Science.gov

Sample records for project pluto ground

  1. Pluto

    NASA Astrophysics Data System (ADS)

    Jones, Barrie W.

    2010-08-01

    1. The Solar System; 2. The discovery of Uranus, Neptune, and Pluto; 3. Pluto, a diminishing world; 4. Pluto's family; 5. Surfaces, atmospheres, interiors of Pluto and Charon; 6. The Edgeworth-Kuiper belt; 7. Is Pluto a planet?; 8. The New Horizons mission to Pluto (and beyond); 9. Pluto: gateway to beyond?; Glossary; Further reading and other resources; Index.

  2. Project Cerberus: Flyby Mission to Pluto

    NASA Technical Reports Server (NTRS)

    Sivier, K.; Koepke, A.; Humphrey, Theodore W.; Elbel, Jeffrey P.; Hackett, Bruce E.; Kennedy, Ralph G.; Leo, Donald J.; Zimmerman, Shery A.

    1990-01-01

    The goal of the Cerberus Project was to design a feasible and cost-effective unmanned flyby mission to Pluto. The requirements in the request for proposal for an unmanned probe to Pluto are presented and were met. The design stresses proven technology that will avoid show stoppers which could halt mission progress. Cerberus also utilizes the latest advances in the spacecraft industry to meet the stringent demands of the mission. The topics covered include: (1) mission management, planning, and costing; (2) structures; (3) power and propulsion; (4) attitude, articulation, and control; (5) command, control, and communication; and (6) scientific instrumentation.

  3. Pluto.

    ERIC Educational Resources Information Center

    Binzel, Richard P.

    1990-01-01

    Discussed are details of what is known about the composition, physical characteristics, and formation of the planet Pluto and its satellite, Charon. Alignments of these bodies and details of their rotations and revolutions are described. (CW)

  4. Pluto

    SciTech Connect

    Binzel, R.P. )

    1990-06-01

    A new picture of Pluto has begun to emerge during the past decade. Dedicated observational efforts using a variety of modern instruments, aided by some fortuitous celestial alignments, have produced a number of surprises. Pluto has a satellite, Charon, so large that the two objects can virtually be considered a double planet. The planet has bright polar caps and a darker, mottled equatorial region. A layer of methane ice covers most of its surface. Pluto even possesses a thin atmosphere; when the planet is farthest from the sun, all or part of the atmosphere may freeze and fall to the surface as snow. Charon's surface, which appears to be quite different from Pluto's, may be a great expanse of water ice. Pluto's size and density are much like those of Triton, the large satellite of Neptune that was recently visited by the Voyager 2 probe. These and other similarities suggest that both bodies may be leftover planetesimals, relics from the early days of the solar system that managed not to be swept up by the giant outer planets. In this scenario, Triton was captured by Neptune, whereas Pluto was able to survive as a bona fide planet in an independent orbit about the sun.

  5. Haze in Pluto's atmosphere: Results from SOFIA and ground-based observations of the 2015 June 29 Pluto occultation

    NASA Astrophysics Data System (ADS)

    Bosh, A. S.; Person, M. J.; Zuluaga, C. A.; Sickafoose, A. A.; Levine, S. E.; Pasachoff, J. M.; Babcock, B. A.; Dunham, E. W.; McLean, I.; Wolf, J.; Abe, F.; Becklin, E.; Bida, T. A.; Bright, L. P.; Brothers, T.; Christie, G.; Collins, P. L.; Durst, R. F.; Gilmore, A. C.; Hamilton, R.; Harris, H. C.; Johnson, C.; Kilmartin, P. M.; Kosiarek, M. R.; Leppik, K.; Logsdon, S. E.; Lucas, R.; Mathers, S.; Morley, C. J. K.; Nelson, P.; Ngan, H.; Pfüller, E.; Natusch, T.; Röser, H.-P.; Sallum, S.; Savage, M.; Seeger, C. H.; Siu, H.; Stockdale, C.; Suzuki, D.; Thanathibodee, T.; Tilleman, T.; Tristram, P. J.; Van Cleve, J.; Varughese, C.; Weisenbach, L. W.; Widen, E.; Wiedemann, M.

    2015-11-01

    We observed the 29 June 2015 occultation by Pluto from SOFIA and several ground-based sites in New Zealand. Pre-event astrometry (described in Zuluaga et al., this conference) allowed us to navigate SOFIA into Pluto's central flash (Person et al., this conference). Fortuitously, the central flash also fell over the Mt. John University Observatory (Pasachoff et al., this conference). We combine all of our airborne and ground-based data to produce a geometric solution for the occultation and to investigate the state of Pluto's atmosphere just two weeks before the New Horizons spacecraft's close encounter with Pluto. We find that the atmosphere parameters at half-light are unchanged from our observations in 2011 (Person et al. 2013) and 2013 (Bosh et al. 2015). By combining our light-curve inversion with recent radius measurements from New Horizons, we find strong evidence for an extended haze layer in Pluto's atmosphere. See also Sickafoose et al. (this conference) for an evaluation of the particle sizes and properties.SOFIA is jointly operated by the Universities Space Research Association, Inc. (USRA), under NASA contract NAS2-97001, and the Deutsches SOFIA Institut (DSI) under DLR contract 50 OK 0901 to the University of Stuttgart. Support for this work was provided by NASA SSO grants NNX15AJ82G (Lowell Observatory), NNX10AB27G (MIT), and NNX12AJ29G (Williams College), and by the National Research Foundation of South Africa.

  6. New Horizons Pluto lessons learned during ground processing

    NASA Astrophysics Data System (ADS)

    Hogue, Patrick

    2006-08-01

    The New Horizons (NH) Pluto probe was launched on an Atlas V-551 equipped with a five-meter payload fairing (PLF). In-situ Gel-Pak witness plates were used to monitor fall-out at spacecraft level and at Centaur level within the PLF. Based upon the composition of particles captured on a Gel-Pak that witnessed encapsulation and transport to the launch facility significant particle fall-out is associated with fairing materials of construction. The weekly variation of particle fall-out onto subsequent Gel-Pak surfaces over the course of launch preparation indicates that upward transport of particles occurred. Based upon the sum of all Gel-Pak particle counts combined with visual detection of dust on the top deck of New Horizons during installation of the radioisotope thermoelectric generator (RTG) our goal of level 450 beginning of life (BOL) was probably exceeded. A big contributor to this excedance was removal of the isolation diaphragm that normally separates the spacecraft form activity below due to mission unique requirements. The launch service provider confirmed detection of upward air movement in previous ground testing of an Atlas V fairing. Future contamination sensitive missions using the Atlas V may want to consider the following: 1) reduced PLF airflow (NH used 280 Lbm/min.), 2) ultraviolet inspection of the PLF, 3) use of isolation diaphragm, 4) in-situ particle counting. Sodium chloride was evident on many particles examined by SEM/EDS, indicating intrusion of the sea coast atmosphere into KSC cleanrooms.

  7. Ground-based Light Curves Two Pluto Days Before the New Horizons Passage

    NASA Astrophysics Data System (ADS)

    Bosh, A. S.; Pasachoff, J. M.; Babcock, B. A.; Durst, R. F.; Seeger, C. H.; Levine, S. E.; Abe, F.; Suzuki, D.; Nagakane, M.; Sickafoose, A. A.; Person, M. J.; Zuluaga, C.; Kosiarek, M. R.

    2015-12-01

    We observed the occultation of a 12th magnitude star, one of the two brightest occultation stars ever in our dozen years of continual monitoring of Pluto's atmosphere through such studies, on 29 June 2015 UTC. At Canterbury University's Mt. John University Observatory on the south island of New Zealand, in clear sky, we used our POETS frame-transfer CCD at 10 Hz with GPS timing on the 1-m McLellan telescope as well as an infrared camera on an 0.6-m telescope and three-color photometry at a slower cadence on a second 0.6-m telescope. The light curves show a central flash, indicating that we were close to the center of the occultation path, and allowing us to explore Pluto's atmosphere lower than usual. The light curves show that Pluto's atmosphere remained robust. Observations from 0.5- and 0.4-m telescopes at the Auckland Observatory gave the first half of the occultation before clouds came in. We coordinated our observations with aircraft observations with NASA's Stratospheric Observatory for Infrared Astronomy (SOFIA) and its High Speed Imaging Photometer for Occultations (HIPO). Our ground-based and airborne stellar-occultation effort came only just over two weeks of Earth days and two Pluto days (based on Pluto's rotational period) before the flyby of NASA's New Horizons spacecraft, meaning that the mission's exquisite snapshot of Pluto's atmosphere can be placed in the context of our series of ground-based occultation observations carried out on a regular basis since 2002 following a first Pluto occultation observed in 1988 from aloft. Our observations were supported by NASA Planetary Astronomy grants NNX12AJ29G to Williams College, NNX15AJ82G to Lowell Observatory, and NNX10AB27G to MIT, and by the National Research Foundation of South Africa. We thank Alan Gilmore, Pam Kilmartin, Robert Lucas, Paul Tristam, and Carolle Varughese for assistance at Mt. John.

  8. Coordinated Ground-Based Observations and the New Horizons Fly-by of Pluto

    NASA Astrophysics Data System (ADS)

    Young, Eliot; Young, Leslie; Parker, Joel; Binzel, Richard

    2015-04-01

    The New Horizons (NH) spacecraft is scheduled to make its closest approach to Pluto on July 14, 2015. NH carries seven scientific instruments, including separate UV and Visible-IR spectrographs, a long-focal-length imager, two plasma-sensing instruments and a dust counter. There are three arenas in particular in which ground-based observations should augment the NH instrument suite in synergistic ways: IR spectra at wavelengths longer than 2.5 µm (i.e., longer than the NH Ralph spectrograph), stellar occultation observations near the time of the fly-by, and thermal surface maps and atmospheric CO abundances based on ALMA observations - we discuss the first two of these. IR spectra in the 3 - 5 µm range cover the CH4 absorption band near 3.3 µm. This band can be an important constraint on the state and areal extent of nitrogen frost on Pluto's surface. If this band depth is close to zero (as was observed by Olkin et al. 2007), it limits the area of nitrogen frost, which is bright at that wavelength. Combined with the NH observations of nitrogen frost at 2.15 µm, the ground-based spectra will determine how much nitrogen frost is diluted with methane, which is a basic constraint on the seasonal cycle of sublimation and condensation that takes place on Pluto (and similar objects like Triton and Eris). There is a fortuitous stellar occultation by Pluto on 29-JUN-2015, only two weeks before the NH closest approach. The occulted star will be the brightest ever observed in a Pluto event, about 2 magnitudes brighter than Pluto itself. The track of the event is predicted to cover parts of Australia and New Zealand. Thanks to HST and ground based campaigns to find a TNO target reachable by NH, the position of the shadow path will be known at the +/-100 km level, allowing SOFIA and mobile ground-based observers to reliably cover the central flash region. Ground-based & SOFIA observations in visible and IR wavelengths will characterize the haze opacity and vertical

  9. The 2011 June 23 Stellar Occultation by Pluto: Airborne and Ground Observations

    NASA Astrophysics Data System (ADS)

    Person, M. J.; Dunham, E. W.; Bosh, A. S.; Levine, S. E.; Gulbis, A. A. S.; Zangari, A. M.; Zuluaga, C. A.; Pasachoff, J. M.; Babcock, B. A.; Pandey, S.; Amrhein, D.; Sallum, S.; Tholen, D. J.; Collins, P.; Bida, T.; Taylor, B.; Bright, L.; Wolf, J.; Meyer, A.; Pfueller, E.; Wiedemann, M.; Roeser, H.-P.; Lucas, R.; Kakkala, M.; Ciotti, J.; Plunkett, S.; Hiraoka, N.; Best, W.; Pilger, E. J.; Micheli, M.; Springmann, A.; Hicks, M.; Thackeray, B.; Emery, J. P.; Tilleman, T.; Harris, H.; Sheppard, S.; Rapoport, S.; Ritchie, I.; Pearson, M.; Mattingly, A.; Brimacombe, J.; Gault, D.; Jones, R.; Nolthenius, R.; Broughton, J.; Barry, T.

    2013-10-01

    On 2011 June 23, stellar occultations by both Pluto (this work) and Charon (future analysis) were observed from numerous ground stations as well as the Stratospheric Observatory for Infrared Astronomy (SOFIA). This first airborne occultation observation since 1995 with the Kuiper Airborne Observatory resulted in the best occultation chords recorded for the event, in three visible wavelength bands. The data obtained from SOFIA are combined with chords obtained from the ground at the IRTF, the U.S. Naval Observatory Flagstaff Station, and Leeward Community College to give the detailed state of the Pluto-Charon system at the time of the event with a focus on Pluto's atmosphere. The data show a return to the distinct upper and lower atmospheric regions with a knee or kink in the light curve separating them as was observed in 1988, rather than the smoothly transitioning bowl-shaped light curves of recent years. The upper atmosphere is analyzed by fitting a model to all of the light curves, resulting in a half-light radius of 1288 ± 1 km. The lower atmosphere is analyzed using two different methods to provide results under the differing assumptions of particulate haze and a strong thermal gradient as causes for the lower atmospheric diminution of flux. These results are compared with those from past occultations to provide a picture of Pluto's evolving atmosphere. Regardless of which lower atmospheric structure is assumed, results indicate that this part of the atmosphere evolves on short timescales with results changing the light curve structures between 1988 and 2006, and then reverting these changes in 2011 though at significantly higher pressures. Throughout these changes, the upper atmosphere remains remarkably stable in structure, again except for the overall pressure changes. No evidence of onset of atmospheric collapse predicted by frost migration models is seen, and the atmosphere appears to be remaining at a stable pressure level, suggesting it should persist

  10. THE 2011 JUNE 23 STELLAR OCCULTATION BY PLUTO: AIRBORNE AND GROUND OBSERVATIONS

    SciTech Connect

    Person, M. J.; Bosh, A. S.; Levine, S. E.; Gulbis, A. A. S.; Zangari, A. M.; Zuluaga, C. A.; Sallum, S.; Dunham, E. W.; Collins, P.; Bida, T.; Bright, L.; Pasachoff, J. M.; Babcock, B. A.; Pandey, S.; Amrhein, D.; Tholen, D. J.; Taylor, B.; Wolf, J.; Pfueller, E.; Meyer, A.; and others

    2013-10-01

    On 2011 June 23, stellar occultations by both Pluto (this work) and Charon (future analysis) were observed from numerous ground stations as well as the Stratospheric Observatory for Infrared Astronomy (SOFIA). This first airborne occultation observation since 1995 with the Kuiper Airborne Observatory resulted in the best occultation chords recorded for the event, in three visible wavelength bands. The data obtained from SOFIA are combined with chords obtained from the ground at the IRTF, the U.S. Naval Observatory Flagstaff Station, and Leeward Community College to give the detailed state of the Pluto-Charon system at the time of the event with a focus on Pluto's atmosphere. The data show a return to the distinct upper and lower atmospheric regions with a knee or kink in the light curve separating them as was observed in 1988, rather than the smoothly transitioning bowl-shaped light curves of recent years. The upper atmosphere is analyzed by fitting a model to all of the light curves, resulting in a half-light radius of 1288 {+-} 1 km. The lower atmosphere is analyzed using two different methods to provide results under the differing assumptions of particulate haze and a strong thermal gradient as causes for the lower atmospheric diminution of flux. These results are compared with those from past occultations to provide a picture of Pluto's evolving atmosphere. Regardless of which lower atmospheric structure is assumed, results indicate that this part of the atmosphere evolves on short timescales with results changing the light curve structures between 1988 and 2006, and then reverting these changes in 2011 though at significantly higher pressures. Throughout these changes, the upper atmosphere remains remarkably stable in structure, again except for the overall pressure changes. No evidence of onset of atmospheric collapse predicted by frost migration models is seen, and the atmosphere appears to be remaining at a stable pressure level, suggesting it should

  11. An analysis of AMTEC, multi-cell ground-demo for the Pluto/Express mission

    SciTech Connect

    Tournier, J.M.; El-Genk, M.S.

    1998-07-01

    Results of recent tests of an 8-cell, AMTEC ground-demo are analyzed and the performance of individual cells compared. The ground-demo produced a peak electric power of 27 W{sub e} at an output voltage of 16 V, when tested at hot and cold side temperatures of 1123 K and 553 K. The electric power output and terminal voltage of the individual cells, however, differed by as much as 25%, from 2.94 to 3.76 W{sub e}, and 1.73 to 2.21 V, respectively. These variations were attributed to differences in: (a) contact resistance between electrode / BASE / current collector; (b) current (or electrons) leakage between anode and cathode electrodes through the metal-ceramic braze joint between BASE tubes and support plate; and (c) the charge-exchange polarization losses. Model's predictions compared very well with measured voltage and electric power output of individual cells and of the ground-demo. At the operating conditions for the Pluto/Express spacecraft (T{sub hot} {approximately} 1200 K, T{sub cd} {approximately} 573 K), the best performing ground-demo cell would have delivered 5 W{sub e} at an output voltage of 3 V. These values, however, are still significantly lower than those needed to meet the Pluto/Express mission power requirements (8.2 W{sub e} at 3.5 V, per cell).

  12. Pluto's Atmosphere from the 2015 June 29 Ground-based Stellar Occultation at the Time of the New Horizons Flyby

    NASA Astrophysics Data System (ADS)

    Sicardy, B.; Talbot, J.; Meza, E.; Camargo, J. I. B.; Desmars, J.; Gault, D.; Herald, D.; Kerr, S.; Pavlov, H.; Braga-Ribas, F.; Assafin, M.; Benedetti-Rossi, G.; Dias-Oliveira, A.; Gomes-Júnior, A. R.; Vieira-Martins, R.; Bérard, D.; Kervella, P.; Lecacheux, J.; Lellouch, E.; Beisker, W.; Dunham, D.; Jelínek, M.; Duffard, R.; Ortiz, J. L.; Castro-Tirado, A. J.; Cunniffe, R.; Querel, R.; Yock, P. C.; Cole, A. A.; Giles, A. B.; Hill, K. M.; Beaulieu, J. P.; Harnisch, M.; Jansen, R.; Pennell, A.; Todd, S.; Allen, W. H.; Graham, P. B.; Loader, B.; McKay, G.; Milner, J.; Parker, S.; Barry, M. A.; Bradshaw, J.; Broughton, J.; Davis, L.; Devillepoix, H.; Drummond, J.; Field, L.; Forbes, M.; Giles, D.; Glassey, R.; Groom, R.; Hooper, D.; Horvat, R.; Hudson, G.; Idaczyk, R.; Jenke, D.; Lade, B.; Newman, J.; Nosworthy, P.; Purcell, P.; Skilton, P. F.; Streamer, M.; Unwin, M.; Watanabe, H.; White, G. L.; Watson, D.

    2016-03-01

    We present results from a multi-chord Pluto stellar occultation observed on 2015 June 29 from New Zealand and Australia. This occurred only two weeks before the NASA New Horizons flyby of the Pluto system and serves as a useful comparison between ground-based and space results. We find that Pluto's atmosphere is still expanding, with a significant pressure increase of 5 ± 2% since 2013 and a factor of almost three since 1988. This trend rules out, as of today, an atmospheric collapse associated with Pluto's recession from the Sun. A central flash, a rare occurrence, was observed from several sites in New Zealand. The flash shape and amplitude are compatible with a spherical and transparent atmospheric layer of roughly 3 km in thickness whose base lies at about 4 km above Pluto's surface, and where an average thermal gradient of about 5 K km-1 prevails. We discuss the possibility that small departures between the observed and modeled flash are caused by local topographic features (mountains) along Pluto's limb that block the stellar light. Finally, using two possible temperature profiles, and extrapolating our pressure profile from our deepest accessible level down to the surface, we obtain a possible range of 11.9-13.7 μbar for the surface pressure. Partly based on observations made with the ESO WFI camera at the 2.2 m Telescope (La Silla), under program ID 079.A-9202(A) within the agreement between the ON/MCTI and the Max Planck Society, with the ESO camera NACO at the Very Large Telescope (Paranal), under program ID 089.C-0314(C), and at the Pico dos Dias Observatory/LNA, Brazil.

  13. Korea's School Grounds Projects

    ERIC Educational Resources Information Center

    Park, Joohun

    2003-01-01

    This article describes two projects which Korea has undertaken to improve its school grounds: (1) the Green School Project; and (2) the School Forest Pilot Project. The Korean Ministry of Education and Human Resources Development (MOE&HRI) recently launched the Green School Project centred on existing urban schools with poor outdoor environments.…

  14. Pluto: Dwarf planet 134340

    NASA Astrophysics Data System (ADS)

    Ksanfomality, L. V.

    2016-01-01

    In recent decades, investigations of Pluto with up-to-date astronomical instruments yielded results that have been generally confirmed by the New Horizons mission. In 2006, in Prague, the General Assembly of the International Astronomical Union (IAU) reclassified Pluto as a member of the dwarf planet category according to the criteria defined by the IAU for the term "planet". At the same time, interest in studies of Pluto was increasing, while the space investigations of Pluto were delayed. In 2006, the New Horizons Pluto spacecraft started its journey to Pluto. On July 14, 2015, the spacecraft, being in fly-by mode, made its closest approach to Pluto. The heterogeneities and properties of the surface and rarified atmosphere were investigated thoroughly. Due to the extreme remoteness of the spacecraft and the energy limitations, it will take 18 months to transmit the whole data volume. Along with the preliminary results of the New Horizons Pluto mission, this paper reviews the basics on Pluto and its moons acquired from the ground-based observations and with the Hubble Space Telescope (HST). There are only a few meteorite craters on the surfaces of Pluto and Charon, which distinctly marks them apart from such satellites of the giant planets as Ganymede and Callisto. The explanation is that the surface of Pluto is young: its age is estimated at less than 100 Myr. Ice glaciers of apparently a nitrogen nature were found. Nitrogen is also the main component of the atmosphere of Pluto. The planet demonstrates the signs of strong geologic activity, though the energy sources of these processes are unknown.

  15. Pluto Time

    NASA Video Gallery

    If you stood on Pluto at noon and looked around, the landscape would be illuminated about as brightly as on Earth soon after sunset. The team for NASA's New Horizons mission dubbed this "Pluto Time...

  16. Pluto's volatile distribution from speckle imaging

    NASA Astrophysics Data System (ADS)

    Young, Leslie; Howell, Steve; Young, Eliot; Buie, Marc; Grundy, Will

    2013-08-01

    Howell et al. (2012) separated Pluto and Charon with the speckle imager, DSSI, and measured their diameters. We propose to build on this work, to map the volatiles on Pluto, by taking more exposures, observing in four filters designed to measure Pluto's albedo, color, and CH_4 distribution, and observing multiple faces on Pluto. This will help us study Pluto's migrating frosts as Pluto leaves the sun, and as its summer pole becomes more directly illuminated. We compare results back to HST maps in 1994 and 2002/2003 and forward to New Horizons maps in 2015 and future ground-based maps in 2015 or beyond.

  17. Pluto Express: Mission to Pluto

    NASA Technical Reports Server (NTRS)

    Giuliano, J. A.

    1996-01-01

    Pluto is the smallest, outermost and last-discovered planet in the Solar System and the only one that has never been visited by a spacecraft from Earth. Pluto and its relatively large satellite Charon are the destinations of a proposed spacecraft mission for the next decade, being developed for NASA by scientists and engineers at NASA's Jet Propulsion Laboratory.

  18. Seasonal Nitrogen Cycles on Pluto

    NASA Technical Reports Server (NTRS)

    Hansen, Candice J.; Paige, David A.

    1996-01-01

    A thermal model, developed to predict seasonal nitrogen cycles on Triton, has been modified and applied to Pluto. The model was used to calculate the partitioning of nitrogen between surface frost deposits and the atmosphere, as a function of time for various sets of input parameters. Volatile transport was confirmed to have a significant effect on Pluto's climate as nitrogen moved around on a seasonal time scale between hemispheres, and sublimed into and condensed out of the atmosphere. Pluto's high obliquity was found to have a significant effect on the distribution of frost on its surface. Conditions that would lead to permanent polar caps on Triton were found to lead to permanent zonal frost bands on Pluto. In some instances, frost sublimed from the middle of a seasonal cap outward, resulting in a "polar bald spot". Frost which was darker than the substrate did not satisfy observables on Pluto, in contrast to our findings for Triton. Bright frost (brighter than the substrate) came closer to matching observables. Atmospheric pressure varied seasonally. The amplitudes, and to a lesser extent the phase, of the variation depended significantly on frost and substrate properties. Atmospheric pressure was found to be determined both by Pluto's distance from the sun and by the subsolar latitude. In most cases two peaks in atmospheric pressure were observed annually: a greater one associated with the sublimation of the north polar cap just as Pluto receded from perihelion, and a lesser one associated with the sublimation of the south polar cap as Pluto approached perihelion. Our model predicted frost-free dark substrate surface temperatures in the 50 to 60 K range, while frost temperatures typically ranged between 30 to 40 K. Temporal changes in frost coverage illustrated by our results, and changes in the viewing geometry of Pluto from the Earth, may be important for interpretation of ground-based measurements of Pluto's thermal emission.

  19. Pluto and Charon Color Light Curves from New Horizons on Approach

    NASA Astrophysics Data System (ADS)

    Ennico, Kimberly; Howett, C. J. A.; Olkin, C. B.; Reuter, D. C.; Buratti, B. J.; Buie, M. W.; Grundy, W. M.; Parker, A. H.; Zangari, A. M.; Binzel, R. P.; Cook, J. C.; Cruikshank, D. P.; Dalle Ore, C. M.; Earle, A. M.; Jennings, D. E.; Linscott, I. R.; Parker, J. Wm.; Protopapa, S.; Singer, K. N.; Spencer, J. R.; Stern, S. A.; Tsang, C. C. C.; Verbiscer, A. J.; Weaver, H. A.; Young, L. A.

    2015-11-01

    On approach to the Pluto system, New Horizons’ Ralph Instrument’s Multicolor Visible Imaging Camera (MVIC) observed Pluto and Charon, spatially separated, between April 9 and June 23, 2015. In this period, Pluto and Charon were observed to transition from unresolved objects to resolved and their integrated disk intensities were measured in four MVIC filters: blue (400-550 nm), red (540-700 nm), near-infrared (780-975 nm), and methane (860-910 nm). The measurement suite sampled the bodies over all longitudes. We will present the color rotational light curves for Pluto and Charon and compare them to previous (Buie, M. et al. 2010 AJ 139, 1117; Buratti, B.J. et al 2015 ApJ 804, L6) and concurrent ground-based BVR monitoring. We will also compare these data to color images of the encounter hemisphere taken during New Horizons’ July 14, 2015 Pluto and Charon flyby, as this data set provides a unique bridge between Pluto & Charon as viewed as astronomical targets versus the complex worlds that early data from New Horizons has revealed them to be. This work was supported by NASA’s New Horizons project.

  20. The Moons of Uranus, Neptune and Pluto.

    ERIC Educational Resources Information Center

    Brown, Robert Hamilton; Cruikshank, Dale P.

    1985-01-01

    In preparation for the Voyager flybys in 1989, the pace of ground-based investigations of the moons of Uranus, Neptune, and Pluto has quickened considerably. Information derived from these investigations is presented. (JN)

  1. Pluto's atmosphere

    SciTech Connect

    Elliot, J.L.; Dunham, E.W.; Bosh, A.S.; Slivan, S.M.; Young, L.A.

    1989-01-01

    Airborne CCD photometer observations of Pluto's June 9, 1988 stellar occultation have yielded an occultation lightcurve, probing two regions on the sunrise limb 2000 km apart, which reveals an upper atmosphere overlying an extinction layer with an abrupt upper boundary. The extinction layer may surround the entire planet. Attention is given to a model atmosphere whose occultation lightcurve closely duplicates observations; fits of the model to the immersion and emersion lightcurves exhibit no significant derived atmosphere-structure differences. Assuming a pure methane atmosphere, surface pressures of the order of 3 microbars are consistent with the occultation data. 43 references.

  2. Kuiper Belt Objects Along the Pluto Express Path

    NASA Technical Reports Server (NTRS)

    Jewitt, David

    1999-01-01

    The objective of this proposal was to mount a ground-based search for Kuiper Belt objects near the trajectory of the NASA Pluto Express spacecraft. The high density of Kuiper Belt objects established from work on Mauna Kea makes it probable that one or more bodies can be visited by Pluto Express after its encounter with Pluto. The work was funded during its first year through NASA HQ. The second year was funded through Goddard. The third year was never funded.

  3. Support Observations For New Horizons: Pluto's Solar Phase Curve As Measured By The Cassini Spacecraft And A New Ground-based Optical Lightcurve.

    NASA Astrophysics Data System (ADS)

    Hicks, Michael D.; Buratti, B. J.; Gillam, S. D.; Young, J. W.; Somers, J. F.

    2008-09-01

    Sequence planning for the New Horizons flyby of Pluto on 2015 July 14 requires an accurate estimation of the surface scattering properties at high solar phase angles ( 90 deg). As seen from the Earth, however, the solar phase angle of Pluto never exceeds 1.9 deg. We are fortunate to have been afforded the opportunity to begin to regularly integrate Cassini-ISS imaging of Pluto into Cassini Optical Navigation (Op-Nav) sequencing. We report on space-based photometric observations of Pluto on the following dates, with the solar phase angles listed in parenthesis: 2007 March 31 (11.94 deg), 2008 March 01 (13.63 deg), 2008 July 09 (14.21 deg). Additional Cassini Op-Nav imaging of Pluto was scheduled for 2007 September 12 and 2007 October 05 but were lost due to spacecraft safing and a data overrun event, respectively. Reduction of the Op-Nav imaging of Pluto is made complex by the extremely dense stellar background: near-simultaneous observations of the Pluto fields at the JPL Table Mountain Observatory (TMO) 0.6-meter telescope allows for proper subtraction of faint background sources. Combined data from Cassini-ISS and TMO data gives a preliminary phase coefficient in the R band of Beta = 0.06 +/- 0.02 mag per deg. We shall present results that incorporate a more detailed analysis. In order to constrain potential volatile transport on the surface of Pluto due to changing solar illumination geometry and heliocentric distance, we have recently measured (2007 October-2008 March) a Bessel R-band rotational lightcurve of the planet at TMO which exhibits a lightcurve amplitude of 0.15 +/- 0.02 mag. We shall compare our new lightcurve to historical Pluto lightcurve measurements and to the expected secular lightcurve changes based on the HST albedo map.

  4. Photometry Of Pluto At Low Galactic Latitudes

    NASA Astrophysics Data System (ADS)

    George, Erin; Buie, M.; Bagenal, F.

    2012-10-01

    Our research is part of an ongoing project to continue the long-term photometric monitoring of Pluto in hopes to constrain volatile migration on the surface. As Pluto passes near the center of the galaxy, the fields are too crowded with stars for normal aperture photometry. We approached this problem by using Optimal Image Subtraction (OIS). We took images, both containing and not containing Pluto, using the 0.8m robotic telescope at Lowell Observatory, the 1m robotic telescope at New Mexico State University, and the Faulkes 2m robotic telescope at Siding Spring, part of Las Cumbres Observatory. We are presently gathering data, but our main focus was the data from 2010. We began by taking images of the star fields at the galactic center without Pluto to build catalogs of standard stars. These catalogs were applied to the Pluto images in order to make interpolated images and to cross check our results. We extracted the photometry of Pluto from differenced images where the background stars were subtracted, and we then applied the transformation equation to solve for Pluto’s standard magnitude. We will present the details of our data processing methodology, as well as the 2010 Pluto B, V, and B-V light curves in comparison to those from previous years. This work was supported by NASA Planetary Astronomy Grant NNX09AB43G.

  5. Configuration of Pluto's Volatile Ices

    NASA Astrophysics Data System (ADS)

    Grundy, William M.; Binzel, R. P.; Cook, J. C.; Cruikshank, D. P.; Dalle Ore, C. M.; Earle, A. M.; Ennico, K.; Jennings, D. E.; Howett, C. J. A.; Linscott, I. R.; Lunsford, A. W.; Olkin, C. B.; Parker, A. H.; Parker, J. Wm; Protopapa, S.; Reuter, D. C.; Singer, K. N.; Spencer, J. R.; Stern, S. A.; Tsang, C. C. C.; Verbiscer, A. J.; Weaver, H. A.; Young, L. A.; Berry, K.; Buie, M. W.; Stansberry, J. A.

    2015-11-01

    We report on near-infrared remote sensing by New Horizons' Ralph instrument (Reuter et al. 2008, Space Sci. Rev. 140, 129-154) of Pluto's N2, CO, and CH4 ices. These especially volatile ices are mobile even at Pluto's cryogenic surface temperatures. Sunlight reflected from these ices becomes imprinted with their characteristic spectral absorption bands. The detailed appearance of these absorption features depends on many aspects of local composition, thermodynamic state, and texture. Multiple-scattering radiative transfer models are used to retrieve quantitative information about these properties and to map how they vary across Pluto's surface. Using parameter maps derived from New Horizons observations, we investigate the striking regional differences in the abundances and scattering properties of Pluto's volatile ices. Comparing these spatial patterns with the underlying geology provides valuable constraints on processes actively modifying the planet's surface, over a variety of spatial scales ranging from global latitudinal patterns to more regional and local processes within and around the feature informally known as Sputnik Planum. This work was supported by the NASA New Horizons Project.

  6. Possible occultation by Pluto from US East Coast

    NASA Astrophysics Data System (ADS)

    Waagen, Elizabeth O.

    2012-06-01

    We have been asked to help disseminate the news of a possible occultation by Pluto visible to observers on the US East coast. Although the AAVSO does not ordinarily issue announcements of upcoming occultations, in this case the object is Pluto and the NASA New Horizons mission (http://www.nasa.gov/mission_pages/newhorizons/main/index.html) will be visiting Pluto in 2015. The information below has been supplied by Dr. Leslie Young (Southwest Research Institute), who is coordinating this observing campaign on Pluto. Dr. Young is also Deputy Project Scientist for the New Horizons mission. ALERT: Possible Pluto occultation Wednesday night (2012/06/14 03:28 UT) from US East coast. CONTACT: Leslie Young (layoung@boulder.swri.edu; work: 303-546-6057; skype: drpluto). Also see our planning pages in progress at http://wiki.boulder.swri.edu/mediawiki/index.php/2012-06-14_Pluto_occultation. Pluto's thin, nitrogen atmosphere is in vapor-pressure equilibrium with the surface ice, and changes seasonally. We've seen it double since 1988, and now we measure its pressure once or twice a year. The technique we use is stellar occultation, when a star passes behind Pluto's atmosphere. The atmosphere defocuses the starlight. By the timing of the fading of the star, we measure the pressure and temperature in Pluto's atmosphere at ~10 km resolution. MORE INFORMATION: See http://wiki.boulder.swri.edu/mediawiki/index.php/2012-06-14_Pluto_occultation.

  7. The Search for Pluto Water

    NASA Astrophysics Data System (ADS)

    Cook, Jason C.; Cruikshank, Dale P.; Dalle Ore, Cristina M.; Ennico, Kimberly; Grundy, William M.; Olkin, Cathy B.; Protopapa, Silvia; Stern, S. Alan; Weaver, Harold A.; Young, Leslie A.

    2015-11-01

    On July 14, 2015, the New Horizons spacecraft made its closest approach to Pluto at about ~12,000 km from Pluto's surface. The LEISA (Linear Etalon Imaging Spectral Array) component of the Ralph instrument (Reuter, D.C., Stern, S.A., Scherrer, J., et al. 2008, Space Sci. Rev. 140, 129) obtained spatially resolved near infrared spectra at scales as small as 3 km/pix. LEISA covers the wavelength range 1.25 to 2.5 μm at a spectral resolution (λ/Δλ) of 240, and the 2.1 to 2.25 μm range at a resolution of 560. The observations from this instrument are being used to map the distribution of Pluto's known ices such as N2, CH4, CO and C2H6 as well as search for H2O-ice. To date, H2O-ice has evaded detection from Earth bound observatories. Observations based on LORRI, the LOng Range Reconnaissance Imager, suggest H2O-ice is a major component of several mountain ranges around the western perimeter of the landmass informally named Tombaugh Regio. If true, H2O-ice may be found in small isolated regions around Pluto. We will present our analysis of all LESIA data of Pluto in hand to search for and understand the distribution of H2O-ice. If found, we will also discuss limits on crystalline vs. amorphous H2O-ice and temperature measurements based on the 1.65 µm crystalline H2O-ice feature. This work was supported by NASA's New Horizons project.

  8. The Size of Pluto

    NASA Astrophysics Data System (ADS)

    Tholen, David J.

    2014-11-01

    The presence of a thin atmosphere around Pluto prevents the stellar occultation method from probing all the way down to the surface of Pluto. As such, the most accurate method for measuring the size of Pluto is fitting the mutual event photometry from 1985 to 1990. Previous fits solved for not only the size of Pluto, but also the size and orbit of Charon. Since that era, the size and orbit of Charon have been determined independently and more accurately via other means. Stellar occultation measurements have established the diameter of Charon as 1212 km, while the orbit of Charon has been determined via direct images obtained with the Hubble Space Telescope over a period of two decades. By imposing the known values for the size and orbit of Charon on the fits to the mutual event photometry, a new size for Pluto can be derived with considerably fewer free parameters. To perform this fit, the extensive set of mutual event photometry acquired at Mauna Kea Observatory was utilized. A fit to all the data yields a diameter for Pluto of 2317 km. To avoid the question of limb darkening on Pluto and the effect of albedo variation over the surface of Pluto, even fewer free parameters can be solved for by restricting attention to just the superior mutual events, during which Charon was behind Pluto. In this case the diameter of Pluto increases to 2379 km. Work is currently being done to determine how weighting of the data affects the result. The true value will become known in a few months when New Horizons flies past Pluto. These fits also show that there is still room for improvement in the orbit of Charon.

  9. Advanced Ground Systems Maintenance Prognostics Project

    NASA Technical Reports Server (NTRS)

    Perotti, Jose M.

    2015-01-01

    The project implements prognostics capabilities to predict when a component system or subsystem will no longer meet desired functional or performance criteria, called the end of life. The capability also provides an assessment of the remaining useful life of a hardware component. The project enables the delivery of system health advisories to ground system operators. This project will use modeling techniques and algorithms to assess components' health andpredict remaining life for such components. The prognostics capability being developed will beused:during the design phase and during pre/post operations to conduct planning and analysis ofsystem design, maintenance & logistics plans, and system/mission operations plansduring real-time operations to monitor changes to components' health and assess their impacton operations.This capability will be interfaced to Ground Operations' command and control system as a part ofthe AGSM project to help assure system availability and mission success. The initial modelingeffort for this capability will be developed for Liquid Oxygen ground loading applications.

  10. Pushing back the frontier - A mission to the Pluto-Charon system

    SciTech Connect

    Farquhar, R.; Stern, S.A. Colorado Univ., Boulder )

    1990-08-01

    A flyby mission to Pluto is proposed. The size, orbit, atmosphere, and surface of Pluto, and the Pluto-Charon system are described. The benefits of a planetary flyby compared to ground observations are discussed in terms of imaging capabilities. Planned payloads include a plasma science package, a UV spectrometer, and a thermal mapper. The advantages of a dual launch to Mars and the need for a Jupiter-Pluto transfer are considered. A diagram of a spacecraft for a flyby study of Pluto is provided.

  11. Pushing back the frontier - A mission to the Pluto-Charon system

    NASA Technical Reports Server (NTRS)

    Farquhar, Robert; Stern, S. Alan

    1990-01-01

    A flyby mission to Pluto is proposed. The size, orbit, atmosphere, and surface of Pluto, and the Pluto-Charon system are described. The benefits of a planetary flyby compared to ground observations are discussed in terms of imaging capabilities. Planned payloads include a plasma science package, a UV spectrometer, and a thermal mapper. The advantages of a dual launch to Mars and the need for a Jupiter-Pluto transfer are considered. A diagram of a spacecraft for a flyby study of Pluto is provided.

  12. Automated Ground Umbilical Systems (AGUS) Project

    NASA Technical Reports Server (NTRS)

    Gosselin, Armand M.

    2007-01-01

    All space vehicles require ground umbilical systems for servicing. Servicing requirements can include, but are not limited to, electrical power and control, propellant loading and venting, pneumatic system supply, hazard gas detection and purging as well as systems checkout capabilities. Of the various types of umbilicals, all require several common subsystems. These typically include an alignment system, mating and locking system, fluid connectors, electrical connectors and control !checkout systems. These systems have been designed to various levels of detail based on the needs for manual and/or automation requirements. The Automated Ground Umbilical Systems (AGUS) project is a multi-phase initiative to develop design performance requirements and concepts for launch system umbilicals. The automation aspect minimizes operational time and labor in ground umbilical processing while maintaining reliability. This current phase of the project reviews the design, development, testing and operations of ground umbilicals built for the Saturn, Shuttle, X-33 and Atlas V programs. Based on the design and operations lessons learned from these systems, umbilicals can be optimized for specific applications. The product of this study is a document containing details of existing systems and requirements for future automated umbilical systems with emphasis on design-for-operations (DFO).

  13. Dynamics of Pluto and Charon

    NASA Technical Reports Server (NTRS)

    Dobrovolskis, Anthony R.

    1989-01-01

    The dynamics of the Pluto-Charon system are reviewed from a historical perspective. Although Pluto's orbit crosses Neptune's, an intricate system of nested resonances keeps these planets apart. Pluto's orbit is apparently chaotic as well. Pluto always keeps the same face turned toward Charon, and vice versa. Tides also damp Charon's orbital eccentricity and inclination. Precession of Pluto's orbital plane causes Pluto's obliquity to vary periodically from formally prograde to retrograde. Pluto is probably an original member of the Solar system, but not an escaped satellite of Neptune.

  14. Pluto's atmosphere near perihelion

    SciTech Connect

    Trafton, L.M. )

    1989-11-01

    A recent stellar occultation has confirmed predictions that Pluto has an atmosphere which is sufficiently thick to uniformly envelope the planet and to extend far above the surface. Pluto's atmosphere consists of methane and perhaps other volatile gases at temperatures below their freezing points; it should regulate the surface temperature of its volatile ices to a globally uniform value. As Pluto approaches and passes through perihelion, a seasonal maximum in the atmospheric bulk and a corresponding minimum in the exposed volatile ice abundance is expected to occur. The lag in maximum atmospheric bulk relative to perihelion will be diagnostic of the surface thermal properties. An estimate of Pluto's atmospheric bulk may result if a global darkening (resulting from the disappearance of the seasonally deposited frosts) occurs before the time of maximum atmospheric bulk. The ice deposited shortly after perihelion may be diagnostic of the composition of Pluto's volatile reservoir.

  15. Clues From Pluto's Ions

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-05-01

    Nearly a year ago, in July 2015, the New Horizons spacecraft passed by the Pluto system. The wealth of data amassed from that flyby is still being analyzed including data from the Solar Wind Around Pluto (SWAP) instrument. Recent examination of this data has revealedinteresting new information about Plutos atmosphere and how the solar wind interacts with it.A Heavy Ion TailThe solar wind is a constant stream of charged particles released by the Sun at speeds of around 400 km/s (thats 1 million mph!). This wind travels out to the far reaches of the solar system, interacting with the bodies it encounters along the way.By modeling the SWAP detections, the authors determine the directions of the IMF that could produce the heavy ions detected. Red pixels represent IMF directions permitted. No possible IMF could reproduce the detections if the ions are nitrogen (bottom panels), and only retrograde IMF directions can produce the detections if the ions are methane. [Adapted from Zirnstein et al. 2016]New Horizons data has revealed that Plutos atmosphere leaks neutral nitrogen, methane, and carbon monoxide molecules that sometimes escape its weak gravitational pull. These molecules become ionized and are subsequently picked up by the passing solar wind, forming a tail of heavy ions behind Pluto. The details of the geometry and composition of this tail, however, had not yet been determined.Escaping MethaneIn a recent study led by Eric Zirnstein (Southwest Research Institute), the latest analysis of data from the SWAP instrument on board New Horizons is reported. The team used SWAPs ion detections from just after New Horizons closest approach to Pluto to better understand how the heavy ions around Pluto behave, and how the solar wind interacts with Plutos atmosphere.In the process of analyzing the SWAP data, Zirnstein and collaborators first establish what the majority of the heavy ions picked up by the solar wind are. Models of the SWAP detections indicate they are unlikely

  16. New Horizons at Pluto

    NASA Technical Reports Server (NTRS)

    2007-01-01

    Artist's concept of the New Horizons spacecraft as it approaches Pluto and its largest moon, Charon, in July 2015. The craft's miniature cameras, radio science experiment, ultraviolet and infrared spectrometers and space plasma experiments will characterize the global geology and geomorphology of Pluto and Charon, map their surface compositions and temperatures, and examine Pluto's atmosphere in detail. The spacecraft's most prominent design feature is a nearly 7-foot (2.1-meter) dish antenna, through which it will communicate with Earth from as far as 4.7 billion miles (7.5 billion kilometers) away.

  17. The lower atmosphere of Pluto revealed

    NASA Astrophysics Data System (ADS)

    2009-03-01

    Using ESO's Very Large Telescope, astronomers have gained valuable new insights about the atmosphere of the dwarf planet Pluto. The scientists found unexpectedly large amounts of methane in the atmosphere, and also discovered that the atmosphere is hotter than the surface by about 40 degrees, although it still only reaches a frigid minus 180 degrees Celsius. These properties of Pluto's atmosphere may be due to the presence of pure methane patches or of a methane-rich layer covering the dwarf planet's surface. ESO PR Photo 08a/09 Pluto (Artist's Impression) "With lots of methane in the atmosphere, it becomes clear why Pluto's atmosphere is so warm," says Emmanuel Lellouch, lead author of the paper reporting the results. Pluto, which is about a fifth the size of Earth, is composed primarily of rock and ice. As it is about 40 times further from the Sun than the Earth on average, it is a very cold world with a surface temperature of about minus 220 degrees Celsius! It has been known since the 1980s that Pluto also has a tenuous atmosphere [1], which consists of a thin envelope of mostly nitrogen, with traces of methane and probably carbon monoxide. As Pluto moves away from the Sun, during its 248 year-long orbit, its atmosphere gradually freezes and falls to the ground. In periods when it is closer to the Sun -- as it is now -- the temperature of Pluto's solid surface increases, causing the ice to sublimate into gas. Until recently, only the upper parts of the atmosphere of Pluto could be studied. By observing stellar occultations (ESO 21/02), a phenomenon that occurs when a Solar System body blocks the light from a background star, astronomers were able to demonstrate that Pluto's upper atmosphere was some 50 degrees warmer than the surface, or minus 170 degrees Celsius. These observations couldn't shed any light on the atmospheric temperature and pressure near Pluto's surface. But unique, new observations made with the CRyogenic InfraRed Echelle Spectrograph (CRIRES

  18. Hemispherical Pluto and Charon Color Composition From New Horizons

    NASA Technical Reports Server (NTRS)

    Ennico, K.; Parker, A.; Howett, C. A. J.; Olkin, C. B.; Spencer, J. R.; Grundy, W. M.; Reuter, D. E.; Cruikshank, D. P.; Binzel, R. P.; Buie, M. W.; Stern, S. A.; Weaver, H. A.; Young, L. A.

    2016-01-01

    New Horizons flew by Pluto and its moons on July 14, 2015 [1]. In the days prior to the closest approach (C/A), panchromatic and color observations of Pluto and Charon were made covering a fully complete range of longitudes. Although only a fraction of this "late-approach" data series has been transmitted to the ground, the results indicate Pluto's latitudinal coloring trends seen on the encounter hemisphere continues on the far side. Charon's red pole is visible from a multitude of longitudes and its colors are uniform with longitude at lower latitudes.

  19. New Horizons at Pluto

    NASA Astrophysics Data System (ADS)

    Schenk, Paul; Nimmo, Francis

    2016-06-01

    The New Horizons mission has revealed Pluto and its moon Charon to be geologically active worlds. The familiar, yet exotic, landforms suggest that geologic processes operate similarly across the Solar System, even in its cold outer reaches.

  20. Pluto's Putative Cryovolcanic Constructs

    NASA Astrophysics Data System (ADS)

    Singer, K. N.; White, O. L.; Schenk, P. M.; Moore, J. M.; Spencer, J. R.; McKinnon, W. B.; Howard, A. D.; Stern, A. S.; Cook, J. C.; Grundy, W. M.; Cruikshank, D. P.; Beyer, R. A.; Umurhan, O.; Howett, C. J. A.; Parker, A. H.; Protopapa, S.; Lauer, T. R.; Weaver, H. A.; Young, L. A.; Olkin, C. B.; Ennico, K.

    2016-06-01

    New Horizons imaged two large mounds with deep central depressions on Pluto. Both features appear constructional, and have relatively young surfaces. This mapping is part of effort to characterize and assess the age and origin of the mounds.

  1. Mountains on Pluto

    NASA Video Gallery

    This movie zooms into the base of the heart-shaped feature on Pluto to highlight a new image captured by NASA's New Horizons. The new image, seen in black and white against a previously released co...

  2. Heat from Pluto

    NASA Astrophysics Data System (ADS)

    Jewitt, D. C.

    1994-01-01

    Submillimeter photometry from the James Clerk Maxwell Telescope on Mauna Kea is used to study thermal emission from Pluto. The brightness temperatures at 800 and 1300 microns are TB = 42 +/- 5 K and TB = 35 +/- 9 K, respectively, essentially confirming a prior measurement of TB = 39 +/- 3 K at 1200 microns by Altenhoff et al. (1988). These are substantially smaller than brightness temperatures obtained previously at 60 and 100 microns (Aumann & Walker, (1987); Sykes et al., (1987)), showing that the surface of Pluto is nonisothermal, nongrey, or both. The data are incompatible with nitrogen-covered, isothermal T about 35 K Pluto models (Owen et al., (1993)). We suggest that the surface may be divided into cold regions coated by nitrogen ice plus warmer regions devoid of nitrogen, and we tentatively identify the latter with optically dark patches on Pluto's surface.

  3. Pluto's Spinning Moons

    NASA Video Gallery

    Most inner moons in the solar system keep one face pointed toward their central planet; this animation shows that certainly isn’t the case with the small moons of Pluto, which behave like spinning ...

  4. Discovering Pluto's atmosphere

    SciTech Connect

    Beatty, J.K.; Killian, A.

    1988-12-01

    Observations of the occultation of an obscure 12th-magnitude star in eastern Virgo by Pluto on June 9, 1988 are discussed. The occultation was observed by astronomers aboard NASA's Kuiper Airborne Observatory flying over the Pacific. The prediction of the occultation and the results of the observations are examined. The study demonstrated that Pluto has a thin atmosphere and that its diameter is about two-thirds that of the moon.

  5. Improved ephemerides of Pluto

    NASA Technical Reports Server (NTRS)

    Standish, E. M.

    1994-01-01

    The history of the Pluto ephemerides created at the Jet Propulsion Laboratory is given. The uncertainties of present and possible future ephemerides are illustrated, and it is shown how rapidly the error grows for any present-day ephemeris of Pluto which is extrapolated into the future--tens of thousands of kilometers after only a decade. Continuing the observations into the future not only will reduce the extrapolation time but will provide a substantial improvement to the ephemeris itself.

  6. Pluto System Surface Composition Results

    NASA Astrophysics Data System (ADS)

    Grundy, William M.; Binzel, R. P.; Cook, J. C.; Cruikshank, D. P.; Dalle Ore, C. M.; Earle, A. M.; Ennico, K.; Jennings, D. E.; Howett, C. J. A.; Linscott, I. R.; Lunsford, A. W.; Olkin, C. B.; Parker, A. H.; Parker, J. Wm; Protopapa, S.; Reuter, D. C.; Singer, K. N.; Spencer, J. R.; Stern, S. A.; Tsang, C. C. C.; Verbiscer, A. J.; Weaver, H. A.; Young, L. A.

    2015-11-01

    This talk will present an overview of surface composition discoveries from New Horizons' exploration of the Pluto system. The emphasis will be on results that could only have been obtained thanks to the uniquely high spatial resolution provided by a spacecraft visit. The Ralph instrument is New Horizons' primary tool for investigating surface compositions in the Pluto system. Ralph consists of a near-infrared spectral imager sharing a 75 mm aperture telescope assembly with a color CCD camera system. The Linear Etalon Imaging Spectral Array (LEISA) component of Ralph provides spectral coverage from 1.25 - 2.5 µm, at a resolving power (λ/Δλ) of 240. Ices such as CH4, N2, CO, CO2, C2H6, NH3, and H2O have uniquely diagnostic absorption bands in this wavelength region. The Multi-spectral Visible Imaging Camera (MVIC) has 7 CCD arrays of which 4 have interference filters affixed directly on the focal plane. The filters pass wavelengths ranging from 400 through 975 nm, sensitive to coloration by tholin-type materials as well as a weak CH4 ice absorption band at 890 nm. Both Ralph components are usually operated in a scanning mode, rotating the spacecraft about its Z axis to sweep Ralph's field of view across the scene such that each point in the scene is eventually imaged at each wavelength. The width of the scanned region is 0.9 degrees divided into 256 spatial pixels for LEISA and 5.7 degrees spanned by 5000 pixels for MVIC. Over the course of the summer 2015 flyby, numerous Ralph observations targeted the various bodies in the Pluto system. As of late 2015, transmission of the data to Earth continues, but already a number of spectacular data sets are available for analysis, including LEISA scans of Pluto at 6 to 7 km/pixel and of Charon at 3 km/pixel, as well as MVIC scans of Pluto at 700 m/pixel and of Charon at 5 km/pixel. This work was supported by the NASA New Horizons Project.

  7. Mk12A/W78 ground test project (u)

    SciTech Connect

    Stokes, Kyle R

    2010-12-01

    The slides present the scope, objectives and status of the Mk12A1W78 Ground Test Project for the purpose of updating the ICBM Project Officers Group. In addition, project constraints and risks are discussed.

  8. Dynamics of Pluto and Charon

    SciTech Connect

    Dobrovolskis, A.R. )

    1989-11-01

    The dynamics of the Pluto-Charon system are reviewed from a historical perspective. Although Pluto's orbit crosses Neptune's, an intricate system of nested resonances keeps these planets apart. Pluto's orbit is apparently chaotic as well. Pluto always keeps the same face turned toward Charon, and vice versa. Tides also damp Charon's orbital eccentricity and inclination. Precession of Pluto's orbital plane causes Pluto's obliquity to vary periodically from formally prograde to retrograde. Pluto is probably an original member of the Solar system, but not an escape satellite of Neptune. The Voyager II encounter with Neptune, the final Pluto-Charon mutual events, and the next generation of telescopes are bound to reveal some surprises.

  9. Pluto's Extended Atmosphere: New Horizons Alice Lyman-α Imaging

    NASA Astrophysics Data System (ADS)

    Retherford, Kurt D.; Gladstone, G. Randall; Stern, S. Alan; Weaver, Harold A.; Young, Leslie A.; Ennico, Kimberly A.; Olkin, Cathy B.; Cheng, Andy F.; Greathouse, Thomas K.; Hinson, David P.; Kammer, Joshua A.; Linscott, Ivan R.; Parker, Alex H.; Parker, Joel Wm.; Pryor, Wayne R.; Schindhelm, Eric; Singer, Kelsi N.; Steffl, Andrew J.; Strobel, Darrell F.; Summers, Michael E.; Tsang, Constantine C. C.; Tyler, G. Len; Versteeg, Maarten H.; Woods, William W.; Cunningham, Nathaniel J.; Curdt, Werner

    2015-11-01

    Pluto's upper atmosphere is expected to extend several planetary radii, proportionally more so than for any planet in our solar system. Atomic hydrogen is readily produced at lower altitudes due to photolysis of methane and transported upward to become an important constituent. The Interplanetary Medium (IPM) provides a natural light source with which to study Pluto's atomic hydrogen atmosphere. While direct solar Lyman-α emissions dominate the signal at 121.6 nm at classical solar system distances, the contribution of diffuse illumination by IPM Lyman-α sky-glow is roughly on par at Pluto (Gladstone et al., Icarus, 2015). Hydrogen atoms in Pluto's upper atmosphere scatter these bright Lyα emission lines, and detailed simulations of the radiative transfer for these photons indicate that Pluto would appear dark against the IPM Lyα background. The Pluto-Alice UV imaging spectrograph on New Horizons conducted several observations of Pluto during the encounter to search for airglow emissions, characterize its UV reflectance spectra, and to measure the radial distribution of IPM Lyα near the disk. Our early results suggest that these model predictions for the darkening of IPM Lyα with decreasing altitude being measureable by Pluto-Alice were correct. We'll report our progress toward extracting H and CH4 density profiles in Pluto's upper atmosphere through comparisons of these data with detailed radiative transfer modeling. These New Horizons findings will have important implications for determining the extent of Pluto's atmosphere and related constraints to high-altitude vertical temperature structure and atmospheric escape.This work was supported by NASA's New Horizons project.

  10. Changes on Pluto's Surface Revealed with Long Timebase Photometry

    NASA Astrophysics Data System (ADS)

    George, Erin; Buie, M.

    2013-10-01

    We are continuing to monitor the long-term photometric behavior of Pluto in order to constrain volatile surface migration. As Pluto passes near the center of the galaxy, the fields are too crowded for normal aperture photometric techniques. We approached this problem with a combination of point-spread function (PSF) photometry and optimal image subtraction (OIS). Our data are from the 0.8-m robotic telescope at Lowell Observatory, the 1-m robotic telescope at New Mexico State Observatory, and the Faulkes 2-m robotic telescope at Siding Spring, part of Las Cumbres Observatory. Our latest results add photometric data up through 2012 to the data collected since discovery. Our new reduction scheme consists of background catalogs, image subtraction using deep templates, and Pluto photometry extraction. We also use the known photometric properties of Charon determined with HST to remove Charon's contribution from old and new data and compare these results with the HST data where Pluto is measured by itself. Data since 2002 show marked departures from the behavior prior to that time. These results provide clear evidence for time evolution of Pluto's surface albedo. We will present these results along with implications for present-day processes that are altering the surface of Pluto. This work also provides crucial insight into the effort required to provide ground-based support observations for the upcoming New Horizons flyby of Pluto in 2015. Support for this work was provided by NASA Planetary Astronomy Program, grant number NNX09AB43G.

  11. Pluto: The Farthest Planet (Usually).

    ERIC Educational Resources Information Center

    Universe in the Classroom, 1988

    1988-01-01

    Provides background information about the planet Pluto. Includes the history of Pluto and discusses some of the common misconceptions about the planets. Addresses some of the recent discoveries about Pluto and contains a resource list of books, articles, and a videotape. (TW)

  12. IRAS serendipitous survey observations of Pluto and Charon

    NASA Technical Reports Server (NTRS)

    Sykes, Mark V.; Cutri, Roc M.; Lebofsky, Larry A.; Binzel, Richard P.

    1987-01-01

    On Aug. 16, 1983, the Infrared Astronomical Satellite made two separate pointed observations of Pluto and its moon Charon. Because of the small angular displacement of the system between the times of measurement, the Pluto-Charon system was identified as a source in the Serendipitous Survey (SSC 14029+0518). Detections were made at 60 and 100 micrometers with color-corrected flux densities of 581 + or - 58 and 721 + or - 123 millijanskys, respectively. Pluto is best described as having a dark equatorial band, and brighter polar caps of methane ice extending to + or - 45 deg latitude, at most. An upper limit of approximately 9 meter-amagats is placed on the column abundance of a methane atmosphere on Pluto, which is comparable to recent upper limits based on independent ground-based spectroscopy.

  13. The atmosphere of Pluto as observed by New Horizons

    NASA Astrophysics Data System (ADS)

    Gladstone, G. Randall; Stern, S. Alan; Ennico, Kimberly; Olkin, Catherine B.; Weaver, Harold A.; Young, Leslie A.; Summers, Michael E.; Strobel, Darrell F.; Hinson, David P.; Kammer, Joshua A.; Parker, Alex H.; Steffl, Andrew J.; Linscott, Ivan R.; Parker, Joel Wm.; Cheng, Andrew F.; Slater, David C.; Versteeg, Maarten H.; Greathouse, Thomas K.; Retherford, Kurt D.; Throop, Henry; Cunningham, Nathaniel J.; Woods, William W.; Singer, Kelsi N.; Tsang, Constantine C. C.; Schindhelm, Eric; Lisse, Carey M.; Wong, Michael L.; Yung, Yuk L.; Zhu, Xun; Curdt, Werner; Lavvas, Panayotis; Young, Eliot F.; Tyler, G. Leonard; Bagenal, F.; Grundy, W. M.; McKinnon, W. B.; Moore, J. M.; Spencer, J. R.; Andert, T.; Andrews, J.; Banks, M.; Bauer, B.; Bauman, J.; Barnouin, O. S.; Bedini, P.; Beisser, K.; Beyer, R. A.; Bhaskaran, S.; Binzel, R. P.; Birath, E.; Bird, M.; Bogan, D. J.; Bowman, A.; Bray, V. J.; Brozovic, M.; Bryan, C.; Buckley, M. R.; Buie, M. W.; Buratti, B. J.; Bushman, S. S.; Calloway, A.; Carcich, B.; Conard, S.; Conrad, C. A.; Cook, J. C.; Cruikshank, D. P.; Custodio, O. S.; Ore, C. M. Dalle; Deboy, C.; Dischner, Z. J. B.; Dumont, P.; Earle, A. M.; Elliott, H. A.; Ercol, J.; Ernst, C. M.; Finley, T.; Flanigan, S. H.; Fountain, G.; Freeze, M. J.; Green, J. L.; Guo, Y.; Hahn, M.; Hamilton, D. P.; Hamilton, S. A.; Hanley, J.; Harch, A.; Hart, H. M.; Hersman, C. B.; Hill, A.; Hill, M. E.; Holdridge, M. E.; Horanyi, M.; Howard, A. D.; Howett, C. J. A.; Jackman, C.; Jacobson, R. A.; Jennings, D. E.; Kang, H. K.; Kaufmann, D. E.; Kollmann, P.; Krimigis, S. M.; Kusnierkiewicz, D.; Lauer, T. R.; Lee, J. E.; Lindstrom, K. L.; Lunsford, A. W.; Mallder, V. A.; Martin, N.; McComas, D. J.; McNutt, R. L.; Mehoke, D.; Mehoke, T.; Melin, E. D.; Mutchler, M.; Nelson, D.; Nimmo, F.; Nunez, J. I.; Ocampo, A.; Owen, W. M.; Paetzold, M.; Page, B.; Pelletier, F.; Peterson, J.; Pinkine, N.; Piquette, M.; Porter, S. B.; Protopapa, S.; Redfern, J.; Reitsema, H. J.; Reuter, D. C.; Roberts, J. H.; Robbins, S. J.; Rogers, G.; Rose, D.; Runyon, K.; Ryschkewitsch, M. G.; Schenk, P.; Sepan, B.; Showalter, M. R.; Soluri, M.; Stanbridge, D.; Stryk, T.; Szalay, J. R.; Tapley, M.; Taylor, A.; Taylor, H.; Umurhan, O. M.; Verbiscer, A. J.; Versteeg, M. H.; Vincent, M.; Webbert, R.; Weidner, S.; Weigle, G. E.; White, O. L.; Whittenburg, K.; Williams, B. G.; Williams, K.; Williams, S.; Zangari, A. M.; Zirnstein, E.

    2016-03-01

    Observations made during the New Horizons flyby provide a detailed snapshot of the current state of Pluto's atmosphere. Whereas the lower atmosphere (at altitudes of less than 200 kilometers) is consistent with ground-based stellar occultations, the upper atmosphere is much colder and more compact than indicated by pre-encounter models. Molecular nitrogen (N2) dominates the atmosphere (at altitudes of less than 1800 kilometers or so), whereas methane (CH4), acetylene (C2H2), ethylene (C2H4), and ethane (C2H6) are abundant minor species and likely feed the production of an extensive haze that encompasses Pluto. The cold upper atmosphere shuts off the anticipated enhanced-Jeans, hydrodynamic-like escape of Pluto's atmosphere to space. It is unclear whether the current state of Pluto's atmosphere is representative of its average state - over seasonal or geologic time scales.

  14. The atmosphere of Pluto as observed by New Horizons.

    PubMed

    Gladstone, G Randall; Stern, S Alan; Ennico, Kimberly; Olkin, Catherine B; Weaver, Harold A; Young, Leslie A; Summers, Michael E; Strobel, Darrell F; Hinson, David P; Kammer, Joshua A; Parker, Alex H; Steffl, Andrew J; Linscott, Ivan R; Parker, Joel Wm; Cheng, Andrew F; Slater, David C; Versteeg, Maarten H; Greathouse, Thomas K; Retherford, Kurt D; Throop, Henry; Cunningham, Nathaniel J; Woods, William W; Singer, Kelsi N; Tsang, Constantine C C; Schindhelm, Eric; Lisse, Carey M; Wong, Michael L; Yung, Yuk L; Zhu, Xun; Curdt, Werner; Lavvas, Panayotis; Young, Eliot F; Tyler, G Leonard

    2016-03-18

    Observations made during the New Horizons flyby provide a detailed snapshot of the current state of Pluto's atmosphere. Whereas the lower atmosphere (at altitudes of less than 200 kilometers) is consistent with ground-based stellar occultations, the upper atmosphere is much colder and more compact than indicated by pre-encounter models. Molecular nitrogen (N2) dominates the atmosphere (at altitudes of less than 1800 kilometers or so), whereas methane (CH4), acetylene (C2H2), ethylene (C2H4), and ethane (C2H6) are abundant minor species and likely feed the production of an extensive haze that encompasses Pluto. The cold upper atmosphere shuts off the anticipated enhanced-Jeans, hydrodynamic-like escape of Pluto's atmosphere to space. It is unclear whether the current state of Pluto's atmosphere is representative of its average state--over seasonal or geologic time scales. PMID:26989258

  15. Triton, Pluto and Charon

    NASA Technical Reports Server (NTRS)

    Cruikshank, D. P.

    1990-01-01

    On the eve of the Voyager encounter with Neptune and Triton, the knowledge of the surface and atmosphere of the satellite has made some progress. Methane, and perhaps molecular nitrogen, appears to dominate the surface and atmospheric chemistry. Sketchy evidence suggests changes in the disposition and state of the volatile materials on this body in the past few years, perhaps in response to the extreme seasons. Pluto and its satellite Charon are at last revealed in some detail, chiefly resulting from observations of the mutual transits and occultations of 1985-1990. A stellar occultation by Pluto in 1988 has given the first detailed information on the planet's atmosphere. The density of the Pluto-Charon system indicates a bulk composition consisting of silicates and water ice, suggesting formation directly from the solar nebula.

  16. Nonisothermal Pluto atmosphere models

    SciTech Connect

    Hubbard, W.B.; Yelle, R.V.; Lunine, J.I. )

    1990-03-01

    The present thermal profile calculation for a Pluto atmosphere model characterized by a high number fraction of CH4 molecules encompasses atmospheric heating by solar UV flux absorption and conductive transport cooling to the surface of Pluto. The stellar occultation curve predicted for an atmosphere of several-microbar surface pressures (which entail the existence of a substantial temperature gradient close to the surface) agrees with observations and implies that the normal and tangential optical depth of the atmosphere is almost negligible. The minimum period for atmospheric methane depletion is calculated to be 30 years. 29 refs.

  17. The Development of Project Orion Ground Safety Requirements

    NASA Technical Reports Server (NTRS)

    Kirkpatrick, Paul; Condzella, Bill; Williams, Jeff

    2011-01-01

    In spite of a very compressed schedule, Project Orion's AFT safety team was able to pull together a comprehensive set of ground safety requirements using existing requirements and subject matter experts. These requirements will serve as the basis for the design of GSE and ground operations. Using the above lessons as a roadmap, new Projects can produce the same results. A rigorous set of ground safety requirements is required to assure ground support equipment (GSE) and associated flight hardware ground operations are conducted safety

  18. Visual and infrared studies of asteroids and the Pluto-Charon system

    NASA Technical Reports Server (NTRS)

    Tedesco, Edward F.

    1991-01-01

    The strategy of the project was to: (1) analyze light curves of Pluto-Charon mutual eclipse event light curves to derive models of the Pluto-Charon system; (2) use these results in planning and reducing HST observations tentatively scheduled to be obtained in Aug. 1991 to determine Pluto-Charon mass ratio; and (3) obtain visual and IR photometry of selected asteroids to help determine their albedos, sizes, shapes, pole orientations, taxonomic classes, and phase functions.

  19. Pluto or Bust!

    ERIC Educational Resources Information Center

    Fisher, Diane

    2005-01-01

    This article begins with a discussion of the development of the solar system. It also focuses on the fact that in January 2006, NASA plans to launch the New Horizons spacecraft to Pluto-Charon and on to one or more of the icy Kuiper Belt Objects. Sections of the article include: (1) Investigating the Aftermath; (2) Designing a Mission to…

  20. Pluto's Intriguing Moons

    NASA Video Gallery

    We talk a lot about Charon, Pluto's largest moon that's about half the size of its host planet. But what about Pluto’s other moons? They're strange, to say the least. Pluto’s four smaller moons —...

  1. The Phoenix Pluto Probe

    NASA Technical Reports Server (NTRS)

    Gunning, George R.; Spapperi, Jeff; Wilkinson, Jeffrey P.; Eldred, Jim; Labij, Dennis; Strinni, Meredith

    1990-01-01

    A design proposal for an unmanned probe to Pluto is presented. The topics covered include: (1) scientific instrumentation; (2) mission management, planning, and costing; (3) power and propulsion system; (4) structural subsystem; (5) command, control, and communication; and (6) attitude and articulation control.

  2. Photochemistry of Pluto's Atmosphere

    NASA Technical Reports Server (NTRS)

    Krasnopolsky, Vladimir A.

    1999-01-01

    This work include studies of two problems: (1) Modeling thermal balance, structure. and escape processes in Pluto's upper atmosphere. This study has been completed in full. A new method, of analytic solution for the equation of hydrodynamic flow from in atmosphere been developed. It was found that the ultraviolet absorption by methane which was previously ignored is even more important in Pluto's thermal balance than the extreme ultraviolet absorption by nitrogen. Two basic models of the lower atmosphere have been suggested, with a tropopause and a planetary surface at the bottom of the stellar occultation lightcurve, respectively, Vertical profiles, of temperature, density, gas velocity, and the CH4 mixing ratio have been calculated for these two models at low, mean, and high solar activity (six models). We prove that Pluto' " s atmosphere is restricted to 3060-4500 km, which makes possible a close flyby of future spacecraft. Implication for Pluto's evolution have also been discussed. and (2) Modeling of Pluto's photochemistry. Based on the results of (1), we have made some changes in the basic continuity equation and in the boundary conditions which reflect a unique can of hydrodynamic escape and therefore have not been used in modeling of other planetary atmospheres. We model photochemistry of 44 neutral and 23 ion species. This work required solution of a set of 67 second-order nonlinear ordinary differential equations. Two models have been developed. Each model consists of the vertical profiles for 67 species, their escape and precipitation rates. These models predict the chemical structure and basic chemical processes in the current atmosphere and possible implication of these processes for evolution. This study has also been completed in full.

  3. Correlating Pluto's Albedo Distribution to Long Term Insolation Patterns

    NASA Astrophysics Data System (ADS)

    Earle, Alissa M.; Binzel, Richard P.; Stern, S. Alan; Young, Leslie A.; Buratti, Bonnie J.; Ennico, Kimberly; Grundy, Will M.; Olkin, Catherine B.; Spencer, John R.; Weaver, Hal A.

    2015-11-01

    NASA's New Horizons' reconnaissance of the Pluto system has revealed striking albedo contrasts from polar to equatorial latitudes on Pluto, as well as sharp boundaries for longitudinal variations. These contrasts suggest Pluto undergoes dynamic evolution that drives the redistribution of volatiles. Using the New Horizons results as a template, in this talk we will explore the volatile migration process driven seasonally on Pluto considering multiple timescales. These timescales include the current orbit (248 years) as well as the timescales for obliquity precession (amplitude of 23 degrees over 3 Myrs) and regression of the orbital longitude of perihelion (3.7 Myrs). We will build upon the long-term insolation history model described by Earle and Binzel (2015, Icarus 250, 405-412) with the goal of identifying the most critical timescales that drive the features observed in Pluto’s current post-perihelion epoch. This work was supported by the NASA New Horizons Project.

  4. Radio Occultation Measurements of Pluto's Atmosphere with New Horizons

    NASA Astrophysics Data System (ADS)

    Hinson, D. P.; Linscott, I.; Tyler, G. L.; Bird, M. K.; Paetzold, M.; Strobel, D. F.; Summers, M. E.; Woods, W. W.; Stern, A.; Weaver, H. A., Jr.; Olkin, C.; Young, L. A.; Ennico Smith, K.; Gladstone, R.; Greathouse, T.; Kammer, J.; Parker, A. H.; Parker, J. W.; Retherford, K. D.; Schindhelm, E.; Singer, K. N.; Steffl, A.; Tsang, C.; Versteeg, M.

    2015-12-01

    The reconnaissance of the Pluto System by New Horizons included radio occultations at both Pluto and Charon. This talk will present the latest results from the Pluto occultation. The REX instrument onboard New Horizons received and recorded uplink signals from two 70-m antennas and two 34-m antennas of the NASA Deep Space Network - each transmitting 20 kW at 4.2-cm wavelength - during a diametric occultation by Pluto. At the time this was written only a short segment of data at occultation entry (193°E, 17°S) was available for analysis. The REX measurements extend unequivocally to the surface, providing the first direct measure of the surface pressure and the temperature structure in Pluto's lower atmosphere. Preliminary analysis yields a surface pressure of about 10 microbars, smaller than expected. Data from occultation exit (16°E, 15°N) are scheduled to arrive on the ground in late August 2015. Those observations will yield an improved estimate of the surface pressure, a second temperature profile, and a measure of the diameter of Pluto with a precision of a few hundred meters.

  5. The Atmosphere of Pluto as Observed by New Horizons

    NASA Astrophysics Data System (ADS)

    Gladstone, Randy

    2016-07-01

    A major goal of the New Horizons (NH) mission was to explore and characterize the structure and composition of Pluto's atmosphere. Several instruments onboard NH contributed to these goals, primarily: 1) the REX instrument, through uplink X-band radio occultations, 2) the Alice instrument, through extreme- and far-ultraviolet solar occultations, and 3) the LORRI panchromatic and MVIC color imagers, through high-resolution imaging. The associated datasets were obtained near closest approach of NH to Pluto at 11:48 UT on 14 July 2015. Pressure and temperature profiles of the lower atmosphere are derived from the REX radio occultation data, the composition and structure of the extended atmosphere are derived from the Alice solar occultation data, and the distribution and properties of Pluto's hazes are derived from the LORRI and MVIC imaging data. The observations made during the NH flyby provide a detailed snapshot of the current state of Pluto's atmosphere. While the lower atmosphere (at altitudes less than 200 km) is largely consistent with ground-based stellar occultations, the upper atmosphere is much colder and more compact than indicated by pre-encounter models. Molecular nitrogen dominates the atmosphere (at altitudes less than 1800 km or so), while methane, acetylene, ethylene, and ethane are important minor species, and likely help produce the haze which surrounds Pluto. The cold upper atmosphere considerably reduces the magnitude of the hydrodynamic escape of Pluto's atmosphere to space. In this talk an overview of the atmosphere science results will be presented.

  6. Visible-band (390-940nm) monitoring of the Pluto absorption spectrum during the New Horizons encounter

    NASA Astrophysics Data System (ADS)

    Smith, Robert J.; Marchant, Jonathan M.

    2015-11-01

    Whilst Earth-based observations obviously cannot compete with New Horizons’ on-board instrumentation in most regards, the New Horizons data set is essentially a snapshot of Pluto in July 2015. The New Horizons project team therefore coordinated a broad international observing campaign to provide temporal context and to take advantage of the once-in-a-lifetime opportunity to directly link our Earth-based view of Pluto with “ground truth” provided by in situ measurements. This both adds value to existing archival data sets and forms the basis of long term, monitoring as we watch Pluto recede from the Sun over the coming years. We present visible-band (390-940nm) monitoring of the Pluto absorption spectrum over the period July - October 2015 from the Liverpool Telescope (LT). In particular we wished to understand the well-known 6-day fluctuation in the methane ice absorption spectrum which is observable from Earth in relation to the never-before-available high resolution maps of the Pluto surface. The LT is a fully robotic 2.0m optical telescope that automatically and dynamically schedules observations across 30+ observing programmes with a broad instrument suite. It is ideal for both reactive response to dynamic events (such as the fly-by) and long term, stable monitoring with timing constraints individually optimised to the science requirements of each programme. For example past studies of the observed CH4 absorption variability have yielded ambiguity of whether they were caused by real physical changes or geometric observation constraints, in large part because of the uneven time sampling imposed by traditional telescope scheduling.

  7. Advanced Ground Systems Maintenance Enterprise Architecture Project

    NASA Technical Reports Server (NTRS)

    Harp, Janicce Leshay

    2014-01-01

    The project implements an architecture for delivery of integrated health management capabilities for the 21st Century launch complex. Capabilities include anomaly detection, fault isolation, prognostics and physics-based diagnostics.

  8. Advanced Ground Systems Maintenance Enterprise Architecture Project

    NASA Technical Reports Server (NTRS)

    Perotti, Jose M. (Compiler)

    2015-01-01

    The project implements an architecture for delivery of integrated health management capabilities for the 21st Century launch complex. The delivered capabilities include anomaly detection, fault isolation, prognostics and physics based diagnostics.

  9. Astrometrical observations of Pluto-Charon system with the automated telescopes of Pulkovo observatory

    NASA Astrophysics Data System (ADS)

    Slesarenko, V. Yu.; Bashakova, E. A.; Devyatkin, A. V.

    2016-03-01

    The space probe "New Horizons" was launched on 19th of January 2006 in order to study Pluto and its moons. Spacecraft performed close fly-by to Pluto on 14th of July 2015 and obtained the most detailed images of Pluto and its moon until this moment. At the same time, observation obtained by the ground-based telescopes may also be helpful for the research of such distant system. Thereby, the Laboratory of observational astrometry of Pulkovo Observatory of RAS made a decision to reprocess observations obtained during last decade. More than 350 positional observations of Pluto-Charon system were carried out with the mirror astrograph ZA-320M at Pulkovo and Maksutov telescope MTM-500M near Kislovodsk. These observations were processed by means of software system APEX-II developed in Pulkovo observatory and numerical simulations were performed to calculate the differences between positions of photocenter and barycenter of Pluto-Charon system.

  10. Advanced Ground Systems Maintenance Prognostics Project

    NASA Technical Reports Server (NTRS)

    Harp, Janicce Leshay

    2014-01-01

    The project implements prognostics capabilities to predict when a component, system or subsystem will no longer meet desired functional or performance criteria, called the "end of life." The capability also provides an assessment of the "remaining useful life" of a hardware component.

  11. Advanced Ground Systems Maintenance Physics Models for Diagnostics Project

    NASA Technical Reports Server (NTRS)

    Harp, Janicce Leshay

    2014-01-01

    The project will use high-fidelity physics models and simulations to simulate real-time operations of cryogenic and systems and calculate the status/health of the systems. The project enables the delivery of system health advisories to ground system operators. The capability will also be used to conduct planning and analysis of cryogenic system operations.

  12. Discovery of Hazes in Pluto's Atmosphere

    NASA Astrophysics Data System (ADS)

    Cheng, Andrew F.; Gladstone, Randy; Summers, Michael; Parker, Alex; Spencer, John; Young, Leslie; Weaver, Hal; Ennico, Kim; Olkin, Cathy; Stern, Alan

    2015-11-01

    The New Horizons spacecraft made the first reconnaissance of the Pluto-Charon system on Jul 14, 2015. The Long Range Reconnaissance Imager (LORRI) on New Horizons obtained images of Pluto and Charon on approach, near closest approach, and on departure. The departure images, obtained at high solar phase angles , unexpectedly revealed that Pluto’s atmosphere is hazy. The haze in Pluto’s atmosphere was detected in each of five images obtained in two separate observations on Jul 14 and on Jul 26, at solar phase angles of 167° and 165° respectively. The haze extends to altitudes of at least 150 km above Pluto’s surface, with evidence for layering and/or gravity waves. We will present the haze observations and discuss derived physical properties and implications for the atmosphere and its interactions with the surface, including estimates for the rate of deposition of haze particles on the surface of Pluto.This work was supported by NASA's New Horizons Project.

  13. PLUTO first report.

    PubMed

    Otte, Jean-Bernard; Meyers, Rebecka

    2010-11-01

    The PLUTO is a registry developed by an international collaboration of the Liver Tumors Strategy Group (SIOPEL) of the SIOP. Although the number of patients collected in PLUTO to date is too small to add any analytic power to the existing literature, this new registry has great promise. It has been created to clarify issues regarding the role of liver transplantation in the treatment of children with unresectable liver tumors. By reviewing the results to date, we hope we can motivate more centers to participate, enroll patients, complete data entry, and boost the potential impact of the collaborative effort. To achieve this goal, a large number of patients are needed, which requires an intensified international collaboration. Pediatric oncologists, pediatric surgical oncologists, and pediatric liver transplant surgeons are all encouraged to participate and contribute. This is a preliminary glimpse of what we hope to be a series of interim reports over the next decade from the steering committee to help guide therapy in this very challenging group of children. PMID:20946516

  14. First Results on Pluto's Energetic Particle Environment from the PEPSSI Instrument

    NASA Astrophysics Data System (ADS)

    Kollmann, Peter; Hill, M. E.; McNutt, R.; Smith, H. T.; Vandegriff, J.; Kusterer, M.; Brown, L.; Haggerty, D. K.; Lisse, C. M.; Elliott, H. A.; Strobel, D.; Bagenal, F.; Sidrow, E.; McComas, D. J.; Horanyi, M.; Zirnstein, E.; Krimigis, S. M.; Ennico, K.; Young, L. A.; Weaver, H. A.; Olkin, C. B.; Stern, S. A.

    2015-11-01

    The New Horizons spacecraft flew by Pluto in July 2015 and passed through the wakes of Pluto and its largest moon Charon. Pluto interacts with the solar wind via the magnetic fields created by currents in its ionosphere and the pick-up of charge-exchange ions escaping from its atmosphere. The PEPSSI instrument (Pluto Energetic Particle Spectrometer Science Investigation) passed through this interaction region. Closest approach distance to Pluto was 11 Pluto radii, inside the orbit of Charon. PEPSSI measures intensities of keV to MeV ions and can distinguish ions in the solar wind from ions originating from Pluto. Pluto’s energetic particle environment clearly stands out compared to the surrounding solar wind at these heliospheric distances. Electrons in the same energy range as the ions do not show a distinct signature throughout the flyby. There is no indication in the particle observations for an intrinsic magnetic field of Pluto. We will present an analysis of the data that is downlinked throughout August and set them into context with measurements taken by PEPSSI in Jupiter’s magnetotail in 2007. This work was supported by NASA's New Horizons project.

  15. Simulating Space Weather at Pluto

    NASA Video Gallery

    This video shows a simulation of the space environment all the way out to Pluto in the months surrounding New Horizons’ July 2015 flyby. At the time, scientists at NASA’s Goddard Space Flight Cente...

  16. Planetary science: Pluto's polygons explained

    NASA Astrophysics Data System (ADS)

    Dombard, Andrew J.; O'Hara, Sean

    2016-06-01

    The Sputnik Planum basin of Pluto contains a sheet of nitrogen ice, the surface of which is divided into irregular polygons tens of kilometres across. Two studies reveal that vigorous convection causes these polygons. See Letters p.79 & 82

  17. Intrepid: A Mission to Pluto

    NASA Technical Reports Server (NTRS)

    Behling, Michael; Buchman, Donald; Marcus, Andres; Procopis, Stephanie; Wassgren, Carl; Ziemer, Sarah

    1990-01-01

    A proposal for an exploratory spacecraft mission to Pluto/Charon system was written in response to the request for proposal for an unmannned probe to pluto (RFP). The design requirements of the RFP are presented and under the guidance of these requirements, the spacecraft Intrepid was designed. The RPF requirement that was of primary importance is the minimization of cost. Also, the reduction of flight time was of extreme importance because the atmosphere of Pluto is expected to collapse close to the Year 2020. If intrepid should arrive after the collapse, the mission would be a failure; for Pluto would be only a solid rock of ice. The topics presented include: (1) scientific instrumentation; (2) mission management, planning, and costing; (3) power and propulsion subsystem; (4) structural subsystem; (5) command, control, and communications; and (6) attitude and articulation control.

  18. Heterogeneous and Evolving Distributions of Pluto's Volatile Surface Ices

    NASA Astrophysics Data System (ADS)

    Grundy, William M.; Olkin, C. B.; Young, L. A.; Buie, M. W.; Young, E. F.

    2013-10-01

    We report observations of Pluto's 0.8 to 2.4 µm reflectance spectrum with IRTF/SpeX on 70 nights over the 13 years from 2001 to 2013. The spectra show numerous vibrational absorption features of simple molecules CH4, CO, and N2 condensed as ices on Pluto's surface. These absorptions are modulated by the planet's 6.39 day rotation period, enabling us to constrain the longitudinal distributions of the three ices. Absorptions of CO and N2 are concentrated on Pluto's anti-Charon hemisphere, unlike absorptions of less volatile CH4 ice that are offset by roughly 90° from the longitude of maximum CO and N2 absorption. In addition to the diurnal/longitudinal variations, the spectra show longer term trends. On decadal timescales, Pluto's stronger CH4 absorption bands have deepened, while the amplitude of their diurnal variation has diminished, consistent with additional CH4 absorption by high northern latitude regions rotating into view as the sub-Earth latitude moves north (as defined by the system's angular momentum vector). Unlike the CH4 absorptions, Pluto's CO and N2 absorptions are declining over time, suggesting more equatorial or southerly distributions of those species. The authors gratefully thank the staff of IRTF for their tremendous assistance over the dozen+ years of this project. The work was funded in part by NSF grants AST-0407214 and AST-0085614 and NASA grants NAG5-4210 and NAG5-12516.

  19. Global distribution of Pluto's atmosphere

    SciTech Connect

    Trafton, L.; Stern, S.A.

    1983-04-15

    Pluto's volatile atmosphere currently extends essentially uniformly around the globe and has nearly uniform thickness, discounting topographic elevation differences and tidal effects. Although in equilibrium with the surface ice, the atmosphere does not noticeably freeze out on the night side, during eclipses of the Sun by Charon, or at the poles during Pluto's present season near perihelion. The bulk thermal tide is negligible. The rotational and tidal deformations of the atmosphere affect the atmospheric thickness of 0.6--2% for a pure CH/sub 4/ atmosphere, depending on the unknown mass of Charon, and up to 15% for an atmosphere with high mean molecular weight. An important consequence of the global uniformity of Pluto's atmosphere and the observed CH/sub 4/ column abundance of 27 +- 7 m--Am is that Pluto's surface is close to 58 K over the entire globe. This compares with the value approx.43 K expected on the basis of insolation and blackbody radiation. We suggest that the explanation for Pluto's elevated surface temperature is the low thermal emissivity of solid CH/sub 4/, expected on the basis of the absence of a rotational spectrum in the gas. Solid CH/sub 4/, which covers an appreciable portion of Pluto's surface, can absorb sunlight in the visible and near-infrared bands but lacks opacity at thermal wavelengths to radiate the absorbed energy efficiently.

  20. Shapes and Poles of the Small Satellites of Pluto

    NASA Astrophysics Data System (ADS)

    Porter, Simon B.; Showalter, Mark R.; Spencer, John R.; Weaver, H. A.; Binzel, Richard P.; Hamilton, Douglas P.; Stern, S. A.; Olkin, Catherine B.; Young, Leslie A.; Ennico, Kimberly

    2015-11-01

    Pluto-Charon is a binary dwarf planet surrounded by four much smaller satellites: Styx, Nix, Kerberos, and Hydra (in order of increasing distance from the barycenter). These satellites were discovered with the Hubble Space Telescope, which also showed that their orbits are nearly circular around the system barycenter and coplanar to the central binary. NASA's New Horizons spacecraft flew through the Pluto system on July 14, 2015, and obtained the first resolved images of all four small satellites. We will present initial models for the shapes and densities of the small satellites determined from both those resolved images and earlier unresolved images, as well as measurements of the rotational poles of small satellites at the time of the Pluto encounter. This work was supported by the NASA New Horizons Project.

  1. Advanced Ground Systems Maintenance Physics Models For Diagnostics Project

    NASA Technical Reports Server (NTRS)

    Perotti, Jose M.

    2015-01-01

    The project will use high-fidelity physics models and simulations to simulate real-time operations of cryogenic and systems and calculate the status/health of the systems. The project enables the delivery of system health advisories to ground system operators. The capability will also be used to conduct planning and analysis of cryogenic system operations. This project will develop and implement high-fidelity physics-based modeling techniques tosimulate the real-time operation of cryogenics and other fluids systems and, when compared to thereal-time operation of the actual systems, provide assessment of their state. Physics-modelcalculated measurements (called “pseudo-sensors”) will be compared to the system real-timedata. Comparison results will be utilized to provide systems operators with enhanced monitoring ofsystems' health and status, identify off-nominal trends and diagnose system/component failures.This capability can also be used to conduct planning and analysis of cryogenics and other fluidsystems designs. This capability will be interfaced with the ground operations command andcontrol system as a part of the Advanced Ground Systems Maintenance (AGSM) project to helpassure system availability and mission success. The initial capability will be developed for theLiquid Oxygen (LO2) ground loading systems.

  2. The State of Pluto's Bulk Atmosphere at the Time of the New Horizons Encounter

    NASA Astrophysics Data System (ADS)

    Resnick, Aaron C.; Barry, T.; Buie, M. W.; Carriazo, C. Y.; Cole, A.; Gault, D.; Giles, B.; Giles, D.; Hartig, K.; Hill, K.; Howell, R. R.; Hudson, G.; Loader, B.; Mackie, J.; Nelson, M.; Olkin, C.; Register, J.; Rodgers, T.; Sicardy, B.; Skrutskie, M.; Verbiscer, A.; Wasserman, L.; Watson, C.; Young, E.; Young, L.; Zalucha, A.

    2015-11-01

    On 29-JUL-2015, our team - plus many critical amateur astronomers - observed a stellar occultation by Pluto from sites in Australia and New Zealand. This event was remarkable for two reasons: it preceded the New Horizons flyby of Pluto by just two weeks, and the occulted star was about 10x brighter than Pluto itself, by far the brightest Pluto occultation event observed to date. The separation of ground sites spanned nearly 900 km with respect to the central chord, allowing a good geometric solution for the shadow path. The lightcurves show some inflection points and broad "fangs" that are characteristic of perturbations in the temperature profile. Preliminary fits show that the temperature profile derived from a 2006 occultation (Young et al. 2008) reproduces the 29-JUN-2015 lightcurves well. Assuming a surface radius of 1187 km for Pluto, we find that the surface pressure is 18 +/- 3 µbar. This pressure indicates that Pluto's surface has not yet started to cool down, despite a decrease in absorbed solar flux of more than 17% since perihelion in 1988. A surface pressure of 18 µbar would correspond to a nitrogen ice surface temperature of 38.0 K.References:Young, E.F., et al. "Vertical Structure in Pluto's Atmosphere from the 2006 June 12 Stellar Occultation," AJ 136 1757-1769 (2008)

  3. Escape of Pluto's Atmosphere: In Situ Measurements from the Pluto Energetic Particle Spectrometer Science Investigation (PEPSSI) instrument on New Horizons and Remote Observations from the Chandra X-ray observatory

    NASA Astrophysics Data System (ADS)

    McNutt, Ralph L.; Hill, Matthew E.; Lisse, Carey M.; Kollmann, Peter; Bagenal, Fran; Krimigis, Stamatios M.; McComas, David J.; Elliott, Heather A.; Wolk, Scott J.; Strobel, Darrell F.; Zhu, Xun; Stern, S. A.; Weaver, H. A.; Young, L. A.; Ennico, K.; Olkin, C. B.

    2015-11-01

    The escape rate of Pluto's atmosphere is of significant scientific interest. The Pluto Energetic Particle Spectrometer Science Investigation (PEPSSI) is a compact, energy by time-of-flight (TOF) instrument developed to help address this science goal. Pluto is known to have an atmosphere, and pre-encounter models have postulated a majority N2 composition with free escape of up to ~1028 molecules/sec. The expected major ionization product near Pluto is singly ionized N2 molecules with pickup energies sufficient to be measured with PEPSSI. In the process of measuring the local energetic particle environment, such measurements can also provide constraints on the local density of Pluto's extended atmosphere, which, along with plasma measurements from the Solar Wind Around Pluto (SWAP) instrument, also on New Horizons, could allow the inference of the strengh and extent of mass-loading of the solar wind due to Pluto's atmosphere. Pluto's neutral atmosphere also provides a source population for charge exchange of highly ionized, minor ions in the solar wind, such as O, C, and N. This process allows these ions to capture one electron and be left in an excited state. That state, in turn decays with the emission of a low-energy (100 eV to 1 keV) X-ray. Observations of such solar wind charge exchange (SWCX) X-rays have been made in the past of the Earth's geocorona and Mars's extended atmosphere. The award of almost 40 hours of Director's Discretionary Time (DDT) for observing Pluto with the Chandra X-ray observatory near the period of closest approach of New Horizons to Pluto potentially enabled a remote determination of Pluto's global outgassing rate using the local solar wind flux as measured by the SWAP instrument. Preliminary anaysis of data returned from these observations reveal a definite interaction of Pluto with the solar wind, but at a lower strength than had been predicted. This work was supported by NASA's New Horizons project.

  4. North Village Ground Source Heat Pump Demonstration Project

    SciTech Connect

    Redderson, Jeff

    2015-08-03

    This project demonstrated the feasibility of converting from a traditional direct exchange system to a ground source heat pump system on a large scale, multiple building apartment complex on a university campus. A total of ten apartment buildings were converted using vertical well fields and a ground source loop that connected the 24 apartments in each building into a common system. The system has yielded significant operational savings in both energy and maintenance and transformed the living environments of these residential buildings for our students.

  5. The visible spectrum of Pluto: secular and longitudinal variation

    NASA Astrophysics Data System (ADS)

    Lorenzi, Vania; Pinilla-Alonso, Noemí; Emery, Joshua P.; Licandro, Javier; Cruikshank, Dale P.; Grundy, Will; Binzel, Richard P.

    2015-11-01

    Continuous near-infrared spectroscopic observations during the last 30 years enabled the characterization of the Pluto's surface and the study of its variability. Nevertheless, only few data are available in the visible range, where the nature of the complex-organics can be studied.For this reason, we started an observational campaign to obtain the Pluto's relative reflectance in the visible range, with the aim of characterizing the different components of its surface, and providing ground based observations in support of the New Horizons mission. We observed Pluto on six nights in 2014, with the imager/spectrograph ACAM@WHT (La Palma, Spain). We obtained six spectra in the 0.40 - 0.93 µm range, that covered a whole Pluto's rotational period (6.4 days).To study longitudinal variations, we computed for all the spectra the spectral slope, and the position and the depth of the methane ice absorption bands. Also, to search for secular or seasonal variations we compared our data with previously published results.All the spectra present a red slope, indicating the presence of complex organics on Pluto's surface, and show the methane ice absorption bands between 0.73 and 0.90 μm. We also report the detection of the CH4 absorption band at 0.62 μm, already detected in the spectra of Makemake and Eris. The measurement of the band depth at 0.62 μm in the new spectra of Pluto, and in the spectra of Makemake and Eris, permits us to estimate the Lambert coefficient, not measured yet at this wavelength, at a temperature of 30 K and 40 K.We find that all the CH4 bands present a blue shift. This shift is minimum at the Charon-facing hemisphere, where the CH4 is also more abundant, indicating a higher degree of saturation of CH4 in the CH4:N2 dilution at this hemisphere.Comparing with data in the literature, we found that the longitudinal and secular variations of the parameters measured in our spectra are in accordance with previous results and with the distribution of the dark

  6. High Resolution HST Images of Pluto and Charon

    NASA Astrophysics Data System (ADS)

    1994-05-01

    planet Pluto and its moon, Charon, as revealed by the Hubble Space Telescope (HST). The image was taken by the European Space Agency's Faint Object Camera on February 21, 1994, when the planet was 4,400 million kilometres from the Earth; or nearly 30 times the separation between the Earth and the Sun. The HST corrected optics show the two objects as clearly separate and sharp disks. This now allows astronomers to measure directly (to within about 1 percent) Pluto's diameter of 2320 kilometres and Charon's diameter of 1270 kilometres. The HST observations show that Charon is bluer than Pluto. This means that the worlds have different surface composition and structure. A bright highlight on Pluto indicates that it may have a smoothly reflecting surface layer. A detailed analysis of the HST image also suggests that there is a bright area parallel to the equator of Pluto. However, subsequent observations are needed to confirm is this feature is real. Though Pluto was discovered in 1930, Charon was not detected until 1978. This is because this moon is so close to Pluto that the two world's are typically blurred together when viewed through ground-based telescopes. The new HST image was taken when Charon was near its maximum elongation from Pluto (0.9 arcseconds). The two worlds are 19,640 kilometres apart. This photo accompanies ESO PR 09/94. It is available from ESO as ESO PR Photo 09/94-1 and from the Space Telescope Science Institute (Baltimore, USA) as STSci-PR94-17. Reproductions should be credited to NASA, ESA and ESO. How to obtain ESO Press Information ESO Press Information is made available on the World-Wide Web (URL: http://www.eso.org../). ESO Press Photos may be reproduced, if credit is given to the European Southern Observatory.

  7. ISTAR: Project Status and Ground Test Engine Design

    NASA Technical Reports Server (NTRS)

    Quinn, Jason Eugene

    2003-01-01

    Review of the current technical and programmatic status of the Integrated System Test of an Airbreathing Rocket (ISTAR) project. November 2002 completed Phase 1 of this project: which worked the conceptual design of the X-43B demonstrator vehicle and Flight Test Engine (FTE) order to develop realistic requirements for the Ground Test Engine (GTE). The latest conceptual FTE and X-43B configuration is briefly reviewed. The project plan is to reduce risk to the GTE and FTE concepts through several tests: thruster, fuel endothermic characterization, engine structure/heat exchanger, injection characterization rig, and full scale direct connect combustion rig. Each of these will be discussed along with the project schedule. This discussion is limited due to ITAR restrictions on open literature papers.

  8. UMTRA Ground Water Project management action process document

    SciTech Connect

    1996-03-01

    A critical U.S. Department of Energy (DOE) mission is to plan, implement, and complete DOE Environmental Restoration (ER) programs at facilities that were operated by or in support of the former Atomic Energy Commission (AEC). These facilities include the 24 inactive processing sites the Uranium Mill Tailings Radiation Control Act (UMTRCA) (42 USC Section 7901 et seq.) identified as Title I sites, which had operated from the late 1940s through the 1970s. In UMTRCA, Congress acknowledged the potentially harmful health effects associated with uranium mill tailings and directed the DOE to stabilize, dispose of, and control the tailings in a safe and environmentally sound manner. The UMTRA Surface Project deals with buildings, tailings, and contaminated soils at the processing sites and any associated vicinity properties (VP). Surface remediation at the processing sites will be completed in 1997 when the Naturita, Colorado, site is scheduled to be finished. The UMTRA Ground Water Project was authorized in an amendment to the UMTRCA (42 USC Section 7922(a)), when Congress directed DOE to comply with U.S. Environmental Protection Agency (EPA) ground water standards. The UMTRA Ground Water Project addresses any contamination derived from the milling operation that is determined to be present at levels above the EPA standards.

  9. The interacting surface and atmosphere of Pluto

    NASA Astrophysics Data System (ADS)

    Young, L. A.; Binzel, R. P.; Earle, A. M.; Stern, S. A.; Weaver, H. A., Jr.; Olkin, C.; Ennico Smith, K.

    2015-12-01

    The frozen volatiles on Pluto's surface, N2, CO and CH4, have long been expected to interact in complex ways as Pluto's distance from the sun and subsolar latitude vary over the course of a Pluto year. With the flyby of the New Horizons spacecraft by Pluto, we finally have a data that can help us understand this interaction more completely. Key datasets include spatially resolved surface spectra allowing the relation of composition to albedo; surface pressures; brightness temperatures of the winter longitudes at 4.2 cm; and detailed geology and geomorphology. These and other datasets will challenge and refine our previous understanding of Pluto's interacting surfaces and atmospheres.

  10. Photometry of Pluto-Charon mutual events and Hirayama family asteroids

    NASA Technical Reports Server (NTRS)

    Binzel, Richard P.

    1991-01-01

    During 1985 to 1990, nature provided earth bound astronomers with a once-per-century opportunity to observe occultation and transit phenomena between Pluto and its satellite, Charon. Ground based observations of these events are now being used to derive physical parameters for the Pluto-Charon system to a precision that is unlikely to be improved upon until in situ spacecraft observations are obtained. This program supports analysis of photometry observations from McDonald Observatory, a critical location in the International Pluto Campaign network. Knowledge of the diameters, masses, densities, and compositions derived from these observations will augment the understanding of Pluto's origin and its context within the problem of solar system formation.

  11. Detection of Atmospheric CO on Pluto with ALMA

    NASA Astrophysics Data System (ADS)

    Gurwell, Mark; Lellouch, Emmanuel; Butler, Bryan; Moullet, Arielle; Moreno, Raphael; Bockelée-Morvan, Dominique; Biver, Nicolas; Fouchet, Thierry; Lis, Darek; Stern, Alan; Young, Leslie; Young, Eliot; Weaver, Hal; Boissier, Jeremie; Stansberry, John

    2015-11-01

    We observed Pluto and Charon using the Atacama Large Millimeter/submillimeter Array (ALMA) interferometer in Northern Chile on June 12.2 and June 13.15, 2015, just one month prior to the New Horizons flyby of the system. The configuration of ALMA at the time provided ~0.3" resolution, allowing separation of emission from Pluto and Charon. This project targeted multiple science goals, including a search for HCN in Pluto's atmosphere [1] and high precision measurements of the individual brightness temperatures of Pluto and Charon [2], also presented at this meeting. Here we report the high SNR detection of carbon monoxide in the atmosphere of Pluto. The CO(3-2) rotational line, at 345.796 GHz (867 μm), was observed with 117 kHz spectral resolution for 45 min (on-source) on each date, providing ~3.5mJy/channel RMS. CO emission was clearly detected on both days, with a contrast of ~65 mJy above the Pluto continuum, and ~1.8 MHz FWHM linewidth, with the combined integrated line SNR >50. The presence of CO in Pluto's atmosphere is expected due to it's presence as ice on the surface in vapor pressure equilibrium with the atmosphere (e.g. [3],[4]), and it was previously detected at modest SNR in the near-IR using the VLT [5]. A preliminary assessment based upon the CO line wings shows the fractional abundance of CO is 500-750 ppm, consistent with that found in [5]. Further, the shape of the line core emission (assuming a constant CO mixing ratio), suggests that the atmospheric temperature rises quickly from the surface to ~100-110 K in the altitude range 20-70 km but decreases above that, falling to about 70 K by 200 km altitude. A detailed line inversion analysis will be performed and results presented.[1] Lellouch et al, this meeting. [2] Butler et al., this meeting. [3] Owen et al (1993), Science, 261, pp. 745-748. [4] Spencer et al (1993), In Pluto and Charon, pp. 435-473. Univ. of Arizona Press, Tucson. [5] Lellouch et al (2011), A&A, 530, L4.

  12. Ejecta transfer in the Pluto system

    NASA Astrophysics Data System (ADS)

    Porter, Simon B.; Grundy, William M.

    2015-01-01

    The small satellites of the Pluto system (Styx, Nix, Kerberos, and Hydra) have very low surface escape velocities, and impacts should therefore eject a large amount of material from their surfaces. We show that most of this material then escapes from the Pluto system, though a significant fraction collects on the surfaces of Pluto and Charon. The velocity at which the dust is ejected from the surfaces of the small satellites strongly determines which object it is likely to hit, and where on the surfaces of Pluto and Charon it is most likely to impact. We also show that the presence of an atmosphere around Pluto eliminates most particle size effects and increases the number of dust impacts on Pluto. In total, Pluto and Charon may have accumulated several centimeters of small-satellite dust on their surfaces, which could be observed by the New Horizons spacecraft.

  13. Volatile Transport Implications from the New Horizons Flyby of Pluto

    NASA Astrophysics Data System (ADS)

    Young, Leslie; Grundy, William M.; Binzel, RIchard P.; Earle, Alissa M.; Linscott, Ivan R.; Hinson, David P.; Zangari, Amanda M.; McKinnon, William B.; Stern, S. Alan; Weaver, Harold A.; Olkin, Catherine B.; Ennico, Kimberly; Gladstone, G. Randall; Summers, Michael E.; Moore, Jeffrey M.; Spencer, John R.

    2015-11-01

    The New Horizons flyby of Pluto has revealed a striking range of terrains, from the very bright region informally named Sputnik Planum, to very dark regions such as the informally named Cthulhu Regio. Such a variety was beyond the scope of recent models of Pluto's seasonal volatile cycle (Young 2013, ApJL 766, L22; Hansen, Paige and Young 2015, Icarus 246, 183), which assumed globally uniform substrate albedos. The "Exchange with Pressure Plateau (EPP)" class of models in Young (2013) and the favored runs from Hansen et al (2015) had long periods of exchange of volatiles between northern and southern hemispheres. In these models, the equators were largely devoid of volatiles; even though the equatorial latitudes received less insolation than the poles over a Pluto year, they were never the coldest place on the icy world. New models that include a variety of substrate albedos can investigate questions such as whether Sputnik Planum has an albedo that is high enough to act as a local cold trap for much of Pluto's year. We will present the implications of this and other assumption-busting revelations from the New Horizons flyby. This work was supported by NASA’s New Horizons project.

  14. Geology of Pluto and Charon Overview

    NASA Technical Reports Server (NTRS)

    Moore, Jeffrey Morgan

    2015-01-01

    Pluto's surface was found to be remarkably diverse in terms of its range of landforms, terrain ages, and inferred geological processes. There is a latitudinal zonation of albedo. The conspicuous bright albedo heart-shaped feature informally named Tombaugh Regio is comprised of several terrain types. Most striking is Texas-sized Sputnik Planum, which is apparently level, has no observable craters, and is divided by polygons and ovoids bounded by shallow troughs. Small smooth hills are seen in some of the polygon-bounding troughs. These hills could either be extruded or exposed by erosion. Sputnik Planum polygon/ovoid formation hypotheses range from convection to contraction, but convection is currently favored. There is evidence of flow of plains material around obstacles. Mountains, especially those seen south of Sputnik Planum, exhibit too much relief to be made of CH4, CO, or N2, and thus are probably composed of H2O-ice basement material. The north contact of Sputnik Planum abuts a scarp, above which is heavily modified cratered terrain. Pluto's large moon Charon is generally heavily to moderately cratered. There is a mysterious structure in the arctic. Charon's surface is crossed by an extensive system of rift faults and graben. Some regions are smoother and less cratered, reminiscent of lunar maria. On such a plain are large isolated block mountains surrounded by moats. At this conference we will present highlights of the latest observations and analysis. This work was supported by NASA's New Horizons project

  15. Processes Modifying Cratered Terrains on Pluto

    NASA Technical Reports Server (NTRS)

    Moore, J. M.

    2015-01-01

    The July encounter with Pluto by the New Horizons spacecraft permitted imaging of its cratered terrains with scales as high as approximately 100 m/pixel, and in stereo. In the initial download of images, acquired at 2.2 km/pixel, widely distributed impact craters up to 260 km diameter are seen in the near-encounter hemisphere. Many of the craters appear to be significantly degraded or infilled. Some craters appear partially destroyed, perhaps by erosion such as associated with the retreat of scarps. Bright ice-rich deposits highlight some crater rims and/or floors. While the cratered terrains identified in the initial downloaded images are generally seen on high-to-intermediate albedo surfaces, the dark equatorial terrain informally known as Cthulhu Regio is also densely cratered. We will explore the range of possible processes that might have operated (or still be operating) to modify the landscape from that of an ancient pristinely cratered state to the present terrains revealed in New Horizons images. The sequence, intensity, and type of processes that have modified ancient landscapes are, among other things, the record of climate and volatile evolution throughout much of the Pluto's existence. The deciphering of this record will be discussed. This work was supported by NASA's New Horizons project.

  16. Seasonal Nitrogen Cycles on Pluto

    NASA Technical Reports Server (NTRS)

    Hansen, C. J.; Paige, D. A.

    1994-01-01

    A thermal model, developed to predict seasonal nitrogen cycles on Triton, has been modified and applied to Pluto. The model is used to calculate the partitioning of nitrogen between surface frost deposits and the atmosphere, as a function of time for various sets of input parameters.

  17. Our new view of Pluto

    NASA Astrophysics Data System (ADS)

    Olkin, Cathy

    2016-07-01

    NASA's New Horizons mission has transformed our pixelated view of Pluto – the tiny object lying on the fringes of the solar system. As Cathy Olkin explains, we can now see ancient craters, young glacial plains and layers of haze stretching up to 200 km from the surface

  18. Methods & Strategies: Poor, Poor Pluto

    ERIC Educational Resources Information Center

    Graham, Lori; West, Courtney; Jones, Lindsay

    2013-01-01

    Just as students never stop learning, neither do librarians and teachers. Learning is a process that is facilitated by interest and applicability. Therefore, it is imperative to develop instructional activities that students deem important and relevant. "Why is Pluto no longer a planet?" is a question whose answer many people, young and…

  19. New Horizons Mission to Pluto

    NASA Technical Reports Server (NTRS)

    Delgado, Luis G.

    2011-01-01

    This slide presentation reviews the trajectory that will take the New Horizons Mission to Pluto. Included are photographs of the spacecraft, the launch vehicle, the assembled vehicle as it is being moved to the launch pad and the launch. Also shown are diagrams of the assembled parts with identifying part names.

  20. Revisiting the 1988 Pluto Occultation

    NASA Astrophysics Data System (ADS)

    Bosh, Amanda S.; Dunham, Edward W.; Young, Leslie A.; Slivan, Steve; Barba née Cordella, Linda L.; Millis, Robert L.; Wasserman, Lawrence H.; Nye, Ralph

    2015-11-01

    In 1988, Pluto's atmosphere was surmised to exist because of the surface ices that had been detected through spectroscopy, but it had not yet been directly detected in a definitive manner. The key to making such a detection was the stellar occultation method, used so successfully for the discovery of the Uranian rings in 1977 (Elliot et al. 1989; Millis et al. 1993) and before that for studies of the atmospheres of other planets.On 9 June 1988, Pluto occulted a star, with its shadow falling over the South Pacific Ocean region. One team of observers recorded this event from the Kuiper Airborne Observatory, while other teams captured the event from various locations in Australia and New Zealand. Preceding this event, extensive astrometric observations of Pluto and the star were collected in order to refine the prediction.We will recount the investigations that led up to this important Pluto occultation, discuss the unexpected atmospheric results, and compare the 1988 event to the recent 2015 event whose shadow followed a similar track through New Zealand and Australia.

  1. Bantam System Technology Project Ground System Requirements Document

    NASA Technical Reports Server (NTRS)

    Moon, J. M.; Beveridge, J. R.

    1997-01-01

    The Low Cost Booster Project (LCBP), also known as Bantam, is an element of the Advanced Space Transportation Program focused on Low Cost Booster Technologies. During FY 99 flight demonstrations are planned to demonstrate the feasibility of producing a booster capable of inserting a 150 kg payload into low earth orbit. The ground support system is an element of the full launch system. The ground support system provides for integration of the payload with the launch vehicle, preparation of the vehicle for launch (including maintenance, integration and test of the vehicle flight software), monitor and control of the launch sequence, range safety during launch, and collection of telemetry during the flight up to payload release. The ground support system is intended to make the maximum possible use of Government Off-the-Shelf (GOTS) or Commercial Off-the-Shelf (COTS) hardware and software to obtain the best value in terms of development operations support and ultimate life cycle cost for the launch system.

  2. Contemporaneous Mid-UV Spectral Coverage of Pluto and Charon Coincident With the New Horizons Encounter

    NASA Astrophysics Data System (ADS)

    Schindhelm, Eric

    2014-10-01

    The New Horizons spacecraft will perform the first-ever, and the only planned flyby of the Pluto System, in July 2015. It will observe Pluto and its moons from Far-Ultraviolet (FUV) to radio wavelengths. However, between 1870 and 4200 Angstroms there is no spectral coverage aboard New Horizons. The Mid-Ultraviolet (MUV, 2000 - 3000 Angstroms), which cannot be observed from the ground, contains numerous useful indicators of surface and atmospheric composition that can provide additional constraints about Pluto. Since Pluto's MUV spectrum is known to change over time, it is scientifically important to capture such data at the unique New Horizons encounter epoch. We propose here a focused, 2-orbit STIS G230L observation of Pluto at the same sub-Earth longitude where New Horizons will obtain its best FUV spectra during its closest approach to Pluto. We note that these HST observations need not occur on the same day as the New Horizons encounter, only during the same observing season. In two orbits, STIS yields higher-SNR spectra of Pluto than have ever been obtained to date in the MUV. This will bridge the gap in New Horizons' spectral coverage, placing the FUV spectra in context with longer wavelength data and contributing new information to augment the New Horizons results with those from HST. Our main science objective is MUV spectroscopy of Pluto, however if scheduling allows for the correct roll angle to also capture Charon in the STIS 52"x2" slit, MUV surface reflectance spectra of Charon would also complement New Horizons FUV data.

  3. Impacts and Cratering on Pluto: Implications for the Source of Pluto's Nitrogen (N2)

    NASA Astrophysics Data System (ADS)

    Singer, K. N.; Stern, S. A.

    2015-05-01

    Craters on Pluto and Charon will provide key information, including clues to the source of Pluto's surface and atmospheric N2. With current estimates of impactor flux on Pluto, comets could not deliver enough N2, but impacts might excavate it.

  4. Hemispherical color differences on Pluto and Charon

    NASA Technical Reports Server (NTRS)

    Binzel, Richard P.

    1988-01-01

    Time-resolved multicolor photometric observations of Pluto-Charon mutual events have been used to derive individual colors for these two bodies and to investigate the degree of color differences between their synchronous facing and opposite hemispheres. Pluto is significantly redder than Charon, where direct measurements of the anti-Charon hemisphere of Pluto and the Pluto-facing hemisphere of Charon yield B-V magnitudes of 0.867 + or - 0.008 and 0.700 + or - 0.010, respectively. Both Pluto and Charon are found to have relatively uniform longitudinal color distributions with 1-sigma upper limits of 2 percent and 5 percent, respectively, for any large-scale hemispherical color asymmetries. Thus, a previous suspicion of a significant color asymmetry on Charon is not confirmed. Instead the data may be attributed to a direct detection of polar caps on Pluto.

  5. Project management for complex ground-based instruments: MEGARA plan

    NASA Astrophysics Data System (ADS)

    García-Vargas, María. Luisa; Pérez-Calpena, Ana; Gil de Paz, Armando; Gallego, Jesús; Carrasco, Esperanza; Cedazo, Raquel; Iglesias, Jorge

    2014-08-01

    The project management of complex instruments for ground-based large telescopes is a challenge itself. A good management is a clue for project success in terms of performance, schedule and budget. Being on time has become a strict requirement for two reasons: to assure the arrival at the telescope due to the pressure on demanding new instrumentation for this first world-class telescopes and to not fall in over-costs. The budget and cash-flow is not always the expected one and has to be properly handled from different administrative departments at the funding centers worldwide distributed. The complexity of the organizations, the technological and scientific return to the Consortium partners and the participation in the project of all kind of professional centers working in astronomical instrumentation: universities, research centers, small and large private companies, workshops and providers, etc. make the project management strategy, and the tools and procedures tuned to the project needs, crucial for success. MEGARA (Multi-Espectrógrafo en GTC de Alta Resolución para Astronomía) is a facility instrument of the 10.4m GTC (La Palma, Spain) working at optical wavelengths that provides both Integral-Field Unit (IFU) and Multi-Object Spectrograph (MOS) capabilities at resolutions in the range R=6,000-20,000. The project is an initiative led by Universidad Complutense de Madrid (Spain) in collaboration with INAOE (Mexico), IAA-CSIC (Spain) and Universidad Politécnica de Madrid (Spain). MEGARA is being developed under contract with GRANTECAN.

  6. U.S. Department of Energy Uranium Mill Tailings Remedial Action Ground Water Project: Project plan

    SciTech Connect

    Not Available

    1994-09-01

    The scope of the Project is to develop and implement a ground water compliance strategy for all 24 UMTRA Project processing sites. The compliance strategy for the processing sites must satisfy the proposed EPA ground water cleanup standards in 40 CFR Part 192, Subparts B and C (1987). This scope of work will entail the following activities on a site-specific basis: Develop a compliance strategy based on modification of the UMTRA Surface Project RAPs or develop Ground Water Project RAPs with NRC concurrence on the RAP and full participation of the affected states and tribes. Implement the RAP to include institutional controls, where appropriate, as an interim measure until compliance with the standards is achieved. Institute long-term verification monitoring for transfer to a separate long-term surveillance program on or before the Project end date. Prepare certification or confirmation reports and modify the long-term surveillance plan (LTSP), where needed, on those sites completed prior to the Project end date.

  7. Managing a big ground-based astronomy project: the Thirty Meter Telescope (TMT) project

    NASA Astrophysics Data System (ADS)

    Sanders, Gary H.

    2008-07-01

    TMT is a big science project and its scale is greater than previous ground-based optical/infrared telescope projects. This paper will describe the ideal "linear" project and how the TMT project departs from that ideal. The paper will describe the needed adaptations to successfully manage real world complexities. The progression from science requirements to a reference design, the development of a product-oriented Work Breakdown Structure (WBS) and an organization that parallels the WBS, the implementation of system engineering, requirements definition and the progression through Conceptual Design to Preliminary Design will be summarized. The development of a detailed cost estimate structured by the WBS, and the methodology of risk analysis to estimate contingency fund requirements will be summarized. Designing the project schedule defines the construction plan and, together with the cost model, provides the basis for executing the project guided by an earned value performance measurement system.

  8. Studies of Triton and the Pluto-Charon system

    NASA Technical Reports Server (NTRS)

    Tholen, David J.

    1991-01-01

    The project is designed to take advantage of the six-year-long series of mutual occultation and eclipse events involving Pluto and its satellite Charon during one of its rare edge-on orbital alignments. High-precision, high-time-resolution photometry of these events can be utilized to extract several important physical parameters. An important derived parameter is the mean density of the system, which constrains the bulk composition of two bodies.

  9. Pluto: Planet or "Dwarf Planet"?

    NASA Astrophysics Data System (ADS)

    Voelzke, M. R.; de Araújo, M. S. T.

    2010-09-01

    In August 2006 during the XXVI General Assembly of the International Astronomical Union (IAU), taken place in Prague, Czech Republic, new parameters to define a planet were established. According to this new definition Pluto will be no more the ninth planet of the Solar System but it will be changed to be a "dwarf planet". This reclassification of Pluto by the academic community clearly illustrates how dynamic science is and how knowledge of different areas can be changed and evolves through the time, allowing to perceive Science as a human construction in a constant transformation, subject to political, social and historical contexts. These epistemological characteristics of Science and, in this case, of Astronomy, constitute important elements to be discussed in the lessons, so that this work contributes to enable Science and Physics teachers who perform a basic education to be always up to date on this important astronomical fact and, thereby, carry useful information to their teaching.

  10. Mapping the stability region of the 3:2 Neptune-Pluto resonance

    NASA Technical Reports Server (NTRS)

    Levison, H. F.; Stern, S. A.

    1993-01-01

    Pluto and Charon are most likely the remnants of a large number of objects that existed in the Uranus-Neptune region at early epochs of the solar system. Numerical integrations have shown that, in general, such objects were ejected from the planetary region on timescales of approximately 10(exp 7) years after Neptune and Uranus reached their current masses. It is thought that the Pluto-Charon system survived to current times without being dynamically removed in this way because it is trapped in a set of secular and mean motion resonances with Neptune. The best-known Pluto-Neptune orbit coupling is the 3:2 mean motion resonance discovered almost 30 years ago by C. Cohen and E. Hubbard. These workers showed that the resonance angle, delta is equivalent to 3(lambda(sub P)) - 2(lambda(sub N)) - omega-bar(sub P) where omega-bar(sub P) is the longitude of perihelion of the Pluto-Charon system, and lambda(sub N) and lambda(sub P) are the mean longitude of Neptune and Pluto-Charon respectively, librates about 180 deg with an amplitude, A(sub delta), of 76 deg. A numerical simulation project to map out the stability region of the 3:2 resonance is reported. The results of these simulations are important to understanding whether Pluto's long-term heliocentric stability requires only the 3:2 resonance, or whether it instead requires one or more of the other Pluto-Neptune resonances. Our study also has another important application. By investigating stability timescales as a function of orbital elements, we gain insight into the fraction of orbital phase space which the stable 3:2 resonance occupies. This fraction is directly related to the probability that the Pluto-Charon system (and possibly other small bodies) could have been captured into this resonance.

  11. Ground-water resources of Riverton irrigation project area, Wyoming

    USGS Publications Warehouse

    Morris, Donald Arthur; Hackett, O.M.; Vanlier, K.E.; Moulder, E.A.; Durum, W.H.

    1959-01-01

    The Riverton irrigation project area is in the northwestern part of the Wind River basin in west-central Wyoming. Because the annual precipitation is only about 9 inches, agriculture, which is the principal occupation in the area, is dependent upon irrigation. Irrigation by surface-water diversion was begum is 1906; water is now supplied to 77,716 acres and irrigation has been proposed for an additional 31,344 acres. This study of the geology and ground-water resources of the Riverton irrigation project, of adjacent irrigated land, and of nearby land proposed for irrigation was begun during the summer of 1948 and was completed in 1951. The purpose of the investigation was to evaluate the ground-water resources of the area and to study the factors that should be considered in the solution of drainage and erosional problems within the area. The Riverton irrigation project area is characterized by flat to gently sloping stream terraces, which are flanked by a combination of badlands, pediment slopes, and broad valleys. These features were formed by long-continued erosion in an arid climate of the essentially horizontal, poorly consolidated beds of the Wind River formation. The principal streams of the area flow south-eastward. Wind River and Fivemile Creek are perennial streams and the others are intermittent. Ground-water discharge and irrigation return flow have created a major problem in erosion control along Fivemile Creek. Similar conditions might develop along Muddy and lower Cottonwood Creeks when land in their drainage basins is irrigated. The bedrock exposed in the area ranges in age from Late Cretaceous to early Tertiary (middle Eocene). The Wind River formation of early and middle Eocene age forms the uppermost bedrock formation in the greater part of the area. Unconsolidated deposits of Quaternary age, which consist of terrace gravel, colluvium, eolian sand and silt. and alluvium, mantle the Wind River formation in much of the area. In the irrigated parts

  12. Pluto-charon mutual events

    SciTech Connect

    Binzel, R.P. )

    1989-11-01

    Since 1985, planetary astronomers have been working to take advantage of a once-per-century apparent alignment between Pluto and its satellite, Charon, which has allowed mutual occultation and transit events to be observed. There events, which will cease in 1990, have permitted the first precise determinations of their individual radii, densities, and surface compositions. In addition, information on their surface albedo distributions can be obtained.

  13. Dust Ablation in Pluto's Atmosphere

    NASA Astrophysics Data System (ADS)

    Horanyi, M.; Poppe, A. R.; Sternovsky, Z.

    2015-12-01

    Based on measurements by in situ dust detectors onboard the Pioneer and New Horizon spacecraft the total production rate of dust particles born in the Kuiper belt can be estimated to be on the order of 5 x 10 ^3 kg/s in the approximate size range of 1 - 10 micron. These particles slowly migrate inward due to Poynting - Robertson drag and their spatial distribution is shaped by mean motion resonances with the gas giant planets in the outer solar system. The expected mass influx into Pluto's atmosphere is on the order of 50 kg/day, and the arrival speed of the incoming particles is on the order of 3 - 4 km/s. We have followed the ablation history as function of speed and size of dust particles in Pluto's atmosphere, and found that, if the particles are rich in volatiles, they can fully sublimate due to drag heating and deposit their mass in a narrow layer. This deposition might promote the formation of the haze layers observed by the New Horizons spacecraft. This talk will explore the constraints on the composition of the dust particles, as well as on our newly developed models of Pluto's atmosphere that can be learned by matching the altitude where haze layers could be formed.

  14. Pluto's atmosphere from stellar occultations in 2012 and 2013

    NASA Astrophysics Data System (ADS)

    Dias-Oliveira, Alex; Sicardy, Bruno; Lellouch, Emmanuel; Vieira-Martins, Roberto; Assafin, Marcelo; Ignácio Bueno Camargo, Júlio; Braga-Ribas, Felipe; Gomes-Júnior, Altair; Bendetti-Rossi, Gustavo; Colas, François; Decock, Alice; Doressoundiram, Alain; Dumas, Christophe; Emílio, Marcelo; Fabrega Polleri, Joaquin; Gil-Hutton, Ricardo; Gillon, Michael; Girard, Julien; Hau, George; Ivanov, Valentin; Jehin, Emmanuel; Lecacheux, Jean; Leiva, Rodrigo; Lopez-Sisterna, Cecília; Mancini, Luigi; Manfroid, Jean; Maury, Alain; Meza, Erick; Morales, Nicolas; Nagy, Leslie; Opitom, Cyrielle; Ortiz, José Luiz; Pollock, Joe; Roques, Françoise; Snodgrass, Colin; François Soulier, Jean; Thirouin, Audrey; Vanzi, Leonardo; Widemann, Thomas; Reichart, Daniel; LaCluyze, Aaron; Haislip, Joshua B.; Ivarsen, Kevin; Dominik, Martin; Jørgensen, Uffe; Skottfelt, Jesper

    2015-11-01

    We present results from two Pluto stellar occultations observed on 18 July 2012 and 04 May 2013, and monitored respectively from five and six sites in South America. Both campaigns involved large telescopes (including the 8.2-m VLT at ESO/Paranal). The high SNR ratios and multi-chord coverage provide amoung the best Pluto atmospheric profiles ever obtained from the ground.We show that a spherically symmetric, clear (no-haze) and pure N2 atmosphere with a unique temperature profile satisfactorily fits the twelve lightcurves provided by the two events. We find, however, a small but significant increase of pressure of 6% (6-sigma level) between the two dates, with values of 2.16 ± 0.2 and 2.30 ± 0.01 μbar at the reference radius 1275 km, respectively.We provide atmospheric constrains between 1190 km and 1450 km from Pluto's center, and we determine the temperature profile with accuracy of a few km in vertical scale. Our model shows a stratosphere with strong positive gradient between 1190 km (at 36 K, 11 μbar) and r =1215 km (6.0 μbar), where a temperature maximum of 110 K is reached. Above it is a mesosphere with negative thermal gradient of -0.2 K/km up to 1,390 km (0.25 μbar), at which point, the mesosphere connects itself to a more isothermal upper branch at 81 K. This profile provides (assuming no troposphere) a Pluto surface radius of 1190 ± 5 km, consistent with preliminary values obtained by New Horizons. Currently measured CO abundances are too low to explain the negative mesospheric thermal gradient. We explore the possibility of an HCN (recently detected by ALMA) cooling. This model, however, requires largely supersaturated HCN. Zonal winds and vertical compositional variations of the atmosphere are also unable to explain the observed mesospheric trend.These events are the last useful ground-based occultations recorded before the 29 June 2015 occultation observed from Australia and New Zealand, and before the NASA's New Horizons flyby of July 2015

  15. Discovery of Haze in Pluto's Atmosphere

    NASA Astrophysics Data System (ADS)

    Cheng, A. F.

    2015-12-01

    The New Horizons spacecraft made the first reconnaissance of the Pluto-Charon system on Jul 14, 2015. The Long Range Reconnaissance Imager (LORRI) on New Horizons obtained images of Pluto and Charon on approach, near closest approach, and on departure. The departure images, obtained at high solar phase angles, unexpectedly revealed that Pluto's atmosphere is hazy. The haze in Pluto's atmosphere was detected in each of five images obtained in two separate observations on Jul 14 and on Jul 16, at solar phase angles of 167° and 165° respectively. The haze extends to altitudes of 150 km above Pluto's surface, with evidence for layering and/or gravity waves. We will present the haze observations and discuss derived physical properties and implications for the atmosphere and its interactions with the surface.

  16. Evolution of the JPSS Ground Project Calibration and Validation System

    NASA Astrophysics Data System (ADS)

    Chander, G.; Jain, P.

    2014-12-01

    The Joint Polar Satellite System (JPSS) is the National Oceanic and Atmospheric Administration's (NOAA) next-generation operational Earth observation Program that acquires and distributes global environmental data from multiple polar-orbiting satellites. The JPSS Program plays a critical role to NOAA's mission to understand and predict changes in weather, climate, oceans, and coasts environments, which supports the nation's economy and protects lives and property. The National Aeronautics and Space Administration (NASA) is acquiring and implementing the JPSS, comprised of flight and ground systems on behalf of NOAA. The JPSS satellites are planned to fly in afternoon orbit and will provide operational continuity of satellite-based observations and products for NOAA Polar-orbiting Operational Environmental Satellites (POES) and the Suomi National Polar-orbiting Partnership (SNPP) satellite. Government Resource for Algorithm Verification, Independent Test, and Evaluation (GRAVITE) system is a NOAA system developed and deployed by JPSS Ground Project to support Calibration and Validation (Cal/Val), Algorithm Integration, Investigation, and Tuning, and Data Quality Monitoring. It is a mature, deployed system that supports SNPP mission and has been in operations since SNPP launch. This paper discusses the major re-architecture for Block 2.0 that incorporates SNPP lessons learned, architecture of the system, and demonstrates how GRAVITE has evolved as a system with increased performance. It is a robust, reliable, maintainable, scalable, and secure system that supports development, test, and production strings, replaces proprietary and custom software, uses open source software, and is compliant with NASA and NOAA standards. "[Pending NASA Goddard Applied Engineering & Technology Directorate (AETD) Approval]"

  17. Pluto's Atmosphere from the July 2010 Stellar Occultation

    NASA Astrophysics Data System (ADS)

    Person, Michael J.; Elliot, J. L.; Bosh, A. S.; Gulbis, A. A. S.; Jensen-Clem, R.; Lockhart, M. F.; Zangari, A. M.; Zuluaga, C. A.; Levine, S. E.; Pasachoff, J. M.; Souza, S. P.; Lu, M.; Malamut, C.; Rojo, P.; Bailyn, C. D.; MacDonald, R. K. D.; Ivarsen, K. M.; Reichart, D. E.; LaCluyze, A. P.; Nysewander, M. C.; Haislip, J. B.

    2010-10-01

    We have observed the 4 July 2010 stellar occultation by Pluto as part of our program of monitoring Pluto's atmospheric changes over the last decade. Successful observations were obtained from three sites: Cerro Calan and Cerro Tololo, Chile, as well as the HESS-project site (High Energy Stereoscopic System) in southwestern Namibia. Successful telescope apertures ranged from 0.45 m to 1.0 m and resulted in seven occultation light curves for the event from among the three sites. Simultaneous analysis of the seven light curves indicates that Pluto's atmosphere continues to be stable, as the calculated atmospheric radii are consistent with those detected in 2006 (Elliot et al., AJ 134, 1, 2007) and 2007 (Person et al., AJ 136, 1510, 2008), continuing the stability that followed the large pressure increase detected between 1988 (Millis et al., Icarus 105, 282, 1993) and 2002 (Elliot et al., Nature 424, 165, 2003). We will present the overall astrometric solution as well as current profiles for Pluto's upper atmospheric temperature and pressure obtained from inversion of the light curves (Elliot, Person, and Qu, AJ 126, 1041, 2003). This work was supported, in part, by grants NNX10AB27G to MIT, NNX08AO50G to Williams College, and NNH08AI17I to the USNO from NASA's Planetary Astronomy Division. The 0.75-m ATOM (Automatic Telescope for Optical Monitoring) light curve was obtained with the generous assistance of the HESS-project staff, arranged by Stefan Wagner and Marcus Hauser of the University of Heidelberg. The 0.45-m Goto telescope at Cerro Calán National Astronomical Observatory, Universidad de Chile, was donated by the Government of Japan. PROMPT (Panchromatic Robotic Optical Monitoring and Polarimetry Telescopes) observations at Cerro Tololo were made possible by the Robert Martin Ayers Science Fund. Student participation was supported in part by NSF's REU program and NASA's Massachusetts Space Grant.

  18. Photometry of Pluto 2008–2014: Evidence of Ongoing Seasonal Volatile Transport and Activity

    NASA Astrophysics Data System (ADS)

    Buratti, B. J.; Hicks, M. D.; Dalba, P. A.; Chu, Devin; O’Neill, Ariel; Hillier, J. K.; Masiero, J.; Banholzer, Sophianna; Rhoades, H.

    2015-05-01

    The New Horizons spacecraft will encounter Pluto in 2015 July. As this fast flyby will yield a picture of Pluto frozen in time, ground-based observations are key to understanding this dwarf ice planet, especially with regard to the seasonal transport of surface volatiles. This paper reports on changes in Pluto's rotational light curve as evidence for this transport. Historical observations are consistent with a stable frost pattern, but since 2002, changes began to appear in both light curves and Hubble Space Telescope maps. Our BVR observations at Table Mountain Observatory from 2008 to 2014 show evidence for sustained and continued albedo and color changes on Pluto. The B and V albedos are stable, but Pluto is becoming redder in color, particularly on its low-albedo side. This view is consistent with the transport of a bright volatile (nitrogen) with the uncovering of a substrate of red material such as photolyzed methane. As Buie et al. reported a B – V of 0.96 in 2002–2003, and our B – V was higher in 2008–2012, Pluto may have experienced a transient reddening in the 1999–2012 period. We also discovered an opposition supersurge in all three colors at very small solar phase angles (∼0.°10). Explosive geysers have been observed on Triton and Mars, the two other celestial bodies with receding polar caps. Because the physical conditions existing on Pluto are similar to those on Triton, we predict that plume deposits and possibly active plumes will be found on its surface.

  19. Geophysical survey of 105-DR Pluto Crib, 116-DR-4, 100-D Area

    SciTech Connect

    Bergstrom, K.A.

    1993-10-01

    The objective of this Geophysical Survey was to verify the location of the 105-DR Pluto Crib, 116-DR-4. A surface monument currently marks its location. The crib is 10 feet by 10 feet and 15 feet deep. Ground-Penetrating Radar was the geophysical method selected to conduct the investigation.

  20. Space Network Ground Segment Sustainment (SGSS) Project: Developing a COTS-Intensive Ground System

    NASA Technical Reports Server (NTRS)

    Saylor, Richard; Esker, Linda; Herman, Frank; Jacobsohn, Jeremy; Saylor, Rick; Hoffman, Constance

    2013-01-01

    Purpose of the Space Network Ground Segment Sustainment (SGSS) is to implement a new modern ground segment that will enable the NASA Space Network (SN) to deliver high quality services to the SN community for the future The key SGSS Goals: (1) Re-engineer the SN ground segment (2) Enable cost efficiencies in the operability and maintainability of the broader SN.

  1. Seasonal Volatile Transport on Pluto: New Results from the 2013 Observing Season and Preparation for the New Horizons Encounter

    NASA Astrophysics Data System (ADS)

    Buratti, Bonnie; Dalba, Paul; Hicks, Michael; Chu, Devin; O'Neill, Ariel

    2014-05-01

    The New Horizons spacecraft will encounter Pluto in July 2015 for a fast flyby and close investigation of the dwarf planet and its five known moons. With a time-constrained mission it is essential to acquire ground-based observations for context and for a longer temporal excursion. An observing program at JPL's Table Mountain Observatory (TMO) has been in operation during the past decade and a half, with a goal of seeking temporal changes on Pluto's surface. This program, which has been largely implemented by undergraduate students, seeks changes in the color and albedo of Pluto. Seasonal transport of volatiles is predicted to occur on Pluto, and this transport should be detectable through changes in its rotational light curve as well as in color and albedo, once all variations due to viewing geometry have been accounted for. Occultation studies have shown that there has been a steady increase in Pluto's atmospheric pressure over the past two decades, so concomitant sublimation and recondensation of frost has likely occurred, as predicted by volatile transport models. Rotational light curves of Pluto through time have been created for static frost models based on images from the Hubble Space Telescope. These models, which account for changes in viewing geometry, have been compared with observed light curves obtained between 1950 and 2013. No evidence for transport was evident prior to 2000. However, starting in the early part of the millennium, evidence from new observations by HST (Buie et al., 2010, Astron. J. 139, 1128) and rotational light curves obtained in 2007-2008 (Hicks et al. 2008, B.A.A.S. 40, 460) suggest changes in the frost pattern on Pluto's surface. An extensive and dedicated observing program at TMO was conducted over a period of five months in 2013 during Pluto's opposition. New observations of Pluto's light curve from the 2013 show continued volatile transport, but the most striking change is in Pluto's color. As the New Horizons encounter

  2. Pluto Express power system architecture

    SciTech Connect

    Carr, G.A.

    1996-12-31

    The Pluto Express power system must answer the challenge of the next generation spacecraft by reducing its power, mass and volume envelopes. Technology developed by the New Millennium Program will enable the power system to meet the stringent requirements for the Pluto Express mission without exceeding the spacecraft mass and volume budgets. Traditionally, there has been an increasing trend of the percentage of mass of the power system electronics with respect to the total spacecraft mass. With all of the previous technology focus on high density digital packaging, the power system electronics have not been keeping pace forcing the spacecraft to absorb a relative increase in the power system mass. The increasing trend can be reversed by using mixed signal ASICs and high density multi-chip-module (MCM) packaging techniques validated by the New Millennium Program. As the size of the spacecraft shrinks, the power system electronics must become tightly integrated with the spacecraft loads. The power system architecture needs the flexibility to accommodate the specific load requirements without sacrificing the capability for growth or reduction as the spacecraft requirements change throughout the development. Modularity is a key requirement that will reduce the overall power system cost. Although the focus has been on shrinking the power system volume and mass, the efficiency and functionality cannot be ignored. Increased efficiency and functionality will only enhance the power systems capability to reduce spacecraft power requirements. The combination of the New Millennium packaging technologies with the Pluto Express power system architecture will produce a product with the capability to meet a wide range of mission profiles while reducing system development costs.

  3. Resolved photometry and a solar phase curve for Pluto and Charon from New Horizons LORRI.

    NASA Astrophysics Data System (ADS)

    Zangari, Amanda M.; Stern, S. A.; Weaver, Harold A.; Young, Leslie A.; Ennico, Kimberly; Olkin, Catherine B.; Moore, Jeffrey M.; Binzel, Richard P.; Buie, Marc W.; Buratti, Bonnie J.; Cheng, Andrew F.; Linscott, Ivan R.; McKinnon, William B.; Reitsema, Harold J.; Schenk, Paul; Showalter, Mark R.; Spencer, John R.; Tyler, G. L.; Bray, Veronica J.; Momary, Thomas W.; Nimmo, Francis; Singer, Kelsi N.

    2014-11-01

    During its eighth annual checkout, the New Horizons spacecraft's LOng Range Reconnaissance Imager (LORRI, Cheng, A. F. et al. (2008) Space Sci Rev, 140, 189-215, DOI: 10.1007/s11214-007-9271-6) snapped 15 series of five optical navigation images of Pluto and Charon. These images, taken over the course of a single 6.38-day revolution/rotation of the system between 2014-07-19 and 2014-07-26 represent a continuation and expansion of last year's campaign to provide the first Pluto and Charon solar phase curves beyond the ground-based limit of 2 degrees (Zangari et al 2013, DPS 45, # 303.08). Since July 2013, Pluto and Charon have become brighter and more-clearly separated as the Pluto-spacecraft distance has halved from 5.9 AU to 2.8 AU, and the solar phase angle has increased from 10.9 to 13.0 degrees. We will present individual light curves and solar phase curves as well as comparisons to previous measurements. Follow-up observations will be continued in January 2015.This work has been funded by NASA's New Horizons mission to Pluto.

  4. Orbital and Rotational Dynamics of Pluto's Small Moons

    NASA Astrophysics Data System (ADS)

    Showalter, Mark R.; Spencer, John R.; Porter, Simon B.; Hamilton, Douglas P.; Binzel, Richard P.; Stern, S. Alan; Weaver, Harold A.; Olkin, Cathy B.; Young, Leslie A.; Ennico, Kimberly

    2015-11-01

    Four small moons, Styx, Nix, Kerberos and Hydra, orbit the central binary planet comprising Pluto and Charon. Showalter and Hamilton (Nature 522, 45-49, 2015) analyzed Hubble Space Telescope (HST) data from 2010-2012 to explore some of the dynamical consequences of orbiting a binary planet. They noted evidence for a chaotic rotation of Nix and Hydra, and identified a possible three-body resonance between Styx, Nix and Hydra. We revisit the dynamics of the outer moons based on the latest data from the New Horizons flyby. As the spacecraft approached Pluto, the LORRI camera regularly imaged the moons over a period of ~100 days. This data set will make it possible to derive light curves and rotation rates unambiguously, something that has not been possible from the sparsely sampled HST data. It also extends the time baseline of the orbit determinations by several years, providing a more precise test of the proposed orbital resonances. We will discuss the latest measurements and their dynamical implications for the evolution of the Pluto system. This work was supported by NASA's New Horizons project.

  5. Masses and densities of Pluto and Charon

    NASA Technical Reports Server (NTRS)

    Null, G. W.; Owen, W. M., Jr.; Synnott, S. P.

    1993-01-01

    We have analyzed HST Wide Field Camera CCD images of Pluto, Charon, and a background star to observe Pluto's barycentric motion and to determine the individual masses and bulk densities of Pluto and Charon. The most fundamental new result was an accurate solution for a previously undetermined parameter, the Charon/Pluto mass ratio q; the new solution is q = 0.0837 +/- 0.0147. Significant accuracy improvements by almost a factor of two were obtained for Charon's orbital semimajor axis, a = 19,405 +/- 86 km and the Pluto system mass of 1.401 +/- 0.019 x 10 exp 8 inverse solar masses. The Pluto and Charon masses were (13.10 +/- 0.24) x 10 exp 24 g and (1.10 +/- 0.18) x 10 exp 24 g, respectively. Computed densities depend strongly on the assumed radius values. The density of Pluto is 2.13 +/- 0.04 g/cu cm and that of Charon is 1.30 +/- 0.23 g/cu cm.

  6. Pluto and Charon - the dance goes on

    SciTech Connect

    Beatty, J.K.

    1987-09-01

    Various methods for estimating the diameters of Pluto and Charon are discussed. The application of speckle interferometry, the timing of occultations, and the monitoring of Charon and Pluto rotations to calculate the diameter of the planet and its satellite are described. Walker (1980) estimated Charon's diameter as greater than 1200 km using the occultated star method; the speckle interferometry estimates of Baier and Weigelt (1983) are between 2710-3460 km for Pluto and between 1050-1520 km for Charon; and using the mutual events method Dunbar and Tedesco (1986) estimated the diameter of Pluto as 2300 + or - 100 km and of Charon as 1500 + or - 100 km. The use of IRAS data combined with visual brightness to estimate planet and satellite diameters is examined; Tedesco et al. (1987) estimated Pluto's diameter as 2200 + or - 150 km and Charon's as 1300 + or - 150 km, and Aumann and Walker (1987) obtained estimates of 2360 km for Pluto and 1534 km for Charon. The compositions of Pluto's and Charon's atmospheres are analyzed.

  7. Masses and densities of Pluto and Charon

    NASA Astrophysics Data System (ADS)

    Null, G. W.; Owen, W. M.; Synnott, S. P.

    1993-06-01

    We have analyzed HST Wide Field Camera CCD images of Pluto, Charon, and a background star to observe Pluto's barycentric motion and to determine the individual masses and bulk densities of Pluto and Charon. The most fundamental new result was an accurate solution for a previously undetermined parameter, the Charon/Pluto mass ratio q; the new solution is q = 0.0837 +/- 0.0147. Significant accuracy improvements by almost a factor of two were obtained for Charon's orbital semimajor axis, a = 19,405 +/- 86 km and the Pluto system mass of 1.401 +/- 0.019 x 10 exp 8 inverse solar masses. The Pluto and Charon masses were (13.10 +/- 0.24) x 10 exp 24 g and (1.10 +/- 0.18) x 10 exp 24 g, respectively. Computed densities depend strongly on the assumed radius values. The density of Pluto is 2.13 +/- 0.04 g/cu cm and that of Charon is 1.30 +/- 0.23 g/cu cm.

  8. Mirages and the nature of Pluto's atmosphere

    NASA Technical Reports Server (NTRS)

    Stansberry, J. A.; Lunine, J. I.; Hubbard, W. B.; Yelle, R. V.; Hunten, D. M.

    1994-01-01

    We present model occultation lightcurves demonstrating that a strong thermal inversion layer at the base of Pluto's stratosphere can reproduce the minimum flux measured by the Kuiper Airborne Observatory (KAO) during the 1988 occultation of a star by Pluto. The inversion layer also forms the occultation equivalent of a mirage at a radius of 1198 km, which is capable of hiding tropospheres of significant depth. Pluto's surface lies below 1198 km, its radius depending on the depth of the troposphere. We begin by computing plausible temperature structures for Pluto's lower atmosphere, constrained by a calculation of the temperature of the atmosphere near the surface. We then trace rays from the occulted star through the model atmosphere, computing the resultant bending of the ray. Model light curves are obtained by summing the contribution of individual rays within the shadow of Pluto on Earth. We find that we can reproduce the KAO lightcurve using model atmospheres with a temperature inversion and no haze. We have explored models with tropospheres as deep as 40 km (implying a Pluto radius of 1158 km) that reproduce the suite of occultation data. Deeper tropospheres can be fitted to the data, but the mutual event radius of 1150 km probably provides a lower bound. If Pluto has a shallow or nonexistent troposphere, its density is consistent with formation in the solar nebula with modest water loss due to impact ejection. If the troposhere is relatively deep, implying a smaller radius and larger density, significant amounts of water loss are required.

  9. The Icy Cold Heart of Pluto

    NASA Astrophysics Data System (ADS)

    Hamilton, Douglas P.

    2015-11-01

    The locations of large deposits of frozen volatiles on planetary surfaces are largely coincident with areas receiving the minimum annual influx of solar energy; familiar examples include the polar caps of Earth and Mars. For planets tilted by more than 45 degrees, however, the poles actually receive more energy than some other latitudes. Pluto, with its current obliquity of 119 degrees, has minima in its average annual insolation at +/- 27 degrees latitude, with ~1.5% more energy flux going to the equator and ~15% more to the poles. Remarkably, the fraction of annual solar energy incident on different latitudes depends only on the obliquity of the planet and not on any of its orbital parameters.Over millions of years, Pluto's obliquity varies sinusoidally from 102-126 degrees, significantly affecting the latitudinal profile of solar energy deposition. Roughly 1Myr ago, the poles received 15% more energy that today while the equator received 13% less. The energy flux to latitudes between 25-35 degrees is far more stable, remaining low over the presumably billions of years since Pluto acquired its current spin properties. Like the poles at Earth, these mid latitudes on Pluto should be favored for the long-term deposition of volatile ices. This is, indeed, the location of the bright icy heart of Pluto, Sputnik Planum.Reflected light and emitted thermal radiation from Charon increases annual insolation to one side of Pluto by of order 0.02%. Although small, the bulk of the energy is delivered at night to Pluto's cold equatorial regions. Furthermore, Charon's thermal infrared radiation is easily absorbed by icy deposits on Pluto, slowing deposition and facilitating sublimation of volatiles. We argue that the slight but persistent preference for ices to form and survive in the anti-Charon Pluto's heart.

  10. Does Pluto have a substantial atmosphere

    SciTech Connect

    Trafton, L.

    1980-01-01

    The presence of CH4 ice on Pluto implies that Pluto may have a substantial atmosphere consisting of heavy gases. Without such an atmosphere, sublimation of the CH4 ice would be so rapid on a cosmogonic time scale that either such an atmosphere would soon develop through the exposure of gases trapped in the CH4 ice or else the surface CH4 ice would soon be all sublimated away as other, more stable, ices became exposed. If such stable ices were present from the beginning, the existence of CH4 frosts would also imply that Pluto's present atmosphere contains a remnant of its primordial atmosphere.

  11. Advanced Ground Systems Maintenance Functional Fault Models For Fault Isolation Project

    NASA Technical Reports Server (NTRS)

    Perotti, Jose M. (Compiler)

    2014-01-01

    This project implements functional fault models (FFM) to automate the isolation of failures during ground systems operations. FFMs will also be used to recommend sensor placement to improve fault isolation capabilities. The project enables the delivery of system health advisories to ground system operators.

  12. An Overview of the JPSS Ground Project Algorithm Integration Process

    NASA Astrophysics Data System (ADS)

    Vicente, G. A.; Williams, R.; Dorman, T. J.; Williamson, R. C.; Shaw, F. J.; Thomas, W. M.; Hung, L.; Griffin, A.; Meade, P.; Steadley, R. S.; Cember, R. P.

    2015-12-01

    The smooth transition, implementation and operationalization of scientific software's from the National Oceanic and Atmospheric Administration (NOAA) development teams to the Join Polar Satellite System (JPSS) Ground Segment requires a variety of experiences and expertise. This task has been accomplished by a dedicated group of scientist and engineers working in close collaboration with the NOAA Satellite and Information Services (NESDIS) Center for Satellite Applications and Research (STAR) science teams for the JPSS/Suomi-NPOES Preparatory Project (S-NPP) Advanced Technology Microwave Sounder (ATMS), Cross-track Infrared Sounder (CrIS), Visible Infrared Imaging Radiometer Suite (VIIRS) and Ozone Mapping and Profiler Suite (OMPS) instruments. The presentation purpose is to describe the JPSS project process for algorithm implementation from the very early delivering stages by the science teams to the full operationalization into the Interface Processing Segment (IDPS), the processing system that provides Environmental Data Records (EDR's) to NOAA. Special focus is given to the NASA Data Products Engineering and Services (DPES) Algorithm Integration Team (AIT) functional and regression test activities. In the functional testing phase, the AIT uses one or a few specific chunks of data (granules) selected by the NOAA STAR Calibration and Validation (cal/val) Teams to demonstrate that a small change in the code performs properly and does not disrupt the rest of the algorithm chain. In the regression testing phase, the modified code is placed into to the Government Resources for Algorithm Verification, Integration, Test and Evaluation (GRAVITE) Algorithm Development Area (ADA), a simulated and smaller version of the operational IDPS. Baseline files are swapped out, not edited and the whole code package runs in one full orbit of Science Data Records (SDR's) using Calibration Look Up Tables (Cal LUT's) for the time of the orbit. The purpose of the regression test is to

  13. Dust ablation in Pluto's atmosphere

    NASA Astrophysics Data System (ADS)

    Horanyi, Mihaly; Poppe, Andrew; Sternovsky, Zoltan

    2016-04-01

    Based on measurements by dust detectors onboard the Pioneer 10/11 and New Horizons spacecraft the total production rate of dust particles born in the Edgeworth Kuiper Belt (EKB) has been be estimated to be on the order of 5 ṡ 103 kg/s in the approximate size range of 1 - 10 μm. Dust particles are produced by collisions between EKB objects and their bombardment by both interplanetary and interstellar dust particles. Dust particles of EKB origin, in general, migrate towards the Sun due to Poynting-Robertson drag but their distributions are further sculpted by mean-motion resonances as they first approach the orbit of Neptune and later the other planets, as well as mutual collisions. Subsequently, Jupiter will eject the vast majority of them before they reach the inner solar system. The expected mass influx into Pluto atmosphere is on the order of 200 kg/day, and the arrival speed of the incoming particles is on the order of 3 - 4 km/s. We have followed the ablation history as function of speed and size of dust particles in Pluto's atmosphere, and found that volatile rich particles can fully sublimate due to drag heating and deposit their mass in narrow layers. This deposition might promote the formation of the haze layers observed by the New Horizons spacecraft. This talk will explore the constraints on the composition of the dust particles by comparing the altitude of the deposition layers to the observed haze layers.

  14. Ground-layer turbulence evaluation project at Subaru Telescope

    NASA Astrophysics Data System (ADS)

    Oya, Shin

    2015-04-01

    A candidate of the next-generation adaptive optics (AO) system at Subaru Telescope is a ground-layer AO (GLAO) using an adaptive secondary mirror. The performance of GLAO depends on the turbulence profile because only ground-layer turbulence is corrected. At Mouna Kea, the profile data have been obtained at the summit ridge site and TMT site. However, the height difference of the Subaru site from these sites is about 100 m, close to the scale height of the ground-layer turbulence. There is a possibility that the topographical difference affects the ground-layer turbulence property, and then the performance of GLAO. In this paper, the activity to evaluate the ground-layer turbulence at the Subaru site is introduced.

  15. Migration of Frosts from High-Albedo Regions of Pluto: what New Horizons Reveals

    NASA Astrophysics Data System (ADS)

    Buratti, Bonnie J.; Stern, S. A.; Weaver, Hal A.; Young, Leslie A.; Olkin, Cathy B.; Ennico, Kimberly; Binzel, Richard P.; Zangari, Amanda; Earle, Alissa M.

    2015-11-01

    With its high eccentricity and obliquity, Pluto should exhibit seasonal volatile transport on its surface. Several lines of evidence support this transport: doubling of Pluto’s atmospheric pressure over the past two decades (Young et al., 2013, Ap. J. 766, L22; Olkin et al., 2015, Icarus 246, 230); changes in its historical rotational light curve, once all variations due to viewing geometry have been modelled (Buratti et al., 2015; Ap. J. 804, L6); and changes in HST albedo maps (Buie et al., 2010, Astron. J. 139, 1128). New Horizons LORRI images reveal that the region of greatest albedo change is not the polar cap(s) of Pluto, but the feature informally named Tombaugh Regio (TR). This feature has a normal reflectance as high as ~0.8 in some places, and it is superposed on older, lower-albedo pre-existing terrain with an albedo of only ~0.10. This contrast is larger than any other body in the Solar System, except for Iapetus. This albedo dichotomy leads to a complicated system of cold-trapping and thermal segregation, beyond the simple picture of seasonal volatile transport. Whatever the origin of TR, it initially acted as a cold trap, as the temperature differential between the high and low albedo regions could be enormous, possibly approaching 20K, based on their albedo differences and assuming their normalized phase curves are similar. This latter assumption will be refined as the full New Horizons data set is returned.Over six decades of ground-based photometry suggest that TR has been decreasing in albedo over the last 25 years. Possible causes include changing insolation angles, or sublimation from the edges where the high-albedo material impinges on a much warmer substrate.Funding by the NASA New Horizons Project acknowledged.

  16. Surface compositions across Pluto and Charon.

    PubMed

    Grundy, W M; Binzel, R P; Buratti, B J; Cook, J C; Cruikshank, D P; Dalle Ore, C M; Earle, A M; Ennico, K; Howett, C J A; Lunsford, A W; Olkin, C B; Parker, A H; Philippe, S; Protopapa, S; Quirico, E; Reuter, D C; Schmitt, B; Singer, K N; Verbiscer, A J; Beyer, R A; Buie, M W; Cheng, A F; Jennings, D E; Linscott, I R; Parker, J Wm; Schenk, P M; Spencer, J R; Stansberry, J A; Stern, S A; Throop, H B; Tsang, C C C; Weaver, H A; Weigle, G E; Young, L A

    2016-03-18

    The New Horizons spacecraft mapped colors and infrared spectra across the encounter hemispheres of Pluto and Charon. The volatile methane, carbon monoxide, and nitrogen ices that dominate Pluto's surface have complicated spatial distributions resulting from sublimation, condensation, and glacial flow acting over seasonal and geological time scales. Pluto's water ice "bedrock" was also mapped, with isolated outcrops occurring in a variety of settings. Pluto's surface exhibits complex regional color diversity associated with its distinct provinces. Charon's color pattern is simpler, dominated by neutral low latitudes and a reddish northern polar region. Charon's near-infrared spectra reveal highly localized areas with strong ammonia absorption tied to small craters with relatively fresh-appearing impact ejecta. PMID:26989260

  17. New Horizons: Imagining a Landing on Pluto

    NASA Video Gallery

    Imagine a future spacecraft following New Horizons’ trailblazing path to Pluto, but instead of flying past its target, the next visitor touches down in the midst of tall mountains on the icy plains...

  18. Pluto: Distribution of ices and coloring agents from New Horizons LEISA observations

    NASA Astrophysics Data System (ADS)

    Cruikshank, Dale P.; Grundy, William M.; Stern, S. Alan; Olkin, Catherine B.; Cook, Jason C.; Dalle Ore, Cristina M.; Binzel, Richard P.; Earle, Alissa M.; Ennico, Kimberly; Jennings, Donald E.; Howett, Carly J. A.; Linscott, Ivan R.; Lunsford, Allen W.; Parker, Alex H.; Parker, Joel W.; Protopapa, Silvia; Reuter, Dennis C.; Singer, Kelsi N.; Spencer, John R.; Tsang, Constantine C. C.; Verbiscer, Anne J.; Weaver, Harold A.; Young, Leslie A.

    2015-11-01

    Pluto was observed at high spatial resolution (maximum ~3 km/px) by the New Horizons LEISA imaging spectrometer. LEISA is a component of the Ralph instrument (Reuter, D.C., Stern, S.A., Scherrer, J., et al. 2008, Space Sci. Rev. 140, 129) and affords a spectral resolving power of 240 in the wavelength range 1.25-2.5 µm, and 560 in the range 2.1-2.25 µm. Spatially resolved spectra with LEISA are used to map the distributions of the known ices on Pluto (N2, CH4, CO) and to search for other surface components. The spatial distribution of volatile ices is compared with the distribution of the coloring agent(s) on Pluto's surface. The correlation of ice abundance and the degree of color (ranging from yellow to orange to dark red) is consistent with the presence of tholins, which are refractory organic solids of complex structure and high molecular weight, with colors consistent with those observed on Pluto. Tholins are readily synthesized in the laboratory by energetic processing of mixtures of the ices (N2, CH4, CO) known on Pluto's surface. We present results returned from the spacecraft to date obtained from the analysis of the high spatial resolution dataset obtained near the time of closest approach to the planet. Supported by NASA’s New Horizons project.

  19. Prior Clues of Internal Activity on Pluto

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2015-08-01

    New Horizons scientists Kelsi Singer and Alan Stern predicted that Pluto may have subsurface activity, in this study published even before New Horizon's recent observations of Pluto's strangely uncratered surface areas. Where Does the Nitrogen Come From? Pluto's surface and atmosphere contain a significant amount of nitrogen, but the gas leaks out of Pluto's atmosphere at an tremendous rate -- estimated at about 1.5 × 1012-13 grams per year (roughly 200-2000 tons/hr!). But if the nitrogen has been escaping at this rate since the solar system was formed, the entire atmospheric reservoir of would have been lost long before now. So what is resupplying Pluto's nitrogen? Singer and Stern explore several possible sources: Delivery by comet impact: The authors calculate that over the 4-billion-year span since Pluto's formation, it has been impacted by a total of 600 million comets of varying sizes, all likely containing nitrogen. But their estimates show that the amount of nitrogen this would supply falls several orders of magnitude shy of explaining the escape rate. Excavation by cratering: Could comet impacts simply expose nitrogen buried in reservoirs just beneath Pluto's surface? That method, too, falls short of resupplying atmospheric nitrogen escape by at least an order of magnitude, even using the most generous estimates. Internal activity: Unless the believed atmospheric loss rate of Pluto is overestimated, the authors conclude that Pluto must experience some sort of internal activity such as cryovolcanism that brings nitrogen from below its surface up and into the atmosphere. The Study in Context of Current Events. Singer and Stern wrote and submitted this paper before the New Horizons spacecraft's recent flyby of Pluto. Data from this mission has recently provided surprise after surprise -- from images of smooth, crater-free regions on Pluto's surface to evidence of sheets of carbon monoxide, methane, and nitrogen ices flowing like glaciers. These clues support

  20. The Cold and Icy Heart of Pluto

    NASA Astrophysics Data System (ADS)

    Hamilton, D. P.

    2015-12-01

    The locations of large deposits of frozen volatiles on planetary surfaces are largely coincident with areas receiving the minimum annual influx of solar energy. Thus we have the familiar polar caps of Earth and Mars, but cold equatorial regions for planets with obliquities between 54 and 126 degrees. Furthermore, for tilts between 45-66 degrees and 114-135 degrees the minimum incident energy occurs neither at the pole nor the equator. We find that the annual average insolation is always symmetric about Pluto's equator and is fully independent of the relative locations of the planet's pericenter and equinoxes. Remarkably, this symmetry holds for arbitrary orbital eccentricities and obliquities, and so we provide a short proof in the margin of this abstract. The current obliquity of Pluto is 119 degrees, giving it minima in average annual insolation at +/- 27 degrees latitude, with ~1.5% more flux to the equator and ~15% more to the poles. But the obliquity of Pluto also varies sinusoidally from 102-126 degrees and so, over the past million years, Pluto's annual equatorial and polar fluxes have changed by +15% and -13%, respectively. Interestingly, the energy flux received by latitudes between 25-35 degrees remains nearly constant over the presumably billions of years since Pluto acquired its current orbit and spin properties. Thus these latitudes are continuously cold and should be favored for the long-term deposition of volatile ices; the bright heart of Pluto, Sputnik Planum, extends not coincidentally across these latitudes. Reflected light and emitted thermal radiation from Charon increases annual insolation to one side of Pluto by of order 0.02%. Although small, the bulk of the energy is delivered at night to Pluto's cold equatorial regions. Furthermore, Charon's thermal IR is delivered very efficiently to icy deposits. Over billions of years, ices have preferentially formed and survived in the anti-Charon hemisphere.

  1. The Cold and Icy Heart of Pluto

    NASA Astrophysics Data System (ADS)

    Hamilton, D. P.

    2015-12-01

    The locations of large deposits of frozen volatiles on planetary surfaces are largely coincident with areas receiving the minimum annual influx of solar energy. Thus we have the familiar polar caps of Earth and Mars, but cold equatorial regions for planets with obliquities between 54 and 126 degrees. Furthermore, for tilts between 45-66 degrees and 114-135 degrees the minimum incident energy occurs neither at the pole nor the equator. We find that the annual average insolation is always symmetric about Pluto's equator and is fully independent of the relative locations of the planet's pericenter and equinoxes. Remarkably, this symmetry holds for arbitrary orbital eccentricities and obliquities, and so we provide a short proof in the margin of this abstract. The current obliquity of Pluto is 119 degrees, giving it minima in average annual insolation at /- 27 degrees latitude, with ~1.5% more flux to the equator and ~15% more to the poles. But the obliquity of Pluto also varies sinusoidally from 102-126 degrees and so, over the past million years, Pluto's annual equatorial and polar fluxes have changed by 15% and -13%, respectively. Interestingly, the energy flux received by latitudes between 25-35 degrees remains nearly constant over the presumably billions of years since Pluto acquired its current orbit and spin properties. Thus these latitudes are continuously cold and should be favored for the long-term deposition of volatile ices; the bright heart of Pluto, Sputnik Planum, extends not coincidentally across these latitudes. Reflected light and emitted thermal radiation from Charon increases annual insolation to one side of Pluto by of order 0.02%. Although small, the bulk of the energy is delivered at night to Pluto's cold equatorial regions. Furthermore, Charon's thermal IR is delivered very efficiently to icy deposits. Over billions of years, ices have preferentially formed and survived in the anti-Charon hemisphere.

  2. (abstract) Student Involvement in the Pluto Mission

    NASA Technical Reports Server (NTRS)

    Weinstein, Stacy

    1994-01-01

    The Pluto Fast Flyby mission development baseline consists of 2 identical spacecraft (120 - 165 kg) to be launched to Pluto/ Charon in the late 1990s. These spacecraft are intended to fly by Pluto and Charon in order to perform various remote-sensing scientific investigations and have a mission development cost less than $400M (FY92$) through launch plus 30 days. The Pluto team is committed to involving students in all areas of mission development and operations. In November 1992, the Pluto team sent a request for information to industry and universities looking for ways to lower the mass and cost of the mission. A number of universities responded with creative and promising technological developments. In addition to contracts with industry and other federal labs, contracts were signed with schools which allowed students to apply their research, enabling the Pluto team to use valuable resources on a variety of advanced technology endeavors. Perhaps the most exciting aspect of these investigations was that the deliverables that the students produced were not just final reports, but actual prototype hardware complete with write-ups on lessons learned in machining, programming, and design. Another exciting development was a prototype adapter competition in which 7 universities competed to design, build, and test their idea of a lightweight spacecraft-propulsion stack adapter. Georgia Tech won with an innovative dodecahedron composite lattice cone. Other students from other universities were involved as well. All in all, over 40 students from 20 different colleges made significant contributions to the Pluto Fast Flyby mission development through their efforts. This paper will give an overview of Pluto student involvement, the technologies which they examined, and useful results for the mission.

  3. Pluto Express - Out of the Darkness

    NASA Technical Reports Server (NTRS)

    Herman, M.

    1995-01-01

    Pluto, discovered in 1930, is the largest of a class of primordial bodies at the edge of our solar system that have comet-like properties and remain relatively unmodified by warming from the sun. It is the only planet in the solar system not explored via robotic spacecraft. This lecture discusses the status of the Pluto Express preproject (science objectives, etc.), and its telecommunication subsystem.

  4. Craters on Pluto and Charon: Characteristics and Impactor Population

    NASA Astrophysics Data System (ADS)

    Singer, Kelsi N.; Schenk, Paul M.; Robbins, Stuart J.; Bray, Veronica J.; McKinnon, William B.; Moore, Jeffrey M.; Spencer, John R.; Stern, S. A.; Grundy, W. M.; Howett, Carly J. A.; Dalle Ore, Cristina M.; Beyer, Ross; Parker, Alex H.; Porter, Simon B.; Zangari, Amanda M.; Young, Leslie A.; Olkin, Cathy B.; Ennico, Kimberly

    2015-11-01

    Although both Pluto and Charon have a surprising number of young-looking surfaces, there are still plenty of craters for impact-phenomenon enthusiasts. We will present size, morphology, ejecta, and albedo pattern statistics, in addition to correlations with color/composition where possible. We use images and topography from the Long Range Reconnaissance Imager (LORRI; Cheng et al., 2008, SSR 140, 189-215) and data from the Ralph (Reuter et al., 2008, SSR 140, 129-154) color/composition instruments.Impactor sizes will be estimated from relevant scaling laws for cold water ice (see details in Singer and Stern, 2015, ApJL 808, L50). For Pluto, an image strip at 125 m px-1 includes some cratered terrains, and much of the encounter hemisphere (the anti-Charon hemisphere) will be covered at ~400 m px-1. The ~smallest craters observable at these pixel scales (using a 5 pixel limit) would be ~0.63 km, and ~2 km in diameter, respectively, with impactor diameters estimated at ~50 m, and ~200 m. However, it is likely that degradation processes may obscure small craters, thus this lower observation limit will depend on terrain type. Additionally, lighting and observation geometries vary across the disk, which may make crater detection difficult in some areas. All of the illuminated portions of Pluto (during its 6.4 day rotation period) were imaged at ~20 km px-1 or better during the encounter. The highest resolution images of Pluto (at ~80 m px-1) occur in a narrow strip and are not scheduled for downlink before the DPS.The highest resolution Charon coverage (a strip at ~160 m px-1), a broader swath at 400 m px-1, and the entire encounter hemisphere (the sub-Pluto hemisphere) at ~890 m px-1 may yield craters as small as 0.8, 2, and 4.5 km in diameter, respectively. The inferred impactor sizes for these craters would be ~50 m, 160 m, and 440 m.Although the dataset is limited, we will discuss what constraints can be put on the impactor population. This work was supported by the

  5. The subsurface of Pluto from submillimetre observations

    NASA Astrophysics Data System (ADS)

    Greaves, J. S.; Whitelaw, A. C. M.; Bendo, G. J.

    2015-04-01

    Surface areas on Pluto change in brightness and colour, at optical to infrared wavelengths, over time-scales as short as years. The subsurface contains a reservoir of frozen volatiles, but little is known about it because Pluto is out of reach for cm-radar. Here we present a 0.85 mm wavelength light curve of the Pluto system, from archival data taken in 1997 August with the SCUBA (Submillimetre Common-User Bolometer Array) camera on the James Clerk Maxwell Telescope (JCMT). This wavelength probes for the first time to just below the skin depth of thermal changes over Pluto's day. The light curve differs significantly from counterparts in the mid- to far-infrared, in a longitude range that is optically dark on Pluto's surface. An estimate from Herschel of the 0.5 mm flux in 2012 is comparable to the mean 0.45 mm flux from SCUBA in 1997, suggesting that layers centimetres below the surface have not undergone any gross temperature change. The longitudes that are relatively submillimetre-faint could have a different emissivity, perhaps with a subsurface layer richer in nitrogen or methane ices than at the surface. The Radio Science Experiment (REX) instrument on New Horizons may be able to constrain physical properties deeper down, as it looks back on Pluto's nightside after the 2015 July flyby.

  6. Discovery of two new satellites of Pluto.

    PubMed

    Weaver, H A; Stern, S A; Mutchler, M J; Steffl, A J; Buie, M W; Merline, W J; Spencer, J R; Young, E F; Young, L A

    2006-02-23

    Pluto's first known satellite, Charon, was discovered in 1978. It has a diameter (approximately 1,200 km) about half that of Pluto, which makes it larger, relative to its primary, than any other moon in the Solar System. Previous searches for other satellites around Pluto have been unsuccessful, but they were not sensitive to objects less, similar150 km in diameter and there are no fundamental reasons why Pluto should not have more satellites. Here we report the discovery of two additional moons around Pluto, provisionally designated S/2005 P 1 (hereafter P1) and S/2005 P 2 (hereafter P2), which makes Pluto the first Kuiper belt object known to have multiple satellites. These new satellites are much smaller than Charon, with estimates of P1's diameter ranging from 60 km to 165 km, depending on the surface reflectivity; P2 is about 20 per cent smaller than P1. Although definitive orbits cannot be derived, both new satellites appear to be moving in circular orbits in the same orbital plane as Charon, with orbital periods of approximately 38 days (P1) and approximately 25 days (P2). PMID:16495991

  7. How is Pluto Classified as a Rocky World?

    NASA Video Gallery

    When it comes to Pluto, classification is tricky, but it’s unquestioningly a rocky body. This is Pluto in a Minute. The bodies in our solar system fall more or less into set categories like gas g...

  8. The Pluto System As Seen By New Horizons Spacecraft

    NASA Video Gallery

    The Pluto system as NASA’s New Horizons spacecraft saw it in July 2015. This animation, made with real images taken by New Horizons, begins with Pluto flying in for its close-up on July 14; we then...

  9. Ground water in the North Side Pumping Division, Minidoka Project, Minidoka County, Idaho

    USGS Publications Warehouse

    Crosthwaite, Emerson G.; Scott, R.C.

    1956-01-01

    nearby is being developed by private capital. Completion of the Federal reclamation project will more than double the irrigated acreage in the North Side Division of the Minidoka Project. The area to be irrigated with ground water is at the south-central edge of the Snake River Plain adjacent to project lands that have been irrigated for many years with Snake River water.

  10. Processes Modifying Cratered Terrains on Pluto

    NASA Astrophysics Data System (ADS)

    Moore, Jeffrey M.; Howard, Alan D.; White, Oliver L.; Umurhan, Orkan M.; Schenk, Paul M.; Beyer, Ross A.; McKinnon, William B.; Singer, Kelsi N.; Spencer, John; Stern, S. A.; Weaver, H. A.; Young, Leslie A.; Ennico, Kimberly; Olkin, Cathy B.

    2015-11-01

    The July encounter with Pluto by the New Horizons spacecraft permitted imaging of its cratered terrains with scales as high as ~100 m/pixel, and in stereo. In the initial download of images, acquired at 2.2 km/pixel, widely distributed impact craters up to 260 km diameter are seen in the near-encounter hemisphere. Many of the craters appear to be significantly degraded or infilled. Some craters appear partially destroyed, perhaps by erosion such as associated with the retreat of scarps. Bright ice-rich deposits highlight some crater rims and/or floors. While the cratered terrains identified in the initial downloaded images are generally seen on high-to-intermediate albedo surfaces, the dark equatorial terrain informally known as Cthulhu Regio is also densely cratered. We will explore the range of possible processes that might have operated (or still be operating) to modify the landscape from that of an ancient pristinely cratered state to the present terrains revealed in New Horizons images. The sequence, intensity, and type of processes that have modified ancient landscapes are, among other things, the record of climate and volatile evolution throughout much of the Pluto’s existence. The deciphering of this record will be discussed. This work was supported by NASA's New Horizons project.

  11. US Department of Energy Uranium Mill Tailings Remedial Action ground water Project. Revision 1, Version 1: Final project plan

    SciTech Connect

    Not Available

    1993-12-21

    The scope of the Project is to develop and implement a ground water compliance strategy for all 24 UMTRA processing sites. The compliance strategy for the processing sites must satisfy requirements of the proposed EPA ground water cleanup standards in 40 CFR Part 192, Subparts B and C (1988). This scope of work will entail the following activities, on a site-specific basis: Development of a compliance strategy based upon modification of the UMTRA Surface Project remedial action plans (RAP) or development of Ground Water Project RAPs with NRC and state or tribal concurrence on the RAP; implementation of the RAP to include establishment of institutional controls, where appropriate; institution of long-term verification monitoring for transfer to a separate DOE program on or before the Project end date; and preparation of completion reports and final licensing on those sites that will be completed prior to the Project end date.

  12. Effects of present and projected ground-water withdrawals on the Twin Cities aquifer system, Minnesota

    USGS Publications Warehouse

    Schoenberg, Michael

    1990-01-01

    Projected changes in population and industrial development suggest that future ground-water withdrawals may increase from those for the 1970's. Steady-state model results indicate that the potentiometric surface of the Mount Simon-Hinckley aquifer would be lowered as much as 400 feet if pumpage from that aquifer were increased by 125 percent above 1980 ground-water withdrawal rates of about 200 million gallons per day. The potentiometric surface of the Prairie du Chien-Jordan aquifer also would be lowered as much as 400 feet if pumpage from that aquifer were increased by 200 percent above 1980 ground-water withdrawals of 160 million gallons per day. Given the projected distribution of future ground-water development, and the limitations inherent in simulating ground-water flow, the model results indicate that an approximate limit of ground-water availability in the Twin Cities Metropolitan Area, Minnesota, is from about 500 to 800 million gallons per day.

  13. Geology Before Pluto: Pre-Encounter Considerations

    NASA Technical Reports Server (NTRS)

    Moore, Jeffrey M.

    2014-01-01

    Pluto, its large satellite Charon, and its four known satellites represent the first trans-Neptunian Kuiper Belt objects populating the outer-most solar system beyond the gas giant planets to be studied in detail from a spacecraft (New Horizons). A complete picture of the solar nebula, and solar system formation cannot be confidently formulated until representatives of this group of bodies at the edge of solar space have been examined. The Pluto system is composed of unique lunar- and intermediate-sized objects that can tell us much about how objects with volatile icy compositions evolve. Modeling of the interior suggests that geologic activity may have been to some degree, and observations of frost on the surface could imply the need for a geologic reservoir for the replenishment of these phases. However, the putative indicators of Pluto's geologic history are inconclusive and unspecific. Detailed examination of Pluto's geologic record is the only plausible means of bridging the gap between theory and observations. In this talk I will examine the potential importance of these tentative indications of geologic activity and how specific spacecraft observations have been designed and used to constrain the Pluto system's geologic history. The cameras of New Horizons will provide robust data sets that should be immanently amenable to geological analysis of the Pluto System's landscapes. In this talk, we begin with a brief discussion of the planned observations by New Horizons' cameras that will bear most directly on geological interpretability. Then I will broadly review major geological processes that could potentially operate of the surfaces of Pluto and its moons. I will first survey exogenic processes (i.e., those for which energy for surface modification is supplied externally to the planetary surface): impact cratering, sedimentary processes (including volatile migration) and the work of wind. I will conclude with an assessment of prospects for endogenic activity

  14. What We Know Now: Synthesis for Understanding the Origin of the Pluto System

    NASA Astrophysics Data System (ADS)

    McKinnon, William B.; Stern, S. A.; Weaver, H. A.; Spencer, J. R.; Nimmo, F.; Lisse, C. M.; Umurhan, O. M.; Moore, J. M.; Buie, M. W.; Porter, S. B.; Olkin, C. B.; Young, L. A.; Ennico, K.

    2015-11-01

    The July 2015 New Horizons flyby has removed a long-standing obstacle to understanding the cosmogony of the Pluto-Charon system: the uncertain radius of Pluto. Combined with precise astrometric fits to the barycenter of the Pluto-Charon binary from HST observations of the more distant, small satellites (Brozovic et al., Icarus 246, 317-329, 2015), the densities of both Pluto and Charon are now known. At the 10% level, these densities are rather similar, as opposed to the more divergent density estimates of years past in which Charon was thought to be substantially icier. In the context of a “giant impact” origin, a rock-rich Charon implies that the precursor impacting bodies were at most only partially differentiated — possessing relatively thin ice shells (Canup, Astron. J. 141, 35, 2011). This suggests some combination of relatively slow and/or late accretion in the ancestral Kuiper belt. New Horizons has also shown that Nix and Hydra possess high albedos, consistent with ice-dominated compositions. Such compositions are consistent with a giant impact origin in which one or both precursor impacting bodies were partially differentiated, so that the small satellites ultimately formed from material ejected from ice-dominated surface layers (Peale and Canup, Treatise on Geophysics, 2nd Ed., chapter 10.17, 2015). We examine whether Pluto and Charon could actually possess the same bulk rock/ice ratio and whether this would allow for an alternate, non-giant-impact origin for the Pluto system.This work was supported by NASA's New Horizons project.

  15. Photometry of Pluto-Charon mutual events and Hirayama family asteroids

    NASA Technical Reports Server (NTRS)

    Binzel, Richard P.

    1988-01-01

    Once every 124 years, nature provides earth-bound astronomers with the opportunity to observe occultation and transit phenomena between Pluto and its satellite, Charon. Ground-based observations of these events will allow precise physical parameters for the Pluto-Charon system to be derived which are unlikely to be improved upon until in situ spacecraft observations are obtained. The proposed program will continue to support photometry observations from McDonald Observatory, a critical location in an international Pluto Campaign network. Knowledge of the diameters, masses, densities, and compositions derived from these observations will augment our understanding of Pluto's origin and its context within the problem of solar system formation. A second task will continue to research the evolutionary processes which have occurred in the asteroid belt by measuring the physical properties of specific Hirayama family members. Photoelectric lightcurve observations of Koronis and Themis family members will be used to investigate the individual catastrophic collision events which formed each family. By comparing these properties with results of laboratory and numerical experiments, the outcomes of catastrophic disruptions and collisional evolution may be more precisely determined.

  16. New rotationally resolved spectra of Pluto-Charon from 350 - 900 nm

    NASA Astrophysics Data System (ADS)

    Throop, Henry B.; Grundy, Will; Olkin, Cathy B.; Young, Leslie A.; Sickafoose, Amanda A.

    2015-11-01

    We are using the 11-meter Southern African Large Telescope (SALT) to acquire high-resolution rotationally resolved visible spectra of Pluto-Charon. We use the Robert Stobie Spectrograph (RSS) to observe Pluto-Charon from 350 nm to 900 nm. At 500 nm, resolution is 0.05 nm (R ~ 10,0000) and SNR per spectral resolution element is ~ 500.We planned observations for 13 dates during June-September 2014, and 13 more dates during June-September 2015. The observations for each season were spaced so as to equally sample Pluto's 6.5-day rotational period. As of the abstract submission, we have data from 11 nights (2014) and 9 nights (2015) in hand. Most of the observations were taken with observations of solar-type star HD 146233 to determine the surface reflectivity.Our results will provide constraint on the composition and spatial distribution of material on Pluto's surface, enabling comparison to previous epochs and near-infrared results, and giving a ground-truth for New Horizons' July 2015 flyby. In addition, our data will allow us to search for new spectral features in the range 350 nm to 600 nm, at a sensitivity substantially higher than previously published searches.

  17. New rotationally resolved spectra of Pluto-Charon from 350 - 900 nm

    NASA Astrophysics Data System (ADS)

    Throop, Henry B.; Gulbis, Amanda; Grundy, Will; Young, Leslie A.; Olkin, Cathy B.

    2014-11-01

    We are using the 11-meter Southern African Large Telescope (SALT) to acquire the first rotationally resolved visible spectra of Pluto-Charon in nearly 20 years. We use the Robert Sobie Spectrograph (RSS) to observe Pluto-Charon from 350 nm to 900 nm. At 500 nm, resolution is 0.05 nm ( 10,0000) and SNR per spectral resolution element is ~ 500.We planned observations for 13 dates during June - August 2014, spaced so as to evenly sample Pluto's 6.5-day rotational period. As of the abstract submission, we have 8 of these in hand, two of which sample the same hemisphere as the best planned color New Horizons image. We determined the surface reflectivity by comparing with the solar-type star HD 146233. Our results will provide constraint on the composition and spatial distribution of material on Pluto's surface, enabling comparison to previous epochs and near-infrared results, and giving a present-day 'ground truth' ahead of New Horizons' July 2015 flyby. In addition, our data will allow us to search for new spectral features in the range 350 nm to 600 nm, at a sensitivity substantially higher than all previously published searches.

  18. Is Pluto a planet? Student powered video rap ';battle' over tiny Pluto's embattled planetary standing

    NASA Astrophysics Data System (ADS)

    Beisser, K.; Cruikshank, D. P.; McFadden, T.

    2013-12-01

    Is Pluto a planet? Some creative low income Bay-area middle-schoolers put a musical spin on this hot science debate with a video rap ';battle' over tiny Pluto's embattled planetary standing. The students' timing was perfect, with NASA's New Horizons mission set to conduct the first reconnaissance of Pluto and its moons in July 2015. Pluto - the last of the nine original planets to be explored by spacecraft - has been the subject of scientific study and speculation since Clyde Tombaugh discovered it in 1930, orbiting the Sun far beyond Neptune. Produced by the students and a very creative educator, the video features students 'battling' back and forth over the idea of Pluto being a planet. The group collaborated with actual space scientists to gather information and shot their video before a 'green screen' that was eventually filled with animations and visuals supplied by the New Horizons mission team. The video debuted at the Pluto Science Conference in Maryland in July 2013 - to a rousing response from researchers in attendance. The video marks a nontraditional approach to the ongoing 'great planet debate' while educating viewers on a recently discovered region of the solar system. By the 1990s, researchers had learned that Pluto possessed multiple exotic ices on its surface, a complex atmosphere and seasonal cycles, and a large moon (Charon) that likely resulted from a giant impact on Pluto itself. It also became clear that Pluto was no misfit among the planets - as had long been thought - but the largest and brightest body in a newly discovered 'third zone' of our planetary system called the Kuiper Belt. More recent observations have revealed that Pluto has a rich system of satellites - five known moons - and a surface that changes over time. Scientists even speculate that Pluto may possess an internal ocean. For these and other reasons, the 2003 Planetary Decadal Survey ranked a Pluto/Kuiper Belt mission as the highest priority mission for NASA's newly created

  19. UMTRA project technical assistance contractor quality assurance implementation plan for surface and ground water

    SciTech Connect

    Not Available

    1994-09-01

    The Uranium Mill Tailings Remedial Action (UMTRA) Project Technical Assistance Contractor (TAC) Quality Assurance Implementation Plan (QAIP) outlines the primary requirements for integrating quality functions for TAC technical activities applied to the surface and ground water phases of the UMTRA Project. The QAIP is subordinate to the latest issue of the UMTRA Project TAC Quality Assurance Program Plan (QAPP). The QAIP addresses technical aspects of the TAC UMTRA Project surface and ground water programs. The QAIP is authorized and approved by the TAC Project Manager and QA manager. The QA program is designed to use monitoring, audit, and surveillance functions as management tools to ensure that all Project organization activities are carried out in a manner that will protect public health and safety, promote the success of the UMTRA Project and meet or exceed contract requirements.

  20. Advanced radioisotope power source options for Pluto Express

    SciTech Connect

    Underwood, M.L.

    1995-12-31

    In the drive to reduce mass and cost, Pluto Express is investigating using an advanced power conversion technology in a small Radioisotope Power Source (RPS) to deliver the required mission power of 74 W(electric) at end of mission. Until this year the baseline power source under consideration has been a Radioisotope Thermoelectric Generator (RTG). This RTG would be a scaled down GPHS RTG with an inventory of 6 General Purpose Heat Sources (GPHS) and a mass of 17.8 kg. High efficiency, advanced technology conversion options are being examined to lower the power source mass and to reduce the amount of radioisotope needed. Three technologies are being considered as the advanced converter technology: the Alkali Metal Thermal-to-Electric Converter (AMTEC), Thermophotovoltaic (TPV) converters, and Stirling Engines. Conceptual designs for each of these options have been prepared. Each converter would require only 2 GPHSs to provide the mission power and would have a mass of 6.1, 7.2, and 12.4 kg for AMTEC, TPV, and Stirling Engines respectively. This paper reviews the status of each technology and the projected performance of an advanced RPS based on each technology. Based on the projected performance and spacecraft integration issues, Pluto Express would prefer to use the AMTEC based RPS. However, in addition to technical performance, selection of a power technology will be based on many other factors.

  1. The Atmospheres of Pluto and Charon

    NASA Astrophysics Data System (ADS)

    Gladstone, R.; Summers, M. E.; Stern, A.; Ennico Smith, K.; Olkin, C.; Weaver, H. A., Jr.; Young, L. A.; Strobel, D. F.; Hinson, D. P.; Kammer, J.; Parker, A. H.; Steffl, A.; Linscott, I.; Parker, J. W.; Cheng, A. F.; Versteeg, M. H.; Greathouse, T.; Retherford, K. D.; Throop, H.; Woods, W. W.; Singer, K. N.; Tsang, C.; Schindhelm, E.; Wong, M. L.; Yung, Y. L.; Zhu, X.; Curdt, W.; Lavvas, P.; Young, E. F.; Tyler, G. L.

    2015-12-01

    Major goals of the New Horizons (NH) mission are to explore and characterize the structure and composition of Pluto's atmosphere, and to determine whether Charon has a measurable atmosphere of its own. Several instruments onboard NH contribute to these goals, primarily: 1) the REX instrument, through uplink X-band radio occultations, 2) the Alice instrument, through extreme- and far-ultraviolet solar occultations, and 3) the LORRI panchromatic imager, through high-phase-angle imaging. The associated datasets were obtained following closest approach of NH to Pluto. Pressure and temperature profiles of the lower atmosphere are derived from the REX data, the composition and structure of the extended atmosphere are derived from the Alice data (supported by approach observations of reflected ultraviolet sunlight), and the distribution and properties of Pluto's hazes are derived from the LORRI data. In this talk an overview of the early atmosphere science results will be presented.

  2. Resolved CCD Photometry of Pluto and Charon

    SciTech Connect

    Jones, J.H.; Waddell, P.; Christian, C.A.

    1988-04-01

    Highly resolved CCD images of Pluto and Charon near maximum separation are measured with point spread function fitting techniques to determine independent magnitudes and an accurate separation for Pluto and Charon. A measured separation of 0.923 + or - 0.005 arcsec at a position angle of 173.3 + or - 0.3 deg on June 18, 1987 UT produced a value of 19558.0 + or - 153.0 km for the radius of Charon's orbit. An apparent B magnitude of 14.877 + or - 0.009 and (B-I) color of 1.770 + or - 0.015 are determined for Pluto, while Charon is fainter with B = 18.826 + or - 0.011 and slightly bluer with (B-I) = 1.632 + or - 0.018. 18 references.

  3. Detection of HCN in Pluto's atmosphere

    NASA Astrophysics Data System (ADS)

    Lellouch, Emmanuel; Gurwell, Mark; Butler, Bryan; Moullet, Arielle; Moreno, Raphael; Bockelée-Morvan, Dominique; Biver, Nicolas; Fouchet, Thierry; Lis, Darek; Stern, Alan; Young, Leslie; Young, Eliot; Weaver, Hal; Boissier, Jeremie; Stansberry, John

    2015-11-01

    We report on the first detection of hydrogen cyanide in Pluto's atmosphere, obtained with the ALMA interferometer. ALMA observations of the HCN(4-3) line at 354.505 GHz were conducted on June 12.2 and June 13.15, 2015 at ~0.3" spatial resolution, separating Pluto from Charon, with a 234 kHz spectral sampling. The HCN line was detected on both dates, with a ~100 mJy contrast and a ~0.75 MHz FWHM linewidth. The narrow linewidth and the absence of Lorentzian wings indicate that most of the HCN resides in Pluto's upper atmosphere. As on Titan, HCN is an expected photochemical product in a N2-CH4 atmosphere. Data interpretation in terms of the HCN abundance/vertical distribution and comparison with photochemical models will be presented.

  4. Pick-up ions at Pluto

    NASA Astrophysics Data System (ADS)

    Kecskemety, K.; Cravens, T. E.

    1993-04-01

    Methane molecules escaping from Pluto's atmosphere are ionized, and the resulting ions are picked up by the solar wind. The mass loading associated with this ion pick-up can produce a cometlike interaction of the solar wind with Pluto. Heavy ion gyroradii are as large as a half million km in the weak interplanetary magnetic field that exists at 30 AU, which is about an order of magnitude larger than the size of the 'interaction region'. We have calculated velocity space distributions of pick-up ions using numerically determined ion trajectories. The predicted pick-up ion fluxes are high enough to be detectable by standard charged particle detectors as far upstream of Pluto as 10 exp 6 km.

  5. Photochemistry and Eddy Mixing in Pluto's atmosphere

    NASA Astrophysics Data System (ADS)

    Yung, Y. L.; Wong, M. L.; Summers, M. E.; Gladstone, R.

    2015-12-01

    We present a photochemical model of Pluto's atmosphere that includes complete chemistry of hydrocarbons and nitriles, and apply this model to the interpretation of Alice ultraviolet observations during the New Horizons flyby in July 2015. This model self-consistently calculates the production, transport, and condensation of hydrocarbons from the surface to the exosphere. New features of the model include the condensation of molecules and their sublimation back into the gas. The Alice observations of C2H2 and C2H4 provide strong constraints on the rate of eddy mixing in the altitude region 100-600 km altitude region. Inferred mixing rates are low, consistent with slow downward transport of long-lived photochemical products to Pluto's lower atmosphere where loss by condensation occurs. We present an interpretation of the observed hydrocarbons as a test of our understanding of Pluto's atmosphere photochemistry.

  6. Pick-up ions at Pluto

    NASA Technical Reports Server (NTRS)

    Kecskemety, K.; Cravens, T. E.

    1993-01-01

    Methane molecules escaping from Pluto's atmosphere are ionized, and the resulting ions are picked up by the solar wind. The mass loading associated with this ion pick-up can produce a cometlike interaction of the solar wind with Pluto. Heavy ion gyroradii are as large as a half million km in the weak interplanetary magnetic field that exists at 30 AU, which is about an order of magnitude larger than the size of the 'interaction region'. We have calculated velocity space distributions of pick-up ions using numerically determined ion trajectories. The predicted pick-up ion fluxes are high enough to be detectable by standard charged particle detectors as far upstream of Pluto as 10 exp 6 km.

  7. 2 kWe Solar Dynamic Ground Test Demonstration Project. Volume 3; Fabrication and Test Report

    NASA Technical Reports Server (NTRS)

    Alexander, Dennis

    1997-01-01

    The Solar Dynamic Ground Test Demonstration (SDGTD) project has successfully designed and fabricated a complete solar-powered closed Brayton electrical power generation system and tested it in a relevant thermal vacuum facility at NASA Lewis Research Center (LeRC). In addition to completing technical objectives, the project was completed 3-l/2 months early, and under budget.

  8. Does Pluto Have a Haze Layer?

    NASA Technical Reports Server (NTRS)

    Elliot, James L.

    1997-01-01

    The goal of this research was to determine whether Pluto has a haze layer through observations (with the Kuiper Airborne Observatory) of a stellar occultation by Pluto that was originally predicted to occur on 1993 October 3. As described in the attached material, our extensive astrometric measurements determined that this occultation would not be visible from Earth, and we canceled plans to observe it with the KAO. Efforts were then directed toward improving our astrometric techniques so that we could find future occultations with which we could satisfy the original goals of the research proposed for this grant.

  9. Detection of Gaseous Methane on Pluto

    NASA Technical Reports Server (NTRS)

    Young, Leslie; Tokunaga, Alan; Elliot, J.; deBergh, Catherine; Owen, Tobias; Witteborn, Fred C. (Technical Monitor)

    1995-01-01

    We obtained Pluto's spectrum using the CSHELL echelle spectrograph at NASA's IRTF on Mauna Kea, on 25-26 May 1992, with a spectral resolution of 13,300. The spectral range (5998 - 6018 per centimeter, or 1661.8 - 1666.9 nm) includes the R(0) and the Q(1) - Q(9) lines of the 2v3 band of methane. The resulting spectrum shows the first detection of gaseous methane on Pluto, with a column height of 1.20 (sup +3.15) (sub -0.87) cm-A (3.22 (sup +8.46) (sub -2.34) x 10(exp 19) molecule per square centimeter)).

  10. The Atmospheric Structure of Triton and Pluto

    NASA Technical Reports Server (NTRS)

    Elliot, James L.

    1998-01-01

    The goal of this research was to better determine the atmospheric structures of Triton and Pluto through further analysis of three occultation data sets obtained with the Kuiper Airborne Observatory (KAO.) As the research progressed, we concentrated our efforts on the Triton data, as this appeared to be the most fruitful. Three papers have been prepared as a result of this research. The first paper presents new results about Triton's atmospheric structure from the analysis of all ground-based stellar occultation data recorded to date, including one single-chord occultation recorded on 1993 July 10 and nine occultation lightcurves from the double-star event on 1995 August 14. These stellar occultation observations made both in the visible and in the infrared have good spatial coverage of Triton, including the first Triton central-flash observations, and are the first data to probe the altitude level 20-100 km on Triton. The small-planet lightcurve model of J. L. Elliot and L. A. Young was generalized to include stellar flux refracted by the far limb, and then fitted to the data. Values of the pressure, derived from separate immersion and emersion chords, show no significant trends with latitude, indicating that Triton's atmosphere is spherically symmetric at approximately 50 km altitude to within the error of the measurements; however, asymmetry observed in the central flash indicates the atmosphere is not homogenous at the lowest levels probed (approximately 20 km altitude). From the average of the 1995 occultation data, the equivalent isothermal temperature of the atmosphere is 47 plus or minus 1 K and the atmospheric pressure at 1400 km radius (approximately 50 km altitude) is 1.4 plus or minus 0.1 microbar. Both of these are not consistent with a model based on Voyager UVS and RSS observations in 1989. The atmospheric temperature from the occultation is 5 K colder than that predicted by the model and the observed pressure is a factor of 1.8 greater than the

  11. Evolution of the JPSS Ground Project Calibration and Validation System

    NASA Technical Reports Server (NTRS)

    Purcell, Patrick; Chander, Gyanesh; Jain, Peyush

    2016-01-01

    The Joint Polar Satellite System (JPSS) is the National Oceanic and Atmospheric Administration's (NOAA) next-generation operational Earth observation Program that acquires and distributes global environmental data from multiple polar-orbiting satellites. The JPSS Program plays a critical role to NOAA's mission to understand and predict changes in weather, climate, oceans, coasts, and space environments, which supports the Nation's economy and protection of lives and property. The National Aeronautics and Space Administration (NASA) is acquiring and implementing the JPSS, comprised of flight and ground systems, on behalf of NOAA. The JPSS satellites are planned to fly in the afternoon orbit and will provide operational continuity of satellite-based observations and products for NOAA Polar-orbiting Operational Environmental Satellites (POES) and the Suomi National Polar-orbiting Partnership (SNPP) satellite. To support the JPSS Calibration and Validation (CalVal) node Government Resource for Algorithm Verification, Independent Test, and Evaluation (GRAVITE) services facilitate: Algorithm Integration and Checkout, Algorithm and Product Operational Tuning, Instrument Calibration, Product Validation, Algorithm Investigation, and Data Quality Support and Monitoring. GRAVITE is a mature, deployed system that currently supports the SNPP Mission and has been in operations since SNPP launch. This paper discusses the major re-architecture for Block 2.0 that incorporates SNPP lessons learned, architecture of the system, and demonstrates how GRAVITE has evolved as a system with increased performance. It is now a robust, stable, reliable, maintainable, scalable, and secure system that supports development, test, and production strings, replaces proprietary and custom software, uses open source software, and is compliant with NASA and NOAA standards.

  12. Evolution of the JPSS Ground Project Calibration and Validation System

    NASA Technical Reports Server (NTRS)

    Chander, Gyanesh; Jain, Peyush

    2014-01-01

    The Joint Polar Satellite System (JPSS) is the National Oceanic and Atmospheric Administrations (NOAA) next-generation operational Earth observation Program that acquires and distributes global environmental data from multiple polar-orbiting satellites. The JPSS Program plays a critical role to NOAAs mission to understand and predict changes in weather, climate, oceans, coasts, and space environments, which supports the Nation’s economy and protection of lives and property. The National Aerospace and Atmospheric Administration (NASA) is acquiring and implementing the JPSS, comprised of flight and ground systems on behalf of NOAA. The JPSS satellites are planned to fly in the afternoon orbit and will provide operational continuity of satellite-based observations and products for NOAA Polar-orbiting Operational Environmental Satellites (POES) and the Suomi National Polar-orbiting Partnership (SNPP) satellite. To support the JPSS Calibration and Validation (CalVal) node Government Resource for Algorithm Verification, Independent Test, and Evaluation (GRAVITE) services facilitate: Algorithm Integration and Checkout, Algorithm and Product Operational Tuning, Instrument Calibration, Product Validation, Algorithm Investigation, and Data Quality Support and Monitoring. GRAVITE is a mature, deployed system that currently supports the SNPP Mission and has been in operations since SNPP launch. This paper discusses the major re-architecture for Block 2.0 that incorporates SNPP lessons learned, architecture of the system, and demonstrates how GRAVITE has evolved as a system with increased performance. It is now a robust, stable, reliable, maintainable, scalable, and secure system that supports development, test, and production strings, replaces proprietary and custom software, uses open source software, and is compliant with NASA and NOAA standards.

  13. Orbital and Rotational Dynamics of Pluto's Small Moons

    NASA Astrophysics Data System (ADS)

    Showalter, Mark R.; Weaver, Harold A.; Spencer, John R.; Porter, Simon; Hamilton, Douglas P.; Binzel, Richard P.; Buie, Marc W.; Grundy, William M.; Nimmo, Francis; Jacobson, Robert A.; Brozovic, Marina; Throop, Henry B.; Stern, S. A.; Olkin, Catherine B.; Young, Leslie; Ennico, Kimberly; The New Horizons Science Team

    2016-05-01

    Four small moons, Styx, Nix, Kerberos and Hydra, orbit the central binary planet comprising Pluto and Charon. Showalter and Hamilton (Nature 522, 45-49, 2015) analyzed Hubble Space Telescope (HST) data from 2010-2012 to explore some of the dynamical consequences of orbiting a binary planet. They noted evidence for a chaotic rotation of Nix and Hydra, and identified a possible three-body resonance between Styx, Nix and Hydra. We revisit the dynamics of the outer moons based on the data from the New Horizons flyby of July 2015, combined with three more years of HST data. As New Horizons was approaching Pluto, the LORRI camera regularly imaged the moons over a period of approximately 100 days. It also resolved the moons in closeup images, revealing details about the moons' sizes, shapes and surface properties. The LORRI data set has made it possible to derive light curves, rotation rates and pole orientations unambiguously. The moons rotate much faster than they orbit and have high obliquities, suggesting that tidal de-spinning has not played the dominant role in their rotational evolution; impacts may also have played an important role. We will discuss the latest conclusions from a joint analysis of the LORRI and HST data sets, combined with new dynamical simulations. This work was supported by NASA's New Horizons project and by Space Telescope Science Institute.

  14. Orbital and Rotational Dynamics of Pluto's Small Moons

    NASA Astrophysics Data System (ADS)

    Showalter, Mark; Weaver, Harold; Spencer, John; Porter, Simon; Hamilton, Douglas; Binzel, Richard; Buie, Marc; Grundy, William; Nimmo, Francis; Jacobson, Robert; Brozovic, Marina; Stern, S. Alan; Olkin, Cathy; Young, Leslie; Ennico, Kimberly

    2016-04-01

    Four small moons, Styx, Nix, Kerberos and Hydra, orbit the central binary planet comprising Pluto and Charon. Showalter and Hamilton (Nature 522, 45-49, 2015) analyzed Hubble Space Telescope (HST) data from 2010-2012 to explore some of the dynamical consequences of orbiting a binary planet. They noted evidence for a chaotic rotation of Nix and Hydra, and identified a possible three-body resonance between Styx, Nix and Hydra. We revisit the dynamics of the outer moons based on the data from the New Horizons flyby of July 2015, combined with three more years of HST data. As New Horizons was approaching Pluto, the LORRI camera regularly imaged the moons over a period of ~100 days. It also resolved the moons in closeup images, revealing details about the moons' sizes, shapes and surface properties. The LORRI data set has made it possible to derive light curves, rotation rates and pole orientations unambiguously. The moons rotate much faster than they orbit and have high obliquities, suggesting that tidal de-spinning has not played a dominant role in their rotational evolution. We will discuss the latest conclusions from a joint analysis of the LORRI and HST data sets, combined with new dynamical simulations. This work was supported by NASA's New Horizons project and by Space Telescope Science Institute.

  15. Digital-model study of ground-water hydrology, Columbia Basin Irrigation Project Area, Washington

    USGS Publications Warehouse

    Tanaka, H.H.; Hansen, A.J., Jr.; Skrivan, J.A.

    1974-01-01

    Since 1952 water diverted from the Columbia River at Grand Coulee Dam has been used to irrigate parts of the Columbia Basin Irrigation Project area in eastern Washington, and as a result ground-water levels generally have risen in the area. The rapid increases in ground-water inflow, outflow, and storage from irrigation have created a need for a better understanding of the ground-water system before and after the start of irrigation to establish guidelines necessary for management of the area's ground-water resource. Data and information from previous geologic and hydrologic studies were used as a basis for quantitative analyses of ground-water inflow and outflow by means of digital computer models representing three major areas--Quincy Basin, Pasco Basin, and Royal Slope.

  16. The planets Uranus, Neptune, and Pluto (1971)

    NASA Technical Reports Server (NTRS)

    Palluconi, F. D.

    1972-01-01

    Design criteria relating to spacecraft intended to investigate the planets of Uranus, Neptune, and Pluto are presented. Assessments were made of the potential effects of environmental properties on vehicle performance. Pertinent data on the mass, radius, shape, mean density, rotational pole location, and mean orbital elements for the three planets are given in graphs and tables.

  17. The Formation of Pluto's Small Satellites

    NASA Astrophysics Data System (ADS)

    Levison, Harold F.; Walsh, K. J.

    2013-05-01

    Abstract (2,250 Maximum Characters): The Pluto systems is one of extremes. In addition to Pluto, the system contains at least 5 satellites. Charon is the most massive, being more than 1/9 the mass of Pluto. This makes it the most massive satellite, relative to the primary, of any other planet or dwarf-planet in the Solar System. The other satellites are much smaller - having radii that are probably significantly less than 50 km. They are on nearly-circular, co-planer orbits. Perhaps one of their most intriguing characteristics is that they are all close to n:1 mean motion resonances (MMRs) with Charon. In particular, Nix, P4, and Hydra are close to the 4:1, 5:1, and 6:1 MMR, respectively. (There is as yet no good orbit for P5). Observations are good enough for Nix and Hydra to conclude that while the are near their respective resonances, they do not appear to actually be librating in them. This a been a challenge for theories of their formation. I will review the formation and evolution of Pluto's family of satellites. In addition, I will present some new work exploring a heretofore unexplored dynamical mechanism that might help explain the puzzling orbits of the small satellites.

  18. Pluto results on jets and QCD

    SciTech Connect

    Pluto collaboration

    1981-02-01

    Results obtained with the PLUTO detector at PETRA are presented. Multihadron final states have been analysed with respect to clustering, energy-energy correlations and transverse momenta in jets. QCD predictions for hard gluon emission and soft gluon-quark cascades are discussed. Results on ..cap alpha../sub s/ and the gluon spin are given.

  19. Energetic Particles in the far and near Environment of Pluto

    NASA Astrophysics Data System (ADS)

    Kollmann, P.; Hill, M. E.; McNutt, R. L., Jr.; Brown, L. E.; Kusterer, M. B.; Vandegriff, J. D.; Smith, H. T.; Mitchell, D. G.; Haggerty, D. K.; Bagenal, F.; Krimigis, S. M.; Lisse, C. M.; Delamere, P. A.; Elliott, H. A.; Horanyi, M.; McComas, D. J.; Piquette, M. R.; Poppe, A. R.; Sidrow, E. J.; Strobel, D. F.; Szalay, J.; Valek, P. W.; Weidner, S.; Zirnstein, E.; Ennico Smith, K.; Olkin, C.; Weaver, H. A., Jr.; Young, L. A.; Stern, A.

    2015-12-01

    The New Horizons spacecraft was launched in 2006, passed Jupiter and its magnetotail, took continuous measurements in the solar wind throughout the recent years, and flew by Pluto in July 2015. The onboard PEPSSI instrument measures ion and electron intensities, masses, and energies in the keV to MeV range. The closest approach distance to Pluto was 11 Pluto radii, inside the orbit of Charon. Data taken near Pluto is downlinked throughout August. We will present analysis of this data and set it into context with previous measurements. We expect a number of interesting particle structures around Pluto. Parts of Pluto's molecular nitrogen atmosphere is escaping and will co-orbit with Pluto, potentially forming a partial gas torus. This torus can be additionally sourced by other Kuiper belt objects. The neutrals are eventually ionized and pick-up by the solar wind brings them into the PEPSSI energy range. The measured ion densities can be used to constrain the Pluto torus. Pluto is not expected to have an intrinsic magnetic field, but the energetic particle data can be used to infer its properties, if any. Pluto interacts instead with the solar wind via the pick-up of its ions and the magnetic fields created by currents in its ionosphere. The relative role of these mechanisms can be revealed by the flyby data and directly compared to data that was taken at Jupiter with identical instrumentation.

  20. Exploring potential Pluto-generated neutral tori

    NASA Astrophysics Data System (ADS)

    Smith, Howard T.; Hill, Matthew; KollMann, Peter; McHutt, Ralph

    2015-11-01

    The NASA New Horizons mission to Pluto is providing unprecedented insight into this mysterious outer solar system body. Escaping molecular nitrogen is of particular interest and possibly analogous to similar features observed at moons of Saturn and Jupiter. Such escaping N2 has the potential of creating molecular nitrogen and N (as a result of molecular dissociation) tori or partial toroidal extended particle distributions. The presence of these features would present the first confirmation of an extended toroidal neutral feature on a planetary scale in our solar system. While escape velocities are anticipated to be lower than those at Enceladus, Io or even Europa, particle lifetimes are much longer in Pluto’s orbit because as a result of much weaker solar interaction processes along Pluto’s orbit (on the order of tens of years). Thus, with a ~248 year orbit, Pluto may in fact be generating an extended toroidal feature along it orbit.For this work, we modify and apply our 3-D Monte Carlo neutral torus model (previously used at Saturn, Jupiter and Mercury) to study/analyze the theoretical possibility and scope of potential Pluto-generated neutral tori. Our model injects weighted particles and tracks their trajectories under the influence of all gravitational fields with interactions with other particles, solar photons and Pluto collisions. We present anticipated N2 and N tori based on current estimates of source characterization and environmental conditions. We also present an analysis of sensitivity to assumed initial conditions. Such results can provide insight into the Pluto system as well as valuable interpretation of New Horizon’s observational data.

  1. UMTRA project technical assistance contractor quality assurance implementation plan for surface and ground water, Revision 2

    SciTech Connect

    1995-11-01

    This document contains the Technical Assistance Contractor (TAC) Quality Assurance Implementation Plan (QAIP) for the Uranium Mill Tailings Remedial Action (UMTRA) Project. The QAIP outlines the primary requirements for integrating quality functions for TAC technical activities applied to the surface and ground water phases of the UMTRA Project. The QA program is designed to use monitoring, audit, and surveillance activities as management tools to ensure that UMTRA Project activities are carried out in amanner to protect public health and safety, promote the success of the UMTRA Project, and meet or exceed contract requirements.

  2. The albedos of Pluto and Charon - Wavelength dependence

    NASA Technical Reports Server (NTRS)

    Marcialis, Robert L.; Lebofsky, Larry A.; Disanti, Michael A.; Fink, Uwe; Tedesco, Edward F.; Africano, John

    1992-01-01

    The March 3, 1987 occultation of Charon by Pluto was monitored simultaneously with three telescopes. Each site covered a distinct wavelength interval with the total range spanning 0.44-2.4 microns. Observing the same event ensures an identical sun-Pluto-earth geometry for all three sites, and minimizes the assumptions which must be made to combine results. This spectrophotometry is used to derive the individual geometric albedos of Pluto and Charon over a factor of at least 5 in wavelength. Combining the results with those of Binzel (1988) improved (B - V) color estimates (on the 'Johnson Pluto' system) are obtained for the components of the system at rotational phase 0.75: (Pluto + Charon) = 0.843 +/- 0.006; Pluto alone = 0.866 +/- 0.007; and Charon alone = 0.702 +/- 0.010.

  3. The Exploration of the Pluto System by New Horizons

    NASA Astrophysics Data System (ADS)

    Stern, S. Alan; NASA New Horizons Team

    2016-01-01

    The Pluto system was recently explored by NASA's New Horizons spacecraft, making closest approach on 14 July 2015. Pluto's surface displays diverse landforms, terrain ages, albedos, colors, and composition gradients. Evidence is found for a water-ice crust, geologically young surface units, surface ice convection, wind streaks, volatile transport, and glacial flow. Pluto's atmosphere is highly extended, with trace hydrocarbons, a global haze layer, and a surface pressure near 10 microbars. Pluto's diverse surface geology and long term activity raise fundamental questions about how small planets remain active many billions of years (Gyr) after formation. Pluto's large moon Charon displays tectonics and evidence for a heterogeneous crustal composition; its North Pole displays puzzling dark terrain. Small satellites Hydra and Nix have higher albedos than expected. In this talk I will summarize the objectives of the New Horizons mission, its scientific payload, and survey key results obtained to date about Pluto and its system of moons.

  4. Satellite Cloud Data Validation through MAGIC Ground Observation and the S'COOL Project: Scientific Benefits grounded in Citizen Science

    NASA Astrophysics Data System (ADS)

    Crecelius, S.; Chambers, L. H.; Lewis, P. M.; Rogerson, T.

    2013-12-01

    The Students' Cloud Observation On-Line (S'COOL) Project was launched in 1997 as the Formal Education and Public Outreach arm of the Clouds and the Earth's Radiant Energy System (CERES) Mission. ROVER, the Citizen Scientist area of S'COOL, started in 2007 and allows participants to make 'roving' observations from any location as opposed to a fixed, registered classroom. The S'COOL Project aids the CERES Mission in trying to answer the research question: 'What is the Effect of Clouds on the Earth's Climate'. Participants from all 50 states, most U.S. Territories, and 63 countries have reported more than 100,500 observations to the S'COOL Project over the past 16 years. The Project is supported by an intuitive website that provides curriculum support and guidance through the observation steps; 1) Request satellite overpass schedule, 2) Observe clouds, and 3) Report cloud observations. The S'COOL Website also hosts a robust database housing all participants' observations as well as the matching satellite data. While the S'COOL observation parameters are based on the data collected by 5 satellite missions, ground observations provide a unique perspective to data validation. Specifically, low to mid level clouds can be obscured by overcast high-level clouds, or difficult to observe from a satellite's perspective due to surface cover or albedo. In these cases, ground observations play an important role in filling the data gaps and providing a better, global picture of our atmosphere and clouds. S'COOL participants, operating within the boundary layer, have an advantage when observing low-level clouds that affect the area we live in, regional weather patterns, and climate change. S'COOL's long-term data set provides a valuable resource to the scientific community in improving the "poorly characterized and poorly represented [clouds] in climate and weather prediction models'. The MAGIC Team contacted S'COOL in early 2012 about making cloud observations as part of the MAGIC

  5. Impact and cratering rates onto Pluto

    NASA Astrophysics Data System (ADS)

    Greenstreet, Sarah; Gladman, Brett; McKinnon, William B.

    2015-09-01

    The New Horizons spacecraft fly-through of the Pluto system in July 2015 will provide humanity's first data for the crater populations on Pluto and its binary companion, Charon. In principle, these surfaces could be dated in an absolute sense, using the observed surface crater density (# craters/km2 larger than some threshold crater diameter D). Success, however, requires an understanding of both the cratering physics and absolute impactor flux. The Canada-France Ecliptic Plane Survey (CFEPS) L7 synthetic model of classical and resonant Kuiper belt populations (Petit, J.M. et al. [2011]. Astron. J. 142, 131-155; Gladman, B. et al. [2012]. Astron. J. 144, 23-47) and the scattering object model of Kaib et al. (Kaib, N., Roškar, R., Quinn, T. [2011]. Icarus 215, 491-507) calibrated by Shankman et al. (Shankman, C. et al. [2013]. Astrophys. J. 764, L2-L5) provide such impact fluxes and thus current primary cratering rates for each dynamical sub-population. We find that four sub-populations (the q < 42AU hot and stirred main classicals, the classical outers, and the plutinos) dominate Pluto's impact flux, each providing ≈ 15-25 % of the total rate. Due to the uncertainty in how the well-characterized size distribution for Kuiper belt objects (with impactor diameter d > 100km) connects to smaller projectiles, we compute cratering rates using five model impactor size distributions: a single power-law, a power-law with a knee, a power-law with a divot, as well as the "wavy" size distributions described in Minton et al. (Minton, D.A. et al. [2012]. Asteroids Comets Meteors Conf. 1667, 6348) and Schlichting et al. (Schlichting, H.E., Fuentes, C.I., Trilling, D.E. [2013]. Astron. J. 146, 36-42). We find that there is only a small chance that Pluto has been hit in the past 4 Gyr by even one impactor with a diameter larger than the known break in the projectile size distribution (d ≈ 100km) which would create a basin on Pluto (D ⩾ 400km in diameter). We show that due to

  6. The Surfaces of Pluto and Charon

    NASA Technical Reports Server (NTRS)

    Cruikshank, Dale P.; Roush, Ted L.; Moore, Jeffrey M.; Sykes, Mark V.; Owen, Tobias C.; Bartholomew, Mary Jane; Brown, Robert H.; Tryka, Kimberly A.

    1996-01-01

    Much of the surface of Pluto consists of high-albedo regions covered to an unknown depth by Beta-N2, contaminated with CH4, CO, and other molecules. A portion of the exposed surface appears to consist of solid H2O. The remainder is covered by lower albedo material of unknown composition. The N2 ice may occur as polar caps of large extent, leaving ices and other solids of lower volatility in the equatorial regions. The low-albedo material found primarily in the equatorial regions may consist in part of solid hydrocarbons and nitriles produced from N2 and CH4 in the atmosphere or in the surface ices. Alternatively, it may arise from deposition from impacting bodies and/or the chemistry of the impact process itself. Charon's surface is probably more compositionally uniform than that of Pluto, and is covered by H2O ice with possible contaminants or exposures of other materials that are as yet unidentified. The molecular ices discovered on Pluto and Charon have been identified from near-infrared spectra obtained with Earth-based telescopes. The quantitative interpretation of those data has been achieved through the computation of synthetic spectra using the Hapke scattering theory and the optical constants of various ices observed in the laboratory. Despite limitations imposed by the availability of laboratory data on ices in various mixtures, certain specific results have been obtained. It appears that CH4 and CO are trace constituents, and that some fraction of the CH4 (and probably the CO) on Pluto is dissolved in the matrix of solid N2. Pure CH4 probably also occurs on Pluto's surface, allowing direct access to the atmosphere. Study of the nitrogen absorption band at 2.148 micrometers shows that the temperature of the N2 in the present epoch is 40 +/-2 K. The global temperature regime of Pluto can be modeled from observations of the thermal flux at far-infrared and millimeter wavelengths. The low-albedo equatorial regions must be significantly warmer than the polar

  7. Pluto - comments on crustal composition, evidence for global differentiation

    SciTech Connect

    Stern, S.A. )

    1989-09-01

    Evidence is presented in support of the hypothesis that the crust of Pluto consists of nearly pure volatiles and that Pluto has differentiated. The evidence includes the rapid atmospheric escape rate and the presence of methane frost on Pluto. Consideration is given to the implications of the hypothesis, including atmospheric and surface composition, topography, and the implications for Charon and other bodies. The possibility of conducting observations to test the theory is discussed. 33 refs.

  8. Advanced Ground Systems Maintenance Cryogenics Test Lab Control System Upgrade Project

    NASA Technical Reports Server (NTRS)

    Harp, Janice Leshay

    2014-01-01

    This project will outfit the Simulated Propellant Loading System (SPLS) at KSC's Cryogenics Test Laboratory with a new programmable logic control system. The control system upgrade enables the Advanced Ground Systems Maintenace Element Integration Team and other users of the SPLS to conduct testing in a controls environment similar to that used at the launch pad.

  9. Ground-water contribution to dose from past Hanford Operations. Hanford Environmental Dose Reconstruction Project

    SciTech Connect

    Freshley, M.D.; Thorne, P.D.

    1992-08-01

    The Hanford Environmental Dose Reconstruction (HEDR) Project is being conducted to estimate radiation doses that populations and individuals could have received from Hanford Site operations from 1944 to the present. Four possible pathways by which radionuclides migrating in ground water on the Hanford Site could have reached the public have been identified: (1) through contaminated ground water migrating to the Columbia River; (2) through wells on or adjacent to the Hanford Site; (3) through wells next to the Columbia River downstream of Hanford that draw some or all of their water from the river (riparian wells); and (4) through atmospheric deposition resulting in contamination of a small watershed that, in turn, results in contamination of a shallow well or spring by transport in the ground water. These four pathways make up the ``ground-water pathway,`` which is the subject of this study. Assessment of the ground-water pathway was performed by (1) reviewing the existing extensive literature on ground water and ground-water monitoring at Hanford and (2) performing calculations to estimate radionuclide concentrations where no monitoring data were collected. Radiation doses that would result from exposure to these radionuclides were calculated.

  10. Tholins as Coloring Agents on Pluto

    NASA Astrophysics Data System (ADS)

    Cruikshank, D. P.; Materese, C. K.; Imanaka, H.; Dalle Ore, C.; Sandford, S. A.; Nuevo, M.

    2015-12-01

    The shape of the reflectance spectrum of Pluto recorded with telescopes, 0.3-1.0 μm, shows the planet's yellow-red color (1). Additionally, multi-filter images of Pluto with the MVIC camera on the New Horizons spacecraft report concentrations of the coloring agent(s) in some regions of the surface, and apparent near absence in other regions. Tholins are refractory organic solids of complex structure and high molecular weight, with a wide range of color ranging from yellow and orange to dark red, and through tan to black. They are readily synthesized in the laboratory by energetic processing of mixtures of the ices (N2, CH4, CO) known on Pluto's surface (2), or the same molecules in the gas phase (3). Energy in the form of UV light, electrons, protons, or coronal discharge are all effective to one degree or another in producing various types of tholins; details of the composition and yield vary with experimental conditions. Chemical analysis of ice tholins shows carboxylic acids, urea, and HCN and other nitriles. Aromatic/olefinic, amide, and other functional groups are identified in XANES analysis (4). The ice tholins produce by e- irradiation have a higher concentration of N than UV ice tholins, with N/C ~0.9 (versus ~0.5 for UV tholins) and O/C~0.2. EUV photolysis of Pluto atmosphere analog yields pale yellow solids relatively transparent in the visual, and with aliphatic CH bonds prominent in IR spectra. This material may be responsible for Pluto's hazes (5). Various tholins are the principal coloring agents on Pluto's surface, probably Charon's colored region, and on numerous other outer Solar System bodies (6). Refs: 1. Cruikshank, D. P. et al. 2014 DPS abstract #419.04; 2. Cruikshank et al. 2015 Icarus 246, 82; 3. Krasnopolsky & Cruikshank 1999 JGR 104 E9, 21,979; 4. Materese, C. K. et al. 2014 Ap.J. 788:111, June 20; 5. Imanaka, H. et al. 2014 DPS abstract #419.10; 6. Cruikshank, D. P. et al. 2005 Adv. Space Res. 36, 178.

  11. New constraints on the surface of Pluto

    NASA Astrophysics Data System (ADS)

    Merlin, F.

    2015-10-01

    Aims: Spectroscopic investigation of the surface of Pluto allows us to constrain the chemical properties of the volatile species of the solar system reservoir. This permits us to obtain the relative abundances of various molecules, their physical properties, as well as their spatial and temporal variation. This also could tell us about the origin of various minor chemical compounds formed during the solar system formation or generated later on by space weathering. This will give us critical information about the evolution processes that may occur in the entire trans-Neptunian objects population, and in particular the biggest objects, which could retain tenuous atmospheres. Methods: New observations of the surface of Pluto have been carried out along with reanalyses of older observations carried out with the ESO-VLT telescopes and the SINFONI instrument at a mean spectral resolution of 1500. We present three new near-infrared spectra of Pluto observed at different epochs, and covering the H and K spectral bands showing absorption features of methane, nitrogen, and carbon monoxide ices. We ran different spectral models, based on Hapke theory, to constrain the physical and chemical properties of different sides of Pluto. Results: We have confirmed the spatial and secular variation of the spectral properties of the surface of Pluto. The abundances, sizes, and temperatures of different ices, such as CH4, CO, and N2 have been constrained for different parts of the surface of Pluto. The results suggest a temperature probably just above the alpha-beta transition phase of N2 (close to 36.5 K), and a probable stratification of the dilution state of CO and CH4. The presence of minor chemical compounds, such as C2H6, has been confirmed too, and for data obtained at several sub-Earth east longitudes. Solid C2H4 is suggested by the spectral modeling with abundance variation following that of solid C2H6 and solid CH4. Based on observations made with ESO telescopes at the Paranal

  12. Occultations by Pluto and Charon - 1990-1999

    NASA Technical Reports Server (NTRS)

    Mink, Douglas J.; Klemola, Arnold R.; Buie, Marc W.

    1991-01-01

    The results of a photographic plate search for stars as faint as V = 16 which may be occulted by Pluto or Charon between January 1, 1990 and December 31, 1999 are presented. Circumstances for the closest approach of Pluto to 32 stars and Charon to 28 stars are presented. Photometric information is given for some of the brightest stars found in a search of the Space Telescope Guide Star Catalog for Pluto occultations. Finding charts from Space Telescope Guide Star plates are provided for some of the best events. The brightest star (V = 12.7) may be occulted by both Pluto and Charon on September 26, 1999.

  13. Dynamical capture in the Pluto-Charon system

    NASA Astrophysics Data System (ADS)

    Pires dos Santos, P. M.; Morbidelli, A.; Nesvorný, D.

    2012-12-01

    This paper explores the possibility that the progenitors of the small satellites of Pluto got captured in the Pluto-Charon system from the massive heliocentric planetesimal disk in which Pluto was originally embedded into. We find that, if the dynamical excitation of the disk is small, temporary capture in the Pluto-Charon system can occur with non- negligible probability, due to the dynamical perturbations exerted by the binary nature of the Pluto-Charon pair. However, the captured objects remain on very elliptic orbits and the typical capture time is only ~ 100 years. In order to explain the origin of the small satellites of Pluto, we conjecture that some of these objects got disrupted during their Pluto-bound phase by a collision with a planetesimal of the disk. This could have generated a debris disk, which damped under internal collisional evolution, until turning itself into an accretional disk that could form small satellites on circular orbits, co-planar with Charon. Unfortunately, we find that objects large enough to carry a sufficient amount of mass to generate the small satellites of Pluto have collisional lifetimes orders of magnitude longer than the capture time. Thus, this scenario cannot explain the origin of the small satellites of Pluto, which remains elusive.

  14. The ground track oblique Cassini projection used for producing VIIRS mapped imagery

    NASA Astrophysics Data System (ADS)

    Mills, Stephen

    2014-10-01

    The Suomi-NPP Visible Infrared Imager Radiometer Suite (VIIRS) radiance is mapped to make image products using the ground-track Mercator (GTM) algorithm developed at Raytheon. This algorithm defines a process for transforming gridded map (x/y) coordinates of the image into Earth coordinates (longitude/latitude). The y-axis reference is the satellite ground track, which is mapped with an even scale. Great circles placed orthogonally with respect to the ground track define the x-axis. In its current state the algorithm is only defined for the Map-to-Earth (MtE) transformation, but the Earth-to-Map (EtM) transformation has no mathematical algorithm, and instead must use a slow search algorithm for every point. Because of this, the GTM is not a true map projection. This paper remedies this by describing an EtM transformation algorithm using a Ground Track Oblique Cassini (GTOC) projection. This is in somewhat similar to the Space Oblique Mercator (SOM) Projection developed for Landsat. However, Landsat has a very narrow swath, and the GTOC projection better preserves scale across a wider swath, making it more suited for sensors such as VIIRS. Also, unlike the SOM, it keeps the ground-track centered, which is a more efficient use of screen area when it is viewed. This paper describes details of the algorithm, including adjustments necessary for an elliptical orbit and an ellipsoidal Earth. It evaluates Map parameters including conformality and scale preservation, comparing this with other projections, including the SOM. It also evaluates improvements in efficiency relative to a search algorithm.

  15. Pluto Fast Flyby Mission and Science Overview

    NASA Technical Reports Server (NTRS)

    Stern, A.

    1993-01-01

    Planning for the Pluto Fast Flyby (PFF) mission centers on the launch of two small (110-160 kg) spacecraft late in the 1990s on fast, 6-8-year trajectories that do not require Jupiter flybys. The cost target of the two-spaceraft PFF mission is $400 million. Scientific payload definition by NASA's Outer Planets Science Working Group (OPSWG) and JPL design studies for the Pluto flyby spacecraft are now being completed, and the program is in Phase A development. Selection of a set of lightweight, low-power instrument demonstrations is planned for May 1993. According to plan, the completion of Phase A and then detailed Phase B spacecraft and payload design work will occur in FY94. The release of an instrument payload AO, followed by the selection of the flight payload, is also scheduled for FY94.

  16. The surface compositions of Pluto and Charon

    NASA Astrophysics Data System (ADS)

    Cruikshank, D. P.; Grundy, W. M.; DeMeo, F. E.; Buie, M. W.; Binzel, R. P.; Jennings, D. E.; Olkin, C. B.; Parker, J. W.; Reuter, D. C.; Spencer, J. R.; Stern, S. A.; Young, L. A.; Weaver, H. A.

    2015-01-01

    The surface of Pluto as it is understood on the eve of the encounter of the New Horizons spacecraft (mid-2015) consists of a spatially heterogeneous mix of solid N2, CH4, CO, C2H6, and an additional component that imparts color, and may not be an ice. The known molecular ices are detected by near-infrared spectroscopy. The N2 ice occurs in the hexagonal crystalline β-phase, stable at T > 35.6 K. Spectroscopic evidence for wavelength shifts in the CH4 bands attests to the complex mixing of CH4 and N2 in the solid state, in accordance with the phase diagram for N2 + CH4. Spectra obtained at several aspects of Pluto's surface as the planet rotates over its 6.4-day period show variability in the distribution of CH4 and N2 ices, with stronger CH4 absorption bands associated with regions of higher albedo, in correlation with the visible rotational light curve. CO and N2 ice absorptions are also strongly modulated by the rotation period; the bands are strongest on the anti-Charon hemisphere of Pluto. Longer term changes in the strengths of Pluto's absorption bands occur as the viewing geometry changes on seasonal time-scales, although a complete cycle has not been observed. The non-ice component of Pluto's surface may be a relatively refractory material produced by the UV and cosmic-ray irradiation of the surface ices and gases in the atmosphere, although UV does not generally penetrate the atmospheric CH4 to interact with the surface. Laboratory simulations indicate that a rich chemistry ensues by the irradiation of mixtures of the ices known to occur on Pluto, but specific compounds have not yet been identified in spectra of the planet. Charon's surface is characterized by spectral bands of crystalline H2O ice, and a band attributed to one or more hydrates of NH3. Amorphous H2O ice may also be present; the balance between the amorphization and crystallization processes on Charon remains to be clarified. The albedo of Charon and its generally spatially uniform neutral

  17. A peculiar stable region around Pluto

    NASA Astrophysics Data System (ADS)

    Giuliatti Winter, S. M.; Winter, O. C.; Vieira Neto, E.; Sfair, R.

    2014-04-01

    Giuliatti Winter et al. found several stable regions for a sample of test particles located between the orbits of Pluto and Charon. One peculiar stable region in the space of the initial orbital elements is located at a = (0.5d, 0.7d) and e = (0.2, 0.9), where a and e are the initial semimajor axis and eccentricity of the particles, respectively, and d is the Pluto-Charon distance. This peculiar region (hereafter called the sailboat region) is associated with a family of periodic orbits derived from the planar, circular, restricted three-body problem (Pluto-Charon-particle). In this work, we study the origin of this stable region by analysing the evolution of such family of periodic orbits. We show that they are not in resonances with Charon. The period of the periodic orbit varies along the family, decreasing with the increase of the Jacobi constant. We also explore the extent of the sailboat region by adopting different initial values of the orbital inclination (I) and argument of the pericentre (ω) of the particles. The sailboat region is present for I = [0°, 90°] and for two intervals of ω, ω = [-10°, 10°] and (160°, 200°). A crude estimative of the size of the hypothetical bodies located at the sailboat region can be derived by computing the tidal damping in their eccentricities. If we neglect the orbital evolution of Pluto and Charon, the time-scale for circularization of their orbits is longer than the age of the Solar system for bodies smaller than 500 m in radius.

  18. Pluto's interaction with the solar wind

    NASA Astrophysics Data System (ADS)

    McComas, D. J.; Elliott, H. A.; Weidner, S.; Valek, P.; Zirnstein, E. J.; Bagenal, F.; Delamere, P. A.; Ebert, R. W.; Funsten, H. O.; Horanyi, M.; McNutt, R. L.; Moser, C.; Schwadron, N. A.; Strobel, D. F.; Young, L. A.; Ennico, K.; Olkin, C. B.; Stern, S. A.; Weaver, H. A.

    2016-05-01

    This study provides the first observations of Plutogenic ions and their unique interaction with the solar wind. We find ~20% solar wind slowing that maps to a point only ~4.5 RP upstream of Pluto and a bow shock most likely produced by comet-like mass loading. The Pluto obstacle is a region of dense heavy ions bounded by a "Plutopause" where the solar wind is largely excluded and which extends back >100 RP into a heavy ion tail. The upstream standoff distance is at only ~2.5 RP. The heavy ion tail contains considerable structure, may still be partially threaded by the interplanetary magnetic field (IMF), and is surrounded by a light ion sheath. The heavy ions (presumably CH4+) have average speed, density, and temperature of ~90 km s-1, ~0.009 cm-3, and ~7 × 105 K, with significant variability, slightly increasing speed/temperature with distance, and are N-S asymmetric. Density and temperature are roughly anticorrelated yielding a pressure ~2 × 10-2 pPa, roughly in balance with the interstellar pickup ions at ~33 AU. We set an upper bound of <30 nT surface field at Pluto and argue that the obstacle is largely produced by atmospheric thermal pressure like Venus and Mars; we also show that the loss rate down the tail (~5 × 1023 s-1) is only ~1% of the expected total CH4 loss rate from Pluto. Finally, we observe a burst of heavy ions upstream from the bow shock as they are becoming picked up and tentatively identify an IMF outward sector at the time of the NH flyby.

  19. New Horizons Pluto Flyby Guest Operations

    NASA Astrophysics Data System (ADS)

    Simon, M.; Turney, D.; Fisher, S.; Carr, S. S.

    2015-12-01

    On July 14, 2015, after 9.5 years of cruise, NASA's New Horizons spacecraft flew past the Pluto system to gather first images humankind had ever seen on Pluto and its five moons. While much has been discovered about the Pluto system since New Horizons launch in 2006, the system has never been imaged at high resolution and anticipation of the "First Light" of the Pluto system had been anticipated by planetary enthusiasts for decades. The Johns Hopkins Applied Physics Laboratory (APL), which built and operates New Horizons, was the focal point for gathering three distinct groups: science and engineering team members; media and public affairs representatives; and invited public, including VIP's. Guest operations activities were focused on providing information primarily to the invited public and VIP's. High level objectives for the Guest Operations team was set to entertain and inform the general public, offer media reaction shots, and to deconflict activities for the guests from media activities wherever possible. Over 2000 people arrived at APL in the days surrounding closest approach for guest, science or media operations tracks. Reaction and coverage of the Guest Operations events was universally positive and global in impact: iconic pictures of the auditorium waving flags during the moment of closest approach were published in media outlets on every continent. Media relations activities ensured coverage in all key media publications targeted for release, such as the New York Times, Science, Le Monde, and Nature. Social and traditional media coverage of the events spanned the globe. Guest operations activities are designed to ensure that a guest has a memorable experience and leaves with a lifelong memory of the mission and their partnership in the activity. Results, lessons learned, and other data from the New Horizons guest operations activity will be presented and analyzed.

  20. The New Horizons Mission to Pluto and Flyby of Jupiter

    NASA Technical Reports Server (NTRS)

    Stern, Alan; Weaver, Hal; Young, Leslie; Bagenal, Fran; Binzel, Richard; Buratti, Bonnie; Cheng, andy; Cruikshank, Dale; Gladstone, Randy; Grundy, Will; Hinson, David; Horanyi, Mihaly; Jennings, Don; Linscott, Ivan; McComas, Dave; McKinnon, William; McNutt, Ralph; Moore, Jeffrey; Murchie, Scott; Olkin, Cathy; Porco, Carolyn; Reitsema, Harold; Reuter, Dennis; Slater, Dave; Spencer, John

    2008-01-01

    New Horizons (NH) is NASA's mission to provide the first in situ reconnaissance of Pluto and its moons Charon, Nix, and Hydra. The NH spacecraft will reach Pluto in July 2015 and will then, if approved for an extended mission phase, continue on to a flyby encounter with one or more Kuiper belt objects (KBOs). NH was launched on 19 January 2006 and received a gravity assist during a flyby encounter with Jupiter (with closest approach at -32 RJ on 28 February 2007) that reduced its flight time to Pluto by 3 years. During the Jupiter flyby, NH collected a trove of multi-wavelength imaging and fields-and-particles measurements. Among the many science results at Jupiter were a detection of planet-wide mesoscale waves, eruptions of atmospheric ammonia clouds, unprecedented views of Io's volcanic plumes and Jupiter's tenuous ring system, a first close-up of the Little Red Spot (LRS), first sightings of polar lightning, and a trip down the tail of the magnetosphere. In 2015, NH will conduct a seven-month investigation of the Pluto system culminating in a closest approach some 12,500 km from Pluto's surface. Planning is presently underway for the Pluto encounter with special emphasis on longidentified science goals of studying the terrain, geology, and composition of the surfaces of Pluto and Charon, examining the composition and structure of Pluto's atmosphere, searching for an atmosphere on Charon, and characterizing Pluto's ionosphere and solar wind interaction. Detailed inspections will also be performed of the newly discovered satellites Nix and Hydra. Additionally, NH will characterize energetic particles in Pluto's environment, refine the bulk properties of Pluto and Charon, and search for additional satellites and rings.

  1. Pluto and Charon: A Case of Precession-Orbit Resonance?

    NASA Technical Reports Server (NTRS)

    Rubincam, David Parry; Smith, David E. (Technical Monitor)

    2000-01-01

    Pluto may be the only known case of precession-orbit resonance in the solar system. The Pluto-Charon system orbits the Sun with a period of 1 Plutonian year, which is 250.8 Earth years. The observed parameters of the system are such that Charon may cause Pluto to precess with a period near 250.8 Earth years. This gives rise to two possible resonances, heretofore unrecognized. The first is due to Pluto's orbit being highly eccentric, giving solar torques on Charon with a period of 1 Plutonian year. Charon in turn drives Pluto near its precession period. Volatiles, which are expected to shuttle across Pluto's surface between equator and pole as Pluto's obliquity oscillates, might change the planet's dynamical flattening enough so that Pluto crosses the nearby resonance, forcing the planet's equatorial plane to depart from Charon's orbital plane. The mutual tilt can reach as much as 2 deg after integrating over 5.6 x 10(exp 6) years, depending upon how close Pluto is to the resonance and the supply of volatiles. The second resonance is due to the Sun's traveling above and below Charon's orbital plane; it has a period half that of the eccentricity resonance. Reaching this half-Plutonian year resonance requires a much larger but still theoretically possible amount of volatiles. In this case the departure of Charon from an equatorial orbit is about 1 deg after integrating for 5.6 x 10(exp 6) years. The calculations ignore libration and tidal friction. It is not presently known how large the mutual tilt can grow over the age of the solar system, but if it remains only a few degrees, then observing such small angles from a Pluto flyby mission would be difficult. It is not clear why the parameters of the Pluto-Charon system are so close to the eccentricity resonance.

  2. Guidelines of the Design of Electropyrotechnic Firing Circuit for Unmanned Flight and Ground Test Projects

    NASA Technical Reports Server (NTRS)

    Gonzalez, Guillermo A.; Lucy, Melvin H.; Massie, Jeffrey J.

    2013-01-01

    The NASA Langley Research Center, Engineering Directorate, Electronic System Branch, is responsible for providing pyrotechnic support capabilities to Langley Research Center unmanned flight and ground test projects. These capabilities include device selection, procurement, testing, problem solving, firing system design, fabrication and testing; ground support equipment design, fabrication and testing; checkout procedures and procedure?s training to pyro technicians. This technical memorandum will serve as a guideline for the design, fabrication and testing of electropyrotechnic firing systems. The guidelines will discuss the entire process beginning with requirements definition and ending with development and execution.

  3. Pluto's atmosphere-plasma interaction: Hybrid simulations

    NASA Astrophysics Data System (ADS)

    Delamere, P. A.; Bagenal, F.; Strobel, D. F.; Barnes, N. P.; McComas, D. J.; Elliott, H. A.; Hill, M. E.; McNutt, R. L., Jr.

    2015-12-01

    Pluto's low gravity implies that the atmosphere is only weakly bound. The escaping neutrals are photoionized and the heavy ions (N2+) move away from Pluto in the direction perpendicular to the solar wind flow (i.e., nearly unmagnetized relative to the length scales of the plasma interaction region). The turning distance of the solar wind protons at the magnetic pileup boundary is large compared to the interaction region. As a result, large ion gyroradius effects determine Pluto's highly asymmetric interaction with the solar wind. We use a three-dimensional hybrid code (fluid electrons, kinetic ions) to investigate the geometry of the interaction region using recent atmospheric models for hybrid simulation input. We will present initial results, showing the sensitivity of bow shock location to variations in the model atmosphere as well as variations in the solar wind conditions. Synthetic energy spectrograms taken from the simluations could be directly compared with the New Horizons plasma data to further constrain model input parameters. Initial results indicate that a full bow shock could form with possible structuring in the wake region due to bi-ion waves and Kelvin-Helmholtz waves.

  4. PLUTO'S SEASONS: NEW PREDICTIONS FOR NEW HORIZONS

    SciTech Connect

    Young, L. A.

    2013-04-01

    Since the last Pluto volatile transport models were published in 1996, we have (1) new stellar occultation data from 2002 and 2006-2012 that show roughly twice the pressure as the first definitive occultation from 1988, (2) new information about the surface properties of Pluto, (3) a spacecraft due to arrive at Pluto in 2015, and (4) a new volatile transport model that is rapid enough to allow a large parameter-space search. Such a parameter-space search coarsely constrained by occultation results reveals three broad solutions: a high-thermal inertia, large volatile inventory solution with permanent northern volatiles (PNVs; using the rotational north pole convention); a lower thermal-inertia, smaller volatile inventory solution with exchanges of volatiles between hemispheres and a pressure plateau beyond 2015 (exchange with pressure plateau, EPP); and solutions with still smaller volatile inventories, with exchanges of volatiles between hemispheres and an early collapse of the atmosphere prior to 2015 (exchange with early collapse, EEC). PNV and EPP are favored by stellar occultation data, but EEC cannot yet be definitively ruled out without more atmospheric modeling or additional occultation observations and analysis.

  5. Comparative Planetary Atmospheres of Pluto and Triton

    NASA Astrophysics Data System (ADS)

    Strobel, D. F.; Zhu, X.

    2015-10-01

    Both atmospheres of Pluto and Neptune's largest satellite Triton have cold surfaces with similar surface gravities and atmospheric surface pressures. We have updated the Zhu et al.Icarus 228 , 301, 2014) model for Pluto's atmosphere by adopting Voigt line profiles in the radiation code with the latest spectral database and extended the model to Triton's atmosphere by including additional parameterized heating due to the magnetospheric electron energy deposition. Numerical experiments show that the escape rate of an atmosphere for an icy planetary body similar to Pluto or Triton is quite sensitive to the methane abundance and planetary surface gravity. Together this leads to a cumulative effect on the density variation with the altitude that significantly changes the atmospheric scale height at the exobase together with the exobase altitude. The atmospheric thermal structure near the exobase is sensitive to the atmospheric escape rate only when it is significantly greater than 10 26 molecules s-1 above which an enhanced escape rate corresponds to a stronger radial velocity that adiabatically cools the atmosphere to a lower temperature.

  6. Speckle Camera Imaging of the Planet Pluto

    NASA Astrophysics Data System (ADS)

    Howell, Steve B.; Horch, Elliott P.; Everett, Mark E.; Ciardi, David R.

    2012-10-01

    We have obtained optical wavelength (692 nm and 880 nm) speckle imaging of the planet Pluto and its largest moon Charon. Using our DSSI speckle camera attached to the Gemini North 8 m telescope, we collected high resolution imaging with an angular resolution of ~20 mas, a value at the Gemini-N telescope diffraction limit. We have produced for this binary system the first speckle reconstructed images, from which we can measure not only the orbital separation and position angle for Charon, but also the diameters of the two bodies. Our measurements of these parameters agree, within the uncertainties, with the current best values for Pluto and Charon. The Gemini-N speckle observations of Pluto are presented to illustrate the capabilities of our instrument and the robust production of high accuracy, high spatial resolution reconstructed images. We hope our results will suggest additional applications of high resolution speckle imaging for other objects within our solar system and beyond. Based on observations obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the National Science Foundation on behalf of the Gemini partnership: the National Science Foundation (United States), the Science and Technology Facilities Council (United Kingdom), the National Research Council (Canada), CONICYT (Chile), the Australian Research Council (Australia), Ministério da Ciência, Tecnologia e Inovação (Brazil) and Ministerio de Ciencia, Tecnología e Innovación Productiva (Argentina).

  7. Forming the small satellites of Pluto

    NASA Astrophysics Data System (ADS)

    Levison, Harold F.; Walsh, K.

    2013-10-01

    The Pluto systems is one of extremes. In addition to Pluto, the system contains at least 5 satellites. Charon is the most massive, being more than 1/9 the mass of Pluto. This makes it the most massive satellite, relative to the primary, of any other planet or dwarf-planet in the Solar System. The other satellites are much smaller - having radii that are probably significantly less than 50 km. They are on nearly circular, co-planer orbits. Perhaps one of their most intriguing characteristics is that they are all close to n:1 mean motion resonances (MMRs) with Charon. In particular, Nix, P4, and Hydra are close to the 4:1, 5:1, and 6:1 MMR, respectively. (There is as yet no good orbit for P5). Observations are good enough for Nix and Hydra to conclude that while the are near their respective resonances, they do not appear to actually be librating in them. This has been a challenge for theories of their formation. We will present some new work exploring a heretofore unexplored dynamical mechanism that might help explain the puzzling orbits of the small satellites.

  8. Pluto's Atmosphere from the 29 June 2015 Occultation: SOFIA Airborne Results

    NASA Astrophysics Data System (ADS)

    Person, Michael J.; MIT-Williams Occulation Group (MIT/Williams College/Lowell Observatory/SAAO), HIPO Instrument Group (Lowell Observatory/MIT), FLITECAM Instrument Group (UCLA), FPI+ Instrument Group (DSI/U. Stuttgart), SOFIA Operations Group (NASA/USRA/DSI)

    2016-01-01

    After an extensive prediction effort, the 29 June 2015 occultation by Pluto was observed from both airborne (Stratospheric Observatory for Infrared Astronomy - SOFIA) and numerous ground-based telescopes (Bosh et al. 2015, in prep.). Real-time prediction updates allowed placement of the SOFIA telescope with its four detectors deep within the central-flash region of the atmospheric occultation. Fortuitously, the Mount John University Observatory (Lake Tekapo, New Zealand) was also within the central-flash region. This happenstance allowed for direct mutual calibration of the SOFIA data with the ground-based data in multiple central-flash detections in several colors from each facility resulting in a full maping of the central-flash evolute.Combining all of the data allows for a precise measurement of the SOFIA flight path through the shadow, and direct measurement of Pluto's atmospheric shadow size.We will examine and discuss the central-flash signatures from the deepest pass yet recorded through a Pluto central flash. The relative orientations and asymmetries in the various central flash data allow us to use them to tightly constrain the lower atmospheric ellipticity and orientation of likely winds with respect to Pluto's figure. The ratio of the two separate central flashes (airborne and ground-based) is also a strong constraint on the geometric solution for the full occultation data set, and the absolute height of the central flashes with respect to those expected for a clear isothermal atmosphere places constraints on haze densities and thermal gradients in Pluto's lower atmosphere. We can also compare the central-flash signatures in several colors to establish bounds on haze-particle sizes in the lower atmosphere.SOFIA is jointly operated by the Universities Space Research Association, Inc. (USRA), under NASA contract NAS2-97001, and the Deutsches SOFIA Institut (DSI) under DLR contract 50 OK 0901 to the University of Stuttgart. Support for this work was

  9. Spectrophotometry of Pluto-Charon mutual events - Individual spectra of Pluto and Charon

    NASA Technical Reports Server (NTRS)

    Sawyer, S. R.; Barker, E. S.; Cochran, A. L.; Cochran, W. D.

    1987-01-01

    Time-resolved spectra of the March 3 and April 4, 1987 mutual events of Pluto and Charon, obtained with spectral coverage from 5500 to 10,000 A with 25-A spectral resolution, are discussed. Charon has a featureless reflectance spectrum, with no evidence of methane absorption. Charon's reflectance appears neutral in color and corresponds to a geometric albedo of about 0.37 at 6000 A. The Pluto reflectance spectrum displays methane absorption bands at 7300, 7900, 8400, 8600, and 8900 A and is red in color, with a geometric albedo of about 0.56 at 6000 A.

  10. New Horizons Investigations of Charon and Pluto's Small Moons

    NASA Astrophysics Data System (ADS)

    Weaver, Harold A.; Stern, S. A.; Young, L. A.; Olkin, C. B.; Ennico, K.; Moore, J. M.; McKinnon, W. B.; Spencer, J. R.; Grundy, W. M.; Cruikshank, D. P.; Gladstone, G. P.; Summers, M. E.; Bagenal, F.

    2015-11-01

    During the flyby of the Pluto system in July 2014, the instruments on the New Horizons spacecraft (Weaver et al. 2008, Space Sci. Rev. 140, 75) acquired spatially resolved measurements of Charon and Pluto's small moons (Styx, Nix, Kerberos, and Hydra). The sunlit hemisphere of Charon was mapped in panchromatic light with resolutions as high as 0.15 km/pix using LORRI, and in four different color bands (400-550 nm, 540-700 nm, 780-975 nm, 860-910 nm; the latter is centered on a weak CH4 band) with resolutions as high as 1.4 km/pix using MVIC. Composition maps of Charon were obtained with the LEISA infrared spectral imager in the wavelength range 1.25-2.50 microns, with a spectral resolving power of ~250 and with spatial resolutions up to 4.9 km/pix. Solar occultation observations with the Alice ultraviolet spectrograph, and radio occultation measurements with REX, were used to search for an atmosphere around Charon. Nix was observed by LORRI in panchromatic light at 0.30 km/pix, by MVIC in color at 2.0 km/pix, and by LEISA at 3.6 km/pix (the latter to be downlinked later). Hydra was observed by LORRI in panchromatic light at 1.1 km/pix, in color at 4.6 km/pix, and by LEISA at 14.9 km/pix (the latter to be downlinked later). Limited resolved measurements of Kerberos (2.0 km/pix panchromatic; 8.0 km/pix color) and Styx (3.2 km/pix panchromatic; 8.0 km/pix color) were also obtained but have not yet been downlinked. An extensive series of unresolved, photometric measurements of Pluto's small moons were obtained with LORRI during several months preceeding closest approach in mid-July, which place tight constraints on their shapes and rotational states.The New Horizons data have revealed that Charon has surprisingly diverse terrain, with evidence of tectonics and a heterogeneous crustal composition. Nix and Hydra are highly elongated bodies with high average albedos (suggesting water-ice dominated surfaces) and significant albedo and color variations over their surfaces

  11. Comparisons Between New Horizons Results and Long-Term Monitoring of Pluto

    NASA Astrophysics Data System (ADS)

    Buie, M. W.; Stern, A.; Young, L. A.; Weaver, H. A., Jr.; Olkin, C.; Ennico Smith, K.; Moore, J. M.; Grundy, W. M.

    2015-12-01

    The New Horizons encounter data have revealed a diverse and complicated surface and atmosphere for Pluto showing strong correlations between geologic features and the albedo and compositional units known from ground- and HST-based observations over the decades prior. This presentation will delve into detailed comparisons between the long time base and low spatial resolution data and the new high resolution snapshot of Pluto from the flyby. Special emphasis will be placed on the albedo and near-infrared spectral evolution over time. We will compare the albedo maps from the late 1980's built on mutual event data and two epochs of HST observations against the New Horizons images, after correcting for viewing geometry. Also included will be a discussion of the evolutionary trends in the hemispherically averaged spectral properties from Lowell Observatory and IRTF data against the resolved compositional and spectral maps from New Horizons. The combination of these data sets now permits an unprecedented ability to constrain time-variability on the surface from apparent changes due to viewing geometry and surface inhomogeneities. These comparisons require a reconcilliation of surface scattering properties that are enabled by the firm determination of the size of Pluto.

  12. Comparisons Between New Horizons Results and Long-Term Monitoring of Pluto

    NASA Astrophysics Data System (ADS)

    Buie, M. W.; Stern, A.; Young, L. A.; Weaver, H. A., Jr.; Olkin, C.; Ennico Smith, K.; Moore, J. M.; Grundy, W. M.

    2014-12-01

    The New Horizons encounter data have revealed a diverse and complicated surface and atmosphere for Pluto showing strong correlations between geologic features and the albedo and compositional units known from ground- and HST-based observations over the decades prior. This presentation will delve into detailed comparisons between the long time base and low spatial resolution data and the new high resolution snapshot of Pluto from the flyby. Special emphasis will be placed on the albedo and near-infrared spectral evolution over time. We will compare the albedo maps from the late 1980's built on mutual event data and two epochs of HST observations against the New Horizons images, after correcting for viewing geometry. Also included will be a discussion of the evolutionary trends in the hemispherically averaged spectral properties from Lowell Observatory and IRTF data against the resolved compositional and spectral maps from New Horizons. The combination of these data sets now permits an unprecedented ability to constrain time-variability on the surface from apparent changes due to viewing geometry and surface inhomogeneities. These comparisons require a reconcilliation of surface scattering properties that are enabled by the firm determination of the size of Pluto.

  13. IRAS constraints on the sizes of Pluto and Charon

    NASA Technical Reports Server (NTRS)

    Tedesco, Edward F.; Veeder, Glenn J., Jr.; Dunbar, R. Scott; Lebofsky, Larry A.

    1987-01-01

    Thermal emission models indicate that Charon contributes a significant amount of the infrared radiation detected by IRAS during the observation of mutual eclipse events. The IRAS observations also show that the most probable diameters for Pluto and Charon are 2200 and 1300 (+ or - 150) km. These results are consistent with there being some atmosphere on Pluto.

  14. Miniatue Propulsion Components for the Pluto Fast Flyby Spacecraft

    NASA Technical Reports Server (NTRS)

    Morash, D. H.; Strand, L.

    1994-01-01

    Pluto is the only planet in our solar system not yet visited by our spacecraft. Recent observations through the Hubble Space Telescope have given us a glimpse of Pluto and it's moon Charon, but their small size and immense distance from earth have preserved their mystery.

  15. Pluto's atmosphere in 2015 from high-resolution spectroscopy

    NASA Astrophysics Data System (ADS)

    Roe, Henry G.; Cook, Jason C.; Mace, Gregory N.; Holler, Bryan J.; Young, Leslie A.; McLane, Jacob N.; Jaffe, Daniel T.

    2015-11-01

    Pluto's thin N2/CH4 atmosphere is in vapor-pressure equilibrium with ices on its surface. The atmosphere evolves seasonally with the varying insolation pattern on Pluto's heterogenous surface, perhaps even largely freezing out to the surface during the coldest portion of Pluto's year. We use high-resolution (R≈25,000-50,000) near-infrared spectroscopy to resolve atmospheric methane absorption lines from Pluto's continuum spectra, as well as separate Pluto's atmospheric lines from the telluric spectrum. In addition to measuring the abundance and temperature of Pluto's atmospheric CH4, with broad wavelength coverage we are able to search for the inevitable products of N2/CH4 photochemistry. In 2015 we are undertaking an intensive campaign using NIRSPEC at Keck Observatory and IGRINS (Immersion Grating INfrared Spectrometer) at McDonald Observatory to coincide with the New Horizons Pluto encounter. We will report initial results from this 2015 campaign and compare the state of Pluto's atmosphere at the time of the New Horizons encounter with earlier years.

  16. Color Variations on Pluto, Charon & Among Pluto’s Small Satellites

    NASA Astrophysics Data System (ADS)

    Olkin, Catherine B.; Reuter, D. C.; Stern, S. A.; Howett, C. J. A.; Parker, A. H.; Ennico, K.; Singer, K. N.; Grundy, W. M.; Weaver, H. A.; Young, L. A.; Binzel, R. P.; Buie, M. W.; Cook, J. C.; Cruikshank, D. P.; Dalle Ore, C. M.; Earle, A. M.; Jennings, D. E.; Linscott, I. R.; Lunsford, A. W.; Parker, J. Wm.; Protopapa, S.; Spencer, J. R.; Tsang, C. C. C.; Verbiscer, A. J.

    2015-11-01

    This summer’s flyby of NASA’s New Horizons spacecraft past Pluto provided the first high spatial resolution imaging of the system. Using the Ralph instrument (Reuter et al. 2008, Space Sci. Rev. 140, 129), color images were obtained in 3 broadband filters and one narrow band filter: blue (400 - 550 nm), red (540-700 nm), NIR (780 - 975 nm) and methane (860 - 910 nm). These data revealed details about Pluto’s variegated surface including distinct color boundaries in two halves of the region informally named, Tombaugh Regio, and intriguing color variations in Pluto’s north pole. This talk will discuss the color variations on Pluto, Charon, Nix and Hydra. Color observations of Kerberos and Styx were taken, but will not be downlinked in time for inclusion in this talk. This work was supported by NASA’s New Horizons project.

  17. Status of the ground water flow model for the UMTRA Project, Shiprock, New Mexico, site

    SciTech Connect

    Not Available

    1995-01-01

    A two-dimensional numerical model was constructed for the alluvial aquifer in the area of the Uranium Mill Tailings Remedial Action (UMTRA) Project Shiprock, New Mexico, site. This model was used to investigate the effects of various hydrologic parameters on the evolution of the ground water flow field. Results of the model are useful for defining uncertainties in the site conceptual model and suggesting data collection efforts to reduce these uncertainties. The computer code MODFLOW was used to simulate the two-dimensional flow of ground water in the alluvium. The escarpment was represented as a no-flow boundary. The San Juan River was represented with the MODFLOW river package. A uniform hydraulic conductivity distribution with the value estimated by the UMTRA Project Technical Assistance Contractor (TAC) and a uniform recharge distribution was used. Infiltration from the flowing artesian well was represented using the well package. The ground water flow model was calibrated to ground water levels observed in April 1993. Inspection of hydrographs shows that these levels are representative of typical conditions at the site.

  18. A projection gradient method for computing ground state of spin-2 Bose–Einstein condensates

    SciTech Connect

    Wang, Hanquan

    2014-10-01

    In this paper, a projection gradient method is presented for computing ground state of spin-2 Bose–Einstein condensates (BEC). We first propose the general projection gradient method for solving energy functional minimization problem under multiple constraints, in which the energy functional takes real functions as independent variables. We next extend the method to solve a similar problem, where the energy functional now takes complex functions as independent variables. We finally employ the method into finding the ground state of spin-2 BEC. The key of our method is: by constructing continuous gradient flows (CGFs), the ground state of spin-2 BEC can be computed as the steady state solution of such CGFs. We discretized the CGFs by a conservative finite difference method along with a proper way to deal with the nonlinear terms. We show that the numerical discretization is normalization and magnetization conservative and energy diminishing. Numerical results of the ground state and their energy of spin-2 BEC are reported to demonstrate the effectiveness of the numerical method.

  19. The fate of debris in the Pluto-Charon system

    NASA Astrophysics Data System (ADS)

    Smullen, Rachel; Kratter, Kaitlin M.

    2016-05-01

    Pluto has recently been thrust into the spotlight with the fly-by of New Horizons. This dwarf planet and its moons provide an opportunity to study circumbinary dynamics close to home. We perform N-body simulations of a test-particle disk around the Pluto-Charon binary to study the fate of debris that should result from the formation of the Pluto-Charon binary. We not only investigate the stability and time evolution of debris within the Pluto system, but also track ejected debris to see where it may collect in the solar system. By studying the dynamics of the Pluto-Charon system, we may be able to place constraints on the cratering rates from its natal disk and identify tracers of the formation of this system.

  20. The interiors of Pluto and Charon: Structure, composition, and implications

    SciTech Connect

    Simonelli, D.P. Cornell Univ., Ithaca, NY ); Reynolds, R.T. )

    1989-11-01

    The authors review recent models of the internal structure of Pluto and Charon made possible by analysis of the Pluto/Charon mutual events. At a mean density of just over 2 g cm{sup {minus}3} and a predicted rock mass fraction of roughly 0.7, the Pluto/Charon system is significantly rockier than the icy satellites of the giant planets, a contrast which may reflect its formation in a CO-rich outer solar nebula rather than a circumplanetary nebula. Pluto and Charon may in fact be so rocky that they lost volatiles early in their history (possibly during a Charon-forming impact event), although this is still an open issue. Finally, they review the outlook for future study of the Pluto and Charon interiors.

  1. Circumstances for Pluto-Charon mutual events in 1987

    NASA Technical Reports Server (NTRS)

    Tholen, David J.; Buie, Marc W.; Swift, Catherine E.

    1987-01-01

    Circumstances are tabulated for 88 Pluto-Charon mutual events occurring during the 1987 opposition. Charon is predicted to be completely obscured either by Pluto or Pluto's shadow during each passage behind Pluto during this opposition, providing several opportunities to study Pluto uncontaminated by the light of Charon. The duration of these total events is predicted to be from 32 to 79 min. The mutual-event season is now expected to conclude during the 1990 opposition. Two new stars have been selected as comparison stars for events occurring prior to opposition in 1987. Standardization of the primary comparison stars used in 1985 and 1986 has yielded the following magnitudes: B = 12.6044 + or - 0.0015 and V = 11.7956 + or - 0.0017 (1985 Primary); B = 13.1238 + or 0.0008 and V = 12.3885 + or - 0.0014 (1986 Primary).

  2. Photometric Properties of Pluto and Charon: Comparison to Other Bodies

    NASA Astrophysics Data System (ADS)

    Buratti, B. J.; Stern, A.; Weaver, H. A., Jr.; Young, L. A.; Ennico Smith, K.; Momary, T.; Zangari, A. M.; Binzel, R. P.

    2015-12-01

    The New Horizons spacecraft provided the first detailed views of the photometric properties of Pluto and Charon, and how these properties relate to geophysical processes. Among the first results are the distribution of albedo on the surfaces of both bodies, and the surface phase function for both high- and low-albedo regions of Pluto, which yields information on macroscopic roughness and particle properties. The highest albedos on Pluto are similar to those of the bright icy moons of Saturn and Jupiter. The range of albedos on Pluto is surprisingly large, surpassed only by Saturn's moon Iapetus. Charon has a more limited range, with a bifurcated distribution. The disk-integrated phase function of Pluto is similar to those of the icy moons of Saturn. The geologic implications of these results will be discussed. Funded by NASA

  3. Convection in Solid Nitrogen and Other Supervolatile Ices on Pluto

    NASA Astrophysics Data System (ADS)

    McKinnon, W. B.; Nimmo, F.; Umurhan, O. M.; Wong, T.; Roberts, J. H.; Stern, A.; Weaver, H. A., Jr.; Spencer, J. R.; Moore, J. M.; Schenk, P.; Olkin, C.; Young, L. A.; Ennico Smith, K.

    2015-12-01

    N2, CO, and CH4 ices are all very weak, van der Waals bonded molecular solids. As such they are not expected to be able to support appreciable surface topography over any great length of geologic time, even at the surface conditions of bodies such as Pluto or Triton (J.M. Moore et al., Geology before Pluto: Pre-encounter considerations, Icarus 246, 65-81, 2015). Nitrogen ice, the most volatile of these, is the volumetrically dominant ice in the optically active surface of Pluto and may exist in more substantive, massive accumulations as well. We examine the possibility of convective overturn in surface layers of nitrogen and other "supervolatile" ices on Pluto, based on the best available rheologies. The characteristics of such convection may differ from those observed or expected on the terrestrial planets and icy satellites. We will discuss whether these characteristics possess any explanatory power for Pluto.

  4. The TERESA project: from space research to ground tele-echography

    NASA Technical Reports Server (NTRS)

    Vieyres, Pierre; Poisson, Gerard; Courreges, Fabien; Merigeaux, Olivier; Arbeille, Philippe

    2003-01-01

    Ultrasound examinations represent one of the major diagnostic modalities of future healthcare. They are currently used to support medical space research but require a high skilled operator for both probe positioning on the patient's skin and image interpretation. TERESA is a tele-echography project that proposes a solution to bring astronauts and remotely located patients on ground quality ultrasound examinations despite the lack of a specialist at the location of the wanted medical act.

  5. Common ground: the HealthWeb project as a model for Internet collaboration.

    PubMed Central

    Redman, P M; Kelly, J A; Albright, E D; Anderson, P F; Mulder, C; Schnell, E H

    1997-01-01

    The establishment of the HealthWeb project by twelve health sciences libraries provides a collaborative means of organizing and enhancing access to Internet resources for the international health sciences community. The project is based on the idea that the Internet is common ground for all libraries and that through collaboration a more comprehensive, robust, and long-lasting information product can be maintained. The participants include more than seventy librarians from the health sciences libraries of the Committee on Institutional Cooperation (CIC), an academic consortium of twelve major research universities. The Greater Midwest Region of the National Network of Libraries of Medicine serves as a cosponsor. HealthWeb is an information resource that provides access to evaluated, annotated Internet resources via the World Wide Web. The project vision as well as the progress reported on its implementation may serve as a model for other collaborative Internet projects. PMID:9431420

  6. Pluto in Hi-Def Note: There is debate within the science community as to whether Pluto should be

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This image demonstrates the first detection of Pluto using the high-resolution mode on the New Horizons Long-Range Reconnaissance Imager (LORRI). The mode provides a clear separation between Pluto and numerous nearby background stars. When the image was taken on October 6, 2007, Pluto was located in the constellation Serpens, in a region of the sky dense with background stars.

    Typically, LORRI's exposure time in hi-res mode is limited to approximately 0.1 seconds, but by using a special pointing mode that allowed an increase in the exposure time to 0.967 seconds, scientists were able to spot Pluto, which is approximately 15,000 times fainter than human eyes can detect.

    New Horizons was still too far from Pluto (3.6 billion kilometers, or 2.2 billion miles) for LORRI to resolve any details on Pluto's surface that won't happen until summer 2014, approximately one year before closest approach. For now the entire Pluto system remains a bright dot to the spacecraft's telescopic camera, though LORRI is expected to start resolving Charon from Pluto seeing them as separate objects in summer 2010.

  7. "Pluto Has Been a Planet My Whole Life!" Emotions, Attitudes, and Conceptual Change in Elementary Students' Learning about Pluto's Reclassification

    ERIC Educational Resources Information Center

    Broughton, Suzanne H.; Sinatra, Gale M.; Nussbaum, E. Michael

    2013-01-01

    Learning about certain scientific topics has potential to spark strong emotions among students. We investigated whether emotions predicted students' attitudes after engaging in independent rereading and/or rereading plus discussion about Pluto's reclassification. Fifth and sixth grade students read a refutation text on Pluto's reclassification.…

  8. The New Horizons Mission to Pluto and the Kuiper Belt

    NASA Astrophysics Data System (ADS)

    Weaver, H. A.; Stern, S. A.; New Horizons Science; Engineering Team

    New Horizons, which initiates the NASA New Frontiers program of mid-sized missions, will provide the first scientific reconnaissance of the Pluto-Charon system and is scheduled for launch in January 2006. An encounter with Jupiter at a flyby distance of ˜32-45 RJ about 13 months after launch provides a gravity boost for the spacecraft's journey to Pluto and practice for the Pluto encounter, in addition to providing an opportunity to perform a valuable set of scientific measurements within the jovian system. New Horizons carries a sophisticated suite of instruments to perform ultraviolet and infrared spectroscopy, panchromatic and color optical imaging, and charged particle and dust measurements, all within a spacecraft having a total mass of ˜465 kg and total power output of ˜210 W at the time of Pluto encounter in July 2015. The primary scientific objectives of the New Horizons are to characterize the global geology and morphology of Pluto and Charon, map the surface composition of Pluto and Charon, and characterize the neutral atmosphere and its escape rate, but many other important scientific objectives will be addressed as well. New Horizons has the capability to image Pluto with a resolution exceeding that provided by the Hubble Space Telescope for at least 90 days prior to closest approach at a distance of ˜10,000 km from the surface, at which time a resolution of ˜100 m will be achieved for selected regions near the terminator. After encounter, the spacecraft will pass through the shadows of both Pluto and Charon, which enables radio and ultraviolet occultation measurements of their atmospheres. If an extended mission phase is approved, the spacecraft will be re-targeted to encounter one or more Kuiper belt objects (KBOs), roughly 3 years after the Pluto encounter at a heliocentric distance of ˜42 AU. The scientific objectives for the KBO encounters are similar to those for the Pluto encounter.

  9. Pluto's Atmosphere and Surface Ices as Simulated by the PlutoWRF GCM

    NASA Astrophysics Data System (ADS)

    Toigo, A. D.; French, R. G.; Gierasch, P. J.; Richardson, M. I.; Guzewich, S.

    2013-12-01

    The PlutoWRF general circulation model (GCM) was built to examine the large-scale structure and dynamics of the atmosphere, the nature and propagation of waves within the atmosphere, and the exchanges of volatiles between the atmosphere and the surface. We seek to provide an comprehensive framework for the study of the increasingly rich observational data sets (including stellar occultations of the atmosphere) and to provide context and analysis of observations from the New Horizons mission. The PlutoWRF GCM is based on the planetary adaptation of the NCAR Weather Research and Forecasting (WRF) model. It is a compressible, nonhydrostatic model where we have added physics to treat radiative transfer following Zhu et al. (2013), a bulk nitrogen cycle including condensation of surface ice, and cycles of additional trace volatile species. Existing subsurface heat diffusion, surface layer exchange and boundary layer mixing schemes have been adapted to Pluto. Boundary conditions for initial ice distribution and surface pressure are taken from energy balance and non-GCM volatile transport models constrained by observations. In this work we focus on the performance of the PlutoWRF GCM compared with our linear tidal model (Toigo et al., 2010), and will examine the generation and propagation of large-scale gravity waves associated with diurnal sublimation and condensation.

  10. Seasonal variations in Pluto's atmospheric tides

    NASA Astrophysics Data System (ADS)

    French, Richard G.; Toigo, Anthony D.; Gierasch, Peter J.; Hansen, Candice J.; Young, Leslie A.; Sicardy, Bruno; Dias-Oliveira, Alex; Guzewich, Scott D.

    2015-01-01

    Pluto's tenuous atmosphere exhibits remarkable seasonal change as a result of the planet's substantial obliquity and highly eccentric orbit. Over the past two decades, occultations have revealed that the atmospheric pressure on Pluto has increased substantially, perhaps by a factor as large as 2 to 4, as the planet has moved from equinox towards solstice conditions. These data have also shown variations in the strength of the dynamical activity in the atmosphere, as revealed by the varying abundance and amplitude of spikes in the occultation light curves resulting from refractive focussing by atmospheric waves. Toigo et al. (Toigo et al. [2010]. Icarus, 208, 402-411) explored the possibility that these waves are caused by solar-induced sublimation and diurnal deposition from N2 frost patches, driven by weak vertical winds resulting from the rising and sinking gas as it is released from or deposited onto the surface. Here, we extend this model to account explicitly for seasonal variations in average insolation and for the significant damping of vertical wave propagation by kinematic viscosity and thermal diffusivity (Hubbard et al. [2009]. Icarus, 204, 284-289). Damping is extremely effective in suppressing vertical propagation of waves with vertical wavelengths of a few kilometers or less, and the dominant surviving tidal modes have characteristic vertical wavelengths λ ∼ 10-13 km . We estimate the expected strength and regional characteristics of atmospheric tides over the course of Pluto's orbit for a variety of assumed spatial distributions of surface frost and atmospheric surface pressure. We compute the predicted strength of tide-induced wave activity based on the actual frost distribution observed on Pluto from Hubble Space Telescope (HST) observations (Stern et al. [1997]. Astron. J., 113, 827; Buie et al. [2010]. Astron. J., 139, 1128-1143), and compare the results to calculations for volatile transport models of Young (Young [2013]. Astrophys. J., 766

  11. The Development and Implementation of Ground Safety Requirements for Project Orion Abort Flight Testing - A Case Study

    NASA Technical Reports Server (NTRS)

    Kirkpatrick, Paul D.; Williams, Jeffrey G.; Condzella, Bill R.

    2008-01-01

    A rigorous set of detailed ground safety requirements is required to make sure that ground support equipment (GSE) and associated planned ground operations are conducted safely. Detailed ground safety requirements supplement the GSE requirements already called out in NASA-STD-5005. This paper will describe the initial genesis of these ground safety requirements, the establishment and approval process and finally the implementation process for Project Orion. The future of the requirements will also be described. Problems and issues encountered and overcame will be discussed.

  12. Radiation hydrodynamics integrated in the PLUTO code

    NASA Astrophysics Data System (ADS)

    Kolb, Stefan M.; Stute, Matthias; Kley, Wilhelm; Mignone, Andrea

    2013-11-01

    Aims: The transport of energy through radiation is very important in many astrophysical phenomena. In dynamical problems the time-dependent equations of radiation hydrodynamics have to be solved. We present a newly developed radiation-hydrodynamics module specifically designed for the versatile magnetohydrodynamic (MHD) code PLUTO. Methods: The solver is based on the flux-limited diffusion approximation in the two-temperature approach. All equations are solved in the co-moving frame in the frequency-independent (gray) approximation. The hydrodynamics is solved by the different Godunov schemes implemented in PLUTO, and for the radiation transport we use a fully implicit scheme. The resulting system of linear equations is solved either using the successive over-relaxation (SOR) method (for testing purposes) or using matrix solvers that are available in the PETSc library. We state in detail the methodology and describe several test cases to verify the correctness of our implementation. The solver works in standard coordinate systems, such as Cartesian, cylindrical, and spherical, and also for non-equidistant grids. Results: We present a new radiation-hydrodynamics solver coupled to the MHD-code PLUTO that is a modern, versatile, and efficient new module for treating complex radiation hydrodynamical problems in astrophysics. As test cases, either purely radiative situations, or full radiation-hydrodynamical setups (including radiative shocks and convection in accretion disks) were successfully studied. The new module scales very well on parallel computers using MPI. For problems in star or planet formation, we added the possibility of irradiation by a central source.

  13. Seasonal Variations in Pluto's Atmospheric Tides

    NASA Astrophysics Data System (ADS)

    French, R. G.; Toigo, A. D.; Sicardy, B.; Guzewich, S.; Gierasch, P. J.; Richardson, M. I.

    2013-12-01

    Pluto's tenuous atmosphere exhibits remarkable dynamical activity and seasonal change as a result of the substantial tilt of its rotational axis and its highly elliptical orbit. Early discovery observations by stellar occultation (Elliot et al. 1989 Icarus 77, 148) revealed a relatively symmetrical atmosphere of very low density, with evidence of either a near-surface haze layer or a very cold near-surface layer. Later occultation and spectroscopic measurements showed that the dominant constituent of the atmosphere is nitrogen, with lower abundances of CH4 and other trace amounts of greenhouse gases that control the thermal structure of the middle atmosphere. Over the past two decades, occultations have convincingly demonstrated that the atmospheric pressure on Pluto has increased substantially, perhaps by a factor of 2 to 4, as the planet has moved from equinox towards solstice conditions. These data have also shown an interesting change in dynamical activity in the atmosphere, as revealed by "spikes" in the occultation light curves resulting from refractive focussing by atmospheric waves. In the past two years, a conspicuous asymmetry in wavelike activity has become evident, being much stronger in the winter hemisphere than in the summer. Toigo et al. (2010, Icarus 208, 402) explored the possibility that these waves are caused by solar-induced sublimation and diurnal freezing from N2 frost patches -- weak vertical winds are induced by the rising and sinking gas as it is release from or condenses on the surface. Using a variant of this tidal model, we explore the expected strength and regional characteristics of tides over the course of Pluto's orbit, accounting for changes in insolation and distance from the sun, for a variety of assumed spatial distributions of surface frost. Using a 3-D time-dependent ray-tracing code we compute model light curves for the actual circumstances of several recent occultations, and compare the character of the scintillations in the

  14. Great debate probes Pluto's planetary credentials

    NASA Astrophysics Data System (ADS)

    Gwynne, Peter

    2008-09-01

    It had all the trappings of an Olympic boxing final: two fiery competitors, a partisan crowd and the attention of the global press. But no individual gold medalist emerged from the Great Planet Debate held last month in Baltimore to discuss what type of astronomical object Pluto really is. Rather, the contest between Neil de-Grasse Tyson, director of New York's Hayden Planetarium, and Mark Sykes of the University of Arizona's Planetary Science Institute provided a view of how science deals with controversial issues of definition.

  15. The temperature of nitrogen on Pluto

    NASA Technical Reports Server (NTRS)

    Tryka, K. A.; Brown, R. H.; Cruikshank, D. P.; Owen, T. C.

    1994-01-01

    With Hapke scattering theory and absorption coefficients derived from our laboratory measurements of solid N2 we have modeled the spectrum of Triton. By comparing a Hapke scattering model to the measured spectrum from Triton, we determined the temperature of the N2 on the satellite's surface to be 38 (+2, -1) K which is in accord with the measurements of Voyager 2. Applying this technique to Pluto we find that the temperature of N2 on that body is 40 +/- 2 K. Other aspects of this investigation are discussed.

  16. The Laplace Planes of Uranus and Pluto

    NASA Technical Reports Server (NTRS)

    Dobrovolskis, Anthony R.

    1993-01-01

    Satellite orbits close to an oblate planet precess about its equatorial plane, while distant satellites precess around the plane of the planet's heliocentric orbit. In between, satellites in nearly circular orbits precess about a warped intermediate surface called the Laplace 'plane.' Herein we derive general formulas for locating the Laplace plane. Because Uranus and Pluto have high obliquities, their Laplace planes are severely warped. We present maps of these Laplace planes, of interest in telescopic searches for new satellites. The Laplace plane of the Solar System as a whole is similarly distorted, but comets in the inner Oort cloud precess too slowly to sense the Laplace plane.

  17. New Horizons disk-integrated approach photometry of Pluto and Charon

    NASA Astrophysics Data System (ADS)

    Zangari, Amanda M.; Buie, Marc W.; Buratti, Bonnie J.; Verbiscer, Anne J.; Howett, C. J. A.; Weaver, H. A.; Olkin, Catherine B.; Ennico, Kimberly; Young, Leslie A.; Stern, S. A.

    2015-11-01

    Approach and cruise observations of Pluto and Charon by NASA's New Horizons LOng Range Reconnaissance Imager ("LORRI") allow monitoring of Pluto not only at phase angles beyond Earth's 2 degree limit, but present a near constant sub-observer latitude of 43 degrees. However, the creation of light curves and solar phase curves of the pair prove to be an interesting challenge. Early images of the pair from July 2013 are barely resolved and have low signal, while later images show the pair clearly resolved and at sufficient resolution. Just at the Pluto approaches the signal level and image quality of prior HST images, surface features become resolved, rendering disk integrated photometry increasingly difficult and inaccurate, with the largest discrepancies found at longitudes which show the intersection of features informally named Tombaugh Regio ("the heart") and Cthulhu Macula ("the whale"). Now, post flyby, accurate knowledge of the radius and the shapes of surface features and their patterns of dark and light, allow for the creation of custom PSFs created from flyby maps. Using these maps, we present disk-integrated approach photometry, a solar phase curve and estimate Hapke parameters, taking into account the sub-observer position.This work was supported by the NASA New Horizons Project.

  18. The Radii and Oblateness of Pluto and Charon: Preliminary Results from the 2015 New Horizons Flyby

    NASA Astrophysics Data System (ADS)

    Lisse, Carey M.; Nimmo, Francis; McKinnon, William B.; Umurhan, Orkan M.; Buie, Marc W.; Lauer, Tod R.; Roberts, James H.; Stern, S. Alan; Weaver, Hal A.; Young, Leslie A.; Ennico-Smith, Kimberly; Olkin, Cathy B.

    2015-11-01

    We present preliminary results for the radii and oblateness of Pluto and Charon. Accurate determinations of the mean radii of Pluto and Charon are important for establishing their densities and bulk composition. A fossil bulge, if present, would place constraints on the thermal and orbital evolution of these bodies [1,2]. The New Horizons LORRI imaging system [3] has provided global images of Pluto and Charon, with best resolutions of 3.8 and 2.3 km/pix, respectively. Three separate approaches have been used to determine mean radii and oblateness from the images, two using a threshold DN value [4,5] and one using a maximum gradient method. These approaches were validated using synthetic images having a range of photometric functions. Tradeoffs between the limb center location and the derived shape in individual images can be reduced by combining limb pixel locations obtained from different imaged rotational phases.This work was supported by NASA's New Horizons project.[1] Robuchon & Nimmo, Icarus 216, 426, 2011. [2] McKinnon & Singer, DPS 46, abs. no. 419.07, 2014. [3] Cheng et al., SSR 140, 189, 2008. [4] Dermott & Thomas, Icarus 73, 25, 1988. [5] Thomason & Nimmo, LPSC 46, abs. no. 1462, 2015.

  19. Occultation by Pluto's atmosphere and other results from the Stratospheric Observatory for Infrared Astronomy

    NASA Astrophysics Data System (ADS)

    Reach, William T.; Person, Michael

    2015-08-01

    The Stratospheric Observatory for Infrared Astronomy is a 2.5-m telescope flown aboard a 747-SP aircraft. The observatory flies above 99% of the Earth's atmospheric water, enabling infrared observations at wavelengths where light is completely obscured from the ground. The observatory also flies above much of the atmospheric scintillation, and its mobility enables observations of plaentary occultations. We will report on observatory capabilities and the results of an attempt to observe the 2015 June 29 occultation of Pluto along the central chord of the shadow to constrain a "central flash" at visible and near-infrared wavelengths.

  20. Pluto and Charon: Surface Colors and Compositions - A Hypothesis

    NASA Technical Reports Server (NTRS)

    Cruikshank, D. P.

    2016-01-01

    The surface of Pluto displays an array of colors ranging from yellow to red to brown, while the surface of Charon is largely gray with a north polar zone of red color similar to regions on Pluto. Pluto's surface shows layers of intensely colored material in tilted and transported blocks, and fractured geo-graphical units. This arrangement suggests episodes of formation or deposition of that material interspersed with episodes of emplacement of ices having little or no color. The ices identified on the surfaces of these two bodies (N2, CH4, CO, C2H6, H2O on Pluto, and H2O and NH3 on Charon) are colorless, as are nearly all ices in a powdery state. The colors on Pluto probably arise from the in situ formation of a macro-molecular carbonaceous material generated by energetic processing of the ices on the surface. Laboratory experiments producing refractory tholins particularly relevant to Pluto explored the chemistry of both UV and low-energy electron bombardment of a mix of Pluto ices (N2:CH4:CO = 100:1:1). We can term this Pluto ice tholin PIT. Water ice in the crystalline state characterizes Charon's surface, and while most of Charon's surface is neutral in color, with geometric albedo approximately 0.38, the polar zone and a light cover of fainter but similar reddish color over some surface regions suggest a common origin with the colored material on Pluto. NH3 or NH3 x nH2O was identified from disk-integrated Earth-based spectra, and a few concentrated NH3 exposures have been found in the New Horizons spectral images.

  1. Constraints on Pluto's Hazes from 2-Color Occultation Lightcurves

    NASA Astrophysics Data System (ADS)

    Hartig, Kara; Barry, T.; Carriazo, C. Y.; Cole, A.; Gault, D.; Giles, B.; Giles, D.; Hill, K. M.; Howell, R. R.; Hudson, G.; Loader, B.; Mackie, J. A.; Olkin, C. B.; Rannou, P.; Regester, J.; Resnick, A.; Rodgers, T.; Sicardy, B.; Skrutskie, M. F.; Verbiscer, A. J.; Wasserman, L. H.; Watson, C. R.; Young, E. F.; Young, L. A.; Buie, M. W.; Nelson, M.

    2015-11-01

    The controversial question of aerosols in Pluto's atmosphere first arose in 1988, when features in a Pluto occultation lightcurve were alternately attributed to haze opacity (Elliot et al. 1989) or a thermal inversion (Eshleman 1989). A stellar occultation by Pluto in 2002 was observed from several telescopes on Mauna Kea in wavelengths ranging from R- to K-bands (Elliot et al. 2003). This event provided compelling evidence for haze on Pluto, since the mid-event baseline levels were systematically higher at longer wavelengths (as expected if there were an opacity source that scattered more effectively at shorter wavelengths). However, subsequent occultations in 2007 and 2011 showed no significant differences between visible and IR lightcurves (Young et al. 2011).The question of haze on Pluto was definitively answered by direct imaging of forward-scattering aerosols by the New Horizons spacecraft on 14-JUL-2015. We report on results of a bright stellar occultation which we observed on 29-JUN-2015 in B- and H-bands from both grazing and central sites. As in 2007 and 2011, we see no evidence for wavelength-dependent extinction. We will present an analysis of haze parameters (particle sizes, number density profiles, and fractal aggregations), constraining models of haze distribution to those consistent with and to those ruled out by the occultation lightcurves and the New Horizons imaging.References:Elliot, J.L., et al., "Pluto's Atmosphere." Icarus 77, 148-170 (1989)Eshleman, V.R., "Pluto's Atmosphere: Models based on refraction, inversion, and vapor pressure equilibrium." Icarus 80 439-443 (1989)Elliot, J.L., et al., "The recent expansion of Pluto's atmosphere." Nature 424 165-168 (2003)Young, E.F., et al., "Search for Pluto's aerosols: simultaneous IR and visible stellar occultation observations." EPSC-DPS Joint Meeting 2011, held 2-7 October 2011 in Nantes, France (2011)

  2. The impactor flux in the Pluto-Charon system

    NASA Technical Reports Server (NTRS)

    Weissman, Paul R.; Stern, S. Alan

    1994-01-01

    Current impact rates of comets on Pluto and Charon are estimated. It is shown that the dominant sources of impactors are comets from the Kuiper belt and the inner Oort cloud, each of whose perihelion distribution extends across Pluto's orbit. In contrast, long-period comets from the outer Oort cloud are a negligible source of impactors. The total predicted number of craters is not sufficient to saturate the surface areas of either Pluto of Charon over the age of the Solar System. However, heavy cratering may have occurred early in the Solar System's history during clearing of planetesimals from the outer planets' zone.

  3. Kuiper Belt Objects Along the Pluto-Express Path

    NASA Technical Reports Server (NTRS)

    Jewitt, David (Principal Investigator)

    1997-01-01

    The science objective of this work is to identify objects in the Kuiper Belt which will, in the 5 years following Pluto encounter, be close to the flight path of NASA's Pluto Express. Our hope is that we will find a Kuiper Belt object or objects close enough that a spacecraft flyby will be possible. If we find a suitable object, the science yield of Pluto Express will be substantially enhanced. The density of objects in the Kuiper Belt is such that we are reasonably likely to find an object close enough to the flight path that on-board gas thrusters can effect a close encounter.

  4. Results from PIXON-Processed HRC Images of Pluto

    NASA Astrophysics Data System (ADS)

    Young, E. F.; Buie, M. W.; Young, L. A.

    2005-08-01

    We examine the 384 dithered images of Pluto and Charon taken with the Hubble Space Telescope's High Resolution Camera (HRC) under program GO-9391. We have deconvolved the individual images with synthetic point spread functions (PSF) generated with TinyTim v6.3 using PIXON processing (Puetter and Yahil 1999). We reconstruct a surface albedo map of Pluto using a backprojection algorithm. At present, this algorithm does not include Hapke phase function or backscattering parameters. We compare this albedo map to earlier maps based on HST and mutual event observations (e.g., Stern et al. 1997, Young et al. 2001), looking for changes in albedo distribution and B-V color distribution. Pluto's volatile surface ices are closely tied to its atmospheric column abundance, which has doubled in the interval between 1989 and 2002 (Sicardy et al. 2003, Elliot et al. 2003). A slight rise (1.5 K) in the temperature of nitrogen ice would support the thicker atmosphere. We examine the albedo distribution in the context of Pluto's changing atmosphere. Finally, a side effect of the PIXON processing is that we are better able to search for additional satellites in the Pluto-Charon system. We find no satellites within a 12 arcsec radius of Pluto brighter than a 5-sigma upper limit of B=25.9. In between Pluto and Charon this upper limit is degraded to B=22.8 within one Rp of Pluto's surface, improving to B=25.1 at 10 Rp (Charon's semimajor axis). This research was supported by a grant from NASA's Planetary Astronomy Program (NAG5-12516) and STScI grant GO-9391. Elliot, J.L., and 28 co-authors (2003), ``The recent expansion of Pluto's atmosphere," Nature 424, 165-168. R. C. Puetter and A. Yahil (1999), ``The Pixon Method of Image Reconstruction" in Astronomical Data Analysis Software and Systems VIII, D. M. Mehringer, R. L. Plante & D. A. Roberts, eds., ASP Conference Series, 172, pp. 307-316. Sicardy, B. and 40 co-authors (2003), ``Large changes in Pluto's atmosphere as revealed by recent

  5. Features of surface topography and the geological activity of Pluto

    NASA Astrophysics Data System (ADS)

    Vidmachenko, A. P.

    2016-05-01

    According to the data "New Horizons" of the spacecraft, researchers were able to specify the diameter of Pluto-2374 km. Its surface temperature in the equatorial region varies from 33 to 55 K over the planet's orbital period around the Sun in ~248 years. Presumably the surface of Pluto has a rocky base covered with a mantle of water ice, of frozen methane, nitrogen, ammonia and CO. Due to the large eccentricity of the orbit of Pluto, as it approaches the Sun, the ice melts, and the atmosphere is formed mainly of nitrogen and methane; while removing of the planet from the Sun - the atmosphere freezes out again.

  6. Kuiper Belt Objects Along the Pluto Express Path

    NASA Technical Reports Server (NTRS)

    Jewitt, David C.

    1998-01-01

    The science objective of this work was to identify objects in the Kuiper Belt which will, in the 5 years following Pluto encounter, be close to the flight path of NASA's Pluto-Kuiper Express. Currently, launch is scheduled for 2004 with a flight time of about 1 decade. Early identification of post-Pluto targets is important for mission design and orbit refinement. An object or objects close enough to the flight path can be visited and studied at high resolution, using only residual gas in the thrusters to affect a close encounter.

  7. A giant impact origin of Pluto-Charon.

    PubMed

    Canup, Robin M

    2005-01-28

    Pluto and its moon, Charon, are the most prominent members of the Kuiper belt, and their existence holds clues to outer solar system formation processes. Here, hydrodynamic simulations are used to demonstrate that the formation of Pluto-Charon by means of a large collision is quite plausible. I show that such an impact probably produced an intact Charon, although it is possible that a disk of material orbited Pluto from which Charon later accumulated. These findings suggest that collisions between 1000-kilometer-class objects occurred in the early inner Kuiper belt. PMID:15681378

  8. Interplanetary Magnetic Field Sector from Solar Wind around Pluto (SWAP) Measurements of Heavy Ion Pickup near Pluto

    NASA Astrophysics Data System (ADS)

    Zirnstein, E. J.; McComas, D. J.; Elliott, H. A.; Weidner, S.; Valek, P. W.; Bagenal, F.; Stern, S. A.; Ennico, K.; Olkin, C. B.; Weaver, H. A.; Young, L. A.

    2016-06-01

    On 2015 July 14, the New Horizons spacecraft flew by the Pluto system. The Solar Wind Around Pluto (SWAP) instrument on board New Horizons, which detects ions in the energy per charge range ˜0.035 to 7.5 keV/q, measured the unique interaction between the solar wind and Pluto's atmosphere. Immediately after the closest approach, SWAP detected a burst of heavy ion counts when the instrument's field of view (FOV) was aligned north and south of the Sun–Pluto line and approximately normal to the solar wind flow direction, suggesting their origin as heavy neutral atoms from Pluto that were ionized and being picked up by the solar wind. The trajectories of heavy pickup ions depend on the interplanetary magnetic field (IMF). New Horizons is not equipped with a magnetometer, and we cannot directly measure the IMF. However, we can utilize SWAP's measurements and instrument FOV during this brief period of time to determine the most likely sector of the IMF that could reproduce SWAP's observations of heavy ion pickup. We find that the IMF was most likely in an outward sector, or retrograde to the planets’ motion, during the Pluto encounter, and that the heavy ions detected by SWAP are more likely {{{CH}}4}+ than {{{{N}}}2}+. This supports the existence of a methane exosphere at Pluto.

  9. Environmental Assessment of Ground Water Compliance at the Naturita, Colorado, UMTRA Project Site

    SciTech Connect

    2003-04-23

    This Environmental Assessment addresses the environmental effects of a proposed action and the no action alternative to comply with U.S. Environmental Protection Agency (EPA) ground water standards at the Naturita, Colorado, Uranium Mill Tailings Remedial Action Project site. In 1998, the U.S. Department of Energy (DOE) completed surface cleanup at the site and encapsulated the tailings in a disposal cell 15 miles northwest near the former town of Uravan, Colorado. Ground water contaminants of potential concern at the Naturita site are uranium and vanadium. Uranium concentrations exceed the maximum concentration limit (MCL) of 0.044 milligram per liter (mg/L). Vanadium has no MCL; however, vanadium concentrations exceed the EPA Region III residential risk-based concentration of 0.33 mg/L (EPA 2002). The proposed compliance strategy for uranium and vanadium at the Naturita site is no further remediation in conjunction with the application of alternate concentration limits. Institutional controls with ground water and surface water monitoring will be implemented for these constituents as part of the compliance strategy. This compliance strategy will be protective of human health and the environment. The proposed monitoring program will begin upon regulatory concurrence with the Ground Water Compliance Action Plan (DOE 2002a). Monitoring will consist of verifying that institutional controls remain in place, collecting ground water samples to verify that concentrations of uranium and vanadium are decreasing, and collecting surface water samples to verify that contaminant concentrations do not exceed a regulatory limit or risk-based concentration. If these criteria are not met, DOE would reevaluate the proposed action and determine the need for further National Environmental Policy Act documentation. No comments were received from the public during the public comment period. Two public meetings were held during this period. Minutes of these meetings are included as

  10. Geology of Pluto and Charon Overview

    NASA Astrophysics Data System (ADS)

    Moore, J. M.; Stern, A.; Weaver, H. A., Jr.; Young, L. A.; Ennico Smith, K.; Olkin, C.

    2015-12-01

    Pluto's surface was found to be remarkably diverse in terms of its range of landforms, terrain ages, and inferred geological processes. There is a latitudinal zonation of albedo. The conspicuous bright albedo heart-shaped feature informally named Tombaugh Regio is comprised of several terrain types. Most striking is Texas-sized Sputnik Planum, which is apparently level, has no observable craters, and is divided by polygons and ovoids bounded by shallow troughs. Small smooth hills are seen in some of the polygon-bounding troughs. These hills could either be extruded or exposed by erosion. Sputnik Planum polygon/ovoid formation hypotheses range from convection to contraction, but convection is currently favored. There is evidence of flow of plains material around obstacles. Mountains, especially those seen south of Sputnik Planum, exhibit too much relief to be made of CH4, CO, or N2, and thus are probably composed of H2O-ice basement material. The north contact of Sputnik Planum abuts a scarp, above which is heavily modified cratered terrain. Pluto's large moon Charon is generally heavily to moderately cratered. There is a mysterious structure in the arctic. Charon's surface is crossed by an extensive system of rift faults and graben. Some regions are smoother and less cratered, reminiscent of lunar maria. On such a plain are large isolated block mountains surrounded by moats. At this conference we will present highlights of the latest observations and analysis.

  11. Processes Modifying Cratered Terrains on Pluto

    NASA Astrophysics Data System (ADS)

    Moore, J. M.; Howard, A. D.; White, O. L.; Umurhan, O. M.; Schenk, P.; Beyer, R. A.; McKinnon, W. B.; Singer, K. N.; Spencer, J. R.; Stern, A.; Weaver, H. A., Jr.; Young, L. A.; Ennico Smith, K.; Olkin, C.

    2015-12-01

    The July encounter with Pluto by the New Horizons spacecraft permitted imaging of its cratered terrains with scales as high as ~100 m/pixel, and in stereo. In the initial download of images, acquired at 2.2 km/pixel, widely distributed impact craters up to 260 km diameter are seen in the near-encounter hemisphere. Many of the craters appear to be significantly degraded or infilled. Some craters appear partially destroyed, perhaps by erosion such as associated with the retreat of scarps. Bright ice-rich deposits highlight some crater rims and/or floors. While the cratered terrains identified in the initial downloaded images are generally seen on high-to-intermediate albedo surfaces, the dark equatorial terrain informally known as Cthulhu Regio is also densely cratered. We will explore the range of possible processes that might have operated (or still be operating) to modify the landscape from that of an ancient pristinely cratered state to the present terrains revealed in New Horizons images. The sequence, intensity, and type of processes that have modified ancient landscapes are, among other things, the record of climate and volatile evolution throughout much of the Pluto's existence. The deciphering of this record will be discussed.

  12. Mass loss from the atmosphere of Pluto

    NASA Astrophysics Data System (ADS)

    Liang, Mao-Chang; Yen, Chien-Chang; Taam, Ronald

    2015-11-01

    Molecules can escape readily from the atmosphere of Pluto. Hydrodynamic escape is a process that drives large scale escape. The process was generally believed to produce rather small isotopic fractionation. Here, we show that the escape highly fractionates the isotopic composition of nitrogen. The process preferentially selects lighter species, with an escape probability ~30% higher for the lighter isotopologue. This fractionation factor is higher than the fractionations occurring in most of known processes in modifying the distributions of molecules in the planetary atmospheres. The validity of the model can be tested against the upcoming data, mainly nitrogen abundance in the outer atmosphere of Pluto, from the New Horizons. The property of the selection can significantly modify the isotopic composition of the atmosphere, leaving the present-day atmosphere isotopically heavier than the ancient one. This also impacts the current view of the evolution of planetary atmospheres. Venus, for example, may not need that much mass loss, in order to explain the current D/H ratio.

  13. Space debris removal by ground-based lasers: main conclusions of the European project CLEANSPACE.

    PubMed

    Esmiller, Bruno; Jacquelard, Christophe; Eckel, Hans-Albert; Wnuk, Edwin

    2014-11-01

    Studies show that the number of debris in low Earth orbit is exponentially growing despite future debris release mitigation measures considered. Specifically, the already existing population of small and medium debris (between 1 cm and several dozens of cm) is today a concrete threat to operational satellites. A ground-based laser solution which can remove, at low expense and in a nondestructive way, hazardous debris around selected space assets appears as a highly promising answer. This solution is studied within the framework of the CLEANSPACE project which is part of the FP7 space program. The overall CLEANSPACE objective is: to propose an efficient and affordable global system architecture, to tackle safety regulation aspects, political implications and future collaborations, to develop affordable technological bricks, and to establish a roadmap for the development and the future implantation of a fully functional laser protection system. This paper will present the main conclusions of the CLEANSPACE project. PMID:25402937

  14. Advanced Air Transportation Technologies (AATT) Project: Distributed Air-Ground Traffic Management

    NASA Technical Reports Server (NTRS)

    Mogford, Richard; Green, Steve; Ballin, Mark

    2002-01-01

    This viewgraph presentation provides an overview of active Distributed Air Ground Traffic Management (DAG-TM) work and reported on its overall progress to date. It does not include details on the concept elements (CEs).The DAG-TM research project is defined as a concept development and definition project and no tools will be delivered. Of the 14 CEs, three are being explored actively: CE-5, CE-6, and CE-11. Overviews of CE-5 (Free Maneuvering for User-Preferred Separation Assurance and Local TFM Conformance), CE-6 (En Route and Transition Trajectory Negotiation for User-Preferred Separation and Local TFM Conformance) and CE-11 (Self-Spacing for Merging and In-Trail Separation) are presented.

  15. SAFE Project: An integrated system of earthquake physics study from ground and space observations

    NASA Astrophysics Data System (ADS)

    De Santis, Angelo; De Franceschi, Giorgiana; Di Giovambattista, Rita; Perrone, Loredana; Alfonsi, Lucilla; Cianchini, Gianfranco; Pavón-Carrasco, Javier F.; Cesaroni, Claudio; Spogli, Luca; Piscini, Alessandro; De Santis, Anna; D'Angelo, Giulia; Musicò, Elvira; Malagnini, Andrea; Amoruso, Leonardo; Carbone, Marianna; Abbattista, Cristoforo; Drimaco, Daniela

    2016-04-01

    The Swarm satellite mission by ESA has the primary goal to measure the magnetic signals from the Earth to get new insights of the geomagnetic field and its sources. The SAFE ("Swarm for Earthquake study") project (funded by ESA in the framework "STSE Swarm+lnnovation", 2014) aims at applying the new approach of geosystemics to the analysis of Swarm satellite electromagnetic data for investigating the preparatory phase of earthquakes. The main objective of this project is to explore the possible link between magnetic ionospheric anomalies and large earthquakes analysing Swarm as well as ground based data (seismic, magnetic, GNSS, etc.). This work will show the state of the art in the study of lithosphere-atmosphere-ionosphere coupling (LAIC) together with some recent case studies.

  16. Sfm_georef: Automating image measurement of ground control points for SfM-based projects

    NASA Astrophysics Data System (ADS)

    James, Mike R.

    2016-04-01

    Deriving accurate DEM and orthomosaic image products from UAV surveys generally involves the use of multiple ground control points (GCPs). Here, we demonstrate the automated collection of GCP image measurements for SfM-MVS processed projects, using sfm_georef software (James & Robson, 2012; http://www.lancaster.ac.uk/staff/jamesm/software/sfm_georef.htm). Sfm_georef was originally written to provide geo-referencing procedures for SfM-MVS projects. It has now been upgraded with a 3-D patch-based matching routine suitable for automating GCP image measurement in both aerial and ground-based (oblique) projects, with the aim of reducing the time required for accurate geo-referencing. Sfm_georef is compatible with a range of SfM-MVS software and imports the relevant files that describe the image network, including camera models and tie points. 3-D survey measurements of ground control are then provided, either for natural features or artificial targets distributed over the project area. Automated GCP image measurement is manually initiated through identifying a GCP position in an image by mouse click; the GCP is then represented by a square planar patch in 3-D, textured from the image and oriented parallel to the local topographic surface (as defined by the 3-D positions of nearby tie points). Other images are then automatically examined by projecting the patch into the images (to account for differences in viewing geometry) and carrying out a sub-pixel normalised cross-correlation search in the local area. With two or more observations of a GCP, its 3-D co-ordinates are then derived by ray intersection. With the 3-D positions of three or more GCPs identified, an initial geo-referencing transform can be derived to relate the SfM-MVS co-ordinate system to that of the GCPs. Then, if GCPs are symmetric and identical, image texture from one representative GCP can be used to search automatically for all others throughout the image set. Finally, the GCP observations can be

  17. Astronomy: Pluto leads the way in planet formation

    NASA Astrophysics Data System (ADS)

    Kenyon, Scott J.

    2015-06-01

    Images from the Hubble Space Telescope cast new light on the orbits, shapes and sizes of Pluto's small satellites. The analysis comes just before a planned reconnaissance by the first spacecraft to visit them. See Article p.45

  18. The interiors of Pluto and Charon - Structure, composition, and implications

    NASA Technical Reports Server (NTRS)

    Simonelli, Damon P.; Reynolds, Ray T.

    1989-01-01

    Recent models of the internal structure of Pluto and Charon, made possible by analysis of the Pluto/Charon mutual events are reviewed. At a mean density of just over 2 g/cu cm and a predicted rock mass fraction of roughly 0.7, the Pluto/Charon system is significantly rockier than the icy satellites of the giant planets, a contrast which may reflect its formation in a CO-rich outer solar nebula rather than a circumplanetary nebula. Pluto and Charon may in fact be so rocky that they lost volatiles early in their history (possibly during a Charon-forming impact event), although this is still an open issue.

  19. Geological Mapping of the Encounter Hemisphere on Pluto

    NASA Astrophysics Data System (ADS)

    White, O. L.; Moore, J. M.; Stern, S. A.; Weaver, H. A.; Olkin, C. B.; Ennico, K.; Young, L. A.; Cheng, A. F.; New Horizons GGI Theme Team

    2016-06-01

    We present mapping of Pluto's encounter hemisphere performed to date (focusing on Sputnik Planum and the immediately surrounding area) and offer preliminary descriptions of terrains further afield that will be the subject of future mapping.

  20. Triton, Pluto, and the origin of the solar system

    NASA Astrophysics Data System (ADS)

    Lunine, J. I.

    1993-08-01

    Planets may represent a commmon by-product of star formation, and thus may be a source of physical and chemical clues to the origin of the solar system. This paper discusses the molecular composition of Triton and Pluto, two of the most distant objects of the solar system. Particular consideration is given to the new findings (Cruikshank et al., 1993; Owen et al., 1993) of methane ice in concentrations from 0.05 percent (Triton) to 1.5 percent (Pluto) and carbon monoxide ice in concentrations from 0.1 percent (Triton) to 0.5 percent (Pluton), relative to nitrogen ice. The high abundance of nitrogen suggests a scenario of early outgassing of both Triton and Pluto, followed by substantial loss of CO. The nitrogen seen today on the two bodies must have been produced later in the histories of Pluto and Triton from a nitrogen-bearing molecule much less volatile than molecular nitrogen.

  1. Pluto behaving badly: false beliefs and their consequences.

    PubMed

    Berkowitz, Shari R; Laney, Cara; Morris, Erin K; Garry, Maryanne; Loftus, Elizabeth F

    2008-01-01

    We exposed college students to suggestive materials in order to lead them to believe that, as children, they had a negative experience at Disneyland involving the Pluto character. A sizable minority of subjects developed a false belief or memory that Pluto had uncomfortably licked their ear. Suggestions about a positive experience with Pluto led to even greater acceptance of a lovable ear-licking episode. False beliefs and memories had repercussions; those seduced by the bad suggestions were not willing to pay as much for a Pluto souvenir. These findings are among the first to demonstrate that false beliefs can have repercussions for people, meaning that they can influence their later thoughts, beliefs, and behaviors. PMID:19105582

  2. Dynamical parameter determinations in Pluto's system. Expected constraints from the New Horizons mission to Pluto

    NASA Astrophysics Data System (ADS)

    Beauvalet, L.; Lainey, V.; Arlot, J.-E.; Binzel, R. P.

    2012-04-01

    Pluto is the multiple system that has been observed the longest. Yet, the masses of its smallest satellites, Nix and Hydra, which were discovered in 2005, are still imprecisely known, because of the short time span and number of available observations. We present a numerical model that takes into account the second order gravity fields and Pluto's orbital motion in the solar system. We investigated the dynamical parameters that may be reliably determined today. We also assessed the possible improvements on the parameter uncertainties with the future increase of observations, including the New Horizons mission. Fitting our model to simulated data, we show that the precision of observations prevents the quantification of the polar oblateness J2 and equatorial bulge c22 of Pluto and Charon. Similarly, we show that the masses are on the detection limit. In particular, unless 25 observations are made every year, the mass of Nix may be constrained with confidence only with New Horizons data. Hydra's mass will only be constrained by the probe. The recent discovery of P4 might change this situation, but our knowledge of this object is still too vague to draw any conclusion. Tables 4 and 5 are available in electronic form at http://www.aanda.org

  3. The Exploration of the Pluto System by New Horizons

    NASA Astrophysics Data System (ADS)

    Weaver, Harold; Stern, S. Alan

    2016-07-01

    The New Horizons (NH) mission was selected by NASA in November 2001 to conduct the first in situ reconnaissance of Pluto and the Kuiper belt. The NH spacecraft was launched on 2006 January 19, received a gravity assist from Jupiter during closest approach on 2007 February 28, and flew 12,500 km above Pluto's surface on 2015 July 14. NH carried a sophisticated suite of seven scientific instruments, altogether weighing less than 30 kg and drawing less than 30 W of power, that includes panchromatic and color imagers, ultraviolet and infrared spectral imagers, a radio science package, plasma and charged particle sensors, and a dust counting experiment. The NH flyby of the Pluto system executed flawlessly, providing unprecedented detail on the Pluto-Charon binary and Pluto's four small moons (Styx, Nix, Kerberos, and Hydra, in order of their orbital distance from Pluto). Pluto's surface displays diverse landforms, terrain ages, albedos, colors, and composition gradients. Evidence is found for a water-ice crust, geologically young surface units, surface ice convection, wind streaks, volatile transport, and glacial flow. NH discovered trace hydrocarbons in Pluto's atmosphere, multiple global haze layers, and a surface pressure near 10 microbars. Pluto's diverse surface geology and long term activity raise fundamental questions about how small planets remain active many billions of years (Gyr) after formation. Charon displays tectonics, evidence for a heterogeneous crustal composition, and a puzzling giant hood of dark material covering its North Pole. Crater density statistics for Charon's surface give a crater retention age of 4-4.5 Ga, indicating that Charon's geological evolution largely ceased early in its history. Nix and Hydra have high albedos suggestive of H2O-ice covered surfaces. Crater densities on Nix and Hydra indicate surface ages > 4 Ga. All the small satellites have highly elongated shapes and are rotating much faster then synchronous with their orbital

  4. Final programmatic environmental impact statement for the Uranium Mill Tailings Remedial Action Ground Water Project. Volume 1

    SciTech Connect

    1996-04-01

    The first step in the UMTRA Ground Water Project is the preparation of this programmatic environmental impact statement (PEIS). This document analyzes the potential impacts of four alternatives for conducting the Ground Water Project. One of these alternatives is the proposed action. These alternatives do not address site-specific ground water compliance strategies because the PEIS is a planning document only. It assesses the potential programmatic impacts of conducting the Ground Water Project, provides a method for determining the site-specific ground water compliance strategies, and provides data and information that can be used to prepare site-specific environmental impacts analyses more efficiently. This PEIS differs substantially from a site-specific environmental impact statement because multiple ground water compliance strategies, each with its own set of potential impacts, could be used to implement all the alternatives except the no action alternative. In a traditional environmental impact statement, an impacts analysis leads directly to the defined alternatives. The impacts analysis for implementing alternatives in this PEIS first involves evaluating a ground water compliance strategy or strategies, the use of which will result in site-specific impacts. This PEIS impacts analysis assesses only the potential impacts of the various ground water compliance strategies, then relates them to the alternatives to provide a comparison of impacts.

  5. First Results from The New Horizons Radio Science Experiment: Measurements of Pluto's Atmospheric Structure, Surface Pressure, and Microwave Brightness Temperature

    NASA Astrophysics Data System (ADS)

    Linscott, Ivan; Stern, Alan; Weaver, Hal; Young, Leslie; Olkin, Cathy; Ennico, Kim

    2015-11-01

    The Radio Science Experiment (REX), on board the New Horizons spacecraft, measured key characteristics of Pluto and Charon during the July 14, 2015, flyby. The REX flight instrument is integrated into the NH X-band radio transceiver and provides high precision, narrow band recording of powerful uplink transmissions from Earth stations, as well as a record of broadband radiometric power. This presentation reviews the performance and initial results of the radio occultation of Pluto, the radiometric temperature profiles, and gravity measurements during the encounter. REX received two pair of 20-kW uplink signals, one pair per polarization, transmitted from the DSN at 4.2- cm wavelength during a diametric radio occultation of Pluto. The REX recording of the uplinks affords a precise measurement of the surface pressure, the temperature structure of the lower atmosphere, and the surface radius of Pluto. The ingress portion of one polarization was played back from the spacecraft in July, while the egress portion of the same polarization was played back in August. Both ingress and egress segments of the occultation have been processed to obtain the pressure and temperature structure of Pluto’s atmosphere. In addition, REX measured the thermal emission from Pluto at 4.2- cm wavelength during two linear scans across the disk at close range when both the dayside and the night side were visible. Both scans extend from limb to limb with a resolution of one-tenth Pluto’s disk and temperature resolution of 0.1 K. A third radiometric scan was obtained during the dark side transit of the occultation. This work was supported by NASA’s New Horizons project.

  6. High-Time-Resolution White-Light Observations of Pluto's Occultation of P131.1 in 2002 August

    NASA Astrophysics Data System (ADS)

    Pasachoff, J. M.; Elliot, J. L.; Babcock, B. A.; Ticehurst, D. R.; Tholen, D. J.; Person, M. J.

    2002-12-01

    We observed a 304-s FWHM occultation of the 15th magnitude (R) star P131.1 by Pluto on 2002 August 21 (UT) with the University of Hawaii's 2.2-m telescope on Mauna Kea. We used a Princeton Instruments/Roper front-illuminated CCD in frame-transfer mode at a 0.5 s cadence, with no filter in order to maximize the signal-to-noise ratio. Seeing was 0.4 arcsec; Charon was distinctly visible throughout alongside Pluto. We obtained images with our 0.2 arcsec pixels for astrometric purposes at various times before and after the occultation on the night of the occultation and on the preceding night. In our occultation run of 20 min, we binned 5x5 and obtained 2400 images. A nearby double star allowed monitoring of the sky transparency. The light curve shows the occultation at a higher cadence than the visible and infrared light curves obtained at adjacent telescopes. We discuss the fully reduced and calibrated light curve, the implications for models of haze in Pluto's atmosphere from the lack of complete occultation even at full depth, and the interpretation of positive spikes in the light curve during the emersion as waves or turbulence in Pluto's atmosphere. We compare these white-light observations with the infrared results obtained simultaneously and discuss implications for Pluto's current atmospheric structure. This work was supported by Research Corporation, by NASA through its New Horizons project, and by Williams College. The CCD is part of NSF-supported solar-eclipse research. We thank A. Pickles for assistance with scientific arrangements at Mauna Kea and S. P. Souza for help with preliminary data reduction and other aspects of the expedition.

  7. Separate spectra of Pluto and its satellite Charon

    SciTech Connect

    Fink, U.; Disanti, M.A.

    1988-01-01

    The March 3, 1987 occultation of Charon by Pluto was observed spectroscopically from 5400 to 10,200 A at a resolution of 12 A. The midpoint of the event occurred at 11:06 UT; the depth of the event at 6800 A was 0.162 mag. The spectrum of Charon is completely featureless and almost perfectly flat; the red slope and the CH4 absorption features can be attributed solely to Pluto. 17 references.

  8. Albedo maps of Pluto and Charon - Initial mutual event results

    NASA Technical Reports Server (NTRS)

    Buie, Marc W.; Tholen, David J.; Horne, Keith

    1992-01-01

    By applying the technique of maximum entropy image reconstruction to invert observed lightcurves, surface maps of single-scattering albedo are obtained for the surfaces of Pluto and Charon from 1954 to 1986. The albedo features of the surface of Pluto are similar to those of the Buie and Tholen (1989) spot model maps; a south polar cap is evident. The map of Charon is somewhat darker, with single-scattering albedos as low as 0.03.

  9. The separate spectra of Pluto and its satellite Charon

    NASA Technical Reports Server (NTRS)

    Fink, Uwe; Disanti, Michael A.

    1988-01-01

    The March 3, 1987 occultation of Charon by Pluto was observed spectroscopically from 5400 to 10,200 A at a resolution of 12 A. The midpoint of the event occurred at 11:06 UT; the depth of the event at 6800 A was 0.162 mag. The spectrum of Charon is completely featureless and almost perfectly flat; the red slope and the CH4 absorption features can be attributed solely to Pluto.

  10. The floating ices on the surface of Pluto

    NASA Astrophysics Data System (ADS)

    Vidmachenko, A. P.

    2016-05-01

    The average temperature of of Pluto surface is about 40 K. Because of the substantial eccentricity of the orbit of Pluto when approaching the Sun - the ice melts on its surface, and this leads to the formation of an atmosphere consisting mainly of nitrogen and methane sublimated. Water ice is not only deep, but there is also on the surface of the planet, forming a mountain range up to 3-4 km altitude, and small unique icebergs.

  11. Optical Navigation Preparations for New Horizons Pluto Flyby

    NASA Technical Reports Server (NTRS)

    Owen, William M., Jr.; Dumont, Philip J.; Jackman, Coralie D.

    2012-01-01

    The New Horizons spacecraft will encounter Pluto and its satellites in July 2015. As was the case for the Voyager encounters with Jupiter, Saturn, Uranus and Neptune, mission success will depend heavily on accurate spacecraft navigation, and accurate navigation will be impossible without the use of pictures of the Pluto system taken by the onboard cameras. We describe the preparations made by the New Horizons optical navigators: picture planning, image processing algorithms, software development and testing, and results from in-flight imaging.

  12. Projections of grounding line retreat in West Antarctica carried out with an adaptive mesh model

    NASA Astrophysics Data System (ADS)

    Cornford, Stephen; Payne, Antony; Martin, Daniel; Le Brocq, Anne

    2013-04-01

    Present and future sea level rise associated with mass loss from West Antarctica is typically attributed to marine glaciers retreating in response to a warming ocean. Warmer waters melt the floating ice shelves that restrain some, if not all, marine glaciers, and the glaciers themselves respond by speeding up. That leads to thinning and in turn grounding line retreat. Satellite observations indicate that Amundsen Sea Embayment and, in particular, Pine Island Glacier, are undergoing this kind of dynamic change today. Numerical models, however, struggle to reproduce the observed behavior because either high resolution or some other kind special treatment is required at the grounding line. We present 200-year projections of three major glacier systems of West Antarctica: those that drain into the Amundsen Sea , the Filchner-Ronne Ice Shelf and the Ross Ice shelf. We do so using the newly developed BISICLES ice­ sheet model, which employs adaptive ­mesh refinement to maintain sub-kilometer resolution close to the grounding line and coarser resolution elsewhere. Ice accumulation and ice­ shelf melt-rate are derived from a range of models of the Antarctic atmosphere and ocean forced by the SRES A1B and E1 scenarios. We find that a substantial proportion of the grounding line in West Antarctica retreats, however the total sea level rise is less than 50 mm by 2100, and less than 100 mm by 2200. The lion's share of the mass loss is attributed to Pine Island Glacier, while its immediate neighbor Thwaites Glacier does not retreat until the end of the simulations.

  13. Long-wave planetary radar for remote sounding the Phobos ground in the project

    NASA Astrophysics Data System (ADS)

    Armand, N. A.; Smirnov, V. M.; Marchuk, V. N.; Yuschkova, O. V.; Abramov, V. V.; Bajanov, A. S.; Lifanzev, B. S.

    2009-04-01

    The project «Phobos- Grunt», which basic purpose - delivery to the Earth samples of a ground from a Phobos for detailed laboratory researches, is included in the Federal space program of Russia for 2006-2015. Realization of the project of delivery of a ground from a Phobos essentially supplements the international program of research of Mars, connected with delivery to the Earth samples of a martian ground. Research of electrophysical characteristics of the Phobos ground, revealing of deep structure and density determination of breeds composing it, research of a relief and roughness of Martian satellite surface will allow understand better the nature of relic substance from which, probably, the Phobos consists. With a greater share of reliability, it is possible to search for answers on these questions using data of radar-tracking sounding of the Phobos ground. The long-wave pla-netary radar LWPR which is a part of a complex of the scientific equipment of the project «Phobos-Grunt» is intended for remote sounding a surface and subsurface structures of the Phobos ground by a method of pulse radiosounding along a flight line of a spacecraft «Phobos- Grunt». The basic purpose of planning radar experiment is revealing deep structure and an estimation of breed density of the Phobos ground, research of a relief and a roughness of the Phobos surface, an estimation of dielectric properties of a ground on different depths along a flight line of spacecraft. The long-wave planetary radar represents the radar-tracking complex intended for sounding a ground of the Martian satellite on frequencies of 125-175 MHz. The chosen range of frequencies will allow carry out deep sounding of the Phobos ground at the accepted model of structure of a surface and subsurface up to depths from units up to hundreds meters. LWPR differs from the georadars used usually for research of earth's ground a big range of distances and necessity to work both from spacecraft orbit and from the

  14. Charon's Impact on the Pluto-Solar Wind Interaction

    NASA Astrophysics Data System (ADS)

    Hale, J. M.; Paty, C. S.

    2015-12-01

    This work studies Charon's effects on the Pluto-solar wind interaction using a multifluid MHD model which simulates the interactions of Pluto and Charon with the solar wind and each other. Specifically, it investigates the magnetospheric dynamics of a two body system in which either one or both bodies posses an ionosphere. In order to more accurately capture the behavior of the Pluto-Charon system, ion-neutral interactions, including source and loss processes, have been incorporated into the model. Ion-neutral interactions are important due to the highly extended atmosphere in the system, with pick up ions having been detected several million kilometers upstream of the system by the PEPSSI instrument aboard New Horizons. In order to more fully characterize the system, simulations with various system geometries have been performed, in which Charon's position relative to Pluto varies. In addition to the New Horizons system encounter geometry, simulations in which Charon is directly upstream and directly downstream of Pluto are considered. Depending on the bow shock stand-off distance upstream of Pluto, Charon could periodically pass outside of the shock. The results of this study demonstrate that in these circumstances Charon modifies the upstream flow, both in the case in which Charon possesses an ionosphere, and in the case in which Charon is without an ionosphere.

  15. The Orbits and Masses of Pluto's Satellites after New Horizons

    NASA Astrophysics Data System (ADS)

    Jacobson, Robert A.; Brozovic, Marina; Buie, Marc; Porter, Simon; Showalter, Mark; Spencer, John; Stern, S. Alan; Weaver, Harold; Young, Leslie; Ennico, Kimberly; Olkin, Cathy

    2015-11-01

    Brozović et al. (2015 Icarus 246, 317) reported on Pluto's mass and the masses and numerically integrated orbits of Pluto's satellites, Charon, Nix, Hydra, Kerberos, and Styx. These were determined via a fit to an extensive set of astrometric, mutual event, and stellar occultation observations over the time interval April 1965 to July 2012. The data set contained the Hubble Space Telescope (HST) observations of Charon relative to Pluto that were corrected for the Pluto center-of-figure center-of-light offset due to the Pluto albedo variations (Buie et al. 2012 AJ 144, 15). Also included were all of the available HST observations of Nix, Hydra, Kerberos, and Styx. For the New Horizons encounter with the Pluto system, the initial satellite ephemerides (PLU043) and the initial planet and satellite masses were taken from the Brozović et al. analysis. During the New Horizons approach, the ephemerides and masses were periodically updated along with the spacecraft trajectory by the New Horizons navigation team using imaging of the planet and satellites against the stellar background. In this work, we report on our post-flyby analysis of the masses and satellite orbits derived from a combination of the original PLU043 data set, the New Horizions imaging data, and HST observations acquired after 2012.

  16. Introduction to the Pluto system science special issue

    NASA Astrophysics Data System (ADS)

    Grundy, Will; Stern, Alan; Bagenal, Fran; Gladstone, Randy; Buratti, Bonnie

    2015-01-01

    Pluto and its complex system of moons have been the subject of scientific inquiry, speculation, and study since it was famously discovered by Clyde Tombaugh in 1930, orbiting far beyond Neptune. By the 1990s, Pluto had been found to possess multiple exotic ices on its surface, a complex atmosphere and seasonal cycles, an unusually "contrasty" surface, and a large moon indicative of a giant impact origin for the pair. Also in the 1990s it became clear that Pluto was no misfit among the planets, as had long been thought; instead, it was revealed to be the harbinger of, and the brightest and largest of an abundant new planetary class of ice dwarfs in the Kuiper Belt-the third zone of our planetary system. In more recent years, Pluto has been shown to have an unexpectedly rich system of satellites and to show strong evidence for surface changes that occur on human timescales. It has even been speculated that Pluto and Charon may possess internal oceans. These and other considerations caused the 2003 Planetary Decadal Survey to rank a Pluto Kuiper Belt mission as the highest priority New Frontiers destination needing a new start.

  17. The improvement of the Pluto orbit using additional new data

    NASA Astrophysics Data System (ADS)

    Girdiuk, A.

    2015-08-01

    Observational series of the Pluto dwarf planet have started since 1913. At this moment observations have covered only a third of the Pluto orbit, therefore, the Pluto orbital elements are defined with insufficient accuracy. A growing number of observations leads to the improvement of the accuracy of the orbit determination. The database of the Pluto's observations was expanded with the help of about 350 observations during 1930-1996 obtained at the Pulkovo Observatory, and about 5500 observations (1995-2013) including occultation data from Brazilian colleagues obtained at the European Southern Observatory and the Pico dos Dias Observatory, and the new analyzed 469 historical photographic observations archived at Lowell Observatory. The new cross-platform software ERA-8 has been developed in IAA RAS and has been used for implementation of all mathematical procedures for constructing Pluto orbit. The modern ephemerides (EPM2011, EPM2013, DE430, DE432, INPOP13c) are chosen for comparison of the ephemeris positions: equatorial coordinates and heliocentric distance. The main result of the work - construction of ephemerides EPM2014a is a significant improvement of the Pluto's orbit using additional observations.

  18. Characterizing Pluto's plasma environment through multifluid MHD modelling

    NASA Astrophysics Data System (ADS)

    Hale, J. M.; Paty, C. S.

    2013-12-01

    We will report on preliminary results from simulations of the Hadean magnetosphere using a refined version of the global multifluid MHD model which has been successfully used to simulate numerous planetary systems, including Ganymede [Paty et al., 2008], Pluto [Harnett et al., 2005], Saturn [Kidder at al., 2012], and Titan [Snowden et al., 2011a,b], among others. This initial study focuses on exploring the exospheric and solar wind parameter space local to Pluto. We explore multiple system geometries including a simulation in which Pluto has no ionosphere, as appears to be the case due to freezing when Pluto resides at apoapsis, as well as several scenarios with different ionospheric and exospheric densities. Ionospheric densities are based on chemical modeling reported in Krasnopolsky and Cruikshank [1999] and solar wind conditions are based on system geometry at periapsis, apoapsis, and at the time of the New Horizons system flyby. We examine the role of the ionosphere and exosphere in determining the location and structure of the bow shock, as well as characterizing the impact of the variability of solar wind pressure and magnetic field throughout Pluto's orbit. This work supports the characterization of the magnetospheric environment of the Pluto system in preparation for the New Horizons encounter in 2015.

  19. Ground-water hydrology and projected effects of ground-water withdrawals in the Sevier Desert, Utah

    USGS Publications Warehouse

    Holmes, Walter F.

    1984-01-01

    The principal ground-water reservoir in the Sevier Desert is the unconsolidated basin fill. The fill has been divided generally into aquifers and confining beds, although there are no clearcut boundaries between these units--the primary aquifers are the shallow and deep artesian aquifers. Recharge to the ground-water reservoir is by infiltration of precipitation; seepage from streams, canals, reservoirs, and unconsumed irrigation water; and subsurface inflow from consolidated rocks in mountain areas and from adjoining areas. Discharge is by wells, springs, seepage to the Sevier River, evapotranspiration, and subsurface outflow to adjoining areas.

  20. City of Flagstaff Project: Ground Water Resource Evaluation, Remote Sensing Component

    USGS Publications Warehouse

    Chavez, Pat S., Jr.; Velasco, Miguel G.; Bowell, Jo-Ann; Sides, Stuart C.; Gonzalez, Rosendo R.; Soltesz, Deborah L.

    1996-01-01

    Many regions, cities, and towns in the Western United States need new or expanded water resources because of both population growth and increased development. Any tools or data that can help in the evaluation of an area's potential water resources must be considered for this increasingly critical need. Remotely sensed satellite images and subsequent digital image processing have been under-utilized in ground water resource evaluation and exploration. Satellite images can be helpful in detecting and mapping an area's regional structural patterns, including major fracture and fault systems, two important geologic settings for an area's surface to ground water relations. Within the United States Geological Survey's (USGS) Flagstaff Field Center, expertise and capabilities in remote sensing and digital image processing have been developed over the past 25 years through various programs. For the City of Flagstaff project, this expertise and these capabilities were combined with traditional geologic field mapping to help evaluate ground water resources in the Flagstaff area. Various enhancement and manipulation procedures were applied to the digital satellite images; the results, in both digital and hardcopy format, were used for field mapping and analyzing the regional structure. Relative to surface sampling, remotely sensed satellite and airborne images have improved spatial coverage that can help study, map, and monitor the earth surface at local and/or regional scales. Advantages offered by remotely sensed satellite image data include: 1. a synoptic/regional view compared to both aerial photographs and ground sampling, 2. cost effectiveness, 3. high spatial resolution and coverage compared to ground sampling, and 4. relatively high temporal coverage on a long term basis. Remotely sensed images contain both spectral and spatial information. The spectral information provides various properties and characteristics about the surface cover at a given location or pixel

  1. RCRA (Resource Conservation and Recovery Act) ground-water monitoring projects for Hanford facilities: Annual Progress Report for 1989

    SciTech Connect

    Smith, R.M.; Gorst, W.R.

    1990-03-01

    This report describes the progress during 1989 of 16 Hanford Site ground-water monitoring projects covering 25 hazardous waste facilities and 1 nonhazardous waste facility. Each of the projects is being conducted according to federal regulations based on the Resource Conservation and Recovery Act of 1976 and the State of Washington Administrative Code. 40 refs., 75 figs., 6 tabs.

  2. DYNAMIC PROJECT COLLABORATION TOOLS FOR UNEXPLODED ORDNANCE (UXO) REMOVAL Case Study: Jefferson Proving Ground UXO Removal Projector

    SciTech Connect

    Daffron, James Y.

    2003-02-27

    Unexploded Ordnance (UXO) removal and investigation projects typically involve multiple organizations including Government entities, private contractors, and technical experts. Resources are split into functional ''teams'' who perform the work and interface with the clients. The projects typically generate large amounts of data that must be shared among the project team members, the clients, and the public. The ability to efficiently communicate and control information is essential to project success. Web-based project collaboration is an effective management and communication tool when applied to ordnance and explosives (OE) projects. During a recent UXO/OE removal project at the Jefferson Proving Ground (JPG) in Madison, IN, American Technologies, Inc. (ATI) successfully used the Project Commander(reg sign) (www.ProCommander.com) project collaboration website as a dynamic project and information management tool.

  3. Surface compositions across Pluto and Charon

    NASA Astrophysics Data System (ADS)

    Grundy, W. M.; Binzel, R. P.; Buratti, B. J.; Cook, J. C.; Cruikshank, D. P.; Dalle Ore, C. M.; Earle, A. M.; Ennico, K.; Howett, C. J. A.; Lunsford, A. W.; Olkin, C. B.; Parker, A. H.; Philippe, S.; Protopapa, S.; Quirico, E.; Reuter, D. C.; Schmitt, B.; Singer, K. N.; Verbiscer, A. J.; Beyer, R. A.; Buie, M. W.; Cheng, A. F.; Jennings, D. E.; Linscott, I. R.; Parker, J. Wm.; Schenk, P. M.; Spencer, J. R.; Stansberry, J. A.; Stern, S. A.; Throop, H. B.; Tsang, C. C. C.; Weaver, H. A.; Weigle, G. E.; Young, L. A.

    2016-03-01

    The New Horizons spacecraft mapped colors and infrared spectra across the encounter hemispheres of Pluto and Charon. The volatile methane, carbon monoxide, and nitrogen ices that dominate Pluto’s surface have complicated spatial distributions resulting from sublimation, condensation, and glacial flow acting over seasonal and geological time scales. Pluto’s water ice “bedrock” was also mapped, with isolated outcrops occurring in a variety of settings. Pluto’s surface exhibits complex regional color diversity associated with its distinct provinces. Charon’s color pattern is simpler, dominated by neutral low latitudes and a reddish northern polar region. Charon’s near-infrared spectra reveal highly localized areas with strong ammonia absorption tied to small craters with relatively fresh-appearing impact ejecta.

  4. Pluto loses its status as a planet

    NASA Astrophysics Data System (ADS)

    Zielinski, Sarah; Kumar, Mohi

    2006-08-01

    Astronomers nave accepted a definition for 'planet' that excludes Pluto, instead relegating that object and at least two others to the status of 'dwarf planet,' in a series of votes taken on 24 August at the International Astronomical Union (IAU) 2006 General Assembly in Prague, Czech Republic.Michael Brown, the California Institute of Technology astronomer who discovered the newly classified dwarf planet 2003 UB313, said, "If you started from scratch, and you looked at the solar system as you were flying in from outer space, you would very quickly realize that there are eight really large objects in the solar system and you would put those into one category and use one word to describe them…All of the other objects in the solar system are much smaller, and they belong to these vast populations of other objects."

  5. Pluto Stellar Occultation on 2008 Aug 25

    NASA Astrophysics Data System (ADS)

    Buie, Marc W.; Young, L. A.; Young, E. F.; Olkin, C. B.; Terrell, D.; Parker, J. W.; Durda, D.; Stansberry, J. A.; Reitsema, H.; French, R. G.; Shoemaker, K.; Brown, M. E.; Schaller, E. L.; Bauer, J. M.; Young, J. W.; Wasserman, L. H.; Pasachoff, J. M.; Lust, N.; Fernandez, Y. R.; Dellinger, J. A.; Garossino, P. G. A.; Grigsby, B.; Stone, R. P. S.; Dillon, W. G.; Mezzalira, F.; Ryan, E. V.; Ryan, W.; Souza, S. P.; Williams, R.; Sexton, C.

    2009-01-01

    We report on a successful occultation of a star by Pluto that was observable over much of the south and western United States. The centerline was close to WIRO. We will present seven complete lightcurves from Crossley/Lick, WIRO, SBO/CU, Palomar, JPL/TMO, Sierra Stars Obs., and Magdalena Ridge Observatory. We have 2 partial lightcurves from Lowell Obs. and McDonald Obs. where data loss was caused by clouds. There were attempts at the Steward 90", George Observatory, and New Mexico Skies that were clouded out. The UCF station near Orlando was clearly an appulse. A number of other amateurs also succeeded in collecting data. Our presentation will provide a final geometric solution for the event as well as baseline fits to the atmospheric structure. This work was supported by NASA Planetary Astronomy grants NNX08AO626 and NNX08AO50G.

  6. Pluto's lightcurve: Results from four oppositions

    NASA Technical Reports Server (NTRS)

    Tholen, David J.; Tedesco, Edward F.

    1994-01-01

    The rotational lightcurve, phase function, and orbital lightcurve of the Pluto-Charon system were measured in blue light over four consecutive oppositions spanning 1980 to 1983. Compared with observations made in the three previous decades, our lightcurve shows a higher amplitude of 0.29 mag, as well as a fainter rotationally averaged brightness, which provide constraints on the surface albedo distribution of the two bodies. The synodic rotational period of 6.38726 +/- 0.00007 days is consistent with the orbital period of Charon, which provides evidence for a completely tidally evolved system. The phase coefficient is 0.0372 +/- 0.0016 mag/deg, indicating a very shallow opposition surge compared with asteroids, but consistent with a high albedo surface. The orbital lightcurve shows substantially less fading than the earlier observations, which suggests that there is not a gross difference in average albedo between the southern and northern hemispheres.

  7. Ground-water investigations of the Project Gnome area, Eddy and Lea Counties, New Mexico

    USGS Publications Warehouse

    Cooper, J.B.

    1962-01-01

    The U.S. Atomic Energy Commission, through the Office of Test Operations, Albuquerque Operations Office, plans to detonate a nuclear device in a massive salt bed 1,200 feet beneath the land surface. The project, known as Project Gnome, is an element of the Plowshare program--a study of peacetime applications of nuclear fission. The location of the proposed underground shot is in a sparsely-populated area in southeastern Eddy County, N. Mex., east of the Pecos River and about 25 miles southeast of the city of Carlsbad. The area is arid to Semiarid and ground water is a vital factor in the economic utilization of the land, which is primarily used for stock raising. An investigation of the Project Gnome site and surrounding area for the purposes of evaluating the ground-water resources and the possible effect upon them from the detonation of the nuclear shot was desired by the Commission. This report describes work done by the U.S. Geological Survey on behalf of the Commission and presents results of the investigation of the ground-water resources and geology of the area. The most intensive investigations were made within a 15-mile radius of the site of Project Gnome and mainly on the east side of the Pecos River. The total area of study of over 1,200 square miles includes parts of Eddy and Lea Counties, N. Mex. The Project Gnome site is in the sedimentary Delaware Basin. It is underlain by about 18,000 feet of sedimentary rocks ranging in age from Ordovician to Recent. Upper Permian evaporitic rocks, which contain the principal source of potash available in the United States, are worked in nearby mines. The potash minerals are found in a massive salt bed about 1,400 feet thick in the Salado Formation of Permian age. The land surface of the area is covered mostly by a wind-blown sand and caliche; however, rocks of the Rustler Formation of Permian age and younger rocks of Permian, Triassic, Pleistocene(?) and Recent age crop out at several localities. Solution by

  8. Multi-component symmetry-projected approach for molecular ground state correlations

    SciTech Connect

    Jiménez-Hoyos, Carlos A.; Rodríguez-Guzmán, R.; Scuseria, Gustavo E.

    2013-11-28

    The symmetry-projected Hartree–Fock ansatz for the electronic structure problem can efficiently account for static correlation in molecules, yet it is often unable to describe dynamic correlation in a balanced manner. Here, we consider a multi-component, systematically improvable approach, that accounts for all ground state correlations. Our approach is based on linear combinations of symmetry-projected configurations built out of a set of non-orthogonal, variationally optimized determinants. The resulting wavefunction preserves the symmetries of the original Hamiltonian even though it is written as a superposition of deformed (broken-symmetry) determinants. We show how short expansions of this kind can provide a very accurate description of the electronic structure of simple chemical systems such as the nitrogen and the water molecules, along the entire dissociation profile. In addition, we apply this multi-component symmetry-projected approach to provide an accurate interconversion profile among the peroxo and bis(μ-oxo) forms of [Cu{sub 2}O{sub 2}]{sup 2+}, comparable to other state-of-the-art quantum chemical methods.

  9. Dynamical and observational constraints on satellites in the inner Pluto-Charon system

    NASA Technical Reports Server (NTRS)

    Stern, S. Alan; Parker, Joel William; Duncan, Martin J.; Snowdall, J. Clark, Jr.; Levison, Harold F.

    1994-01-01

    It is not known if Pluto has other satellites besides its massive partner Charon. In the past, searches for additional satellites in the Pluto-Charon system have extended from the solar-tidal stability boundary (approximately 90 arcsec from Pluto) inward to about 1 arcsec from Pluto. Here we further explore the inner (i.e., less than 10 arcsec) region of the Pluto-Charon system to determine where additional satellites might lie. In particular, we report on (1) dynamical simulations to delineate the region where unstable orbits lie around Charon, (2) dynamical simulations which use the low orbital eccentricity of Charon to constrain the mass of any third body near Pluto, and (3) analysis of Hubble Space Telescope (HST) archival images to search for satellites in the inner Pluto-Charon system. Although no objects were found, significant new constraints on bodies orbiting in the inner Pluto-Charon system were obtained.

  10. Pluto Through Stained Glass: A Movie from the Edge of the Solar System

    NASA Video Gallery

    This colorful movie drifting across Pluto by was recorded by New Horizons' LEISA infrared imaging spectrometer during the July 14 closest approach. The discovery of water ice on Pluto was made usin...

  11. New Horizons Observations of the Atmospheres of Pluto and Charon

    NASA Astrophysics Data System (ADS)

    Gladstone, G. R.; Stern, S. A.; Weaver, H. A.; Young, L. A.; Ennico, K. A.; Olkin, C. B.; Cheng, A. F.; Greathouse, T. K.; Hinson, D. P.; Kammer, J. A.; Linscott, I. R.; Parker, A. H.; Parker, J. Wm.; Retherford, K. D.; Schindhelm, E.; Singer, K. N.; Steffl, A. J.; Strobel, D. F.; Summers, M. E.; Tsang, C. C. C.; Tyler, G. L.; Versteeg, M. H.; Woods, W. W.; Cunningham, N.; Curdt, W.

    2015-11-01

    Major goals of the New Horizons (NH) mission are to explore and characterize the structure and composition of Pluto’s atmosphere, and to establish whether Charon has a measurable atmosphere of its own. The primary instruments onboard NH which contribute to these goals are the REX instrument, through uplink X-band radio occultations, the Alice instrument, through extreme- and far-ultraviolet solar occultations, and the LORRI panchromatic imager, through high-phase-angle imaging. The associated datasets were obtained following closest approach of NH to Pluto. Pressure and temperature profiles of the lower atmosphere are derived from the REX data, the composition and structure of the extended atmosphere are derived from the Alice data (supported by approach observations of reflected ultraviolet sunlight), and the distribution and properties of Pluto’s hazes are derived from the LORRI data. In this talk an overview of the early atmosphere science results will be presented.This work was supported by NASA's New Horizons project.

  12. Potential effects of the Hawaii geothermal project on ground-water resources on the Island of Hawaii

    SciTech Connect

    Sorey, M.L.; Colvard, E.M.

    1994-07-01

    This report provides data and information on the quantity and quality of ground-water resources in and adjacent to proposed geothermal development areas on the Island of Hawaii Geothermal project for the development of as much as 500 MW of electric power from the geothermal system in the East Rift Zone of Kilauea Volcano. Data presented for about 31 wells and 8 springs describe the chemical, thermal, and hydraulic properties of the ground-water system in and adjacent to the East Rift Zone. On the basis of this information, potential effects of this geothermal development on drawdown of ground-water levels and contamination of ground-water resources are discussed. Significant differences in ground-water levels and in the salinity and temperature of ground water within the study area appear to be related to mixing of waters from different sources and varying degrees of ground-water impoundment by volcanic dikes. Near Pahoa and to the east, the ground-water system within the rift is highly transmissive and receives abundant recharge from precipitation; therefore, the relatively modest requirements for fresh water to support geothermal development in that part of the east rift zone would result in minimal effects on ground-water levels in and adjacent to the rift. To the southwest of Pahoa, dike impoundment reduces the transmissivity of the ground-water system to such an extent that wells might not be capable of supplying fresh water at rates sufficient to support geothermal operations. Water would have to be transported to such developments from supply systems located outside the rift or farther downrift. Contaminant migration resulting from well accidents could be rapid because of relatively high ground-water velocities in parts of the region. Hydrologic monitoring of observation wells needs to be continued throughout development of geothermal resources for the Hawaii Geothermal Project to enable the early detection of leakage and migration of geothermal fluids.

  13. A new approach to mapping permafrost and change incorporating uncertainties in ground conditions and climate projections

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Olthof, I.; Fraser, R.; Wolfe, S. A.

    2014-11-01

    Spatially detailed information on permafrost distribution and change with climate is important for land use planning, infrastructure development, and environmental assessments. However, the required soil and surficial geology maps in the North are coarse, and projected climate scenarios vary widely. Considering these uncertainties, we propose a new approach to mapping permafrost distribution and change by integrating remote sensing data, field measurements, and a process-based model. Land cover types from satellite imagery are used to capture the general land conditions and to improve the resolution of existing permafrost maps. For each land cover type, field observations are used to estimate the probabilities of different ground conditions. A process-based model is used to quantify the evolution of permafrost for each ground condition under three representative climate scenarios (low, medium, and high warming). From the model results, the probability of permafrost occurrence and the most likely permafrost conditions are determined. We apply this approach at 20 m resolution to a large area in Northwest Territories, Canada. Mapped permafrost conditions are in agreement with field observations and other studies. The data requirements, model robustness, and computation time are reasonable, and this approach may serve as a practical means to mapping permafrost and changes at high resolution in other regions.

  14. A New Approach to Mapping Permafrost and Change Incorporating Uncertainties in Ground Conditions and Climate Projections

    NASA Astrophysics Data System (ADS)

    Zhang, Y.

    2014-12-01

    Spatially detailed information on permafrost distribution and change with climate is important for land-use planning, infrastructure development and environmental assessments. However, the required soil and surficial geology maps in the North are coarse, and projected climate scenarios vary widely. Considering these uncertainties, we propose a new approach to mapping permafrost distribution and change by integrating remote sensing data, field measurements, and a process-based model. Land-cover types from satellite imagery are used to capture the general land conditions and to improve the resolution of existing permafrost maps. For each land-cover type, field observations are used to estimate the probability of different ground conditions. A process-based model is used to quantify the evolution of permafrost for each ground condition under three representative climate scenarios (low, medium and high warming). From the model results, the probability of permafrost occurrence and the most likely permafrost conditions are determined (Fig. 1). We apply this approach at 20 m resolution to a large area in Northwest Territories, Canada. Mapped permafrost conditions are in agreement with field observations and other studies. The data requirements, model robustness and computation time are reasonable, and this approach may serve as a practical means to mapping permafrost and changes at high resolution in other regions.

  15. A new approach to mapping permafrost and change incorporating uncertainties in ground conditions and climate projections

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Olthof, I.; Fraser, R.; Wolfe, S. A.

    2014-04-01

    Spatially detailed information on permafrost distribution and change with climate is important for land-use planning and for environmental and ecological assessments. However, the required soil and surficial geology maps in the north are coarse, and projected climate scenarios vary widely. Considering these uncertainties, we propose a new approach to mapping permafrost distribution and change by integrating remote sensing data, field measurements, and a process-based model. Land-cover types from satellite imagery are used to capture the general land conditions and to improve the resolution of existing permafrost maps. For each land-cover type, field observations are used to estimate the probability of different ground conditions. A process-based model is used to quantify the evolution of permafrost for each ground condition under three representative climate scenarios (low, medium and high warming). From the model results, the probability of permafrost occurrence and the most likely permafrost conditions are determined. We apply this approach at 20 m resolution to a large area in Northwest Territories, Canada. Mapped permafrost conditions are in agreement with field observations and other studies. The data requirements, model robustness and computation time are reasonable, and this approach may serve as a practical means to mapping permafrost and changes at high resolution in other regions.

  16. A Central Flash at an Occultation of a Bright Star by Pluto Soon Before New Horizons' Flyby

    NASA Astrophysics Data System (ADS)

    Pasachoff, Jay M.; Babcock, Bryce A.; Durst, Rebecca F.; Seeger, Christina H.; Levine, Stephen E.; Bosh, Amanda S.; Sickafoose, Amanda A.; Person, Michael J.; Abe, Fumio; Suzuki, Daisuke; Nagakane, Masayuki; Tristam, Paul J.

    2015-11-01

    From the Mt. John Observatory, New Zealand, we were so close to the center of the occultation path on 29 June 2015 UTC that we observed a modest central flash from the focusing of starlight from a 12th-magnitude star. The star was one of the brightest ever in our years of continual monitoring that started in 2002. At the time of Pluto's perihelion in 1989, it was feared from models that Pluto's atmosphere might collapse by now, a motivation for the timely launch of New Horizons; some models now allow Pluto to retain its atmosphere throughout its orbit.We used our frame-transfer CCD at 10 Hz with GPS timing on the 1-m McLellan telescope of Canterbury U. We also observed with a Lowell Obs. infrared camera on the "AAVSO" 0.6-m Optical Craftsman telescope; and obtained 3-color photometry at a slower cadence on a second 0.6-m telescope. We coordinated with the overflight of SOFIA and its 2.5-m telescope, which benefited from last-minute astrometry, and the Auckland Observatory's and other ground-based telescopes.Our light curves show a modest central flash; our tentative geometrical solution shows that we were only about 50 km from the occultation path's centerline. The flash is from rays lower than otherwise accessible in Pluto's atmosphere. Our light curves, at such high cadence that we see spikes caused by atmospheric effects that we had not seen so well since our 2002 Mauna Kea occultation observations, show that Pluto's atmosphere had not changed drastically since our previous year's observations. Our data provide a long-term context for New Horizon's highly-detailed observations of Pluto's atmosphere in addition to providing a chord for the geometrical solution that includes SOFIA's observations.Our observations were supported by NASA Planetary Astronomy grants NNX12AJ29G to Williams College, NNX15AJ82G to Lowell Observatory, and NNX10AB27G to MIT, and by the National Research Foundation of South Africa. We are grateful to Alan Gilmore, Pam Kilmartin, Robert Lucas

  17. Observational Constraints on a Pluto Torus of Circumsolar Neutral Gas

    NASA Astrophysics Data System (ADS)

    Hill, M. E.; Kollmann, P.; McNutt, R. L., Jr.; Smith, H. T.; Bagenal, F.; Brown, L. E.; Elliott, H. A.; Haggerty, D. K.; Horanyi, M.; Krimigis, S. M.; Kusterer, M. B.; Lisse, C. M.; McComas, D. J.; Piquette, M. R.; Sidrow, E. J.; Strobel, D. F.; Szalay, J.; Vandegriff, J. D.; Zirnstein, E.; Ennico Smith, K.; Olkin, C.; Weaver, H. A., Jr.; Young, L. A.; Stern, S. A.

    2015-12-01

    We present the concept of a neutral gas torus surrounding the Sun, aligned with Pluto's orbit, and place observational constraints based primarily on comparison of New Horizons (NH) measurements with a 3-D Monte Carlo model adapted from analogous satellite tori surrounding Saturn and Jupiter. Such a torus, or perhaps partial torus, should result from neutral N2 escaping from Pluto's exosphere. Unlike other more massive planets closer to the Sun, neutrals escape Pluto readily owing, e.g., to the high thermal speed relative to the escape velocity. Importantly, escaped neutrals have a long lifetime due to the great distance from the Sun, ~100 years for photoionization of N2 and ~180 years for photoionization of N, which results from disassociated N2. Despite the lengthy 248-year orbit, these long e-folding lifetimes may allow an enhanced neutral population to form an extended gas cloud that modifies the N2 spatial profile near Pluto. These neutrals are not directly observable by NH but once ionized N2+ or N+ are picked up by the solar wind, reaching ~50 keV, making these pickup ions (PUIs) detectable by NH's Pluto Energetic Particle Spectrometer Science Investigation (PEPSSI) instrument. PEPSSI observations analyzed to date may constrain the N2 density; the remaining ~95% of the encounter data, scheduled for downlink in August along with similarly anticipated data from the Solar Wind Around Pluto (SWAP) experiment, should help determine the Pluto outgassing rates. Measurements from SWAP include the solar wind speed, a quantity that greatly enhances PUI studies by enabling us to directly account for the PUI distribution's sensitive dependence on plasma speed. Note that anomalous cosmic ray Si observed at Voyager is overabundant by a factor of ~3000 relative to interstellar composition. This might be related to "outer source" PUIs, but the fact that N2 and Si are indistinguishable in many instruments could mean that N2 is actually driving this apparent Si discrepancy.

  18. Feasibility of ground-water features of the alternate plan for the Mountain Home project, Idaho

    USGS Publications Warehouse

    Nace, Raymond L.; West, S.W.; Mowder, R.W.

    1957-01-01

    An early plan of the U. S. Bureau of Reclamation proposed to irrigate 183,000 acres on the arid Snake River Plain south of Boise, Idaho (Mountain Home project) with Boise River water. That water would have been replaced to the Boise Valley with water imported from the Payette River. An alternate plan, proposed in 1953, would divert water from the Boise River to the plain; part of the water would be replaced by pumping ground water in the Boise valley and by importing water from the Snake River. Pumping of ground water in the Boise Valley also would help to drain waterlogged land. The present report evaluates the feasibility of the alternate plan in relation to geology and the occurrence and quality of ground water. The mean annual temperature at Boise is 50.8 ? F and there is an average of 172 days between killing frosts. The annual evaporation rate from open-water surfaces in the area is about 33 inches. Runoff in the Boise River is chiefly from precipitation on mountain slopes at altitudes above 3,000 feet, east of Boise Diversion Dam. The surface-water supply of the Boise Valley is more Than ample for the valley, owing to large upstream storage and regulatory dams and reservoirs. The valley also contains a large volume of ground water in storage, and the perennial rate of recharge is large. The computed consumptive depletion of surface water in the valley is nearly 600,000 acre-feet a year. Apparent depletion, computed from adjusted runoff at Notus, is 1,070,000 acre-feet. The difference of 470,000 acre-feet represents ground-water underflow and ungaged surface outflow from the area east of Notus. After the beginning of irrigation, around the turn of the century, the water table in the Boise Valley rose steadily; the amount of rise at some places was as much as 140 feet. Shallow perched zones of saturation were created locally. More than 100,000 acres of Boise Valley land now is waterlogged or threatened with waterlogging, despite the presence of more than 325

  19. Implementation plan for the programmatic environmental impact statement for the Department of Energy UMTRA Ground Water Project

    SciTech Connect

    1994-04-01

    Under the Uranium Mill Tailings Remedial Action (UMTRA) Project, the U.S. Department of Energy (DOE) is cleaning up contamination to protect human health and the environment at 24 inactive uranium processing sites located in 10 states. Five of the sites are either on or near Native American lands. The UMTRA Project is divided into two projects: Surface and Ground Water. On November 18, 1992, the DOE issued a notice of intent (57 FR 54374, 1992) to prepare a programmatic environmental impact statement (PEIS) for the UMTRA Ground Water Project. The PEIS will result in a record of decision that will determine how the UMTRA Ground Water Project will address ground water contamination resulting from milling operations at the UMTRA Project processing sites. DOE regulations (10 CFR {section} 1021.312) require that an implementation plan be prepared to provide guidance for preparing a PEIS and to record the results of the scoping process. This implementation plan describes and records the results of the PEIS scoping process; summarizes comments received and their disposition; describes the purpose of and need for agency action, the proposed action, and alternatives; lists alternatives considered and eliminated from review; identifies cooperating agencies, their roles, and responsibilities; provides a draft PEIS outline, which includes the planned PEIS scope and content (Attachment A); and provides a schedule for the PEIS process. This plan will be placed in the UMTRA Project libraries listed in Attachment B. The PEIS will identify and evaluate the potential impacts associated with alternatives for conducting the UMTRA Ground Water Project. The PEIS will not assess site-specific impacts; site-specific impacts must be analyzed in separate National Environmental Policy Act (NEPA) documents that will tier off the PEIS. This tiering process will streamline the preparation of site-specific NEPA documents.

  20. Electric Ground Support Equipment Advanced Battery Technology Demonstration Project at the Ontario Airport

    SciTech Connect

    Tyler Gray; Jeremy Diez; Jeffrey Wishart; James Francfort

    2013-07-01

    The intent of the electric Ground Support Equipment (eGSE) demonstration is to evaluate the day-to-day vehicle performance of electric baggage tractors using two advanced battery technologies to demonstrate possible replacements for the flooded lead-acid (FLA) batteries utilized throughout the industry. These advanced battery technologies have the potential to resolve barriers to the widespread adoption of eGSE deployment. Validation testing had not previously been performed within fleet operations to determine if the performance of current advanced batteries is sufficient to withstand the duty cycle of electric baggage tractors. This report summarizes the work performed and data accumulated during this demonstration in an effort to validate the capabilities of advanced battery technologies. This report summarizes the work performed and data accumulated during this demonstration in an effort to validate the capabilities of advanced battery technologies. The demonstration project also grew the relationship with Southwest Airlines (SWA), our demonstration partner at Ontario International Airport (ONT), located in Ontario, California. The results of this study have encouraged a proposal for a future demonstration project with SWA.

  1. 2 kWe Solar Dynamic Ground Test Demonstration Project. Volume 1; Executive Summary

    NASA Technical Reports Server (NTRS)

    Alexander, Dennis

    1997-01-01

    The Solar Dynamic Ground Test Demonstration (SDGTD) successfully demonstrated a solar-powered closed Brayton cycle system in a relevant space thermal environment. In addition to meeting technical requirements the project was completed 4 months ahead of schedule and under budget. The following conclusions can be supported: 1. The component technology for solar dynamic closed Brayton cycle technology has clearly been demonstrated. 2. The thermal, optical, control, and electrical integration aspects of systems integration have also been successfully demonstrated. Physical integration aspects were not attempted as these tend to be driven primarily by mission-specific requirements. 3. System efficiency of greater than 15 percent (all losses fully accounted for) was demonstrated using equipment and designs which were not optimized. Some preexisting hardware was used to minimize cost and schedule. 4. Power generation of 2 kWe. 5. A NASA/industry team was developed that successfully worked together to accomplish project goals. The material presented in this report will show that the technology necessary to design and fabricate solar dynamic electrical power systems for space has been successfully developed and demonstrated. The data will further show that achieved results compare well with pretest predictions. The next step in the development of solar dynamic space power will be a flight test.

  2. DAZZLE project: UAV to ground communication system using a laser and a modulated retro-reflector

    NASA Astrophysics Data System (ADS)

    Thueux, Yoann; Avlonitis, Nicholas; Erry, Gavin

    2014-10-01

    The advent of the Unmanned Aerial Vehicle (UAV) has generated the need for reduced size, weight and power (SWaP) requirements for communications systems with a high data rate, enhanced security and quality of service. This paper presents the current results of the DAZZLE project run by Airbus Group Innovations. The specifications, integration steps and initial performance of a UAV to ground communication system using a laser and a modulated retro-reflector are detailed. The laser operates at the wavelength of 1550nm and at power levels that keep it eye safe. It is directed using a FLIR pan and tilt unit driven by an image processing-based system that tracks the UAV in flight at a range of a few kilometers. The modulated retro-reflector is capable of a data rate of 20Mbps over short distances, using 200mW of electrical power. The communication system was tested at the Pershore Laser Range in July 2014. Video data from a flying Octocopter was successfully transmitted over 1200m. During the next phase of the DAZZLE project, the team will attempt to produce a modulated retro-reflector capable of 1Gbps in partnership with the research institute Acreo1 based in Sweden. A high speed laser beam steering capability based on a Spatial Light Modulator will also be added to the system to improve beam pointing accuracy.

  3. IRAS observations of the Pluto-Charon system

    NASA Technical Reports Server (NTRS)

    Aumann, H. H.; Walker, R. G.

    1987-01-01

    High-signal-to-noise-ratio observations of the Pluto-Charon system at 25, 60, and 100 microns using IRAS are combined with visual-magnitude and mutual-eclipse constraints to evaluate thermal models of Pluto and Charon. These models are consistent with eclipse observation by Dunbar and Tedesco (1986) but not with Reinsch and Pakull (1987). The most likely model for Charon is the standard asteroid model, typical for the icy Galilean and Saturnian satellites. Charon models with a significant atmosphere can be ruled out. Based on currently available radius and albedo constraints, no significant numerical distinction is possible between Pluto models ranging from isothermal spheres with surface emissivity between 0.4 and 0.9. Concerns regarding the viability of an emissivity as low as 0.4 favor the higher-emissivity models. The globally uniform surface temperature of Pluto may thus at present be as low as 45 K, with a methane column abundance of 6.7 cm atm. The most likely models are centered on radii of 1180 and 747 km and albedos of 0.47 and 0.26 for Pluto and Charon, respectively.

  4. IRAS observations of the Pluto-Charon system

    SciTech Connect

    Aumann, H.H.; Walker, R.G.

    1987-10-01

    High-signal-to-noise-ratio observations of the Pluto-Charon system at 25, 60, and 100 microns using IRAS are combined with visual-magnitude and mutual-eclipse constraints to evaluate thermal models of Pluto and Charon. These models are consistent with eclipse observation by Dunbar and Tedesco (1986) but not with Reinsch and Pakull (1987). The most likely model for Charon is the standard asteroid model, typical for the icy Galilean and Saturnian satellites. Charon models with a significant atmosphere can be ruled out. Based on currently available radius and albedo constraints, no significant numerical distinction is possible between Pluto models ranging from isothermal spheres with surface emissivity between 0.4 and 0.9. Concerns regarding the viability of an emissivity as low as 0.4 favor the higher-emissivity models. The globally uniform surface temperature of Pluto may thus at present be as low as 45 K, with a methane column abundance of 6.7 cm atm. The most likely models are centered on radii of 1180 and 747 km and albedos of 0.47 and 0.26 for Pluto and Charon, respectively. 21 references.

  5. The Surface Compositions of Triton, Pluto, and Charon

    NASA Technical Reports Server (NTRS)

    Cruikshank, Dale P.; Roush, Ted L.; Owen, Tobias C.; Quirico, Eric; DeBergh, Catherine

    1995-01-01

    Neptune's satellite Triton, and the planet-satellite binary Pluto and Charon, are the most distant planetary bodies on which ices have been directly detected. Triton and Pluto have very similar dimensions and mean densities, suggesting a similar or common origin. Through earth-based spectroscopic observations in the near-infrared, solid N2, CH4, and CO have been found on both bodies, with the additional molecule C02 on Triton. N2 dominates both surfaces, although the coverage is not spatially uniform. On Triton, the CH4 and CO are mostly or entirely frozen in the N2 matrix, while CO2 may be spatially segregated. On Pluto, some CH4 and the CO are frozen in the N2 matrix, but there is evidence for additional CH4 in a pure state, perhaps lying as a lag deposit on a subsurface layer of N2. Despite their compositional and dimensional similarities, Pluto and Triton are quite different from one another in detail. Additional hydrocarbons and other volatile ices have been sought spectroscopically but not yet have been detected. The only molecule identified on Pluto's satellite Charon is solid H2O, but the spectroscopic data are of low precision and admit the presence of other ices such as CH4.

  6. The long-wavelength thermal emission of the Pluto-Charon system from Herschel observations. Evidence for emissivity effects

    NASA Astrophysics Data System (ADS)

    Lellouch, E.; Santos-Sanz, P.; Fornasier, S.; Lim, T.; Stansberry, J.; Vilenius, E.; Kiss, Cs.; Müller, T.; Marton, G.; Protopapa, S.; Panuzzo, P.; Moreno, R.

    2016-04-01

    Thermal observations of the Pluto-Charon system acquired by the Herschel Space Observatory in February 2012 are presented. They consist of photometric measurements with the PACS and SPIRE instruments (nine visits to the Pluto system each), covering six wavelengths from 70 to 500 μm altogether. The thermal light curve of Pluto-Charon is observed in all filters, albeit more marginally at 160 and especially 500 μm. Putting these data into the context of older ISO, Spitzer and ground-based observations indicates that the brightness temperature (TB) of the system (rescaled to a common heliocentric distance) drastically decreases with increasing wavelength, from ~53 K at 20 μm to ~35 K at 500 μm, and perhaps ever less at longer wavelengths. Considering a variety of diurnal and/or seasonal thermophysical models, we show that TB values of 35 K are lower than any expected temperature for the dayside surface or subsurface of Pluto and Charon, implying a low surface emissivity. Based on multiterrain modeling, we infer a spectral emissivity that decreases steadily from 1 at 20-25 μm to ~0.7 at 500 μm. This kind of behavior is usually not observed in asteroids (when proper allowance is made for subsurface sounding), but is found in several icy surfaces of the solar system. We tentatively identify that a combination of a strong dielectric constant and a considerable surface material transparency (typical penetration depth ~1 cm) is responsible for the effect. Our results have implications for the interpretation of the temperature measurements by REX/New Horizons at 4.2 cm wavelength. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.

  7. On the roles of escape erosion and the viscous relaxation of craters on Pluto

    NASA Astrophysics Data System (ADS)

    Stern, S. Alan; Porter, Simon; Zangari, Amanda

    2015-04-01

    Pluto and its satellites will be the most distant objects ever reconnoitered when NASA's New Horizons spacecraft conducts its intensive flyby of this system in 2015. The size-frequency distribution (SFD) of craters on the surfaces in the Pluto system have long been expected to provide a useful measure of the size distribution of Kuiper Belt Objects (KBOs) down to much smaller size scales than presently observed. However, currently predicted escape rates of Pluto's atmosphere suggest that of order one-half to several kilometers of nitrogen ice has been removed from Pluto's surface over geologic time. Because this range of depths is comparable to or greater than most expected crater depths on Pluto, one might expect that many craters on Pluto's surface may have been removed or degraded by this process, biasing the observed crater SFD relative to the production-function crater SFD. Further, if Pluto's surface volatile layer is comparable to or deeper than crater depths, and if the viscosity of this layer surface ice is low like the viscosity of pure N2 ice at Pluto's measured 35 K surface temperature (or as low as the viscosity of CH4 ice at warmer but plausible temperatures on isolated pure-CH4 surfaces on Pluto), then craters on Pluto may also have significantly viscously relaxed, also potentially biasing the observed crater SFD and surface crater retention age. Here we make a first exploration of how these processes can affect the displayed cratering record on Pluto. We find that Pluto's surface may appear to be younger owing to these effects than it actually is. We also find that by comparing Pluto's cratering record to Charon's, it may be possible to estimate the total loss depth of material from Pluto's surface over geologic time, and therefore to estimate Pluto's time-averaged escape rate.

  8. Pluto's Global Color Variability as Seen by the New Horizons Multispectral Visible Imaging Camera

    NASA Astrophysics Data System (ADS)

    Binzel, R. P.; Stern, A.; Weaver, H. A., Jr.; Young, L. A.; Olkin, C.; Grundy, W. M.; Earle, A. M.

    2015-12-01

    While variability in Pluto's albedo, color, and methane distribution had been previously discerned from ground-based and Hubble Space Telescope observations [e.g. 1,2], the sharp juxtaposition of contrasting units forms one of the greatest surprises returned (to date) from the New Horizons mission. Here we present a global analysis of the color distribution of Pluto's surface factoring in both seasonal and large scale geologic processes. We will also explore the possible role of long-term (million year) precession cycles [3] in shaping the surface morphology and the distribution of volatiles. We utilize data returned by the New Horizons Multispectral Visible Imaging Camera (MVIC) operating as part of the Ralph instrument [4]. MVIC captures images over five wavelength bands from blue to the near-infrared, including a broad panchromatic band and a narrow band centered on the 0.89-micron methane absorption feature. References: [1] Young, E. F., Binzel, R. P., Crane, K. 2001; Astron. J. 121, 552-561. [2] Grundy, W.M., Olkin, C.B., Young, L.A., Buie, M. W., Young, E. F. 2013; Icarus 223, 710-721. [3] Earle, A. M., Binzel, R. P. 2015; Icarus 250, 405-412. [4] Reuter, D.C., Stern, S.A., Scherrer, J., et al. 2008; Space Science Reviews, 140, 129-154.

  9. Test holes drilled in support of ground-water investigations, Project Gnome, Eddy County, New Mexico

    USGS Publications Warehouse

    Cooper, J.B.

    1962-01-01

    Project Gnome is a proposed underground nuclear shot to be detonated within a massive salt bed in Eddy County, N. Mex. Potable and neat potable ground water is present in rocks above the salt and is being studied in relation to this nuclear event. This report presents details of two test holes which were drilled to determine ground-water conditions in the near vicinity of the shot point. A well-defined aquifer is present at the site of USGS test hole 1, about 1,000 feet south of the access shaft to the underground shot point. Water with 75 feet of artesian pressure head is contained in the Culebra dolomite member of the Rustler formation. The dolomite aquifer is 32 feet thick and its top lies at a depth of 517 feet below land surface. The aquifer yielded 100 gpm (gallons per minute) with a drawdown of 40 feet during a pumping period of 24 hours. Water was not found in rocks above or below the Culebra dolomite. At the site of USGS test hole 2, about 2 miles southwest of the access shaft no distinctive aquifer exists. About one-half gpm was yielded to the well from the rocks between the Culebra dolomite and the top of the salt. Water could not be detected in the Culebra dolomite or overlying rocks. The report contains drawdown and recovery curves of yield tests, drilling-time charts, and electric logs. The data are given in tables; they include summaries of hole construction, sample description logs, water measurements, drilling-time logs, and water analyses.

  10. Rotationally resolved midultraviolet studies of Triton and the Pluto/Charon system. I - IUE results

    NASA Technical Reports Server (NTRS)

    Stern, S. A.; Brosch, Noah; Barker, Edwin S.; Gladstone, G. R.

    1991-01-01

    The present uniform analysis of the full set of IUE spectra of Pluto + Charon and Triton attempts to characterize these objects' UV photometric properties variation with rotational phase, giving attention to the 2550-3200 A range. The visible-UV color differentiation increases as Pluto reaches its maximum bolometric brightness; the IUE data suggests that this could be due to a UV surface absorption feature on Pluto or Charon. Typical UV albedos are found on Triton which agree with Voyager photopolarimeter results; Pluto's albedo is much lower than that of Triton, but the amplitude of the Pluto UV lightcurve is greater than that of Triton.

  11. Observations of Pluto-Charon mutual events

    SciTech Connect

    Blanco, C.; Di Martino, M.; Ferreri, W.; Osservatorio Astronomico, Turin )

    1989-07-01

    As part of the planned 'Pluto-Charon Mutual Eclipse Season Campaign', one mutual event was observed at the ESO Observatory on July 10, 1986 and seven mutual events were observed at the Serra La Nave stellar station of Catania Astrophysical Observatory from April 29 to July 21, 1987. At ESO the measurements were performed at the 61-cm Bochum telescope equipped with a photon-counting system and U, B, V, filters; at Serra La Nave the Cassegrain focus of the 91-cm reflector was equipped with a photon-counting system and B and V filters. The observed light losses and contact times do not show relevant systematic deviations from the predicted ones. An examination of the behavior of the B and V light curves gives slight indications of a different slope of the B and V light loss of the same event for a superior or an inferior event, and shows that the superior events are shallower at wavelengths longer than B. 6 refs.

  12. Observations of the Pluto-Charon System

    NASA Technical Reports Server (NTRS)

    Tholen, David J.

    2004-01-01

    We are continuing the analysis of adaptive optics observations of the Pluto-Charon system, with the goal of confirming the orbital eccentricity reported by Tholen and Bule (1997). Previous work on these data, obtained with the Hokupa's adaptive optics system and Gemini North and reported by Tholea (2002), utilized only a portion of the full set of 348 images taken on 8 nights between 2001 and 2002, and was based on a preliminary calibration of the image scale and position angle of the detector. For each of the three observing runs, independent calibrations were performed using the motion of an asteroid past a fixed stellar source to remove any minor differences in the way the instrument was mounted on the telescope for each run. The image scales determined for each run are good to better than 1 part in 1000, while the individual position angle determinations are good at least 0.1 deg. The preliminary analysis reported at last year's DPS meeting indicated consistency with the orbit determined from the HST observations acquired a decade ago, however, a more careful analysis yields a longitude of periapsis of 132.2 degrees plus or minus 9.3 degrees, disagreeing with the HST results: Finally, possible explanation for the differences in orbital solutions are considered.

  13. RTGs Options for Pluto Fast Flyby Mission

    SciTech Connect

    Schock, Alfred

    1993-10-01

    A small spacecraft design for the Pluto Fast Flyby (PFF) Mission is under study by the Jet Propulsion Laboratory (JPL) for the National Aeronautics and Space Administration (NASA), for a possible launch as early as 1998. JPL's 1992 baseline design calls for a power source able to furnish an energy output of 3963 kWh and a power output of 69 watts(e) at the end of the 9.2-year mission. Satisfying those demands is made difficult because NASA management has set a goal of reducing the spacecraft mass from a baseline value of 166 kg to ~110 kg, which implies a mass goal of less than 10 kg for the power source. To support the ongoing NASA/JPL studies, the Department of Energy's Office of Special Applications (DOE/OSA) commissioned Fairchild Space to prepare and analyze conceptual designs of radioisotope power systems for the PFF mission. Thus far, a total of eight options employing essentially the same radioisotope heat source modules were designed and subjected to thermal, electrical, structural, and mass analyses by Fairchild. Five of these - employing thermoelectric converters - are described in the present paper, and three - employing free-piston Stirling converters - are described in the companion paper presented next. The system masses of the thermoelectric options ranged from 19.3 kg to 10.2 kg. In general, the options requiring least development are the heaviest, and the lighter options require more development with greater programmatic risk. There are four duplicate copies

  14. RCRA (Resource Conservation and Recovery Act) ground-water monitoring projects for Hanford facilities: Annual progress report for 1988

    SciTech Connect

    Fruland, R.M.; Lundgren, R.E.

    1989-04-01

    This report describes the progress during 1988 of 14 Hanford Site ground-water monitoring projects covering 16 hazardous waste facilities and 1 nonhazardous waste facility (the Solid Waste Landfill). Each of the projects is being conducted according to federal regulations based on the Resource Conservation and Recovery Act (RCRA) of 1976 and the State of Washington Administrative Code. 21 refs., 23 figs., 8 tabs.

  15. The Charon-Pluto mass ratio from MKO astrometry

    NASA Technical Reports Server (NTRS)

    Young, L. A.; Olkin, C. B.; Elliot, J. L.; Tholen, D. J.; Buie, M. W.

    1994-01-01

    Using the University of Hawaii (UH) 2.2-m telescope, we obtained charge coupled device (CCD) images of Pluto as it passed through a single field of 10 stars during 6 nights of Charon's 6.4-day orbital period. From these data, Charon's orbital semimajor axis is found to be 19,460 +/- 58 km, which is consistent with the recent measurement by Null et al. (1993), of 19,405 +/- 86 km. Our semimajor axis implies a system mass of (14.32 +/- 0.13) x 10(exp 24) g. From the motions of Pluto and Charon around their barycenter, we find that the ratio of Charon's mass to Pluto's is 0.1566 +/- 0.0035, indicating that the bodies both have densities near 2 g/cc. Our ratio is nearly twice that of Null et al., who find a ratio of 0.0837 +/- 0.0147. Possible reasons for the large discrepancy are discussed.

  16. On the origin of the Pluto-Charon binary

    NASA Technical Reports Server (NTRS)

    Mckinnon, William B.

    1989-01-01

    The normalized angular momentum density of Pluto-Charon (0.45) exceeds the critical value of 0.39 above which no stably rotating single object exists, suggesting a collisional origin for this binary. The effects of viscosity on Pluto's rotational stability and on the density of Charon are considered. Both a more or less dense Charon would be consistent with a collisional origin if one (the least massive) or both protoobjects were differentiated. It is noted that the angular momentum of the system requires the protoobjects to be comparably (if not equally) sized if off-center impact velocities vary between escape (about 1.3 km/s) and somewhat greater values (about 2.5 km/s) appropriate to Pluto's eccentric and inclined solar orbit.

  17. The detection of eclipses in the Pluto-Charon system

    NASA Technical Reports Server (NTRS)

    Binzel, R. P.; Tholen, D. J.; Tedesco, E. F.; Buratti, B. J.; Nelson, R. M.

    1985-01-01

    The first eclipses between Pluto and its satellite ('Charon') were detected in January and February 1985, confirming the satellite's existence. Eclipses lasting a few hours will now occur at 3.20 day intervals for the next 5 to 6 years and then will cease for about 120 years. Careful observations of these eclipses will allow greatly improved determinations to be made of several physical parameters for the Pluto-Charon system: the diameters of the planet and satellite, the surface albedo distribution on one hemisphere of the planet, the orbit of the satellite, and the mass of the planet and hence its density. Knowledge of the density will provide a constraint on models of Pluto's bulk composition.

  18. On the origin of the Pluto-Charon binary

    SciTech Connect

    Mckinnon, W.B. )

    1989-09-01

    The normalized angular momentum density of Pluto-Charon (0.45) exceeds the critical value of 0.39 above which no stably rotating single object exists, suggesting a collisional origin for this binary. The effects of viscosity on Pluto's rotational stability and on the density of Charon are considered. Both a more or less dense Charon would be consistent with a collisional origin if one (the least massive) or both protoobjects were differentiated. It is noted that the angular momentum of the system requires the protoobjects to be comparably (if not equally) sized if off-center impact velocities vary between escape (about 1.3 km/s) and somewhat greater values (about 2.5 km/s) appropriate to Pluto's eccentric and inclined solar orbit. 30 refs.

  19. Escape erosion and relaxation of craters on Pluto

    NASA Astrophysics Data System (ADS)

    Porter, S.; Zangari, A.; Stern, A.

    2014-07-01

    Pluto and its major satellite Charon will be the most distant objects ever visited when NASA's New Horizons spacecraft flies past them in mid-2015. Both bodies should have suffered impacts from other transneptunian objects, though those impacts are of much lower velocity than typical on giant-planet satellites. New Horizons will image the illuminated hemispheres of Pluto and Charon seen at closest approach at better than 0.5 km/pix and 1.0 km/pix, respectively. We compare new different predictions of the impactor population on Pluto and Charon, including the effects of escape erosion from Pluto, and examine the crater size distributions those impactors would produce over the range observable to the imagers on New Horizons. The impact distribution models diverge the most for craters smaller than 10 km. We expect the crater size distribution on Charon to be determined by the impactor distribution and the rheology of the surface. Inverting the Charon size distribution seen by New Horizons will then constrain the overall size frequency distribution in the Kuiper belt, and the location of any break in that size frequency distribution. However, owing to escape erosion, craters on Pluto may be much more modified than on Charon. To constrain this modification, we present a range of possible Pluto crater distributions, as a function of impactor distribution, atmospheric escape rate, and surface ice viscosity. Pluto's atmosphere is primarily made of molecular nitrogen and is currently escaping at between 10^{27} and 10^{28} N_2/s according to model estimates. To sustain these escape rates for 3.5 billion years, a global layer of N_2 ice 0.3 to 3 km thick would need to have sublimated from the surface. We show that this gradual mass loss could have erased many of the smaller craters on Pluto, especially craters with diameters smaller than 10 km. This sublimation erosion process does not occur on Charon, which has a water ice surface and no observed atmosphere. We also show

  20. The small satellites of Pluto as observed by New Horizons.

    PubMed

    Weaver, H A; Buie, M W; Buratti, B J; Grundy, W M; Lauer, T R; Olkin, C B; Parker, A H; Porter, S B; Showalter, M R; Spencer, J R; Stern, S A; Verbiscer, A J; McKinnon, W B; Moore, J M; Robbins, S J; Schenk, P; Singer, K N; Barnouin, O S; Cheng, A F; Ernst, C M; Lisse, C M; Jennings, D E; Lunsford, A W; Reuter, D C; Hamilton, D P; Kaufmann, D E; Ennico, K; Young, L A; Beyer, R A; Binzel, R P; Bray, V J; Chaikin, A L; Cook, J C; Cruikshank, D P; Dalle Ore, C M; Earle, A M; Gladstone, G R; Howett, C J A; Linscott, I R; Nimmo, F; Parker, J Wm; Philippe, S; Protopapa, S; Reitsema, H J; Schmitt, B; Stryk, T; Summers, M E; Tsang, C C C; Throop, H H B; White, O L; Zangari, A M

    2016-03-18

    The New Horizons mission has provided resolved measurements of Pluto's moons Styx, Nix, Kerberos, and Hydra. All four are small, with equivalent spherical diameters of ~40 kilometers for Nix and Hydra and ~10 kilometers for Styx and Kerberos. They are also highly elongated, with maximum to minimum axis ratios of ~2. All four moons have high albedos (~50 to 90%) suggestive of a water-ice surface composition. Crater densities on Nix and Hydra imply surface ages of at least 4 billion years. The small moons rotate much faster than synchronous, with rotational poles clustered nearly orthogonal to the common pole directions of Pluto and Charon. These results reinforce the hypothesis that the small moons formed in the aftermath of a collision that produced the Pluto-Charon binary. PMID:26989256

  1. Understanding Pluto's Surface: Correlations between Geology and Composition

    NASA Astrophysics Data System (ADS)

    Spencer, J. R.; Stern, A.; Weaver, H. A., Jr.; Young, L. A.; Olkin, C.; Ennico Smith, K.; Moore, J. M.; Grundy, W. M.

    2015-12-01

    New Horizons has revealed that Pluto's surface is composed of a remarkable variety of terrains that differ strikingly in their landforms, color, and near-infrared spectral characteristics. Strong correlations are seen between the morphology revealed by high-resolution imaging from the Long Range Reconnaissance Imager (LORRI), and the surface composition inferred from the spacecraft's color camera and near-infrared spectrometer, which are both included in the Ralph instrument. These correlations provide the potential for a much deeper understanding of the processes that have shaped Pluto's complex surface that was possible for Pluto's sibling Triton, for which Voyager did not provide compositional maps. We will discuss how the full suite of New Horizons remote sensing instruments reveal a surface modified by the interplay of insolation variations, meteorology, and endogenic processes.

  2. To Pluto by way of a postage stamp

    NASA Technical Reports Server (NTRS)

    Staehle, Robert L.; Terrile, Richard J.; Weinstein, Stacy S.

    1994-01-01

    In this time of constrained budgets, the primary question facing planetary explorers is not 'Can we do it?' but 'Can we do it cheaply?' Taunted by words on a postage stamp, a group of mission designers at the Jet Propulsion Laboratory is struggling to find a cheap way to go to Pluto. Three primary goals were set by the science community: (1) imaging of Pluto and Charon, (2) mapping their surface composition, and (3) characterizing Pluto's atmosphere. The spacecraft will be designed around these primary goals. With the help of the Advanced Technology Insertion (ATI) process $5 million was alloted for two years to shop for lightweight components and subsystems using new technology never tried on a planetary mission. The process for this search and development is described.

  3. The detection of eclipses in the pluto-charon system.

    PubMed

    Binzel, R P; Tholen, D J; Tedesco, E F; Buratti, B J; Nelson, R M

    1985-06-01

    The first eclipses between Pluto and its satellite ("Charon") were detected in January and February 1985, confirming the satellite's existence. Eclipses lasting a few hours will now occur at 3.2-day intervals for the next 5 to 6 years and then will cease for about 120 years. Careful observations of these eclipses will allow greatly improved determinations to be made of several physical parameters for the Pluto-Charon system: the diameters of the planet and satellite, the surface albedo distribution on one hemisphere of the planet, the orbit of the satellite, and the mass of the planet and hence its density. Knowledge of the density will provide a constraint on models of Pluto's bulk composition. PMID:17735339

  4. Methane and Nitrogen Abundances on Pluto and Eris

    NASA Astrophysics Data System (ADS)

    Tegler, S. C.; Cornelison, D. M.; Grundy, W. M.; Romanishin, W.; Abernathy, M. R.; Bovyn, M. J.; Burt, J. A.; Evans, D. E.; Maleszewski, C. K.; Thompson, Z.; Vilas, F.

    2010-12-01

    We present spectra of Eris from the MMT 6.5 m Telescope and Red Channel Spectrograph (5700-9800 Å, 5 Å pixel-1) on Mt. Hopkins, AZ, and of Pluto from the Steward Observatory 2.3 m Telescope and Boller and Chivens Spectrograph (7100-9400 Å, 2 Å pixel-1) on Kitt Peak, AZ. In addition, we present laboratory transmission spectra of methane-nitrogen and methane-argon ice mixtures. By anchoring our analysis in methane and nitrogen solubilities in one another as expressed in the phase diagram of Prokhvatilov & Yantsevich, and comparing methane bands in our Eris and Pluto spectra and methane bands in our laboratory spectra of methane and nitrogen ice mixtures, we find Eris' bulk methane and nitrogen abundances are ~10% and ~90% and Pluto's bulk methane and nitrogen abundances are ~3% and ~97%. Such abundances for Pluto are consistent with values reported in the literature. It appears that the bulk volatile composition of Eris is similar to the bulk volatile composition of Pluto. Both objects appear to be dominated by nitrogen ice. Our analysis also suggests, unlike previous work reported in the literature, that the methane and nitrogen stoichiometry is constant with depth into the surface of Eris. Finally, we point out that our Eris spectrum is also consistent with a laboratory ice mixture consisting of 40% methane and 60% argon. Although we cannot rule out an argon-rich surface, it seems more likely that nitrogen is the dominant species on Eris because the nitrogen ice 2.15 μm band is seen in spectra of Pluto and Triton.

  5. Did the Kozai Resonance Help Form Pluto's Small Moons?

    NASA Astrophysics Data System (ADS)

    Cuk, Matija; (Luke) Dones, Henry C.; Nesvorny, David; Walsh, Kevin J.

    2016-05-01

    The origin of the small moons of Pluto is currently poorly understood. They most likely originated from debris ejected from Pluto and Charon during their formation in the giant impact. However, the moons' large separation from Pluto and massive past tidal evolution of Charon make it very hard to emplace collisional fragments on circular orbits in the 40-60 Pluto radii zone where the four small moons are found. Here we propose that the Pluto system has a parallel in the triple Trans-Neptunian Object (TNO) 1999 TC36. Both systems have large obliquities, and have additional components outside the inner binary that probably formed in a giant impact and has likely gone through a rapid tidal evolution immediately following formation. Our hypothesis is that loosely bound ejecta from giant impacts can experience strong perturbations from the Sun (the ``Kozai resonance") as long as major axes of their elongated orbits are perpendicular to the binary's heliocentric orbit. This process could decouple the debris from the inner boundary long enough for the inner binary to evolve tidally and prevent further Kozai oscillations through its quadrupole moment. If the debris is dominated by one large fragment, a triple can form (as in the case of 1999 TC36), while a large population of fragments would experience collisions and make a disk surrounding the inner binary (as in the case of Pluto). At the meeting we will present numerical simulations of this process using numerical integrator COMPLEX which includes both tides and solar perturbations, and can integrate dynamics of satellites on crossing orbits.

  6. METHANE AND NITROGEN ABUNDANCES ON PLUTO AND ERIS

    SciTech Connect

    Tegler, S. C.; Cornelison, D. M.; Abernathy, M. R.; Bovyn, M. J.; Burt, J. A.; Evans, D. E.; Maleszewski, C. K.; Thompson, Z.; Grundy, W. M.; Romanishin, W.; Vilas, F. E-mail: David.Cornelison@nau.ed E-mail: wjr@nhn.ou.ed

    2010-12-10

    We present spectra of Eris from the MMT 6.5 m Telescope and Red Channel Spectrograph (5700-9800 A, 5 A pixel{sup -1}) on Mt. Hopkins, AZ, and of Pluto from the Steward Observatory 2.3 m Telescope and Boller and Chivens Spectrograph (7100-9400 A, 2 A pixel{sup -1}) on Kitt Peak, AZ. In addition, we present laboratory transmission spectra of methane-nitrogen and methane-argon ice mixtures. By anchoring our analysis in methane and nitrogen solubilities in one another as expressed in the phase diagram of Prokhvatilov and Yantsevich, and comparing methane bands in our Eris and Pluto spectra and methane bands in our laboratory spectra of methane and nitrogen ice mixtures, we find Eris' bulk methane and nitrogen abundances are {approx}10% and {approx}90% and Pluto's bulk methane and nitrogen abundances are {approx}3% and {approx}97%. Such abundances for Pluto are consistent with values reported in the literature. It appears that the bulk volatile composition of Eris is similar to the bulk volatile composition of Pluto. Both objects appear to be dominated by nitrogen ice. Our analysis also suggests, unlike previous work reported in the literature, that the methane and nitrogen stoichiometry is constant with depth into the surface of Eris. Finally, we point out that our Eris spectrum is also consistent with a laboratory ice mixture consisting of 40% methane and 60% argon. Although we cannot rule out an argon-rich surface, it seems more likely that nitrogen is the dominant species on Eris because the nitrogen ice 2.15 {mu}m band is seen in spectra of Pluto and Triton.

  7. A new determination of radii and limb parameters for Pluto and Charon from mutual event lightcurves

    NASA Technical Reports Server (NTRS)

    Young, Eliot F.; Binzel, Richard P.

    1994-01-01

    Over the past several years Pluto-Charon mutual events have yielded progressively more accurate estimates of Charon's orbital elements and the radii of Pluto and Charon (e.g., Buie, Tholen, and Horne, 1992). Analysis of the 1988 stellar occultation by Pluto indicates a radius for Pluto that is about 4%, or 50 km, larger than the mutual event radius of 1151 km. One possible explanation for the discrepancy is that the mutual event modeling treats Pluto and Charon as uniformly bright disks. If they are limb-darkened, the mutual event fits could underestimate their radii. In this paper we use an independent mutual event data set (Young and Binzel, 1992) to fit for Pluto and Charon's radii in a manner independent of either object's limb profile or albedo distribution. Our least-squares solution indicates that Pluto's radius is 1164 +/- 22.9 km and Charon's radius is 621 +/- 20.6 km.

  8. Ground Deformation Measurement with SAR Interferometry - Exupéry Project WP2 Space Based Observations

    NASA Astrophysics Data System (ADS)

    Cong, Xiaoying; Eineder, Michael; Minet, Christian

    2010-05-01

    As one of major natural hazards volcanic unrest and volcanic eruption are gaining more attention nowadays. The Exupéry project aimed at setting-up an Early Response System (VFRS) for volcanic activity was funded by the German Federal Ministry of Education and Research. Within Work Package 2 'Space Based Observations' SAR interferometry is used for monitoring the ground deformation. In comparison with conventional monitoring techniques like GPS the surface changes can be directly detected by using 2 SAR images from different acquisition times and an external DEM. Persistent scatterer SAR interferometry (PSI) method is applied by using a stack of interferograms with common master image. Instead of whole SAR scene only the coherent scatterers during whole acquisition duration are selected and its phase measurements are used to estimate modelled parameters such as deformation velocity, DEM error and atmospheric distortions. In mountainous area backscatterers are decorrelated during the time because of vegetation. To ensure the coherence corner reflector (CR) is used to get stable backscattering. To test the whole system a campaign was carried out during April to August 2009. Two CRs were installed for TerraSAR-X satellite on the test site Lagoa do Fogo volcano. During the campaign 11 strip-map scenes were gathered consequently. Post-processed interferograms as well as the coherence maps were delivered to database center in Hannover and would be published in project website. Time series analysis with coherent scatterers from the stacking was applied in order to detect complex deformation from mountainous area. The CRs were successfully detected in SAR image and will be used as reference points in PSI processing. At the end the interferograms computed from different wavelengths will be compared in this area.

  9. PFERD Mission: Pluto Flyby Exploration/Research Design

    NASA Technical Reports Server (NTRS)

    Lemke, Gary; Zayed, Husni; Herring, Jason; Fuehne, Doug; Sutton, Kevin; Sharkey, Mike

    1990-01-01

    The Pluto Flyby Exploration/Research Design (PFERD) mission will consist of a flyby spacecraft to Pluto and its satellite, Charon. The mission lifetime is expected to be 18 years. The Titan 4 with a Centaur upper stage will be utilized to launch the craft into the transfer orbit. The proposal was divided into six main subsystems: (1) scientific instrumentation; (2) command, communications, and control: (3) altitude and articulation control; (4) power and propulsion; (5) structures and thermal control; and (6) mission management and costing. Tradeoff studies were performed to optimize all factors of design, including survivability, performance, cost, and weight. Problems encountered in the design are also presented.

  10. Observational constraint on Pluto's atmospheric CO with ASTE

    NASA Astrophysics Data System (ADS)

    Iino, Takahiro; Hirahara, Yasuhiro; Hidemori, Takehiro; Tsukagoshi, Takashi; Nakajima, Taku; Nakamoto, Satoru; Kato, Chihaya

    2016-02-01

    To confirm the previous observational results of Pluto's atmospheric CO in the J = 2-1 rotational transition, we conducted a new observation of CO (J = 3-2) in Pluto's atmosphere in 2014 August with the Atacama Submillimeter Telescope Experiment 10 m single-dish telescope. In contrast to the previous observational result obtained with the James Clerk Maxwell Telescope in 2009 and 2010 by using the J = 2-1 transition, no emission structure was observed near the rest frequency in our attempt. Possible explanations for the nondetection result of the J = 3-2 transition are discussed.

  11. Visible Imaging on the Pluto Fast Flyby Mission

    NASA Technical Reports Server (NTRS)

    Malin, M. C.

    1993-01-01

    Objectives for visible imaging of the Pluto-Charon system, as prescribed by the Outer Planets Science Working Group, are to acquire (1) global observations (FOV of approximately 5000 IFOV's) at 1 km/line-pair for the purpose of characterizing surface morphology and geology, (2) global observations in 3-5 broadband colors at 5-10 km/line-pair for studies of surface properties and composition as it relates to morphology, and (3) selected observations at higher spatial resolution for study of surface processes. Several factors of the Pluto Fast Flyby mission make these difficult to achieve. These factors along with other aspects of the mission are discussed.

  12. Pluto's Insolation History: Latitudinal Variations and Effects on Atmospheric Pressure

    NASA Astrophysics Data System (ADS)

    Earle, Alissa M.; Binzel, Richard P.

    2014-11-01

    Since previous insolation modeling in the early 1990’s, new atmospheric pressure data, increased computational power, and the upcoming flyby of the Pluto system by NASA’s New Horizons spacecraft have generated new motivation and increased capabilities for the study of Pluto’s complex long-term (million-years) insolation history. The two primary topics of interest in studying Pluto’s insolation history are the variations in insolation patterns when integrated over different intervals and the evolution of diurnal insolation patterns over the last several decades. We find latitudinal dichotomies when comparing average insolation over timescales of days, decades, centuries, and millennia. Depending on the timescales of volatile migration, some consequences of these insolation patterns may be manifested in the surface features revealed by New Horizons. For any single rotation of Pluto there is a latitude that receives more insolation relative to the others. Often this is the sub-subsolar latitude but it can also be an arctic circle latitude when near-polar regions of Pluto experience the "midnight sun". We define the amount of that greatest insolation value over the course of one rotation as the "maximum diurnal insolation" (MDI). We find that MDI is driven to its highest values when Pluto’s obliquity creates a long arctic summer (or “midnight sun”) beginning just after perihelion. Pluto’s atmospheric pressure, as measured through stellar occultation observations during the past three decades, appears to correlate with Pluto's currently occurring midnight sun as quantified by the MDI parameter. If insolation (as parameterized by the MDI value) is the single dominant factor driving Pluto's atmospheric pressure, this “Midnight Sun Model” predicts that Pluto's maximum atmospheric pressure will be reached in 2017 followed by a steady decline. Pluto's maximum diurnal insolation value begins dropping after 2017 due to two factors: Pluto’s sub-solar point

  13. Surface ices and the atmospheric composition of Pluto

    NASA Astrophysics Data System (ADS)

    Owen, T. C.; Roush, T. L.; Cruikshank, D. P.; Elliot, J. L.; Young, L. A.; de Bergh, C.; Schmitt, B.; Geballe, T. R.; Brown, R. H.; Bartholomew, M. J.

    1993-08-01

    Observations of the 1.4- to 2.4-micrometer spectrum of Pluto reveal absorptions of carbon monoxide and nitrogen ices and confirm the presence of solid methane. Frozen nitrogen is more abundant than the other two ices by a factor of about 50; gaseous nitrogen must therefore be the major atmospheric constituent. The absence of carbon dioxide absorptions is one of several differences between the spectra of Pluto and Triton in this region. Both worlds carry information about the composition of the solar nebula and the processes by which icy planetesimals formed.

  14. Synoptic Observations of 134340 Pluto from the Hubble Space Telescope

    NASA Astrophysics Data System (ADS)

    Storrs, Alex; Eney, B.

    2010-01-01

    We present visible images of dwarf planet 134340 Pluto. These images were made over the course of almost two decades of observations. We present reconstructions of these images and search for temporal variation in the surface features. We use the MISTRAL reconstruction algorithm (Conan et al. 2000) to reconstruct the images at enhanced spatial resolution. Pluto's satellites are too small for reliable reconstruction but we will report any change in their total reflectivity. References: Conan, J.-M., T. Fusco, L. Mugnier, F. Marchis, C. Roddier, F. Roddier 2000. Deconvolution of Adaptive Optics Images: From Theory to Practice. in Adaptive Optical Systems Technology (P. Wizinowich, Ed.), pp. 913-924. SPIE, Bellingham.

  15. The Pluto Affair: The good, the bad or the ugly?

    NASA Astrophysics Data System (ADS)

    Lindberg Christensen, Lars

    2007-08-01

    The International Astronomical Union (IAU) General Assembly in Prague 2006 was the setting of one of the most discussed stories of 2006 - the much hated and loved IAU Resolution to define a planet. The Resolution changed Pluto's status to a dwarf planet and resulted in an unprecedented emotional discussion. The author will start the discussion with some first-hand impressions of the events with the perspective of the IAU Press Officer. The discussion can then address other impressions of what happened in Prague. What were the negative and positive outcomes of the Pluto Affair? What can we learn from this experience?

  16. Pluto's small satellites in the context of the Kuiper Belt

    NASA Astrophysics Data System (ADS)

    Parker, A. H.; Weaver, H. A., Jr.; Porter, S.; Spencer, J. R.; Olkin, C.; Howett, C.; Grundy, W. M.; Buie, M. W.

    2015-12-01

    New Horizons is now beyond Pluto and flying deeper into the Kuiper Belt. The small satellites in the Pluto system are the closest analogues to typical Kuiper Belt Objects yet observed at close-range by the spacecraft, and we will review these observations in the greater context of the Kuiper Belt and as they pertain to New Horizons' exploration of a similarly-sized classical Kuiper Belt target in late 2018 or early 2019. Finally, we will summarize the current state-of-knowledge regarding the potential long-range and close-range Kuiper Belt targets.

  17. Into the Kuiper Belt: New Horizons Post-Pluto

    NASA Astrophysics Data System (ADS)

    Harrison Parker, Alex; Spencer, John; Benecchi, Susan; Binzel, Richard; Borncamp, David; Buie, Marc; Fuentes, Cesar; Gwyn, Stephen; Kavelaars, JJ; Noll, Keith; Petit, Jean-Marc; Porter, Simon; Showalter, Mark; Stern, S. Alan; Sterner, Ray; Tholen, David; Verbiscer, Anne; Weaver, Hal; Zangari, Amanda

    2015-11-01

    New Horizons is now beyond Pluto and flying deeper into the Kuiper Belt. In the summer of 2014, a Hubble Space Telescope Large Program identified two candidate Cold Classical Kuiper Belt Objects (KBOs) that were within reach of New Horizons' remaining fuel budget. Here we present the selection of the Kuiper Belt flyby target for New Horizons' post-Pluto mission, our state of knowledge regarding this target and the potential 2019 flyby, the status of New Horizons' targeting maneuver, and prospects for near-future long-range observations of other KBOs.

  18. Detection of a CH/sub 4/ atmosphere on Pluto

    SciTech Connect

    Fink, U.; Smith, B.A.; Johnson, J.R.

    1980-01-01

    A ratio spectrum of Pluto shows methane absorption bands at 6200, 7200, 7900, 8400, 8600, 8900, and 10,000 A. The heavy saturation of the 8900 band as compared to the other bands indicates a gaseous origin for the observed absorptions. A total methane abundance of 80 + or - 20 m-am is derived, and an upper limit to the total pressure of approximately .05 atm is set. The methane atmosphere would be stable if the mass of Pluto is increased 50% over its present value and its radius is 1400 km. A heavier gas mixed with the methane atmosphere would also aid its stability.

  19. Modeling Low Velocity Impacts: Predicting Crater Depth on Pluto

    NASA Astrophysics Data System (ADS)

    Bray, V. J.; Schenk, P.

    2014-12-01

    The New Horizons mission is due to fly-by the Pluto system in Summer 2015 and provides the first opportunity to image the Pluto surface in detail, allowing both the appearance and number of its crater population to be studied for the first time. Bray and Schenk (2014) combined previous cratering studies and numerical modeling of the impact process to predict crater morphology on Pluto based on current understanding of Pluto's composition, structure and surrounding impactor population. Predictions of how the low mean impact velocity (~2km/s) of the Pluto system will influence crater formation is a complex issue. Observations of secondary cratering (low velocity, high angle) and laboratory experiments of impact at low velocity are at odds regarding how velocity controls depth-diameter ratios: Observations of secondary craters show that these low velocity craters are shallower than would be expected for a hyper-velocity primary. Conversely, gas gun work has shown that relative crater depth increases as impact velocity decreases. We have investigated the influence of impact velocity further with iSALE hydrocode modeling of comet impact into Pluto. With increasing impact velocity, a projectile will produce wider and deeper craters. The depth-diameter ratio (d/D) however has a more complex progression with increasing impact velocity: impacts faster than 2km/s lead to smaller d/D ratios as impact velocity increases, in agreement with gas-gun studies. However, decreasing impact velocity from 2km/s to 300 m/s produced smaller d/D as impact velocity was decreased. This suggests that on Pluto the deepest craters would be produced by ~ 2km/s impacts, with shallower craters produced by velocities either side of this critical point. Further simulations to investigate whether this effect is connected to the sound speed of the target material are ongoing. The complex relationship between impact velocity and crater depth for impacts occurring between 300m/s and 10 km/s suggests

  20. Surface ices and the atmospheric composition of Pluto

    NASA Technical Reports Server (NTRS)

    Owen, Tobias C.; Roush, Ted L.; Cruikshank, Dale P.; Elliot, James L.; Young, Leslie A.; De Bergh, Catherine; Schmitt, Bernard; Geballe, Thomas R.; Brown, Robert H.; Bartholomew, Mary J.

    1993-01-01

    Observations of the 1.4- to 2.4-micrometer spectrum of Pluto reveal absorptions of carbon monoxide and nitrogen ices and confirm the presence of solid methane. Frozen nitrogen is more abundant than the other two ices by a factor of about 50; gaseous nitrogen must therefore be the major atmospheric constituent. The absence of carbon dioxide absorptions is one of several differences between the spectra of Pluto and Triton in this region. Both worlds carry information about the composition of the solar nebula and the processes by which icy planetesimals formed.

  1. North American Ground Surface Temperature Histories: A Contribution to the PAGES2k North American Project

    NASA Astrophysics Data System (ADS)

    Mareschal, J. C.; Jaume Santero, F.; Beltrami, H.

    2015-12-01

    Within the framework of the PAGES NorthAmerica2k project, three hundred and seventy three (373) North American temperature-depth profiles from boreholes deeper than 300 meters were analyzed for recent climate. To facilitate comparisons and examine the same time period, the profiles were truncated at 300 m. The ground surface temperature (GST) histories for the last 500 years were inverted from the subsurface temperature anomalies using singular value decomposition for a model of 10 temperature changes along time-intervals of increasing duration. The inversion retains four singular values and accounts for the data acquisition time difference. The reference surface temperature and geothermal gradient were estimated by linear regression to the deepest 100 meters with a 95% confidence interval. Additionally, a Monte-Carlo method was used to find the range of solutions within a maximum subsurface anomaly error determined by the root mean square between the model and the data. The GST history results for North America, given by the mean and 95% confidence interval, reveal in most cases, a warming up to 1°C - 2.5°C during the last 100-150 years.

  2. Aviation System Capacity Program Terminal Area Productivity Project: Ground and Airborne Technologies

    NASA Technical Reports Server (NTRS)

    Giulianetti, Demo J.

    2001-01-01

    Ground and airborne technologies were developed in the Terminal Area Productivity (TAP) project for increasing throughput at major airports by safely maintaining good-weather operating capacity during bad weather. Methods were demonstrated for accurately predicting vortices to prevent wake-turbulence encounters and to reduce in-trail separation requirements for aircraft approaching the same runway for landing. Technology was demonstrated that safely enabled independent simultaneous approaches in poor weather conditions to parallel runways spaced less than 3,400 ft apart. Guidance, control, and situation-awareness systems were developed to reduce congestion in airport surface operations resulting from the increased throughput, particularly during night and instrument meteorological conditions (IMC). These systems decreased runway occupancy time by safely and smoothly decelerating the aircraft, increasing taxi speed, and safely steering the aircraft off the runway. Simulations were performed in which optimal trajectories were determined by air traffic control (ATC) and communicated to flight crews by means of Center TRACON Automation System/Flight Management System (CTASFMS) automation to reduce flight delays, increase throughput, and ensure flight safety.

  3. Ground Water Quality and Riparian Enhancement Projects in Sherman County, Oregon; Coordination and Technical Assistance, 2002-2003 Annual Report.

    SciTech Connect

    Faucera, Jason

    2003-06-23

    This project was designed to provide project coordination and technical assistance to producers in Sherman County for on the ground water quality enhancement and riparian enhancement projects. This is accomplished utilizing the USDA Conservation Enhancement Reserve Program (CREP) and other grant monies to translate the personnel funds in this project to on the ground projects. Two technicians and one watershed council coordinator are funded, either wholly or in part, by funds from this grant. The project area encompasses the whole of Sherman County which is bordered almost entirely by streams providing habitat or migration corridors for endangered fish species including steelhead and Chinook salmon. Three of those four streams and one other major Sherman County stream are listed on the DEQ 303(d) list of water quality limited streams for exceeding summer temperature limits. Temperature in streams are directly affected by the amount of solar radiation allowed to reach the surface of the water. Practices designed to improve bank-side vegetation, such as the CREP program, will counteract the solar heating of those water quality listed streams, benefiting endangered stocks. CREP and water quality projects are promoted and coordinated with local landowners through locally-led watershed councils. Funding from BPA provides a portion of the salary for a watershed council coordinator who acts to disseminate water quality and USDA program information directly to landowners through watershed council activities. The watershed coordinator acts to educate landowners in water quality and riparian management issues and to secure funds for the implementation of on the ground water quality projects. Actual project implementation is carried out by the two technicians funded by this project. Technicians in Sherman County, in cooperation with the USDA Natural Resources Conservation Service, assist landowners in developing Resource Management Systems (RMS) that address resource concerns

  4. Ground Water Quality and Riparian Enhancement Projects in Sherman County, Oregon; Coordination and Technical Assistance, 2003-2004 Annual Report.

    SciTech Connect

    Faucera, Jason

    2004-05-01

    This project was designed to provide technical assistance and project coordination to producers in Sherman County for on the ground water quality and riparian enhancement projects. This is accomplished utilizing the USDA Conservation Reserve Enhancement Program (CREP) in addition to other grant monies to translate the personnel funds in this project to on the ground projects. Two technicians and one watershed council coordinator are funded, either wholly or in part, by funds from this grant. The project area encompasses the whole of Sherman County which is bordered almost entirely by streams providing habitat or migration corridors for endangered fish species including steelhead and Chinook salmon. Of those four streams that comprise Sherman County's boundaries, three are listed on the DEQ 303(d) list of water quality limited streams for exceeding summer temperature limits. Only one stream in the interior of Sherman County is 303(d) listed for temperatures, but is the largest watershed in the County. Temperatures in streams are directly affected by the amount of solar radiation allowed to reach the surface of the water. Practices designed to improve bank-side vegetation, such as the CREP program, will counteract the solar heating of those water quality listed streams, benefiting endangered stocks. CREP and water quality projects are promoted and coordinated with local landowners through locally-led watershed councils. Funding from BPA provides a portion of the salary for a watershed council coordinator who acts to disseminate water quality and USDA program information directly to landowners through watershed council activities. The watershed coordinator acts to educate landowners in water quality and riparian management issues and to secure funds for the implementation of on the ground water quality projects. Actual project implementation is carried out by the two technicians funded by this project. Technicians in Sherman County, in cooperation with the USDA

  5. Ground Water Quality and Riparian Enhancement Projects in Sherman County, Oregon : Coordination and Technical Assistance, 2004-2005 Annual Report.

    SciTech Connect

    Faucera, Jason

    2005-06-01

    This project was designed to provide technical assistance and project coordination to producers in Sherman County for on the ground water quality and riparian enhancement projects. This is accomplished utilizing the USDA Conservation Reserve Enhancement Program (CREP) in addition to other grant monies to translate the personnel funds in this project to on the ground projects. Two technicians and one watershed council coordinator are funded, either wholly or in part, by funds from this grant. The project area encompasses the whole of Sherman County which is bordered almost entirely by streams providing habitat or migration corridors for endangered fish species including steelhead and Chinook salmon. Of those four streams that comprise Sherman County's boundaries, three are listed on the DEQ 303(d) list of water quality limited streams for exceeding summer temperature limits. Only one stream in the interior of Sherman County is 303(d) listed for temperatures, but is the largest watershed in the County. Temperatures in streams are directly affected by the amount of solar radiation allowed to reach the surface of the water. Practices designed to improve bank-side vegetation, such as the CREP program, will counteract the solar heating of those water quality listed streams, benefiting endangered stocks. CREP and water quality projects are promoted and coordinated with local landowners through locally-led watershed councils. Funding from BPA provides a portion of the salary for a watershed council coordinator who acts to disseminate water quality and USDA program information directly to landowners through watershed council activities. The watershed coordinator acts to educate landowners in water quality and riparian management issues and to secure funds for the implementation of on the ground water quality projects. Actual project implementation is carried out by the two technicians funded by this project. Technicians in Sherman County, in cooperation with the USDA

  6. PLUTO AND CHARON WITH THE HUBBLE SPACE TELESCOPE. II. RESOLVING CHANGES ON PLUTO'S SURFACE AND A MAP FOR CHARON

    SciTech Connect

    Buie, Marc W.; Young, Eliot F.; Young, Leslie A.; Stern, S. Alan; Grundy, William M. E-mail: efy@boulder.swri.edu E-mail: alan@boulder.swri.edu

    2010-03-15

    We present new imaging of the surface of Pluto and Charon obtained during 2002-2003 with the Hubble Space Telescope (HST) Advanced Camera for Surveys (ACS) instrument. Using these data, we construct two-color albedo maps for the surfaces of both Pluto and Charon. Similar mapping techniques are used to re-process HST/Faint Object Camera (FOC) images taken in 1994. The FOC data provide information in the ultraviolet and blue wavelengths that show a marked trend of UV-bright material toward the sunlit pole. The ACS data are taken at two optical wavelengths and show widespread albedo and color variegation on the surface of Pluto and hint at a latitudinal albedo trend on Charon. The ACS data also provide evidence for a decreasing albedo for Pluto at blue (435 nm) wavelengths, while the green (555 nm) data are consistent with a static surface over the one-year period of data collection. We use the two maps to synthesize a true visual color map of Pluto's surface and investigate trends in color. The mid- to high-latitude region on the sunlit pole is, on average, more neutral in color and generally higher albedo than the rest of the surface. Brighter surfaces also tend to be more neutral in color and show minimal color variations. The darker regions show considerable color diversity arguing that there must be a range of compositional units in the dark regions. Color variations are weak when sorted by longitude. These data are also used to constrain astrometric corrections that enable more accurate orbit fitting, both for the heliocentric orbit of the barycenter and the orbit of Pluto and Charon about their barycenter.

  7. Ground Water Quality and Riparian Enhancement Projects in Sherman County, Oregon; Coordination and Technical Assistance, 2005-2006 Annual Report.

    SciTech Connect

    Faucera, Jason

    2006-06-01

    This project was designed to provide technical assistance and project coordination to producers in Sherman County for on the ground water quality and riparian enhancement projects. This is accomplished utilizing the USDA Conservation Reserve Enhancement Program (CREP) in addition to other grant monies to translate the personnel funds in this project to on the ground projects. Two technicians and one watershed council coordinator are funded, either wholly or in part, by funds from this grant. The project area encompasses the whole of Sherman County which is bordered almost entirely by streams providing habitat or migration corridors for endangered fish species including steelhead and Chinook salmon. Of those four streams that comprise Sherman County's boundaries, three are listed on the DEQ 303(d) list of water quality limited streams for exceeding summer temperature limits. Only one stream in the interior of Sherman County is 303(d) listed for temperatures, but is the largest watershed in the County. Temperatures in streams are directly affected by the amount of solar radiation allowed to reach the surface of the water. Practices designed to improve bank-side vegetation, such as the CREP program, will counteract the solar heating of those water quality listed streams, benefiting endangered stocks. CREP and water quality projects are promoted and coordinated with local landowners through locally-led watershed councils. Funding from BPA provides a portion of the salary for a watershed council coordinator who acts to disseminate water quality and USDA program information directly to landowners through watershed council activities. The watershed coordinator acts to educate landowners in water quality and riparian management issues and to secure funds for the implementation of on the ground water quality projects. Actual project implementation is carried out by the two technicians funded by this project. Technicians in Sherman County, in cooperation with the USDA

  8. New Horizons mission to Pluto and the Kuiper belt

    NASA Astrophysics Data System (ADS)

    McKinnon, W.; Stern, S.; Weaver, H.; Young, L.; Olkin, C.; New Horizons Science Team

    2014-07-01

    NASA's New Horizons (NH) Pluto-Kuiper Belt (PKB) mission was selected for development in 2001 following a competitive selection process. New Horizons is the first mission to the Pluto system and the Kuiper belt, and will complete the reconnaissance of the classical planets. The mission was launched on 19 January 2006 on a Jupiter Gravity Assist (JGA) trajectory toward the Pluto system, for a 14 July 2015 closest approach to Pluto; Jupiter closest approach occurred on 28 February 2007. The ˜400 kg spacecraft carries seven scientific instruments, including panchromatic and color imagers, UV and IR mapping spectrometers, radio science/radiometry, a plasma and particles suite, and a dust counter built by university students. These instruments are: Alice, an extreme to far-ultraviolet (50--180 nm) imaging spectrometer; Ralph, a combination of a) three panchromatic and four color imagers inside MVIC (Multispectral Visible Imaging Camera) and b) a short-wavelength infrared (1.25--2.50 micron) composition mapping spectrometer, called LEISA (Linear Etalon Imaging Spectral Array); REX (Radio science EXperiment), in which signal- processing electronics are integrated into the telecommunications system; LORRI (LOng Range Reconnaissance Imager), a panchromatic long focal length imager; SWAP (Solar Wind at Pluto), which will make energy (up to 6.5 keV) measurements of both the solar wind interaction with Pluto's atmosphere and of low energy pickup ions from Pluto; PEPSSI (Pluto Energetic Particle Spectrometer Science Investigation), which will determine the density, composition and nature of energetic (up to 1 MeV) particles escaping from Pluto's atmosphere; and the Venetia Burney Student Dust Counter (SDC), which has been tracing the dust density distribution across the entire Solar System for particles with masses as small as 1 pg. New Horizons will study the Pluto system over a 12-month period beginning in early 2015. Following that, NH plans to go on to reconnoiter one or

  9. Resource conservation and recovery act ground-water monitoring projects for Hanford facilities: Progress report, January 1--March 31, 1989

    SciTech Connect

    Smith, R.M.; Bates, D.J.; Lundgren, R.E.

    1989-06-01

    This document describes the progress of 13 Hanford Site ground-water monitoring projects for the period January 1 to March 31, 1989. The work described in this document is conducted by the Pacific Northwest Laboratory under the management of Westinghouse Hanford Company for the US Department of Energy. Concentrations of ground-water constituents are compared to federal drinking water standards throughout this document for reference purposes. All drinking water supplied from the sampled aquifer meets regulatory standards for drinking water quality. 32 refs., 30 figs., 103 tabs.

  10. The UV spectrum of Pluto-Charon - IUE observations from 2600 to 3100 A

    NASA Technical Reports Server (NTRS)

    Stern, S. Alan; Skinner, T. E.; Brosch, N.; Van Santvoort, J.; Trafton, L. M.

    1989-01-01

    Observations of the UV spectra of the Pluto-Charon system were obtained between 1987 and 1988 using the large aperture of the IUE long-wavelength prime spectrograph. At the resolution and SNR of the data, no gas-phase spectral identifications were made. The present data indicate a geometric albedo of 0.35 + or - 0.05. Curve fitting the geometric albedo from 2600-3100 A, a blue slope is found which corresponds to a decrease of about 12 percent per 1000 A. An albedo reversal or trough between about 3000 A and the shortest ground-based data (at about 3500 A) is noted which may be due to a spectral absorption feature on the surface.

  11. No effect of diffraction on Pluto-Charon mutual events

    NASA Technical Reports Server (NTRS)

    Tholen, D. J.; Hubbard, W. B.

    1988-01-01

    Mulholland and Gustafson (1987) made the interesting suggestion that observations of Pluto-Charon mutual events might show significant dependence on both wavelength and telescope aperture because of diffraction effects. In this letter, observations are presented that show the predicted effects to be absent and demonstrate that the parameters of the system are such that the events can be accurately analyzed with geometrical optics.

  12. Pluto As Seen by the LEISA Spectrometer on New Horizons

    NASA Astrophysics Data System (ADS)

    Cruikshank, D. P.; Grundy, W. M.; Olkin, C.; Stern, A.; Young, L. A.; Binzel, R. P.; Cook, J. C.; Dalle Ore, C.; Earle, A. M.; Ennico Smith, K.; Jennings, D. E.; Howett, C.; Linscott, I.; Lunsford, A.; Parker, A. H.; Parker, J. W.; Protopapa, S.; Reuter, D.; Singer, K. N.; Spencer, J. R.; Tsang, C.; Weaver, H. A., Jr.

    2015-12-01

    After its 3463-day journey, the New Horizons spacecraft flew by the Pluto-Charon system at ~12,000 km from Pluto's surface on 14 July 2015. Images from the New Horizons spacecraft reveal an icy surface with terrains of widely different ages and a significant degree of localized coloration. Pluto was observed at high spatial resolution (~6 km/px) by the LEISA imaging spectrometer. LEISA is a component of the Ralph instrument (Reuter, D.C., Stern, S.A., Scherrer, J., et al. 2008, Space Sci. Rev. 140, 129) and affords a spectral resolving power of 240 in the wavelength range 1.25-2.5 μm, and 560 in the range 2.1-2.25 μm. Spatially resolved spectra with LEISA are used to map the distributions of the known ices on Pluto (N2, CH4, CO, C2H6) and to search for other surface components. We present results obtained from the analysis of the high spatial resolution dataset obtained close to flyby.

  13. Circumstances for Pluto-Charon mutual events in 1989

    NASA Technical Reports Server (NTRS)

    Tholen, David J.; Buie, Marc W.

    1988-01-01

    Circumstances for 90 Pluto-Charon mutual events occurring during the 1989 opposition are presented. It is found that the deepest and longest events will occur near postopposition quadrature in early August. Two new stars are selected as comparison stars for events occurring before opposition in 1989, and it is noted that the 1988 comparison stars should be used for events occurring after opposition.

  14. Topographic Mapping of Pluto and Charon Using New Horizons Data

    NASA Astrophysics Data System (ADS)

    Schenk, P. M.; Beyer, R. A.; Moore, J. M.; Spencer, J. R.; McKinnon, W. B.; Howard, A. D.; White, O. M.; Umurhan, O. M.; Singer, K.; Stern, S. A.; Weaver, H. A.; Young, L. A.; Ennico Smith, K.; Olkin, C.; Horizons Geology, New; Geophysics Imaging Team

    2016-06-01

    New Horizons 2015 flyby of the Pluto system has resulted in high-resolution topographic maps of Pluto and Charon, the most distant objects so mapped. DEM's over ~30% of each object were produced at 100-300 m vertical and 300-800 m spatial resolutions, in hemispheric maps and high-resolution linear mosaics. Both objects reveal more relief than was observed at Triton. The dominant 800-km wide informally named Sputnik Planum bright ice deposit on Pluto lies in a broad depression 3 km deep, flanked by dispersed mountains 3-5 km high. Impact craters reveal a wide variety of preservation states from pristine to eroded, and long fractures are several km deep with throw of 0-2 km. Topography of this magnitude suggests the icy shell of Pluto is relatively cold and rigid. Charon has global relief of at least 10 km, including ridges of 2-3 km and troughs of 3-5 km of relief. Impact craters are up to 6 km deep. Vulcan Planum consists of rolling plains and forms a topographic moat along its edge, suggesting viscous flow.

  15. The formation of Pluto's low-mass satellites

    SciTech Connect

    Kenyon, Scott J.; Bromley, Benjamin C. E-mail: bromley@physics.utah.edu

    2014-01-01

    Motivated by the New Horizons mission, we consider how Pluto's small satellites—currently Styx, Nix, Kerberos, and Hydra—grow in debris from the giant impact that forms the Pluto-Charon binary. After the impact, Pluto and Charon accrete some of the debris and eject the rest from the binary orbit. During the ejection, high-velocity collisions among debris particles produce a collisional cascade, leading to the ejection of some debris from the system and enabling the remaining debris particles to find stable orbits around the binary. Our numerical simulations of coagulation and migration show that collisional evolution within a ring or a disk of debris leads to a few small satellites orbiting Pluto-Charon. These simulations are the first to demonstrate migration-induced mergers within a particle disk. The final satellite masses correlate with the initial disk mass. More massive disks tend to produce fewer satellites. For the current properties of the satellites, our results strongly favor initial debris masses of 3-10 × 10{sup 19} g and current satellite albedos A ≈ 0.4-1. We also predict an ensemble of smaller satellites, R ≲ 1-3 km, and very small particles, R ≈ 1-100 cm and optical depth τ ≲ 10{sup –10}. These objects should have semimajor axes outside the current orbit of Hydra.

  16. Grazing Occultation reveals Gravity Wave Breaking in Pluto's High Atmosphere

    NASA Astrophysics Data System (ADS)

    Kern, Susan D.; McCarthy, D. W.; Kulesa, C. A.; Hubbard, W. B.; Person, M. J.; Elliot, J. L.; Gulbis, A. A.

    2007-10-01

    Occultation observations of the star P445.3 (2UCAC 25823784; McDonald & Elliot 2000, AJ 120, 1599) by (134340) Pluto on 2007 March 18.453 UT were simultaneously collected in visible and H-band wavelengths from the 6.5-m MMT (Mt. Hopkins) in Arizona. The event was grazing and slow (6.77 km/s), lasting 4 minutes. These conditions facilitated the detection of large-scale, nearly limb-aligned features in Pluto's atmosphere over a pressure range of 0.1-0.7 μbar (0.01-0.07 Pa; radius range of 1500-1350 km). The data are high signal-to-noise and show these features to be fully resolved and achromatic. The scintillation increases with depth in Pluto's atmosphere and indicates a high-frequency cutoff operating on a broad-band spectrum of gravity waves generated deeper in Pluto's atmosphere. The data are in excellent agreement with atmospheric gravity wave theory (Fritts 1984, RGSP 22, 275). Observations reported here were obtained at the MMT Observatory, a joint facility of The University of Arizona and the Smithsonian Institution. The integration and alignment of both cameras was funded by the Astronomy Camp science education program. We also acknowledge support from NASA's Planetary Astronomy Program via grants NNG04GE48G and NNG04GF25G.

  17. Upper limits of possible photochemical hazes on Pluto

    SciTech Connect

    Stansberry, J.A.; Lunine, J.I.; Tomasko, M.G. )

    1989-11-01

    Elliot et al. (1989) invoked a haze layer near the surface of Pluto to explain certain features of a stellar occultation by that planet in June, 1988. The primary requirements for this haze layer were that it achieve unity tangential optical depth at a radius of 1174 km and be essentially transparent above 1189 km. The authors explore here the possibility that aerosols generated through methane photolysis could be responsible for such a haze layer. A comprehensive model of aerosol production, particle growth, sedimentation and condensation is applied to the atmosphere of Pluto using pressures, temperatures and composition derived from the stellar occultation and other data. They test two atmosphere models proposed in the literature, one from Elliot et al. (1989), and one from Hubbard et al. (1989), as well as a range of optical properties for the particles. In order to produce a haze with unity tangential optical depth at 1174 km, they had to use an aerosol mass production rate equal to twice the total methane dissociation rate due to solar UV expected for Pluto and assume that the particles produced were 10 times more absorbing than those in other hazes in the outer solar system. The possibility of condensation in the atmosphere was considered but did not result in distinctly different haze optical depths. If a photochemical haze on Pluto was responsible for the occultation lightcurve measured by Elliot et al., operation of a photochemical system different from those on Titan, Uranus or Neptune is indicated.

  18. Architecture Of A Sciencecraft To Fly Past Pluto

    NASA Technical Reports Server (NTRS)

    Price, Humphrey W.; Staehle, Robert L.; Alkalaj, Leon; Terrile, Richard J.; Miyake, Robert N.

    1995-01-01

    Two reports discuss architecture of proposed small sciencecraft carrying scientific instruments on trajectory passing near Pluto and continuing into interstellar space. Emphasizes those aspects of design pertaining to compactness, efficiency, and small mass (dry mass less than 100 kg). System block diagram of sciencecraft divided into blocks for sensors, integrated microelectronics, and motive effectors.

  19. Ground-based remote sensing of tropospheric water vapour isotopologues within the project MUSICA

    NASA Astrophysics Data System (ADS)

    Schneider, M.; Barthlott, S.; Hase, F.; González, Y.; Yoshimura, K.; García, O. E.; Sepúlveda, E.; Gomez-Pelaez, A.; Gisi, M.; Kohlhepp, R.; Dohe, S.; Blumenstock, T.; Strong, K.; Weaver, D.; Palm, M.; Deutscher, N. M.; Warneke, T.; Notholt, J.; Lejeune, B.; Demoulin, P.; Jones, N.; Griffith, D. W. T.; Smale, D.; Robinson, J.

    2012-08-01

    Within the project MUSICA (MUlti-platform remote Sensing of Isotopologues for investigating the Cycle of Atmospheric water), long-term tropospheric water vapour isotopologues data records are provided for ten globally distributed ground-based mid-infrared remote sensing stations of the NDACC (Network for the Detection of Atmospheric Composition Change). We present a new method allowing for an extensive and straightforward characterisation of the complex nature of such isotopologue remote sensing datasets. We demonstrate that the MUSICA humidity profiles are representative for most of the troposphere with a vertical resolution ranging from about 2 km (in the lower troposphere) to 8 km (in the upper troposphere) and with an estimated precision of better than 10%. We find that the sensitivity with respect to the isotopologue composition is limited to the lower and middle troposphere, whereby we estimate a precision of about 30‰ for the ratio between the two isotopologues HD16O and H216O. The measurement noise, the applied atmospheric temperature profiles, the uncertainty in the spectral baseline, and interferences from humidity are the leading error sources. We introduce an a posteriori correction method of the humidity interference error and we recommend applying it for isotopologue ratio remote sensing datasets in general. In addition, we present mid-infrared CO2 retrievals and use them for demonstrating the MUSICA network-wide data consistency. In order to indicate the potential of long-term isotopologue remote sensing data if provided with a well-documented quality, we present a climatology and compare it to simulations of an isotope incorporated AGCM (Atmospheric General Circulation Model). We identify differences in the multi-year mean and seasonal cycles that significantly exceed the estimated errors, thereby indicating deficits in the modeled atmospheric water cycle.

  20. Ground-based remote sensing of tropospheric water vapour isotopologues within the project MUSICA

    NASA Astrophysics Data System (ADS)

    Schneider, M.; Barthlott, S.; Hase, F.; González, Y.; Yoshimura, K.; García, O. E.; Sepúlveda, E.; Gomez-Pelaez, A.; Gisi, M.; Kohlhepp, R.; Dohe, S.; Blumenstock, T.; Wiegele, A.; Christner, E.; Strong, K.; Weaver, D.; Palm, M.; Deutscher, N. M.; Warneke, T.; Notholt, J.; Lejeune, B.; Demoulin, P.; Jones, N.; Griffith, D. W. T.; Smale, D.; Robinson, J.

    2012-12-01

    Within the project MUSICA (MUlti-platform remote Sensing of Isotopologues for investigating the Cycle of Atmospheric water), long-term tropospheric water vapour isotopologue data records are provided for ten globally distributed ground-based mid-infrared remote sensing stations of the NDACC (Network for the Detection of Atmospheric Composition Change). We present a new method allowing for an extensive and straightforward characterisation of the complex nature of such isotopologue remote sensing datasets. We demonstrate that the MUSICA humidity profiles are representative for most of the troposphere with a vertical resolution ranging from about 2 km (in the lower troposphere) to 8 km (in the upper troposphere) and with an estimated precision of better than 10%. We find that the sensitivity with respect to the isotopologue composition is limited to the lower and middle troposphere, whereby we estimate a precision of about 30‰ for the ratio between the two isotopologues HD16O and H216O. The measurement noise, the applied atmospheric temperature profiles, the uncertainty in the spectral baseline, and the cross-dependence on humidity are the leading error sources. We introduce an a posteriori correction method of the cross-dependence on humidity, and we recommend applying it to isotopologue ratio remote sensing datasets in general. In addition, we present mid-infrared CO2 retrievals and use them for demonstrating the MUSICA network-wide data consistency. In order to indicate the potential of long-term isotopologue remote sensing data if provided with a well-documented quality, we present a climatology and compare it to simulations of an isotope incorporated AGCM (Atmospheric General Circulation Model). We identify differences in the multi-year mean and seasonal cycles that significantly exceed the estimated errors, thereby indicating deficits in the modeled atmospheric water cycle.

  1. Preliminary Model for the Solar Wind Interaction with Pluto's Extended Plasma Tail

    NASA Astrophysics Data System (ADS)

    Sillanpää, I.; Ebert, R.; Elliott, H.; Kallio, E.

    2012-04-01

    We are developing a hybrid model of the Pluto plasma environment (HYB-Pluto) to study the solar wind interaction with Pluto's plasma tail to distances of 1000 Pluto radii (RP) while still resolving the shock and/or wave features upstream of Pluto with good resolution. The HYB-Pluto model features an extended domain and adaptable grid structure along with important processes such as ion-neutral interactions. We present results from our first simulations with the HYB-Pluto model that used realistic values for the solar wind bulk properties and included He++ ions. The results show the formation of a bow shock upstream of Pluto as well as asymmetries of ion density and bow shock in the direction of the convection electric field. This model, along with other current models [1], will provide tools to interpret and understand the plasma observations obtained during expected encounter of the New Horizons spacecraft with the Pluto system in July 2015. [1] P.A. Delamere, Hybrid Code Simulations of the Solar Wind Interaction with Pluto, J. Geophys. Res., 114, A03220, doi:10.1029/2008JA013756, 2009.

  2. ESO Signs Largest-Ever European Industrial Contract For Ground-Based Astronomy Project ALMA

    NASA Astrophysics Data System (ADS)

    2005-12-01

    ESO, the European Organisation for Astronomical Research in the Southern Hemisphere, announced today that it has signed a contract with the consortium led by Alcatel Alenia Space and composed also of European Industrial Engineering (Italy) and MT Aerospace (Germany), to supply 25 antennas for the Atacama Large Millimeter Array (ALMA) project, along with an option for another seven antennas. The contract, worth 147 million euros, covers the design, manufacture, transport and on-site integration of the antennas. It is the largest contract ever signed in ground-based astronomy in Europe. The ALMA antennas present difficult technical challenges, since the antenna surface accuracy must be within 25 microns, the pointing accuracy within 0.6 arc seconds, and the antennas must be able to be moved between various stations on the ALMA site. This is especially remarkable since the antennas will be located outdoor in all weather conditions, without any protection. Moreover, the ALMA antennas can be pointed directly at the Sun. ALMA will have a collecting area of more than 5,600 square meters, allowing for unprecedented measurements of extremely faint objects. The signing ceremony took place on December 6, 2005 at ESO Headquarters in Garching, Germany. "This contract represents a major milestone. It allows us to move forward, together with our American and Japanese colleagues, in this very ambitious and unique project," said ESO's Director General, Dr. Catherine Cesarsky. "By building ALMA, we are giving European astronomers access to the world's leading submillimetre facility at the beginning of the next decade, thereby fulfilling Europe's desire to play a major role in this field of fundamental research." Pascale Sourisse, Chairman and CEO of Alcatel Alenia Space, said: "We would like to thank ESO for trusting us to take on this new challenge. We are bringing to the table not only our recognized expertise in antenna development, but also our long-standing experience in

  3. Advanced Exploration Systems (AES) Logistics Reduction and Repurposing Project: Advanced Clothing Ground Study Final Report

    NASA Technical Reports Server (NTRS)

    Byrne, Vicky; Orndoff, Evelyne; Poritz, Darwin; Schlesinger, Thilini

    2013-01-01

    All human space missions require significant logistical mass and volume that will become an excessive burden for long duration missions beyond low Earth orbit. The goal of the Advanced Exploration Systems (AES) Logistics Reduction & Repurposing (LRR) project is to bring new ideas and technologies that will enable human presence in farther regions of space. The LRR project has five tasks: 1) Advanced Clothing System (ACS) to reduce clothing mass and volume, 2) Logistics to Living (L2L) to repurpose existing cargo, 3) Heat Melt Compactor (HMC) to reprocess materials in space, 4) Trash to Gas (TTG) to extract useful gases from trash, and 5) Systems Engineering and Integration (SE&I) to integrate these logistical components. The current International Space Station (ISS) crew wardrobe has already evolved not only to reduce some of the logistical burden but also to address crew preference. The ACS task is to find ways to further reduce this logistical burden while examining human response to different types of clothes. The ACS task has been broken into a series of studies on length of wear of various garments: 1) three small studies conducted through other NASA projects (MMSEV, DSH, HI-SEAS) focusing on length of wear of garments treated with an antimicrobial finish; 2) a ground study, which is the subject of this report, addressing both length of wear and subject perception of various types of garments worn during aerobic exercise; and 3) an ISS study replicating the ground study, and including every day clothing to collect information on perception in reduced gravity in which humans experience physiological changes. The goal of the ground study is first to measure how long people can wear the same exercise garment, depending on the type of fabric and the presence of antimicrobial treatment, and second to learn why. Human factors considerations included in the study consist of the Institutional Review Board approval, test protocol and participants' training, and a web

  4. Spectroscopy of Pluto, 380-930 Nm at Six Longitudes

    NASA Technical Reports Server (NTRS)

    Cruikshank, D. P.; Pinilla-Alonso, N.; Lorenzi, V.; Grundy, William; Licandro, J.; Binzel, R. P.

    2014-01-01

    We have obtained spectra of the Pluto-Charon pair (unresolved) in the wavelength range 380-930 nm with resolution approx..450 at six roughly equally spaced longitudes. The data were taken in May and June, 2014, with the 4.2-m Isaac Newton Telescope at Roque de Los Muchachos Observatory in the Canary Islands, using the ACAM (auxiliary-port camera) in spectrometer mode, and using two solar analog stars. The new spectra clearly show absorption bands of solid CH4 at 620, 728, and 850-910 nm, which were known from earlier work. The 620-nm CH4 band is intrinsically very weak, and its appearance indicates a long optical path-length through the ice. This is especially true if it arises from CH4 dissolved in N2 ice. Earlier work (Owen et al. Science 261, 745, 1993) on the near-infrared spectrum of Pluto (1-2.5 microns) has shown that the CH4 bands are shifted to shorter wavelengths because the CH4 occurs as a solute in beta-phase crystalline N2. The optical path-length through the N2 crystals must be on the order of several cm to produce the N2 band observed at 2.15 microns. The new spectra exhibit a pronounced red slope across the entire wavelength range; the slope is variable with longitude, and differs in a small but significant way from that measured at comparable longitudes by Grundy & Fink (Icarus 124, 329, 1996) in their 15-year study of Pluto's spectrum (500-1000 nm). The new spectra will provide an independent means for calibrating the color filter bands on the Multispectral Visible Imaging Camera (MVIC) (Reuter et al. Space Sci. Rev. 140, 129, 2008) on the New Horizons spacecraft, which will encounter the Pluto-Charon system in mid-2015. They will also form the basis of modeling the spectrum of Pluto at different longitudes to help establish the nature of the non-ice component(s) of Pluto's surface. It is presumed that the non-ice component is the source of the yellow-red coloration of Pluto, which is known to be variable across the surface.

  5. Crater Morphologies on Pluto and Charon: Anticipating New Horizons

    NASA Astrophysics Data System (ADS)

    Schenk, P.; Bray, V. J.; McKinnon, W. B.; White, O. L.; Moore, J. M.

    2014-12-01

    Impact craters are among the few geologic features we have some confidence will be present in the Pluto/Charon system. Crater morphologies are important as tracers of thermal history (through the mechanism of viscous relaxation), and can be used to probe through icy crusts (in terms of excavating deeper layers as on Ganymede or penetrating through floating ice shells as on Europa). New Horizons will have the opportunity to examine crater morphologies on Pluto to resolutions <100 meters and on Charon to ~250 meters over significant areas. Stereo-derived topography maps are anticipated over 20-35% of each body. The first task will be to place the observed craters (assuming they are not deeply eroded) into Solar System context. Crater morphology on icy satellites is controlled primarily by surface gravity. Charon has similar surface gravity to the icy Saturnian satellites and we expect craters on Charon to resemble those seen by Cassini, where the dominant landform will be prominent central peaks. Pluto surface gravity is midway between Ganymede and Rhea. Triton, with similar surface gravity and internal composition to Pluto, is of no help due to the paucity of resolved craters there. This opens the possibility of observing landforms seen on Ganymede, such as central dome craters, palimpsests and perhaps even a multiring basin or two, albeit at larger diameters than we would see on Ganymede. Several issues complicate our rosy picture. A key unresolved concern is that impact velocities in the Pluto system are only a few km/s, in the low end of the hypervelocity range. Numerical models imply possible differences during excavation, producing deeper simple craters than on the icy satellites. Impacts occurring at velocities well below the mean (<< 2km/s) might produce shallower craters, complicating the issue further. Whether such differences are real and are significant enough to be detected in our anticipated topographic data sets is unclear. Any viscous relaxation

  6. Pluto: improved astrometry from 19 years of observations

    NASA Astrophysics Data System (ADS)

    Benedetti-Rossi, G.; Vieira Martins, R.; Camargo, J. I. B.; Assafin, M.; Braga-Ribas, F.

    2014-10-01

    Context. We present astrometric positions of Pluto, consistent with the International Celestial Reference System, from 4412 CCD frames observed over 120 nights with three telescopes at the Observatório do Pico dos Dias in Brazil, covering a time span from 1995 to 2013, and also 145 frames observed over 11 nights in 2007 and 2009 with the ESO/MPG 2.2m telescope equipped with the Wide Field Imager (WFI). Aims: Our aim is to contribute to the study and improvement of the orbit of Pluto with new astrometric methods and positions. Methods: All astrometric positions of Pluto were reduced with the Platform for Reduction of Astronomical Images Automatically (PRAIA), using the USNO CCD Astrograph Catalogue 4 (UCAC4) as the reference catalog. We also used the planetary ephemeris DE421+plu021 for comparisons. The positions were corrected for differential chromatic refraction. The (x, y) center of Pluto was determined from corrections to the measured photocenter, which was contaminated by Charon. The corrections were obtained with an original procedure based on analytical expressions derived from a two-dimensional Gaussian function i.e. the point spread function PSF fitted to the images to derive the (x, y) measurements. Results: We obtained mean values of 4 mas and 37 mas for right ascension and declination, and standard deviations of σα = 45 mas and σδ = 49 mas, for the offsets in the sense observed minus ephemeris position, after the corrections. We confirm the presence of a linear drift in the ephemeris declinations from 2005 on, also obtained from stellar occultations. Conclusions: We present astrometric positions of Pluto for 19 years of observations in Brazil. The positions, corrected for differential chromatic refraction and Pluto/Charon photocenter effects, presented the same behavior as obtained from stellar occultations, with a drift in declinations of about 100 mas since 2005. The results indicate that the DE421 Pluto ephemeris used in this work need to be

  7. Advanced Monitoring Initiative Project: US-Mexico Border Ground-level Ozone

    EPA Science Inventory

    Ground-Level Ozone Concentrations Based on Satellite Observations and Ground Surface Monitoring Data in Support of Environmental Health Decisions U.S. - Mexico Border 2012 Program - The U.S.-Mexico border is a dynamic region extending more than 3,100 kilometers from the Gulf of M...

  8. Pluto Photochemical Models for the New Horizons Flyby

    NASA Astrophysics Data System (ADS)

    Gladstone, R.; Wong, M. L.; Yung, Y. L.

    2014-12-01

    During the New Horizons flyby of the Pluto system on July 14, 2015 a number of observations will be made to determine the structure, composition, and variability of Pluto's atmosphere. A key observation of this type is the Alice solar occultation, which will measure the full disk ultraviolet (52-187 nm) spectral flux from the Sun through ingress and egress behind Pluto, about one hour after closest approach. This observation will be used to determine the temperature and vertical density profiles of N2, CH4, and various minor species above two regions of very different surface albedo. Nearly simultaneous Earth ingress and egress occultations observed in X-band uplink will provide profiles of temperature and pressure in Pluto's lower atmosphere, and electron densities in the ionosphere. Wave structures in both the solar and radio occultation data will provide constraints on atmospheric dynamics. In order to interpret and understand these data sets, we have modified a 1-D Titan photochemical model to Pluto, for the epoch of the New Horizons flyby. The model uses a similar, but updated reaction list to that of Krasnopolsky and Cruikshank [1999] and Wong et al. [2014], and adopts the results of Zhu et al. [2014] for the background atmosphere. We present here initial results for several assumed eddy diffusion profiles. Krasnopolsky, V. A., and D. P. Cruikshank, J. Geophys. Res., 104, 21,979, 1999. Wong, M. L., Y. L. Yung, and G. R. Gladstone, Icarus, in press, 2014. Zhu, X., D F. Strobel, and J. T. Erwin, Icarus, 228, 301, 2014.

  9. (abstract) Follow-on Missions for the Pluto Spacecraft

    NASA Technical Reports Server (NTRS)

    Weinstein, Stacy; Salvo, Chris; Stern, Alan

    1994-01-01

    The Pluto Fast Flyby mission development baseline consists of 2 identical spacecraft (120 - 165 kg) to be launched to Pluto/Charon in the late 1990s. These spacecraft are intended to fly by Pluto and Charon in order to perform various remote-sensing scientific investigations and have a mission development cost less than $400M (FY92$) through launch plus 30 days. The long-life (6 - 10 years) mission duration and lightweight design make the Pluto spacecraft a good candidate for a number of other flyby missions to objects in the outer Solar System, and some of these were investigated by JPL in cooperation with NASA Code SL's (Solar System Exploration) Outer Planets Science Working Group (OPSWG) in 1993. The JPL team looked at what it would mean to fly one of these missions (if a third spacecraft were available) in terms of flight time, spacecraft modifications, and science payload resources; the OPSWG recommended science investigation modifications for the different targets based on the available resources. The missions could, in many cases, utilize less capable launch vehicles, thereby reducing life-cycle cost of the mission. Examples of the sort of targets which were investigated and looked attractive in terms of flight time are: Uranus, Neptune, Uranus/Neptune dual-mission, Trojan asteroids (624 Hektor, 617 Patroclus, others), 5145 Pholus (the reddest object known in the solar system), and Kuiper Belt objects (i.e., 1992 QB1) . This paper will present the results of this investigation in terms of potential science return, performance, and the potential for life-cycle cost reductions through inheritance from Pluto Fast Flyby .

  10. Final programmatic environmental impact statement for the uranium mill tailings remedial action ground water project. Volume I

    SciTech Connect

    1996-10-01

    This programmatic environmental impact statement (PElS) was prepared for the Uranium Mill Tailings Remedial Action (UMTRA) Ground Water Project to comply with the National Environmental Policy Act (NEPA). This PElS provides an analysis of the potential impacts of the alternatives and ground water compliance strategies as well as potential cumulative impacts. On November 8, 1978, Congress enacted the Uranium Mill Tailings Radiation Control Act (UMTRCA) of 1978, Public Law, codified at 42 USC §7901 et seq. Congress found that uranium mill tailings " ... may pose a potential and significant radiation health hazard to the public, and that every reasonable effort should be made to provide for stabilization, disposal, and control in a safe, and environmentally sound manner of such tailings in order to prevent or minimize other environmental hazards from such tailings." Congress authorized the Secretary of Energy to designate inactive uranium processing sites for remedial action by the U.S. Department of Energy (DOE). Congress also directed the U.S. Environmental Protection Agency (EPA) to set the standards to be followed by the DOE for this process of stabilization, disposal, and control. On January 5, 1983, EPA published standards (40 CFR Part 192) for the disposal and cleanup of residual radioactive materials. On September 3, 1985, the U.S. Court of Appeals for the Tenth Circuit set aside and remanded to EPA the ground water provisions of the standards. The EPA proposed new standards to replace remanded sections and changed other sections of 40 CFR Part 192. These proposed standards were published in the Federal Register on September 24, 1987 (52 FR 36000). Section 108 of the UMTRCA requires that DOE comply with EPA's proposed standards in the absence of final standards. The Ground Water Project was planned under the proposed standards. On January 11, 1995, EPA published the final rule, with which the DOE must now comply. The PElS and the Ground Water Project are in

  11. Summary of ground motion prediction results for Nevada Test Site underground nuclear explosions related to the Yucca Mountain project

    SciTech Connect

    Walck, M.C.

    1996-10-01

    This report summarizes available data on ground motions from underground nuclear explosions recorded on and near the Nevada Test Site, with emphasis on the ground motions recorded at stations on Yucca Mountain, the site of a potential high-level radioactive waste repository. Sandia National Laboratories, through the Weapons Test Seismic Investigations project, collected and analyzed ground motion data from NTS explosions over a 14-year period, from 1977 through 1990. By combining these data with available data from earlier, larger explosions, prediction equations for several ground motion parameters have been developed for the Test Site area for underground nuclear explosion sources. Also presented are available analyses of the relationship between surface and downhole motions and spectra and relevant crustal velocity structure information for Yucca Mountain derived from the explosion data. The data and associated analyses demonstrate that ground motions at Yucca Mountain from nuclear tests have been at levels lower than would be expected from moderate to large earthquakes in the region; thus nuclear explosions, while located relatively close, would not control seismic design criteria for the potential repository.

  12. Pluto and Charon Seen with the New Horizons Spacecraft

    NASA Technical Reports Server (NTRS)

    Cruikshank, D. P.; Stern, S. A.; Weaver, H. A.; Young, L. A.; Ennico, K.; Olkin, C. B.

    2016-01-01

    After nearly a decade en route, New Horizons flew through the Pluto system in July 2015. The encounter hemisphere of Pluto shows ongoing surface geological activity centered on a vast basin (Sputnik Planum [SP]*) containing a thick layer of volatile ices with a crater retention age no greater than approximately 10 Ma. Surrounding terrains show active glacial flow, apparent transport and rotation of large buoyant water-ice crustal blocks, and pitting, likely by sublimation erosion and/or collapse. Also seen are constructional mounds with central depressions, and ridges with complex bladed textures. Pluto has ancient cratered terrains up to approximately 4 Ga old that are fractured and mantled, and perhaps eroded by glacial processes. Charon does not appear to be currently active, but experienced major tectonism and resurfacing nearly 4 Ga ago. Imaging spectrometer observations of Pluto reveal the encounter hemisphere to be dominated by volatile ices of N2, CO, and CH4, along with non-volatile components that include H2O and tholins. The most volatile of Pluto's ices (N2 and CO) are especially prevalent in the western half of Tombaugh Regio (TR), and the strikingly flat Sputnik Planum basin, which lies a few km below surrounding elevations. The high mobility of N2 and CO ices enables SP's surface to refresh itself sufficiently rapidly that no impact craters are seen there. This likely occurs through a combination of solid state convective overturning and sublimation/ condensation that produces regular patterns of pits and ridges on scales of 102 to 103 m. In many areas, CH4 appears to favor topographically high regions. Its propensity to condense on ridges could play a role in forming the bladed terrain seen in Tartarus Dorsa. H2O can be discerned across much of Cthulhu Regio, and also in a few isolated spots. In many regions, H2O ice is associated with reddish tholin coloration. Pluto's atmosphere was probed with the radio science experiment (REX) and the Alice UV

  13. 12 years of Pluto surface's evolution investigated with radiative transfer modeling

    NASA Astrophysics Data System (ADS)

    Philippe, Sylvain; Schmitt, Bernard; Grundy, William; Protopapa, Silvia; Olkin, Cathy

    2015-11-01

    The evolution of Pluto’s surface through time, due to surface - atmosphere interactions, remains unknown. New Horizons will provide very high spatial resolution data of its surface state but only as a snapshot. Furthermore, this evolution during the last decades is supposed to be fast due to the recent passage of Pluto through its perihelion (1989). Ground based survey data over a long period of time are thus crucial to understand the long-term evolution of the dwarf planet surface.IRTF/SpeX reflectance spectra of Pluto have been acquired during 13 years (2001-2013) between 0.8-2.4 μm (Grundy et al., 2013; Grundy et al., 2014). This set of data present the opportunity to monitor possible changes of the surface in terms of geographical distribution and segregation between different chemical species that are known to be present at the surface in an icy state (N2, CH4 and CO, Owen et al., 1993, Douté et al., 1999). These variations are recorded through changes in the infrared absorption bands of the different ices. A study based on band criteria variation (Grundy et al., 2013) showed that CH4 absorption bands are increasing through time, whereas N2 and CO absorptions bands are decreasing (Grundy et al. 2014). However, quantitative interpretation of these data needs further investigation and detailed radiative transfer modeling.We used the bidirectional reflectance model of Douté & Schmitt (1998) to fit the IRTF/SpeX spectral data. This model takes into account a possible stratification of chemical species, a phenomenon that is likely to occur on Pluto where CH4 is supposed to accumulate on a sublimating molecular mixture of N2-CH4-CO (Douté et al., 1999). Different modelings take into account pure CH4 ice, a molecular mixture of N2-CH4-CO, tholins and water ice. We modeled the grand average spectra and then allowed the parameters to vary around the average values to model individual spectra and get quantitative variations of the different species

  14. New Horizons: Bridge to the Beginning - to Pluto and Beyond

    NASA Astrophysics Data System (ADS)

    Weir, H. M.; Hallau, K. G.; Seaton, P.; Beisser, K.; New Horizons Education; Public Outreach Team

    2010-12-01

    Launched on Jan. 19, 2006, NASA’s New Horizons mission to Pluto and the Kuiper Belt will help us understand worlds at the edge of our solar system by making the first reconnaissance of Pluto and Charon - a "double planet" and the last planet in our solar system to be visited by spacecraft. However, New Horizons’ closest approach to Pluto will not occur until July 14, 2015, and the majority of the craft's time over the next 5 years will be spent in "hibernation." The Education and Public Outreach (EPO) team, however, will not be hibernating as we wait for New Horizons to reach its destination. With three distinct tools-- Educator Fellows, online learning modules and a planetarium program--the team seeks to excite and engage teachers, students and the public with information about the journey to Pluto and beyond. In the past year, the specially selected educators who participate as New Horizons Educator Fellows have trained more than 1,000 teachers across the U.S. on the New Horizons mission and the science behind it. Thousands more students, parents, educators, and citizens have learned about New Horizons from the mission's scientists, engineers and outreach professionals. New Horizons Fellows also distribute another EPO tool: online learning modules. These classroom-ready learning modules consist of educator guides, student handouts, detailed activities, and potential adaptations for students with special needs or disabilities. Some also offer online interactives to convey complex and dynamic concepts. The modules are web-accessible for both students and teachers, and are aligned with relevant national standards. The third tool is a highly visual way to engage the general public and supplement educational programs: a planetarium program that highlights the New Horizons mission from launch to destination Pluto. This program focuses on the engineering design of the spacecraft, with a focus on the concept of the electromagnetic spectrum. In the unique environment

  15. Voyager IRIS Measurements of Triton's Thermal Emission: Impllications for Pluto?

    NASA Astrophysics Data System (ADS)

    Stansberry, John A.; Spencer, John; Linscott, Ivan

    2015-11-01

    The New Horizons Pluto encounter data set includes unique observations obtained using the Radio Science experiment to measure the night-side thermal emission at centimeter wavelengths, well beyond the emission peak (in the 70 to 100 micron range). 26 years ago the Voyager 2 Infrared Interferometer Spectrometer (IRIS) obtained spectra in the 30 - 50 micron wavelength range to try and detect thermal emission from Pluto's sibling, Triton. Conrath etal. (1989) analyzed 16 of the IRIS spectra of Triton's dayside and derived a weak limit of 36 K - 41 K. We have analysed those, and an additional 75 spectra, to refine the limits on the temperature of Triton's surface, and to explore diurnal differences in the thermal emission. Triton results from other Voyager instruments provide important constraints on our interpretation of the IRIS data, as do Spitzer measurements of Pluto's thermal emission.For unit-emissivity, average temperature is 34 K, inconsistent with the pressure of Triton's atmosphere (13 - 19 microbar), the presence of beta-phase nitrogen ice on the surface, and the likely presence ofwarm regions on the surface. The atmospheric pressure requires nitrogen ice temperatures of 37.4 K - 38.1 K, which in turn requires emissivity of 0.31--0.53. Such a low emissivity in this spectral region might be expected if the surface is dominated by nitrogen or methane ice. Averages of data subsets show evidence for brightness temperature variations across Triton's surface. Surprisingly, the data seem to indicate that Triton's nightside equatorial region was warmer than on the dayside.These Voyager results for Triton provide a useful context for interpreting New Horizons and ALMA observations of emission from Pluto in the sub-millimeter and centimeter region. JWST will be capable of detecting Triton's and Pluto's 10 - 28 micron thermal emission, although scattered light from Neptune may be an issue for the Triton. Combined with new capabilities of ALMA to measure the sub

  16. The orbits and masses of satellites of Pluto

    NASA Astrophysics Data System (ADS)

    Brozović, Marina; Showalter, Mark R.; Jacobson, Robert A.; Buie, Marc W.

    2015-01-01

    We present the numerically integrated orbits of Pluto's satellites. The orbits have been fit to a data set that includes Earth-based and Hubble Space Telescope (HST) astrometry of Charon, Nix, Hydra, Kerberos, and Styx, as well as the lightcurves from the Pluto-Charon mutual events. We also report new, 2010-2012 HST astrometry of all satellites including recently discovered Styx plus a pre-discovery detection of Kerberos in 2006. Pluto-relative data sets have been corrected for the center-of-light vs. center-of-mass offsets with the Pluto albedo model. The results are summarized in terms of the postfit residuals, state vectors, and mean orbital elements. Orbits of Charon, Styx, Nix, and Kerberos are nearly circular, while Hydra's shows a small eccentricity. All satellites are in near-resonance conditions, but we did not uncover any resonant arguments. Our model yields 975.5 ± 1.5 km3 s-2, 869.6 ± 1.8 km3 s-2, and 105.9 ± 1.0 km3 s-2 for the system's, Pluto's, and Charon's GM values. The uncertainties reflect both systematic and random measurement errors. The GM values imply a bulk density of 1.89 ± 0.06 g cm-3 for Pluto and 1.72 ± 0.02 g cm-3 for Charon. We also obtain GMNix = 0.0030 ± 0.0027 km3 s-2 GMHydra = 0.0032 ± 0.0028 km3 s-2, GMKerberos = 0.0011 ± 0.0006 km3 s-2, and an upper bound on Styx's GM of 0.0010 km3 s-2. The 1σ errors are based on the formal covariance from the fit and they reflect only measurement errors. In-orbit (or along the track), radial, and out-of-plane orbital uncertainties at the time of New Horizons encounter are on the order of few tens of km or less for Charon, Nix, and Hydra. Kerberos and Styx have their largest uncertainty component of ∼140 km and ∼500 km respectively in the in-orbit direction.

  17. Overview of Key Results from the Exploration of the Pluto System by New Horizons

    NASA Astrophysics Data System (ADS)

    Stern, S. A.; Weaver, H. A., Jr.; Young, L. A.; Olkin, C.; Ennico Smith, K.; Moore, J. M.; Spencer, J. R.; McKinnon, W. B.; Grundy, W. M.; Cruikshank, D. P.; Bagenal, F.; Gladstone, R.; Summers, M. E.

    2015-12-01

    Pluto and its satellites were explored by NASA's New Horizons spacecraft in 2015, with closest approach to Pluto on 14 July 2015. Pluto's surface is found to be remarkably diverse in terms of its range of landforms, terrain ages, and albedo, color, and composition gradients. Strong evidence was found for geologically young surface units, a water-ice crust, ice convection, and glacial flow. Pluto's wide range of surface expressions and long term activity raise fundamental questions about how small planets can have active processes billions of years after their formation. Pluto's atmosphere was found to be more extended than anticipated, to have an extensive global haze layer, several new trace species, and a low surface pressure of ~10 microbars. Pluto's large satellite Charon's surface geology is also diverse, displaying tectonics and evidence for a heterogeneous crustal composition; Charon's north pole displays puzzling dark terrain; no evidence for a Charon atmosphere has been found. Sizes and reflectivities for all four of Pluto's small satellites will be reported. Despite much improved diameter limits, no new satellites of Pluto were detected by New Horizons. In this review talk I will summarize these and other findings about the Pluto system.

  18. A giant impact origin for Pluto's small moons and satellite multiplicity in the Kuiper belt.

    PubMed

    Stern, S A; Weaver, H A; Steffl, A J; Mutchler, M J; Merline, W J; Buie, M W; Young, E F; Young, L A; Spencer, J R

    2006-02-23

    The two newly discovered satellites of Pluto (P1 and P2) have masses that are small compared to both Pluto and Charon-that is, between 5 x 10(-4) and 1 x 10(-5) of Pluto's mass, and between 5 x 10(-3) and 1 x 10(-4) of Charon's mass. This discovery, combined with the constraints on the absence of more distant satellites of Pluto, reveal that Pluto and its moons comprise an unusual, highly compact, quadruple system. These facts naturally raise the question of how this puzzling satellite system came to be. Here we show that P1 and P2's proximity to Pluto and Charon, the fact that P1 and P2 are on near-circular orbits in the same plane as Pluto's large satellite Charon, along with their apparent locations in or near high-order mean-motion resonances, all probably result from their being constructed from collisional ejecta that originated from the Pluto-Charon formation event. We also argue that dust-ice rings of variable optical depths form sporadically in the Pluto system, and that rich satellite systems may be found--perhaps frequently--around other large Kuiper belt objects. PMID:16495992

  19. Cosmogonic constraints from densities in the Pluto system and rotational and tidal figures of equilibrium for Pluto and Charon

    NASA Astrophysics Data System (ADS)

    McKinnon, W.; Buie, M.; Moore, J.; Linscott, I.; Hinson, D.; Tyler, G.; Singer, K.; Stern, S.; New Horizons Team

    2014-07-01

    A byproduct of the discovery of Nix, Hydra, Styx, and Kerberos, and the detailed study of their orbits, has been a relatively precise determination of the system barycenter, and thus the Pluto/Charon mass ratio [1]. Coupled with precise determinations of Charon's size by multiple stellar occultations [2,3], Charon's mean density is now relatively well-determined (1.72 ± 0.02 g cm^{-3}), both in an absolute sense and with respect to that of Pluto (1.89 ± 0.06 g cm^{-3}) [1]. The latter's precise size remains uncertain due to the effects of its atmosphere on stellar occultations [e.g., 4] and of limb darkening on mutual events [5]. Both Pluto and Charon are relatively rock-rich, but Charon is somewhat icier, which is consistent with impact origin scenarios in which one or both precursor bodies were at least partially differentiated (rock separated from ice under the action of gravity) [6,7]. Ice-rich ejecta is also the preferred route for forming a particle disk outside of Charon's initial post-giant-impact orbit, such as would lead to accretion of the small satellites [8]. In this regard, the upper limits on the densities of the brightest and presumably largest of the small satellites (Nix and Hydra) are - even at the 3σ level -- consistent with very icy and porous bodies. Icy rubble-pile bodies are predicted by the initial conditions of the giant impact as presently understood (conditions necessary to give an icier Charon). The small satellites will thus offer an interesting cosmogonical test during the 14 July 2015 New Horizons encounter, as good constraints will be placed on satellite volumes from imaging and improved satellite masses should result from optical navigation and orbital simulations. The fly-through of the Pluto-Charon system by New Horizons also offers the first opportunity to determine both the total system mass and the individual masses of Pluto and Charon by direct Doppler tracking (although the spacecraft will not pass close enough to any of

  20. A scientific operations plan for the NASA space telescope. [ground support systems, project planning

    NASA Technical Reports Server (NTRS)

    West, D. K.; Costa, S. R.

    1975-01-01

    A ground system is described which is compatible with the operational requirements of the space telescope. The goal of the ground system is to minimize the cost of post launch operations without seriously compromising the quality and total throughput of space telescope science, or jeopardizing the safety of the space telescope in orbit. The resulting system is able to accomplish this goal through optimum use of existing and planned resources and institutional facilities. Cost is also reduced and efficiency in operation increased by drawing on existing experience in interfacing guest astronomers with spacecraft as well as mission control experience obtained in the operation of present astronomical spacecraft.

  1. Local - Air Project: Tropospheric Aerosol Monitoring by CALIPSO Lidar Satellite and Ground-Based Observations

    NASA Astrophysics Data System (ADS)

    Sarli, V.; Trippetta, S.; Bitonto, P.; Papagiannopoulos, N.; Caggiano, R.; Donvito, A.; Mona, L.

    2016-06-01

    A new method for the detection of the Planetary Boundary Layer (PBL) height from CALIPSO space-borne lidar data was developed and the possibility to infer the sub-micrometric aerosol particle (i.e., PM1) concentrations at ground level from CALIPSO observations was also explored. The comparison with ground-based lidar measurements from an EARLINET (European Aerosol Research LIdar Network) station showed the reliability of the developed method for the PBL. Moreover, empirical relationships between integrated backscatter values from CALIPSO and PM1 concentrations were found thanks to the combined use of the retrieved PBL heights, CALIPSO aerosol profiles and typing and PM1 insitu measurements.

  2. Probing Pluto's Underworld : Predicted Ice Temperatures from Microwave Radiometry Decoupled from Surface Conditions

    NASA Astrophysics Data System (ADS)

    Le Gall, Alice; Lorenz, Ralph; Leyrat, Cedric

    2015-11-01

    The Pluto dwarf planet has been successfully observed in July 2015 by the New Horizons spacecraft (NASA) during a close-targeted flyby which reavealed surprising and fascinating landscapes. While data are still being downlinked on the ground, we propose to present a prediction of the observation of the Radio Science Experiment experiment (REX) that occured on July 14, 2015 and aimed at measuring the microwave brightness temperature of Pluto’s night side.Present models admit a wide range of 2015 surface conditions at Pluto and Charon, where the atmospheric pressure may undergo dramatic seasonal variation and for which measurements have been performed by the New Horizons mission. One anticipated observation is the microwave brightness temperature, heretofore anticipated as indicating surface conditions relevant to surface-atmosphere equilibrium. However, drawing on recent experience with Cassini observations at Iapetus and Titan, we call attention to the large electrical skin depth of outer solar system materials such as methane, nitrogen or water ice, such that this observation may indicate temperatures averaged over depths of several or tens of meters beneath the surface.Using a seasonally-forced thermal model to determine microwave emission we predict that the southern hemisphere observations (in the polar night in July 2015) of New Horizons should display relatively warm effective temperatures of about 40 K. This would reflect the deep heat buried over the last century of summer, even if the atmospheric pressure suggests that the surface nitrogen frost point may be much lower. We will present our predictions and discuss their impact for the interpretation of the REX measurements.

  3. Geomorphological Mapping of Sputnik Planum and Surrounding Terrain on Pluto

    NASA Astrophysics Data System (ADS)

    White, Oliver; Stern, Alan; Weaver, Hal; Olkin, Cathy; Ennico, Kimberly; Young, Leslie; Moore, Jeff

    2015-11-01

    The New Horizons flyby of Pluto in July 2015 has provided the first few close-up images of the Kuiper belt object, which reveal it to have a highly diverse range of terrains, implying a complex geological history. The highest resolution images that have yet been returned are seven lossy 400 m/pixel frames that cover the majority of the prominent Plutonian feature informally named Sputnik Planum (all feature names are currently informal), and its surroundings. This resolution is sufficient to allow detailed geomorphological mapping of this area to commence. Lossless versions of all 15 frames that make up the mosaic will be returned in September 2015, and the map presented at DPS will incorporate the total area covered by these frames.Sputnik Planum, with an area of ~650,000 km2, is notable for its smooth appearance and apparent total lack of impact craters at 400 m/pixel resolution. The Planum actually displays a wide variety of textures across its expanse, which includes smooth and pitted plains to the south, polygonal terrain at its center (the polygons can reach tens of kilometers in size and are bounded by troughs that sometimes feature central ridges), and, to the north, darker polygonal terrain displaying patterns indicative of glacial flow. Within these plains there exist several well-defined outcrops of a mottled, light/dark unit that reach from several to tens of kilometers across. Separating Sputnik Planum from the dark, cratered equatorial terrain of Cthulhu Regio on its south-western margin is a unit of chaotically arranged mountains (Hillary Montes); similar mountainous units exist on the south and western margins. The northern margin is bounded by rugged, hilly, cratered terrain (Cousteau Rupes) into which ice of Sputnik Planum appears to be intruding in places. Terrain of similar relief exists to the east, but is much brighter than that to the north. The southernmost extent of the mosaic features a unit of rough, undulating terrain (Pandemonium Dorsa

  4. Shapes and Rotations of the Small Satellites of Pluto

    NASA Astrophysics Data System (ADS)

    Porter, S.; Showalter, M.; Spencer, J. R.; Weaver, H. A., Jr.; Binzel, R. P.; Hamilton, D. P.; Stern, S. A.; Olkin, C.; Young, L. A.; Ennico Smith, K.

    2015-12-01

    Pluto-Charon is a binary dwarf planet surrounded by four much smaller satellites: Styx, Nix, Kerberos, and Hydra (in order of increasing distance from the barycenter). These satellites were discovered with the Hubble Space Telescope, which also showed that their orbits are nearly circular around the system barycenter and coplanar to the central binary. NASA's New Horizons spacecraft flew through the Pluto system on July 14, 2015, and obtained the first resolved images of all four small satellites. We will present initial models for the shapes and sizes of the small satellites determined from both those resolved images and earlier unresolved high-cadence images. We will also explore the implications of these shapes on the formation and rotational evolution of the satellites.

  5. Resonant interactions and chaotic rotation of Pluto's small moons.

    PubMed

    Showalter, M R; Hamilton, D P

    2015-06-01

    Four small moons--Styx, Nix, Kerberos and Hydra--follow near-circular, near-equatorial orbits around the central 'binary planet' comprising Pluto and its large moon, Charon. New observational details of the system have emerged following the discoveries of Kerberos and Styx. Here we report that Styx, Nix and Hydra are tied together by a three-body resonance, which is reminiscent of the Laplace resonance linking Jupiter's moons Io, Europa and Ganymede. Perturbations by the other bodies, however, inject chaos into this otherwise stable configuration. Nix and Hydra have bright surfaces similar to that of Charon. Kerberos may be much darker, raising questions about how a heterogeneous satellite system might have formed. Nix and Hydra rotate chaotically, driven by the large torques of the Pluto-Charon binary. PMID:26040889

  6. The small satellites of Pluto as observed by New Horizons

    NASA Astrophysics Data System (ADS)

    Weaver, H. A.; Buie, M. W.; Buratti, B. J.; Grundy, W. M.; Lauer, T. R.; Olkin, C. B.; Parker, A. H.; Porter, S. B.; Showalter, M. R.; Spencer, J. R.; Stern, S. A.; Verbiscer, A. J.; McKinnon, W. B.; Moore, J. M.; Robbins, S. J.; Schenk, P.; Singer, K. N.; Barnouin, O. S.; Cheng, A. F.; Ernst, C. M.; Lisse, C. M.; Jennings, D. E.; Lunsford, A. W.; Reuter, D. C.; Hamilton, D. P.; Kaufmann, D. E.; Ennico, K.; Young, L. A.; Beyer, R. A.; Binzel, R. P.; Bray, V. J.; Chaikin, A. L.; Cook, J. C.; Cruikshank, D. P.; Dalle Ore, C. M.; Earle, A. M.; Gladstone, G. R.; Howett, C. J. A.; Linscott, I. R.; Nimmo, F.; Parker, J. Wm.; Philippe, S.; Protopapa, S.; Reitsema, H. J.; Schmitt, B.; Stryk, T.; Summers, M. E.; Tsang, C. C. C.; Throop, H. H. B.; White, O. L.; Zangari, A. M.

    2016-03-01

    The New Horizons mission has provided resolved measurements of Pluto’s moons Styx, Nix, Kerberos, and Hydra. All four are small, with equivalent spherical diameters of ~40 kilometers for Nix and Hydra and ~10 kilometers for Styx and Kerberos. They are also highly elongated, with maximum to minimum axis ratios of ~2. All four moons have high albedos (~50 to 90%) suggestive of a water-ice surface composition. Crater densities on Nix and Hydra imply surface ages of at least 4 billion years. The small moons rotate much faster than synchronous, with rotational poles clustered nearly orthogonal to the common pole directions of Pluto and Charon. These results reinforce the hypothesis that the small moons formed in the aftermath of a collision that produced the Pluto-Charon binary.

  7. Resonant interactions and chaotic rotation of Pluto's small moons

    NASA Astrophysics Data System (ADS)

    Showalter, M. R.; Hamilton, D. P.

    2015-06-01

    Four small moons--Styx, Nix, Kerberos and Hydra--follow near-circular, near-equatorial orbits around the central `binary planet' comprising Pluto and its large moon, Charon. New observational details of the system have emerged following the discoveries of Kerberos and Styx. Here we report that Styx, Nix and Hydra are tied together by a three-body resonance, which is reminiscent of the Laplace resonance linking Jupiter's moons Io, Europa and Ganymede. Perturbations by the other bodies, however, inject chaos into this otherwise stable configuration. Nix and Hydra have bright surfaces similar to that of Charon. Kerberos may be much darker, raising questions about how a heterogeneous satellite system might have formed. Nix and Hydra rotate chaotically, driven by the large torques of the Pluto-Charon binary.

  8. Power system comparison for the Pluto Express mission

    SciTech Connect

    Harty, R.B.

    1995-12-31

    This paper presents a comparison of three advanced radioisotope power systems, along with a down sized RTG for the Pluto Express mission. These three advanced radioisotope power systems were the Radioisotope Alkali Metal Thermal--to-Electric Converter (RAMTEC), Radioisotope Stirling, and Radioisotope Thermophotovoltaic (RTPV). For the Pluto Express mission, the power requirement at the end of the 10-y mission is 74 We. It was found that all three advanced power systems could meet the required end of mission power with two General Purpose Heat Source (GPHS) modules. The RTG required six modules to meet the power requirement. Only the RAMTEC and RTPV met the mass goal of 9.5 kg. The AMTEC has a radiator area more than a factor of 10 lower than the Stirling and RTPV power systems, which simplifies spacecraft integration.

  9. AMTEC radioisotope power system for the Pluto Express mission

    SciTech Connect

    Ivanenok, J.F. III; Sievers, R.K.

    1995-12-31

    The Alkali Metal Thermal to Electric Converter (AMTEC) technology has made substantial advances in the last 3 years through design improvements and technical innovations. In 1993 programs began to produce an AMTEC cell specifically for the NASA Pluto Express Mission. A set of efficiency goals was established for this series of cells to be developed. According to this plan, cell {number_sign}8 would be 17% efficient but was actually 18% efficient. Achieving this goal, as well as design advances that allow the cell to be compact, has resulted in pushing the cell from an unexciting 2 W/kg and 2% efficiency to very attractive 40 W/kg and 18% measured efficiency. This paper will describe the design and predict the performance of a radioisotope powered AMTEC system for the Pluto Express mission.

  10. Photos from Inside Pluto: Historic Images from the New Horizons Encounter with Pluto

    NASA Astrophysics Data System (ADS)

    Throop, Henry B.; Spencer, John; Robbins, Stuart J.; Tsang, Constantine; Cruikshank, Dale; Stern, S. Alan; Weaver, Harold; Bedini, Peter; Calloway, Andrew

    2015-11-01

    NASA's New Horizons mission flew past Pluto on July 14, 2015. In the months and weeks leading up to the encounter, over 200 mission personnel were located at JHU APL and directly involved in the planning and operations of the flyby. Several members of the team were given special permission to document photographically this historic event. These photos have been collected into a public archive which allows the general public to see the intimate and normally hidden 'behind the scenes' views of an operating spacecraft team, through times of elation, times of stress, public celebrations, and private moments.We present here a variety of these photos spanning May (the beginning of detailed hazards searches) through the end of July. The entire archive will be available online and accessible to the public.We thank JHU-APL for arranging special permission for the photographers (HBT, CSS, JS, SJR, DC). All photos are used courtesy NASA/SwRI/JHUAPL and the individual photographers.

  11. Individual Response to Organizational Change: A Grounded Model. Training and Development Research Center Project Number Fifty.

    ERIC Educational Resources Information Center

    Johansen, Barry-Craig Paul

    Twenty-nine members of a manufacturing organization were interviewed to learn how they identified, evaluated, and responded to what they perceived as significant changes in their organization. A grounded theory approach was used to analyze the interview transcripts. A model of the process of organizational change was constructed from emergent…

  12. Methane and Nitrogen Abundances on Eris and Pluto

    NASA Astrophysics Data System (ADS)

    Tegler, Stephen C.; Cornelison, D. M.; Grundy, W. M.; Romanishin, W.; Abernathy, M.; Bovyn, M.; Burt, J.; Evans, D.; Maleszewski, C.; Thompson, Z.; Vilas, F.

    2010-10-01

    We present spectra of Eris from the MMT 6.5 meter telescope and Red Channel Spectrograph (5700 - 9800 angstroms; 5 angstroms per pixel) on Mt. Hopkins, AZ, and Pluto from the Steward Observatory 2.3 meter telescope and Boller and Chivens spectrograph (7100 - 9400 angstroms; 2 angstroms per pixel) on Kitt Peak, AZ. In addition, we present laboratory transmission spectra of methane-nitrogen and methane-argon ice mixtures. By anchoring our analysis with the methane-nitrogen phase diagram of Prokhvatilov and Yantsevich (1983), and comparing methane bands in our Eris spectrum and methane bands in our laboratory spectra, we are able to make a quantitative estimate of Eris' methane and nitrogen abundances. Our analysis suggests the surface ice consists of about 10% methane and about 90% nitrogen. By using the same analysis techniques on our Pluto spectrum, we find the anti-Charon facing hemisphere of Pluto has a methane abundance of about 3% and a nitrogen abundance of about 97%. Such abundances are consistent with values reported in the literature. It appears that the bulk volatile composition of Eris is similar to the bulk volatile composition of Pluto. Both objects appear to be dominated by nitrogen ice. Our analysis also suggests, unlike previous work reported in the literature, that the methane and nitrogen stoichiometry is constant with depth into the surface of Eris. Finally, we point out that our Eris spectrum is also consistent with an ice consisting of 40% methane and 60% argon. So, until someone detects an absorption attributable to nitrogen ice in the spectrum of Eris, it would be prudent to keep an open mind about the identity of ice components on Eris. We gratefully acknowledge support from NASA Planetary Astronomy and NASA Planetary Geology and Geophysics. We thank Steward Observatory for the consistent allocation of telescope time.

  13. Pluto-Charon mutual event predictions for 1986

    NASA Technical Reports Server (NTRS)

    Tholen, D. J.

    1985-01-01

    Circumstances are tabulated for 81-Pluto-Charon mutual events occurring during the 1986 opposition. The deepest and longest events will occur in February and reach a depth of about 0.15 mag. Observations of these events will lead to an accurate determination of the satellite's orbit, the diameters of the two bodies, the mean density of the system, and crude albedo maps of one hemisphere on each object.

  14. The Pluto System in the Context of Planetary Exploration

    NASA Astrophysics Data System (ADS)

    Stern, S. A.

    2014-12-01

    The NASA New Horizons mission will conduct a 6-month long reconnaissance flyby of the Pluto system from January to July 2015. In this presentation, I will set the scientific context for the mission by summarizing the revolution in planetary science brought about by the Kuiper Belt, then summarize the key science objectives of the mission, and the briefly review the payload capabilities aboard New Horizons to carry out these objetives. I will close with an overview of the encoutner timeline.

  15. On the in situ formation of Pluto's small satellites

    NASA Astrophysics Data System (ADS)

    Woo, Man Yin; Lee, Man Hoi Hoi

    2015-05-01

    The formation of Pluto's small satellites - Styx, Nix, Keberos and Hydra remains a mystery. Their orbits are nearly circular (eccentricity e = 0.0055 or less) and near resonances and coplanar with respect to Charon. One scenario suggests that they all formed close to their current locations from a disk of debris, which was ejected from the Charon-forming impact. We test the validity of this scenario by performing N-body simulations with Pluto-Charon evolving tidally from an initial orbit at a few Pluto radii. The small satellites are modeled as test particles with initial orbital distances within the range of the current small satellites and damped to their coldest orbits by collisional damping. It is found that if Charon is formed from a debris disk and has low initial eccentricity, all test particles survive to the end of the tidal evolution, but there is no preference for resonances and the test particles' final e is typically > 0.01. If Charon is formed in the preferred intact capture scenario and has initial orbital eccentricity ~ 0.2, the outcome depends on the relative rate of tidal dissipation in Charon and Pluto, A. If A is large and Charon's orbit circularizes quickly, a significant fraction of the test particles survives outside resonances with e >~ 0.01. Others are ejected by resonance or survive in resonance with very large e (> 0.1). If A is small and Charon's orbit remains eccentric throughout most of the tidal evolution, most of the test particles are ejected. The test particles that survive have e >~ 0.01, including some with e > 0.1. None of the above cases results in test particles with sufficiently low final e.This work is supported in part by Hong Kong RGC grant HKU 7030/11P.

  16. Effect of irradiation on the surface of Pluto

    SciTech Connect

    Johnson, R.E. )

    1989-11-01

    The surface of Pluto is exposed to cosmic ray particles which slowly alter the reflectance of the condensed methane and the UV absorbed in the atmosphere may produce precipitates. Depending on the rates of the competing regolith processes and the rate of replenishment of the methane the surface can appear bright, red, or dark. Here the relevant laboratory data show that, in the absence of any local particle precipitation, the amount of darkening occurring in one orbit is small.

  17. The spectrum of Pluto, 0.40-0.93 μm. I. Secular and longitudinal distribution of ices and complex organics

    NASA Astrophysics Data System (ADS)

    Lorenzi, V.; Pinilla-Alonso, N.; Licandro, J.; Cruikshank, D. P.; Grundy, W. M.; Binzel, R. P.; Emery, J. P.

    2016-01-01

    Context. During the past 30 years the surface of Pluto has been characterized and its variability monitored through continuous near-infrared spectroscopic observations. But in the visible range only a few data are available. Aims: The aim of this work is to define Pluto's relative reflectance in the visible range to characterize the different components of its surface, and to provide ground based observations in support of the New Horizons mission. Methods: We observed Pluto on six nights between May and July 2014 with the imager/spectrograph ACAM at the William Herschel Telescope (La Palma, Spain). The six spectra obtained cover a whole rotation of Pluto (Prot = 6.4 days). For all the spectra, we computed the spectral slope and the depth of the absorption bands of methane ice between 0.62 and 0.90 μm. To search for shifts in the center of the methane bands, which are associated with dilution of CH4 in N2, we compared the bands with reflectances of pure methane ice. Results: All the new spectra show the methane ice absorption bands between 0.62 and 0.90 μm. Computation of the depth of the band at 0.62 μm in the new spectra of Pluto and in the spectra of Makemake and Eris from the literature, allowed us to estimate the Lambert coefficient at this wavelength at temperatures of 30 K and 40 K, which has never been measured before. All the detected bands are blueshifted with respect to the position for pure methane ice, with minimum shifts correlated to the regions where the abundance of methane is higher. This could be indicative of a dilution of CH4:N2 that is more saturated in CH4. The longitudinal and secular variations in the parameters measured in the spectra are in accordance with results previously reported in the literature and with the distribution of the dark and bright materials that show the Pluto's color maps from New Horizons.

  18. Melting and Tectonics from Coupled Orbital and Thermal Evolution of the Pluto-Charon System

    NASA Astrophysics Data System (ADS)

    Collins, G. C.; Barr, A. C.

    2015-12-01

    As New Horizons data is returned, we should consider the possibility that Pluto and Charon went through an intense period of activity following the Charon-forming impact. Our prior work (Barr and Collins 2015) shows that if the deep layer of Pluto's ice shell is initially warmer than ~200 K after the impact, energy dissipation within Pluto can lead to melting and rapid thinning of the ice shell and tidal stresses can drive tectonics on both bodies. Here, we build upon our prior work to simulate the coupled thermal and orbital evolution of the Pluto/Charon system after the Charon-forming impact, taking into account the growth/freezing of an ocean, the onset/cessation of solid-state ice shell convection, and how the changing interior state of Pluto changes the magnitude of tidal deformation and dissipation. We track the heat flow in Pluto as a function of time for a variety of starting conditions after Charon is formed. We find that if Pluto has even a small ocean after Charon forms, the system can readily evolve to its present dual synchronous state. A feedback mechanism exists in which tidal dissipation in the basal ice above the ocean increases its temperature, which in turn leads to faster tidal dissipation. This feedback leads to a heat pulse within Pluto and rapid buildup of tectonic stresses on Pluto and Charon. If Pluto never had any liquid at the base of its ice shell, the tidal dissipation is too small to keep Pluto's interior warm. Without a starting ocean, it is difficult to start the thermal-orbital feedback process, and difficult for Charon to evolve to its presently observed orbital state within the timespan of solar system history.

  19. Investigating Charon's Impact on Pluto's Interaction with the Solar Wind through Multifluid MHD Simulations

    NASA Astrophysics Data System (ADS)

    Hale, J. M.; Paty, C. S.

    2014-12-01

    Charon's mass, orbital parameters, and distinct surface composition relative to Pluto suggest that it plays a significant role in Pluto's dynamic interaction with the solar wind. Its high mass ( ~ 10% of total system mass ) and close orbit ( < 20 Pluto Radii ) are thought to result in regionally enhanced atmospheric escape from Pluto as well as ionospheric deformation. Additionally, there are multiple mechanisms through which Charon could possess a tenuous atmosphere—and therefore ionosphere. Firstly, spectral observations of short-lived hydrated ammonia on Charon's surface could be caused by semi-regular cryovolcanism, which would also source a water group atmosphere (Cook et al., 2007). Secondly, recent work indicates that Charon could have a nightside parasitic atmosphere that is captured from material escaping from Pluto (Tucker et al., 2014). Either possibility would result in Charon presenting a sizable obstacle to the incoming solar wind. This work studies Charon's effects on the Pluto-solar wind interaction using a 3-dimensional multifluid MHD model which has been modified to include a second body within the system. This second body (Charon) represents not only an additional gravitational perturbation to the system, but can also provide a local and distinct plasma source, a sink for plasma sourced from Pluto or the solar wind, and cause an obstruction and perturbation to the solar wind. Specifically, we investigate the possibility of enhanced ionospheric loss from Pluto due to Charon's gravitational attraction, as well as the overall dynamics of a two-body system interacting with the solar wind in which each body has an ionosphere and periodically passes through the bow shock of the other body. The former objective is made possible by tracking the flux of plasma sourced from Pluto. The latter objective is accomplished by performing simulations in which Charon is upstream of Pluto as well as simulations in which Charon is placed downstream, within Pluto

  20. Geological Mapping of Pluto and Charon Using New Horizons Data

    NASA Astrophysics Data System (ADS)

    Moore, J. M.; Spencer, J. R.; McKinnon, W. B.; Howard, A. D.; White, O. M.; Umurhan, O. M.; Schenk, P. M.; Beyer, R. A.; Singer, K.; Stern, S. A.; Weaver, H. A.; Young, L. A.; Ennico Smith, K.; Olkin, C.; Horizons Geology, New; Geophysics Imaging Team

    2016-06-01

    Pluto and Charon exhibit strikingly different surface appearances, despite their similar densities and presumed bulk compositions. Systematic mapping has revealed that much of Pluto's surface can be attributed to surface-atmosphere interactions and the mobilization of volatile ices by insolation. Many mapped valley systems appear to be the consequence of glaciation involving nitrogen ice. Other geological activity requires or required internal heating. The convection and advection of volatile ices in Sputnik Planum can be powered by present-day radiogenic heat loss. On the other hand, the prominent mountains at the western margin of Sputnik Planum, and the strange, multi-km-high mound features to the south, probably composed of H2O, are young geologically as inferred by light cratering and superposition relationships. Their origin, and what drove their formation so late in Solar System history, is under investigation. The dynamic remolding of landscapes by volatile transport seen on Pluto is not unambiguously evident in the mapping of Charon. Charon does, however, display a large resurfaced plain and globally engirdling extensional tectonic network attesting to its early endogenic vigor.

  1. Evolution of a Ring around the Pluto-Charon Binary

    NASA Astrophysics Data System (ADS)

    Bromley, Benjamin C.; Kenyon, Scott J.

    2015-08-01

    We consider the formation of satellites around the Pluto-Charon binary. An early collision between the two partners likely produced the binary and a narrow ring of debris, out of which arose the moons Styx, Nix, Kerberos, and Hydra. How the satellites emerged from the compact ring is uncertain. Here we show that a particle ring spreads from physical collisions and collective gravitational scattering, similar to migration. Around a binary, these processes take place in the reference frames of “most circular” orbits, akin to circular ones in a Keplerian potential. Ring particles damp to these orbits and avoid destructive collisions. Damping and diffusion also help particles survive dynamical instabilities driven by resonances with the binary. In some situations, particles become trapped near resonances that sweep outward with the tidal evolution of the Pluto-Charon binary. With simple models and numerical experiments, we show how the Pluto-Charon impact ring may have expanded into a broad disk, out of which grew the circumbinary moons. In some scenarios, the ring can spread well beyond the orbit of Hydra, the most distant moon, to form a handful of smaller satellites. If these small moons exist, New Horizons will find them.

  2. The state of Pluto's atmosphere in 2012-2013

    NASA Astrophysics Data System (ADS)

    Bosh, A. S.; Person, M. J.; Levine, S. E.; Zuluaga, C. A.; Zangari, A. M.; Gulbis, A. A. S.; Schaefer, G. H.; Dunham, E. W.; Babcock, B. A.; Davis, A. B.; Pasachoff, J. M.; Rojo, P.; Servajean, E.; Förster, F.; Oswalt, T.; Batcheldor, D.; Bell, D.; Bird, P.; Fey, D.; Fulwider, T.; Geisert, E.; Hastings, D.; Keuhler, C.; Mizusawa, T.; Solenski, P.; Watson, B.

    2015-01-01

    We observed two stellar occultations on UT 4 May 2013 and UT 9 September 2012, with the aim of measuring Pluto's atmospheric parameters. Both of these events were observed by world-wide collaborations of many observers, and both occurred within 1 month of Pluto's stationary points. The PC20120909 event was observed at the McDonald Observatory (MONET 1.2-m), and Olin Observatory (the Ortega 0.8-m); the P20130504 event was observed at the Las Campanas Observatory (du Pont 2.5-m), the Cerro Tololo Inter-American Observatory (SMARTS 1-m), and the Cerro Calán National Astronomical Observatory (Goto 0.45-m). Analysis of the data indicates an atmospheric state similar to that in June 2011. The shadow radius for the event is unchanged from recent events, indicating an atmosphere that is holding stable and not in the midst of global collapse. We discuss the advantages and disadvantages of comparing various atmospheric parameters across events (the shadow radius vs. the pressure at a particular radius). These analyses suggest that Pluto will still have an atmosphere when the New Horizons spacecraft arrives in July 2015.

  3. Quality assurance project plan for ground water monitoring activities managed by Westinghouse Hanford Company. Revision 3

    SciTech Connect

    Stauffer, M.

    1995-11-01

    This quality assurance project plan (QAPP) applies specifically to the field activities and laboratory analysis performed for all RCRA groundwater projects conducted by Hanford Technical Services. This QAPP is generic in approach and shall be implemented in conjunction with the specific requirements of individual groundwater monitoring plans.

  4. Ground Rules in Team Projects: Findings from a Prototype System to Support Students

    ERIC Educational Resources Information Center

    Whatley, Janice

    2009-01-01

    Student team project work in higher education is one of the best ways to develop team working skills at the same time as learning about the subject matter. As today's students require the freedom to learn at times and places that better match their lifestyles, there is a need for any support for team project work to be also available online. Team…

  5. "Pluto Has Been a Planet My Whole Life!" Emotions, Attitudes, and Conceptual Change in Elementary Students' Learning about Pluto's Reclassification

    NASA Astrophysics Data System (ADS)

    Broughton, Suzanne H.; Sinatra, Gale M.; Nussbaum, E. Michael

    2013-04-01

    Learning about certain scientific topics has potential to spark strong emotions among students. We investigated whether emotions predicted students' attitudes after engaging in independent rereading and/or rereading plus discussion about Pluto's reclassification. Fifth and sixth grade students read a refutation text on Pluto's reclassification. Participants were randomly assigned to either the reread independently or the reread plus discussion group. Results showed that students in both groups experienced attitude change and that change was sustained over time. Students reported experiencing more negative than positive emotions at pretest. Emotions, which became more positive after intervention, were predictive of students' attitudes and attitude change. Implications for the role of emotions when learning about controversial topics are discussed.

  6. Pluto's Polygonal Terrain Places Lower Limit on Planetary Heat Flow

    NASA Astrophysics Data System (ADS)

    Trowbridge, A.; Steckloff, J. K.; Melosh, H., IV; Freed, A. M.

    2015-12-01

    During its recent flyby of Pluto, New Horizons imaged an icy plains region (Sputnik Planum) whose surface is divided into polygonal blocks, ca. 20-30 km across, bordered by what appear to be shallow troughs. The lack of craters within these plains suggests they are relatively young, implying that the underlying material is recently active. The scale of these features argues against an origin by cooling and contraction. Here we investigate the alternative scenario that they are the surface manifestation of shallow convection in a thick layer of nitrogen ice. Typical Rayleigh-Bernard convective cells are approximately three times wider than the depth of the convecting layer, implying a layer depth of ca. 7-10 km. Our convection hypothesis requires that the Rayleigh number exceed a minimum of about 1000 in the nitrogen ice layer. We coupled a parameterized convection model with a temperature dependent rheology of nitrogen ice (Yamashita, 2008), finding a Rayleigh number 1500 to 7500 times critical for a plausible range of heat flows for Pluto's interior. The computed range of heat flow (3.5-5.2 mW/m2) is consistent with the radiogenic heat generated by a carbonaceous chondrite (CC) core implied by Pluto's bulk density. The minimum heat flow at the critical Rayleigh number is 0.13 mW/m2. Our model implies a core temperature of 44 K in the interior of the convecting layer. This is very close to the exothermic β-α phase transition in nitrogen ice at 35.6 K (for pure N2 ice; dissolved CO can increase this, depending on its concentration), suggesting that the warm cores of the rising convective cells may be β phase, whereas the cooler sinking limbs may be α phase. This transition may thus be observable due to the large difference in their spectral signature. Further applying our model to Pluto's putative water ice mantle, the heat flow from CC is consistent with convection in Pluto's mantle and the activity observed on its surface.

  7. Spectroscopy of Pluto at six longitudes, 380-930 nm

    NASA Astrophysics Data System (ADS)

    Cruikshank, Dale P.; Pinilla-Alonso, Noemi; Lorenzi, Vania; Grundy, Will M.; Licandro, Javier; Binzel, Richard P.

    2014-11-01

    We have obtained spectra of the Pluto-Charon pair (unresolved) in the wavelength range 380-930 nm with resolution ~450 at six roughly equally spaced longitudes. The data were taken in May and June, 2014, with the 4.2-m Isaac Newton Telescope at Roque de Los Muchachos Observatory in the Canary Islands, using the ACAM (auxiliary-port camera) in spectrometer mode, and using two solar analog stars. The new spectra clearly show absorption bands of solid CH4 at 620, 728, and 850-910 nm, which were known from earlier work. The 620-nm CH4 band is intrinsically very weak, and its appearance indicates a long optical pathlength through the ice. This is especially true if it arises from CH4 dissolved in N2 ice. Earlier work (Owen et al. Science 261, 745, 1993) on the near-infrared spectrum of Pluto (1-2.5 µm) has shown that the CH4 bands are shifted to shorter wavelengths because the CH4 occurs as a solute in beta-phase crystalline N2. The optical pathlength through the N2 crystals must be on the order of several cm to produce the N2 band observed at 2.15 µm. The new spectra exhibit a pronounced red slope across the entire wavelength range; the slope is variable with longitude, and differs in a small but significant way from that measured at comparable longitudes by Grundy & Fink (Icarus 124, 329, 1996) in their 15-year study of Pluto’s spectrum (500-1000 nm). The new spectra will provide an independent means for calibrating the color filter bands on the Multispectral Visible Imaging Camera (MVIC) (Reuter et al. Space Sci. Rev. 140, 129, 2008) on the New Horizons spacecraft, which will encounter the Pluto-Charon system in mid-2015. They will also form the basis of modeling the spectrum of Pluto at different longitudes to help establish the nature of the non-ice component(s) of Pluto’s surface. It is presumed that the non-ice component is the source of the yellow-red coloration of Pluto, which is known to be variable across the surface.

  8. Dynamic Universe Model Predicts the Trajectory of New Horizons Satellite Going to Pluto.......

    NASA Astrophysics Data System (ADS)

    Naga Parameswara Gupta, Satyavarapu

    2012-07-01

    New Horizons is NASA's artificial satellite now going towards to the dwarf planet Pluto. It has crossed Jupiter. It is expected to be the rst spacecraft to go near and study Pluto and its moons, Charon, Nix, and Hydra. These are the predictions for New Horizons (NH) space craft as on A.D. 2009-Aug-09 00:00:00.0000 hrs. The behavior of NH is similar to Pioneer Space craft as NH traveling is alike to Pioneer. NH is supposed to reach Pluto in 2015 AD. There was a gravity assist taken at Jupiter about a year back. As Dynamic universe model explains Pioneer anomaly and the higher gravitational attraction forces experienced towards SUN, It can explain NH also in a similar fashion. I am giving the predictions for NH by Dynamic Universe Model in the following Table 4. Here first two rows give Dynamic Universe Model predictions based on 02-01-2009 00:00 hrs data with Daily time step and hourly time step. Third row gives Ephemeris from Jet propulsion lab.Dynamic Universe Model can predict further to 9-Aug-2009. These Ephemeris data is from their web as on 28th June 2009 Any new data can be calculated..... For finding trajectories of Pioneer satellite (Anomaly), New Horizons satellite going to Pluto, the Calculations of Dynamic Universe model can be successfully applied. No dark matter is assumed within solar system radius. The effect on the masses around SUN shows as though there is extra gravitation pull toward SUN. It solves the Dynamics of Extra-solar planets like Planet X, satellite like Pioneer and NH for 3-Position, 3-velocity 3-acceleration for their masses,considering the complex situation of Multiple planets, Stars, Galaxy parts and Galaxy center and other Galaxies Using simple Newtonian Physics. It already solved problems Missing mass in Galaxies observed by galaxy circular velocity curves successfully. `SITA Simulations' software was developed about 18 years back for Dynamic Universe Model of Cosmology. It is based on Newtonian physics. It is Classical singularity

  9. Standards and Specifications for Ground Processing of Space Vehicles: From an Aviation-Based Shuttle Project to Global Application

    NASA Technical Reports Server (NTRS)

    Ingalls, John; Cipolletti, John

    2011-01-01

    and methods are incongruent. Some processing products are still done on paper, some electronic, and many being converted in between. Business systems then are not fully compatible, and paper as well as electronic conversions are time-consuming and costly. NASA and its Shuttle contractors setup rules and systems to handle what has produced over 130 RLV launches, but they have had many challenges. Attempts have been made to apply aviation industry specifications to make the Shuttle more efficient with its ground processing. One efficiency project example was to make a Shuttle Maintenance Manual (SMM) based on the commercial ATA (Air Transport Association of America) Spec 100 for technical publications. This industry standard, along with others, has been a foundation for efficient global MRO of commercial airlines for years. A modified version was also made for some military aircraft. The SMM project found many similarities in Spec 100 which apply to the Shuttle, and room for expansion for space systems/structures not in aircraft. The SMM project team met with the ATA and representatives from NASA's X-33 and X-34 programs to discuss collaboration on a national space standard based on Spec 100. A pilot project was enabled for a subset of Shuttle systems. Full implementation was not yet achieved, X-33 and X-34 were cancelled, and the Shuttles were then designated for retirement. Nonetheless, we can learn from this project how to expand this concept to all space vehicle products. Since then, ATA has joined with ASD (AeroSpace and Defence Industries Association of Europe) and AIA (Aerospace Industries Association) to form a much-enhanced and expanded international specification: Sl000D, International Specification for Technical Publications. It includes air, land, and sea vehicles, missiles, support equipment, ordnance, and communications. It is used by a growing number of countries for commercial and government products. Its modular design is supported by a Common Source

  10. Final Environmental Assessment and Finding of No Significant Impact: Ground Water Compliance at the Slick Rock, Colorado, UMTRA Project Site

    SciTech Connect

    N /A

    2003-03-13

    This environmental assessment addresses the environmental effects of a proposed action and the no action alternative to comply with U.S. Environmental Protection Agency (EPA) ground water standards at the Slick Rock, Colorado, Uranium Mill Tailings Remedial Action Project sites. The sites consist of two areas designated as the North Continent (NC) site and the Union Carbide (UC) site. In 1996, the U.S. Department of Energy (DOE) completed surface cleanup at both sites and encapsulated the tailings in a disposal cell 5 miles east of the original sites. Maximum concentration limits (MCLs) referred to in this environmental assessment are the standards established in Title 40 ''Code of Federal Regulations'' Part 192 (40 CFR 192) unless noted otherwise. Ground water contaminants of potential concern at the NC site are uranium and selenium. Uranium is more prevalent, and concentrations in the majority of alluvial wells at the NC site exceed the MCL of 0.044 milligram per liter (mg/L). Selenium contamination is less prevalent; samples from only one well had concentrations exceeding the MCL of 0.01 mg/L. To achieve compliance with Subpart B of 40 CFR 192 at the NC site, DOE is proposing the strategy of natural flushing in conjunction with institutional controls and continued monitoring. Ground water flow and transport modeling has predicted that concentrations of uranium and selenium in the alluvial aquifer will decrease to levels below their respective MCLs within 50 years.

  11. Improved orbital and physical parameters for the Pluto-Charon system

    NASA Technical Reports Server (NTRS)

    Tholen, David J.; Buie, Marc W.; Binzel, Richard P.; Frueh, Marian L.

    1987-01-01

    Analysis of the observations of several Pluto-Charon occultation and transit events in 1985 and 1986 has provided a more detailed knowledge of the system. The sum of the radii of Pluto and Charon is 1786 + or - 19 kilometers, but the individual radii are somewhat more poorly determined; Pluto is 1145 + or - 46 kilometers in radius, and Charon is 642 + or - 34 kilometers in radius. The mean density of the system is 1.84 + or - 0.19 grams/cu cm, implying that more than half of the mass is due to rock. Charon appears to have hemispheres of two different colors, the Pluto-facing side being neutral in color and the opposite hemisphere being a reddish color similar to Pluto.

  12. Near-infrared spectral monitoring of Pluto/Charon with IRTF/SpeX

    NASA Astrophysics Data System (ADS)

    Grundy, W. M.; Buie, M. W.; Spencer, J. R.; Young, L. A.; Young, E. F.

    2003-05-01

    The non-uniform distribution of Pluto's surface ices, along with the planet's high obliquity, 6 day rotation period, and 250 year orbital period combine to produce variations in Pluto's reflectance spectrum over a broad range of times scales. Volatile transport can also influence the spectrum over time, as ices sublimate and re-condense elsewhere on Pluto's surface. In an effort to detect and to distinguish between the various factors influencing Pluto's spectral reflectance over time, we have been monitoring the system spectroscopically over the past 2 decades. The SpeX instrument, commissioned in 2000 at NASA's IRTF, is an ideal tool for this purpose. Using it, we have obtained good quality spectra of the Pluto\\slash Charon system on 15 nights since 2000, covering the 0.8 to 2.4 μ m wavelength range at spectral resolutions ˜1000\

  13. The Pluto system: Initial results from its exploration by New Horizons.

    PubMed

    Stern, S A; Bagenal, F; Ennico, K; Gladstone, G R; Grundy, W M; McKinnon, W B; Moore, J M; Olkin, C B; Spencer, J R; Weaver, H A; Young, L A; Andert, T; Andrews, J; Banks, M; Bauer, B; Bauman, J; Barnouin, O S; Bedini, P; Beisser, K; Beyer, R A; Bhaskaran, S; Binzel, R P; Birath, E; Bird, M; Bogan, D J; Bowman, A; Bray, V J; Brozovic, M; Bryan, C; Buckley, M R; Buie, M W; Buratti, B J; Bushman, S S; Calloway, A; Carcich, B; Cheng, A F; Conard, S; Conrad, C A; Cook, J C; Cruikshank, D P; Custodio, O S; Dalle Ore, C M; Deboy, C; Dischner, Z J B; Dumont, P; Earle, A M; Elliott, H A; Ercol, J; Ernst, C M; Finley, T; Flanigan, S H; Fountain, G; Freeze, M J; Greathouse, T; Green, J L; Guo, Y; Hahn, M; Hamilton, D P; Hamilton, S A; Hanley, J; Harch, A; Hart, H M; Hersman, C B; Hill, A; Hill, M E; Hinson, D P; Holdridge, M E; Horanyi, M; Howard, A D; Howett, C J A; Jackman, C; Jacobson, R A; Jennings, D E; Kammer, J A; Kang, H K; Kaufmann, D E; Kollmann, P; Krimigis, S M; Kusnierkiewicz, D; Lauer, T R; Lee, J E; Lindstrom, K L; Linscott, I R; Lisse, C M; Lunsford, A W; Mallder, V A; Martin, N; McComas, D J; McNutt, R L; Mehoke, D; Mehoke, T; Melin, E D; Mutchler, M; Nelson, D; Nimmo, F; Nunez, J I; Ocampo, A; Owen, W M; Paetzold, M; Page, B; Parker, A H; Parker, J W; Pelletier, F; Peterson, J; Pinkine, N; Piquette, M; Porter, S B; Protopapa, S; Redfern, J; Reitsema, H J; Reuter, D C; Roberts, J H; Robbins, S J; Rogers, G; Rose, D; Runyon, K; Retherford, K D; Ryschkewitsch, M G; Schenk, P; Schindhelm, E; Sepan, B; Showalter, M R; Singer, K N; Soluri, M; Stanbridge, D; Steffl, A J; Strobel, D F; Stryk, T; Summers, M E; Szalay, J R; Tapley, M; Taylor, A; Taylor, H; Throop, H B; Tsang, C C C; Tyler, G L; Umurhan, O M; Verbiscer, A J; Versteeg, M H; Vincent, M; Webbert, R; Weidner, S; Weigle, G E; White, O L; Whittenburg, K; Williams, B G; Williams, K; Williams, S; Woods, W W; Zangari, A M; Zirnstein, E

    2015-10-16

    The Pluto system was recently explored by NASA's New Horizons spacecraft, making closest approach on 14 July 2015. Pluto's surface displays diverse landforms, terrain ages, albedos, colors, and composition gradients. Evidence is found for a water-ice crust, geologically young surface units, surface ice convection, wind streaks, volatile transport, and glacial flow. Pluto's atmosphere is highly extended, with trace hydrocarbons, a global haze layer, and a surface pressure near 10 microbars. Pluto's diverse surface geology and long-term activity raise fundamental questions about how small planets remain active many billions of years after formation. Pluto's large moon Charon displays tectonics and evidence for a heterogeneous crustal composition; its north pole displays puzzling dark terrain. Small satellites Hydra and Nix have higher albedos than expected. PMID:26472913

  14. Solar wind at 33 AU: Setting bounds on the Pluto interaction for New Horizons

    NASA Astrophysics Data System (ADS)

    Bagenal, F.; Delamere, P. A.; Elliott, H. A.; Hill, M. E.; Lisse, C. M.; McComas, D. J.; McNutt, R. L., Jr.; Richardson, J. D.; Smith, C. W.; Strobel, D. F.

    2015-09-01

    NASA's New Horizons spacecraft flies past Pluto on 14 July 2015, carrying two instruments that detect charged particles. Pluto has a tenuous, extended atmosphere that is escaping the planet's weak gravity. The interaction of the solar wind with Pluto's escaping atmosphere depends on solar wind conditions as well as the vertical structure of Pluto's atmosphere. We have analyzed Voyager 2 particles and fields measurements between 25 and 39 AU and present their statistical variations. We have adjusted these predictions to allow for the Sun's declining activity and solar wind output. We summarize the range of SW conditions that can be expected at 33 AU and survey the range of scales of interaction that New Horizons might experience. Model estimates for the solar wind standoff distance vary from ~7 to ~1000 RP with our best estimate being around 40 RP (where we take Pluto's radius to be RP = 1184 km).

  15. Hydrologic data through 1993 for the Huron Project of the High Plains Ground-Water Demonstration Program

    USGS Publications Warehouse

    Carter, Janet M.

    1995-01-01

    This report presents data on precipitation, geologic logs, water levels, and water quality that have been collected or compiled, through water year 1993, for the Huron Project of the High Plains Ground-Water Demonstration Program, under the guidance of the Bureau of Reclamation. The purpose of the Huron Project is to demonstrate the artificial recharge potential of glacial aquifers in eastern South Dakota. High flows from the James River during spring runoff are used as a source of supplemental recharge for the Warren aquifer, which is a buried, glacial aquifer. Prior to the injection of recharge water, which began in April 1994, many sites were monitored to obtain background information. This report presents data that were collected prior to the initiation of recharge. Precipitation data are collected at two sites within the study area. A site description and daily precipitation for water years 1991-93 are presented for one precipitation site. In 1990, 76 test holes were drilled and observation wells were installed at 70 sites. Well information and geologic logs collected during the drilling program for the Huron Project are presented. In addition to the 70 new Huron Project wells, 15 existing observation wells owned by the South Dakota Department of Environment and Natural Resources were incorporated into the study. Water- level hydrographs are presented for the 85 observation wells. The period of record shown for the hydrographs is from the earliest available record through September 1993. Water-quality data were collected from both screening and detailed sampling programs. Screening water-quality data for 32 observation wells are presented. These data include primarily field parameters and common ions. The eight detailed sampling sites represent the quality of untreated water, treated water, an intermittent stream, and ground water from the Warren aquifer. Data presented for the detailed sampling program include field parameters, bacteria counts, and

  16. Small Satellites and Dust in the Pluto System: Upper Limits and Implications

    NASA Astrophysics Data System (ADS)

    Spencer, John R.; Showalter, Mark R.; Stern, S. Alan; Brozovic, Marina; Buie, Marc W.; Hamilton, Douglas P.; Jacobson, Robert A.; Kaufmann, David E.; Lauer, Tod R.; Parker, Alex H.; Porter, Simon B.; Throop, Henry B.; Verbiscer, Anne J.; Weaver, Harold A.; Young, Leslie A.; Ennico, Kimberly; Olkin, Catherine B.

    2015-11-01

    To help ensure safe passage of the New Horizons (NH) spacecraft as it flew through the Pluto system, we took a series of deep images with the Long Range Reconnaissance Imager (LORRI) to search for previously undetected satellites or rings. We obtained a total of 1100 10-second exposures, spread over 20 epochs between May 11 and July 1 2015. HST observations had previously set an upper limit to the brightness of undetected moons of about half Styx's brightness (i.e., a diameter of ~5 km for an a Charon-like albedo of 0.38). The final NH observations in early July could have detected objects down to ~1.5 km in diameter in the Charon - Hydra region, and ~2 km between Charon's orbit and ~5000 km above Pluto's surface. Despite the sensitivity of the searches, no additional moons were found. The lower limit on the brightness ratio between Styx and any undiscovered fainter satellites, ~20, is comparable to the brightness ratio between Nix and Kerberos (~16), and a power-law satellite size distribution, analogous to that seen in the Saturn system, cannot be ruled out. Implications of the satellite size distribution for the origin of the satellite system will be discussed. The data also place an upper limit of ~1 x 10-7 on the I/F of any dust rings in the vicinity of the known small satellites, a factor of several improvement over previous HST limits. This work was supported by NASA’s New Horizons project.

  17. Ground-water monitoring compliance projects for Hanford Site facilities: Volume 1, The report and Appendix A, Progress report for the period October 1 to December 31, 1986

    SciTech Connect

    Not Available

    1987-02-01

    This report documents recent progress on ground-water monitoring projects for four Hanford Site facilities: the 300 Area Process Trenches, the 183-H Solar Evaporation Basins, the 200 Area Low-Level Burial Grounds, and the Nonradioactive Dangerous Waste (NRDW) Landfill. The existing ground-water monitoring projects for the first two facilities named in the paragraph above are currently being expanded by adding new wells to the networks. During the reporting period, sampling of the existing wells continued on a monthly basis, and the analytical results for samples collected from September through November 1986 are included and discussed in this document. 8 refs., 41 figs., 7 tabs.

  18. Initial results from the Solar Dynamic (SD) Ground Test Demonstration (GTD) project at NASA Lewis

    NASA Technical Reports Server (NTRS)

    Shaltens, Richard K.; Boyle, Robert V.

    1995-01-01

    A government/industry team designed, built, and tested a 2 kWe solar dynamic space power system in a large thermal/vacuum facility with a simulated sun at the NASA Lewis Research Center. The Lewis facility provides an accurate simulation of temperatures, high vacuum, and solar flux as encountered in low earth orbit. This paper reviews the goals and status of the Solar Dynamic (SD) Ground Test Demonstration (GTD) program and describes the initial testing, including both operational and performance data. This SD technology has the potential as a future power source for the International Space Station Alpha.

  19. Remedial investigation sampling and analysis plan for J-Field, Aberdeen Proving Ground, Maryland: Volume 2, Quality Assurance Project Plan

    SciTech Connect

    Prasad, S.; Martino, L.; Patton, T.

    1995-03-01

    J-Field encompasses about 460 acres at the southern end of the Gunpowder Neck Peninsula in the Edgewood Area of APG (Figure 2.1). Since World War II, the Edgewood Area of APG has been used to develop, manufacture, test, and destroy chemical agents and munitions. These materials were destroyed at J-Field by open burning and open detonation (OB/OD). For the purposes of this project, J-Field has been divided into eight geographic areas or facilities that are designated as areas of concern (AOCs): the Toxic Burning Pits (TBP), the White Phosphorus Burning Pits (WPP), the Riot Control Burning Pit (RCP), the Robins Point Demolition Ground (RPDG), the Robins Point Tower Site (RPTS), the South Beach Demolition Ground (SBDG), the South Beach Trench (SBT), and the Prototype Building (PB). The scope of this project is to conduct a remedial investigation/feasibility study (RI/FS) and ecological risk assessment to evaluate the impacts of past disposal activities at the J-Field site. Sampling for the RI will be carried out in three stages (I, II, and III) as detailed in the FSP. A phased approach will be used for the J-Field ecological risk assessment (ERA).

  20. New Horizons approach photometry of Pluto and Charon: light curves and Solar phase curves

    NASA Astrophysics Data System (ADS)

    Zangari, A. M.; Buie, M. W.; Buratti, B. J.; Verbiscer, A.; Howett, C.; Weaver, H. A., Jr.; Olkin, C.; Ennico Smith, K.; Young, L. A.; Stern, S. A.

    2015-12-01

    While the most captivating images of Pluto and Charon were shot by NASA's New Horizons probe on July 14, 2015, the spacecraft also imaged Pluto with its LOng Range Reconnaissance Imager ("LORRI") during its Annual Checkouts and Approach Phases, with campaigns in July 2013, July 2014, January 2015, March 2015, April 2015, May 2015 and June 2015. All but the first campaign provided full coverage of Pluto's 6.4 day rotation. Even though many of these images were taken when surface features on Pluto and Charon were unresolved, these data provide a unique opportunity to study Pluto over a timescale of several months. Earth-based data from an entire apparition must be combined to create a single light curve, as Pluto is never otherwise continuously available for observing due to daylight, weather and scheduling. From the spacecraft, Pluto's sub-observer latitude remained constant to within 0.05 degrees of 43.15 degrees, comparable to a week's worth of change as seen from Earth near opposition. During the July 2013 to June 2015 period, Pluto's solar phase curve increased from 11 degrees to 15 degrees, a small range, but large compared to Earth's 2 degree limit. The slope of the solar phase curve hints at properties such as surface roughness. Using PSF photometry that takes into account the ever-increasing sizes of Pluto and Charon as seen from New Horizons, as well as surface features discovered at closest approach, we present rotational light curves and solar phase curves of Pluto and Charon. We will connect these observations to previous measurements of the system from Earth.

  1. Analysis of the Origin and Evolution of the Small Satellites of Pluto

    NASA Astrophysics Data System (ADS)

    Pires Dos Santos, Pryscilla Maria; Morbidelli, A.; Nesvorny, D.; Giuliatti Winter, S. M.

    2012-10-01

    At this time the origin of the small satellites of Pluto remains elusive. In this work we envisioned an alternative scenario. Pluto-Charon was already formed and embedded into a massive planetesimal disk, then planetesimals got captured by Pluto-Charon binary from the heliocentric disk. For a dynamically "cold" disk, temporary capture in the Pluto-Charon system can occur with non-negligible probability. We conjecture that if the captured planetesimals got disrupted during their Pluto-bound phase by a collision with other planetesimals of the disk, then these events could have generated a debris disk. This disk damped under internal collisional evolution, until turning itself into an accretional disk that could form small satellites on circular orbits, co-planar with Charon. Objects large enough to carry a sufficient amount of mass to generate the small satellites of Pluto have collisional lifetimes orders of magnitude longer than the typical capture time ( 100 years). Thus, this scenario, although add new arguments to an unsolved problem, cannot also explain the origin of the small satellites of Pluto, which remains elusive. Additionality, we will also present some preliminary results on the analysis of the evolution of the Pluto system in the framework of the "new" Nice model (see, e.g. Levison et al, 2008). Their results explain very well the distribution of Plutinos, bodies trapped in 2:3 mean motion resonance with Neptune. By assuming that the bodies observed today in the Pluto system were put together before the Late Heavy Bombardment period (Gomes et al, 2005), through encounter histories of Pluto and its members during the dynamical evolution of the giant planets, we analyse if this multiple system is destroyed by such interactions. In fact, understanding the evolution of the plutinos provides hints to the understanding of the history of the outer Solar system.

  2. NASA Computational Case Study SAR Data Processing: Ground-Range Projection

    NASA Technical Reports Server (NTRS)

    Memarsadeghi, Nargess; Rincon, Rafael

    2013-01-01

    Radar technology is used extensively by NASA for remote sensing of the Earth and other Planetary bodies. In this case study, we learn about different computational concepts for processing radar data. In particular, we learn how to correct a slanted radar image by projecting it on the surface that was sensed by a radar instrument.

  3. From the Ground Up: Practical Information on a School Construction Project.

    ERIC Educational Resources Information Center

    McGahan, Wm. C.

    This paper describes some of the author's experiences in financing and building a new $4 million Catholic elementary school facility and activities center in rural North Platte (Nebraska). Important points that lead to successful school building projects are highlighted and include establishing good relationships with all the stakeholders…

  4. Tackling five main problem areas found in science (ground segment) project developments

    NASA Astrophysics Data System (ADS)

    Lock, T.; Pérez-López, F.

    2014-08-01

    Science projects which require a large software development may use many scientists alongside a few professional software engineers. Such projects tend to show extreme cases of the general problems associated with software developments. After introducing an example of a large software development in a science project, the importance of a development management plan will be emphasised and sections of the plan highlighted and it is explained how these sections address and prepare for the expected problems throughout the life of the project. A positive, strongly proactive quality assurance, QA, approach is the common theme throughout. The role of QA is, therefore, more to guide, support and advise all members of the team rather than only to detect and react to problems. The top five problem areas addressed are: 1. Vague, late and missing requirements. 2. Few professional software engineers in a large software development. 3. A lack of testers with an appropriate test mentality. 4. Quality Assurance people cannot be everywhere, nor have in-depth skills in every subject. 5. Scientists will want to start coding and see writing documents as a waste of their time.

  5. The ground truth analysis of rain gauge data for the TRMM project. [Tropical Rainfall Measuring Mission

    NASA Technical Reports Server (NTRS)

    Kowalewsky, Karen J.; Thiele, Otto

    1989-01-01

    As a part of the Tropical Rainfall Measuring Missioin (TRMM) ground truth program to determine the diurnal variability of the area wide rain rates, the rain rate PDFs, and their effect on the area integral algorithm, rain rate data have been collected from a network of gages located in the area near the Cape Canaveral and Kennedy Space Center, in the period beginning in September 1987. In the preliminary statistical analysis, based on the rain rates derived from the eleven gages, the seasonal diurnal rainfall and network averaged rain rates are determined. The analysis was performed in two steps: determination of the hourly and daily rain accumulations and rain rates; and computation of the fraction of hourly and daily rain rates that exceed a particular threshold, and analysis of the hourly and daily rain rate PDFs for the network. The results indicate that there are diurnal and seasonal variations in the components which determine the network rain rate PDFs.

  6. Experimental investigation of the ground transportation systems (GTS) project for heavy vehicle drag reduction

    SciTech Connect

    Croll, R.H.; Gutierrez, W.T.; Hassan, B.; Suazo, J.E.; Riggins, A.J.

    1995-12-31

    A wind tunnel experimental research program was conducted on a heavily instrumented Ground Transportation System (GTS) vehicle. The GTS baseline model represented a generic 1:8 scale Class-8 van-type tractor trailer geometry. Five base drag reduction add-on devices, instrumented with surface pressure ports, were also tested. These add-on devices included two ogive boattail shapes and three slant geometry devices. Six component force and moment data, surface pressure contours, and wake velocity surveys are presented for each configuration along with qualitative insights gained from flow visualization. This wind tunnel program was designed to complement a parallel research effort in computational fluid dynamics (CFD) which modeled many of these same vehicle geometries. The wind tunnel data are documented and archived in ASCII format on floppy discs and available to researchers interested in further analysis or comparison to other CFD solutions.

  7. The Italian Project S2 - Task 4:Near-fault earthquake ground motion simulation in the Sulmona alluvial basin

    NASA Astrophysics Data System (ADS)

    Stupazzini, M.; Smerzini, C.; Cauzzi, C.; Faccioli, E.; Galadini, F.; Gori, S.

    2009-04-01

    Recently the Italian Department of Civil Protection (DPC), in cooperation with Istituto Nazionale di Geofisica e Vulcanologia (INGV) has promoted the 'S2' research project (http://nuovoprogettoesse2.stru.polimi.it/) aimed at the design, testing and application of an open-source code for seismic hazard assessment (SHA). The tool envisaged will likely differ in several important respects from an existing international initiative (Open SHA, Field et al., 2003). In particular, while "the OpenSHA collaboration model envisions scientists developing their own attenuation relationships and earthquake rupture forecasts, which they will deploy and maintain in their own systems", the main purpose of S2 project is to provide a flexible computational tool for SHA, primarily suited for the needs of DPC, which not necessarily are scientific needs. Within S2, a crucial issue is to make alternative approaches available to quantify the ground motion, with emphasis on the near field region. The SHA architecture envisaged will allow for the use of ground motion descriptions other than those yielded by empirical attenuation equations, for instance user generated motions provided by deterministic source and wave propagation simulations. In this contribution, after a brief presentation of Project S2, we intend to illustrate some preliminary 3D scenario simulations performed in the alluvial basin of Sulmona (Central Italy), as an example of the type of descriptions that can be handled in the future SHA architecture. In detail, we selected some seismogenic sources (from the DISS database), believed to be responsible for a number of destructive historical earthquakes, and derive from them a family of simplified geometrical and mechanical source models spanning across a reasonable range of parameters, so that the extent of the main uncertainties can be covered. Then, purely deterministic (for frequencies < 2Hz) and hybrid deterministic- stochastic source and propagation simulations are

  8. A Strategy for Autogeneration of Space Shuttle Ground Processing Simulation Models for Project Makespan Estimations

    NASA Technical Reports Server (NTRS)

    Madden, Michael G.; Wyrick, Roberta; O'Neill, Dale E.

    2005-01-01

    Space Shuttle Processing is a complicated and highly variable project. The planning and scheduling problem, categorized as a Resource Constrained - Stochastic Project Scheduling Problem (RC-SPSP), has a great deal of variability in the Orbiter Processing Facility (OPF) process flow from one flight to the next. Simulation Modeling is a useful tool in estimation of the makespan of the overall process. However, simulation requires a model to be developed, which itself is a labor and time consuming effort. With such a dynamic process, often the model would potentially be out of synchronization with the actual process, limiting the applicability of the simulation answers in solving the actual estimation problem. Integration of TEAMS model enabling software with our existing schedule program software is the basis of our solution. This paper explains the approach used to develop an auto-generated simulation model from planning and schedule efforts and available data.

  9. A Ground Testbed to Advance US Capability in Autonomous Rendezvous and Docking Project

    NASA Technical Reports Server (NTRS)

    D'Souza, Chris

    2014-01-01

    This project will advance the Autonomous Rendezvous and Docking (AR&D) GNC system by testing it on hardware, particularly in a flight processor, with a goal of testing it in IPAS with the Waypoint L2 AR&D scenario. The entire Agency supports development of a Commodity for Autonomous Rendezvous and Docking (CARD) as outlined in the Agency-wide Community of Practice whitepaper entitled: "A Strategy for the U.S. to Develop and Maintain a Mainstream Capability for Automated/Autonomous Rendezvous and Docking in Low Earth Orbit and Beyond". The whitepaper establishes that 1) the US is in a continual state of AR&D point-designs and therefore there is no US "off-the-shelf" AR&D capability in existence today, 2) the US has fallen behind our foreign counterparts particularly in the autonomy of AR&D systems, 3) development of an AR&D commodity is a national need that would benefit NASA, our commercial partners, and DoD, and 4) an initial estimate indicates that the development of a standardized AR&D capability could save the US approximately $60M for each AR&D project and cut each project's AR&D flight system implementation time in half.

  10. Mapping Pluto's Temperature Distribution Through Twenty Years of Stellar Occultations

    NASA Astrophysics Data System (ADS)

    Zangari, Amanda; Binzel, R. P.; Person, M. J.

    2012-10-01

    Multi-chord, high signal-to-noise Pluto occultations have been observed several times over the past two decades, including events in 1988, 2002, 2006, 2007, 2010 and 2011 (Elliot et al. 1989, 2003, 2007; Person et al. 2008, 2010, 2011). We fit separate immersion and emersion occultation light-curve models to each of the individual light curves obtained from these efforts. Asymmetries in the light curves result in the half-light temperatures for opposite sides of a single chord to differ by up to 20 Kelvin in the largest case. The temperature difference for each chord is consistent using both isothermal (b=0) and non-isothermal (e.g. b=-2.2) models based on the methodology described by Elliot & Young (1992). We examine the relationship between the location of immersion and emersion points on Pluto and these temperatures at the half-light radius and will present results for correlations between these location/temperature data and surface composition maps, Pluto geometry, and accumulated insolation patterns. This work was supported by NASA Planetary Astronomy Grant to MIT (NNX10AB27G), and NSF Astronomy and Astrophysics Grant to MIT (0707609). The authors would like to acknowledge the late Professor James L. Elliot for his efforts in beginning this work. References: Elliot, J. L., Dunham, E. W., Bosh, A. S., et al. 1989, Icarus, 77,148 Elliot, J. L., Ates, A., Babcock, B. A., et al. 2003, Nature, 424,165 Elliot, J. L., Person, M. J., Gulbis, A. A. S., et al. 2007, AJ, 134, 1 Elliot, J. L., & Young, L. A. 1992, AJ, 103, 991. Person, M. J., Elliot, J. L., Gulbis, A. A. S., et al. 2008, AJ, 136, 1510 Person, M. J., Elliot, J. L., Bosh, A. S., et al. 2010, Bulletin of the American Astronomical Society, 42, 983 Person, M. J., Dunham, E. W., Bida, T., et al. 2011, EPSC-DPS Joint Meeting 2011, 1374.

  11. Stability of coorbital objects around the Pluto-Charon binary

    NASA Astrophysics Data System (ADS)

    Amarante Luiz, Andre; Hamilton, Douglas P.

    2015-11-01

    The Pluto-Charon binary system is dynamical interesting with its unusual retinue of four small moons. The system is relatively full with few remaining stable locations for additional moons on uninclined, circular orbits; most of these are Trojan (Tadpole/Horseshoe) orbits (Pires et al. 2011; Porter and Stern 2015).In this work, we study the coorbital region of each moon with long time integrations taking into account the gravitational effects of the satellites Charon, Styx, Nix, Kerberos and Hydra. We numerically simulate a sample of 10,000 test particles initially located randomly around each moon's orbit. All test particles start on nearly circular and uninclined orbits and are followed for 5,000 years. The results of our numerical simulations show stable coorbital objects - both Tadpoles and Horseshoes - for each of the small moons. Horseshoe orbits are most common at all moons, although Hydra also has a sizeable population of Tadpole orbits. We also find interesting cases where the orbits switch from L4 Tadpoles to Horseshoes and even to L5 Tadpoles. These transitioning orbits comprise less than 1% of coorbital objects at all moons, and are most common at Styx. We have also tested two different models for the system: i) Pluto and Charon as independent bodies. ii) A single central body with the combined mass of Pluto-Charon and an effective J2 coefficient. Preliminary results show only minor differences between the two models indicating that the binary does not have a strong effect on coorbital motion. We have also investigated eccentric and inclined orbits and will report on our findings.

  12. Pluto-Charon system - the escape of Charon's primordial atmosphere

    SciTech Connect

    Trafton, L.; Stern, S.A.; Gladstone, G.R.

    1988-04-01

    Although Charon seems to have lost its atmosphere and surface volatiles, a lack of heating that would be sufficient to generate melting and consequent separation of the lighter and heavier nonvolatiles has probably resulted in the outer layers' retention of the primordial mix of nonvolatiles. Spectroscopically-determined relative abundances for the Charon surface should accordingly be representative of its entire mass, and thereby constitutes the basis of an understanding of Charon's origin. The study of Charon's exposed nonvolatile ices may ascertain whether the Pluto-Charon system condensed out of the solar nebula directly or from a protoplanetary nebula. 46 references.

  13. Circumstances for Pluto-Charon mutual events in 1988

    NASA Technical Reports Server (NTRS)

    Tholen, David J.; Buie, Marc W.; Swift, Catherine E.

    1987-01-01

    Physical parameters are tabulated for 89 Pluto-Charon mutual events occurring during the 1988 opposition. A primary star and a check star have been selected as comparison stars for events occurring prior to the 1988 opposition. Standardization of the comparison star 1987 Primary has provided a B magnitude of 12.3093 + or - 0.0013 and a V magnitude of 11.4215 + or - 0.0013. The designations, positions, and preliminary magnitudes and colors are also given for two transformation stars selected in order to aid in determination of the color terms necessary to convert the instrumental magnitudes of observers to the standard system.

  14. Polar Wander on Triton and Pluto Due to Volatile Migration

    NASA Technical Reports Server (NTRS)

    Rubincam, David Parry

    2002-01-01

    Polar wander may occur on Triton and Pluto because of volatile migration. Triton, with its low obliquity, can theoretically sublimate volatiles (mostly nitrogen) at the rate of approximately 10(exp 14) kilograms per year from the equatorial regions and deposit them at the poles. Assuming Triton to be rigid on the sublimation timescale, after approximately 10(exp 5) years the polar caps would become large enough to cancel the rotational flattening, with a total mass equivalent to a global layer approximately 120-250 m in depth. At this point the pole wanders about the tidal bulge axis, which is the line joining Triton and Neptune. Rotation about the bulge axis might be expected to disturb the leading side/trailing side cratering statistics. Because no such disturbance is observed, it may be that Triton's mantle viscosity is too high but its surface volatile inventory is too low to permit wander. On the other hand, its mantle viscosity might be low, so that any uncompensated cap load might be expected to wander toward the tidal bulge axis. In this case, the axis of wander passes through the equator from the leading side to the trailing side; rotation about this wander axis would not disturb the cratering statistics. Low-viscosity polar wander may explain the bright southern hemisphere: this is the pole which is wandering toward the equator. In any case the permanent polar caps may be geologically very young. Polar wander may possibly take place on Pluto, due to its obliquity oscillations and perihelion-pole geometry. However, Pluto is probably not experiencing any wander at present. The Sun has been shining strongly on the poles over the last half of the obliquity cycle, so that volatiles should migrate to the equator, stabilizing the planet against wander. Spacecraft missions to Triton and Pluto which measure the dynamical flattening could give information about the accumulation of volatiles at the poles. Such information is best obtained by measuring gravity and

  15. The State of Pluto's Atmosphere in 2012-2013

    NASA Astrophysics Data System (ADS)

    Bosh, Amanda S.; Person, M. J.; Levine, S. E.; Zuluaga, C. A.; Zangari, A. M.; Ruprecht, J. D.; Bowens-Rubin, R.; Brothers, T. C.; Berry, K. L.; Babcock, B. A.; Pasachoff, J. M.; Rojo, P.; Servajean, E.; Förster, F.; Naranjo, O. A.; Taylor, B. W.; Dunham, E. W.; Oswalt, T.; Batcheldor, D.; Murison, M.; Tilleman, T.; Harris, H. C.; Bright, L. P.; Schaefer, G.; Sallum, S.; Midkiff, A. H.; Mailhot, E. A.; Miller, C.; Morris, D.; Wodaski, R.; Bell, D.; Bird, P.; Fey, D.; Geisert, E.; Hastings, D.; Mizusawa, T.; Solenski, P.; Watson, B.

    2013-10-01

    We observed two stellar occultations on UT 4 May 2013 and UT 9 September 2012, with the aim of measuring Pluto's atmospheric parameters. Both of these events were a world-wide collaboration of many observers, and both occurred within one month of Pluto's stationary point. For the May 2013 occultation of an R=14.0 star, observations were attempted from several sites in Chile, Venezuela, Arizona, and Massachusetts. Positive detections were made from the DuPont 2.5-m at Las Campanas, the SMARTS 1-m at Cerro Tololo, and the 0.45-m telescope at Cerro Calan, all in Chile. For the September 2012 occultation of an R=15.2 star, observations were attempted from many sites along the east coast of the U.S., and in Arizona, New Mexico, and Texas. Successful atmosphere occultation light curves were obtained from the MONET 1.2-m at the McDonald Observatory and the FIT Ortega 0.8-m in Melbourne, Florida. From these data, we find that Pluto's atmosphere has maintained the basic parameters of the 2011 measurement (Person, et al., in press) with some small but significant structural changes. The atmospheric temperature and pressure are similar to 2011 values, while the "knee" structure at half-light has continued to evolve and has been further modified since 2011. This light curve evolution maps to changes in the temperature structure and/or haze distribution in the lower atmosphere approximately 1-2 scale heights above the surface. We will present these recent data and discuss their implications for atmospheric change on Pluto as well as extrapolations toward the New Horizons encounter in 2015. This work was supported in part by NASA Planetary Astronomy grants to MIT (NNX10AB27G) and Williams College (NNX08AO50G, NNH11ZDA001N), as well as grants from USRA (#8500-98-003) and Ames Research (#NAS2-97-01) to Lowell Observatory. The observations made at FIT were partially supported by the James and Sara Ortega Endowment.

  16. 1988 CELLO, JADE, and PLUTO contributions to ''exotic'' meson spectroscopy

    SciTech Connect

    Feindt, M.

    1989-04-25

    This article reviews selected recent results on resonance formation in ..gamma gamma.. reactions obtained with the CELLO, JADE, and PLUTO spectrometers at the /ital e//sup +//ital e/minus// storage ring PETRA. New stringent limits on the ..gamma gamma.. coupling of glueball candidates as well as new results on tensor and scalar mesons are presented. The recent observation of ..pi../sub 2/(1680) formation is confirmed by the CELLO group. Finally the two spin 1 states observed in ..gamma gamma../sup */ interactions, in particular the parity of the /ital X//sub 1/(1420) and the model dependence of present analyses are discussed.

  17. Earth, Meet Pluto: The New Horizons Education and Communications Partnership

    NASA Astrophysics Data System (ADS)

    Buckley, M.

    2015-12-01

    The unique partnership between the NASA New Horizons education/communications and public affairs programs tapped into the excitement of visiting an unexplored planet in a new region of the solar system - resulting in unprecedented public participation in and coverage of a planetary mission. With a range of hands-on learning experiences, Web materials and online , the program provided opportunities for students, educators, museums, science centers, the media, Web surfers and other members of the public to ride along on the first mission to Pluto and the Kuiper Belt. The programs leveraged resources, materials and expertise to address a wide range of traditional and nontraditional audiences while providing consistent messages and information on this historic NASA endeavor. The E/C program included a variety of formal lesson plans and learning materials — based on New Horizons science and engineering goals, and aligned with National Research Council's National Science Education Standards — that continue to help students in grades K-12 learn more about science, technology, engineering and mathematics. College students designed and built an actual flight instrument on New Horizons and held internships with the spacecraft integration and test team. New Horizons E/C programs went well beyond the classroom, from a chance for people to send their names to Pluto on board the New Horizons spacecraft before launch, to opportunities for the public to access milestone events and the first-ever close-up views of Pluto in places such as museums, science centers and libraries, TV and the Web — as well as thousands who attended interactive "Plutopalooza" road shows across the country. Teamed with E/C was the public affairs strategy to communicate New Horizons news and messages to media, mission stakeholders, the scientific community and the public. These messages include various aspects of New Horizons, including the progress of the mission and key milestones and achievements

  18. Evidence for Methane Segregation at the Surface of Pluto

    NASA Technical Reports Server (NTRS)

    Doute, S.; Schmitt, B.; Quirico, E.; Owen, T. C.; Cruikshank, Dale P.; deBergh, C.; Geballe, T. R.; Roush, T. L.

    1999-01-01

    In May 1995, a set of spectrophotometric curves of the system Pluto-Charon was recorded with the UKIRT telescope equipped with the spectrometer CGS4. As for the previous observations, the spectra cover a part of the near infrared range, between 1.4 and 2.55 micrometers, but with a higher resolution of approximately 700. In both the 1992 and 1995 data, the existence of solid methane is confirmed by numerous absorption bands, and the carbon monoxide and the nitrogen ices are identified by their respective signatures at 2.35 and 2.15 um. The solid nitrogen seems to be the principal icy component and forms a matrix in which the CH4 and CO molecules are diluted. However a spectroscopic analysis of the 1995 observations indicates that pure methane may coexist with its diluted phase in N2. In order to derive the horizontal and vertical distribution of these different species and to obtain some quantitative information about their characteristics, we have modeled the spectrum of May 15 that corresponds to the maximum of Pluto's visible light curve. This was achieved by means of a radiative transfer algorithm dealing with compact and stratified media. Among the various representations we have tested to describe the surface of Pluto, only a geographical mixture of three distinct units explains all the significant structures of the analyzed spectrum. The first unit is a thin granular layer of pure CH4 covering a compact polycrystalline substratum of N2-CH4-CO, which are in a molecular mixture (concentrations of and CO of the order of 0.45%, 0.1-0.2% respectively). It covers about 70% of the observed area and corresponds to volatile deposits that are sublimating under solar illumination. The second unit is either (a) a single thick layer of pure granular methane or (b) a unit similar to the first unit but with the two components inverted (i.e. with CH4 forming a substratum and the N2-CH4-CO mixture a superficial layer of fine grains). Covering 20% of the surface, it represents

  19. Objectives and Progress on Ground Vibration Testing for the Ares Projects

    NASA Technical Reports Server (NTRS)

    Tuma, Margaret L.; Chenevert, Donald J.

    2010-01-01

    Integrated vehicle ground vibration testing (IVGVT) will be a vital component for ensuring the safety of NASA s next generation of exploration vehicles to send human beings to the Moon and beyond. A ground vibration test (GVT) measures the fundamental dynamic characteristics of launch vehicles during various phases of flight. The Ares Flight & Integrated Test Office (FITO) will be conducting the IVGVT for the Ares I crew launch vehicle at Marshall Space Flight Center (MSFC) from 2012 to 2014 using Test Stand (TS) 4550. MSFC conducted similar GVT for the Saturn V and Space Shuttle vehicles. FITO will perform the IVGVT on the Ares I crew launch vehicle, which will lift the Orion crew exploration vehicle to low Earth orbit, and the Ares V cargo launch vehicle, which can launch the lunar lander into orbit and send the combined Orion/lander vehicles toward the Moon. Ares V consists of a six-engine core stage with two solid rocket boosters and an Earth departure stage (EDS). The same engine will power the EDS and the Ares I second stage. The current plan is to test six configurations in three unique test positions inside TS 4550. Four Ares I second stage test configurations will be tested in Position 3, consisting of the Upper Stage and Orion crew module in four nominal conditions: J-2X engine ignition, post Launch Abort System (LAS) jettison, critical slosh mass, and J-2X burn-out. Position 2 consists of the entire launch stack at first stage burn-out (using empty first stage segments). Position 1 represents the entire launch stack at lift-off (using inert first stage segments). Because of long disuse, TS 4550 is being repaired and modified for reactivation to conduct the Ares I IVGVT. The Shuttle-era platforms have been removed and are being replaced with mast climbers that provide ready access to the test articles and can be moved easily to support different positions within the test stand. Two new cranes will help move test articles at the test stand and at the

  20. 2 kWe Solar Dynamic Ground Test Demonstration Project. Volume 2; Design Report

    NASA Technical Reports Server (NTRS)

    Alexander, Dennis

    1997-01-01

    Critical Design Reviews (CDR's) were held on the Solar Dynamic Ground Test Demonstrator (SDGTD). This CDR summary report will provide the following information for each of the system components and the system integration: (1) A bibliography of design/design review documentation; (2) A summary of the major discussion issues from issues from each design review; (3) A definition of the component and system detail designs along with the bottom line from the supporting analysis; (4) Status and key results from pertinent development activities on-going in the CDR time period; (5) A brief description of planned testing; and (6) A discussion of issues stiff open at the completion of CDR. Appendix 1 to this report contains a listing and status (as of 28 June 1993) of all the action items generated during all SDGTD CDRs. The reader should remember that the SDGTD program is being conducted in an open communication forum, and program participants are encouraged to ask questions or request information. Team members are allowed and encouraged to participate in the reviews on an equal basis. No request for information, as long as it is within the work scope, is refused, so many action items are generated.

  1. Project ORION: Orbital Debris Removal Using Ground-Based Sensors and Lasers

    NASA Technical Reports Server (NTRS)

    Campbell, J. W.

    1996-01-01

    About 100,000 pieces of 1 to 10-cm debris in low-Earth orbit are too small to track reliably but large enough to cripple or destroy spacecraft. The ORION team studied the feasibility of removing the debris with ground-based laser impulses. Photoablation experiments were surveyed and applied to likely debris materials. Laser intensities needed for debris orbit modification call for pulses on the order of lOkJ or continuous wave lasers on the order of 1 MW. Adaptive optics are necessary to correct for atmospheric turbulence. Wavelength and pulse duration windows were found that limit beam degradation due to nonlinear atmospheric processes. Debris can be detected and located to within about 10 microrads with existing radar and passive optical technology. Fine targeting would be accomplished with laser illumination, which might also be used for detection. Bistatic detection with communications satellites may also be possible. We recommend that existing technology be used to demonstrate the concept at a loss of about $20 million. We calculate that an installation to clear altitudes up to 800 km of 1 to 10-cm debris over 2 years of operation would cost about $80 million. Clearing altitudes up to 1,500 km would take about 3 years and cost about $160 million.

  2. Pluto Atmospheric Activity, Ephemeris Offset and Charon Orbital Radius Constrained by Stellar Occultations

    NASA Astrophysics Data System (ADS)

    Sicardy, Bruno; Boissel, Y.; Colas, F.; Roques, F.; Widemann, T.; Assafin, M.; Camargo, J. I. B.; da Silva Neto, D. N.; Ribas, F. B.; Vieira Martins, R.; Andrei, A. H.; Behrend, R.; Beisker, W.; Herald, D.; Bolt, G.; Broughton, J.; Dobosz, T.; Gault, D.; Groom, R.; Kerr, S.; Anderson, P.; Batista, V.; Blair, L.; Greenhill, J.; Frappa, E.; Benard, F.; Teng, J. P.; Gruhn, C.; Blanchard, G.; Castets, M.

    2008-09-01

    We have pursued in 2008 our observing program of stellar occultations by Pluto and its satellites. This program started in 2002, and revealed a two-fold increase of Pluto atmospheric pressure between 1988 and 2002. Various occultations observed in 2006 and 2007 did not reveal any further increase in pressure. Also, a measure of Charon's radius was made using an occultation observed on 11 July 2005. At the moment of writing this abstract, two Pluto occultations have been successfully observed, one on 22 June 2008 (with five positive detections from Australia) and one on 24 June 2008 (with one positive detection from CFHT/Mauna Kea, Hawaii). Furthermore, one positive observation of a Charon occultation has been achieved on 22 June 2008 from La Reunion Island. Data are still being analyzed, and three different results will be presented: (1) The evolution of Pluto's atmospheric pressure since 2002, (2) the evolution of Pluto's positional offset with respect to the DE413 barycentric ephemeris since 2005, showing in particular a linear trend and an offset in declination of more than +0.1 arcsec in 2008, and (3) a new, independent measure of the distance Pluto-Charon using the 22 June 2008 occultation, taking advantage that Pluto and Charon occulted the same target star. Note that since only one occultation chord is available for that event, it is not possible to update Charon's radius using this data.

  3. Pluto' interaction with its space environment: Solar wind, energetic particles, and dust

    NASA Astrophysics Data System (ADS)

    Bagenal, F.; Horányi, M.; McComas, D. J.; McNutt, R. L.; Elliott, H. A.; Hill, M. E.; Brown, L. E.; Delamere, P. A.; Kollmann, P.; Krimigis, S. M.; Kusterer, M.; Lisse, C. M.; Mitchell, D. G.; Piquette, M.; Poppe, A. R.; Strobel, D. F.; Szalay, J. R.; Valek, P.; Vandegriff, J.; Weidner, S.; Zirnstein, E. J.; Stern, S. A.; Ennico, K.; Olkin, C. B.; Weaver, H. A.; Young, L. A.; Gladstone, G. R.; Grundy, W. M.; McKinnon, W. B.; Moore, J. M.; Spencer, J. R.; Andert, T.; Andrews, J.; Banks, M.; Bauer, B.; Bauman, J.; Barnouin, O. S.; Bedini, P.; Beisser, K.; Beyer, R. A.; Bhaskaran, S.; Binzel, R. P.; Birath, E.; Bird, M.; Bogan, D. J.; Bowman, A.; Bray, V. J.; Brozovic, M.; Bryan, C.; Buckley, M. R.; Buie, M. W.; Buratti, B. J.; Bushman, S. S.; Calloway, A.; Carcich, B.; Cheng, A. F.; Conard, S.; Conrad, C. A.; Cook, J. C.; Cruikshank, D. P.; Custodio, O. S.; Dalle Ore, C. M.; Deboy, C.; Dischner, Z. J. B.; Dumont, P.; Earle, A. M.; Ercol, J.; Ernst, C. M.; Finley, T.; Flanigan, S. H.; Fountain, G.; Freeze, M. J.; Greathouse, T.; Green, J. L.; Guo, Y.; Hahn, M.; Hamilton, D. P.; Hamilton, S. A.; Hanley, J.; Harch, A.; Hart, H. M.; Hersman, C. B.; Hill, A.; Hinson, D. P.; Holdridge, M. E.; Howard, A. D.; Howett, C. J. A.; Jackman, C.; Jacobson, R. A.; Jennings, D. E.; Kammer, J. A.; Kang, H. K.; Kaufmann, D. E.; Kusnierkiewicz, D.; Lauer, T. R.; Lee, J. E.; Lindstrom, K. L.; Linscott, I. R.; Lunsford, A. W.; Mallder, V. A.; Martin, N.; Mehoke, D.; Mehoke, T.; Melin, E. D.; Mutchler, M.; Nelson, D.; Nimmo, F.; Nunez, J. I.; Ocampo, A.; Owen, W. M.; Paetzold, M.; Page, B.; Parker, A. H.; Parker, J. W.; Pelletier, F.; Peterson, J.; Pinkine, N.; Porter, S. B.; Protopapa, S.; Redfern, J.; Reitsema, H. J.; Reuter, D. C.; Roberts, J. H.; Robbins, S. J.; Rogers, G.; Rose, D.; Runyon, K.; Retherford, K. D.; Ryschkewitsch, M. G.; Schenk, P.; Schindhelm, E.; Sepan, B.; Showalter, M. R.; Singer, K. N.; Soluri, M.; Stanbridge, D.; Steffl, A. J.; Stryk, T.; Summers, M. E.; Tapley, M.; Taylor, A.; Taylor, H.; Throop, H. B.; Tsang, C. C. C.; Tyler, G. L.; Umurhan, O. M.; Verbiscer, A. J.; Versteeg, M. H.; Vincent, M.; Webbert, R.; Weigle, G. E.; White, O. L.; Whittenburg, K.; Williams, B. G.; Williams, K.; Williams, S.; Woods, W. W.; Zangari, A. M.

    2016-03-01

    The New Horizons spacecraft carried three instruments that measured the space environment near Pluto as it flew by on 14 July 2015. The Solar Wind Around Pluto (SWAP) instrument revealed an interaction region confined sunward of Pluto to within about 6 Pluto radii. The region's surprisingly small size is consistent with a reduced atmospheric escape rate, as well as a particularly high solar wind flux. Observations from the Pluto Energetic Particle Spectrometer Science Investigation (PEPSSI) instrument suggest that ions are accelerated and/or deflected around Pluto. In the wake of the interaction region, PEPSSI observed suprathermal particle fluxes equal to about 1/10 of the flux in the interplanetary medium and increasing with distance downstream. The Venetia Burney Student Dust Counter, which measures grains with radii larger than 1.4 micrometers, detected one candidate impact in ±5 days around New Horizons' closest approach, indicating an upper limit of <4.6 kilometers-3 for the dust density in the Pluto system.

  4. Pluto's interaction with its space environment: Solar wind, energetic particles, and dust.

    PubMed

    Bagenal, F; Horányi, M; McComas, D J; McNutt, R L; Elliott, H A; Hill, M E; Brown, L E; Delamere, P A; Kollmann, P; Krimigis, S M; Kusterer, M; Lisse, C M; Mitchell, D G; Piquette, M; Poppe, A R; Strobel, D F; Szalay, J R; Valek, P; Vandegriff, J; Weidner, S; Zirnstein, E J; Stern, S A; Ennico, K; Olkin, C B; Weaver, H A; Young, L A

    2016-03-18

    The New Horizons spacecraft carried three instruments that measured the space environment near Pluto as it flew by on 14 July 2015. The Solar Wind Around Pluto (SWAP) instrument revealed an interaction region confined sunward of Pluto to within about 6 Pluto radii. The region's surprisingly small size is consistent with a reduced atmospheric escape rate, as well as a particularly high solar wind flux. Observations from the Pluto Energetic Particle Spectrometer Science Investigation (PEPSSI) instrument suggest that ions are accelerated and/or deflected around Pluto. In the wake of the interaction region, PEPSSI observed suprathermal particle fluxes equal to about 1/10 of the flux in the interplanetary medium and increasing with distance downstream. The Venetia Burney Student Dust Counter, which measures grains with radii larger than 1.4 micrometers, detected one candidate impact in ±5 days around New Horizons' closest approach, indicating an upper limit of <4.6 kilometers(-3) for the dust density in the Pluto system. PMID:26989259

  5. An Ideal Customer: A Grounded Theory of Requirements Elicitation, Communication and Acceptance on Agile Projects

    NASA Astrophysics Data System (ADS)

    Martin, Angela; Biddle, Robert; Noble, James

    This chapter explores the reality of the customer role - a critical, complex, and demanding role on agile teams. Despite initial difficulties, customers love agile development and would not do it any other way, but they also encountered many difficulties in their day-to-day work. In this chapter we describe the practices that have emerged to ensure the role works effectively and sustainably, and how the role has evolved from an individual to a team. We hope customers will find this chapter helpful in performing their role, and programmers will find it useful to understand the complexities of customer's role on the project.

  6. Determination of the Charon/Pluto Mass Ratio from Center-of-Light Astrometry

    NASA Technical Reports Server (NTRS)

    Foust, Jeffrey A.; Elliot, J. L.; Olkin, Catherine B.; McDonald, Stephen W.; Dunham, Edward W.; Stone, Remington P. S.; McDonald, John S.; Stone, Ronald C.

    1997-01-01

    The Charon/Pluto mass ratio is a fundamental but poorly known parameter of the two-body system. Previous values for the mass ratio have ranged from 0.0837 plus or minus 0.0147 (Null et al., 1993, Astron. J. 105, 2319-2335) to 0.1566 plus or minus 0.0035 (Young et al., 1994, Icarus 108,186-199). We report here a new determination of the Charon/Pluto mass ratio, using five sets of groundbased images taken at four sites in support of Pluto occultation predictions. Unlike the Null et al. and Young et A determinations, where the centers of light for Pluto and Charon could be determined separately, this technique examines the motion of the center of light of the blended Pluto-Charon image. We compute the offsets of the observed center-of-light position of Pluto-Charon from the ephemeris position of the system and fit these offsets to a model of the Pluto-Charon system. The least-squares fits to the five data sets agree within their errors, and the weighted mean mass ratio is 0.117 plus or minus 0.006. The effects of errors in the Charon light fraction, semimajor axis, and ephemeris have been examined and are equal to only a small fraction of the formal error from the fit. This result is intermediate between those of Null et al., and Young et al. and matches a new value of 0.124 plus or minus 0.008 by Null and Owen (1996, Astron. J. 111, 1368-1381). The mass ratio and resulting individual masses and densities of Pluto and Charon are consistent with a collisional origin for the Pluto-Charon system.

  7. GPS monitoring of vertical ground motion in northern Ardenne Eifel: five campaigns (1999 2003) of the HARD project

    NASA Astrophysics Data System (ADS)

    Demoulin, A.; Campbell, J.; Wulf, A. De.; Muls, A.; Arnould, R.; Görres, B.; Fischer, D.; Kötter, T.; Brondeel, M.; Damme, D. Van.; Jacqmotte, J. M.

    2005-09-01

    We present the HARD project of GPS monitoring of vertical ground motion in NE Ardenne and Eifel (western Europe). Its main purposes are to get a better insight into the present-day rates of vertical ground motion in intraplate settings and to identify the various causes of these motions. Since 1999, we have carried out yearly campaigns of simultaneous GPS measurements at 12 sites situated so as to sample the different tectonic subunits of the study area and especially to record potential displacements across the seismogenic Hockai fault zone. Five campaigns (1999 2003) have been processed currently. Key issues of the data processing with the Gamit software are discussed and first results are presented. Though temporally consistent in many cases, the obtained vertical motion rates are spatially highly variable. They are also much too high (several mm/year) to support a tectonic interpretation, and a long-term influence of groundwater level variations is proposed to account for the observed motions. This influence should be distinguished from seasonal variations and from inter-survey variations linked to the varying degree of soil and subsoil drying off during the successive spring surveys.

  8. A deer study at Aberdeen Proving Ground: Project planning, data assimilation, and risk assessment

    SciTech Connect

    Whaley, J.; Leach, G.; Lee, R.

    1995-12-31

    For more than 75 years, Aberdeen Proving Ground (APG) has been in the business of research, development, and testing of munitions and military vehicles for the US Army. Currently, APG is on the National Priorities List and an installation wide human health risk assessment is underway. Like many Department of the Army facilities, APG has an active hunting program. Hunters harvest approximately 800 whitetail deer (Odocoileus virginanus) from APG annually. To assure public safety, the authors completed a study during the 1993 hunting season to identify any potential human health hazards associated with consumption of venison from APG. This paper will discuss the unique strategy behind the experimental design, the actual assimilation of the data, and the results of the human health risk assessment to establish an appropriate contaminant levels in APG deer. Also, based on information in the literature, the authors considered gender, age, and season in the study design. The list of chemicals for residue analysis included explosives, PCBs, organochlorine pesticides, and metals (As, Cd, Cr, Pb, Hg). Of the 150 deer sampled, metals were the only chemicals detected. The authors compared these data to metal levels in deer collected from an off post background site. Metal levels did not differ significantly between APG deer and off post deer. Finally, the authors completed a health risk assessment of eating deer harvested from both APG and off post. From a survey distributed to the hunters, they incorporated actual consumption data into the exposure assessment. Their findings concluded that the risk of eating APG deer was no higher than eating off post deer; however, total arsenic levels in muscle did appear to elevate the risk.

  9. An Arduino project to record ground motion and to learn on earthquake hazard at high school

    NASA Astrophysics Data System (ADS)

    Saraò, Angela; Barnaba, Carla; Clocchiatti, Marco; Zuliani, David

    2015-04-01

    Through a multidisciplinary work that integrates Technology education with Earth Sciences, we implemented an educational program to raise the students' awareness of seismic hazard and to disseminate good practices of earthquake safety. Using free software and low-cost open hardware, the students of a senior class of the high school Liceo Paschini in Tolmezzo (NE Italy) implemented a seismograph using the Arduino open-source electronics platform and the ADXL345 sensors to emulate a low cost seismometer (e.g. O-NAVI sensor of the Quake-Catcher Network, http://qcn.stanford.edu). To accomplish their task the students were addressed to use the web resources for technical support and troubleshooting. Shell scripts, running on local computers under Linux OS, controlled the process of recording and display data. The main part of the experiment was documented using the DokuWiki style. Some propaedeutic lessons in computer sciences and electronics were needed to build up the necessary skills of the students and to fill in the gap of their background knowledge. In addition lectures by seismologists and laboratory activity allowed the class to exploit different aspects of the physics of the earthquake and particularly of the seismic waves, and to become familiar with the topics of seismic hazard through an inquiry-based learning. The Arduino seismograph achieved can be used for educational purposes and it can display tremors on the local network of the school. For sure it can record the ground motion due to a seismic event that can occur in the area, but further improvements are necessary for a quantitative analysis of the recorded signals.

  10. Common Ground - Kansas Climate and Energy Project connects with the Heartland.

    ScienceCinema

    None

    2013-05-29

    n 2010, Lawrence Berkeley National Laboratory (LBNL) electricity-market, policy and consumer behavior expert Merrian Fuller singled out a small environmental organization in Kansas-- the Climate and Energy Project (CEP)-- as an outstanding example of how you change behavior on energy efficiency and reduce carbon emissions through an apolitical emphasis on heartland values. In the summer of 2011, a team from LBNL, seeking to capture what Fuller had featured in her report "Driving Demand for Home Energy Improvement," visited Kansas. Speaking with CEP's Nancy Jackson and Dorothy Barnett, as well as farmers, small business owners, politicians and others, the team produced this video, which shows how and why CEP has become an inspiration to other environmental organizations that are seeking to change behavior where climate-change skepticism abounds.

  11. Common Ground - Kansas Climate and Energy Project connects with the Heartland.

    SciTech Connect

    2011-01-01

    n 2010, Lawrence Berkeley National Laboratory (LBNL) electricity-market, policy and consumer behavior expert Merrian Fuller singled out a small environmental organization in Kansas-- the Climate and Energy Project (CEP)-- as an outstanding example of how you change behavior on energy efficiency and reduce carbon emissions through an apolitical emphasis on heartland values. In the summer of 2011, a team from LBNL, seeking to capture what Fuller had featured in her report "Driving Demand for Home Energy Improvement," visited Kansas. Speaking with CEP's Nancy Jackson and Dorothy Barnett, as well as farmers, small business owners, politicians and others, the team produced this video, which shows how and why CEP has become an inspiration to other environmental organizations that are seeking to change behavior where climate-change skepticism abounds.

  12. CVF spectrophotometry of Pluto - Correlation of composition with albedo. [Circularly variable filter

    SciTech Connect

    Marcialis, R.L.; Lebofsky, L.A. Arizona Univ., Tucson )

    1991-02-01

    The present time-resolved, 0.96-2.65-micron spectrophotometry for the Pluto-Charon system indicates night-to-night variations in the depths of the methane absorptions such that the bands' equivalent width is near minimum light. The interpretation of these data in terms of a depletion of methane in dark regions of the planet, relative to bright ones, is consistent with the Buie and Fink (1987) observations. The near-IR spectrum of Pluto seems to be dominated by surface frost. It is suggested that the dark equatorial regions of Pluto are redder than those of moderate albedo. 28 refs.

  13. Rotationally Resolved Study Of The Surface Of Pluto In Support Of NASA New Horizons Mission

    NASA Astrophysics Data System (ADS)

    Pinilla-Alonso, Noemi; Bauer, James; Buratti, Bonnie; Cruikshank, Dale P.; Grundy, Will M.; Emery, Joshua P.; Fernandez, Yan; Lisse, Casey M.; Stansberry, John

    2013-10-01

    We propose Warm Spitzer/IRAC GO observations of the Pluto system, as part of a worldwide observing campaign in support of the NASA New Horizons. The aim of this proposal is to characterize the surface heterogeneity of Pluto through photometric observations at the 3.6 and 4.5 ?m IRAC channels. We ask for observations at 18 longitudes (~ each 20 o). The surface of Pluto is formed by patches of CH4, N2 and CO. The differences in the visible albedo on the surface of Pluto pretty much span the range from the darkest to the brightest stuff in the solar system. Near-infrared and visible observations, performed over the last 30 years, show a dynamic and variable system, with a timescale on the order of months to years. Pluto is currently moving away from the sun and entering northern summer. Despite many model predictions that the atmosphere will collapse, it has significantly increased in density over the last ~20 years. Spitzer holds a unique place in the solar system to observe Pluto, above the Earth?s atmosphere in a stable Earth-trailing environment. By 2014 Pluto will be leaving the galactic background, allowing for better measurements than have been possible in the last 5 years. Relative differences in the albedo of Pluto in ch1 and ch2 is an effective tool to study the different mixing ratios of the materials on the surface. Both channels are sensitive to different ices. This is also promising for the search of other materials expected to be on the surface of Pluto but have not been identified in the vis/NIR, e.g CO2 that has its fundamental absorption band in the wavelength range of ch2. Finally these observations will also be used to check for secular differences on the surface by comparing those Spitzer observations of Pluto made in 2004 and the ones obtained through this program. The combination of these datasets with observations done at other wavelengths will place strong constraints on Pluto?s surface albedo, and shed some light on the local interaction

  14. Escape of Pluto's Atmosphere: In Situ Measurements from New Horizons and Remote Observations from Chandra

    NASA Astrophysics Data System (ADS)

    McNutt, R. L., Jr.; Hill, M. E.; Kollmann, P.; Krimigis, S. M.; Brown, L. E.; Kusterer, M. B.; Lisse, C. M.; Mitchell, D. G.; Vandegriff, J. D.; McComas, D. J.; Bagenal, F.; Elliott, H. A.; Ennico Smith, K.; Horanyi, M.; Olkin, C.; Piquette, M. R.; Stern, A.; Strobel, D. F.; Szalay, J.; Valek, P. W.; Weaver, H. A., Jr.; Weidner, S.; Young, L. A.; Zirnstein, E.; Wolk, S. J.

    2015-12-01

    The escape rate of Pluto's atmosphere is of significant scientific interest. It is a Group 1 science goal of the New Horizons mission. In addition, a Group 3 science goal of the mission has been to characterize the energetic particle environment of the Pluto system. The Pluto Energetic Particle Spectrometer Science Investigation (PEPSSI) is a compact, energy by time-of-flight (TOF) instrument developed to address both of these science goals. Pluto is known to have an atmosphere, and current models postulate a majority N2 composition with free escape of up to ~1028 molecules/sec. This is very similar to the physical situation of a variety comets observed in the inner heliosphere. However, the gravitational field of Pluto exerts a significant effect on the escaping neutrals, unlike at a comet. The ionization of neutrals emitted from comets results in heavy ions, which are accelerated by the convective solar-wind electric field. The expected major ionization product near Pluto is singly ionized N2 molecules with pickup energies sufficient to be measured with PEPSSI. In the process of measuring the local energetic particle environment, such measurements will also provide constraints on the local density of Pluto's extended atmosphere, which, along with plasma measurements from the Solar Wind Around Pluto (SWAP) instrument also on New Horizons should allow the inference of the strengh and extent of mass-loading of the solar wind due to Pluto's atmosphere. Pluto's neutral atmosphere also provides a source population for charge exchange of highly ionized, minor ions in the solar wind, such as O, C, and N. This process allows these ions to capture one electron and be left in an excited state. That state, in turn decays with the emission of a low-energy (100 eV to 1 keV) X-ray, which can be detected at Earth. Such observations have been made of comets since the X-ray emission discovery in 1996 and used to infer cometary outgassing rates. Similar observatins have been made

  15. Planet X and the stability of resonances in the Neptune-Pluto system

    NASA Technical Reports Server (NTRS)

    Jackson, A. A.; Killen, R. M.

    1988-01-01

    Four test orbits of a trans-Plutonian planet have been integrated forward for four million years in order to determine the effects of such a body on the stability of the Neptune-Pluto 3:2 resonance. Planets beyond Pluto with masses of 0.1 M and 1.0 Earth masses in orbits at 48.3 and 75.5 AU, respectively, do not disturb the 3:2 resonance. Test planets of 5 Earth masses with semimajor axes of 52.5 and 62.5 AU disrupt the four million year libration of Pluto's argument of perihelion.

  16. Dust inventory through the Solar System: From Earth to Pluto

    NASA Astrophysics Data System (ADS)

    Piquette, M. R.; Horanyi, M.; Stern, A.; Bagenal, F.; Szalay, J.; Poppe, A. R.; Weaver, H. A., Jr.; Young, L. A.; Olkin, C.; Ennico Smith, K.

    2015-12-01

    The Student Dust Counter (SDC) is an impact dust detector onboard the New Horizons spacecraft, observing the dust density distribution since April 2006 across the Solar System. SDC measures the mass of dust grains in the range of 10-12 < m < 10-9 g, covering an approximate size range of 0.5-10 um in particle radius. The measurements can be compared to model predictions following the orbital evolution of dust grains originating from the Edgeworth-Kuiper Belt and migrating inward due to Poynting-Robertson drag. SDC's results, as well as data taken by the Pioneer 10 dust detector, are compared to model predictions to estimate the mass production rate and the ejecta size distribution power law exponent. On July 14, 2015, the New Horizons spacecraft passed through the Pluto system and is now continuing to take measurements in the solar system's third zone, the Kuiper Belt. The measurements SDC has taken throughout the solar system, including in the Pluto-Charon system, will be discussed in this presentation, as well as predictions for the dust distribution it will measure as it explores the Kuiper Belt.

  17. Pluto and Triton: Interactions Between Volatiles and Dynamics

    NASA Technical Reports Server (NTRS)

    Rubincam, D. P.

    2001-01-01

    Volatiles moving across the surfaces of Pluto and Triton can give rise to interesting dynamical consequences. Conversely, measurement of dynamical states can help constrain the movement of volatiles and interior structure of both bodies. Polar wander may theoretically occur on both Triton and Pluto. Triton's obliquity is low, so that the equatorial regions receive more insolation than the poles. Hence there is a tendency for nitrogen ice to sublime at the equator and condense at the poles, creating polar caps. If the nitrogen supply is large enough, then these caps could move in approximately 10(exp 5) years the global equivalent of 200 m of ice to the poles. At this point the equatorial moment of inertia becomes larger than the moment of inertia measured about the rotation axis, so that Triton overbalances and becomes dynamically unstable. The satellite then undergoes polar wander, restoring stability when the new equator contains the excess matter. Hence the pole may be continually wandering. Neptune raises a permanent tidal bulge on Triton, so that the satellite's surface is elongated like a football, with the long axis pointing at Neptune. This is expected to be the axis about which the pole wanders. Volatile migration would resurface the satellite to some depth and wandering would disturb leading side/trailing side crater statistics. Additional information is contained in the original extended abstract.

  18. Common Mountain-Building Processes on Ceres and Pluto?

    NASA Astrophysics Data System (ADS)

    Sykes, Mark V.; Bland, Michael; Buczkowski, Debra L.; Feldman, William; Hoffmann, Martin; Hughson, Kynan; Jaumann, Ralf; King, Scott; LeCorre, Lucille; Li, Jian-Yang; Mest, Scott; Natheus, Andreas; O'Brien, David; Platz, Thomas; Prettyman, Thomas; Raymond, Carol; Reddy, Vishnu; Reusch, Ottaviano; Russell, Christopher T.; Schenk, Paul; Sizemore, Hanna; Schmidt, Britney; Travis, Bryan

    2015-11-01

    The Dawn Framing Camera has revealed a unique feature on the surface of Ceres, popularly referred to as the “pyramid.” It is a roughly conical and flat-topped feature with an elevation of ~5 km and base diameter of ~20 km. The side slopes are roughly consistent with an angle of repose one expects of particulate material on Earth (which may change with gravity). The pyramid is also notable for its striations down its side over half of its circumference. These striations sharply terminate at the base of the cone without a distinctive talus deposit, including an adjacent crater. Recently released images of Norgay Montes and a second mountain chain in Tombaugh Regio on Pluto by the New Horizons mission reveal mountains with strikingly similar morphologies with the Ceres pyramid. They are of similar size to within a factor of a few. We investigate the hypothesis that there may be a common mechanism giving rise to these features on the two dwarf planets. Given their significantly different heliocentric distances, the remarkable ongoing widespread processing of the surface of Pluto and increasing evidence of relatively recent activity in some areas of Ceres, interior processes such as plume activity or tectonics may be responsible. A comparative study of uplift morphology on the two dwarf planets may also lend insights into heat production and retention on such bodies throughout the solar system.

  19. Pluto and Triton: Interactions Between Volatiles and Dynamics

    NASA Astrophysics Data System (ADS)

    Rubincam, D. P.

    2001-01-01

    Volatiles moving across the surfaces of Pluto and Triton can give rise to interesting dynamical consequences. Conversely, measurement of dynamical states can help constrain the movement of volatiles and interior structure of both bodies. Polar wander may theoretically occur on both Triton and Pluto. Triton's obliquity is low, so that the equatorial regions receive more insolation than the poles. Hence there is a tendency for nitrogen ice to sublime at the equator and condense at the poles, creating polar caps. If the nitrogen supply is large enough, then these caps could move in approximately 105 years the global equivalent of 200 m of ice to the poles. At this point the equatorial moment of inertia becomes larger than the moment of inertia measured about the rotation axis, so that Triton overbalances and becomes dynamically unstable. The satellite then undergoes polar wander, restoring stability when the new equator contains the excess matter. Hence the pole may be continually wandering. Neptune raises a permanent tidal bulge on Triton, so that the satellite's surface is elongated like a football, with the long axis pointing at Neptune. This is expected to be the axis about which the pole wanders. Volatile migration would resurface the satellite to some depth and wandering would disturb leading side/trailing side crater statistics. Additional information is contained in the original extended abstract.

  20. Vigorous convection as the explanation for Pluto's polygonal terrain.

    PubMed

    Trowbridge, A J; Melosh, H J; Steckloff, J K; Freed, A M

    2016-06-01

    Pluto's surface is surprisingly young and geologically active. One of its youngest terrains is the near-equatorial region informally named Sputnik Planum, which is a topographic basin filled by nitrogen (N2) ice mixed with minor amounts of CH4 and CO ices. Nearly the entire surface of the region is divided into irregular polygons about 20-30 kilometres in diameter, whose centres rise tens of metres above their sides. The edges of this region exhibit bulk flow features without polygons. Both thermal contraction and convection have been proposed to explain this terrain, but polygons formed from thermal contraction (analogous to ice-wedges or mud-crack networks) of N2 are inconsistent with the observations on Pluto of non-brittle deformation within the N2-ice sheet. Here we report a parameterized convection model to compute the Rayleigh number of the N2 ice and show that it is vigorously convecting, making Rayleigh-Bénard convection the most likely explanation for these polygons. The diameter of Sputnik Planum's polygons and the dimensions of the 'floating mountains' (the hills of of water ice along the edges of the polygons) suggest that its N2 ice is about ten kilometres thick. The estimated convection velocity of 1.5 centimetres a year indicates a surface age of only around a million years. PMID:27251278

  1. Ground-based & satellite DOAS measurements integration for air quality evaluation/forecast management in the frame of QUITSAT Project.

    NASA Astrophysics Data System (ADS)

    Kostadinov, Ivan; Petritoli, Andrea; Giovanelli, Giorgio; Masieri, Samuele; Premuda, Margarita; Bortoli, Daniele; Ravegnani, Fabrizio; Palazzi, Elisa

    The observations of the Earth's atmosphere from space provide excellent opportunities for the exploration of the sophisticated physical-chemical processes on both global and regional scales. The major interest during the last three decades was focused mainly on the stratosphere and the ozone depletion. More recently the continuous improvements of satellite sensors have revealed new opportunities for larger applications of space observations, attracting scientific interest to the lower troposphere and air quality issues. The air quality depends strongly on the anthropogenic activity and therefore regional environmental agencies along with policy makers are in need of appropriate means for its continuous monitoring and control to ensure the adoption of the most appropriate actions. The goal of the pilot project QUITSAT, funded by the Italian Space Agency, is to develop algorithms and procedures for the evaluation and prediction of the air quality in Lombardia and Emilia-Romagna regions (Italy) by means of integrating satellite observations with ground-based in-situ and remote sensing measurements. This work presents dedicated Differential Optical Absorption Spectroscopy (DOAS) measurements performed during the summer of 2007 and the winter of 2008. One of the DOAS instruments operate at Mt.Cimone station (2165m a.s.l) and the other two instruments conducted measurements in/near Bologna (90 m. a.s.l). Different observational geometry was adopted (zenith-sky, multi-axis and long-path) aimed to provide tropospheric NO2 columns and O3, SO2 and HCHO concentrations at ground level as an input data for QUITSAT procedures. Details of the instruments, the radiative transfer model used and the algorithms for retrieving and calculation of the target gases concentrations are presented. The obtained experimental results are correlated with the corresponding ones retrieved from SCIAMACHY /ENVISAT observations during the overpasses above the ground-based instruments. The analysis

  2. A Critical Evaluation of Ground-Penetrating Radar Methodology on the Kalavasos and Maroni Built Environments (KAMBE) Project, Cyprus (Invited)

    NASA Astrophysics Data System (ADS)

    Leon, J.; Urban, T.; Gerard-Little, P.; Kearns, C.; Manning, S. W.; Fisher, K.; Rogers, M.

    2013-12-01

    at these settlements. Having just completed this first phase of the project, we report on the results of large-scale geophysical survey, including the identification of at least two previously unknown building complexes (one at each site). Here we focus particularly on ground-penetrating radar (GPR) data and survey methodology, in an effort to critically examine the range of approaches applied throughout the project (e.g. various antennae frequencies, data-collection densities, soil moisture/seasonality of survey, and post-collection data processing [2]), and to identify the most effective parameters for archaeological geophysical survey in the region. This paper also advocates for the role of geophysical survey within a multi-component archaeological project, not simply as a prospection tool but as an archaeological data collection method in its own right. 1]Fisher, K. D., J. Leon, S. Manning, M. Rogers, and D. Sewell. In Press. 2011-2012. 'The Kalavasos and Maroni Built Environments Project: Introduction and preliminary report on the 2008 and 2010 seasons. Report of the Department of Antiquities, Cyprus. 2] e.g. Rogers, M., J. F. Leon, K. D. Fisher, S. W. Manning and D. Sewell. 2012. 'Comparing similar ground-penetrating radar surveys under different soil moisture conditions at Kalavasos-Ayios Dhimitrios, Cyprus.' Archaeological Prospection 19 (4): 297-305.

  3. Data for ground-water test hole near Butte City, Central Valley aquifer project, California

    USGS Publications Warehouse

    French, James J.; Page, R.W.; Bertoldi, G.L.

    1983-01-01

    This report provides preliminary data for the third of seven test holes drilled as part of the Central Valley Aquifer Project which is part of the National Regional Aquifer Systems Analysis Program. The test hole was drilled in the SW 1/4 NE 1/4 sec. 32, T. 19 N., R. 1 W., Glenn County, California, about one-half mile south of the town of Butte City. Drilled to a depth of 1,432 feet below land surface, the hole is cased to a depth of 82 feet and equipped with three piezometer tubes to depths of 592 feet, 968 feet, and 1,330 feet. A 5-foot well screen is at the bottom of each piezometer. Each screened interval has a cement plug above and below it to isolate it from other parts of the aquifer , and the well bore is filled between the plugs with sediment. Nine cores and 49 sidewall cores were recovered. Laboratory tests were made for mineralogy, hydraulic conductivity, porosity , consolidation, grain-size distribution, Atterberg limits, X-ray diffraction, and chemical quality of water. Geophysical and thermal gradient logs were made. The hole is sampled periodically for chemical analysis and measured for water level in the three tapped zones. This report presents methods used to obtain field samples, laboratory procedures, and the data obtained. (USGS)

  4. Data for ground-water test hole near Nicolaus, Central Valley aquifer project, California

    USGS Publications Warehouse

    French, James J.; Page, R.W.; Bertoldi, Gilbert L.

    1983-01-01

    Preliminary data are provided for the third of seven test holes drilled as a part of the Central Valley Aquifer Project which is part of the National Regional Aquifer Systems Analysis Program. The test hole was drilled in the SW 1/4 NE 1/4 sec. 2, T.12N., R.3E., Sutter County, California, about 1 1/2 miles northwest of the town of Nicolaus. Drilled to a depth of 1,150 feet below land surface, the hole is cased to a depth of 100 feet and equipped with three piezometer tubes to depths of 311, 711, and 1,071 feet. A 5-foot well screen is set in sand at the bottom of each piezometer. Each screened interval has a cement plug above and below it to isolate it from other parts of the aquifer, and the well bore is filled between the plugs with sediment. Thirty-one cores and 34 sidewall cores were recovered. Laboratory tests were made for minerology, consolidation, grain-size distribution, Atterberg limits, X-ray diffraction, thermal conductivity, and chemical analysis of water. Geophysical and thermal gradient logs were made. The hole is sampled periodically for chemical analysis of the three tapped zones and measured for water level. This report presents methods used to obtain field samples, laboratory procedures, and the data obtained. (USGS)

  5. Data for ground-water test hole near Zamora, Central Valley Aquifer Project, California

    USGS Publications Warehouse

    French, J.J.; Page, R.W.; Bertoldi, G.L.

    1982-01-01

    Preliminary data are presented for the first of seven test holes drilled as a part of the Central Valley Aquifer Project which is part of the National Regional Aquifer Systems Analysis Program. The test hole was drilled in the SW 1/4 SE 1/4 sec. 34, T. 12 N. , R. 1 E., Yolo County, California, about 3 miles northeast of the town of Zamora. Drilled to a depth of 2,500 feet below land surface, the hole is cased to a depth of 190 feet and equipped with three piezometer tubes to depths of 947, 1,401, and 2,125 feet. A 5-foot well screen is at the bottom of each piezometer. Eighteen cores and 68 sidewall cores were recovered. Laboratory tests were made for mineralogy, hydraulic conductivity, porosity , consolidation, grain-size distribution, Atterberg limits, X-ray diffraction, diatom identification, thermal conductivity, and chemical analysis of water. Geophysical and thermal gradient logs were made. The hole is sampled periodically for chemical analysis and measured for water level in the three tapped zones. This report presents methods used to obtain field samples, laboratory procedures, and the data obtained. (USGS)

  6. Metadata database and data analysis software for the ground-based upper atmospheric data developed by the IUGONET project

    NASA Astrophysics Data System (ADS)

    Hayashi, H.; Tanaka, Y.; Hori, T.; Koyama, Y.; Shinbori, A.; Abe, S.; Kagitani, M.; Kouno, T.; Yoshida, D.; Ueno, S.; Kaneda, N.; Yoneda, M.; Tadokoro, H.; Motoba, T.; Umemura, N.; Iugonet Project Team

    2011-12-01

    The Inter-university Upper atmosphere Global Observation NETwork (IUGONET) is a Japanese inter-university project by the National Institute of Polar Research (NIPR), Tohoku University, Nagoya University, Kyoto University, and Kyushu University to build a database of metadata for ground-based observations of the upper atmosphere. The IUGONET institutes/universities have been collecting various types of data by radars, magnetometers, photometers, radio telescopes, helioscopes, etc. at various locations all over the world and at various altitude layers from the Earth's surface to the Sun. The metadata database will be of great help to researchers in efficiently finding and obtaining these observational data spread over the institutes/universities. This should also facilitate synthetic analysis of multi-disciplinary data, which will lead to new types of research in the upper atmosphere. The project has also been developing a software to help researchers download, visualize, and analyze the data provided from the IUGONET institutes/universities. The metadata database system is built on the platform of DSpace, which is an open source software for digital repositories. The data analysis software is written in the IDL language with the TDAS (THEMIS Data Analysis Software suite) library. These products have been just released for beta-testing.

  7. Hydrologic data for 1994-96 for the Huron Project of the High Plains Ground-Water Demonstration Program

    USGS Publications Warehouse

    Carter, J.M.

    1996-01-01

    This report presents data on precipitation, water levels, and water quality that have been collected or compiled for water years 1994 through 1996 for the Huron Project of the High Plains Ground-Water Demonstration Program, under the guidance of the Bureau of Reclamation. This is the second report for the project. The first report (Carter, 1995) presented data collected through water year 1993. The purpose of the Huron Project is to demonstrate the artificial recharge potential of glacial aquifers in eastern South Dakota. High flows from the James River during spring runoff were used as a source of supplemental recharge for the Warren aquifer, which is a buried, glacial aquifer. In 1990, 70 observation wells were installed by the South Dakota Department of Environment and Natural Resources (DENR) specifically for this study, and 15 existing DENR observation wells were incorporated into the study. In 1993, the recharge well was installed. After a trial injection of recharge water in April 1994, continuous injection began in June 1994. Many sites were monitored to obtain information before, during, and after recharging the aquifer. This report presents data that were collected during the three phases of recharge. Precipitation data are collected at two sites within the study area. A site description and daily precipitation for water years 1994-95 are presented for one precipitation site. Water-level hydrographs are presented for the 85 observation wells and the recharge well. Hydrographs are shown for the period from October 1, 1993, through November 29, 1995. Recharge water was injected from June 2, 1994, through July 29, 1994, and from June 14, 1995, through September 13, 1995. The cumulative volume of injected water and the injection rates into the aquifer are presented for the periods of recharge. Water-quality data were collected from screening, detailed, and plume-monitoring sampling programs. Screening water-quality data for six observation wells are presented

  8. Final Report for the SEED Project: ''Inexpensive Chemresistor Sensors for Real Time Ground Water Contamination Measurement''

    SciTech Connect

    HUGHES, ROBERT C.; DAVIS, CHAD E.; THOMAS, MICHAEL L.

    2002-04-01

    This report details some proof-of-principle experiments we conducted under a small, one year ($100K) grant from the Strategic Environmental Research and Development Program (SERDP) under the SERDP Exploratory Development (SEED) effort. Our chemiresistor technology had been developed over the last few years for detecting volatile organic compounds (VOCs) in the air, but these sensors had never been used to detect VOCs in water. In this project we tried several different configurations of the chemiresistors to find the best method for water detection. To test the effect of direct immersion of the (non-water soluble) chemiresistors in contaminated water, we constructed a fixture that allowed liquid water to pass over the chemiresistor polymer without touching the electrical leads used to measure the electrical resistance of the chemiresistor. In subsequent experiments we designed and fabricated probes that protected the chemiresistor and electronics behind GORE-TEX{reg_sign} membranes that allowed the vapor from the VOCs and the water to reach a submerged chemiresistor without allowing the liquids to touch the chemiresistor. We also designed a vapor flow-through system that allowed the headspace vapor from contaminated water to be forced past a dry chemiresistor array. All the methods demonstrated that VOCs in a high enough concentration in water can be detected by chemiresistors, but the last method of vapor phase exposure to a dry chemiresistor gave the fastest and most repeatable measurements of contamination. Answers to questions posed by SERDP reviewers subsequent to a presentation of this material are contained in the appendix.

  9. Investigation of particle sizes in Pluto's atmosphere from the 29 June 2015 occultation

    NASA Astrophysics Data System (ADS)

    Sickafoose, Amanda A.; Bosh, A. S.; Person, M. J.; Zuluaga, C. A.; Levine, S. E.; Pasachoff, J. M.; Babcock, B. A.; Dunham, E. W.; McLean, I.; Wolf, J.; Abe, F.; Bida, T. A.; Bright, L. P.; Brothers, T.; Christie, G.; Collins, P. L.; Durst, R. F.; Gilmore, A. C.; Hamilton, R.; Harris, H. C.; Johnson, C.; Kilmartin, P. M.; Kosiarek, M. R.; Leppik, K.; Logsdon, S.; Lucas, R.; Mathers, S.; Morley, C. J. K.; Natusch, T.; Nelson, P.; Ngan, H.; Pfüller, E.; de, H.-P.; Sallum, S.; Savage, M.; Seeger, C. H.; Siu, H.; Stockdale, C.; Suzuki, D.; Thanathibodee, T.; Tilleman, T.; Tristam, P. J.; Van Cleve, J.; Varughese, C.; Weisenbach, L. W.; Widen, E.; Wiedemann, M.

    2015-11-01

    The 29 June 2015 observations of a stellar occultation by Pluto, from SOFIA and ground-based sites in New Zealand, indicate that haze was present in the lower atmosphere (Bosh et al., this conference). Previously, slope changes in the occultation light curve profile of Pluto’s lower atmosphere have been attributed to haze, a steep thermal gradient, and/or a combination of the two. The most useful diagnostic for differentiating between these effects has been observing occultations over a range of wavelengths: haze scattering and absorption are functions of particle size and are wavelength dependent, whereas effects due to a temperature gradient should be largely independent of observational wavelength. The SOFIA and Mt. John data from this event exhibit obvious central flashes, from multiple telescopes observing over a range of wavelengths at each site (Person et al. and Pasachoff et al., this conference). SOFIA data include Red and Blue observations from the High-speed Imaging Photometer for Occultations (HIPO, at ~ 500 and 850 nm), First Light Infrared Test Camera (FLITECAM, at ~1800 nm), and the Focal Plan Imager (FPI+, at ~ 600 nm). Mt. John data include open filter, g', r', i', and near infrared. Here, we analyze the flux at the bottom of the light curves versus observed wavelength. We find that there is a distinct trend in flux versus wavelength, and we discuss applicable Mie scattering models for different particle size distributions and compositions (as were used to characterize haze in Pluto's lower atmosphere in Gulbis et al. 2015).SOFIA is jointly operated by the Universities Space Research Association, Inc. (USRA), under NASA contract NAS2-97001, and the Deutsches SOFIA Institut (DSI) under DLR contract 50 OK 0901 to the University of Stuttgart. Support for this work was provided by the National Research Foundation of South Africa, NASA SSO grants NNX15AJ82G (Lowell Observatory), PA NNX10AB27G (MIT), and PA NNX12AJ29G (Williams College), and the NASA

  10. Resource Conservation and Recovery Act ground-water monitoring projects for Hanford facilities: Progress report for the period October 1 to December 31, 1989

    SciTech Connect

    Smith, R.M.; Bates, D.J.; Lundgren, R.E.

    1990-03-01

    This is Volume 1 of a two-volume document that describes the progress of 15 Hanford Site ground-water monitoring projects for the period October 1 to December 31, 1989. This volume discusses the projects. The work described in this document is conducted by the Pacific Northwest Laboratory under the management of Westinghouse Hanford Company for the US Department of Energy. Concentrations of ground-water constituents are compared to federal drinking water standards throughout this document for reference purposes. All drinking water supplied from the samples aquifer meets regulatory standards for drinking water quality. 51 refs., 35 figs., 86 tabs.

  11. A Detailed Look at a Pluto Central Flash Occultation: Limits on Pluto's Haze Opacity, Oblateness and Surface Frost Pressure

    NASA Astrophysics Data System (ADS)

    Young, Eliot F.; Olkin, Catherine B.; Young, Leslie A.; Howell, Robert R.; French, Richard G.

    2014-11-01

    We report a new analysis of occultation lightcurves observed in 2007 (from Mt John Observatory) and 2011 (from San Pedro Martir Observatory). In both cases, lightcurves were observed simultaneously in two wavelengths, and in the 2007 case, a double-peaked central flash was observed. In contrast to the wavelength-dependent opacities reported by Elliot et al. (Nature 2003; 424:165) in 2002, we see no evidence for an opacity source in Pluto's atmosphere that has greater extinction at shorter wavelengths. From the separation of the peaks in the 2007 central flash lightcurves, we find the oblateness of Pluto's atmosphere (equatorial vs. polar radii of pressure contours near R = 1215 km) of 1.03 ± 0.002. If this oblateness were caused solely by zonal winds, the wind speed at the equator would have to be 206 km/s; an alternative explanation is that the equatorial bulge is caused by warmer temperatures above the equator than the poles. Finally, the amplitudes of the central flash peaks are very sensitive to the surface pressure. If that pressure is driven by the vapor pressure of nitrogen ice, then the ice temperature of 42 ± 2 K reported by Tryka et al. (Icarus 1994; 212:513) is too high and produces central flash amplitudes that are much too bright. We find that the observed central flash peak amplitudes are consistent with nitrogen ice temperatures near 37 K, closer to the alpha-beta transition temperature (35.6 K) of nitrogen ice.

  12. Geology of Pluto and Charon Overview

    NASA Astrophysics Data System (ADS)

    Moore, Jeffrey M.; Stern, S. A.; Weaver, H. A.; Young, Leslie A.; Ennico, Kimberly; Olkin, Cathy B.

    2015-11-01

    Pluto’s surface was found to be remarkably diverse in terms of its range of landforms, terrain ages, and inferred geological processes. There is a latitudinal zonation of albedo. The conspicuous bright albedo heart-shaped feature informally named Tombaugh Regio is comprised of several terrain types. Most striking is Texas-sized Sputnik Planum, which is apparently level, has no observable craters, and is divided by polygons and ovoids bounded by shallow troughs. Small smooth hills are seen in some of the polygon-bounding troughs. These hills could either be extruded or exposed by erosion. Sputnik Planum polygon/ovoid formation hypotheses range from convection to contraction, but convection is currently favored. There is evidence of flow of plains material around obstacles. Mountains, especially those seen south of Sputnik Planum, exhibit too much relief to be made of CH4, CO, or N2, and thus are probably composed of H2O-ice basement material. The north contact of Sputnik Planum abuts a scarp, above which is heavily modified cratered terrain. Pluto’s large moon Charon is generally heavily to moderately cratered. There is a mysterious structure in the arctic. Charon’s surface is crossed by an extensive system of rift faults and graben. Some regions are smoother and less cratered, reminiscent of lunar maria. On such a plain are large isolated block mountains surrounded by moats. At this conference we will present highlights of the latest observations and analysis. This work was supported by NASA's New Horizons project.

  13. New Horizons Sees Pluto (Animation) Note: There is debate within the science community as to whether

    NASA Technical Reports Server (NTRS)

    2007-01-01

    The Long Range Reconnaissance Imager (LORRI) on New Horizons acquired images of the Pluto field three days apart in late September 2006, in order to see Pluto's motion against a dense background of stars. LORRI took three frames at 1-second exposures on both Sept. 21 and Sept. 24. Because it moved along its predicted path, Pluto was detected in all six images.

    These images are displayed using false-color to represent different intensities: the lowest intensity level is black, different shades of red mark intermediate intensities, and the highest intensity is white.

    The images appear pixilated because they were obtained in a mode that compensates for the drift in spacecraft pointing over long exposure times. LORRI also made these observations before operators uploaded new flight-control software in October; the upgraded software package includes an optical navigation capability that will make LORRI approximately three times more sensitive still than for these Pluto observations.

  14. Pluto Revealed: First Results from the Historic 1st Fly-By Space Mission

    NASA Technical Reports Server (NTRS)

    Smith, Kimberly Ennico

    2015-01-01

    On July 14, 2015, after a 9.5 year trek across the solar system, NASAs New Horizons spacecraft successfully flew by the dwarf planet Pluto and its system of moons, taking imagery, spectra and in-situ particle data. Data obtained by New Horizons will address numerous outstanding questions on the geology and composition of Pluto and Charon, plus measurements of Plutos atmosphere, and provide revised understanding of the formation and evolution of Pluto and Charon and its smaller moons. This data set is an invaluable glimpse into the outer Third Zone of the Solar System. Data from the intense July 14th fly-by sequence will be downlinked to Earth over a period of 16 months, the duration set by the large data set (over 60 GBits), tempered by limited transmission bandwidth rates (1-2 kbps) and sharing the three 70m DSN assets. This presentation summarizes the New Horizons mission and early science results.

  15. The year 1990 marks end of Pluto-Charon mutual event season

    NASA Technical Reports Server (NTRS)

    Tholen, David J.

    1991-01-01

    From late 1984 until late 1990, the orbit of Pluto's satellite Charon was sufficiently close to an edge-on configuration, as seen from Earth, to produce transit, occultation, and eclipse events involving the two objects. The systematic observation of these events, each of which offers a unique geometry of Pluto, Charon and shadow, has been used to directly measure several parameters of the system. With data now available from the entire mutual event season, reliable values for the radii of Pluto and Charon can be derived. Pluto's radius is 0.05860 plus or minus 0.00031, in units of Chiron's mean orbital radius, and Charon's radius is 0.03019 plus or minus 0.00066, in the same units.

  16. The Surface Age of Sputnik Planum, Pluto, Must Be Less than 10 Million Years.

    PubMed

    Trilling, David E

    2016-01-01

    Data from the New Horizons mission to Pluto show no craters on Sputnik Planum down to the detection limit (2 km for low resolution data, 625 m for high resolution data). The number of small Kuiper Belt Objects that should be impacting Pluto is known to some degree from various astronomical surveys. We combine these geological and telescopic observations to make an order of magnitude estimate that the surface age of Sputnik Planum must be less than 10 million years. This maximum surface age is surprisingly young and implies that this area of Pluto must be undergoing active resurfacing, presumably through some cryo-geophysical process. We discuss three possible resurfacing mechanisms and the implications of each one for Pluto's physical properties. PMID:26790001

  17. June 30, 2015, View of Pluto and Charon from New Horizons

    NASA Video Gallery

    This movie, from New Horizons’ highest-resolution imager, shows Pluto and Charon as the spacecraft closes in. In the annotated version, Pluto’s prime meridian (the region of the planet that faces C...

  18. Despinning and Tidally Driven Tectonics in the Pluto-Charon Binary System

    NASA Astrophysics Data System (ADS)

    Barr, A. C.; Collins, G. C.

    2013-12-01

    When the New Horizons spacecraft reaches Pluto, we will have a fresh opportunity to study the effects of the tidal evolution of a binary planetary system. The Pluto-Charon system is thought to have formed from an impact between two like-sized precursor objects (Canup 2005; Canup 2011). Although each member is small, it is truly a binary system: Charon is about 1/10th the mass of Pluto and orbits at 16 Pluto radii (our moon is 1/100th the mass of the Earth and orbits at ~60 Earth radii.) The system is unique among major bodies in the solar system because it has reached the natural endpoint of its dynamical evolution: the 'dual synchronous' state in which Charon's orbital period, spin period, and Pluto's rotation period are equal. After the Charon-forming impact, tidal torques acting on each body cause the secondary to evolve rapidly to a synchronous rotation state, in which its spin and orbital period are equal. The system then evolves to the dual synchronous state over a longer time scale, lasting perhaps millions of years (Dobrovolskis et al., 1997). We use a simple model of orbital and interior evolution to show that evolution of the system into the dual-synchronous state likely created and/or maintained an ocean within Pluto, leaving behind a pattern of tectonic features on its surface consistent with de-spinning stresses. At the same time, high stresses leading to possible tectonic activity would have been created on Charon due to the collapse of its tidal and rotational bulges. Unlike prior studies of the system evolution that assume a nominal, constant Love number, we calculate frequency- and structure-dependent tidal Love numbers to estimate the magnitude of stress on Pluto and Charon, and the amount of tidal heat dissipated within Pluto. We show that the time scale for the overall evolution of the system is strongly dependent on the interior state of the primary after the satellite-forming impact. For Charon to evolve to its present-day location on a time

  19. The Pluto-Charon system as revealed during the mutual events

    SciTech Connect

    Marcialis, R.L.

    1990-01-01

    This year is the last of a five-year interval when the Earth passes through the orbital plane of Pluto and its satellite Charon, causing alternate transits and occultations of the satellite as seen from Earth. Spectrophotometric observations of the system made both in and out of eclipse were obtained in the visual and near-infrared. The Pluto-Charon system is found to be compositionally diverse, a result unanticipated before the mutual events. Water frost was identified and is ubiquitous on Charon's surface, while Pluto has a methane veneer. The spectral activity of Pluto's methane is seen to vary with rotational phase. On Pluto, surface albedo appears to be correlated with composition. Dark regions tend to be redder and depleted in methane relative to bright regions. Dependence of geometric albedo with wavelength were calculated for both bodies, from 0.4 to 2.4 microns. The albedo model of Marcialis (1983, 1988) has emerged favorably after several severe tests. Accurate radii and system bulk density derived from the mutual events were used to construct models of phenomena unanticipated a decade ago. Recent interior models are used to show that viscous relaxation of topography is expected to be significant on Pluto but not on Charon. Horizontal topographic features on the primary probably are limited in extent to less than a few tens of kilometers. Globally, Pluto's figure is essentially hydrostatic. Astrometric observations of the system are presented, as evidence that the discovery of Charon just seven years before the initial mutual events was not fortuitous, but most probable. The astrometry will help to refine Pluto's orbit, making prediction of future stellar occultations by the system more reliable.

  20. A search for ethane on Pluto and Triton

    NASA Astrophysics Data System (ADS)

    DeMeo, Francesca E.; Dumas, Christophe; de Bergh, Catherine; Protopapa, Silvia; Cruikshank, Dale P.; Geballe, Thomas R.; Alvarez-Candal, Alvaro; Merlin, Frédéric; Barucci, Maria A.

    2010-07-01

    We present here a search for solid ethane, C 2H 6, on the surfaces of Pluto and Triton, based on near-infrared spectral observations in the H and K bands (1.4-2.45 μm) using the Very Large Telescope (VLT) and the United Kingdom Infrared Telescope (UKIRT). We model each surface using a radiative transfer model based on Hapke theory (Hapke, B. [1993]. Theory of Reflectance and Emittance Spectroscopy. Cambridge University Press, Cambridge, UK) with three basic models: without ethane, with pure ethane, and with ethane diluted in nitrogen. On Pluto we detect weak features near 2.27, 2.405, 2.457, and 2.461 μm that match the strongest features of pure ethane. An additional feature seen at 2.317 μm is shifted to longer wavelengths than ethane by at least 0.002 μm. The strength of the features seen in the models suggests that pure ethane is limited to no more than a few percent of the surface of Pluto. On Triton, features in the H band could potentially be explained by ethane diluted in N, however, the lack of corresponding features in the K band makes this unlikely (also noted by Quirico et al. (Quirico, E., Doute, S., Schmitt, B., de Bergh, C., Cruikshank, D.P., Owen, T.C., Geballe, T.R., Roush, T.L. [1999]. Icarus 139, 159-178)). While Cruikshank et al. (Cruikshank, D.P., Mason, R.E., Dalle Ore, C.M., Bernstein, M.P., Quirico, E., Mastrapa, R.M., Emery, J.P., Owen, T.C. [2006]. Bull. Am. Astron. Soc. 38, 518) find that the 2.406-μm feature on Triton could not be completely due to 13CO, our models show that it could not be accounted for entirely by ethane either. The multiple origin of this feature complicates constraints on the contribution of ethane for both bodies.

  1. Ground-water monitoring compliance projects for Hanford Site Facilities: Progress report for the period April 1--June 30, 1988: Volume 1, Text

    SciTech Connect

    Not Available

    1988-09-01

    This is Volume 1 of a two-volume set of documents that describes the progress of 10 Hanford Site ground-water monitoring projects for the period April 1 to June 30, 1988. This volume discusses the projects; Volume 2 provides as-built diagrams, drilling logs, and geophysical logs for wells drilled during this period in the 100-N Area and near the 216-A-36B Crib.

  2. RCRA (Resource Conservation and Recovery Act of 1976) ground-water monitoring projects for Hanford facilities: Progress report, October 1--December 31, 1988: Volume 1, Text

    SciTech Connect

    Fruland, R.M.; Bates, D.J.; Lundgren, R.E.

    1989-04-01

    This report describes the progress of 13 Hanford ground-water monitoring projects for the period October 1 to December 31, 1988. There are 16 individual hazardous waste facilities covered by the 13 ground-water monitoring projects. The Grout Treatment Facility is included in this series of quarterly reports for the first time. The 13 projects discussed in this report were designed according to applicable interim-status ground-water monitoring requirements specified in the Resource Conservation and Recovery Act of 1976 (RCRA). During this quarter, field activities primarily consisted of sampling and analyses, and water-level monitoring. The 200 Areas Low-Level Burial Grounds section includes sediment analyses in addition to ground-water monitoring results. Twelve new wells were installed during the previous quarter: two at the 216-A-29 Ditch, six at the 216-A-10 Crib, and four at the 216-B-3 Pond. Preliminary characterization data for these new wells include drillers' logs and other drilling and site characterization data, and are provided in Volume 2 or on microfiche in the back of Volume 1. 26 refs., 28 figs., 74 tabs.

  3. Astrometry of Pluto from 1930-1951 Observations: the Lampland Plate Collection

    NASA Astrophysics Data System (ADS)

    Buie, Marc W.; Folkner, William M.

    2015-01-01

    We present a new analysis of 843 photographic plates of Pluto taken by Carl Lampland at Lowell Observatory from 1930-1951. This large collection of plates contains useful astrometric information that improves our knowledge of Pluto's orbit. This improvement provides critical support to the impending flyby of Pluto by New Horizons. New Horizons can do inbound navigation of the system to improve its targeting. This navigation is capable of nearly eliminating the sky-plane errors but can do little to constrain the time of closest approach. Thus the focus on this work was to better determine Pluto's heliocentric distance and to determine the uncertainty on that distance with a particular eye to eliminating systematic errors that might have been previously unrecognized. This work adds 596 new astrometric measurements based on the USNO CCD Astrograph Catalog 4. With the addition of these data the uncertainty of the estimated heliocentric position of Pluto in Developmental Ephemerides 432 (DE432) is at the level of 1000 km. This new analysis gives us more confidence that these estimations are accurate and are sufficient to support a successful flyby of Pluto by New Horizons.

  4. Color and Composition of Pluto and Its Moons from the New Horizons Mission

    NASA Astrophysics Data System (ADS)

    Olkin, C.; Reuter, D.; Stern, S. A.; Howett, C.; Parker, A. H.; Ennico Smith, K.; Singer, K. N.; Grundy, W. M.; Weaver, H. A., Jr.; Young, L. A.; Binzel, R. P.; Buie, M. W.; Cook, J. C.; Cruikshank, D. P.; Dalle Ore, C.; Earle, A. M.; Jennings, D. E.; Linscott, I.; Lunsford, A.; Parker, J. W.; Protopapa, S.; Spencer, J. R.; Tsang, C.; Verbiscer, A.

    2015-12-01

    NASA's New Horizons mission has goals of providing maps of the color and composition of Pluto and its largest moon Charon. When the small moons of Pluto were discovered, the New Horizons science team added investigations on the color and composition of Nix and Hydra and also color of Styx and Kerberos and near-infrared spectra of Kerberos. Color observations taken by Ralph/MVIC, the Multispectral Visible Imaging Camera have revealed diverse terrain units across Pluto. By constructing an enhanced color composite image of Pluto from the Blue, Red and NIR filter images of Pluto, we can see that the informally named, Tombaugh Regio (the large heart-shaped region on Pluto), is clearly two different colors with a clear demarcation down the center of Tombaugh Regio. From infrared spectroscopic data taken by Ralph/LEISA, Linear Etalon Imaging Spectral Array, early analysis has shown that in the less blue region of Tombaugh Regio there is a concentration of CO ice. This paper will present selected highlights of results from the color and composition investigations of the New Horizons mission.

  5. New Insights into the Structure, Origin, and Evolution of Pluto and Charon

    NASA Astrophysics Data System (ADS)

    McKinnon, W. B.; Stern, A.; Weaver, H. A., Jr.; Spencer, J. R.; Nimmo, F.; Lisse, C. M.; Umurhan, O. M.; Moore, J. M.; Buie, M. W.; Porter, S.; Olkin, C.; Young, L. A.; Ennico Smith, K.

    2015-12-01

    The July 2015 New Horizons flyby has removed a long-standing obstacle to understanding the cosmogony of the Pluto-Charon system: the uncertain radius of Pluto. Combined with precise astrometric fits to the barycenter of the Pluto-Charon binary from HST observations of the more distant, small satellites (M. Brozović et al., Icarus 246, 317-329, 2015), the densities of both Pluto and Charon are now known. At the 10% level, the densities of Pluto and Charon are rather similar, as opposed to the more divergent density estimates of years past in which Charon was thought to be substantially icier. In the context of a giant impact origin for binaries, a rock-poor Charon corresponds to an iron-poor Moon in the terrestrial case, with differentiated precursors being implied in both cases. A rock-rich Charon, however, implies that the precursor impacting bodies were at most only partially differentiated — possessing relatively thin ice shells (R.M. Canup, Astron. J. 141, 35, 2011). This suggests some combination of relatively slow and/or late accretion in the ancestral Kuiper belt. A more rock-rich Charon also implies a more vigorous geological history, all other things being equal. For Pluto, the evolution to the surface of a substantial mass of supervolatile ices increases the likelihood that internal volatiles such as ammonia and methanol have been sequestered in an internal, aqueous layer (or ocean).

  6. The trans-neptunian object UB313 is larger than Pluto.

    PubMed

    Bertoldi, F; Altenhoff, W; Weiss, A; Menten, K M; Thum, C

    2006-02-01

    The most distant known object in the Solar System, 2003 UB313 (97 au from the Sun), was recently discovered near its aphelion. Its high eccentricity and inclination to the ecliptic plane, along with its perihelion near the orbit of Neptune, identify it as a member of the 'scattered disk'. This disk of bodies probably originates in the Kuiper belt objects, which orbit near the ecliptic plane in circular orbits between 30 and 50 au, and may include Pluto as a member. The optical brightness of 2003 UB313, if adjusted to Pluto's distance, is greater than that of Pluto, which suggested that it might be larger than Pluto. The actual size, however, could not be determined from the optical measurements because the surface reflectivity (albedo) was unknown. Here we report observations of the thermal emission of 2003 UB313 at a wavelength of 1.2 mm, which in combination with the measured optical brightness leads to a diameter of 3,000 +/- 300 +/- 100 km. Here the first error reflects measurement uncertainties, while the second derives from the unknown object orientation. This makes 2003 UB313 the largest known trans-neptunian object, even larger than Pluto (2,300 km). The albedo is 0.60 +/- 0.10 +/- 0.05, which is strikingly similar to that of Pluto, suggesting that the methane seen in the optical spectrum causes a highly reflective icy surface. PMID:16452973

  7. Astrometry of Pluto from 1930-1951 observations: The Lampland plate collection

    SciTech Connect

    Buie, Marc W.; Folkner, William M. E-mail: william.m.folkner@jpl.nasa.gov

    2015-01-01

    We present a new analysis of 843 photographic plates of Pluto taken by Carl Lampland at Lowell Observatory from 1930–1951. This large collection of plates contains useful astrometric information that improves our knowledge of Pluto's orbit. This improvement provides critical support to the impending flyby of Pluto by New Horizons. New Horizons can do inbound navigation of the system to improve its targeting. This navigation is capable of nearly eliminating the sky-plane errors but can do little to constrain the time of closest approach. Thus the focus on this work was to better determine Pluto's heliocentric distance and to determine the uncertainty on that distance with a particular eye to eliminating systematic errors that might have been previously unrecognized. This work adds 596 new astrometric measurements based on the USNO CCD Astrograph Catalog 4. With the addition of these data the uncertainty of the estimated heliocentric position of Pluto in Developmental Ephemerides 432 (DE432) is at the level of 1000 km. This new analysis gives us more confidence that these estimations are accurate and are sufficient to support a successful flyby of Pluto by New Horizons.

  8. Microtremor Array Measurement Survey and Strong Ground Motion Observation Activities of The MarDiM (SATREPS) Project

    NASA Astrophysics Data System (ADS)

    Ozgur Citak, Seckin; Karagoz, Ozlem; Chimoto, Kosuke; Ozel, Oguz; Yamanaka, Hiroaki; Aksahin, Bengi; Arslan, Safa; Hatayama, Ken; Ohori, Michihiro; Hori, Muneo

    2015-04-01

    Since 1939, devastating earthquakes with magnitude greater than seven ruptured North Anatolian Fault (NAF) westward, starting from 1939 Erzincan (Ms=7.9) at the eastern Turkey and including the latest 1999 Izmit-Golcuk (Ms=7.4) and the Duzce (Ms=7.2) earthquakes in the eastern Marmara region, Turkey. On the other hand, the west of the Sea of Marmara an Mw7.4 earthquake ruptured the NAF' s Ganos segment in 1912. The only un-ruptured segments of the NAF in the last century are within the Sea of Marmara, and are identified as a "seismic gap" zone that its rupture may cause a devastating earthquake. In order to unravel the seismic risks of the Marmara region a comprehensive multidisciplinary research project The MarDiM project "Earthquake And Tsunami Disaster Mitigation in The Marmara Region and Disaster Education in Turkey", has already been started since 2003. The project is conducted in the framework of "Science and Technology Research Partnership for Sustainable Development (SATREPS)" sponsored by Japan Science and Technology Agency (JST) and Japan International Cooperation Agency (JICA). One of the main research field of the project is "Seismic characterization and damage prediction" which aims to improve the prediction accuracy of the estimation of the damages induced by strong ground motions and tsunamis based on reliable source parameters, detailed deep and shallow velocity structure and building data. As for detailed deep and shallow velocity structure microtremor array measurement surveys were conducted in Zeytinburnu district of Istanbul and Tekirdag province at about 81 sites on October 2013 and September 2014. Also in September 2014, 11 accelerometer units were installed mainly in public buildings in both Zeytinburnu and Tekirdag area and are currently in operation. Each accelerometer unit compose of a Network Sensor (CV-374A2) by Tokyo Sokushin, post processing PC for data storage and power supply unit. The Network Sensor (CV-374A2) consist of three servo

  9. Microtremor Array Measurement Survey and Strong Ground Motion observation activities of The SATREPS, MarDiM project -Part 2-

    NASA Astrophysics Data System (ADS)

    Citak, Seckin; Karagoz, Ozlem; Chimoto, Kosuke; Ozel, Oguz; Yamanaka, Hiroaki; Arslan, Safa; Aksahin, Bengi; Hatayama, Ken; Ohori, Michihiro; Hori, Muneo

    2016-04-01

    Since 1939, devastating earthquakes with magnitude greater than seven ruptured North Anatolian Fault (NAF) westward, starting from 1939 Erzincan (Ms=7.9) at the eastern Turkey and including the latest 1999 Izmit-Golcuk (Ms=7.4) and the Duzce (Ms=7.2) earthquakes in the eastern Marmara region, Turkey. On the other hand, the west of the Sea of Marmara an Mw7.4 earthquake ruptured the NAF' s Ganos segment in 1912. The only un-ruptured segments of the NAF in the last century are within the Sea of Marmara, and are identified as a "seismic gap" zone that its rupture may cause a devastating earthquake. In order to unravel the seismic risks of the Marmara region a comprehensive multidisciplinary research project The MarDiM project "Earthquake And Tsunami Disaster Mitigation in The Marmara Region and Disaster Education in Turkey", has already been started since 2003. The project is conducted in the framework of "Science and Technology Research Partnership for Sustainable Development (SATREPS)" sponsored by Japan Science and Technology Agency (JST) and Japan International Cooperation Agency (JICA). One of the main research field of the project is "Seismic characterization and damage prediction" which aims to improve the prediction accuracy of the estimation of the damages induced by strong ground motions and tsunamis based on reliable source parameters, detailed deep and shallow velocity structure and building data. As for detailed deep and shallow velocity structure microtremor array measurement surveys were conducted in Zeytinburnu district of Istanbul, Tekirdag, Canakkale and Edirne provinces at about 109 sites on October 2013, September 2014 and 2015. Also in September 2014, 11 accelerometer units were installed mainly in public buildings in both Zeytinburnu and Tekirdag area and are currently in operation. Each accelerometer unit compose of a Network Sensor (CV-374A) by Tokyo Sokushin, post processing PC for data storage and power supply unit. The Network Sensor (CV-374

  10. An atmospheric general circulation model for Pluto with predictions for New Horizons temperature profiles

    NASA Astrophysics Data System (ADS)

    Zalucha, Angela M.

    2016-06-01

    Results are presented from a 3D Pluto general circulation model (GCM) that includes conductive heating and cooling, non-local thermodynamic equilibrium (non-LTE) heating by methane at 2.3 and 3.3 μm, non-LTE cooling by cooling by methane at 7.6 μm, and LTE CO rotational line cooling. The GCM also includes a treatment of the subsurface temperature and surface-atmosphere mass exchange. An initially 1 m thick layer of surface nitrogen frost was assumed such that it was large enough to act as a large heat sink (compared with the solar heating term) but small enough that the water ice subsurface properties were also significant. Structure was found in all three directions of the 3D wind field (with a maximum magnitude of the order of 10 m s-1 in the horizontal directions and 10-5 microbar s-1 in the vertical direction). Prograde jets were found at several altitudes. The direction of flow over the poles was found to very with altitude. Broad regions of up-welling and down-welling were also found. Predictions of vertical temperature profiles are provided for the Alice and Radio science Experiment instruments on New Horizons, while predictions of light curves are provided for ground-based stellar occultation observations. With this model methane concentrations of 0.2 per cent and 1.0 per cent and 8 and 24 microbar surface pressures are distinguishable. For ground-based stellar occultations, a detectable difference exists between light curves with the different methane concentrations, but not for different initial global mean surface pressures.

  11. Formation of Pluto's moons: the fission hypothesis revisited

    NASA Astrophysics Data System (ADS)

    Prentice, A. J.

    2015-12-01

    I re-examine the fission hypothesis for the formation of Pluto's moons within the framework of a gas ring model for the origin of the solar system (Prentice 1978 Moon Planets 19 341; 2015 LPSC, abs. 2664). It is supposed that the planetary system condensed from a concentric family of orbiting gas rings. These were cast off by the proto-solar cloud (PSC) as a means for disposing of excess spin angular momentum during gravitational contraction. If contraction is homologous, the mean orbital radii R(n) (n = 0,1,2,3,..) of the rings form a nearly geometric sequence. The temperatures T(n) of the rings scale roughly as T(n) = A/R(n) and the gas pressures p(n) on the gas ring mean orbits scale as p(n) = B/R(n)^4. The constants A & B are chosen so that (1) the geometric mean of the ratio R(n+1)/R(n) of successive gas ring radii from Jupiter to Mercury matches the observed mean ratio of planetary distances and (2) that the metal mass fraction at Mercury's orbit, namely 0.70, yields a planet whose mean density equals the observed value (Prentice 2008, LPSC abs. 1945.pdf). I assume that proto-Pluto (PPO) condensed within the n = 0 gas ring shed by the PSC at the orbit of Quaoar (43.2 AU). Here T(0) = 26.3 K and p(0) = 1.3 x 10^(-9) bar. The condensate consists of anhydrous rock (mass fraction 0.5255), graphite (0.0163), water ice (0.1858), dry ice (0.2211), and methane ice (0.0513). The RTP rock density is 3.662 g/cc. I assume that melting of the ices in the PPO took place through the decay of short-lived radioactive nuclides, causing internal segregation of rock & graphite. If rotational fission did occur and Pluto's moons formed from ejected liquid water and CO2, we get a Charon mean density of 1.24 g/cc. This is much lower than the observed value. Perhaps some of the rock and graphite became entrained in the fissioned liquid, so yielding a dense core for Charon of mass fraction ~0.4? In any event, the surfaces of all of the moons should have initially been football

  12. Methane absorption variations in the spectrum of Pluto

    SciTech Connect

    Buie, M.W.; Fink, U.

    1987-06-01

    The lightcurve phases of 0.18, 0.35, 0.49, and 0.98 covered by 5600-10,500 A absolute spectrophotometry of Pluto during four nights include minimum (0.98) light and one near-maximum (0.49) light. The spectra are noted to exhibit significant methane band absorption depth variations at 6200, 7200, 7900, 8400, 8600, 8900, and 10,000 A, with the minimum absorption occurring at minimum light and thereby indicating a 30-percent change in the methane column abundance in the course of three days. An attempt is made to model this absorption strength variation with rotational phase terms of an isotropic surface distribution of methane frost and a clear layer of CH4 gas. 34 references.

  13. Highly fractionated mass loss from the atmosphere of Pluto

    NASA Astrophysics Data System (ADS)

    Yen, Chien-Chang; Taam, Ronald E.; Liang, Mao-Chang

    2014-11-01

    Molecules can escape readily from the atmosphere of Pluto. Under the framework of hydrodynamic approximation, it was generally accepted that the process produced rather small isotopic fractionation. Here, we show that the escape highly fractionates the isotopic composition of nitrogen. The process preferentially selects lighter species, with an escape probability a factor of ~3 higher for the lighter isotopologue. The validity of the approach may be testable if the isotopic composition of the outer most regions can be measured. The property of the selection can significantly modify the isotopic composition of the atmosphere, leaving the present-day atmosphere isotopically heavier than the ancient one. This also impacts the current view of the evolution of planetary atmospheres. Venus, for example, may not need that much mass loss, in order to explain the current D/H ratio.

  14. Pluto/Kuiper Missions with Advanced Electric Propulsion and Power

    NASA Technical Reports Server (NTRS)

    Oleson, S. R.; Patterson, M. J.; Schrieber, J.; Gefert, L. P.

    2001-01-01

    In response to a request by NASA Code SD Deep Space Exploration Technology Program, NASA Glenn Research center performed a study to identify advanced technology options to perform a Pluto/Kuiper mission without depending on a 2004 Jupiter Gravity Assist, but still arriving before 2020. A concept using a direct trajectory with small, sub-kilowatt ion thrusters and Stirling radioisotope power system was shown to allow the same or smaller launch vehicle class (EELV) as the chemical 2004 baseline and allow launch in any year and arrival in the 2014 to 2020 timeframe. With the nearly constant power available from the radioisotope power source such small ion propelled spacecraft could explore many of the outer planetary targets. Such studies are already underway. Additional information is contained in the original extended abstract.

  15. New Horizons Sees Pluto (Sept. 21) Note: There is debate within the science community as to whether

    NASA Technical Reports Server (NTRS)

    2007-01-01

    A white arrow marks Pluto in this New Horizons Long Range Reconnaissance Imager (LORRI) picture taken Sept. 21, 2006. Seen at a distance of about 4.2 billion kilometers (2.6 billion miles) from the spacecraft, Pluto is little more than a faint point of light among a dense field of stars. Mission scientists knew they had Pluto in their sights when LORRI detected an unresolved 'point' in Pluto's predicted position, moving at the planet's expected motion across the constellation of Sagittarius near the plane of the Milky Way galaxy.

  16. New Horizons Sees Pluto (Sept. 24) Note: There is debate within the science community as to whether

    NASA Technical Reports Server (NTRS)

    2007-01-01

    A white arrow marks Pluto in this New Horizons Long Range Reconnaissance Imager (LORRI) picture taken Sept. 21, 2006. Seen at a distance of about 4.2 billion kilometers (2.6 billion miles) from the spacecraft, Pluto is little more than a faint point of light among a dense field of stars. Mission scientists knew they had Pluto in their sights when LORRI detected an unresolved 'point' in Pluto's predicted position, moving at the planet's expected motion across the constellation of Sagittarius near the plane of the Milky Way galaxy.

  17. The 3/4 July 2010 Pluto Stellar-Occultation Observations

    NASA Astrophysics Data System (ADS)

    Pasachoff, Jay M.; Elliot, J. L.; Souza, S. P.; Person, M. J.; Zuluaga, C.; Bosh, A. S.; Zangari, A. M.; Jensen-Clem, R.; Lockhart, M.; Gulbis, A. A. S.; Rojo, P.; Lu, M.; Malamut, C.; Levine, S. E.; Ivarsen, K. M.; Reichart, D. E.; LaCluyze, A. P.; Nysewander, M. C.; Haislip, J. B.; MacDonald, R. K. D.; Bailyn, C. D.; Emilio, M.; Jehin, E.; Gillon, M.; Manfroid, J.; Chantry, V.; Magain, P.; Hutsemekers, D.; Queloz, D.

    2010-10-01

    Continuing our monitoring of Pluto's atmospheric temperature and pressure, previously shown by us to be increasing (Elliot et al., Nature 424, 165, 2003; Pasachoff et al., AJ 129, 1718, 2005) and subsequently found by us to be leveling off (Elliot et al., AJ 134, 1, 2007), we report on a stellar occultation by Pluto of UCAC2 mag=15.3, observed from South America and Africa on 4 July 2010 UT. Success was achieved with a 0.45 m at Cerro Calan using one of our POETS (Portable Occultation, Eclipse, and Transit System; Souza et al. PASP 118, 1550, 2006), a 1.0 SMARTS (Small and Medium Aperture Research Telescope System) at Cerro Tololo, four 0.6 m telescopes of PROMPT (Panchromatic Robotic Optical Monitoring and Polarimetry Telescopes) on Cerro Tololo, and TRAPPIST's (TRansiting Planets and Planetesimals Small Telescope) 0.6-m telescope on La Silla in Chile; the 0.35 m telescope of U. Ponta Grossa, Brazil; and the 0.75-m ATOM (Automatic Telescope for Optical Monitoring), Namibia, using POETS. Winds prevented opening the 6.5 m Magellan/Clay telescope on Las Campanas, Chile, with its own frame-transfer camera, and clouds obscured the 1.9 m telescope at Sutherland, South Africa, which had POETS. With shadow velocity 23.6 km/s, it was a rapid event: maximum occultation <2 minutes. The observations were supported in part by grants NNX08AO50G to Williams College and NNX10AB27G to MIT from NASA's Planetary Astronomy Division, and NNH08AI17I to USNO for astrometry. Student participation was supported in part by NASA's Massachusetts Space Grant and NSF's REU. Japan's government donated U. Chile's Cerro Calan Goto telescope. PROMPT observations were made possible by the Robert Martin Ayers Science Fund. TRAPPIST is a project driven by the University of Liège, in close collaboration with the Observatory of Geneva, supported by the Belgian Fund for Scientific Research and the Swiss National Science Foundation.

  18. InSAR analysis of ground deformation over the Istanbul Area in the framework of the FP7 MARsite Project

    NASA Astrophysics Data System (ADS)

    Salvi, Stefano; Bonano, Manuela; Nobile, Adriano; Merryman Boncori, John Peter; Manzo, Mariarosaria; Solaro, Giuseppe; Moro, Marco; Saroli, Michele

    2015-04-01

    The FP7 MARsite project (New Directions in Seismic Hazard assessment through Focused Earth Observation in Marmara Supersite), is aiming at providing complete geodetic records of crustal deformation for major continental earthquake occurring in the Marmara region through repeated GPS, InSAR, gravity and seismological observations. One of the goals of the project is the long-term continuous geodetic monitoring of the crustal deformation affecting the Istanbul area using large archives of X-band satellite SAR data, made available through the GEO Supersites Initiative. To this aim, we processed the available SAR datasets by exploiting the multi-temporal and multi-scale InSAR techniques known as Small BAseline Subset (SBAS, Berardino et al., 2002) and StaMPS (Persistent Scatterer Interferometry, Hooper et al., 2007), which have the potential of providing new insights into the spatial and temporal patterns of the investigated phenomena. The results achieved in the first 2 years of the MARsite project over the megacity of Istanbul are presented. IREA-CNR applied the SBAS technique to a dataset of 101 SAR images acquired by the TerraSAR-X constellation over descending orbits, spanning the interval from November 2010 to August 2014. 312 differential interferograms were generated. INGV applied the StaMPS PSI approach (Hooper et al., 2007) to COSMO-SkyMed SAR images acquired from two different ascending tracks, consisting of 29 and 64 image strips for the Eastern and the Western tracks respectively, and covering the period between 2011 and 2013. Two sets of 28 and 63 differential interferograms were generated for the two tracks. The resulting ground velocity maps show several localized deformation sources in the urban area, due to subsidence and/or slope deformation. No clear long spatial wavelength tectonic patterns are visible, possibly due to the limited extent of the X-band satellite swaths (~40 km). We identified a displacement pattern related to the Istanbul airport

  19. The Pluto System: Initial Results from the Exploration by New Horizons

    NASA Astrophysics Data System (ADS)

    Stern, S. A.; Weaver, Harold; Young, Leslie; Olkin, Catherine; Ennico, Kimberly; Moore, Jeff; Grundy, Will; Gladstone, Randall; Bagenal, Fran

    2015-11-01

    The Pluto system was recently explored by NASA’s New Horizons spacecraft, which made closest approach on 14 July 2015. Pluto’s surface is found to be remarkably diverse in landforms, terrain ages, and albedo, color, and composition gradients. Strong evidence is found for a water-ice crust, geologically young surface units, ice convection, wind streaks, and glacial flow. Pluto’s atmosphere is found to be very extended, and contains newly discovered trace hydrocarbons, has an extensive global haze layer, and a surprisingly low surface pressure of ~10 microbars. Pluto’s wide range of surface expressions and long term activity raises fundamental questions about how small planets can have active processes billions of years after their formation. The geology of Pluto’s large moon Charon’s is also surprisingly diverse, displaying tectonics and evidence for a heterogeneous crustal composition; the north pole displays puzzling dark terrain. No evidence for a Charon atmosphere is found. Pluto’s small satellites Hydra and Nix are small, elongated objects with higher albedos than expected. Surprisingly, despite much improved diameter limits, no new satellites are found. We will present an overview of the New Horizons flyby, payload, and results. This work was supported by the NASA New Horizons project.

  20. Closing the uplink/downlink loop on the new Horizons Mission to Pluto

    NASA Astrophysics Data System (ADS)

    Peterson, Joseph G.; Birath, Emma; Carcich, Brian; Harch, Ann

    Commanding the payload on a spacecraft (“ uplink” sequencing and command generation) and processing the instrument data returned (“ downlink” data processing) are two primary functions of Science Operations on a mission. While vitally important, it is sometimes surprisingly difficult to connect data returned from a spacecraft to the corresponding commanding and sequencing information that created the data, especially when data processing is done via an automated science data pipeline and not via a manual process with humans in the loop. For a variety of reasons it is necessary to make such a connection and close this loop. Perhaps the most important reason is to ensure that all data asked for has arrived safely on the ground. This is especially critical when the mission must erase parts of the spacecraft memory to make room for new data; mistakes here can result in permanent loss of data. Additionally, there are often key pieces of information (such as intended observation target or certain instrument modes that are not included in housekeeping, etc.) that are known only at the time of commanding and never makes it down in the telemetry. Because missions like New Horizons strive to be frugal with how much telemetry is sent back to Earth, and the telemetry may not include unambiguous identifiers (like observation ids, etc.), connecting downlinked data with uplink command information in an automated way can require creative approaches and heuristics. In this paper, we describe how these challenges were overcome on the New Horizons Mission to Pluto. The system developed involves ingesting uplink information into a database and automatically correlating it with downlinked data products. This allows for more useful data searches and the ability to attach the original intent of each observation to the processed science data. Also a new data tracking tool is now being developed to help in planning data playback from the spacecraft and to ensu- e data is verified