Science.gov

Sample records for prolonged endurance exercise

  1. Liver glycogen metabolism during and after prolonged endurance-type exercise.

    PubMed

    Gonzalez, Javier T; Fuchs, Cas J; Betts, James A; van Loon, Luc J C

    2016-09-01

    Carbohydrate and fat are the main substrates utilized during prolonged endurance-type exercise. The relative contribution of each is determined primarily by the intensity and duration of exercise, along with individual training and nutritional status. During moderate- to high-intensity exercise, carbohydrate represents the main substrate source. Because endogenous carbohydrate stores (primarily in liver and muscle) are relatively small, endurance-type exercise performance/capacity is often limited by endogenous carbohydrate availability. Much exercise metabolism research to date has focused on muscle glycogen utilization, with little attention paid to the contribution of liver glycogen. (13)C magnetic resonance spectroscopy permits direct, noninvasive measurements of liver glycogen content and has increased understanding of the relevance of liver glycogen during exercise. In contrast to muscle, endurance-trained athletes do not exhibit elevated basal liver glycogen concentrations. However, there is evidence that liver glycogenolysis may be lower in endurance-trained athletes compared with untrained controls during moderate- to high-intensity exercise. Therefore, liver glycogen sparing in an endurance-trained state may account partly for training-induced performance/capacity adaptations during prolonged (>90 min) exercise. Ingestion of carbohydrate at a relatively high rate (>1.5 g/min) can prevent liver glycogen depletion during moderate-intensity exercise independent of the type of carbohydrate (e.g., glucose vs. sucrose) ingested. To minimize gastrointestinal discomfort, it is recommended to ingest specific combinations or types of carbohydrates (glucose plus fructose and/or sucrose). By coingesting glucose with either galactose or fructose, postexercise liver glycogen repletion rates can be doubled. There are currently no guidelines for carbohydrate ingestion to maximize liver glycogen repletion. PMID:27436612

  2. Mental fatigue induced by prolonged self-regulation does not exacerbate central fatigue during subsequent whole-body endurance exercise.

    PubMed

    Pageaux, Benjamin; Marcora, Samuele M; Rozand, Vianney; Lepers, Romuald

    2015-01-01

    It has been shown that the mental fatigue induced by prolonged self-regulation increases perception of effort and reduces performance during subsequent endurance exercise. However, the physiological mechanisms underlying these negative effects of mental fatigue are unclear. The primary aim of this study was to test the hypothesis that mental fatigue exacerbates central fatigue induced by whole-body endurance exercise. Twelve subjects performed 30 min of either an incongruent Stroop task to induce a condition of mental fatigue or a congruent Stroop task (control condition) in a random and counterbalanced order. Both cognitive tasks (CTs) were followed by a whole-body endurance task (ET) consisting of 6 min of cycling exercise at 80% of peak power output measured during a preliminary incremental test. Neuromuscular function of the knee extensors was assessed before and after CT, and after ET. Rating of perceived exertion (RPE) was measured during ET. Both CTs did not induce any decrease in maximal voluntary contraction (MVC) torque (p = 0.194). During ET, mentally fatigued subjects reported higher RPE (mental fatigue 13.9 ± 3.0, control 13.3 ± 3.2, p = 0.044). ET induced a similar decrease in MVC torque (mental fatigue -17 ± 15%, control -15 ± 11%, p = 0.001), maximal voluntary activation level (mental fatigue -6 ± 9%, control -6 ± 7%, p = 0.013) and resting twitch (mental fatigue -30 ± 14%, control -32 ± 10%, p < 0.001) in both conditions. These findings reject our hypothesis and confirm previous findings that mental fatigue does not reduce the capacity of the central nervous system to recruit the working muscles. The negative effect of mental fatigue on perception of effort does not reflect a greater development of either central or peripheral fatigue. Consequently, mentally fatigued subjects are still able to perform maximal exercise, but they are experiencing an altered performance during submaximal exercise due to higher-than-normal perception of effort

  3. Mental fatigue induced by prolonged self-regulation does not exacerbate central fatigue during subsequent whole-body endurance exercise

    PubMed Central

    Pageaux, Benjamin; Marcora, Samuele M.; Rozand, Vianney; Lepers, Romuald

    2015-01-01

    It has been shown that the mental fatigue induced by prolonged self-regulation increases perception of effort and reduces performance during subsequent endurance exercise. However, the physiological mechanisms underlying these negative effects of mental fatigue are unclear. The primary aim of this study was to test the hypothesis that mental fatigue exacerbates central fatigue induced by whole-body endurance exercise. Twelve subjects performed 30 min of either an incongruent Stroop task to induce a condition of mental fatigue or a congruent Stroop task (control condition) in a random and counterbalanced order. Both cognitive tasks (CTs) were followed by a whole-body endurance task (ET) consisting of 6 min of cycling exercise at 80% of peak power output measured during a preliminary incremental test. Neuromuscular function of the knee extensors was assessed before and after CT, and after ET. Rating of perceived exertion (RPE) was measured during ET. Both CTs did not induce any decrease in maximal voluntary contraction (MVC) torque (p = 0.194). During ET, mentally fatigued subjects reported higher RPE (mental fatigue 13.9 ± 3.0, control 13.3 ± 3.2, p = 0.044). ET induced a similar decrease in MVC torque (mental fatigue –17 ± 15%, control –15 ± 11%, p = 0.001), maximal voluntary activation level (mental fatigue –6 ± 9%, control –6 ± 7%, p = 0.013) and resting twitch (mental fatigue –30 ± 14%, control –32 ± 10%, p < 0.001) in both conditions. These findings reject our hypothesis and confirm previous findings that mental fatigue does not reduce the capacity of the central nervous system to recruit the working muscles. The negative effect of mental fatigue on perception of effort does not reflect a greater development of either central or peripheral fatigue. Consequently, mentally fatigued subjects are still able to perform maximal exercise, but they are experiencing an altered performance during submaximal exercise due to higher

  4. Handgrip and general muscular strength and endurance during prolonged bedrest with isometric and isotonic leg exercise training

    NASA Technical Reports Server (NTRS)

    Greenleaf, J. E.; Starr, J. C.; Van Beaumont, W.; Convertino, V. A.

    1983-01-01

    Measurements of maximal grip strength and endurance at 40 percent max strength were obtained for 7 men 19-21 years of age, 1-2 days before and on the first recovery day during three 2-week bedrest (BR) periods, each separated by a 3-week ambulatory recovery period. The subjects performed isometric exercise (IME) for 1 hr/day, isotonic exercise (ITE) for 1 hr/day, and no exercise (NOE) in the three BR periods. It was found that the mean maximal grip strength was unchanged after all three BR periods. Mean grip endurance was found to be unchanged after IME and ITE training, but was significantly reduced after NOE. These results indicate that IME and ITE training during BR do not increase or decrease maximal grip strength, alghough they prevent loss of grip endurance, while the maximal strength of all other major muscle groups decreases in proportion to the length of BR to 70 days. The maximal strength reduction of the large muscle groups was found to be about twice that of the small muscle groups during BR. In addition, it is shown that changes in maximal strength after spaceflight, BR, or water immersion deconditioning cannot be predicted from changes in submaximal or maximal oxygen uptake values.

  5. What are the Physiological Mechanisms for Post-Exercise Cold Water Immersion in the Recovery from Prolonged Endurance and Intermittent Exercise?

    PubMed

    Ihsan, Mohammed; Watson, Greig; Abbiss, Chris R

    2016-08-01

    training performances. The efficacy of CWI for attenuating the secondary effects of EIMD seems dependent on the mode of exercise utilised. For instance, CWI application seems to demonstrate limited recovery benefits when EIMD was induced by single-joint eccentrically biased contractions. In contrast, CWI seems more effective in ameliorating effects of EIMD induced by whole body prolonged endurance/intermittent based exercise modalities. PMID:26888646

  6. Ingestion of glucose or sucrose prevents liver but not muscle glycogen depletion during prolonged endurance-type exercise in trained cyclists.

    PubMed

    Gonzalez, Javier T; Fuchs, Cas J; Smith, Fiona E; Thelwall, Pete E; Taylor, Roy; Stevenson, Emma J; Trenell, Michael I; Cermak, Naomi M; van Loon, Luc J C

    2015-12-15

    The purpose of this study was to define the effect of glucose ingestion compared with sucrose ingestion on liver and muscle glycogen depletion during prolonged endurance-type exercise. Fourteen cyclists completed two 3-h bouts of cycling at 50% of peak power output while ingesting either glucose or sucrose at a rate of 1.7 g/min (102 g/h). Four cyclists performed an additional third test for reference in which only water was consumed. We employed (13)C magnetic resonance spectroscopy to determine liver and muscle glycogen concentrations before and after exercise. Expired breath was sampled during exercise to estimate whole body substrate use. After glucose and sucrose ingestion, liver glycogen levels did not show a significant decline after exercise (from 325 ± 168 to 345 ± 205 and 321 ± 177 to 348 ± 170 mmol/l, respectively; P > 0.05), with no differences between treatments. Muscle glycogen concentrations declined (from 101 ± 49 to 60 ± 34 and 114 ± 48 to 67 ± 34 mmol/l, respectively; P < 0.05), with no differences between treatments. Whole body carbohydrate utilization was greater with sucrose (2.03 ± 0.43 g/min) vs. glucose (1.66 ± 0.36 g/min; P < 0.05) ingestion. Both liver (from 454 ± 33 to 283 ± 82 mmol/l; P < 0.05) and muscle (from 111 ± 46 to 67 ± 31 mmol/l; P < 0.01) glycogen concentrations declined during exercise when only water was ingested. Both glucose and sucrose ingestion prevent liver glycogen depletion during prolonged endurance-type exercise. Sucrose ingestion does not preserve liver glycogen concentrations more than glucose ingestion. However, sucrose ingestion does increase whole body carbohydrate utilization compared with glucose ingestion. This trial was registered at https://www.clinicaltrials.gov as NCT02110836. PMID:26487008

  7. Dietary carbohydrates and endurance exercise.

    PubMed

    Evans, W J; Hughes, V A

    1985-05-01

    Antecedent diet can greatly influence both substrate utilization during exercise and exercise performance itself. A number of studies have convincingly demonstrated that short-term (three to seven days) adaptation to a low carbohydrate diet results in greatly reduced liver and muscle glycogen stores. While carbohydrate utilization after such a diet is reduced, the limited glycogen stores can severely limit endurance exercise performance. High carbohydrate diets on the other hand expand carbohydrate stores which can limit performance. However, long-term adaptation to a low carbohydrate diet can greatly alter muscle and whole body energy metabolism to drastically limit the oxidation of limited carbohydrate stores with no adverse effect on performance. Glycogen loading techniques can result in supercompensation of muscle stores. Exercise induced depletion of muscle glycogen is the most important single factor in this phenomenon. Following the exercise a low carbohydrate diet for two to three days after which a high carbohydrate diet is eaten seemingly has the same effect on increasing muscle glycogen stores as simply eating a high carbohydrate diet. The form of the dietary carbohydrate during glycogen loading should be high in complex carbohydrates; however, the type of dietary starch that effects the greatest rate of resynthesis has not been investigated. Rapid resynthesis of glycogen following exercise is at least in part due to increased insulin sensitivity. The enhanced glucose transport caused by the increased sensitivity provides substrate for glycogen synthase. How rapidly this enhanced sensitivity returns to pre-exercise levels in humans is uncertain.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:3993621

  8. Pre-exercise glycerol hydration improves cycling endurance time

    NASA Technical Reports Server (NTRS)

    Montner, P.; Stark, D. M.; Riedesel, M. L.; Murata, G.; Robergs, R.; Timms, M.; Chick, T. W.

    1996-01-01

    The effects of glycerol ingestion (GEH) on hydration and subsequent cycle ergometer submaximal load exercise were examined in well conditioned subjects. We hypothesized that GEH would reduce physiologic strain and increase endurance. The purpose of Study I (n = 11) was to determine if pre-exercise GEH (1.2 gm/kg glycerol in 26 ml/kg solution) compared to pre-exercise placebo hydration (PH) (26 ml/kg of aspartame flavored water) lowered heart rate (HR), lowered rectal temperature (Tc), and prolonged endurance time (ET) during submaximal load cycle ergometry. The purpose of Study II (n = 7) was to determine if the same pre-exercise regimen followed by carbohydrate oral replacement solution (ORS) during exercise also lowered HR, Tc, and prolonged ET. Both studies were double-blind, randomized, crossover trials, performed at an ambient temperature of 23.5-24.5 degrees C, and humidity of 25-27%. Mean HR was lower by 2.8 +/- 0.4 beats/min (p = 0.05) after GEH in Study I and by 4.4 +/- 1.1 beats/min (p = 0.01) in Study II. Endurance time was prolonged after GEH in Study I (93.8 +/- 14 min vs. 77.4 +/- 9 min, p = 0.049) and in Study II (123.4 +/- 17 min vs. 99.0 +/- 11 min, p = 0.03). Rectal temperature did not differ between hydration regimens in both Study I and Study II. Thus, pre-exercise glycerol-enhanced hyperhydration lowers HR and prolongs ET even when combined with ORS during exercise. The regimens tested in this study could potentially be adapted for endurance activities.

  9. Cardiac adaptation to endurance exercise in rats.

    PubMed

    Fenning, Andrew; Harrison, Glenn; Dwyer, Dan; Rose'Meyer, Roselyn; Brown, Lindsay

    2003-09-01

    Endurance exercise is widely assumed to improve cardiac function in humans. This project has determined cardiac function following endurance exercise for 6 (n = 30) or 12 (n = 25) weeks in male Wistar rats (8 weeks old). The exercise protocol was 30 min/day at 0.8 km/h for 5 days/week with an endurance test on the 6th day by running at 1.2 km/h until exhaustion. Exercise endurance increased by 318% after 6 weeks and 609% after 12 weeks. Heart weight/kg body weight increased by 10.2% after 6 weeks and 24.1% after 12 weeks. Echocardiography after 12 weeks showed increases in left ventricular internal diameter in diastole (6.39 +/- 0.32 to 7.90 +/- 0.17 mm), systolic volume (49 +/- 7 to 83 +/- 11 miccrol) and cardiac output (75 +/- 3 to 107 +/- 8 ml/min) but not left wall thickness in diastole (1.74 +/- 0.07 to 1.80 +/- 0.06 mm). Isolated Langendorff hearts from trained rats displayed decreased left ventricular myocardial stiffness (22 +/- 1.1 to 19.1 +/- 0.3) and reduced purine efflux during pacing-induced workload increases. 31P-NMR spectroscopy in isolated hearts from trained rats showed decreased PCr and PCr/ATP ratios with increased creatine, AMP and ADP concentrations. Thus, this endurance exercise protocol resulted in physiological hypertrophy while maintaining or improving cardiac function. PMID:14575304

  10. Include All 4 Types of Exercise (Endurance, Strength, Balance, Flexibility)

    MedlinePlus

    ... generally falls into four main types: endurance, strength, balance, and flexibility. Some activities fit into more than ... build strength, and some flexibility exercises also improve balance. ENDURANCE Your goal is to be creative and ...

  11. (-)-Hydroxycitrate ingestion and endurance exercise performance.

    PubMed

    Lim, Kiwon; Ryu, Sungpil; Suh, Heajung; Ishihara, Kengo; Fushiki, Tohru

    2005-02-01

    We have been interested in the ergogenic aid effects of food components and supplements for enhancing endurance exercise performance. For this purpose, acute or chronic (-)-hydroxycitrate (HCA) ingestion might be effective because it promotes utilization of fatty acid as an energy source. HCA is a competitive inhibitor of the enzyme ATP: citrate lyase, thereby increasing inhibition of lipogenesis in the body. Many researchers have reported that less body fat accumulation and sustained satiety cause less food intake. After focusing on exercise performance with HCA ingestion, we came up with different results that show positive effects or not. However, our previously reported data showed increased use of fatty acids during moderate intensity exercise. For future research, HCA and co-ingestion of other supplements, such as carnitine or caffeine, might have greater effect on glycogen-sparing than HCA alone. PMID:15915661

  12. Effect of transdermal nicotine administration on exercise endurance in men.

    PubMed

    Mündel, Toby; Jones, David A

    2006-07-01

    Nicotine is widely reported to increase alertness, improve co-ordination and enhance cognitive performance; however, to our knowledge there have been no attempts to replicate these findings in relation to exercise endurance. The purpose of this study was to determine the effects nicotine might have on cycling endurance, perception of exertion and a range of physiological variables. With local ethics committee approval and having obtained informed consent, 12 healthy, non-smoking men (22 +/- 3 years; maximal O2 uptake, 56 +/- 6 ml kg(-1) min(-1), mean +/- s.d.) cycled to exhaustion at 18 degrees C and 65% of their peak aerobic power, wearing either a 7 mg transdermal nicotine patch (NIC) or a colour-matched placebo (PLA) in a randomized cross-over design; water was available ad libitum. Subjects were exercising at approximately 75% of their maximal O2 uptake with no differences in cadence between trials. Ten out of 12 subjects cycled for longer with NIC administration, and this resulted in a significant 17 +/- 7% improvement in performance (P < 0.05). No differences were observed for perceived exertion, heart rate or ventilation. There were no differences in concentrations of plasma glucose, lactate or circulating fatty acids. In the absence of any effect on peripheral markers, we conclude that nicotine prolongs endurance by a central mechanism. Possible modes of action are suggested. PMID:16627574

  13. Effects Of Exercise During Prolonged Bed Rest

    NASA Technical Reports Server (NTRS)

    Arnaud, S.; Berry, P; Cohen, M.; Danelis, J.; Deroshia, C.; Greenleaf, J.; Harris, B.; Keil, L.; Bernauer, E.; Bond, M.; Ellis, S.; Lee, P.; Selzer, R.; Wade, C.

    1992-01-01

    Report describes experiment to investigate effects of isotonic and isokinetic leg exercises in counteracting effects of bed rest upon physical and mental conditions of subjects. Data taken on capacity for work, endurance and strength, tolerance to sitting up, equilibrium, posture, gait, atrophy, mineralization and density of bones, endocrine analyses concerning vasoactivity and fluid and electrolyte balances, intermediary metabolism of muscles, mood, and performance.

  14. Muscle metabolic remodeling in response to endurance exercise in salmonids

    PubMed Central

    Morash, Andrea J.; Vanderveken, Mark; McClelland, Grant B.

    2014-01-01

    Phenotypic plasticity of skeletal muscle is relevant to swimming performance and metabolism in fishes, especially those that undergo extreme locomotory feats, such as seasonal migration. However, the influence of endurance exercise and the molecular mechanisms coordinating this remodeling are not well understood. The present study examines muscle metabolic remodeling associated with endurance exercise in fed rainbow trout as compared to migrating salmon. Trout were swum for 4 weeks at 1.5 BL/s, a speed similar to that of migrating salmon and red and white muscles were sampled after each week. We quantified changes in key enzymes in aerobic and carbohydrate metabolism [citrate synthase (CS), β-hydroxyacyl-CoA dehydrogenase (HOAD), hexokinase (HK)] and changes in mRNA expression of major regulators of metabolic phenotype (AMPK, PPARs) and lipid (carnitine palmitoyltransferase, CPT I), protein (aspartate aminotransferase, AST) and carbohydrate (HK) oxidation pathways. After 1 week of swimming substantial increases were seen in AMPK and PPARα mRNA expression and of their downstream target genes, CPTI and HK in red muscle. However, significant changes in CS and HK activity occurred only after 4 weeks. In contrast, there were few changes in mRNA expression and enzyme activities in white muscle over the 4-weeks. Red muscle results mimic those found in migrating salmon suggesting a strong influence of exercise on red muscle phenotype. In white muscle, only changes in AMPK and PPAR expression were similar to that seen with migrating salmon. However, in contrast to exercise alone, in natural migration HK decreased while AST increased suggesting that white muscle plays a role in supplying fuel and intermediates possibly through tissue breakdown during prolonged fasting. Dissecting individual and potentially synergistic effects of multiple stressors will enable us to determine major drivers of the metabolic phenotype and their impacts on whole animal performance. PMID

  15. Carotid Baroreflex Function During Prolonged Exercise

    NASA Technical Reports Server (NTRS)

    Raven, P. B.

    1999-01-01

    Astronauts are often required to work (exercise) at moderate to high intensities for extended periods while performing extra-vehicular activities (EVA). Although the physiologic responses associated with prolonged exercise have been documented, the mechanisms involved in blood pressure regulation under these conditions have not yet been fully elucidated. An understanding of this issue is pertinent to the ability of humans to perform work in microgravity and complies with the emphasis of NASA's Space Physiology and Countermeasures Program. Prolonged exercise at a constant workload is know to result in a progressive decrease in mean arterial pressure (MAP) concomitant with a decrease in stroke volume and a compensatory increase in heart rate. The continuous decrease in MAP during the exercise, which is related to the thermoregulatory redistribution of circulating blood volume to the cutaneous circulation, raises the question as to whether there is a loss of baroreflex regulation of arterial blood pressure. We propose that with prolongation of the exercise to 60 minutes, progressive increases on central command reflect a progressive upward resetting of the carotid baroreflex (CBR) such that the operating point of the CBR is shifted to a pressure below the threshold of the reflex rendering it ineffectual in correcting the downward drift in MAP. In order to test this hypothesis, experiments have been designed to uncouple the global hemodynamic response to prolonged exercise from the central command mediated response via: (1) continuous maintenance of cardiac filling volume by intravenous infusion of a dextran solution; and (2) whole body surface cooling to counteract thermoregulatory cutaneous vasodialation. As the type of work (exercise) performed by astronauts is inherently arm and upper body dependent, we will also examine the physiologic responses to prolonged leg cycling and arm ergometry exercise in the supine positions with and without level lower body negative

  16. Endurance, Strength, and Coordination Exercises Without Cardiovascular or Respiratory Stress

    PubMed Central

    Bell, Carl C.

    1979-01-01

    In an attempt to maintain physical health, the author studied various exercises and after six years of research has knowledge of a form of exercise which increases endurance, strength, and coordination without cardiovascular or respiratory strain. This paper introduces five exercises, outlines their physiology, and proposes some aspects of their mechanisms of action. PMID:439157

  17. Human muscle function following prolonged eccentric exercise.

    PubMed

    Sargeant, A J; Dolan, P

    1987-01-01

    4 subjects performed repeated eccentric contractions with leg extensors during prolonged downhill walking (-25% gradient) at 6.44 km.h-1 until collapse due to muscle weakness (range of exercise duration 29 to 40 min). During the exercise oxygen uptake rose progressively from approximately 45% of the previously determined VO2max at 10 min to approximately 65% at the end of the exercise. Following the exercise there was an immediate, significant, and sustained reduction in maximal voluntary isometric contraction, and short term (anaerobic) power output measured concentrically on an isokinetic ergometer. These reductions in muscle function persisted for 96 hours post exercise, and were reflected by significant reductions in the tension generated at low frequency (20 Hz) relative to higher frequency (50 Hz) percutaneous stimulation of the quadriceps. All four subjects showed an increase in plasma levels of creatine kinase post eccentric exercise. Performing concentric contractions by walking uphill for one hour at a significantly greater metabolic cost failed to induce comparable reductions in muscle function. These results provide evidence for the consequences of prolonged eccentric work upon dynamic function which complements earlier reports of structural, enzymatic, and static function changes. PMID:3678226

  18. Caffeine and exercise: metabolism, endurance and performance.

    PubMed

    Graham, T E

    2001-01-01

    Caffeine is a common substance in the diets of most athletes and it is now appearing in many new products, including energy drinks, sport gels, alcoholic beverages and diet aids. It can be a powerful ergogenic aid at levels that are considerably lower than the acceptable limit of the International Olympic Committee and could be beneficial in training and in competition. Caffeine does not improve maximal oxygen capacity directly, but could permit the athlete to train at a greater power output and/or to train longer. It has also been shown to increase speed and/or power output in simulated race conditions. These effects have been found in activities that last as little as 60 seconds or as long as 2 hours. There is less information about the effects of caffeine on strength; however, recent work suggests no effect on maximal ability, but enhanced endurance or resistance to fatigue. There is no evidence that caffeine ingestion before exercise leads to dehydration, ion imbalance, or any other adverse effects. The ingestion of caffeine as coffee appears to be ineffective compared to doping with pure caffeine. Related compounds such as theophylline are also potent ergogenic aids. Caffeine may act synergistically with other drugs including ephedrine and anti-inflammatory agents. It appears that male and female athletes have similar caffeine pharmacokinetics, i.e., for a given dose of caffeine, the time course and absolute plasma concentrations of caffeine and its metabolites are the same. In addition, exercise or dehydration does not affect caffeine pharmacokinetics. The limited information available suggests that caffeine non-users and users respond similarly and that withdrawal from caffeine may not be important. The mechanism(s) by which caffeine elicits its ergogenic effects are unknown, but the popular theory that it enhances fat oxidation and spares muscle glycogen has very little support and is an incomplete explanation at best. Caffeine may work, in part, by

  19. Brain glycogen decreases during prolonged exercise

    PubMed Central

    Matsui, Takashi; Soya, Shingo; Okamoto, Masahiro; Ichitani, Yukio; Kawanaka, Kentaro; Soya, Hideaki

    2011-01-01

    Abstract Brain glycogen could be a critical energy source for brain activity when the glucose supply from the blood is inadequate (hypoglycaemia). Although untested, it is hypothesized that during prolonged exhaustive exercise that induces hypoglycaemia and muscular glycogen depletion, the resultant hypoglycaemia may cause a decrease in brain glycogen. Here, we tested this hypothesis and also investigated the possible involvement of brain monoamines with the reduced levels of brain glycogen. For this purpose, we exercised male Wistar rats on a treadmill for different durations (30–120 min) at moderate intensity (20 m min−1) and measured their brain glycogen levels using high-power microwave irradiation (10 kW). At the end of 30 and 60 min of running, the brain glycogen levels remained unchanged from resting levels, but liver and muscle glycogen decreased. After 120 min of running, the glycogen levels decreased significantly by ∼37–60% in five discrete brain loci (the cerebellum 60%, cortex 48%, hippocampus 43%, brainstem 37% and hypothalamus 34%) compared to those of the sedentary control. The brain glycogen levels in all five regions after running were positively correlated with the respective blood and brain glucose levels. Further, in the cortex, the levels of methoxyhydroxyphenylglycol (MHPG) and 5-hydroxyindoleacetic acid (5-HIAA), potential involved in degradation of the brain glycogen, increased during prolonged exercise and negatively correlated with the glycogen levels. These results support the hypothesis that brain glycogen could decrease with prolonged exhaustive exercise. Increased monoamines together with hypoglycaemia should be associated with the development of decreased brain glycogen, suggesting a new clue towards the understanding of central fatigue during prolonged exercise. PMID:21521757

  20. Increased atrial arrhythmia susceptibility induced by intense endurance exercise in mice requires TNFα

    PubMed Central

    Aschar-Sobbi, Roozbeh; Izaddoustdar, Farzad; Korogyi, Adam S.; Wang, Qiongling; Farman, Gerrie P.; Yang, FengHua; Yang, Wallace; Dorian, David; Simpson, Jeremy A.; Tuomi, Jari M.; Jones, Douglas L.; Nanthakumar, Kumaraswamy; Cox, Brian; Wehrens, Xander H.T.; Dorian, Paul; Backx, Peter H.

    2015-01-01

    Atrial fibrillation (AF) is the most common supraventricular arrhythmia that, for unknown reasons, is linked to intense endurance exercise. Our studies reveal that 6 weeks of swimming or treadmill exercise improves heart pump function and reduces heart-rates. Exercise also increases vulnerability to AF in association with inflammation, fibrosis, increased vagal tone, slowed conduction velocity, prolonged cardiomyocyte action potentials and RyR2 phosphorylation (CamKII-dependent S2814) in the atria, without corresponding alterations in the ventricles. Microarray results suggest the involvement of the inflammatory cytokine, TNFα, in exercised-induced atrial remodelling. Accordingly, exercise induces TNFα-dependent activation of both NFκB and p38MAPK, while TNFα inhibition (with etanercept), TNFα gene ablation, or p38 inhibition, prevents atrial structural remodelling and AF vulnerability in response to exercise, without affecting the beneficial physiological changes. Our results identify TNFα as a key factor in the pathology of intense exercise-induced AF. PMID:25598495

  1. Increased atrial arrhythmia susceptibility induced by intense endurance exercise in mice requires TNFα.

    PubMed

    Aschar-Sobbi, Roozbeh; Izaddoustdar, Farzad; Korogyi, Adam S; Wang, Qiongling; Farman, Gerrie P; Yang, FengHua; Yang, Wallace; Dorian, David; Simpson, Jeremy A; Tuomi, Jari M; Jones, Douglas L; Nanthakumar, Kumaraswamy; Cox, Brian; Wehrens, Xander H T; Dorian, Paul; Backx, Peter H

    2015-01-01

    Atrial fibrillation (AF) is the most common supraventricular arrhythmia that, for unknown reasons, is linked to intense endurance exercise. Our studies reveal that 6 weeks of swimming or treadmill exercise improves heart pump function and reduces heart-rates. Exercise also increases vulnerability to AF in association with inflammation, fibrosis, increased vagal tone, slowed conduction velocity, prolonged cardiomyocyte action potentials and RyR2 phosphorylation (CamKII-dependent S2814) in the atria, without corresponding alterations in the ventricles. Microarray results suggest the involvement of the inflammatory cytokine, TNFα, in exercised-induced atrial remodelling. Accordingly, exercise induces TNFα-dependent activation of both NFκB and p38MAPK, while TNFα inhibition (with etanercept), TNFα gene ablation, or p38 inhibition, prevents atrial structural remodelling and AF vulnerability in response to exercise, without affecting the beneficial physiological changes. Our results identify TNFα as a key factor in the pathology of intense exercise-induced AF. PMID:25598495

  2. Strength training prior to endurance exercise: impact on the neuromuscular system, endurance performance and cardiorespiratory responses.

    PubMed

    Conceição, Matheus; Cadore, Eduardo Lusa; González-Izal, Miriam; Izquierdo, Mikel; Liedtke, Giane Veiga; Wilhelm, Eurico Nestor; Pinto, Ronei Silveira; Goltz, Fernanda Reistenbach; Schneider, Cláudia Dornelles; Ferrari, Rodrigo; Bottaro, Martim; Kruel, Luiz Fernando Martins

    2014-12-01

    This study aimed to investigate the acute effects of two strength-training protocols on the neuromuscular and cardiorespiratory responses during endurance exercise. Thirteen young males (23.2 ± 1.6 years old) participated in this study. The hypertrophic strength-training protocol was composed of 6 sets of 8 squats at 75% of maximal dynamic strength. The plyometric strength-training protocol was composed of 6 sets of 8 jumps performed with the body weight as the workload. Endurance exercise was performed on a cycle ergometer at a power corresponding to the second ventilatory threshold until exhaustion. Before and after each protocol, a maximal voluntary contraction was performed, and the rate of force development and electromyographic parameters were assessed. After the hypertrophic strength-training and plyometric strength-training protocol, significant decreases were observed in the maximal voluntary contraction and rate of force development, whereas no changes were observed in the electromyographic parameters. Oxygen uptake and a heart rate during endurance exercise were not significantly different among the protocols. However, the time-to-exhaustion was significantly higher during endurance exercise alone than when performed after hypertrophic strength-training or plyometric strength-training (p <0.05). These results suggest that endurance performance may be impaired when preceded by strength-training, with no oxygen uptake or heart rate changes during the exercise. PMID:25713678

  3. Effects of age on hemorheological responses to acute endurance exercise.

    PubMed

    Ahmadizad, Sajad; Moradi, Akram; Nikookheslat, Saeed; Ebrahimi, Hadi; Rahbaran, Adel; Connes, Philippe

    2011-01-01

    The purpose of this investigation was to examine the effects of age on the acute responses of hemorheological variables and biochemical parameters to a single bout of sub-maximal endurance exercise. Fifteen young (20-30 years), 15 middle-aged (40-50 years) and 12 old (60-70 years) male subjects participated in the study. All subjects performed one single bout of endurance exercise encompassed 30-min cycling at 70-75% of maximal heart rate which was followed by 30-min recovery. Three blood samples were taken before, immediately after exercise and after 30-min recovery. Resting levels of hematocrit, red blood cells count, plasma albumin and fibrinogen concentrations, plasma viscosity and whole blood viscosity were significantly different among the three groups (P < 0.01). Thirty minutes of cycling resulted in significant increases (P < 0.05) in all parameters; while these changes were temporary and returned to pre-exercise level at the end of recovery. Responses of all parameters to exercise and recovery were not significantly different among the three groups (P > 0.05). Fibrinogen changes during exercise and recovery were corrected for exercise- and recovery-induced changes in plasma volume. Data analysis showed effects of exercise and recovery only for raw data (P > 0.05). In addition, raw and corrected fibrinogen data in response to exercise and recovery were not age-related. Our results demonstrate that age does not affect the hemorheological responses to an acute endurance exercise in healthy men. PMID:22214687

  4. Can intense endurance exercise cause myocardial damage and fibrosis?

    PubMed

    La Gerche, Andre

    2013-01-01

    There has been long-standing debate as to whether intense endurance exercise provokes acute myocardial damage and whether cardiac remodeling associated with long-standing endurance training is entirely physiological. Despite the lack of concrete evidence on either side, the potential for serious clinical consequences, including life-threatening arrhythmias, elevates the importance of the debate. Studies have taught us that elite athletes enjoy excellent health, and athletic animal models consistently show up-regulation of molecular pathways, which are free of fibrosis and entirely different from those induced through pathological cardiac loading. On the other hand, extreme exercise has been associated with biochemical and functional evidence of acute damage, and some recent imaging techniques raise the possibility of small areas of myocardial scar. Moreover, some arrhythmias appear to be more prevalent amongst endurance athletes. Only large prospective trials will enable us to really assess the health benefits and risks of regular intense endurance sports. PMID:23478555

  5. Breathing during prolonged exercise in humans.

    PubMed Central

    Kearon, M C; Summers, E; Jones, N L; Campbell, E J; Killian, K J

    1991-01-01

    1. Six normal subjects cycled to endurance or for 60 min at four work rates (WR 1-4): mean of 34% working capacity (93 watts for 60 min); 43% (120 watts for 56 min); 63% (177 watts for 37 min); and 84% (233 watts for 12 min), to determine how breathing pattern and dyspnoea change during prolonged activity. Four to six minutes were allowed to establish steady state and subsequent changes were considered to be endurance related. 2. Dyspnoea (Borg scale, 0-10) increased with the duration of activity at all work rates. 3. Ventilation (VE) did not change at WR1; increased from 44 to 47 l min-1 at WR2; from 60 to 88 l min-1 at WR3; and from 111 to 132 l min-1 at WR4. Dyspnoea was significantly and independently related to ventilation and duration of activity: dyspnoea = 0.004 VE1.36 time 0.25 (r = 0.81; partial F 202 and 26 respectively). 4. Inspiratory resistance did not increase at any work rate. Dynamic elastance remained constant during WR1, WR2 and WR3 but increased from 7.4 to 9.1 cmH2O l-1 during WR4. 5. Peak inspiratory pressure did not increase, and the increase in VE was accomplished by an increased breathing frequency without change in duty cycle. 6. Duration of activity is an important contributor to dyspnoea independent of changes in respiratory muscle contractile activity. PMID:1798038

  6. Maximal aerobic exercise following prolonged sleep deprivation.

    PubMed

    Goodman, J; Radomski, M; Hart, L; Plyley, M; Shephard, R J

    1989-12-01

    The effect of 60 h without sleep upon maximal oxygen intake was examined in 12 young women, using a cycle ergometer protocol. The arousal of the subjects was maintained by requiring the performance of a sequence of cognitive tasks throughout the experimental period. Well-defined oxygen intake plateaus were obtained both before and after sleep deprivation, and no change of maximal oxygen intake was observed immediately following sleep deprivation. The endurance time for exhausting exercise also remained unchanged, as did such markers of aerobic performance as peak exercise ventilation, peak heart rate, peak respiratory gas exchange ratio, and peak blood lactate. However, as in an earlier study of sleep deprivation with male subjects (in which a decrease of treadmill maximal oxygen intake was observed), the formula of Dill and Costill (4) indicated the development of a substantial (11.6%) increase of estimated plasma volume percentage with corresponding decreases in hematocrit and red cell count. Possible factors sustaining maximal oxygen intake under the conditions of the present experiment include (1) maintained arousal of the subjects with no decrease in peak exercise ventilation or the related respiratory work and (2) use of a cycle ergometer rather than a treadmill test with possible concurrent differences in the impact of hematocrit levels and plasma volume expansion upon peak cardiac output and thus oxygen delivery to the working muscles. PMID:2628360

  7. Aerobic exercise and endurance: improving fitness for health benefits.

    PubMed

    Wilmore, Jack H

    2003-05-01

    Clinicians who understand how the body responds to exercise, how aerobic training improves cardiovascular fitness, and the benefits and principles of prescribing aerobic exercise can effectively encourage patients to become active and optimize programs for those already active. Patients who are active at an early age and who continue to enjoy active lifestyles as adults will attenuate the normal losses in cardiovascular endurance, strength, and flexibility that accompany aging and sedentary living, thereby maintaining greater independence throughout their life spans. PMID:20086470

  8. Carbohydrate mouth rinse: does it improve endurance exercise performance?

    PubMed Central

    2010-01-01

    It is well known that carbohydrate (CHO) supplementation can improve performance in endurance exercises through several mechanisms such as maintenance of glycemia and sparing endogenous glycogen as well as the possibility of a central nervous-system action. Some studies have emerged in recent years in order to test the hypothesis of ergogenic action via central nervous system. Recent studies have demonstrated that CHO mouth rinse can lead to improved performance of cyclists, and this may be associated with the activation of brain areas linked to motivation and reward. These findings have already been replicated in other endurance modalities, such as running. This alternative seems to be an attractive nutritional tool to improve endurance exercise performance. PMID:20799963

  9. Exercise-Associated Collapse in Endurance Events: A Classification System.

    ERIC Educational Resources Information Center

    Roberts, William O.

    1989-01-01

    Describes a classification system devised for exercise-associated collapse in endurance events based on casualties observed at six Twin Cities Marathons. Major diagnostic criteria are body temperature and mental status. Management protocol includes fluid and fuel replacement, temperature correction, and leg cramp treatment. (Author/SM)

  10. Molecular responses to moderate endurance exercise in skeletal muscle

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study examined alterations in skeletal-muscle growth and atrophy-related molecular events after a single bout of moderate-intensity endurance exercise. Muscle biopsies were obtained from 10 men (23 +/- 1 yr, body mass 80 +/- 2 kg, and VO(2peak) 45 +/- 1 ml x kg'¹ x min'¹) immediately (0 hr) and...

  11. RESISTIVE EXERCISES IN THE DEVELOPMENT OF MUSCULAR STRENGTH AND ENDURANCE.

    ERIC Educational Resources Information Center

    BURNHAM, STAN; MCCRAW, LYNN W.

    A STUDY WAS CONCERNED WITH A COMPARISON OF ISOTONIC, ISOMETRIC, AND SPEED EXERCISE PROGRAMS AS A MEANS OF DEVELOPING MUSCLE STRENGTH, ENDURANCE, SPEED, AND POWER. SUBJECTS FOR THE INVESTIGATION WERE 93 FRESHMEN AND SOPHOMORE MEN ENROLLED IN A PHYSICAL EDUCATION CLASS. AFTER MEASUREMENT OF INITIAL STATUS IN THE ATTRIBUTES UNDER CONSIDERATION, THE…

  12. Endurance exercise performance: the physiology of champions

    PubMed Central

    Joyner, Michael J; Coyle, Edward F

    2008-01-01

    Efforts to understand human physiology through the study of champion athletes and record performances have been ongoing for about a century. For endurance sports three main factors – maximal oxygen consumption , the so-called ‘lactate threshold’ and efficiency (i.e. the oxygen cost to generate a give running speed or cycling power output) – appear to play key roles in endurance performance. and lactate threshold interact to determine the ‘performance ‘ which is the oxygen consumption that can be sustained for a given period of time. Efficiency interacts with the performance to establish the speed or power that can be generated at this oxygen consumption. This review focuses on what is currently known about how these factors interact, their utility as predictors of elite performance, and areas where there is relatively less information to guide current thinking. In this context, definitive ideas about the physiological determinants of running and cycling efficiency is relatively lacking in comparison with and the lactate threshold, and there is surprisingly limited and clear information about the genetic factors that might pre-dispose for elite performance. It should also be cautioned that complex motivational and sociological factors also play important roles in who does or does not become a champion and these factors go far beyond simple physiological explanations. Therefore, the performance of elite athletes is likely to defy the types of easy explanations sought by scientific reductionism and remain an important puzzle for those interested in physiological integration well into the future. PMID:17901124

  13. Neonatal morphometrics after endurance exercise during pregnancy.

    PubMed

    Clapp, J F; Capeless, E L

    1990-12-01

    This study was designed to test the hypothesis that continuation of a regular running and/or aerobics program during late pregnancy at or above 50% of preconceptional levels limits fetal growth. Accordingly, detailed neonatal morphometric data were gathered in the offspring of two groups: 77 well-conditioned recreational runners and aerobic dancers who were delivered at term after continuing their exercise regimen at or above 50% of the preconceptional level throughout pregnancy and 55 matched controls. Daily exercise performance was quantitated before conception and throughout pregnancy. Significant reductions in birth weight (-310 gm), birth weight percentile (-20), ponderal index (-0.24), its percentile (-30), and the fetoplacental weight ratio (-0.7) were seen in the offspring of the exercise group whereas crown-heel length (51.4 cm) and head circumference (35.0) were similar in the two groups. Reductions in two-site skin-fold thickness (-1.5 mm), skin-fold percentile (-30), calculated percent body fat (-5.0%), and fat mass (-220 gm) in the offspring of the exercise group confirmed the asymmetric pattern of growth restriction and indicated that approximately 70% of the difference in birth weight could be explained by the difference in neonatal fat mass. In runners, the relative level of exercise performance in the last 5 months of pregnancy explained 40% of the variability in birth weight over an 1100 gm birth weight range. We conclude that continuation of a regular aerobic or running program at or above a minimal training level during late pregnancy results in an asymmetric pattern of growth restriction that primarily impacts on neonatal fat mass. PMID:2256486

  14. Performance predicting factors in prolonged exhausting exercise of varying intensity.

    PubMed

    Björklund, Glenn; Pettersson, Sofia; Schagatay, Erika

    2007-03-01

    Several endurance sports, e.g. road cycling, have a varying intensity profile during competition. At present, few laboratory tests take this intensity profile into consideration. Thus, the purpose of this study was to examine the prognostic value of heart rate (HR), lactate (La(-1)), potassium (K(+)), and respiratory exchange ratio (RER) performance at an exhausting cycling exercise with varying intensity. Eight national level cyclists performed two cycle tests each on a cycle ergometer: (1) a incremental test to establish VO(2max), maximum power (W (max)), and lactate threshold (VO(2LT)), and (2) a variable intensity protocol (VIP). Exercise intensity for the VIP was based upon the VO(2max) obtained during the incremental test. The VIP consisted of six high intense (HI) workloads at 90% of VO(2max) for 3 min each, interspersed by five middle intense (MI) workloads at 70% of VO(2max )for 6 min each. VO(2 )and HR were continuously measured throughout the tests. Venous blood samples were taken before, during, and after the test. Increases in HR, La(-), K(+), and RER were observed when workload changed from MI to HI workload (P < 0.05). Potassium and RER decreased after transition from HI to MI workloads (P < 0.05). There was a negative correlation between time to exhaustion and decrease in La(-) concentration during the first MI (r = -0.714; P = 0.047). Furthermore, time to exhaustion correlated with VO(2LT )calculated from the ramp test (r = 0.738; P = 0.037). Our results suggest that the magnitude of decrease of La(-1) between the first HI workload and the consecutive MI workload could predict performance during prolonged exercise with variable intensity. PMID:17186302

  15. A hypoxia complement differentiates the muscle response to endurance exercise.

    PubMed

    Schmutz, Silvia; Däpp, Christoph; Wittwer, Matthias; Durieux, Anne-Cécile; Mueller, Matthias; Weinstein, Felix; Vogt, Michael; Hoppeler, Hans; Flück, Martin

    2010-06-01

    Metabolic stress is believed to constitute an important signal for training-induced adjustments of gene expression and oxidative capacity in skeletal muscle. We hypothesized that the effects of endurance training on expression of muscle-relevant transcripts and ultrastructure would be specifically modified by a hypoxia complement during exercise due to enhanced glycolytic strain. Endurance training of untrained male subjects in conditions of hypoxia increased subsarcolemmal mitochondrial density in the recruited vastus lateralis muscle and power output in hypoxia more than training in normoxia, i.e. 169 versus 91% and 10 versus 6%, respectively, and tended to differentially elevate sarcoplasmic volume density (42 versus 20%, P = 0.07). The hypoxia-specific ultrastructural adjustments with training corresponded to differential regulation of the muscle transcriptome by single and repeated exercise between both oxygenation conditions. Fine-tuning by exercise in hypoxia comprised gene ontologies connected to energy provision by glycolysis and fat metabolism in mitochondria, remodelling of capillaries and the extracellular matrix, and cell cycle regulation, but not fibre structure. In the untrained state, the transcriptome response during the first 24 h of recovery from a single exercise bout correlated positively with changes in arterial oxygen saturation during exercise and negatively with blood lactate. This correspondence was inverted in the trained state. The observations highlight that the expression response of myocellular energy pathways to endurance work is graded with regard to metabolic stress and the training state. The exposed mechanistic relationship implies that the altitude specificity of improvements in aerobic performance with a 'living low-training high' regime has a myocellular basis. PMID:20176680

  16. Effects of sweet cassava polysaccharide extracts on endurance exercise in rats

    PubMed Central

    2013-01-01

    Background Sweet cassava tubers have abundant carbohydrates consisting of monosaccharides and polysaccharides. In addition, polysaccharides extracted from plants improve sports performance, according to recent studies. We therefore examined whether the administration of sweet cassava polysaccharides (SCPs) benefited endurance performance in rats Methods Male Sprague–Dawley rats (n = 30, 7 weeks old) were divided into three groups: control (C), exercise (Ex), and exercise plus SCPs administration (ExSCP) (at a dose of 500 mg/kg body weight by gastric intubation for six days in addition to standard rat food and water). An exercise program was implemented in the Ex and ExSCP groups for five days (with no exercise on the sixth day), and then all rats were sacrificed to determine the glycogen content of the gastrocnemius and soleus muscles, and the blood metabolites after the ExSCP and Ex groups had completed exhaustive running. Results The running time to exhaustion of the ExSCP group was significantly longer than that of the Ex group by 49% (64 vs. 43 min). After running to exhaustion, it was seen that although the glycogen content in the soleus and gastrocnemius muscles of the Ex and ExSCP groups was lower compared to the C group, values in the ExSCP group were significantly higher than in the Ex group (p > 0.05). In addition, blood glucose and free fatty acid (FFA) levels were significantly higher in the ExSCP than in the Ex group (p > 0.05). However, no significant differences for blood glucose or FFA were found between the ExSCP and C groups. Conclusions SCP supplementation can prolong exercise endurance in rats. Higher muscle glycogen levels and stable glucose and FFA concentrations in the circulation contributed to the prolonged time to exhaustion. PMID:23537169

  17. Pre-exercise hypervolemia and cycle ergometer endurance in men

    NASA Technical Reports Server (NTRS)

    Greenleaf, J. E.; Looft-Wilson, R.; Wisherd, J. L.; McKenzie, M. A.; Jensen, C. D.; Whittam, J. H.

    1997-01-01

    Time to exhaustion at 87-91% of peak VO2 was measured in 5 untrained men (age: 31 +/- 8 years, body mass: 74.20 +/- 16.50 kg, body surface area: 1.90 +/- 0.24 m2, peak VO2: 2.87 +/- 0.40 l min-1, plasma volume: 3.21 +/- 0.88 l; means +/-SD) after consuming nothing (N) or two fluid formulations (10 ml kg-1, 743 +/- 161 ml): Performance 1 (P1), a multi-ionic carbohydrate drink, containing 55 mEq l-1 Na+, 4.16 g l-1 citrate, 20.49 g l-1 glucose, and 365 mOsm kg-1 H2O, and AstroAde (AA), a sodium chloride-sodium citrate hyperhydration drink, containing 164 mEq l-1 Na+, 8.54 g l-1 citrate, <5 mg l-1 glucose, and 253 mOsm kg-1 H2O. Mean (+/-SE) endurance for N, P1 and AA was 24.68 +/- 1.50, 24.55 +/- 1.09, and 30.50 +/- 3.44 min respectively. Percent changes in plasma volume (PV) from -105 min of rest to zero min before exercise were -1.5 +/- 3.2% (N), 0.2 +/- 2.2% (P1), and 4.8 +/- 3.0% (AA; P < 0.05). The attenuated endurance for N and P1 could not be attributed to differences in exercise metabolism (VE, RE, VO2) from the carbohydrate or citrate, terminal heart rate, levels of perceived exertion, forehead or thigh skin blood flow velocity, changes or absolute termination levels of rectal temperature. Thus, the higher level of resting PV for AA just before exercise, as well as greater acid buffering and possible increased energy substrate from citrate, may have contributed to the greater endurance.

  18. Carbohydrate supplementation during prolonged cycling exercise spares muscle glycogen but does not affect intramyocellular lipid use

    PubMed Central

    Boon, Hanneke; Gijsen, Annemie P.; Stegen, Jos H. C. H.; Kuipers, Harm; van Loon, Luc J. C.

    2007-01-01

    Using contemporary stable-isotope methodology and fluorescence microscopy, we assessed the impact of carbohydrate supplementation on whole-body and fiber-type-specific intramyocellular triacylglycerol (IMTG) and glycogen use during prolonged endurance exercise. Ten endurance-trained male subjects were studied twice during 3 h of cycling at 63 ± 4% of maximal O2 uptake with either glucose ingestion (CHO trial; 0.7 g CHO kg−1 h−1) or without (CON placebo trial; water only). Continuous infusions with [U-13C] palmitate and [6,6-2H2] glucose were applied to quantify plasma free fatty acids (FFA) and glucose oxidation rates and to estimate intramyocellular lipid and glycogen use. Before and after exercise, muscle biopsy samples were taken to quantify fiber-type-specific IMTG and glycogen content. Plasma glucose rate of appearance (Ra) and carbohydrate oxidation rates were substantially greater in the CHO vs CON trial. Carbohydrate supplementation resulted in a lower muscle glycogen use during the first hour of exercise in the CHO vs CON trial, resulting in a 38 ± 19 and 57 ± 22% decreased utilization in type I and II muscle-fiber glycogen content, respectively. In the CHO trial, both plasma FFA Ra and subsequent plasma FFA concentrations were lower, resulting in a 34 ± 12% reduction in plasma FFA oxidation rates during exercise (P < 0.05). Carbohydrate intake did not augment IMTG utilization, as fluorescence microscopy revealed a 76 ± 21 and 78 ± 22% reduction in type I muscle-fiber lipid content in the CHO and CON trial, respectively. We conclude that carbohydrate supplementation during prolonged cycling exercise does not modulate IMTG use but spares muscle glycogen use during the initial stages of exercise in endurance-trained men. PMID:17333244

  19. Effects of pulse current on endurance exercise and its anti-fatigue properties in the hepatic tissue of trained rats.

    PubMed

    Chang, Qi; Miao, Xinfang; Ju, Xiaowei; Zhu, Lvgang; Huang, Changlin; Huang, Tao; Zuo, Xincheng; Gao, Chunfang

    2013-01-01

    Fatigue is synonymous with a wide spectrum of familiar physiological conditions, from pathology and general health, to sport and physical exercise. Strenuous, prolonged exercise training causes fatigue. Although several studies have investigated the effects of electrical stimulation frequency on muscle fatigue, the effects of percutaneous pulse current stimulation on fatigue in the hepatic tissue of trained rats is still unclear. In order to find an effective strategy to prevent fatigue or enhance recovery, the effects of pulse current on endurance exercise and its anti-fatigue properties in exercised rats were studied. Rats were subjected to one, three or five weeks of swimming exercise training. After exercise training, rats in the treated group received daily applications of pulse current. All rats were sacrificed after one, three or five weeks of swimming exercise, and the major biochemical indexes were measured in serum and liver. The results demonstrate that pulse current could prolong the exhaustion swimming time, as well as decrease serum ALT, AST and LD levels and liver MDA content. It also elevated serum LDH activity, liver SOD activity and glycogen content. Furthermore, pulse current increased the expression of Bcl-2 and decreased the expression of Bax. Taken together, these results show that pulse current can elevate endurance capacity and facilitate recovery from fatigue. PMID:24116026

  20. Glutamine and carbohydrate supplements reduce ammonemia increase during endurance field exercise.

    PubMed

    Carvalho-Peixoto, Jacqueline; Alves, Robson Cardilo; Cameron, Luiz-Claudio

    2007-12-01

    Blood ammonia concentration increases during endurance exercise and has been proposed as a cause for both peripheral and central fatigue. We examined the impact of glutamine and (or) carbohydrate supplementation on ammonemia in high-level runners. Fifteen men in pre-competitive training ran 120 min (approximately 34 km) outdoors on 4 occasions. On the first day, the 15 athletes ran without the use of supplements and blood samples were taken every 30 min. After that, each day for 4 d before the next 3 exercise trials, we supplemented the athletes' normal diets in bolus with carbohydrate (1 g.kg(-1).d(-1)), glutamine (70 mg.kg(-1).d(-1)), or a combination of both in a double-blind study. Blood ammonia level was determined before the run and every 30 min during the run. During the control trial ammonia increased progressively to approximately 70% above rest concentration. Following supplementation, independent of treatment, ammonia was not different (p>0.05) for the first 60 min, but for the second hour it was lower than in the control (p<0.05). Supplementation in high-level, endurance athletes reduced the accumulation of blood ammonia during prolonged, strenuous exercise in a field situation. PMID:18059593

  1. Metabolic and exercise endurance effects of coffee and caffeine ingestion.

    PubMed

    Graham, T E; Hibbert, E; Sathasivam, P

    1998-09-01

    Caffeine (Caf) ingestion increases plasma epinephrine (Epi) and exercise endurance; these results are frequently transferred to coffee (Cof) consumption. We examined the impact of ingestion of the same dose of Caf in Cof or in water. Nine healthy, fit, young adults performed five trials after ingesting (double blind) either a capsule (Caf or placebo) with water or Cof (decaffeinated Cof, decaffeinated with Caf added, or regular Cof). In all three Caf trials, the Caf dose was 4.45 mg/kg body wt and the volume of liquid was 7.15 ml/kg. After 1 h of rest, the subject ran at 85% of maximal O2 consumption until voluntary exhaustion (approximately 32 min in the placebo and decaffeinated Cof tests). In the three Caf trials, the plasma Caf and paraxanthine concentrations were very similar. After 1 h of rest, the plasma Epi was increased (P < 0.05) by Caf ingestion, but the increase was greater (P < 0.05) with Caf capsules than with Cof. During the exercise there were no differences in Epi among the three Caf trials, and the Epi values were all greater (P < 0.05) than in the other tests. Endurance was only increased (P < 0. 05) in the Caf capsule trial; there were no differences among the other four tests. One cannot extrapolate the effects of Caf to Cof; there must be a component(s) of Cof that moderates the actions of Caf. PMID:9729561

  2. The response of the pulmonary circulation and right ventricle to exercise: exercise-induced right ventricular dysfunction and structural remodeling in endurance athletes (2013 Grover Conference series).

    PubMed

    La Gerche, André; Roberts, Timothy; Claessen, Guido

    2014-09-01

    There is unequivocal evidence that exercise results in considerable health benefits. These are the result of positive hormonal, metabolic, neuronal, and structural changes brought about by the intermittent physiological challenge of exercise. However, there is evolving evidence that intense exercise may place disproportionate physiological stress on the right ventricle (RV) and the pulmonary circulation. Both echocardiographic and invasive studies are consistent in demonstrating that pulmonary arterial pressures increase progressively with exercise intensity, such that the harder one exercises, the greater the load on the RV. This disproportionate load can result in fatigue or damage of the RV if the intensity and duration of exercise is sufficiently prolonged. This is distinctly different from the load imposed by exercise on the left ventricle (LV), which is moderated by a greater capacity for reductions in systemic afterload. Finally, given the increasing RV demand during exercise, it may be hypothesized that chronic exercise-induced cardiac remodeling (the so-called athlete's heart) may also disproportionately affect the RV. Indeed, there is evidence, although somewhat inconsistent, that RV volume increases may be relatively greater than those for the LV. Perhaps more importantly, there is a suggestion that chronic endurance exercise may cause electrical remodeling, predisposing some athletes to serious arrhythmias originating from the RV. Thus, a relatively consistent picture is emerging of acute stress, prolonged fatigue, and long-term remodeling, which all disproportionately affect the RV. Thus, we contend that the RV should be considered a potential Achilles' heel of the exercising heart. PMID:25621154

  3. Methazolamide Plus Aminophylline Abrogates Hypoxia-Mediated Endurance Exercise Impairment.

    PubMed

    Scalzo, Rebecca L; Binns, Scott E; Klochak, Anna L; Giordano, Gregory R; Paris, Hunter L R; Sevits, Kyle J; Beals, Joseph W; Biela, Laurie M; Larson, Dennis G; Luckasen, Gary J; Irwin, David; Schroeder, Thies; Hamilton, Karyn L; Bell, Christopher

    2015-12-01

    In hypoxia, endurance exercise performance is diminished; pharmacotherapy may abrogate this performance deficit. Based on positive outcomes in preclinical trials, we hypothesized that oral administration of methazolamide, a carbonic anhydrase inhibitor, aminophylline, a nonselective adenosine receptor antagonist and phosphodiesterase inhibitor, and/or methazolamide combined with aminophylline would attenuate hypoxia-mediated decrements in endurance exercise performance in humans. Fifteen healthy males (26 ± 5 years, body-mass index: 24.9 ± 1.6 kg/m(2); mean ± SD) were randomly assigned to one of four treatments: placebo (n = 9), methazolamide (250 mg; n = 10), aminophylline (400 mg; n = 9), or methazolamide (250 mg) with aminophylline (400 mg; n = 8). On two separate occasions, the first in normoxia (FIO2 = 0.21) and the second in hypoxia (FIO2 = 0.15), participants sat for 4.5 hours before completing a standardized exercise bout (30 minutes, stationary cycling, 100 W), followed by a 12.5-km time trial. The magnitude of time trial performance decrement in hypoxia versus normoxia did not differ between placebo (+3.0 ± 2.7 minutes), methazolamide (+1.4 ± 1.7 minutes), and aminophylline (+1.8 ± 1.2 minutes), all with p > 0.09; however, the performance decrement in hypoxia versus normoxia with methazolamide combined with aminophylline was less than placebo (+0.6 ± 1.5 minutes; p = 0.01). This improvement may have been partially mediated by increased SpO2 in hypoxia with methazolamide combined with aminophylline compared with placebo (73% ± 3% vs. 79% ± 6%; p < 0.02). In conclusion, coadministration of methazolamide and aminophylline may promote endurance exercise performance during a sojourn at high altitude. PMID:26680684

  4. The response of the pulmonary circulation and right ventricle to exercise: exercise-induced right ventricular dysfunction and structural remodeling in endurance athletes (2013 Grover Conference series)

    PubMed Central

    Roberts, Timothy; Claessen, Guido

    2014-01-01

    Abstract There is unequivocal evidence that exercise results in considerable health benefits. These are the result of positive hormonal, metabolic, neuronal, and structural changes brought about by the intermittent physiological challenge of exercise. However, there is evolving evidence that intense exercise may place disproportionate physiological stress on the right ventricle (RV) and the pulmonary circulation. Both echocardiographic and invasive studies are consistent in demonstrating that pulmonary arterial pressures increase progressively with exercise intensity, such that the harder one exercises, the greater the load on the RV. This disproportionate load can result in fatigue or damage of the RV if the intensity and duration of exercise is sufficiently prolonged. This is distinctly different from the load imposed by exercise on the left ventricle (LV), which is moderated by a greater capacity for reductions in systemic afterload. Finally, given the increasing RV demand during exercise, it may be hypothesized that chronic exercise–induced cardiac remodeling (the so-called athlete’s heart) may also disproportionately affect the RV. Indeed, there is evidence, although somewhat inconsistent, that RV volume increases may be relatively greater than those for the LV. Perhaps more importantly, there is a suggestion that chronic endurance exercise may cause electrical remodeling, predisposing some athletes to serious arrhythmias originating from the RV. Thus, a relatively consistent picture is emerging of acute stress, prolonged fatigue, and long-term remodeling, which all disproportionately affect the RV. Thus, we contend that the RV should be considered a potential Achilles’ heel of the exercising heart. PMID:25621154

  5. Spin-trappers and vitamin E prolong endurance to muscle fatigue in mice

    SciTech Connect

    Novelli, G.P.; Bracciotti, G.; Falsini, S. )

    1990-01-01

    The involvement of free radicals in endurance to muscle effort is suggested by experimental and clinical data. Therefore, experiments have been performed to observe the effect of trapping free radicals on endurance to swimming in mice. Animals were injected intraperitoneally with each of three spin-trappers (N-tert-Butyl-alpha-Phenyl-Nitrone (PBN),alpha-4-Pyridyil-1-Oxide-N-tert-Butyl-Nitrone (POBN) and 5,5-Dimethyl-1-Pirrolyn-N-Oxide (DMPO): 0.2 ml of 10(-1) molar solution). Each mouse was submitted to a swimming test to control resistance to exhaustion (a) without any treatment, (b) after administration of each spin-trapper in a random order (c) after saline. Control experiments were performed with saline and with vitamin E. Endurance to swimming was greatly prolonged by pretreatment with all the spin-trappers (DMPO less than 0.0001; POBN less than 0.0001; PBN less than 0.001) and with Vitamin E. Experiments state that compared to treatment with spin-trappers or Vitamin E, administration of saline alone did not enhance time to exhaustion so that the increase in time to exhaustion with the various free radical scavengers was not the effect of training. Therefore, free radicals could be considered as one of the factors terminating muscle effort in mice.

  6. Endurance exercise increases skeletal muscle kynurenine aminotransferases and plasma kynurenic acid in humans.

    PubMed

    Schlittler, Maja; Goiny, Michel; Agudelo, Leandro Z; Venckunas, Tomas; Brazaitis, Marius; Skurvydas, Albertas; Kamandulis, Sigitas; Ruas, Jorge L; Erhardt, Sophie; Westerblad, Håkan; Andersson, Daniel C

    2016-05-15

    Physical exercise has emerged as an alternative treatment for patients with depressive disorder. Recent animal studies show that exercise protects from depression by increased skeletal muscle kynurenine aminotransferase (KAT) expression which shifts the kynurenine metabolism away from the neurotoxic kynurenine (KYN) to the production of kynurenic acid (KYNA). In the present study, we investigated the effect of exercise on kynurenine metabolism in humans. KAT gene and protein expression was increased in the muscles of endurance-trained subjects compared with untrained subjects. Endurance exercise caused an increase in plasma KYNA within the first hour after exercise. In contrast, a bout of high-intensity eccentric exercise did not lead to increased plasma KYNA concentration. Our results show that regular endurance exercise causes adaptations in kynurenine metabolism which can have implications for exercise recommendations for patients with depressive disorder. PMID:27030575

  7. Mechanisms of Attenuation of Pulmonary V’O2 Slow Component in Humans after Prolonged Endurance Training

    PubMed Central

    Zoladz, Jerzy A.; Majerczak, Joanna; Grassi, Bruno; Szkutnik, Zbigniew; Korostyński, Michał; Gołda, Sławomir; Grandys, Marcin; Jarmuszkiewicz, Wiesława; Kilarski, Wincenty; Karasinski, Janusz; Korzeniewski, Bernard

    2016-01-01

    In this study we have examined the effect of prolonged endurance training program on the pulmonary oxygen uptake (V’O2) kinetics during heavy-intensity cycling-exercise and its impact on maximal cycling and running performance. Twelve healthy, physically active men (mean±SD: age 22.33±1.44 years, V’O2peak 3198±458 mL ∙ min-1) performed an endurance training composed mainly of moderate-intensity cycling, lasting 20 weeks. Training resulted in a decrease (by ~5%, P = 0.027) in V’O2 during prior low-intensity exercise (20 W) and in shortening of τp of the V’O2 on-kinetics (30.1±5.9 s vs. 25.4±1.5 s, P = 0.007) during subsequent heavy-intensity cycling. This was accompanied by a decrease of the slow component of V’O2 on-kinetics by 49% (P = 0.001) and a decrease in the end-exercise V’O2 by ~5% (P = 0.005). An increase (P = 0.02) in the vascular endothelial growth factor receptor 2 mRNA level and a tendency (P = 0.06) to higher capillary-to-fiber ratio in the vastus lateralis muscle were found after training (n = 11). No significant effect of training on the V’O2peak was found (P = 0.12). However, the power output reached at the lactate threshold increased by 19% (P = 0.01). The power output obtained at the V’O2peak increased by 14% (P = 0.003) and the time of 1,500-m performance decreased by 5% (P = 0.001). Computer modeling of the skeletal muscle bioenergetic system suggests that the training-induced decrease in the slow component of V’O2 on-kinetics found in the present study is mainly caused by two factors: an intensification of the each-step activation (ESA) of oxidative phosphorylation (OXPHOS) complexes after training and decrease in the ‘‘additional” ATP usage rising gradually during heavy-intensity exercise. PMID:27104346

  8. Mechanisms of Attenuation of Pulmonary V'O2 Slow Component in Humans after Prolonged Endurance Training.

    PubMed

    Zoladz, Jerzy A; Majerczak, Joanna; Grassi, Bruno; Szkutnik, Zbigniew; Korostyński, Michał; Gołda, Sławomir; Grandys, Marcin; Jarmuszkiewicz, Wiesława; Kilarski, Wincenty; Karasinski, Janusz; Korzeniewski, Bernard

    2016-01-01

    In this study we have examined the effect of prolonged endurance training program on the pulmonary oxygen uptake (V'O2) kinetics during heavy-intensity cycling-exercise and its impact on maximal cycling and running performance. Twelve healthy, physically active men (mean±SD: age 22.33±1.44 years, V'O2peak 3198±458 mL ∙ min-1) performed an endurance training composed mainly of moderate-intensity cycling, lasting 20 weeks. Training resulted in a decrease (by ~5%, P = 0.027) in V'O2 during prior low-intensity exercise (20 W) and in shortening of τp of the V'O2 on-kinetics (30.1±5.9 s vs. 25.4±1.5 s, P = 0.007) during subsequent heavy-intensity cycling. This was accompanied by a decrease of the slow component of V'O2 on-kinetics by 49% (P = 0.001) and a decrease in the end-exercise V'O2 by ~5% (P = 0.005). An increase (P = 0.02) in the vascular endothelial growth factor receptor 2 mRNA level and a tendency (P = 0.06) to higher capillary-to-fiber ratio in the vastus lateralis muscle were found after training (n = 11). No significant effect of training on the V'O2peak was found (P = 0.12). However, the power output reached at the lactate threshold increased by 19% (P = 0.01). The power output obtained at the V'O2peak increased by 14% (P = 0.003) and the time of 1,500-m performance decreased by 5% (P = 0.001). Computer modeling of the skeletal muscle bioenergetic system suggests that the training-induced decrease in the slow component of V'O2 on-kinetics found in the present study is mainly caused by two factors: an intensification of the each-step activation (ESA) of oxidative phosphorylation (OXPHOS) complexes after training and decrease in the ''additional" ATP usage rising gradually during heavy-intensity exercise. PMID:27104346

  9. Chronic exercise training versus acute endurance exercise in reducing neurotoxicity in rats exposed to lead acetate.

    PubMed

    Shahandeh, Mohammad; Roshan, Valiollah Dabidi; Hosseinzadeh, Somayeh; Mahjoub, Soleiman; Sarkisian, Vaginak

    2013-03-15

    After intraperitoneal injection of 20 mg/kg lead acetate, rats received 8 weeks of treadmill exercise (15-22 m/min, 25-64 minutes) and/or treadmill exercise at 1.6 km/h until exhaustion. The markers related to neurotoxicity were measured by enzyme-linked immunosorbent assay method. 8 weeks of treadmill exercise significantly increased brain-derived neurotrophic factor level in the hippocampus (P = 0.04) and plasma level of total antioxidant capacity of rats exposed to lead acetate (P < 0.001), and significantly decreased plasma level of malondialdehyde (P < 0.001). Acute exercise only decreased the hippocampal malondialdehyde level (P = 0.09) and increased brain-derived neurotrophic factor level in the hippocampus (P = 0.66). Acute exercise also enhanced the total antioxidant capacity in rats exposed to lead acetate, insignificantly (P = 0.99). These findings suggest that chronic treadmill exercise can significantly decrease neurotoxicity and alleviate oxidative stress in rats exposed to lead acetate. However, acute endurance exercise was not associated with these beneficial effects. PMID:25206718

  10. Chronic exercise training versus acute endurance exercise in reducing neurotoxicity in rats exposed to lead acetate☆

    PubMed Central

    Shahandeh, Mohammad; Roshan, Valiollah Dabidi; Hosseinzadeh, Somayeh; Mahjoub, Soleiman; Sarkisian, Vaginak

    2013-01-01

    After intraperitoneal injection of 20 mg/kg lead acetate, rats received 8 weeks of treadmill exercise (15–22 m/min, 25–64 minutes) and/or treadmill exercise at 1.6 km/h until exhaustion. The markers related to neurotoxicity were measured by enzyme-linked immunosorbent assay method. 8 weeks of treadmill exercise significantly increased brain-derived neurotrophic factor level in the hippocampus (P = 0.04) and plasma level of total antioxidant capacity of rats exposed to lead acetate (P < 0.001), and significantly decreased plasma level of malondialdehyde (P < 0.001). Acute exercise only decreased the hippocampal malondialdehyde level (P = 0.09) and increased brain-derived neurotrophic factor level in the hippocampus (P = 0.66). Acute exercise also enhanced the total antioxidant capacity in rats exposed to lead acetate, insignificantly (P = 0.99). These findings suggest that chronic treadmill exercise can significantly decrease neurotoxicity and alleviate oxidative stress in rats exposed to lead acetate. However, acute endurance exercise was not associated with these beneficial effects. PMID:25206718

  11. Increased platelet oxidative metabolism, blood oxidative stress and neopterin levels after ultra-endurance exercise.

    PubMed

    de Lucas, Ricardo Dantas; Caputo, Fabrizio; Mendes de Souza, Kristopher; Sigwalt, André Roberto; Ghisoni, Karina; Lock Silveira, Paulo Cesar; Remor, Aline Pertile; da Luz Scheffer, Débora; Guglielmo, Luiz Guilherme Antonacci; Latini, Alexandra

    2014-01-01

    The purpose of the present investigation was to identify muscle damage, inflammatory response and oxidative stress blood markers in athletes undertaking the ultra-endurance MultiSport Brazil race. Eleven well-trained male athletes (34.3 ± 3.1 years, 74.0 ± 7.6 kg; 172.2 ± 5.1 cm) participated in the study and performed the race, which consisted of about 90 km of alternating off-road running, mountain biking and kayaking. Twelve hours before and up to 15 minutes after the race a 10 mL blood sample was drawn in order to measure the following parameters: lactate dehydrogenase and creatine kinase activities, lipid peroxidation, catalase activity, protein carbonylation, respiratory chain complexes I, II and IV activities, oxygen consumption and neopterin concentrations. After the race, plasma lactate dehydrogenase and creatine kinase activities were significantly increased. Erythrocyte TBA-RS levels and plasma protein carbonylation were markedly augmented in post-race samples. Additionally, mitochondrial complex II activity and oxygen consumption in post-race platelet-rich plasma were also increased. These altered biochemical parameters were accompanied by increased plasma neopterin levels. The ultra-endurance event provoked systemic inflammation (increased neopterin) accompanied by marked oxidative stress, likely by increasing oxidative metabolism (increased oxidative mitochondrial function). This might be advantageous during prolonged exercise, mainly for efficient substrate oxidation at the mitochondrial level, even when tissue damage is induced. PMID:24117160

  12. Cerebral ammonia uptake and accumulation during prolonged exercise in humans

    PubMed Central

    Nybo, Lars; Dalsgaard, Mads K; Steensberg, Adam; Møller, Kirsten; Secher, Niels H

    2005-01-01

    We evaluated whether peripheral ammonia production during prolonged exercise enhances the uptake and subsequent accumulation of ammonia within the brain. Two studies determined the cerebral uptake of ammonia (arterial and jugular venous blood sampling combined with Kety–Schmidt-determined cerebral blood flow; n = 5) and the ammonia concentration in the cerebrospinal fluid (CSF; n = 8) at rest and immediately following prolonged exercise either with or without glucose supplementation. There was a net balance of ammonia across the brain at rest and at 30 min of exercise, whereas 3 h of exercise elicited an uptake of 3.7 ± 1.3 μmol min−1 (mean ±s.e.m.) in the placebo trial and 2.5 ± 1.0 μmol min−1 in the glucose trial (P < 0.05 compared to rest, not different across trials). At rest, CSF ammonia was below the detection limit of 2 μm in all subjects, but it increased to 5.3 ± 1.1 μm following exercise with glucose, and further to 16.1 ± 3.3 μm after the placebo trial (P < 0.05). Correlations were established between both the cerebral uptake (r2 = 0.87; P < 0.05) and the CSF concentration (r2 = 0.72; P < 0.05) and the arterial ammonia level and, in addition, a weaker correlation (r2 = 0.37; P < 0.05) was established between perceived exertion and CSF ammonia at the end of exercise. The results let us suggest that during prolonged exercise the cerebral uptake and accumulation of ammonia may provoke fatigue, e.g. by affecting neurotransmitter metabolism. PMID:15611036

  13. 4 Types of Exercise, Endurance | NIH MedlinePlus the Magazine

    MedlinePlus

    ... Dancing Swimming Biking Climbing stairs or hills Playing tennis Playing basketball Sample Endurance Exercise: Walking How Much, ... if you get cold or hot. To prevent injuries, be sure to use safety equipment. Walk during ...

  14. Endurance exercise and selective breeding for longevity extend Drosophila healthspan by overlapping mechanisms

    PubMed Central

    Sujkowski, Alyson; Bazzell, Brian; Carpenter, Kylie; Arking, Robert; Wessells, Robert J

    2015-01-01

    Endurance exercise has emerged as a powerful intervention that promotes healthy aging by maintaining the functional capacity of critical organ systems. In addition, long-term exercise reduces the incidence of age-related diseases in humans and in model organisms. Despite these evident benefits, the genetic pathways required for exercise interventions to achieve these effects are still relatively poorly understood. Here, we compare gene expression changes during endurance training in Drosophila melanogaster to gene expression changes during selective breeding for longevity. Microarrays indicate that 65% of gene expression changes found in flies selectively bred for longevity are also found in flies subjected to three weeks of exercise training. We find that both selective breeding and endurance training increase endurance, cardiac performance, running speed, flying height, and levels of autophagy in adipose tissue. Both interventions generally upregulate stress defense, folate metabolism, and lipase activity, while downregulating carbohydrate metabolism and odorant receptor expression. Several members of the methuselah-like (mthl) gene family are downregulated by both interventions. Knockdown of mthl-3 was sufficient to provide extension of negative geotaxis behavior, endurance and cardiac stress resistance. These results provide support for endurance exercise as a broadly acting anti-aging intervention and confirm that exercise training acts in part by targeting longevity assurance pathways. PMID:26298685

  15. Endurance exercise and selective breeding for longevity extend Drosophila healthspan by overlapping mechanisms.

    PubMed

    Sujkowski, Alyson; Bazzell, Brian; Carpenter, Kylie; Arking, Robert; Wessells, Robert J

    2015-08-01

    Endurance exercise has emerged as a powerful intervention that promotes healthy aging by maintaining the functional capacity of critical organ systems. In addition, long-term exercise reduces the incidence of age-related diseases in humans and in model organisms. Despite these evident benefits, the genetic pathways required for exercise interventions to achieve these effects are still relatively poorly understood. Here, we compare gene expression changes during endurance training in Drosophila melanogaster to gene expression changes during selective breeding for longevity. Microarrays indicate that 65% of gene expression changes found in flies selectively bred for longevity are also found in flies subjected to three weeks of exercise training. We find that both selective breeding and endurance training increase endurance, cardiac performance, running speed, flying height, and levels of autophagy in adipose tissue. Both interventions generally upregulate stress defense, folate metabolism, and lipase activity, while downregulating carbohydrate metabolism and odorant receptor expression. Several members of the methuselah-like (mthl) gene family are downregulated by both interventions. Knockdown of mthl-3 was sufficient to provide extension of negative geotaxis behavior, endurance and cardiac stress resistance. These results provide support for endurance exercise as a broadly acting anti-aging intervention and confirm that exercise training acts in part by targeting longevity assurance pathways. PMID:26298685

  16. Exercise performance, core temperature, and metabolism after prolonged restricted activity and retraining in dogs

    NASA Technical Reports Server (NTRS)

    Nazar, K.; Greenleaf, J. E.; Pohoska, E.; Turlejska, E.; Kaciuba-Uscilko, H.; Kozlowski, S.

    1992-01-01

    Physiological effects of restricted activity (RA) and subsequent retraining have been studied. Ten male mongrel dogs performed a submaximal exercise endurance test on a treadmill during kennel control, after 8 weeks of cage confinement and after eight weeks of retraining using the same treadmill protocol 1 h/d for 6 d/week. Data obtained show that RA reduces exercise endurance, the effectiveness of exercise thermoregulation, muscle glycogen stores, and the lipolytic response to exercise and to noradrenaline stimulation.

  17. Exercise as a countermeasure for physiological adaptation to prolonged spaceflight.

    PubMed

    Convertino, V A

    1996-08-01

    Exercise represents the primary countermeasure used during spaceflight to maintain or restore maximal aerobic capacity (VO2max), musculoskeletal structure, and orthostatic function. However, no single exercise or combination of prescriptions has proven entirely effective in restoring cardiovascular and musculoskeletal functions to preflight levels following prolonged spaceflight. As human spaceflight exposures increase in duration, assessment and development of various effective exercise-based protective procedures become paramount. This must involve improvement in specific countermeasure prescription as well as development of additional approaches that will allow space travelers greater flexibility and medical safety during long flights. Effective exercise prescription will be based on identification of basic physiological stimuli that maintain normal function in terrestrial gravity and understanding of how specific combinations of exercise characteristics e.g., duration, frequency, intensity, mode) can mimic these stimuli and affect the overall process of adaptation to microgravity. This can be accomplished only with greater emphasis of research on ground-based experiments. Future attention must be directed to improving exercise compliance while minimizing both crew time and the impact of the exercise on life-support resources. PMID:8871910

  18. Exercise as a countermeasure for physiological adaptation to prolonged spaceflight

    NASA Technical Reports Server (NTRS)

    Convertino, V. A.

    1996-01-01

    Exercise represents the primary countermeasure used during spaceflight to maintain or restore maximal aerobic capacity (VO2max), musculoskeletal structure, and orthostatic function. However, no single exercise or combination of prescriptions has proven entirely effective in restoring cardiovascular and musculoskeletal functions to preflight levels following prolonged spaceflight. As human spaceflight exposures increase in duration, assessment and development of various effective exercise-based protective procedures become paramount. This must involve improvement in specific countermeasure prescription as well as development of additional approaches that will allow space travelers greater flexibility and medical safety during long flights. Effective exercise prescription will be based on identification of basic physiological stimuli that maintain normal function in terrestrial gravity and understanding of how specific combinations of exercise characteristics e.g., duration, frequency, intensity, mode) can mimic these stimuli and affect the overall process of adaptation to microgravity. This can be accomplished only with greater emphasis of research on ground-based experiments. Future attention must be directed to improving exercise compliance while minimizing both crew time and the impact of the exercise on life-support resources.

  19. Effects of Acute Endurance Exercise on Plasma Protein Profiles of Endurance-Trained and Untrained Individuals over Time

    PubMed Central

    Schild, Marius; Eichner, Gerrit; Beiter, Thomas; Zügel, Martina; Krumholz-Wagner, Ilke; Hudemann, Jens; Pilat, Christian; Krüger, Karsten; Niess, Andreas M.; Steinacker, Jürgen M.; Mooren, Frank C.

    2016-01-01

    Acute physical exercise and repeated exercise stimuli affect whole-body metabolic and immunologic homeostasis. The aim of this study was to determine plasma protein profiles of trained (EET, n = 19) and untrained (SED, n = 17) individuals at rest and in response to an acute bout of endurance exercise. Participants completed a bicycle exercise test at an intensity corresponding to 80% of their VO2max. Plasma samples were taken before, directly after, and three hours after exercise and analyzed using multiplex immunoassays. Seventy-eight plasma variables were included in the final analysis. Twenty-nine variables displayed significant acute exercise effects in both groups. Seven proteins differed between groups, without being affected by acute exercise. Among these A2Macro and IL-5 were higher in EET individuals while leptin showed elevated levels in SED individuals. Fifteen variables revealed group and time differences with elevated levels for IL-3, IL-7, IL-10, and TNFR2 in EET individuals. An interaction effect could be observed for nine variables including IL-6, MMP-2, MMP-3, and muscle damage markers. The proteins that differ between groups indicate a long-term exercise effect on plasma protein concentrations. These findings might be of importance in the development of exercise-based strategies in the prevention and therapy of chronic metabolic and inflammatory diseases and for training monitoring. PMID:27239103

  20. Reproducibility of cardiac biomarkers response to prolonged treadmill exercise.

    PubMed

    Tian, Ye; Nie, Jinlei; George, Keith P; Huang, Chuanye

    2014-03-01

    We examined the reproducibility of alterations in cardiac biomarkers after two identical bouts of prolonged exercise in young athletes. Serum high-sensitivity cardiac troponin T (hs-cTnT) and N-terminal pro-brain natriuretic peptide (NT-proBNP) levels were assessed before and after exercise. Significant rises in median hs-cTnT and NT-proBNP occurred in both trials. While the absolute changes in hs-cTnT were smaller after trial 2, the pattern of change was similar and the delta scores were significantly related. However, the change in NT-proBNP was not correlated between trials. The hs-cTnT release demonstrates some consistency after exercise although the blunted hc-cTnT response requires further study. PMID:24451016

  1. Autophagy plays a role in skeletal muscle mitochondrial biogenesis in an endurance exercise-trained condition.

    PubMed

    Ju, Jeong-Sun; Jeon, Sei-Il; Park, Je-Young; Lee, Jong-Young; Lee, Seong-Cheol; Cho, Ki-Jung; Jeong, Jong-Moon

    2016-09-01

    Mitochondrial homeostasis is tightly regulated by two major processes: mitochondrial biogenesis and mitochondrial degradation by autophagy (mitophagy). Research in mitochondrial biogenesis in skeletal muscle in response to endurance exercise training has been well established, while the mechanisms regulating mitophagy and the interplay between mitochondrial biogenesis and degradation following endurance exercise training are not yet well defined. The purpose of this study was to examine the effects of a short-term inhibition of autophagy in response to acute endurance exercise on skeletal muscle mitochondrial biogenesis and dynamics in an exercise-trained condition. Male wild-type C57BL/6 mice performed five daily bouts of 1-h swimming per week for 8 weeks. In order to measure autophagy flux in mouse skeletal muscle, mice were treated with or without 2 days of 0.4 mg/kg/day intraperitoneal colchicine (blocking the degradation of autophagosomes) following swimming exercise training. The autophagic flux assay demonstrated that swimming training resulted in an increase in the autophagic flux (~100 % increase in LC3-II) in mouse skeletal muscle. Mitochondrial fusion proteins, Opa1 and MFN2, were significantly elevated, and mitochondrial fission protein, Drp1, was also increased in trained mouse skeletal muscle, suggesting that endurance exercise training promotes both mitochondrial fusion and fission processes. A mitochondrial receptor, Bnip3, was further increased in exercised muscle when treated with colchicine while Pink/Parkin protein levels were unchanged. The endurance exercise training induced increases in mitochondrial biogenesis marker proteins, SDH, COX IV, and a mitochondrial biogenesis promoting factor, PGC-1α but this effect was abolished in colchicine-treated mouse skeletal muscle. This suggests that autophagy plays an important role in mitochondrial biogenesis and this coordination between these opposing processes is involved in the cellular

  2. Life-long spontaneous exercise does not prolong lifespan but improves health span in mice

    PubMed Central

    2013-01-01

    Background Life expectancy at birth in the first world has increased from 35 years at the beginning of the 20th century to more than 80 years now. The increase in life expectancy has resulted in an increase in age-related diseases and larger numbers of frail and dependent people. The aim of our study was to determine whether life-long spontaneous aerobic exercise affects lifespan and healthspan in mice. Results Male C57Bl/6J mice, individually caged, were randomly assigned to one of two groups: sedentary (n = 72) or spontaneous wheel-runners (n = 72). We evaluated longevity and several health parameters including grip strength, motor coordination, exercise capacity (VO2max) and skeletal muscle mitochondrial biogenesis. We also measured the cortical levels of the brain-derived neurotrophic factor (BDNF), a neurotrophin associated with brain plasticity. In addition, we measured systemic oxidative stress (malondialdehyde and protein carbonyl plasma levels) and the expression and activity of two genes involved in antioxidant defense in the liver (that is, glutathione peroxidase (GPx) and manganese superoxide dismutase (Mn-SOD)). Genes that encode antioxidant enzymes are considered longevity genes because their over-expression may modulate lifespan. Aging was associated with an increase in oxidative stress biomarkers and in the activity of the antioxidant enzymes, GPx and Mn-SOD, in the liver in mice. Life-long spontaneous exercise did not prolong longevity but prevented several signs of frailty (that is, decrease in strength, endurance and motor coordination). This improvement was accompanied by a significant increase in the mitochondrial biogenesis in skeletal muscle and in the cortical BDNF levels. Conclusion Life-long spontaneous exercise does not prolong lifespan but improves healthspan in mice. Exercise is an intervention that delays age-associated frailty, enhances function and can be translated into the clinic. PMID:24472376

  3. Cardiovascular strain impairs prolonged self-paced exercise in the heat.

    PubMed

    Périard, Julien D; Cramer, Matthew N; Chapman, Phillip G; Caillaud, Corinne; Thompson, Martin W

    2011-02-01

    It has been proposed that self-paced exercise in the heat is regulated by an anticipatory reduction in work rate based on the rate of heat storage. However, performance may be impaired by the development of hyperthermia and concomitant rise in cardiovascular strain increasing relative exercise intensity. This study evaluated the influence of thermal strain on cardiovascular function and power output during self-paced exercise in the heat. Eight endurance-trained cyclists performed a 40 km simulated time trial in hot (35°C) and thermoneutral conditions (20°C), while power output, mean arterial pressure, heart rate, oxygen uptake and cardiac output were measured. Time trial duration was 64.3 ± 2.8 min (242.1 W) in the hot condition and 59.8 ± 2.6 min (279.4 W) in the thermoneutral condition (P < 0.01). Power output in the heat was depressed from 20 min onwards compared with exercise in the thermoneutral condition (P < 0.05). Rectal temperature reached 39.8 ± 0.3 (hot) and 38.9 ± 0.2°C (thermoneutral; P < 0.01). From 10 min onwards, mean skin temperature was ~7.5°C higher in the heat, and skin blood flow was significantly elevated (P < 0.01). Heart rate was ~8 beats min(-1) higher throughout hot exercise, while stroke volume, cardiac output and mean arterial pressure were significantly depressed compared with the thermoneutral condition (P < 0.05). Peak oxygen uptake measured during the final kilometre of exercise at maximal effort reached 77 (hot) and 95% (thermoneutral) of pre-experimental control values (P < 0.01). We conclude that a thermoregulatory-mediated rise in cardiovascular strain is associated with reductions in sustainable power output, peak oxygen uptake and maximal power output during prolonged, intense self-paced exercise in the heat. PMID:20851861

  4. Endurance Exercise as an “Endogenous” Neuro-enhancement Strategy to Facilitate Motor Learning

    PubMed Central

    Taubert, Marco; Villringer, Arno; Lehmann, Nico

    2015-01-01

    Endurance exercise improves cardiovascular and musculoskeletal function and may also increase the information processing capacities of the brain. Animal and human research from the past decade demonstrated widespread exercise effects on brain structure and function at the systems-, cellular-, and molecular level of brain organization. These neurobiological mechanisms may explain the well-established positive influence of exercise on performance in various behavioral domains but also its contribution to improved skill learning and neuroplasticity. With respect to the latter, only few empirical and theoretical studies are available to date. The aim of this review is (i) to summarize the existing neurobiological and behavioral evidence arguing for endurance exercise-induced improvements in motor learning and (ii) to develop hypotheses about the mechanistic link between exercise and improved learning. We identify major knowledge gaps that need to be addressed by future research projects to advance our understanding of how exercise should be organized to optimize motor learning. PMID:26834602

  5. Voluntary stand-up physical activity enhances endurance exercise capacity in rats.

    PubMed

    Seo, Dae Yun; Lee, Sung Ryul; Kwak, Hyo-Bum; Seo, Kyo Won; McGregor, Robin A; Yeo, Ji Young; Ko, Tae Hee; Bolorerdene, Saranhuu; Kim, Nari; Ko, Kyung Soo; Rhee, Byoung Doo; Han, Jin

    2016-05-01

    Involuntary physical activity induced by the avoidance of electrical shock leads to improved endurance exercise capacity in animals. However, it remains unknown whether voluntary stand-up physical activity (SPA) without forced simulating factors improves endurance exercise capacity in animals. We examined the eff ects of SPA on body weight, cardiac function, and endurance exercise capacity for 12 weeks. Twelve male Sprague-Dawley rats (aged 8 weeks, n=6 per group) were randomly assigned to a control group (CON) or a voluntary SPA group. The rats were induced to perform voluntary SPA (lifting a load equal to their body weight), while the food height (18.0 cm) in cages was increased progressively by 3.5 every 4 weeks until it reached 28.5 cm for 12 weeks. The SPA group showed a lower body weight compared to the CON group, but voluntary SPA did not affect the skeletal muscle and heart weights, food intake, and echocardiography results. Although the SPA group showed higher grip strength, running time, and distance compared to the CON group, the level of irisin, corticosterone, genetic expression of mitochondrial biogenesis, and nuclei numbers were not affected. These findings show that voluntary SPA without any forced stimuli in rats can eff ectively reduce body weight and enhance endurance exercise capacity, suggesting that it may be an important alternative strategy to enhance endurance exercise capacity. PMID:27162483

  6. Voluntary stand-up physical activity enhances endurance exercise capacity in rats

    PubMed Central

    Seo, Dae Yun; Lee, Sung Ryul; Kwak, Hyo-Bum; Seo, Kyo Won; McGregor, Robin A; Yeo, Ji Young; Ko, Tae Hee; Bolorerdene, Saranhuu; Kim, Nari; Ko, Kyung Soo; Rhee, Byoung Doo

    2016-01-01

    Involuntary physical activity induced by the avoidance of electrical shock leads to improved endurance exercise capacity in animals. However, it remains unknown whether voluntary stand-up physical activity (SPA) without forced simulating factors improves endurance exercise capacity in animals. We examined the eff ects of SPA on body weight, cardiac function, and endurance exercise capacity for 12 weeks. Twelve male Sprague-Dawley rats (aged 8 weeks, n=6 per group) were randomly assigned to a control group (CON) or a voluntary SPA group. The rats were induced to perform voluntary SPA (lifting a load equal to their body weight), while the food height (18.0 cm) in cages was increased progressively by 3.5 every 4 weeks until it reached 28.5 cm for 12 weeks. The SPA group showed a lower body weight compared to the CON group, but voluntary SPA did not affect the skeletal muscle and heart weights, food intake, and echocardiography results. Although the SPA group showed higher grip strength, running time, and distance compared to the CON group, the level of irisin, corticosterone, genetic expression of mitochondrial biogenesis, and nuclei numbers were not affected. These findings show that voluntary SPA without any forced stimuli in rats can eff ectively reduce body weight and enhance endurance exercise capacity, suggesting that it may be an important alternative strategy to enhance endurance exercise capacity. PMID:27162483

  7. Exhaustive submaximal endurance and resistance exercises induce temporary immunosuppression via physical and oxidative stress

    PubMed Central

    Jin, Chan-Ho; Paik, Il-Young; Kwak, Yi-Sub; Jee, Yong-Seok; Kim, Joo-Young

    2015-01-01

    Regular running and strength training are the best ways to improve aerobic capacity and develop the size of skeletal muscles. However, uncontrolled physical activities can often lead to an undertraining or over-training syndrome. In particular, overtraining causes persistent fatigue and reduces physical performance due to changes in the various physiological and immunological factors. In this study, we gave an exhaustive submaximal endurance or resistance exercise to participants and investigated the relationship between physical stress (cortisol level in blood), oxidative stress (intracellular ROS accumulation), and adaptive immune response (CD4:CD8 ratio). Materials and Methods Ten male volunteers were recruited, and performed a submaximal endurance or resistance exercise with 85% of VO2max or 1-repetition maximum until exhaustion. Blood samples were collected at rest, and at 0 and 30 min after the exercise. Cortisol levels, oxidative stress, and immune cell phenotypes in peripheral blood were evaluated. Cortisol levels in the sera increased after the exhaustive endurance and resistance exercises and such increments were maintained through the recovery. Intra-cellular ROS levels also increased after the exhaustive endurance and resistance exercises. The ratio of CD4+ T cells to CD8+ T cells after each type of submaximal exercise decreased compared with that at the resting stage, and returned to the resting level at 30 min after the exercise. In this study, an exhaustive endurance or a resistance exercise with submaximal intensity caused excessive physical stress, intra-cellular oxidative stress, and post-exercise immunosuppression. This result suggests that excessive physical stress induced temporary immune dysfunction via physical and oxidative stress. PMID:26331134

  8. Endurance training improves the resistance of rat diaphragm to exercise-induced oxidative stress.

    PubMed

    Oh-ishi, S; Kizaki, T; Ookawara, T; Sakurai, T; Izawa, T; Nagata, N; Ohno, H

    1997-11-01

    The current study was designed to test the hypothesis that endurance training improves the ability of the diaphragm muscle to resist exercise-induced oxidative stress. Twenty-eight male Wistar rats were assigned to either untrained or trained groups. Trained rats were treadmill-trained for 9 wk. Each group was subdivided into acutely exercised or nonexercised groups. Diaphragm muscle from each rat was analyzed to determine the levels of certain antioxidant enzymes: Mn-superoxide dismutase (Mn-SOD), Cu,Zn-superoxide dismutase (Cu,Zn-SOD), glutathione peroxidase, and catalase. In addition, interleukin-1 and myeloperoxidase levels were determined. Endurance training upregulated all of the antioxidant enzymes. Conversely, acute exercise increased glutathione peroxidase and catalase in untrained rats, while it had no overt effect on any antioxidant enzymes in trained rats. Both Mn-SOD and Cu,Zn-SOD contents and activities were increased with endurance training. However, the mRNA expressions of both forms of SOD did not show any significant change with endurance training. Acute exercise also increased the levels of interleukin-1 and myeloperoxidase in untrained rats but not in trained rats. Moreover, acute exercise significantly increased the ability of neutrophils to produce superoxide, especially in untrained rats. The results from this study demonstrate that endurance training can upregulate certain antioxidant enzyme activities in rat diaphragm muscle, indicating the potential for improvement of the resistance to intracellular reactive oxygen species. The results of this study also suggest that acute exercise may cause oxidative damage in rat diaphragm through the activation of the inflammatory pathway and that endurance training may minimize such an extracellular oxidative stress by acute exercise. PMID:9372679

  9. Resistance exercise enhances the molecular signaling of mitochondrial biogenesis induced by endurance exercise in human skeletal muscle.

    PubMed

    Wang, Li; Mascher, Henrik; Psilander, Niklas; Blomstrand, Eva; Sahlin, Kent

    2011-11-01

    Combining endurance and strength training (concurrent training) may change the adaptation compared with single mode training. However, the site of interaction and the mechanisms are unclear. We have investigated the hypothesis that molecular signaling of mitochondrial biogenesis after endurance exercise is impaired by resistance exercise. Ten healthy subjects performed either only endurance exercise (E; 1-h cycling at ∼65% of maximal oxygen uptake), or endurance exercise followed by resistance exercise (ER; 1-h cycling + 6 sets of leg press at 70-80% of 1 repetition maximum) in a randomized cross-over design. Muscle biopsies were obtained before and after exercise (1 and 3 h postcycling). The mRNA of genes related to mitochondrial biogenesis [(peroxisome proliferator-activated receptor-γ coactivator-1 (PGC-1)α, PGC-1-related coactivator (PRC)] related coactivator) and substrate regulation (pyruvate dehydrogenase kinase-4) increased after both E and ER, but the mRNA levels were about twofold higher after ER (P < 0.01). Phosphorylation of proteins involved in the signaling cascade of protein synthesis [mammalian target of rapamycin (mTOR), ribosomal S6 kinase 1, and eukaryotic elongation factor 2] was altered after ER but not after E. Moreover, ER induced a larger increase in mRNA of genes associated with positive mTOR signaling (cMyc and Rheb). Phosphorylation of AMP-activated protein kinase, acetyl-CoA carboxylase, and Akt increased similarly at 1 h postcycling (P < 0.01) after both types of exercise. Contrary to our hypothesis, the results demonstrate that ER, performed after E, amplifies the adaptive signaling response of mitochondrial biogenesis compared with single-mode endurance exercise. The mechanism may relate to a cross talk between signaling pathways mediated by mTOR. The results suggest that concurrent training may be beneficial for the adaptation of muscle oxidative capacity. PMID:21836044

  10. Water and carbohydrate ingestion during prolonged exercise increase maximal neuromuscular power.

    PubMed

    Fritzsche, R G; Switzer, T W; Hodgkinson, B J; Lee, S H; Martin, J C; Coyle, E F

    2000-02-01

    This study investigated the individual and combined effects of water and carbohydrate ingestion during prolonged cycling on maximal neuromuscular power (P(max)), thermoregulation, cardiovascular function, and metabolism. Eight endurance-trained cyclists exercised for 122 min at 62% maximal oxygen uptake in a 35 degrees C environment (50% relative humidity, 2 m/s fan speed). P(max) was measured in triplicate during 6-min periods beginning at 26, 56, 86, and 116 min. On four different occasions, immediately before and during exercise, subjects ingested 1) 3.28 +/- 0.21 liters of water with no carbohydrate (W); 2) 3.39 +/- 0.23 liters of a solution containing 204 +/- 14 g of carbohydrate (W+C); 3) 204 +/- 14 g of carbohydrate in only 0.49 +/- 0.03 liter of solution (C); and 4) 0. 37 +/- 0.02 liter of water with no carbohydrate (placebo; Pl). These treatments were randomized, disguised, and presented double blind. At 26 min of exercise, P(max) was similar in all trials. From 26 to 116 min, P(max) declined 15.2 +/- 3.3 and 14.5 +/- 2.1% during C and Pl, respectively; 10.4 +/- 1.9% during W (W > C, W > Pl; P < 0.05); and 7.4 +/- 2.2% during W+C (W+C > W, W+C > C, and W+C > Pl; P < 0. 05). As an interesting secondary findings, we also observed that carbohydrate ingestion increased heat production, final core temperature, and whole body sweating rate. We conclude that, during prolonged moderate-intensity exercise in a warm environment, ingestion of W attenuates the decline in P(max). Furthermore, ingestion of W+C attenuates the decline in maximal power more than does W alone, and ingestion of C alone does not attenuate the decline in P(max) compared with Pl. PMID:10658044

  11. Disruption of BCAA metabolism in mice impairs exercise metabolism and endurance.

    PubMed

    She, Pengxiang; Zhou, Yingsheng; Zhang, Zhiyou; Griffin, Kathleen; Gowda, Kavitha; Lynch, Christopher J

    2010-04-01

    Exercise enhances branched-chain amino acid (BCAA) catabolism, and BCAA supplementation influences exercise metabolism. However, it remains controversial whether BCAA supplementation improves exercise endurance, and unknown whether the exercise endurance effect of BCAA supplementation requires catabolism of these amino acids. Therefore, we examined exercise capacity and intermediary metabolism in skeletal muscle of knockout (KO) mice of mitochondrial branched-chain aminotransferase (BCATm), which catalyzes the first step of BCAA catabolism. We found that BCATm KO mice were exercise intolerant with markedly decreased endurance to exhaustion. Their plasma lactate and lactate-to-pyruvate ratio in skeletal muscle during exercise and lactate release from hindlimb perfused with high concentrations of insulin and glucose were significantly higher in KO than wild-type (WT) mice. Plasma and muscle ammonia concentrations were also markedly higher in KO than WT mice during a brief bout of exercise. BCATm KO mice exhibited 43-79% declines in the muscle concentration of alanine, glutamine, aspartate, and glutamate at rest and during exercise. In response to exercise, the increments in muscle malate and alpha-ketoglutarate were greater in KO than WT mice. While muscle ATP concentration tended to be lower, muscle IMP concentration was sevenfold higher in KO compared with WT mice after a brief bout of exercise, suggesting elevated ammonia in KO is derived from the purine nucleotide cycle. These data suggest that disruption of BCAA transamination causes impaired malate/aspartate shuttle, thereby resulting in decreased alanine and glutamine formation, as well as increases in lactate-to-pyruvate ratio and ammonia in skeletal muscle. Thus BCAA metabolism may regulate exercise capacity in mice. PMID:20133434

  12. Disruption of BCAA metabolism in mice impairs exercise metabolism and endurance

    PubMed Central

    Zhou, Yingsheng; Zhang, Zhiyou; Griffin, Kathleen; Gowda, Kavitha; Lynch, Christopher J.

    2010-01-01

    Exercise enhances branched-chain amino acid (BCAA) catabolism, and BCAA supplementation influences exercise metabolism. However, it remains controversial whether BCAA supplementation improves exercise endurance, and unknown whether the exercise endurance effect of BCAA supplementation requires catabolism of these amino acids. Therefore, we examined exercise capacity and intermediary metabolism in skeletal muscle of knockout (KO) mice of mitochondrial branched-chain aminotransferase (BCATm), which catalyzes the first step of BCAA catabolism. We found that BCATm KO mice were exercise intolerant with markedly decreased endurance to exhaustion. Their plasma lactate and lactate-to-pyruvate ratio in skeletal muscle during exercise and lactate release from hindlimb perfused with high concentrations of insulin and glucose were significantly higher in KO than wild-type (WT) mice. Plasma and muscle ammonia concentrations were also markedly higher in KO than WT mice during a brief bout of exercise. BCATm KO mice exhibited 43–79% declines in the muscle concentration of alanine, glutamine, aspartate, and glutamate at rest and during exercise. In response to exercise, the increments in muscle malate and α-ketoglutarate were greater in KO than WT mice. While muscle ATP concentration tended to be lower, muscle IMP concentration was sevenfold higher in KO compared with WT mice after a brief bout of exercise, suggesting elevated ammonia in KO is derived from the purine nucleotide cycle. These data suggest that disruption of BCAA transamination causes impaired malate/aspartate shuttle, thereby resulting in decreased alanine and glutamine formation, as well as increases in lactate-to-pyruvate ratio and ammonia in skeletal muscle. Thus BCAA metabolism may regulate exercise capacity in mice. PMID:20133434

  13. Ultra-endurance exercise induces stress and inflammation and affects circulating hematopoietic progenitor cell function.

    PubMed

    Stelzer, I; Kröpfl, J M; Fuchs, R; Pekovits, K; Mangge, H; Raggam, R B; Gruber, H-J; Prüller, F; Hofmann, P; Truschnig-Wilders, M; Obermayer-Pietsch, B; Haushofer, A C; Kessler, H H; Mächler, P

    2015-10-01

    Although amateur sports have become increasingly competitive within recent decades, there are as yet few studies on the possible health risks for athletes. This study aims to determine the impact of ultra-endurance exercise-induced stress on the number and function of circulating hematopoietic progenitor cells (CPCs) and hematological, inflammatory, clinical, metabolic, and stress parameters in moderately trained amateur athletes. Following ultra-endurance exercise, there were significant increases in leukocytes, platelets, interleukin-6, fibrinogen, tissue enzymes, blood lactate, serum cortisol, and matrix metalloproteinase-9. Ultra-endurance exercise did not influence the number of CPCs but resulted in a highly significant decline of CPC functionality after the competition. Furthermore, Epstein-Barr virus was seen to be reactivated in one of seven athletes. The link between exercise-induced stress and decline of CPC functionality is supported by a negative correlation between cortisol and CPC function. We conclude that ultra-endurance exercise induces metabolic stress and an inflammatory response that affects not only mature hematopoietic cells but also the function of the immature hematopoietic stem and progenitor cell fraction, which make up the immune system and provide for regeneration. PMID:25438993

  14. No Effect of Exercise Intensity on Appetite in Highly-Trained Endurance Women.

    PubMed

    Howe, Stephanie M; Hand, Taryn M; Larson-Meyer, D Enette; Austin, Kathleen J; Alexander, Brenda M; Manore, Melinda M

    2016-01-01

    In endurance-trained men, an acute bout of exercise is shown to suppress post-exercise appetite, yet limited research has examined this response in women. The purpose of this study was to investigate the effect of exercise intensity on appetite and gut hormone responses in endurance-trained women. Highly-trained women (n = 15, 18-40 years, 58.4 ± 6.4 kg, VO2MAX = 55.2 ± 4.3 mL/kg/min) completed isocaloric bouts (500 kcals or 2093 kJ) of moderate-intensity (MIE, 60% VO2MAX) and high-intensity (HIE, 85% VO2MAX) treadmill running at the same time of day, following a similar 48-h diet/exercise period, and at least 1-week apart. Blood was drawn pre-exercise (baseline), immediately post-exercise and every 20-min for the next 60-min. Plasma concentrations of acylated ghrelin, PYY3-36, GLP-1 and subjective appetite ratings via visual analog scale (VAS) were assessed at each time point. Acylated ghrelin decreased (p = 0.014) and PYY3-36 and GLP-1 increased (p = 0.036, p < 0.0001) immediately post-exercise, indicating appetite suppression. VAS ratings of hunger and desire to eat decreased immediately post-exercise (p = 0.0012, p = 0.0031, respectively), also indicating appetite suppression. There were no differences between exercise intensities for appetite hormones or VAS. Similar to males, post-exercise appetite regulatory hormones were altered toward suppression in highly-trained women and independent of energy cost of exercise. Results are important for female athletes striving to optimize nutrition for endurance performance. PMID:27096869

  15. No Effect of Exercise Intensity on Appetite in Highly-Trained Endurance Women

    PubMed Central

    Howe, Stephanie M.; Hand, Taryn M.; Larson-Meyer, D. Enette; Austin, Kathleen J.; Alexander, Brenda M.; Manore, Melinda M.

    2016-01-01

    In endurance-trained men, an acute bout of exercise is shown to suppress post-exercise appetite, yet limited research has examined this response in women. The purpose of this study was to investigate the effect of exercise intensity on appetite and gut hormone responses in endurance-trained women. Highly-trained women (n = 15, 18–40 years, 58.4 ± 6.4 kg, VO2MAX = 55.2 ± 4.3 mL/kg/min) completed isocaloric bouts (500 kcals or 2093 kJ) of moderate-intensity (MIE, 60% VO2MAX) and high-intensity (HIE, 85% VO2MAX) treadmill running at the same time of day, following a similar 48-h diet/exercise period, and at least 1-week apart. Blood was drawn pre-exercise (baseline), immediately post-exercise and every 20-min for the next 60-min. Plasma concentrations of acylated ghrelin, PYY3–36, GLP-1 and subjective appetite ratings via visual analog scale (VAS) were assessed at each time point. Acylated ghrelin decreased (p = 0.014) and PYY3–36 and GLP-1 increased (p = 0.036, p < 0.0001) immediately post-exercise, indicating appetite suppression. VAS ratings of hunger and desire to eat decreased immediately post-exercise (p = 0.0012, p = 0.0031, respectively), also indicating appetite suppression. There were no differences between exercise intensities for appetite hormones or VAS. Similar to males, post-exercise appetite regulatory hormones were altered toward suppression in highly-trained women and independent of energy cost of exercise. Results are important for female athletes striving to optimize nutrition for endurance performance. PMID:27096869

  16. Resistance exercise, but not endurance exercise, induces IKKβ phosphorylation in human skeletal muscle of training-accustomed individuals.

    PubMed

    Møller, Andreas Buch; Vendelbo, Mikkel Holm; Rahbek, Stine Klejs; Clasen, Berthil Forrest; Schjerling, Peter; Vissing, Kristian; Jessen, Niels

    2013-12-01

    The mammalian target of rapamycin complex 1 (mTORC1) is considered an important role in the muscular adaptations to exercise. It has been proposed that exercise-induced signaling to mTORC1 do not require classic growth factor PI3K/Akt signaling. Activation of IKKβ and the mitogen-activated protein kinases (MAPKs) Erk1/2 and p38 has been suggested to link inflammation and cellular stress to activation of mTORC1 through the tuberous sclerosis 1 (TSC1)/tuberous sclerosis 2 (TSC2) complex. Consequently, activation of these proteins constitutes potential alternative mechanisms of mTORC1 activation following exercise. Previously, we demonstrated that mTOR is preferentially activated in response to resistance exercise compared to endurance exercise in trained individuals without concomitant activation of Akt. In the present study, we extended this investigation by examining IκB kinase complex (IKK), TSC1, MAPK, and upstream Akt activators, along with gene expression of selected cytokines, in skeletal muscles from these subjects. Biopsies were sampled prior to, immediately after, and in the recovery period following resistance exercise, endurance exercise, and control interventions. The major finding was that IKKβ phosphorylation increased exclusively after resistance exercise. No changes in TSC1, Erk1/2, insulin receptor, or insulin receptor substrate 1 phosphorylation were observed in any of the groups, while p38 phosphorylation was higher in the resistance exercise group compared to both other groups immediately after the intervention. Resistance and endurance exercise increased IL6, IL8, and TNFα gene expression immediately after exercise. The non-exercise control group demonstrated that cytokine gene expression is also sensitive to repeated biopsy sampling, whereas no effect of repeated biopsy sampling on protein expression and phosphorylation was observed. In conclusion, resistance exercise, but not endurance exercise, increases IKKβ phosphorylation in trained

  17. Effect of exhaustive ultra-endurance exercise in muscular glycogen and both Alpha1 and Alpha2 Ampk protein expression in trained rats.

    PubMed

    Tarini, V A F; Carnevali, L C; Arida, R M; Cunha, C A; Alves, E S; Seeleander, M C L; Schmidt, B; Faloppa, F

    2013-09-01

    Glycogen is the main store of readily energy in skeletal muscle and plays a key role in muscle function, demonstrated by the inability to sustain prolonged high-intensity exercise upon depletion of these glycogen stores. With prolonged exercise, glycogen depletion occurs and 5'-AMP-activated protein kinase (AMPK), a potent regulator of muscle metabolism and gene expression, is activated promoting molecular signalling that increases glucose uptake by muscular skeletal cells. The aim of this study was primarily to determine the effect of ultra-endurance exercise on muscle glycogen reserves and secondly to verify the influence of this type of exercise on AMPK protein expression. Twenty-four male Wistar rats, 60 days old, were divided into four experimental groups: sedentary, sedentary exhausted (SE), endurance trained (T) and endurance trained exhausted (TE). The animals ran for 10 to 90 min/day, 5 days/week, for 12 weeks to attain trained status. Rats were killed immediately after the exhaustion protocol, which consisted of running on a treadmill (at approximately 60% Vmax until exhaustion). Optical density of periodic acid-Schiff was detected and glycogen depletion observed predominantly in type I muscle fibres of the TE group and in both type I and II muscle fibres in the SE group. Plasma glucose decreased only in the TE group. Hepatic glycogen was increased in T group and significantly depleted in TE group. AMPK protein expression was significantly elevated in TE and T groups. In conclusion, acute exhaustive ultra-endurance exercise promoted muscle glycogen depletion. It seems that total AMPK protein and gene expression is more influenced by status training. PMID:23184732

  18. Nutrition Supplements to Stimulate Lipolysis: A Review in Relation to Endurance Exercise Capacity.

    PubMed

    Kim, Jisu; Park, Jonghoon; Lim, Kiwon

    2016-01-01

    Athletes make great efforts to increase their endurance capacity in many ways. Using nutrition supplements for stimulating lipolysis is one such strategy to improve endurance performance. These supplements contain certain ingredients that affect fat metabolism; furthermore, in combination with endurance training, they tend to have additive effects. A large body of scientific evidence shows that nutrition supplements increase fat metabolism; however, the usefulness of lipolytic supplements as ergogenic functional foods remains controversial. The present review will describe the effectiveness of lipolytic supplements in fat metabolism and as an ergogenic aid for increasing endurance exercise capacity. There are a number of lipolytic supplements available on the market, but this review focuses on natural ingredients such as caffeine, green tea extract, L-carnitine, Garcinia cambogia (hydroxycitric acid), capsaicin, ginseng, taurine, silk peptides and octacosanol, all of which have shown scientific evidence of enhancing fat metabolism associated with improving endurance performance. We excluded some other supplements owing to lack of data on fat metabolism or endurance capacity. Based on the data in this review, we suggest that a caffeine and green tea extract improves endurance performance and enhances fat oxidation. Regarding other supplements, the data on their practical implications needs to be gathered, especially for athletes. PMID:27465721

  19. Responses of sex steroid hormones to different intensities of exercise in endurance athletes.

    PubMed

    Sato, Koji; Iemitsu, Motoyuki; Katayama, Keisho; Ishida, Koji; Kanao, Yoji; Saito, Mitsuru

    2016-01-01

    Previous studies have shown that acute exercise elevates sex steroid hormone concentrations in rodents and that sprint exercise increases circulating testosterone in healthy young men. However, the effect of different exercise intensities on sex steroid hormone responses at different levels of physical fitness is still unclear. In this study, we compared circulating sex steroid hormone responses at different exercise intensities in athletes and non-athletes. Eight male endurance athletes and 11 non-athletes performed two 15 min sessions of submaximal exercise at 40 and 70% peak oxygen uptake (V̇(O2peak)), respectively, and exercised at 90% V̇(O2peak) until exhaustion. Venous blood samples were collected during the last minute of each submaximal exercise session and immediately after exhaustion. Acute exercise at 40, 70 and 90% V̇(O2peak) induced significant increases in serum dehydroepiandrosterone (DHEA) and free testosterone concentrations in non-athletes. On the contrary, only 90% V̇O2 peak exercise led to an increase in serum DHEA and free testosterone concentrations in athletes. Serum 5α-dihydrotestosterone concentrations increased with 90% V̇(O2peak) exercise in both athletes and non-athletes. Additionally, serum estradiol concentrations were significantly increased at moderate and high exercise intensities in both athletes and non-athletes. These results indicate that in endurance athletes, serum sex steroid hormone concentrations, especially serum DHEA and 5α-dihydrotestosterone concentrations, increased only with high-intensity exercise, suggesting that different responses of sex steroid hormone secretion are induced by different exercise intensities in individuals with low and high levels of physical fitness. In athletes, therefore, high-intensity exercise may be required to increase circulating sex steroid hormone concentrations. PMID:26518151

  20. Physiological Adaptations to Chronic Endurance Exercise Training in Patients with Coronary Artery Disease.

    ERIC Educational Resources Information Center

    Physician and Sportsmedicine, 1987

    1987-01-01

    In a roundtable format, five doctors explore the reasons why regular physical activity should continue to play a significant role in the rehabilitation of patients with coronary artery disease. Endurance exercise training improves aerobic capacity, reduces blood pressure, and decreases risk. (Author/MT)

  1. The effect of almond consumption on elements of endurance exercise performance in trained athletes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Almonds are a healthy tree nut food with high nutrient density. Their consumption has been shown to ameliorate oxidative stress, inflammation, etc. The objective of the study was to examine the effect of almonds on elements of endurance exercise performance in trained athletes. A 10-week crossover, ...

  2. Endurance Exercise: Normal Physiology and Limitations Imposed by Pathological Processes (Part 1).

    ERIC Educational Resources Information Center

    Frontera, Walter R.; Adams, Richard P.

    1986-01-01

    The physiologic and metabolic adjustments of the body to a single endurance exercise session are analyzed in terms of the respiratory system, the cardiovascular system, and oxygen delivery to the muscles. Patients with cardiorespiratory and neuromuscular diseases are compared to normal individuals. (Author/MT)

  3. Isokinetic strength and endurance during 30-day 6 degrees head-down bed rest with isotonic and isokinetic exercise training

    NASA Technical Reports Server (NTRS)

    Greenleaf, J. E.; Bernauer, E. M.; Ertl, A. C.; Bulbulian, R.; Bond, M.

    1994-01-01

    The purpose of our study was to determine if an intensive, intermittent, isokinetic, lower extremity exercise training program would attenuate or eliminate the decrease of muscular strength and endurance during prolonged bed rest (BR). The 19 male subjects (36 +/- 1 yr, 178 +/- 2 cm, 76.5 +/- 1.7 kg) were allocated into a no exercise (NOE) training group (N = 5), an isotonic (lower extremity cycle ergometer) exercise (ITE) training group (N = 7), and an isokinetic (isokinetic knee flexion-extension) exercise (IKE) training group (N = 7). Peak knee (flexion and extension) and shoulder (abduction-adduction) functions were measured weekly in all groups with one 5-repetition set. After BR, average knee extension total work decreased by 16% with NOE, increased by 27% with IKE, and was unchanged with ITE. Average knee flexion total work and peak torque (strength) responses were unchanged in all groups. Force production increased by 20% with IKE and was unchanged with NOE and ITE. Shoulder total work was unchanged in all groups, while gross average peak torque increased by 27% with ITE and by 22% with IKE, and was unchanged with NOE. Thus, while ITE training can maintain some isokinetic functions during BR, maximal intermittent IKE training can increase other functions above pre-BR control levels.

  4. Isokinetic Strength and Endurance During 30-day 6 deg Head-Down Bed Rest with Isotonic and Isokinetic Exercise Training

    NASA Technical Reports Server (NTRS)

    Greenleaf, J. E.; Bernauer, E. M.; Ertl, A. C.; Bond, M.; Bulbulian, R.

    1994-01-01

    The purpose of our study was to determine if an intensive, intermittent, isokinetic, lower extremity exercise training program would attenuate or eliminate the decrease of muscular strength and endurance during prolonged bed rest (BR). The 19 male subjects (36 +/- 1 yr, 178 +/- 2 cm, 76.5 +/- 1.7 kg) were allocated into a no exercise (NOE) training group (N = 5), an isotonic (lower extremity cycle orgometer) exercise (ITE) training group (N = 7), and an isokinetic (isokinetic knee flexion-extension) exercise (IKE) training group (N = 7). Peak knee (flexion and extension) and shoulder (abduction-adduction) functions were measured weekly in all groups with one 5-repetition set. After BR, average knee extension total work decreased by 16% with NOE, increased by 27% with IKE, and was unchanged with ITE. Average knee flexion total work and peak torque (strength) responses were unchanged in all groups. Force production increased by 20% with IKE and was unchanged with NOE and ITE. Shoulder total work was unchanged in all groups, while gross average peak torque increased by 27% with ITE and by 22% with IKE, and was unchanged with NOE. Thus, while ITE training can maintain some isokinetic functions during BR, maximal intermittent IKE training can increase other functions above pre-BR control levels.

  5. Central dopaminergic neurotransmission plays an important role in thermoregulation and performance during endurance exercise.

    PubMed

    Zheng, Xinyan; Hasegawa, Hiroshi

    2016-10-01

    Dopamine (DA) has been widely investigated for its potential role in determining exercise performance. It was originally thought that DA's ergogenic effect was by mediating psychological responses. Recently, some studies have also suggested that DA may regulate physiological responses, such as thermoregulation. Hyperthermia has been demonstrated as an important limiting factor during endurance exercise. DA is prominent in the thermoregulatory centre, and changes in DA concentration have been shown to affect core temperature regulation during exercise. Some studies have proposed that DA or DA/noradrenaline (NA) reuptake inhibitors can improve exercise performance, despite hyperthermia during exercise in the heat. DA/NA reuptake inhibitors also increase catecholamine release in the thermoregulatory centre. Intracerebroventricularly injected DA has been shown to improve exercise performance through inhibiting hyperthermia-induced fatigue, even at normal ambient temperatures. Further, caffeine has been reported to increase DA release in the thermoregulatory centre and improves endurance exercise performance despite increased core body temperature. Taken together, DA has been shown to have ergogenic effects and increase heat storage and hyperthermia tolerance. The mechanisms underlying these effects seem to involve limiting/overriding the inhibitory signals from the central nervous system that result in cessation of exercise due to hyperthermia. PMID:26581447

  6. Blood volume, heart rate, and left ventricular ejection fraction changes in dogs before and after exercise during endurance training

    SciTech Connect

    Mackintosh, I.C.; Dormehl, I.C.; van Gelder, A.L.; du Plessis, M.

    1983-10-01

    In Beagles after 7 weeks' endurance training, resting blood volume increased by an average of 13.1%. Resting heart rates were not significantly affected, but heart rates measured 2 minutes after exercise were significantly lower after the endurance training than before. Left ventricular ejection fractions determined by radionuclide angiography from 2 minutes after exercise showed no significant changes in response to a single exercise period or over the 50 days' training.

  7. The potential of endurance exercise-derived exosomes to treat metabolic diseases.

    PubMed

    Safdar, Adeel; Saleem, Ayesha; Tarnopolsky, Mark A

    2016-09-01

    Endurance exercise-mediated multisystemic adaptations are known to mitigate metabolism-related disorders such as obesity and type 2 diabetes mellitus (T2DM). However, the underlying molecular mechanisms that promote crosstalk between organs and orchestrate the pro-metabolic effects of endurance exercise remain unclear. Exercise-induced release of peptides and nucleic acids from skeletal muscle and other organs (collectively termed 'exerkines') has been implicated in mediating these systemic adaptations. Given that the extracellular milieu is probably not a hospitable environment for labile exerkines, a lipid vehicle-based mode of delivery has originated over the course of evolution. Two types of extracellular vesicles, exosomes and microvesicles, have been shown to contain proteins and nucleic acids that participate in a variety of physiological and pathological processes. Exosomes, in particular, have been shown to facilitate the exchange of peptides, microRNA, mRNA and mitochondrial DNA between cells and tissues. Intriguingly, circulatory extracellular vesicle content increases in an intensity-dependant manner in response to endurance exercise. We propose that the systemic benefits of exercise are modulated by exosomes and/or microvesicles functioning in an autocrine, paracrine and/or endocrine manner. Furthermore, we posit that native or modified exosomes, and/or microvesicles enriched with exerkines will have therapeutic utility in the treatment of obesity and T2DM. PMID:27230949

  8. Order effects of concurrent endurance and resistance training on post-exercise response of non-trained women.

    PubMed

    Di Blasio, Andrea; Gemello, Eugenio; Di Iorio, Angelo; Di Giacinto, Gabriella; Celso, Tiziana; Di Renzo, Donatella; Sablone, Andrea; Ripari, Patrizio

    2012-01-01

    Physical exercise is used for the promotion and maintenance of good health and for the improvement of physical fitness. Both endurance and resistance exercises are needed to carry out a complete training program. Because time may be a barrier to physical exercise practice, the aim of this study was to verify whether the order of execution of endurance and resistance exercises, in concurrent training, has different effects on the metabolic responses during recovery. Thirteen healthy women [24.40 (1.67) years, Mean (SD)] were investigated for energy expenditure (EE), oxygen consumption (VO2), ventilation (Ve), respiratory frequency (RF), proportion of oxygen in expired air (FeO2) and ratings of perceived exertion (RPE) both before and after three concurrent endurance and resistance trainings, carried out in different orders: endurance-resistance training (ERT), resistance-endurance training (RET) and alternating endurance-resistance training (AERT). AERT elicited a significantly greater increase of EE, VO2, and Ve and a greater decrease of FeO2. ERT elicited a lower increase of RPE. Acute post-exercise physiological responses to concurrent endurance and resistance physical exercise seem to depend on the order of execution of the two parts: among the selected protocols, AERT seems to elicit the best responses. Key pointsThe concurrent execution of both endurance and resistance exercise, in the same training session, could be a practical solution to conform to guidelines for health in the presence of lack of time.The order of concurrent execution of both endurance and resistance exercise, in the same training session, influences the amplitude of some post-exercise physiological responses. PMID:24149345

  9. Plasma glutamine responses to high-intensity exercise before and after endurance training.

    PubMed

    Kargotich, Stephen; Goodman, Carmél; Dawson, Brian; Morton, Alan R; Keast, David; Joske, David J L

    2005-01-01

    Glutamine responses to strenuous interval exercise were examined before and after 6 weeks of endurance training. Glutamine measures were obtained before and after the interval exercise sessions and training in untrained males assigned to training (T; n = 10) or control (C; n = 10) groups. Before training, C and T group glutamine progressively decreased (p < 0.05) by 18% and 16%, respectively, by 150-min postinterval exercise. Over the training period C group glutamine did not change, while T group values increased (p < 0.05) by 14%. After training, glutamine again decreased (p < 0.05) by similar percentages (C = 16% and T = 15%) by 150-min postinterval exercise, but the T group recorded higher (p < 0.05) resting and postexercise glutamine concentrations than the C group. Training induced increases in glutamine may prevent the decline in glutamine levels following strenuous exercise falling below a threshold where immune function might be acutely compromised. PMID:16440504

  10. Glycogen repletion and exercise endurance in rats adapted to a high fat diet.

    PubMed

    Conlee, R K; Hammer, R L; Winder, W W; Bracken, M L; Nelson, A G; Barnett, D W

    1990-03-01

    It is well accepted that exercise endurance is directly related to the amount of carbohydrate stored in muscle and that a low carbohydrate diet reduces glycogen storage and exercise performance. However, more recent evidence has shown that when the organism adapts to a high fat diet endurance is not hindered. The present study was designed to test that claim and to further determine if animals adapted to a high fat diet could recover from exhausting exercise and exercise again in spite of carbohydrate deprivation. Fat-adapted (3 to 4 weeks, 78% fat, 1% carbohydrates) rats (FAT) ran (28 m/min, 10% grade) as long as carbohydrate-fed (69% carbohydrates) animals (CHO) (115 v 109 minutes, respectively) in spite of lower pre-exercise glycogen levels in red vastus muscle (36 v 54 mumols/g) and liver (164 v 313 mumols/g) in the FAT group. Following 72 hours of recovery on the FAT diet, glycogen in muscle had replenished to 42 mumols/g (v 52 for CHO) and liver glycogen to 238 mumols/g (v 335 for CHO). The animals were run to exhaustion a second time and run times were again similar (122 v 132 minutes FAT v CHO). When diets were switched after run 1, FAT-adapted animals, which received carbohydrates for 72 hours, restored muscle and liver glycogen (48 and 343 mumols/g, respectively) and then ran longer (144 minutes) than CHO-adapted animals (104 minutes) that ate fat for 72 hours and that had reduced glycogen repletion. We conclude that, in contrast to the classic CHO loading studies in humans that involved acute (72 hours) fat feedings and subsequently reduced endurance, rats adapted to a high fat diet do not have a decrease in endurance capacity even after recovery from previous exhausting work bouts. Part of this adaptation may involve the increased storage and utilization of intramuscular triglycerides (TG) as observed in the present experiment. PMID:2308519

  11. Assessment of Murine Exercise Endurance Without the Use of a Shock Grid: An Alternative to Forced Exercise

    PubMed Central

    Conner, Jennifer D.; Wolden-Hanson, Tami; Quinn, LeBris S.

    2014-01-01

    Using laboratory mouse models, the molecular pathways responsible for the metabolic benefits of endurance exercise are beginning to be defined. The most common method for assessing exercise endurance in mice utilizes forced running on a motorized treadmill equipped with a shock grid. Animals who quit running are pushed by the moving treadmill belt onto a grid that delivers an electric foot shock; to escape the negative stimulus, the mice return to running on the belt. However, avoidance behavior and psychological stress due to use of a shock apparatus can interfere with quantitation of running endurance, as well as confound measurements of postexercise serum hormone and cytokine levels. Here, we demonstrate and validate a refined method to measure running endurance in naïve C57BL/6 laboratory mice on a motorized treadmill without utilizing a shock grid. When mice are preacclimated to the treadmill, they run voluntarily with gait speeds specific to each mouse. Use of the shock grid is replaced by gentle encouragement by a human operator using a tongue depressor, coupled with sensitivity to the voluntary willingness to run on the part of the mouse. Clear endpoints for quantifying running time-to-exhaustion for each mouse are defined and reflected in behavioral signs of exhaustion such as splayed posture and labored breathing. This method is a humane refinement which also decreases the confounding effects of stress on experimental parameters. PMID:25145813

  12. Effects of Age, Exercise Duration, and Test Conditions on Heart Rate Variability in Young Endurance Horses.

    PubMed

    Younes, Mohamed; Robert, Céline; Barrey, Eric; Cottin, François

    2016-01-01

    Although cardiac recovery is an important criterion for ranking horses in endurance competitions, heart rate variability (HRV) has hardly ever been studied in the context of this equestrian discipline. In the present study, we sought to determine whether HRV is affected by parameters such as age, exercise duration and test site. Accordingly, HRV might be used to select endurance horses with the fastest cardiac recovery. The main objective of the present study was to determine the effects of age, exercise duration, and test site on HRV variables at rest and during exercise and recovery in young Arabian endurance horses. Over a 3-year period, 77 young Arabian horses aged 4-6 years performed one or more exercise tests (consisting of a warm-up, cantering at 22 km.h(-1)and a final 500 m gallop at full speed) at four different sites. Beat-to-beat RR intervals were continuously recorded and then analyzed (using a time-frequency approach) to determine the instantaneous HRV components before, during and after the test. At rest, the root-mean-square of successive differences in RR intervals (RMSSD) was higher in the 4-year-olds (54.4 ± 14.5 ms) than in the 5-or 6-year-olds (44.9 ± 15.5 and 49.1 ± 11.7 ms, respectively). During the first 15 min of exercise (period T), the heart rate (HR) and RMSSD decreased with age. In 6-year-olds, RMSSD decreased as the exercise duration increased (T: 3.0 ± 1.4 vs. 2T: 3.6 ± 2.2 vs. 3T: 2.8 ± 1.0). During recovery, RMSSD was negatively correlated with the cardiac recovery time (CRT) and the recovery heart rate (RHR; R = -0.56 and -0.53, respectively; p < 0.05). At rest and during exercise and recovery, RMSSD and several HRV variables differed significantly as a function of the test conditions. HRV in endurance horses appears to be strongly influenced by age and environmental factors (such as ambient temperature, ambient humidity, and track quality). Nevertheless, RMSSD can be used to select endurance horses with the fastest cardiac

  13. The miRNA Plasma Signature in Response to Acute Aerobic Exercise and Endurance Training

    PubMed Central

    Nielsen, Søren; Åkerström, Thorbjörn; Rinnov, Anders; Yfanti, Christina; Scheele, Camilla; Pedersen, Bente K.; Laye, Matthew J.

    2014-01-01

    MiRNAs are potent intracellular posttranscriptional regulators and are also selectively secreted into the circulation in a cell-specific fashion. Global changes in miRNA expression in skeletal muscle in response to endurance exercise training have been reported. Therefore, our aim was to establish the miRNA signature in human plasma in response to acute exercise and chronic endurance training by utilizing a novel methodological approach. RNA was isolated from human plasma collected from young healthy men before and after an acute endurance exercise bout and following 12 weeks of endurance training. Global miRNA (742 miRNAs) measurements were performed as a screening to identify detectable miRNAs in plasma. Using customized qPCR panels we quantified the expression levels of miRNAs detected in the screening procedure (188 miRNAs). We demonstrate a dynamic regulation of circulating miRNA (ci-miRNA) levels following 0 hour (miR-106a, miR-221, miR-30b, miR-151-5p, let-7i, miR-146, miR-652 and miR-151-3p), 1 hour (miR-338-3p, miR-330-3p, miR-223, miR-139-5p and miR-143) and 3 hours (miR-1) after an acute exercise bout (P<0.00032). Where ci-miRNAs were all downregulated immediately after an acute exercise bout (0 hour) the 1 and 3 hour post exercise timepoints were followed by upregulations. In response to chronic training, we identified seven ci-miRNAs with decreased levels in plasma (miR-342-3p, let-7d, miR-766, miR-25, miR-148a, miR-185 and miR-21) and two miRNAs that were present at higher levels after the training period (miR-103 and miR-107) (P<0.00032). In conclusion, acute exercise and chronic endurance training, likely through specific mechanisms unique to each stimulus, robustly modify the miRNA signature of human plasma. PMID:24586268

  14. Effects of Age, Exercise Duration, and Test Conditions on Heart Rate Variability in Young Endurance Horses

    PubMed Central

    Younes, Mohamed; Robert, Céline; Barrey, Eric; Cottin, François

    2016-01-01

    Although cardiac recovery is an important criterion for ranking horses in endurance competitions, heart rate variability (HRV) has hardly ever been studied in the context of this equestrian discipline. In the present study, we sought to determine whether HRV is affected by parameters such as age, exercise duration and test site. Accordingly, HRV might be used to select endurance horses with the fastest cardiac recovery. The main objective of the present study was to determine the effects of age, exercise duration, and test site on HRV variables at rest and during exercise and recovery in young Arabian endurance horses. Over a 3-year period, 77 young Arabian horses aged 4–6 years performed one or more exercise tests (consisting of a warm-up, cantering at 22 km.h−1and a final 500 m gallop at full speed) at four different sites. Beat-to-beat RR intervals were continuously recorded and then analyzed (using a time-frequency approach) to determine the instantaneous HRV components before, during and after the test. At rest, the root-mean-square of successive differences in RR intervals (RMSSD) was higher in the 4-year-olds (54.4 ± 14.5 ms) than in the 5-or 6-year-olds (44.9 ± 15.5 and 49.1 ± 11.7 ms, respectively). During the first 15 min of exercise (period T), the heart rate (HR) and RMSSD decreased with age. In 6-year-olds, RMSSD decreased as the exercise duration increased (T: 3.0 ± 1.4 vs. 2T: 3.6 ± 2.2 vs. 3T: 2.8 ± 1.0). During recovery, RMSSD was negatively correlated with the cardiac recovery time (CRT) and the recovery heart rate (RHR; R = −0.56 and −0.53, respectively; p < 0.05). At rest and during exercise and recovery, RMSSD and several HRV variables differed significantly as a function of the test conditions. HRV in endurance horses appears to be strongly influenced by age and environmental factors (such as ambient temperature, ambient humidity, and track quality). Nevertheless, RMSSD can be used to select endurance horses with the fastest

  15. Rethinking fat as a fuel for endurance exercise.

    PubMed

    Volek, Jeff S; Noakes, Timothy; Phinney, Stephen D

    2015-01-01

    A key element contributing to deteriorating exercise capacity during physically demanding sport appears to be reduced carbohydrate availability coupled with an inability to effectively utilize alternative lipid fuel sources. Paradoxically, cognitive and physical decline associated with glycogen depletion occurs in the presence of an over-abundance of fuel stored as body fat that the athlete is apparently unable to access effectively. Current fuelling tactics that emphasize high-carbohydrate intakes before and during exercise inhibit fat utilization. The most efficient approach to accelerate the body's ability to oxidize fat is to lower dietary carbohydrate intake to a level that results in nutritional ketosis (i.e., circulating ketone levels >0.5 mmol/L) while increasing fat intake for a period of several weeks. The coordinated set of metabolic adaptations that ensures proper interorgan fuel supply in the face of low-carbohydrate availability is referred to as keto-adaptation. Beyond simply providing a stable source of fuel for the brain, the major circulating ketone body, beta-hydroxybutyrate, has recently been shown to act as a signalling molecule capable of altering gene expression, eliciting complementary effects of keto-adaptation that could extend human physical and mental performance beyond current expectation. In this paper, we review these new findings and propose that the shift to fatty acids and ketones as primary fuels when dietary carbohydrate is restricted could be of benefit for some athletes. PMID:25275931

  16. Respiratory muscle endurance, oxygen saturation index in vastus lateralis and performance during heavy exercise.

    PubMed

    Oueslati, Ferid; Boone, Jan; Ahmaidi, Said

    2016-06-15

    The purpose of this study was to investigate the relationships between respiratory muscle endurance, tissue oxygen saturation index dynamics of leg muscle (TSI) and the time to exhaustion (TTE) during high intensity exercise. Eleven males performed a respiratory muscle endurance test, a maximal incremental running field test (8kmh(-1)+0.5kmh(-1) each 60s) and a high-intensity constant speed field test at 90% VO2max. The TSI in vastus lateralis was monitored with near-infrared spectroscopy. The TSI remained steady between 20 and 80% of TTE. Between 80 and 100% of TTE (7.5±6.1%, p<0.05), a significant drop in TSI concomitant with a minute ventilation increase (16±10lmin(-1)) was observed. Moreover, the increase of ventilation was correlated to the drop in TSI (r=0.70, p<0.05). Additionally, respiratory muscle endurance was significantly correlated to TSI time plateau (20-80% TTE) (r=0.83, p<0.05) and to TTE (r=0.95, p<0.001). The results of the present study show that the tissue oxygen saturation plateau might be affected by ventilatory work and that respiratory muscle endurance could be considered as a determinant of performance during heavy exercise. PMID:26923271

  17. Dietary protein intake impacts human skeletal muscle protein fractional synthetic rates after endurance exercise.

    PubMed

    Bolster, Douglas R; Pikosky, Matthew A; Gaine, P Courtney; Martin, William; Wolfe, Robert R; Tipton, Kevin D; Maclean, David; Maresh, Carl M; Rodriguez, Nancy R

    2005-10-01

    This investigation evaluated the physiological impact of different dietary protein intakes on skeletal muscle protein synthesis postexercise in endurance runners. Five endurance-trained, male runners participated in a randomized, crossover design diet intervention, where they consumed either a low (0.8 g/kg; LP)-, moderate (1.8 g/kg; MP)-, or high (3.6 g/kg; HP)-protein diet for 4 wk. Diets were designed to be eucaloric with carbohydrate, fat, and protein approximating 60, 30, and 10%; 55, 30, and 15%; and 40, 30, and 30% for LP, MP, and HP, respectively. Substrate oxidation was assessed via indirect calorimetry at 3 wk of the dietary interventions. Mixed-muscle protein fractional synthetic rate (FSR) was measured after an endurance run (75 min at 70% V(O2 peak)) using a primed, continuous infusion of [(2)H(5)]phenylalanine. Protein oxidation increased with increasing protein intake, with each trial being significantly different from the other (P < 0.01). FSR after exercise was significantly greater for LP (0.083%/h) and MP (0.078%/h) than for HP (0.052%/h; P < 0.05). There was no difference in FSR between LP and MP. This is the first investigation to establish that habitual dietary protein intake in humans modulates skeletal muscle protein synthesis after an endurance exercise bout. Future studies directed at mechanisms by which level of protein intake influences skeletal muscle turnover are needed. PMID:15914508

  18. Higher activation of autophagy in skeletal muscle of mice during endurance exercise in the fasted state.

    PubMed

    Jamart, Cécile; Naslain, Damien; Gilson, Hélène; Francaux, Marc

    2013-10-15

    Activation of autophagy in skeletal muscle has been reported in response to endurance exercise and food deprivation independently. The purpose of this study was to evaluate whether autophagy was more activated when both stimuli were combined, namely when endurance exercise was performed in a fasted rather than a fed state. Mice performed a low-intensity running exercise (10 m/min for 90min) in both dietary states after which the gastrocnemius muscles were removed. LC3b-II, a marker of autophagosome presence, increased in both conditions, but the increase was higher in the fasted state. Other protein markers of autophagy, like Gabarapl1-II and Atg12 conjugated form as well as mRNA of Lc3b, Gabarapl1, and p62/Sqstm1 were increased only when exercise was performed in a fasted state. The larger activation of autophagy by exercise in a fasted state was associated with a larger decrease in plasma insulin and phosphorylation of Akt(Ser473), Akt(Thr308), FoxO3a(Thr32), and ULK1(Ser757). AMPKα(Thr172), ULK1(Ser317), and ULK1(Ser555) remained unchanged in both conditions, whereas p38(Thr180/Tyr182) increased during exercise to a similar extent in the fasted and fed conditions. The marker of mitochondrial fission DRP1(Ser616) was increased by exercise independently of the nutritional status. Changes in mitophagy markers BNIP3 and Parkin suggest that mitophagy was increased during exercise in the fasted state. In conclusion, our results highlight a major implication of the insulin-Akt-mTOR pathway and its downstream targets FoxO3a and ULK1 in the larger activation of autophagy observed when exercise is performed in a fasted state compared with a fed state. PMID:23964069

  19. Salivary and serum cortisol levels during recovery from intense exercise and prolonged, moderate exercise

    PubMed Central

    Powell, J; DiLeo, T; Roberge, R; Coca, A

    2015-01-01

    The aim of this study was to compare serum (SERc) and salivary cortisol (SALc) responses during recovery from two different exhaustive exercises to determine peak cortisol sampling time and the agreement between SERc and SALc levels. Twelve healthy men underwent a maximal treadmill graded exercise to exhaustion (MEx) and a prolonged, submaximal cycle exercise in the heat for 90 min (PEx) while SERc and SALc samples were taken in parallel at baseline, end of exercise, and 15 min intervals over one hour of recovery. MEx and PEx significantly increased SERc and SALc levels (p < 0.01) while absolute SERc levels were approximately 7-10 folds higher than SALc. SERc and SALc showed highly positive correlation (R = 0.667-0.910, p < 0.05) at most sampling times and only a few individual values were out of 95% limit of agreement when analyzed by Bland-Altman plots. However, peak SERc levels (MEx: 784.0±147, PEx: 705.5±212.0 nmol · L−1) occurred at 15 min of recovery, whereas peak SALc levels (MEx: 102.7±46.4, PEx: 95.7±40.9 nmol · L−1) were achieved at the end of exercise in MEx and PEx. The recovery trend of SERc and SALc also differed following MEx and PEx. Activity of 11β-hydroxysteroid dehydrogenase type 2 enzymes may be suppressed following MEx compared to PEx. In conclusion, sampling for peak SERc and SALc levels should take into account their evolution and clearance characteristics as well as type of exercise performed, whereas SALc appeared to be a more sensitive marker than SERc for the measurement of cortisol responses during exercise recovery. PMID:26028807

  20. Salivary and serum cortisol levels during recovery from intense exercise and prolonged, moderate exercise.

    PubMed

    Powell, J; DiLeo, T; Roberge, R; Coca, A; Kim, J-H

    2015-06-01

    The aim of this study was to compare serum (SERc) and salivary cortisol (SALc) responses during recovery from two different exhaustive exercises to determine peak cortisol sampling time and the agreement between SERc and SALc levels. Twelve healthy men underwent a maximal treadmill graded exercise to exhaustion (MEx) and a prolonged, submaximal cycle exercise in the heat for 90 min (PEx) while SERc and SALc samples were taken in parallel at baseline, end of exercise, and 15 min intervals over one hour of recovery. MEx and PEx significantly increased SERc and SALc levels (p < 0.01) while absolute SERc levels were approximately 7-10 folds higher than SALc. SERc and SALc showed highly positive correlation (R = 0.667-0.910, p < 0.05) at most sampling times and only a few individual values were out of 95% limit of agreement when analyzed by Bland-Altman plots. However, peak SERc levels (MEx: 784.0±147, PEx: 705.5±212.0 nmol · L(-1)) occurred at 15 min of recovery, whereas peak SALc levels (MEx: 102.7±46.4, PEx: 95.7±40.9 nmol · L(-1)) were achieved at the end of exercise in MEx and PEx. The recovery trend of SERc and SALc also differed following MEx and PEx. Activity of 11β-hydroxysteroid dehydrogenase type 2 enzymes may be suppressed following MEx compared to PEx. In conclusion, sampling for peak SERc and SALc levels should take into account their evolution and clearance characteristics as well as type of exercise performed, whereas SALc appeared to be a more sensitive marker than SERc for the measurement of cortisol responses during exercise recovery. PMID:26028807

  1. Blood parameters in adults with intellectual disability at rest and after endurance exercise.

    PubMed

    Carmeli, Eli; Bachar, Asad; Merrick, Joav

    2008-01-01

    Clinically, adult with intellectual disability (ID) appear less physically fit than people without ID, yet formal endurance evaluation has not been reported previously. We hypothesized that the immune system in adults people with ID can be influenced positively from 4 weeks of endurance training. Healthy subjects with ID ages from 43 to 55 years were included in the study. The subjects (n = 22) exercised on a treadmill for 30-40 min/d for 4 day/wk/4 wks. Blood samples were drawn at rest and immediately after the last exercise training. Plasma concentration of creatine kinase (CK), myoglobin (Mb), glutamine, and uric acid (UA) as biomarkers of muscle stress were measured. The results indicate that following the exercise program, the plasma glutamine and UA increased significantly (p < 0.05) from pre-to post-training levels, whereas CK isoenzyme and Mb levels showed no changes. In conclusion, 4 weeks of endurance training increased concentration of plasma glutamine and UA, which might be useful in the monitoring of training responses in adults with ID. PMID:19089748

  2. Blood parameters in adults with intellectual disability at rest and after endurance exercise.

    PubMed

    Carmeli, Eli; Bachar, Asad; Merrick, Joav

    2009-01-01

    Clinically, adults with intellectual disability (ID) appear less physically fit than people without ID, yet formal endurance evaluation has not previously been reported. We hypothesized that the immune system in adults with ID can be positively influenced from 4 weeks of endurance training. Healthy subjects with ID ages from 43 to 55 years were included in the study. The subjects (n = 22) exercised on a treadmill for 30-40 min/d for 4 day/wk/4 wks. Blood samples were drawn at rest and immediately after the last exercise training. Plasma concentration of creatine kinase (CK), myoglobin (Mb), glutamine, and uric acid (UA) as biomarkers of muscle stress were measured. The results indicate that following the exercise program the plasma glutamine and UA increased significantly (p < 0.05) from pre- to post-training levels, whereas CK isoenzyme and Mb levels showed no changes. In conclusion, 4 weeks of endurance training increased concentration of plasma glutamine and UA, which might be useful in the monitoring of training responses in adults with ID. PMID:19479628

  3. Age-related anabolic resistance after endurance-type exercise in healthy humans

    PubMed Central

    Durham, William J.; Casperson, Shanon L.; Dillon, Edgar L.; Keske, Michelle A.; Paddon-Jones, Douglas; Sanford, Arthur P.; Hickner, Robert C.; Grady, James J.; Sheffield-Moore, Melinda

    2010-01-01

    Age-related skeletal muscle loss is thought to stem from suboptimal nutrition and resistance to anabolic stimuli. Impaired microcirculatory (nutritive) blood flow may contribute to anabolic resistance by reducing delivery of amino acids to skeletal muscle. In this study, we employed contrast-enhanced ultrasound, microdialysis sampling of skeletal muscle interstitium, and stable isotope methodology, to assess hemodynamic and metabolic responses of older individuals to endurance type (walking) exercise during controlled amino acid provision. We hypothesized that older individuals would exhibit reduced microcirculatory blood flow, interstitial amino acid concentrations, and amino acid transport when compared with younger controls. We report for the first time that aging induces anabolic resistance following endurance exercise, manifested as reduced (by ∼40%) efficiency of muscle protein synthesis. Despite lower (by ∼40–45%) microcirculatory flow in the older than in the younger participants, circulating and interstitial amino acid concentrations and phenylalanine transport into skeletal muscle were all equal or higher in older individuals than in the young, comprehensively refuting our hypothesis that amino acid availability limits postexercise anabolism in older individuals. Our data point to alternative mediators of age-related anabolic resistance and importantly suggest correction of these impairments may reduce requirements for, and increase the efficacy of, dietary protein in older individuals. Durham, W. J., Casperson, S. L., Dillon, E. L., Keske, M. A., Paddon-Jones, D., Sanford, A. P., Hickner, R. C., Grady, J. J., Sheffield-Moore, M. Age-related anabolic resistance after endurance-type exercise in healthy humans. PMID:20547663

  4. Resistance exercise induced mTORC1 signaling is not impaired by subsequent endurance exercise in human skeletal muscle.

    PubMed

    Apró, William; Wang, Li; Pontén, Marjan; Blomstrand, Eva; Sahlin, Kent

    2013-07-01

    The current dogma is that the muscle adaptation to resistance exercise is blunted when combined with endurance exercise. The suggested mechanism (based on rodent experiments) is that activation of adenosine monophosphate-activated protein kinase (AMPK) during endurance exercise impairs muscle growth through inhibition of the mechanistic target of rapamycin complex 1 (mTORC1). The purpose of this study was to investigate potential interference of endurance training on the signaling pathway of resistance training [mTORC1 phosphorylation of ribosomal protein S6 kinase 1 (S6K1)] in human muscle. Ten healthy and moderately trained male subjects performed on two separate occasions either acute high-intensity and high-volume resistance exercise (leg press, R) or R followed by 30 min of cycling (RE). Muscle biopsies were collected before and 1 and 3 h post resistance exercise. Phosphorylation of mTOR (Ser²⁴⁴⁸) increased 2-fold (P < 0.05) and that of S6K1 (Thr³⁸⁹) 14-fold (P < 0.05), with no difference between R and RE. Phosphorylation of eukaryotic elongation factor 2 (eEF2, Thr⁵⁶) was reduced ~70% during recovery in both trials (P < 0.05). An interesting finding was that phosphorylation of AMPK (Thr¹⁷²) and acetyl-CoA carboxylase (ACC, Ser⁷⁹) decreased ~30% and ~50%, respectively, 3 h postexercise (P < 0.05). Proliferator-activated receptor-γ coactivator-1 (PGC-1α) mRNA increased more after RE (6.5-fold) than after R (4-fold) (RE vs. R: P < 0.01) and was the only gene expressed differently between trials. These data show that the signaling of muscle growth through the mTORC1-S6K1 axis after heavy resistance exercise is not inhibited by subsequent endurance exercise. It is also suggested that prior activation of mTORC1 signaling may repress subsequent phosphorylation of AMPK. PMID:23632629

  5. Effect of endurance exercise on respiratory muscle function in patients with cystic fibrosis.

    PubMed

    Reilly, Charles C; Ward, Katie; Jolley, Caroline J; Frank, Lucy A; Elston, Caroline; Moxham, John; Rafferty, Gerrard F

    2012-03-15

    During exercise, patients with cystic fibrosis (CF) dynamically hyperinflate, which imposes both elastic and threshold loads on the inspiratory muscles and places them at a mechanical disadvantage due to muscle shortening. Conversely, dynamic hyperinflation imposes a progressively resistive load and lengthens the expiratory muscles potentially increasing their susceptibility to develop low frequency fatigue (LFF). The aim of the study was to determine whether high intensity endurance exercise leads to the development of LFF in either the diaphragm or expiratory abdominal wall muscles in patients with CF. Ten patients and ten healthy individuals were studied. Twitch transdiaphragmatic pressure (TwP(di)) and twitch abdominal pressure (TwT(10)) were measured before and after exhaustive endurance cycle exercise at 80% of their previously determined maximum work rate. There was no difference in TwP(di) or TwT(10) at 20, 40 or 60 min post exercise compared to pre-exercise resting values in any of the participants, indicating that overt LFF of the respiratory muscles did not develop. PMID:22249283

  6. Irisin in Blood Increases Transiently after Single Sessions of Intense Endurance Exercise and Heavy Strength Training

    PubMed Central

    Nygaard, Håvard; Slettaløkken, Gunnar; Vegge, Geir; Hollan, Ivana; Whist, Jon Elling; Strand, Tor; Rønnestad, Bent R.; Ellefsen, Stian

    2015-01-01

    Purpose Irisin is a recently identified exercise-induced hormone that increases energy expenditure, at least in rodents. The main purpose of this study was to test the hypothesis that Irisin increases acutely in blood after singular sessions of intense endurance exercise (END) and heavy strength training (STR). Secondary, we wanted to explore the relationship between body composition and exercise-induced effects on irisin, and the effect of END and STR on muscular expression of the irisin gene FNDC5. Methods Nine moderately trained healthy subjects performed three test days using a randomized and standardized crossover design: one day with 60 minutes of END, one day with 60 minutes of STR, and one day without exercise (CON). Venous blood was sampled over a period of 24h on the exercise days. Results Both END and STR led to transient increases in irisin concentrations in blood, peaking immediately after END and one hour after STR, before gradually returning to baseline. Irisin responses to STR, but not END, showed a consistently strong negative correlation with proportions of lean body mass. Neither END nor STR affected expression of FNDC5, measured 4h after training sessions, though both protocols led to pronounced increases in PGC-1α expression, which is involved in transcriptional control of FNDC5. Conclusion The results strongly suggest that single sessions of intense endurance exercise and heavy strength training lead to transient increases in irisin concentrations in blood. This was not accompanied by increased FNDC5 expression, measured 4h post-exercise. The results suggest that irisin responses to resistance exercise are higher in individuals with lower proportions of lean body mass. PMID:25781950

  7. Echinochrome A Improves Exercise Capacity during Short-Term Endurance Training in Rats.

    PubMed

    Seo, Dae Yun; McGregor, Robin A; Noh, Su Jin; Choi, Seung Jun; Mishchenko, Natalia P; Fedoreyev, Sergey A; Stonik, Valentin A; Han, Jin

    2015-09-01

    Echinochrome A (Echi A) improves mitochondrial function in the heart; however, its effects on skeletal muscle are still unclear. We hypothesized that Echi A administration during short-term exercise may improve exercise capacity. Twenty-four male Sprague-Dawley rats were randomly divided into the following groups: control group (CG), Echi A-treated group (EG), aerobic exercise group (AG), and aerobic exercise treated with Echi A group (AEG) (n = 6 per group). Echi A was administered intra-peritoneally (0.1 mg/kg of Echi A in 300 µL phosphate-buffered saline) daily 30 min before each exercise training. The AG and AEG groups performed treadmill running (20 m/min, 60 min/day) five days/week for two weeks. The exercise capacity was significantly higher in the AG and AEG groups compared to other groups. Interestingly, the exercise capacity increased more effectively in the AEG group. The body weight in the EG tended to be slightly lower than that in the other groups. There were no significant changes in the plasma lipids among the groups. However, the gastrocnemius muscle mitochondria content was greater in the EG and AEG groups. These findings show that Echi A administration after short-term endurance training enhances exercise capacity, which was associated with an increase in skeletal muscle mitochondrial content. PMID:26371013

  8. Induction of amino acid transporters expression by endurance exercise in rat skeletal muscle

    SciTech Connect

    Murakami, Taro Yoshinaga, Mariko

    2013-10-04

    Highlights: •Regulation of amino acid transporter expression in working muscle remains unclear. •Expression of amino acid transporters for leucine were induced by a bout of exercise. •Requirement of leucine in muscle cells might regulate expression of its transporters. •This information is beneficial for understanding the muscle remodeling by exercise. -- Abstract: We here investigated whether an acute bout of endurance exercise would induce the expression of amino acid transporters that regulate leucine transport across plasma and lysosomal membranes in rat skeletal muscle. Rats ran on a motor-driven treadmill at a speed of 28 m/min for 90 min. Immediately after the exercise, we observed that expression of mRNAs encoding L-type amino acid transporter 1 (LAT1) and CD98 was induced in the gastrocnemius, soleus, and extensor digitorum longus (EDL) muscles. Sodium-coupled neutral amino acid transporter 2 (SNAT2) mRNA was also induced by the exercise in those three muscles. Expression of proton-assisted amino acid transporter 1 (PAT1) mRNA was slightly but not significantly induced by a single bout of exercise in soleus and EDL muscles. Exercise-induced mRNA expression of these amino acid transporters appeared to be attenuated by repeated bouts of the exercise. These results suggested that the expression of amino acid transporters for leucine may be induced in response to an increase in the requirement for this amino acid in the cells of working skeletal muscles.

  9. Endurance exercise training programs intestinal lipid metabolism in a rat model of obesity and type 2 diabetes

    PubMed Central

    Hung, Yu‐Han; Linden, Melissa A.; Gordon, Alicia; Scott Rector, R.; Buhman, Kimberly K.

    2015-01-01

    Abstract Endurance exercise has been shown to improve metabolic outcomes in obesity and type 2 diabetes; however, the physiological and molecular mechanisms for these benefits are not completely understood. Although endurance exercise has been shown to decrease lipogenesis, promote fatty acid oxidation (FAO), and increase mitochondrial biosynthesis in adipose tissue, muscle, and liver, its effects on intestinal lipid metabolism remain unknown. The absorptive cells of the small intestine, enterocytes, mediate the highly efficient absorption and processing of nutrients, including dietary fat for delivery throughout the body. We investigated how endurance exercise altered intestinal lipid metabolism in obesity and type 2 diabetes using Otsuka Long‐Evans Tokushima Fatty (OLETF) rats. We assessed mRNA levels of genes associated with intestinal lipid metabolism in nonhyperphagic, sedentary Long‐Evans Tokushima Otsuka (LETO) rats (L‐Sed), hyperphagic, sedentary OLETF rats (O‐Sed), and endurance exercised OLETF rats (O‐EndEx). O‐Sed rats developed hyperphagia‐induced obesity (HIO) and type 2 diabetes compared with L‐Sed rats. O‐EndEx rats gained significantly less weight and fat pad mass, and had improved serum metabolic parameters without change in food consumption compared to O‐Sed rats. Endurance exercise resulted in dramatic up‐regulation of a number of genes in intestinal lipid metabolism and mitochondrial content compared with sedentary rats. Overall, this study provides evidence that endurance exercise programs intestinal lipid metabolism, likely contributing to its role in improving metabolic outcomes in obesity and type 2 diabetes. PMID:25602012

  10. Twins Bed Rest Project: LBNP/Exercise Minimizes Changes in Lean Leg Mass, Strength and Endurance

    NASA Technical Reports Server (NTRS)

    Amorim, Fabiano T.; Schneider, Suzanne M.; Lee, Stuart M. C.; Boda, Wanda L.; Watenpaugh, Donald E.; Hargens, Alan R.

    2006-01-01

    Decreases in muscle strength and endurance frequently are observed in non-weightbearing conditions such as bed rest (BR), spaceflight or limb immobilization. Purpose: Ow purpose was to determine if supine treadmill exercise against simulated gravity, by application of lower body negative pressure (LBNP), prevents loss of lean leg mass, strength and endurance during 30 d of 6deg head-down bed rest (BR). Methods: Fifteen pairs of monozygous twins (8 male, 7 female pairs; 26+/-4 yrs; 170+/-12 cm; 62.6+/-11.3 kg; mean+/-SD) were subjects in the present study. One sibling of each pair of twins was randomly assigned to either an exercise (EX) or non-exercise (CON) group. The EX twin walked/jogged on a vertical treadmill within LBNP chamber 6 d/wk using a 40-min interval exercise protocol at 40-80% of pre-BR VO(sub 2peak). LBNP was adjusted individually for each subject such that footward force was between 1.0 and 1.2 times body weight (-53+/-5 mmHg LBNP). The CON twin performed no exercise during BR. Subjects performed isokinetic knee (60 and 120deg/s) and ankle (60deg/s) testing to assess strength and endurance (End) before and after BR. They also had their lean leg mass (L(sub mass)) evaluated by DEXA before and after BR. Results: Changes in peak torque (T(sub pk)) were smaller for flexion (flex) than for extension (ext) after BR and did not differ between groups. The CON group had larger decreases (P<0.05) in L(sub mass), knee and ankle ext T(sub pk), and knee ext End.

  11. Influence of exercise duration and hydration status on cognitive function during prolonged cycling exercise.

    PubMed

    Grego, F; Vallier, J-M; Collardeau, M; Rousseu, C; Cremieux, J; Brisswalter, J

    2005-01-01

    The purpose of the present study was to examine the influence of submaximal aerobic exercise duration on simple and complex cognitive performance. Eight well-trained male subjects agreed to participate in this study (trial group). A control group of eight regularly trained male subjects was included for comparative purposes. For the trial group, the experiment involved a critical flicker fusion test (CFF) and a map recognition task performed before, every 20 min during, and immediately after, a 3-h cycling task at an intensity corresponding to approximately 60 % of VO2max. Data were obtained over two experimental sessions with fluid ingestion (F) or no fluid (NF) ingestion. For the control group the experiment was the same but without exercise and fluid ingestion. In the trial group, a significant effect of hydration status was observed on physiological parameters (p <0.05). No effect was found on cognitive performance. A significant decrease in CFF performance was observed after 120 min of exercise when compared with the first 20 min (respectively for CFFmdi: 2.6 vs. 3.8 Hz), irrespective of experimental condition. A significant improvement in speed of response (respectively: 3291 vs. 3062 msec for 20 and 120 min, respectively) and a decrease in error number (21.5 % vs. 6.0 % for 20 and 120 min, respectively) during the map recognition task were recorded between 80 min and 120 min when compared with the first 20 min of exercise. After 120 min the number of recorded errors was significantly greater indicating a shift in the accuracy-speed trade-off (6.0 % vs. 14.1 % for 120 and 180 min, respectively). These results provide some evidence for exercise-induced facilitation of cognitive function. However this positive effect disappears during prolonged exercise--as evidenced within our study by an increase in errors during the complex task and an alteration in perceptual response (i.e. the appearance of symptoms of central fatigue). PMID:15643531

  12. Autophagy is essential to support skeletal muscle plasticity in response to endurance exercise.

    PubMed

    Sanchez, Anthony M J; Bernardi, Henri; Py, Guillaume; Candau, Robin B

    2014-10-15

    Physical exercise is a stress that can substantially modulate cellular signaling mechanisms to promote morphological and metabolic adaptations. Skeletal muscle protein and organelle turnover is dependent on two major cellular pathways: Forkhead box class O proteins (FOXO) transcription factors that regulate two main proteolytic systems, the ubiquitin-proteasome, and the autophagy-lysosome systems, including mitochondrial autophagy, and the MTORC1 signaling associated with protein translation and autophagy inhibition. In recent years, it has been well documented that both acute and chronic endurance exercise can affect the autophagy pathway. Importantly, substantial efforts have been made to better understand discrepancies in the literature on its modulation during exercise. A single bout of endurance exercise increases autophagic flux when the duration is long enough, and this response is dependent on nutritional status, since autophagic flux markers and mRNA coding for actors involved in mitophagy are more abundant in the fasted state. In contrast, strength and resistance exercises preferentially raise ubiquitin-proteasome system activity and involve several protein synthesis factors, such as the recently characterized DAGK for mechanistic target of rapamycin activation. In this review, we discuss recent progress on the impact of acute and chronic exercise on cell component turnover systems, with particular focus on autophagy, which until now has been relatively overlooked in skeletal muscle. We especially highlight the most recent studies on the factors that can impact its modulation, including the mode of exercise and the nutritional status, and also discuss the current limitations in the literature to encourage further works on this topic. PMID:25121614

  13. Effect of endurance exercise training on muscle glycogen supercompensation in rats.

    PubMed

    Nakatani, A; Han, D H; Hansen, P A; Nolte, L A; Host, H H; Hickner, R C; Holloszy, J O

    1997-02-01

    The purpose of this study was to test the hypothesis that the rate and extent of glycogen supercompensation in skeletal muscle are increased by endurance exercise training. Rats were trained by using a 5-wk-long swimming program in which the duration of swimming was gradually increased to 6 h/day over 3 wk and then maintained at 6 h/day for an additional 2 wk. Glycogen repletion was measured in trained and untrained rats after a glycogen-depleting bout of exercise. The rats were given a rodent chow diet plus 5% sucrose in their drinking water and libitum during the recovery period. There were remarkable differences in both the rates of glycogen accumulation and the glycogen concentrations attained in the two groups. The concentration of glycogen in epitrochlearis muscle averaged 13.1 +/- 0.9 mg/g wet wt in the untrained group and 31.7 +/- 2.7 mg/g in the trained group (P < 0.001) 24 h after the exercise. This difference could not be explained by a training effect on glycogen synthase. The training induced approximately 50% increases in muscle GLUT-4 glucose transporter protein and in hexokinase activity in epitrochlearis muscles. We conclude that endurance exercise training results in increases in both the rate and magnitude of muscle glycogen supercompensation in rats. PMID:9049757

  14. Standardized Boesenbergia pandurata Extract Stimulates Exercise Endurance Through Increasing Mitochondrial Biogenesis.

    PubMed

    Kim, Taeyoon; Kim, Mi-Bo; Kim, Changhee; Jung, Hoe-Yune; Hwang, Jae-Kwan

    2016-07-01

    In the present study, the effect of standardized Boesenbergia pandurata (Roxb.) Schltr. (fingerroot) ethanol extract on exercise endurance was investigated in L6 rat skeletal muscle cells and C57BL/6J mice. Standardized B. pandurata ethanol extract (BPE) increased mitochondrial mass and stimulated the mRNA expression of peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC-1α) in vitro. BPE also elevated the mRNA expression of key factors of mitochondrial biogenesis and function, which are activated by PGC-1α, such as estrogen-related receptor α (ERRα), nuclear respiratory factor 1 (NRF-1), and mitochondrial transcription factor A (Tfam). In animal models, both normal and high-fat diet (HFD)-induced obese mice treated with BPE ran much longer than their respective controls. In addition, BPE increased the protein expressions of phosphorylated AMP-activated protein kinase (AMPK), sirtuin 1 (SIRT1), PGC-1α, and peroxisome proliferator-activated receptor delta (PPARδ), which are stimulated by exercise. These results indicate that B. pandurata could be a potential nutraceutical candidate for enhancing exercise endurance based on its mitochondrial biogenesis and exercise-mimicking effects. PMID:27331877

  15. Pre-exercise nutrition: the role of macronutrients, modified starches and supplements on metabolism and endurance performance.

    PubMed

    Ormsbee, Michael J; Bach, Christopher W; Baur, Daniel A

    2014-05-01

    Endurance athletes rarely compete in the fasted state, as this may compromise fuel stores. Thus, the timing and composition of the pre-exercise meal is a significant consideration for optimizing metabolism and subsequent endurance performance. Carbohydrate feedings prior to endurance exercise are common and have generally been shown to enhance performance, despite increasing insulin levels and reducing fat oxidation. These metabolic effects may be attenuated by consuming low glycemic index carbohydrates and/or modified starches before exercise. High fat meals seem to have beneficial metabolic effects (e.g., increasing fat oxidation and possibly sparing muscle glycogen). However, these effects do not necessarily translate into enhanced performance. Relatively little research has examined the effects of a pre-exercise high protein meal on subsequent performance, but there is some evidence to suggest enhanced pre-exercise glycogen synthesis and benefits to metabolism during exercise. Finally, various supplements (i.e., caffeine and beetroot juice) also warrant possible inclusion into pre-race nutrition for endurance athletes. Ultimately, further research is needed to optimize pre-exercise nutritional strategies for endurance performance. PMID:24787031

  16. Pre-Exercise Nutrition: The Role of Macronutrients, Modified Starches and Supplements on Metabolism and Endurance Performance

    PubMed Central

    Ormsbee, Michael J.; Bach, Christopher W.; Baur, Daniel A.

    2014-01-01

    Endurance athletes rarely compete in the fasted state, as this may compromise fuel stores. Thus, the timing and composition of the pre-exercise meal is a significant consideration for optimizing metabolism and subsequent endurance performance. Carbohydrate feedings prior to endurance exercise are common and have generally been shown to enhance performance, despite increasing insulin levels and reducing fat oxidation. These metabolic effects may be attenuated by consuming low glycemic index carbohydrates and/or modified starches before exercise. High fat meals seem to have beneficial metabolic effects (e.g., increasing fat oxidation and possibly sparing muscle glycogen). However, these effects do not necessarily translate into enhanced performance. Relatively little research has examined the effects of a pre-exercise high protein meal on subsequent performance, but there is some evidence to suggest enhanced pre-exercise glycogen synthesis and benefits to metabolism during exercise. Finally, various supplements (i.e., caffeine and beetroot juice) also warrant possible inclusion into pre-race nutrition for endurance athletes. Ultimately, further research is needed to optimize pre-exercise nutritional strategies for endurance performance. PMID:24787031

  17. Effects of High-Intensity Endurance Exercise on Epidermal Barriers against Microbial Invasion

    PubMed Central

    Eda, Nobuhiko; Shimizu, Kazuhiro; Suzuki, Satomi; Lee, Eunjae; Akama, Takao

    2013-01-01

    For athletes, preventing infectious disease on skin is important. Examination measurement of epidermal barriers could provide valuable information on the risk of skin infections. The aim of this study was to determine the effects of high-intensity endurance exercise on epidermal barriers. Six healthy adult males (age; 22.3 ± 1.6 years) performed bicycle exercise at 75%HRmax for 60 min from 18:30 to 19:30. Skin surface samples were measured 18:30 (pre), 19:30 (post), 20:30 (60 min), and 21:30 (120 min). Secretory immunoglobulin A (SIgA) and human β-defensin 2 (HBD-2) concentrations were measured using an enzyme-linked immunosorbent assay (ELISA). SIgA concentration at pre was significantly higher than at post, 60 min and 120 min (p < 0.05). HBD-2 concentration at post and 120 min was significantly higher than at pre (p < 0. 05). Moisture content of the stratum corneum was significantly higher at post than at pre, 60 min, and 120 min (p < 0.05). On the chest, moisture content of the stratum corneum was significantly lower at 120 min than at pre (p < 0.05). The number of staphylococci was significantly higher at post than at pre (p < 0.05), and tended to be higher at 60 min than at pre on the chest (p = 0. 08). High-intensity endurance exercise might depress the immune barrier and physical barrier and enhance the risk of skin infection. On the other hand, the biochemical barrier increases after exercise, and our findings suggest that this barrier might supplement the compromised function of other skin barriers. Key points The immune barrier and physical barrier might be depressed and the risk of skin infection might be enhanced by high-intensity endurance exercise. The biochemical barrier increases after high-intensity endurance exercise and might supplement the compromised function of other skin barriers. We recommend that athletes maintain their skin surface in good condition, for example, by showering immediately after sports activities and using moisturizers

  18. Impact of protein coingestion on muscle protein synthesis during continuous endurance type exercise.

    PubMed

    Beelen, Milou; Zorenc, Antoine; Pennings, Bart; Senden, Joan M; Kuipers, Harm; van Loon, Luc J C

    2011-06-01

    This study investigates the impact of protein coingestion with carbohydrate on muscle protein synthesis during endurance type exercise. Twelve healthy male cyclists were studied during 2 h of fasted rest followed by 2 h of continuous cycling at 55% W(max). During exercise, subjects received either 1.0 g·kg(-1)·h(-1) carbohydrate (CHO) or 0.8 g·kg(-1)·h(-1) carbohydrate with 0.2 g·kg(-1)·h(-1) protein hydrolysate (CHO+PRO). Continuous intravenous infusions with l-[ring-(13)C(6)]phenylalanine and l-[ring-(2)H(2)]tyrosine were applied, and blood and muscle biopsies were collected to assess whole body protein turnover and muscle protein synthesis rates at rest and during exercise conditions. Protein coingestion stimulated whole body protein synthesis and oxidation rates during exercise by 22 ± 3 and 70 ± 17%, respectively (P < 0.01). Whole body protein breakdown rates did not differ between experiments. As a consequence, whole body net protein balance was slightly negative in CHO and positive in the CHO+PRO treatment (-4.9 ± 0.3 vs. 8.0 ± 0.3 μmol Phe·kg(-1)·h(-1), respectively, P < 0.01). Mixed muscle protein fractional synthetic rates (FSR) were higher during exercise compared with resting conditions (0.058 ± 0.006 vs. 0.035 ± 0.006%/h in CHO and 0.070 ± 0.011 vs. 0.038 ± 0.005%/h in the CHO+PRO treatment, respectively, P < 0.05). FSR during exercise did not differ between experiments (P = 0.46). We conclude that muscle protein synthesis is stimulated during continuous endurance type exercise activities when carbohydrate with or without protein is ingested. Protein coingestion does not further increase muscle protein synthesis rates during continuous endurance type exercise. PMID:21364122

  19. Breathing pattern and exercise endurance time after exhausting cycling or breathing.

    PubMed

    Spengler, C M; Knöpfli-Lenzin, C; Birchler, K; Trapletti, A; Boutellier, U

    2000-03-01

    The aim of the present study was to investigate whether the changes in breathing pattern that frequently occur towards the end of exhaustive exercise (i.e., increased breathing frequency, fb, with or without decreased tidal volume) may be caused by the respiratory work itself rather than by leg muscle work. Eight healthy, trained subjects performed the following three sessions in random order: (A) two sequential cycling endurance tests at 78% peak O2 consumption (VO2peak) to exhaustion (A1, A2); (B) isolated, isocapnic hyperpnea (B1) at a minute ventilation (VE) and an exercise duration similar to that attained during a preliminary cycling endurance test at 78% VO2peak, followed by a cycling endurance test at 78% VO2peak (B2); (C) isolated, isocapnic hyperpnea (C1) at a VE at least 20% higher than that of the preliminary cycling test and the same exercise duration as the preliminary cycling test, followed by a cycling endurance test at 78% VO2peak (C2). Neither of the two isocapnic hyperventilation tasks (B1 or C1) affected either the breathing pattern or the endurance times of the subsequent cycling tests. Only cycling test A2 was significantly shorter [mean (SD) 26.5 (8.3) min] than tests A1 [41.0(9.0) min], B2 [41.9 (6.0) min], and C2 [42.0 (7.5) min]. In addition, compared to test A1, only the breathing pattern of test A2 was significantly different [i.e., VE: + 10.5 (7.6) 1 min(-1), and fb: + 12.1 (8.5) breaths min(-1)], in contrast to the breathing patterns of cycling tests B2 [VE: -2.5 (6.2) 1 min(-1), f(b): +0.2 (3.6) breaths min(-1)] and C2 [VE: -3.0 (7.0) 1 min(-1), fb: +0.6 (6.1) breaths min(-1)]. In summary, these results suggest that the changes in breathing pattern that occur towards the end of an exhaustive exercise test are a result of changes in the leg muscles rather than in the respiratory muscles themselves. PMID:10751097

  20. Endurance exercise facilitates relearning of forelimb motor skill after focal ischemia.

    PubMed

    Ploughman, Michelle; Attwood, Zachary; White, Nicole; Doré, Jules J E; Corbett, Dale

    2007-06-01

    Endurance exercise (i.e. running), by up-regulating brain-derived neurotrophic factor (BDNF) and other modulators of synaptic plasticity, improves attention and learning, both critical components of stroke rehabilitation. We hypothesized that, following middle cerebral artery occlusion in male Sprague-Dawley rats, endurance exercise would act synergistically with a challenging skilled forelimb task to facilitate motor recovery. Animals were randomly assigned to one of four rehabilitation conditions: no rehabilitation, running only, reach training only, and reach training preceded by running (run/reach training) for 5 weeks beginning 5 days after stroke. The behavioral outcome, morphological change and mRNA expression of proteins implicated in neuroplasticity (BDNF, synapsin I and microtubule-associated protein 2) were compared. Endurance exercise on a motorized running wheel, prior to reach training, enhanced recovery of skilled reaching ability but did not transfer to gross motor skills such as postural support (forelimb asymmetry test) and gait (ladder rung walking test). Microtubule-associated protein 2 staining density in the run/reach group was slightly enhanced in the contralateral motor cortex compared with the contralateral sensory and ipsilateral cingulate cortices, suggesting that running preceding reach training may have resulted in more dendritic branching within the motor cortex in this group. No significant differences in mRNA levels were detected among the training paradigms; however, there was a trend toward greater BDNF and synapsin I mRNA in the reaching groups. These findings suggest that exercise facilitates learning of subsequent challenging reaching tasks after stroke, which has the potential to optimize outcomes in patients with stroke. PMID:17553014

  1. Acute Endurance Exercise Induces Nuclear p53 Abundance in Human Skeletal Muscle

    PubMed Central

    Tachtsis, Bill; Smiles, William J.; Lane, Steven C.; Hawley, John A.; Camera, Donny M.

    2016-01-01

    Purpose: The tumor suppressor protein p53 may have regulatory roles in exercise response-adaptation processes such as mitochondrial biogenesis and autophagy, although its cellular location largely governs its biological role. We investigated the subcellular localization of p53 and selected signaling targets in human skeletal muscle following a single bout of endurance exercise. Methods: Sixteen, untrained individuals were pair-matched for aerobic capacity (VO2peak) and allocated to either an exercise (EX, n = 8) or control (CON, n = 8) group. After a resting muscle biopsy, EX performed 60 min continuous cycling at ~70% of VO2peak during which time CON subjects rested. A further biopsy was obtained from both groups 3 h post-exercise (EX) or 4 h after the first biopsy (CON). Results: Nuclear p53 increased after 3 h recovery with EX only (~48%, p < 0.05) but was unchanged in the mitochondrial or cytoplasmic fractions in either group. Autophagy protein 5 (Atg-5) decreased in the mitochondrial protein fraction 3 h post-EX (~69%, P < 0.05) but remained unchanged in CON. There was an increase in cytoplasmic levels of the mitophagy marker PINK1 following 3 h of rest in CON only (~23%, P < 0.05). There were no changes in mitochondrial, nuclear, or cytoplasmic levels of PGC-1α post-exercise in either group. Conclusions: The selective increase in nuclear p53 abundance following endurance exercise suggests a potential pro-autophagy response to remove damaged proteins and organelles prior to initiating mitochondrial biogenesis and remodeling responses in untrained individuals. PMID:27199762

  2. Influence of preliminary exercise training on muscle damage indices in rats after one bout of prolonged treadmill exercise.

    PubMed

    Hyun, Ju; Kim, Young Mi; Hwangbo, Kak; Kim, Young Mi

    2016-06-01

    [Purpose] The purpose of this study was to investigate the effects of exercise on muscle damage indices in male Sprague-Dawley rats. Two groups of rats were trained in either moderate- or high-intensity treadmill running for 4 weeks. Subsequently, the concentrations of creatine kinase, lactate dehydrogenase, and high-sensitivity C-reactive protein were examined following a single bout of prolonged (3-h) intensive exercise. [Subjects and Methods] The study included forty 6-week-old male Sprague-Dawley rats weighing 150-180 g each. The aerobic exercise group was divided into high-intensity (28 m/min) and moderate-intensity (15 m/min) subgroups. Both subgroups were trained for 35 min daily for 6 days per week (excluding Sunday) over a 4-week period. Following training, the high- and moderate-intensity exercise groups and a non-exercise group performed one bout of prolonged (3-h) treadmill exercise for 3 hours at a speed of 15 m/min. [Results] Creatine kinase and lactate dehydrogenase levels differed significantly among the groups. [Conclusion] The preliminary exercise groups showed lower muscle damage and inflammatory response levels than the non-exercise group after the bout of prolonged intensive exercise. PMID:27390433

  3. Influence of preliminary exercise training on muscle damage indices in rats after one bout of prolonged treadmill exercise

    PubMed Central

    Hyun, Ju; Kim, Young Mi; Hwangbo, Kak; Kim, Young Mi

    2016-01-01

    [Purpose] The purpose of this study was to investigate the effects of exercise on muscle damage indices in male Sprague-Dawley rats. Two groups of rats were trained in either moderate- or high-intensity treadmill running for 4 weeks. Subsequently, the concentrations of creatine kinase, lactate dehydrogenase, and high-sensitivity C-reactive protein were examined following a single bout of prolonged (3-h) intensive exercise. [Subjects and Methods] The study included forty 6-week-old male Sprague-Dawley rats weighing 150–180 g each. The aerobic exercise group was divided into high-intensity (28 m/min) and moderate-intensity (15 m/min) subgroups. Both subgroups were trained for 35 min daily for 6 days per week (excluding Sunday) over a 4-week period. Following training, the high- and moderate-intensity exercise groups and a non-exercise group performed one bout of prolonged (3-h) treadmill exercise for 3 hours at a speed of 15 m/min. [Results] Creatine kinase and lactate dehydrogenase levels differed significantly among the groups. [Conclusion] The preliminary exercise groups showed lower muscle damage and inflammatory response levels than the non-exercise group after the bout of prolonged intensive exercise. PMID:27390433

  4. Rapid induction of REDD1 expression by endurance exercise in rat skeletal muscle.

    PubMed

    Murakami, Taro; Hasegawa, Kazuya; Yoshinaga, Mariko

    2011-02-25

    An acute bout of exercise induces repression of protein synthesis in skeletal muscle due in part to reduced signaling through the mammalian target of rapamycin complex 1 (mTORC1). Previous studies have shown that upregulated expression of regulated in DNA damage and development (REDD) 1 and 2 is an important mechanism in the regulation of mTORC1 activity in response to a variety of stresses. This study investigated whether induction of REDD1/2 expression occurs in rat skeletal muscle in response to a burst of endurance exercise. In addition, we determined if ingestion of glucose or branched chain amino acids (BCAA) before exercise changes the expression of REDD1/2 in muscle. Rats ran on a motor-driven treadmill at a speed of 28 mmin(-1) for 90 min, and then the gastrocnemius muscle was removed and analyzed for phosphorylation of the eukaryotic initiation factor (eIF) 4E binding protein 1 (4E-BP1) and expression of REDD1/2. Exercise repressed the mTORC1-signaling pathway regardless of the ingestion of nutrients before the exercise, as shown by dephosphorylation of 4E-BP1. In addition, exercise induced the expression of REDD1 mRNA (∼8-fold) and protein (∼3-fold). Exercise-induced expression of REDD1 was not affected by the ingestion of glucose or BCAA. Expression of REDD2 mRNA was not altered by either exercise or nutrients. These findings indicated that enhanced expression of REDD1 may be an important mechanism that could partially explain the downregulation of mTORC1 signaling, and subsequent inhibition of protein synthesis in skeletal muscle during exercise. PMID:21272563

  5. Plasma catecholamines during endurance exercise of different intensities as related to the individual anaerobic threshold.

    PubMed

    Urhausen, A; Weiler, B; Coen, B; Kindermann, W

    1994-01-01

    The study investigated the concentrations of free plasma catecholamines (CAT), adrenaline and noradrenaline, in comparison to heart rate and lactic acid concentrations during endurance exercises (EE) of different intensities related to the individual anaerobic threshold (IAT). A group of 14 endurance trained male athletes took part in the tests on a treadmill. After an exhausting incremental graded test (increasing 0.5 m.s-1 every 3 min) to determine the IAT, the subjects performed EE of 45 min in randomized order with intensities of 85%, 95%, 100% and 105% (E85-E105) of the IAT. The heart rate and CAT increased continuously during all EE. The CAT reacted sensitively to EE above IAT (E105) and showed an overproportional increase in comparison to EE performed with an intensity at or below IAT. At the same time, at exercise intensities up to IAT (E85-E100) a lactate steady state was observed whereas mean lactate concentrations increased during E105. The changes of lactate concentration allowed a better differentiation between E85-E100 as CAT measurements. In E95, E100 and E105 there was a partial overlap of heart rate, which in contrast to lactate concentration only differed by about 5%, so that small variations in heart rate could have coincided with considerable differences of exercise intensity when working at intensities near or above IAT. It was concluded that the range of IAT seemed to represent a real physiological breakpoint which corresponded to the aerobic-anaerobic transition. PMID:7957150

  6. Inspiratory muscle performance in endurance-trained elderly males during incremental exercise.

    PubMed

    Chlif, Mehdi; Keochkerian, David; Temfemo, Abdou; Choquet, Dominique; Ahmaidi, Said

    2016-07-01

    The aim of this study was to compare the inspiratory muscle performance during an incremental exercise of twelve fit old endurance-trained athletes (OT) with that of fit young athletes (YT) and healthy age-matched controls (OC). The tension-time index (TT0.1) was determined according to the equation TT0.1=P0.1/PImax×ti/ttot, where P0.1 is the mouth occlusion pressure, PImax the maximal inspiratory pressure and ti/ttot the duty cycle. For a given VCO2, OT group displayed P0.1, P0.1/PImax ratio, TT0.1 and effective impedance of the respiratory muscle values which were lower than OC group and higher than YT group. At maximal exercise, P0.1/PImax ratio and TT0.1 was still lower in the OT group than OC group and higher than YT group. This study showed lower inspiratory muscle performance attested by a higher (TT0.1) during exercise in the OT group than YT group, but appeared to be less marked in elderly men having performed lifelong endurance training compared with sedentary elderly subjects. PMID:26994757

  7. Effect of endurance training on excessive CO2 expiration due to lactate production in exercise.

    PubMed

    Hirakoba, K; Maruyama, A; Inaki, M; Misaka, K

    1992-01-01

    We attempted to determine the change in total excess volume of CO2 output (CO2 excess) due to bicarbonate buffering of lactic acid produced in exercise due to endurance training for approximately 2 months and to assess the relationship between the changes of CO2 excess and distance-running performance. Six male endurance runners, aged 19-22 years, were subjects. Maximal oxygen uptake (VO2max), oxygen uptake (VO2) at anaerobic threshold (AT), CO2 excess and blood lactate concentration were measured during incremental exercise on a cycle ergometer and 12-min exhausting running performance (12-min ERP) was also measured on the track before and after endurance training. The absolute magnitudes in the improvement due to training for CO2 excess per unit of body mass per unit of blood lactate accumulation (delta la-) in exercise (CO2 excess.mass-1.delta la-), 12-min ERP, VO2 at AT (AT-VO2) and VO2max on average were 0.8 ml.kg-1.l-1.mmol-1, 97.8 m, 4.4 ml.kg-1. min-1 and 7.3 ml.kg-1.min-1, respectively. The percentage change in CO2 excess.mass-1.delta la- (15.7%) was almost same as those of VO2max (13.7%) and AT-VO2 (13.2%). It was found to be a high correlation between the absolute amount of change in CO2 excess.mass-1.delta la-, and the absolute amount of change in AT-VO2 (r = 0.94, P less than 0.01).(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1735416

  8. Rapamycin does not prevent increases in myofibrillar or mitochondrial protein synthesis following endurance exercise.

    PubMed

    Philp, Andrew; Schenk, Simon; Perez-Schindler, Joaquin; Hamilton, D Lee; Breen, Leigh; Laverone, Erin; Jeromson, Stewart; Phillips, Stuart M; Baar, Keith

    2015-09-15

    The present study aimed to investigate the role of the mechanistic target of rapamycin complex 1 (mTORC1) in the regulation of myofibrillar (MyoPS) and mitochondrial (MitoPS) protein synthesis following endurance exercise. Forty-two female C57BL/6 mice performed 1 h of treadmill running (18 m min(-1) ; 5° grade), 1 h after i.p. administration of rapamycin (1.5 mg · kg(-1) ) or vehicle. To quantify skeletal muscle protein fractional synthesis rates, a flooding dose (50 mg · kg(-1) ) of l-[ring-(13) C6 ]phenylalanine was administered via i.p. injection. Blood and gastrocnemius muscle were collected in non-exercised control mice, as well as at 0.5, 3 and 6 h after completing exercise (n = 4 per time point). Skeletal muscle MyoPS and MitoPS were determined by measuring isotope incorporation in their respective protein pools. Activation of the mTORC1-signalling cascade was measured via direct kinase activity assay and immunoblotting, whereas genes related to mitochondrial biogenesis were measured via a quantitative RT-PCR. MyoPS increased rapidly in the vehicle group post-exercise and remained elevated for 6 h, whereas this response was transiently blunted (30 min post-exercise) by rapamycin. By contrast, MitoPS was unaffected by rapamycin, and was increased over the entire post-exercise recovery period in both groups (P < 0.05). Despite rapid increases in both MyoPS and MitoPS, mTORC1 activation was suppressed in both groups post-exercise for the entire 6 h recovery period. Peroxisome proliferator activated receptor-γ coactivator-1α, pyruvate dehydrogenase kinase 4 and mitochondrial transcription factor A mRNA increased post-exercise (P < 0.05) and this response was augmented by rapamycin (P < 0.05). Collectively, these data suggest that endurance exercise stimulates MyoPS and MitoPS in skeletal muscle independently of mTORC1 activation. PMID:26227152

  9. Effects of L-tyrosine and carbohydrate ingestion on endurance exercise performance.

    PubMed

    Chinevere, Troy D; Sawyer, Robert D; Creer, Andrew R; Conlee, Robert K; Parcell, Allen C

    2002-11-01

    To test the effects of tyrosine ingestion with or without carbohydrate supplementation on endurance performance, nine competitive cyclists cycled at 70% peak oxygen uptake for 90 min under four different feeding conditions followed immediately by a time trial. At 30-min intervals, beginning 60 min before exercise, each subject consumed either 5 ml/kg body wt of water sweetened with aspartame [placebo (Pla)], polydextrose (70 g/l) (CHO), L-tyrosine (25 mg/kg body wt) (Tyr), or polydextrose (70 g/l) and L-tyrosine (25 mg/kg body wt) (CHO+Tyr). The experimental trials were given in random order and were carried out by using a counterbalanced double-blind design. No differences were found between treatments for oxygen uptake, heart rate, or rating of perceived exertion at any time during the 90-min ride. Plasma tyrosine rose significantly from 60 min before exercise to test termination (TT) in Tyr (means +/- SE) (480 +/- 26 micromol) and CHO+Tyr (463 +/- 34 micromol) and was significantly higher in these groups from 30 min before exercise to TT vs. CHO (90 +/- 3 micromol) and Pla (111 +/- 7 micromol) (P < 0.05). Plasma free tryptophan was higher after 90 min of exercise, 15 min into the endurance time trial, and at TT in Tyr (10.1 +/- 0.9, 10.4 +/- 0.8, and 12.0 +/- 0.9 micromol, respectively) and Pla (9.7 +/- 0.5, 10.0 +/- 0.3, and 11.7 +/- 0.5 micromol, respectively) vs. CHO (7.8 +/- 0.5, 8.6 +/- 0.5, and 9.3 +/- 0.6 micromol, respectively) and CHO+Tyr (7.8 +/- 0.5, 8.5 +/- 0.5, 9.4 +/- 0.5 micromol, respectively) (P < 0.05). The plasma tyrosine-to-free tryptophan ratio was significantly higher in Tyr and CHO+Tyr vs. CHO and Pla from 30 min before exercise to TT (P < 0.05). CHO (27.1 +/- 0.9 min) and CHO+Tyr (26.1 +/- 1.1 min) treatments resulted in a reduced time to complete the endurance time trial compared with Pla (34.4 +/- 2.9 min) and Tyr (32.6 +/- 3.0 min) (P < 0.05). These findings demonstrate that tyrosine ingestion did not enhance performance during a

  10. Plasma catecholamines and hyperglycaemia influence thermoregulation in man during prolonged exercise in the heat.

    PubMed

    Mora-Rodríguez, R; González-Alonso, J; Below, P R; Coyle, E F

    1996-03-01

    1. We manipulated plasma catecholamines (combined adrenaline and noradrenaline concentrations) to three levels during prolonged exercise to determine their effect on cutaneous and forearm vascular conductance (CVC and FVC), oesophageal temperature (T(oes)) and cardiovascular responses. 2. On three occasions, seven endurance-trained men cycled at 65% VO2, max in the heat (33.1 +/- 0.7 degrees C) for 120-150 min. During the control trial (150 min duration), 0.45% saline was intravenously infused (SI) starting at 30 min, at a rate that replaced a third of the fluid losses. The infusion start time and rate were identical in all three trials. During SI, plasma catecholamine levels increased progressively and were 18.2 +/- 2.7 pmol ml-1 at 150 min. In another trial (120 min duration), adrenaline was infused (AI) at 0.1 microgram kg-1 min-1 and plasma catecholamine levels were elevated 6 pmol ml-1 above SI during the 60-120 min period. In a third trial (150 min duration), an 18% glucose solution was infused (GI) at a rate that maintained plasma glucose levels above 11 mM and plasma catecholamine levels were 5.0-5.5 pmol ml-1 lower (P < 0.05) than SI from 120-150 min. 3. Heat production and sweat rate were not different during the three trials and neither was the decline in stroke volume, cardiac output and mean arterial pressure. 4. Soon after beginning AI, CVC decreased 15%, T(oes) increased by 0.4 +/- 0.1 degree C and heart rate increased by 6 +/- 1 beats min-1; these significant (P < 0.05) differences from SI were maintained throughout the bout. As a result of GI, FVC was 15% higher than SI and T(oes) and heart rate were attenuated by 0.3 +/- 0.1 degree C and 7 +/- 1 beats min-1 at 150 min compared with SI (P < 0.05). 5. In conclusion, large increases in plasma catecholamine levels cause hyperthermia during exercise by vasoconstricting the skin. The mechanisms by which hyperglycaemia (i.e. 11 mM) attenuates hyperthermia are less clear and may be due to others factors

  11. L-Arginine but not L-glutamine likely increases exogenous carbohydrate oxidation during endurance exercise.

    PubMed

    Rowlands, David S; Clarke, Jim; Green, Jackson G; Shi, Xiaocai

    2012-07-01

    The addition of L-arginine or L-glutamine to glucose-electrolyte solutions can increase intestinal water, glucose, and sodium absorption in rats and humans. We evaluated the utility of L-arginine and L-glutamine in energy-rehydration beverages through assessment of exogenous glucose oxidation and perceptions of exertion and gastrointestinal distress during endurance exercise. Eight cyclists rode 150 min at 50% of peak power on four occasions while ingesting solutions at a rate of 150 mL 15 min(-1) that contained (13)C-enriched glucose (266 mmol L(-1)) and sodium citrate ([Na(+)] 60 mmol L(-1)), and either: 4.25 mmol L(-1) L-arginine or 45 mmol L(-1) L-glutamine, and as controls glucose only or no glucose. Relative to glucose only, L-arginine invoked a likely 12% increase in exogenous glucose oxidation (90% confidence limits: ± 8%); however, the effect of L-glutamine was possibly trivial (4.5 ± 7.3%). L-Arginine also led to very likely small reductions in endogenous fat oxidation rate relative to glucose (12 ± 4%) and L-glutamine (14 ± 4%), and relative to no glucose, likely reductions in exercise oxygen consumption (2.6 ± 1.5%) and plasma lactate concentration (0.20 ± 0.16 mmol L(-1)). Effects on endogenous and total carbohydrate oxidation were inconsequential. Compared with glucose only, L-arginine and L-glutamine caused likely small-moderate effect size increases in perceptions of stomach fullness, abdominal cramp, exertion, and muscle tiredness during exercise. Addition of L-arginine to a glucose and electrolyte solution increases the oxidation of exogenous glucose and decreases the oxygen cost of exercise, although the mechanisms responsible and impact on endurance performance require further investigation. However, L-arginine also increases subjective feelings of gastrointestinal distress, which may attenuate its other benefits. PMID:22048324

  12. Plasma triglyceride concentrations are rapidly reduced following individual bouts of endurance exercise in women.

    PubMed

    Henderson, Gregory C; Krauss, Ronald M; Fattor, Jill A; Faghihnia, Nastaran; Luke-Zeitoun, Mona; Brooks, George A

    2010-07-01

    It is known that chronic endurance training leads to improvements in the lipoprotein profile, but less is known about changes that occur during postexercise recovery acutely. We analyzed triglyceride (TG), cholesterol classes and apolipoproteins in samples collected before, during and after individual moderate- and hard-intensity exercise sessions in men and women that were isoenergetic between intensities. Young healthy men (n = 9) and young healthy women (n = 9) were studied under three different conditions with diet unchanged between trials: (1) before, during and 3 h after 90 min of exercise at 45% VO(2)peak (E45); (2) before, during and 3 h after 60 min of exercise at 65% VO(2)peak (E65), and (3) in a time-matched sedentary control trial (C). At baseline, high-density lipoprotein cholesterol (HDL-C) was higher in women than men (P < 0.05). In men and in women, total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), HDL-C, apolipoprotein A-I (apoA-I), apolipoprotein B (apoB), and LDL peak particle size were unaltered by exercise either during exertion or after 3 h of recovery. In women, but not in men, average plasma TG was significantly reduced below C at 3 h postexercise by approximately 15% in E45 and 25% in E65 (P < 0.05) with no significant difference between exercise intensities. In summary, plasma TG concentration rapidly declines following exercise in women, but not in men. These results demonstrate an important mechanism by which each individual exercise session may incrementally reduce the risk for cardiovascular disease (CVD) in women. PMID:20217117

  13. Effects of short-term endurance exercise training on vascular function in young males.

    PubMed

    Currie, Katharine D; Thomas, Scott G; Goodman, Jack M

    2009-09-01

    We investigated effects of 6 days of endurance exercise training [cycling at 65% of peak oxygen consumption (VO(2peak)) for 2 h a day on six consecutive days] on vascular function in young males. Measures of VO(2peak), arterial stiffness, calf vascular conductance and heart rate variability were obtained pre- and post-training. Indices of arterial stiffness were obtained by applanation tonometry to determine aortic augmentation index normalized to a heart rate of 75 bpm (AI(x) at 75 bpm), and central and peripheral pulse wave velocity (CPWV, PPWV). Resting and maximal calf vascular conductances were calculated from concurrent measures of blood pressure and calf blood flow using venous occlusion strain-gauge plethysmography. Time and frequency domain measures of heart rate variability were obtained from recording R-R intervals during supine and standing conditions. Both CPWV (5.9 +/- 0.8 vs. 5.4 +/- 0.8 m/s) and PPWV (9.7 +/- 0.8 vs. 8.9 +/- 1.3 m/s) were reduced following the training program. No significant changes were observed in AI(x) at 75 bpm, vascular conductance, heart rate variability or VO(2peak). These data indicate that changes in arterial stiffness independent of changes in heart rate variability or vascular conductance can be achieved in healthy young males following only 6 days of intense endurance exercise. PMID:19554346

  14. Longer leukocyte telomeres are associated with ultra-endurance exercise independent of cardiovascular risk factors.

    PubMed

    Denham, Joshua; Nelson, Christopher P; O'Brien, Brendan J; Nankervis, Scott A; Denniff, Matthew; Harvey, Jack T; Marques, Francine Z; Codd, Veryan; Zukowska-Szczechowska, Ewa; Samani, Nilesh J; Tomaszewski, Maciej; Charchar, Fadi J

    2013-01-01

    Telomere length is recognized as a marker of biological age, and shorter mean leukocyte telomere length is associated with increased risk of cardiovascular disease. It is unclear whether repeated exposure to ultra-endurance aerobic exercise is beneficial or detrimental in the long-term and whether it attenuates biological aging. We quantified 67 ultra-marathon runners' and 56 apparently healthy males' leukocyte telomere length (T/S ratio) using real-time quantitative PCR. The ultra-marathon runners had 11% longer telomeres (T/S ratio) than controls (ultra-marathon runners: T/S ratio = 3.5±0.68, controls: T/S ratio = 3.1±0.41; β = 0.40, SE = 0.10, P = 1.4×10(-4)) in age-adjusted analysis. The difference remained statistically significant after adjustment for cardiovascular risk factors (P = 2.2×10(-4)). The magnitude of this association translates into 16.2±0.26 years difference in biological age and approximately 324-648bp difference in leukocyte telomere length between ultra-marathon runners and healthy controls. Neither traditional cardiovascular risk factors nor markers of inflammation/adhesion molecules explained the difference in leukocyte telomere length between ultra-marathon runners and controls. Taken together these data suggest that regular engagement in ultra-endurance aerobic exercise attenuates cellular aging. PMID:23936000

  15. A single prolonged stress paradigm produces enduring impairments in social bonding in monogamous prairie voles.

    PubMed

    Arai, Aki; Hirota, Yu; Miyase, Naoki; Miyata, Shiori; Young, Larry J; Osako, Yoji; Yuri, Kazunari; Mitsui, Shinichi

    2016-12-15

    Traumatic events such as natural disasters, violent crimes, tragic accidents, and war, can have devastating impacts on social relationships, including marital partnerships. We developed a single prolonged stress (SPS) paradigm, which consisted of restraint, forced swimming, and ether anesthesia, to establish an animal model relevant to post-traumatic stress disorder. We applied a SPS paradigm to a monogamous rodent, the prairie vole (Microtus ochrogaster) in order to determine whether a traumatic event affects the establishment of pair bonds. We did not detect effects of the SPS treatment on anhedonic or anxiety-like behavior. Sham-treated male voles huddled with their partner females, following a 6day cohabitation, for a longer duration than with a novel female, indicative of a pair bond. In contrast, SPS-treated voles indiscriminately huddled with the novel and partner females. Interestingly, the impairment of pair bonding was rescued by oral administration of paroxetine, a selective serotonin reuptake inhibitor (SSRI), after the SPS treatment. Immunohistochemical analyses revealed that oxytocin immunoreactivity (IR) was significantly decreased in the supraoptic nucleus (SON), but not in the paraventricular nucleus (PVN), 7days after SPS treatment, and recovered 14days after SPS treatment. After the presentation of a partner female, oxytocin neurons labeled with Fos IR was significantly increased in SPS-treated voles compared with sham-treated voles regardless of paroxetine administration. Our results suggest that traumatic events disturb the formation of pair bond possibly through an interaction with the serotonergic system, and that SSRIs are candidates for the treatment of social problems caused by traumatic events. Further, a vole SPS model may be useful for understanding mechanisms underlying the impairment of social bonding by traumatic events. PMID:27522019

  16. Acute moderate exercise does not attenuate cardiometabolic function associated with a bout of prolonged sitting.

    PubMed

    Younger, Amanda M; Pettitt, Robert W; Sexton, Patrick J; Maass, William J; Pettitt, Cherie D

    2016-01-01

    Epidemiological studies suggest that prolonged sitting increases all-cause mortality; yet, physiological causes underpinning prolonged sitting remain elusive. We evaluated cardiometabolic function during prolonged sitting (5 h) in 10 adults with and without 30 min of moderate exercise leading up to the sitting. Mean arterial blood pressure (MAP), heart rate (HR) and posterior tibial artery blood velocity were measured at baseline and every hour subsequently. Blood glucose was measured at baseline, 3 and 5 h, with consumption of a caloric beverage at 1 h. Seated MAP and HR values were ~17 mmHg (P < 0.001) and ~4 bpm (P < 0.05) higher for the moderate exercise versus sitting conditions. A ~ 4 cm·s(-1) (16%) (P < 0.05) decline in posterior tibial artery blood velocity from prolonged sitting was observed, with no benefit conferred from moderate exercise. Postprandial glucose metabolism was not different between conditions (P > 0.05). We conclude prolonged sitting may be related to decreased posterior tibial artery blood velocity. Moreover, an acute bout of moderate exercise does not seem to attenuate cardiometabolic function during prolonged sitting in healthy, young adults. PMID:26186044

  17. Effects of endurance training and heat acclimation on psychological strain in exercising men wearing protective clothing.

    PubMed

    Aoyagi, Y; McLellan, T M; Shephard, R J

    1998-03-01

    Two experiments examined the influences of endurance training and heat acclimation on ratings of perceived exertion (RPE) and thermal discomfort (RTD) during exercise in the heat while wearing two types of clothing. In experiment 1, young men underwent 8 weeks of physical training [60-80% of maximal aerobic power (VO2max) for 30-45 min day-1, 3-4 days week-1 at 20-22 degrees C dry bulb (db) temperature] followed by 6 days of heat acclimation [45-55% VO2max for 60 min day-1 at 40 degrees C db, 30% relative humidity (rh)] (n = 7) or corresponding periods of control observation followed by heat acclimation (n = 9). In experiment 2, young men were heat-acclimated for 6 or 12 days (n = 8 each). Before and after each treatment, subjects completed bouts of treadmill exercise (1.34 m s-1, 2% grade in experiment 1 and 0% grade in experiment 2) in a climatic chamber (40 degrees C db, 30% rh), wearing in turn normal light clothing (continuous exercise at 37-45% VO2max for a tolerated exposure of 116-120 min in experiment 1 and at 31-34% VO2max for 146-150 min in experiment 2) or clothing protective against nuclear, biological, and chemical agents (continuous exercise at 42-51% VO2max for a tolerated exposure of 47-52 min in experiment 1 and intermittent exercise at 23% VO2max for 97-120 min in experiment 2). In experiment 1, when wearing normal clothing, endurance training and/or heat acclimation significantly decreased RPE and/or RTD at a fixed power output. There were concomitant reductions in relative work intensity (% VO2max) [an unchanged oxygen consumption (VO2) but an increased VO2max, or a reduced VO2 with no change of VO2max], rectal temperature (Tre), mean skin temperature (Tsk), and/or heart rate (HR). When wearing protective clothing, in contrast, there were no significant changes in RPE or RTD. Although training and/or acclimation reduced %VO2max or Tre, any added sweat that was secreted did not evaporate through the protective clothing, thus increasing

  18. Differentiated mTOR but not AMPK signaling after strength vs endurance exercise in training-accustomed individuals.

    PubMed

    Vissing, K; McGee, S L; Farup, J; Kjølhede, T; Vendelbo, M H; Jessen, N

    2013-06-01

    The influence of adenosine mono phosphate (AMP)-activated protein kinase (AMPK) vs Akt-mammalian target of rapamycin C1 (mTORC1) protein signaling mechanisms on converting differentiated exercise into training specific adaptations is not well-established. To investigate this, human subjects were divided into endurance, strength, and non-exercise control groups. Data were obtained before and during post-exercise recovery from single-bout exercise, conducted with an exercise mode to which the exercise subjects were accustomed through 10 weeks of prior training. Blood and muscle samples were analyzed for plasma substrates and hormones and for muscle markers of AMPK and Akt-mTORC1 protein signaling. Increases in plasma glucose, insulin, growth hormone (GH), and insulin-like growth factor (IGF)-1, and in phosphorylated muscle phospho-Akt substrate (PAS) of 160 kDa, mTOR, 70 kDa ribosomal protein S6 kinase, eukaryotic initiation factor 4E, and glycogen synthase kinase 3a were observed after strength exercise. Increased phosphorylation of AMPK, histone deacetylase5 (HDAC5), cAMP response element-binding protein, and acetyl-CoA carboxylase (ACC) was observed after endurance exercise, but not differently from after strength exercise. No changes in protein phosphorylation were observed in non-exercise controls. Endurance training produced an increase in maximal oxygen uptake and a decrease in submaximal exercise heart rate, while strength training produced increases in muscle cross-sectional area and strength. No changes in basal levels of signaling proteins were observed in response to training. The results support that in training-accustomed individuals, mTORC1 signaling is preferentially activated after hypertrophy-inducing exercise, while AMPK signaling is less specific for differentiated exercise. PMID:23802289

  19. Urine concentrations of oral salbutamol in samples collected after intense exercise in endurance athletes.

    PubMed

    Hostrup, Morten; Kalsen, Anders; Auchenberg, Michael; Rzeppa, Sebastian; Hemmersbach, Peter; Bangsbo, Jens; Backer, Vibeke

    2014-06-01

    Our objective was to investigate urine concentrations of 8 mg oral salbutamol in samples collected after intense exercise in endurance athletes. Nine male endurance athletes with a VO2max of 70.2 ± 5.9 mL/min/kg (mean ± SD) took part in the study. Two hours after administration of 8 mg oral salbutamol, subjects performed submaximal exercise for 15 min followed by two, 2-min exercise bouts at an intensity corresponding to 110% of VO2max and a bout to exhaustion at same intensity. Urine samples were collected 4, 8, and 12 h following administration of salbutamol. Samples were analyzed by the Norwegian World Anti-doping Agency (WADA) laboratory. Adjustment of urine concentrations of salbutamol to a urine specific gravity (USG) of 1.020 g/mL was compared with no adjustment according to WADA's technical documents. We observed greater (P = 0.01) urine concentrations of salbutamol 4 h after administration when samples were adjusted to a USG of 1.020 g/mL compared with no adjustment (3089 ± 911 vs. 1918 ± 1081 ng/mL). With the current urine decision limit of 1200 ng/mL for salbutamol on WADA's 2013 list of prohibited substances, fewer false negative urine samples were observed when adjusted to a USG of 1.020 g/mL compared with no adjustment. In conclusion, adjustment of urine samples to a USG of 1.020 g/mL decreases risk of false negative doping tests after administration of oral salbutamol. Adjusting urine samples for USG might be useful when evaluating urine concentrations of salbutamol in doping cases. PMID:24166762

  20. Energetics of endurance exercise in young horses determined by nuclear magnetic resonance metabolomics

    PubMed Central

    Luck, Margaux M.; Le Moyec, Laurence; Barrey, Eric; Triba, Mohamed N.; Bouchemal, Nadia; Savarin, Philippe; Robert, Céline

    2015-01-01

    Long-term endurance exercise severely affects metabolism in both human and animal athletes resulting in serious risk of metabolic disorders during or after competition. Young horses (up to 6 years old) can compete in races up to 90 km despite limited scientific knowledge of energetic metabolism responses to long distance exercise in these animals. The hypothesis of this study was that there would be a strong effect of endurance exercise on the metabolomic profiles of young horses and that the energetic metabolism response in young horses would be different from that of more experienced horses. Metabolomic profiling is a powerful method that combines Nuclear Magnetic Resonance (NMR) spectrometry with supervised Orthogonal Projection on Latent Structure (OPLS) statistical analysis. 1H-NMR spectra were obtained from plasma samples drawn from young horses (before and after competition). The spectra obtained before and after the race from the same horse (92 samples) were compared using OPLS. The statistical parameters showed the robustness of the model (R2Y = 0.947, Q2Y = 0.856 and cros-validated ANOVA p < 0.001). For confirmation of the predictive value of the model, a test set of 104 sample spectra were projected by the model, which provided perfect predictions as the area under the receiving-operator curve was 1. The metabolomic profile determined with the OPLS model showed that glycemia after the race was lower than glycemia before the race, despite the involvement of lipid and protein catabolism. An OPLS model was calculated to compare spectra obtained on plasma taken after the race from 6-year-old horses and from experienced horses (cross-validated ANOVA p < 0.001). The comparison of metabolomic profiles in young horses to those from experienced horses showed that experienced horses maintained their glycemia with higher levels of lactate and a decrease of plasma lipids after the race. PMID:26347654

  1. The Effects of Caffeine Supplementation on Physiological Responses to Submaximal Exercise in Endurance-Trained Men

    PubMed Central

    2016-01-01

    Objectives The aim of this study was to evaluate the effects of caffeine on physiological responses to submaximal exercise, with a focus on blood lactate concentration ([BLa]). Methods Using a randomised, single-blind, crossover design; 16 endurance-trained, male cyclists (age: 38 ± 8 years; height: 1.80 ± 0.05 m; body mass: 76.6 ± 7.8 kg; V˙O2max: 4.3 ± 0.6 L∙min-1) completed four trials on an electromagnetically-braked cycle ergometer. Each trial consisted of a six-stage incremental test (3 minute stages) followed by 30 minutes of passive recovery. One hour before trials 2–4, participants ingested a capsule containing 5 mg∙kg-1 of either caffeine or placebo (maltodextrin). Trials 2 and 3 were designed to evaluate the effects of caffeine on various physiological responses during exercise and recovery. In contrast, Trial 4 was designed to evaluate the effects of caffeine on [BLa] during passive recovery from an end-exercise concentration of 4 mmol∙L-1. Results Relative to placebo, caffeine increased [BLa] during exercise, independent of exercise intensity (mean difference: 0.33 ± 0.41 mmol∙L-1; 95% likely range: 0.11 to 0.55 mmol∙L-1), but did not affect the time-course of [BLa] during recovery (p = 0.604). Caffeine reduced ratings of perceived exertion (mean difference: 0.5 ± 0.7; 95% likely range: 0.1 to 0.9) and heart rate (mean difference: 3.6 ± 4.2 b∙min-1; 95% likely range: 1.3 to 5.8 b∙min-1) during exercise, with the effect on the latter dissipating as exercise intensity increased. Supplement × exercise intensity interactions were observed for respiratory exchange ratio (p = 0.004) and minute ventilation (p = 0.034). Conclusions The results of the present study illustrate the clear, though often subtle, effects of caffeine on physiological responses to submaximal exercise. Researchers should be aware of these responses, particularly when evaluating the physiological effects of various experimental interventions. PMID:27532605

  2. Forearm training attenuates sympathetic responses to prolonged rhythmic forearm exercise

    NASA Technical Reports Server (NTRS)

    Sinoway, L.; Shenberger, J.; Leaman, G.; Zelis, R.; Gray, K.; Baily, R.; Leuenberger, U.

    1996-01-01

    We previously demonstrated that nonfatiguing rhythmic forearm exercise at 25% maximal voluntary contraction (12 2-s contractions/min) evokes sympathoexcitation without significant engagement of metabolite-sensitive muscle afferents (B.A. Batman, J.C. Hardy, U.A. Leuenberger, M.B. Smith, Q.X. Yang and L.I. Sinoway. J. Appl. Physiol. 76: 1077-1081, 1994). This is in contrast to the sympathetic nervous system responses observed during fatiguing static forearm exercise where metabolite-sensitive afferents are the key determinants of sympathetic activation. In this report we examined whether forearm exercise training would attenuate sympathetic nervous system responses to rhythmic forearm exercise. We measured heart rate, mean arterial blood pressure (MAP), muscle sympathetic nerve activity (microneurography), plasma norepinephrine (NE), and NE spillover and clearance (tritiated NE kinetics) during nonfatiguing rhythmic forearm exercise before and after a 4-wk unilateral forearm training paradigm. Training had no effect on forearm mass, maximal voluntary contraction, or heart rate but did attenuate the increase in MAP (increase in MAP: from 15.2 +/- 1.8 before training to 11.4 +/- 1.4 mmHg after training; P < 0.017), muscle sympathetic nerve activity (increase in bursts: from 10.8 +/- 1.4 before training to 6.2 +/- 1.1 bursts/min after training; P < 0.030), and the NE spillover (increases in arterial spillover: from 1.3 +/- 0.2 before training to 0.6 +/- 0.2 nmol.min-1.m-2 after training, P < 0.014; increase in venous spillover: from 2.0 +/- 0.6 before training to 1.0 +/- 0.5 nmol.min-1.m-2 after training, P < 0.037) seen in response to exercise performed by the trained forearm. Thus forearm training reduces sympathetic responses during a nonfatiguing rhythmic handgrip paradigm that does not engage muscle metaboreceptors. We speculate that this effect is due to a conditioning-induced reduction in mechanically sensitive muscle afferent discharge.

  3. Space physiology VI: exercise, artificial gravity, and countermeasure development for prolonged space flight.

    PubMed

    Hargens, Alan R; Bhattacharya, Roshmi; Schneider, Suzanne M

    2013-09-01

    When applied individually, exercise countermeasures employed to date do not fully protect the cardiovascular and musculoskeletal systems during prolonged spaceflight. Recent ground-based research suggests that it is necessary to perform exercise countermeasures within some form of artificial gravity to prevent microgravity deconditioning. In this regard, it is important to provide normal foot-ward loading and intravascular hydrostatic-pressure gradients to maintain musculoskeletal and cardiovascular function. Aerobic exercise within a centrifuge restores cardiovascular function, while aerobic exercise within lower body negative pressure restores cardiovascular function and helps protect the musculoskeletal system. Resistive exercise with vibration stimulation may increase the effectiveness of resistive exercise by preserving muscle function, allowing lower intensity exercises, and possibly reducing risk of loss of vision during prolonged spaceflight. Inexpensive methods to induce artificial gravity alone (to counteract head-ward fluid shifts) and exercise during artificial gravity (for example, by short-arm centrifuge or exercise within lower body negative pressure) should be developed further and evaluated as multi-system countermeasures. PMID:23079865

  4. High altitude, prolonged exercise, and the athlete biological passport.

    PubMed

    Schumacher, Yorck O; Garvican, Laura A; Christian, Ryan; Lobigs, Louisa M; Qi, Jiliang; Fan, Rongyun; He, Yingying; Wang, Hailing; Gore, Christopher J; Ma, Fuhai

    2015-01-01

    The Athlete Biological Passport (ABP) detects blood doping in athletes through longitudinal monitoring of erythropoietic markers. Mathematical algorithms are used to define individual reference ranges for these markers for each athlete. It is unclear if altitude and exercise can affect the variables included in these calculations in a way that the changes might be mistaken for blood manipulation. The aim of this study was to investigate the influence of the simultaneous strenuous exercise and low to high altitude exposure on the calculation algorithms of the ABP. 14 sea level (SL) and 11 altitude native (ALT) highly trained athletes participated in a 14-day cycling stage race taking place at an average altitude of 2496 m above sea level (min. 1014 m, max. 4120 m), race distances ranged between 96 and 227 km per day. ABP blood measures were taken on days -1,3,6,10,14 (SL) and -1,9,15 (ALT) of the race. Four results from three samples of two different SL athletes exceeded the individual limits at the 99% specificity threshold and one value at 99.9%. In ALT, three results from three samples of three different athletes were beyond the individual limits at 99%, one at 99.9%. The variations could be explained by the expected physiological reaction to exercise and altitude. In summary, the abnormalities observed in the haematological ABP´s of well-trained athletes during extensive exercise at altitude are limited and in line with expected physiological changes. PMID:25252093

  5. Changes of thioredoxin, oxidative stress markers, inflammation and muscle/renal damage following intensive endurance exercise.

    PubMed

    Sugama, Kaoru; Suzuki, Katsuhiko; Yoshitani, Kayo; Shiraishi, Koso; Miura, Shigeki; Yoshioka, Hiroshi; Mori, Yuichi; Kometani, Takashi

    2015-01-01

    Thioredoxin (TRX) is a 12 kDa protein that is induced by oxidative stress, scavenges reactive oxygen species (ROS) and modulates chemotaxis. Furthermore it is thought to play a protective role in renal ischemia/reperfusion injury. Complement 5a (C5a) is a chemotactic factor of neutrophils and is produced after ischemia/reperfusion injury in the kidney. Both TRX and C5a increase after endurance exercise. Therefore, it may be possible that TRX has an association with C5a in renal disorders and/or renal protection caused by endurance exercise. Accordingly, the aim of this study was to investigate relationships among the changes of urine levels of TRX, C5a and acute kidney injury (AKI) caused by ischemia/reperfusion, inflammatory responses, and oxidative stress following intensive endurance exercise. Also, we applied a newly-developed measurement system of neutrophil migratory activity and ROS-production by use of ex vivo hydrogel methodology with an extracellular matrix to investigate the mechanisms of muscle damage. Fourteen male triathletes participated in a duathlon race consisting of 5 km of running, 40 km of cycling and 5 km of running were recruited to the study. Venous blood and urine samples were collected before, immediately following, 1.5 h and 3 h after the race. Plasma, serum and urine were analyzed using enzyme-linked immunosorbent assays, a free radical analytical system, and the ex vivo neutrophil functional measurement system. These data were analyzed by assigning participants to damaged and minor-damage groups by the presence and absence of renal tubular epithelial cells in the urinary sediments. We found strong associations among urinary TRX, C5a, interleukin (IL)-2, IL-4, IL-8, IL-10, interferon (IFN)-γ and monocyte chemotactic protein (MCP)-1. From the data it might be inferred that urinary TRX, MCP-1 and β-N-acetyl-D-glucosaminidase (NAG) were associated with renal tubular injury. Furthermore, TRX may be influenced by levels of IL-10, regulate

  6. Carbohydrate supplementation and prolonged intermittent high-intensity exercise in adolescents: research findings, ethical issues and suggestions for the future.

    PubMed

    Phillips, Shaun M

    2012-10-01

    In the last decade, research has begun to investigate the efficacy of carbohydrate supplementation for improving aspects of physical capacity and skill performance during sport-specific exercise in adolescent team games players. This research remains in its infancy, and further study would be beneficial considering the large youth population actively involved in team games. Literature on the influence of carbohydrate supplementation on skill performance is scarce, limited to shooting accuracy in adolescent basketball players and conflicting in its findings. Between-study differences in the exercise protocol, volume of fluid and carbohydrate consumed, use of prior fatiguing exercise and timing of skill tests may contribute to the different findings. Conversely, initial data supports carbohydrate supplementation in solution and gel form for improving intermittent endurance running capacity following soccer-specific shuttle running. These studies produced reliable data, but were subject to limitations including lack of quantification of the metabolic response of participants, limited generalization of data due to narrow participant age and maturation ranges, use of males and females within the same sample and non-standardized pre-exercise nutritional status between participants. There is a lack of consensus regarding the influence of frequently consuming carbohydrate-containing products on tooth enamel erosion and the development of obesity or being overweight in adolescent athletes and non-athletes. These discrepancies mean that the initiation or exacerbation of health issues due to frequent consumption of carbohydrate-containing products by adolescents cannot be conclusively refuted. Coupled with the knowledge that consuming a natural, high-carbohydrate diet -3-8 hours before exercise can significantly alter substrate use and improve exercise performance in adults, a moral and ethical concern is raised regarding the direction of future research in order to further

  7. The metabolic and performance effects of caffeine compared to coffee during endurance exercise.

    PubMed

    Hodgson, Adrian B; Randell, Rebecca K; Jeukendrup, Asker E

    2013-01-01

    There is consistent evidence supporting the ergogenic effects of caffeine for endurance based exercise. However, whether caffeine ingested through coffee has the same effects is still subject to debate. The primary aim of the study was to investigate the performance enhancing effects of caffeine and coffee using a time trial performance test, while also investigating the metabolic effects of caffeine and coffee. In a single-blind, crossover, randomised counter-balanced study design, eight trained male cyclists/triathletes (Mean ± SD: Age 41 ± 7 y, Height 1.80 ± 0.04 m, Weight 78.9 ± 4.1 kg, VO2 max 58 ± 3 ml • kg(-1) • min(-1)) completed 30 min of steady-state (SS) cycling at approximately 55% VO2max followed by a 45 min energy based target time trial (TT). One hour prior to exercise each athlete consumed drinks consisting of caffeine (5 mg CAF/kg BW), instant coffee (5 mg CAF/kg BW), instant decaffeinated coffee or placebo. The set workloads produced similar relative exercise intensities during the SS for all drinks, with no observed difference in carbohydrate or fat oxidation. Performance times during the TT were significantly faster (~5.0%) for both caffeine and coffee when compared to placebo and decaf (38.35 ± 1.53, 38.27 ± 1.80, 40.23 ± 1.98, 40.31 ± 1.22 min respectively, p<0.05). The significantly faster performance times were similar for both caffeine and coffee. Average power for caffeine and coffee during the TT was significantly greater when compared to placebo and decaf (294 ± 21 W, 291 ± 22 W, 277 ± 14 W, 276 ± 23 W respectively, p<0.05). No significant differences were observed between placebo and decaf during the TT. The present study illustrates that both caffeine (5 mg/kg/BW) and coffee (5 mg/kg/BW) consumed 1 h prior to exercise can improve endurance exercise performance. PMID:23573201

  8. The risk of life-threatening ventricular arrhythmias in presence of high-intensity endurance exercise along with chronic administration of nandrolone decanoate.

    PubMed

    Abdollahi, Farzane; Joukar, Siyavash; Najafipour, Hamid; Karimi, Abdolah; Masumi, Yaser; Binayi, Fateme

    2016-01-01

    Anabolic steroids used to improve muscular strength and performance in athletics. Its long-term consumption may induce cardiovascular adverse effects. We assessed the risk of ventricular arrhythmias in rats which subjected to chronic nandrolone plus high-intensity endurance exercise. Animals were grouped as; control (CTL), exercise (Ex): 8 weeks under exercise, vehicle group (Arach): received arachis oil, and Nan group: received nandrolone decanoate 5 mg/kg twice a week for 8 weeks, Arach+Ex group, and Nan+Ex. Finally, under anesthesia, arrhythmia was induced by infusion of 1.5 μg/0.1 mL/min of aconitine IV and ventricular arrhythmias were recorded for 15 min. Then, animals' hearts were excised and tissue samples were taken. Nandrolone plus exercise had no significant effect on blood pressure but decreased the heart rate (P<0.01) and increased the RR (P<0.01) and JT intervals (P<0.05) of electrocardiogram. Nandrolone+exercise significantly increased the ventricular fibrillation (VF) frequency and also decreased the VF latency (P<0.05 versus CTL group). Combination of exercise and nandrolone could not recover the decreasing effects of nandrolone on animals weight gain but, it enhanced the heart hypertrophy index (P<0.05). In addition, nandrolone increased the level of hydroxyproline (HYP) and malondialdehyde (MDA) but had not significant effect on glutathione peroxidase of heart. Exercise only prevented the effect of nandrolone on HYP. Nandrolone plus severe exercise increases the risk of VF that cannot be explained only by the changes in redox system. The intensification of cardiac hypertrophy and prolongation of JT interval may be a part of involved mechanisms. PMID:26686897

  9. Influence of Selected Exercise on Serum Immunoglobulin, Testosterone and Cortisol in Semi-Endurance Elite Runners

    PubMed Central

    Hejazi, Keyvan; Hosseini, Seyyed-Reza Attarzadeh

    2012-01-01

    Purpose The aim of this study was to compare the levels of serum immunoglobulin (IgA, IgM, IgG), testosterone and cortisol in semi-endurance elite runners during general preparation and competition phase of training. Methods Thirteen semi-endurance elite male runners with an average age of 18.92±1.7 years volunteered to take part in this study. The runners participated in the selected training for a period of 14 weeks and 12 sessions per week (in the morning and afternoon). Blood samples were collected during the three phases of training (before-preparation phase, after-preparation phase and before-competition phase). Data were analyzed by repeated measures and Bonferroni post hoc test, at a significance level of P<0.05. Results The levels of serum IgM in semi-endurance elite runners after preparation phase reduced significantly (P=0.004), while these levels during the competition phase increased even though significantly. The levels of serum IgG and IgA also reduced, however not significantly, during both phases. Moreover, after preparation phase, there was no significant change in serum IgA levels; though, these levels reduced, however not significantly, before competition phase. Cortisol levels significantly decrease after preparation phase (P=0.04); although, it increased before competition phase. Testosterone/cortisol ratio increases significantly after preparation phase (P=0.04), and it decreased before competition phase. Testosterone levels intangibility increased and decreased respectively after preparation and before competition phases. Conclusions Findings indicated that long and intensive exercises weaken the immune system, while moderate and short drills strengthened this system. PMID:23012638

  10. Plasma cell-free mitochondrial DNA declines in response to prolonged moderate aerobic exercise.

    PubMed

    Shockett, Penny E; Khanal, Januka; Sitaula, Alina; Oglesby, Christopher; Meachum, William A; Castracane, V Daniel; Kraemer, Robert R

    2016-01-01

    Increased plasma cell-free mitochondrial DNA (cf-mDNA), a damage-associated molecular pattern (DAMP) produced by cellular injury, contributes to neutrophil activation/inflammation in trauma patients and arises in cancer and autoimmunity. To further understand relationships between cf-mDNA released by tissue injury, inflammation, and health benefits of exercise, we examined cf-mDNA response to prolonged moderate aerobic exercise. Seven healthy moderately trained young men (age = 22.4 ± 1.2) completed a treadmill exercise trial for 90 min at 60% VO2 max and a resting control trial. Blood was sampled immediately prior to exercise (0 min = baseline), during (+18, +54 min), immediately after (+90 min), and after recovery (R40). Plasma was analyzed for cf-mDNA, IL-6, and lactate. A significant difference in cf-mDNA response was observed between exercise and control trials, with cf-mDNA levels reduced during exercise at +54 and +90 (with or without plasma volume shift correction). Declines in cf-mDNA were accompanied by increased lactate and followed by an increase in IL-6, suggesting a temporal association with muscle stress and inflammatory processes. Our novel finding of cf-mDNA decline with prolonged moderate treadmill exercise provides evidence for increased clearance from or reduced release of cf-mDNA into the blood with prolonged exercise. These studies contrast with previous investigations involving exhaustive short-term treadmill exercise, in which no change in cf-mDNA levels were reported, and contribute to our understanding of differences between exercise- and trauma-induced inflammation. We propose that transient declines in cf-mDNA may induce health benefits, by reducing systemic inflammation. PMID:26755735

  11. Physiological Responses of General vs. Specific Aerobic Endurance Exercises in Soccer

    PubMed Central

    Zouhal, Hassane; LeMoal, Emmeran; Wong, Del P.; BenOunis, Omar; Castagna, Carlo; Duluc, Corentin; Owen, Adam L.; Drust, Barry

    2013-01-01

    Purpose The study aimed to compare the physiological and perceptual responses of two high intensity intermittent aerobic exercises (HIIE), i.e. the 15s/15s exercise and an exercise on the Hoff track (HTE). Methods In this within-subject repeated measures study, seven high-level soccer players (Age: 24.1± 4.5yr; Height: 175± 0.04cm; Body mass: 67.9± 9.0kg;% Body fat: 14.2± 2.4%) performed the two exercises with same total duration (25 minutes) in a randomized order: 1) a 15s/15s protocol at 120% of maximal aerobic speed (MAS), and 2) HTE. Heart rate (HR) and oxygen uptake (VO2) were measured continuously throughout both exercises. The rating of perceived exertion (RPE) was measured 15 min after the end of each exercise. Blood lactate concentration ([La]) was measured at rest before each exercise, between and at the end of each set. Results The mean VO2 during HTE was significantly higher than 15s/15s exercise (39.3±2.3 vs. 36.8±1.9 mL/min/kg, P<0.05. The total O2 consumed was significantly higher (P<0.05) during HTE (66.8±7.6 L) than during the 15s/15s (62.3±8.6 L). Blood lactate [La] after the first set of HTE was significantly higher than the 15s/15s (12.5±2.0 vs. 10.6±2.0 mmol/L, P<0.05). However, RPE provided by players suggested that the 15s/15s was more intense than the HTE (13±1.8 vs. 11.7±1.4, P<0.05). Conclusion Our results demonstrate that VO2 and [La] were higher during HTE than during the 15s/15s when matched with duration. However, HTE was perceived less intense than 15s/15s. Thus, the use of HTE appears as an effective alternative for fitness coaches to develop aerobic endurance in soccer players. PMID:24427481

  12. Oxygen supply and nitric oxide scavenging by myoglobin contribute to exercise endurance and cardiac function.

    PubMed

    Merx, Marc W; Gödecke, Axel; Flögel, Ulrich; Schrader, Jürgen

    2005-06-01

    Recent studies of myoglobin (Mb) knockout (myo-/-) mice have extended our understanding of Mb's diverse functions and have demonstrated a complex array of compensatory mechanisms. The present study was aimed at detailed analysis of cardiac function and exercise endurance in myo-/- mice and at providing evidence for Mb's functional relevance. Myo-/- isolated working hearts display decreased contractility (dP/dtmax 3883+/-351 vs. 4618+/-268 mmHg/sec, myo-/- vs. WT, P<0.005). Due to a shift in sympathetic/parasympathetic tone, heart rate is reduced in conscious myo mice-/- (615+/-33 vs. 645+/-27 bpm, myo-/- vs. WT, P<0.001). Oxygen consumption (VO2) under resting conditions (3082+/-413 vs. 4452+/-552 ml x kg(-1) x h(-1), myo-/- vs. WT, P<0.001) and exercise endurance, as determined by spiroergometry, are decreased (466+/-113 vs. 585+/-153 m, myo-/- vs. WT, P<0.01). Conscious myo-/- mice evaluated by echocardiography display lowered cardiac output (0.64+/-0.06 vs. 0.75+/-0.09 ml x min(-1) x g(-1), myo-/- vs. WT, P<0.001), impaired systolic shortening (60+/-3.5 vs. 65+/-4%, myo-/- vs. WT, P<0.001) and fail to respond to beta1-stimulation. Strikingly, the latter cardiac effects of Mb deficiency can be partially attenuated by NOS inhibition. Loss of Mb results in a distinct phenotype, even under resting conditions, and the importance of oxygen supply and nitric oxide scavenging by Mb is clearly demonstrated at the conscious animal level. PMID:15817640

  13. Treadmill exercise within lower body negative pressure protects leg lean tissue mass and extensor strength and endurance during bed rest.

    PubMed

    Schneider, Suzanne M; Lee, Stuart M C; Feiveson, Alan H; Watenpaugh, Donald E; Macias, Brandon R; Hargens, Alan R

    2016-08-01

    Leg muscle mass and strength are decreased during reduced activity and non-weight-bearing conditions such as bed rest (BR) and spaceflight. Supine treadmill exercise within lower body negative pressure (LBNPEX) provides full-body weight loading during BR and may prevent muscle deconditioning. We hypothesized that a 40-min interval exercise protocol performed against LBNPEX 6 days week(-1) would attenuate losses in leg lean mass (LLM), strength, and endurance during 6° head-down tilt BR, with similar benefits for men and women. Fifteen pairs of healthy monozygous twins (8 male and 7 female pairs) completed 30 days of BR with one sibling of each twin pair assigned randomly as the non-exercise control (CON) and the other twin as the exercise subject (EX). Before and after BR, LLM and isokinetic leg strength and endurance were measured. Mean knee and ankle extensor and flexor strength and endurance and LLM decreased from pre- to post-BR in the male CON subjects (P < 0.01), but knee extensor strength and endurance, ankle extensor strength, and LLM were maintained in the male EX subjects. In contrast, no pre- to post-BR changes were significant in the female subjects, either CON or EX, likely due to their lower pre-BR values. Importantly, the LBNPEX countermeasure prevents or attenuates declines in LLM as well as extensor leg strength and endurance. Individuals who are stronger, have higher levels of muscular endurance, and/or have greater LLM are likely to experience greater losses during BR than those who are less fit. PMID:27495299

  14. The effects of an acute dose of Rhodiola rosea on endurance exercise performance.

    PubMed

    Noreen, Eric E; Buckley, James G; Lewis, Stephanie L; Brandauer, Josef; Stuempfle, Kristin J

    2013-03-01

    The purpose of this study was to determine the effects of an acute oral dose of 3 mg·kg(-1) of Rhodiola rosea on endurance exercise performance, perceived exertion, mood, and cognitive function. Subjects (n = 18) ingested either R. rosea or a carbohydrate placebo 1 hour before testing in a double-blind, random crossover manner. Exercise testing consisted of a standardized 10-minute warm-up followed by a 6-mile time trial (TT) on a bicycle ergometer. Rating of perceived exertion (RPE) was measured every 5 minutes during the TT using a 10-point Borg scale. Blood lactate concentration, salivary cortisol, and salivary alpha amylase were measured before warm-up, 2 minutes after warm-up, and 2 minutes after TT (n = 15). A Profile of Mood States questionnaire and a Stroop Color Test were completed before warm-up and after TT. Testing was repeated 2-7 days later with the other condition. Rhodiola rosea ingestion significantly decreased heart rate during the standardized warm-up (R. rosea = 136 ± 17 b·min(-1); placebo = 140 ± 17 b·min(-1); mean ± SD; p = 0.001). Subjects completed the TT significantly faster after R. rosea ingestion (R. rosea = 25.4 ± 2.7 minutes; placebo = 25.8 ± 3.0 minutes; p = 0.037). The mean RPE was lower in the R. rosea trial (R. rosea = 6.0 ± 0.9; placebo = 6.6 ± 1.0; p = 0.04). This difference was even more pronounced when a ratio of the RPE relative to the workload was calculated (R. rosea = 0.048 ± 0.01; placebo = 0.057 ± 0.02; p = 0.007). No other statistically significant differences were observed. Acute R. rosea ingestion decreases heart rate response to submaximal exercise and appears to improve endurance exercise performance by decreasing the perception of effort. PMID:23443221

  15. Heart Failure Impairs Muscle Blood Flow and Endurance Exercise Tolerance in COPD.

    PubMed

    Oliveira, Mayron F; Arbex, Flavio F; Alencar, Maria Clara; Souza, Aline; Sperandio, Priscila A; Medeiros, Wladimir M; Mazzuco, Adriana; Borghi-Silva, Audrey; Medina, Luiz A; Santos, Rita; Hirai, Daniel M; Mancuso, Frederico; Almeida, Dirceu; O'Donnell, Denis E; Neder, J Alberto

    2016-08-01

    Heart failure, a prevalent and disabling co-morbidity of COPD, may impair cardiac output and muscle blood flow thereby contributing to exercise intolerance. To investigate the role of impaired central and peripheral hemodynamics in limiting exercise tolerance in COPD-heart failure overlap, cycle ergometer exercise tests at 20% and 80% peak work rate were performed by overlap (FEV1 = 56.9 ± 15.9% predicted, ejection fraction = 32.5 ± 6.9%; N = 16), FEV1-matched COPD (N = 16), ejection fraction-matched heart failure patients (N = 15) and controls (N = 12). Differences (Δ) in cardiac output (impedance cardiography) and vastus lateralis blood flow (indocyanine green) and deoxygenation (near-infrared spectroscopy) between work rates were expressed relative to concurrent changes in muscle metabolic demands (ΔO2 uptake). Overlap patients had approximately 30% lower endurance exercise tolerance than COPD and heart failure (p < 0.05). ΔBlood flow was closely proportional to Δcardiac output in all groups (r = 0.89-0.98; p < 0.01). Overlap showed the largest impairments in Δcardiac output/ΔO2 uptake and Δblood flow/ΔO2 uptake (p < 0.05). Systemic arterial oxygenation, however, was preserved in overlap compared to COPD. Blunted limb perfusion was related to greater muscle deoxygenation and lactate concentration in overlap (r = 0.78 and r = 0.73, respectively; p < 0.05). ΔBlood flow/ΔO2 uptake was related to time to exercise intolerance only in overlap and heart failure (p < 0.01). In conclusion, COPD and heart failure add to decrease exercising cardiac output and skeletal muscle perfusion to a greater extent than that expected by heart failure alone. Treatment strategies that increase muscle O2 delivery and/or decrease O2 demand may be particularly helpful to improve exercise tolerance in COPD patients presenting heart failure as co-morbidity. PMID:26790095

  16. Using molecular classification to predict gains in maximal aerobic capacity following endurance exercise training in humans

    PubMed Central

    Knudsen, Steen; Rankinen, Tuomo; Koch, Lauren G.; Sarzynski, Mark; Jensen, Thomas; Keller, Pernille; Scheele, Camilla; Vollaard, Niels B. J.; Nielsen, Søren; Åkerström, Thorbjörn; MacDougald, Ormond A.; Jansson, Eva; Greenhaff, Paul L.; Tarnopolsky, Mark A.; van Loon, Luc J. C.; Pedersen, Bente K.; Sundberg, Carl Johan; Wahlestedt, Claes; Britton, Steven L.; Bouchard, Claude

    2010-01-01

    A low maximal oxygen consumption (V̇o2max) is a strong risk factor for premature mortality. Supervised endurance exercise training increases V̇o2max with a very wide range of effectiveness in humans. Discovering the DNA variants that contribute to this heterogeneity typically requires substantial sample sizes. In the present study, we first use RNA expression profiling to produce a molecular classifier that predicts V̇o2max training response. We then hypothesized that the classifier genes would harbor DNA variants that contributed to the heterogeneous V̇o2max response. Two independent preintervention RNA expression data sets were generated (n = 41 gene chips) from subjects that underwent supervised endurance training: one identified and the second blindly validated an RNA expression signature that predicted change in V̇o2max (“predictor” genes). The HERITAGE Family Study (n = 473) was used for genotyping. We discovered a 29-RNA signature that predicted V̇o2max training response on a continuous scale; these genes contained ∼6 new single-nucleotide polymorphisms associated with gains in V̇o2max in the HERITAGE Family Study. Three of four novel candidate genes from the HERITAGE Family Study were confirmed as RNA predictor genes (i.e., “reciprocal” RNA validation of a quantitative trait locus genotype), enhancing the performance of the 29-RNA-based predictor. Notably, RNA abundance for the predictor genes was unchanged by exercise training, supporting the idea that expression was preset by genetic variation. Regression analysis yielded a model where 11 single-nucleotide polymorphisms explained 23% of the variance in gains in V̇o2max, corresponding to ∼50% of the estimated genetic variance for V̇o2max. In conclusion, combining RNA profiling with single-gene DNA marker association analysis yields a strongly validated molecular predictor with meaningful explanatory power. V̇o2max responses to endurance training can be predicted by measuring a ∼30

  17. Dehydration markedly impairs cardiovascular function in hyperthermic endurance athletes during exercise.

    PubMed

    González-Alonso, J; Mora-Rodríguez, R; Below, P R; Coyle, E F

    1997-04-01

    We identified the cardiovascular stress encountered by superimposing dehydration on hyperthermia during exercise in the heat and the mechanisms contributing to the dehydration-mediated stroke volume (SV) reduction. Fifteen endurance-trained cyclists [maximal O2 consumption (VO2max) = 4.5 l/min] exercised in the heat for 100-120 min and either became dehydrated by 4% body weight or remained euhydrated by drinking fluids. Measurements were made after they continued exercise at 71% VO2max for 30 min while 1) euhydrated with an esophageal temperature (T(es)) of 38.1-38.3 degrees C (control); 2) euhydrated and hyperthermic (39.3 degrees C); 3) dehydrated and hyperthermic with skin temperature (T(sk)) of 34 degrees C; 4) dehydrated with T(es) of 38.1 degrees C and T(sk) of 21 degrees C; and 5) condition 4 followed by restored blood volume. Compared with control, hyperthermia (1 degrees C T(es) increase) and dehydration (4% body weight loss) each separately lowered SV 7-8% (11 +/- 3 ml/beat; P < 0.05) and increased heart rate sufficiently to prevent significant declines in cardiac output. However, when dehydration was superimposed on hyperthermia, the reductions in SV were significantly (P < 0.05) greater (26 +/- 3 ml/beat), and cardiac output declined 13% (2.8 +/- 0.3 l/min). Furthermore, mean arterial pressure declined 5 +/- 2%, and systemic vascular resistance increased 10 +/- 3% (both P < 0.05). When hyperthermia was prevented, all of the decline in SV with dehydration was due to reduced blood volume (approximately 200 ml). These results demonstrate that the superimposition of dehydration on hyperthermia during exercise in the heat causes an inability to maintain cardiac output and blood pressure that makes the dehydrated athlete less able to cope with hyperthermia. PMID:9104860

  18. Variation of red blood cell distribution width and mean platelet volume after moderate endurance exercise.

    PubMed

    Lippi, Giuseppe; Salvagno, Gian Luca; Danese, Elisa; Tarperi, Cantor; Guidi, Gian Cesare; Schena, Federico

    2014-01-01

    Although physical exercise strongly influences several laboratory parameters, data about the hematological changes after medium distance running are scarce. We studied 31 middle-trained athletes (mean training regimen 217 ± 32 min/week) who performed a 21.1 km, half-marathon run. Blood samples were collected before the run, at the end, and 3 and 20 hours thereafter. The complete blood count was performed on Advia 2120 and included red blood cell (RBC), reticulocyte, and platelet counts; hemoglobin; mean corpuscular volume (MCV); mean corpuscular hemoglobin (MCH); reticulocyte haemoglobin content (Ret CHR); RBC distribution width (RDW), mean platelet volume (MPV). No significant variations were observed for MCH and Ret CHR. The RBC, reticulocyte, and hemoglobin values modestly decreased after the run. The MCV significantly increased at the end of running but returned to baseline 3 hours thereafter. The RDW constantly increased, reaching a peak 20 hours after the run. The platelet count and MPV both increased after the run and returned to baseline 3 hours thereafter. These results may have implications for definition of reference ranges and antidoping testing, and may also contribute to explaining the relationship between endurance exercise and mortality, since previous studies reported that RDW and MPV may be significantly associated with cardiovascular disease. PMID:25197280

  19. Apple Pomace Extract Improves Endurance in Exercise Performance by Increasing Strength and Weight of Skeletal Muscle.

    PubMed

    Jeong, Ji-Woong; Shim, Jae-Jung; Choi, Il-Dong; Kim, Sung-Hwan; Ra, Jehyeon; Ku, Hyung Keun; Lee, Dong Eun; Kim, Tae-Youl; Jeung, Woonhee; Lee, Jung-Hee; Lee, Ki Won; Huh, Chul-Sung; Sim, Jae-Hun; Ahn, Young-Tae

    2015-12-01

    Ursolic acid is a lipophilic pentacyclic triterpenoid found in many fruits and herbs and is used in several herbal folk medicines for diabetes. In this study, we evaluated the effects of apple pomace extract (APE; ursolic acid content, 183 mg/g) on skeletal muscle atrophy. To examine APE therapeutic potential in muscle atrophy, we investigated APE effects on the expression of biomarkers associated with muscle atrophy and hypertrophy. We found that APE inhibited atrophy, while inducing hypertrophy in C2C12 myotubes by decreasing the expression of atrophy-related genes and increasing the expression of hypertrophy-associated genes. The in vivo experiments using mice fed a diet with or without APE showed that APE intake increased skeletal muscle mass, as well as grip strength and exercise capacity. In addition, APE significantly improved endurance in the mice, as evidenced by increased exhaustive running time and muscle weight, and reduced the expression of the genes involved in the development of muscle atrophy. APE also decreased the concentration of serum lactate and lactate dehydrogenase, inorganic phosphate, and creatinine, the indicators of accumulated fatigue and exercise-induced stress. These results suggest that APE may be useful as an ergogenic functional food or dietary supplement. PMID:26331671

  20. Subsarcolemmal lipid droplet responses to a combined endurance and strength exercise intervention

    PubMed Central

    Li, Yuchuan; Lee, Sindre; Langleite, Torgrim; Norheim, Frode; Pourteymour, Shirin; Jensen, Jørgen; Stadheim, Hans K.; Storås, Tryggve H.; Davanger, Svend; Gulseth, Hanne L.; Birkeland, Kåre I.; Drevon, Christian A.; Holen, Torgeir

    2014-01-01

    Abstract Muscle lipid stores and insulin sensitivity have a recognized association although the mechanism remains unclear. We investigated how a 12‐week supervised combined endurance and strength exercise intervention influenced muscle lipid stores in sedentary overweight dysglycemic subjects and normal weight control subjects (n = 18). Muscle lipid stores were measured by magnetic resonance spectroscopy (MRS), electron microscopy (EM) point counting, and direct EM lipid droplet measurements of subsarcolemmal (SS) and intramyofibrillar (IMF) regions, and indirectly, by deep sequencing and real‐time PCR of mRNA of lipid droplet‐associated proteins. Insulin sensitivity and VO2max increased significantly in both groups after 12 weeks of training. Muscle lipid stores were reduced according to MRS at baseline before and after the intervention, whereas EM point counting showed no change in LD stores post exercise, indicating a reduction in muscle adipocytes. Large‐scale EM quantification of LD parameters of the subsarcolemmal LD population demonstrated reductions in LD density and LD diameters. Lipid droplet volume in the subsarcolemmal LD population was reduced by ~80%, in both groups, while IMF LD volume was unchanged. Interestingly, the lipid droplet diameter (n = 10 958) distribution was skewed, with a lack of small diameter lipid droplets (smaller than ~200 nm), both in the SS and IMF regions. Our results show that the SS LD lipid store was sensitive to training, whereas the dominant IMF LD lipid store was not. Thus, net muscle lipid stores can be an insufficient measure for the effects of training. PMID:25413318

  1. Effect of Prolonged Moderate Exercise on the Changes of Nonneuronal Cells in Early Myocardial Infarction.

    PubMed

    Rinaldi, Barbara; Guida, Francesca; Furiano, Anna; Donniacuo, Maria; Luongo, Livio; Gritti, Giulia; Urbanek, Konrad; Messina, Giovanni; Maione, Sabatino; Rossi, Francesco; de Novellis, Vito

    2015-01-01

    Myocardial infarction (MI) is one of the leading causes of death in developed countries and it is characterized by several associated symptomatologies and poor quality of life. Recent data showed a possible interaction between infarction and brain inflammation and activity. Previous studies have demonstrated the beneficial effect of exercise training on deterioration in cardiac function after MI. In this study we analyzed in sedentary and trained rats the microglia and astrocytes 48 hours after MI in PVN, thalamus, prefrontal cortex, and hippocampus through immunofluorescence approach. We found significant changes in specific microglia phenotypes in the brain areas analyzed together with astrocytes activation. Prolonged exercise normalized these morphological changes of microglia and astrocytes in the prefrontal cortex, hippocampus, and thalamus but not in the PVN. Our data suggest that there is an early brain reaction to myocardial infarction induction, involving nonneuronal cells, that is attenuated by the prolonged exercise. PMID:26266053

  2. Effect of Prolonged Moderate Exercise on the Changes of Nonneuronal Cells in Early Myocardial Infarction

    PubMed Central

    Rinaldi, Barbara; Guida, Francesca; Furiano, Anna; Donniacuo, Maria; Luongo, Livio; Gritti, Giulia; Urbanek, Konrad; Messina, Giovanni; Maione, Sabatino; Rossi, Francesco; de Novellis, Vito

    2015-01-01

    Myocardial infarction (MI) is one of the leading causes of death in developed countries and it is characterized by several associated symptomatologies and poor quality of life. Recent data showed a possible interaction between infarction and brain inflammation and activity. Previous studies have demonstrated the beneficial effect of exercise training on deterioration in cardiac function after MI. In this study we analyzed in sedentary and trained rats the microglia and astrocytes 48 hours after MI in PVN, thalamus, prefrontal cortex, and hippocampus through immunofluorescence approach. We found significant changes in specific microglia phenotypes in the brain areas analyzed together with astrocytes activation. Prolonged exercise normalized these morphological changes of microglia and astrocytes in the prefrontal cortex, hippocampus, and thalamus but not in the PVN. Our data suggest that there is an early brain reaction to myocardial infarction induction, involving nonneuronal cells, that is attenuated by the prolonged exercise. PMID:26266053

  3. The effect of almond consumption on elements of endurance exercise performance in trained athletes

    PubMed Central

    2014-01-01

    Background Almonds are a healthy tree nut food with high nutrient density. Their consumption has been shown to ameliorate oxidative stress, inflammation, etc. The objective of the study was to examine the effect of almonds on elements of endurance exercise performance in trained athletes. Methods A 10-week crossover, placebo controlled study was conducted. Eight trained male cyclists and two triathletes were randomly assigned to consume 75 g/d whole almonds (ALM) or isocaloric cookies (COK) with equal subject number. They consumed the assigned food for 4 wks and then the alternate food for another 4 wks. They underwent 3 performance tests including 125-min steady status exercise (SS) and 20-min time trial (TT) on an indoor stationary trainer at the start of the study (BL) and at the end of each intervention phase. Venous blood was collected in the morning prior to the performance test for biochemical measurements and finger blood during the test for glucose determination. Carbohydrate and fat oxidation, energy expenditure, and oxygen use were calculated using respiratory gas analysis. Results ALM increased cycling distance during TT by 1.7 km as compared BL (21.9 vs. 20.2 km, P = 0.053) and COK increased 0.6 km (20.8 vs. 20.2 km, P > 0.05). ALM, but not COK, led to higher CHO and lower fat oxidation and less oxygen consumption during TT than BL (P < 0.05), whereas there was no significant difference in heart rate among BL, ALM and COK. ALM maintained higher blood glucose level after TT than COK (P < 0.05). ALM had higher vitamin E and haemoglobin and lower serum free fatty acid (P < 0.05), slightly elevated serum arginine and nitric oxide and plasma insulin (P > 0.05) than BL, and a higher total antioxidant capacity than COK (P < 0.05). Conclusions Whole almonds improved cycling distance and the elements related to endurance performance more than isocaloric cookies in trained athletes as some nutrients in almonds may contribute to

  4. Lack of Skeletal Muscle IL-6 Affects Pyruvate Dehydrogenase Activity at Rest and during Prolonged Exercise

    PubMed Central

    Gudiksen, Anders; Schwartz, Camilla Lindgren; Bertholdt, Lærke; Joensen, Ella; Knudsen, Jakob G.; Pilegaard, Henriette

    2016-01-01

    Pyruvate dehydrogenase (PDH) plays a key role in the regulation of skeletal muscle substrate utilization. IL-6 is produced in skeletal muscle during exercise in a duration dependent manner and has been reported to increase whole body fatty acid oxidation, muscle glucose uptake and decrease PDHa activity in skeletal muscle of fed mice. The aim of the present study was to examine whether muscle IL-6 contributes to exercise-induced PDH regulation in skeletal muscle. Skeletal muscle-specific IL-6 knockout (IL-6 MKO) mice and floxed littermate controls (control) completed a single bout of treadmill exercise for 10, 60 or 120 min, with rested mice of each genotype serving as basal controls. The respiratory exchange ratio (RER) was overall higher (P<0.05) in IL-6 MKO than control mice during the 120 min of treadmill exercise, while RER decreased during exercise independent of genotype. AMPK and ACC phosphorylation also increased with exercise independent of genotype. PDHa activity was in control mice higher (P<0.05) at 10 and 60 min of exercise than at rest but remained unchanged in IL-6 MKO mice. In addition, PDHa activity was higher (P<0.05) in IL-6 MKO than control mice at rest and 60 min of exercise. Neither PDH phosphorylation nor acetylation could explain the genotype differences in PDHa activity. Together, this provides evidence that skeletal muscle IL-6 contributes to the regulation of PDH at rest and during prolonged exercise and suggests that muscle IL-6 normally dampens carbohydrate utilization during prolonged exercise via effects on PDH. PMID:27327080

  5. Estimated aortic stiffness is independently associated with cardiac baroreflex sensitivity in humans: role of ageing and habitual endurance exercise.

    PubMed

    Pierce, G L; Harris, S A; Seals, D R; Casey, D P; Barlow, P B; Stauss, H M

    2016-09-01

    We hypothesised that differences in cardiac baroreflex sensitivity (BRS) would be independently associated with aortic stiffness and augmentation index (AI), clinical biomarkers of cardiovascular disease risk, among young sedentary and middle-aged/older sedentary and endurance-trained adults. A total of 36 healthy middle-aged/older (age 55-76 years, n=22 sedentary and n=14 endurance-trained) and 5 young sedentary (age 18-31 years) adults were included in a cross-sectional study. A subset of the middle-aged/older sedentary adults (n=12) completed an 8-week-aerobic exercise intervention. Invasive brachial artery blood pressure waveforms were used to compute spontaneous cardiac BRS (via sequence technique), estimated aortic pulse wave velocity (PWV) and AI (AI, via brachial-aortic transfer function and wave separation analysis). In the cross-sectional study, cardiac BRS was 71% lower in older compared with young sedentary adults (P<0.05), but only 40% lower in older adults who performed habitual endurance exercise (P=0.03). In a regression model that included age, sex, resting heart rate, mean arterial pressure (MAP), body mass index and maximal exercise oxygen uptake, estimated aortic PWV (β±s.e.=-5.76±2.01, P=0.01) was the strongest predictor of BRS (model R(2)=0.59, P<0.001). The 8-week-exercise intervention improved BRS by 38% (P=0.04) and this change in BRS was associated with improved aortic PWV (r=-0.65, P=0.044, adjusted for changes in MAP). Age- and endurance-exercise-related differences in cardiac BRS are independently associated with corresponding alterations in aortic PWV among healthy adults, consistent with a mechanistic link between variations in the sensitivity of the baroreflex and aortic stiffness with age and exercise. PMID:26911535

  6. Cardiorespiratory endurance evaluation using heart rate analysis during ski simulator exercise and the Harvard step test in elementary school students.

    PubMed

    Lee, Hyo Taek; Roh, Hyo Lyun; Kim, Yoon Sang

    2016-01-01

    [Purpose] Efficient management using exercise programs with various benefits should be provided by educational institutions for children in their growth phase. We analyzed the heart rates of children during ski simulator exercise and the Harvard step test to evaluate the cardiopulmonary endurance by calculating their post-exercise recovery rate. [Subjects and Methods] The subjects (n = 77) were categorized into a normal weight and an overweight/obesity group by body mass index. They performed each exercise for 3 minutes. The cardiorespiratory endurance was calculated using the Physical Efficiency Index formula. [Results] The ski simulator and Harvard step test showed that there was a significant difference in the heart rates of the 2 body mass index-based groups at each minute. The normal weight and the ski-simulator group had higher Physical Efficiency Index levels. [Conclusion] This study showed that a simulator exercise can produce a cumulative load even when performed at low intensity, and can be effectively utilized as exercise equipment since it resulted in higher Physical Efficiency Index levels than the Harvard step test. If schools can increase sport durability by stimulating students' interests, the ski simulator exercise can be used in programs designed to improve and strengthen students' physical fitness. PMID:27065556

  7. Cardiorespiratory endurance evaluation using heart rate analysis during ski simulator exercise and the Harvard step test in elementary school students

    PubMed Central

    Lee, Hyo Taek; Roh, Hyo Lyun; Kim, Yoon Sang

    2016-01-01

    [Purpose] Efficient management using exercise programs with various benefits should be provided by educational institutions for children in their growth phase. We analyzed the heart rates of children during ski simulator exercise and the Harvard step test to evaluate the cardiopulmonary endurance by calculating their post-exercise recovery rate. [Subjects and Methods] The subjects (n = 77) were categorized into a normal weight and an overweight/obesity group by body mass index. They performed each exercise for 3 minutes. The cardiorespiratory endurance was calculated using the Physical Efficiency Index formula. [Results] The ski simulator and Harvard step test showed that there was a significant difference in the heart rates of the 2 body mass index-based groups at each minute. The normal weight and the ski-simulator group had higher Physical Efficiency Index levels. [Conclusion] This study showed that a simulator exercise can produce a cumulative load even when performed at low intensity, and can be effectively utilized as exercise equipment since it resulted in higher Physical Efficiency Index levels than the Harvard step test. If schools can increase sport durability by stimulating students’ interests, the ski simulator exercise can be used in programs designed to improve and strengthen students’ physical fitness. PMID:27065556

  8. Changes in salivary hormones, immunoglobulin A, and C-reactive protein in response to ultra-endurance exercises.

    PubMed

    Tauler, Pedro; Martinez, Sonia; Moreno, Carlos; Martínez, Pau; Aguilo, Antoni

    2014-05-01

    The aim of the study was to determine the influence of the exercise duration on the changes in salivary stress markers in response to ultra-endurance exercises. The study was developed in 2 ultra-endurance exercise tests: the Ultra-trail Serra de Tramuntana (UTST), a 104 km ultra-marathon competition (n = 64) and the 25 km Cabrera Open Water Race (COWR) (n = 43). Participants in the COWR completed the 25 km at a constant pace of 3 km/h (3K group) or 2.5 km /h (2.5K group). Saliva samples were taken before and after the exercises. Salivary flow rate as well as cortisol, testosterone, C-reactive protein (CRP), and immunoglobulin A (IgA) levels were measured. Salivary flow rate decreased after the UTST but increased after the COWR. The UTST induced significant increases in cortisol and CRP levels and decreases in testosterone and IgA levels. Furthermore, a negative correlation was found between the time the athletes took to complete the exercise and the changes in salivary cortisol. After the COWR, higher increases in salivary cortisol levels were observed in the 3K group than in the 2.5K group. A significant effect of exercise decreasing testosterone and IgA levels was observed in both groups. No changes in the CRP levels were observed during the COWR. In conclusion, shorter times to complete the ultra-endurance exercise were associated with higher increases in cortisol. However, no relationships were found between the time to complete the exercises and the changes in testosterone, CRP, and IgA levels. PMID:24766238

  9. Role of nitric oxide in exercise hyperaemia during prolonged rhythmic handgripping in humans.

    PubMed Central

    Dyke, C K; Proctor, D N; Dietz, N M; Joyner, M J

    1995-01-01

    1. We sought to determine whether the vasodilating molecule nitric oxide (NO) contributes to the forearm hyperaemia observed during prolonged rhythmic handgripping in humans. 2. Two bouts of exercise were performed during experimental protocols conducted on separate days. During each protocol the subject performed a 10 min and a 20 min bout of rhythmic (30 min-1) handgripping at 15% of maximum. Two exercise bouts were required to facilitate pharmacological interventions during the second protocol. Blood flow in the exercising forearm was measured every minute with plethysmography during brief pauses in the contractions. During both exercise bouts in the first protocol, forearm blood flow increased 2- to 3-fold above rest after 1 min of handgripping and remained constant at that level throughout the exercise. 3. During the 10 min bout of exercise in the second protocol, acetylcholine was given via a brachial artery catheter at 16 micrograms min-1 for 3 min to evoke NO release from the vascular endothelium. This caused forearm blood flow to increase above the values observed during exercise alone. 4. During the 20 min trial of handgripping in the second protocol, the NO synthase blocker NG-monomethyl-L-arginine (L-NMMA) was infused in the exercising forearm via the brachial catheter after 5 min of handgripping. The L-NMMA was infused at 4 mg min-1 for 10 min. 5. L-NMMA during exercise caused forearm blood flow to fall to values approximately 20-30% lower than those observed during exercise alone. When ACh was given during exercise after L-NMMA administration the rise in blood flow was also blunted, indicating blockade of NO synthase. These data suggest NO plays a role in exercise hyperaemia in humans. Images Figure 1 PMID:8568663

  10. Effect of ultra-endurance exercise on left ventricular performance and plasma cytokines in healthy trained men

    PubMed Central

    Buraczewska, M; Miśkiewicz, Z; Dąbrowski, J; Steczkowska, M; Kozacz, A; Ziemba, A

    2015-01-01

    The purpose of this study was to investigate the effect of ultra-endurance exercise on left ventricular (LV) performance and plasma concentration of interleukin (IL)-6, IL-10, IL-18 and tumour necrosis factor alpha (TNF-α) as well as to examine the relationships between exercise-induced changes in plasma cytokines and those in echocardiographic indices of LV function in ultra-marathon runners. Nine healthy trained men (mean age 30±1.0 years) participated in a 100-km ultra-marathon. Heart rate, blood pressure, ejection fraction (EF), fractional shortening (FS), ratio of early (E) to late (A) mitral inflow peak velocities (E/A), ratio of early (E’) to late (A’) diastolic mitral annulus peak velocities (E’/A’) and E-wave deceleration time (DT) were obtained by echocardiography before, immediately after and in the 90th minute of the recovery period. Blood samples were taken before each echocardiographic evaluation. The ultra-endurance exercise caused significant increases in plasma IL-6, IL-10, IL-18 and TNF-α. Echocardiography revealed significant decreases in both E and the E/A ratio immediately after exercise, without any significant changes in EF, FS, DT or the E/E’ ratio. At the 90th minute of the recovery period, plasma TNF-α and the E/A ratio did not differ significantly from the pre-exercise values, whereas FS was significantly lower than before and immediately after exercise. The increases in plasma TNF-α correlated with changes in FS (r=0.73) and DT (r=-0.73). It is concluded that ultra-endurance exercise causes alterations in LV diastolic function. The present data suggest that TNF-α might be involved in this effect. PMID:26985136

  11. Effect of ultra-endurance exercise on left ventricular performance and plasma cytokines in healthy trained men.

    PubMed

    Krzemiński, K; Buraczewska, M; Miśkiewicz, Z; Dąbrowski, J; Steczkowska, M; Kozacz, A; Ziemba, A

    2016-03-01

    The purpose of this study was to investigate the effect of ultra-endurance exercise on left ventricular (LV) performance and plasma concentration of interleukin (IL)-6, IL-10, IL-18 and tumour necrosis factor alpha (TNF-α) as well as to examine the relationships between exercise-induced changes in plasma cytokines and those in echocardiographic indices of LV function in ultra-marathon runners. Nine healthy trained men (mean age 30±1.0 years) participated in a 100-km ultra-marathon. Heart rate, blood pressure, ejection fraction (EF), fractional shortening (FS), ratio of early (E) to late (A) mitral inflow peak velocities (E/A), ratio of early (E') to late (A') diastolic mitral annulus peak velocities (E'/A') and E-wave deceleration time (DT) were obtained by echocardiography before, immediately after and in the 90th minute of the recovery period. Blood samples were taken before each echocardiographic evaluation. The ultra-endurance exercise caused significant increases in plasma IL-6, IL-10, IL-18 and TNF-α. Echocardiography revealed significant decreases in both E and the E/A ratio immediately after exercise, without any significant changes in EF, FS, DT or the E/E' ratio. At the 90th minute of the recovery period, plasma TNF-α and the E/A ratio did not differ significantly from the pre-exercise values, whereas FS was significantly lower than before and immediately after exercise. The increases in plasma TNF-α correlated with changes in FS (r=0.73) and DT (r=-0.73). It is concluded that ultra-endurance exercise causes alterations in LV diastolic function. The present data suggest that TNF-α might be involved in this effect. PMID:26985136

  12. Reduction in mdx mouse muscle degeneration by low-intensity endurance exercise: a proteomic analysis in quadriceps muscle of exercised compared with sedentary mdx mice

    PubMed Central

    Fontana, Simona; Schillaci, Odessa; Frinchi, Monica; Giallombardo, Marco; Morici, Giuseppe; Liberto, Valentina Di; Alessandro, Riccardo; De Leo, Giacomo; Perciavalle, Vincenzo; Belluardo, Natale; Mudò, Giuseppa

    2015-01-01

    In our recent study was shown a significant recovery of damaged skeletal muscle of mice with X-linked muscular dystrophy (mdx) following low-intensity endurance exercise, probably by reducing the degeneration of dystrophic muscle. Consequently, in the present work, we aimed to identify proteins involved in the observed reduction in degenerating fibres. To this end, we used proteomic analysis to evaluate changes in the protein profile of quadriceps dystrophic muscles of exercised compared with sedentary mdx mice. Four protein spots were found to be significantly changed and were identified as three isoforms of carbonic anhydrase 3 (CA3) and superoxide dismutase [Cu-Zn] (SODC). Protein levels of CA3 isoforms were significantly up-regulated in quadriceps of sedentary mdx mice and were completely restored to wild–type (WT) mice values, both sedentary and exercised, in quadriceps of exercised mdx mice. Protein levels of SODC were down-regulated in quadriceps of sedentary mdx mice and were significantly restored to WT mice values, both sedentary and exercised, in quadriceps of exercised mdx mice. Western blot data were in agreement with those obtained using proteomic analysis and revealed the presence of one more CA3 isoform that was significantly changed. Based on data found in the present study, it seems that low-intensity endurance exercise may in part contribute to reduce cell degeneration process in mdx muscles, by counteracting oxidative stress. PMID:26182375

  13. Exercise-induced immunodepression in endurance athletes and nutritional intervention with carbohydrate, protein and fat-what is possible, what is not?

    PubMed

    Gunzer, Wolfgang; Konrad, Manuela; Pail, Elisabeth

    2012-09-01

    Heavily exercising endurance athletes experience extreme physiologic stress, which is associated with temporary immunodepression and higher risk of infection, particularly upper respiratory tract infections (URTI). The aim of this review is to provide a critical up-to-date review of existing evidence on the immunomodulatory potential of selected macronutrients and to evaluate their efficacy. The results of 66 placebo-controlled and/or crossover trials were compared and analysed. Among macronutrients, the most effective approach to maintain immune function in athletes is to consume ≥6% carbohydrate during prolonged exercise. Because inadequate nutrition affects almost all aspects of the immune system, a well-balanced diet is also important. Evidence of beneficial effects from other macronutrients is scarce and results are often inconsistent. Using a single nutrient may not be as effective as a mixture of several nutritional supplements. Due to limited research evidence, with the exception of carbohydrate, no explicit recommendations to reduce post-exercise URTI symptoms with single macronutrients can be derived. PMID:23112908

  14. Exercise-Induced Immunodepression in Endurance Athletes and Nutritional Intervention with Carbohydrate, Protein and Fat—What Is Possible, What Is Not?

    PubMed Central

    Gunzer, Wolfgang; Konrad, Manuela; Pail, Elisabeth

    2012-01-01

    Heavily exercising endurance athletes experience extreme physiologic stress, which is associated with temporary immunodepression and higher risk of infection, particularly upper respiratory tract infections (URTI). The aim of this review is to provide a critical up-to-date review of existing evidence on the immunomodulatory potential of selected macronutrients and to evaluate their efficacy. The results of 66 placebo-controlled and/or crossover trials were compared and analysed. Among macronutrients, the most effective approach to maintain immune function in athletes is to consume ≥6% carbohydrate during prolonged exercise. Because inadequate nutrition affects almost all aspects of the immune system, a well-balanced diet is also important. Evidence of beneficial effects from other macronutrients is scarce and results are often inconsistent. Using a single nutrient may not be as effective as a mixture of several nutritional supplements. Due to limited research evidence, with the exception of carbohydrate, no explicit recommendations to reduce post-exercise URTI symptoms with single macronutrients can be derived. PMID:23112908

  15. Carbohydrate metabolism during prolonged exercise and recovery: interactions between pyruvate dehydrogenase, fatty acids, and amino acids.

    PubMed

    Mourtzakis, Marina; Saltin, Bengt; Graham, Terry; Pilegaard, Henriette

    2006-06-01

    During prolonged exercise, carbohydrate oxidation may result from decreased pyruvate production and increased fatty acid supply and ultimately lead to reduced pyruvate dehydrogenase (PDH) activity. Pyruvate also interacts with the amino acids alanine, glutamine, and glutamate, whereby the decline in pyruvate production could affect tricarboxycylic acid cycle flux as well as gluconeogenesis. To enhance our understanding of these interactions, we studied the time course of changes in substrate utilization in six men who cycled at 44+/-1% peak oxygen consumption (mean+/-SE) until exhaustion (exhaustion at 3 h 23 min+/-11 min). Femoral arterial and venous blood, blood flow measurements, and muscle samples were obtained hourly during exercise and recovery (3 h). Carbohydrate oxidation peaked at 30 min of exercise and subsequently decreased for the remainder of the exercise bout (P<0.05). PDH activity peaked at 2 h of exercise, whereas pyruvate production peaked at 1 h of exercise and was reduced (approximately 30%) thereafter, suggesting that pyruvate availability primarily accounted for reduced carbohydrate oxidation. Increased free fatty acid uptake (P<0.05) was also associated with decreasing PDH activity (P<0.05) and increased PDH kinase 4 mRNA (P<0.05) during exercise and recovery. At 1 h of exercise, pyruvate production was greatest and was closely linked to glutamate, which was the predominant amino acid taken up during exercise and recovery. Alanine and glutamine were also associated with pyruvate metabolism, and they comprised approximately 68% of total amino-acid release during exercise and recovery. Thus reduced pyruvate production was primarily associated with reduced carbohydrate oxidation, whereas the greatest production of pyruvate was related to glutamate, glutamine, and alanine metabolism in early exercise. PMID:16424076

  16. Muscle ultrastructural changes from exhaustive exercise performed after prolonged restricted activity and retraining in dogs

    NASA Technical Reports Server (NTRS)

    Nazar, K.; Greenleaf, J. E.; Philpott, D.; Pohoska, E.; Olszewska, K.; Kaciuba-Uscilko, H.

    1991-01-01

    The effect of exhaustive treadmill exercise on ultrastructural changes in the quadriceps femoris muscle was studied in 7 normal, healthy dogs, before and after restricted activity (RA), and following a subsequent 2 month treadmill exercise retraining period for the 5 mo group. Mean time to exhaustion in the 2 mo group decreased from 177 + or - 22 min before to 90 + or - 32 min after RA. Retraining increased tolerance to 219 + or - 73 min; 24 pct. above the before RA and 143 pct. above the after RA time. After RA exhaustion time in the 5 mo group was 25 and 45 min. Before RA, pre-exercise muscle structure was normal and post exercise there was only slight swelling of mitochondria. After RA, pre-exercise, numerous glycogen granules and lipid droplets appeared in the muscle fibers, mitochondria were smaller, and sarcoplasmic reticulum channels widened; post exercise these changes were accentuated and some areas were devoid of glycogen, and there was fiber degradation. After 5 mo RA pre-exercise there were more pronounced changes; mitochondria were very small and dense, there were many lipid droplets, myofibrils were often separated, and the fibers appeared edematous and degenerating; post exercise the sarcoplasmic reticulum was swollen, no glycogen was present, and there was marked swelling and deformation of mitochondria. After retraining, both pre-exercise and post exercise there was still evidence of fiber degeneration. Thus, susceptibility of active skeletal muscle structures and subcellular elements, e.g., mitochondria, to the action of damaging factors occurring during exhaustive exercise is enhanced considerably by prolonged disuse.

  17. Changes in Voluntary Activation Assessed by Transcranial Magnetic Stimulation during Prolonged Cycling Exercise

    PubMed Central

    Perrey, Stephane; Temesi, John; Wuyam, Bernard; Levy, Patrick; Verges, Samuel; Millet, Guillaume Y.

    2014-01-01

    Maximal central motor drive is known to decrease during prolonged exercise although it remains to be determined whether a supraspinal deficit exists, and if so, when it appears. The purpose of this study was to evaluate corticospinal excitability and muscle voluntary activation before, during and after a 4-h cycling exercise. Ten healthy subjects performed three 80-min bouts on an ergocycle at 45% of their maximal aerobic power. Before exercise and immediately after each bout, neuromuscular function was evaluated in the quadriceps femoris muscles under isometric conditions. Transcranial magnetic stimulation was used to assess voluntary activation at the cortical level (VATMS), corticospinal excitability via motor-evoked potential (MEP) and intracortical inhibition by cortical silent period (CSP). Electrical stimulation of the femoral nerve was used to measure voluntary activation at the peripheral level (VAFNES) and muscle contractile properties. Maximal voluntary force was significantly reduced after the first bout (13±9%, P<0.01) and was further decreased (25±11%, P<0.001) at the end of exercise. CSP remained unchanged throughout the protocol. Rectus femoris and vastus lateralis but not vastus medialis MEP normalized to maximal M-wave amplitude significantly increased during cycling. Finally, significant decreases in both VATMS and VAFNES (∼8%, P<0.05 and ∼14%, P<0.001 post-exercise, respectively) were observed. In conclusion, reductions in VAFNES after a prolonged cycling exercise are partly explained by a deficit at the cortical level accompanied by increased corticospinal excitability and unchanged intracortical inhibition. When comparing the present results with the literature, this study highlights that changes at the cortical and/or motoneuronal levels depend not only on the type of exercise (single-joint vs. whole-body) but also on exercise intensity and/or duration. PMID:24586559

  18. Muscle-specific VEGF deficiency greatly reduces exercise endurance in mice.

    PubMed

    Olfert, I Mark; Howlett, Richard A; Tang, Kechun; Dalton, Nancy D; Gu, Yusu; Peterson, Kirk L; Wagner, Peter D; Breen, Ellen C

    2009-04-15

    Vascular endothelial growth factor (VEGF) is required for vasculogenesis and angiogenesis during embryonic and early postnatal life. However the organ-specific functional role of VEGF in adult life, particularly in skeletal muscle, is less clear. To explore this issue, we engineered skeletal muscle-targeted VEGF deficient mice (mVEGF-/-) by crossbreeding mice that selectively express Cre recombinase in skeletal muscle under the control of the muscle creatine kinase promoter (MCKcre mice) with mice having a floxed VEGF gene (VEGFLoxP mice). We hypothesized that VEGF is necessary for regulating both cardiac and skeletal muscle capillarity, and that a reduced number of VEGF-dependent muscle capillaries would limit aerobic exercise capacity. In adult mVEGF-/- mice, VEGF protein levels were reduced by 90 and 80% in skeletal muscle (gastrocnemius) and cardiac muscle, respectively, compared to control mice (P < 0.01). This was accompanied by a 48% (P < 0.05) and 39% (P < 0.05) decreases in the capillary-to-fibre ratio and capillary density, respectively, in the gastrocnemius and a 61% decrease in cardiac muscle capillary density (P < 0.05). Hindlimb muscle oxidative (citrate synthase, 21%; beta-HAD, 32%) and glycolytic (PFK, 18%) regulatory enzymes were also increased in mVEGF-/- mice. However, this limited adaptation to reduced muscle VEGF was insufficient to maintain aerobic exercise capacity, and maximal running speed and endurance running capacity were reduced by 34% and 81%, respectively, in mVEGF-/- mice compared to control mice (P < 0.05). Moreover, basal and dobutamine-stimulated cardiac function, measured by transthoracic echocardiography and left ventricular micromanomtery, showed only a minimal reduction of contractility (peak +dP/dt) and relaxation (peak -dP/dt, tau(E)). Collectively these data suggests adequate locomotor muscle capillary number is important for achieving full exercise capacity. Furthermore, VEGF is essential in regulating postnatal muscle

  19. Effect of short-term endurance training on exercise capacity, haemodynamics and atrial natriuretic peptide secretion in heart transplant recipients.

    PubMed

    Geny, B; Saini, J; Mettauer, B; Lampert, E; Piquard, F; Follenius, M; Epailly, E; Schnedecker, B; Eisenmann, B; Haberey, P; Lonsdorfer, J

    1996-01-01

    Exercise tolerance of heart transplant patients is often limited. Central and peripheral factors have been proposed to explain such exercise limitation but, to date, the leading factors remain to be determined. We examined how a short-term endurance exercise training programme may improve exercise capacity after heart transplantation, and whether atrial natriuretic peptide (ANP) release may contribute to the beneficial effects of exercise training by minimizing ischaemia and/or cardiac and circulatory congestion through its vasodilatation and haemoconcentration properties. Seven heart transplant recipients performed a square-wave endurance exercise test before and after 6 weeks of supervised training, while monitoring haemodynamic parameters, ANP and catecholamine concentrations. After training, the maximal tolerated power and the total mechanical work load increased from 130.4 (SEM 6.5) to 150.0 (SEM 6.0) W (P < 0.05) and from 2.05 (SEM 0.1) to 3.58 (SEM 0.14) kJ.kg-1 (P < 0.001). Resting heart rate decreased from 100.0 (SEM 3.4) to 92.4 (SEM 3.5) beats.min-1 (P < 0.05) but resting and exercise induced increases in cardiac output, stroke volume, right atrial, pulmonary capillary wedge, systemic and pulmonary artery pressures were not significantly changed by training. Exercise-induced decrease of systemic vascular resistance was similar before and after training. After training arterio-venous differences in oxygen content were similar but maximal lactate concentrations decreased from 6.20 (SEM 0.55) to 4.88 (SEM 0.6) mmol.l-1 (P < 0.05) during exercise. Similarly, maximal exercise noradrenaline concentration tended to decrease from 2060 (SEM 327) to 1168 (SEM 227) pg.ml-1. A significant correlation was observed between lactate and catecholamines concentrations. The ANP concentration at rest and the exercise-induced ANP concentration did not change throughout the experiment [104.8 (SEM 13.1) pg.ml-1 vs 116.0 (SEM 13.5) pg.ml-1 and 200.0 (SEM 23.0) pg.ml-1 vs 206

  20. Statins Attenuate the Increase in P-Selectin Produced by Prolonged Exercise

    PubMed Central

    Zaleski, Amanda; Capizzi, Jeffrey; Ballard, Kevin D.; Troyanos, Christopher; Baggish, Aaron; D'Hemecourt, Pierre; Thompson, Paul D.; Parker, Beth

    2013-01-01

    Strenuous endurance exercise increases inflammatory markers and acutely increases cardiovascular risk; however, statins may mitigate this response. We measured serum levels of p-selectin in 37 runners treated with statins and in 43 nonstatin treated controls running the 2011 Boston Marathon. Venous blood samples were obtained the day before (PRE) as well as within 1 hour after (FINISH) and 24 hours after (POST) the race. The increase in p-selectin immediately after exercise was lower in statin users (PRE to FINISH: 20.5 ± 19.4 ng/mL) than controls (PRE to FINISH: 30.9 ± 27.1 ng/mL; P < 0.001). The increase in p-selectin 24 hours after exercise was also lower in statin users (PRE to POST: 21.5 ± 26.6 ng/mL) than controls (PRE to POST: 29.3 ± 31.9 ng/mL; P < 0.001). Furthermore, LDL-C was positively correlated with p-selectin at FINISH and POST (P < 0.01 and P < 0.05, resp.), irrespective of drug treatment, suggesting that lower levels of LDL-C are associated with a reduced inflammatory response to exercise. We conclude that statins blunt the exercise-induced increase in p-selectin following a marathon and that the inflammatory response to a marathon varies directly with LDL-C levels. PMID:26464882

  1. Statins Attenuate the Increase in P-Selectin Produced by Prolonged Exercise.

    PubMed

    Zaleski, Amanda; Capizzi, Jeffrey; Ballard, Kevin D; Troyanos, Christopher; Baggish, Aaron; D'Hemecourt, Pierre; Thompson, Paul D; Parker, Beth

    2013-01-01

    Strenuous endurance exercise increases inflammatory markers and acutely increases cardiovascular risk; however, statins may mitigate this response. We measured serum levels of p-selectin in 37 runners treated with statins and in 43 nonstatin treated controls running the 2011 Boston Marathon. Venous blood samples were obtained the day before (PRE) as well as within 1 hour after (FINISH) and 24 hours after (POST) the race. The increase in p-selectin immediately after exercise was lower in statin users (PRE to FINISH: 20.5 ± 19.4 ng/mL) than controls (PRE to FINISH: 30.9 ± 27.1 ng/mL; P < 0.001). The increase in p-selectin 24 hours after exercise was also lower in statin users (PRE to POST: 21.5 ± 26.6 ng/mL) than controls (PRE to POST: 29.3 ± 31.9 ng/mL; P < 0.001). Furthermore, LDL-C was positively correlated with p-selectin at FINISH and POST (P < 0.01 and P < 0.05, resp.), irrespective of drug treatment, suggesting that lower levels of LDL-C are associated with a reduced inflammatory response to exercise. We conclude that statins blunt the exercise-induced increase in p-selectin following a marathon and that the inflammatory response to a marathon varies directly with LDL-C levels. PMID:26464882

  2. Relationship between muscle blood flow and oxygen uptake during exercise in endurance-trained and untrained men.

    PubMed

    Kalliokoski, Kari K; Knuuti, Juhani; Nuutila, Pirjo

    2005-01-01

    A recent study showed good correlation between regional blood flow (BF) and oxygen uptake (Vo(2)) 30 min after exhaustive exercise. The question that remains open is whether there is similar good correlation between BF and Vo(2) also during exercise. We reanalyzed our previous data from a study in which BF and Vo(2) was measured in different quadriceps femoris muscles in seven healthy endurance-trained and seven healthy untrained men at rest and during low-intensity intermittent static knee-extension exercise (Kalliokoski KK, Oikonen V, Takala TO, Sipila H, Knuuti J, and Nuutila P. Am J Physiol Endocrinol Metab 280: E1015-E1021, 2001). When the mean values of each muscle were considered, there was good correlation between BF and Vo(2) during exercise in both groups (r(2) = 0.82 in untrained and 0.97 in trained). However, when calculated individually, the correlations were poorer, and the mean correlation coefficient (r(2)) was significantly higher in the trained men (0.71 +/- 0.07 vs. 0.40 +/- 0.11, P = 0.03). These results suggest that there is large individual variation in matching BF to Vo(2) in human skeletal muscles during exercise, ranging from very poor to excellent. Furthermore, this matching seems to be better in the endurance-trained than in untrained men. PMID:15347632

  3. ENDURANCE EXERCISE PROMOTES CARDIORESPIRATORY REHABILITATION WITHOUT NEURORESTORATION IN THE CHRONIC MOUSE MODEL OF PARKINSONISM WITH SEVERE NEURODEGENERATION

    PubMed Central

    Al-Jarrah, Muhammed; Pothakos, Konstantinos; Novikova, Lesya; Smirnova, Irina V.; Kurz, Max J.; Stehno-Bittel, Lisa; Lau, Yuen-Sum

    2007-01-01

    Physical rehabilitation with endurance exercise for patients with Parkinson's disease has not been well established, although some clinical and laboratory reports suggest that exercise may produce neuroprotective effect and restore dopaminergic and motor functions. In this study, we used a chronic mouse model of Parkinsonism, which was induced by injecting male C57BL/6 mice with 10 doses of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (25 mg/kg) and probenecid (250 mg/kg) over five weeks. This chronic Parkinsonian model displays a severe and persistent loss of nigrostriatal neurons resulting in robust dopamine depletion and locomotor impairment in mice. Following the induction of Parkinsonism, these mice were capable to sustain an exercise training program on a motorized rodent treadmill at a speed of 18 m/min, 0° of inclination, 40 min/day, 5 days/week for 4 weeks. At the end of exercise training, we examined and compared their cardiorespiratory capacity, behavior, and neurochemical changes with that of the probenecid-treated control and sedentary Parkinsonian mice. We found that the resting heart rate after 4 weeks of exercise in the chronic Parkinsonian mice was significantly lower than the rate before exercise, whereas the resting heart rate at the beginning and 4 weeks afterwards in the control or sedentary Parkinsonian mice were unchanged. Exercised Parkinsonian mice also recovered from elevated electrocardiogram R-wave amplitude that was detected in the Parkinsonian mice without exercise for 4 weeks. The values of oxygen consumption, carbon dioxide production, and body heat generation in the exercised Parkinsonian mice before and during the Bruce maximal exercise challenge test were all significantly lower than their sedentary counterparts. Furthermore, the exercised Parkinsonian mice revealed a greater mass in the left ventricle of the heart and an increased level of citrate synthase activity in the skeletal muscles. The amphetamine-induced, dopamine

  4. Neuroprotective Effects of Endurance Exercise Against High-Fat Diet-Induced Hippocampal Neuroinflammation.

    PubMed

    Kang, E-B; Koo, J-H; Jang, Y-C; Yang, C-H; Lee, Y; Cosio-Lima, L M; Cho, J-Y

    2016-05-01

    Obesity contributes to systemic inflammation, which is associated with the varied pathogenesis of neurodegenerative diseases. Growing evidence has demonstrated that endurance exercise (EE) mitigates obesity-induced brain inflammation. However, exercise-mediated anti-inflammatory mechanisms remain largely unknown. We investigated how treadmill exercise (TE) reverses obesity-induced brain inflammation, mainly focusing on toll-like receptor-4 (TLR-4)-dependent neuroinflammation in the obese rat brain after 20 weeks of a high-fat diet (HFD). TE in HFD-fed rats resulted in a significant lowering in the homeostasis model assessment of insulin resistance index, the area under the curve for glucose and abdominal visceral fat, and also improved working memory ability in a passive avoidance task relative to sedentary behaviour in HFD-fed rats, with the exception of body weight. More importantly, TE revoked the increase in HFD-induced proinflammatory cytokines (tumour necrosis factor α and interleukin-1β) and cyclooxygenase-2, which is in parallel with a reduction in TLR-4 and its downstream proteins, myeloid differentiation 88 and tumour necrosis factor receptor associated factor 6, and phosphorylation of transforming growth factor β-activated kinase 1, IkBα and nuclear factor-κB. Moreover, TE reduced an indicator of microglia activation, ionised calcium-binding adapter molecule-1, and also decreased glial fibrillary acidic protein, an indicator of gliosis formed by activated astrocytes in the cerebral cortex and the hippocampal dentate gyrus, compared to HFD-fed sedentary rats. Finally, EE up-regulated the expression of anti-apoptotic protein, Bcl-2, and suppressed the expression of pro-apoptotic protein, Bax, in the hippocampus compared to HFD-fed sedentary rats. Taken together, these data suggest that TE may exert neuroprotective effects as a result of mitigating the production of proinflammatory cytokines by inhibiting the TLR4 signalling pathways. The results of

  5. A survey of social support for exercise and its relationship to health behaviours and health status among endurance Nordic skiers

    PubMed Central

    Anderson, Paul J; Wang, Zhen; Beebe, Timothy J; Murad, Mohammad Hassan

    2016-01-01

    Objectives Regular exercise is a key component of obesity prevention and 48% of Americans do not meet minimum guidelines for weekly exercise. Social support has been shown to help individuals start and maintain exercise programmes. We evaluated social support among endurance athletes and explored the relationship between social support for exercise, health behaviours and health status. Design Survey. Setting The largest Nordic ski race in North America. Participants 5433 past participants responded to an online questionnaire. Outcome measures Social support, health behaviours and health status. Results The mean overall support score was 32.1 (SD=16.5; possible range=−16.0 to 88.0). The most common forms of social support were verbal such as discussing exercise, invitations to exercise and celebrating the enjoyment of exercise. We found that an increase of 10 points in the social support score was associated with a 5 min increase in weekly self-reported exercise (5.02, 95% CI 3.63 to 6.41). Conclusions Physical activity recommendations should incorporate the importance of participation in group activities, especially those connected to strong fitness cultures created by community and competitive events. PMID:27338876

  6. Whole-body fat oxidation increases more by prior exercise than overnight fasting in elite endurance athletes.

    PubMed

    Andersson Hall, Ulrika; Edin, Fredrik; Pedersen, Anders; Madsen, Klavs

    2016-04-01

    The purpose of this study was to compare whole-body fat oxidation kinetics after prior exercise with overnight fasting in elite endurance athletes. Thirteen highly trained athletes (9 men and 4 women; maximal oxygen uptake: 66 ± 1 mL·min(-1)·kg(-1)) performed 3 identical submaximal incremental tests on a cycle ergometer using a cross-over design. A control test (CON) was performed 3 h after a standardized breakfast, a fasting test (FAST) 12 h after a standardized evening meal, and a postexercise test (EXER) after standardized breakfast, endurance exercise, and 2 h fasting recovery. The test consisted of 3 min each at 30%, 40%, 50%, 60%, 70%, and 80% of maximal oxygen uptake and fat oxidation rates were measured through indirect calorimetry. During CON, maximal fat oxidation rate was 0.51 ± 0.04 g·min(-1) compared with 0.69 ± 0.04 g·min(-1) in FAST (P < 0.01), and 0.89 ± 0.05 g·min(-1) in EXER (P < 0.01). Across all intensities, EXER was significantly higher than FAST and FAST was higher than CON (P < 0.01). Blood insulin levels were lower and free fatty acid and cortisol levels were higher at the start of EXER compared with CON and FAST (P < 0.05). Plasma nuclear magnetic resonance-metabolomics showed similar changes in both EXER and FAST, including increased levels of fatty acids and succinate. In conclusion, prior exercise significantly increases whole-body fat oxidation during submaximal exercise compared with overnight fasting. Already high rates of maximal fat oxidation in elite endurance athletes were increased by approximately 75% after prior exercise and fasting recovery. PMID:26988766

  7. Interaction of hyperthermia and heart rate on stroke volume during prolonged exercise.

    PubMed

    Trinity, Joel D; Pahnke, Matthew D; Lee, Joshua F; Coyle, Edward F

    2010-09-01

    People who become hyperthermic during exercise display large increases in heart rate (HR) and reductions in stroke volume (SV). It is not clear if the reduction in SV is due primarily to hyperthermia or if it is a secondary effect of an elevation in HR reducing ventricular filling. In the present study, the upward drift of HR during prolonged exercise was prevented by a very small dose of the β1-adrenoreceptor blocker (atenolol; βB), thus allowing SV to be compared at a given HR during normothermia and hyperthermia. Eleven men cycled for 60 min at 57% of peak O2 uptake after receiving placebo control (PL) or a low dose (0.2 mg/kg) of βB. Hyperthermia was induced by reducing heat dissipation during exercise. Four experimental conditions were studied: normothermia-PL, normothermia-βB, hyperthermia-PL, and hyperthermia-βB. Hyperthermia increased skin and core temperature by 4.3 degrees C and 0.8 degrees C (P<0.01), respectively. βB prevented HR elevation with hyperthermia: HR values were similar at minute 60 during normothermia-PL and hyperthermia-βB (155±11 and 154±13 beats/min, respectively, P=0.82). However, SV was increased by 7% during the final 20 min of exercise during hyperthermia-βB compared with normothermia-PL (treatment×time interaction, P=0.03). In conclusion, when matched for HR, mild hyperthermia increased SV during exercise. Furthermore, the reduction in SV throughout prolonged exercise under normothermic and mildly hyperthermic conditions appears to be due to the increase in HR. PMID:20595543

  8. PGC-1 isoforms and their target genes are expressed differently in human skeletal muscle following resistance and endurance exercise

    PubMed Central

    Silvennoinen, Mika; Ahtiainen, Juha P; Hulmi, Juha J; Pekkala, Satu; Taipale, Ritva S; Nindl, Bradley C; Laine, Tanja; Häkkinen, Keijo; Selänne, Harri; Kyröläinen, Heikki; Kainulainen, Heikki

    2015-01-01

    The primary aim of the present study was to investigate the acute gene expression responses of PGC-1 isoforms and PGC-1α target genes related to mitochondrial biogenesis (cytochrome C), angiogenesis (VEGF-A), and muscle hypertrophy (myostatin), after a resistance or endurance exercise bout. In addition, the study aimed to elucidate whether the expression changes of studied transcripts were linked to phosphorylation of AMPK and MAPK p38. Nineteen physically active men were divided into resistance exercise (RE, n = 11) and endurance exercise (EE, n = 8) groups. RE group performed leg press exercise (10 × 10 RM, 50 min) and EE walked on a treadmill (∼80% HRmax, 50 min). Muscle biopsies were obtained from the vastus lateralis muscle before, 30 min, and 180 min after exercise. EE and RE significantly increased the gene expression of alternative promoter originated PGC-1α exon 1b- and 1bxs’-derived isoforms, whereas the proximal promoter originated exon 1a-derived transcripts were less inducible and were upregulated only after EE. Truncated PGC-1α transcripts were upregulated both after EE and RE. Neither RE nor EE affected the expression of PGC-1β. EE upregulated the expression of cytochrome C and VEGF-A, whereas RE upregulated VEGF-A and downregulated myostatin. Both EE and RE increased the levels of p-AMPK and p-MAPK p38, but these changes were not linked to the gene expression responses of PGC-1 isoforms. The present study comprehensively assayed PGC-1 transcripts in human skeletal muscle and showed exercise mode-specific responses thus improving the understanding of early signaling events in exercise-induced muscle adaptations. PMID:26438733

  9. PGC-1 isoforms and their target genes are expressed differently in human skeletal muscle following resistance and endurance exercise.

    PubMed

    Silvennoinen, Mika; Ahtiainen, Juha P; Hulmi, Juha J; Pekkala, Satu; Taipale, Ritva S; Nindl, Bradley C; Laine, Tanja; Häkkinen, Keijo; Selänne, Harri; Kyröläinen, Heikki; Kainulainen, Heikki

    2015-10-01

    The primary aim of the present study was to investigate the acute gene expression responses of PGC-1 isoforms and PGC-1α target genes related to mitochondrial biogenesis (cytochrome C), angiogenesis (VEGF-A), and muscle hypertrophy (myostatin), after a resistance or endurance exercise bout. In addition, the study aimed to elucidate whether the expression changes of studied transcripts were linked to phosphorylation of AMPK and MAPK p38. Nineteen physically active men were divided into resistance exercise (RE, n = 11) and endurance exercise (EE, n = 8) groups. RE group performed leg press exercise (10 × 10 RM, 50 min) and EE walked on a treadmill (~80% HRmax, 50 min). Muscle biopsies were obtained from the vastus lateralis muscle before, 30 min, and 180 min after exercise. EE and RE significantly increased the gene expression of alternative promoter originated PGC-1α exon 1b- and 1bxs'-derived isoforms, whereas the proximal promoter originated exon 1a-derived transcripts were less inducible and were upregulated only after EE. Truncated PGC-1α transcripts were upregulated both after EE and RE. Neither RE nor EE affected the expression of PGC-1β. EE upregulated the expression of cytochrome C and VEGF-A, whereas RE upregulated VEGF-A and downregulated myostatin. Both EE and RE increased the levels of p-AMPK and p-MAPK p38, but these changes were not linked to the gene expression responses of PGC-1 isoforms. The present study comprehensively assayed PGC-1 transcripts in human skeletal muscle and showed exercise mode-specific responses thus improving the understanding of early signaling events in exercise-induced muscle adaptations. PMID:26438733

  10. The effect of exposure to negative air ions on the recovery of physiological responses after moderate endurance exercise

    NASA Astrophysics Data System (ADS)

    Ryushi, T.; Kita, Ichirou; Sakurai, Tomonobu; Yasumatsu, Mikinobu; Isokawa, Masanori; Aihara, Yasutugu; Hama, Kotaro

    This study examined the effects of negative air ion exposure on the human cardiovascular and endocrine systems during rest and during the recovery period following moderate endurance exercise. Ten healthy adult men were studied in the presence (8,000-10,000 cm-3) or absence (200-400 cm-3) of negative air ions (25° C, 50% humidity) after 1 h of exercise. The level of exercise was adjusted to represent a 50-60% load compared with the subjects' maximal oxygen uptake, which was determined using a bicycle ergometer in an unmodified environment (22-23° C, 30-35% humidity, 200-400 negative air ions.cm-3). The diastolic blood pressure (DBP) values during the recovery period were significantly lower in the presence of negative ions than in their absence. The plasma levels of serotonin (5-HT) and dopamine (DA) were significantly lower in the presence of negative ions than in their absence. These results demonstrated that exposure to negative air ions produced a slow recovery of DBP and decreases in the levels of 5-HT and DA in the recovery period after moderate endurance exercise. 5-HT is thought to have contributed to the slow recovery of DBP.

  11. No effect of acute ingestion of Thai ginseng (Kaempferia parviflora) on sprint and endurance exercise performance in humans.

    PubMed

    Wasuntarawat, Chanchira; Pengnet, Sirinat; Walaikavinan, Nutchanon; Kamkaew, Natakorn; Bualoang, Tippaporn; Toskulkao, Chaivat; McConell, Glenn

    2010-09-01

    Thai ginseng, Kaempferia parviflora, is widely believed among the Mong hill tribe to reduce perceived effort and improve physical work capacity. Kaempferia parviflora is consumed before their daily work. Therefore, we conducted an acute study on the effects of K. parviflora on repeated bouts of sprint exercise and on endurance exercise time to exhaustion. Two studies were conducted in college males using a randomized, double-blind, crossover design. Ninety minutes after consumption of K. parviflora or a starch placebo, participants in study 1 (n = 19) completed three consecutive maximum 30-s sprint cycling Wingate tests, separated by 3 min recovery, while participants in study 2 (n = 16) performed submaximal cycling exercise to exhaustion. Peak and mean power output decreased with successive Wingate tests, while percent fatigue and blood lactate concentration increased after the third Wingate test (P < 0.05). There were no detectable differences in any measures with or without K. parviflora. There was also no effect of K. parviflora on time to exhaustion, rating of perceived exertion or heart rate during submaximal exercise. Our results indicate that acute ingestion of K. parviflora failed to improve exercise performance during repeated sprint exercise or submaximal exercise to exhaustion. However, chronic effects or actions in other populations cannot be excluded. PMID:20845210

  12. Effect of low-level laser therapy (808 nm) on skeletal muscle after endurance exercise training in rats

    PubMed Central

    Assis, Livia; Yamashita, Fernanda; Magri, Angela M. P.; Fernandes, Kelly R.; Yamauchi, Liria; Renno, Ana C. M.

    2015-01-01

    BACKGROUND: Low-level laser therapy (LLLT) has been demonstrated to be effective in optimizing skeletal muscle performance in animal experiments and in clinical trials. However, little is known about the effects of LLLT on muscle recovery after endurance training. OBJECTIVE: This study evaluates the effects of low-level laser therapy (LLLT) applied after an endurance training protocol on biochemical markers and morphology of skeletal muscle in rats. METHOD: Wistar rats were divided into control group (CG), trained group (TG), and trained and laser irradiated group (TLG). The endurance training was performed on a treadmill, 1 h/day, 5 days/wk, for 8 wk at 60% of the maximal speed reached during the maximal effort test (Tmax) and laser irradiation was applied after training. RESULTS: Both trained groups showed significant increase in speed compared to the CG. The TLG demonstrated a significantly reduced lactate level, increased tibialis anterior (TA) fiber cross-section area, and decreased TA fiber density. Myogenin expression was higher in soleus and TA muscles in both trained groups. In addition, LLLT produced myogenin downregulation in the TA muscle of trained animals. CONCLUSION: These results suggest that LLLT could be an effective therapeutic approach for stimulating recovery during an endurance exercise protocol. PMID:26647747

  13. The Effects of Nandrolone Decanoate Along with Prolonged Low-Intensity Exercise on Susceptibility to Ventricular Arrhythmias.

    PubMed

    Binayi, Fateme; Joukar, Siyavash; Najafipour, Hamid; Karimi, Abdolah; Karimi, Ali; Abdollahi, Farzane; Masumi, Yaser

    2016-01-01

    We examined the influence of chronic administration of nandrolone decanoate with low-intensity endurance swimming exercise on susceptibility to lethal ventricular arrhythmias in rat. The animal groups included the control group, exercise group (EX), nandrolone group (Nan), vehicle group (Arach), trained vehicle group (Arach + Ex) and trained nandrolone group (Nan + Ex) that treated for 8 weeks. Then, arrhythmia induction was performed by intravenous infusion of aconitine and electrocardiogram recorded. Then, malondialdehyde (MDA), hydroxyproline (HYP) and glutathione peroxidase of heart tissue were measured. Chronic administration of nandrolone with low-intensity endurance swimming exercise had no significant effect on blood pressure, heart rate and basal ECG parameters except RR interval that showed increase (P < 0.05). Low-intensity exercise could prevent the incremental effect of nandrolone on MDA and HYP significantly. It also increased the heart hypertrophy index (P < 0.05) and reduced the abating effect of nandrolone on animal weighting. Nandrolone along with exercise significantly increased the duration of VF (P < 0.05) and reduced the VF latency (P < 0.05). The findings suggest that chronic co-administration of nandrolone with low-intensity endurance swimming exercise to some extent facilitates the occurrence of ventricular fibrillation in rat. Complementary studies are needed to elucidate the involved mechanisms of this abnormality. PMID:25636207

  14. Effects of plyometric training on maximal-intensity exercise and endurance in male and female soccer players.

    PubMed

    Ramírez-Campillo, Rodrigo; Vergara-Pedreros, Marcelo; Henríquez-Olguín, Carlos; Martínez-Salazar, Cristian; Alvarez, Cristian; Nakamura, Fábio Yuzo; De La Fuente, Carlos I; Caniuqueo, Alexis; Alonso-Martinez, Alicia M; Izquierdo, Mikel

    2016-01-01

    In a randomised controlled trial design, effects of 6 weeks of plyometric training on maximal-intensity exercise and endurance performance were compared in male and female soccer players. Young (age 21.1 ± 2.7 years) players with similar training load and competitive background were assigned to training (women, n = 19; men, n = 21) and control (women, n = 19; men, n = 21) groups. Players were evaluated for lower- and upper-body maximal-intensity exercise, 30 m sprint, change of direction speed and endurance performance before and after 6 weeks of training. After intervention, the control groups did not change, whereas both training groups improved jumps (effect size (ES) = 0.35-1.76), throwing (ES = 0.62-0.78), sprint (ES = 0.86-1.44), change of direction speed (ES = 0.46-0.85) and endurance performance (ES = 0.42-0.62). There were no differences in performance improvements between the plyometric training groups. Both plyometric groups improved more in all performance tests than the controls. The results suggest that adaptations to plyometric training do not differ between men and women. PMID:26197721

  15. Timing Carbohydrate Beverage Intake During Prolonged Moderate Intensity Exercise Does Not Affect Cycling Performance

    PubMed Central

    SCHWEITZER, GEORGE G.; SMITH, JOHN D.; LECHEMINANT, JAMES D.

    2009-01-01

    Carbohydrate beverages consumed during long-term exercise have been shown to attenuate fatigue and improve performance; however, the optimal timing of ingestion is unclear. Therefore, the purpose of this study was to determine if timing the carbohydrate ingestion (continual loading (CL), front-loading (FL), and end-loading (EL)) during prolonged exercise influenced exercise performance in competitive cyclists. Ten well-trained cyclists completed three separate exercise bouts on a bicycle ergometer, each lasting 2 hours at an intensity of ~67% VO2 max, followed by a 15-minute “all out” time trial. In the CL trial, a carbohydrate beverage was ingested throughout the trial. In the FL trial, participants ingested a carbohydrate beverage during the first hour and a placebo beverage during the second hour. In the EL trial, a carbohydrate beverage was ingested during the second hour and a placebo during the first hour. The amount of carbohydrate consumed (75 g) was the same among conditions. The order of conditions was single-blinded, counterbalanced, and determined randomly. Performance was measured by the work output during the 15-minute performance ride. There were no differences in work output among the three conditions during the final time trial. In the first hour of exercise, peak venous blood glucose was highest in the FL condition. In the second hour, peak venous blood glucose was highest in the EL condition. Following the time trial, venous blood glucose levels were similar among CL, FL, and EL. Overall, the timing of carbohydrate beverage consumption during prolonged moderate intensity cycling did not alter cycling performance.

  16. The Effects of Montmorency Tart Cherry Concentrate Supplementation on Recovery Following Prolonged, Intermittent Exercise.

    PubMed

    Bell, Phillip G; Stevenson, Emma; Davison, Gareth W; Howatson, Glyn

    2016-01-01

    This study investigated Montmorency tart cherry concentrate (MC) supplementation on markers of recovery following prolonged, intermittent sprint activity. Sixteen semi-professional, male soccer players, who had dietary restrictions imposed for the duration of the study, were divided into two equal groups and consumed either MC or placebo (PLA) supplementation for eight consecutive days (30 mL twice per day). On day 5, participants completed an adapted version of the Loughborough Intermittent Shuttle Test (LISTADAPT). Maximal voluntary isometric contraction (MVIC), 20 m Sprint, counter movement jump (CMJ), agility and muscle soreness (DOMS) were assessed at baseline, and 24, 48 and 72 h post-exercise. Measures of inflammation (IL-1-β, IL-6, IL-8, TNF-α, hsCRP), muscle damage (CK) and oxidative stress (LOOH) were analysed at baseline and 1, 3, 5, 24, 48 and 72 h post-exercise. Performance indices (MVIC, CMJ and agility) recovered faster and muscle soreness (DOMS) ratings were lower in the MC group (p < 0.05). Additionally, the acute inflammatory response (IL-6) was attenuated in the MC group. There were no effects for LOOH and CK. These findings suggest MC is efficacious in accelerating recovery following prolonged, repeat sprint activity, such as soccer and rugby, and lends further evidence that polyphenol-rich foods like MC are effective in accelerating recovery following various types of strenuous exercise. PMID:27455316

  17. The Effects of Montmorency Tart Cherry Concentrate Supplementation on Recovery Following Prolonged, Intermittent Exercise

    PubMed Central

    Bell, Phillip G.; Stevenson, Emma; Davison, Gareth W.; Howatson, Glyn

    2016-01-01

    This study investigated Montmorency tart cherry concentrate (MC) supplementation on markers of recovery following prolonged, intermittent sprint activity. Sixteen semi-professional, male soccer players, who had dietary restrictions imposed for the duration of the study, were divided into two equal groups and consumed either MC or placebo (PLA) supplementation for eight consecutive days (30 mL twice per day). On day 5, participants completed an adapted version of the Loughborough Intermittent Shuttle Test (LISTADAPT). Maximal voluntary isometric contraction (MVIC), 20 m Sprint, counter movement jump (CMJ), agility and muscle soreness (DOMS) were assessed at baseline, and 24, 48 and 72 h post-exercise. Measures of inflammation (IL-1-β, IL-6, IL-8, TNF-α, hsCRP), muscle damage (CK) and oxidative stress (LOOH) were analysed at baseline and 1, 3, 5, 24, 48 and 72 h post-exercise. Performance indices (MVIC, CMJ and agility) recovered faster and muscle soreness (DOMS) ratings were lower in the MC group (p < 0.05). Additionally, the acute inflammatory response (IL-6) was attenuated in the MC group. There were no effects for LOOH and CK. These findings suggest MC is efficacious in accelerating recovery following prolonged, repeat sprint activity, such as soccer and rugby, and lends further evidence that polyphenol-rich foods like MC are effective in accelerating recovery following various types of strenuous exercise. PMID:27455316

  18. Endurance exercise ameliorates low birthweight developed catch-up growth related metabolic dysfunctions in a mouse model.

    PubMed

    Ju, Liping; Tong, Wenxin; Qiu, Miaoyan; Shen, Weili; Sun, Jichao; Chen, Ying; Li, Zhen; Wang, Weiqing; Tian, Jingyan

    2016-03-31

    Low birthweight is known to predict high risk of metabolic diseases in adulthood, while regular endurance exercises are believed sufficient to improve metabolic dysfunction. In this study, we established a mouse model to determine whether long-term exercise training could ameliorate catch-up growth, and we explored the possible underlying mechanisms. By restricting maternal food intake during the last week of gestation, we successfully produced low birthweight pups. Further, normal birthweight mice and low birthweight mice were randomly distributed into one of three groups receiving either a normal fat diet, high fat diet, or high fat diet with exercise training. The growth/metabolism, mitochondrial content and functions were assessed at 6 months of age. Through group comparisons and correlation analyses, the 4th week was demonstrated to be the period of crucial growth and chosen to be the precise point of intervention, as the growth rate at this point is significantly correlated with body weight, intraperitoneal glucose tolerance test (IPGTT), Lee's index and fat mass in adulthood. In addition, regular endurance exercises when started from 4 weeks remarkably ameliorated low birthweight outcomes and induced catch-up growth and glucose intolerance in the 25th week. Furthermore, real-time PCR and western blot results indicated that the effect of long-term exercise on mitochondrial functions alleviated catch-up related metabolic dysfunction. To conclude, long-term exercise training from the 4th week is sufficient to ameliorate catch-up growth and related metabolic disturbances in adulthood by promoting mitochondrial functions in skeletal muscle. PMID:26842396

  19. Does wearing clothing made of a synthetic “cooling” fabric improve indoor cycle exercise endurance in trained athletes?

    PubMed Central

    Abdallah, Sara J; Krug, Robin; Jensen, Dennis

    2015-01-01

    This randomized, double-blind, crossover study examined the effects of a clothing ensemble made of a synthetic fabric promoted as having superior cooling properties (COOL) on exercise performance and its physiological and perceptual determinants during cycle exercise in ambient laboratory conditions that mimic environmental conditions of indoor training/sporting facilities. Twenty athletes (15 men:5 women) aged 25.8 ± 1.2 years (mean ± SEM) with a maximal rate of O2 consumption of 63.7 ± 1.5 mL·kg−1·min−1 completed cycle exercise testing at 85% of their maximal incremental power output to exhaustion while wearing an ensemble consisting of a fitted long-sleeved shirt and full trousers made of either COOL or a synthetic control fabric (CTRL). Exercise endurance time was not different under COOL versus CTRL conditions: 12.38 ± 0.98 versus 11.75 ± 1.10 min, respectively (P > 0.05). Similarly, COOL had no effect on detailed thermoregulatory (skin and esophageal temperatures), cardiometabolic, ventilatory, and perceptual responses to exercise (all P > 0.05). In conclusion, clothing made of a synthetic fabric with purported “cooling” properties did not improve high-intensity cycle exercise endurance in trained athletes under ambient laboratory conditions that mimic the environmental conditions of indoor training/sporting facilities. PMID:26290527

  20. Tyrosine supplementation does not influence the capacity to perform prolonged exercise in a warm environment.

    PubMed

    Watson, Phillip; Enever, Sophie; Page, Andrew; Stockwell, Jenna; Maughan, Ronald J

    2012-10-01

    Eight young men were recruited to a study designed to examine the effect of tyrosine (TYR) supplementation on the capacity to perform prolonged exercise in a warm environment. Subjects entered the laboratory in the morning and remained seated for 1 hr before cycling to exhaustion at 70% VO2peak. Two 250-ml aliquots of a placebo (PLA ) or a TYR solution were ingested at 30-min intervals before exercise, with an additional 150 ml consumed every 15 min throughout exercise (total TYR dose: 150 mg/kg BM). Cognitive function was assessed before drink ingestion, at the end of the rest period, and at exhaustion. TYR ingestion had no effect on exercise capacity (PLA 61.4 ± 13.7 min, TYR 60.2 ± 15.4 min; p = .505). No differences in heart rate (p = .380), core temperature (p = .554), or weighted mean skin temperature (p = .167) were apparent between trials. Ingestion of TYR produced a marked increase in serum TYR concentrations (+236 ± 46 μmol/L; p < .001), with this difference maintained throughout exercise. No change was apparent during the PLA trial (p = .924). Exercise caused an increase in error rate during the complex component of the Stroop test (p = .034), but this response was not influenced by the drink ingested. No other component of cognitive function was altered by the protocol (all p > .05). Ingestion of a TYR solution did not influence time to exhaustion or several aspects of cognitive function when exercise was undertaken in a warm environment. PMID:23011654

  1. Protein Requirements Are Elevated in Endurance Athletes after Exercise as Determined by the Indicator Amino Acid Oxidation Method

    PubMed Central

    Kato, Hiroyuki; Suzuki, Katsuya; Bannai, Makoto; Moore, Daniel R.

    2016-01-01

    A higher protein intake has been recommended for endurance athletes compared with healthy non-exercising individuals based primarily on nitrogen balance methodology. The aim of this study was to determine the estimated average protein requirement and recommended protein intake in endurance athletes during an acute 3-d controlled training period using the indicator amino acid oxidation method. After 2-d of controlled diet (1.4 g protein/kg/d) and training (10 and 5km/d, respectively), six male endurance-trained adults (28±4 y of age; Body weight, 64.5±10.0 kg; VO2peak, 60.3±6.7 ml·kg-1·min-1; means±SD) performed an acute bout of endurance exercise (20 km treadmill run) prior to consuming test diets providing variable amounts of protein (0.2–2.8 g·kg-1·d-1) and sufficient energy. Protein was provided as a crystalline amino acid mixture based on the composition of egg protein with [1-13C]phenylalanine provided to determine whole body phenylalanine flux, 13CO2 excretion, and phenylalanine oxidation. The estimated average protein requirement was determined as the breakpoint after biphasic linear regression analysis with a recommended protein intake defined as the upper 95% confidence interval. Phenylalanine flux (68.8±8.5 μmol·kg-1·h-1) was not affected by protein intake. 13CO2 excretion displayed a robust bi-phase linear relationship (R2 = 0.86) that resulted in an estimated average requirement and a recommended protein intake of 1.65 and 1.83 g protein·kg-1·d-1, respectively, which was similar to values based on phenylalanine oxidation (1.53 and 1.70 g·kg-1·d-1, respectively). We report a recommended protein intake that is greater than the RDA (0.8 g·kg-1·d-1) and current recommendations for endurance athletes (1.2–1.4 g·kg-1·d-1). Our results suggest that the metabolic demand for protein in endurance-trained adults on a higher volume training day is greater than their sedentary peers and current recommendations for athletes based primarily on

  2. The effects of ingesting polylactate or glucose polymer drinks during prolonged exercise.

    PubMed

    Fahey, T D; Larsen, J D; Brooks, G A; Colvin, W; Henderson, S; Lary, D

    1991-09-01

    Five trained, fasted male cyclists rode a cycle ergometer three times at 50% of VO2max for 180 min. Using a balanced order, double-blind procedure, subjects were given either a solution containing polylactate (PL: 80% polylactate, 20% sodium lactate, in 7% solution with water), glucose polymer (GP: multidextrin in 7% solution with water), or control (C: water sweetened with aspartame) 5 min before exercise and at 20-min intervals during exercise. Venous blood samples were taken at rest and at 20-min intervals during exercise. In general, PL and GP rendered similar results except that pH and bicarbonate (HCO3-) were higher in PL. There were no differences between treatments in perceived exertion, sodium, potassium, chloride, lactate, heart rate, oxygen consumption, rectal temperature, or selected skin temperatures. These data show that polylactate may help maintain blood glucose and enhance blood buffering capacity during prolonged exercise and could be a useful component in an athletic fluid replacement beverage. PMID:1844999

  3. Circulorespiratory Endurance.

    ERIC Educational Resources Information Center

    Allsen, Philip E.

    1981-01-01

    Cardiovascular endurance is defined as the ability of the heart, lungs, and circulatory system to provide the cells of the body with the necessary substances to perform work for extended periods of time. People beginning such a program need to have an understanding of warming-up, intensity, duration, and frequency of an exercise program. (JN)

  4. Tocotrienols and Whey Protein Isolates Substantially Increase Exercise Endurance Capacity in Diet -Induced Obese Male Sprague-Dawley Rats

    PubMed Central

    Aguila, Jay; McConell, Glenn K.; McAinch, Andrew J.; Mathai, Michael L.

    2016-01-01

    Background and Aims Obesity and impairments in metabolic health are associated with reductions in exercise capacity. Both whey protein isolates (WPIs) and vitamin E tocotrienols (TCTs) exert favorable effects on obesity-related metabolic parameters. This research sought to determine whether these supplements improved exercise capacity and increased glucose tolerance in diet-induced obese rats. Methods Six week old male rats (n = 35) weighing 187 ± 32g were allocated to either: Control (n = 9), TCT (n = 9), WPI (n = 8) or TCT + WPI (n = 9) and placed on a high-fat diet (40% of energy from fat) for 10 weeks. Animals received 50mg/kg body weight and 8% of total energy intake per day of TCTs and/or WPIs respectively. Food intake, body composition, glucose tolerance, insulin sensitivity, exercise capacity, skeletal muscle glycogen content and oxidative enzyme activity were determined. Results Both TCT and WPI groups ran >50% longer (2271 ± 185m and 2195 ± 265m respectively) than the Control group (1428 ± 139m) during the run to exhaustion test (P<0.05), TCT + WPI did not further improve exercise endurance (2068 ± 104m). WPIs increased the maximum in vitro activity of beta-hydroxyacyl-CoA in the soleus muscle (P<0.05 vs. Control) but not in the plantaris. Citrate synthase activity was not different between groups. Neither supplement had any effect on weight gain, adiposity, glucose tolerance or insulin sensitivity. Conclusion Ten weeks of both TCTs and WPIs increased exercise endurance by 50% in sedentary, diet-induced obese rats. These positive effects of TCTs and WPIs were independent of body weight, adiposity or glucose tolerance. PMID:27058737

  5. A prospective randomised longitudinal MRI study of left ventricular adaptation to endurance and resistance exercise training in humans.

    PubMed

    Spence, Angela L; Naylor, Louise H; Carter, Howard H; Buck, Christopher L; Dembo, Lawrence; Murray, Conor P; Watson, Philip; Oxborough, David; George, Keith P; Green, Daniel J

    2011-11-15

    The principle that 'concentric' cardiac hypertrophy occurs in response to strength training, whilst 'eccentric' hypertrophy results from endurance exercise has been a fundamental tenet of exercise science. This notion is largely based on cross-sectional comparisons of athletes using echocardiography. In this study, young (27.4 ± 1.1 years) untrained subjects were randomly assigned to supervised, intensive, endurance (END, n = 10) or resistance (RES, n = 13) exercise and cardiac MRI scans and myocardial speckle tracking echocardiography were performed at baseline, after 6 months of training and after a subsequent 6 weeks of detraining. Aerobic fitness increased significantly in END (3.5 to 3.8 l min(-1), P < 0.05) but was unchanged in RES. Muscular strength significantly improved compared to baseline in both RES and END ( = 53.0 ± 1.1 versus 36.4 ± 4.5 kg, both P < 0.001) as did lean body mass (2.3 ± 0.4 kg, P < 0.001 versus 1.4 ± 0.6 kg P < 0.05). MRI derived left ventricular (LV) mass increased significantly following END (112.5 ± 7.3 to 121.8 ± 6.6 g, P < 0.01) but not RES, whilst training increased end-diastolic volume (LVEDV, END: +9.0 ± 5.0 versus RES +3.1 ± 3.6 ml, P = 0.05). Interventricular wall thickness significantly increased with training in END (1.06 ± 0.0 to 1.14 ± 0.06, P < 0.05) but not RES. Longitudinal strain and strain rates did not change following exercise training. Detraining reduced aerobic fitness, LV mass and wall thickness in END (P < 0.05), whereas LVEDV remained elevated. This study is the first to use MRI to compare LV adaptation in response to intensive supervised endurance and resistance training. Our findings provide some support for the 'Morganroth hypothesis', as it pertains to LV remodelling in response to endurance training, but cast some doubt over the proposal that remodelling occurs in response to resistance training. PMID:21969450

  6. Effects of selective cooling of the facial area on physiological and metabolic output during graded maximal or prolonged submaximal exercise

    NASA Astrophysics Data System (ADS)

    Quirion, A.; Boisvert, P.; Brisson, G. R.; Decarufel, D.; Laurencelle, L.; Dulac, S.; Vogelaere, P.; Therminarias, A.

    1989-06-01

    Physiological and metabolic output responses to facial cooling during a graded maximal exercise and a prolonged submaximal exercise lasting 30 min at 65%dot VO_2 max were investigated in five male subjects. Pedalling on a cycle ergometer was performed both with and without facial cooling (10°C, 4.6 m s-1). Facial cooling at the end of graded maximal exercise apparently had no effect on plasma lactate (LA), maximal oxygen consumption (dot VO_2 max), maximal heart rate (HR max), rectal temperature ( T re), work-load, lactate threshold (LT), ventilatory threshold (VT) and onset of blood lactate accumulation (OBLA). However, the response to facial cooling after prolonged submaximal exercise is significantly different for heart rate and work-load. The results suggest that facial wind stimulation during maximal exercise does not produce a stress high enough to alter the metabolic and physiological responses.

  7. Glucose kinetics during prolonged exercise in highly trained human subjects: effect of glucose ingestion

    PubMed Central

    Jeukendrup, Asker E; Raben, Anne; Gijsen, Annemie; Stegen, Jos H C H; Brouns, Fred; Saris, Wim H M; Wagenmakers, Anton J M

    1999-01-01

    The objectives of this study were (1) to investigate whether glucose ingestion during prolonged exercise reduces whole body muscle glycogen oxidation, (2) to determine the extent to which glucose disappearing from the plasma is oxidized during exercise with and without carbohydrate ingestion and (3) to obtain an estimate of gluconeogenesis. After an overnight fast, six well-trained cyclists exercised on three occasions for 120 min on a bicycle ergometer at 50% maximum velocity of O2 uptake and ingested either water (Fast), or a 4% glucose solution (Lo-Glu) or a 22% glucose solution (Hi-Glu) during exercise. Dual tracer infusion of [U-13C]-glucose and [6,6-2H2]-glucose was given to measure the rate of appearance (Ra) of glucose, muscle glycogen oxidation, glucose carbon recycling, metabolic clearance rate (MCR) and non-oxidative disposal of glucose. Glucose ingestion markedly increased total Ra especially with Hi-Glu. After 120 min Ra and rate of disappearance (Rd) of glucose were 51-52 μmol kg−1 min−1 during Fast, 73-74 μmol kg−1 min−1 during Lo-Glu and 117–119 μmol kg−1 min−1 during Hi-Glu. The percentage of Rd oxidized was between 96 and 100% in all trials. Glycogen oxidation during exercise was not reduced by glucose ingestion. The vast majority of glucose disappearing from the plasma is oxidized and MCR increased markedly with glucose ingestion. Glucose carbon recycling was minimal suggesting that gluconeogenesis in these conditions is negligible. PMID:10050023

  8. No reserve in isokinetic cycling power at intolerance during ramp incremental exercise in endurance-trained men.

    PubMed

    Ferguson, Carrie; Wylde, Lindsey A; Benson, Alan P; Cannon, Daniel T; Rossiter, Harry B

    2016-01-01

    During whole body exercise in health, maximal oxygen uptake (V̇o2max) is typically attained at or immediately before the limit of tolerance (LoT). At the V̇o2max and LoT of incremental exercise, a fundamental, but unresolved, question is whether maximal evocable power can be increased above the task requirement, i.e., whether there is a "power reserve" at the LoT. Using an instantaneous switch from cadence-independent (hyperbolic) to isokinetic cycle ergometry, we determined maximal evocable power at the limit of ramp-incremental exercise. We hypothesized that in endurance-trained men at LoT, maximal (4 s) isokinetic power would not differ from the power required by the task. Baseline isokinetic power at 80 rpm (Piso; measured at the pedals) and summed integrated EMG from five leg muscles (ΣiEMG) were measured in 12 endurance-trained men (V̇o2max = 4.2 ± 1.0 l/min). Participants then completed a ramp incremental exercise test (20-25 W/min), with instantaneous measurement of Piso and ΣiEMG at the LoT. Piso decreased from 788 ± 103 W at baseline to 391 ± 72 W at LoT, which was not different from the required ramp-incremental flywheel power (352 ± 58 W; P > 0.05). At LoT, the relative reduction in Piso was greater than the relative reduction in the isokinetic ΣiEMG (50 ± 9 vs. 63 ± 10% of baseline; P < 0.05). During maximal ramp incremental exercise in endurance-trained men, maximum voluntary power is not different from the power required by the task and is consequent to both central and peripheral limitations in evocable power. The absence of a power reserve suggests both the perceptual and physiological limits of maximum voluntary power production are not widely dissociated at LoT in this population. PMID:26565019

  9. Menstrual cycle phase effects free testosterone responses to prolonged aerobic exercise.

    PubMed

    Lane, A R; O'Leary, C B; Hackney, A C

    2015-09-01

    Research has shown that total testosterone (tT) levels in women increase acutely during a prolonged bout of aerobic exercise. Few studies, however, have considered the impact of the menstrual cycle phase on this response or have looked at the biologically active free testosterone (fT) form responses. Therefore, this study examined the fT concentration response independently and as a percentage (fT%) of tT to prolonged aerobic exercise during phases of the menstrual cycle with low estrogen-progesterone (L-EP; i.e., follicular phase) and high estrogen-progesterone (H-EP; i.e., luteal phase). Ten healthy, recreationally trained, eumennorrheic women (X ± SD: age = 20 ± 2 y, mass = 58.7 ± 8.3 kg, body fat = 22.3 ± 4.9 %, VO(2max) = 50.7 ± 9.0 ml/kg/min) participated in a laboratory based study and completed a 60-minute treadmill run during the L-EP and H-EP menstrual phases at ~70% of VO(2max). Blood was drawn prior to (PRE), immediately after (POST) and following 30 minutes of recovery (30POST) with each 60-minute run. During H-EP, there was a significant increase in fT concentrations from PRE to POST (p < 0.01) while in L-EP fT levels were unchanged; which resulted in fT being significantly higher at H-EP POST versus L-EP POST (p < 0.03). Area-under-the-curve (AUC) responses were calculated, for fT the total AUC was greater in H-EP than L-EP (p < 0.04). There was no significant interaction of fT% between phases and exercise sampling time. There was, however, a main effect for exercise where fT% POST was a greater proportion of tT than at PRE (p < 0.01). In summary, hormonal changes associated with the menstrual cycle impact fT response to a prolonged aerobic exercise bout; specifically, there being higher levels under H-EP conditions. This suggests more biologically active T is available during exercise in this phase. This response may be a function of the higher core temperatures found with H-EP causing greater sex hormone binding protein release of T, or could

  10. Effect of initial core temperature on hyperthermic hyperventilation during prolonged submaximal exercise in the heat.

    PubMed

    Tsuji, Bun; Honda, Yasushi; Fujii, Naoto; Kondo, Narihiko; Nishiyasu, Takeshi

    2012-01-01

    We investigated whether a core temperature threshold for hyperthermic hyperventilation is seen during prolonged submaximal exercise in the heat when core temperature before the exercise is reduced and whether the evoked hyperventilatory response is affected by altering the initial core temperature. Ten male subjects performed three exercise trials at 50% of peak oxygen uptake in the heat (37°C and 50% relative humidity) after altering their initial esophageal temperature (T(es)). Initial T(es) was manipulated by immersion for 25 min in water at 18°C (Precooling), 35°C (Control), or 40°C (Preheating). T(es) after the water immersion was significantly higher in the Preheating trial (37.5 ± 0.3°C) and lower in the Precooling trial (36.1 ± 0.3°C) than in the Control trial (36.9 ± 0.3°C). In the Precooling trial, minute ventilation (Ve) showed little change until T(es) reached 37.1 ± 0.4°C. Above this core temperature threshold, Ve increased linearly in proportion to increasing T(es). In the Control trial, Ve increased as T(es) increased from 37.0°C to 38.6°C after the onset of exercise. In the Preheating trial, Ve increased from the initially elevated levels of T(es) (from 37.6 to 38.6°C) and Ve. The sensitivity of Ve to increasing T(es) above the threshold for hyperventilation (the slope of the T(es)-Ve relation) did not significantly vary across trials (Precooling trial = 10.6 ± 5.9, Control trial = 8.7 ± 5.1, and Preheating trial = 9.2 ± 6.9 L·min(-1)·°C(-1)). These results suggest that during prolonged submaximal exercise at a constant workload in humans, there is a clear core temperature threshold for hyperthermic hyperventilation and that the evoked hyperventilatory response is unaffected by altering initial core temperature. PMID:21957164

  11. Effects of tocotrienol-rich fraction on exercise endurance capacity and oxidative stress in forced swimming rats.

    PubMed

    Lee, Shu-Ping; Mar, Guang-Yuan; Ng, Lean-Teik

    2009-11-01

    The present study aimed to examine the effects of tocotrienol-rich fraction (TRF) on exercise endurance and oxidative stress in forced swimming rats. Rats fed on isocaloric diet were orally given 25 (TRF-25) and 50 (TRF-50) mg/kg of TRF, or 25 mg/kg D-alpha-tocopherol (T-25) whilst the control group received only the vehicle for 28 days, followed by being forced to undergo swimming endurance tests, with measurements taken of various biochemical parameters, including blood glucose, lactate and urea nitrogen, glycogen, total antioxidant capacity, antioxidant enzymes, thiobarbituric acid-reactive substances (TBARS), and protein carbonyl. Results showed that the TRF-treated animals (268.0 +/- 24.1 min for TRF-25 and 332.5 +/- 24.3 min for TRF-50) swam significantly longer than the control (135.5 +/- 32.9 min) and T-25-treated (154.1 +/- 36.4 min) animals, whereas there was no difference in the performance between the T-25 and control groups. The TRF-treated rats also showed significantly higher concentrations of liver glycogen, superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx), as well as of muscle glycogen and SOD than the control and the T-25-treated animals, but lower levels in blood lactate, plasma and liver TBARS, and liver and muscle protein carbonyl. Taken together, these results suggest that TRF is able to improve the physiological condition and reduce the exercise-induced oxidative stress in forced swimming rats. PMID:19705143

  12. Effects of endurance training on endocrine response to physical exercise after 5 days of bed rest in healthy male subjects.

    PubMed

    Koska, Juraj; Ksinantová, Lucia; Kvetnanský, Richard; Hamar, Dusan; Martinkovic, Miroslav; Vigas, Milan

    2004-06-01

    The study was designed to evaluate how a bout of endurance training (ET) influences the endocrine response after head-down bed rest (HDBR). Eleven healthy males completed the study, which consisted of a 6-wk ET followed by 5 days of -6 degrees head-down HDBR. Treadmill exercise at 80% of pretraining maximal aerobic capacity (VO(2max)) was performed before and after ET as well as after HDBR. ET increased VO(2max) by 13%. The response of norepinephrine was attenuated after ET and exaggerated after HDBR (P < 0.001). The differences in epinephrine responses were not statistically significant. The responses of cortisol and plasma renin activity (PRA) were unchanged after ET and were enhanced after HDBR (P < 0.001). The response of growth hormone after HDBR was reduced (P < 0.05). Only the change in cortisol response was associated with the increment of VO(2max) after ET (r = 0.68, P < 0.01). Endurance training failed to completely prevent changes in endocrine responses seen after HDBR. Improvement of physical fitness was associated with an enhancement of the cortisol response to exercise following the period of bed rest. PMID:15240416

  13. Decrease in rat cardiac beta sub 1 - and beta sub 2 - adrenoceptors by training and endurance exercise

    SciTech Connect

    Werle, E.O.; Strobel, G.; Weicker, H. )

    1990-01-01

    The cardiac {beta}-adrenoceptor adaptation to physical activity was investigated in rats which were subjected to a six-week endurance swimming training (ET; n=7) and a training of high intensity (MT; n=7). In addition, the effect of a single bout of endurance exercise without preceding training (EE; n=7) was evaluated. These groups were compared with a sedentary control group (C; n=9). Beta-adrenergic receptors in rat myocardial membranes were labelled using the high affinity antagonist radioligand (-){sup 125}iodocyanopindolol (ICYP). Computer modelling techniques provided estimates of the maximal binding capacity (B{sub max}) and the dissociation constants (K{sub D}). Tissue was constantly kept at temperatures of {le}4{degrees}C and incubated at 4{degrees}C for 18 h in buffer containing 100 {mu}M GTP so as to prevent masking of {beta}-adrenoceptors by endogenous norepinephrine. In comparison with the C group computerized coanalyses of saturation binding data of ET, MT, and EE revealed a 13.0%, 25.5%, and 16.6% decrease in B{sub max}, respectively, without significantly differing K{sub D} values. We provide the first evidence that acute exercise lowers the sarcolemmal {beta}-adrenoceptor number in the rat heart. In the competition radioligand binding, CGP20712A and ICI118.551 were employed as subtype-selective antagonists of {beta}{sub 1}- and {beta}{sub 2}-adrenoceptors, respectively, to determine the relative proportions of the receptor subtypes.

  14. Branched-chain amino acid supplementation during repeated prolonged skiing exercises at altitude.

    PubMed

    Bigard, A X; Lavier, P; Ullmann, L; Legrand, H; Douce, P; Guezennec, C Y

    1996-09-01

    This study was conducted to test the hypothesis that a branched-chain amino acid (BCAA) supplementation would minimize changes in body composition and alterations in plasma amino acid profile induced by prolonged exercises at altitude. Twenty-four highly trained subjects participated in six successive sessions of ski mountaineering (6-8 hr duration, altitude 2,500-4,100 m). Twelve subjects took a dietary supplement of BCAA (BCAA group) and 12 took a dietary supplement that was 98% carbohydrate (C group). Body weight decreased in C subjects (-2.1%, p < .01), while the body weight loss recorded in the BCAA group was not statistically significant (-1.2%, NS). Changes in body composition that resulted from repeated skiing exercise at altitude were not significantly minimized by BCAA administration. Peak power output recorded during an incremental bicycle exercise decreased in C subjects but did not change significantly in BCAA subjects. Results of this study demonstrate that neither changes in body composition related to the ski mountaineering program nor muscular performance during isometric contraction was significantly affected by BCAA administration. PMID:8876349

  15. Serum free light chains are reduced in endurance trained older adults: Evidence that exercise training may reduce basal inflammation in older adults.

    PubMed

    Heaney, Jennifer L J; Phillips, Anna C; Drayson, Mark T; Campbell, John P

    2016-05-01

    Traditionally, free light chains (FLCs) are used as key serum biomarkers in the diagnosis and monitoring of plasma cell malignancies, but polyclonal FLCs can also be used as an accurate real-time indicator of immune-activation and inflammation. The primary aim of the present study was to assess the effects of exercise training status on serum FLCs in older adults, and secondly, to examine if training status moderated serum FLC responses to acute exercise. Kappa and lambda serum FLC levels were measured in 45 healthy older adults (aged ≥ 60 years) who were either sedentary, physically active or endurance trained. FLCs were measured at baseline and in response to an acute bout of submaximal exercise. The endurance trained group had significantly lower levels of kappa and lambda serum FLCs compared with physically active or sedentary elderly adults; these effects were independent of age, BMI and renal function. There was no significant difference in whole immunoglobulins between groups. Exercise training status had no effect on serum FLC responses to acute exercise, which were marginal. In conclusion, endurance training was associated with lower FLC levels compared with less physically active individuals. These findings suggest that long-term endurance training may be beneficial in reducing basal inflammation in older adults as well as elevated FLCs present in inflammatory and autoimmune conditions, often associated with ageing. FLCs may serve as a useful biomarker for monitoring the efficacy of exercise intervention studies in healthy and clinical populations. PMID:26921802

  16. Endurance Exercise Mobilizes Developmentally Early Stem Cells into Peripheral Blood and Increases Their Number in Bone Marrow: Implications for Tissue Regeneration.

    PubMed

    Marycz, Krzysztof; Mierzejewska, Katarzyna; Śmieszek, Agnieszka; Suszynska, Ewa; Malicka, Iwona; Kucia, Magda; Ratajczak, Mariusz Z

    2016-01-01

    Endurance exercise has been reported to increase the number of circulating hematopoietic stem/progenitor cells (HSPCs) in peripheral blood (PB) as well as in bone marrow (BM). We therefore became interested in whether endurance exercise has the same effect on very small embryonic-like stem cells (VSELs), which have been described as a population of developmentally early stem cells residing in BM. Mice were run daily for 1 hour on a treadmill for periods of 5 days or 5 weeks. Human volunteers had trained in long-distance running for one year, six times per week. FACS-based analyses and RT-PCR of murine and human VSELs and HSPCs from collected bone marrow and peripheral blood were performed. We observed that endurance exercise increased the number of VSELs circulating in PB and residing in BM. In parallel, we observed an increase in the number of HSPCs. These observations were subsequently confirmed in young athletes, who showed an increase in circulating VSELs and HSPCs after intensive running exercise. We provide for the first time evidence that endurance exercise may have beneficial effects on the expansion of developmentally early stem cells. We hypothesize that these circulating stem cells are involved in repairing minor exercise-related tissue and organ injuries. PMID:26664409

  17. Dietary selenium and prolonged exercise alter gene expression and activity of antioxidant enzymes in equine skeletal muscle.

    PubMed

    White, S H; Johnson, S E; Bobel, J M; Warren, L K

    2016-07-01

    Untrained Thoroughbred horses (6 mares and 6 geldings; 11 yr [SE 1] and 565 kg [SE 11]) were used to evaluate antioxidant gene expression and enzyme activity in blood and skeletal muscle in response to prolonged exercise after receiving 2 levels of dietary selenium for 36 d: 0.1 (CON; = 6) or 0.3 mg/kg DM (SEL; = 6). Horses were individually fed 1.6% BW coastal bermudagrass hay, 0.4% BW whole oats, and a mineral/vitamin premix containing no Se. Sodium selenite was added to achieve either 0.1 or 0.3 mg Se/kg DM in the total diet. On d 35, horses underwent 2 h of submaximal exercise in a free-stall exerciser. Blood samples were obtained before (d 0) and after 34 d of Se supplementation and on d 35 to 36 immediately after exercise and at 6 and 24 h after exercise. Biopsies of the middle gluteal muscle were obtained on d 0, before exercise on d 34, and at 6 and 24 h after exercise. Supplementation with Se above the NRC requirement (SEL) increased serum Se ( = 0.011) and muscle thioredoxin reductase (TrxR) activity ( = 0.051) but had no effect on glutathione peroxidase (GPx) activity in plasma, red blood cell (RBC) lysate, or muscle in horses at rest. Serum creatine kinase activity increased ( < 0.0001) in response to prolonged exercise but was not affected by dietary treatment. Serum lipid hydroperoxides were affected by treatment ( = 0.052) and were higher ( = 0.012) in horses receiving CON than SEL immediately following exercise. Muscle expression of was unchanged at 6 h but increased ( = 0.005) 2.8-fold 24 h after exercise, whereas muscle TrxR activity remained unchanged. Glutathione peroxidase activity increased in plasma (P < 0.0001) and decreased in RBC lysate ( = 0.010) after prolonged exercise. A Se treatment × time interaction was observed for RBC GPx activity (P = 0.048). Muscle and expression and GPx activity did not change during the 24-h period after exercise. Level of dietary Se had no overall effect on expression of , , , , , , or in muscle following

  18. Hyperinsulinemia prevents prolonged hyperglycemia after intense exercise in insulin-dependent diabetic subjects.

    PubMed

    Sigal, R J; Purdon, C; Fisher, S J; Halter, J B; Vranic, M; Marliss, E B

    1994-10-01

    Hyperglycemia with accompanying hyperinsulinemia occurs after brief, greater than 85% maximum oxygen consumption exercise to exhaustion in normal subjects and persists up to 60 min of recovery. To determine the importance of endogenous insulin secretion during and after intense exercise, responses to exercise of lean fit male post-absorptive insulin-dependent diabetes mellitus (IDDM) subjects, aged 18-34 yr, were compared with those of control subjects (C; n = 6). Three iv insulin protocols were employed: hyperglycemic (HG; n = 7) and euglycemic (EG1; n = 6) with constant insulin infusion, and euglycemic with doubled insulin infusion during recovery (EG2; n = 6). Overnight iv insulin was adjusted to achieve prolonged euglycemia (5.4 +/- 0.3 mmol/L) or hyperglycemia (8.6 +/- 0.3 mmol/L) before exercise. This allowed for comparisons between HG and EG1 (constant infusion) and between C and EG2 (to approximate physiological hyperinsulinemia by doubling the infusion rates at exhaustion for 56 +/- 7 min during recovery). Subjects exercised to 89-98% of their individual maximum oxygen consumption for 12.8 +/- 0.3 min. Glycemia increased to maximum values at 6 min of recovery (9.8 +/- 0.5 in HG, 6.9 +/- 0.4 in EG1, 7.3 +/- 0.3 in EG2, and 6.9 +/- 0.4 mmol/L in C). Whereas in EG2 and C, glucose returned to resting values in 50-80 min, it remained elevated at 120 min recovery in HG and EG1. During exercise, [3-3H]-glucose-determined glucose production increased markedly and exceeded disappearance in all groups, but less so in the HG subjects than in the other groups. An early recovery decline in glucose production did not differ among groups, but MCR (rate of glucose disappearance/glycemia) were markedly lower in HG and EG1, in whom plasma free insulin remained unchanged from 15 min of recovery onward (MCR, 1.6-1.9 vs. 2.3-2.8 mL/kg.min in C). Doubling the insulin infusion rate in EG2 restored the MCR response to that of C subjects. In summary, constant insulin infusion is

  19. Dehydration accelerates reductions in cerebral blood flow during prolonged exercise in the heat without compromising brain metabolism.

    PubMed

    Trangmar, Steven J; Chiesa, Scott T; Llodio, Iñaki; Garcia, Benjamin; Kalsi, Kameljit K; Secher, Niels H; González-Alonso, José

    2015-11-01

    Dehydration hastens the decline in cerebral blood flow (CBF) during incremental exercise, whereas the cerebral metabolic rate for O2 (CMRO2 ) is preserved. It remains unknown whether CMRO2 is also maintained during prolonged exercise in the heat and whether an eventual decline in CBF is coupled to fatigue. Two studies were undertaken. In study 1, 10 male cyclists cycled in the heat for ∼2 h with (control) and without fluid replacement (dehydration) while internal and external carotid artery blood flow and core and blood temperature were obtained. Arterial and internal jugular venous blood samples were assessed with dehydration to evaluate CMRO2 . In study 2, in 8 male subjects, middle cerebral artery blood velocity was measured during prolonged exercise to exhaustion in both dehydrated and euhydrated states. After a rise at the onset of exercise, internal carotid artery flow declined to baseline with progressive dehydration (P < 0.05). However, cerebral metabolism remained stable through enhanced O2 and glucose extraction (P < 0.05). External carotid artery flow increased for 1 h but declined before exhaustion. Fluid ingestion maintained cerebral and extracranial perfusion throughout nonfatiguing exercise. During exhaustive exercise, however, euhydration delayed but did not prevent the decline in cerebral perfusion. In conclusion, during prolonged exercise in the heat, dehydration accelerates the decline in CBF without affecting CMRO2 and also restricts extracranial perfusion. Thus, fatigue is related to a reduction in CBF and extracranial perfusion rather than CMRO2 . PMID:26371170

  20. Effects of G-trainer, cycle ergometry, and stretching on physiological and psychological recovery from endurance exercise.

    PubMed

    West, Amy D; Cooke, Matthew B; LaBounty, Paul M; Byars, Allyn G; Greenwood, Mike

    2014-12-01

    The purpose of this study was to compare the effectiveness of 3 treatment modes (Anti-Gravity Treadmill [G-trainer], stationary cycling [CompuTrainer], and static stretching) on the physiological and psychological recovery after an acute bout of exhaustive exercise. In a crossover design, 12 aerobically trained men (21.3 ± 2.3 years, 72.1 ± 8.1 kg, 178.4 ± 6.3 cm, (Equation is included in full-text article.): 53.7 ± 6.3 ml·kg·min) completed a 29-km stationary cycling time trial. Immediately after the time trial, subjects completed 30 minutes of G-trainer or CompuTrainer (40% (Equation is included in full-text article.)) or static stretching exercises. A significant time effect was detected for plasma lactate (p = 0.010) and serum cortisol (p = 0.039) after exercise. No treatment or treatment by time interaction was identified for lactate or cortisol, respectively. No main effects for time, treatment, or treatment by time interaction were identified for interleukin 6 (IL-6) and tumor necrosis factor α (TNF-α). No differences were observed among treatments in skeletal muscle peak power output, mean power output, time to peak power, and rate to fatigue at 24 hours postexercise bout. Finally, no significant changes in mood status were observed after exercise and between treatment groups. When compared with stationary cycling and static stretching, exercise recovery performed on the G-trainer was unable to reduce systemic markers of stress and inflammation, blood lactate, or improve anaerobic performance and psychological mood states after an exhaustive bout of endurance exercise. Further research is warranted that includes individualized recovery modalities to create balances between the stresses of training and competition. PMID:24936899

  1. Elevated hair cortisol concentrations in endurance athletes.

    PubMed

    Skoluda, Nadine; Dettenborn, Lucia; Stalder, Tobias; Kirschbaum, Clemens

    2012-05-01

    Engaging in intensive aerobic exercise, specifically endurance sports, is associated with HPA axis activation indicated by elevated cortisol levels. Whether the repeated short-term elevations in cortisol levels result in higher long-term cortisol exposure of endurance athletes has been difficult to examine since traditional methods of cortisol assessments (saliva, blood, urine) reflect only relatively short time periods. Hair segment analysis provides a new method to assess cumulative cortisol secretion over prolonged time periods in a retrospective fashion. The aim of this study was to investigate cumulative cortisol secretion over several months reflecting intensive training and competitive races by examining hair cortisol levels of endurance athletes. Hair samples were obtained from 304 amateur endurance athletes (long-distance runners, triathletes, cyclists) and 70 controls. Cortisol concentrations were determined in the first to third 3-cm hair segments most proximal to the scalp. In addition, self-report measures of training volume were obtained. Endurance athletes exhibited higher cortisol levels in all three hair segments compared to controls (p<.001). Positive correlations between the cortisol concentration in the first hair segment and each indicator of training volume were found (all p<.01). These data suggest that repeated physical stress of intensive training and competitive races among endurance athletes is associated with elevated cortisol exposure over prolonged periods of time. These findings may have important implications with regard to somatic and mental health of athletes which should be investigated in future research. PMID:21944954

  2. Influence of body temperature on the development of fatigue during prolonged exercise in the heat.

    PubMed

    González-Alonso, J; Teller, C; Andersen, S L; Jensen, F B; Hyldig, T; Nielsen, B

    1999-03-01

    We investigated whether fatigue during prolonged exercise in uncompensable hot environments occurred at the same critical level of hyperthermia when the initial value and the rate of increase in body temperature are altered. To examine the effect of initial body temperature [esophageal temperature (Tes) = 35.9 +/- 0.2, 37.4 +/- 0. 1, or 38.2 +/- 0.1 (SE) degrees C induced by 30 min of water immersion], seven cyclists (maximal O2 uptake = 5.1 +/- 0.1 l/min) performed three randomly assigned bouts of cycle ergometer exercise (60% maximal O2 uptake) in the heat (40 degrees C) until volitional exhaustion. To determine the influence of rate of heat storage (0.10 vs. 0.05 degrees C/min induced by a water-perfused jacket), four cyclists performed two additional exercise bouts, starting with Tes of 37.0 degrees C. Despite different initial temperatures, all subjects fatigued at an identical level of hyperthermia (Tes = 40. 1-40.2 degrees C, muscle temperature = 40.7-40.9 degrees C, skin temperature = 37.0-37.2 degrees C) and cardiovascular strain (heart rate = 196-198 beats/min, cardiac output = 19.9-20.8 l/min). Time to exhaustion was inversely related to the initial body temperature: 63 +/- 3, 46 +/- 3, and 28 +/- 2 min with initial Tes of approximately 36, 37, and 38 degrees C, respectively (all P < 0.05). Similarly, with different rates of heat storage, all subjects reached exhaustion at similar Tes and muscle temperature (40.1-40.3 and 40. 7-40.9 degrees C, respectively), but with significantly different skin temperature (38.4 +/- 0.4 vs. 35.6 +/- 0.2 degrees C during high vs. low rate of heat storage, respectively, P < 0.05). Time to exhaustion was significantly shorter at the high than at the lower rate of heat storage (31 +/- 4 vs. 56 +/- 11 min, respectively, P < 0.05). Increases in heart rate and reductions in stroke volume paralleled the rise in core temperature (36-40 degrees C), with skin blood flow plateauing at Tes of approximately 38 degrees C. These

  3. Effect of acute L-Alanyl-L-Glutamine and electrolyte ingestion on cognitive function and reaction time following endurance exercise.

    PubMed

    Pruna, Gabriel J; Hoffman, Jay R; McCormack, William P; Jajtner, Adam R; Townsend, Jeremy R; Bohner, Jonathan D; La Monica, Michael B; Wells, Adam J; Stout, Jeffrey R; Fragala, Maren S; Fukuda, David H

    2016-01-01

    The purpose of this study was to examine the effect of the L-Alanyl-L-Glutamine dipeptide (AG) on cognitive function and reaction time (RT) following endurance exercise. Twelve male endurance athletes (23.5 ± 3.7 y; 175.5 ± 5.4 cm; 70.7 ± 7.6 kg) performed four trials, each consisting of running on a treadmill at 70% of VO2max for 1h, then at 90% of VO2max until exhaustion. One trial consisted of no hydration (DHY), another required ingestion of only a sports electrolyte drink (ED) and two trials required ingestion of a low dose (LD; 300 mg·500 ml(-1)) and high dose (HD) of AG (1 g·500ml(-1)) added to the ED. Cognitive function and reaction tests were administered pre- and post-exercise. Magnitude based inferences were used to analyze ∆ cognitive function and ∆ reaction test data. Results indicated that DHY had a possible negative effect on number of hits in a 60-sec reaction test compared to LD and HD, while ED appeared to have a negative effect compared to HD. Analysis of lower body quickness indicated that LD and HD were likely improved in comparison to DHY. Performance on the serial subtraction test appeared to be possibly better in ED than DHY, while other comparisons between groups regarding cognitive function were unclear. In conclusion, rehydrating with AG during submaximal exercise may maintain or enhance subsequent RT in upper and lower body activities compared to DHY. These same effects were not apparent when participants consumed ED. PMID:25321847

  4. Is Sodium Supplementation Necessary to Avoid Dehydration During Prolonged Exercise in the Heat?

    PubMed

    Hoffman, Martin D; Stuempfle, Kristin J

    2016-03-01

    The primary purpose of this work was to gain further insight into the need for sodium supplementation for maintenance of appropriate hydration during prolonged exercise under hot conditions. Participants of a 161-km ultramarathon (ambient temperature reaching 39° C) underwent body weight measurements immediately before, during, and after the race, and completed a postrace questionnaire about supplemental sodium intake and drinking strategies during 4 race segments. The postrace questionnaire was completed by 233 (78.7%) race finishers. Significant direct relationships were found for percentage weight change during the race with intake rate (r = 0.18, p = 0.0058) and total amount (r = 0.24, p = 0.0002) of sodium in supplements. Comparing those using no sodium supplements throughout the race (n = 15) with those using sodium supplements each race segment (n = 138), body weight change across the course showed significant group (p = 0.022), course location (p < 0.0001), and interaction (p = 0.0098) effects. Posttests revealed greater weight loss at 90 km (p = 0.016, -3.2 ± 1.6% vs. -2.2 ± 1.5%, mean ± SD) and the finish (p = 0.014, -3.2 ± 1.5% vs. -1.9 ± 1.9%) for those using no sodium supplements compared with those using sodium supplements each segment. Six runners who used no sodium supplements, drank to thirst, and only drank water or a mixture of mostly water with some electrolyte-containing drink finished with mean weight change of -3.4%. Although the use of supplemental sodium enhanced body weight maintenance, those not using sodium supplements maintained a more appropriate weight than those consistently using sodium supplements. Therefore, we conclude that the supplemental sodium is unnecessary to maintain appropriate hydration during prolonged exercise in the heat. PMID:26907835

  5. Cardiovascular Effects of 1 Year of Alagebrium and Endurance Exercise Training in Healthy Older Individuals

    PubMed Central

    Fujimoto, Naoki; Hastings, Jeffrey L.; Carrick-Ranson, Graeme; Shafer, Keri M.; Shibata, Shigeki; Bhella, Paul S.; Abdullah, Shuaib M.; Barkley, Kyler W.; Adams-Huet, Beverley; Boyd, Kara N.; Livingston, Sheryl A.; Palmer, Dean; Levine, Benjamin D.

    2014-01-01

    Background Lifelong exercise training maintains a youthful compliance of the left ventricle (LV), whereas a year of exercise training started later in life fails to reverse LV stiffening, possibly because of accumulation of irreversible advanced glycation end products. Alagebrium breaks advanced glycation end product crosslinks and improves LV stiffness in aged animals. However, it is unclear whether a strategy of exercise combined with alagebrium would improve LV stiffness in sedentary older humans. Methods and Results Sixty-two healthy subjects were randomized into 4 groups: sedentary+placebo; sedentary+alagebrium (200 mg/d); exercise+placebo; and exercise+alagebrium. Subjects underwent right heart catheterization to define LV pressure–volume curves; secondary functional outcomes included cardiopulmonary exercise testing and arterial compliance. A total of 57 of 62 subjects (67±6 years; 37 f/20 m) completed 1 year of intervention followed by repeat measurements. Pulmonary capillary wedge pressure and LV end-diastolic volume were measured at baseline, during decreased and increased cardiac filling. LV stiffness was assessed by the slope of LV pressure–volume curve. After intervention, LV mass and end-diastolic volume increased and exercise capacity improved (by ≈8%) only in the exercise groups. Neither LV mass nor exercise capacity was affected by alagebrium. Exercise training had little impact on LV stiffness (training×time effect, P=0.46), whereas alagebrium showed a modest improvement in LV stiffness compared with placebo (medication×time effect, P=0.04). Conclusions Alagebrium had no effect on hemodynamics, LV geometry, or exercise capacity in healthy, previously sedentary seniors. However, it did show a modestly favorable effect on age-associated LV stiffening. PMID:24130005

  6. Endurance exercise alters cellular immune status and resistin concentrations in men suffering from non-insulin-dependent type 2 diabetes.

    PubMed

    Wenning, P; Kreutz, T; Schmidt, A; Opitz, D; Graf, C; Voss, S; Bloch, W; Brixius, K

    2013-08-01

    It has been demonstrated that alterations of adipocytokines can alter immune status in type 2 diabetes. The present study investigated changes of adipocytokine plasma concentrations and cellular immune status in overweight men, suffering from non-insulin dependent type 2 diabetes (n=14, age 61.0±8.7 years, BMI 31.1±3.5 kg/cm2). Subjects underwent a 3 months endurance exercise intervention (twice per week for up to 45 min) cycling at a heart rate corresponding to a 2 mmol/l lactate threshold. Before and after the intervention testing for adipocytokines (leptin, adiponectin, resistin) and cellular immune status (including T memory-cells and regulative T-cells) was performed by RIA and FACS accordingly.The exercise intervention improved anthropometric and metabolic parameters of all subjects. We observed a significant decline for resistin and for the CD19+ B-cells. The CD4+CD25+CD127low Treg-cells decreased, however not statistically significant. All other parameters remained unchanged.In conclusion, even though only training twice a week, the exercise affected parts of the cellular immune system as well as resistin levels in men suffering from non-insulin dependent type 2 diabetes. PMID:24026829

  7. Influence of endurance exercise and diet on human placental development and fetal growth.

    PubMed

    Clapp, J F

    2006-01-01

    The delivery of oxygen and substrate to the maternal-fetal interphase is the major maternal environmental stimulus which either up- or down-regulates feto-placental growth. During pregnancy, sustained exercise sessions cause an intermittent reduction in oxygen and substrate delivery to the interphase that may exceed 50% during the exercise but, it is probable that regular bouts of sustained exercise or exercise training may improve oxygen and substrate delivery at rest. The type of maternal carbohydrate intake (low- versus high-glycemic sources) and food intake frequency also influence substrate availability through their effects on maternal blood glucose levels and insulin sensitivity. As a result, different exercise regimens and/or different types of carbohydrate intake modify feto-placental growth. The magnitude and direction of the effect is determined by their average 24-h effect on oxygen and substrate availability at different time-points in pregnancy. In general, exercise in early and mid pregnancy stimulates placental growth while the relative amount of exercise in late pregnancy determines its effect on late fetal growth. Low-glycemic food sources in the diet decrease growth rate and size at birth while high-glycemic food sources increase it. Thus, it may be possible to improve pregnancy outcomes in both healthy, low-risk women and a variety of high-risk populaces by simply modifying maternal physical activity and dietary carbohydrate intake during pregnancy. PMID:16165206

  8. Serum Proteomic Changes after Randomized Prolonged Erythropoietin Treatment and/or Endurance Training: Detection of Novel Biomarkers

    PubMed Central

    Christensen, Britt; Ludvigsen, Maja; Nellemann, Birgitte; Kopchick, John J.; Honoré, Bent; Jørgensen, Jens Otto L.

    2015-01-01

    Introduction Despite implementation of the biological passport to detect erythropoietin abuse, a need for additional biomarkers remains. We used a proteomic approach to identify novel serum biomarkers of prolonged erythropoiesis-stimulating agent (ESA) exposure (Darbepoietin-α) and/or aerobic training. Trial Design Thirty-six healthy young males were randomly assigned to the following groups: Sedentary-placebo (n = 9), Sedentary-ESA (n = 9), Training-placebo (n = 10), or Training-ESA (n = 8). They were treated with placebo/Darbepoietin-α subcutaneously once/week for 10 weeks followed by a 3-week washout period. Training consisted of supervised biking 3/week for 13 weeks at the highest possible intensity. Serum was collected at baseline, week 3 (high dose Darbepoietin-α), week 10 (reduced dose Darbepoietin-α), and after a 3-week washout period. Methods Serum proteins were separated according to charge and molecular mass (2D-gel electrophoresis). The identity of proteins from spots exhibiting altered intensity was determined by mass spectrometry. Results Six protein spots changed in response to Darbepoietin-α treatment. Comparing all 4 experimental groups, two protein spots (serotransferrin and haptoglobin/haptoglobin related protein) showed a significant response to Darbepoietin-α treatment. The haptoglobin/haptoglobin related protein spot showed a significantly lower intensity in all subjects in the training-ESA group during the treatment period and increased during the washout period. Conclusion An isoform of haptoglobin/haptoglobin related protein could be a new anti-doping marker and merits further research. Trial Registration ClinicalTrials.gov NCT01320449 PMID:25679398

  9. Influence of endurance exercise performance on hemodynamic and hormonal responses to lower body negative pressure (LBNP) and +Gz tolerance in the aspect of individual sensitivity to motion sickness.

    PubMed

    Turski, B K; Debinski, W B; Gembicka-Kuzak, D M; Kaczorowski, Z; Klossowski, M; Dabrowski, O B

    1996-09-01

    A possible relationship between endurance exercise training, susceptibility to motion sickness, and orthostatic tolerance was investigated. Male subjects underwent acceleration tolerance tests, lower body negative pressure, and Coriolis tests. During the experimental protocol, hemodynamic parameters were measured including heart rate, stroke volume, blood pressure, and cardiac output, and blood was drawn and analyzed for various hormones. Specific results are presented and discussed. PMID:11540301

  10. The effect of cumulative endurance exercise on leptin and adiponectin and their role as markers to monitor training load.

    PubMed

    Voss, S C; Nikolovski, Z; Bourdon, P C; Alsayrafi, M; Schumacher, Y O

    2016-03-01

    Leptin and adiponectin play an essential role in energy metabolism. Leptin has also been proposed as a marker for monitoring training load. So far, no studies have investigated the variability of these hormones in athletes and how they are regulated during cumulative exercise. This study monitored leptin and adiponectin in 15 endurance athletes twice daily in the days before, during and after a 9-day simulated cycling stage race. Adiponectin significantly increased during the race (p = 0.001) and recovery periods (p = 0.002) when compared to the baseline, while leptin decreased significantly during the race (p < 0.0001) and returned to baseline levels during the recovery period. Intra-individual variability was substantially lower than inter-individual variability for both hormones (leptin 34.1 vs. 53.5%, adiponectin 19% vs. 37.2%). With regards to exercise, this study demonstrated that with sufficient, sustained energy expenditure, leptin concentrations can decrease within the first 24 hours. Under the investigated conditions there also appears to be an optimal leptin concentration which ensures stable energy homeostasis, as there was no significant decrease over the subsequent race days. In healthy endurance athletes the recovery of leptin takes 48-72 hours and may even show a supercompensation-like effect. For adiponectin, significant increases were observed within 5 days of commencing racing, with these elevated values failing to return to baseline levels after 3 days of recovery. Additionally, when using leptin and adiponectin to monitor training loads, establishing individual threshold values improves their sensitivity. PMID:26985130

  11. The effect of cumulative endurance exercise on leptin and adiponectin and their role as markers to monitor training load

    PubMed Central

    Nikolovski, Z; Bourdon, PC; Alsayrafi, M; Schumacher, YO

    2015-01-01

    Leptin and adiponectin play an essential role in energy metabolism. Leptin has also been proposed as a marker for monitoring training load. So far, no studies have investigated the variability of these hormones in athletes and how they are regulated during cumulative exercise. This study monitored leptin and adiponectin in 15 endurance athletes twice daily in the days before, during and after a 9-day simulated cycling stage race. Adiponectin significantly increased during the race (p = 0.001) and recovery periods (p = 0.002) when compared to the baseline, while leptin decreased significantly during the race (p < 0.0001) and returned to baseline levels during the recovery period. Intra-individual variability was substantially lower than inter-individual variability for both hormones (leptin 34.1 vs. 53.5%, adiponectin 19% vs. 37.2%). With regards to exercise, this study demonstrated that with sufficient, sustained energy expenditure, leptin concentrations can decrease within the first 24 hours. Under the investigated conditions there also appears to be an optimal leptin concentration which ensures stable energy homeostasis, as there was no significant decrease over the subsequent race days. In healthy endurance athletes the recovery of leptin takes 48-72 hours and may even show a supercompensation-like effect. For adiponectin, significant increases were observed within 5 days of commencing racing, with these elevated values failing to return to baseline levels after 3 days of recovery. Additionally, when using leptin and adiponectin to monitor training loads, establishing individual threshold values improves their sensitivity. PMID:26985130

  12. Mild haemorheological changes induced by a moderate endurance exercise in patients with sickle cell anaemia.

    PubMed

    Balayssac-Siransy, Edwige; Connes, Philippe; Tuo, Nalourgo; Danho, Clotaire; Diaw, Mor; Sanogo, Ibrahima; Hardy-Dessources, Marie-Dominique; Samb, Abdoulaye; Ballas, Samir K; Bogui, Pascal

    2011-08-01

    The levels and duration of physical activity that can be considered as completely safe in patients with sickle cell anaemia (SCA) is unknown. The present study compared the haemorheological and haematological profile, cell density distribution and basic biochemistry between a group of 17 patients with SCA and 21 healthy subjects before and after a 20 min duration submaximal cycling exercise at the same absolute workload. Blood was sampled at rest and 3 min after the end of exercise for measurement of biological parameters. Exercise did not affect the haematocrit and blood viscosity in the two groups. Plasma viscosity was not different between the two groups at rest and similarly increased with exercise. The proportion of intermediary dense cells (with density between 1·11 and 1·12 g/ml) decreased with exercise in the SCA group resulting in an increase in the proportion of red blood cells with a density >1·12 g/ml. No change was observed in the control group. The present study suggests that mild-moderate exercise is not very harmful for SCA patients. The haemorheological and haematological changes were very mild, except for the formation of dense cells but no clinically significant signs of medical complication were present in any of the patients. PMID:21569006

  13. The influence of carbohydrate-protein co-ingestion following endurance exercise on myofibrillar and mitochondrial protein synthesis.

    PubMed

    Breen, Leigh; Philp, Andrew; Witard, Oliver C; Jackman, Sarah R; Selby, Anna; Smith, Ken; Baar, Keith; Tipton, Kevin D

    2011-08-15

    The aim of the present study was to determine mitochondrial and myofibrillar muscle protein synthesis (MPS) when carbohydrate (CHO) or carbohydrate plus protein (C+P) beverages were ingested following prolonged cycling exercise. The intracellular mechanisms thought to regulate MPS were also investigated. In a single-blind, cross-over study, 10 trained cyclists (age 29 ± 6 years, VO2max 66.5 ± 5.1 ml kg(−1) min(−1)) completed two trials in a randomized order. Subjects cycled for 90 min at 77 ± 1% VO2max before ingesting a CHO (25 g of carbohydrate) or C+P (25 g carbohydrate + 10 g whey protein) beverage immediately and 30 min post-exercise. A primed constant infusion of L-[ring-(13)C6]phenylalanine began 1.5 h prior to exercise and continued until 4 h post-exercise. Muscle biopsy samples were obtained to determine myofibrillar and mitochondrial MPS and the phosphorylation of intracellular signalling proteins. Arterialized blood samples were obtained throughout the protocol. Plasma amino acid and urea concentrations increased following ingestion of C+P only. Serum insulin concentration increased more for C+P than CHO. Myofibrillar MPS was ∼35% greater for C+P compared with CHO (0.087 ± 0.007 and 0.057 ± 0.006% h(−1), respectively; P = 0.025). Mitochondrial MPS rates were similar for C+P and CHO (0.082 ± 0.011 and 0.086 ± 0.018% h(−1), respectively). mTOR(Ser2448) phosphorylation was greater for C+P compared with CHO at 4 h post-exercise (P < 0.05). p70S6K(Thr389) phosphorylation increased at 4 h post-exercise for C+P (P < 0.05), whilst eEF2(Thr56) phosphorylation increased by ∼40% at 4 h post-exercise for CHO only (P < 0.01). The present study demonstrates that the ingestion of protein in addition to carbohydrate stimulates an increase in myofibrillar, but not mitochondrial, MPS following prolonged cycling. These data indicate that the increase in myofibrillar MPS for C+P could, potentially, be mediated through p70S6K, downstream of mTOR, which in

  14. Effects of Three-Day Bed Rest on Physiological Responses to Graded Exercise in Endurance Athletes, Body Builders and Sedentary Men

    NASA Technical Reports Server (NTRS)

    Smorawinski, J.; Nazar, K.; Kaciuza-Uscilko, H.; Kaminska, E.; Cybulski, G.; Kodrzycka, A.; Bice, B.; Greenleaf, J. E.; Sun, Sid (Technical Monitor)

    2001-01-01

    To test the hypotheses that short-term bed rest (BR) deconditioning influences metabolic, cardiorespiratory and neurohormonal responses to exercise and that these effects depend on the subjects' training status 12 sedentary men, and 10 endurance- and 10 strength-trained athletes were submitted to three-day BR. Before and after BR they performed incremental exercise test until volitional exhaustion. Respiratory gas exchange and HR were recorded continuously and stroke volume (SV) was measured at submaximal loads. Blood was taken for lactate [LA], adrenaline [A], noradrenaline, [NA], renting activity (PRA), growth hormone [hGH], testosterone and cortisol determination. Reduction of peak oxygen uptake (VO2peak) after BR was greater in the endurance athletes (than in the remaining groups (17 % vs. 100%). Decrements in VO2peak correlated positively with the initial values (r = 0.73, p less than 0.001). Resting and exercise respiratory exchange ratios were increased in athletes. Cardiac output was unchanged by BR in all groups, but exercise HR was increased and SV diminished in the sedentary subjects. The submaximal [LA] and [LA] thresholds were decreased the in endurance athletes from 71 to 60 %VO2 peak (p less than 0.001); they also had an earlier increase in [NA], and an attenuated increase in [hGH), and accentuated PRA and cortisol elevations during exercise. These effects were insignificant in the remaining subjects. In conclusion: reduction of exercise performance and modifications in neurohormonal response to exercise after BR depend on the previous level and mode of physical training, being the most pronounced in the endurance athletes.

  15. Effects of Three-Day Bed Rest on Physiological Responses to Graded Exercise in Endurance Athletes, Body Builders and Sedentary Men

    NASA Technical Reports Server (NTRS)

    Smorawinski, J.; Nazar, K.; Kaciuza-Uscilko; Kaminska, E.; Kodrzycka, A.; Bicz, B.; Greenleaf, J. E.

    2001-01-01

    To test the hypotheses that short-term bed rest (BR) deconditioning influences metabolic, cardiorespiratory and neurohormonal responses to exercise and that these effects depend on the subjects' training status, 12 sedentary men, and 10 endurance- and 10 strength-trained athletes were submitted to three-day BR. Before and after BR they performed incremental exercise tests until volitional exhaustion. Respiratory gas exchange and HR were recorded continuously and stroke volume (SV) was measured at submaximal loads. Blood was taken for lactate [LA], adrenaline [A], noradrenaline [NA], renin activity (PRA), growth hormone [hGH], testosterone and cortisol determination. Reduction of peak oxygen uptake (V02peak) after BR was greater in the endurance athletes than in the remaining groups (17 % vs. 10%). Decrements in VO2peak correlated positively with the initial values (r = 0.73, p is less than 0.001). Resting and exercise respiratory exchange ratios were increased in athletes. Cardiac output was unchanged by BR in all groups, but exercise HR was increased and SV diminished in the sedentary subjects. The submaximal [LA] and [LA] thresholds were decreased the in endurance athletes from 71 to 60% V02 peak (p is less than0.001), they also had an earlier increase in [NA], an attenuated increase in [hGH], and accentuated PRA and cortisol elevations during exercise. These effects were insignificant in the remaining subjects. In conclusion: reduction of exercise performance and modifications in neurohormonal response to exercise after BR depend on the previous level and mode of physical training, being the most pronounced in the endurance athletes.

  16. Chronic endurance exercise training offsets the age-related attenuation in contraction-induced rapid vasodilation.

    PubMed

    Hughes, William E; Ueda, Kenichi; Casey, Darren P

    2016-06-01

    Aging is associated with attenuated contraction-induced rapid onset vasodilation (ROV). We sought to examine whether chronic exercise training would improve ROV in older adults. Additionally, we examined whether a relationship between cardiorespiratory fitness and ROV exists in young and older adults. Chronically exercise-trained older adults (n = 16; 66 ± 2 yr, mean ± SE) performed single muscle contractions in the forearm and leg at various intensities. Brachial and femoral artery diameter and blood velocity were measured using Doppler ultrasound. Vascular conductance (VC) was calculated as the quotient of blood flow (ml/min) and mean arterial pressure (mmHg). These data were compared with our previously published work from an identical protocol in 16 older untrained (66 ± 1 yr, mean ± SE) and 14 young (23 ± 1 yr) adults. Peak (ΔVCpeak) and total vasodilator (VCtotal) responses were greater in trained compared with untrained older adults across leg exercise intensities (P < 0.05). There were no differences in responses between trained older and young adults in the arm or leg at any exercise intensity (P > 0.05). Comparison of ΔVCpeak in a subset of subjects at an absolute workload in the leg revealed that trained older adults exhibited augmented responses relative to untrained older adults. Exercise capacity (V̇o2 peak) was associated with ΔVCpeak and VCtotal across arm (r = 0.59-0.64) and leg exercise intensities (r = 0.55-0.68, P < 0.05) in older adults. Our data demonstrate that 1) chronic exercise training improves ROV in the arm and leg of trained older adults, such that age-related differences in ROV are abolished, and 2) VO2peak is associated with ΔVCpeak responses in both limbs of older adults. PMID:27032899

  17. Endurance exercise training induces fat depot-specific differences in basal autophagic activity.

    PubMed

    Tanaka, Goki; Kato, Hisashi; Izawa, Tetsuya

    2015-10-23

    The purpose of this study was to uncover the effect of exercise training on the expression of autophagy marker proteins in epididymal white adipose tissue (eWAT), inguinal WAT (iWAT), and the stromal vascular fraction (SVF) collected from eWAT. Male Wistar rats aged 4-5 weeks were randomly divided into two groups, sedentary control (n = 7) and exercise-trained (n = 7). Rats in the exercise-trained group were exercised on a treadmill set at a 5° incline 5 days/week for 9 weeks. We determined that the expression levels of an autophagosome-associating form of microtubule-associated protein 1 light chain 3 (LC3)-II and of p62 were significantly higher in eWAT from exercise-trained than from control rats, while those of adipose-specific deletion of autophagy-related protein (ATG7) and lysosomal-associated membrane protein type 2A (LAMP2a) showed no difference between groups. However, in iWAT, the expression levels of LC3-II and ATG7 were significantly higher in exercise-trained than in control rats. The expression of p62 was highly correlated with that of peroxisome proliferator-activated receptor γ (PPARγ), a master regulator of adipogenesis and lipid metabolism, in both WAT types (eWAT, r = 0.856, P < 0.05; iWAT, r = 0.762, P < 0.05), whereas LC3-II and PPARγ levels were highly correlated in eWAT (r = 0.765, P < 0.05) but not in iWAT (r = -0.306, ns). In SVF, the expression levels of LC3II, ATG7, and LAMP2a were significantly higher in exercise-trained than in control rats. These results suggest that exercise training suppresses basal autophagy activity in eWAT, but that this activity is enhanced in iWAT and SVF collected from eWAT. Thus, the adaptation of basal autophagic activity following exercise training exhibits fat depot-specific differences. PMID:26381175

  18. Cerebral volumetric changes induced by prolonged hypoxic exposure and whole-body exercise.

    PubMed

    Rupp, Thomas; Jubeau, Marc; Lamalle, Laurent; Warnking, Jan M; Millet, Guillaume Y; Wuyam, Bernard; Esteve, François; Levy, Patrick; Krainik, Alexandre; Verges, Samuel

    2014-11-01

    The present study assessed the isolated and synergetic effects of hypoxic exposure and prolonged exercise on cerebral volume and subedema and symptoms of acute mountain sickness (AMS). Twelve healthy males performed three semirandomized blinded 11-hour sessions with (1) an inspiratory oxygen fraction (FiO2) of 12% and 4-hour cycling, (2) FiO2=21% and 4-hour cycling, and (3) FiO2=8.5% to 12% at rest (matching arterial oxygen saturation measured during the first hypoxic session). Volumetric, apparent diffusion coefficient (ADC), and arterial spin labelling 3T magnetic resonance imaging sequences were performed after 30 minutes and 10 hours in each session. Thirty minutes of hypoxia at rest induced a significant increase in white-matter volume (+0.8±1.0% compared with normoxia) that was exacerbated after 10 hours of hypoxia at rest (+1.5±1.1%) or with cycling (+1.6±1.1%). Total brain parenchyma volume increased significantly after 10 hours of hypoxia with cycling only (+1.3±1.1%). Apparent diffusion coefficient was significantly reduced after 10 hours of hypoxia at rest or with cycling. No significant change in cerebral blood flow was observed. These results demonstrate changes in white-matter volume as early as after 30 minutes of hypoxia that worsen after 10 hours, probably due to cytotoxic edema. Exercise accentuates the effect of hypoxia by increasing total brain volume. These changes do not however correlate with AMS symptoms. PMID:25160673

  19. Living altitude influences endurance exercise performance change over time at altitude.

    PubMed

    Chapman, Robert F; Karlsen, Trine; Ge, R-L; Stray-Gundersen, James; Levine, Benjamin D

    2016-05-15

    For sea level based endurance athletes who compete at low and moderate altitudes, adequate time for acclimatization to altitude can mitigate performance declines. We asked whether it is better for the acclimatizing athlete to live at the specific altitude of competition or at a higher altitude, perhaps for an increased rate of physiological adaptation. After 4 wk of supervised sea level training and testing, 48 collegiate distance runners (32 men, 16 women) were randomly assigned to one of four living altitudes (1,780, 2,085, 2,454, or 2,800 m) where they resided for 4 wk. Daily training for all subjects was completed at a common altitude from 1,250 to 3,000 m. Subjects completed 3,000-m performance trials on the track at sea level, 28 and 6 days before departure, and at 1,780 m on days 5, 12, 19, and 26 of the altitude camp. Groups living at 2,454 and 2,800 m had a significantly larger slowing of performance vs. the 1,780-m group on day 5 at altitude. The 1,780-m group showed no significant change in performance across the 26 days at altitude, while the groups living at 2,085, 2,454, and 2,800 m showed improvements in performance from day 5 to day 19 at altitude but no further improvement at day 26 The data suggest that an endurance athlete competing acutely at 1,780 m should live at the altitude of the competition and not higher. Living ∼300-1,000 m higher than the competition altitude, acute altitude performance may be significantly worse and may require up to 19 days of acclimatization to minimize performance decrements. PMID:26968028

  20. Influence of statins on distinct circulating microRNAs during prolonged aerobic exercise.

    PubMed

    Min, Pil-Ki; Park, Joseph; Isaacs, Stephanie; Taylor, Beth A; Thompson, Paul D; Troyanos, Chris; D'Hemecourt, Pierre; Dyer, Sophia; Chan, Stephen Y; Baggish, Aaron L

    2016-03-15

    Statins exacerbate exercise-induced skeletal muscle injury. Muscle-specific microRNAs (myomiRs) increase in plasma after prolonged exercise, but the patterns of myomiRs release after statin-associated muscle injury have not been examined. We examined the relationships between statin exposure, in vitro and in vivo muscle contraction, and expression of candidate circulating myomiRs. We measured plasma levels of myomiRs, circulating microRNA-1 (c-miR-1), c-miR-133a, c-miR-206, and c-miR-499-5p from 28 statin-using and 28 nonstatin-using runners before (PRE), immediately after (FINISH), and 24 h after they ran a 42-km footrace (the 2011 Boston marathon) (POST-24). To examine these cellular-regulation myomiRs, we used contracting mouse C2C12 myotubes in culture with and without statin exposure to compare intracellular and extracellular expression of these molecules. In marathoners, c-miR-1, c-miR-133a, and c-miR-206 increased at FINISH, returned to baseline at POST-24, and were unaffected by statin use. In contrast, c-miR-499-5p was unchanged at FINISH but increased at POST-24 among statin users compared with PRE and runners who did not take statins. In cultured C2C12 myotubes, extracellular c-miR-1, c-miR-133a, and c-miR-206 were significantly increased by muscle contraction regardless of statin use. In contrast, extracellular miR-499-5p was unaffected by either isolated statin exposure or isolated carbachol exposure but it was increased when muscle contraction was combined with statin exposure. In summary, we found that statin-potentiated muscle injury during exercise is accompanied by augmented extracellular release of miR-499-5p. Thus c-miR-499-5p may serve as a biomarker of statin-potentiated muscle damage. PMID:26472872

  1. Integrated mRNA and miRNA expression profiling in blood reveals candidate biomarkers associated with endurance exercise in the horse.

    PubMed

    Mach, Núria; Plancade, Sandra; Pacholewska, Alicja; Lecardonnel, Jérôme; Rivière, Julie; Moroldo, Marco; Vaiman, Anne; Morgenthaler, Caroline; Beinat, Marine; Nevot, Alizée; Robert, Céline; Barrey, Eric

    2016-01-01

    The adaptive response to extreme endurance exercise might involve transcriptional and translational regulation by microRNAs (miRNAs). Therefore, the objective of the present study was to perform an integrated analysis of the blood transcriptome and miRNome (using microarrays) in the horse before and after a 160 km endurance competition. A total of 2,453 differentially expressed genes and 167 differentially expressed microRNAs were identified when comparing pre- and post-ride samples. We used a hypergeometric test and its generalization to gain a better understanding of the biological functions regulated by the differentially expressed microRNA. In particular, 44 differentially expressed microRNAs putatively regulated a total of 351 depleted differentially expressed genes involved variously in glucose metabolism, fatty acid oxidation, mitochondrion biogenesis, and immune response pathways. In an independent validation set of animals, graphical Gaussian models confirmed that miR-21-5p, miR-181b-5p and miR-505-5p are candidate regulatory molecules for the adaptation to endurance exercise in the horse. To the best of our knowledge, the present study is the first to provide a comprehensive, integrated overview of the microRNA-mRNA co-regulation networks that may have a key role in controlling post-transcriptomic regulation during endurance exercise. PMID:26960911

  2. Integrated mRNA and miRNA expression profiling in blood reveals candidate biomarkers associated with endurance exercise in the horse

    PubMed Central

    Mach, Núria; Plancade, Sandra; Pacholewska, Alicja; Lecardonnel, Jérôme; Rivière, Julie; Moroldo, Marco; Vaiman, Anne; Morgenthaler, Caroline; Beinat, Marine; Nevot, Alizée; Robert, Céline; Barrey, Eric

    2016-01-01

    The adaptive response to extreme endurance exercise might involve transcriptional and translational regulation by microRNAs (miRNAs). Therefore, the objective of the present study was to perform an integrated analysis of the blood transcriptome and miRNome (using microarrays) in the horse before and after a 160 km endurance competition. A total of 2,453 differentially expressed genes and 167 differentially expressed microRNAs were identified when comparing pre- and post-ride samples. We used a hypergeometric test and its generalization to gain a better understanding of the biological functions regulated by the differentially expressed microRNA. In particular, 44 differentially expressed microRNAs putatively regulated a total of 351 depleted differentially expressed genes involved variously in glucose metabolism, fatty acid oxidation, mitochondrion biogenesis, and immune response pathways. In an independent validation set of animals, graphical Gaussian models confirmed that miR-21-5p, miR-181b-5p and miR-505-5p are candidate regulatory molecules for the adaptation to endurance exercise in the horse. To the best of our knowledge, the present study is the first to provide a comprehensive, integrated overview of the microRNA-mRNA co-regulation networks that may have a key role in controlling post-transcriptomic regulation during endurance exercise. PMID:26960911

  3. Evaluation of fatigue of respiratory and lower limb muscles during prolonged aerobic exercise.

    PubMed

    Nadiv, Yaara; Vachbroit, Ricki; Gefen, Amit; Elad, David; Zaretsky, Uri; Moran, Dani; Halpern, Pinchas; Ratnovsky, Anat

    2012-05-01

    The respiratory muscles may fatigue during prolonged exercises and thereby become a factor that limits extreme physical activity. The aim of the current study was to determine whether respiratory muscle fatigue imposes a limitation on extreme physical activity of well-trained young men. Electromyography (EMG) signals of respiratory (external intercostal and sternomastoid) and calf muscles (gastrocnemius) were measured (N = 8) during 1 hr of treadmill marching at a speed of 8 km/hr with and without a 15 kg backpack. The root mean square (RMS) and the mean power frequency of the EMG signals were evaluated for calculating fatigue indices. The EMG RMS revealed that the respiratory and calf muscles did not fatigue during the marching without a backpack load. The study did show, however, a significant rise in the EMG values when a backpack was carried with respect to the no-load condition (p < .05), which suggests that respiratory muscles should be trained in military recruits who are required to carry loaded backpacks while marching. PMID:22723112

  4. Combined carbohydrate-protein supplementation improves competitive endurance exercise performance in the heat.

    PubMed

    Cathcart, Andrew J; Murgatroyd, Scott R; McNab, Alison; Whyte, Laura J; Easton, Chris

    2011-09-01

    Laboratory-based studies have demonstrated that adding protein (PRO) to a carbohydrate (CHO) supplement can improve thermoregulatory capacity, exercise performance and recovery. However, no study has investigated these effects in a competitive sporting context. This study assessed the effects of combined CHO-PRO supplementation on physiological responses and exercise performance during 8 days of strenuous competition in a hot environment. Twenty-eight cyclists participating in the TransAlp mountain bike race were randomly assigned to fitness-matched placebo (PLA 76 g L(-1) CHO) or CHO-PRO (18 g L(-1) PRO, 72 g L(-1) CHO) groups. Participants were given enough supplements to allow ad libitum consumption. Physiological and anthropometric variables were recorded pre- and post-exercise. Body mass decreased significantly from race stage 1 to 8 in the PLA group (-0.75 ± 0.22 kg, P = 0.01) but did not change in the CHO-PRO group (0.42 ± 0.42 kg, P = 0.35). Creatine kinase concentration and muscle soreness were substantially elevated during the race, but were not different between groups (P = 0.82, P = 0.44, respectively). Urine osmolality was significantly higher in the CHO-PRO versus the PLA group (P = 0.04) and the rise in tympanic temperature from pre- to post-exercise was significantly less in CHO-PRO versus PLA (P = 0.01). The CHO-PRO group also completed the 8 stages significantly quicker than the PLA group (2,277 ± 127 vs. 2,592 ± 68 min, respectively, P = 0.02). CHO-PRO supplementation therefore appears to prevent body mass loss, enhance thermoregulatory capacity and improve competitive exercise performance despite no effect on muscle damage. PMID:21259024

  5. Heat strain and gross efficiency during endurance exercise after lower, upper, or whole body precooling in the heat.

    PubMed

    Daanen, H A; van Es, E M; de Graaf, J L

    2006-05-01

    The maximal power that muscles can generate is reduced at low muscle temperatures. However, in prolonged heavy exercise in the heat, a high core temperature may be the factor limiting performance. Precooling has been shown to delay the attainment of hyperthermia. It is still unclear if the whole body should be cooled or if the active muscles should be excluded from cooling in order to maintain muscle power. An experiment was performed to compare thermal strain and gross efficiency following whole body or partial body cooling. Eight well-trained participants performed 40 min of 60% VO2max cycling exercise in a 30 degrees C, 70% relative humidity climatic chamber after four different precooling sessions in a water perfused suit: N (no precooling), CC (45 min whole body precooling), WC (45 min lower body precooling), and CW (45 min upper body precooling). The uncooled body part was warmed in such a way that the core temperature did not differ from that in session N. Gross efficiency was used to compare performance between the sessions since it indicates how much oxygen is needed for a certain external load. The gross efficiency did not differ significantly between the sessions. Differences in heat loss and heat storage were observed during the first 20 min of exercise. The evaporative heat loss in session WC (305 +/- 67 W) and CW (284 +/- 68 W) differed from session N (398 +/- 77 W) and CC (209 +/- 58 W). More heat was stored in session CC (442 +/- 125 W) than in sessions WC (316 +/- 39 W), CW (307 +/- 63 W), and N (221 +/- 65 W). It was confirmed that precooling reduces heat strain during exercise in the heat. No differences in heat strain and gross efficiency were observed between precooling of the body part with the exercising muscles and precooling of the tissues elsewhere in the body. PMID:16729380

  6. Vegetarian dietary practices and endurance performance.

    PubMed

    Nieman, D C

    1988-09-01

    Confounding influences of varying fat, protein, and carbohydrate (CHO) levels, training habits, and lifestyle patterns make the interpretation of specific influences of the diet on endurance performance unclear. In general, exhaustion during prolonged, hard endurance exercise is tied to low muscle glycogen stores. Athletes in heavy training are urged to consume 70% of calories as CHO to maximize body CHO stores. A deemphasis in animal products with an emphasis in high-CHO plant foods would facilitate athletes in conforming to nutritional recommendations. Some female athletes may increase their risk of iron deficiency and/or amenorrhea if a restrictive vegetarian diet is adopted. In general, the high-CHO nature of the vegetarian diet can help the endurance athlete in heavy training maximize body glycogen stores and thus the ability to perform. The balanced vegetarian diet provides the athlete with added reduction in coronary risk factors while meeting all known nutritional needs. PMID:3046304

  7. A 9-wk docosahexaenoic acid-enriched supplementation improves endurance exercise capacity and skeletal muscle mitochondrial function in adult rats.

    PubMed

    Le Guen, Marie; Chaté, Valérie; Hininger-Favier, Isabelle; Laillet, Brigitte; Morio, Béatrice; Pieroni, Gérard; Schlattner, Uwe; Pison, Christophe; Dubouchaud, Hervé

    2016-02-01

    Decline in skeletal muscle mass and function starts during adulthood. Among the causes, modifications of the mitochondrial function could be of major importance. Polyunsaturated fatty (ω-3) acids have been shown to play a role in intracellular functions. We hypothesize that docosahexaenoic acid (DHA) supplementation could improve muscle mitochondrial function that could contribute to limit the early consequences of aging on adult muscle. Twelve-month-old male Wistar rats were fed a low-polyunsaturated fat diet and were given DHA (DHA group) or placebo (control group) for 9 wk. Rats from the DHA group showed a higher endurance capacity (+56%, P < 0.05) compared with control animals. Permeabilized myofibers from soleus muscle showed higher O2 consumptions (P < 0.05) in the DHA group compared with the control group, with glutamate-malate as substrates, both in basal conditions (i.e., state 2) and under maximal conditions (i.e., state 3, using ADP), along with a higher apparent Km for ADP (P < 0.05). Calcium retention capacity of isolated mitochondria was lower in DHA group compared with the control group (P < 0.05). Phospho-AMPK/AMPK ratio and PPARδ mRNA content were higher in the DHA group compared with the control group (P < 0.05). Results showed that DHA enhanced endurance capacity in adult animals, a beneficial effect potentially resulting from improvement in mitochondrial function, as suggested by our results on permeabilized fibers. DHA supplementation could be of potential interest for the muscle function in adults and for fighting the decline in exercise tolerance with age that could imply energy-sensing pathway, as suggested by changes in phospho-AMPK/AMPK ratio. PMID:26646102

  8. Endurance, interval sprint, and resistance exercise training: impact on microvascular dysfunction in type 2 diabetes.

    PubMed

    Olver, T Dylan; Laughlin, M Harold

    2016-02-01

    Type 2 diabetes (T2D) alters capillary hemodynamics, causes capillary rarefaction in skeletal muscle, and alters endothelial and vascular smooth muscle cell phenotype, resulting in impaired vasodilatory responses. These changes contribute to altered blood flow responses to physiological stimuli, such as exercise and insulin secretion. T2D-induced microvascular dysfunction impairs glucose and insulin delivery to skeletal muscle (and other tissues such as skin and nervous), thereby reducing glucose uptake and perpetuating hyperglycemia and hyperinsulinemia. In patients with T2D, exercise training (EX) improves microvascular vasodilator and insulin signaling and attenuates capillary rarefaction in skeletal muscle. EX-induced changes subsequently augment glucose and insulin delivery as well as glucose uptake. If these adaptions occur in a sufficient amount of tissue, and skeletal muscle in particular, chronic exposure to hyperglycemia and hyperinsulinemia and the risk of microvascular complications in all vascular beds will decrease. We postulate that EX programs that engage as much skeletal muscle mass as possible and recruit as many muscle fibers within each muscle as possible will generate the greatest improvements in microvascular function, providing that the duration of the stimulus is sufficient. Primary improvements in microvascular function occur in tissues (skeletal muscle primarily) engaged during exercise, and secondary improvements in microvascular function throughout the body may result from improved blood glucose control. We propose that the added benefit of combined resistance and aerobic EX programs and of vigorous intensity EX programs is not simply "more is better." Rather, we believe the additional benefit is the result of EX-induced adaptations in and around more muscle fibers, resulting in more muscle mass and the associated microvasculature being changed. Thus, to acquire primary and secondary improvements in microvascular function and improved

  9. The impact of endurance exercise on global and AMPK gene-specific DNA methylation.

    PubMed

    King-Himmelreich, Tanya S; Schramm, Stefanie; Wolters, Miriam C; Schmetzer, Julia; Möser, Christine V; Knothe, Claudia; Resch, Eduard; Peil, Johannes; Geisslinger, Gerd; Niederberger, Ellen

    2016-05-27

    Alterations in gene expression as a consequence of physical exercise are frequently described. The mechanism of these regulations might depend on epigenetic changes in global or gene-specific DNA methylation levels. The AMP-activated protein kinase (AMPK) plays a key role in maintenance of energy homeostasis and is activated by increases in the AMP/ATP ratio as occurring in skeletal muscles after sporting activity. To analyze whether exercise has an impact on the methylation status of the AMPK promoter, we determined the AMPK methylation status in human blood samples from patients before and after sporting activity in the context of rehabilitation as well as in skeletal muscles of trained and untrained mice. Further, we examined long interspersed nuclear element 1 (LINE-1) as indicator of global DNA methylation changes. Our results revealed that light sporting activity in mice and humans does not alter global DNA methylation but has an effect on methylation of specific CpG sites in the AMPKα2 gene. These regulations were associated with a reduced AMPKα2 mRNA and protein expression in muscle tissue, pointing at a contribution of the methylation status to AMPK expression. Taken together, these results suggest that exercise influences AMPKα2 gene methylation in human blood and eminently in the skeletal muscle of mice and therefore might repress AMPKα2 gene expression. PMID:27103439

  10. Caffeine vs caffeine-free sports drinks: effects on urine production at rest and during prolonged exercise.

    PubMed

    Wemple, R D; Lamb, D R; McKeever, K H

    1997-01-01

    We compared the effects of caffeinated vs non-caffeinated carbohydrate electrolyte (CE) drinks on urine volume (UV), free water clearance (CH2O), fractional excretion of water (FEH2O), and osmolar excretion during 4 h of rest or 1 h rest followed by 3 h of cycling at 60% VO2max in six subjects. We also tested maximal performance at 85% VO2max following the 3-h exercise trials. Throughout the two resting trials and the two rest + exercise trials, subjects ingested CE (total volume = 35 ml/kg) without (PLAC) or with (CAFF) caffeine (25 mg/dl). Blood samples were collected, and body weight and UV were recorded every hour. Urine and blood were analyzed for osmolality and creatinine, and plasma catecholamine concentrations were determined. At rest, mean (+/-SE) UV between 60 min and 240 min was greater for CAFF (1843 +/- 166 ml) vs PLAC (1411 +/- 181 ml) (p < 0.01); during exercise the difference in UV between CAFF (398 +/- 32 ml) and PLAC (490 +/- 57 ml) was not significant. Cycling performance was unaffected by caffeine. Plasma catecholamine concentrations were not different between PLAC and CAFF but were greater during exercise than rest (p < 0.01) and may have counteracted the diuretic effect of caffeine observed at rest. Thus, CAFF consumed in CE during moderate endurance exercise apparently does not compromise bodily hydration status. PMID:9059904

  11. "Functional" Respiratory Muscle Training During Endurance Exercise Causes Modest Hypoxemia but Overall is Well Tolerated.

    PubMed

    Granados, Jorge; Gillum, Trevor L; Castillo, Weston; Christmas, Kevin M; Kuennen, Matthew R

    2016-03-01

    A novel commercial training mask purportedly allows for combined respiratory muscle training and altitude exposure during exercise. We examined the mask's ability to deliver on this claim. Ten men completed three bouts of treadmill exercise at a matched workload (60%VO2peak) in a controlled laboratory environment. During exercise, the mask was worn in 2 manufacturer-defined settings (9,000 ft [9K] and 15,000 ft [15K]) and a Sham configuration (∼3,500 ft). Ventilation (V(E)), tidal volume (V(T)), respiratory rate (R(R)), expired oxygen (F(E)O2) and carbon dioxide (F(E)CO2), peripheral oxygen saturation (S(P)O2), heart rate, and RPE were measured each minute during exercise, and subjects completed the Beck Anxiety Inventory (BAI) immediately after. The mask caused a reduction in V(E) of ∼20 L/min in both the 9K and 15K configurations (p < 0.001). This was due to a reduction in R(R) of ∼10 b·min, but not V(T), which was elevated by ∼250 ml (p < 0.001). F(E)O2 was reduced and F(E)CO2 was elevated above Sham in both 9K and 15K (p < 0.001). VO2 was not different across conditions (p = 0.210), but VCO2 trended lower at 9K (p = 0.093) and was reduced at 15K (p = 0.016). V(E)/VO2 was 18.3% lower than Sham at 9K and 19.2% lower at 15K. V(E)/VCO2 was 16.2% lower than Sham at 9K and 18.8% lower at 15K (all p < 0.001). Heart rate increased with exercise (p < 0.001) but was not different among conditions (p = 0.285). S(P)O2 averaged 94% in Sham, 91% at 9K, and 89% at 15K (p < 0.001). RPE and BAI were also higher in 9K and 15K (p < 0.010), but there was no difference among mask conditions. The training mask caused inadequate hyperventilation that led to arterial hypoxemia and psychological discomfort, but the magnitude of these responses were small and they did not vary across mask configurations. PMID:26340471

  12. Protein-leucine ingestion activates a regenerative inflammo-myogenic transcriptome in skeletal muscle following intense endurance exercise.

    PubMed

    Rowlands, David S; Nelson, Andre R; Raymond, Frederic; Metairon, Sylviane; Mansourian, Robert; Clarke, Jim; Stellingwerff, Trent; Phillips, Stuart M

    2016-01-01

    Protein-leucine supplement ingestion following strenuous endurance exercise accentuates skeletal-muscle protein synthesis and adaptive molecular responses, but the underlying transcriptome is uncharacterized. In a randomized single-blind triple-crossover design, 12 trained men completed 100 min of high-intensity cycling then ingested 70/15/180/30 g protein-leucine-carbohydrate-fat (15LEU), 23/5/180/30 g (5LEU), or 0/0/274/30 g (CON) beverages during the first 90 min of a 240 min recovery period. Vastus lateralis muscle samples (30 and 240 min postexercise) underwent transcriptome analysis by microarray followed by bioinformatic analysis. Gene expression was regulated by protein-leucine in a dose-dependent manner affecting the inflammatory response and muscle growth and development. At 30 min, 15LEU and 5LEU vs. CON activated transcriptome networks with gene-set functions involving cell-cycle arrest (Z-score 2.0-2.7, P < 0.01), leukocyte maturation (1.7, P = 0.007), cell viability (2.4, P = 0.005), promyogenic networks encompassing myocyte differentiation and myogenin (MYOD1, MYOG), and a proteinaceous extracellular matrix, adhesion, and development program correlated with plasma lysine, arginine, tyrosine, taurine, glutamic acid, and asparagine concentrations. High protein-leucine dose (15LEU-5LEU) activated an IL-1I-centered proinflammatory network and leukocyte migration, differentiation, and survival functions (2.0-2.6, <0.001). By 240 min, the protein-leucine transcriptome was anti-inflammatory and promyogenic (IL-6, NF- β, SMAD, STAT3 network inhibition), with overrepresented functions including decreased leukocyte migration and connective tissue development (-1.8-2.4, P < 0.01), increased apoptosis of myeloid and muscle cells (2.2-3.0, P < 0.002), and cell metabolism (2.0-2.4, P < 0.01). The analysis suggests protein-leucine ingestion modulates inflammatory-myogenic regenerative processes during skeletal muscle recovery from endurance exercise. Further

  13. Repeated bouts of eccentrically biased endurance exercise stimulate salivary IgA secretion rate

    PubMed Central

    Starzak, D; Semple, SJ

    2014-01-01

    To determine the salivary secretory immunoglobulin A (sIgA) response to repeated bouts of unaccustomed, downhill running (eccentrically biased) and examine potential protective immunological adaption from a repeated bout effect. Eleven active but untrained males (age: 19.7±0.4 years; VO2peak: 47.8± 3.6 ml · kg−1 · min −1) performed two 60 min bouts (Run 1 and Run 2) of downhill running (−13.5% gradient), separated by 14 days, at a speed eliciting 75% of their VO2peak on a level grade. Saliva samples were collected before (baseline), immediately post exercise (IPE), and every hour for 12 h and every 24 h for 6 days after each run. Salivary sIgA concentration was measured and sIgA secretion rate was calculated. Results were analysed using repeated measures ANOVA (12 h period: 2x14; 24 h intervals: 2x7; p ≤ 0.05) with Tukey post-hoc tests where appropriate. Results are reported as means ± SE. There was a significant (p < 0.0001) interaction effect for sIgA secretion rate, IPE, with higher values after Run 2, as well as a significant (p < 0.01) time effect with elevated levels IPE and between 24 h and 144 h. There was a run effect (p < 0.0001), with the sIgA secretion rate significantly higher after Run 2. Repeated bouts of unaccustomed, eccentrically biased exercise induced alterations in the salivary sIgA secretion rate. This may serve as a protective mucosal adaptation to exercise-induced tissue damage. PMID:25729146

  14. Case Study: Symptomatic Exercise-Associated Hyponatremia in an Endurance Runner Despite Sodium Supplementation.

    PubMed

    Hoffman, Martin D; Myers, Thomas M

    2015-12-01

    Symptomatic exercise-associated hyponatremia (EAH) is known to be a potential complication from overhydration during exercise, but there remains a general belief that sodium supplementation will prevent EAH. We present a case in which a runner with a prior history of EAH consulted a sports nutritionist who advised him to consume considerable supplemental sodium, which did not prevent him from developing symptomatic EAH during a subsequent long run. Emergency medical services were requested for this runner shortly after he finished a 17-hr, 72-km run and hike in Grand Canyon National Park during which he reported having consumed 9.2-10.6 L of water and >6,500 mg of sodium. First responders determined his serum sodium concentration with point-of-care testing was 122 mEq/L. His hyponatremia was documented to have improved from field treatment with an oral hypertonic solution of 800 mg of sodium in 200 ml of water, and it improved further after significant aquaresis despite in-hospital treatment with isotonic fluids (lactated Ringer's). He was discharged about 5 hr after admission in good condition. This case demonstrates that while oral sodium supplementation does not necessarily prevent symptomatic EAH associated with overhydration, early recognition and field management with oral hypertonic saline in combination with fluid restriction can be effective treatment for mild EAH. There continues to be a lack of universal understanding of the underlying pathophysiology and appropriate hospital management of EAH. PMID:26061675

  15. Enhanced Fatty Acid Oxidation and FATP4 Protein Expression after Endurance Exercise Training in Human Skeletal Muscle

    PubMed Central

    Jeppesen, Jacob; Jordy, Andreas B.; Sjøberg, Kim A.; Füllekrug, Joachim; Stahl, Andreas; Nybo, Lars; Kiens, Bente

    2012-01-01

    FATP1 and FATP4 appear to be important for the cellular uptake and handling of long chain fatty acids (LCFA). These findings were obtained from loss- or gain of function models. However, reports on FATP1 and FATP4 in human skeletal muscle are limited. Aerobic training enhances lipid oxidation; however, it is not known whether this involves up-regulation of FATP1 and FATP4 protein. Therefore, the aim of this project was to investigate FATP1 and FATP4 protein expression in the vastus lateralis muscle from healthy human individuals and to what extent FATP1 and FATP4 protein expression were affected by an increased fuel demand induced by exercise training. Eight young healthy males were recruited to the study. All subjects were non smokers and did not participate in regular physical activity (<1 time per week for the past 6 months, VO2peak 3.4±0.1 l O2 min−1). Subjects underwent an 8 week supervised aerobic training program. Training induced an increase in VO2peak from 3.4±0.1 to 3.9±0.1 l min−1 and citrate synthase activity was increased from 53.7±2.5 to 80.8±3.7 µmol g−1 min−1. The protein content of FATP4 was increased by 33%, whereas FATP1 protein content was reduced by 20%. Interestingly, at the end of the training intervention a significant association (r2 = 0.74) between the observed increase in skeletal muscle FATP4 protein expression and lipid oxidation during a 120 min endurance exercise test was observed. In conclusion, based on the present findings it is suggested that FATP1 and FATP4 proteins perform different functional roles in handling LCFA in skeletal muscle with FATP4 apparently more important as a lipid transport protein directing lipids for lipid oxidation. PMID:22235293

  16. The order of concurrent endurance and resistance exercise modifies mTOR signaling and protein synthesis in rat skeletal muscle.

    PubMed

    Ogasawara, Riki; Sato, Koji; Matsutani, Kenji; Nakazato, Koichi; Fujita, Satoshi

    2014-05-15

    Concurrent training, a combination of endurance (EE) and resistance exercise (RE) performed in succession, may compromise the muscle hypertrophic adaptations induced by RE alone. However, little is known about the molecular signaling interactions underlying the changes in skeletal muscle adaptation during concurrent training. Here, we used an animal model to investigate whether EE before or after RE affects the molecular signaling associated with muscle protein synthesis, specifically the interaction between RE-induced mammalian target of rapamycin complex 1 (mTORC1) signaling and EE-induced AMP-activated protein kinase (AMPK) signaling. Male Sprague-Dawley rats were divided into five groups: an EE group (treadmill, 25 m/min, 60 min), an RE group (maximum isometric contraction via percutaneous electrical stimulation for 3 × 10 s, 5 sets), an EE before RE group, an EE after RE group, and a nonexercise control group. Phosphorylation of p70S6K, a marker of mTORC1 activity, was significantly increased 3 h after RE in both the EE before RE and EE after RE groups, but the increase was smaller in latter. Furthermore, protein synthesis was greatly increased 6 h after RE in the EE before RE group. Increases in the phosphorylation of AMPK and Raptor were observed only in the EE after RE group. Akt and mTOR phosphorylation were increased in both groups, with no between-group differences. Our results suggest that the last bout of exercise dictates the molecular responses and that mTORC1 signaling induced by any prior bout of RE may be downregulated by a subsequent bout of EE. PMID:24691029

  17. Angiogenesis-related ultrastructural changes to capillaries in human skeletal muscle in response to endurance exercise.

    PubMed

    Baum, Oliver; Gübeli, Jennifer; Frese, Sebastian; Torchetti, Eleonora; Malik, Corinna; Odriozola, Adolfo; Graber, Franziska; Hoppeler, Hans; Tschanz, Stefan A

    2015-11-15

    The ultrastructure of capillaries in skeletal muscle was morphometrically assessed in vastus lateralis muscle (VL) biopsies taken before and after exercise from 22 participants of two training studies. In study 1 (8 wk of ergometer training), light microscopy revealed capillary-fiber (C/F) ratio (+27%) and capillary density (+16%) to be higher (P ≤ 0.05) in postexercise biopsies than in preexercise biopsies from all 10 participants. In study 2 (6 mo of moderate running), C/F ratio and capillary density were increased (+23% and +20%; respectively, P ≤ 0.05) in VL biopsies from 6 angiogenesis responders (AR) after training, whereas 6 nonangiogenesis responders (NR) showed nonsignificant changes in these structural indicators (-4%/-4%, respectively). Forty capillary profiles per participant were evaluated by point and intersection counting on cross sections after transmission electron microscopy. In study 1, volume density (Vv) and mean arithmetic thickness (T) of endothelial cells (ECs; +19%/+17%, respectively) and pericytes (PCs; +20%/+21%, respectively) were higher (P ≤ 0.05), whereas Vv and T of the pericapillary basement membrane (BM) were -23%/-22% lower (P ≤ 0.05), respectively, in posttraining biopsies. In study 2, exercise-related differences between AR and NR-groups were found for Vv and T of PCs (AR, +26%/+22%, respectively, both P ≤ 0.05; NR, +1%/-3%, respectively, both P > 0.05) and BM (AR, -14%/-13%, respectively, both P ≤ 0.05; NR, -9%/-11%, respectively, P = 0.07/0.10). Vv and T of ECs were higher (AR, +16%/+18%, respectively; NR, +6%/+6%, respectively; all P ≤ 0.05) in both groups. The PC coverage was higher (+13%, P ≤ 0.05) in VL biopsies of individuals in the AR group but nonsignificantly altered (+3%, P > 0.05) in those of the NR group after training. Our study suggests that intensified PC mobilization and BM thinning are related to exercise-induced angiogenesis in human skeletal muscle, whereas training per se induces EC

  18. Phagocytic responses of peritoneal macrophages and neutrophils are different in rats following prolonged exercise

    PubMed Central

    Ferreira, Clílton K O; Prestes, Jonato; Donatto, Felipe F; Verlengia, Rozangela; Navalta, James W; Cavaglieri, Cláudia R

    2010-01-01

    OBJECTIVE: To analyze the effects of exhausting long‐duration physical exercise (swimming) sessions of different durations and intensities on the number and phagocytic capacity of macrophages and neutrophils in sedentary rats. INTRODUCTION: Exercise intensity, duration and frequency are important factors in determining immune response to physical effort. Thus, the effects of exhausting long‐duration exercise are unclear. METHODS: Wistar rats were divided into two groups: an untreated group (macrophage study) and oyster glycogen‐treated rats (neutrophil study). In each group, the animals were subdivided into five groups (10 rats per group): unexercised controls, an unadapted low‐intensity exercise group, an unadapted moderate‐intensity exercise group, a preadapted low‐intensity exercise group and a preadapted moderate‐intensity exercise group. All exercises were performed to exhaustion, and preadaptation consisted of 5, 15, 30 and 45 min sessions. RESULTS: Macrophage study: the number of peritoneal macrophages significantly decreased (9.22 ± 1.78 × 106) after unadapted exercise but increased (21.50 ± 0.63 × 106) after preadapted low‐intensity exercise, with no changes in the moderate‐intensity exercise group. Phagocytic capacity, however, increased by more than 80% in all exercise groups (low/moderate, unadapted/preadapted). Neutrophil study: the number of peritoneal neutrophils significantly decreased after unadapted (29.20 ± 3.34 × 106) and preadapted (50.00 ± 3.53 × 106) low‐intensity exercise but increased after unadapted (127.60 ± 5.14 × 106) and preadapted (221.80 ± 14.85 × 106) moderate exercise. Neutrophil phagocytic capacity decreased by 63% after unadapted moderate exercise but increased by 90% after corresponding preadapted sessions, with no changes in the low‐intensity exercise groups. CONCLUSION: Neutrophils and macrophages of sedentary rats respond differently to exercise‐induced stress. Adaptation sessions reduce

  19. Examination of the efficacy of acute L-alanyl-L-glutamine ingestion during hydration stress in endurance exercise

    PubMed Central

    2010-01-01

    Background The effect of acute L-alanyl-L-glutamine (AG; Sustamine™) ingestion on performance changes and markers of fluid regulation, immune, inflammatory, oxidative stress, and recovery was examined in response to exhaustive endurance exercise, during and in the absence of dehydration. Methods Ten physically active males (20.8 ± 0.6 y; 176.8 ± 7.2 cm; 77.4 ± 10.5 kg; 12.3 ± 4.6% body fat) volunteered to participate in this study. During the first visit (T1) subjects reported to the laboratory in a euhydrated state to provide a baseline (BL) blood draw and perform a maximal exercise test. In the four subsequent randomly ordered trials, subjects dehydrated to -2.5% of their baseline body mass. For T2, subjects achieved their goal weight and were not rehydrated. During T3 - T5, subjects reached their goal weight and then rehydrated to 1.5% of their baseline body mass by drinking either water (T3) or two different doses (T4 and T5) of the AG supplement (0.05 g·kg-1 and 0.2 g·kg-1, respectively). Subjects then exercised at a workload that elicited 75% of their VO2 max on a cycle ergometer. During T2 - T5 blood draws occurred once goal body mass was achieved (DHY), immediately prior to the exercise stress (RHY), and immediately following the exercise protocol (IP). Resting 24 hour (24P) blood samples were also obtained. Blood samples were analyzed for glutamine, potassium, sodium, aldosterone, arginine vasopressin (AVP), C-reactive protein (CRP), interleukin-6 (IL-6), malondialdehyde (MDA), testosterone, cortisol, ACTH, growth hormone and creatine kinase. Statistical evaluation of performance, hormonal and biochemical changes was accomplished using a repeated measures analysis of variance. Results Glutamine concentrations for T5 were significantly higher at RHY and IP than T2 - T4. When examining performance changes (difference between T2 - T5 and T1), significantly greater times to exhaustion occurred during T4 (130.2 ± 340.2 sec) and T5 (157.4 ± 263.1 sec

  20. Different effects of strength and endurance exercise training on COX-2 and mPGES expression in mouse brain are independent of peripheral inflammation.

    PubMed

    Krüger, K; Bredehöft, J; Mooren, F C; Rummel, C

    2016-07-01

    Acute endurance exercise has been shown to modulate cyclooxygenase (COX)-2 expression, which is suggested to affect neuronal plasticity and learning. Here, we investigated the effect of regular strength and endurance training on cerebral COX-2 expression, inflammatory markers in the brain, and circulating cytokines. Male C57BL/6N mice were assigned to either a sedentary control group (CG), an endurance training group (EG; treadmill running for 30 min/day, 5 times/wk, 10 wk), or a strength training group (SG; strength training by isometric holding, same duration as EG). Four days after the last bout of exercise, blood and brain were collected and analyzed using real-time PCR, Western blot, and a multiplexed immunoassay. In EG, COX-2 mRNA expression in the cortex/hippocampus increased compared with CG. A significant increase of COX-2 protein levels was observed in both cortex/hippocampus and hypothalamus of mice from the SG. Nuclear factor (NF)κB protein levels were significantly increased in mice from both exercise groups (hypothalamus). A significant increase in the expression of microsomal prostaglandin E synthase (mPGES), an enzyme downstream of COX-2, was found in the hypothalamus of both the EG and SG. While most inflammatory factors, like IL-1α, IL-18, and IL-2, decreased after training, a positive association was found between COX-2 mRNA expression (cortex/hippocampus) and plasma IL-6 in the EG. Taken together, this study demonstrates that both endurance as well as strength training induces COX-2 expression in the cortex/hippocampus and hypothalamus of mice. A potential mediator of COX-2 expression after training might be circulating interleukin (IL)-6. However, further research is necessary to elucidate the role of inflammatory pathways on brain plasticity after training. PMID:27283912

  1. Prevention of glycogen supercompensation prolongs the increase in muscle GLUT4 after exercise.

    PubMed

    Garcia-Roves, Pablo M; Han, Dong-Ho; Song, Zheng; Jones, Terry E; Hucker, Kathleen A; Holloszy, John O

    2003-10-01

    Exercise induces an increase in GLUT4 in skeletal muscle with a proportional increase in glucose transport capacity. This adaptation results in enhanced glycogen accumulation, i.e., "supercompensation," in response to carbohydrate feeding after glycogen-depleting exercise. The increase in GLUT4 reverses within 40 h after exercise in carbohydrate-fed rats. The purpose of this study was to determine whether prevention of skeletal muscle glycogen supercompensation after exercise results in maintenance of the increases in GLUT4 and the capacity for glycogen supercompensation. Rats were exercised by means of three daily bouts of swimming. GLUT4 mRNA was increased approximately 3-fold and GLUT4 protein was increased approximately 2-fold 18 h in epitrochlearis muscle after exercise. These increases in GLUT4 mRNA and protein reversed completely within 42 h after exercise in rats fed a high-carbohydrate diet. In contrast, the increases in GLUT4 protein, insulin-stimulated glucose transport, and increased capacity for glycogen supercompensation persisted unchanged for 66 h in rats fed a carbohydrate-free diet that prevented glycogen supercompensation after exercise. GLUT4 mRNA was still elevated at 42 h but had returned to baseline by 66 h after exercise in rats fed the carbohydrate-free diet. Glycogen-depleted rats fed carbohydrate 66 h after exercise underwent muscle glycogen supercompensation with concomitant reversal of the increase in GLUT4. These findings provide evidence that prevention of glycogen supercompensation after exercise results in persistence of exercise-induced increases in GLUT4 protein and enhanced capacity for glycogen supercompensation. PMID:12799316

  2. Square-wave endurance exercise test (SWEET) for training and assessment in trained and untrained subjects. II. Blood gases and acid-base balance.

    PubMed

    Gimenez, M; Servera, E; Saunier, C; Lacoste, J

    1982-01-01

    In order to obtain information about physiological and homeostasic responses at the maximal Intensity of Endurance of the 45 min "Square-Wave Endurance Exercise Test" (MIE45), three arterial blood samples were taken: (a) at rest; (b) at the 45th min of the SWEET; (c) after 15 min of recovery, to measure paO2, paCO2, [H+], [Hb], and [lactate] in 14 normal male subjects: four trained (T) six well trained (WT) and four others untrained (U). Total mechanical work (TMW) corresponding to MIE45 was significantly higher (mean +/- SEM) respectively in WT (9.22 +/- 0.65 kJ . kg-1, p less than 0.001), than in T (7.17 +/- 0.18 kJ . kg-1, p less than 0.01) and U subjects (4.44 +/- 0.36, p less than 0.001). Because of this the lactate level, which rose significantly during exercise, differed between U and WT subjects (p less than 0.05). In spite of the exhaustive character of the MIE45, [H+] and paO2 remained within the range of normal values. These results suggest that trained and untrained subjects can be trained with the exhausting MIE45 exercise while maintaining a constant [H+] and paO2 at the 45th min of exercise. PMID:6814907

  3. Influence of Endurance Exercise Overloading Patterns on the Levels of Left Ventricular Catechoamines After a Bout of Lactate Threshold Test in Male Wistar Rat

    PubMed Central

    Azad, Ahmad; Ghasemi, Fatemeh; Rahmani, Ahmad

    2015-01-01

    Background: It is well known that exercise training has positive effect on catecholamine response to a given work load. But in this regard, the effective method of training needs to be studied. Objectives: The aim of this study was to compare the effects of 8 weeks endurance exercise with two overloading patterns on the left ventricular catecholamine levels. Materials and Methods: 29 male Wistar rats were randomly assigned to control (n = 9), daily sinusoidal overloading (n = 10) and weekly sinusoidal overloading (n = 10) groups. After the last exercise session, left ventricular blood samples were obtained immediately after lactate threshold test. Plasma concentrations of adrenaline and noradrenaline were measured by ELISA method. One way analysis of variance was used for analysis of the data. Results: Immediately after lactate threshold test, adrenaline level was significantly (P < 0.05) lower in weekly loading group than in control and daily loading groups. Adrenaline was higher in the daily loading group compared with control group but did not reach the significant level. Noradrenaline levels were not significantly (P > 0.05) different between three study groups. Conclusions: The results showed 8 weeks of endurance exercise with weekly sinusoidal overloading pattern could induce a lower adrenal medulla activity (reflection of physical and physiological improvement) than daily sinusoidal loading pattern in response to the same absolute work load. PMID:26715962

  4. A prospective randomized longitudinal study involving 6 months of endurance or resistance exercise. Conduit artery adaptation in humans.

    PubMed

    Spence, Angela L; Carter, Howard H; Naylor, Louise H; Green, Daniel J

    2013-03-01

    Abstract  This randomized trial evaluated the impact of different exercise training modalities on the function and size of conduit arteries in healthy volunteers. Young (27 ± 5 years) healthy male subjects were randomized to undertake 6 months of either endurance training (ET; n = 10) or resistance training (RT; n = 13). High-resolution ultrasound was used to determine brachial, femoral and carotid artery diameter and wall thickness (IMT) and femoral and brachial flow-mediated dilatation (FMD) and glyceryl trinitrate (GTN)-mediated dilatation. Improvements in peak oxygen uptake occurred with ET (from 3.6 ± 0.7 to 3.8 ± 0.6 l min(-1), P = 0.024) but not RT. Upper body muscular strength increased following RT (from 57.8 ± 17.7 to 69.0 ± 19.5 kg, P < 0.001), but not ET. Both groups exhibited increases in lean body mass (ET, 1.4 ± 1.8 kg and RT, 2.3 ± 1.3 kg, P < 0.05). Resistance training increased brachial artery resting diameter (from 3.8 ± 0.5 to 4.1 ± 0.4 mm, P < 0.05), peak FMD diameter (+0.2 ± 0.2 mm, P < 0.05) and GTN-mediated diameter (+0.3 ± 0.3 mm, P < 0.01), as well as brachial FMD (from 5.1 ± 2.2 to 7.0 ± 3.9%, P < 0.05). No improvements in any brachial parameters were observed following ET. Conversely, ET increased femoral artery resting diameter (from 6.2 ± 0.7 to 6.4 ± 0.6 mm, P < 0.05), peak FMD diameter (+0.4 ± 0.4 mm, P < 0.05) and GTN-induced diameter (+0.3 ± 0.3 mm, P < 0.05), as well as femoral FMD-to-GTN ratio (from 0.6 ± 0.3 to 1.1 ± 0.8, P < 0.05). Resistance training did not induce changes in femoral artery parameters. Carotid artery IMT decreased in response to both forms of training. These findings indicate that 6 months of supervised exercise training induced changes in brachial and femoral artery size and function and decreased carotid artery IMT. These impacts of both RT and ET would be expected to translate to decreased cardiovascular risk. PMID:23247114

  5. Prolonged Sleep Deprivation and Continuous Exercise: Effects on Melatonin, Tympanic Temperature, and Cognitive Function

    PubMed Central

    Davis, Greggory R.; Etheredge, Corey E.; Marcus, Lena; Bellar, David

    2014-01-01

    The purpose of this study was to examine tympanic temperature, melatonin, and cognitive function during a 36-hour endurance event. Nine male and three female participants took part in a 36-hour sustained endurance event without sleep (N = 12, mean age = 31.8 ± 5.0 yrs). Participants were stopped for data collection at checkpoints throughout the 36-hour event. Tympanic temperature was assessed, a psychomotor vigilance test (PVT) was administered, and saliva samples were collected. Salivary melatonin was determined via immunoassay. During the 36 hours of competition, melatonin levels were negatively correlated with the day of the race (rs = −0.277, P = 0.039) and positively associated with nighttime (rs = 0.316, P = 0.021). Significant main effects of tympanic temperature (P < 0.001), day of the competition (P = 0.018), and a tympanic temperature ∗ day of competition interaction (P < 0.001) were used to predict minor lapses in attention. No associations between melatonin levels and cognitive function were observed (P > 0.05). During the event tympanic temperature declined and was associated with an increase in lapses in attention. With sustained endurance events becoming more popular future research is warranted to evaluate the physiological impact of participation. PMID:25110695

  6. High Intensity Exercise Countermeasures does not Prevent Orthostatic Intolerance Following Prolonged Bed Rest

    NASA Technical Reports Server (NTRS)

    Platts, Steven H.; Stenger, Michael B.; Ploutz-Snyder, Lori L.; Lee, Stuart M. C.

    2014-01-01

    Approximately 20% of Space Shuttle astronauts became presyncopal during operational stand and 80deg head-up tilt tests, and the prevalence of orthostatic intolerance increases after longer missions. Greater than 60% of the US astronauts participating in Mir and early International Space Station missions experienced presyncope during post-flight tilt tests, perhaps related to limitations of the exercise hardware that prevented high intensity exercise training until later ISS missions. The objective of this study was to determine whether an intense resistive and aerobic exercise countermeasure program designed to prevent cardiovascular and musculoskeletal deconditioning during 70 d of bed rest (BR), a space flight analog, would protect against post-BR orthostatic intolerance. METHODS Twenty-six subjects were randomly assigned to one of three groups: non-exercise controls (n=11) or one of two exercise groups (ExA, n=8; ExB, n=7). Both ExA and ExB groups performed the same resistive and aerobic exercise countermeasures during BR, but one exercise group received testosterone supplementation while the other received a placebo during BR in a double-blinded fashion. On 3 d/wk, subjects performed lower body resistive exercise and 30 min of continuous aerobic exercise (=75% max heart rate). On the other 3 d/wk, subjects performed only highintensity, interval-style aerobic exercise. Orthostatic intolerance was assessed using a 15-min 80? head-up tilt test performed 2 d (BR-2) before and on the last day of BR (BR70). Plasma volume was measured using carbon monoxide rebreathing on BR-3 and before rising on the first recovery day (BR+0). The code for the exercise groups has not been broken, and results are reported here without group identification. RESULTS Only one subject became presyncopal during tilt testing on BR-2, but 7 of 11 (63%) controls, 3 of 8 (38%) ExA, and 4 of 7 (57%) ExB subjects were presyncopal on BR70. Survival analysis of post-BR tilt tests revealed no

  7. Muscle mitochondrial density after exhaustive exercise in dogs - Prolonged restricted activity and retraining

    NASA Technical Reports Server (NTRS)

    Nazar, K.; Greenleaf, J. E.; Philpott, D.; Pohoska, E.; Olszewska, K.; Kaciuba-Uscilko, H.

    1993-01-01

    The effect of exhaustive treadmill exercise on mitochondrial density (MD) and ultrastructural changes in quadriceps femoris muscle was studied in 7 normal, healthy, male mongrel dogs before and after restricted activity (RA) and following a subsequent 2-month exercise retraining period. Mean time to exhaustion in the 2-month group decreased from 177 +/- 11 min before to 90 +/- 16 min after RA; retraining increased tolerance to 219 +/- 36 min above the pre-RA and 143 percent above the post-RA time. Post-RA exhaustion time in the 5-months group was 25 and 45 min. Muscle samples taken after RA showed abnormalities indicative of degeneration, which were reversed by retraining. Resting MD decreased from a control level of 27.8 percent to 14.7 percent and 16.3 percent, and was restored to 27.1 percent after retraining. Exhaustive exercise caused an increase in MD under control conditions and after RA, but not following retraining. Disruption of mitochondria after exercise was evident after 5-month confinement. Factors causing mitochondrial changes and eventually their disruption during exercise after restricted activity are not related as much to the state of fatigue as to the pre-exercise quality of the muscle modified by disease or training.

  8. The influence of wearing compression stockings on performance indicators and physiological responses following a prolonged trail running exercise.

    PubMed

    Vercruyssen, Fabrice; Easthope, Christopher; Bernard, Thierry; Hausswirth, Christophe; Bieuzen, Francois; Gruet, Mathieu; Brisswalter, Jeanick

    2014-01-01

    The objective of this study was to investigate the effects of wearing compression socks (CS) on performance indicators and physiological responses during prolonged trail running. Eleven trained runners completed a 15.6 km trail run at a competition intensity whilst wearing or not wearing CS. Counter movement jump, maximal voluntary contraction and the oxygenation profile of vastus lateralis muscle using near-infrared spectroscopy (NIRS) method were measured before and following exercise. Run time, heart rate (HR), blood lactate concentration and ratings of perceived exertion were evaluated during the CS and non-CS sessions. No significant difference in any dependent variables was observed during the run sessions. Run times were 5681.1 ± 503.5 and 5696.7 ± 530.7 s for the non-CS and CS conditions, respectively. The relative intensity during CS and non-CS runs corresponded to a range of 90.5-91.5% HRmax. Although NIRS measurements such as muscle oxygen uptake and muscle blood flow significantly increased following exercise (+57.7% and + 42.6%,+59.2% and + 32.4%, respectively for the CS and non-CS sessions, P<0.05), there was no difference between the run conditions. The findings suggest that competitive runners do not gain any practical or physiological benefits from wearing CS during prolonged off-road running. PMID:24533521

  9. The ratio of sTfR/ferritin is associated with the expression level of TfR in rat bone marrow cells after endurance exercise.

    PubMed

    Tian, Ye; Zhao, Jiexiu; Zhao, Binxiu; Gao, Qi; Xu, Jincheng; Liu, Dongsen

    2012-06-01

    Currently, it is unclear which index of haematological parameters could be used to most easily monitor iron deficiency during endurance training. To address this question, 16 male Wistar rats were randomly assigned to two groups: a sedentary group (n = 8) and an exercised group (n = 8). Initially, animals in the exercise group started running on a treadmill at a rate of 30 m/min, on a 0% grade, for 1 min/session. Running time was gradually increased by 2 min/day. The training plan was one session per day during the initial 2 weeks and two sessions per day during the third to ninth week. At the end of the 9-week experiment, we analysed the blood of the experimental animals for haemoglobin levels, erythrocyte numbers, haematocrit, serum iron levels, total iron binding capacity, transferrin saturation, serum ferritin levels and soluble transferrin receptor (sTfR) levels, and we calculated the ratio of sTfR/ferritin. Erythrocyte numbers, haemoglobin levels and haematocrit values were decreased after 9 weeks of exercise, but sTfR and sTfR/ferritin values were increased (P < 0.01 or P < 0.05). The training regime significantly increased TfR mRNA levels in the bone marrow cells of the exercised rats compared with the sedentary group (1.8 ± 0.5 vs. 1.1 ± 0.2, P < 0.01). These results revealed a significant correlation between TfR levels in the bone marrow cells and the ratio of sTfR/ferritin (r = 0.517; P < 0.01) and sTfR levels (r = 0.206; P < 0.05) in sedentary and exercised rats. In conclusion, we show that sTfR indices and the ratio of sTfR/ferritin could be useful indicators for monitoring iron deficiency during endurance training. PMID:22207220

  10. Reduction in Cerebral Oxygenation After Prolonged Exercise in Hypoxia is Related to Changes in Blood Pressure.

    PubMed

    Horiuchi, Masahiro; Dobashi, Shohei; Kiuchi, Masataka; Endo, Junko; Koyama, Katsuhiro; Subudhi, Andrew W

    2016-01-01

    We investigated the relation between blood pressure and cerebral oxygenation (COX) immediately after exercise in ten healthy males. Subjects completed an exercise and recovery protocol while breathing either 21% (normoxia) or 14.1% (hypoxia) O2 in a randomized order. Each exercise session included four sets of cycling (30 min/set, 15 min rest) at 50% of altitude-adjusted peak oxygen uptake, followed by 60 min of recovery. After exercise, mean arterial pressure (MAP; 87±1 vs. 84±1 mmHg, average values across the recovery period) and COX (68±1% vs. 58±1%) were lower in hypoxia compared to normoxia (P<0.001). Changes in MAP and COX were correlated during the recovery period in hypoxia (r=0.568, P<0.001) but not during normoxia (r=0.028, not significant). These results demonstrate that reductions in blood pressure following exercise in hypoxia are (1) more pronounced than in normoxia, and (2) associated with reductions in COX. Together, these results suggest an impairment in cerebral autoregulation as COX followed changes in MAP more passively in hypoxia than in normoxia. These findings could help explain the increased risk for postexercise syncope at high altitude. PMID:26782200

  11. Erythropoietin enhances whole body lipid oxidation during prolonged exercise in humans.

    PubMed

    Caillaud, Corinne; Connes, Philippe; Ben Saad, Helmi; Mercier, Jacques

    2015-03-01

    Animal studies have suggested that erythropoietin, besides its well-known hematopoietic effects, can modulate metabolism and prevent fat accumulation. We investigated the effects of repeated injections of recombinant human erythropoietin (EPO) on the balance of substrate oxidation during aerobic exercise in humans. Twelve healthy aerobically trained males received subcutaneously either moderate dose of EPO (50 U/kg, EPO) or saline injections (NaCl 0.9 %, control) three times a week for 4 weeks. Body weight, % fat, maximal aerobic capacity, and substrate utilization during exercise were assessed before and after treatment, while hemoglobin and hematocrit were monitored regularly during the treatment. Carbohydrate and fat oxidation were evaluated via indirect calorimetry, during a submaximal exercise performed at 75 % of the participants' maximal aerobic capacity (V̇(O2max)) for 60 min. Results showed that 4 weeks of EPO treatment significantly enhanced fat oxidation (+56 % in EPO versus -9 % in control) during exercise, independent of its effects on hematological parameters or V̇(O2max). This study shows that EPO can modulate substrate utilization during exercise, leading to enhanced fat utilization and lower use of carbohydrates. This opens new research directions exploring whether systemic EPO levels, in physiological conditions, participate to the modulation of fat oxidation. PMID:25567744

  12. The effects of compression garments on performance of prolonged manual-labour exercise and recovery.

    PubMed

    Chan, Val; Duffield, Rob; Watsford, Mark

    2016-02-01

    This study investigated the effects of wearing compression garments during and 24 h following a 4-h exercise protocol simulating manual-labour tasks. Ten physically trained male participants, familiar with labouring activities, undertook 4 h of work tasks characteristic of industrial workplaces. Participants completed 2 testing sessions, separated by at least 1 week. In the experimental condition, participants wore a full-length compression top and compression shorts during the exercise protocol and overnight recovery, with normal work clothes worn in the control condition. Testing for serum creatine kinase and C-reactive protein, handgrip strength, knee flexion and extension torque, muscle stiffness, perceived muscle soreness and fatigue as well as heart rate and rating of perceived exertion (RPE) responses to 4-min cycling were performed before, following, and 24 h after exercise. Creatine kinase, muscle soreness, and rating of perceived fatigue increased following the exercise protocol (p < 0.05) as did RPE to a standardised cycling warm-up bout. Conversely, no postexercise changes were observed in C-reactive protein, handgrip strength, peak knee flexion torque, or stiffness measures (p > 0.05). Knee extension torque was significantly higher in the control condition at 24 h postexercise (3.1% ± 5.4% change; compression: 2.2% ± 11.1% change), although no other variables were different between conditions at any time. However, compression demonstrated a moderate-large effect (d > 0.60) to reduce perceived muscle soreness, fatigue, and RPE from standardised warm-up at 24 h postexercise. The current findings suggest that compression may assist in perceptual recovery from manual-labour exercise with implications for the ability to perform subsequent work bouts. PMID:26778138

  13. Carbohydrate restricted recovery from long term endurance exercise does not affect gene responses involved in mitochondrial biogenesis in highly trained athletes

    PubMed Central

    Jensen, Line; Gejl, Kasper D; Ørtenblad, Niels; Nielsen, Jakob L; Bech, Rune D; Nygaard, Tobias; Sahlin, Kent; Frandsen, Ulrik

    2015-01-01

    The aim was to determine if the metabolic adaptations, particularly PGC-1α and downstream metabolic genes were affected by restricting CHO following an endurance exercise bout in trained endurance athletes. A second aim was to compare baseline expression level of these genes to untrained. Elite endurance athletes (VO2max 66 ± 2 mL·kg−1·min−1, n = 15) completed 4 h cycling at ∼56% VO2max. During the first 4 h recovery subjects were provided with either CHO or only H2O and thereafter both groups received CHO. Muscle biopsies were collected before, after, and 4 and 24 h after exercise. Also, resting biopsies were collected from untrained subjects (n = 8). Exercise decreased glycogen by 67.7 ± 4.0% (from 699 ± 26.1 to 239 ± 29.5 mmol·kg−1·dw−1) with no difference between groups. Whereas 4 h of recovery with CHO partly replenished glycogen, the H2O group remained at post exercise level; nevertheless, the gene expression was not different between groups. Glycogen and most gene expression levels returned to baseline by 24 h in both CHO and H2O. Baseline mRNA expression of NRF-1, COX-IV, GLUT4 and PPAR-α gene targets were higher in trained compared to untrained. Additionally, the proportion of type I muscle fibers positively correlated with baseline mRNA for PGC-1α, TFAM, NRF-1, COX-IV, PPAR-α, and GLUT4 for both trained and untrained. CHO restriction during recovery from glycogen depleting exercise does not improve the mRNA response of markers of mitochondrial biogenesis. Further, baseline gene expression of key metabolic pathways is higher in trained than untrained. PMID:25677542

  14. Prolonged Exercise in Type 1 Diabetes: Performance of a Customizable Algorithm to Estimate the Carbohydrate Supplements to Minimize Glycemic Imbalances

    PubMed Central

    Francescato, Maria Pia; Stel, Giuliana; Stenner, Elisabetta; Geat, Mario

    2015-01-01

    Physical activity in patients with type 1 diabetes (T1DM) is hindered because of the high risk of glycemic imbalances. A recently proposed algorithm (named Ecres) estimates well enough the supplemental carbohydrates for exercises lasting one hour, but its performance for prolonged exercise requires validation. Nine T1DM patients (5M/4F; 35–65 years; HbA1c 54±13 mmol·mol-1) performed, under free-life conditions, a 3-h walk at 30% heart rate reserve while insulin concentrations, whole-body carbohydrate oxidation rates (determined by indirect calorimetry) and supplemental carbohydrates (93% sucrose), together with glycemia, were measured every 30 min. Data were subsequently compared with the corresponding values estimated by the algorithm. No significant difference was found between the estimated insulin concentrations and the laboratory-measured values (p = NS). Carbohydrates oxidation rate decreased significantly with time (from 0.84±0.31 to 0.53±0.24 g·min-1, respectively; p<0.001), being estimated well enough by the algorithm (p = NS). Estimated carbohydrates requirements were practically equal to the corresponding measured values (p = NS), the difference between the two quantities amounting to –1.0±6.1 g, independent of the elapsed exercise time (time effect, p = NS). Results confirm that Ecres provides a satisfactory estimate of the carbohydrates required to avoid glycemic imbalances during moderate intensity aerobic physical activity, opening the prospect of an intriguing method that could liberate patients from the fear of exercise-induced hypoglycemia. PMID:25918842

  15. The benefits of endurance exercise and Tai Chi Chuan for the task-switching aspect of executive function in older adults: an ERP study

    PubMed Central

    Fong, Dong-Yang; Chi, Li-Kang; Li, Fuzhong; Chang, Yu-Kai

    2014-01-01

    This study was designed to determine the relationship between physical activity and the task-switching aspect of executive function by investigating the modulating roles of age, modality of physical activity, and type of cognitive function using behavioral and event-related potential (ERP) assessments. Sixty-four participants were assigned to one of four groups based on age and history of physical activity: older adults performing endurance exercise (OEE), older adults practicing Tai Chi Chuan (OTC), older adults with a sedentary lifestyle (OSL), and young adults (YA). Study participants completed a task-switching task under homogeneous and heterogeneous conditions while ERPs were recorded. The results revealed that YA had shortest reaction times compared with the three older adults groups, with OSL exhibiting the longest reaction time. YA also exhibited shorter P3 latency than OSL. No differences were observed in P3 amplitude between YA, OEE, and OTC; however, all three groups had significantly larger P3 amplitude compared with OSL in both task conditions. In conclusion, age and participation in physical activity influence the relationship between physical activity and task-switching, and a positive relationship was observed regardless of the modality of physical activity and type of cognitive function. Our ERP findings support the model of the scaffolding theory of aging and cognition (STAC) and suggest that regular participation in endurance exercise and Tai Chi Chuan may have equivalent beneficial effects on cognition at the behavioral and neuroelectric levels. PMID:25389403

  16. The benefits of endurance exercise and Tai Chi Chuan for the task-switching aspect of executive function in older adults: an ERP study.

    PubMed

    Fong, Dong-Yang; Chi, Li-Kang; Li, Fuzhong; Chang, Yu-Kai

    2014-01-01

    This study was designed to determine the relationship between physical activity and the task-switching aspect of executive function by investigating the modulating roles of age, modality of physical activity, and type of cognitive function using behavioral and event-related potential (ERP) assessments. Sixty-four participants were assigned to one of four groups based on age and history of physical activity: older adults performing endurance exercise (OEE), older adults practicing Tai Chi Chuan (OTC), older adults with a sedentary lifestyle (OSL), and young adults (YA). Study participants completed a task-switching task under homogeneous and heterogeneous conditions while ERPs were recorded. The results revealed that YA had shortest reaction times compared with the three older adults groups, with OSL exhibiting the longest reaction time. YA also exhibited shorter P3 latency than OSL. No differences were observed in P3 amplitude between YA, OEE, and OTC; however, all three groups had significantly larger P3 amplitude compared with OSL in both task conditions. In conclusion, age and participation in physical activity influence the relationship between physical activity and task-switching, and a positive relationship was observed regardless of the modality of physical activity and type of cognitive function. Our ERP findings support the model of the scaffolding theory of aging and cognition (STAC) and suggest that regular participation in endurance exercise and Tai Chi Chuan may have equivalent beneficial effects on cognition at the behavioral and neuroelectric levels. PMID:25389403

  17. Timing and distribution of protein ingestion during prolonged recovery from resistance exercise alters myofibrillar protein synthesis

    PubMed Central

    Areta, José L; Burke, Louise M; Ross, Megan L; Camera, Donny M; West, Daniel W D; Broad, Elizabeth M; Jeacocke, Nikki A; Moore, Daniel R; Stellingwerff, Trent; Phillips, Stuart M; Hawley, John A; Coffey, Vernon G

    2013-01-01

    Quantity and timing of protein ingestion are major factors regulating myofibrillar protein synthesis (MPS). However, the effect of specific ingestion patterns on MPS throughout a 12 h period is unknown. We determined how different distributions of protein feeding during 12 h recovery after resistance exercise affects anabolic responses in skeletal muscle. Twenty-four healthy trained males were assigned to three groups (n= 8/group) and undertook a bout of resistance exercise followed by ingestion of 80 g of whey protein throughout 12 h recovery in one of the following protocols: 8 × 10 g every 1.5 h (PULSE); 4 × 20 g every 3 h (intermediate: INT); or 2 × 40 g every 6 h (BOLUS). Muscle biopsies were obtained at rest and after 1, 4, 6, 7 and 12 h post exercise. Resting and post-exercise MPS (l-[ring-13C6] phenylalanine), and muscle mRNA abundance and cell signalling were assessed. All ingestion protocols increased MPS above rest throughout 1–12 h recovery (88–148%, P < 0.02), but INT elicited greater MPS than PULSE and BOLUS (31–48%, P < 0.02). In general signalling showed a BOLUS>INT>PULSE hierarchy in magnitude of phosphorylation. MuRF-1 and SLC38A2 mRNA were differentially expressed with BOLUS. In conclusion, 20 g of whey protein consumed every 3 h was superior to either PULSE or BOLUS feeding patterns for stimulating MPS throughout the day. This study provides novel information on the effect of modulating the distribution of protein intake on anabolic responses in skeletal muscle and has the potential to maximize outcomes of resistance training for attaining peak muscle mass. PMID:23459753

  18. Menstrual cycle phase and carbohydrate ingestion alter immune response following endurance exercise and high intensity time trial performance test under hot conditions

    PubMed Central

    2014-01-01

    Background Sex hormones are known to regulate some responses during exercise. Evaluation of the differences in exercise response with regard to menstrual cycle will help understand the menstrual cycle phase specific adaptations to exercise and athletic performance. Methods We investigated the effects of menstrual cycle phase and carbohydrate (CHO) ingestion on immune response during endurance exercise at 30°C. Six healthy women completed 4 trials comprising 90 min of cycling at 50% peak aerobic power V˙O2peak and a high intensity time trial performance test (POST). They ingested a placebo- or CHO-containing beverage during the trials, which were performed during both the follicular and luteal phases of the menstrual cycle. In all trials, thermoregulatory, cardiorespiratory, and immune responses were measured during exercise and after POST. Results Although the thermoregulatory responses differed between the menstrual cycle phases, the cardiorespiratory responses were not different. After placebo ingestion, leukocyte concentration (cells/μL) at POST (15.9 × 103) in the luteal phase was significantly higher than that in the follicular phase (12.9 × 103). The rise in leukocyte concentration was attenuated upon CHO ingestion, and the difference between menstrual cycle phases disappeared. A significant positive correlation was found between leukocyte concentration and serum free fatty acid concentrations. Interleukin-6, calprotectin, and myeloperoxidase concentrations significantly increased at POST in all trials, but no significant differences were observed between menstrual cycle phase or beverage type. Concentrations of other cytokines did not change during exercise in any of the 4 trials. Menstrual cycle phase and beverage type had no significant effect on the POST outcome. Thus, differences in leukocyte mobilization between menstrual cycle phases could result from the effect of sex hormones on substrate utilization. Conclusions The menstrual cycle

  19. Accelerated cardiac remodeling in desmoplakin transgenic mice in response to endurance exercise is associated with perturbed Wnt/β-catenin signaling.

    PubMed

    Martherus, Ruben; Jain, Rahul; Takagi, Ken; Mendsaikhan, Uzmee; Turdi, Subat; Osinska, Hanna; James, Jeanne F; Kramer, Kristen; Purevjav, Enkhsaikhan; Towbin, Jeffrey A

    2016-01-15

    Arrhythmogenic ventricular cardiomyopathy (AVC) is a frequent underlying cause for arrhythmias and sudden cardiac death especially during intense exercise. The mechanisms involved remain largely unknown. The purpose of this study was to investigate how chronic endurance exercise contributes to desmoplakin (DSP) mutation-induced AVC pathogenesis. Transgenic mice with overexpression of desmoplakin, wild-type (Tg-DSP(WT)), or the R2834H mutant (Tg-DSP(R2834H)) along with control nontransgenic (NTg) littermates were kept sedentary or exposed to a daily running regimen for 12 wk. Cardiac function and morphology were analyzed using echocardiography, electrocardiography, histology, immunohistochemistry, RNA, and protein analysis. At baseline, 4-wk-old mice from all groups displayed normal cardiac function. When subjected to exercise, all mice retained normal cardiac function and left ventricular morphology; however, Tg-DSP(R2834H) mutants displayed right ventricular (RV) dilation and wall thinning, unlike NTg and Tg-DSP(WT). The Tg-DSP(R2834H) hearts demonstrated focal fat infiltrations in RV and cytoplasmic aggregations consisting of desmoplakin, plakoglobin, and connexin 43. These aggregates coincided with disruption of the intercalated disks, intermediate filaments, and microtubules. Although Tg-DSP(R2834H) mice already displayed high levels of p-GSK3-β(Ser9) and p-AKT1(Ser473) under sedentary conditions, decrease of nuclear GSK3-β and AKT1 levels with reduced p-GSK3-β(Ser9), p-AKT1(Ser473), and p-AKT1(Ser308) and loss of nuclear junctional plakoglobin was apparent after exercise. In contrast, Tg-DSP(WT) showed upregulation of p-AKT1(Ser473), p-AKT1(Ser308), and p-GSK3-β(Ser9) in response to exercise. Our data suggest that endurance exercise accelerates AVC pathogenesis in Tg-DSP(R2834H) mice and this event is associated with perturbed AKT1 and GSK3-β signaling. Our study suggests a potential mechanism-based approach to exercise management in patients with AVC

  20. Changes in Drop-Jump Landing Biomechanics During Prolonged Intermittent Exercise

    PubMed Central

    Schmitz, Randy J.; Cone, John C.; Tritsch, Amanda J.; Pye, Michele L.; Montgomery, Melissa M.; Henson, Robert A.; Shultz, Sandra J.

    2014-01-01

    Background: As injury rates rise in the later stages of sporting activities, a better understanding of lower extremity biomechanics in the later phases of gamelike situations may improve training and injury prevention programs. Hypothesis: Lower extremity biomechanics of a drop-jump task (extracted from a principal components analysis) would reveal factors associated with risk of anterior cruciate ligament injury during a 90-minute individualized intermittent exercise protocol (IEP) and for 1 hour following the IEP. Study Design: Controlled laboratory study. Level of Evidence: Level 4. Methods: Fifty-nine athletes (29 women, 30 men) completed 3 sessions. The first session assessed fitness for an IEP designed to simulate the demands of a soccer match. An experimental session assessed drop-jump biomechanics, after a dynamic warm-up, every 15 minutes during the 90-minute IEP, and for 1 hour following the IEP. A control session with no exercise assessed drop-jump performance at the same intervals. Results: Two biomechanical factors early in the first half (hip flexion at initial contact and hip loading; ankle loading and knee shear force) decreased at the end of the IEP and into the 60-minute recovery period, while a third factor (knee loading) decreased only during the recovery period (P ≤ 0.05). Conclusion: The individualized sport-specific IEP may have more subtle effects on landing biomechanics when compared with short-term, exhaustive fatigue protocols. Clinical Relevance: Potentially injurious landing biomechanics may not occur until the later stages of soccer activity. PMID:24587862

  1. Endurance Exercise Enhances the Effect of Strength Training on Muscle Fiber Size and Protein Expression of Akt and mTOR.

    PubMed

    Kazior, Zuzanna; Willis, Sarah J; Moberg, Marcus; Apró, William; Calbet, José A L; Holmberg, Hans-Christer; Blomstrand, Eva

    2016-01-01

    Reports concerning the effect of endurance exercise on the anabolic response to strength training have been contradictory. This study re-investigated this issue, focusing on training effects on indicators of protein synthesis and degradation. Two groups of male subjects performed 7 weeks of resistance exercise alone (R; n = 7) or in combination with preceding endurance exercise, including both continuous and interval cycling (ER; n = 9). Muscle biopsies were taken before and after the training period. Similar increases in leg-press 1 repetition maximum (30%; P<0.05) were observed in both groups, whereas maximal oxygen uptake was elevated (8%; P<0.05) only in the ER group. The ER training enlarged the areas of both type I and type II fibers, whereas the R protocol increased only the type II fibers. The mean fiber area increased by 28% (P<0.05) in the ER group, whereas no significant increase was observed in the R group. Moreover, expression of Akt and mTOR protein was enhanced in the ER group, whereas only the level of mTOR was elevated following R training. Training-induced alterations in the levels of both Akt and mTOR protein were correlated to changes in type I fiber area (r = 0.55-0.61, P<0.05), as well as mean fiber area (r = 0.55-0.61, P<0.05), reflecting the important role played by these proteins in connection with muscle hypertrophy. Both training regimes reduced the level of MAFbx protein (P<0.05) and tended to elevate that of MuRF-1. The present findings indicate that the larger hypertrophy observed in the ER group is due more to pronounced stimulation of anabolic rather than inhibition of catabolic processes. PMID:26885978

  2. Endurance Exercise Enhances the Effect of Strength Training on Muscle Fiber Size and Protein Expression of Akt and mTOR

    PubMed Central

    Kazior, Zuzanna; Willis, Sarah J.; Moberg, Marcus; Apró, William; Calbet, José A. L.; Holmberg, Hans-Christer; Blomstrand, Eva

    2016-01-01

    Reports concerning the effect of endurance exercise on the anabolic response to strength training have been contradictory. This study re-investigated this issue, focusing on training effects on indicators of protein synthesis and degradation. Two groups of male subjects performed 7 weeks of resistance exercise alone (R; n = 7) or in combination with preceding endurance exercise, including both continuous and interval cycling (ER; n = 9). Muscle biopsies were taken before and after the training period. Similar increases in leg-press 1 repetition maximum (30%; P<0.05) were observed in both groups, whereas maximal oxygen uptake was elevated (8%; P<0.05) only in the ER group. The ER training enlarged the areas of both type I and type II fibers, whereas the R protocol increased only the type II fibers. The mean fiber area increased by 28% (P<0.05) in the ER group, whereas no significant increase was observed in the R group. Moreover, expression of Akt and mTOR protein was enhanced in the ER group, whereas only the level of mTOR was elevated following R training. Training-induced alterations in the levels of both Akt and mTOR protein were correlated to changes in type I fiber area (r = 0.55–0.61, P<0.05), as well as mean fiber area (r = 0.55–0.61, P<0.05), reflecting the important role played by these proteins in connection with muscle hypertrophy. Both training regimes reduced the level of MAFbx protein (P<0.05) and tended to elevate that of MuRF-1. The present findings indicate that the larger hypertrophy observed in the ER group is due more to pronounced stimulation of anabolic rather than inhibition of catabolic processes. PMID:26885978

  3. The Prolonged Intake of L-Arginine-L-Aspartate Reduces Blood Lactate Accumulation and Oxygen Consumption During Submaximal Exercise

    PubMed Central

    Burtscher, Martin; Brunner, Fritz; Faulhaber, Martin; Hotter, Barbara; Likar, Rudolf

    2005-01-01

    L-arginine-L-aspartate is widely used by athletes for its potentially ergogenic properties. However, only little information on its real efficacy is available from controlled studies. Therefore, we evaluated the effects of prolonged supplementation with L-arginine-L-aspartate on metabolic and cardiorespiratory responses to submaximal exercise in healthy athletes by a double blind placebo-controlled trial. Sixteen healthy male volunteers (22 ± 3 years) performed incremental cycle spiroergometry up to 150 watts before and after intake of L-arginine-L-aspartate (3 grams per day) or placebo for a period of 3 weeks. After intake of L-arginine-L-aspartate, blood lactate at 150 watts dropped from 2.8 ± 0.8 to 2.0 ± 0.9 mmol·l-1 (p < 0.001) and total oxygen consumption during the 3-min period at 150 watts from 6.32 ± 0.51 to 5.95 ± 0.40 l (p = 0.04) compared to placebo (2.7 ± 1.1 to 2.7 ± 1.4 mmol·l-1; p = 0.9 and 6.07 ± 0.51 to 5.91 ± 0.50 l; p = 0.3). Additionally, L-arginine-L-aspartate supplementation effected an increased fat utilisation at 50 watts. L-arginine and L-aspartate seem to have induced synergistic metabolic effects. L-arginine might have reduced lactic acid production by the inhibition of glycolysis and L-aspartate may have favoured fatty acid oxidation. Besides, the results indicate improved work efficiency after L-arginine-L-aspartate intake. The resulting increases of submaximal work capacity and exercise tolerance may have important implications for athletes as well as patients. Key Points Amino acids are among the most common nutritional supplements taken by athletes. They are involved in numerous metabolic pathways that affect exercise metabolism. Three weeks of L-arginine-L-aspartate supplementation resulted in lower blood lactate concentrations and oxygen consumption, diminished glucose and enhanced fat oxidation, and reduced heart rate and ventilation during submaximal cycle exercise. This implies increased submaximal work capacity and

  4. Selective Modulation of MicroRNA Expression with Protein Ingestion Following Concurrent Resistance and Endurance Exercise in Human Skeletal Muscle

    PubMed Central

    Camera, Donny M.; Ong, Jun N.; Coffey, Vernon G.; Hawley, John A.

    2016-01-01

    We examined changes in the expression of 13 selected skeletal muscle microRNAs (miRNAs) implicated in exercise adaptation responses following a single bout of concurrent exercise. In a randomized cross-over design, seven healthy males undertook a single trial consisting of resistance exercise (8 × 5 leg extension, 80% 1 Repetition Maximum) followed by cycling (30 min at ~70% VO2peak) with either post-exercise protein (PRO: 25 g whey protein) or placebo (PLA) ingestion. Muscle biopsies (vastus lateralis) were obtained at rest and 4 h post-exercise. Detection of miRNA via quantitative Polymerase Chain Reaction (qPCR) revealed post-exercise increases in miR-23a-3p (~90%), miR-23b-3p (~39%), miR-133b (~80%), miR-181-5p (~50%), and miR-378-5p (~41%) at 4 h post-exercise with PRO that also resulted in higher abundance compared to PLA (P < 0.05). There was a post-exercise decrease in miR-494-3p abundance in PLA only (~88%, P < 0.05). There were no changes in the total abundance of target proteins post-exercise or between conditions. Protein ingestion following concurrent exercise can modulate the expression of miRNAs implicated in exercise adaptations compared to placebo. The selective modulation of miRNAs with target proteins that may prioritize myogenic compared to oxidative/metabolic adaptive responses indicate that miRNAs can play a regulatory role in the molecular machinery enhancing muscle protein synthesis responses with protein ingestion following concurrent exercise. PMID:27014087

  5. Selective Modulation of MicroRNA Expression with Protein Ingestion Following Concurrent Resistance and Endurance Exercise in Human Skeletal Muscle.

    PubMed

    Camera, Donny M; Ong, Jun N; Coffey, Vernon G; Hawley, John A

    2016-01-01

    We examined changes in the expression of 13 selected skeletal muscle microRNAs (miRNAs) implicated in exercise adaptation responses following a single bout of concurrent exercise. In a randomized cross-over design, seven healthy males undertook a single trial consisting of resistance exercise (8 × 5 leg extension, 80% 1 Repetition Maximum) followed by cycling (30 min at ~70% VO2peak) with either post-exercise protein (PRO: 25 g whey protein) or placebo (PLA) ingestion. Muscle biopsies (vastus lateralis) were obtained at rest and 4 h post-exercise. Detection of miRNA via quantitative Polymerase Chain Reaction (qPCR) revealed post-exercise increases in miR-23a-3p (~90%), miR-23b-3p (~39%), miR-133b (~80%), miR-181-5p (~50%), and miR-378-5p (~41%) at 4 h post-exercise with PRO that also resulted in higher abundance compared to PLA (P < 0.05). There was a post-exercise decrease in miR-494-3p abundance in PLA only (~88%, P < 0.05). There were no changes in the total abundance of target proteins post-exercise or between conditions. Protein ingestion following concurrent exercise can modulate the expression of miRNAs implicated in exercise adaptations compared to placebo. The selective modulation of miRNAs with target proteins that may prioritize myogenic compared to oxidative/metabolic adaptive responses indicate that miRNAs can play a regulatory role in the molecular machinery enhancing muscle protein synthesis responses with protein ingestion following concurrent exercise. PMID:27014087

  6. Blood flow-restricted exercise in space

    PubMed Central

    2012-01-01

    Prolonged exposure to microgravity results in chronic physiological adaptations including skeletal muscle atrophy, cardiovascular deconditioning, and bone demineralization. To attenuate the negative consequences of weightlessness during spaceflight missions, crewmembers perform moderate- to high-load resistance exercise in conjunction with aerobic (cycle and treadmill) exercise. Recent evidence from ground-based studies suggests that low-load blood flow-restricted (BFR) resistance exercise training can increase skeletal muscle size, strength, and endurance when performed in a variety of ambulatory populations. This training methodology couples a remarkably low exercise training load (approximately 20%–50% one repetition maximum (1RM)) with an inflated external cuff (width, ranging between approximately 30–90 mm; pressure, ranging between approximately 100–250 mmHg) that is placed around the exercising limb. BFR aerobic (walking and cycling) exercise training methods have also recently emerged in an attempt to enhance cardiovascular endurance and functional task performance while incorporating minimal exercise intensity. Although both forms of BFR exercise training have direct implications for individuals with sarcopenia and dynapenia, the application of BFR exercise training during exposure to microgravity to prevent deconditioning remains controversial. The aim of this review is to present an overview of BFR exercise training and discuss the potential usefulness of this method as an adjunct exercise countermeasure during prolonged spaceflight. The work will specifically emphasize ambulatory BFR exercise training adaptations, mechanisms, and safety and will provide directions for future research. PMID:23849078

  7. Effect of inspiratory resistance to prolonged exercise in a hot environment wearing protective clothing

    NASA Astrophysics Data System (ADS)

    Jetté, Maurice; Quenneville, Josée; Thoden, James; Livingstone, Sydney

    1992-09-01

    The effects of inspiratory resistance on prolonged work in a hot environment wearing a nuclear, bacteriological and chemical warfare (NBCW) mask and overgarment were assessed in 10 males. Subjects walked on a treadmill at 5 km/hr, 2% gradient, until their core temperature reached 39° C or for a duration of 90 min. Rectal temperature, heart rate, ventilation, oxygen consumption and rate of perceived breathing were measured. There were no differences between break-point time without the canister (62.2 ± 21 min) and with the canister (58.9 ± 17 min). Regression analysis indicated that the mean core temperature increased by 0.02° C for every minute of work performed and heart rate by 6 beats/min for every increase of 0.2° C in core temperature. Reduction in heat transfer brought about by wearing the protective overgarment and mask with or without the canister will significantly increase core temperature and limit the performance of moderate work to approximately 1 h in a moderately fit individual.

  8. Shear-Wave Elastography Assessments of Quadriceps Stiffness Changes prior to, during and after Prolonged Exercise: A Longitudinal Study during an Extreme Mountain Ultra-Marathon.

    PubMed

    Andonian, Pierre; Viallon, Magalie; Le Goff, Caroline; de Bourguignon, Charles; Tourel, Charline; Morel, Jérome; Giardini, Guido; Gergelé, Laurent; Millet, Grégoire P; Croisille, Pierre

    2016-01-01

    In sports medicine, there is increasing interest in quantifying the elastic properties of skeletal muscle, especially during extreme muscular stimulation, to improve our understanding of the impact of alterations in skeletal muscle stiffness on resulting pain or injuries, as well as the mechanisms underlying the relationships between these parameters. Our main objective was to determine whether real-time shear-wave elastography (SWE) can monitor changes in quadriceps muscle elasticity during an extreme mountain ultra-marathon, a powerful mechanical stress model. Our study involved 50 volunteers participating in an extreme mountain marathon (distance: 330 km, elevation: +24,000 m). Quantitative SWE velocity and shear modulus measurements were performed in most superficial quadriceps muscle heads at the following 4 time points: before the race, halfway through the race, upon finishing the race and after recovery (+48 h). Blood biomarker levels were also measured. A significant decrease in the quadriceps shear modulus was observed upon finishing the race (3.31±0.61 kPa) (p<0.001) compared to baseline (3.56±0.63 kPa), followed by a partial recovery +48 h after the race (3.45±0.6 kPa) (p = 0.002) across all muscle heads, as well as for each of the following three muscle heads: the rectus femoris (p = 0.003), the vastus medialis (p = 0.033) and the vastus lateralis (p = 0.001). Our study is the first to assess changes in muscle stiffness during prolonged extreme physical endurance exercises based on shear modulus measurements using non-invasive SWE. We concluded that decreases in stiffness, which may have resulted from quadriceps overuse in the setting of supra-physiological stress caused by the extreme distance and unique elevation of the race, may have been responsible for the development of inflammation and muscle swelling. SWE may hence represent a promising tool for monitoring physiologic or pathological variations in muscle stiffness and may be useful for

  9. Effects of exercise-induced arterial hypoxaemia and work rate on diaphragmatic fatigue in highly trained endurance athletes

    PubMed Central

    Vogiatzis, Ioannis; Georgiadou, Olga; Giannopoulou, Ifigenia; Koskolou, Maria; Zakynthinos, Spyros; Kostikas, Konstantinos; Kosmas, Epaminondas; Wagner, Harrieth; Peraki, Eleni; Koutsoukou, Antonia; Koulouris, Nickolaos; Wagner, Peter D; Roussos, Charis

    2006-01-01

    Diaphragmatic fatigue occurs in highly trained athletes during exhaustive exercise. Since approximately half of them also exhibit exercise-induced arterial hypoxaemia (EIAH) during high-intensity exercise, the present study sought to test the hypothesis that arterial hypoxaemia contributes to exercise-induced diaphragmatic fatigue in this population. Ten cyclists (: 70.0 ± 1.6 ml kg−1 min−1; mean ± s.e.m.) completed, in a balanced ordering sequence, one normoxic (end-exercise arterial O2 saturation (Sa,O2): 92 ± 1%) and one hyperoxic (FI,O2: 0.5% O2; Sa,O2: 97 ± 1%) 5 min exercise test at intensities equal to 80 ± 3 and 90 ± 3% of maximal work rate (WRmax), respectively, producing the same tidal volume (VT) and breathing frequency (f) throughout exercise. Cervical magnetic stimulation was used to determine reduction in twitch transdiaphragmatic pressure (Pdi,tw) during recovery. Hyperoxic exercise at 90% WRmax induced significantly (P = 0.022) greater post-exercise reduction in Pdi,tw (15 ± 2%) than did normoxic exercise at 80% WRmax (9 ± 2%), despite the similar mean ventilation (123 ± 8 and 119 ± 8 l min−1, respectively), breathing pattern (VT: 2.53 ± 0.05 and 2.61 ± 0.05 l, f: 49 ± 2 and 46 ± 2 breaths min−1, respectively), mean changes in Pdi during exercise (37.1 ± 2.4 and 38.2 ± 2.8 cmH2O, respectively) and end-exercise arterial lactate (12.1 ± 1.4 and 10.8 ± 1.1 mmol l−1, respectively). The difference found in diaphragmatic fatigue between the hyperoxic (at higher leg work rate) and the normoxic (at lower leg work rate) tests suggests that neither EIAH nor lactic acidosis per se are likely predominant causative factors in diaphragmatic fatigue in this population, at least at the level of Sa,O2 tested. Rather, this result leads us to hypothesize that blood flow competition with the legs is an important contributor to diaphragmatic fatigue in heavy exercise, assuming that higher leg work required greater leg blood flow. PMID

  10. Design of the Resistance and Endurance exercise After ChemoTherapy (REACT) study: A randomized controlled trial to evaluate the effectiveness and cost-effectiveness of exercise interventions after chemotherapy on physical fitness and fatigue

    PubMed Central

    2010-01-01

    Background Preliminary studies suggest that physical exercise interventions can improve physical fitness, fatigue and quality of life in cancer patients after completion of chemotherapy. Additional research is needed to rigorously test the effects of exercise programmes among cancer patients and to determine optimal training intensity accordingly. The present paper presents the design of a randomized controlled trial evaluating the effectiveness and cost-effectiveness of a high intensity exercise programme compared to a low-to-moderate intensity exercise programme and a waiting list control group on physical fitness and fatigue as primary outcomes. Methods After baseline measurements, cancer patients who completed chemotherapy are randomly assigned to either a 12-week high intensity exercise programme or a low-to-moderate intensity exercise programme. Next, patients from both groups are randomly assigned to immediate training or a waiting list (i.e. waiting list control group). After 12 weeks, patients of the waiting list control group start with the exercise programme they have been allocated to. Both interventions consist of equal bouts of resistance and endurance interval exercises with the same frequency and duration, but differ in training intensity. Additionally, patients of both exercise programmes are counselled to improve compliance and achieve and maintain an active lifestyle, tailored to their individual preferences and capabilities. Measurements will be performed at baseline (t = 0), 12 weeks after randomization (t = 1), and 64 weeks after randomization (t = 2). The primary outcome measures are cardiorespiratory fitness and muscle strength assessed by means of objective performance indicators, and self-reported fatigue. Secondary outcome measures include health-related quality of life, self-reported physical activity, daily functioning, body composition, mood and sleep disturbances, and return to work. In addition, compliance and satisfaction with the

  11. Higher prevalence of exercise-associated hyponatremia in female than in male open-water ultra-endurance swimmers: the 'Marathon-Swim' in Lake Zurich.

    PubMed

    Wagner, Sandra; Knechtle, Beat; Knechtle, Patrizia; Rüst, Christoph Alexander; Rosemann, Thomas

    2012-03-01

    We investigated the prevalence of exercise-associated hyponatremia (EAH) in 25 male and 11 female open-water ultra-endurance swimmers participating in the 'Marathon-Swim' in Lake Zurich, Switzerland, covering a distance of 26.4 km. Changes in body mass, fat mass, skeletal muscle mass, total body water, urine specific gravity, plasma sodium concentration [Na(+)] and haematocrit were determined. Two males (8%) and four females (36%) developed EAH where one female was symptomatic with plasma sodium [Na(+)] of 127 mmol/L. Body mass and plasma [Na(+)] decreased (p < 0.05). The changes in body mass correlated in both male and female swimmers to post-race plasma [Na(+)] (r = -0.67, p = 0.0002 and r = -0.80, p = 0.0034, respectively) and changes in plasma [Na(+)] (r = -0.68, p = 0.0002 and r = -0.79, p = 0.0039, respectively). Fluid intake was neither associated with changes in body mass, post-race plasma [Na(+)] or the change in plasma [Na(+)]. Sodium intake showed no association with either the changes in plasma [Na(+)] or post-race plasma [Na(+)]. We concluded that the prevalence of EAH was greater in female than in male open-water ultra-endurance swimmers. PMID:21748367

  12. Effects of oral supplementation with cystine and theanine on the immune function of athletes in endurance exercise: randomized, double-blind, placebo-controlled trial.

    PubMed

    Murakami, Shigeki; Kurihara, Shigekazu; Koikawa, Natsue; Nakamura, Akira; Aoki, Kazuhiro; Yosigi, Hiroshi; Sawaki, Keisuke; Ohtani, Masaru

    2009-04-23

    Athletes become increasingly susceptible to infection with intense training that results in immune suppression. The immune state was investigated after administering cystine/theanine (CT), which has been reported to have an immune reinforcement effect, to athletes before training involving a prolonged period of intense exercise. Fifteen long-distance runners were each allocated to the CT or placebo group, and the test food was ingested for 10 d prior to the start of training. Clinical examinations were performed before and after the training. The results indicate a significant increase in the high-sensitivity C-reactive protein (hs-CRP) and neutrophil count in the blood, as well as a decreasing tendency for lymphocytes in the placebo group, but not the CT group. These observations suggest that the ingestion of CT contributed to suppressing the change in inflammatory response, prevented a decrease in the immune function, and prevented infection and reduced symptoms when infected associated with continuous intense exercise. PMID:19352043

  13. Brain serotonergic and dopaminergic modulators, perceptual responses and endurance exercise performance following caffeine co-ingested with a high fat meal in trained humans

    PubMed Central

    2010-01-01

    Background The present study examined putative modulators and indices of brain serotonergic and dopaminergic function, perceptual responses, and endurance exercise performance following caffeine co-ingested with a high fat meal. Methods Trained humans (n = 10) performed three constant-load cycling tests at 73% of maximal oxygen uptake (VO2max) until exhaustion at 10°C remove space throughout. Prior to the first test, subjects consumed a 90% carbohydrate meal (Control trial) and for the remaining two tests, a 90% fat meal with (FC trial) and without (F trial) caffeine. Results Time to exhaustion was not different between the F and FC trials (P > 0.05); [Control trial: 116(88-145) min; F trial: 122(96-144) min; FC trial: 127(107-176) min]. However, leg muscular discomfort during exercise was significantly lower on the FC relative to F trial (P < 0.01). There were no significant differences between F and FC trials in key modulators and indices of brain serotonergic (5-HT) and dopaminergic (DA) function [(i.e. plasma free and total tryptophan (Trp), tyrosine (Tyr), large neutral amino acids (LNAA), Trp:LNAA ratio, free-Trp:Tyr ratio, total Trp:Tyr ratio, and plasma prolactin] (P > 0.05) with the exception of plasma free-Trp:LNAA ratio which was higher at 90 min and at exhaustion during the FC trial (P < 0.05). Conclusions Neither brain 5-HT nor DA systems would appear to be implicated in the fatigue process when exercise is performed without significant thermoregulatory stress, thus indicating fatigue development during exercise in relatively cold temperatures to occur predominantly due to glycogen depletion. PMID:20507554

  14. [Acute and chronic limb ischemia in endurance athletes - a serious diagnosis of exercise-induced lower limb pain].

    PubMed

    Regus, Susanne; Lang, Werner

    2016-07-01

    Lower extremity pain due to acute or chronic ischemia in high performance endurance athletes is an often forgotten differential diagnosis. A variety of symptoms constitues a multi-disciplinary challenge. Intermittent claudication or acute ischemia are clinical symptoms indicative of this vascular disease. The most important basic methods of investigation are anamnesis and clinical examination. Furthermore, the determination of the ankle-brachial index (ABI) and duplexsonography should be considered. In addition, modern cross-sectional imaging techniques such as computed tomography angiography (CTA) or magnetic resonance angiography (MRA) are recommended. In case of suspect findings, the digital substraction angiography (DSA) represents a high resolution image technique for illustration of the vessel lumen. If necessary, interventional therapy (balloon angioplasty or clot lysing) can be performed simultaneously. Surgical revision remains the gold-standard of therapy and the fastest way in which athletes regain maximum performance abilities. Correct diagnosis of lower limb ischemia affecting endurance athletes should be performed without delays. Determining the ankle-brachial index following maximal exertion represents the most important diagnostic tool. Surgical treatment techniques as decompression and revascularisation provide the best long-term results. PMID:27464284

  15. Glycerol administration before endurance exercise: metabolism, urinary glycerol excretion and effects on doping-relevant blood parameters.

    PubMed

    Koehler, Karsten; Braun, Hans; de Marees, Markus; Geyer, Hans; Thevis, Mario; Mester, Joachim; Schaenzer, Wilhelm

    2014-03-01

    Glycerol is prohibited as a masking agent by the World Anti-Doping Agency and a urinary threshold has recently been recommended. However, little is known about urinary glycerol excretion after exercise, when (1) exogenous glycerol is metabolized increasingly and (2) endogenous glycerol levels are elevated. The purpose of the placebo-controlled cross-over study was to determine the effects of pre-exercise glycerol administration on glycerol metabolism, urinary excretion, and selected blood parameters. After administration of glycerol (G; 1.0 g/kg body weight (BW) + 25 ml fluid/kg BW) or placebo (P; 25 ml fluid/kg), 14 cyclists exercised 90 min at 60% VO2max . Samples were taken at 0 h (before administration), 2.5 h (before exercise), 4 h (after exercise) and 6.5 h and additional urine samples were collected until 24 h. Exercise increased endogenous plasma glycerol (0.51 ± 0.21 mmol/l) but peak concentrations were much higher in G (2.5 h: 15.6 ± 7.8 mmol/l). Urinary glycerol increased rapidly (58,428 ± 71,084 µg/ml after 2.5 h) and was significantly higher than in P until 13.6 ± 0.9 h (p < 0.01). In comparison with placebo administration, G caused significantly greater changes in plasma volume and haemoglobin concentrations after 2.5 h. BW and urine production were significantly different between P and G after 2.5 h and post-exercise. Despite exercise-induced increases in endogenous glycerol in the control group, urinary excretion remained well below the previously recommended threshold. In addition, exercise-related glycerol degradation did not appear to negatively affect the detection of exogenously administered glycerol. PMID:23359436

  16. The acute effects of strength, endurance and concurrent exercises on the Akt/mTOR/p70(S6K1) and AMPK signaling pathway responses in rat skeletal muscle.

    PubMed

    de Souza, E O; Tricoli, V; Bueno Junior, C; Pereira, M G; Brum, P C; Oliveira, E M; Roschel, H; Aoki, M S; Urginowitsch, C

    2013-04-01

    The activation of competing intracellular pathways has been proposed to explain the reduced training adaptations after concurrent strength and endurance exercises (CE). The present study investigated the acute effects of CE, strength exercises (SE), and endurance exercises (EE) on phosphorylated/total ratios of selected AMPK and Akt/mTOR/p70(S6K1) pathway proteins in rats. Six animals per exercise group were killed immediately (0 h) and 2 h after each exercise mode. In addition, 6 animals in a non-exercised condition (NE) were killed on the same day and under the same conditions. The levels of AMPK, phospho-Thr(172)AMPK (p-AMPK), Akt, phospho-Ser(473)Akt (p-Akt), p70(S6K1), phospho-Thr(389)-p70(S6K1) (p-p70(S6K1)), mTOR, phospho-Ser(2448)mTOR (p-mTOR), and phospho-Thr(1462)-TSC2 (p-TSC2) expression were evaluated by immunoblotting in total plantaris muscle extracts. The only significant difference detected was an increase (i.e., 87%) in Akt phosphorylated/total ratio in the CE group 2 h after exercise compared to the NE group (P = 0.002). There were no changes in AMPK, TSC2, mTOR, or p70(S6K1) ratios when the exercise modes were compared to the NE condition (P ≥ 0.05). In conclusion, our data suggest that low-intensity and low-volume CE might not blunt the training-induced adaptations, since it did not activate competing intracellular pathways in an acute bout of strength and endurance exercises in rat skeletal muscle. PMID:23598645

  17. The acute effects of strength, endurance and concurrent exercises on the Akt/mTOR/p70S6K1 and AMPK signaling pathway responses in rat skeletal muscle

    PubMed Central

    Souza, E.O.de; Tricoli, V.; Bueno, C.; Pereira, M.G.; Brum, P.C.; Oliveira, E.M.; Roschel, H.; Aoki, M.S.; Urginowitsch, C.

    2013-01-01

    The activation of competing intracellular pathways has been proposed to explain the reduced training adaptations after concurrent strength and endurance exercises (CE). The present study investigated the acute effects of CE, strength exercises (SE), and endurance exercises (EE) on phosphorylated/total ratios of selected AMPK and Akt/mTOR/p70S6K1 pathway proteins in rats. Six animals per exercise group were killed immediately (0 h) and 2 h after each exercise mode. In addition, 6 animals in a non-exercised condition (NE) were killed on the same day and under the same conditions. The levels of AMPK, phospho-Thr172AMPK (p-AMPK), Akt, phospho-Ser473Akt (p-Akt), p70S6K1, phospho-Thr389-p70S6K1 (p-p70S6K1), mTOR, phospho-Ser2448mTOR (p-mTOR), and phospho-Thr1462-TSC2 (p-TSC2) expression were evaluated by immunoblotting in total plantaris muscle extracts. The only significant difference detected was an increase (i.e., 87%) in Akt phosphorylated/total ratio in the CE group 2 h after exercise compared to the NE group (P = 0.002). There were no changes in AMPK, TSC2, mTOR, or p70S6K1 ratios when the exercise modes were compared to the NE condition (P ≥ 0.05). In conclusion, our data suggest that low-intensity and low-volume CE might not blunt the training-induced adaptations, since it did not activate competing intracellular pathways in an acute bout of strength and endurance exercises in rat skeletal muscle. PMID:23598645

  18. Endurance exercise training ameliorates insulin resistance and reticulum stress in adipose and hepatic tissue in obese rats.

    PubMed

    da Luz, Gabrielle; Frederico, Marisa J S; da Silva, Sabrina; Vitto, Marcelo F; Cesconetto, Patricia A; de Pinho, Ricardo A; Pauli, José R; Silva, Adelino S R; Cintra, Dennys E; Ropelle, Eduardo R; De Souza, Cláudio T

    2011-09-01

    Obesity-induced endoplasmatic reticulum (ER) stress has been demonstrated to underlie the induction of obesity-induced JNK and NF-κB activation inflammatory responses, and generation of peripheral insulin resistance. On the other hand, exercise has been used as a crucial tool in obese and diabetic patients, and may reduce inflammatory pathway stimulation. However, the ability of exercise training to reverse endoplasmatic reticulum stress in adipose and hepatic tissue in obesity has not been investigated in the literature. Here, we demonstrate that exercise training ameliorates ER stress and insulin resistance in DIO-induced rats. Rats were fed with standard rodent chow (3,948 kcal kg(-1)) or high-fat diet (5,358 kcal kg(-1)) for 2 months. After that rats were submitted to swimming training (1 h per day, 5 days for week with 5% overload of the body weight for 8 weeks). Samples from epididymal fat and liver were obtained and western blot analysis was performed. Our results showed that swimming protocol reduces pro-inflammatory molecules (JNK, IκB and NF-κB) in adipose and hepatic tissues. In addition, exercise leads to reduction in ER stress, by reducing PERK and eIF2α phosphorylation in these tissues. In parallel, an increase in insulin pathway signaling was observed, as confirmed by increases in IR, IRSs and Akt phosphorylation following exercise training in DIO rats. Thus, results suggest that exercise can reduce ER stress, improving insulin resistance in adipose and hepatic tissue. PMID:21249392

  19. The effect of endurance training and subsequent physical inactivity on glycaemic control after oral glucose load and physical exercise in healthy men

    NASA Astrophysics Data System (ADS)

    Radikova, Zofia; Ksinantova, Lucia; Kaciuba-Uscilko, Hanna; Nazar, Krystyna; Vigas, Milan; Koska, Juraj

    2007-02-01

    Physical inactivity during space flight has a profound effect on glucose metabolism. The aim of this study was to test whether endurance training (ET) may improve a negative effect of subsequent -6∘ head-down bed rest (HDBR) on glucose metabolism. Fourteen healthy males completed the study consisting of 6 weeks lasting ET followed by 6 days HDBR. Treadmill exercise at 80% of pre-training VO2max and 75 g oral glucose tolerance test (OGTT) were performed before and after ET as well as after HDBR. ET increased VO2max by 11%. ET significantly lowered while HDBR had no effect on fasting and OGTT plasma glucose levels. ET had no effect while HDBR was followed by an augmentation of insulin and C-peptide response to OGTT. Insulin sensitivity tended to increase after ET and to decrease during HDBR, however, mostly without statistical significance. Plasma glucose, insulin and C-peptide response to exercise were elevated after HDBR only. Our study shows that antecedent physical training could ameliorate a negative effect of simulated microgravity on insulin-mediated glucose metabolism.

  20. Gluconeogenesis during endurance exercise in cyclists habituated to a long-term low carbohydrate high fat diet

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Endogenous glucose production (EGP) occurs via hepatic glycogenolysis (GLY) and gluconeogenesis (GNG) and plays an important role in maintaining euglycemia. Rates of GLY and GNG increase during exercise in athletes following a mixed macronutrient diet; however these processes have not been investiga...

  1. Influence of Hydration Status on Changes in Plasma Cortisol, Leukocytes, and Antigen-Stimulated Cytokine Production by Whole Blood Culture following Prolonged Exercise.

    PubMed

    Svendsen, Ida S; Killer, Sophie C; Gleeson, Michael

    2014-01-01

    Elevated antigen-stimulated anti-inflammatory cytokine production appears to be a risk factor for upper respiratory tract illness in athletes. The purpose of this study was to determine the effects of prolonged exercise and hydration on antigen-stimulated cytokine production. Twelve healthy males cycled for 120 min at 60% [Formula: see text] on two occasions, either euhydrated or moderately hypohydrated (induced by fluid restriction for 24 h). Blood samples were collected before and after exercise and following 2 h recovery for determination of cell counts, plasma cortisol, and in vitro antigen-stimulated cytokine production by whole blood culture. Fluid restriction resulted in mean body mass loss of 1.3% and 3.9% before and after exercise, respectively. Exercise elicited a significant leukocytosis and elevated plasma cortisol, with no differences between trials. IL-6 production was significantly reduced 2 h postexercise (P < 0.05), while IL-10 production was elevated postexercise (P < 0.05). IFN- γ and IL-2 production tended to decrease postexercise. No significant effect of hydration status was observed for the measured variables. Prolonged exercise appears to result in augmented anti-inflammatory cytokine release in response to antigen challenge, possibly coupled with acute suppression of proinflammatory cytokine production, corresponding with studies using mitogen or endotoxin as stimulant. Moderate hypohydration does not appear to influence these changes. PMID:24967270

  2. L-glutamine supplementations enhance liver glutamine-glutathione axis and heat shock factor-1 expression in endurance-exercise trained rats.

    PubMed

    Petry, Éder Ricardo; Cruzat, Vinicius Fernandes; Heck, Thiago Gomes; Homem de Bittencourt, Paulo Ivo; Tirapegui, Julio

    2015-04-01

    Liver L-glutamine is an important vehicle for the transport of ammonia and intermediary metabolism of amino acids between tissues, particularly under catabolic situations, such as high-intensity exercise. Hence, the aim of this study was to investigate the effects of oral supplementations with L-glutamine in its free or dipeptide forms (with L-alanine) on liver glutamine-glutathione (GSH) axis, and 70 kDa heat shock proteins (HSP70)/heat shock transcription factor 1 (HSF1) expressions. Adult male Wistar rats were 8-week trained (60 min/day, 5 days/week) on a treadmill. During the last 21 days, the animals were daily supplemented with 1 g of L-glutamine/kg body weight per day in either l-alanyl-L-glutamine dipeptide (DIP) form or a solution containing L-glutamine and l-alanine in their free forms (GLN+ALA) or water (controls). Exercise training increased cytosolic and nuclear HSF1 and HSP70 expression, as compared with sedentary animals. However, both DIP and GLN+ALA supplements enhanced HSF1 expression (in both cytosolic and nuclear fractions) in relation to exercised controls. Interestingly, HSF1 rises were not followed by enhanced HSP70 expression. DIP and GLN+ALA supplements increased plasma glutamine concentrations (by 62% and 59%, respectively) and glutamine to glutamate plasma ratio in relation to trained controls. This was in parallel with a decrease in plasma ammonium levels. Supplementations increased liver GSH (by 90%), attenuating the glutathione disulfide (GSSG) to GSH ratio, suggesting a redox state protection. In conclusion, oral administration with DIP and GLN+ALA supplements in endurance-trained rats improve liver glutamine-GSH axis and modulate HSF1 pathway. PMID:25202991

  3. Adding protein to a carbohydrate supplement provided after endurance exercise enhances 4E-BP1 and RPS6 signaling in skeletal muscle.

    PubMed

    Morrison, Paul J; Hara, Daisuke; Ding, Zhenping; Ivy, John L

    2008-04-01

    To examine the role of both endurance exercise and nutrient supplementation on the activation of mRNA translation signaling pathways postexercise, rats were subjected to a 3-h swimming protocol. Immediately following exercise, the rats were provided with a solution containing either 23.7% wt/vol carbohydrates (CHO), 7.9% wt/vol protein (Pro), 31.6% wt/vol (23.7% wt/vol CHO + 7.9% wt/vol Pro) carbohydrates and Pro (CP), or a placebo (EX). The rats were then killed at 0, 30, and 90 min postexercise, and phosphorylation states of mammalian target of rapamycin (mTOR), ribosomal S6 kinase (p70(S6K)), ribosomal protein S6 (rpS6), and 4E-binding protein 1 (4E-BP1), were analyzed by immunoblot analysis in the red and white quadriceps muscle. Results demonstrated that rat groups provided with any of the three nutritional supplements (CHO, Pro, CP) transiently increased the phosphorylation states of mTOR, 4E-BP1, rpS6, and p70(S6K) compared with EX rats. Although CHO, Pro, and CP supplements phosphorylated mTOR and p70(S6K) after exercise, only CP elevated the phosphorylation of rpS6 above all other supplements 30 min postexercise and 4E-BP1 30 and 90 min postexercise. Furthermore, the phosphorylation states of 4E-BP1 (r(2) = 0.7942) and rpS6 (r(2) = 0.760) were highly correlated to insulin concentrations in each group. These results suggest that CP supplementation may be most effective in activating the mTOR-dependent signaling pathway in the postprandial state postexercise, and that there is a strong relationship between the insulin concentration and the activation of enzymes critical for mRNA translation. PMID:18239077

  4. Twelve Weeks of Sprint Interval Training Improves Indices of Cardiometabolic Health Similar to Traditional Endurance Training despite a Five-Fold Lower Exercise Volume and Time Commitment

    PubMed Central

    Martin, Brian J.; MacInnis, Martin J.; Skelly, Lauren E.; Tarnopolsky, Mark A.; Gibala, Martin J.

    2016-01-01

    Aims We investigated whether sprint interval training (SIT) was a time-efficient exercise strategy to improve insulin sensitivity and other indices of cardiometabolic health to the same extent as traditional moderate-intensity continuous training (MICT). SIT involved 1 minute of intense exercise within a 10-minute time commitment, whereas MICT involved 50 minutes of continuous exercise per session. Methods Sedentary men (27±8y; BMI = 26±6kg/m2) performed three weekly sessions of SIT (n = 9) or MICT (n = 10) for 12 weeks or served as non-training controls (n = 6). SIT involved 3x20-second ‘all-out’ cycle sprints (~500W) interspersed with 2 minutes of cycling at 50W, whereas MICT involved 45 minutes of continuous cycling at ~70% maximal heart rate (~110W). Both protocols involved a 2-minute warm-up and 3-minute cool-down at 50W. Results Peak oxygen uptake increased after training by 19% in both groups (SIT: 32±7 to 38±8; MICT: 34±6 to 40±8ml/kg/min; p<0.001 for both). Insulin sensitivity index (CSI), determined by intravenous glucose tolerance tests performed before and 72 hours after training, increased similarly after SIT (4.9±2.5 to 7.5±4.7, p = 0.002) and MICT (5.0±3.3 to 6.7±5.0 x 10−4 min-1 [μU/mL]-1, p = 0.013) (p<0.05). Skeletal muscle mitochondrial content also increased similarly after SIT and MICT, as primarily reflected by the maximal activity of citrate synthase (CS; P<0.001). The corresponding changes in the control group were small for VO2peak (p = 0.99), CSI (p = 0.63) and CS (p = 0.97). Conclusions Twelve weeks of brief intense interval exercise improved indices of cardiometabolic health to the same extent as traditional endurance training in sedentary men, despite a five-fold lower exercise volume and time commitment. PMID:27115137

  5. Creatine ingestion augments dietary carbohydrate mediated muscle glycogen supercompensation during the initial 24 h of recovery following prolonged exhaustive exercise in humans.

    PubMed

    Roberts, Paul A; Fox, John; Peirce, Nicholas; Jones, Simon W; Casey, Anna; Greenhaff, Paul L

    2016-08-01

    Muscle glycogen availability can limit endurance exercise performance. We previously demonstrated 5 days of creatine (Cr) and carbohydrate (CHO) ingestion augmented post-exercise muscle glycogen storage compared to CHO feeding alone in healthy volunteers. Here, we aimed to characterise the time-course of this Cr-induced response under more stringent and controlled experimental conditions and identify potential mechanisms underpinning this phenomenon. Fourteen healthy, male volunteers cycled to exhaustion at 70 % VO2peak. Muscle biopsies were obtained at rest immediately post-exercise and after 1, 3 and 6 days of recovery, during which Cr or placebo supplements (20 g day(-1)) were ingested along with a prescribed high CHO diet (37.5 kcal kg body mass(-1) day(-1), >80 % calories CHO). Oral-glucose tolerance tests (oral-GTT) were performed pre-exercise and after 1, 3 and 6 days of Cr and placebo supplementation. Exercise depleted muscle glycogen content to the same extent in both treatment groups. Creatine supplementation increased muscle total-Cr, free-Cr and phosphocreatine (PCr) content above placebo following 1, 3 and 6 days of supplementation (all P < 0.05). Creatine supplementation also increased muscle glycogen content noticeably above placebo after 1 day of supplementation (P < 0.05), which was sustained thereafter. This study confirmed dietary Cr augments post-exercise muscle glycogen super-compensation, and demonstrates this occurred during the initial 24 h of post-exercise recovery (when muscle total-Cr had increased by <10 %). This marked response ensued without apparent treatment differences in muscle insulin sensitivity (oral-GTT, muscle GLUT4 mRNA), osmotic stress (muscle c-fos and HSP72 mRNA) or muscle cell volume (muscle water content) responses, such that another mechanism must be causative. PMID:27193231

  6. Validation of a genomics-based hypothetical adverse outcome pathway: 2,4-dinitrotoluene perturbs PPAR signaling thus impairing energy metabolism and exercise endurance.

    PubMed

    Wilbanks, Mitchell S; Gust, Kurt A; Atwa, Sahar; Sunesara, Imran; Johnson, David; Ang, Choo Yaw; Meyer, Sharon A; Perkins, Edward J

    2014-09-01

    2,4-dinitrotoluene (2,4-DNT) is a nitroaromatic used in industrial dyes and explosives manufacturing processes that is found as a contaminant in the environment. Previous studies have implicated antagonism of PPARα signaling as a principal process affected by 2,4-DNT. Here, we test the hypothesis that 2,4-DNT-induced perturbations in PPARα signaling and resultant downstream deficits in energy metabolism, especially from lipids, cause organism-level impacts on exercise endurance. PPAR nuclear activation bioassays demonstrated inhibition of PPARα signaling by 2,4-DNT whereas PPARγ signaling increased. PPARα (-/-) and wild-type (WT) female mice were exposed for 14 days to vehicle or 2,4-DNT (134 mg/kg/day) and performed a forced swim to exhaustion 1 day after the last dose. 2,4-DNT significantly decreased body weights and swim times in WTs, but effects were significantly mitigated in PPARα (-/-) mice. 2,4-DNT decreased transcript expression for genes downstream in the PPARα signaling pathway, principally genes involved in fatty acid transport. Results indicate that PPARγ signaling increased resulting in enhanced cycling of lipid and carbohydrate substrates into glycolytic/gluconeogenic pathways favoring energy production versus storage in 2,4-DNT-exposed WT and PPARα (-/-) mice. PPARα (-/-) mice appear to have compensated for the loss of PPARα by shifting energy metabolism to PPARα-independent pathways resulting in lower sensitivity to 2,4-DNT when compared with WT mice. Our results validate 2,4-DNT-induced perturbation of PPARα signaling as the molecular initiating event for impaired energy metabolism, weight loss, and decreased exercise performance. PMID:24893713

  7. Validation of a Genomics-Based Hypothetical Adverse Outcome Pathway: 2,4-Dinitrotoluene Perturbs PPAR Signaling Thus Impairing Energy Metabolism and Exercise Endurance

    PubMed Central

    Wilbanks, Mitchell S.; Gust, Kurt A.; Atwa, Sahar; Sunesara, Imran; Johnson, David; Ang, Choo Yaw; Meyer, Sharon A.; Perkins, Edward J.

    2014-01-01

    2,4-dinitrotoluene (2,4-DNT) is a nitroaromatic used in industrial dyes and explosives manufacturing processes that is found as a contaminant in the environment. Previous studies have implicated antagonism of PPARα signaling as a principal process affected by 2,4-DNT. Here, we test the hypothesis that 2,4-DNT-induced perturbations in PPARα signaling and resultant downstream deficits in energy metabolism, especially from lipids, cause organism-level impacts on exercise endurance. PPAR nuclear activation bioassays demonstrated inhibition of PPARα signaling by 2,4-DNT whereas PPARγ signaling increased. PPARα (-/-) and wild-type (WT) female mice were exposed for 14 days to vehicle or 2,4-DNT (134 mg/kg/day) and performed a forced swim to exhaustion 1 day after the last dose. 2,4-DNT significantly decreased body weights and swim times in WTs, but effects were significantly mitigated in PPARα (-/-) mice. 2,4-DNT decreased transcript expression for genes downstream in the PPARα signaling pathway, principally genes involved in fatty acid transport. Results indicate that PPARγ signaling increased resulting in enhanced cycling of lipid and carbohydrate substrates into glycolytic/gluconeogenic pathways favoring energy production versus storage in 2,4-DNT-exposed WT and PPARα (-/-) mice. PPARα (-/-) mice appear to have compensated for the loss of PPARα by shifting energy metabolism to PPARα-independent pathways resulting in lower sensitivity to 2,4-DNT when compared with WT mice. Our results validate 2,4-DNT-induced perturbation of PPARα signaling as the molecular initiating event for impaired energy metabolism, weight loss, and decreased exercise performance. PMID:24893713

  8. THE RELATIONSHIP BETWEEN ISOTONIC PLANTAR FLEXOR ENDURANCE, NAVICULAR DROP, AND EXERCISE-RELATED LEG PAIN IN A COHORT OF COLLEGIATE CROSS-COUNTRY RUNNERS

    PubMed Central

    Reinking, Mark F.; Rauh, Mitchell J.

    2012-01-01

    Purpose: The purpose of this study was to examine the relationships between isotonic ankle plantar flexor endurance (PFE), foot pronation as measured by navicular drop, and exercise-related leg pain (ERLP). Background: Exercise-related leg pain is a common occurrence in competitive and recreational runners. The identification of factors contributing to the development of ERLP may help guide methods for the prevention and management of overuse injuries. Methods: Seventy-seven (44 males, 33 females) competitive runners from five collegiate cross-country (XC) teams consented to participate in the study. Isotonic ankle PFE and foot pronation were measured using the standing heel-rise and navicular drop (ND) tests, respectively. Demographic information, anthropometric measurements, and ERLP history were also recorded. Subjects were then prospectively tracked for occurrence of ERLP during the 2009 intercollegiate cross-country season. Multivariate logistic regression analysis was used to examine the relationships between isotonic ankle joint PFE and ND and the occurrence of ERLP. Results: While no significant differences were identified for isotonic ankle PFE between groups of collegiate XC runners with and without ERLP, runners with a ND >10 mm were almost 7 times (OR=6.6, 95% CI=1.2–38.0) more likely to incur medial ERLP than runners with ND <10 mm. Runners with a history of ERLP in the month previous to the start of the XC season were 12 times (OR=12.3, 95% CI=3.1–48.9) more likely to develop an in-season occurrence of ERLP. Conclusion: While PFE did not appear to be a risk factor in the development of ERLP in this group of collegiate XC runners, those with a ND greater than 10 mm may be at greater odds of incurring medial ERLP. Level of Evidence: 2b. PMID:22666641

  9. Roles of nitric oxide synthase and cyclooxygenase in leg vasodilation and oxygen consumption during prolonged low-intensity exercise in untrained humans.

    PubMed

    Schrage, William G; Wilkins, Brad W; Johnson, Christopher P; Eisenach, John H; Limberg, Jacqueline K; Dietz, Niki M; Curry, Timothy B; Joyner, Michael J

    2010-09-01

    The vasodilator signals regulating muscle blood flow during exercise are unclear. We tested the hypothesis that in young adults leg muscle vasodilation during steady-state exercise would be reduced independently by sequential pharmacological inhibition of nitric oxide synthase (NOS) and cyclooxygenase (COX) with NG-nitro-L-arginine methyl ester (L-NAME) and ketorolac, respectively. We tested a second hypothesis that NOS and COX inhibition would increase leg oxygen consumption (VO2) based on the reported inhibition of mitochondrial respiration by nitric oxide. In 13 young adults, we measured heart rate (ECG), blood pressure (femoral venous and arterial catheters), blood gases, and venous oxygen saturation (indwelling femoral venous oximeter) during prolonged (25 min) steady-state dynamic knee extension exercise (60 kick/min, 19 W). Leg blood flow (LBF) was determined by Doppler ultrasound of the femoral artery. Whole body VO2 was measured, and leg VO2 was calculated from blood gases and LBF. Resting intra-arterial infusions of acetylcholine (ACh) and nitroprusside (NTP) tested inhibitor efficacy. Leg vascular conductance (LVC) to ACh was reduced up to 53±4% by L-NAME+ketorolac infusion, and the LVC responses to NTP were unaltered. Exercise increased LVC from 4±1 to 33.1±2 ml.min(-1).mmHg(-1) and tended to decrease after L-NAME infusion (31±2 ml.min(-1).mmHg(-1), P=0.09). With subsequent administration of ketorolac LVC decreased to 29.6±2 ml.min(-1).mmHg(-1) (P=0.02; n=9). While exercise continued, LVC returned to control values (33±2 ml.min(-1).mmHg(-1)) within 3 min, suggesting involvement of additional vasodilator mechanisms. In four additional subjects, LVC tended to decrease with L-NAME infusion alone (P=0.08) but did not demonstrate the transient recovery. Whole body and leg VO2 increased with exercise but were not altered by L-NAME or L-NAME+ketorolac. These data indicate a modest role for NOS- and COX-mediated vasodilation in the leg of exercising

  10. No case of exercise-associated hyponatremia in male ultra-endurance mountain bikers in the 'Swiss Bike Masters'.

    PubMed

    Knechtle, Beat; Knechtle, Patrizia; Rosemann, Thomas

    2011-12-31

    Exercise-associated hyponatremia (EAH) has mainly been investigated in runners and triathletes. In mountain bikers, EAH was studied in two multi-stage races, but not in a single stage race. The aim of this study was to investigate the prevalence of EAH in a single-stage mountain bike ultra-marathon. In the 'Swiss Bike Masters' over 120 km with a climb of ~ 5,000 m in altitude, we determined pre and post race body mass, hematocrit, plasma sodium concentration ([Na⁺]), and urinary specific gravity in 37 cyclists. Athletes recorded their fluid intake while racing. No athlete developed EAH. The cyclists drank on average (means ± SD) 0.7 ± 0.2 l/h. Fluid intake was significantly and negatively related to race time (r = -0.41, P < 0.05), but showed no association with post race plasma [Na⁺], the change in plasma [Na⁺], post race body mass, or the change in body mass. The athletes lost 1.4 kg body mass (P < 0.05), plasma [Na⁺] decreased by 0.7% (P < 0.05), plasma volume increased by 1.4% and urinary specific gravity increased by 0.4% (P < 0.05). The change in body mass was neither related to post race plasma [Na⁺] nor to the change in plasma [Na⁺]. The decrease in plasma [Na⁺] was not related to fluid intake. The change in plasma [Na⁺] was related to post race plasma [Na⁺] (r = 0.40, P < 0.01). Ad libitum fluid intake showed no case of EAH in a single-stage mountain bike ultra-marathon. In contrast to previous findings, the faster athletes drank more than the slower ones. PMID:22229504

  11. Food selection for endurance sports.

    PubMed

    Houtkooper, L

    1992-09-01

    1) The body requires at least 40 nutrients that are classified into six groups: protein, carbohydrate, fat, vitamin, mineral, and water. These nutrients cannot be made in the body and so they must be supplied from solid or liquid foods. 2) Fat, carbohydrate, and protein contain energy that is measured in units called kilocalories. Alcohol also contains kilocalories, but is not a recommended energy source for endurance exercise. 3) Foods in endurance sports training programs should provide adequate fluids to prevent dehydration; energy intake that is high in carbohydrate, low in fat, adequate in protein, and that maintains desirable body weight and desirable proportions of fat and lean weight; and sufficient amounts of vitamins and minerals. 4) Six categories of food types form the fundamentals of good diets for endurance exercise training and include: fruits, vegetables, grains-legumes, lean meats, low-fat milk products, and fats-sweets. Vegetarian diets include all food type categories except meat and/or milk products. 5) Fat and carbohydrate content of foods in each food type category varies greatly because of how foods are prepared. 6) The Food Pyramid and Sports Food Swap are guides for selecting foods that provide recommended amounts of essential nutrients for endurance exercise. 7) Before, during, and after endurance exercise, food intake should include adequate amounts of easily digestible, high carbohydrate foods that are familiar and psychologically satisfying. 8) Easily digestible high carbohydrate liquid or solid foods should be eaten soon after exercise is stopped to maximize rates of glycogen replacement. 9) Dehydration can be prevented by adequate fluid intake before, during, and after exercise. 10) Any food plan should be tested before a competition to find out how well that plan works for an athlete. PMID:1406209

  12. Effects of supplementation with free glutamine and the dipeptide alanyl-glutamine on parameters of muscle damage and inflammation in rats submitted to prolonged exercise.

    PubMed

    Cruzat, Vinicius Fernandes; Rogero, Marcelo Macedo; Tirapegui, Julio

    2010-01-01

    In this study, we investigated the effect of the supplementation with the dipeptide L-alanyl-L-glutamine (DIP) and a solution containing L-glutamine and L-alanine on plasma levels markers of muscle damage and levels of pro-inflammatory cytokines and glutamine metabolism in rats submitted to prolonged exercise. Rats were submitted to sessions of swim training for 6 weeks. Twenty-one days prior to euthanasia, the animals were supplemented with DIP (n = 8) (1.5 g.kg(-1)), a solution of free L-glutamine (1 g.kg(-1)) and free L-alanine (0.61 g.kg(-1)) (G&A, n = 8) or water (control (CON), n = 8). Animals were killed at rest before (R), after prolonged exercise (PE-2 h of exercise). Plasma concentrations of glutamine, glutamate, tumour necrosis factor-alpha (TNF-alpha), prostaglandin E2 (PGE2) and activity of creatine kinase (CK), lactate dehydrogenase (LDH) and muscle concentrations of glutamine and glutamate were measured. The concentrations of plasma TNF-alpha, PGE2 and the activity of CK were lower in the G&A-R and DIP-R groups, compared to the CON-R. Glutamine in plasma (p < 0.04) and soleus muscle (p < 0.001) was higher in the DIP-R and G&A-R groups relative to the CON-R group. G&A-PE and DIP-PE groups exhibited lower concentrations of plasma PGE2 (p < 0.05) and TNF-alpha (p < 0.05), and higher concentrations of glutamine and glutamate in soleus (p < 0.001) and gastrocnemius muscles (p < 0.05) relative to the CON-PE group. We concluded that supplementation with free L-glutamine and the dipeptide LL-alanyl-LL-glutamine represents an effective source of glutamine, which may attenuate inflammation biomarkers after periods of training and plasma levels of CK and the inflammatory response induced by prolonged exercise. PMID:19885855

  13. Dietary Supplementation with the Microalga Galdieria sulphuraria (Rhodophyta) Reduces Prolonged Exercise-Induced Oxidative Stress in Rat Tissues

    PubMed Central

    Carfagna, Simona; Napolitano, Gaetana; Barone, Daniela; Pinto, Gabriele; Venditti, Paola

    2015-01-01

    We studied the effects of ten-day 1% Galdieria sulphuraria dietary supplementation on oxidative damage and metabolic changes elicited by acute exercise (6-hour swimming) determining oxygen consumption, lipid hydroperoxides, protein bound carbonyls in rat tissue (liver, heart, and muscle) homogenates and mitochondria, tissue glutathione peroxidase and glutathione reductase activities, glutathione content, and rates of H2O2 mitochondrial release. Exercise increased oxidative damage in tissues and mitochondria and decreased tissue content of reduced glutathione. Moreover, it increased State 4 and decreased State 3 respiration in tissues and mitochondria. G. sulphuraria supplementation reduced the above exercise-induced variations. Conversely, alga supplementation was not able to modify the exercise-induced increase in mitochondrial release rate of hydrogen peroxide and in liver and heart antioxidant enzyme activities. The alga capacity to reduce lipid oxidative damage without reducing mitochondrial H2O2 release can be due to its high content of C-phycocyanin and glutathione, which are able to scavenge peroxyl radicals and contribute to phospholipid hydroperoxide metabolism, respectively. In conclusion, G. sulphuraria ability to reduce exercise-linked oxidative damage and mitochondrial dysfunction makes it potentially useful even in other conditions leading to oxidative stress, including hyperthyroidism, chronic inflammation, and ischemia/reperfusion. PMID:25874021

  14. Dietary supplementation with the microalga Galdieria sulphuraria (Rhodophyta) reduces prolonged exercise-induced oxidative stress in rat tissues.

    PubMed

    Carfagna, Simona; Napolitano, Gaetana; Barone, Daniela; Pinto, Gabriele; Pollio, Antonino; Venditti, Paola

    2015-01-01

    We studied the effects of ten-day 1% Galdieria sulphuraria dietary supplementation on oxidative damage and metabolic changes elicited by acute exercise (6-hour swimming) determining oxygen consumption, lipid hydroperoxides, protein bound carbonyls in rat tissue (liver, heart, and muscle) homogenates and mitochondria, tissue glutathione peroxidase and glutathione reductase activities, glutathione content, and rates of H2O2 mitochondrial release. Exercise increased oxidative damage in tissues and mitochondria and decreased tissue content of reduced glutathione. Moreover, it increased State 4 and decreased State 3 respiration in tissues and mitochondria. G. sulphuraria supplementation reduced the above exercise-induced variations. Conversely, alga supplementation was not able to modify the exercise-induced increase in mitochondrial release rate of hydrogen peroxide and in liver and heart antioxidant enzyme activities. The alga capacity to reduce lipid oxidative damage without reducing mitochondrial H2O2 release can be due to its high content of C-phycocyanin and glutathione, which are able to scavenge peroxyl radicals and contribute to phospholipid hydroperoxide metabolism, respectively. In conclusion, G. sulphuraria ability to reduce exercise-linked oxidative damage and mitochondrial dysfunction makes it potentially useful even in other conditions leading to oxidative stress, including hyperthyroidism, chronic inflammation, and ischemia/reperfusion. PMID:25874021

  15. Serum levels of appetite-regulating hormones and pro-inflammatory cytokines are ameliorated by a CLA diet and endurance exercise in rats fed a high-fat diet

    PubMed Central

    Cho, Kangok; Kwon, Daekeun; Park, Jaeyong; Song, Youngju

    2015-01-01

    [Purpose] This study examined whether conjugated linoleic acid (CLA) supplementation and endurance exercise affect appetite-regulating hormones and pro-inflammatory cytokines in rats. [Methods] Seven-week-old male Sprague-Dawley rats were divided randomly into the high-fat diet sedentary group (HS, n=8), the 1.0% CLA supplemented high-fat diet sedentary group (CS, n=8), and the 1.0% CLA supplemented high-fat diet exercise group (CE, n=8). Rats in the CE group swam 60 min/day, 5 days/week for 4 weeks. [Results] Leptin and insulin levels in the CS and CE groups were significantly lower than those in the HS group (p<0.001), whereas leptin (p<0.01) and insulin (p<0.05) levels decreased significantly in the CE compared to those in the CS group. Interleukin (IL)-1β (p<0.001) and IL-6 (p<0.01) levels in the CS and CE groups decreased significantly compared to those in the HS group. Leptin (IL-1β: r=0.835, p<0.001), IL-6 (r=0.607, p<0.05), insulin (IL-1β: r=0.797, p<0.01), and IL-6 (r=0.827, p<0.01) levels were positively related with pro-inflammatory cytokine levels. [Conclusion] Endurance exercise may play an important role during CLA supplementation of rats on a high-fat diet. PMID:27274463

  16. Sirtuin 1 (SIRT1) Deacetylase Activity Is Not Required for Mitochondrial Biogenesis or Peroxisome Proliferator-activated Receptor-γ Coactivator-1α (PGC-1α) Deacetylation following Endurance Exercise*

    PubMed Central

    Philp, Andrew; Chen, Ai; Lan, Debin; Meyer, Gretchen A.; Murphy, Anne N.; Knapp, Amy E.; Olfert, I. Mark; McCurdy, Carrie E.; Marcotte, George R.; Hogan, Michael C.; Baar, Keith; Schenk, Simon

    2011-01-01

    The protein deacetylase, sirtuin 1 (SIRT1), is a proposed master regulator of exercise-induced mitochondrial biogenesis in skeletal muscle, primarily via its ability to deacetylate and activate peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α). To investigate regulation of mitochondrial biogenesis by SIRT1 in vivo, we generated mice lacking SIRT1 deacetylase activity in skeletal muscle (mKO). We hypothesized that deacetylation of PGC-1α and mitochondrial biogenesis in sedentary mice and after endurance exercise would be impaired in mKO mice. Skeletal muscle contractile characteristics were determined in extensor digitorum longus muscle ex vivo. Mitochondrial biogenesis was assessed after 20 days of voluntary wheel running by measuring electron transport chain protein content, enzyme activity, and mitochondrial DNA expression. PGC-1α expression, nuclear localization, acetylation, and interacting protein association were determined following an acute bout of treadmill exercise (AEX) using co-immunoprecipitation and immunoblotting. Contrary to our hypothesis, skeletal muscle endurance, electron transport chain activity, and voluntary wheel running-induced mitochondrial biogenesis were not impaired in mKO versus wild-type (WT) mice. Moreover, PGC-1α expression, nuclear translocation, activity, and deacetylation after AEX were similar in mKO versus WT mice. Alternatively, we made the novel observation that deacetylation of PGC-1α after AEX occurs in parallel with reduced nuclear abundance of the acetyltransferase, general control of amino-acid synthesis 5 (GCN5), as well as reduced association between GCN5 and nuclear PGC-1α. These findings demonstrate that SIRT1 deacetylase activity is not required for exercise-induced deacetylation of PGC-1α or mitochondrial biogenesis in skeletal muscle and suggest that changes in GCN5 acetyltransferase activity may be an important regulator of PGC-1α activity after exercise. PMID:21757760

  17. 'Endurance' Untouched

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This navigation camera mosaic, created from images taken by NASA's Mars Exploration Rover Opportunity on sols 115 and 116 (May 21 and 22, 2004) provides a dramatic view of 'Endurance Crater.' The rover engineering team carefully plotted the safest path into the football field-sized crater, eventually easing the rover down the slopes around sol 130 (June 12, 2004). To the upper left of the crater sits the rover's protective heatshield, which sheltered Opportunity as it passed through the martian atmosphere. The 360-degree view is presented in a cylindrical projection, with geometric and radiometric seam correction.

  18. The effect of ice-slushy consumption on plasma vasoactive intestinal peptide during prolonged exercise in the heat.

    PubMed

    Burdon, Catriona A; Ruell, Patricia; Johnson, Nathan; Chapman, Phillip; O'Brien, Sinead; O'Connor, Helen T

    2015-01-01

    The aim of this study was to determine the effect of exercise in the heat on thermoregulatory responses and plasma vasoactive intestinal peptide concentration (VIP) and whether it is modulated by ice-slushy consumption. Ten male participants cycled at 62% V̇O2max for 90min in 32°C and 40% relative humidity. A thermoneutral (37°C) or ice-slushy (-1°C) sports drink was given at 3.5mlkg(-1) body mass every 15min during exercise. VIP and rectal temperature increased during exercise (mean±standard deviation: 4.6±4.4pmolL(-1), P=0.005; and 1.3±0.4°C, P<0.001 respectively) and were moderately associated (r=0.35, P=0.008). While rectal temperature and VIP were not different between trials, ice-slushy significantly reduced heat storage (P=0.010) and skin temperature (time×trial interaction P=0.038). It appears that VIP does not provide the signal linking cold beverage ingestion and lower skin temperature in the heat. PMID:25526655

  19. Exercises

    MedlinePlus

    ... Obstructive Pulmonary Disease (COPD) COPD: Lifestyle Management Exercises Exercises Make an Appointment Refer a Patient Ask a ... riding a stationary bike. Medication to Help You Exercise People with COPD often use a metered-dose ...

  20. Effectiveness of ice-vest cooling in prolonging work tolerance time during heavy exercise in the heat for personnel wearing Canadian forces chemical defense ensembles

    SciTech Connect

    Bain, B.

    1991-01-01

    Effectiveness of a portable, ice-pack cooling vest (Steelevest) in prolonging work tolerance time in chemical defense clothing in the heat (33 C dry bulb, 33% relative humidity or 25 C WBGT) was evaluated while subjects exercised at a metabolic rate of approx. 700 watts. Subjects were six male volunteers. The protocol consisted of a 20 minute treadmill walk at 1.33 m/s. and 7.5% grade, followed by 15 minutes of a lifting task, 5 minutes rest, then another 20 minutes of lifting task for a total of one hour. The lifting task consisted of lifting of 20 kg box, carrying it 3 meters and setting it down. This was followed by a 6 m walk (3m back to the start point and 3 m back to the box) 15 sec after which the lifting cycle began again. The work was classified as heavy as previously defined. This protocol was repeated until the subjects were unable to continue or they reached a physiological endpoint. Time to voluntary cessation or physiological endpoint was called the work tolerance time. Physiological endpoints were rectal temperature of 39 C, heart rate exceeding 95% of maximum for two consecutive minutes or visible loss of motor control or nausea. The cooling vest had no effect on work tolerance time, rate of rise of rectal temperature or sweat loss. It was concluded that the Steelvest ice-vest is ineffective in prolonging work tolerance time and preventing increases in rectal temperature while wearing chemical protective clothing.

  1. A comparison of muscle strength and endurance, exercise capacity, fatigue perception and quality of life in patients with chronic obstructive pulmonary disease and healthy subjects: a cross-sectional study

    PubMed Central

    2014-01-01

    Background Chronic obstructive pulmonary disease (COPD) has significant systemic effects that substantially impact quality of life and survival. The purpose of this study was to assess and compare peripheral muscle strength and endurance, exercise capacity, fatigue perception and quality of life between patients with COPD and healthy subjects. Methods Twenty COPD patients (mean FEV1 49.3 ± 19.2%) and 20 healthy subjects were included in the study. Pulmonary function testing and six-minute walk test (6MWT) were performed. Peripheral muscle strength was measured with a hand-held dynamometer, peripheral muscle endurance was evaluated with sit-ups, squats and modified push-ups tests. Fatigue perception was assessed using the Fatigue Impact Scale (FIS) and Fatigue Severity Scale (FSS). General quality of life was determined with the Nottingham Health Profile (NHP), and cough-specific quality of life was evaluated with the Leicester Cough Questionnaire (LCQ). Results Pulmonary functions, strength of shoulder abductor and flexor muscles, numbers of sit-ups and squats, 6MWT distance and 6MWT% were significantly lower in COPD patients than in healthy subjects (p < 0.05). FIS psychosocial sub-dimension and total scores, NHP scores for all sub-dimensions except pain sub-dimension of the COPD group were significantly higher than those of healthy subjects (p < 0.05). The LCQ physical, psychological and social sub-dimensions and total scores were significantly lower in COPD patients than in healthy subjects (p < 0.05). Conclusions Pulmonary functions, peripheral muscle strength and endurance, exercise capacity and quality of life were adversely affected in patients with COPD. There are greater effect of fatigue on psychosocial functioning and general daily life activities and effect of cough on the quality of life in patients with COPD. This study supports the idea that COPD patients must be evaluated in a comprehensive manner for planning pulmonary

  2. Caffeine and exercise.

    PubMed

    Paluska, Scott A

    2003-08-01

    Caffeine is the most commonly consumed drug in the world, and athletes frequently use it as an ergogenic aid. It improves performance and endurance during prolonged, exhaustive exercise. To a lesser degree it also enhances short-term, high-intensity athletic performance. Caffeine improves concentration, reduces fatigue, and enhances alertness. Habitual intake does not diminish caffeine's ergogenic properties. Several mechanisms have been proposed to explain the physiologic effects of caffeine, but adenosine receptor antagonism most likely accounts for the primary mode of action. It is relatively safe and has no known negative performance effects, nor does it cause significant dehydration or electrolyte imbalance during exercise. Routine caffeine consumption may cause tolerance or dependence, and abrupt discontinuation produces irritability, mood shifts, headache, drowsiness, or fatigue. Major sport governing bodies ban excessive use of caffeine, but current monitoring techniques are inadequate, and ethical dilemmas persist regarding caffeine intake by athletes. PMID:12834577

  3. The effect of high-intensity intermittent swimming on post-exercise glycogen supercompensation in rat skeletal muscle.

    PubMed

    Sano, Akiko; Koshinaka, Keiichi; Abe, Natsuki; Morifuji, Masashi; Koga, Jinichiro; Kawasaki, Emi; Kawanaka, Kentaro

    2012-01-01

    A single bout of prolonged endurance exercise stimulates glucose transport in skeletal muscles, leading to post-exercise muscle glycogen supercompensation if sufficient carbohydrate is provided after the cessation of exercise. Although we recently found that short-term sprint interval exercise also stimulates muscle glucose transport, the effect of this type of exercise on glycogen supercompensation is uncertain. Therefore, we compared the extent of muscle glycogen accumulation in response to carbohydrate feeding following sprint interval exercise with that following endurance exercise. In this study, 16-h-fasted rats underwent a bout of high-intensity intermittent swimming (HIS) as a model of sprint interval exercise or low-intensity prolonged swimming (LIS) as a model of endurance exercise. During HIS, the rats swam for eight 20-s sessions while burdened with a weight equal to 18% of their body weight. The LIS rats swam with no load for 3 h. The exercised rats were then refed for 4, 8, 12, or 16 h. Glycogen levels were almost depleted in the epitrochlearis muscles of HIS- or LIS-exercised rats immediately after the cessation of exercise. A rapid increase in muscle glycogen levels occurred during 4 h of refeeding, and glycogen levels had peaked at the end of 8 h of refeeding in each group of exercised refed rats. The peak glycogen levels during refeeding were not different between HIS- and LIS-exercised refed rats. Furthermore, although a large accumulation of muscle glycogen in response to carbohydrate refeeding is known to be associated with decreased insulin responsiveness of glucose transport, and despite the fact that muscle glycogen supercompensation was observed in the muscles of our exercised rats at the end of 4 h of refeeding, insulin responsiveness was not decreased in the muscles of either HIS- or LIS-exercised refed rats compared with non-exercised fasted control rats at this time point. These results suggest that sprint interval exercise

  4. Spartathlon, a 246 kilometer foot race: effects of acute inflammation induced by prolonged exercise on circulating progenitor reparative cells.

    PubMed

    Goussetis, Evgenios; Spiropoulos, Antonia; Tsironi, Maria; Skenderi, Katerina; Margeli, Alexandra; Graphakos, Stelios; Baltopoulos, Panayiotis; Papassotiriou, Ioannis

    2009-01-01

    Endothelial progenitor cells (EPCs) and the recently described circulating fibrocytes (CFs) are strongly associated with tissue repair. We investigated the kinetics of both "repair" progenitor cells in healthy athletes who participated in the "Spartahlon" ultradistance foot race (246 km continuous running exercise), which provides a unique model of inducing dramatic systemic inflammatory changes. Peripheral blood mononuclear cells (PBMCs) were isolated from 10 volunteer athletes, who completed successfully the race, before, at the end, and at 48 h post-race. EPCs and CFs were detected as endothelial colony-forming units (CFU-ECs) and as the number of adherent with a spindle-shaped morphology Collagen I(+) cells detected after 6-day culture of PBMCs, respectively. The marked increase of plasma levels of CRP, IL-6, SAA, MCP-1, IL-8, sVCAM-1, sICAM-1, thrombomodulin (sTM) and NT-pro-BNP at the end of race established acute inflammation and tissue injury. EPCs increased by nearly eleven-fold in peripheral blood at the end of the race from 44.5+/-2.5/ml to 494.6+/-27.9/ml and remained increased 428.5+/-31.5/ml at 48 h post-race (p<0.0001). The number of the fibrocytes cultured from PBMCs obtained before, at the end, and 48 h post-race did not reveal any significant difference. These findings indicate that bone marrow responses to acute inflammatory damage, induced by exhausting exercise, with a rapid release of EPCs but not CFs into circulation. Given the ability of EPCs to promote angiogenesis and vascular regeneration, we may suggest that this kind of cell mobilization may serve as a physiologic repair mechanism in acute inflammatory tissue injury. PMID:19233694

  5. Considerations for an exercise prescription

    NASA Technical Reports Server (NTRS)

    Convertino, Victor A.

    1989-01-01

    A number of past and most recent research findings that describe some of the physiological responses to exercise in man and their relationship with exposure to various gravitational environments are discussed. Most of the data pertain to adaptations of the cardiovascular and body fluid systems. It should be kept in mind that the data from studies on microgravity simulation in man include exposures of relatively short duration (5 hours to 14 days). However, it is argued that the results may provide important guidelines for the consideration of many variables which are pertinent to the development of exercise prescription for long-duration space flight. The following considerations for exercise prescriptions during long-duration space flight are noted: (1) Relatively high aerobic fitness and strength, especially of the upper body musculature, should be a criterion for selection of astronauts who will be involved in EVA, since endurance and strength appear to be predominant characteristics for work performance. (2) Some degree of upper body strength will probably be required for effective performance of EVA. However, the endurance and strength required by the upper body for EVA can probably be obtained through preflight exercise prescription which involves swimming. (3) Although some degree of arm exercise may be required to maintain preflight endurance and strength, researchers propose that regular EVA will probably be sufficient to maintain the endurance and strength required to effectively perform work tasks during space flight. (4) A minimum of one maximal aerobic exercise every 7 to 10 days during space flight may be all that is necessary for maintenance of normal cardiovascular responsiveness and replacement of body fluids for reentry following prolonged space flight. (5) The possible reduction in the amount of exercise required for maintenance of cardiovascular system and body fluids in combination with the use of electromyostimulation (EMS) or methods other

  6. Heat stress exacerbates the reduction in middle cerebral artery blood velocity during prolonged self-paced exercise.

    PubMed

    Périard, J D; Racinais, S

    2015-06-01

    This study examined the influence of hyperthermia on middle cerebral artery mean blood velocity (MCA Vmean). Eleven cyclists undertook a 750 kJ self-paced time trial in HOT (35 °C) and COOL (20 °C) conditions. Exercise time was longer in HOT (56 min) compared with COOL (49 min; P < 0.001). Power output in HOT was significantly lower from 40% of work completed onward (P < 0.01). Rectal temperature increased to 39.6 ± 0.6 °C (HOT) and 38.8 ± 0.5 °C (COOL; P < 0.01). Skin temperature, skin blood flow, and heart rate were higher throughout HOT compared with COOL (P < 0.05). A similar increase in ventilation (P < 0.05) and decrease in end-tidal partial pressure of CO2 (PETCO2 ; P < 0.05) occurred in both conditions. Arterial blood pressure and oxygen uptake were lower from 50% of work completed onward in HOT compared with COOL (P < 0.01). MCA Vmean increased at 10% in both conditions (P < 0.01), decreasing thereafter (P < 0.01) and to a greater extent in HOT from 40% of work completed onward (P < 0.05). Therefore, despite a comparable ventilatory response and PETCO2 in the HOT and COOL conditions, the greater level of thermal strain developing in the heat appears to have exacerbated the reduction in MCA Vmean, in part via increases in peripheral blood flow and a decrease in arterial blood pressure. PMID:25943664

  7. Feeding management of elite endurance horses.

    PubMed

    Harris, Patricia

    2009-04-01

    This article reviews the principles of feeding management for endurance horses. The amount and type of dietary energy (calories) are key considerations in dietary management, because (1) there is evidence that the body condition score, an indicator of overall energy balance, influences endurance exercise performance, and (2) the source of dietary energy (ie, carbohydrate versus fat calories) impacts health, metabolism, and athletic performance. Optimal performance is also dependent on provision of adequate feed, water, and electrolytes on race day. PMID:19303556

  8. Gender impacts the post-exercise substrate and endocrine response in trained runners

    PubMed Central

    Vislocky, Lisa M; Gaine, P Courtney; Pikosky, Matthew A; Martin, William F; Rodriguez, Nancy R

    2008-01-01

    Background Although several studies have investigated gender differences in the substrate and endocrine responses during and following endurance exercise, few have studied sex differences during a more prolonged recovery period post endurance exercise. The purpose of this study was to compare and characterize the endocrine and substrate profiles of trained male and female adult runners during the three-and-a-half hour recovery period from an endurance run. Methods After consuming a euenergetic diet (1.8 g·kg-1·d-1 protein, 26% fat, 58% carbohydrates, 42.8 ± 1.2 kcal/kg body weight) for 8 days, blood was collected from trained male (n = 6, 21 yrs, 70 kg, 180 cm, 9% body fat, VO2peak 78.0 ± 3.4 mL·kg FFM-1·min-1) and female (n = 6, 23 y, 66 kg, 170 cm, 29% body fat, VO2peak 71.6 ± 4.5 mL·kg FFM-1·min-1) endurance runners at rest and during recovery from a 75 min run at 70% VO2peak. Circulating levels of glucose, lactate, free fatty acids (FFAs), insulin, cortisol, growth hormone (GH), and free insulin-like growth factor I (IGF-I) were measured. Results During the recovery period, females experienced increases in glucose, lactate and insulin while no changes were noted in men (P < 0.05). Males experienced increases in GH and decreases in IGF-I levels respectively (P < 0.05) while no changes were observed in females. FFA levels increased during recovery from endurance exercise, but changes were not different between genders. Conclusion These data further document gender differences in substrate and endocrine changes during a prolonged recovery period following endurance exercise. Future studies are needed to evaluate the effect of differing diets and nutritional supplements on these gender-specific post-exercise substrate and endocrine differences. PMID:18302755

  9. Muscular, cardiac, ventilatory and metabolic dysfunction in patients with multiple sclerosis: Implications for screening, clinical care and endurance and resistance exercise therapy, a scoping review.

    PubMed

    Wens, Inez; Eijnde, Bert O; Hansen, Dominique

    2016-08-15

    In the treatment of multiple sclerosis (MS), exercise training is now considered a cornerstone. However, most clinicians tend to focus on neurologic deficits only, and thus prefer to prescribe rehabilitation programs specifically to counteract these deficits. However, the present comprehensive review shows that patients with MS (pwMS) also experience significant muscular, cardiac, ventilatory and metabolic dysfunction, which significantly contribute, next to neurologic deficits, to exercise intolerance. In addition, these anomalies also might increase the risk for frequent hospitalization and morbidity and can reduce life expectancy. Unfortunately, the impact of exercise intervention on these anomalies in pwMS are mostly unknown. Therefore, it is suggested that pwMS should be screened systematically for muscular, cardiac, ventilatory and metabolic function during exercise testing. The detection of such anomalies should lead to adaptations and optimisation of exercise training prescription and clinical care/medical treatment of pwMS. In addition, future studies should focus on the impact of exercise intervention on muscular, cardiac, ventilatory and metabolic (dys)function in pwMS, to contribute to improved treatment and care. PMID:27423572

  10. Effect of sulphurous mineral water in haematological and biochemical markers of muscle damage after an endurance exercise in well-trained athletes.

    PubMed

    Soria, Marisol; González-Haro, Carlos; Esteva, Santiago; Escanero, Jesús F; Pina, José R

    2014-01-01

    To investigate the effects of sulphurous mineral water (SMW) after a hydroponic treatment on muscle damage, antioxidant activity and peripheral blood changes induced by submaximal exercise. Thirty well-trained male triathletes were supplemented with SMW or placebo: 3 weeks of placebo, 30 days of wash out and 3 weeks of SMW. After both periods, participants ran for 2 h at 70% maximal aerobic speed. Antioxidant enzymes, lipid peroxidation, antioxidant capacity and blood cell markers were compared between placebo and SMW at pre-exercise (T0), immediately post-exercise (T1), 24 h post-exercise (T2) and 48 h post-exercise (T3). Total thiols decreased until T3 vs. T0 for both placebo and SMW; transient red blood cells, haemoglobin and haematocrit increased were shown at T1 vs. T0 and for leucocytes until T2 vs. T0, only for placebo group. Total thiols increased significantly in SMW vs. placebo at T0; Thiobarbituric acid reactive species was significantly higher at T0, T1, T2 and T3; catalase increased significantly at T1; creatine phosphokinase decreased significantly at T1, T2 and T3, although no significant differences were found at T0. Furthermore, red blood cells, haemoglobin and haematocrit were significantly higher and leucocytes were significantly lower at T0 and T1 in SMW group vs. placebo group. This study suggests that three weeks of SMW supplementation may protect from exercise-induced muscle damage. PMID:24499262

  11. Effect of carbohydrate ingestion subsequent to carbohydrate supercompensation on endurance performance.

    PubMed

    Kang, J; Robertson, R J; Denys, B G; DaSilva, S G; Visich, P; Suminski, R R; Utter, A C; Goss, F L; Metz, K F

    1995-12-01

    This investigation determined whether carbohydrate ingestion during prolonged moderate-intensity exercise enhanced endurance performance when the exercise was preceded by carbohydrate supercompensation. Seven male trained cyclists performed two trials at an initial power output corresponding to 71 +/- 1% of their peak oxygen consumption. During the trials, subjects ingested either a 6% glucose/sucrose (C) solution or an equal volume of artificially flavored and sweetened placebo (P) every 20 min throughout exercise. Both C and P were preceded by a 6-day carbohydrate supercompensation procedure in which subjects undertook a depletion-taper exercise sequence in conjunction with a moderate- and high-carbohydrate diet regimen. Statistical analysis of time to exhaustion, plasma glucose concentration, carbohydrate oxidation rate, fat oxidation rate, and plasma glycerol concentration indicated that in spite of a carbohydrate supercompensation procedure administered prior to exercise, carbohydrate ingestion during exercise can exert an additional ergogenic effect by preventing a decline in blood glucose levels and maintaining carbohydrate oxidation during the later stages of moderate-intensity exercise. PMID:8605519

  12. Exerciser

    NASA Technical Reports Server (NTRS)

    Lem, J. D.

    1977-01-01

    The Mark I exerciser which was added for the second and third Skylab missions, was used for a number of arm and leg exercises. This unit is a modified version of a commercial device. This is an iso-kinetic, or constant velocity, exerciser which retards the speed at which the user is allowed to move. The user applies a maximum effort and the device automatically varies the opposing resistance to maintain speed of translation at a constant preselected value.

  13. Methods to determine aerobic endurance.

    PubMed

    Bosquet, Laurent; Léger, Luc; Legros, Patrick

    2002-01-01

    Physiological testing of elite athletes requires the correct identification and assessment of sports-specific underlying factors. It is now recognised that performance in long-distance events is determined by maximal oxygen uptake (V(2 max)), energy cost of exercise and the maximal fractional utilisation of V(2 max) in any realised performance or as a corollary a set percentage of V(2 max) that could be endured as long as possible. This later ability is defined as endurance, and more precisely aerobic endurance, since V(2 max) sets the upper limit of aerobic pathway. It should be distinguished from endurance ability or endurance performance, which are synonymous with performance in long-distance events. The present review examines methods available in the literature to assess aerobic endurance. They are numerous and can be classified into two categories, namely direct and indirect methods. Direct methods bring together all indices that allow either a complete or a partial representation of the power-duration relationship, while indirect methods revolve around the determination of the so-called anaerobic threshold (AT). With regard to direct methods, performance in a series of tests provides a more complete and presumably more valid description of the power-duration relationship than performance in a single test, even if both approaches are well correlated with each other. However, the question remains open to determine which systems model should be employed among the several available in the literature, and how to use them in the prescription of training intensities. As for indirect methods, there is quantitative accumulation of data supporting the utilisation of the AT to assess aerobic endurance and to prescribe training intensities. However, it appears that: there is no unique intensity corresponding to the AT, since criteria available in the literature provide inconsistent results; and the non-invasive determination of the AT using ventilatory and heart rate

  14. Ryanodine receptor fragmentation and sarcoplasmic reticulum Ca2+ leak after one session of high-intensity interval exercise.

    PubMed

    Place, Nicolas; Ivarsson, Niklas; Venckunas, Tomas; Neyroud, Daria; Brazaitis, Marius; Cheng, Arthur J; Ochala, Julien; Kamandulis, Sigitas; Girard, Sebastien; Volungevičius, Gintautas; Paužas, Henrikas; Mekideche, Abdelhafid; Kayser, Bengt; Martinez-Redondo, Vicente; Ruas, Jorge L; Bruton, Joseph; Truffert, Andre; Lanner, Johanna T; Skurvydas, Albertas; Westerblad, Håkan

    2015-12-15

    High-intensity interval training (HIIT) is a time-efficient way of improving physical performance in healthy subjects and in patients with common chronic diseases, but less so in elite endurance athletes. The mechanisms underlying the effectiveness of HIIT are uncertain. Here, recreationally active human subjects performed highly demanding HIIT consisting of 30-s bouts of all-out cycling with 4-min rest in between bouts (≤3 min total exercise time). Skeletal muscle biopsies taken 24 h after the HIIT exercise showed an extensive fragmentation of the sarcoplasmic reticulum (SR) Ca(2+) release channel, the ryanodine receptor type 1 (RyR1). The HIIT exercise also caused a prolonged force depression and triggered major changes in the expression of genes related to endurance exercise. Subsequent experiments on elite endurance athletes performing the same HIIT exercise showed no RyR1 fragmentation or prolonged changes in the expression of endurance-related genes. Finally, mechanistic experiments performed on isolated mouse muscles exposed to HIIT-mimicking stimulation showed reactive oxygen/nitrogen species (ROS)-dependent RyR1 fragmentation, calpain activation, increased SR Ca(2+) leak at rest, and depressed force production due to impaired SR Ca(2+) release upon stimulation. In conclusion, HIIT exercise induces a ROS-dependent RyR1 fragmentation in muscles of recreationally active subjects, and the resulting changes in muscle fiber Ca(2+)-handling trigger muscular adaptations. However, the same HIIT exercise does not cause RyR1 fragmentation in muscles of elite endurance athletes, which may explain why HIIT is less effective in this group. PMID:26575622

  15. Ryanodine receptor fragmentation and sarcoplasmic reticulum Ca2+ leak after one session of high-intensity interval exercise

    PubMed Central

    Place, Nicolas; Ivarsson, Niklas; Venckunas, Tomas; Neyroud, Daria; Brazaitis, Marius; Cheng, Arthur J.; Ochala, Julien; Kamandulis, Sigitas; Girard, Sebastien; Volungevičius, Gintautas; Paužas, Henrikas; Mekideche, Abdelhafid; Kayser, Bengt; Martinez-Redondo, Vicente; Bruton, Joseph; Truffert, Andre; Lanner, Johanna T.; Skurvydas, Albertas; Westerblad, Håkan

    2015-01-01

    High-intensity interval training (HIIT) is a time-efficient way of improving physical performance in healthy subjects and in patients with common chronic diseases, but less so in elite endurance athletes. The mechanisms underlying the effectiveness of HIIT are uncertain. Here, recreationally active human subjects performed highly demanding HIIT consisting of 30-s bouts of all-out cycling with 4-min rest in between bouts (≤3 min total exercise time). Skeletal muscle biopsies taken 24 h after the HIIT exercise showed an extensive fragmentation of the sarcoplasmic reticulum (SR) Ca2+ release channel, the ryanodine receptor type 1 (RyR1). The HIIT exercise also caused a prolonged force depression and triggered major changes in the expression of genes related to endurance exercise. Subsequent experiments on elite endurance athletes performing the same HIIT exercise showed no RyR1 fragmentation or prolonged changes in the expression of endurance-related genes. Finally, mechanistic experiments performed on isolated mouse muscles exposed to HIIT-mimicking stimulation showed reactive oxygen/nitrogen species (ROS)-dependent RyR1 fragmentation, calpain activation, increased SR Ca2+ leak at rest, and depressed force production due to impaired SR Ca2+ release upon stimulation. In conclusion, HIIT exercise induces a ROS-dependent RyR1 fragmentation in muscles of recreationally active subjects, and the resulting changes in muscle fiber Ca2+-handling trigger muscular adaptations. However, the same HIIT exercise does not cause RyR1 fragmentation in muscles of elite endurance athletes, which may explain why HIIT is less effective in this group. PMID:26575622

  16. Comparison of energy supplements during prolonged exercise for maintenance of cardiac function: carbohydrate only versus carbohydrate plus whey or casein hydrolysate.

    PubMed

    Oosthuyse, Tanja; Millen, Aletta M E

    2016-06-01

    Cardiac function is often suppressed following prolonged strenuous exercise and this may occur partly because of an energy deficit. This study compared left ventricular (LV) function by 2-dimensional echocardiography and tissue Doppler imaging (TDI) before and after ∼2.5 h of cycling (2-h steady-state 60% peak aerobic power output plus 16 km time trial) in 8 male cyclists when they ingested either placebo, carbohydrate-only (CHO-only), carbohydrate-casein hydrolysate (CHO-casein), or carbohydrate-whey hydrolysate (CHO-whey). No treatment-by-time interactions occurred, but pre-to-postexercise time effects occurred selectively. Although diastolic function measured by pulsed-wave Doppler early-to-late (E/A) transmitral blood flow velocity was suppressed in all trials from pre- to postexercise (mean change post-pre exercise: -0.53 (95% CI -0.15 to -0.91)), TDI early-to-late (e'/a') tissue velocity was significantly suppressed pre- to postexercise only with placebo, CHO-only, and CHO-whey (septal and lateral wall e'/a' average change: -0.62 (95% CI -1.12 to -0.12); -0.69 (95% CI -1.19 to -0.20); and -0.79 (95% CI -1.28 to -0.29), respectively) but not with CHO-casein (-0.40 (95% CI -0.90 to 0.09)). LV contractility was, or tended to be, significantly reduced pre- to postexercise with placebo, CHO-only, and CHO-whey (systolic blood pressure/end systolic volume change, mm Hg·mL(-1): -0.8 (95% CI -1.2 to -0.4), p = 0.0003; -0.5 (95% CI -0.9 to -0.02), p = 0.035; and -0.4 (95% CI -0.8 to 0.04), p = 0.086, respectively), but not with CHO-casein (-0.3 (95% CI -0.8 to 0.1), p = 0.22). However, ejection fraction (EF) and ventricular-arterial coupling were significantly reduced pre- to postexercise only with placebo (placebo change: EF, -4.6 (95% CI -8.4 to -0.7)%; stroke volume/end systolic volume, -0.3 (95% CI -0.6 to -0.04)). Despite no treatment-by-time interactions, pre-to-postexercise time effects observed with specific beverages may be meaningful for athletes

  17. Exercise

    MedlinePlus

    ... article Exercise / physical activity with MS Judy Boone, physical therapist Lynn Williams, Dan Melfi and Dave Altman discuss ... adjusted as changes occur in MS symptoms. A physical therapist experienced with MS can be helpful in designing, ...

  18. Blood lactate diagnostics in exercise testing and training.

    PubMed

    Beneke, Ralph; Leithäuser, Renate M; Ochentel, Oliver

    2011-03-01

    A link between lactate and muscular exercise was seen already more than 200 years ago. The blood lactate concentration (BLC) is sensitive to changes in exercise intensity and duration. Multiple BLC threshold concepts define different points on the BLC power curve during various tests with increasing power (INCP). The INCP test results are affected by the increase in power over time. The maximal lactate steady state (MLSS) is measured during a series of prolonged constant power (CP) tests. It detects the highest aerobic power without metabolic energy from continuing net lactate production, which is usually sustainable for 30 to 60 min. BLC threshold and MLSS power are highly correlated with the maximum aerobic power and athletic endurance performance. The idea that training at threshold intensity is particularly effective has no evidence. Three BLC-orientated intensity domains have been established: (1) training up to an intensity at which the BLC clearly exceeds resting BLC, light- and moderate-intensity training focusing on active regeneration or high-volume endurance training (Intensity < Threshold); (2) heavy endurance training at work rates up to MLSS intensity (Threshold ≤ Intensity ≤ MLSS); and (3) severe exercise intensity training between MLSS and maximum oxygen uptake intensity mostly organized as interval and tempo work (Intensity > MLSS). High-performance endurance athletes combining very high training volume with high aerobic power dedicate 70 to 90% of their training to intensity domain 1 (Intensity < Threshold) in order to keep glycogen homeostasis within sustainable limits. PMID:21487146

  19. Acute Postexercise Time Course Responses of Hypertrophic vs. Power-Endurance Squat Exercise Protocols on Maximal and Rapid Torque of the Knee Extensors.

    PubMed

    Conchola, Eric C; Thiele, Ryan M; Palmer, Ty B; Smith, Doug B; Thompson, Brennan J

    2015-05-01

    The aim of this study was to examine the effects of a medium-intensity high-volume vs. explosive squat protocol on the postexercise time course responses of maximal and rapid strength of the knee extensors. Seventeen resistance-trained men (mean ± SD: age = 22.0 ± 2.6 years) performed maximal voluntary contractions (MVCs) of the knee extensors before and after performing a squat workout using either a low-intensity fast velocity (LIFV) (5 × 16 at 40% 1 repetition maximum) or a traditional high-intensity slow velocity (TISV) (5 × 8 at 80% 1RM) exercise protocol. For each MVC, peak torque (PT), peak rate of torque development (RTDpeak), absolute (RTDabs), and relative RTD (RTDnorm) at early (0-50 milliseconds) and late (100-200 milliseconds) phases of muscle contraction were examined at pre- (Pre) and post-exercise at 0, 7, 15, and 30 (Post0...30) minutes. There were no intensity × time interactions for any variables (p = 0.098-0.832). Peak torque was greater at Pre than Post0 and Post7 (p = 0.001-0.016) but was not greater than Post15 and Post30 (p = 0.010-0.189). RTDpeak and early absolute RTD (RTD50abs) were greater at Pre than all postexercise time phases (p = 0.001-0.050); however, later absolute RTD (RTD100-200abs) was only greater at Pre than Post0 and Post30 (p = 0.013-0.048). Early relative RTD (RTD50norm) was only higher at Pre compared with Post0 (p = 0.023), whereas no differences were observed for later relative RTD (RTD100-200norm) (p = 0.920-0.990). Low-intensity fast velocity and TISV squat protocols both yielded acute decreases in maximal and rapid strength capacities following free-weight squats, with rapid strength showing slower recovery characteristics than maximal strength. PMID:25774625

  20. Stretch Band Exercise Program

    ERIC Educational Resources Information Center

    Skirka, Nicholas; Hume, Donald

    2007-01-01

    This article discusses how to use stretch bands for improving total body fitness and quality of life. A stretch band exercise program offers a versatile and inexpensive option to motivate participants to exercise. The authors suggest practical exercises that can be used in physical education to improve or maintain muscular strength and endurance,…

  1. Instructions to Adopt an External Focus Enhance Muscular Endurance

    ERIC Educational Resources Information Center

    Marchant, David C.; Greig, Matt; Bullough, Jonathan; Hitchen, Daniel

    2011-01-01

    The influence of internal (movement focus) and external (outcome focus) attentional-focusing instructions on muscular endurance were investigated using three exercise protocols with experienced exercisers. Twenty-three participants completed a maximal repetition, assisted bench-press test on a Smith's machine. An external focus of attention…

  2. Effects of excessive endurance activity on the heart.

    PubMed

    Seidl, Jamie; Asplund, Chad A

    2014-01-01

    Regular moderate exercise confers many cardiovascular and health benefits. Because of this, endurance sports events have become very popular with participation increasing tremendously over the past few years. In conjunction with this increase in popularity and participation, people also have increased the amount that they exercise with many training for and competing in ultraendurance events such as ultradistance running events, iron distance triathlons, or multiday races. This excess endurance activity may appear to increase the risk of cardiac abnormalities, which may increase the risk for long-term morbidity or mortality. While it is known that moderate exercise has benefits to cardiovascular health, ultimately, the long-term cardiac effects of excessive endurance activity are unclear. What is clear, however, is that moderate exercise is beneficial, and to date, the evidence does not support recommending against physical activity. PMID:25391090

  3. Influence of ACTN3 R577X polymorphism on ventilatory thresholds related to endurance performance.

    PubMed

    Pasqua, Leonardo A; Bueno, Salomão; Artioli, Guilherme G; Lancha, Antônio H; Matsuda, Monique; Marquezini, Mônica V; Lima-Silva, Adriano E; Saldiva, Paulo H N; Bertuzzi, Rômulo

    2016-01-01

    The purpose of this study was to verify the association between ACTN3 polymorphism and physiological parameters related to endurance performance. A total of 150 healthy male volunteers performed a maximal incremental running test to determine the speeds corresponding to ventilatory threshold (VT) and respiratory compensation point (RCP). Participants were genotyped and divided into terciles based on the analysed variables. Genotype frequencies were compared through χ(2) test between lower and higher terciles, with the lowest or highest values of each analysed variable. ACTN3 XX genotype was over-represented in higher tercile for VT and RCP. Odds ratio also showed significantly higher chances of XX individuals to be in higher tercile compared to RR (7.3) and RR + RX (3.5) for VT and compared to RR genotype (8.1) and RR + RX (3.4) for RCP. Thus, XX individuals could attain the VT and RCP at higher speeds, suggesting that they are able to sustain higher running speeds in lower exercise intensity domains. It could result in higher lipid acids oxidation, saving muscle glycogen and delaying the fatigue during prolonged exercises, which could be the advantage mechanism of this genotype to endurance performance. PMID:25939605

  4. Nutrition for endurance sports: marathon, triathlon, and road cycling.

    PubMed

    Jeukendrup, Asker E

    2011-01-01

    Endurance sports are increasing in popularity and athletes at all levels are looking for ways to optimize their performance by training and nutrition. For endurance exercise lasting 30 min or more, the most likely contributors to fatigue are dehydration and carbohydrate depletion, whereas gastrointestinal problems, hyperthermia, and hyponatraemia can reduce endurance exercise performance and are potentially health threatening, especially in longer events (>4 h). Although high muscle glycogen concentrations at the start may be beneficial for endurance exercise, this does not necessarily have to be achieved by the traditional supercompensation protocol. An individualized nutritional strategy can be developed that aims to deliver carbohydrate to the working muscle at a rate that is dependent on the absolute exercise intensity as well as the duration of the event. Endurance athletes should attempt to minimize dehydration and limit body mass losses through sweating to 2-3% of body mass. Gastrointestinal problems occur frequently, especially in long-distance races. Problems seem to be highly individual and perhaps genetically determined but may also be related to the intake of highly concentrated carbohydrate solutions, hyperosmotic drinks, as well as the intake of fibre, fat, and protein. Hyponatraemia has occasionally been reported, especially among slower competitors with very high intakes of water or other low sodium drinks. Here I provide a comprehensive overview of recent research findings and suggest several new guidelines for the endurance athlete on the basis of this. These guidelines are more detailed and allow a more individualized approach. PMID:21916794

  5. Effects of 1-Methylnicotinamide (MNA) on Exercise Capacity and Endothelial Response in Diabetic Mice

    PubMed Central

    Przyborowski, Kamil; Wojewoda, Marta; Sitek, Barbara; Zakrzewska, Agnieszka; Kij, Agnieszka; Wandzel, Krystyna; Zoladz, Jerzy Andrzej; Chlopicki, Stefan

    2015-01-01

    1-Methylnicotinamide (MNA), which was initially considered to be a biologically inactive endogenous metabolite of nicotinamide, has emerged as an anti-thrombotic and anti-inflammatory agent with the capacity to release prostacyclin (PGI2). In the present study, we characterized the effects of MNA on exercise capacity and the endothelial response to exercise in diabetic mice. Eight-week-old db/db mice were untreated or treated with MNA for 4 weeks (100 mg·kg-1), and their exercise capacity as well as NO- and PGI2-dependent response to endurance running were subsequently assessed. MNA treatment of db/db mice resulted in four-fold and three-fold elevation of urine concentrations of MNA and its metabolites (Met-2PY + Met-4PY), respectively (P<0.01), but did not affect HbA1c concentration, fasting glucose concentration or lipid profile. However, insulin sensitivity was improved (P<0.01). In MNA-treated db/db mice, the time to fatigue for endurance exercise was significantly prolonged (P<0.05). Post-exercise Δ6-keto-PGF1α (difference between mean concentration in the sedentary and exercised groups) tended to increase, and post-exercise leukocytosis was substantially reduced in MNA-treated animals. In turn, the post-exercise fall in plasma concentration of nitrate was not affected by MNA. In conclusion, we demonstrated for the first time that MNA improves endurance exercise capacity in mice with diabetes, and may also decrease the cardiovascular risk of exercise. PMID:26115505

  6. Exercise Has a Bone to Pick with Skeletal Muscle.

    PubMed

    Booth, Frank W; Ruegsegger, Gregory N; Olver, T Dylan

    2016-06-14

    Exercise intolerance and poor exercise capacity are associated with aging, diabetes, cognitive impairment, and premature death. In this issue of Cell Metabolism, Mera et al. (2016) report that osteocalcin improves endurance exercise performance by enhancing myofiber fuel uptake and utilization, while osteocalcin supplementation reverses the age-induced decline in endurance exercise performance. PMID:27304494

  7. The Endurance Bioenergy Reactor

    SciTech Connect

    Laible, Philip

    2012-01-01

    Argonne biophysicist Dr. Philip Laible and Air Force Major Matt Michaud talks about he endurance bioenergy reactor—a device that contains bacteria that can convert energy from the sun into fuel molecules.

  8. Arctigenin Efficiently Enhanced Sedentary Mice Treadmill Endurance

    PubMed Central

    Chen, Jing; Yu, Liang; Hu, Lihong; Jiang, Hualiang; Shen, Xu

    2011-01-01

    Physical inactivity is considered as one of the potential risk factors for the development of type 2 diabetes and other metabolic diseases, while endurance exercise training could enhance fat oxidation that is associated with insulin sensitivity improvement in obesity. AMP-activated protein kinase (AMPK) as an energy sensor plays pivotal roles in the regulation of energy homeostasis, and its activation could improve glucose uptake, promote mitochondrial biogenesis and increase glycolysis. Recent research has even suggested that AMPK activation contributed to endurance enhancement without exercise. Here we report that the natural product arctigenin from the traditional herb Arctium lappa L. (Compositae) strongly increased AMPK phosphorylation and subsequently up-regulated its downstream pathway in both H9C2 and C2C12 cells. It was discovered that arctigenin phosphorylated AMPK via calmodulin-dependent protein kinase kinase (CaMKK) and serine/threonine kinase 11(LKB1)-dependent pathways. Mice treadmill based in vivo assay further indicated that administration of arctigenin improved efficiently mice endurance as reflected by the increased fatigue time and distance, and potently enhanced mitochondrial biogenesis and fatty acid oxidation (FAO) related genes expression in muscle tissues. Our results thus suggested that arctigenin might be used as a potential lead compound for the discovery of the agents with mimic exercise training effects to treat metabolic diseases. PMID:21887385

  9. Treadmill Exercise Within LBNP as an Integrated Coutermeasure to Microgravity

    NASA Technical Reports Server (NTRS)

    Lee, Stuart; Hargens, A. R.; Schneider, S. M.; Watenpaugh, D. E.

    2010-01-01

    An integrated exercise countermeasure for microgravity is needed to protect multiple physiologic systems and save crew time. Such a countermeasure should protect orthostatic tolerance, upright ambulatory capability (including sprinting), aerobic capacity, muscle strength/endurance, and other physiologic parameters relevant to human performance. We developed a novel physiologic countermeasure, treadmill exercise within LBNP, for preventing cardiovascular and musculoskeletal deconditioning associated with prolonged bed rest and spaceflight. We evaluated 40 min of daily LBNP treadmill exercise by a battery of physiologic parameters relevant to maintaining exercise performance and health of both women and men during bed-rest (simulated microgravity) studies lasting from 5 to 60 days. For 30 day studies, we employed identical twins with one twin as the control and the other twin as the exerciser to improve comparative power. During the WISE 60-day HDT study, the treadmill exercise within LBNP was performed 3-4 days each week and resistive exercise was performed 2-3 days each week. Our treadmill within LBNP protocol maintained plasma volume and sprint speed (30 day HDT bed-rest studies of identical twins), orthostatic tolerance to a degree, upright exercise capacity, muscle strength and endurance, and some bone parameters during 30 day (twin studies) and 60 day (WISE-2005) bed-rest simulations of microgravity. When combining treadmill exercise within LBNP and resistive exercise (WISE), cardiac mass increased significantly in the exercise (EX) group during bed rest relative to controls (CON). Upright peak VO2, and knee extensor strength and endurance decreased significantly in CON subjects; but these parameters were preserved in the EX group. In the 60 day WISE study, each LBNP exercise session was followed immediately by 10 minutes of static LBNP, and the last such session occurred three days before the end of bed rest. Still, orthostatic tolerance was better maintained

  10. The regulation of carbohydrate and fat metabolism during and after exercise.

    PubMed

    Holloszy, J O; Kohrt, W M; Hansen, P A

    1998-09-15

    The rate of carbohydrate utilization during prolonged, strenuous exercise is closely geared to the energy needs of the working muscles. In contrast, fat utilization during exercise is not tightly regulated, as there are no mechanisms for closely matching availability and metabolism of fatty acids to the rate of energy expenditure. As a result, the rate of fat oxidation during exercise is determined by the availability of fatty acids and the rate of carbohydrate utilization. Blood glucose and muscle glycogen are essential for prolonged strenuous exercise, and exhaustion can result either from development of hypoglycemia or depletion of muscle glycogen. Both absolute and relative (i.e. % of maximal O2 uptake) exercise intensities play important roles in the regulation of substrate metabolism. The absolute work rate determines the total quantity of fuel required, while relative exercise intensity plays a major role in determining the proportions of carbohydrate and fat oxidized by the working muscles. As relative exercise intensity is increased, there is a decrease in the proportion of the energy requirement derived from fat oxidation and an increase in that provided by carbohydrate oxidation. During moderately strenuous exercise of an intensity that can be maintained for 90 minutes or longer ( approximately 55-75% of VO2max), there is a progressive decline in the proportion of energy derived from muscle glycogen and a progressive increase in plasma fatty acid oxidation. The adaptations induced by endurance exercise training result in a marked sparing of carbohydrate during exercise, with an increased proportion of the energy being provided by fat oxidation. The mechanisms by which training decreases utilization of blood glucose are not well understood. However, the slower rate of glycogenolysis can be explained on the basis of lower concentrations of inorganic phosphate (Pi) in trained, as compared to untrained, muscles during exercise of the same intensity. The

  11. Metabolic response to exercise.

    PubMed

    De Feo, P; Di Loreto, C; Lucidi, P; Murdolo, G; Parlanti, N; De Cicco, A; Piccioni, F; Santeusanio, F

    2003-09-01

    At the beginning, the survival of humans was strictly related to their physical capacity. There was the need to resist predators and to provide food and water for life. Achieving these goals required a prompt and efficient energy system capable of sustaining either high intensity or maintaining prolonged physical activity. Energy for skeletal muscle contraction is supplied by anaerobic and aerobic metabolic pathways. The former can allow short bursts of intense physical activity (60-90 sec) and utilizes as energetic source the phosphocreatine shuttle and anaerobic glycolysis. The aerobic system is the most efficient ATP source for skeletal muscle. The oxidative phosporylation of carbohydrates, fats and, to a minor extent, proteins, can sustain physical activity for many hours. Carbohydrates are the most efficient fuel for working muscle and their contribution to total fuel oxidation is positively related to the intensity of exercise. The first metabolic pathways of carbohydrate metabolism to be involved are skeletal muscle glycogenolysis and glycolysis. Later circulating glucose, formed through activated gluconeogenesis, becomes an important energetic source. Among glucose metabolites, lactate plays a primary role as either direct or indirect (gluconeogenesis) energy source for contracting skeletal muscle. Fat oxidation plays a primary role during either low-moderate intensity exercise or protracted physical activity (over 90-120 min). Severe muscle glycogen depletion results in increased rates of muscle proteolysis and branched chain amino acid oxidation. Endurance training ameliorates physical performance by improving cardiopulmonary efficiency and optimizing skeletal muscle supply and oxidation of substrates. PMID:14964437

  12. Pre-Exercise Hyperhydration-Induced Bodyweight Gain Does Not Alter Prolonged Treadmill Running Time-Trial Performance in Warm Ambient Conditions

    PubMed Central

    Gigou, Pierre-Yves; Dion, Tommy; Asselin, Audrey; Berrigan, Felix; Goulet, Eric D. B.

    2012-01-01

    This study compared the effect of pre-exercise hyperhydration (PEH) and pre-exercise euhydration (PEE) upon treadmill running time-trial (TT) performance in the heat. Six highly trained runners or triathletes underwent two 18 km TT runs (~28 °C, 25%–30% RH) on a motorized treadmill, in a randomized, crossover fashion, while being euhydrated or after hyperhydration with 26 mL/kg bodyweight (BW) of a 130 mmol/L sodium solution. Subjects then ran four successive 4.5 km blocks alternating between 2.5 km at 1% and 2 km at 6% gradient, while drinking a total of 7 mL/kg BW of a 6% sports drink solution (Gatorade, USA). PEH increased BW by 1.00 ± 0.34 kg (P < 0.01) and, compared with PEE, reduced BW loss from 3.1% ± 0.3% (EUH) to 1.4% ± 0.4% (HYP) (P < 0.01) during exercise. Running TT time did not differ between groups (PEH: 85.6 ± 11.6 min; PEE: 85.3 ± 9.6 min, P = 0.82). Heart rate (5 ± 1 beats/min) and rectal (0.3 ± 0.1 °C) and body (0.2 ± 0.1 °C) temperatures of PEE were higher than those of PEH (P < 0.05). There was no significant difference in abdominal discomfort and perceived exertion or heat stress between groups. Our results suggest that pre-exercise sodium-induced hyperhydration of a magnitude of 1 L does not alter 80–90 min running TT performance under warm conditions in highly-trained runners drinking ~500 mL sports drink during exercise. PMID:23016126

  13. Pre-exercise hyperhydration-induced bodyweight gain does not alter prolonged treadmill running time-trial performance in warm ambient conditions.

    PubMed

    Gigou, Pierre-Yves; Dion, Tommy; Asselin, Audrey; Berrigan, Felix; Goulet, Eric D B

    2012-08-01

    This study compared the effect of pre-exercise hyperhydration (PEH) and pre-exercise euhydration (PEE) upon treadmill running time-trial (TT) performance in the heat. Six highly trained runners or triathletes underwent two 18 km TT runs (~28 °C, 25%-30% RH) on a motorized treadmill, in a randomized, crossover fashion, while being euhydrated or after hyperhydration with 26 mL/kg bodyweight (BW) of a 130 mmol/L sodium solution. Subjects then ran four successive 4.5 km blocks alternating between 2.5 km at 1% and 2 km at 6% gradient, while drinking a total of 7 mL/kg BW of a 6% sports drink solution (Gatorade, USA). PEH increased BW by 1.00 ± 0.34 kg (P < 0.01) and, compared with PEE, reduced BW loss from 3.1% ± 0.3% (EUH) to 1.4% ± 0.4% (HYP) (P < 0.01) during exercise. Running TT time did not differ between groups (PEH: 85.6 ± 11.6 min; PEE: 85.3 ± 9.6 min, P = 0.82). Heart rate (5 ± 1 beats/min) and rectal (0.3 ± 0.1 °C) and body (0.2 ± 0.1 °C) temperatures of PEE were higher than those of PEH (P < 0.05). There was no significant difference in abdominal discomfort and perceived exertion or heat stress between groups. Our results suggest that pre-exercise sodium-induced hyperhydration of a magnitude of 1 L does not alter 80-90 min running TT performance under warm conditions in highly-trained runners drinking ~500 mL sports drink during exercise. PMID:23016126

  14. Blood Volume: Its Adaptation to Endurance Training

    NASA Technical Reports Server (NTRS)

    Convertino, Victor A.

    1991-01-01

    Expansion of blood volume (hypervolemia) has been well documented in both cross-sectional and longitudinal studies as a consequence of endurance exercise training. Plasma volume expansion can account for nearly all of the exercise-induced hypervolemia up to 2-4 wk; after this time expansion may be distributed equally between plasma and red cell volumes. The exercise stimulus for hypervolemia has both thermal and nonthermal components that increase total circulating plasma levels of electrolytes and proteins. Although protein and fluid shifts from the extravascular to intravascular space may provide a mechanism for rapid hypervolemia immediately after exercise, evidence supports the notion that chronic hypervolemia associated with exercise training represents a net expansion of total body water and solutes. This net increase of body fluids with exercise training is associated with increased water intake and decreased urine volume output. The mechanism of reduced urine output appears to be increased renal tubular reabsorption of sodium through a more sensitive aldosterone action in man. Exercise training-induced hypervolemia appears to be universal among most animal species, although the mechanisms may be quite different. The hypervolemia may provide advantages of greater body fluid for heat dissipation and thermoregulatory stability as well as larger vascular volume and filling pressure for greater cardiac stroke volume and lower heart rates during exercise.

  15. Prolonged pregnancy.

    PubMed

    Hollis, Brian

    2002-04-01

    Prolonged pregnancy is defined as any pregnancy that lasts 294 days or more. It is now well recognized that prolonged pregnancy is associated with an increased risk of perinatal mortality and morbidity. It is these complications of pregnancy that have led obstetricians to adopt a policy of induction of labour before the onset of the post-term period. The induction of labour between 41 and 42 weeks is, however, a very crude strategy for reducing term and post-term stillbirth rates. Although the risk of fetal death is increased after 42 weeks, many more fetuses die in utero between 37 and 42 weeks than die in the post-term period. It appears that smaller term fetuses run a greater risk than their larger counterparts, and that current methods of antepartum assessment of the term fetus are still inadequate. It behoves us as obstetricians to improve our capabilities in identifying the compromised fetus at term. This review puts into perspective the most recent publications and highlights areas requiring further study. PMID:11914699

  16. Effects of stabilization exercises with a Swiss ball on neck-shoulder pain and mobility of adults with prolonged exposure to VDTs.

    PubMed

    Ahn, Jeoung-Ah; Kim, Joong-Hwi; Bendik, Anthony L; Shin, Ju-Yong

    2015-04-01

    [Purpose] This study compared the effects on neck-shoulder pain and mobility of strengthening exercises for the neck flexors and scapular retractors performed on a Swiss ball and a mat. [Subjects] Twenty student volunteers were the subjects. [Methods] The students were randomly assigned to two groups: Mat group (n=10), and Swiss ball group (n=10). At pre-test, post-test, and 1-week follow-up pain was assessed using the visual analogue scale (VAS), the pain pressure threshold (PPT) of the shoulder was measured with an algometer, and neck mobility was measured with a Zebris. [Results] The data analysis revealed that there was a significant decrease in pain and significant increase in neck flexion in both groups, and the Swiss ball group showed better results. [Conclusion] Strengthening the neck flexors and scapular retractors for stabilization of the neck using exercises on a Swiss ball was more effective at reducing the pain and stabilizing the neck than mat exercises. PMID:25995537

  17. Prolonged grief disorder and depression in a German community sample.

    PubMed

    Schaal, Susanne; Richter, Anne; Elbert, Thomas

    2014-01-01

    The aims of this study were to examine rates and risk factors for prolonged grief and to investigate the association between prolonged grief and depression. The authors interviewed a heterogeneous bereaved sample of 61 Germans, 6 of whom had prolonged grief and depression, respectively. The 2 syndromes were strongly linked to one another. Risk factors for prolonged grief were being a woman and having high levels of religious beliefs and low levels of satisfaction with one's religious beliefs, emotional closeness to the deceased, and unanticipated loss. Symptoms of prolonged grief may endure years post-loss and often overlap with depression. PMID:24758218

  18. Perilipin 5 is dispensable for normal substrate metabolism and in the adaptation of skeletal muscle to exercise training.

    PubMed

    Mohktar, Ruzaidi A M; Montgomery, Magda K; Murphy, Robyn M; Watt, Matthew J

    2016-07-01

    Cytoplasmic lipid droplets provide a reservoir for triglyceride storage and are a central hub for fatty acid trafficking in cells. The protein perilipin 5 (PLIN5) is highly expressed in oxidative tissues such as skeletal muscle and regulates lipid metabolism by coordinating the trafficking and the reversible interactions of effector proteins at the lipid droplet. PLIN5 may also regulate mitochondrial function, although this remains unsubstantiated. Hence, the aims of this study were to examine the role of PLIN5 in the regulation of skeletal muscle substrate metabolism during acute exercise and to determine whether PLIN5 is required for the metabolic adaptations and enhancement in exercise tolerance following endurance exercise training. Using muscle-specific Plin5 knockout mice (Plin5(MKO)), we show that PLIN5 is dispensable for normal substrate metabolism during exercise, as reflected by levels of blood metabolites and rates of glycogen and triglyceride depletion that were indistinguishable from control (lox/lox) mice. Plin5(MKO) mice exhibited a functional impairment in their response to endurance exercise training, as reflected by reduced maximal running capacity (20%) and reduced time to fatigue during prolonged submaximal exercise (15%). The reduction in exercise performance was not accompanied by alterations in carbohydrate and fatty acid metabolism during submaximal exercise. Similarly, mitochondrial capacity (mtDNA, respiratory complex proteins, citrate synthase activity) and mitochondrial function (oxygen consumption rate in muscle fiber bundles) were not different between lox/lox and Plin5(MKO) mice. Thus, PLIN5 is dispensable for normal substrate metabolism during exercise and is not required to promote mitochondrial biogenesis or enhance the cellular adaptations to endurance exercise training. PMID:27189934

  19. Exercise Training During Bed Rest Attenuates Deconditioning

    NASA Technical Reports Server (NTRS)

    Greenleaf, J. E.; Hargens, Alan R. (Technical Monitor)

    1995-01-01

    A 30-day 6 deg. head-down bed rest study was conducted to evaluate high-intensity, short-duration, alternating isotonic cycle ergometer exercise (ITE) training and high-intensity intermittent isokinetic exercise (IKE) training regiments designed to maintain peak VO2 and muscle mass, strength, and endurance at ambulatory control levels throughout prolonged bed rest. Other elements of the deconditioning (acclimation) syndrome, such as proprioception, psychological performance, hypovolemia, water balance, body composition, and orthostatic tolerance, were also measured. Compared with response during bed rest of the no exercise (NOE) control group: the ITE training regimen (a) maintained work capacity (peak VO2), (b) maintained plasma and red cell volume, (c) induced positive body water balance, (d) decreased quality of sleep and mental concentration, and (e) had no effect on the decrease in orthostatic tolerance; the IKE training regimen (a) attenuated the decrease in peak VO2 by 50%, (b) attenuated loss of red cell volume by 40%, but had no effect on loss of plasma volume, (c) induced positive body water balance, (d) had no adverse effect on quality of sleep or concentration, and (e) had no effect on the decrease in orthostatic tolerance. These findings suggest that various elements of the deconditioning syndrome can be manipulated by duration and intensity of ITE or IKE training regiments, and that several different training protocols will be required to maintain or restore physiological and psychological performance of individuals confined to prolonged bed rest.

  20. Lycium barbarum polysaccharides reduce exercise-induced oxidative stress.

    PubMed

    Shan, Xiaozhong; Zhou, Junlai; Ma, Tao; Chai, Qiongxia

    2011-01-01

    The purpose of the present study was to investigate the effects of Lycium barbarum polysaccharides (LBP) on exercise-induced oxidative stress in rats. Rats were divided into four groups, i.e., one control group and three LBP treated groups. The animals received an oral administration of physiological saline or LBP (100, 200 and 400 mg/kg body weight) for 28 days. On the day of the exercise test, rats were required to run to exhaustion on the treadmill. Body weight, endurance time, malondialdehyde (MDA), super oxide dismutase (SOD) and glutathione peroxidase (GPX) level of rats were measured. The results showed that the body weight of rats in LBP treated groups were not significantly different from that in the normal control group before and after the experiment (P > 0.05). After exhaustive exercise, the mean endurance time of treadmill running to exhaustion of rats in LBP treated groups were significantly prolonged compared with that in the normal control group. MDA levels of rats in LBP treated groups were significantly decreased compared with that in the normal control group (P < 0.05). SOD and GPX levels of rats in LBP treated groups were significantly increased compared with that in the normal control group (P < 0.05). Together, these results indicate that LBP was effective in preventing oxidative stress after exhaustive exercise. PMID:21541044

  1. Endurance training: is it bad for you?

    PubMed Central

    Gruttad’Auria, Claudia I.; Baiamonte, Pierpaolo; Mazzuca, Emilia; Castrogiovanni, Alessandra; Bonsignore, Maria R.

    2016-01-01

    Educational aims To illustrate the characteristics of endurance exercise training and its positive effects on health. To provide an overview on the effects of endurance training on airway cells and bronchial reactivity. To summarise the current knowledge on respiratory health problems in elite athletes. Endurance exercise training exerts many positive effects on health, including improved metabol­ism, reduction of cardiovascular risk, and reduced all-cause and cardiovascular mortality. Intense endurance exercise causes mild epithelial injury and inflammation in the airways, but does not appear to exert detrimental effects on respiratory health or bronchial reactivity in recreational/non-elite athletes. Conversely, elite athletes of both summer and winter sports show increased susceptibility to development of asthma, possibly related to environmental exposures to allergens or poor conditioning of inspired air, so that a distinct phenotype of “sports asthma” has been proposed to characterise such athletes, who more often practise aquatic and winter sports. Overall, endurance training is good for health but may become deleterious when performed at high intensity or volume. PMID:27408632

  2. Prolonged ingestion of prehydrolyzed whey protein induces little or no change in digestive enzymes, but decreases glutaminase activity in exercising rats.

    PubMed

    Nery-Diez, Ana Cláudia C; Carvalho, Iara R; Amaya-Farfán, Jaime; Abecia-Soria, Maria Inés; Miyasaka, Célio K; Ferreira, Clécio da S

    2010-08-01

    Because consumption of whey protein hydrolysates is on the increase, the possibility that prolonged ingestion of whey protein hydrolysates affect the digestive system of mammals has prompted us to evaluate the enzymatic activities of pepsin, leucine-aminopeptidase, chymotrypsin, trypsin, and glutaminase in male Wistar rats fed diets containing either a commercial whey isolate or a whey protein hydrolysate with medium degree of hydrolysis and to compare the results with those produced by physical training (sedentary, sedentary-exhausted, trained, and trained-exhausted) in the treadmill for 4 weeks. The enzymatic activities were determined by classical procedures in all groups. No effect due to the form of the whey protein in the diet was seen in the activities of pepsin, trypsin, chymotrypsin, and leucine-aminopeptidase. Training tended to increase the activity of glutaminase, but exhaustion promoted a decrease in the trained animals, and consumption of the hydrolysate decreased it even further. The results are consistent with the conclusion that chronic consumption of a whey protein hydrolysate brings little or no modification of the proteolytic digestive system and that the lowering of glutaminase activity may be associated with an antistress effect, counteracting the effect induced by training in the rat. PMID:20482282

  3. Optimal use of fluids of varying formulations to minimise exercise-induced disturbances in homeostasis.

    PubMed

    Lamb, D R; Brodowicz, G R

    1986-01-01

    before exercise, the consumption of 18 to 50% solutions of glucose or glucose polymers 5 minutes before prolonged exercise seems to have potential for improving endurance performance. Similarly, the inclusion of caffeine in beverages consumed 60 minutes before prolonged exercise improves athletic performance for many subjects. Others may be hypersensitive to the effects of caffeine and are adversely affected by its use. For exercise leading to exhaustion in less than 30 minutes, neither caffeine nor carbohydrate ingestion is effective in minimising homeostatic perturbations or improving exercise performance.(ABSTRACT TRUNCATED AT 400 WORDS) PMID:3526506

  4. Effects of diets supplemented with branched-chain amino acids on the performance and fatigue mechanisms of rats submitted to prolonged physical exercise.

    PubMed

    Falavigna, Gina; Alves de Araújo, Jonas; Rogero, Marcelo Macedo; Pires, Ivanir Santana de Oliveira; Pedrosa, Rogério Graça; Martins, Eivor; Alves de Castro, Inar; Tirapegui, Julio

    2012-11-01

    This study aimed to determine the effects of diets chronically supplemented with branched-chain amino acids (BCAA) on the fatigue mechanisms of trained rats. Thirty-six adult Wistar rats were trained for six weeks. The training protocol consisted of bouts of swimming exercise (one hour a day, five times a week, for six weeks). The animals received a control diet (C) (n = 12), a diet supplemented with 3.57% BCAA (S1) (n = 12), or a diet supplemented with 4.76% BCAA (S2) (n = 12). On the last day of the training protocol, half the animals in each group were sacrificed after one hour of swimming (1H), and the other half after a swimming exhaustion test (EX). Swimming time until exhaustion was increased by 37% in group S1 and reduced by 43% in group S2 compared to group C. Results indicate that the S1 diet had a beneficial effect on performance by sparing glycogen in the soleus muscle (p < 0.05) and by inducing a lower concentration of plasma ammonia, whereas the S2 diet had a negative effect on performance due to hyperammonemia (p < 0.05). The hypothalamic concentration of serotonin was not significantly different between the 1H and EX conditions. In conclusion, chronic BCAA supplementation led to increased performance in rats subjected to a swimming test to exhaustion. However, this is a dose-dependent effect, since chronic ingestion of elevated quantities of BCAA led to a reduction in performance. PMID:23201847

  5. Monitoring high-intensity endurance training using neuromuscular excitability to recognize overtraining.

    PubMed

    Lehmann, M; Baur, S; Netzer, N; Gastmann, U

    1997-01-01

    The minimal rectangular current pulse that produces a single contraction of reference muscles at different pulse durations has been recommended as a marker of the neuromuscular excitability (NME) of skeletal muscles. NME is improved in well-trained, non-fatigued endurance athletes and deteriorates after prolonged heavy exercise and high-volume overtraining. The hypothesis was tested that a deterioration in NME also indicates an early stage in the overtraining process during high-intensity endurance training. Six subjects participated for 40-60 min per day in a 6-week, 6-days-per-week, intensive, steady-state and interval training program using a cycle ergometer. Training was stopped each day on volitional exhaustion. On day 7 of each week training was of low intensity for about 30-40 min. Submaximum and maximum power output were significantly increased after 3 weeks, but there was no further improvement, rather a deterioration after week 6 compared to week 3. Even after 2 weeks of regeneration no supercompensation was evident, rather a decrease in maximum power output. NME was slightly improved after 3 weeks, but deteriorated after 6 weeks, and was again normalized after 2 weeks of regeneration. The discrepancy between normalization of NME and still-deteriorated performance ability after 2 weeks of regeneration reflects additional significant, and probably central mechanisms that explain persistent performance incompetence. Deterioration in NME may indicate an early stage in the overtraining process during high-volume as well as high-intensity endurance overtraining, but normalization does not necessarily indicate sufficient regeneration. PMID:9272779

  6. Exercise and airway injury in athletes.

    PubMed

    Couto, Mariana; Silva, Diana; Delgado, Luis; Moreira, André

    2013-01-01

    Olympic level athletes present an increased risk for asthma and allergy, especially those who take part in endurance sports, such as swimming or running, and in winter sports. Classical postulated mechanisms behind EIA include the osmotic, or airway-drying, hypothesis. Hyperventilation leads to evaporation of water and the airway surface liquid becomes hyperosmolar, providing a stimulus for water to move from any cell nearby, which results in the shrinkage of cells and the consequent release of inflammatory mediators that cause airway smooth muscle contraction. But the exercise-induced asthma/bronchoconstriction explanatory model in athletes probably comprises the interaction between environmental training factors, including allergens and ambient conditions such as temperature, humidity and air quality; and athlete's personal risk factors, such as genetic and neuroimmuneendocrine determinants. After the stress of training and competitions athletes experience higher rate of upper respiratory tract infections (URTI), compared with lesser active individuals. Increasing physical activity in non-athletes is associated with a decreased risk of URTI. Heavy exercise induces marked immunodepression which is multifactorial in origin. Prolonged, high intensity exercise temporarily impairs the immune competence while moderate activity may enhance immune function. The relationship between URTI and exercise is affected by poorly known individual determinants such genetic susceptibility, neurogenic mediated immune inflammation and epithelial barrier dysfunction. Further studies should better define the aetiologic factors and mechanisms involved in the development of asthma in athletes, and propose relevant preventive and therapeutic measures. PMID:23697359

  7. Korean mistletoe (Viscum album coloratum) extract improves endurance capacity in mice by stimulating mitochondrial activity.

    PubMed

    Jung, Hoe-Yune; Lee, An-Na; Song, Tae-Jun; An, Hyo-Sun; Kim, Young-Hoon; Kim, Kyu-Dae; Kim, In-Bo; Kim, Kyoung-Shim; Han, Baek-Soo; Kim, Chun-Hyung; Kim, Kwang-Soo; Kim, Jong-Bae

    2012-07-01

    The beneficial effects of exercise on overall health make it desirable to identify the orally active agents that enhance the effects of exercise in an effort to cure metabolic diseases. Natural compounds such as resveratrol (RSV) are known to increase endurance by potentiating mitochondrial function. Korean mistletoe (Viscum album coloratum) extract (KME) has characteristics similar to those of RSV. In the present study, we determined whether KME could increase mitochondrial activity and exert an anti-fatigue effect. We found that KME treatment significantly increased the mitochondrial oxygen consumption rate (OCR) in L6 cells and increased the expression of peroxisome proliferator-activated receptor γ coactivator (PGC)-1α and silent mating type information regulation 2 homolog 1 (SIRT1), two major regulators of mitochondria function, in C2C12 cells. In the treadmill test, KME-treated mice could run 2.5-times longer than chow-fed control mice. Additionally, plasma lactate levels of exhausted mice were significantly lower in the KME-treated group. In addition, the swimming time to exhaustion of mice treated with KME was prolonged by as much as 212% in the forced-swim test. Liver and kidney histology was similar between the KME-treated and phosphate-buffered saline-treated animals, indicating that KME was nontoxic. Taken together, our data show that KME induces mitochondrial activity, possibly by activating PGC-1α and SIRT1, and improves the endurance of mice, strongly suggesting that KME has great potential as a novel mitochondria-activating agent. PMID:22612297

  8. Effects of RRR-alpha-tocopherol on leukocyte expression of HSP72 in response to exhaustive treadmill exercise.

    PubMed

    Niess, A M; Fehrenbach, E; Schlotz, E; Sommer, M; Angres, C; Tschositsch, K; Battenfeld, N; Golly, I C; Biesalski, H K; Northoff, H; Dickhuth, H H

    2002-08-01

    Previous research revealed an increased expression of HSP72 in leukocytes after vigorous endurance exercise. We questioned whether more intensive but shorter exercise also induces leukocyte HSP72 synthesis. To delineate the role of reactive oxygen species (ROS) in exercise-related HSP72 induction, we additionally examined the effect of RRR-alpha-tocopherol (alpha-toc) on HSP72 expression using a double-blind placebo (P) controlled cross-over design. After supplementation with alpha-toc (500 I.U. daily) or P for 8 days, 9 male subjects performed a combined exhaustive treadmill protocol (total duration 29.4 +/- 2.0 min). HSP72 was assessed on mRNA (RT-PCR) and protein levels (flow cytometry). HSP72 mRNA rose 3 h after exercise only in the P group, but individual differences (alpha-toc - P) did not reveal significant treatment effects. A moderate but significant rise of HSP72 protein occurred in granulocytes up to 48 h after exercise. Three hours post-exercise, granulocyte HSP72 protein was lower when subjects received alpha-toc, but this effect vanished 24 and 48 h post-exercise. Exhaustive treadmill exercise augments HSP72 mRNA in leukocytes and induced a moderate but prolonged response of granulocyte HSP72 protein. These exercise effects are lower when compared to earlier findings obtained after vigorous endurance exercise. ROS seem to be involved, but do not play the major role in the induction of granulocyte HSP72 synthesis after exhaustive exercise. PMID:12215965

  9. Changes in heart rate, arrhythmia frequency, and cardiac biomarker values in horses during recovery after a long-distance endurance ride.

    PubMed

    Flethøj, Mette; Kanters, Jørgen K; Haugaard, Maria M; Pedersen, Philip J; Carstensen, Helena; Balling, Johanne D; Olsen, Lisbeth H; Buhl, Rikke

    2016-05-01

    OBJECTIVE To evaluate heart rate, heart rate variability, and arrhythmia frequency as well as changes in cardiac biomarker values and their association with heart rate in horses before and after an endurance ride. DESIGN Cross-sectional study. ANIMALS 28 Arabian horses competing in a 120- or 160-km endurance ride. PROCEDURES ECG recordings were obtained from each horse before (preride) and after (recovery) an endurance ride to evaluate changes in heart rate and the SD of normal R-R intervals (SDNN) during the initial 12 hours of recovery. Frequencies of supraventricular and ventricular premature complexes before and after the ride were evaluated. Blood samples were obtained before the ride and twice during recovery. Hematologic analyses included measurement of serum cardiac troponin I concentration and creatine kinase isoenzyme MB activity. RESULTS Heart rate was significantly increased and SDNN was decreased during the recovery versus preride period. Frequency of ventricular premature complexes increased during recovery, albeit not significantly, whereas frequency of supraventricular premature complexes was not significantly different between preride and recovery periods. Serum cardiac troponin I concentration and creatine kinase isoenzyme MB activity were significantly increased in the recovery versus preride period. No associations were identified between cardiac biomarkers and velocity, distance, or mean heart rate. CONCLUSIONS AND CLINICAL RELEVANCE Heart rate increased and SDNN decreased in horses after completion of an endurance ride. These and other cardiac changes suggested that prolonged exercise such as endurance riding might have cardiac effects in horses. Additional studies are needed to clarify the clinical relevance of the findings. PMID:27074612

  10. Endurance training at altitude.

    PubMed

    Saunders, Philo U; Pyne, David B; Gore, Christopher J

    2009-01-01

    Since the 1968 Olympic Games when the effects of altitude on endurance performance became evident, moderate altitude training ( approximately 2000 to 3000 m) has become popular to improve competition performance both at altitude and sea level. When endurance athletes are exposed acutely to moderate altitude, a number of physiological responses occur that can comprise performance at altitude; these include increased ventilation, increased heart rate, decreased stroke volume, reduced plasma volume, and lower maximal aerobic power ((.)Vo(2max)) by approximately 15% to 20%. Over a period of several weeks, one primary acclimatization response is an increase in the volume of red blood cells and consequently of (.)Vo(2max). Altitudes > approximately 2000 m for >3 weeks and adequate iron stores are required to elicit these responses. However, the primacy of more red blood cells for superior sea-level performance is not clear-cut since the best endurance athletes in the world, from Ethiopia (approximately 2000 to 3000 m), have only marginally elevated hemoglobin concentrations. The substantial reduction in (.)Vo(2max) of athletes at moderate altitude implies that their training should include adequate short-duration (approximately 1 to 2 min), high-intensity efforts with long recoveries to avoid a reduction in race-specific fitness. At the elite level, athlete performance is not dependent solely on (.)Vo(2max), and the "smallest worthwhile change" in performance for improving race results is as little as 0.5%. Consequently, contemporary statistical approaches that utilize the concept of the smallest worthwhile change are likely to be more appropriate than conventional statistical methods when attempting to understand the potential benefits and mechanisms of altitude training. PMID:19519223

  11. 'Endurance' Untouched (polar)

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This navigation camera mosaic, created from images taken by NASA's Mars Exploration Rover Opportunity on sols 115 and 116 (May 21 and 22, 2004) provides a dramatic view of 'Endurance Crater.' The rover engineering team carefully plotted the safest path into the football field-sized crater, eventually easing the rover down the slopes around sol 130 (June 12, 2004). To the upper left of the crater sits the rover's protective heatshield, which sheltered Opportunity as it passed through the martian atmosphere. The 360-degree view is presented in a polar projection, with geometric and radiometric seam correction.

  12. 'Endurance' Untouched (vertical)

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This navigation camera mosaic, created from images taken by NASA's Mars Exploration Rover Opportunity on sols 115 and 116 (May 21 and 22, 2004) provides a dramatic view of 'Endurance Crater.' The rover engineering team carefully plotted the safest path into the football field-sized crater, eventually easing the rover down the slopes around sol 130 (June 12, 2004). To the upper left of the crater sits the rover's protective heatshield, which sheltered Opportunity as it passed through the martian atmosphere. The 360-degree view is presented in a vertical projection, with geometric and radiometric seam correction.

  13. The Colors of 'Endurance'

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This false-color image shows visible mineral changes between the materials that make up the rim of the impact crater known as 'Endurance.' The image was taken by the panoramic camera on NASA's Mars Exploration Rover Opportunity using all 13 color filters. The cyan blue color denotes basalts, whereas the dark green color denotes a mixture of iron oxide and basaltic materials. Reds and yellows indicate dusty material containing sulfates. Scientists are very interested in exploring the interior and exterior material around the crater's rim for clues to the processes that formed the crater, as well as the rocks and textures that define the crater.

  14. Weird 'Endurance' Rock Ahead

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This image taken by the Mars Exploration Rover Opportunity shows a bizarre, lumpy rock dubbed 'Wopmay' on the inner slopes of 'Endurance Crater.' Scientists say the rock's unusual texture is unlike any others observed so far at Meridiani Planum. Wopmay measures approximately 1 meter (3.3 feet) across. The image was taken by the rover's panoramic camera on sol 195 (Aug. 11, 2004). Opportunity will likely travel to this or a similar rock in coming sols for a closer look at the alien surface.

  15. Reactivity of organism in prolonged space flights

    NASA Technical Reports Server (NTRS)

    Vasilyev, P. V.

    1980-01-01

    An analysis of published data are presented as well as the results of experiments which show that the state of weightlessness and hypodynamia result in a reduced orthostatic and vestibular resistance, increased sensitivity to infections, decreased endurance of accelerations and physical exercises, and altered reactivity of the organism to drugs. Various consequences of weightlessness on the human body, especially weightlessness combined with other factors linked to long space flights are also considered.

  16. Dose-response relationship of the cardiovascular adaptation to endurance training in healthy adults: how much training for what benefit?

    PubMed

    Iwasaki, Ken-Ichi; Zhang, Rong; Zuckerman, Julie H; Levine, Benjamin D

    2003-10-01

    Occupational or recreational exercise reduces mortality from cardiovascular disease. The potential mechanisms for this reduction may include changes in blood pressure (BP) and autonomic control of the circulation. Therefore, we conducted the present long-term longitudinal study to quantify the dose-response relationship between the volume and intensity of exercise training, and regulation of heart rate (HR) and BP. We measured steady-state hemodynamics and analyzed dynamic cardiovascular regulation by spectral and transfer function analysis of cardiovascular variability in 11 initially sedentary subjects during 1 yr of progressive endurance training sufficient to allow them to complete a marathon. From this, we found that 1) moderate exercise training for 3 mo decreased BP, HR, and total peripheral resistance, and increased cardiovascular variability and arterial baroreflex sensitivity; 2) more prolonged and intense training did not augment these changes further; and 3) most of these changes returned to control values at 12 mo despite markedly increased training duration and intensity equivalent to that routinely observed in competitive athletes. In conclusion, increases in R-wave-R-wave interval and cardiovascular variability indexes are consistent with an augmentation of vagal modulation of HR after exercise training. It appears that moderate doses of training for 3 mo are sufficient to achieve this response as well as a modest hypotensive effect from decreasing vascular resistance. However, more prolonged and intense training does not necessarily lead to greater enhancement of circulatory control and, therefore, may not provide an added protective benefit via autonomic mechanisms against death by cardiovascular disease. PMID:12832429

  17. Respiratory disorders in endurance athletes – how much do they really have to endure?

    PubMed Central

    Bussotti, Maurizio; Di Marco, Silvia; Marchese, Giovanni

    2014-01-01

    Respiratory disorders are often a cause of morbidity in top level endurance athletes, more often compromising their performance and rarely being a cause of death. Pathophysiological events occurring during exercise, such as bronchospasm, are sometimes followed by clear pathological symptoms represented by asthma related to physical exertion or rarely by pulmonary edema induced by a strenuous effort. Both bronchospasm and the onset of interstitial edema induced by exercise cannot be considered pathological per se, but are more likely findings that occur in several healthy subjects once physical exhaustion during exertion has been reached. Consequently, we get a vision of the respiratory system perfectly tailored to meet the body’s metabolic demands under normal conditions but which is limited when challenged by strenuous exercise, in particular when it happens in an unfavorable environment. As extreme physical effort may elicit a pathological response in healthy subjects, due to the exceeding demand in a perfectly functional system, an overview of the main tools both enabling the diagnosis of respiratory impairment in endurance athletes in a clinical and preclinical phase has also been described. PMID:24744614

  18. Exercise and immune function. Recent developments.

    PubMed

    Nieman, D C; Pedersen, B K

    1999-02-01

    Comparison of immune function in athletes and nonathletes reveals that the adaptive immune system is largely unaffected by athletic endeavour. The innate immune system appears to respond differentially to the chronic stress of intensive exercise, with natural killer cell activity tending to be enhanced while neutrophil function is suppressed. However, even when significant changes in the level and functional activity of immune parameters have been observed in athletes, investigators have had little success in linking these to a higher incidence of infection and illness. Many components of the immune system exhibit change after prolonged heavy exertion. During this 'open window' of altered immunity (which may last between 3 and 72 hours, depending on the parameter measured), viruses and bacteria may gain a foothold, increasing the risk of subclinical and clinical infection. However, no serious attempt has been made by investigators to demonstrate that athletes showing the most extreme post-exercise immunosuppression are those that contract an infection during the ensuing 1 to 2 weeks. This link must be established before the 'open window' theory can be wholly accepted. The influence of nutritional supplements, primarily zinc, vitamin C, glutamin and carbohydrate, on the acute immune response to prolonged exercise has been measured in endurance athletes. Vitamin C and glutamine have received much attention, but the data thus far are inconclusive. The most impressive results have been reported in the carbohydrate supplementation studies. Carbohydrate beverage ingestion has been associated with higher plasma glucose levels, an attenuated cortisol and growth hormone response, fewer perturbations in blood immune cell counts, lower granulocyte and monocyte phagocytosis and oxidative burst activity, and a diminished pro- and anti-inflammatory cytokine response. It remains to be shown whether carbohydrate supplementation diminishes the frequency of infections in the

  19. 'Endurance' Untouched (3-D)

    NASA Technical Reports Server (NTRS)

    2004-01-01

    [figure removed for brevity, see original site] Figure 1 [figure removed for brevity, see original site] Figure 2

    This navigation camera mosaic, created from images taken by NASA's Mars Exploration Rover Opportunity on sols 115 and 116 (May 21 and 22, 2004) provides a dramatic view of 'Endurance Crater.' The rover engineering team carefully plotted the safest path into the football field-sized crater, eventually easing the rover down the slopes around sol 130 (June 12, 2004). To the upper left of the crater sits the rover's protective heatshield, which sheltered Opportunity as it passed through the martian atmosphere. The 360-degree, stereo view is presented in a cylindrical-perspective projection, with geometric and radiometric seam correction.

    Figure 1 is the left-eye view of a stereo pair and Figure 2 is the right-eye view of a stereo pair.

  20. Effects of Endurance Jogging on Cardiovascular System and Body Composition in Middle-Aged Women.

    ERIC Educational Resources Information Center

    Tooshi, Ali

    This study investigated the effects of 30 minutes of endurance jogging on pulse rates at rest, during exercise, and at recovery and eight skinfold fat measures in middle-aged women. Subjects were 15 middle-aged women between 30 and 58 years of age who had not been engaged in any exercise program at least for 1 year. Eight sedentary subjects were…

  1. No Evidence of a Common DNA Variant Profile Specific to World Class Endurance Athletes

    PubMed Central

    Wolfarth, Bernd; Wang, Guan; Sarzynski, Mark A.; Alexeev, Dmitry G.; Ahmetov, Ildus I.; Boulay, Marcel R.; Cieszczyk, Pawel; Eynon, Nir; Filipenko, Maxim L.; Garton, Fleur C.; Generozov, Edward V.; Govorun, Vadim M.; Houweling, Peter J.; Kawahara, Takashi; Kostryukova, Elena S.; Kulemin, Nickolay A.; Larin, Andrey K.; Maciejewska-Karłowska, Agnieszka; Miyachi, Motohiko; Muniesa, Carlos A.; Murakami, Haruka; Ospanova, Elena A.; Padmanabhan, Sandosh; Pavlenko, Alexander V.; Pyankova, Olga N.; Santiago, Catalina; Sawczuk, Marek; Scott, Robert A.; Uyba, Vladimir V.; Yvert, Thomas; Perusse, Louis; Ghosh, Sujoy; Rauramaa, Rainer; North, Kathryn N.; Lucia, Alejandro; Pitsiladis, Yannis; Bouchard, Claude

    2016-01-01

    There are strong genetic components to cardiorespiratory fitness and its response to exercise training. It would be useful to understand the differences in the genomic profile of highly trained endurance athletes of world class caliber and sedentary controls. An international consortium (GAMES) was established in order to compare elite endurance athletes and ethnicity-matched controls in a case-control study design. Genome-wide association studies were undertaken on two cohorts of elite endurance athletes and controls (GENATHLETE and Japanese endurance runners), from which a panel of 45 promising markers was identified. These markers were tested for replication in seven additional cohorts of endurance athletes and controls: from Australia, Ethiopia, Japan, Kenya, Poland, Russia and Spain. The study is based on a total of 1520 endurance athletes (835 who took part in endurance events in World Championships and/or Olympic Games) and 2760 controls. We hypothesized that world-class athletes are likely to be characterized by an even higher concentration of endurance performance alleles and we performed separate analyses on this subsample. The meta-analysis of all available studies revealed one statistically significant marker (rs558129 at GALNTL6 locus, p = 0.0002), even after correcting for multiple testing. As shown by the low heterogeneity index (I2 = 0), all eight cohorts showed the same direction of association with rs558129, even though p-values varied across the individual studies. In summary, this study did not identify a panel of genomic variants common to these elite endurance athlete groups. Since GAMES was underpowered to identify alleles with small effect sizes, some of the suggestive leads identified should be explored in expanded comparisons of world-class endurance athletes and sedentary controls and in tightly controlled exercise training studies. Such studies have the potential to illuminate the biology not only of world class endurance performance but

  2. No Evidence of a Common DNA Variant Profile Specific to World Class Endurance Athletes.

    PubMed

    Rankinen, Tuomo; Fuku, Noriyuki; Wolfarth, Bernd; Wang, Guan; Sarzynski, Mark A; Alexeev, Dmitry G; Ahmetov, Ildus I; Boulay, Marcel R; Cieszczyk, Pawel; Eynon, Nir; Filipenko, Maxim L; Garton, Fleur C; Generozov, Edward V; Govorun, Vadim M; Houweling, Peter J; Kawahara, Takashi; Kostryukova, Elena S; Kulemin, Nickolay A; Larin, Andrey K; Maciejewska-Karłowska, Agnieszka; Miyachi, Motohiko; Muniesa, Carlos A; Murakami, Haruka; Ospanova, Elena A; Padmanabhan, Sandosh; Pavlenko, Alexander V; Pyankova, Olga N; Santiago, Catalina; Sawczuk, Marek; Scott, Robert A; Uyba, Vladimir V; Yvert, Thomas; Perusse, Louis; Ghosh, Sujoy; Rauramaa, Rainer; North, Kathryn N; Lucia, Alejandro; Pitsiladis, Yannis; Bouchard, Claude

    2016-01-01

    There are strong genetic components to cardiorespiratory fitness and its response to exercise training. It would be useful to understand the differences in the genomic profile of highly trained endurance athletes of world class caliber and sedentary controls. An international consortium (GAMES) was established in order to compare elite endurance athletes and ethnicity-matched controls in a case-control study design. Genome-wide association studies were undertaken on two cohorts of elite endurance athletes and controls (GENATHLETE and Japanese endurance runners), from which a panel of 45 promising markers was identified. These markers were tested for replication in seven additional cohorts of endurance athletes and controls: from Australia, Ethiopia, Japan, Kenya, Poland, Russia and Spain. The study is based on a total of 1520 endurance athletes (835 who took part in endurance events in World Championships and/or Olympic Games) and 2760 controls. We hypothesized that world-class athletes are likely to be characterized by an even higher concentration of endurance performance alleles and we performed separate analyses on this subsample. The meta-analysis of all available studies revealed one statistically significant marker (rs558129 at GALNTL6 locus, p = 0.0002), even after correcting for multiple testing. As shown by the low heterogeneity index (I2 = 0), all eight cohorts showed the same direction of association with rs558129, even though p-values varied across the individual studies. In summary, this study did not identify a panel of genomic variants common to these elite endurance athlete groups. Since GAMES was underpowered to identify alleles with small effect sizes, some of the suggestive leads identified should be explored in expanded comparisons of world-class endurance athletes and sedentary controls and in tightly controlled exercise training studies. Such studies have the potential to illuminate the biology not only of world class endurance performance but

  3. Exercise and the heart: the good, the bad, and the ugly.

    PubMed

    Sharma, Sanjay; Merghani, Ahmed; Mont, Lluis

    2015-06-14

    The benefits of exercise are irrefutable. Individuals engaging in regular exercise have a favourable cardiovascular risk profile for coronary artery disease and reduce their risk of myocardial infarction by 50%. Exercise promotes longevity of life, reduces the risk of some malignancies, retards the onset of dementia, and is as considered an antidepressant. Most of these benefits are attributable to moderate exercise, whereas athletes perform way beyond the recommended levels of physical activity and constantly push back the frontiers of human endurance. The cardiovascular adaptation for generating a large and sustained increase in cardiac output during prolonged exercise includes a 10-20% increase in cardiac dimensions. In rare instances, these physiological increases in cardiac size overlap with morphologically mild expressions of the primary cardiomyopathies and resolving the diagnostic dilemma can be challenging. Intense exercise may infrequently trigger arrhythmogenic sudden cardiac death in an athlete harbouring asymptomatic cardiac disease. In parallel with the extraordinary athletic milieu of physical performances previously considered unachievable, there is emerging data indicating that long-standing vigorous exercise may be associated with adverse electrical and structural remodelling in otherwise normal hearts. Finally, in the current era of celebrity athletes and lucrative sport contracts, several athletes have succumbed to using performance enhancing agents for success which are detrimental to cardiac health. This article discusses the issues abovementioned, which can be broadly classified as the good, bad, and ugly aspects of sports cardiology. PMID:25839670

  4. Effect of ambient temperature on female endurance performance.

    PubMed

    Renberg, Julie; Sandsund, Mariann; Wiggen, Øystein Nordrum; Reinertsen, Randi Eidsmo

    2014-10-01

    Ambient temperature can affect physical performance, and an ambient temperature range of -4 °C to 11 °C is optimal for endurance performance in male athletes. The few similar studies of female athletes appear to have found differences in response to cold between the genders. This study investigated whether ambient temperature affects female endurance performance. Nine athletes performed six tests while running on a treadmill in a climatic chamber at different ambient temperatures: 20, 10, 1, -4, -9 and -14 °C and a wind speed of 5 m s(-1). The exercise protocol consisted of a 10-min warm-up, followed by four 5-min intervals at increasing intensities at 76%, 81%, 85%, and 89% of maximal oxygen consumption. This was followed by an incremental test to exhaustion. Although peak heart rate, body mass loss, and blood lactate concentration after the incremental test to exhaustion increased as the ambient temperature rose, no changes in time to exhaustion, running economy, running speed at lactate threshold or maximal oxygen consumption were found between the different ambient temperature conditions. Endurance performance during one hour of incremental exercise was not affected by ambient temperature in female endurance athletes. PMID:25436945

  5. 'Endurance Crater' Overview

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This overview of 'Endurance Crater' traces the path of the Mars Exploration Rover Opportunity from sol 94 (April 29, 2004) to sol 205 (August 21, 2004). The route charted to enter the crater was a bit circuitous, but well worth the extra care engineers took to ensure the rover's safety. On sol 94, Opportunity sat on the edge of this impressive, football field-sized crater while rover team members assessed the scene. After traversing around the 'Karatepe' region and past 'Burns Cliff,' the rover engineering team assessed the possibility of entering the crater. Careful analysis of the angles Opportunity would face, including testing an Earth-bound model on simulated martian terrain, led the team to decide against entering the crater at that particular place. Opportunity then backed up before finally dipping into the crater on its 130th sol (June 5, 2004). The rover has since made its way down the crater's inner slope, grinding, trenching and examining fascinating rocks and soil targets along the way. The rover nearly made it to the intriguing dunes at the bottom of the crater, but when it got close, the terrain did not look safe enough to cross.

  6. Reading 'Endurance Crater'

    NASA Technical Reports Server (NTRS)

    2004-01-01

    [figure removed for brevity, see original site] Figure 1

    This image shows the area inside 'Endurance Crater' that the Mars Exploration Rover Opportunity has been examining. The rover is investigating the distinct layers of rock that make up this region. Each layer is defined by subtle color and texture variations and represents a separate chapter in Mars' history. The deeper the layer, the further back in time the rocks were formed. Scientists are 'reading' this history book by systematically studying each layer with the rover's scientific instruments. So far, data from the rover indicate that the top layers are sulfate-rich, like the rocks observed in 'Eagle Crater.' This implies that water processes were involved in forming the materials that make up these rocks.

    In figure 1, the layer labeled 'A' in this picture contains broken-up rocks that most closely resemble those of 'Eagle Crater.' Layers 'B,C and D' appear less broken up and more finely laminated. Layer 'E,' on the other hand, looks more like 'A.' At present, the rover is examining layer 'D.'

    So far, data from the rover indicates that the first four layers consist of sulfate-rich, jarosite-containing rocks like those observed in Eagle Crater. This implies that water processes were involved in forming the materials that make up these rocks, though the materials themselves may have been laid down by wind.

    This image was taken by Opportunity's navigation camera on sol 134 (June 9, 2004).

  7. Anaerobic Endurance of Young Untrained Male and Female Subjects

    ERIC Educational Resources Information Center

    Sienkiewicz-Dianzenza, Edyta; Tomaszewski, Pawel; Iwanska, Dagmara; Stupnicki, Romuald

    2009-01-01

    Study aim: To assess the anaerobic endurance of untrained male and female subjects by applying repeated maximal exercises. Material and methods: Untrained male subjects aged 23-27 years (n = 17, body height 170-197 cm, body mass 65-110 kg) and female ones aged 20-25 years (n = 10, body height 168-184 cm, body mass 55-86 kg) performed 6 maximal…

  8. Riding the Rim of 'Endurance'

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This cylindrical-projection view was created from navigation camera images that NASA's Mars Exploration Rover Opportunity acquired on sol 103 (May 8, 2004). Opportunity traversed approximately 13 meters (about 43 feet) farther south along the eastern rim of 'Endurance Crater' before reaching the beginning of the 'Karatepe' area. Scientists believe this layered band of rock may be a good place to begin studying Endurance because it is less steep and more approachable than the rest of the crater's rocky outcrops.

  9. Effects of curative treatment emphasizing endurance training on the performance and blood pressure of hypertensive and normotensives

    NASA Technical Reports Server (NTRS)

    Worms, F.

    1981-01-01

    The problem of normal values of blood pressure after exercise taking into account the blood pressure at the end of the exercise test is discussed. Hypertensives showed a lower working capacity than normotensives. In normotensives, however, systolic blood pressure at the end of an exercise correlated well with the working capacity. After the endurance cure submaximal blood pressure was markedly lower in hypertensives with a striking dependence on the level of initial values. Systolic blood pressure at the end of an exercise test was not changed significantly. Most probably it is not possible to overcome this malregulation in hypertensives by endurance training alone.

  10. Energy balance, macronutrient intake, and hydration status during a 1,230 km ultra-endurance bike marathon.

    PubMed

    Geesmann, Bjoern; Mester, Joachim; Koehler, Karsten

    2014-10-01

    Athletes competing in ultra-endurance events are advised to meet energy requirements, to supply appropriate amounts of carbohydrates (CHO), and to be adequately hydrated before and during exercise. In practice, these recommendations may not be followed because of satiety, gastrointestinal discomfort, and fatigue. The purpose of the study was to assess energy balance, macronutrient intake and hydration status before and during a 1,230-km bike marathon. A group of 14 well-trained participants (VO2max: 63.2 ± 3.3 ml/kg/min) completed the marathon after 42:47 hr. Ad libitum food and fluid intake were monitored throughout the event. Energy expenditure (EE) was derived from power output and urine and blood markers were collected before the start, after 310, 618, and 921 km, after the finish, and 12 hr after the finish. Energy intake (EI; 19,749 ± 4,502 kcal) was lower than EE (25,303 ± 2,436 kcal) in 12 of 14 athletes. EI and CHO intake (average: 57.1 ± 17.7 g/hr) decreased significantly after km 618 (p < .05). Participants ingested on average 392 ± 85 ml/hr of fluid, but fluid intake decreased after km 618 (p < .05). Hydration appeared suboptimal before the start (urine specific gravity: 1.022 ± 0.010 g/ml) but did not change significantly throughout the event. The results show that participants failed to maintain in energy balance and that CHO and fluid intake dropped below recommended values during the second half of the bike marathon. Individual strategies to overcome satiety and fatigue may be necessary to improve eating and drinking behavior during prolonged ultra-endurance exercise. PMID:24668685

  11. Exercise Induced Cardiac Fatigue Following Prolonged Exercise in Road Cyclists

    ERIC Educational Resources Information Center

    Wyatt, Frank; Pawar, Ganesh; Kilgore, Lon

    2011-01-01

    The purpose of this study was to examine cardiac function following a 100-mile ride in high ambient temperatures by healthy, competitive cyclists. Methods: Subjects were six (n=6) competitive cyclists racing in a 100-mile road race. Measures (pre/post) included: body mass (kg); E:A ratio (ventricular compliance); stroke volume (ml); ejection…

  12. Exercise of low energy expenditure along with mild energy intake restriction acutely reduces fasting and postprandial triacylglycerolaemia in young women.

    PubMed

    Maraki, Maria; Christodoulou, Nektarios; Aggelopoulou, Niki; Magkos, Faidon; Skenderi, Katerina P; Panagiotakos, Demosthenes; Kavouras, Stavros A; Sidossis, Labros S

    2009-02-01

    A single bout of prolonged, moderate-intensity endurance exercise lowers fasting and postprandial TAG concentrations the next day. However, the TAG-lowering effect of exercise is dose-dependent and does not manifest after light exercise of low energy cost ( < 2 MJ). We aimed to investigate whether superimposing mild energy intake restriction to such exercise, in order to augment total energy deficit, potentiates the hypotriacylglycerolaemic effect. Eight healthy, sedentary, premenopausal women (age 27.1 (sem 1.3) years; BMI 21.8 (sem 0.9) kg/m2) performed two oral fat tolerance tests in the morning on two different occasions: once after a single bout of light exercise (100 min at 30 % of peak oxygen consumption; net energy expenditure 1.04 (sem 0.01) MJ) coupled with mild energy intake restriction (1.39 (sem 0.22) MJ) on the preceding day, and once after resting coupled with isoenergetic feeding on the preceding day (control). Fasting plasma TAG, TAG in the TAG-rich lipoproteins (TRL-TAG) and serum insulin concentrations were 18, 34 and 30 % lower, respectively, after exercise plus diet compared with the control trial (P < 0.05). Postprandial concentrations of plasma TAG and TRL-TAG were 19 and 27 % lower after exercise plus diet compared with the control condition (P < 0.01), whereas postprandial insulin concentrations were not different. It is concluded that a combination of light exercise along with mild hypoenergetic diet may be a practical and feasible intervention to attenuate fasting and postprandial triacylglycerolaemia, especially for people who cannot exercise for prolonged periods of time at moderate-to-high intensities, such as many sedentary individuals. PMID:18570693

  13. Exercise: Benefits of Exercise

    MedlinePlus Videos and Cool Tools

    ... show that people with arthritis, heart disease, or diabetes benefit from regular exercise. Exercise also helps people ... or difficulty walking. To learn about exercise and diabetes, see "Exercise and Type 2 Diabetes" from Go4Life®, ...

  14. Endurance training in Wistar rats decreases receptor sensitivity to a serotonin agonist.

    PubMed

    Dwyer, D; Browning, J

    2000-11-01

    There is mounting evidence that increased brain serotonin during exercise is associated with the onset of CNS-mediated fatigue. Serotonin receptor sensitivity is likely to be an important determinant of this fatigue. Alterations in brain serotonin receptor sensitivity were examined in Wistar rats throughout 6 weeks of endurance training, running on a treadmill four times a week with two exercise tests per week to exhaustion. Receptor sensitivity was determined indirectly as the reduction in exercise time in response to a dose of a serotonin (1A) agonist, m-chlorophenylpiperazine (m-CPP). The two groups of controls were used to examine (i) the effect of the injection per se on exercise performance and (ii) changes in serotonin receptor sensitivity associated with maturation. In the test group, undrugged exercise performance significantly improved by 47% after 6 weeks of training (4518 +/- 729 to 6640 +/- 903 s, P=0.01). Drugged exercise performance also increased significantly from week 1 to week 6 (306 +/- 69-712 +/- 192 s, P = 0.04). Control group results indicated that the dose of m-CPP alone caused fatigue during exercise tests and that maturation was not responsible for any decrease in receptor sensitivity. Improved resistance to the fatiguing effects of the serotonin agonist suggests desensitization of central serotonin receptors, probably the 5-HT1A receptors. Endurance training appears to stimulate an adaptive response to the fatiguing effects of increased brain serotonin, which may enhance endurance exercise performance. PMID:11167306

  15. Effect of endurance training on lung function: a one year study

    PubMed Central

    Kippelen, P; Caillaud, C; Robert, E; Connes, P; Godard, P; Prefaut, C

    2005-01-01

    Objective: To identify in a follow up study airway changes occurring during the course of a sport season in healthy endurance athletes training in a Mediterranean region. Methods: Respiratory pattern and function were analysed in 13 healthy endurance trained athletes, either during a maximal exercise test, or at rest and during recovery through respiratory manoeuvres (spirometry and closing volume tests). The exercise test was conducted on three different occasions: during basic endurance training and then during the precompetition and competitive periods. Results: During the competitive period, a slight but non-clinically significant decrease was found in forced vital capacity (–3.5%, p = 0.0001) and an increase in slope of phase III (+25%, p = 0.0029), both at rest and after exercise. No concomitant reduction in expiratory flow rates was noticed. During maximal exercise there was a tachypnoeic shift over the course of the year (mean (SEM) breathing frequency and tidal volume were respectively 50 (2) cycles/min and 3.13 (0.09) litres during basic endurance training v 55 (3) cycles/min and 2.98 (0.10) litres during the competitive period; p<0.05). Conclusions: This study does not provide significant evidence of lung function impairment in healthy Mediterranean athletes after one year of endurance training. PMID:16118298

  16. Effects of Sodium Bicarbonate on High-Intensity Endurance Performance in Cyclists: A Double-Blind, Randomized Cross-Over Trial

    PubMed Central

    Egger, Florian; Meyer, Tim; Such, Ulf; Hecksteden, Anne

    2014-01-01

    Background While the ergogenic effect of sodium bicarbonate (BICA) on short-term, sprint-type performance has been repeatedly demonstrated, little is known about its effectiveness during prolonged high-intensity exercise in well-trained athletes. Therefore, this study aims to examine the influence of BICA on performance during exhaustive, high-intensity endurance cycling. Methods This was a single-center, double-blind, randomized, placebo-controlled cross-over study. Twenty-one well-trained cyclists (mean ± SD: age 24±8 y, BMI 21.3±1.7, VO2peak 67.3±9.8 ml·kg−1·min−1) were randomly allocated to sequences of following interventions: oral ingestion of 0.3 g·kg−1 BICA or 4 g of sodium chloride (placebo), respectively. One h after ingestion subjects exercised for 30 min at 95% of the individual anaerobic threshold (IAT) followed by 110% IAT until exhaustion. Prior to these constant load tests stepwise incremental exercise tests were conducted under both conditions to determine IAT and VO2peak. Analysis of blood gas parameters, blood lactate (BLa) and gas exchange measurements were conducted before, during and after the tests. The main outcome measure was the time to exhaustion in the constant load test. Results Cycling time to exhaustion was improved (p<0.05) under BICA (49.5±11.5 min) compared with placebo (45.0±9.5 min). No differences in maximal or sub-maximal measures of performance were observed during stepwise incremental tests. BICA ingestion resulted in an increased pH, bicarbonate concentration and BLa before, throughout and after both exercise testing modes. Conclusion The results suggest that ingestion of BICA may improve prolonged, high-intensity cycling performance. Trial Registration German Clinical Trials Register (DRKS) DRKS00006198. PMID:25494054

  17. Nutritional Supplements for Endurance Athletes

    NASA Astrophysics Data System (ADS)

    Rasmussen, Christopher J.

    Athletes engaged in heavy endurance training often seek additional nutritional strategies to help maximize performance. Specific nutritional supplements exist to combat certain factors that limit performance beginning with a sound everyday diet. Research has further demonstrated that safe, effective, legal supplements are in fact available for today's endurance athletes. Several of these supplements are marketed not only to aid performance but also to combat the immunosuppressive effects of intense endurance training. It is imperative for each athlete to research the legality of certain supplements for their specific sport or event. Once the legality has been established, it is often up to each individual athlete to decipher the ethics involved with ingesting nutritional supplements with the sole intent of improving performance.

  18. Intestinal temperature does not reflect rectal temperature during prolonged, intense running with cold fluid ingestion.

    PubMed

    Savoie, Félix A; Dion, Tommy; Asselin, Audrey; Gariepy, Carolanne; Boucher, Pierre M; Berrigan, Félix; Goulet, Eric D B

    2015-02-01

    It is generally assumed that intestinal temperature (Tint), as measured with a telemetric pill, agrees relatively well with rectal temperature (Trec) during exercise. However, whether Tint reflects Trec during prolonged, intense and continuous exercise when cold fluids are consumed is unknown. Therefore, we compared Trec and Tint during a half-marathon during which cold water was ingested to prevent bodyweight (BW) losses >2%. Nine endurance athletes (age 30  ±  5 years) underwent a 21.1 km running time-trial (TT) in the heat (~30 °C and 44% RH) while BW losses were maintained to ~1% with continuous cold (4 °C) water provision. Tint and Trec were monitored throughout the TT. Hypohydration level, TT time and fluid intake were 1.2  ±  0.4% BW, 93.2  ±  9.9 min and 2143  ±  264 ml, respectively. Trec was systematically higher than Tint by 0.25 °C (95% CI: 0.14-0.37 °C). Tint and Trec showed an excellent relative (r = 0.90, p < 0.01), but poor absolute agreement as reflected by a 95% limit of agreement of ±1.07 °C and a standard error of measurement of ±0.39 °C. In conclusion, Tint does not mirror Trec during prolonged, intense running with cold fluid ingestion and, therefore, these measures should not be used interchangeably under this scenario. PMID:25582636

  19. A novel clinical test of respiratory muscle endurance.

    PubMed

    Hart, N; Hawkins, P; Hamnegård, C H; Green, M; Moxham, J; Polkey, M I

    2002-02-01

    Impaired respiratory muscle endurance (RME) could reduce exercise tolerance and contribute to ventilatory failure. The aim of the present study was to develop a clinically-feasible method to measure RME using negative-pressure inspiratory-threshold loading. It was hypothesized that endurance time (tlim) could be predicted by normalizing oesophageal pressure-time product (PTP) per total breath cycle (PTPoes) for maximum oesophageal pressure (Poes,max); the load/capacity ratio. The corresponding mouth pressures, PTPmouth and Pmouth,max were also measured. The RME test was performed on 30 healthy subjects exposed to the same target pressure (70% of Poes,max). Eight patients with systemic sclerosis/interstitial lung disease were studied to assess the validity and acceptability of the technique. Normal subjects showed a wide intersubject variation in tlim (coefficient of variation, 69%), with a linear relationship demonstrated between log tlim and PTPoes/Poes,max (r=0.88). All patients with systemic sclerosis/interstitial lung disease had normal respiratory muscle strength, but six out of eight had a reduction in RME. In conclusion, endurance time can be predicted from the load/capacity ratio, over a range of breathing strategies; this relationship allows abnormal respiratory muscle endurance to be detected in patients. Oesophageal and mouth pressure showed a close correlation, thus suggesting that the test could be applied noninvasively. PMID:11866003

  20. Effects of Anoectochilus formosanus on endurance capacity in mice.

    PubMed

    Ikeuchi, Mayumi; Yamaguchi, Kohji; Nishimura, Tomio; Yazawa, Kazunaga

    2005-02-01

    The present study was designed to determine the effects of Anoectochilus formosanus exract (AFE) on endurance capacity in mice. Four wk-old male mice were given either a vehicle (distilled water) or AFE (500, 1,000 mg/kg) through stomach intubations for 4 wk. Mice were made to perform swimming exercises with weights attached to their tails corresponding to 10% of their body weight. Endurance capacity was evaluated by swimming time to exhaustion. The group treated with 1,000 mg/kg AFE showed a significant improvement (p<0.05) in endurance performance time. The mice were made to swim for 15 min with loads corresponding to 5% of their body weight. In the 1,000 mg/kg body weight of AFE administration group, blood lactate concentration was significantly lower than in the control group. In the AFE administration group, the plasma non-esterfied fatty acid (NEFA) was significantly increased by swimming exercise. AFE treatment also significantly decreased fat accumulation. Liver and gastrocnemius muscle glycogen after 15 min of swimming remained at significantly higher levels in the mice fed 1,000 mg/kg of AFE as compared to the control group. These results suggest that AFE activated utilization of lipid more than glucose as the energy source for performance. PMID:15915667

  1. Measurement of quadriceps endurance by fNIRS

    NASA Astrophysics Data System (ADS)

    Erdem, Devrim; Şayli, Ömer; Karahan, Mustafa; Akin, A.

    2006-02-01

    In this paper, the changes in muscle deoxygenation trends during a sustained isometric quadriceps (chair squat/half squat) endurance exercise were evaluated among twelve male subjects and the relationship between muscle oxygenation and endurance times was investigated by means of functional near-infrared spectroscopy (fNIRS). Neuromuscular activation and predictions of muscle performance decrements during extended fatiguing task was investigated by means of surface electromyography (sEMG). The results of the study showed that in the subjects who maintained exercise longer than five minutes (group 1), mean Hb recovery time (33 [sec.]) was 37.4% less than the others (group 2, 52.7 [sec.]). Also mean HbO II decline amplitude (2.53 [a.u.] in group 1 and 2.07 [a.u.] in group 2) and oxy decline amplitude (8.4 [a.u.] in group 1 and 3.04 [a.u.] in group 2) in the beginning of squat exercise are found to be 22.6% and 176.9% bigger in these group. For the EMG parameters, mean slope of MNF and MDF decline are found to be 57.5% and 42.2% bigger in magnitude in group 2 which indicates higher degree of decrement in mean and median frequencies although their mean squat duration time is less. This indicates higher index of fatigue for this group. It is concluded that training leads to altered oxygenation and oxygen extraction capability in the exercising muscle and investigated fNIRS parameters could be used for endurance evaluation.

  2. Intensive Exercise Training During Bed Rest Attenuates Deconditioning

    NASA Technical Reports Server (NTRS)

    Greenleaf, John E.

    1997-01-01

    Intensive exercise training during bed rest attenuates deconditioning. Med. Sci. Sports Exerc., Vol. 29, No. 2, pp. 207-215, 1997. A 30-d 6 deg head-down bed rest project was conducted to evaluate variable high-intensity, short-duration, isotonic cycle ergometer exercise (ITE) training and high-intensity intermittent resistive isokinetic exercise (IKE) training regimens designed to maintain peak VO2 and muscle mass, strength, and endurance at ambulatory control levels throughout prolonged bed rest. Other elements of the deconditioning (adaptive) syndrome, such as proprioception, psychological performance, hypovolemia, water balance, body composition, and orthostatic tolerance, were also measured. Major findings are summarized in this paper. Compared with response during bed rest of the no exercise (NOE) control group: the ITE training regimen (a) maintained work capacity (peak VO2), (b) maintained plasma and red cell volumes, (c) induced positive body water balance, (d) decreased quality of sleep and mental concentration, and (e) had no effect on the decrease in orthostatic tolerance; the IKE training regimen (f) attenuated the decrease in peak VO2 by 50%, (g) attenuated loss of red cell volume by 40% but had no effect on loss of plasma volume, (b) induced positive body water balance, (i) had no adverse effect on quality of sleep or concentration, and 0) had no effect on the decrease in orthostatic tolerance. These findings suggest that various elements of the deconditioning syndrome can be manipulated by duration and intensity of ITE or IKE training regimens and that several different training protocols will be required to maintain or restore physiological and psychological performance of individuals confined to prolonged bed rest.

  3. How Cells Endure Extreme Conditions

    SciTech Connect

    2009-01-01

    One of natures most gripping feats of survival is now better understood. For the first time, Berkeley Lab scientists observed the chemical changes in individual cells that enable them to survive in conditions that should kill them. http://newscenter.lbl.gov/feature-stories/2009/07/07/cells-endure-extremes/

  4. Specificity of Cardiovascular Endurance Training.

    ERIC Educational Resources Information Center

    Riley, Calberth B., Jr.; Johnson, James H.

    This study determined the specificity of cardiovascular endurance training on a bicycle ergometer. Eighteen male subjects were tested on a heart rate response test of 150 beats per minute on a bicycle ergometer at the pace of 50 revolutions per minute (rpm) and at 160 beats per minute at 60 and 80 rpm, with the resistance equal to the force of…

  5. The effect of AQP3 deficiency on fuel selection during a single bout of exhausting exercise.

    PubMed

    Lim, Ju Hyun; Kim, Dong-Hwan; Han, Dong Wook; Kwak, Jong-Young; Bae, Hae-Rahn

    2016-07-01

    Aquaporin-3 (AQP3) is an integral membrane protein that facilitates the transport of water and glycerol across cell membranes. However, the precise localization and function of AQP3 in skeletal muscles is currently unknown. In this study, we investigated the capacity of AQP3 knockout mice to perform a single bout of exhausting exercise and analyzed the parameters related to skeletal muscle energy metabolism during exhausting exercise. Mice were exposed to a single bout of treadmill running at a speed of 12 m/min with 10° inclination until exhaustion, and sacrificed immediately, 24 h and 48 h after exercise. Both immunohistochemistry and double immunofluorescence staining revealed that AQP3 is expressed at the cell surface with no evidence of colocalization with either AQP1 or AQP4 in hamstring skeletal muscles. When exposed to a single bout of exhaustive exercise, AQP3 knockout mice fatigued more easily with the average time to exhaustion shorter than the wild-type mice. After exhausting exercise, plasma glucose, muscle glycogen, muscle triglyceride, and muscle free fatty acid levels decreased compared with the values before exercise in both AQP3 knockout and wild-type mice. However, muscle glycerol concentration after exercise decreased in the wild-type mice, but rather increased in AQP3 knockout mice. These findings suggest that decreased glycerol efflux from the skeletal muscles in AQP3 knockout mice may result in low exercise capacity, presumably due to the limitations in the constant energy supply through hepatic gluconeogenesis from glycerol during the prolonged endurance exercise. PMID:27138166

  6. Staying Safe during Exercise and Physical Activity

    MedlinePlus

    ... nih.gov/Go4Life Staying Safe during Exercise and Physical Activity There’s a way for almost every older adult ... have specific health conditions, discuss your exercise and physical activity plan with your health care provider. Endurance. Listen ...

  7. Aqua Dynamics. Physical Conditioning through Water Exercises.

    ERIC Educational Resources Information Center

    President's Council on Physical Fitness and Sports, Washington, DC.

    Swimming is recognized as America's most popular active sport. It is one of the best physical activities for people of all ages and for people who are physically handicapped. Vigorous water exercises can increase a person's flexibility, strength, and cardio-vascular endurance. Exercises requiring flexibility are performed more easily in water…

  8. Low-Volume Intense Exercise Elicits Post-exercise Hypotension and Subsequent Hypervolemia, Irrespective of Which Limbs Are Exercised

    PubMed Central

    Graham, Matthew J.; Lucas, Samuel J. E.; Francois, Monique E.; Stavrianeas, Stasinos; Parr, Evelyn B.; Thomas, Kate N.; Cotter, James D.

    2016-01-01

    Introduction: Exercise reduces arterial and central venous blood pressures during recovery, which contributes to its valuable anti-hypertensive effects and to facilitating hypervolemia. Repeated sprint exercise potently improves metabolic function, but its cardiovascular effects (esp. hematological) are less well-characterized, as are effects of exercising upper versus lower limbs. The purposes of this study were to identify the acute (<24 h) profiles of arterial blood pressure and blood volume for (i) sprint intervals versus endurance exercise, and (ii) sprint intervals using arms versus legs. Methods: Twelve untrained males completed three cycling exercise trials; 50-min endurance (legs), and 5*30-s intervals using legs or arms, in randomized and counterbalanced sequence, at a standardized time of day with at least 8 days between trials. Arterial pressure, hemoglobin concentration and hematocrit were measured before, during and across 22 h after exercise, the first 3 h of which were seated rest. Results: The post-exercise hypotensive response was larger after leg intervals than endurance (AUC: 7540 ± 3853 vs. 3897 ± 2757 mm Hg·min, p = 0.049, 95% CI: 20 to 6764), whereas exercising different limbs elicited similar hypotension (arms: 6420 ± 3947 mm Hg·min, p = 0.48, CI: −1261 to 3896). In contrast, arterial pressure at 22 h was reduced after endurance but not after leg intervals (−8 ± 8 vs. 0 ± 7 mm Hg, p = 0.04, CI: 7 ± 7) or reliably after arm intervals (−4 ± 8 mm Hg, p = 0.18 vs. leg intervals). Regardless, plasma volume expansion at 22 h was similar between leg intervals and endurance (both +5 ± 5%; CI: −5 to 5%) and between leg and arm intervals (arms: +5 ± 7%, CI: −8 to 5%). Conclusions: These results emphasize the relative importance of central and/or systemic factors in post-exercise hypotension, and indicate that markedly diverse exercise profiles can induce substantive hypotension and subsequent hypervolemia. At least for endurance

  9. 14 CFR 35.39 - Endurance test.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Endurance test. 35.39 Section 35.39... STANDARDS: PROPELLERS Tests and Inspections § 35.39 Endurance test. Endurance tests on the propeller system... propellers must be subjected to one of the following tests: (1) A 50-hour flight test in level flight or...

  10. 14 CFR 33.87 - Endurance test.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Endurance test. 33.87 Section 33.87... STANDARDS: AIRCRAFT ENGINES Block Tests; Turbine Aircraft Engines § 33.87 Endurance test. (a) General. Each engine must be subjected to an endurance test that includes a total of at least 150 hours of...

  11. 14 CFR 33.49 - Endurance test.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Endurance test. 33.49 Section 33.49... STANDARDS: AIRCRAFT ENGINES Block Tests; Reciprocating Aircraft Engines § 33.49 Endurance test. (a) General. Each engine must be subjected to an endurance test that includes a total of 150 hours of...

  12. 14 CFR 35.39 - Endurance test.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Endurance test. 35.39 Section 35.39... STANDARDS: PROPELLERS Tests and Inspections § 35.39 Endurance test. Endurance tests on the propeller system... propellers must be subjected to one of the following tests: (1) A 50-hour flight test in level flight or...

  13. 14 CFR 33.49 - Endurance test.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Endurance test. 33.49 Section 33.49... STANDARDS: AIRCRAFT ENGINES Block Tests; Reciprocating Aircraft Engines § 33.49 Endurance test. (a) General. Each engine must be subjected to an endurance test that includes a total of 150 hours of...

  14. 14 CFR 35.39 - Endurance test.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Endurance test. 35.39 Section 35.39... STANDARDS: PROPELLERS Tests and Inspections § 35.39 Endurance test. Endurance tests on the propeller system... propellers must be subjected to one of the following tests: (1) A 50-hour flight test in level flight or...

  15. 14 CFR 33.49 - Endurance test.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Endurance test. 33.49 Section 33.49... STANDARDS: AIRCRAFT ENGINES Block Tests; Reciprocating Aircraft Engines § 33.49 Endurance test. (a) General. Each engine must be subjected to an endurance test that includes a total of 150 hours of...

  16. 14 CFR 33.87 - Endurance test.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Endurance test. 33.87 Section 33.87... STANDARDS: AIRCRAFT ENGINES Block Tests; Turbine Aircraft Engines § 33.87 Endurance test. (a) General. Each engine must be subjected to an endurance test that includes a total of at least 150 hours of...

  17. 14 CFR 33.87 - Endurance test.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Endurance test. 33.87 Section 33.87... STANDARDS: AIRCRAFT ENGINES Block Tests; Turbine Aircraft Engines § 33.87 Endurance test. (a) General. Each engine must be subjected to an endurance test that includes a total of at least 150 hours of...

  18. Serum cardiac troponin I analysis to determine the excessiveness of exercise intensity: A novel equation.

    PubMed

    Voets, Philip J G M; Maas, Roderick P P W M

    2016-03-01

    Physical exertion is often promoted because of its beneficial health effects. This only holds true, however, as long as the optimal exercise intensity is not exceeded. If physical exertion becomes too strenuous or prolonged, cardiac injury or dysfunction may occur. Consequently, a significant elevation of the serum concentration of the sensitive and specific cardiac biomarker troponin I can be observed. In this article, we present the derivation of a novel equation that can be used to evaluate to what extent the intensity of conducted endurance exercise was excessive, based on a post-exercise assessment of serum cardiac troponin I. This is convenient, as exercise intensity is difficult for an athlete to quantify accurately and the currently used heart rate indices can be affected by various physiological and environmental factors. Serum cardiac troponin I, on the other hand, is a post-hoc parameter that directly reflects the actual effects on the myocardium and may therefore be a promising alternative. To our knowledge, this is the first method to determine relative exercise intensity in retrospect. We therefore believe that this equation can serve as a potentially valuable tool to objectively evaluate the benefits or harmful effects of physical exertion. PMID:26724711

  19. Cardiac troponin T and echocardiographic dimensions after repeated sprint vs. moderate intensity continuous exercise in healthy young males.

    PubMed

    Weippert, Matthias; Divchev, Dimitar; Schmidt, Paul; Gettel, Hannes; Neugebauer, Antina; Behrens, Kristin; Wolfarth, Bernd; Braumann, Klaus-Michael; Nienaber, Christoph A

    2016-01-01

    Regular physical exercise can positively influence cardiac function; however, investigations have shown an increase of myocardial damage biomarkers after acute prolonged endurance exercises. We investigated the effect of repeated sprint vs. moderate long duration exercise on markers of myocardial necrosis, as well as cardiac dimensions and functions. Thirteen healthy males performed two different running sessions (randomized, single blinded cross-over design): 60 minutes moderate intensity continuous training (MCT, at 70% of peak heart rate (HRpeak)) and two series of 12 × 30-second sprints with set recovery periods in-between (RST, at 90% HRpeak). Venous blood samples for cardiac troponin T (cTnT), creatine kinase (CK) and MB isoenzyme (CK-MB) were taken 1 and 4 hours after exercise sessions. After each session electrocardiographic (ECG) and transthoracic echocardiographic (TTE) data were recorded. Results showed that all variables - average heart rate, serum lactate concentration during RST, subjective exertion and cTnT after RST - were significantly higher compared to MCT. CK and CK-MB significantly increased regardless of exercise protocol, while ECG and TTE indicated normal cardiac function. Our results provide evidence that RST contributes significantly to cTnT and CK release. This biomarker increase seems to reflect a physiological rather than a pathological phenomenon in healthy, exercising subjects. PMID:27090032

  20. Cardiac troponin T and echocardiographic dimensions after repeated sprint vs. moderate intensity continuous exercise in healthy young males

    PubMed Central

    Weippert, Matthias; Divchev, Dimitar; Schmidt, Paul; Gettel, Hannes; Neugebauer, Antina; Behrens, Kristin; Wolfarth, Bernd; Braumann, Klaus-Michael; Nienaber, Christoph A.

    2016-01-01

    Regular physical exercise can positively influence cardiac function; however, investigations have shown an increase of myocardial damage biomarkers after acute prolonged endurance exercises. We investigated the effect of repeated sprint vs. moderate long duration exercise on markers of myocardial necrosis, as well as cardiac dimensions and functions. Thirteen healthy males performed two different running sessions (randomized, single blinded cross-over design): 60 minutes moderate intensity continuous training (MCT, at 70% of peak heart rate (HRpeak)) and two series of 12 × 30-second sprints with set recovery periods in-between (RST, at 90% HRpeak). Venous blood samples for cardiac troponin T (cTnT), creatine kinase (CK) and MB isoenzyme (CK-MB) were taken 1 and 4 hours after exercise sessions. After each session electrocardiographic (ECG) and transthoracic echocardiographic (TTE) data were recorded. Results showed that all variables - average heart rate, serum lactate concentration during RST, subjective exertion and cTnT after RST - were significantly higher compared to MCT. CK and CK-MB significantly increased regardless of exercise protocol, while ECG and TTE indicated normal cardiac function. Our results provide evidence that RST contributes significantly to cTnT and CK release. This biomarker increase seems to reflect a physiological rather than a pathological phenomenon in healthy, exercising subjects. PMID:27090032

  1. Children and Exercise: Appropriate Practices for Grades K-6

    ERIC Educational Resources Information Center

    Fisher, Michele

    2009-01-01

    Growth and development have a profound effect on physical fitness, response to exercise, and exercise programming in children. This article reviews the essential pediatric exercise physiology concepts relevant to physical education programs for K-6 children. Indices of physical fitness such as cardiorespiratory endurance, muscular strength, and…

  2. Effects of Different Resistance Training Protocols on Upper-Body Strength and Endurance Development in Children.

    ERIC Educational Resources Information Center

    Faigenbaum, Avery D.; Loud, Rita LaRosa; O'Connell, Jill; Glover, Scott; O'Connell, Jason; Westcott, Wayne L.

    2001-01-01

    Examined the effects of four resistance training protocols on upper body strength and muscular endurance development in children. Untrained children trained twice per week for 8 weeks, using general conditioning exercises and different upper-body conditioning protocols. Results indicated that higher-repetition training protocols enhanced…

  3. Non-Traditional Muscular Strength and Endurance Activities for Elementary and Middle School Children

    ERIC Educational Resources Information Center

    Maina, Michael P.; Feather, Ryan; Edmunds, Cynthia; Maina, Julie Schlegel; Ryan, Stu; Griffin, Michael

    2014-01-01

    Over the past decade many muscular strength and endurance routines have been introduced to children and adults toward improving overall health and fitness. When performed correctly, there are countless benefits to performing weight bearing resistance-type exercises to develop the upper, lower, and core areas of the body. The National Association…

  4. Cardiovascular responses to static exercise in distance runners and weight lifters

    NASA Technical Reports Server (NTRS)

    Longhurst, J. C.; Kelly, A. R.; Gonyea, W. J.; Mitchell, J. H.

    1980-01-01

    Three groups of athletes including long-distance runners, competitive and amateur weight lifters, and age- and sex-matched control subjects have been studied by hemodynamic and echocardiographic methods in order to determine the effect of the training programs on the cardiovascular response to static exercise. Blood pressure, heart rate, and double product data at rest and at fatigue suggest that competitive endurance (dynamic exercise) training alters the cardiovascular response to static exercise. In contrast to endurance exercise, weight lifting (static exercise) training does not alter the cardiovascular response to static exercise: weight lifters responded to static exercise in a manner very similar to that of the control subjects.

  5. Assessing fitness in endurance horses

    PubMed Central

    Fraipont, Audrey; Van Erck, Emmanuelle; Ramery, Eve; Fortier, Guillaume; Lekeux, Pierre; Art, Tatiana

    2012-01-01

    A field test and a standardized treadmill test were used to assess fitness in endurance horses. These tests discriminated horses of different race levels: horses participating in races of 120 km and more showed higher values of VLA4 (velocity at which blood lactate reached 4 mmol/L) and V200 (velocity at which heart rates reached 200 beats per min) than horses of lower race levels. PMID:22942450

  6. 'Endurance' Goal Across the Plains

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This mosaic image from the Mars Exploration Rover Opportunity's panoramic camera provides an overview of the rover's drive direction toward 'Endurance Crater,' which is in the upper right corner of image.

    The plains appear to be uniform in character from the rovers current position all the way to Endurance Crater. Granules of various sizes blanket the plains. Spherical granules fancifully called blueberries are present some intact and some broken. Larger granules pave the surface, while smaller grains, including broken blueberries, form small dunes. Randomly distributed 1-centimeter (0.4 inch) sized pebbles (as seen just left of center in the foreground of the image) make up a third type of feature on the plains. The pebbles' composition remains to be determined. Scientists plan to examine these in the coming sols.

    Examination of this part of Mars by NASA's Mars Global Surveyor orbiter revealed the presence of hematite, which led NASA to choose Meridiani Planum as Opportunity's landing site. The rover science conducted on the plains of Meridiani Planum serves to integrate what the rovers are seeing on the ground with what orbital data have shown.

    Opportunity will make stop at a small crater called 'Fram' (seen in the upper left, with relatively large rocks nearby) before heading to the rim of Endurance Crater.

  7. Systematic review: Carbohydrate supplementation on exercise performance or capacity of varying durations.

    PubMed

    Stellingwerff, Trent; Cox, Gregory R

    2014-09-01

    This systematic review examines the efficacy of carbohydrate (CHO) supplementation on exercise performance of varying durations. Included studies utilized an all-out or endurance-based exercise protocol (no team-based performance studies) and featured randomized interventions and placebo (water-only) trial for comparison against exclusively CHO trials (no other ingredients). Of the 61 included published performance studies (n = 679 subjects), 82% showed statistically significant performance benefits (n = 50 studies), with 18% showing no change compared with placebo. There was a significant (p = 0.0036) correlative relationship between increasing total exercise time and the subsequent percent increase in performance with CHO intake versus placebo. While not mutually exclusive, the primary mechanism(s) for performance enhancement likely differs depending on the duration of the exercise. In short duration exercise situations (∼1 h), oral receptor exposure to CHO, via either mouthwash or oral consumption (with enough oral contact time), which then stimulates the pleasure and reward centers of the brain, provide a central nervous system-based mechanism for enhanced performance. Thus, the type and (or) amount of CHO and its ability to be absorbed and oxidized appear completely irrelevant to enhancing performance in short duration exercise situations. For longer duration exercise (>2 h), where muscle glycogen stores are stressed, the primary mechanism by which carbohydrate supplementation enhances performance is via high rates of CHO delivery (>90 g/h), resulting in high rates of CHO oxidation. Use of multiple transportable carbohydrates (glucose:fructose) are beneficial in prolonged exercise, although individual recommendations for athletes should be tailored according to each athlete's individual tolerance. PMID:24951297

  8. Thinking and Action: A Cognitive Perspective on Self-Regulation during Endurance Performance.

    PubMed

    Brick, Noel E; MacIntyre, Tadhg E; Campbell, Mark J

    2016-01-01

    Self-regulation reflects an individual's efforts to bring behavior and thinking into line with often consciously desired goals. During endurance activity, self-regulation requires an athlete to balance their speed or power output appropriately to achieve an optimal level of performance. Considering that both behavior and thinking are core elements of self-regulation, this article provides a cognitive perspective on the processes required for effective pace-regulation during endurance performance. We also integrate this viewpoint with physiological and performance outcomes during activity. As such, evidence is presented to suggest that what an athlete thinks about has an important influence on effort perceptions, physiological outcomes, and, consequently, endurance performance. This article also provides an account of how an athlete might control their cognition and focus attention during an endurance event. We propose that effective cognitive control during performance requires both proactive, goal-driven processes and reactive, stimulus-driven processes. In addition, the role of metacognition-or thinking about thinking-in pace-regulation will also be considered. Metacognition is an essential component of self-regulation and its primary functions are to monitor and control the thoughts and actions required for task completion. To illustrate these processes in action, a metacognitive framework of attentional focus and cognitive control is applied to an endurance performance setting: specifically, Bradley Wiggins' successful 2015 Hour record attempt in cycling. Finally, future perspectives will consider the potentially deleterious effects of the sustained cognitive effort required during prolonged and strenuous endurance tasks. PMID:27199774

  9. Thinking and Action: A Cognitive Perspective on Self-Regulation during Endurance Performance

    PubMed Central

    Brick, Noel E.; MacIntyre, Tadhg E.; Campbell, Mark J.

    2016-01-01

    Self-regulation reflects an individual's efforts to bring behavior and thinking into line with often consciously desired goals. During endurance activity, self-regulation requires an athlete to balance their speed or power output appropriately to achieve an optimal level of performance. Considering that both behavior and thinking are core elements of self-regulation, this article provides a cognitive perspective on the processes required for effective pace-regulation during endurance performance. We also integrate this viewpoint with physiological and performance outcomes during activity. As such, evidence is presented to suggest that what an athlete thinks about has an important influence on effort perceptions, physiological outcomes, and, consequently, endurance performance. This article also provides an account of how an athlete might control their cognition and focus attention during an endurance event. We propose that effective cognitive control during performance requires both proactive, goal-driven processes and reactive, stimulus-driven processes. In addition, the role of metacognition—or thinking about thinking—in pace-regulation will also be considered. Metacognition is an essential component of self-regulation and its primary functions are to monitor and control the thoughts and actions required for task completion. To illustrate these processes in action, a metacognitive framework of attentional focus and cognitive control is applied to an endurance performance setting: specifically, Bradley Wiggins' successful 2015 Hour record attempt in cycling. Finally, future perspectives will consider the potentially deleterious effects of the sustained cognitive effort required during prolonged and strenuous endurance tasks. PMID:27199774

  10. Changes in the human blood coagulating system during prolonged hypokinesia

    NASA Technical Reports Server (NTRS)

    Filatova, L. M.; Anashkin, O. D.

    1978-01-01

    Changes in the coagulating system of the blood were studied in six subjects during prolonged hypokinesia. Thrombogenic properties of the blood rose in all cases on the 8th day. These changes are explained by stress reaction due to unusual conditions for a healthy person. Changes in the blood coagulating system in the group subjected to physical exercise and without it ran a practically parallel course. Apparently physical exercise is insufficient to prevent such changes that appear in the coagulating system of the blood during prolonged hypokinesia.

  11. Endurance in high-fat-fed rats: effects of carbohydrate content and fatty acid profile.

    PubMed

    Helge, J W; Ayre, K; Chaunchaiyakul, S; Hulbert, A J; Kiens, B; Storlien, L H

    1998-10-01

    The purpose of this experiment was to study endurance performance and substrate storage and utilization in fat- or carbohydrate-fed rats. Ninety-nine rats were randomly divided into three groups and over 4 wk were fed either a carbohydrate-rich [CHO; 10% total energy content in the diet (E%) fat, 20 E% protein, 70 E% carbohydrate] diet or one of two fat-rich diets (65 E% fat, 20 E% protein, 15 E% carbohydrate) containing either saturated (Sat) or monounsaturated fatty acids (Mono). Each dietary group was randomly assigned to a trained (6 days/wk, progressive to 60 min, 28 m/min at a 10% incline) or a sedentary group. Rats were killed either before or after a treadmill endurance run to exhaustion. Training increased endurance (206%), but diet composition did not affect endurance in either trained or sedentary rats. beta-Hydroxyacyl-CoA dehydrogenase activity was increased in fat-fed but not carbohydrate-fed rats (P < 0.05). Respiratory exchange ratio during the initial phase of exercise was lower after the Mono compared with the Sat diet (P < 0. 05) and higher after the CHO than the Sat diet (P < 0.05). Thus adaptation to a high-fat diet containing a moderate amount of carbohydrates did not induce enhanced endurance in either trained or untrained rats; however, substrate utilization was modulated by both amount and type of dietary fat during the initial stage of exercise in trained and sedentary rats. PMID:9760326

  12. Seeing 'Endurance' Through Infrared Eyes

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Surface composition in 'Endurance Crater' is mapped with color-coded interpretation of data from the miniature thermal emission spectrometer on NASA's Mars Exploration Rover Opportunity. The information has been overlaid onto a view of the crater from Opportunity's panoramic camera. Green, such as on some slopes, indicates material rich in the mineral hematite. Blue and purple, such as on some cliffs of exposed rock, indicate the presence of basalt. Basaltic material is volcanic in origin, but the basalt may have been broken down into sand by weathering, then re-deposited by wind or water. Red indicates areas covered by martian dust.

  13. Cardiovascular response to exercise training in the systemic right ventricle of adults with transposition of the great arteries

    PubMed Central

    Shafer, K M; Janssen, L; Carrick-Ranson, G; Rahmani, S; Palmer, D; Fujimoto, N; Livingston, S; Matulevicius, S A; Forbess, L W; Brickner, B; Levine, B D

    2015-01-01

    We aimed to assess the haemodynamic effects of exercise training in transposition of the great arteries (TGA) patients with systemic right ventricles (SRVs). TGA patients have limited exercise tolerance and early mortality due to systemic (right) ventricular failure. Whether exercise training enhances or injures the SRV is unclear. Fourteen asymptomatic patients (34 ± 10 years) with TGA and SRV were enrolled in a 12 week exercise training programme (moderate and high-intensity workouts). Controls were matched on age, gender, BMI and physical activity. Exercise testing pre- and post- training included: (a) submaximal and peak; (b) prolonged (60 min) submaximal endurance and (c) high-intensity intervals. Oxygen uptake (; Douglas bag technique), cardiac output (, foreign-gas rebreathing), ventricular function (echocardiography and cardiac MRI) and serum biomarkers were assessed. TGA patients had lower peak , , and stroke volume (SV), a blunted / slope, and diminished SV response to exercise (SV increase from rest: TGA = 15.2%, controls = 68.9%, P < 0.001) compared with controls. After training, TGA patients increased peak by 6 ± 8.5%, similar to controls (interaction P = 0.24). The magnitude of SV reserve on initial testing correlated with training response (r = 0.58, P = 0.047), though overall, no change in peak was observed. High-sensitivity troponin T (hs-TnT) and N-terminal prohormone of brain naturetic peptide (NT pro-BNP) were low and did not change with acute exercise or after training. Our data show that TGA patients with SRVs in this study safely participated in exercise training and improved peak . Neither prolonged submaximal exercise, nor high-intensity intervals, nor short-term exercise training seem to injure the systemic right ventricle. Key Points Patients with transposition of the great arteries (TGA) and systemic right ventricles have premature congestive heart failure; there is also a growing concern that athletes who perform

  14. Implementation of field cardio-respiratory measurements to assess energy expenditure in Arabian endurance horses.

    PubMed

    Goachet, A G; Julliand, V

    2015-05-01

    Measurements of respiratory exchanges in genuine exercise conditions are undoubtedly of interest to further define the energy needs of endurance horses. However, the equine K4b2, the gas exchanges portable device validated for equines, has not been used in Arabian endurance horses yet. Therefore, the objective of this study was to implement field cardio-respiratory measurements in such horses using the equine K4b2 in order to assess energy expenditure (EE). Measurements of heart rate (HR), oxygen uptake (VO2), carbon dioxide production (VCO2), respiratory frequency (RF), tidal volume (VT) and minute expired volume (VE) were carried out at rest and during a 20-min submaximal incremental field exercise in five trained Arabian endurance horses equipped with the K4b2 system. The relationship between HR and VO2 was determined for each horse. EE of the exercise session was calculated from direct VO2 measurements and individual HR-VO2 regression. Out of the five horses, four tolerated the equipment. Respiratory and metabolic variables at rest and during exercise, as well as EE measured at the different gaits, were consistent with reported values in exercising horses: VO2 ranged from 4.8 to 54.1 ml/min per kg from rest to canter, respectively, and EE from 82 to 1095 J/min per kg BW. The 20-min exercise session EE accounted for 6258 and 6332 J from direct VO2 measurements and individual HR-VO2 regression, respectively, which did not differ significantly. Providing an adaptation period and several technical adjustments, the present equine K4b2 could be used to assess EE in Arabian endurance horses in a controlled environment. The prediction of EE from the individual VO2-HR relationship might be an alternative method to evaluate EE when VO2 measurements are not possible. PMID:25496768

  15. AmIRTEM: a functional model for training of aerobic endurance for health improvement.

    PubMed

    Gaeta, Eugenio; Cea, Gloria; Arredondo, Maria T; Leuteritz, Jan P

    2012-11-01

    In a nonstrenuous exercise, the heart rate (HR) shows a linear relationship with the maximum volume of oxygen consumption VO(2Max) and serves as an indicator of performance of the cardiovascular system. The HR replaces the %VO(2Max) in exercise program prescription to improve aerobic endurance. In order to achieve an optimal effect in an endurance training, the athlete needs to work out at an HR high enough to trigger the aerobic metabolism, while avoiding the very high HRs that bring along significant risks of myocardial infarction. The minimal and optimal base training programs, followed by stretching exercises to prevent injuries, are adequate programs to maximize benefits and minimize health risks for the cardiovascular system during single session training. In this paper, we have defined a functional model for an ambient intelligence system that monitors, evaluates, and trains the aerobic endurance. It is based on the Android operating system and the Gow Running smart shirt. The system has been evaluated during functional assessment stress testing of aerobic endurance in the Stress Physiology Laboratory (SPL) of the Technical University of Madrid. Furthermore, a voice system designed to guide the user through minimal and optimal base training programs has been evaluated. The results obtained fully confirm the model with a high correlation between the data collected by the system and the by SPL. There is also a high hit rate between training sessions of the users and the objective training functions defined in the training programs. PMID:22801486

  16. Carbohydrate supplementation and exercise performance at high altitude: a randomized controlled trial.

    PubMed

    Oliver, Samuel J; Golja, Petra; Macdonald, Jamie H

    2012-03-01

    Acute carbohydrate supplementation decreases effort perception and increases endurance exercise capacity at sea level. It also improves laboratory-based endurance performance at altitude. However, the effect of chronic carbohydrate supplementation at altitude, when acclimatization may attenuate carbohydrate effects, achieved doses are lower and metabolic effects may be different, is unknown and was therefore focused on in the present study. Forty-one members of a 22-day high altitude expedition were randomized in a double-blind design to receive either placebo or carbohydrate supplementation. Diet was manipulated with commercially available energy drinks consumed ad libitum throughout the expedition. Participants performed a mountaineering time trial at 5192 m, completed submaximal incremental exercise step tests to assess cardiovascular parameters before, during, and after the expedition, and recorded spontaneous physical activity by accelerometer on rest days. Compared to placebo, compliant individuals of the carbohydrate-supplemented group received daily an additional 3.5±1.4 g carbohydrate·kg body mass(-1). Compliant individuals of the carbohydrate supplemented group reported 18% lower ratings of perceived exertion during the time trial at altitude, and completed it 17% faster than the placebo group (both p<0.05 by t-test). However, cardiovascular parameters obtained during submaximal exercise and spontaneous physical activity on rest days were similar between the two groups (all p>0.05 by analysis of variance). This study utilized testing protocols of specific relevance to high altitude sojourners, including the highest mountaineering time trial completed to date at altitude. Chronic carbohydrate supplementation reduced ratings of perceived exertion and improved physical performance, especially during prolonged and higher intensity exercise tasks. PMID:22429229

  17. [Performance enhancement by carbohydrate intake during sport: effects of carbohydrates during and after high-intensity exercise].

    PubMed

    Beelen, Milou; Cermak, Naomi M; van Loon, Luc J C

    2015-01-01

    Endogenous carbohydrate availability does not provide sufficient energy for prolonged moderate to high-intensity exercise. Carbohydrate ingestion during high-intensity exercise can therefore enhance performance.- For exercise lasting 1 to 2.5 hours, athletes are advised to ingest 30-60 g of carbohydrates per hour.- Well-trained endurance athletes competing for longer than 2.5 hours at high intensity can metabolise up to 90 g of carbohydrates per hour, provided that a mixture of glucose and fructose is ingested.- Athletes participating in intermittent or team sports are advised to follow the same strategies but the timing of carbohydrate intake depends on the type of sport.- If top performance is required again within 24 hours after strenuous exercise, the advice is to supplement endogenous carbohydrate supplies quickly within the first few hours post-exercise by ingesting large amounts of carbohydrate (1.2 g/kg/h) or a lower amount of carbohydrate (0.8 g/kg/h) with a small amount of protein (0.2-0.4 g/kg/h). PMID:25970669

  18. Current Scientific Evidence for a Polarized Cardiovascular Endurance Training Model.

    PubMed

    Hydren, Jay R; Cohen, Bruce S

    2015-12-01

    Recent publications have provided new scientific evidence for a modern aerobic or cardiovascular endurance exercise prescription that optimizes the periodization cycle and maximizes potential endurance performance gains in highly trained individuals. The traditional threshold, high volume, and high-intensity training models have displayed limited improvement in actual race pace in (highly) trained individuals while frequently resulting in overreaching or overtraining (physical injury and psychological burnout). A review of evidence for replacing these models with the proven polarized training model seems warranted. This review provides a short history of the training models, summarizes 5 key studies, and provides example training programs for both the pre- and in-season periods. A polarized training program is characterized by an undulating nonlinear periodization model with nearly all the training time spent at a "light" (≤13) and "very hard" (≥17) pace with very limited time at "hard" (14-16) or race pace (6-20 Rating of Perceived Exertion [RPE] scale). To accomplish this, the polarization training model has specific high-intensity workouts separated by one or more long slow distance workouts, with the exercise intensity remaining below ventilatory threshold (VT) 1 and/or blood lactate of less than 2 mM (A.K.A. below race pace). Effect sizes for increasing aerobic endurance performance for the polarized training model are consistently superior to that of the threshold training model. Performing a polarized training program may be best accomplished by: going easy on long slow distance workouts, avoiding "race pace" and getting after it during interval workouts. PMID:26595137

  19. 'Endurance' Looms on the Horizon

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This image mosaic from the Mars Exploration Rover Opportunity's panoramic camera was taken from a rover position approximately 70 meters (about 230 feet) from the rim of 'Endurance Crater' on the rover's 93rd sol on Mars. The foreground highlights the now familiar ripples and dimples, common on the plains of Meridiani Planum. Some rock outcrop is seen emerging on the hill to the left, indicating that the rover is driving through the eroded remnants of the crater's ejecta blanket and is getting close to its rim. This light-colored outcrop is probably similar to the rocks seen at 'Fram Crater' and 'Anatolia,' and studied in detail at 'Eagle Crater.' The Eagle Crater rocks are believed to have been deposited in an open body of water. The science team is intrigued by the darker rock on the far side of the crater wall. Just right of the center, on the far crater wall, rocks appear to form thick, massive layers, suggesting they may have been formed by a different geologic processes than the lighter rocks in the foreground. The greater thickness of layered rocks at Endurance Crater will provide the team with a longer record of geologic processes operating at Meridiani Planum.

  20. Endurance bounds of aerial systems

    NASA Astrophysics Data System (ADS)

    Harrington, Aaron M.; Kroninger, Christopher M.

    2014-06-01

    Within the past few years micro aerial vehicles (MAVs) have received much more attention and are starting to proliferate into military as well as civilian roles. However, one of the major drawbacks for this technology currently, has been their poor endurance, usually below 10 minutes. This is a direct result of the inefficiencies inherent in their design. Often times, designers do not consider the various components in the vehicle design and match their performance to the desired mission for the vehicle. These vehicles lack a prescribed set of design guidelines or empirically derived design equations which often limits their design to selection of commercial off-the-shelf components without proper consideration of their affect on vehicle performance. In the current study, the design space for different vehicle configurations has been examined including insect flapping, avian flapping, rotary wing, and fixed wing, and their performance bounds are established. The propulsion system typical of a rotary wing vehicle is analyzed to establish current baselines for efficiency of vehicles at this scale. The power draw from communications is analyzed to determine its impact on vehicle performance. Finally, a representative fixed wing MAV is examined and the effects of adaptive structures as a means for increasing vehicle endurance and range are examined. This paper seeks to establish the performance bounds for micro air vehicles and establish a path forward for future designs so that efficiency may be maximized.

  1. Special feature for the Olympics: effects of exercise on the immune system: overtraining effects on immunity and performance in athletes.

    PubMed

    MacKinnon, L T

    2000-10-01

    Overtraining is a process of excessive exercise training in high-performance athletes that may lead to overtraining syndrome. Overtraining syndrome is a neuroendocrine disorder characterized by poor performance in competition, inability to maintain training loads, persistent fatigue, reduced catecholamine excretion, frequent illness, disturbed sleep and alterations in mood state. Although high-performance athletes are generally not clinically immune deficient, there is evidence that several immune parameters are suppressed during prolonged periods of intense exercise training. These include decreases in neutrophil function, serum and salivary immunoglobulin concentrations and natural killer cell number and possibly cytotoxic activity in peripheral blood. Moreover, the incidence of symptoms of upper respiratory tract infection increases during periods of endurance training. However, all of these changes appear to result from prolonged periods of intense exercise training, rather than from the effects of overtraining syndrome itself. At present, there is no single objective marker to identify overtraining syndrome. It is best identified by a combination of markers, such as decreases in urinary norepinephrine output, maximal heart rate and blood lactate levels, impaired sport performance and work output at 110% of individual anaerobic threshold, and daily self-analysis by the athlete (e.g. high fatigue and stress ratings). The mechanisms underlying overtraining syndrome have not been clearly identified, but are likely to involve autonomic dysfunction and possibly increased cytokine production resulting from the physical stress of intense daily training with inadequate recovery. PMID:11050533

  2. Exercise preconditioning of the myocardium.

    PubMed

    Kavazis, Andreas N

    2009-01-01

    Diseases of the heart (e.g. myocardial ischaemia reperfusion injury) remain the major cause of death in the industrialized world. Therefore, developing a pragmatic countermeasure to reduce myocardial ischaemia reperfusion injury is vital. In this regard, a plethora of evidence indicates that regular exercise can protect the heart during an ischaemia reperfusion insult (i.e. cardioprotection). This review summarizes studies indicating that both short-term (i.e. 1-5 days) and long-term (i.e. weeks to months) endurance exercise provides cardioprotection. Data are presented showing that exercise duration and exercise intensity are both important factors in achieving a cardioprotective phenotype. Importantly, it appears that the exercise duration of a single exercise session should last for 60 minutes and should be performed at about 75% maximum oxygen consumption in order to achieve exercise-induced cardioprotection. Furthermore, data are presented showing that exercise-induced cardioprotection against m