the first time that the development of postsurgical fibrosis is under the tight control of positive and negative T cell costimulation, and suggest that targeting these pathways may provide promising therapies for the prevention of adhesion formation. PMID:15100324

  2. Increased programmed death-ligand-1 expression in human gastric epithelial cells in Helicobacter pylori infection

    PubMed Central

    Wu, Y-Y; Lin, C-W; Cheng, K-S; Lin, C; Wang, Y-M; Lin, I-T; Chou, Y-H; Hsu, P-N

    2010-01-01

    B7-H1 [programmed death-ligand-1 (PD-L1)] is a B7-family member that binds to programmed death-1 (PD-1). Recently, deficiency of PD-L1 has been demonstrated to result in accelerated gastric epithelial cell damage in gastritis, and PD-L1 is suggested to play a critical role in regulating T cell homeostasis. Here, we aimed to gain more insight into gastric PD-L1 expression, regulation and function during Helicobacter pylori infection. PD-L1 expression in human gastric epithelial cells was analysed using Western blotting, quantitative polymerase chain reaction and fluorescence activated cell sorter analysis. Furthermore, co-culture experiments of human gastric epithelial cells with primary human T cells or Jurkat T cells were conducted. PD-L1 expression in primary human gastric epithelial cells was strongly enhanced by H. pylori infection and activated T cells, and augmented markedly by further stimulation with interferon-γ or tumour necrosis factor-α. Moreover, PD-L1 expression in gastric epithelial cells significantly induced apoptosis of T cells. Our results indicate that a novel bidirectional interaction between human gastric epithelial cells and lymphocytes modulates PD-L1 expression in human gastric epithelial cells, contributing to the unique immunological properties of the stomach. PMID:20646001

  3. Why do cells die in HIV infection? Potential mechanisms inducing programmed cell death/apoptosis.

    PubMed

    Del Llano, A M; Lavergne, J A

    1994-06-01

    This work reviews the suggested mechanisms which result in programmed cell death in human HIV infection. Here we present state-of-the-art scientific information related to the newly rediscovered phenomenon of Apoptosis, and to its biological relevance in the pathogenesis of HIV disease. General features of this phenomenon are reviewed, as well as available evidence for its occurrence and possible role in AIDS pathogenesis. A complex series of cellular and molecular events leading to cellular apoptosis are also reviewed and discussed. They include events which take place at the cell membrane level and those which occur at the intramembrane level and cytoplasmic locations, which result from the immunological activation of affected cells. Cellular events which follow and occur within the mitochondrial space and at the nuclear level are also discussed. The biological significance of all these phenomena is summarized in a theoretical scheme, which attempts to integrate all cellular events leading a primed cell into its HIV-induced programmed death. PMID:7938404

  4. Glycosylation and stabilization of programmed death ligand-1 suppresses T-cell activity.

    PubMed

    Li, Chia-Wei; Lim, Seung-Oe; Xia, Weiya; Lee, Heng-Huan; Chan, Li-Chuan; Kuo, Chu-Wei; Khoo, Kay-Hooi; Chang, Shih-Shin; Cha, Jong-Ho; Kim, Taewan; Hsu, Jennifer L; Wu, Yun; Hsu, Jung-Mao; Yamaguchi, Hirohito; Ding, Qingqing; Wang, Yan; Yao, Jun; Lee, Cheng-Chung; Wu, Hsing-Ju; Sahin, Aysegul A; Allison, James P; Yu, Dihua; Hortobagyi, Gabriel N; Hung, Mien-Chie

    2016-01-01

    Extracellular interaction between programmed death ligand-1 (PD-L1) and programmed cell death protein-1 (PD-1) leads to tumour-associated immune escape. Here we show that the immunosuppression activity of PD-L1 is stringently modulated by ubiquitination and N-glycosylation. We show that glycogen synthase kinase 3β (GSK3β) interacts with PD-L1 and induces phosphorylation-dependent proteasome degradation of PD-L1 by β-TrCP. In-depth analysis of PD-L1 N192, N200 and N219 glycosylation suggests that glycosylation antagonizes GSK3β binding. In this regard, only non-glycosylated PD-L1 forms a complex with GSK3β and β-TrCP. We also demonstrate that epidermal growth factor (EGF) stabilizes PD-L1 via GSK3β inactivation in basal-like breast cancer. Inhibition of EGF signalling by gefitinib destabilizes PD-L1, enhances antitumour T-cell immunity and therapeutic efficacy of PD-1 blockade in syngeneic mouse models. Together, our results link ubiquitination and glycosylation pathways to the stringent regulation of PD-L1, which could lead to potential therapeutic strategies to enhance cancer immune therapy efficacy. PMID:27572267

  5. Programmed death 1 protects from fatal circulatory failure during systemic virus infection of mice.

    PubMed

    Frebel, Helge; Nindl, Veronika; Schuepbach, Reto A; Braunschweiler, Thomas; Richter, Kirsten; Vogel, Johannes; Wagner, Carsten A; Loffing-Cueni, Dominique; Kurrer, Michael; Ludewig, Burkhard; Oxenius, Annette

    2012-12-17

    The inhibitory programmed death 1 (PD-1)-programmed death ligand 1 (PD-L1) pathway contributes to the functional down-regulation of T cell responses during persistent systemic and local virus infections. The blockade of PD-1-PD-L1-mediated inhibition is considered as a therapeutic approach to reinvigorate antiviral T cell responses. Yet previous studies reported that PD-L1-deficient mice develop fatal pathology during early systemic lymphocytic choriomeningitis virus (LCMV) infection, suggesting a host protective role of T cell down-regulation. As the exact mechanisms of pathology development remained unclear, we set out to delineate in detail the underlying pathogenesis. Mice deficient in PD-1-PD-L1 signaling or lacking PD-1 signaling in CD8 T cells succumbed to fatal CD8 T cell-mediated immunopathology early after systemic LCMV infection. In the absence of regulation via PD-1, CD8 T cells killed infected vascular endothelial cells via perforin-mediated cytolysis, thereby severely compromising vascular integrity. This resulted in systemic vascular leakage and a consequential collapse of the circulatory system. Our results indicate that the PD-1-PD-L1 pathway protects the vascular system from severe CD8 T cell-mediated damage during early systemic LCMV infection, highlighting a pivotal physiological role of T cell down-regulation and suggesting the potential development of immunopathological side effects when interfering with the PD-1-PD-L1 pathway during systemic virus infections. PMID:23230000

  6. Ozone-Induced Cell Death in Tobacco Cultivar Bel W3 Plants. The Role of Programmed Cell Death in Lesion Formation

    PubMed Central

    Pasqualini, Stefania; Piccioni, Claudia; Reale, Lara; Ederli, Luisa; Della Torre, Guido; Ferranti, Francesco

    2003-01-01

    Treatment of the ozone-sensitive tobacco (Nicotiana tabacum L. cv Bel W3) with an ozone pulse (150 nL L–1 for 5 h) induced visible injury, which manifested 48 to 72 h from onset of ozone fumigation. The “classical” ozone symptoms in tobacco cv Bel W3 plants occur as sharply defined, dot-like lesions on the adaxial side of the leaf and result from the death of groups of palisade cells. We investigated whether this reaction had the features of a hypersensitive response like that which results from the incompatible plant-pathogen interaction. We detected an oxidative burst, the result of H2O2 accumulation at 12 h from the starting of fumigation. Ozone treatment induced deposition of autofluorescent compounds and callose 24 h from the start of treatment. Total phenolic content was also strongly stimulated at the 10th and 72nd h from starting fumigation, concomitant with an enhancement in phenylalanine ammonia-lyase a and phenylalanine ammonia-lyase b expression, as evaluated by reverse transcriptase-polymerase chain reaction. There was also a marked, but transient, increase in the mRNA level of pathogenesis-related-1a, a typical hypersensitive response marker. Overall, these results are evidence that ozone triggers a hypersensitive response in tobacco cv Bel W3 plants. We adopted four criteria for detecting programmed cell death in ozonated tobacco cv Bel W3 leaves: (a) early release of cytochrome c from mitochondria; (b) activation of protease; (c) DNA fragmentation by terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling of DNA 3′-OH groups; and (d) ultrastructural changes characteristic of programmed cell death, including chromatin condensation and blebbing of plasma membrane. We, therefore, provide evidence that ozone-induced oxidative stress triggers a cell death program in tobacco cv Bel W3. PMID:14612586

  7. Human clusterin gene expression is confined to surviving cells during in vitro programmed cell death.

    PubMed Central

    French, L E; Wohlwend, A; Sappino, A P; Tschopp, J; Schifferli, J A

    1994-01-01

    Clusterin is a serum glycoprotein endowed with cell aggregating, complement inhibitory, and lipid binding properties, and is also considered as a specific marker of dying cells, its expression being increased in various tissues undergoing programmed cell death (PCD). However, no study has so far directly shown that cells expressing clusterin in these tissues are actually apoptotic as defined by morphological and biochemical criteria. We have studied cellular clusterin gene expression in vitro using three different models of PCD: (a) ultraviolet B (UV-B) irradiation of human U937, HeLa, and A431 cell lines, (b) in vitro aging of human peripheral blood neutrophils (PMNs), and (c) dexamethasone-induced cell death of the human lymphoblastoid cell line CEM-C7. In all three models, the classical morphological and biochemical features of PCD observed did not correlate with an increase, but with either a marked decrease or an absence of clusterin gene expression as assessed by Northern blot analysis. In situ hybridization of U937 and A431 cells after UV-B irradiation revealed, in addition, that only morphologically normal cells that are surviving continue to express the clusterin gene. Our results demonstrate that in the human myeloid, lymphoid, and epithelial cell types studied, clusterin gene expression is not a prerequisite to their death by apoptosis. In addition, and most interestingly, in situ hybridization of U937 and A431 cells revealed that only surviving cells express the clusterin gene after the induction of PCD, thus providing novel evidence suggesting that clusterin may be associated with cell survival within tissues regressing as a consequence of PCD. Images PMID:8113419

  8. Apoptotic-like programed cell death in fungi: the benefits in filamentous species

    PubMed Central

    Shlezinger, Neta; Goldfinger, Nir; Sharon, Amir

    2012-01-01

    Studies conducted in the early 1990s showed for the first time that Saccharomyces cerevisiae can undergo cell death with hallmarks of animal apoptosis. These findings came as a surprise, since suicide machinery was unexpected in unicellular organisms. Today, apoptosis in yeast is well-documented. Apoptotic death of yeast cells has been described under various conditions and S. cerevisiae homologs of human apoptotic genes have been identified and characterized. These studies also revealed fundamental differences between yeast and animal apoptosis; in S. cerevisiae apoptosis is mainly associated with aging and stress adaptation, unlike animal apoptosis, which is essential for proper development. Further, many apoptosis regulatory genes are either missing, or highly divergent in S. cerevisiae. Therefore, in this review we will use the term apoptosis-like programed cell death (PCD) instead of apoptosis. Despite these significant differences, S. cerevisiae has been instrumental in promoting the study of heterologous apoptotic proteins, particularly from human. Work in fungi other than S. cerevisiae revealed differences in the manifestation of PCD in single cell (yeasts) and multicellular (filamentous) species. Such differences may reflect the higher complexity level of filamentous species, and hence the involvement of PCD in a wider range of processes and life styles. It is also expected that differences might be found in the apoptosis apparatus of yeast and filamentous species. In this review we focus on aspects of PCD that are unique or can be better studied in filamentous species. We will highlight the similarities and differences of the PCD machinery between yeast and filamentous species and show the value of using S. cerevisiae along with filamentous species to study apoptosis. PMID:22891165

  9. Mefloquine induces ROS mediated programmed cell death in malaria parasite: Plasmodium.

    PubMed

    Gunjan, Sarika; Singh, Sunil Kumar; Sharma, Tanuj; Dwivedi, Hemlata; Chauhan, Bhavana Singh; Imran Siddiqi, Mohammad; Tripathi, Renu

    2016-09-01

    Recent studies pioneer the existence of a novel programmed cell death pathway in malaria parasite plasmodium and suggest that it could be helpful in developing new targeted anti-malarial therapies. Considering this fact, we evaluated the underlying action mechanism of this pathway in mefloquine (MQ) treated parasite. Since cysteine proteases play a key role in apoptosis hence we performed preliminary computational simulations to determine binding affinity of MQ with metacaspase protein model. Binding pocket identified using computational studies, was docked with MQ to identify it's potential to bind with the predicted protein model. We further determined apoptotic markers such as mitochondrial dysregulation, activation of cysteine proteases and in situ DNA fragmentation in MQ treated/untreated parasites by cell based assay. Our results showed low mitochondrial membrane potential, enhanced activity of cysteine protease and increased number of fragmented DNA in treated parasites compared to untreated ones. We next tested the involvement of oxidative stress in MQ mediated cell death and found significant increase in reactive oxygen species generation after 24 h of treatment. Therefore we conclude that apart from hemozoin inhibition, MQ is competent to induce apoptosis in plasmodium by activating metacaspase and ROS production. PMID:27357656

  10. Programmed cell death and adaptation: two different types of abiotic stress response in a unicellular chlorophyte.

    PubMed

    Zuppini, Anna; Gerotto, Caterina; Baldan, Barbara

    2010-06-01

    Eukaryotic microalgae are highly suitable biological indicators of environmental changes because they are exposed to extreme seasonal fluctuations. The biochemical and molecular targets and regulators of key proteins involved in the stress response in microalgae have yet to be elucidated. This study presents morphological and biochemical evidence of programmed cell death (PCD) in a low temperature strain of Chlorella saccharophila induced by exposure to NaCl stress. Morphological characteristics of PCD, including cell shrinkage, detachment of the plasma membrane from the cell wall, nuclear condensation and DNA fragmentation, were observed. Additionally, a significant production of H(2)O(2) and increase in caspase 3-like activity were detected. We demonstrated that singly applied environmental stresses such as warming or salt stress trigger a pathway of PCD. Intriguingly, the prior application of salt stress seems to reduce heat shock-induced cell death significantly, suggesting a combined effect which activates a defense mechanism in algal cells. These results suggest that C. saccharophila can undergo PCD under stress conditions, and that this PCD shares several features with metazoan PCD. Moreover, the simultaneous exposure of this unicellular chlorophyte to different abiotic stresses results in a tolerance mechanism. PMID:20457671

  11. Exploring diabetes type 1-related stigma

    PubMed Central

    Abdoli, Samereh; Abazari, Parvaneh; Mardanian, Leila

    2013-01-01

    Background: Empowerment of people with diabetes means integrating diabetes with identity. However, others’ stigmatization can influence it. Although diabetes is so prevalent among Iranians, there is little knowledge about diabetes-related stigma in Iran. The present study explored diabetes-related stigma in people living with type 1 diabetes in Isfahan. Materials and Methods: A conventional content analysis was used with in-depth interview with 26 people with and without diabetes from November 2011 to July 2012. Results: A person with type 1 diabetes was stigmatized as a miserable human (always sick and unable, death reminder, and intolerable burden), rejected marriage candidate (busy spouse, high-risk pregnant), and deprived of a normal life [prisoner of (to must), deprived of pleasure]. Although, young adults with diabetes undergo all aspects of the social diabetes-related stigma; in their opinion they were just deprived of a normal life Conclusion: It seems that in Isfahan, diabetes-related stigma is of great importance. In this way, conducting an appropriate intervention is necessary to improve the empowerment process in people with type 1 diabetes in order to reduce the stigma in the context. PMID:23983731

  12. Untangling the Roles of Anti-Apoptosis in Regulating Programmed Cell Death using Humanized Yeast Cells

    PubMed Central

    Clapp, Caitlin; Portt, Liam; Khoury, Chamel; Sheibani, Sara; Eid, Rawan; Greenwood, Matthew; Vali, Hojatollah; Mandato, Craig A.; Greenwood, Michael T.

    2012-01-01

    Genetically programmed cell death (PCD) mechanisms, including apoptosis, are important for the survival of metazoans since it allows, among things, the removal of damaged cells that interfere with normal function. Cell death due to PCD is observed in normal processes such as aging and in a number of pathophysiologies including hypoxia (common causes of heart attacks and strokes) and subsequent tissue reperfusion. Conversely, the loss of normal apoptotic responses is associated with the development of tumors. So far, limited success in preventing unwanted PCD has been reported with current therapeutic approaches despite the fact that inhibitors of key apoptotic inducers such as caspases have been developed. Alternative approaches have focused on mimicking anti-apoptotic processes observed in cells displaying increased resistance to apoptotic stimuli. Hormesis and pre-conditioning are commonly observed cellular strategies where sub-lethal levels of pro-apoptotic stimuli lead to increased resistance to higher or lethal levels of stress. Increased expression of anti-apoptotic sequences is a common mechanism mediating these protective effects. The relevance of the latter observation is exemplified by the observation that transgenic mice overexpressing anti-apoptotic genes show significant reductions in tissue damage following ischemia. Thus strategies aimed at increasing the levels of anti-apoptotic proteins, using gene therapy or cell penetrating recombinant proteins are being evaluated as novel therapeutics to decrease cell death following acute periods of cell death inducing stress. In spite of its functional and therapeutic importance, more is known regarding the processes involved in apoptosis than anti-apoptosis. The genetically tractable yeast Saccharomyces cerevisiae has emerged as an exceptional model to study multiple aspects of PCD including the mitochondrial mediated apoptosis observed in metazoans. To increase our knowledge of the process of anti

  13. Programmed cell death acts at different stages of Drosophila neurodevelopment to shape the central nervous system.

    PubMed

    Pinto-Teixeira, Filipe; Konstantinides, Nikolaos; Desplan, Claude

    2016-08-01

    Nervous system development is a process that integrates cell proliferation, differentiation, and programmed cell death (PCD). PCD is an evolutionary conserved mechanism and a fundamental developmental process by which the final cell number in a nervous system is established. In vertebrates and invertebrates, PCD can be determined intrinsically by cell lineage and age, as well as extrinsically by nutritional, metabolic, and hormonal states. Drosophila has been an instrumental model for understanding how this mechanism is regulated. We review the role of PCD in Drosophila central nervous system development from neural progenitors to neurons, its molecular mechanism and function, how it is regulated and implemented, and how it ultimately shapes the fly central nervous system from the embryo to the adult. Finally, we discuss ideas that emerged while integrating this information. PMID:27404003

  14. Association of Acute Interstitial Nephritis With Programmed Cell Death 1 Inhibitor Therapy in Lung Cancer Patients.

    PubMed

    Shirali, Anushree C; Perazella, Mark A; Gettinger, Scott

    2016-08-01

    Immune checkpoint inhibitors that target the programmed death 1 (PD-1) signaling pathway have recently been approved for use in advanced pretreated non-small cell lung cancer and melanoma. Clinical trial data suggest that these drugs may have adverse effects on the kidney, but these effects have not been well described. We present 6 cases of acute kidney injury in patients with lung cancer who received anti-PD-1 antibodies, with each case displaying evidence of acute interstitial nephritis (AIN) on kidney biopsy. All patients were also treated with other drugs (proton pump inhibitors and nonsteroidal anti-inflammatory drugs) linked to AIN, but in most cases, use of these drugs long preceded PD-1 inhibitor therapy. The association of AIN with these drugs in our patients raises the possibility that PD-1 inhibitor therapy may release suppression of T-cell immunity that normally permits renal tolerance of drugs known to be associated with AIN. PMID:27113507

  15. Early events induced by the toxin deoxynivalenol lead to programmed cell death in Nicotiana tabacum cells.

    PubMed

    Yekkour, Amine; Tran, Daniel; Arbelet-Bonnin, Delphine; Briand, Joël; Mathieu, Florence; Lebrihi, Ahmed; Errakhi, Rafik; Sabaou, Nasserdine; Bouteau, François

    2015-09-01

    Deoxynivalenol (DON) is a mycotoxin affecting animals and plants. This toxin synthesized by Fusarium culmorum and Fusarium graminearum is currently believed to play a decisive role in the fungal phytopathogenesis as a virulence factor. Using cultured cells of Nicotiana tabacum BY2, we showed that DON-induced programmed cell death (PCD) could require transcription and translation processes, in contrast to what was observed in animal cells. DON could induce different cross-linked pathways involving (i) reactive oxygen species (ROS) generation linked, at least partly, to a mitochondrial dysfunction and a transcriptional down-regulation of the alternative oxidase (Aox1) gene and (ii) regulation of ion channel activities participating in cell shrinkage, to achieve PCD. PMID:26259183

  16. On the intrinsic disorder status of the major players in programmed cell death pathways

    PubMed Central

    Uversky, Vladimir N

    2013-01-01

    Earlier computational and bioinformatics analysis of several large protein datasets across 28 species showed that proteins involved in regulation and execution of programmed cell death (PCD) possess substantial amounts of intrinsic disorder. Based on the comprehensive analysis of these datasets by a wide array of modern bioinformatics tools it was concluded that disordered regions of PCD-related proteins are involved in a multitude of biological functions and interactions with various partners, possess numerous posttranslational modification sites, and have specific evolutionary patterns (Peng et al. 2013). This study extends our previous work by providing information on the intrinsic disorder status of some of the major players of the three major PCD pathways: apoptosis, autophagy, and necroptosis. We also present a detailed description of the disorder status and interactomes of selected proteins that are involved in the p53-mediated apoptotic signaling pathways. PMID:24358900

  17. Pancreatitis Secondary to Anti-Programmed Death Receptor 1 Immunotherapy Diagnosed by FDG PET/CT.

    PubMed

    Alabed, Yazan Z; Aghayev, Ayaz; Sakellis, Christopher; Van den Abbeele, Annick D

    2015-11-01

    A 57-year-old man with metastatic melanoma developed colitis secondary to ipilimumab, a known immune-related adverse event (irAE). The patient then received pembrolizumab immunotherapy, an anti-programmed-death-receptor-1 (PD-1) antibody. Restaging FDG PET/CT study following 3 cycles of therapy demonstrated diffuse increased FDG uptake throughout the body of the pancreas associated with fat stranding in the peripancreatic region, suggestive of pembrolizumab-induced pancreatitis. Although the patient was clinically asymptomatic, diagnosis was biochemically confirmed with elevated amylase and lipase levels. In the era of immunotherapy, it will be critical to recognize irAEs early to allow prompt initiation of appropriate therapy and reduce the risk of long-term sequelae. PMID:26284765

  18. Oxidative damage and cell-programmed death induced in Zea mays L. by allelochemical stress.

    PubMed

    Ciniglia, Claudia; Mastrobuoni, Francesco; Scortichini, Marco; Petriccione, Milena

    2015-05-01

    The allelochemical stress on Zea mays was analyzed by using walnut husk washing waters (WHWW), a by-product of Juglans regia post-harvest process, which possesses strong allelopathic potential and phytotoxic effects. Oxidative damage and cell-programmed death were induced by WHWW in roots of maize seedlings. Treatment induced ROS burst, with excess of H2O2 content. Enzymatic activities of catalase were strongly increased during the first hours of exposure. The excess in malonildialdehyde following exposure to WHWW confirmed that oxidative stress severely damaged maize roots. Membrane alteration caused a decrease in NADPH oxidase activity along with DNA damage as confirmed by DNA laddering. The DNA instability was also assessed through sequence-related amplified polymorphism assay, thus suggesting the danger of walnut processing by-product and focusing the attention on the necessity of an efficient treatment of WHWW. PMID:25736610

  19. Developmental Coordination of Gamete Differentiation with Programmed Cell Death in Sporulating Yeast.

    PubMed

    Eastwood, Michael D; Meneghini, Marc D

    2015-09-01

    The gametogenesis program of the budding yeast Saccharomyces cerevisiae, also known as sporulation, employs unusual internal meiotic divisions, after which all four meiotic products differentiate within the parental cell. We showed previously that sporulation is typically accompanied by the destruction of discarded immature meiotic products through their exposure to proteases released from the mother cell vacuole, which undergoes an apparent programmed rupture. Here we demonstrate that vacuolar rupture contributes to de facto programmed cell death (PCD) of the meiotic mother cell itself. Meiotic mother cell PCD is accompanied by an accumulation of depolarized mitochondria, organelle swelling, altered plasma membrane characteristics, and cytoplasmic clearance. To ensure that the gametes survive the destructive consequences of developing within a cell that is executing PCD, we hypothesized that PCD is restrained from occurring until spores have attained a threshold degree of differentiation. Consistent with this hypothesis, gene deletions that perturb all but the most terminal postmeiotic spore developmental stages are associated with altered PCD. In these mutants, meiotic mother cells exhibit a delay in vacuolar rupture and then appear to undergo an alternative form of PCD associated with catastrophic consequences for the underdeveloped spores. Our findings reveal yeast sporulation as a context of bona fide PCD that is developmentally coordinated with gamete differentiation. PMID:26092920

  20. Programmed death 1 protects from fatal circulatory failure during systemic virus infection of mice

    PubMed Central

    Frebel, Helge; Nindl, Veronika; Schuepbach, Reto A.; Braunschweiler, Thomas; Richter, Kirsten; Vogel, Johannes; Wagner, Carsten A.; Loffing-Cueni, Dominique; Kurrer, Michael; Ludewig, Burkhard

    2012-01-01

    The inhibitory programmed death 1 (PD-1)–programmed death ligand 1 (PD-L1) pathway contributes to the functional down-regulation of T cell responses during persistent systemic and local virus infections. The blockade of PD-1–PD-L1–mediated inhibition is considered as a therapeutic approach to reinvigorate antiviral T cell responses. Yet previous studies reported that PD-L1–deficient mice develop fatal pathology during early systemic lymphocytic choriomeningitis virus (LCMV) infection, suggesting a host protective role of T cell down-regulation. As the exact mechanisms of pathology development remained unclear, we set out to delineate in detail the underlying pathogenesis. Mice deficient in PD-1–PD-L1 signaling or lacking PD-1 signaling in CD8 T cells succumbed to fatal CD8 T cell–mediated immunopathology early after systemic LCMV infection. In the absence of regulation via PD-1, CD8 T cells killed infected vascular endothelial cells via perforin-mediated cytolysis, thereby severely compromising vascular integrity. This resulted in systemic vascular leakage and a consequential collapse of the circulatory system. Our results indicate that the PD-1–PD-L1 pathway protects the vascular system from severe CD8 T cell–mediated damage during early systemic LCMV infection, highlighting a pivotal physiological role of T cell down-regulation and suggesting the potential development of immunopathological side effects when interfering with the PD-1–PD-L1 pathway during systemic virus infections. PMID:23230000

  1. Nature of type 1 Supernovae

    NASA Technical Reports Server (NTRS)

    Shklovskiy, I. S.

    1980-01-01

    The nature of type 1 supernovae (SN 1) is discussed through a comparison of observational evidence and theoretical perspectives relating to both type 1 and 2 supernovae. In particular two hypotheses relating to SN 1 phenomenon are examined: the first proposing that SN 1 are components of binary systems in which, at a comparatively late stage of evolution, overflow of the mass occurs; the second considers pre-SN 1 to be recently evolved stars with a mass greater than 1.4 solar mass (white dwarfs). In addition, an explanation of the reduced frequency of flares of SN 1 in spiral galaxies as related to that in elliptical galaxies is presented.

  2. Viruses in type 1 diabetes.

    PubMed

    Hyöty, Heikki

    2016-07-01

    Environmental factors play an important role in the pathogenesis of type 1 diabetes and can determine if a genetically susceptible individual develops the disease. Increasing evidence suggest that among other exogenous agents certain virus infections can contribute to the beta-cell damaging process. Possible viral etiology of type 1 diabetes has been explored extensively but the final proof for causality is still lacking. Currently, the group of enteroviruses (EVs) is considered as the strongest candidate. These viruses have been found in the pancreas of type 1 diabetic patients, and epidemiological studies have shown more EV infections in diabetic patients than in controls. Prospective studies, such as the Type 1 Diabetes Prediction and Prevention (DIPP) study in Finland, are of fundamental importance in the evaluation viral effects as they can cover all stages of the beta-cell damaging process, including those preceding the initiation of the process. DIPP study has carried out the most comprehensive virological analyses ever done in prospective cohorts. This article summarizes the findings from these analyses and discuss them in the context of the existing other knowledge and the prospects for intervention studies with EV vaccines or antiviral drugs. PMID:27411438

  3. ROS-mediated abiotic stress-induced programmed cell death in plants

    PubMed Central

    Petrov, Veselin; Hille, Jacques; Mueller-Roeber, Bernd; Gechev, Tsanko S.

    2015-01-01

    During the course of their ontogenesis plants are continuously exposed to a large variety of abiotic stress factors which can damage tissues and jeopardize the survival of the organism unless properly countered. While animals can simply escape and thus evade stressors, plants as sessile organisms have developed complex strategies to withstand them. When the intensity of a detrimental factor is high, one of the defense programs employed by plants is the induction of programmed cell death (PCD). This is an active, genetically controlled process which is initiated to isolate and remove damaged tissues thereby ensuring the survival of the organism. The mechanism of PCD induction usually includes an increase in the levels of reactive oxygen species (ROS) which are utilized as mediators of the stress signal. Abiotic stress-induced PCD is not only a process of fundamental biological importance, but also of considerable interest to agricultural practice as it has the potential to significantly influence crop yield. Therefore, numerous scientific enterprises have focused on elucidating the mechanisms leading to and controlling PCD in response to adverse conditions in plants. This knowledge may help develop novel strategies to obtain more resilient crop varieties with improved tolerance and enhanced productivity. The aim of the present review is to summarize the recent advances in research on ROS-induced PCD related to abiotic stress and the role of the organelles in the process. PMID:25741354

  4. Macromitophagy, neutral lipids synthesis, and peroxisomal fatty acid oxidation protect yeast from "liponecrosis", a previously unknown form of programmed cell death.

    PubMed

    Sheibani, Sara; Richard, Vincent R; Beach, Adam; Leonov, Anna; Feldman, Rachel; Mattie, Sevan; Khelghatybana, Leila; Piano, Amanda; Greenwood, Michael; Vali, Hojatollah; Titorenko, Vladimir I

    2014-01-01

    We identified a form of cell death called "liponecrosis." It can be elicited by an exposure of the yeast Saccharomyces cerevisiae to exogenous palmitoleic acid (POA). Our data imply that liponecrosis is: (1) a programmed, regulated form of cell death rather than an accidental, unregulated cellular process and (2) an age-related form of cell death. Cells committed to liponecrotic death: (1) do not exhibit features characteristic of apoptotic cell death; (2) do not display plasma membrane rupture, a hallmark of programmed necrotic cell death; (3) akin to cells committed to necrotic cell death, exhibit an increased permeability of the plasma membrane for propidium iodide; (4) do not display excessive cytoplasmic vacuolization, a hallmark of autophagic cell death; (5) akin to cells committed to autophagic death, exhibit a non-selective en masse degradation of cellular organelles and require the cytosolic serine/threonine protein kinase Atg1p for executing the death program; and (6) display a hallmark feature that has not been reported for any of the currently known cell death modalities-namely, an excessive accumulation of lipid droplets where non-esterified fatty acids (including POA) are deposited in the form of neutral lipids. We therefore concluded that liponecrotic cell death subroutine differs from the currently known subroutines of programmed cell death. Our data suggest a hypothesis that liponecrosis is a cell death module dynamically integrated into a so-called programmed cell death network, which also includes the apoptotic, necrotic, and autophagic modules of programmed cell death. Based on our findings, we propose a mechanism underlying liponecrosis. PMID:24196447

  5. Live to die another way: modes of programmed cell death and the signals emanating from dying cells

    PubMed Central

    Fuchs, Yaron; Steller, Hermann

    2015-01-01

    Preface All life ends in death, but perhaps one of life’s grander ironies is that it also depends on death. Cell-intrinsic suicide pathways, termed programmed cell death (PCD), are crucial for animal development, tissue homeostasis and pathogenesis. Originally, PCD was virtually synonymous with apoptosis, but recently, alternative PCD mechanisms have been reported. Here, we provide an overview of several distinct PCD mechanisms, namely apoptosis, autophagy and necroptosis. In addition, we discuss the complex signals emanating from dying cells, which can either fuel regeneration or instruct additional killing. Further advances in understanding the physiological role of multiple cell death mechanisms and associated signals will be important to selectively manipulate PCD for therapeutic purposes. PMID:25991373

  6. Death duties

    PubMed Central

    Myers, Kathryn A.; Eden, David

    2007-01-01

    PROBLEM BEING ADDRESSED Family physicians are often called upon to pronounce and certify the deaths of patients. Inadequate knowledge of the Coroners Act (in the province of Ontario) and of the correct process of certifying death can make physicians uncomfortable when confronted with these tasks. OBJECTIVE OF PROGRAM To educate family physicians about how to perform the administrative tasks required of them when patients die. PROGRAM DESCRIPTION The program included an educational video, a tutorial outlining the process of death certification, and discussion with a regional coroner about key features of the Coroners Act. In small groups, participants worked through cases of patient deaths in which they were asked to determine whether a coroner needed to be involved, to determine the manner of death, and to complete a mock death certificate for each case. CONCLUSION All participants reported a high level of satisfaction with the workshop and thought the main objective of the program had been achieved. Results of a test given 3 months after the workshop showed substantial improvement in participants’ knowledge of the coroner’s role and of the process of death certification. PMID:17872782

  7. Ethylene signaling in salt stress- and salicylic acid-induced programmed cell death in tomato suspension cells.

    PubMed

    Poór, Péter; Kovács, Judit; Szopkó, Dóra; Tari, Irma

    2013-02-01

    Salt stress- and salicylic acid (SA)-induced cell death can be activated by various signaling pathways including ethylene (ET) signaling in intact tomato plants. In tomato suspension cultures, a treatment with 250 mM NaCl increased the production of reactive oxygen species (ROS), nitric oxide (NO), and ET. The 10(-3) M SA-induced cell death was also accompanied by ROS and NO production, but ET emanation, the most characteristic difference between the two cell death programs, did not change. ET synthesis was enhanced by addition of ET precursor 1-aminocyclopropane-1-carboxylic acid, which, after 2 h, increased the ROS production in the case of both stressors and accelerated cell death under salt stress. However, it did not change the viability and NO levels in SA-treated samples. The effect of ET induced by salt stress could be blocked with silver thiosulfate (STS), an inhibitor of ET action. STS reduced the death of cells which is in accordance with the decrease in ROS production of cells exposed to high salinity. Unexpectedly, application of STS together with SA resulted in increasing ROS and reduced NO accumulation which led to a faster cell death. NaCl- and SA-induced cell death was blocked by Ca(2+) chelator EGTA and calmodulin inhibitor W-7, or with the inhibitors of ROS. The inhibitor of MAPKs, PD98059, and the cysteine protease inhibitor E-64 reduced cell death in both cases. These results show that NaCl induces cell death mainly by ET-induced ROS production, but ROS generated by SA was not controlled by ET in tomato cell suspension. PMID:22535239

  8. The unique evolution of the programmed cell death 4 protein in plants

    PubMed Central

    2013-01-01

    Background The programmed cell death 4 (PDCD4) protein is induced in animals during apoptosis and functions to inhibit translation and tumor promoter-induced neoplastic transformation. PDCD4 is composed of two MA3 domains that share similarity with the single MA3 domain present in the eukaryotic translation initiation factor (eIF) 4G, which serves as a scaffold protein to assemble several initiation factors needed for the recruitment of the 40S ribosomal subunit to an mRNA. Although eIF4A is an ATP-dependent RNA helicase that binds the MA3 domain of eIF4G to promote translation initiation, binding of eIF4A to the MA3 domains of PDCD4 inhibits protein synthesis. Genes encoding PDCD4 are present in many lower eukaryotes and in plants, but PDCD4 in higher plants is unique in that it contains four MA3 domains and has been implicated in ethylene signaling and abiotic stress responses. Here, we examine the evolution of PDCD4 in plants. Results In older algal lineages, PDCD4 contains two MA3 domains similar to the homolog in animals. By the appearance of early land plants, however, PDCD4 is composed of four MA3 domains which likely is the result of a duplication of the two MA3 domain form of the protein. Evidence from fresh water algae, from which land plants evolved, suggests that the duplication event occurred prior to the colonization of land. PDCD4 in more recently evolved chlorophytes also contains four MA3 domains but this may have resulted from an independent duplication event. Expansion and divergence of the PDCD4 gene family occurred during land plant evolution with the appearance of a distinct gene member following the evolution of basal angiosperms. Conclusions The appearance of a unique form of PDCD4 in plants correlates with the appearance of components of the ethylene signaling pathway, suggesting that it may represent the adaptation of an existing protein involved in programmed cell death to one that functions in abiotic stress responses through hormone

  9. Expression of programmed cell death-ligand 1 and its correlation with clinical outcomes in gliomas

    PubMed Central

    Zeng, Jing; Zhang, Xin-Ke; Chen, Hua-Dong; Zhong, Zhi-Hai; Wu, Qiu-Liang; Lin, Su-Xia

    2016-01-01

    Programmed cell death-ligand 1(PD-L1) was expressed in various malignancies, and interaction with its receptor programmed cell death 1 (PD-1) often contributed to immune evasion of tumor cells. In this study, we explored the expression of PD-L1 and its correlation with clinical outcomes in gliomas. Clinicopathological data of 229 patients with gliomas was collected. PD-L1 expression was assessed by tissue-microarray-based immunohistochemistry. Over 5% of tumor cells with cytoplasm or membrane staining was defined as PD-L1 positive expression. The associations of clinicopathological features with overall survival (OS) and disease-free survival (DFS) were analyzed by univariate analysis and multivariate analysis was further performed by Cox regression model. PD-L1 positive expression was observed in 51.1% gliomas patients and no significant association was verified between PD-L1 expression and pathological grade in 229 gliomas patients. However, PD-L1 expression rate was 49.2%, 53.7% and 68.8% for grade II, III and IV in 161 patients with those ≥ 12 months of OS, respectively. Although no significant discrepancies was displayed, there was a certain degree of differences between PD-L1 expression and pathological grade (49.2% vs. 53.7% vs. 68.8%, P = 0.327). Univariate analysis showed that PD-L1 expression was significantly associated with poor OS in the patients with long-time survival or follow up (OS ≥ 12 months) (P = 0.018), especially in patients with grade IV (P = 0.019). Multivariate analysis revealed that a strong tendency towards statistical significance was found between PD-L1 expression and poor OS (P = 0.081). In gliomas patients with long-time survival or follow up, PD-L1 positive expression could indicate the poor prognosis and it is possible that immunotherapy targeting PD-L1 pathway needed to be determined in the further study. PMID:26771840

  10. Programmed cell death 4 (Pdcd4) expression in colorectal adenocarcinoma: Association with clinical stage

    PubMed Central

    LIM, SUNG-CHUL; HONG, RAN

    2011-01-01

    The aim of this study was to examine the role of Programmed cell death 4 (Pdcd4) in colorectal adenocarcinoma (CRA). Pdcd4 expression was observed in both the nucleus and cytoplasm in colorectal adenocarcinoma, whereas Pdcd4 was expressed in the nucleus in normal colonic epithelial cells. Loss or weak expression of Pdcd4 was identified in 44 cases (40.7%) of cancer cells. Pdcd4 expression was associated with an increase in the nodal and clinical stage (p=0.022 and p=0.016, respectively). Nuclear staining was identified in 66 cases (61.15%), with no correlation with clinicopathological factors. Conversely, cytoplasmic staining for Pdcd4 was observed in 45 cases (41.7%), and increased according to nodal and clinical stage (p=0.011 and p=0.009, respectively), indicating that aberrant Pdcd4 expression leads to tumor progression. However, Pdcd4 expression was not correlated to disease-free survival time. This study demonstrated that during the tumorigenesis of CRA, loss of nuclear Pdcd4 expression occurs, and during tumor progression, aberrant cytoplasmic expression is present, suggesting a higher clinical stage. Although loss of Pdcd4 was not significantly correlated with survival time, as the prognosis of colorectal cancer varies depending on clinical stage including invasion depth, nodal status and metastatic status, cytoplasmic Pdcd4 expression may be a favorable prognostic marker in CRA. PMID:23049623

  11. Loss of Programmed cell death 4 (Pdcd4) associates with the progression of ovarian cancer

    PubMed Central

    Wei, Na; Liu, Stephanie S; Leung, Thomas HY; Tam, Kar F; Liao, Xiao Y; Cheung, Annie NY; Chan, Karen KL; Ngan, Hextan YS

    2009-01-01

    Background Programmed cell death 4 (Pdcd4) is a novel tumour suppressor and originally identified as a neoplastic transformation inhibitor. The aim of this study was to investigate the expression, prognostic significance and potential function of Pdcd4 in ovarian cancer. Results The expression of Pdcd4 was examined in 30 normal ovarian tissues, 16 borderline and 93 malignant ovarian tissues. A continuous down regulation of Pdcd4 expression in the sequence of normal, borderline and malignant tissues was observed. The expressions of Pdcd4 in both ovarian borderline tissues and carcinomas were significantly lower than the expression in normal ovarian tissues (p < 0.001). Furthermore, patients with lower Pdcd4 expressions were found to have shorter disease-free survival (p = 0.037). The expression of Pdcd4 was also assessed by immunohistochemical analysis in 13 ovarian normal tissues and 44 carcinomas. Different subcellular localization of Pdcd4 was observed in normal compared to malignant cells. Predominant nuclear localization of Pdcd4 was found in normal ovarian tissues while ovarian carcinomas showed mainly cytoplasmic localization of Pdcd4. Conclusion Our study demonstrated that the loss of Pdcd4 was a common abnormality at molecular level in ovarian cancer and it might be a potential prognostic factor in ovarian cancer patients. PMID:19728867

  12. The prolyl-isomerase Pin1 activates the mitochondrial death program of p53

    PubMed Central

    Sorrentino, G; Mioni, M; Giorgi, C; Ruggeri, N; Pinton, P; Moll, U; Mantovani, F; Del Sal, G

    2013-01-01

    In response to intense stress, the tumor protein p53 (p53) tumor suppressor rapidly mounts a direct mitochondrial death program that precedes transcription-mediated apoptosis. By eliminating severely damaged cells, this pathway contributes to tumor suppression as well as to cancer cell killing induced by both genotoxic drugs and non-genotoxic p53-reactivating molecules. Here we have explored the role had in this pathway by the prolyl-isomerase Pin1 (peptidylprolyl cis/trans isomerase, NIMA-interacting 1), a crucial transducer of p53's phosphorylation into conformational changes unleashing its pro-apoptotic activity. We show that Pin1 promotes stress-induced localization of p53 to mitochondria both in vitro and in vivo. In particular, we demonstrate that upon stress-induced phosphorylation of p53 on Ser46 by homeodomain interacting protein kinase 2, Pin1 stimulates its mitochondrial trafficking signal, that is, monoubiquitination. This pathway is induced also by the p53-activating molecule RITA, and we demonstrate the strong requirement of Pin1 for the induction of mitochondrial apoptosis by this compound. These findings have significant implications for treatment of p53-expressing tumors and for prospective use of p53-activating compounds in clinics. PMID:22935610

  13. Programmed Cell Death Occurs Asymmetrically during Abscission in Tomato[C][W][OA

    PubMed Central

    Bar-Dror, Tal; Dermastia, Marina; Kladnik, Aleš; Žnidarič, Magda Tušek; Novak, Maruša Pompe; Meir, Shimon; Burd, Shaul; Philosoph-Hadas, Sonia; Ori, Naomi; Sonego, Lilian; Dickman, Martin B.; Lers, Amnon

    2011-01-01

    Abscission occurs specifically in the abscission zone (AZ) tissue as a natural stage of plant development. Previously, we observed delay of tomato (Solanum lycopersicum) leaf abscission when the LX ribonuclease (LX) was inhibited. The known association between LX expression and programmed cell death (PCD) suggested involvement of PCD in abscission. In this study, hallmarks of PCD were identified in the tomato leaf and flower AZs during the late stage of abscission. These included loss of cell viability, altered nuclear morphology, DNA fragmentation, elevated levels of reactive oxygen species and enzymatic activities, and expression of PCD-associated genes. Overexpression of antiapoptotic proteins resulted in retarded abscission, indicating PCD requirement. PCD, LX, and nuclease gene expression were visualized primarily in the AZ distal tissue, demonstrating an asymmetry between the two AZ sides. Asymmetric expression was observed for genes associated with cell wall hydrolysis, leading to AZ, or associated with ethylene biosynthesis, which induces abscission. These results suggest that different abscission-related processes occur asymmetrically between the AZ proximal and distal sides. Taken together, our findings identify PCD as a key mechanism that occurs asymmetrically during normal progression of abscission and suggest an important role for LX in this PCD process. PMID:22128123

  14. Development of amino- and dimethylcarbamate-substituted resorcinol as programmed cell death-1 (PD-1) inhibitor.

    PubMed

    Liu, An; Dong, Lei; Wei, Xiao-Li; Yang, Xiao-Hong; Xiao, Jun-Hai; Liu, Zai-Qun

    2016-06-10

    Blockading the interaction of programmed death-1 (PD-1) protein with its ligands (PD-Ls, such as PD-L1) was proved to be a pathway for suppressing the development of tumors and other degradations of biological species. Thus, finding PD-1 inhibitors situated at the convergence point of drug discovery. In addition to some monoclonal antibodies applied to treat cancers clinically, the screening of organic molecules for hindering the interaction of PD-1 with PD-L1 became an efficient strategy in the development of PD-1 inhibitors. We herein applied resorcinol and 3-hydroxythiophenol as the core to link with N,N-dimethylcarbamate and other alkyl-substituted amines to afford 13 amine-appended phenyl dimethylcarbamates (AAPDs). The test for blockading the combination of PD-1 with PD-L1 revealed that abilities of 13 AAPDs were higher than that of sulfamethizole, a successful PD-1 inhibitor. In particular, large hydrophobic substituents at amine moiety or a nitro at resorcinol skeleton enhanced the inhibitory effect of AAPD even higher than that of sulfamethoxypyridazine, another successful PD-1 inhibitor. The present results may provide valuable information for further investigation on synthetic PD-1 inhibitors. PMID:27063329

  15. Suppression of ceramide-mediated programmed cell death by sphingosine-1-phosphate.

    PubMed

    Cuvillier, O; Pirianov, G; Kleuser, B; Vanek, P G; Coso, O A; Gutkind, S; Spiegel, S

    1996-06-27

    Ceramide is an important regulatory participant of programmed cell death (apoptosis) induced by tumour-necrosis factor (TNF)-alpha and Fas ligand, members of the TNF superfamily. Conversely, sphingosine and sphingosine-1-phosphate, which are metabolites of ceramide, induce mitogenesis and have been implicated as second messengers in cellular proliferation induced by platelet-derived growth factor and serum. Here we report that sphingosine-1-phosphate prevents the appearance of the key features of apoptosis, namely intranucleosomal DNA fragmentation and morphological changes, which result from increased concentrations of ceramide. Furthermore, inhibition of ceramide-mediated apoptosis by activation of protein kinase C results from stimulation of sphingosine kinase and the concomitant increase in intracellular sphingosine-1-phosphate. Finally sphingosine-1-phosphate not only stimulates the extracellular signal-regulated kinase (ERK) pathway, it counteracts the ceramide-induced activation of stress-activated protein kinase (SAPK/JNK). Thus, the balance between the intracellular levels of ceramide and sphingosine-1-phosphate and their regulatory effects on different family members of mitogen-activated protein kinases determines the fate of the cell. PMID:8657285

  16. Programmed cell death 5 mediates HDAC3 decay to promote genotoxic stress response.

    PubMed

    Choi, Hyo-Kyoung; Choi, Youngsok; Park, Eun Sung; Park, Soo-Yeon; Lee, Seung-Hyun; Seo, Jaesung; Jeong, Mi-Hyeon; Jeong, Jae-Wook; Jeong, Jae-Ho; Lee, Peter C W; Choi, Kyung-Chul; Yoon, Ho-Geun

    2015-01-01

    The inhibition of p53 activity by histone deacetylase 3 (HDAC3) has been reported, but the precise molecular mechanism is unknown. Here we show that programmed cell death 5 (PDCD5) selectively mediates HDAC3 dissociation from p53, which induces HDAC3 cleavage and ubiquitin-dependent proteasomal degradation. Casein kinase 2 alpha phosphorylates PDCD5 at Ser-119 to enhance its stability and importin 13-mediated nuclear translocation of PDCD5. Genetic deletion of PDCD5 abrogates etoposide (ET)-induced p53 stabilization and HDAC3 cleavage, indicating an essential role of PDCD5 in p53 activation. Restoration of PDCD5(WT) in PDCD5(-/-) MEFs restores ET-induced HDAC3 cleavage. Reduction of both PDCD5 and p53, but not reduction of either protein alone, significantly enhances in vivo tumorigenicity of AGS gastric cancer cells and correlates with poor prognosis in gastric cancer patients. Our results define a mechanism for p53 activation via PDCD5-dependent HDAC3 decay under genotoxic stress conditions. PMID:26077467

  17. The N-acetylcysteine-insensitive acetic acid-induced yeast programmed cell death occurs without macroautophagy.

    PubMed

    Antonacci, Lucia; Guaragnella, Nicoletta; Ždralevic, Maša; Passarella, Salvatore; Marra, Ersilia; Giannattasio, Sergio

    2012-12-01

    Programmed cell death can occur through two separate pathways caused by treatment of Saccharomyces cerevisiae with acetic acid (AA-PCD), which differ from one another essentially with respect to their sensitivity to N-acetylcysteine (NAC) and to the role played by cytochrome c and metacaspase YCA1. Moreover, yeast can also undergo macroautophagy which occurs in NAC-insensitive manner. In order to gain some insight into the relationship between AA-PCD and macroautophagy use was made of WT and knock-out cells lacking YCA1 and/or cytochrome c. We show that i. macroautophagy is modulated by YCA1 and by cytochrome c in a negative and positive manner, respectively, ii. the NAC-insensitive AA-PCD and macroautophagy differ from one another and iii. NAC-insensitive AA-PCD pathway takes place essentially without macroautophagy, even if the shift of extracellular pH to acidic values required for AA-PCD to occur leads itself to increased or decreased macroautophagy in YCA1 or cytochrome c-lacking cells. PMID:23072389

  18. Achievements and perspectives in yeast acetic acid-induced programmed cell death pathways.

    PubMed

    Guaragnella, Nicoletta; Antonacci, Lucia; Passarella, Salvatore; Marra, Ersilia; Giannattasio, Sergio

    2011-10-01

    The use of non-mammalian model organisms, including yeast Saccharomyces cerevisiae, can provide new insights into eukaryotic PCD (programmed cell death) pathways. In the present paper, we report recent achievements in the elucidation of the events leading to PCD that occur as a response to yeast treatment with AA (acetic acid). In particular, ROS (reactive oxygen species) generation, cyt c (cytochrome c) release and mitochondrial function and proteolytic activity will be dealt with as they vary along the AA-PCD time course by using both wild-type and mutant yeast cells. Two AA-PCD pathways are described sharing common features, but distinct from one another with respect to the role of ROS and mitochondria, the former in which YCA1 acts upstream of cyt c release and caspase-like activation in a ROS-dependent manner and the latter in which cyt c release does not occur, but caspase-like activity increases, in a ROS-independent manner. PMID:21936848

  19. The prolyl-isomerase Pin1 activates the mitochondrial death program of p53.

    PubMed

    Sorrentino, G; Mioni, M; Giorgi, C; Ruggeri, N; Pinton, P; Moll, U; Mantovani, F; Del Sal, G

    2013-02-01

    In response to intense stress, the tumor protein p53 (p53) tumor suppressor rapidly mounts a direct mitochondrial death program that precedes transcription-mediated apoptosis. By eliminating severely damaged cells, this pathway contributes to tumor suppression as well as to cancer cell killing induced by both genotoxic drugs and non-genotoxic p53-reactivating molecules. Here we have explored the role had in this pathway by the prolyl-isomerase Pin1 (peptidylprolyl cis/trans isomerase, NIMA-interacting 1), a crucial transducer of p53's phosphorylation into conformational changes unleashing its pro-apoptotic activity. We show that Pin1 promotes stress-induced localization of p53 to mitochondria both in vitro and in vivo. In particular, we demonstrate that upon stress-induced phosphorylation of p53 on Ser46 by homeodomain interacting protein kinase 2, Pin1 stimulates its mitochondrial trafficking signal, that is, monoubiquitination. This pathway is induced also by the p53-activating molecule RITA, and we demonstrate the strong requirement of Pin1 for the induction of mitochondrial apoptosis by this compound. These findings have significant implications for treatment of p53-expressing tumors and for prospective use of p53-activating compounds in clinics. PMID:22935610

  20. Intracellular energy depletion triggers programmed cell death during petal senescence in tulip

    PubMed Central

    Azad, A. K.; Ishikawa, Takayuki; Ishikawa, Takahiro; Shibata, H.

    2008-01-01

    Programmed cell death (PCD) in petals provides a model system to study the molecular aspects of organ senescence. In this study, the very early triggering signal for PCD during the senescence process from young green buds to 14-d-old petals of Tulipa gesneriana was determined. The opening and closing movement of petals of intact plants increased for the first 3 d and then gradually decreased. DNA degradation and cytochrome c (Cyt c) release were clearly observed in 6-d-old flowers. Oxidative stress or ethylene production can be excluded as the early signal for petal PCD. In contrast, ATP was dramatically depleted after the first day of flower opening. Sucrose supplementation to cut flowers maintained their ATP levels and the movement ability for a longer time than in those kept in water. The onset of DNA degradation, Cyt c release, and petal senescence was also delayed by sucrose supplementation to cut flowers. These results suggest that intracellular energy depletion, rather than oxidative stress or ethylene production, may be the very early signal to trigger PCD in tulip petals. PMID:18515833

  1. Inhibition of cathepsin B by caspase-3 inhibitors blocks programmed cell death in Arabidopsis.

    PubMed

    Ge, Y; Cai, Y-M; Bonneau, L; Rotari, V; Danon, A; McKenzie, E A; McLellan, H; Mach, L; Gallois, P

    2016-09-01

    Programmed cell death (PCD) is used by plants for development and survival to biotic and abiotic stresses. The role of caspases in PCD is well established in animal cells. Over the past 15 years, the importance of caspase-3-like enzymatic activity for plant PCD completion has been widely documented despite the absence of caspase orthologues. In particular, caspase-3 inhibitors blocked nearly all plant PCD tested. Here, we affinity-purified a plant caspase-3-like activity using a biotin-labelled caspase-3 inhibitor and identified Arabidopsis thaliana cathepsin B3 (AtCathB3) by liquid chromatography with tandem mass spectrometry (LC-MS/MS). Consistent with this, recombinant AtCathB3 was found to have caspase-3-like activity and to be inhibited by caspase-3 inhibitors. AtCathepsin B triple-mutant lines showed reduced caspase-3-like enzymatic activity and reduced labelling with activity-based caspase-3 probes. Importantly, AtCathepsin B triple mutants showed a strong reduction in the PCD induced by ultraviolet (UV), oxidative stress (H2O2, methyl viologen) or endoplasmic reticulum stress. Our observations contribute to explain why caspase-3 inhibitors inhibit plant PCD and provide new tools to further plant PCD research. The fact that cathepsin B does regulate PCD in both animal and plant cells suggests that this protease may be part of an ancestral PCD pathway pre-existing the plant/animal divergence that needs further characterisation. PMID:27058316

  2. Streptomyces natalensis programmed cell death and morphological differentiation are dependent on oxidative stress

    PubMed Central

    Beites, Tiago; Oliveira, Paulo; Rioseras, Beatriz; Pires, Sílvia D. S.; Oliveira, Rute; Tamagnini, Paula; Moradas-Ferreira, Pedro; Manteca, Ángel; Mendes, Marta V.

    2015-01-01

    Streptomyces are aerobic Gram-positive bacteria characterized by a complex life cycle that includes hyphae differentiation and spore formation. Morphological differentiation is triggered by stressful conditions and takes place in a pro-oxidant environment, which sets the basis for an involvement of the oxidative stress response in this cellular process. Characterization of the phenotypic traits of Streptomyces natalensis ΔkatA1 (mono-functional catalase) and ΔcatR (Fur-like repressor of katA1 expression) strains in solid medium revealed that both mutants had an impaired morphological development process. The sub-lethal oxidative stress caused by the absence of KatA1 resulted in the formation of a highly proliferative and undifferentiated vegetative mycelium, whereas de-repression of CatR regulon, from which KatA1 is the only known representative, resulted in the formation of scarce aerial mycelium. Both mutant strains had the transcription of genes associated with aerial mycelium formation and biosynthesis of the hyphae hydrophobic layer down-regulated. The first round of the programmed cell death (PCD) was inhibited in both strains which caused the prevalence of the transient primary mycelium (MI) over secondary mycelium (MII). Our data shows that the first round of PCD and morphological differentiation in S. natalensis is dependent on oxidative stress in the right amount at the right time. PMID:26256439

  3. YihE kinase is a central regulator of programmed cell death in bacteria

    PubMed Central

    Dorsey-Oresto, Angella; Lu, Tao; Mosel, Michael; Wang, Xiuhong; Salz, Tal; Drlica, Karl; Zhao, Xilin

    2013-01-01

    Stress-mediated programmed cell death (PCD) in bacteria has recently attracted attention, largely because it raises novel possibilities for controlling pathogens. How PCD in bacteria is regulated to avoid population extinction from transient, moderate stress remains a central question. We report that the YihE protein kinase is a key regulator that protects Escherichia coli from antimicrobial and environmental stressors by antagonizing the MazEF toxin-antitoxin module. YihE was linked to a reactive oxygen species (ROS) cascade, and a deficiency of yihE stimulated stress-induced PCD even after stress dissipated. YihE was partially regulated by the Cpx envelope stress-response system, which, along with MazF toxin and superoxide, has both protective and destructive roles that help bacteria make a live-or-die decision in response to stress. YihE probably acts early in the stress response to limit self-sustaining ROS production and PCD. Inhibition of YihE may provide a new way to enhance antimicrobial lethality and attenuate virulence. PMID:23416055

  4. YihE kinase is a central regulator of programmed cell death in bacteria.

    PubMed

    Dorsey-Oresto, Angella; Lu, Tao; Mosel, Michael; Wang, Xiuhong; Salz, Tal; Drlica, Karl; Zhao, Xilin

    2013-02-21

    Stress-mediated programmed cell death (PCD) in bacteria has recently attracted attention, largely because it raises novel possibilities for controlling pathogens. How PCD in bacteria is regulated to avoid population extinction due to transient, moderate stress remains a central question. Here, we report that the YihE protein kinase is a key regulator that protects Escherichia coli from antimicrobial and environmental stressors by antagonizing the MazEF toxin-antitoxin module. YihE was linked to a reactive oxygen species (ROS) cascade, and a deficiency of yihE stimulated stress-induced PCD even after stress dissipated. YihE was partially regulated by the Cpx envelope stress-response system, which, along with MazF toxin and superoxide, has both protective and destructive roles that help bacteria make a live-or-die decision in response to stress. YihE probably acts early in the stress response to limit self-sustaining ROS production and PCD. Inhibition of YihE may provide a way of enhancing antimicrobial lethality and attenuating virulence. PMID:23416055

  5. Glucose oxidase prevents programmed cell death of the silkworm anterior silk gland through hydrogen peroxide production.

    PubMed

    Matsui, Hiroto; Kakei, Motonori; Iwami, Masafumi; Sakurai, Sho

    2011-03-01

    During pupal metamorphosis, the anterior silk glands (ASGs) of the silkworm Bombyx mori degenerate through programmed cell death (PCD), which is triggered by 20-hydroxyecdysone (20E). 20E triggers the PCD of the ASGs of day 7 fifth instar (V7) larvae but not that of V5 larvae. When V7 ASGs were cocultured with V5 ASGs in the presence of 20E, neither culture of ASGs underwent PCD. The 20E-induced PCD of V7 ASGs was also inhibited when they were incubated in conditioned medium that was prepared by incubating V5 ASGs for 48 h, an indication that V5 ASGs released an inhibitor of 20E-induced PCD during incubation. The inhibitor was purified from conditioned medium and identified as glucose oxidase (GOD). GOD catalyzes the oxidation of glucose to gluconolactone, and generates hydrogen peroxide as a byproduct. We found that hydrogen peroxide is the molecule that directly inhibits the action of 20E and may act to protect the ASGs from early execution of PCD during the feeding stage. GOD was localized in the inner cavity of the gland, and was discharged to the outside of the ASGs with the silk thread at the onset of spinning. Thus, the spinning behavior, occurring at the beginning of the prepupal period, plays an important role in controlling the time at which ASGs undergo PCD in response to 20E. PMID:21205208

  6. Immunotherapy of chronic hepatitis C virus infection with antibodies against programmed cell death-1 (PD-1).

    PubMed

    Fuller, Michael J; Callendret, Benoit; Zhu, Baogong; Freeman, Gordon J; Hasselschwert, Dana L; Satterfield, William; Sharpe, Arlene H; Dustin, Lynn B; Rice, Charles M; Grakoui, Arash; Ahmed, Rafi; Walker, Christopher M

    2013-09-10

    Hepatitis C virus (HCV) persistence is facilitated by exhaustion of CD8+ T cells that express the inhibitory receptor programmed cell death 1 (PD-1). Blockade of PD-1 signaling improves in vitro proliferation of HCV-specific T lymphocytes, but whether antiviral function can be restored in infected individuals is unknown. To address this question, chimpanzees with persistent HCV infection were treated with anti-PD-1 antibodies. A significant reduction in HCV viremia was observed in one of three treated animals without apparent hepatocellular injury. Viremia rebounded in the responder animal when antibody treatment was discontinued. Control of HCV replication was associated with restoration of intrahepatic CD4+ and CD8+ T-cell immunity against multiple HCV proteins. The responder animal had a history of broader T-cell immunity to multiple HCV proteins than the two chimpanzees that did not respond to PD-1 therapy. The results suggest that successful PD-1 blockade likely requires a critical threshold of preexisting virus-specific T cells in liver and warrants consideration of therapeutic vaccination strategies in combination with PD-1 blockade to broaden narrow responses. Anti-PD-1 immunotherapy may also facilitate control of other persistent viruses, notably the hepatitis B virus where options for long-term control of virus replication are limited. PMID:23980172

  7. Initiation of programmed cell death in the suspensor is predominantly regulated maternally in a tobacco hybrid

    PubMed Central

    Luo, An; Zhao, Peng; Zhang, Li-Yao; Sun, Meng-Xiang

    2016-01-01

    Maternal gene products deposited in the egg regulate early embryogenesis before activation of the embryonic genome in animals. While in higher plants, it is believed that genes of parental origin contribute to early embryogenesis. However, little is known regarding the particular processes in which genes of parental origin are involved during early embryogenesis. Previously, we found that the initiation of programmed cell death (PCD) in the suspensor of the embryo is regulated by the cystatin, NtCYS. Here, we confirmed that both parental transcripts contribute to PCD, but the relative expression level of the maternal NtCYS allele was much higher than that of the paternal allele in early embryos of tobacco interspecific hybrids. The expression level of the maternal NtCYS allele was decreased markedly, which was necessary for the initiation of PCD, while the paternal allele didn’t change. Interestingly, the pattern of PCD in the hybrid suspensor and the morphology of the hybrid suspensor were similar to those of the maternal parent. Our results suggest that NtCYS-mediated PCD initiation in the hybrid suspensor is likely controlled in a maternal dominant manner. This finding represents an example of the involvement of parental transcripts in a specific developmental event during early embryogenesis. PMID:27432530

  8. Programmed cell death 5 mediates HDAC3 decay to promote genotoxic stress response

    PubMed Central

    Choi, Hyo-Kyoung; Choi, Youngsok; Park, Eun Sung; Park, Soo-Yeon; Lee, Seung-Hyun; Seo, Jaesung; Jeong, Mi-Hyeon; Jeong, Jae-Wook; Jeong, Jae-Ho; Lee, Peter C. W.; Choi, Kyung-Chul; Yoon, Ho-Geun

    2015-01-01

    The inhibition of p53 activity by histone deacetylase 3 (HDAC3) has been reported, but the precise molecular mechanism is unknown. Here we show that programmed cell death 5 (PDCD5) selectively mediates HDAC3 dissociation from p53, which induces HDAC3 cleavage and ubiquitin-dependent proteasomal degradation. Casein kinase 2 alpha phosphorylates PDCD5 at Ser-119 to enhance its stability and importin 13-mediated nuclear translocation of PDCD5. Genetic deletion of PDCD5 abrogates etoposide (ET)-induced p53 stabilization and HDAC3 cleavage, indicating an essential role of PDCD5 in p53 activation. Restoration of PDCD5WT in PDCD5−/− MEFs restores ET-induced HDAC3 cleavage. Reduction of both PDCD5 and p53, but not reduction of either protein alone, significantly enhances in vivo tumorigenicity of AGS gastric cancer cells and correlates with poor prognosis in gastric cancer patients. Our results define a mechanism for p53 activation via PDCD5-dependent HDAC3 decay under genotoxic stress conditions. PMID:26077467

  9. Microspore embryogenesis and programmed cell death in barley: effects of copper on albinism in recalcitrant cultivars.

    PubMed

    Jacquard, Cédric; Nolin, Frédérique; Hécart, Carine; Grauda, Dace; Rashal, Isaak; Dhondt-Cordelier, Sandrine; Sangwan, Rajbir S; Devaux, Pierre; Mazeyrat-Gourbeyre, Florence; Clément, Christophe

    2009-09-01

    Albinism remains a major problem in cereal improvement programs that rely on doubled haploid (DH) technology, and the factors controlling the phenomenon are not well understood. Here we report on the positive influence of copper on the production of DH plants obtained through microspore embryogenesis (ME) in recalcitrant cultivars of barley (Hordeum vulgare L.). The presence of copper sulphate in the anther pre-treatment medium improved green DH plant regeneration from cultivars known to produce exclusively albino plants using classical procedures. In plastids, the effect of copper was characterized by a decrease in starch and a parallel increase in internal membranes. The addition of copper sulphate in the ME pre-treatment medium should enable breeders to exploit the genetic diversity of recalcitrant cultivars through DH technology. We examined programmed cell death (PCD) during microspore development to determine whether PCD may interfere with the induction of ME and/or the occurrence of albinism. By examining the fate of nuclei in various anther cell layers, we demonstrated that the kinetics of PCD in anthers differed between the barley cultivars Igri and Cork that show a low and a high rate of albinism, respectively. However, no direct correlation between PCD in the anther cell layers and the rate of albinism was observed and copper had no influence on the PCD kinetic in these cultivars. It was concluded that albinism following ME was not due to PCD in anthers, but rather to another unknown phenomenon that appears to specifically affect plastids during microspore/pollen development. PMID:19529940

  10. Senescence and programmed cell death in plants: polyamine action mediated by transglutaminase

    PubMed Central

    Del Duca, Stefano; Serafini-Fracassini, Donatella; Cai, Giampiero

    2014-01-01

    Research on polyamines (PAs) in plants laps a long way of about 50 years and many roles have been discovered for these aliphatic cations. PAs regulate cell division, differentiation, organogenesis, reproduction, dormancy-break and senescence, homeostatic adjustments in response to external stimuli and stresses. Nevertheless, the molecular mechanisms of their multiple activities are still matter of research. PAs are present in free and bound forms and interact with several important cell molecules; some of these interactions may occur by covalent linkages catalyzed by transglutaminase (TGase), giving rise to “cationization” or cross-links among specific proteins. Senescence and programmed cell death (PCD) can be delayed by PAs; in order to re-interpret some of these effects and to obtain new insights into their molecular mechanisms, their conjugation has been revised here. The TGase-mediated interactions between proteins and PAs are the main target of this review. After an introduction on the characteristics of this enzyme, on its catalysis and role in PCD in animals, the plant senescence and PCD models in which TGase has been studied, are presented: the corolla of naturally senescing or excised flowers, the leaves senescing, either excised or not, the pollen during self-incompatible pollination, the hypersensitive response and the tuber storage parenchyma during dormancy release. In all the models examined, TGase appears to be involved by a similar molecular mechanism as described during apoptosis in animal cells, even though several substrates are different. Its effect is probably related to the type of PCD, but mostly to the substrate to be modified in order to achieve the specific PCD program. As a cross-linker of PAs and proteins, TGase is an important factor involved in multiple, sometimes controversial, roles of PAs during senescence and PCD. PMID:24778637

  11. AtPDCD5 Plays a Role in Programmed Cell Death after UV-B Exposure in Arabidopsis1[OPEN

    PubMed Central

    Falcone Ferreyra, María Lorena; D’Andrea, Lucio; AbdElgawad, Hamada

    2016-01-01

    DNA damage responses have evolved to sense and react to DNA damage; the induction of DNA repair mechanisms can lead to genomic restoration or, if the damaged DNA cannot be adequately repaired, to the execution of a cell death program. In this work, we investigated the role of an Arabidopsis (Arabidopsis thaliana) protein, AtPDCD5, which is highly similar to the human PDCD5 protein; it is induced by ultraviolet (UV)-B radiation and participates in programmed cell death in the UV-B DNA damage response. Transgenic plants expressing AtPDCD5 fused to GREEN FLUORESCENT PROTEIN indicate that AtPDCD5 is localized both in the nucleus and the cytosol. By use of pdcd5 mutants, we here demonstrate that these plants have an altered antioxidant metabolism and accumulate higher levels of DNA damage after UV-B exposure, similar to levels in ham1ham2 RNA interference transgenic lines with decreased expression of acetyltransferases from the MYST family. By coimmunoprecipitation and pull-down assays, we provide evidence that AtPDCD5 interacts with HAM proteins, suggesting that both proteins participate in the same pathway of DNA damage responses. Plants overexpressing AtPDCD5 show less DNA damage but more cell death in root tips upon UV-B exposure. Finally, we here show that AtPDCD5 also participates in age-induced programmed cell death. Together, the data presented here demonstrate that AtPDCD5 plays an important role during DNA damage responses induced by UV-B radiation in Arabidopsis and also participates in programmed cell death programs. PMID:26884483

  12. Genetics Home Reference: otopalatodigital syndrome type 1

    MedlinePlus

    ... Conditions otopalatodigital syndrome type 1 otopalatodigital syndrome type 1 Enable Javascript to view the expand/collapse boxes. ... Open All Close All Description Otopalatodigital syndrome type 1 is a disorder primarily involving abnormalities in skeletal ...

  13. Genetics Home Reference: optic atrophy type 1

    MedlinePlus

    ... Conditions optic atrophy type 1 optic atrophy type 1 Enable Javascript to view the expand/collapse boxes. ... Open All Close All Description Optic atrophy type 1 is a condition that affects vision. Individuals with ...

  14. Genetics Home Reference: distal arthrogryposis type 1

    MedlinePlus

    ... Conditions distal arthrogryposis type 1 distal arthrogryposis type 1 Enable Javascript to view the expand/collapse boxes. ... Open All Close All Description Distal arthrogryposis type 1 is a disorder characterized by joint deformities (contractures) ...

  15. Role of a Transcriptional Regulator in Programmed Cell Death and Plant Development

    SciTech Connect

    Julie M. Stone

    2008-09-13

    The long-term goal of this research is to understand the role(s) and molecular mechanisms of programmed cell death (PCD) in the controlling plant growth, development and responses to biotic and abiotic stress. We developed a genetic selection scheme to identify A. thaliana FB1-resistant (fbr) mutants as a way to find genes involved in PCD (Stone et al., 2000; Stone et al., 2005; Khan and Stone, 2008). The disrupted gene in fbr6 (AtSPL14) responsible for the FB1-insensitivity and plant architecture phenotypes encodes a plant-specific SBP DNA-binding domain transcriptional regulator (Stone et al., 2005; Liang et al., 2008). This research plan is designed to fill gaps in the knowledge about the role of SPL14 in plant growth and development. The work is being guided by three objectives aimed at determining the pathways in which SPL14 functions to modulate PCD and/or plant development: (1) determine how SPL14 functions in plant development, (2) identify target genes that are directly regulated by SPL14, and (3) identify SPL14 modifications and interacting proteins. We made significant progress during the funding period. Briefly, some major accomplishments are highlighted below: (1) To identify potential AtSPL14 target genes, we identified a consensus DNA binding site for the AtSPL14 SBP DNA-binding domain using systematic evolution of ligands by exponential selection (SELEX) and site-directed mutagenesis (Liang et al., 2008). This consensus binding site was used to analyze Affymetrix microarray gene expression data obtained from wild-type and fbr6 mutant plants to find possible AtSPL14-regulated genes. These candidate AtSPL14-regulated genes are providing new information on the molecular mechanisms linking plant PCD and plant development through modulation of the 26S proteasome. (2) Transgenic plants expressing epitope-tagged versions of AtSPL14 are being used to confirm the AtSPL14 targets (by ChIP-PCR) and further dissect the molecular interactions (Nazarenus, Liang

  16. Mitochondrial Translocation of High Mobility Group Box 1 Facilitates LIM Kinase 2-Mediated Programmed Necrotic Neuronal Death.

    PubMed

    Hyun, Hye-Won; Ko, Ah-Reum; Kang, Tae-Cheon

    2016-01-01

    High mobility group box 1 (HMGB1) acts a signaling molecule regulating a wide range of inflammatory responses in extracellular space. HMGB1 also stabilizes nucleosomal structure and facilitates gene transcription. Under pathophysiological conditions, nuclear HMGB1 is immediately transported to the cytoplasm through chromosome region maintenance 1 (CRM1). Recently, we have reported that up-regulation of LIM kinase 2 (LIMK2) expression induces HMGB1 export from neuronal nuclei during status epilepticus (SE)-induced programmed neuronal necrosis in the rat hippocampus. Thus, we investigated whether HMGB1 involves LIMK2-mediated programmed neuronal necrosis, but such role is not reported. In the present study, SE was induced by pilocarpine in rats that were intracerebroventricularly infused with saline, control siRNA, LIMK2 siRNA or leptomycin B (LMB, a CRM1 inhibitor) prior to SE induction. Thereafter, we performed Fluoro-Jade B staining, western blots and immunohistochemical studies. LIMK2 knockdown effectively attenuated SE-induced neuronal death and HMGB1 import into mitochondria accompanied by inhibiting nuclear HMGB1 release and abnormal mitochondrial elongation. LMB alleviated SE-induced neuronal death and nuclear HMGB1 release. However, LMB did not prevent mitochondrial elongation induced by SE, but inhibited the HMGB1 import into mitochondria. The efficacy of LMB was less effective to attenuate SE-induced neuronal death than that of LIMK2 siRNA. These findings indicate that nuclear HMGB1 release and the subsequent mitochondrial import may facilitate and deteriorate programmed necrotic neuronal deaths. The present data suggest that the nuclear HMGB1 release via CRM1 may be a potential therapeutic target for the programmed necrotic neuronal death induced by SE. PMID:27147971

  17. Mitochondrial Translocation of High Mobility Group Box 1 Facilitates LIM Kinase 2-Mediated Programmed Necrotic Neuronal Death

    PubMed Central

    Hyun, Hye-Won; Ko, Ah-Reum; Kang, Tae-Cheon

    2016-01-01

    High mobility group box 1 (HMGB1) acts a signaling molecule regulating a wide range of inflammatory responses in extracellular space. HMGB1 also stabilizes nucleosomal structure and facilitates gene transcription. Under pathophysiological conditions, nuclear HMGB1 is immediately transported to the cytoplasm through chromosome region maintenance 1 (CRM1). Recently, we have reported that up-regulation of LIM kinase 2 (LIMK2) expression induces HMGB1 export from neuronal nuclei during status epilepticus (SE)-induced programmed neuronal necrosis in the rat hippocampus. Thus, we investigated whether HMGB1 involves LIMK2-mediated programmed neuronal necrosis, but such role is not reported. In the present study, SE was induced by pilocarpine in rats that were intracerebroventricularly infused with saline, control siRNA, LIMK2 siRNA or leptomycin B (LMB, a CRM1 inhibitor) prior to SE induction. Thereafter, we performed Fluoro-Jade B staining, western blots and immunohistochemical studies. LIMK2 knockdown effectively attenuated SE-induced neuronal death and HMGB1 import into mitochondria accompanied by inhibiting nuclear HMGB1 release and abnormal mitochondrial elongation. LMB alleviated SE-induced neuronal death and nuclear HMGB1 release. However, LMB did not prevent mitochondrial elongation induced by SE, but inhibited the HMGB1 import into mitochondria. The efficacy of LMB was less effective to attenuate SE-induced neuronal death than that of LIMK2 siRNA. These findings indicate that nuclear HMGB1 release and the subsequent mitochondrial import may facilitate and deteriorate programmed necrotic neuronal deaths. The present data suggest that the nuclear HMGB1 release via CRM1 may be a potential therapeutic target for the programmed necrotic neuronal death induced by SE. PMID:27147971

  18. Type 1 diabetes care updates: Tanzania.

    PubMed

    Muze, Kandi Catherine; Majaliwa, Edna Siima

    2015-04-01

    Tanzania is located in east Africa with a population of 45 million. The country's population is growing at 2.5% annually. The International Diabetes Federation Child Sponsorship Program was launched in Tanzania in 2005. The number of type 1 diabetes mellitus children enrolled in the changing diabetes in children program in Tanzania has augmented from almost below 50 in 2005 to over 1200 in 2014. The country had an overall trend of HbA1c value of 14% in 2005 while the same has reduced over the years to 10% in 2012-13. The program has been able to reduce the proportion of patients with HbA1c values of 11-14%; from 71.9% in 2008 to 49.8% in 2012-13. The challenges, which CDiC faces are misdiagnosis, low public awareness, and stigma especially in the reproductive age/adolescent groups. PMID:25941637

  19. Complex Regional Pain Type 1.

    PubMed

    Barrett, Michael Joseph; Barnett, Peter Leslie John

    2016-03-01

    Complex regional pain syndrome is increasingly recognized in the pediatric population. Owing to the nature of presentation with pain, many of these children present to the emergency setting at different stages of the syndrome with or without numerous prior interactions with health professionals. Complex regional pain syndrome type 1 (CRPS1) is a clinical syndrome characterized by amplified musculoskeletal limb pain that is out of proportion to the history and physical findings, or pain due to non-noxious stimuli (allodynia/hyperalgesia), and accompanied by one or more signs of autonomic dysfunction. Differential diagnosis may include significant trauma (eg, fractures), inflammatory conditions, malignancies, and systemic illness. The diagnosis is clinical. The treatment goals for CRPS1 are restoration of function and relief of pain. Education, physical, and occupational therapy with psychotherapy and defined goals of achievement with reward are the mainstay of treatment for this population. Most children with CRPS1 will have a favorable outcome. PMID:26928099

  20. Ricinosomes: an organelle for developmentally regulated programmed cell death in senescing plant tissues

    NASA Astrophysics Data System (ADS)

    Gietl, C.; Schmid, M.

    2001-02-01

    This review describes aspects of programmed cell death (PCD). Present research maps the enzymes involved and explores the signal transduction pathways involved in their synthesis. A special organelle (the ricinosome) has been discovered in the senescing endosperm of germinating castor beans (Ricinus communis) that develops at the beginning of PCD and delivers large amounts of a papain-type cysteine endopeptidase (CysEP) in the final stages of cellular disintegration. Castor beans store oil and proteins in a living endosperm surrounding the cotyledons. These stores are mobilized during germination and transferred into the cotyledons. PCD is initiated after this transfer is complete. The CysEP is synthesized in the lumen of the endoplasmic reticulum (ER) where it is retained by its C-terminal KDEL peptide as a rather inactive pro-enzyme. Large number of ricinosomes bud from the ER at the same time as the nuclear DNA is characteristically fragmented during PCD. The mitochondria, glyoxysomes and ribosomes are degraded in autophagic vacuoles, while the endopeptidase is activated by removal of the propeptide and the KDEL tail and enters the cytosol. The endosperm dries and detaches from the cotyledons. A homologous KDEL-tailed cysteine endopeptidase has been found in several senescing tissues; it has been localized in ricinosomes of withering day-lily petals and dying seed coats. Three genes for a KDEL-tailed cysteine endopeptidase have been identified in Arabidopsis. One is expressed in senescing ovules, the second in the vascular vessels and the third in maturing siliques. These genes open the way to exploring PCD in plants.

  1. Salicylic acid induced cysteine protease activity during programmed cell death in tomato plants.

    PubMed

    Kovács, Judit; Poór, Péter; Szepesi, Ágnes; Tari, Irma

    2016-06-01

    The hypersensitive response (HR), a type of programmed cell death (PCD) during biotic stress is mediated by salicylic acid (SA). The aim of this work was to reveal the role of proteolysis and cysteine proteases in the execution of PCD in response of SA. Tomato plants were treated with sublethal (0.1 mM) and lethal (1 mM) SA concentrations through the root system. Treatment with 1 mM SA increased the electrolyte leakage and proteolytic activity and reduced the total protein content of roots after 6 h, while the proteolytic activity did not change in the leaves and in plants exposed to 0.1 mM SA. The expression of the papain-type cysteine protease SlCYP1, the vacuolar processing enzyme SlVPE1 and the tomato metacaspase SlMCA1 was induced within the first three hours in the leaves and after 0.5 h in the roots in the presence of 1 mM SA but the transcript levels did not increase significantly at sublethal SA. The Bax inhibitor-1 (SlBI-1), an antiapoptotic gene was over-expressed in the roots after SA treatments and it proved to be transient in the presence of sublethal SA. Protease inhibitors, SlPI2 and SlLTC were upregulated in the roots by sublethal SA but their expression remained low at 1 mM SA concentration. It is concluded that in contrast to leaves the SA-induced PCD is associated with increased proteolytic activity in the root tissues resulting from a fast up-regulation of specific cysteine proteases and down-regulation of protease inhibitors. PMID:27165526

  2. Clinical significance of programmed death ligand-1 (PD-L1) in colorectal serrated adenocarcinoma

    PubMed Central

    Zhu, Hailong; Qin, Huali; Huang, Ziling; Li, Shuai; Zhu, Xuyou; He, Jian; Yang, Jing; Yu, Xiaoting; Yi, Xianghua

    2015-01-01

    Preliminary research results with antibody of the negative costimulatory molecule programmed cell death ligand-1 (PD-L1) suggested its expression on tumor cells associated with various tumor grade and postoperative prognosis. However, to date, there is no information of PD-L1 expression in colorectal serrated adenocarcinoma (SAC) and its clinical relevance. Therefore, the purpose of this study is to investigate the clinical significance of PD-L1 expression in a large cohort of patients with SAC. Here, we first retrospectively identified all SAC collected at our institution between August 2008 and May 2013. The expression levels of PD-L1 were examined by immunohistochemistry in 120 patients with SAC. We further evaluated the correlation between expression data and clinical parameters, including patient age, sex, tumor size, location, grade, primary tumor classification (pT), lymph node metastasis (pN), distant metastases (pM), and vascular invasion. Strong PD-L1 expression was detected in 25% of SAC. Higher expression of PD-L1 was significantly associated with pN (P=0.003) and pM (P=0.014). Survival analysis showed that patients with higher expression of PD-L1 had a poorer prognosis (P=0.045). However, multivariate regression analysis did not support PD-L1 as an independent prognostic factor (P=0.430). Our data suggest that PD-L1 may represent a new biomarker of metastasis and prognosis for patients with SAC, but as a target in the treatment of SAC is less certain. PMID:26464688

  3. Programmed cell death (PCD): an essential process of cereal seed development and germination.

    PubMed

    Domínguez, Fernando; Cejudo, Francisco J

    2014-01-01

    The life cycle of cereal seeds can be divided into two phases, development and germination, separated by a quiescent period. Seed development and germination require the growth and differentiation of new tissues, but also the ordered disappearance of cells, which takes place by a process of programmed cell death (PCD). For this reason, cereal seeds have become excellent model systems for the study of developmental PCD in plants. At early stages of seed development, maternal tissues such as the nucellus, the pericarp, and the nucellar projections undergo a progressive degeneration by PCD, which allows the remobilization of their cellular contents for nourishing new filial tissues such as the embryo and the endosperm. At a later stage, during seed maturation, the endosperm undergoes PCD, but these cells remain intact in the mature grain and their contents will not be remobilized until germination. Thus, the only tissues that remain alive when seed development is completed are the embryo axis, the scutellum and the aleurone layer. In germinating seeds, both the scutellum and the aleurone layer play essential roles in producing the hydrolytic enzymes for the mobilization of the storage compounds of the starchy endosperm, which serve to support early seedling growth. Once this function is completed, scutellum and aleurone cells undergo PCD; their contents being used to support the growth of the germinated embryo. PCD occurs with tightly controlled spatial-temporal patterns allowing coordinated fluxes of nutrients between the different seed tissues. In this review, we will summarize the current knowledge of the tissues undergoing PCD in developing and germinating cereal seeds, focussing on the biochemical features of the process. The effect of hormones and redox regulation on PCD control will be discussed. PMID:25120551

  4. Programmed cell death (PCD): an essential process of cereal seed development and germination

    PubMed Central

    Domínguez, Fernando; Cejudo, Francisco J.

    2014-01-01

    The life cycle of cereal seeds can be divided into two phases, development and germination, separated by a quiescent period. Seed development and germination require the growth and differentiation of new tissues, but also the ordered disappearance of cells, which takes place by a process of programmed cell death (PCD). For this reason, cereal seeds have become excellent model systems for the study of developmental PCD in plants. At early stages of seed development, maternal tissues such as the nucellus, the pericarp, and the nucellar projections undergo a progressive degeneration by PCD, which allows the remobilization of their cellular contents for nourishing new filial tissues such as the embryo and the endosperm. At a later stage, during seed maturation, the endosperm undergoes PCD, but these cells remain intact in the mature grain and their contents will not be remobilized until germination. Thus, the only tissues that remain alive when seed development is completed are the embryo axis, the scutellum and the aleurone layer. In germinating seeds, both the scutellum and the aleurone layer play essential roles in producing the hydrolytic enzymes for the mobilization of the storage compounds of the starchy endosperm, which serve to support early seedling growth. Once this function is completed, scutellum and aleurone cells undergo PCD; their contents being used to support the growth of the germinated embryo. PCD occurs with tightly controlled spatial-temporal patterns allowing coordinated fluxes of nutrients between the different seed tissues. In this review, we will summarize the current knowledge of the tissues undergoing PCD in developing and germinating cereal seeds, focussing on the biochemical features of the process. The effect of hormones and redox regulation on PCD control will be discussed. PMID:25120551

  5. Contribution of programmed cell death receptor (PD)-1 to Kupffer cell dysfunction in murine polymicrobial sepsis.

    PubMed

    Wang, Fei; Huang, Xin; Chung, Chun-Shiang; Chen, Yaping; Hutchins, Noelle A; Ayala, Alfred

    2016-08-01

    Recent studies suggest that coinhibitory receptors appear to be important in contributing sepsis-induced immunosuppression. Our laboratory reported that mice deficient in programmed cell death receptor (PD)-1 have increased bacterial clearance and improved survival in experimental sepsis induced by cecal ligation and puncture (CLP). In response to infection, the liver clears the blood of bacteria and produces cytokines. Kupffer cells, the resident macrophages in the liver, are strategically situated to perform the above functions. However, it is not known if PD-1 expression on Kupffer cells is altered by septic stimuli, let alone if PD-1 ligation contributes to the altered microbial handling seen. Here we report that PD-1 is significantly upregulated on Kupffer cells during sepsis. PD-1-deficient septic mouse Kupffer cells displayed markedly enhanced phagocytosis and restoration of the expression of major histocompatibility complex II and CD86, but reduced CD80 expression compared with septic wild-type (WT) mouse Kupffer cells. In response to ex vivo LPS stimulation, the cytokine productive capacity of Kupffer cells derived from PD-1-/- CLP mice exhibited a marked, albeit partial, restoration of the release of IL-6, IL-12, IL-1β, monocyte chemoattractant protein-1, and IL-10 compared with septic WT mouse Kupffer cells. In addition, PD-1 gene deficiency decreased LPS-induced apoptosis of septic Kupffer cells, as indicated by decreased levels of cleaved caspase-3 and reduced terminal deoxynucleotidyl transferase dUTP nick end-labeling-positive cells. Exploring the signal pathways involved, we found that, after ex vivo LPS stimulation, septic PD-1-/- mouse Kupffer cells exhibited an increased Akt phosphorylation and a reduced p38 phosphorylation compared with septic WT mouse Kupffer cells. Together, these results indicate that PD-1 appears to play an important role in regulating the development of Kupffer cell dysfunction seen in sepsis. PMID:27288425

  6. Blockade of the Programmed Death-1 Pathway Restores Sarcoidosis CD4+ T-Cell Proliferative Capacity

    PubMed Central

    Braun, Nicole A.; Celada, Lindsay J.; Herazo-Maya, Jose D.; Abraham, Susamma; Shaginurova, Guzel; Sevin, Carla M.; Grutters, Jan; Culver, Daniel A.; Dworski, Ryszard; Sheller, James; Massion, Pierre P.; Polosukhin, Vasiliy V.; Johnson, Joyce E.; Kaminski, Naftali; Wilkes, David S.; Oswald-Richter, Kyra A.

    2014-01-01

    Rationale: Effective therapeutic interventions for chronic, idiopathic lung diseases remain elusive. Normalized T-cell function is an important contributor to spontaneous resolution of pulmonary sarcoidosis. Up-regulation of inhibitor receptors, such as programmed death-1 (PD-1) and its ligand, PD-L1, are important inhibitors of T-cell function. Objectives: To determine the effects of PD-1 pathway blockade on sarcoidosis CD4+ T-cell proliferative capacity. Methods: Gene expression profiles of sarcoidosis and healthy control peripheral blood mononuclear cells were analyzed at baseline and follow-up. Flow cytometry was used to measure ex vivo expression of PD-1 and PD-L1 on systemic and bronchoalveolar lavage–derived cells of subjects with sarcoidosis and control subjects, as well as the effects of PD-1 pathway blockade on cellular proliferation after T-cell receptor stimulation. Immunohistochemistry analysis for PD-1/PD-L1 expression was conducted on sarcoidosis, malignant, and healthy control lung specimens. Measurements and Main Results: Microarray analysis demonstrates longitudinal increase in PDCD1 gene expression in sarcoidosis peripheral blood mononuclear cells. Immunohistochemistry analysis revealed increased PD-L1 expression within sarcoidosis granulomas and lung malignancy, but this was absent in healthy lungs. Increased numbers of sarcoidosis PD-1+ CD4+ T cells are present systemically, compared with healthy control subjects (P < 0.0001). Lymphocytes with reduced proliferative capacity exhibited increased proliferation with PD-1 pathway blockade. Longitudinal analysis of subjects with sarcoidosis revealed reduced PD-1+ CD4+ T cells with spontaneous clinical resolution but not with disease progression. Conclusions: Analogous to the effects in other chronic lung diseases, these findings demonstrate that the PD-1 pathway is an important contributor to sarcoidosis CD4+ T-cell proliferative capacity and clinical outcome. Blockade of the PD-1 pathway may be a

  7. Programmed Cell Death Progresses Differentially in Epidermal and Mesophyll Cells of Lily Petals.

    PubMed

    Mochizuki-Kawai, Hiroko; Niki, Tomoko; Shibuya, Kenichi; Ichimura, Kazuo

    2015-01-01

    In the petals of some species of flowers, programmed cell death (PCD) begins earlier in mesophyll cells than in epidermal cells. However, PCD progression in each cell type has not been characterized in detail. We separately constructed a time course of biochemical signs and expression patterns of PCD-associated genes in epidermal and mesophyll cells in Lilium cv. Yelloween petals. Before visible signs of senescence could be observed, we found signs of PCD, including DNA degradation and decreased protein content in mesophyll cells only. In these cells, the total proteinase activity increased on the day after anthesis. Within 3 days after anthesis, the protein content decreased by 61.8%, and 22.8% of mesophyll cells was lost. A second peak of proteinase activity was observed on day 6, and the number of mesophyll cells decreased again from days 4 to 7. These biochemical and morphological results suggest that PCD progressed in steps during flower life in the mesophyll cells. PCD began in epidermal cells on day 5, in temporal synchrony with the time course of visible senescence. In the mesophyll cells, the KDEL-tailed cysteine proteinase (LoCYP) and S1/P1 nuclease (LoNUC) genes were upregulated before petal wilting, earlier than in epidermal cells. In contrast, relative to that in the mesophyll cells, the expression of the SAG12 cysteine proteinase homolog (LoSAG12) drastically increased in epidermal cells in the final stage of senescence. These results suggest that multiple PCD-associated genes differentially contribute to the time lag of PCD progression between epidermal and mesophyll cells of lily petals. PMID:26605547

  8. Immunological effects of the anti-programmed death-1 antibody on human peripheral blood mononuclear cells.

    PubMed

    Akiyama, Yasuto; Nonomura, Chizu; Kondou, Ryota; Miyata, Haruo; Ashizawa, Tadashi; Maeda, Chie; Mitsuya, Koichi; Hayashi, Nakamasa; Nakasu, Yoko; Yamaguchi, Ken

    2016-09-01

    Immune checkpoint antibody-mediated blockade has gained attention as a new cancer immunotherapy strategy. Accumulating evidence suggests that this therapy imparts a survival benefit to metastatic melanoma and non-small cell lung cancer patients. A substantial amount of data on immune checkpoint antibodies has been collected from clinical trials; however, the direct effect of the antibodies on human peripheral blood mononuclear cells (PBMCs) has not been exclusively investigated. In this study, we developed an anti-programmed death-1 (PD-1) antibody (with biosimilarity to nivolumab) and examined the effects of the antibody on PBMCs derived from cancer patients. Specifically, we investigated the effects of the anti-PD-1 antibody on proliferation, cytokine production, cytotoxic T lymphocytes (CTL) and regulatory T cells. These investigations yielded several important results. First, the anti-PD-1 antibody had no obvious effect on resting PBMCs; however, high levels of the anti-PD-1 antibody partly stimulated PBMC proliferation when accompanied by an anti-CD3 antibody. Second, the anti-PD-1 antibody restored the growth inhibition of anti-CD3 Ab-stimulated PBMCs mediated by PD-L1. Third, the anti-PD-1 antibody exhibited a moderate inhibitory effect on the induction of myeloid-derived suppressor cells (MDSCs) by anti-CD3 antibody stimulation. Additionally, the presence of the anti-PD-1 antibody promoted antigen-specific CTL induction, which suggests that combining anti-PD-1 antibody and conventional immunotherapy treatments may have beneficial effects. These results indicate that specific cellular immunological mechanisms are partly responsible for the antitumor effect exhibited by the anti-PD-1 antibody against advanced cancers in clinical trials. PMID:27573705

  9. Prognostic and Clinicopathological Value of Programmed Death Ligand-1 in Breast Cancer: A Meta-Analysis

    PubMed Central

    Liu, Zeming; Maimaiti, Yusufu; Wang, Shan; Yin, Xingjie; Liu, Chunping

    2016-01-01

    Recently, the interest in programmed death ligand-1 (PD-L1) as a prognostic marker in several types of malignant tumors has increased. In the present meta-analysis, we aimed to explore the prognostic and clinicopathological value of PD-L1 in breast cancer. We searched Medline/PubMed, Web of Science, EMBASE, the Cochrane Library databases, and grey literature from inception until January 20, 2016. Studies concerning breast cancer that focused on PD-L1 expression and studies reporting survival data were included; two authors independently performed the data extraction. The pooled risk ratio (RR) and 95% confidence interval (CI) were assessed to determine the association between the clinicopathological parameters of patients and PD-L1 expression. Five studies involving 2061 patients were included in this meta-analysis. The results indicated that positive/higher PD-L1 expression was a negative predictor for breast cancer, with an RR of 1.64 (95% CI, 1.14–2.34) for the total mortality risk and an RR of 2.53 (95% CI, 1.78–3.59) for the mortality risk 10 years after surgery. Moreover, positive/higher PD-L1 expression was significantly associated with positive lymph node metastasis (RR, 1.33; 95% CI, 1.04–1.70), poor nuclear grade (RR, 1.24; 95% CI, 1.07–1.43), and negative estrogen receptor status (RR, 2.45; 95% CI, 1.31–4.60) in breast cancer patients. Our findings suggest that PD-L1 can serve as a significant biomarker for poor prognosis and the adverse clinicopathologic features of breast cancer and could facilitate the better management of individual patients. PMID:27227453

  10. Programmed death-ligand 1, 2 expressions are decreased in the psoriatic epidermis.

    PubMed

    Kim, Dae Suk; Je, Jung Hwan; Kim, Sung Hee; Shin, Dongyun; Kim, Tae-Gyun; Kim, Do Young; Kim, Soo Min; Lee, Min-Geol

    2015-08-01

    Psoriatic keratinocytes are one of the key components that amplify and maintain chronic inflammation. We hypothesized that lack of proper regulatory functions of keratinocytes can be responsible for chronic inflammation in psoriasis. Programmed death-ligands (PD-L) 1, 2 are expressed on keratinocytes, and expressions by nonlymphoid cells are important for mediating peripheral T cell tolerance. In our study, we investigated whether PD-L1, 2 expressions are altered in keratinocytes of psoriatic epidermis compared to normal epidermis. Epidermis was separated and analyzed for PD-L1, 2 expressions in mRNA and protein levels. Immunohistochemical stainings were done in skin biopsy samples from psoriasis, normal skin, allergic contact dermatitis (ACD), pityriasis rosea (PR) and lichen planus (LP). Expressions of PD-L1, 2 mRNA levels were significantly decreased in psoriatic epidermis compared to normal epidermis. In protein levels, PD-L1 expression was significantly decreased in psoriatic epidermis. However, PD-L2 expression was not detected in both normal and psoriatic epidermis. Immunohistochemical stainings revealed significantly less PD-L1 expression in psoriatic epidermis compared to normal epidermis. Even compared to other cutaneous inflammatory diseases, psoriatic epidermis showed less expression than ACD, PR and LP. PD-L2 expression was minimally detected in normal epidermis and not in psoriatic epidermis, but its expression was increased in ACD, PR and LP. In conclusion, we demonstrated that PD-L1, 2 are decreased in psoriatic epidermis in mRNA and protein levels. In addition, we showed that their expression was significantly lower than other inflammatory skin diseases. We suggest that decreased expression of PD-L1, 2 on psoriatic epidermis can contribute to its chronic unregulated inflammatory characteristics. PMID:26133691

  11. Programmed cell death 2 functions as a tumor suppressor in osteosarcoma

    PubMed Central

    Yang, Yuanxun; Jin, Yan; Du, Wenxi

    2015-01-01

    Objectives: To investigate the role of programmed cell death 2 (PDCD2) in osteosarcoma (OS), along with correlations between PDCD2 and CD4+/CD8+. Methods: Sprague-Dawley (SD) rats were randomly assigned to control group and OS group. The OS group rats were subjected to induce models of OS by transplantation with UMR106 cells. Peripheral blood was collected to test the percentages of the CD4+ and CD8+ cell subsets using flow cytometry (FCM). Western blotting was performed to determine the PDCD2 protein level. The correlations between PDCD2 and CD4+/CD8+ were analyzed by Pearson correlation coefficient. Besides, specific small interfering RNAs (siRNA) against PDCD2 and nonspecific (NS)-siRNA were transfected into UMR106 cells. Cell viability and invasive ability were determined after transfection. Results: CD4+ cells percentages were significantly decreased in the OS group, while CD8+ cells were significantly increased (P < 0.05). The PDCD2 protein levels were markedly lower than that in the control group (P < 0.05). Additionally, PDCD2 was positively correlated with CD4+ (R2 = 0.66, P < 0.05), but was negatively correlated with CD8+ (R2 = -0.94, P < 0.05). Moreover, the cell viability and invasion ability were significantly higher than that in the control group and the NS siRNA group after transfection with PDCD2 siRNA (P < 0.05). Conclusion: These results suggest that PDCD2 is involved in the pathogenesis of OS, and PDCD2 may play an important role in tumor suppression. These mechanisms might be related to immune response induced by CD4+ and CD8+ T cells. PMID:26617804

  12. Programmed death ligand-1 expression on donor T cells drives graft-versus-host disease lethality.

    PubMed

    Saha, Asim; O'Connor, Roddy S; Thangavelu, Govindarajan; Lovitch, Scott B; Dandamudi, Durga Bhavani; Wilson, Caleph B; Vincent, Benjamin G; Tkachev, Victor; Pawlicki, Jan M; Furlan, Scott N; Kean, Leslie S; Aoyama, Kazutoshi; Taylor, Patricia A; Panoskaltsis-Mortari, Angela; Foncea, Rocio; Ranganathan, Parvathi; Devine, Steven M; Burrill, Joel S; Guo, Lili; Sacristan, Catarina; Snyder, Nathaniel W; Blair, Ian A; Milone, Michael C; Dustin, Michael L; Riley, James L; Bernlohr, David A; Murphy, William J; Fife, Brian T; Munn, David H; Miller, Jeffrey S; Serody, Jonathan S; Freeman, Gordon J; Sharpe, Arlene H; Turka, Laurence A; Blazar, Bruce R

    2016-07-01

    Programmed death ligand-1 (PD-L1) interaction with PD-1 induces T cell exhaustion and is a therapeutic target to enhance immune responses against cancer and chronic infections. In murine bone marrow transplant models, PD-L1 expression on host target tissues reduces the incidence of graft-versus-host disease (GVHD). PD-L1 is also expressed on T cells; however, it is unclear whether PD-L1 on this population influences immune function. Here, we examined the effects of PD-L1 modulation of T cell function in GVHD. In patients with severe GVHD, PD-L1 expression was increased on donor T cells. Compared with mice that received WT T cells, GVHD was reduced in animals that received T cells from Pdl1-/- donors. PD-L1-deficient T cells had reduced expression of gut homing receptors, diminished production of inflammatory cytokines, and enhanced rates of apoptosis. Moreover, multiple bioenergetic pathways, including aerobic glycolysis, oxidative phosphorylation, and fatty acid metabolism, were also reduced in T cells lacking PD-L1. Finally, the reduction of acute GVHD lethality in mice that received Pdl1-/- donor cells did not affect graft-versus-leukemia responses. These data demonstrate that PD-L1 selectively enhances T cell-mediated immune responses, suggesting a context-dependent function of the PD-1/PD-L1 axis, and suggest selective inhibition of PD-L1 on donor T cells as a potential strategy to prevent or ameliorate GVHD. PMID:27294527

  13. Programmed cell death promotes male sterility in the functional dioecious Opuntia stenopetala (Cactaceae)

    PubMed Central

    Flores-Rentería, Lluvia; Orozco-Arroyo, Gregorio; Cruz-García, Felipe; García-Campusano, Florencia; Alfaro, Isabel; Vázquez-Santana, Sonia

    2013-01-01

    Background and Aims The sexual separation in dioecious species has interested biologists for decades; however, the cellular mechanism leading to unisexuality has been poorly understood. In this study, the cellular changes that lead to male sterility in the functionally dioecious cactus, Opuntia stenopetala, are described. Methods The spatial and temporal patterns of programmed cell death (PCD) were determined in the anthers of male and female flowers using scanning electron microscopy analysis and histological observations, focusing attention on the transition from bisexual to unisexual development. In addition, terminal deoxynucleotidyl transferase-mediated dUTP nick-end labelling assays were used as an indicator of DNA fragmentation to corroborate PCD. Key results PCD was detected in anthers of both female and male flowers, but their patterns differed in time and space. Functionally male individuals developed viable pollen, and normal development involved PCD on each layer of the anther wall, which occurred progressively from the inner (tapetum) to the outer layer (epidermis). Conversely, functional female individuals aborted anthers by premature and displaced PCD. In anthers of female flowers, the first signs of PCD, such as a nucleus with irregular shape, fragmented and condensed chromatin, high vacuolization and condensed cytoplasm, occurred at the microspore mother cell stage. Later these features were observed simultaneously in all anther wall layers, connective tissue and filament. Neither pollen formation nor anther dehiscence was detected in female flowers of O. stenopetala due to total anther disruption. Conclusions Temporal and spatial changes in the patterns of PCD are responsible for male sterility of female flowers in O. stenopetala. Male fertility requires the co-ordination of different events, which, when altered, can lead to male sterility and to functionally unisexual individuals. PCD could be a widespread mechanism in the determination of

  14. Programmed Cell Death Progresses Differentially in Epidermal and Mesophyll Cells of Lily Petals

    PubMed Central

    Mochizuki-Kawai, Hiroko; Niki, Tomoko; Shibuya, Kenichi; Ichimura, Kazuo

    2015-01-01

    In the petals of some species of flowers, programmed cell death (PCD) begins earlier in mesophyll cells than in epidermal cells. However, PCD progression in each cell type has not been characterized in detail. We separately constructed a time course of biochemical signs and expression patterns of PCD-associated genes in epidermal and mesophyll cells in Lilium cv. Yelloween petals. Before visible signs of senescence could be observed, we found signs of PCD, including DNA degradation and decreased protein content in mesophyll cells only. In these cells, the total proteinase activity increased on the day after anthesis. Within 3 days after anthesis, the protein content decreased by 61.8%, and 22.8% of mesophyll cells was lost. A second peak of proteinase activity was observed on day 6, and the number of mesophyll cells decreased again from days 4 to 7. These biochemical and morphological results suggest that PCD progressed in steps during flower life in the mesophyll cells. PCD began in epidermal cells on day 5, in temporal synchrony with the time course of visible senescence. In the mesophyll cells, the KDEL-tailed cysteine proteinase (LoCYP) and S1/P1 nuclease (LoNUC) genes were upregulated before petal wilting, earlier than in epidermal cells. In contrast, relative to that in the mesophyll cells, the expression of the SAG12 cysteine proteinase homolog (LoSAG12) drastically increased in epidermal cells in the final stage of senescence. These results suggest that multiple PCD-associated genes differentially contribute to the time lag of PCD progression between epidermal and mesophyll cells of lily petals. PMID:26605547

  15. Overexpression of Arabidopsis Ceramide Synthases Differentially Affects Growth, Sphingolipid Metabolism, Programmed Cell Death, and Mycotoxin Resistance.

    PubMed

    Luttgeharm, Kyle D; Chen, Ming; Mehra, Amit; Cahoon, Rebecca E; Markham, Jonathan E; Cahoon, Edgar B

    2015-10-01

    Ceramide synthases catalyze an N-acyltransferase reaction using fatty acyl-coenzyme A (CoA) and long-chain base (LCB) substrates to form the sphingolipid ceramide backbone and are targets for inhibition by the mycotoxin fumonisin B1 (FB1). Arabidopsis (Arabidopsis thaliana) contains three genes encoding ceramide synthases with distinct substrate specificities: LONGEVITY ASSURANCE GENE ONE HOMOLOG1 (LOH1; At3g25540)- and LOH3 (At1g19260)-encoded ceramide synthases use very-long-chain fatty acyl-CoA and trihydroxy LCB substrates, and LOH2 (At3g19260)-encoded ceramide synthase uses palmitoyl-CoA and dihydroxy LCB substrates. In this study, complementary DNAs for each gene were overexpressed to determine the role of individual isoforms in physiology and sphingolipid metabolism. Differences were observed in growth resulting from LOH1 and LOH3 overexpression compared with LOH2 overexpression. LOH1- and LOH3-overexpressing plants had enhanced biomass relative to wild-type plants, due in part to increased cell division, suggesting that enhanced synthesis of very-long-chain fatty acid/trihydroxy LCB ceramides promotes cell division and growth. Conversely, LOH2 overexpression resulted in dwarfing. LOH2 overexpression also resulted in the accumulation of sphingolipids with C16 fatty acid/dihydroxy LCB ceramides, constitutive induction of programmed cell death, and accumulation of salicylic acid, closely mimicking phenotypes observed previously in LCB C-4 hydroxylase mutants defective in trihydroxy LCB synthesis. In addition, LOH2- and LOH3-overexpressing plants acquired increased resistance to FB1, whereas LOH1-overexpressing plants showed no increase in FB1 resistance, compared with wild-type plants, indicating that LOH1 ceramide synthase is most strongly inhibited by FB1. Overall, the findings described here demonstrate that overexpression of Arabidopsis ceramide synthases results in strongly divergent physiological and metabolic phenotypes, some of which have significance

  16. Programmed cell death activated by Rose Bengal in Arabidopsis thaliana cell suspension cultures requires functional chloroplasts

    PubMed Central

    Gutiérrez, Jorge; González-Pérez, Sergio; García-García, Francisco; Daly, Cara T.; Lorenzo, Óscar; Revuelta, José L.; McCabe, Paul F.; Arellano, Juan B.

    2014-01-01

    Light-grown Arabidopsis thaliana cell suspension culture (ACSC) were subjected to mild photooxidative damage with Rose Bengal (RB) with the aim of gaining a better understanding of singlet oxygen-mediated defence responses in plants. Additionally, ACSC were treated with H2O2 at concentrations that induced comparable levels of protein oxidation damage. Under low to medium light conditions, both RB and H2O2 treatments activated transcriptional defence responses and inhibited photosynthetic activity, but they differed in that programmed cell death (PCD) was only observed in cells treated with RB. When dark-grown ACSC were subjected to RB in the light, PCD was suppressed, indicating that the singlet oxygen-mediated signalling pathway in ACSC requires functional chloroplasts. Analysis of up-regulated transcripts in light-grown ACSC, treated with RB in the light, showed that both singlet oxygen-responsive transcripts and transcripts with a key role in hormone-activated PCD (i.e. ethylene and jasmonic acid) were present. A co-regulation analysis proved that ACSC treated with RB exhibited higher correlation with the conditional fluorescence (flu) mutant than with other singlet oxygen-producing mutants or wild-type plants subjected to high light. However, there was no evidence for the up-regulation of EDS1, suggesting that activation of PCD was not associated with the EXECUTER- and EDS1-dependent signalling pathway described in the flu mutant. Indigo Carmine and Methylene Violet, two photosensitizers unable to enter chloroplasts, did not activate transcriptional defence responses in ACSC; however, whether this was due to their location or to their inherently low singlet oxygen quantum efficiencies was not determined. PMID:24723397

  17. The BMP antagonist Gremlin regulates outgrowth, chondrogenesis and programmed cell death in the developing limb.

    PubMed

    Merino, R; Rodriguez-Leon, J; Macias, D; Gañan, Y; Economides, A N; Hurle, J M

    1999-12-01

    In this study, we have analyzed the expression and function of Gremlin in the developing avian limb. Gremlin is a member of the DAN family of BMP antagonists highly conserved through evolution able to bind and block BMP2, BMP4 and BMP7. At early stages of development, gremlin is expressed in the dorsal and ventral mesoderm in a pattern complementary to that of bmp2, bmp4 and bmp7. The maintenance of gremlin expression at these stages is under the control of the AER, ZPA, and BMPs. Exogenous administration of recombinant Gremlin indicates that this protein is involved in the control of limb outgrowth. This function appears to be mediated by the neutralization of BMP function to maintain an active AER, to restrict the extension of the areas of programmed cell death and to confine chondrogenesis to the central core mesenchyme of the bud. At the stages of digit formation, gremlin is expressed in the proximal boundary of the interdigital mesoderm of the chick autopod. The anti-apoptotic influence of exogenous Gremlin, which results in the formation of soft tissue syndactyly in the chick, together with the expression of gremlin in the duck interdigital webs, indicates that Gremlin regulates the regression of the interdigital tissue. At later stages of limb development, gremlin is expressed in association with the differentiating skeletal pieces, muscles and the feather buds. The different expression of Gremlin in relation with other BMP antagonists present in the limb bud, such as Noggin, Chordin and Follistatin indicates that the functions of BMPs are regulated specifically by the different BMP antagonists, acting in a complementary fashion rather than being redundant signals. PMID:10556075

  18. Comprehensive characterization of programmed death ligand structural rearrangements in B-cell non-Hodgkin lymphomas.

    PubMed

    Chong, Lauren C; Twa, David D W; Mottok, Anja; Ben-Neriah, Susana; Woolcock, Bruce W; Zhao, Yongjun; Savage, Kerry J; Marra, Marco A; Scott, David W; Gascoyne, Randy D; Morin, Ryan D; Mungall, Andrew J; Steidl, Christian

    2016-09-01

    Programmed death ligands (PDLs) are immune-regulatory molecules that are frequently affected by chromosomal alterations in B-cell lymphomas. Although PDL copy-number variations are well characterized, a detailed and comprehensive analysis of structural rearrangements (SRs) and associated phenotypic consequences is largely lacking. Here, we used oligonucleotide capture sequencing of 67 formalin-fixed paraffin-embedded tissues derived from primary B-cell lymphomas and 1 cell line to detect and characterize, at base-pair resolution, SRs of the PDL locus (9p24.1; harboring PDL1/CD274 and PDL2/PDCD1LG2). We describe 36 novel PDL SRs, including 17 intrachromosomal events (inversions, duplications, deletions) and 19 translocations involving BZRAP-AS1, CD44, GET4, IL4R, KIAA0226L, MID1, RCC1, PTPN1 and segments of the immunoglobulin loci. Moreover, analysis of the precise chromosomal breakpoints reveals 2 distinct cluster breakpoint regions (CBRs) within either CD274 (CBR1) or PDCD1LG2 (CBR2). To determine the phenotypic consequences of these SRs, we performed immunohistochemistry for CD274 and PDCD1LG2 on primary pretreatment biopsies and found that PDL SRs are significantly associated with PDL protein expression. Finally, stable ectopic expression of wild-type PDCD1LG2 and the PDCD1LG2-IGHV7-81 fusion showed, in coculture, significantly reduced T-cell activation. Taken together, our data demonstrate the complementary utility of fluorescence in situ hybridization and capture sequencing approaches and provide a classification scheme for PDL SRs with implications for future studies using PDL immune-checkpoint inhibitors in B-cell lymphomas. PMID:27268263

  19. Photoacoustic spectral analysis to sense programmed erythrocyte cell death (eryptosis) for monitoring cancer response to treatment

    NASA Astrophysics Data System (ADS)

    Fadhel, Muhannad N.; Kibria, Fayruz; Kolios, Michael C.

    2016-03-01

    Many types of cancer therapies target the tumor microenvironment, causing biochemical and morphological changes in tissues. In therapies using ultrasound activated microbubbles, vascular collapse is typically reported. Red blood cells (RBCs) that leak out of the vasculature become exposed to the ceramide that is released from damaged endothelial cells. Ceramide can induce programmed cell death in RBCs (eryptosis), and is characterized by cell shrinkage, membrane blebbing and scrambling. Since the effect of eryptotic cells on generated photoacoustics (PA) signals has not been reported, we investigated the potential PA may have for cancer treatment monitoring by using PA spectral analysis to sense eryptosis. To induce eryptosis, C2-ceramide was added to RBC suspensions and that were incubated for 24 hours at 37°C. A control and ceramide-induced sample was imaged in a vessel phantom using a high frequency PA system (VevoLAZR, 10 - 45 MHz bandwidth) irradiated with multiple wavelengths ranging from 680 to 900 nm. PA spectral parameters were measured and linked to changes in RBCs as it underwent eryptosis. These samples were examined using optical microscopy, a blood gas analyzer and an integrating sphere setup to measure optical properties (wavelengths 600 - 900 nm). The results of the experiment demonstrate how PA spectral analysis can be used to identify eryptosis at a depth of more than 1 cm into the phantom using ultrasound derived the y-intercept and mid bandfit (MBF) parameters at optical wavelengths of 800 - 900 nm. These parameters were correlated to the morphological and biochemical changes that eryptotic RBCs display. The results establish the potential of PA in cancer treatment monitoring through sensing treatment induced eryptosis.

  20. Establishment of the milk-borne transmission as a key factor for the peculiar endemicity of human T-lymphotropic virus type 1 (HTLV-1): the ATL Prevention Program Nagasaki

    PubMed Central

    HINO, Shigeo

    2011-01-01

    In late 2010, the nation-wide screening of pregnant women for human T-lymphotropic virus type 1 (HTLV-1) infection was implemented in Japan to prevent milk-borne transmission of HTLV-1. In the late 1970s, recognition of the adult T-cell leukemia (ATL) cluster in Kyushu, Japan, led to the discovery of the first human retrovirus, HTLV-1. In 1980, we started to investigate mother-to-child transmission (MTCT) for explaining the peculiar endemicity of HTLV-1. Retrospective and prospective epidemiological data revealed the MTCT rate at ∼20%. Cell-mediated transmission of HTLV-1 without prenatal infection suggested a possibility of milk-borne transmission. Common marmosets were successfully infected by oral inoculation of HTLV-1 harboring cells. A prefecture-wide intervention study to refrain from breast-feeding by carrier mothers, the ATL Prevention Program Nagasaki, was commenced in July 1987. It revealed a marked reduction of HTLV-1 MTCT by complete bottle-feeding from 20.3% to 2.5%, and a significantly higher risk of short-term breast-feeding (<6 months) than bottle-feeding (7.4% vs. 2.5%, P < 0.001). PMID:21558754

  1. Bmp, Fgf and Wnt signalling in programmed cell death and chondrogenesis during vertebrate limb development: the role of Dickkopf-1.

    PubMed

    Grotewold, Lars; Rüther, Ulrich

    2002-01-01

    Dickkopf-1 (Dkk-1) is a potent head inducer in Xenopus. This effect can be attributed to its capability to specifically inhibit Wnt/beta-catenin signalling. Recent data point to a crucial role for Dkk-1 in the control of programmed cell death during vertebrate limb development. In this paper, we present a comparative expression analysis of Dkk-1, Bmp-4 and Sox-9 as well as data on the regulation of Dkk-1 by Wnt. Finally, we summarize the current knowledge of its potential function in the developing limb and present a model how the interplay of the Bmp, Fgf and Wnt signalling pathways might differentially regulate programmed cell death versus chondrogenic differentiation in limb mesodermal cells. PMID:12455632

  2. Type 1 diabetes associated autoimmunity.

    PubMed

    Kahaly, George J; Hansen, Martin P

    2016-07-01

    Diabetes mellitus is increasing in prevalence worldwide. The economic costs are considerable given the cardiovascular complications and co-morbidities that it may entail. Type 1 diabetes (T1D) is a chronic autoimmune disease characterized by the loss of insulin-producing pancreatic β-cells. The pathogenesis of T1D is complex and multifactorial and involves a genetic susceptibility that predisposes to abnormal immune responses in the presence of ill-defined environmental insults to the pancreatic islets. Genetic background may affect the risk for autoimmune disease and patients with T1D exhibit an increased risk of other autoimmune disorders such as autoimmune thyroid disease, Addison's disease, autoimmune gastritis, coeliac disease and vitiligo. Approximately 20%-25% of patients with T1D have thyroid antibodies, and up to 50% of such patients progress to clinical autoimmune thyroid disease. Approximately 0.5% of diabetic patients have concomitant Addison's disease and 4% have coeliac disease. The prevalence of autoimmune gastritis and pernicious anemia is 5% to 10% and 2.6% to 4%, respectively. Early detection of antibodies and latent organ-specific dysfunction is advocated to alert physicians to take appropriate action in order to prevent full-blown disease. Patients and family members should be educated to be able to recognize signs and symptoms of underlying disease. PMID:26903475

  3. Neurofibromatosis type 1 and pregnancy.

    PubMed

    Dugoff, L; Sujansky, E

    1996-12-01

    Neurofibromatosis Type 1 (NF-1) is an autosomal dominant condition which has markedly variable clinical expression, with manifestations ranging from mild cutaneous lesions to severe orthopedic complications and functional impairment. The current obstetrical literature indicates that women with NF-1 have increased complications associated with pregnancy. However, the majority of publications are case reports involving no more than 11 patients each, and are likely biased toward reporting on cases in which complications occurred. This study presents data on pregnancy outcome in 105 women with NF-1. The data were obtained from questionnaires completed by the study participants, and by review of their pregnancy and peripartum medical records. The 105 women had a total of 247 pregnancies, resulting in 182 live births, 44 first trimester spontaneous abortions, 21 elective terminations, and 2 ectopic pregnancies. There were two sets of twins. The cesarean section rate in our series (36%) was greater than the general population rate (9.1-23.5%). In 7 of these patients, the cesarean section was required because of maternal NF-1 complications. The study did not show the previously reported increased incidence of preeclampsia, preterm delivery, intrauterine growth restriction, pregnancy-induced hypertension, stillbirth, spontaneous abortion, or perinatal mortality. Sixty-four (60%) of the one hundred five women reported growth of new neurofibromas during pregnancy and fifty-five (52%) noted enlargement of existing neurofibromas. Nineteen women observed no changes in the size of their neurofibromas and no growth of new neurofibromas during pregnancy. PMID:8957502

  4. Puberty and type 1 diabetes

    PubMed Central

    Chowdhury, Subhankar

    2015-01-01

    Various data on type 1 diabetes mellitus (T1DM) have showed that the incidence of T1DM peaks at puberty. However, diabetes control and complications could be adversely affected by the physiological changes of puberty. In early years of insulin therapy, severe growth retardation with pubertal delay, like in Mauriac syndrome, have been reported. Insulin and leptin are metabolic factors, circulating in the periphery, which participate in the hypothalamic control of metabolism and reproduction. Insulin may be an important regulator of leptin in humans. Increased levels of advanced glycation end products suppress activation of the gonadotropin-releasing hormone (GnRH) pulse generator, resulting in pubertal delay. Glycemic control deteriorates during puberty as the lean body mass doubles mainly over a period of 25 years, which increases insulin requirement. There is also an increase in insulin resistance over the period of puberty. In normal individuals, fasting and postprandial insulin concentrations reach a peak in both sexes in mid to late puberty. Puberty, at all stages, has the worst insulin resistance. It has been observed that an excessive GH secretion in T1DM during puberty has significant effects on ketogenesis. Adolescent T1DM tends to decompensate very rapidly and develop ketoacidosis when the late night insulin dose is omitted. Adolescence is a critical developmental phase that presents unique challenges and opportunities to individuals with diabetes, their families and their healthcare providers. PMID:25941652

  5. Influence of the programmed cell death of lymphocytes on the immunity of patients with atopic bronchial asthma

    PubMed Central

    2014-01-01

    Background Fairly recent data highlight the role of programmed cell death and autoimmunity, as potentially important factors in the pathogenesis of chronic obstructive airway diseases. The purpose of our research was to determine the influence of apoptotic factors on the immunity of patients with atopic bronchial asthma according to the degree of severity. Method The study was performed on the peripheral blood of patients with atopic bronchial asthma with different severity. The Immunological aspects were determined with ELISA, the fluorimetric method and the method of precipitation with polyethylene glycol. And the quantification of the parameters of the programmed cell death was performed by the method of flow cytometry and electron microscopy method. Results The data obtained from morphological and biochemical parameters show the deregulation of Programmed Death of lymphocytes of patients with atopic bronchial asthma but individual for each group of patients. This dysfunction might induce the secretion of autoantibodies against DNA. This could explain the accumulation of circulating immune complex with average size considered as the most pathogenic in patients with bronchial asthma especially in the patients of serious severity. It should be noted that Patients with bronchial asthma of mild and severe severity had different way and did not have the same degree of deficiency of the immune system. Conclusion These data suggested that apoptotic factor of lymphocytes may play an important role in controlling immunity of patients with atopic bronchial asthma. PMID:24646379

  6. Microautophagy involves programmed cell semi-death of sieve elements in developing caryopsis of Triticum aestivum L.

    PubMed

    Yang, Wenli; Cai, Jingtong; Zhou, Zhuqing; Zhou, Guangsheng; Mei, Fangzhu; Wang, Likai

    2015-12-01

    Differentiation of sieve elements (SEs) involves programmed cell semi-death, in which a small amount of organelles is retained. However, the mechanisms by which a large amount of SE cytoplasm is degraded and the specific proteases involved are not clear. In this study, we confirmed that the degradation of cytoplasm outside of the vacuole was mediated by microautophagy of the vacuole, and that the tonoplast selectively fused with the plasma membrane after most of the cytoplasm in the vacuoles was degraded. The integration of space enclosed a small amount of cytoplasm. Therefore, that fraction of the cytoplasm was preserved. At the same time, the cytosol was weakly acidic during membrane fusion because part of the tonoplast was ruptured. We also demonstrated that wheat aspartic protease (WAP1) and proteases including cathepsin B activity (PICA) were involved in programmed cell semi-death of SEs. PICA showed strongest activity before mass of the cytoplasm was degraded, which might contribute toward SE stability. We found that WAP1 mainly degraded the cytoplasm. Therefore, programmed cell semi-death of SEs might result from the joint action of vacuoles and multiple proteases. PMID:26146941

  7. Characterization of a serine protease-mediated cell death program activated in human leukemia cells

    SciTech Connect

    O'Connell, A.R.; Holohan, C.; Torriglia, A.; Lee, B.F.; Stenson-Cox, C. . E-mail: catherine.stenson@nuigalway.ie

    2006-01-01

    Tightly controlled proteolysis is a defining feature of apoptosis and caspases are critical in this regard. Significant roles for non-caspase proteases in cell death have been highlighted. Staurosporine causes a rapid induction of apoptosis in virtually all mammalian cell types. Numerous studies demonstrate that staurosporine can activate cell death under caspase-inhibiting circumstances. The aim of this study was to investigate the proteolytic mechanisms responsible for cell death under these conditions. To that end, we show that inhibitors of serine proteases can delay cell death in one such system. Furthermore, through profiling of proteolytic activation, we demonstrate, for the first time, that staurosporine activates a chymotrypsin-like serine protease-dependent cell death in HL-60 cells independently, but in parallel with the caspase controlled systems. Features of the serine protease-mediated system include cell shrinkage and apoptotic morphology, regulation of caspase-3, altered nuclear morphology, generation of an endonuclease and DNA degradation. We also demonstrate a staurosporine-induced activation of a putative 16 kDa chymotrypsin-like protein during apoptosis.

  8. Increased programmed death ligand-1 expression predicts poor prognosis in hepatocellular carcinoma patients

    PubMed Central

    Gu, Xiaobin; Gao, Xian-Shu; Xiong, Wei; Guo, Wei; Han, Linjun; Bai, Yun; Peng, Chuan; Cui, Ming; Xie, Mu

    2016-01-01

    Purpose Accumulating studies have investigated the prognostic and clinical significance of programmed death ligand-1 (PD-L1) expression in patients with hepatocellular carcinoma (HCC); however, the results were conflicting and inconclusive. We conducted a meta-analysis to combine controversial data to precisely evaluate this issue. Methods Relevant studies were thoroughly searched on PubMed, Web of Science, and Embase until April 2016. Eligible studies were evaluated by selection criteria. Hazard ratio (HR) with 95% confidence interval (CI) was used to estimate the prognostic role of PD-L1 for overall survival (OS) and disease-free survival (DFS)/recurrence-free survival (RFS). Odds ratio (OR) with 95% CI were selected to assess the relationship between PD-L1 and clinicopathological features of HCC patients. Publication bias was tested using Begg’s funnel plot. Results A total of seven studies published from 2009 to 2016 were included for meta-analysis. The data showed that high PD-L1 expression was correlated to shorter OS (HR =2.09, 95% CI: 1.66–2.64, P<0.001) as well as poor DFS/RFS (HR =2.3, 95% CI: 1.46–3.62, P<0.001). In addition, increased PD-L1 expression was also associated with tumor differentiation (HR =1.51, 95% CI: 1–2.29, P=0.05), vascular invasion (HR =2.16, 95% CI: 1.43–3.27, P<0.001), and α-fetoprotein (AFP; HR =1.46, 95% CI: 1–2.14, P=0.05), but had no association with tumor stage, tumor size, hepatitis history, sex, age, or tumor multiplicity. No publication bias was found for all analyses. Conclusion This meta-analysis revealed that overexpression of PD-L1 was predictive for shortened OS and DFS/RFS in HCC. Furthermore, increased PD-L1 expression was associated with less differentiation, vascular invasion, and AFP elevation. PMID:27536144

  9. Association of programmed death-1 gene polymorphism rs2227981 with tumor: evidence from a meta analysis

    PubMed Central

    Mamat, Umarjan; Arkinjan, Muyassar

    2015-01-01

    To investigate the association of programmed death-1 gene polymorphism rs2227981 with tumor risk. The PubMed, Medline, Ovid Medline, EMBASE, Web of Knowledge were searched. Meta-analyses were conducted using RevMan 5.2.2 software. Total six researches involving in a total of 1427 tumor patients and 1811 healthy control people were included into this meta analysis. There was no association of PD-1 gene polymorphism with total tumor risk under four genetic models. (CT+TT vs CC, OR=1.09, 95% CI=0.80-1.49, P=0.59; CT+CC vs TT, OR=0.93, 95% CI=0.52-1.66, P=0.61; TT vs CC, OR=0.99, 95% CI=0.57-1.72, P=0.97; CT vs CC, OR=1.16, 95% CI=0.80-1.70, P=0.43). The sub-group analysis shown there were a significantly difference on association of PD-1 gene polymorphism with digestive system tumor risk between tumor patients and healthy control people, except recessive model. (CT+TT vs CC, OR=1.57, 95% CI=1.20-2.07, P=0.001; TT vs CC, OR=1.67, 95% CI=1.12-2.49, P=0.01; CT vs CC, OR=1.51, 95% CI=1.13-2.01, P=0.005). Moreover, the meta analysis results shown that there were association of PD-1 gene polymorphism with tumor risk under two models for the tumor specific occurring only in women. (CT+TT vs CC, OR=0.80, 95% CI=0.67-0.95, P=0.01; TT vs CC, OR=0.61, 95% CI=0.44-0.83, P=0.002). This study suggests that PD-1 gene polymorphism rs2227981 is associated with specific tumor types, including digestive system tumor and tumor specific occurring in woman. PMID:26550254

  10. Nitric Oxide Is Involved in Cadmium-Induced Programmed Cell Death in Arabidopsis Suspension Cultures1[C][W

    PubMed Central

    De Michele, Roberto; Vurro, Emanuela; Rigo, Chiara; Costa, Alex; Elviri, Lisa; Di Valentin, Marilena; Careri, Maria; Zottini, Michela; Sanità di Toppi, Luigi; Lo Schiavo, Fiorella

    2009-01-01

    Exposure to cadmium (Cd2+) can result in cell death, but the molecular mechanisms of Cd2+ cytotoxicity in plants are not fully understood. Here, we show that Arabidopsis (Arabidopsis thaliana) cell suspension cultures underwent a process of programmed cell death when exposed to 100 and 150 μm CdCl2 and that this process resembled an accelerated senescence, as suggested by the expression of the marker senescence-associated gene12 (SAG12). CdCl2 treatment was accompanied by a rapid increase in nitric oxide (NO) and phytochelatin synthesis, which continued to be high as long as cells remained viable. Hydrogen peroxide production was a later event and preceded the rise of cell death by about 24 h. Inhibition of NO synthesis by NG-monomethyl-arginine monoacetate resulted in partial prevention of hydrogen peroxide increase, SAG12 expression, and mortality, indicating that NO is actually required for Cd2+-induced cell death. NO also modulated the extent of phytochelatin content, and possibly their function, by S-nitrosylation. These results shed light on the signaling events controlling Cd2+ cytotoxicity in plants. PMID:19261736

  11. A Single-Amino-Acid Substitution in Obg Activates a New Programmed Cell Death Pathway in Escherichia coli

    PubMed Central

    Dewachter, Liselot; Verstraeten, Natalie; Monteyne, Daniel; Kint, Cyrielle Ines; Versées, Wim; Pérez-Morga, David; Fauvart, Maarten

    2015-01-01

    ABSTRACT Programmed cell death (PCD) is an important hallmark of multicellular organisms. Cells self-destruct through a regulated series of events for the benefit of the organism as a whole. The existence of PCD in bacteria has long been controversial due to the widely held belief that only multicellular organisms would profit from this kind of altruistic behavior at the cellular level. However, over the past decade, compelling experimental evidence has established the existence of such pathways in bacteria. Here, we report that expression of a mutant isoform of the essential GTPase ObgE causes rapid loss of viability in Escherichia coli. The physiological changes that occur upon expression of this mutant protein—including loss of membrane potential, chromosome condensation and fragmentation, exposure of phosphatidylserine on the cell surface, and membrane blebbing—point to a PCD mechanism. Importantly, key regulators and executioners of known bacterial PCD pathways were shown not to influence this cell death program. Collectively, our results suggest that the cell death pathway described in this work constitutes a new mode of bacterial PCD. PMID:26695632

  12. Bcl-2 and Hsp27 act at different levels to suppress programmed cell death.

    PubMed

    Guénal, I; Sidoti-de Fraisse, C; Gaumer, S; Mignotte, B

    1997-07-17

    Apoptosis and necrosis, two morphologically distinct forms of cell death, can be induced by common stimuli depending on the doses and the cell type. This study compares the protective effect of oncoprotein Bcl-2 and of the small stress protein Hsp27 on these two types of cell death. We use rat embryo fibroblasts conditionally immortalized by the tsA58 mutant of SV40 large T antigen as parental cells to develop cell lines carrying inducible bcl-2 or hsp27 genes. Two apoptotic stimuli were used: shift to the restrictive temperature that induced p53-mediated apoptosis and treatment with low doses of hydrogen peroxide. Necrosis was induced by high doses of hydrogen peroxide. Although Bcl-2 and Hsp27 protect these cells from necrotic death, only Bcl-2 appears capable of preventing apoptotic death. Bcl-2 protection is not mediated by a negative effect on the induction of the p53 responsive genes bax or waf1 but it slows down at least two stages of apoptosis: decrease of mitochondrial membrane potential and subsequent morphological changes. In contrast, although Hsp27 has been recently shown to inhibit apoptosis induced by various stimuli, its overexpression has no effect on apoptosis in this cell system. It should be also noticed that the apoptotic stimuli (temperature shift or hydrogen peroxide treatment) induce Hsp27, but not Bcl-2 accumulation suggesting that, in parental cells, Hsp27 might already provide some protection. However, taken together these results suggest that Hsp27, as well as Bcl-2, acts at several levels to inhibit cell death, but that their protective functions only partially overlap. PMID:9233769

  13. A Cell-Permeant Amiloride Derivative Induces Caspase-Independent, AIF-Mediated Programmed Necrotic Death of Breast Cancer Cells

    PubMed Central

    Leon, Leonardo J.; Pasupuleti, Nagarekha; Gorin, Fredric; Carraway, Kermit L.

    2013-01-01

    Amiloride is a potassium-sparing diuretic that has been used as an anti-kaliuretic for the chronic management of hypertension and heart failure. Several studies have identified a potential anti-cancer role for amiloride, however the mechanisms underlying its anti-tumor effects remain to be fully delineated. Our group previously demonstrated that amiloride triggers caspase-independent cytotoxic cell death in human glioblastoma cell lines but not in primary astrocytes. To delineate the cellular mechanisms underlying amiloride’s anti-cancer cytotoxicity, cell permeant and cell impermeant derivatives of amiloride were synthesized that exhibit markedly different potencies in cancer cell death assays. Here we compare the cytotoxicities of 5-benzylglycinyl amiloride (UCD38B) and its free acid 5-glycinyl amiloride (UCD74A) toward human breast cancer cells. UCD74A exhibits poor cell permeability and has very little cytotoxic activity, while UCD38B is cell permeant and induces the caspase-independent death of proliferating and non-proliferating breast cancer cells. UCD38B treatment of human breast cancer cells promotes autophagy reflected in LC3 conversion, and induces the dramatic swelling of the endoplasmic reticulum, however these events do not appear to be the cause of cell death. Surprisingly, UCD38B but not UCD74A induces efficient AIF translocation from the mitochondria to the nucleus, and AIF function is necessary for the efficient induction of cancer cell death. Our observations indicate that UCD38B induces programmed necrosis through AIF translocation, and suggest that its cytosolic accessibility may facilitate drug action. PMID:23646172

  14. Type 1 Diabetes: What Is It?

    MedlinePlus

    ... Snowboarding, Skating Crushes What's a Booger? Type 1 Diabetes: What Is It? KidsHealth > For Kids > Type 1 ... What is it? Let's find out. What Is Diabetes? Diabetes is a disease that affects how the ...

  15. Type 1 Diabetes: What Is It?

    MedlinePlus

    ... Things to Know About Zika & Pregnancy Type 1 Diabetes: What Is It? KidsHealth > For Parents > Type 1 ... in learning to live with the disease. About Diabetes Diabetes is a disease that affects how the ...

  16. Programmed cell death-1 is expressed in large retinal ganglion cells and is upregulated after optic nerve crush.

    PubMed

    Wang, Wei; Chan, Ann; Qin, Yu; Kwong, Jacky M K; Caprioli, Joseph; Levinson, Ralph; Chen, Ling; Gordon, Lynn K

    2015-11-01

    Programmed cell death-1 (PD-1) is a key negative receptor inducibly expressed on T cells, B cells and dendritic cells. It was discovered on T cells undergoing classical programmed cell death. Studies showed that PD-1 ligation promotes retinal ganglion cell (RGC) death during retinal development. The purpose of this present study is to characterize PD-1 regulation in the retina after optic nerve crush (ONC). C57BL/6 mice were subjected to ONC and RGC loss was monitored by immunolabelling with RNA-binding protein with multiple splicing (Rbpms). Time course of PD-1 mRNA expression was determined by real-time PCR. PD-1 expression was detected with anti-PD-1 antibody on whole mount retinas. PD-1 staining intensity was quantitated. Colocalization of PD-1 and cleaved-caspase-3 after ONC was analyzed. Real-time PCR results demonstrated that PD-1 gene expression was significantly upregulated at day 1, 3, 7, 10 and 14 after ONC. Immunofluorescent staining revealed a dramatic increase of PD-1 expression following ONC. In both control and injured retinas, PD-1 tended to be up-expressed in a subtype of RGCs, whose somata size were significantly larger than others. Compared to control, PD-1 intensity in large RGCs was increased by 82% in the injured retina. None of the large RGCs expressed cleaved-caspase-3 at day 5 after ONC. Our work presents the first evidence of PD-1 induction in RGCs after ONC. This observation supports further investigation into the role of PD-1 expression during RGC death or survival following injury. PMID:26277582

  17. A Novel Function for Arabidopsis CYCLASE1 in Programmed Cell Death Revealed by Isobaric Tags for Relative and Absolute Quantitation (iTRAQ) Analysis of Extracellular Matrix Proteins*

    PubMed Central

    Smith, Sarah J.; Kroon, Johan T. M.; Simon, William J.; Slabas, Antoni R.; Chivasa, Stephen

    2015-01-01

    Programmed cell death is essential for plant development and stress adaptation. A detailed understanding of the signal transduction pathways that regulate plant programmed cell death requires identification of the underpinning protein networks. Here, we have used a protagonist and antagonist of programmed cell death triggered by fumonisin B1 as probes to identify key cell death regulatory proteins in Arabidopsis. Our hypothesis was that changes in the abundance of cell death-regulatory proteins induced by the protagonist should be blocked or attenuated by concurrent treatment with the antagonist. We focused on proteins present in the mobile phase of the extracellular matrix on the basis that they are important for cell–cell communications during growth and stress-adaptive responses. Salicylic acid, a plant hormone that promotes programmed cell death, and exogenous ATP, which can block fumonisin B1-induced cell death, were used to treat Arabidopsis cell suspension cultures prior to isobaric-tagged relative and absolute quantitation analysis of secreted proteins. A total of 33 proteins, whose response to salicylic acid was suppressed by ATP, were identified as putative cell death-regulatory proteins. Among these was CYCLASE1, which was selected for further analysis using reverse genetics. Plants in which CYCLASE1 gene expression was knocked out by insertion of a transfer-DNA sequence manifested dramatically increased cell death when exposed to fumonisin B1 or a bacterial pathogen that triggers the defensive hypersensitive cell death. Although pathogen inoculation altered CYCLASE1 gene expression, multiplication of bacterial pathogens was indistinguishable between wild type and CYCLASE1 knockout plants. However, remarkably severe chlorosis symptoms developed on gene knockout plants in response to inoculation with either a virulent bacterial pathogen or a disabled mutant that is incapable of causing disease in wild type plants. These results show that CYCLASE1, which

  18. A Program to Teach Residents Humanistic Skills for Notifying Survivors of a Patient's Death.

    ERIC Educational Resources Information Center

    Davis, Wayne K.

    1989-01-01

    A program using role-playing to model humanistic attitudes and encourage humanistic behavior in internal medicine residents is described. Resident attitudes and key features relating to the program's success are noted. (MSE)

  19. Antisense bcl-2 treatment increases programmed cell death in non-small cell lung cancer cell lines.

    PubMed

    Koty, P P; Zhang, H; Levitt, M L

    1999-02-01

    Programmed cell death (PCD) is a genetically regulated pathway that is altered in many cancers. This process is, in part, regulated by the ratio of PCD inducers (Bax) or inhibitors (Bcl-2). An abnormally high ratio of Bcl-2 to Bax prevents PCD, thus contributing to resistance to chemotherapeutic agents, many of which are capable of inducing PCD. Non-small cell lung cancer (NSCLC) cells demonstrate resistance to these PCD-inducing agents. If Bcl-2 prevents NSCLC cells from entering the PCD pathway, then reducing the amount of endogenous Bcl-2 product may allow these cells to spontaneously enter the PCD pathway. Our purpose was to determine the effects of bcl-2 antisense treatment on the levels of programmed cell death in NSCLC cells. First, we determined whether bcl-2 and bax mRNA were expressed in three morphologically distinct NSCLC cell lines: NCI-H226 (squamous), NCI-H358 (adenocarcinoma), and NCI-H596 (adenosquamous). Cells were then exposed to synthetic antisense bcl-2 oligonucleotide treatment, after which programmed cell death was determined, as evidenced by DNA fragmentation. Bcl-2 protein expression was detected immunohistochemically. All three NSCLC cell lines expressed both bcl-2 and bax mRNA and had functional PCD pathways. Synthetic antisense bcl-2 oligonucleotide treatment resulted in decreased Bcl-2 levels, reduced cell proliferation, decreased cell viability, and increased levels of spontaneous PCD. This represents the first evidence that decreasing Bcl-2 in three morphologically distinct NSCLC cell lines allows the cells to spontaneously enter a PCD pathway. It also indicates the potential therapeutic use of antisense bcl-2 in the treatment of NSCLC. PMID:10217615

  20. Developmental Block and Programmed Cell Death in Bos indicus Embryos: Effects of Protein Supplementation Source and Developmental Kinetics

    PubMed Central

    Garcia, Sheila Merlo; Marinho, Luciana Simões Rafagnin; Lunardelli, Paula Alvares; Seneda, Marcelo Marcondes; Meirelles, Flávio Vieira

    2015-01-01

    The aims of this study were to determine if the protein source of the medium influences zebu embryo development and if developmental kinetics, developmental block and programmed cell death are related. The culture medium was supplemented with either fetal calf serum or bovine serum albumin. The embryos were classified as Fast (n = 1,235) or Slow (n = 485) based on the time required to reach the fourth cell cycle (48 h and 90 h post insemination - hpi -, respectively). The Slow group was further separated into two groups: those presenting exactly 4 cells at 48 hpi (Slow/4 cells) and those that reached the fourth cell cycle at 90 hpi (Slow). Blastocyst quality, DNA fragmentation, mitochondrial membrane potential and signs of apoptosis or necrosis were evaluated. The Slow group had higher incidence of developmental block than the Fast group. The embryos supplemented with fetal calf serum had lower quality. DNA fragmentation and mitochondrial membrane potential were absent in embryos at 48 hpi but present at 90 hpi. Early signs of apoptosis were more frequent in the Slow and Slow/4 cell groups than in the Fast group. We concluded that fetal calf serum reduces blastocyst development and quality, but the mechanism appears to be independent of DNA fragmentation. The apoptotic cells detected at 48 hpi reveal a possible mechanism of programmed cell death activation prior to genome activation. The apoptotic cells observed in the slow-developing embryos suggested a relationship between programmed cell death and embryonic developmental kinetics in zebu in vitro-produced embryos. PMID:25760989

  1. Implications of Programmed Cell Death 1 Ligand 1 Heterogeneity in the Selection of Patients With Non-Small Cell Lung Cancer to Receive Immunotherapy.

    PubMed

    Mansfield, A S; Dong, H

    2016-09-01

    The use of programmed cell death 1 ligand 1 (PD-L1) as a predictive biomarker to select patients to receive programmed cell death 1 (PD-1) or PD-L1 inhibitors in non-small cell lung cancer (NSCLC) is limited by the definitions of positivity, interassay agreement, and intra- and intertumoral heterogeneity of expression. Although PD-L1 expression enriches for responses, the lack of expression does not exclude clinical benefit. PMID:26916808

  2. Programmed Cell Death-Involved Aluminum Toxicity in Yeast Alleviated by Antiapoptotic Members with Decreased Calcium Signals1

    PubMed Central

    Zheng, Ke; Pan, Jian-Wei; Ye, Lan; Fu, Yu; Peng, Hua-Zheng; Wan, Bai-Yu; Gu, Qing; Bian, Hong-Wu; Han, Ning; Wang, Jun-Hui; Kang, Bo; Pan, Jun-Hang; Shao, Hong-Hong; Wang, Wen-Zhe; Zhu, Mu-Yuan

    2007-01-01

    The molecular mechanisms of aluminum (Al) toxicity and tolerance in plants have been the focus of ongoing research in the area of stress phytophysiology. Recent studies have described Al-induced apoptosis-like cell death in plant and animal cells. In this study, we show that yeast (Saccharomyces cerevisiae) exposed to low effective concentrations of Al for short times undergoes enhanced cell division in a manner that is dose and cell density dependent. At higher concentrations of Al or longer exposure times, Al induces cell death and growth inhibition. Several apoptotic features appear during Al treatment, including cell shrinkage, vacuolation, chromatin marginalization, nuclear fragmentation, DNA degradation, and DNA strand breaks, as well as concomitant cell aggregation. Yeast strains expressing Ced-9, Bcl-2, and PpBI-1 (a plant Bax inhibitor-1 isolated from Phyllostachys praecox), respectively, display more resistance to Al toxicity compared with control cells. Data from flow cytometric studies show these three antiapoptotic members do not affect reactive oxygen species levels, but decrease calcium ion (Ca2+) signals in response to Al stress, although both intracellular reactive oxygen species and Ca2+ levels were increased. The data presented suggest that manipulation of the negative regulation process of programmed cell death may provide a novel mechanism for conferring Al tolerance. PMID:16861572

  3. Death Valley Lower Carbonate Aquifer Monitoring Program Wells Down gradient of the Proposed Yucca Mountain Nuclear Waste Repository

    SciTech Connect

    Inyo County

    2006-07-26

    Inyo County has participated in oversight activities associated with the Yucca Mountain Nuclear Waste Repository since 1987. The overall goal of these studies are the evaluation of far-field issues related to potential transport, by ground water, or radionuclides into Inyo County, including Death Valley, and the evaluation of a connection between the Lower Carbonate Aquifer (LCA) and the biosphere. Our oversight and completed Cooperative Agreement research, and a number of other investigators research indicate that there is groundwater flow between the alluvial and carbonate aquifers both at Yucca Mountain and in Inyo County. In addition to the potential of radionuclide transport through the LCA, Czarnecki (1997), with the US Geological Survey, research indicate potential radionuclide transport through the shallower Tertiary-age aquifer materials with ultimate discharge into the Franklin Lake Playa in Inyo County. The specific purpose of this Cooperative Agreement drilling program was to acquire geological, subsurface geology, and hydrologic data to: (1) establish the existence of inter-basin flow between the Amargosa Basin and Death Valley Basin; (2) characterize groundwater flow paths in the LCA through Southern Funeral Mountain Range, and (3) Evaluation the hydraulic connection between the Yucca Mountain repository and the major springs in Death Valley through the LCA.

  4. RAD51 plays a crucial role in halting cell death program induced by ionizing radiation in bovine oocytes.

    PubMed

    Kujjo, Loro L; Ronningen, Reg; Ross, Pablo; Pereira, Ricardo J G; Rodriguez, Ramon; Beyhan, Zeki; Goissis, Marcelo D; Baumann, Thomas; Kagawa, Wataru; Camsari, Cagri; Smith, George W; Kurumizaka, Hitoshi; Yokoyama, Shigeyuki; Cibelli, Jose B; Perez, Gloria I

    2012-03-01

    Reproductive health of humans and animals exposed to daily irradiants from solar/cosmic particles remains largely understudied. We evaluated the sensitivities of bovine and mouse oocytes to bombardment by krypton-78 (1 Gy) or ultraviolet B (UV-B; 100 microjoules). Mouse oocytes responded to irradiation by undergoing massive activation of caspases, rapid loss of energy without cytochrome-c release, and subsequent necrotic death. In contrast, bovine oocytes became positive for annexin-V, exhibited cytochrome-c release, and displayed mild activation of caspases and downstream DNAses but with the absence of a complete cell death program; therefore, cytoplasmic fragmentation was never observed. However, massive cytoplasmic fragmentation and increased DNA damage were induced experimentally by both inhibiting RAD51 and increasing caspase 3 activity before irradiation. Microinjection of recombinant human RAD51 prior to irradiation markedly decreased both cytoplasmic fragmentation and DNA damage in both bovine and mouse oocytes. RAD51 response to damaged DNA occurred faster in bovine oocytes than in mouse oocytes. Therefore, we conclude that upon exposure to irradiation, bovine oocytes create a physiologically indeterminate state of partial cell death, attributed to rapid induction of DNA repair and low activation of caspases. The persistence of these damaged cells may represent an adaptive mechanism with potential implications for livestock productivity and long-term health risks associated with human activity in space. PMID:22190703

  5. Type 1 diabetes in India: Overall insights

    PubMed Central

    Das, Ashok Kumar

    2015-01-01

    Type 1 diabetes mellitus (T1DM) is also on increase like type 2 diabetes, even though not in the same proportion, but still with a trend of 3–5% increase/year. India has three new cases of T1DM/100,000 children of 0–14 years. Three sets of prevalence data shows 17.93 cases/100,000 children in Karnataka, 3.2 cases/100,000 children in Chennai, and 10.2 cases/100,000 children in Karnal (Haryana). T1DM may be autoimmune or idiopathic in nature and is present in 9% cases of insulin deficiency. T1DM is primarily caused by genetic factors, environmental factors, and disorder of the immune regulatory mechanism. A combination of all these three factors causes autoimmune disease, which may ultimately result in the destruction of pancreatic beta cells leading to hyperglycemia, ketoacidosis and potentially death, if not treated with insulin. Prediabetes is the phase before the onset of T1DM, which provides a window of opportunity for early intervention. All available interventions including steroids, immunosuppressants, and cyclosporins can be possibly applied during the prediabetes phase. The treatment goals for T1DM are simple and include maintaining near normal blood glucose levels and avoiding long-term complications, which is a constant juggle between insulin and maintaining an appropriate lifestyle. The Indian Council of Medical Research funded Registry of People with diabetes in India with young age at onset (YDR) was started in the year 2006 with 10 collaborating centres across India. This registry is focusing on to provide an overview of diabetes in the young. PMID:25941645

  6. Drug-target interactions: only the first step in the commitment to a programmed cell death?

    PubMed Central

    Dive, C.; Hickman, J. A.

    1991-01-01

    The search for novel antitumour drugs has reached a plateau phase. The carcinomas remain almost as intractable as they did 40 years ago and the need for effective therapy is pressing. There is an argument that the current pharmacopoeia is sufficient but, to be effective, the biochemical mechanisms of drug resistance must be circumvented. In tackling the question of why certain cancer cells are resistant, the converse question of why others are sensitive still remains to be answered fully. Asking the fundamental question of why and how a cell dies may provide clues as to what avenues lie open for improved chemotherapy. In this review we survey the recent literature on cell death and we argue that it is possible that the outcome of chemotherapy may be determined by the response of the cell to the formation of the drug-target complex, and/or its sequellae, rather than to the biochemical changes brought about by the drug alone. One of these responses, determined by the phenotype of the cell, may be activation of a genetic programme for cell death. PMID:1854622

  7. Cytotoxicity of obacunone and obacunone glucoside in human prostate cancer cells involves Akt-mediated programmed cell death.

    PubMed

    Murthy, Kotamballi N Chidambara; Jayaprakasha, Guddadarangavvanahally K; Patil, Bhimanagouda S

    2015-03-01

    Obacunone and obacunone glucoside (OG) are naturally occurring triterpenoids commonly found in citrus and other plants of the Rutaceae family. The current study reports the mechanism of cytotoxicity of citrus-derived obacunone and OG on human androgen-dependent prostate cancer LNCaP cells. Both limonoids exhibited time- and dose-dependent inhibition of cell proliferation, with more than 60% inhibition of cell viability at 100 μM, after 24 and 48 h. Analysis of fragmentation of DNA, activity of caspase-3, and cytosolic cytochrome-c in the cells treated with limonoids provided evidence for activation of programmed cell death by limonoids. Treatment of LNCaP cells with obacunone and OG resulted in dose-dependent changes in expression of proteins responsible for the induction of programmed cell death through the intrinsic pathway and down-regulation of Akt, a key molecule in cell signaling pathways. In addition, obacunone and OG also negatively regulated an inflammation-associated transcription factor, androgen receptor, and prostate-specific antigen, and activated proteins related to the cell cycle, confirming the ability of limonoids to induce cytotoxicity through multiple pathways. The results of this study provided, for the first time, an evidence of the cytotoxicity of obacunone and OG in androgen-dependent human prostate cancer cells. PMID:25592883

  8. Surgical trauma induces postoperative T-cell dysfunction in lung cancer patients through the programmed death-1 pathway.

    PubMed

    Xu, Pingbo; Zhang, Ping; Sun, Zhirong; Wang, Yun; Chen, Jiawei; Miao, Changhong

    2015-11-01

    The programmed death-1 (PD-1) and programmed death ligand-1 (PD-L1) pathway have been shown to be involved in tumor-induced and sepsis-induced immunosuppression. However, whether this pathway is involved in the surgery-induced dysfunction of T lymphocytes is not known. Here, we analyzed expression of PD-1 and PD-L1 on human peripheral mononuclear cells during the perioperative period. We found that surgery increased PD-1/PD-L1 expression on immune cells, which was correlated with the severity of surgical trauma. The count of T lymphocytes and natural killer cells reduced after surgery, probably due to the increased activity of caspase-3. Caspase-3 level was positively correlated with PD-1 expression. Profile of perioperative cytokines and hormones in plasma showed a significantly increased level of interferon-α, as well as various inflammatory cytokines and stress hormones. In ex vivo experiments, administration of anti-PD-1 antibody significantly ameliorated T-cell proliferation and partially reversed the T-cell apoptosis induced by surgical trauma. We provide evidences that surgical trauma can induce immunosuppression through the PD-1/PD-L1 pathway. This pathway could be a target for preventing postoperative cellular immunosuppression. PMID:26183035

  9. Type 1 Diabetes: How Is It Treated?

    MedlinePlus

    ... What's a Booger? Type 1 Diabetes: How Is It Treated? KidsHealth > For Kids > Type 1 Diabetes: How Is It Treated? Print A A A Text Size What's ... glucose can't get into the cells, so it stays in the blood leading to high blood ...

  10. Transcription factor NFAT1 controls allergic contact hypersensitivity through regulation of activation induced cell death program

    PubMed Central

    Kwon, Ho-Keun; Kim, Gi-Cheon; Hwang, Ji Sun; Kim, Young; Chae, Chang-Suk; Nam, Jong Hee; Jun, Chang-Duk; Rudra, Dipayan; Surh, Charles D.; Im, Sin-Hyeog

    2016-01-01

    Allergic contact hypersensitivity (CHS) is an inflammatory skin disease mediated by allergen specific T cells. In this study, we investigated the role of transcription factor NFAT1 in the pathogenesis of contact hypersensitivity. NFAT1 knock out (KO) mice spontaneously developed CHS-like skin inflammation in old age. Healthy young NFAT1 KO mice displayed enhanced susceptibility to hapten-induced CHS. Both CD4+ and CD8+ T cells from NFAT1 KO mice displayed hyper-activated properties and produced significantly enhanced levels of inflammatory T helper 1(Th1)/Th17 type cytokines. NFAT1 KO T cells were more resistant to activation induced cell death (AICD), and regulatory T cells derived from these mice showed a partial defect in their suppressor activity. NFAT1 KO T cells displayed a reduced expression of apoptosis associated BCL-2/BH3 family members. Ectopic expression of NFAT1 restored the AICD defect in NFAT1 KO T cells and increased AICD in normal T cells. Recipient Rag2−/− mice transferred with NFAT1 KO T cells showed more severe CHS sensitivity due to a defect in activation induced hapten-reactive T cell apoptosis. Collectively, our results suggest the NFAT1 plays a pivotal role as a genetic switch in CD4+/CD8+ T cell tolerance by regulating AICD process in the T cell mediated skin inflammation. PMID:26777750