Science.gov

Sample records for prolonged knee-extensor exercise

  1. Effects of 4 weeks preoperative exercise on knee extensor strength after anterior cruciate ligament reconstruction

    PubMed Central

    Kim, Do Kyung; Hwang, Ji Hye; Park, Won Hah

    2015-01-01

    [Purpose] After an anterior cruciate ligament injury and subsequent reconstruction, quadriceps muscle weakness and disruption of proprioceptive function are common. The purpose of this study was to examine the effects of a 4 weeks preoperative exercise intervention on knee strength power and function post-surgery. [Subjects and Methods] Eighty male patients (27.8±5.7 age), scheduled for reconstruction surgery, were randomly assigned to two groups, the preoperative exercise group (n=40) and a no preoperative exercise group (n=40). The preoperative exercise group participated in a 4-week preoperative and 12-week post-operative programs, while the no preoperative exercise group participated only in the 12-week postoperative exercise program. Isokinetic measured of quadriceps strength were obtained at 4 weeks before and 3 months after surgery. [Results] The knee extensor strength deficits measured at 60°/s and 180°/s was significantly lower in the preoperative exercise group compared with the no preoperative exercise group. At 3 months after surgery, the extensor strength deficit was 28.5±9.0% at 60°/sec and 23.3±9.0% at 180°/sec in the preoperative exercise group, whereas the no preoperative exercise group showed extensor strength deficits of 36.5±10.7% and 27.9±12.6% at 60°/sec and 180°/sec, respectively. The preoperative exercise group demonstrated significant improvement the single-leg hop distance. [Conclusion] Four week preoperative exercise may produce many positive effects post reconstruction surgery, including faster recovery of knee extensor strength and function, as measured by single-leg hop ability. PMID:26504270

  2. Protective effect by maximal isometric contractions against maximal eccentric exercise-induced muscle damage of the knee extensors.

    PubMed

    Tseng, Kuo-Wei; Tseng, Wei-Chin; Lin, Ming-Ju; Chen, Hsin-Lian; Nosaka, Kazunori; Chen, Trevor C

    2016-01-01

    This study investigated whether maximal voluntary isometric contractions (MVIC) performed before maximal eccentric contractions (MaxEC) would attenuate muscle damage of the knee extensors. Untrained men were placed to an experimental group that performed 6 sets of 10 MVIC at 90° knee flexion 2 weeks before 6 sets of 10 MaxEC or a control group that performed MaxEC only (n = 13/group). Changes in muscle damage markers were assessed before to 5 days after each exercise. Small but significant changes in maximal voluntary concentric contraction torque, range of motion (ROM) and plasma creatine kinase (CK) activity were evident at immediately to 2 days post-MVIC (p < 0.05), but other variables (e.g. thigh girth, myoglobin concentration, B-mode echo intensity) did not change significantly. Changes in all variables after MaxEC were smaller (p < 0.05) by 45% (soreness)-67% (CK) for the experimental than the control group. These results suggest that MVIC conferred potent protective effect against MaxEC-induced muscle damage. PMID:27366814

  3. The effect of exercise-induced muscle damage on isometric and dynamic knee extensor strength and vertical jump performance.

    PubMed

    Byrne, Christopher; Eston, Roger

    2002-05-01

    In this study, we assessed the effect of exercise-induced muscle damage on knee extensor muscle strength during isometric, concentric and eccentric actions at 1.57 rad x s(-1) and vertical jump performance under conditions of squat jump, countermovement jump and drop jump. The eight participants (5 males, 3 females) were aged 29.5+/-7.1 years (mean +/- s). These variables, together with plasma creatine kinase (CK), were measured before, 1 h after and 1, 2, 3, 4 and 7 days after a bout of muscle damaging exercise: 100 barbell squats (10 sets x 10 repetitions at 70% body mass load). Strength was reduced for 4 days (P< 0.05) but no significant differences (P> 0.05) were apparent in the magnitude or rate of recovery of strength between isometric, concentric and eccentric muscle actions. The overall decline in vertical jump performance was dependent on jump method: squat jump performance was affected to a greater extent than countermovement (91.6+/-1.1% vs 95.2+/-1.3% of pre-exercise values, P< 0.05) and drop jump (95.2+/-1.4%, P< 0.05) performance. Creatine kinase was elevated (P < 0.05) above baseline 1 h after exercise, peaked on day 1 and remained significantly elevated on days 2 and 3. Strength loss after exercise-induced muscle damage was independent of the muscle action being performed. However, the impairment of muscle function was attenuated when the stretch-shortening cycle was used in vertical jumping performance. PMID:12043831

  4. Dietary nitrate supplementation enhances muscle contractile efficiency during knee-extensor exercise in humans.

    PubMed

    Bailey, Stephen J; Fulford, Jonathan; Vanhatalo, Anni; Winyard, Paul G; Blackwell, Jamie R; DiMenna, Fred J; Wilkerson, Daryl P; Benjamin, Nigel; Jones, Andrew M

    2010-07-01

    The purpose of this study was to elucidate the mechanistic bases for the reported reduction in the O(2) cost of exercise following short-term dietary nitrate (NO(3)(-)) supplementation. In a randomized, double-blind, crossover study, seven men (aged 19-38 yr) consumed 500 ml/day of either nitrate-rich beet root juice (BR, 5.1 mmol of NO(3)(-)/day) or placebo (PL, with negligible nitrate content) for 6 consecutive days, and completed a series of low-intensity and high-intensity "step" exercise tests on the last 3 days for the determination of the muscle metabolic (using (31)P-MRS) and pulmonary oxygen uptake (Vo(2)) responses to exercise. On days 4-6, BR resulted in a significant increase in plasma [nitrite] (mean +/- SE, PL 231 +/- 76 vs. BR 547 +/- 55 nM; P < 0.05). During low-intensity exercise, BR attenuated the reduction in muscle phosphocreatine concentration ([PCr]; PL 8.1 +/- 1.2 vs. BR 5.2 +/- 0.8 mM; P < 0.05) and the increase in Vo(2) (PL 484 +/- 41 vs. BR 362 +/- 30 ml/min; P < 0.05). During high-intensity exercise, BR reduced the amplitudes of the [PCr] (PL 3.9 +/- 1.1 vs. BR 1.6 +/- 0.7 mM; P < 0.05) and Vo(2) (PL 209 +/- 30 vs. BR 100 +/- 26 ml/min; P < 0.05) slow components and improved time to exhaustion (PL 586 +/- 80 vs. BR 734 +/- 109 s; P < 0.01). The total ATP turnover rate was estimated to be less for both low-intensity (PL 296 +/- 58 vs. BR 192 +/- 38 microM/s; P < 0.05) and high-intensity (PL 607 +/- 65 vs. BR 436 +/- 43 microM/s; P < 0.05) exercise. Thus the reduced O(2) cost of exercise following dietary NO(3)(-) supplementation appears to be due to a reduced ATP cost of muscle force production. The reduced muscle metabolic perturbation with NO(3)(-) supplementation allowed high-intensity exercise to be tolerated for a greater period of time. PMID:20466802

  5. Sex differences in leg vasodilation during graded knee extensor exercise in young adults.

    PubMed

    Parker, Beth A; Smithmyer, Sandra L; Pelberg, Justin A; Mishkin, Aaron D; Herr, Michael D; Proctor, David N

    2007-11-01

    Limb vascular conductance responses to pharmacological and nonexercise vasodilator stimuli are generally augmented in women compared with men. In the present investigation, we tested the hypothesis that exercise-induced vasodilator responses are also greater in women than men. Sixteen women and 15 men (20-30 yr) with similar fitness and activity levels performed graded quadriceps exercise (supine, single-leg knee extensions, 40 contractions/min) to maximal exertion. Active limb hemodynamics (left common femoral artery diameter and volumetric blood flow), heart rate (ECG), and beat-to-beat mean arterial blood pressure (MAP; radial artery tonometry) were measured during each 3-min workload (4.8 and 8 W/stage for women and men, respectively). The hyperemic response to exercise (slope of femoral blood flow vs. workload) was greater (P < 0.01) in women as was femoral blood flow at workloads >15 W. The leg vasodilatory response to exercise (slope of calculated femoral vascular conductance vs. absolute workload) was also greater in women than in men (P < 0.01) because of the sex difference in hyperemia and the women's lower MAP ( approximately 10-15 mmHg) at all workloads (P < 0.05). The femoral artery dilated to a significantly greater extent in the women ( approximately 0.5 mm) than in the men ( approximately 0.1 mm) across all submaximal workloads. At maximal exertion, femoral vascular conductance was lower in the men (men, 18.0 +/- 0.6 ml.min(-1)xmmHg(-1); women, 22.6 +/- 1.4 mlxmin(-1)xmmHg(-1); P < 0.01). Collectively, these findings suggest that the vasodilatory response to dynamic leg exercise is greater in young women vs. men. PMID:17717115

  6. Acute Postexercise Time Course Responses of Hypertrophic vs. Power-Endurance Squat Exercise Protocols on Maximal and Rapid Torque of the Knee Extensors.

    PubMed

    Conchola, Eric C; Thiele, Ryan M; Palmer, Ty B; Smith, Doug B; Thompson, Brennan J

    2015-05-01

    The aim of this study was to examine the effects of a medium-intensity high-volume vs. explosive squat protocol on the postexercise time course responses of maximal and rapid strength of the knee extensors. Seventeen resistance-trained men (mean ± SD: age = 22.0 ± 2.6 years) performed maximal voluntary contractions (MVCs) of the knee extensors before and after performing a squat workout using either a low-intensity fast velocity (LIFV) (5 × 16 at 40% 1 repetition maximum) or a traditional high-intensity slow velocity (TISV) (5 × 8 at 80% 1RM) exercise protocol. For each MVC, peak torque (PT), peak rate of torque development (RTDpeak), absolute (RTDabs), and relative RTD (RTDnorm) at early (0-50 milliseconds) and late (100-200 milliseconds) phases of muscle contraction were examined at pre- (Pre) and post-exercise at 0, 7, 15, and 30 (Post0...30) minutes. There were no intensity × time interactions for any variables (p = 0.098-0.832). Peak torque was greater at Pre than Post0 and Post7 (p = 0.001-0.016) but was not greater than Post15 and Post30 (p = 0.010-0.189). RTDpeak and early absolute RTD (RTD50abs) were greater at Pre than all postexercise time phases (p = 0.001-0.050); however, later absolute RTD (RTD100-200abs) was only greater at Pre than Post0 and Post30 (p = 0.013-0.048). Early relative RTD (RTD50norm) was only higher at Pre compared with Post0 (p = 0.023), whereas no differences were observed for later relative RTD (RTD100-200norm) (p = 0.920-0.990). Low-intensity fast velocity and TISV squat protocols both yielded acute decreases in maximal and rapid strength capacities following free-weight squats, with rapid strength showing slower recovery characteristics than maximal strength. PMID:25774625

  7. Muscle metabolism and activation heterogeneity by combined 31P chemical shift and T2 imaging, and pulmonary O2 uptake during incremental knee-extensor exercise

    PubMed Central

    Cannon, Daniel T.; Howe, Franklyn A.; Whipp, Brian J.; Ward, Susan A.; McIntyre, Dominick J.; Ladroue, Christophe; Griffiths, John R.; Kemp, Graham J.

    2013-01-01

    The integration of skeletal muscle substrate depletion, metabolite accumulation, and fatigue during large muscle-mass exercise is not well understood. Measurement of intramuscular energy store degradation and metabolite accumulation is confounded by muscle heterogeneity. Therefore, to characterize regional metabolic distribution in the locomotor muscles, we combined 31P magnetic resonance spectroscopy, chemical shift imaging, and T2-weighted imaging with pulmonary oxygen uptake during bilateral knee-extension exercise to intolerance. Six men completed incremental tests for the following: 1) unlocalized 31P magnetic resonance spectroscopy; and 2) spatial determination of 31P metabolism and activation. The relationship of pulmonary oxygen uptake to whole quadriceps phosphocreatine concentration ([PCr]) was inversely linear, and three of four knee-extensor muscles showed activation as assessed by change in T2. The largest changes in [PCr], [inorganic phosphate] ([Pi]) and pH occurred in rectus femoris, but no voxel (72 cm3) showed complete PCr depletion at exercise cessation. The most metabolically active voxel reached 11 ± 9 mM [PCr] (resting, 29 ± 1 mM), 23 ± 11 mM [Pi] (resting, 7 ± 1 mM), and a pH of 6.64 ± 0.29 (resting, 7.08 ± 0.03). However, the distribution of 31P metabolites and pH varied widely between voxels, and the intervoxel coefficient of variation increased between rest (∼10%) and exercise intolerance (∼30–60%). Therefore, the limit of tolerance was attained with wide heterogeneity in substrate depletion and fatigue-related metabolite accumulation, with extreme metabolic perturbation isolated to only a small volume of active muscle (<5%). Regional intramuscular disturbances are thus likely an important requisite for exercise intolerance. How these signals integrate to limit muscle power production, while regional “recruitable muscle” energy stores are presumably still available, remains uncertain. PMID:23813534

  8. Intensity-dependent alterations in the excitability of cortical and spinal projections to the knee extensors during isometric and locomotor exercise

    PubMed Central

    Weavil, J. C.; Sidhu, S. K.; Mangum, T. S.; Richardson, R. S.

    2015-01-01

    We investigated the role of exercise intensity and associated central motor drive in determining corticomotoneuronal excitability. Ten participants performed a series of nonfatiguing (3 s) isometric single-leg knee extensions (ISO; 10–100% of maximal voluntary contractions, MVC) and cycling bouts (30–160% peak aerobic capacity, Wpeak). At various exercise intensities, electrical potentials were evoked in the vastus lateralis (VL) and rectus femoris (RF) via transcranial magnetic stimulation (motor-evoked potentials, MEP), and electrical stimulation of both the cervicomedullary junction (cervicomedullary evoked potentials, CMEP) and the femoral nerve (maximal M-waves, Mmax). Whereas Mmax remained unchanged in both muscles (P > 0.40), voluntary electromyographic activity (EMG) increased in an exercise intensity-dependent manner for ISO and cycling exercise in VL and RF (both P < 0.001). During ISO exercise, MEPs and CMEPs progressively increased in VL and RF until a plateau was reached at ∼75% MVC; further increases in contraction intensity did not cause additional changes (P > 0.35). During cycling exercise, VL-MEPs and CMEPs progressively increased by ∼65% until a plateau was reached at Wpeak. In contrast, RF MEPs and CMEPs progressively increased by ∼110% throughout the tested cycling intensities without the occurrence of a plateau. Furthermore, alterations in EMG below the plateau influenced corticomotoneuronal excitability similarly between exercise modalities. In both exercise modalities, the MEP-to-CMEP ratio did not change with exercise intensity (P > 0.22). In conclusion, increases in exercise intensity and EMG facilitates the corticomotoneuronal pathway similarly in isometric knee extension and locomotor exercise until a plateau occurs at a submaximal exercise intensity. This facilitation appears to be primarily mediated by increases in excitability of the motoneuron pool. PMID:25876651

  9. Differential serial sarcomere number adaptations in knee extensor muscles of rats is contraction type dependent.

    PubMed

    Butterfield, Timothy A; Leonard, Timothy R; Herzog, Walter

    2005-10-01

    Sarcomerogenesis, or the addition of sarcomeres in series within a fiber, has a profound impact on the performance of a muscle by increasing its contractile velocity and power. Sarcomerogenesis may provide a beneficial adaptation to prevent injury when a muscle consistently works at long lengths, accounting for the repeated-bout effect. The association between eccentric exercise, sarcomerogenesis and the repeated-bout effect has been proposed to depend on damage, where regeneration allows sarcomeres to work at shorter lengths for a given muscle-tendon unit length. To gain additional insight into this phenomenon, we measured fiber dynamics directly in the vastus lateralis (VL) muscle of rats during uphill and downhill walking, and we measured serial sarcomere number in the VL and vastus intermedius (VI) after chronic training on either a decline or incline grade. We found that the knee extensor muscles of uphill walking rats undergo repeated active concentric contractions, and therefore they suffer no contraction-induced injury. Conversely, the knee extensor muscles during downhill walking undergo repeated active eccentric contractions. Serial sarcomere numbers change differently for the uphill and downhill exercise groups, and for the VL and VI muscles. Short muscle lengths for uphill concentric-biased contractions result in a loss of serial sarcomeres, and long muscle lengths for downhill eccentric-biased contractions result in a gain of serial sarcomeres. PMID:15947030

  10. Bilateral Knee Extensor Fatigue Modulates Force and Responsiveness of the Corticospinal Pathway in the Non-fatigued, Dominant Elbow Flexors.

    PubMed

    Šambaher, Nemanja; Aboodarda, Saied Jalal; Behm, David George

    2016-01-01

    Exercise-induced fatigue affects muscle performance and modulates corticospinal excitability in non-exercised muscles. The purpose of this study was to investigate the effect of bilateral knee extensor fatigue on dominant elbow flexor (EF) maximal voluntary force production and corticospinal excitability. Transcranial magnetic, transmastoid electrical and brachial plexus electrical stimulation (BPES) were used to investigate corticospinal, spinal, and muscle excitability of the dominant EF before and after a bilateral knee extensor fatiguing protocol or time matched rest period (control). For both sessions three stimuli were delivered every 1.5 s during the three pre-test time points and during the 1st, 3rd, 6th, 9th and 12th post-test 5 s EF isometric maximal voluntary contractions (MVC). In both conditions, overall, EF MVC force (p < 0.001) decreased progressively from repetition #1 to #12 during the post-test MVC protocol. EF MVC force (p < 0.001, ES = 0.9, Δ10.3%) decrements were more pronounced in the knee extensor fatigue intervention condition. In addition, there were no significant differences between conditions for biceps brachii electromyographic (EMG) activity (p = 0.43), motor evoked potentials (MEPs) amplitude (p = 0.908) or MEP silent period (SP; p = 0.776). However, the fatigue condition exhibited a lower MEP/cervicomedullary MEP (CMEP) ratio (p = 0.042, ES = 2.5, Δ25%) and a trend toward higher CMEP values (p = 0.08, ES = 0.5, Δ20.4%). These findings suggest that bilateral knee extensor fatigue can impair performance and modulate corticospinal excitability of the EF. PMID:26869902

  11. Bilateral Knee Extensor Fatigue Modulates Force and Responsiveness of the Corticospinal Pathway in the Non-fatigued, Dominant Elbow Flexors

    PubMed Central

    Šambaher, Nemanja; Aboodarda, Saied Jalal; Behm, David George

    2016-01-01

    Exercise-induced fatigue affects muscle performance and modulates corticospinal excitability in non-exercised muscles. The purpose of this study was to investigate the effect of bilateral knee extensor fatigue on dominant elbow flexor (EF) maximal voluntary force production and corticospinal excitability. Transcranial magnetic, transmastoid electrical and brachial plexus electrical stimulation (BPES) were used to investigate corticospinal, spinal, and muscle excitability of the dominant EF before and after a bilateral knee extensor fatiguing protocol or time matched rest period (control). For both sessions three stimuli were delivered every 1.5 s during the three pre-test time points and during the 1st, 3rd, 6th, 9th and 12th post-test 5 s EF isometric maximal voluntary contractions (MVC). In both conditions, overall, EF MVC force (p < 0.001) decreased progressively from repetition #1 to #12 during the post-test MVC protocol. EF MVC force (p < 0.001, ES = 0.9, Δ10.3%) decrements were more pronounced in the knee extensor fatigue intervention condition. In addition, there were no significant differences between conditions for biceps brachii electromyographic (EMG) activity (p = 0.43), motor evoked potentials (MEPs) amplitude (p = 0.908) or MEP silent period (SP; p = 0.776). However, the fatigue condition exhibited a lower MEP/cervicomedullary MEP (CMEP) ratio (p = 0.042, ES = 2.5, Δ25%) and a trend toward higher CMEP values (p = 0.08, ES = 0.5, Δ20.4%). These findings suggest that bilateral knee extensor fatigue can impair performance and modulate corticospinal excitability of the EF. PMID:26869902

  12. Comparison of Recovery Strategies on Maximal Force-Generating Capacity and Electromyographic Activity Level of the Knee Extensor Muscles

    PubMed Central

    Zarrouk, Nidhal; Rebai, Haithem; Yahia, Abdelmoneem; Souissi, Nizar; Hug, François; Dogui, Mohamed

    2011-01-01

    Context: With regard to intermittent training exercise, the effects of the mode of recovery on subsequent performance are equivocal. Objective: To compare the effects of 3 types of recovery intervention on peak torque (PT) and electromyographic (EMG) activity of the knee extensor muscles after fatiguing isokinetic intermittent concentric exercise. Design: Crossover study. Setting: Research laboratory. Patients or Other Participants: Eight elite judo players (age = 18.4 ± 1.4 years, height = 180 ± 3 cm, mass = 77.0 ± 4.2 kg). Interventions : Participants completed 3 randomized sessions within 7 days. Each session consisted of 5 sets of 10 concentric knee extensions at 80% PT at 120°/s, with 3 minutes of recovery between sets. Recovery interventions were passive, active, and electromyostimulation. The PT and maximal EMG activity were recorded simultaneously while participants performed isokinetic dynamometer trials before and 3 minutes after the resistance exercise. Main Outcome Measure(s): The PT and maximal EMG activity from the knee extensors were quantified at isokinetic velocities of 60°/s, 120°/s, and 180°/s, with 5 repetitions at each velocity. Results: The reduction in PT observed after electromyo-stimulation was less than that seen after passive (P < .001) or active recovery (P < .001). The reduction in PT was less after passive recovery than after active recovery (P < .001). The maximal EMG activity level observed after electromyostimulation was higher than that seen after active recovery (P < .05). Conclusions: Electromyostimulation was an effective recovery tool in decreasing neuromuscular fatigue after high-intensity, intermittent isokinetic concentric exercise for the knee extensor muscles. Also, active recovery induced the greatest amount of neuromuscular fatigue. PMID:21944070

  13. The Artificial Gravity Bed Rest Pilot Project: Effects on Knee Extensor and Plantar Flexor Muscle Groups

    NASA Technical Reports Server (NTRS)

    Caiozzo, V. J.; Haddad, F.; Lee, S.; Baker, M.; Baldwin, K. M.

    2007-01-01

    The goal of this project was to examine the effects of artificial gravity (2.5 g) on skeletal muscle strength and key anabolic/catabolic markers known to regulate muscle mass. Two groups of subjects were selected for study: 1) a 21 day-bed rest (BR) control (C) group (N=7); and 2) an AG group (N=8), which was exposed to 21 days of bed-rest plus daily 1 hr exposures to AG (2.5 g). This particular experiment was part of an integrated AG Pilot Project sponsored by NASA/Johnson Space Center. The in vivo torque-velocity relationships of the knee extensors and plantar flexors of the ankle were determined pre and post treatment. Also, pre- and post treatment biopsy samples were obtained from both the vastus lateralis and soleus muscles and were used, in part, for a series of analyses on gene expression (mRNA abundance) of key factors implicated in the anabolic versus catabolic state of the muscle. Post/Pre toque-velocity determinations revealed greater decrements in knee extensor performance in the C versus AG group (P less than 0.04). The plantar flexor muscle group of the AG subjects actually demonstrated a net gain in torque-velocity relationship; whereas, in the C group the overall post/pre responses declined (AG vs C; P less than 0.001). Measurements of muscle fiber cross-sectional area (for both muscles) demonstrated a loss of approx. 20% in the C group while no losses were evident in the AG group. RT-PCR analyses of muscle biopsy specimens demonstrated that markers of growth and cytoskeletal integrity (IGF-1, IGF-1 BP4, mechano growth factor, total RNA, and pro-collagen 3a) were higher in the AG group, whereas catabolic markers (myostatin and atrogen) were elevated in the C group. Importantly, these patterns were seen in both muscles. Based on these observations we conclude that paradigms of AG have the potential to maintain the functional, biochemical, and structural homeostasis of skeletal muscle in the face of chronic unloading states. These findings also

  14. Tennis in hot and cool conditions decreases the rapid muscle torque production capacity of the knee extensors but not of the plantar flexors

    PubMed Central

    Girard, Olivier; Racinais, Sébastien; Périard, Julien D

    2014-01-01

    Objectives To assess the time course of changes in rapid muscle force/torque production capacity and neuromuscular activity of lower limb muscles in response to prolonged (∼2 h) match-play tennis under heat stress. Methods The rates of torque development (RTD) and electromyographic activity (EMG; ie, root mean square) rise were recorded from 0 to 30, –50, –100 and –200 ms during brief (3–5 s) explosive maximal isometric voluntary contractions (MVC) of the knee extensors (KE) and plantar flexors (PF), along with the peak RTD within the entirety of the torque-time curve. These values were recorded in 12 male tennis players before (prematch) and after (postmatch, 24 and 48 h) match-play in HOT (∼37°C) and COOL (∼22°C) conditions. Results The postmatch core temperature was greater in the HOT (∼39.4°C) vs COOL (∼38.7°C) condition (p<0.05). Reductions in KE RTD occurred within the 0–200 ms epoch after contraction onset postmatch and at 24 h, compared with prematch, independent of environmental conditions (p<0.05). A similar reduction in the KE peak RTD was also observed postmatch relative to prematch (p<0.05). No differences in KE RTD values were observed after normalisation to MVC torque. Furthermore, the rate of KE EMG activity rise remained unchanged. Conversely, the PF contractile RTD and rate of EMG activity rise were unaffected by the exercise or environmental conditions. Conclusions In the KE, a reduction in maximal torque production capacity following prolonged match-play tennis appears to account for the decrease in the rate of torque development, independent of environmental conditions, while remaining unchanged in the PF. PMID:24668381

  15. Improved Knee Extensor Strength with Resistance Training Associates with Muscle Specific miRNAs in Older Adults

    PubMed Central

    Zhang, Tan; Birbrair, Alexander; Wang, Zhong-Min; Messi, María L.; Marsh, Anthony P.; Leng, Iris; Nicklas, Barbara J.; Delbono, Osvaldo

    2015-01-01

    Regular exercise, particularly resistance training (RT), is the only therapy known to consistently improve muscle strength and quality (force per unit of mass) in older persons, but there is considerable variability in responsiveness to training. Identifying sensitive diagnostic biomarkers of responsiveness to RT may inform the design of a more efficient exercise regimen to improve muscle strength in older adults. MicroRNAs (miRNAs) are small non-coding RNAs that regulate gene expression. We quantified six muscle specific miRNAs (miR-1, -133a, -133b, -206, -208b and -499) in both muscle tissue and blood plasma, and their relationship with knee extensor strength in seven older (age = 70.5 ± 2.5 years) adults before and after 5 months of RT. MiRNAs differentially responded to RT; muscle miR-133b decreased, while all plasma miRNAs tended to increase. Percent changes in knee extensor strength with RT showed strong positive correlations with percent changes in muscle miR-133a, -133b, -206 and with percent changes in plasma and plasma/muscle miR-499 ratio. Baseline level of plasma or plasma/muscle miR-499 ratio further predicts muscle response to RT, while changes in muscle miR-133a, -133b, -206 may correlate with muscle TNNT1gene alternative splicing in response to RT. Our results indicate that RT alters muscle specific miRNAs in muscle and plasma, and that these changes account for some of the variation in strength responses to RT in older adults. PMID:25560803

  16. Rhythmic Isometric Fatigue Patterns of the Elbow Flexors and Knee Extensors

    ERIC Educational Resources Information Center

    Ordway, George A.; And Others

    1977-01-01

    During a rhythmic, all-out task, the rates of fatigue experienced by elbow flexor and knee extendor muscle groups tend to differ, with the elbow flexors fatiguing more rapidly initially, but reaching a plateau at a relatively higher level than the knee extensors. (Author)

  17. The Effect of an Exercise Program in Conjunction With Short-Period Patellar Taping on Pain, Electromyogram Activity, and Muscle Strength in Patellofemoral Pain Syndrome

    PubMed Central

    Kaya, Defne; Callaghan, Michael James; Ozkan, Huseyin; Ozdag, Fatih; Atay, Ozgur Ahmet; Yuksel, Inci; Doral, Mahmut Nedim

    2010-01-01

    Background: McConnell recommended that patellar tape be kept on all day, until patients learn how to activate their vastus medialis obliquus (VMO) during an exercise program. This application may pose problems because prolonged taping may be inadvisable for some patients or even contraindicated owing to skin discomfort, irritation, or allergic reaction. Hypothesis: Wearing patellofemoral tape for a shorter duration during an exercise program would be just as beneficial as a prolonged taping application. Study Design: Prospective cohort. Methods: Twelve patients and 16 healthy people participated. Patients underwent short-period patellar taping plus an exercise program for 3 months. Numeric pain rating, muscle strength of the knee extensors, and electromyogram activity of the vastus lateralis and VMO were evaluated. Results: There were significant differences in electromyogram activity (P = .04) and knee extensor muscle strength (P = .03) between involved and uninvolved sides before treatment. After treatment, pain scores decreased, and there were no significant differences between involved and uninvolved sides in electromyogram activity (P = .68) and knee extensor strength (P = .62). Before treatment, mean VMO activation started significantly later than that of vastus lateralis, as compared with the matched healthy control group (P = .01). After treatment, these differences were nonsignificant (P = .08). Conclusion: Short-period patellar taping plus an exercise program improves VMO and vastus lateralis activation. Clinical Relevance: A shorter period of taping for the exercise program may be as beneficial as a prolonged taping application. PMID:23015969

  18. Radiographic analysis of factors predisposing toward tendon tears in the knee extensor mechanism☆☆☆

    PubMed Central

    Pires e Albuquerque, Rodrigo; Campos, André Luiz Siqueira; dos Santos Neto, José Félix; Karam, Evaldo; Neves, José Guilherme; Di Tullio, Paulo; Giordano, Vincenzo; do Amaral, Ney Pecegueiro

    2014-01-01

    Objectives to review radiographs of patients who suffered tendon tears of the knee extensor apparatus and observe alterations that might be factors predisposing toward this type of injury. Methods we retrospectively analyzed 60 cases of injury to the knee extensor mechanism that were treated surgically at the Miguel Couto Municipal Hospital between March 2004 and March 2011. Four patients were excluded due to poor quality of the examination. Results of the 56 patients evaluated, 23 were considered to be normal and 33 presented radiographic alterations. Among these, eight (24.3%) presented suprapatellar osteophytes alone; seven (21.2%), infrapatellar calcification; seven (21.2%), suprapatellar calcification; six (18.2%), supra- and infrapatellar osteophytes; and five (15.1%), infrapatellar osteophytes alone. Conclusion radiographic alterations were frequently observed in patients with extensor mechanism tears. PMID:26229830

  19. Effects of 17-day spaceflight on knee extensor muscle function and size

    NASA Technical Reports Server (NTRS)

    Tesch, Per A.; Berg, Hans E.; Bring, Daniel; Evans, Harlan J.; LeBlanc, Adrian D.

    2005-01-01

    It is generally held that space travelers experience muscle dysfunction and atrophy during exposure to microgravity. However, observations are scarce and reports somewhat inconsistent with regard to the time course, specificity and magnitude of such changes. Hence, we examined four male astronauts (group mean approximately 43 years, 86 kg and 183 cm) before and after a 17-day spaceflight (Space Transport System-78). Knee extensor muscle function was measured during maximal bilateral voluntary isometric and iso-inertial concentric, and eccentric actions. Cross-sectional area (CSA) of the knee extensor and flexor, and gluteal muscle groups was assessed by means of magnetic resonance imaging. The decrease in strength (P<0.05) across different muscle actions after spaceflight amounted to 10%. Eight ambulatory men, examined on two occasions 20 days apart, showed unchanged (P>0.05) muscle strength. CSA of the knee extensor and gluteal muscles, each decreased (P<0.05) by 8%. Knee flexor muscle CSA showed no significant (P>0.05) change. The magnitude of these changes concord with earlier results from ground-based studies of similar duration. The results of this study, however, do contrast with the findings of no decrease in maximal voluntary ankle plantar flexor force previously reported in the same crew.

  20. Mental fatigue induced by prolonged self-regulation does not exacerbate central fatigue during subsequent whole-body endurance exercise.

    PubMed

    Pageaux, Benjamin; Marcora, Samuele M; Rozand, Vianney; Lepers, Romuald

    2015-01-01

    It has been shown that the mental fatigue induced by prolonged self-regulation increases perception of effort and reduces performance during subsequent endurance exercise. However, the physiological mechanisms underlying these negative effects of mental fatigue are unclear. The primary aim of this study was to test the hypothesis that mental fatigue exacerbates central fatigue induced by whole-body endurance exercise. Twelve subjects performed 30 min of either an incongruent Stroop task to induce a condition of mental fatigue or a congruent Stroop task (control condition) in a random and counterbalanced order. Both cognitive tasks (CTs) were followed by a whole-body endurance task (ET) consisting of 6 min of cycling exercise at 80% of peak power output measured during a preliminary incremental test. Neuromuscular function of the knee extensors was assessed before and after CT, and after ET. Rating of perceived exertion (RPE) was measured during ET. Both CTs did not induce any decrease in maximal voluntary contraction (MVC) torque (p = 0.194). During ET, mentally fatigued subjects reported higher RPE (mental fatigue 13.9 ± 3.0, control 13.3 ± 3.2, p = 0.044). ET induced a similar decrease in MVC torque (mental fatigue -17 ± 15%, control -15 ± 11%, p = 0.001), maximal voluntary activation level (mental fatigue -6 ± 9%, control -6 ± 7%, p = 0.013) and resting twitch (mental fatigue -30 ± 14%, control -32 ± 10%, p < 0.001) in both conditions. These findings reject our hypothesis and confirm previous findings that mental fatigue does not reduce the capacity of the central nervous system to recruit the working muscles. The negative effect of mental fatigue on perception of effort does not reflect a greater development of either central or peripheral fatigue. Consequently, mentally fatigued subjects are still able to perform maximal exercise, but they are experiencing an altered performance during submaximal exercise due to higher-than-normal perception of effort

  1. Effect of Preactivation on Torque Enhancement by the Stretch-Shortening Cycle in Knee Extensors

    PubMed Central

    Fukutani, Atsuki; Misaki, Jun; Isaka, Tadao

    2016-01-01

    The stretch-shortening cycle is one of the most interesting topics in the field of sport sciences, because the performance of human movement is enhanced by the stretch-shortening cycle (eccentric contraction). The purpose of the present study was to examine whether the influence of preactivation on the torque enhancement by stretch-shortening cycle in knee extensors. Twelve men participated in this study. The following three conditions were conducted for knee extensors: (1) concentric contraction without preactivation (CON), (2) concentric contraction with eccentric preactivation (ECC), and (3) concentric contraction with isometric preactivation (ISO). Muscle contractions were evoked by electrical stimulation to discard the influence of neural activity. The range of motion of the knee joint was set from 80 to 140 degrees (full extension = 180 degrees). Angular velocities of the concentric and eccentric contractions were set at 180 and 90 degrees/s, respectively. In the concentric contraction phase, joint torques were recorded at 85, 95, and 105 degrees, and they were compared among the three conditions. In the early phase (85 degrees) of concentric contraction, the joint torque was larger in the ECC and ISO conditions than in the CON condition. However, these clear differences disappeared in the later phase (105 degrees) of concentric contraction. The results showed that joint torque was clearly different among the three conditions in the early phase whereas this difference disappeared in the later phase. Thus, preactivation, which is prominent in the early phase of contractions, plays an important role in torque enhancement by the stretch-shortening cycle in knee extensors. PMID:27414804

  2. Acute Effects of Kinesio Taping on Knee Extensor Peak Torque and Stretch Reflex in Healthy Adults.

    PubMed

    Yeung, Simon S; Yeung, Ella W

    2016-01-01

    Kinesio Tex tape (KT) is used to prevent and treat sports-related injuries and to enhance muscle performance. It has been proposed that the direction of taping may either facilitate or inhibit the muscle by having different effects on cutaneous receptors that modulate excitability of the motor neurons. This study had 2 goals. First, we wished to determine if KT application affects muscle performance and if the method of application facilitates or inhibits muscle performance. This was assessed by measuring isokinetic knee extension peak torque in the knee extensor. Second, we assessed neurological effects of taping on the excitability of the motor neurons by measuring the reflex latency and action potential by electromyography (EMG) in the patellar reflex. The study was a single-blind, placebo-controlled crossover trial with 28 healthy volunteers with no history of knee injuries. Participants received facilitative KT treatment, inhibitory KT treatment, or Hypafix taping of the knee extensor. There were significant differences in the peak torque between 3 treatments (F(2,54) = 4.873, P < 0.01). Post hoc analysis revealed that facilitative KT treatment resulted in higher knee extensor peak torque performance than inhibitory KT treatment (P = 0.036, effect size 0.26). There were, however, no significant differences in the reflex latency (F(2,54) = 2.84, P = 0.067) nor in the EMG values (F(2,54) = 0.18, P = 0.837) in the patellar reflex between the 3 taping applications. The findings suggest that the direction of KT application over the muscle has specific effects on muscle performance. Given the magnitude of effect is small, interpretation of clinical significance should be considered with caution. The underlying mechanism warrants further investigation. PMID:26825916

  3. High Altitude Increases Alteration in Maximal Torque but Not in Rapid Torque Development in Knee Extensors after Repeated Treadmill Sprinting.

    PubMed

    Girard, Olivier; Brocherie, Franck; Millet, Grégoire P

    2016-01-01

    We assessed knee extensor neuromuscular adjustments following repeated treadmill sprints in different normobaric hypoxia conditions, with special reference to rapid muscle torque production capacity. Thirteen team- and racquet-sport athletes undertook 8 × 5-s "all-out" sprints (passive recovery = 25 s) on a non-motorized treadmill in normoxia (NM; FiO2 = 20.9%), at low (LA; FiO2 = 16.8%) and high (HA; FiO2 = 13.3%) normobaric hypoxia (simulated altitudes of ~1800 m and ~3600 m, respectively). Explosive (~1 s; "fast" instruction) and maximal (~5 s; "hard" instruction) voluntary isometric contractions (MVC) of the knee extensors (KE), with concurrent electromyographic (EMG) activity recordings of the vastus lateralis (VL) and rectus femoris (RF) muscles, were performed before and 1-min post-exercise. Rate of torque development (RTD) and EMG (i.e., Root Mean Square or RMS) rise from 0 to 30, -50, -100, and -200 ms were recorded, and were also normalized to maximal torque and EMG values, respectively. Distance covered during the first 5-s sprint was similar (P > 0.05) in all conditions. A larger (P < 0.05) sprint decrement score and a shorter (P < 0.05) cumulated distance covered over the eight sprints occurred in HA (-8 ± 4% and 178 ± 11 m) but not in LA (-7 ± 3% and 181 ± 10 m) compared to NM (-5 ± 2% and 183 ± 9 m). Compared to NM (-9 ± 7%), a larger (P < 0.05) reduction in MVC torque occurred post-exercise in HA (-14 ± 9%) but not in LA (-12 ± 7%), with no difference between NM and LA (P > 0.05). Irrespectively of condition (P > 0.05), peak RTD (-6 ± 11%; P < 0.05), and normalized peak RMS activity for VL (-8 ± 11%; P = 0.07) and RF (-14 ± 11%; P < 0.01) muscles were reduced post-exercise, whereas reductions (P < 0.05) in absolute RTD occurred within the 0-100 (-8 ± 9%) and 0-200 ms (-10 ± 8%) epochs after contraction onset. After normalization to MVC torque, there was no difference in RTD values. Additionally, the EMG rise for VL muscle was similar

  4. High Altitude Increases Alteration in Maximal Torque but Not in Rapid Torque Development in Knee Extensors after Repeated Treadmill Sprinting

    PubMed Central

    Girard, Olivier; Brocherie, Franck; Millet, Grégoire P.

    2016-01-01

    We assessed knee extensor neuromuscular adjustments following repeated treadmill sprints in different normobaric hypoxia conditions, with special reference to rapid muscle torque production capacity. Thirteen team- and racquet-sport athletes undertook 8 × 5-s “all-out” sprints (passive recovery = 25 s) on a non-motorized treadmill in normoxia (NM; FiO2 = 20.9%), at low (LA; FiO2 = 16.8%) and high (HA; FiO2 = 13.3%) normobaric hypoxia (simulated altitudes of ~1800 m and ~3600 m, respectively). Explosive (~1 s; “fast” instruction) and maximal (~5 s; “hard” instruction) voluntary isometric contractions (MVC) of the knee extensors (KE), with concurrent electromyographic (EMG) activity recordings of the vastus lateralis (VL) and rectus femoris (RF) muscles, were performed before and 1-min post-exercise. Rate of torque development (RTD) and EMG (i.e., Root Mean Square or RMS) rise from 0 to 30, −50, −100, and −200 ms were recorded, and were also normalized to maximal torque and EMG values, respectively. Distance covered during the first 5-s sprint was similar (P > 0.05) in all conditions. A larger (P < 0.05) sprint decrement score and a shorter (P < 0.05) cumulated distance covered over the eight sprints occurred in HA (−8 ± 4% and 178 ± 11 m) but not in LA (−7 ± 3% and 181 ± 10 m) compared to NM (−5 ± 2% and 183 ± 9 m). Compared to NM (−9 ± 7%), a larger (P < 0.05) reduction in MVC torque occurred post-exercise in HA (−14 ± 9%) but not in LA (-12 ± 7%), with no difference between NM and LA (P > 0.05). Irrespectively of condition (P > 0.05), peak RTD (−6 ± 11%; P < 0.05), and normalized peak RMS activity for VL (−8 ± 11%; P = 0.07) and RF (−14 ± 11%; P < 0.01) muscles were reduced post-exercise, whereas reductions (P < 0.05) in absolute RTD occurred within the 0–100 (−8 ± 9%) and 0–200 ms (−10 ± 8%) epochs after contraction onset. After normalization to MVC torque, there was no difference in RTD values

  5. Knee Extensor Mechanism Repairs: Standard Suture Repair and Novel Augmentation Technique.

    PubMed

    Meyer, Zachary; Ricci, William M

    2016-08-01

    Patellar and quadriceps tendon ruptures are relatively common injuries. Rupture of the knee extensor mechanism may occur because of a forceful eccentric contraction of the quadriceps against a resisted flexed knee, though atraumatic cases have also been described. Patients at higher than normal risk for knee extensor mechanism rupture include those with systemic co-morbidities, fluoroquinolone use, and chronic tendinopathy. Early operative treatment and mobilization of acute extensor mechanism ruptures has proven effective, and numerous techniques have been described. A 46-year-old male on anastrozole therapy simultaneously ruptured his left patellar and right quadriceps tendons during a deadlift attempt. Diagnosis was by history and physical examination. Repair of both injuries was performed 5 days after injury. Described within and shown in the accompanying video is a standard technique for primary repair using Krackow stitches through the ruptured tendon that are passed through patellar bone tunnels and tied over a bone bridge. The finer points of this technique are emphasized. Also included is a technique to augment the standard repair with a figure-of-8 stitch passed through additional oblique patellar bone tunnels. The mechanical advantage of the adjuvant figure-of-8 stitch provides additional compression, which nicely reapproximates the tendon edges. PMID:27441933

  6. Carotid Baroreflex Function During Prolonged Exercise

    NASA Technical Reports Server (NTRS)

    Raven, P. B.

    1999-01-01

    Astronauts are often required to work (exercise) at moderate to high intensities for extended periods while performing extra-vehicular activities (EVA). Although the physiologic responses associated with prolonged exercise have been documented, the mechanisms involved in blood pressure regulation under these conditions have not yet been fully elucidated. An understanding of this issue is pertinent to the ability of humans to perform work in microgravity and complies with the emphasis of NASA's Space Physiology and Countermeasures Program. Prolonged exercise at a constant workload is know to result in a progressive decrease in mean arterial pressure (MAP) concomitant with a decrease in stroke volume and a compensatory increase in heart rate. The continuous decrease in MAP during the exercise, which is related to the thermoregulatory redistribution of circulating blood volume to the cutaneous circulation, raises the question as to whether there is a loss of baroreflex regulation of arterial blood pressure. We propose that with prolongation of the exercise to 60 minutes, progressive increases on central command reflect a progressive upward resetting of the carotid baroreflex (CBR) such that the operating point of the CBR is shifted to a pressure below the threshold of the reflex rendering it ineffectual in correcting the downward drift in MAP. In order to test this hypothesis, experiments have been designed to uncouple the global hemodynamic response to prolonged exercise from the central command mediated response via: (1) continuous maintenance of cardiac filling volume by intravenous infusion of a dextran solution; and (2) whole body surface cooling to counteract thermoregulatory cutaneous vasodialation. As the type of work (exercise) performed by astronauts is inherently arm and upper body dependent, we will also examine the physiologic responses to prolonged leg cycling and arm ergometry exercise in the supine positions with and without level lower body negative

  7. Sit-to-Stand Movement in Children with Hemiplegic Cerebral Palsy: Relationship with Knee Extensor Torque and Social Participation

    ERIC Educational Resources Information Center

    dos Santos, Adriana Neves; Pavao, Silvia Leticia; Santiago, Paulo Roberto Pereira; Salvini, Tania de Fatima; Rocha, Nelci Adriana Cicuto Ferreira

    2013-01-01

    This study aimed to investigate the relationship between sit-to-stand (STS) movement, knee extensor torque and social participation in children with cerebral palsy (CP). Seven spastic hemiplegic CP patients (8.0 plus or minus 2.2 years), classified by the Gross Motor Function Classification System as I and II, and 18 typical children (8.4 plus or…

  8. Loss of knee extensor torque complexity during fatiguing isometric muscle contractions occurs exclusively above the critical torque.

    PubMed

    Pethick, Jamie; Winter, Samantha L; Burnley, Mark

    2016-06-01

    The complexity of knee extensor torque time series decreases during fatiguing isometric muscle contractions. We hypothesized that because of peripheral fatigue, this loss of torque complexity would occur exclusively during contractions above the critical torque (CT). Nine healthy participants performed isometric knee extension exercise (6 s of contraction, 4 s of rest) on six occasions for 30 min or to task failure, whichever occurred sooner. Four trials were performed above CT (trials S1-S4, S1 being the lowest intensity), and two were performed below CT (at 50% and 90% of CT). Global, central, and peripheral fatigue were quantified using maximal voluntary contractions (MVCs) with femoral nerve stimulation. The complexity of torque output was determined using approximate entropy (ApEn) and the detrended fluctuation analysis-α scaling exponent (DFA-α). The MVC torque was reduced in trials below CT [by 19 ± 4% (means ± SE) in 90%CT], but complexity did not decrease [ApEn for 90%CT: from 0.82 ± 0.03 to 0.75 ± 0.06, 95% paired-samples confidence intervals (CIs), 95% CI = -0.23, 0.10; DFA-α from 1.36 ± 0.01 to 1.32 ± 0.03, 95% CI -0.12, 0.04]. Above CT, substantial reductions in MVC torque occurred (of 49 ± 8% in S1), and torque complexity was reduced (ApEn for S1: from 0.67 ± 0.06 to 0.14 ± 0.01, 95% CI = -0.72, -0.33; DFA-α from 1.38 ± 0.03 to 1.58 ± 0.01, 95% CI 0.12, 0.29). Thus, in these experiments, the fatigue-induced loss of torque complexity occurred exclusively during contractions performed above the CT. PMID:27101290

  9. KNEE EXTENSOR STRENGTH EXHIBITS POTENTIAL TO PREDICT FUNCTION IN SPORADIC INCLUSION-BODY MYOSITIS

    PubMed Central

    LOWES, LINDA PAX; ALFANO, LINDSAY; VIOLLET, LAURENCE; ROSALES, XIOMARA QUINTERO; SAHENK, ZARIFE; KASPAR, BRIAN K.; CLARK, K. REED; FLANIGAN, KEVIN M.; MENDELL, JERRY R.

    2013-01-01

    Introduction In this study we address the challenging issue of potential use of muscle strength to predict function in clinical trials. This has immediate relevance to translational studies that attempt to improve quadriceps strength in sporadic inclusion-body myositis (sIBM). Methods Maximum voluntary isometric contraction testing as a measure of muscle strength and a battery of functional outcomes were tested in 85 ambulatory subjects with sIBM. Results Marked quadriceps weakness was noted in all patients. Strength was correlated with distance walked at 2 and 6 minutes. Additional correlations were found with time to get up from a chair, climb stairs, and step up on curbs. Conclusions Quadriceps (knee extensor) strength correlated with performance in this large cohort of sIBM subjects, which demonstrated its potential to predict function in this disease. These data provide initial support for use of muscle strength as a surrogate for function, although validation in a clinical trial is required. PMID:22246869

  10. Differential effects of whole body vibration durations on knee extensor strength.

    PubMed

    Stewart, James A; Cochrane, Darryl J; Morton, R Hugh

    2009-01-01

    The effectiveness and optimality of whole body vibration (WBV) duration on muscular strength is yet to be determined. Hence the aim of this study was to investigate the effects of three different durations of continuous WBV exposure on isometric right knee extensor strength measured pre and post exposure. The study involved 12 trained male subjects (age 23.7+/-4.2 years, height 1.82+/-0.06m, weight 81.8+/-15.5kg). Pre and post knee extensor strength was measured using the Biodex System 3. Peak and mean torques were recorded over three maximal 2s contractions with 10s intervals. All subjects completed three interventions of WBV lasting 2, 4, or 6min, in a balanced randomized order. Whole body vibration was performed on the Galileo machine set at 26Hz with peak-to-peak amplitude of 4mm. We found significant interaction (durationxpre-post) effects for both peak and mean torque. Two minutes of WBV provided a significantly different (p<0.05) effect (peak torque +3.8%, mean torque +3.6%) compared to 4min (-2.7% and -0.8%, respectively), and compared to 6min (-6.0% and -5.2%, respectively), while 4min produced significantly different results compared to 6min for peak torque measurements only. Two minutes of WBV produced an improvement in isometric right knee extension strength compared to 4 and 6min, both of which produced strength decreases. Nevertheless, the mechanisms and optimal dose-response character of vibration exposure remain unclear. PMID:18078783

  11. β-alanine supplementation improves isometric endurance of the knee extensor muscles

    PubMed Central

    2012-01-01

    Background We examined the effect of four weeks of β-alanine supplementation on isometric endurance of the knee extensors at 45% maximal voluntary isometric contraction (MVIC). Methods Thirteen males (age 23 ± 6 y; height 1.80 ± 0.05 m; body mass 81.0 ± 10.5 kg), matched for pre-supplementation isometric endurance, were allocated to either a placebo (n = 6) or β-alanine (n = 7; 6.4 g·d-1 over 4 weeks) supplementation group. Participants completed an isometric knee extension test (IKET) to fatigue, at an intensity of 45% MVIC, before and after supplementation. In addition, two habituation tests were completed in the week prior to the pre-supplementation test and a further practice test was completed in the week prior to the post-supplementation test. MVIC force, IKET hold-time, and impulse generated were recorded. Results IKET hold-time increased by 9.7 ± 9.4 s (13.2%) and impulse by 3.7 ± 1.3 kN·s-1 (13.9%) following β-alanine supplementation. These changes were significantly greater than those in the placebo group (IKET: t(11) = 2.9, p ≤0.05; impulse: t(11) = 3.1, p ≤ 0.05). There were no significant changes in MVIC force in either group. Conclusion Four weeks of β-alanine supplementation at 6.4 g·d-1 improved endurance capacity of the knee extensors at 45% MVIC, which most likely results from improved pH regulation within the muscle cell as a result of elevated muscle carnosine levels. PMID:22697405

  12. Hemiparetic Knee Extensor Strength and Balance Function Are Predictors of Ambulatory Function in Subacute Stroke Patients

    PubMed Central

    Hyun, Chul Woong; Im, Sang Hee; Choi, Jay Chol; Kim, Bo Ryun; Yoon, Ho Min; Lee, Yong Ki

    2015-01-01

    Objective To identify the potential predictors of ambulatory function in subacute stroke patients, and to determine the contributing factors according to gait severity. Methods Fifty-three subacute stroke patents were enrolled. Ambulatory function was assessed by gait speed and endurance. Balance function was evaluated by the Berg Balance Scale score (BBS) and the Timed Up and Go test (TUG). The isometric muscular strengths of bilateral knee extensors and flexors were measured using an isokinetic dynamometer. Cardiovascular fitness was evaluated using an expired gas analyzer. Participants were assigned into the household ambulator group (<0.4 m/s) or the community ambulator group (≥0.4 m/s) based on gait severity. Results In the linear regression analyses of all patients, paretic knee isometric extensor strength (p=0.007) and BBS (p<0.001) were independent predictors of gait endurance (R2=0.668). TUG (p<0.001) and BBS (p=0.037) were independent predictors of gait speed (R2=0.671). Paretic isometric extensor strength was a predictor of gait endurance (R2=0.340, p=0.008). TUG was a predictor of gait speed (R2=0.404, p<0.001) in the household ambulator group, whereas BBS was a predictive factor of gait endurance (R2=0.598, p=0.008) and speed (R2=0.713, p=0.006). TUG was a predictor of gait speed (R2=0.713, p=0.004) in the community ambulator group. Conclusion Our results reveal that balance function and knee extensor isometric strength were strong predictors of ambulatory function in subacute stroke patients. However, they work differently according to gait severity. Therefore, a comprehensive functional assessment and a different therapeutic approach should be provided depending on gait severity in subacute stroke patients. PMID:26361594

  13. Human muscle function following prolonged eccentric exercise.

    PubMed

    Sargeant, A J; Dolan, P

    1987-01-01

    4 subjects performed repeated eccentric contractions with leg extensors during prolonged downhill walking (-25% gradient) at 6.44 km.h-1 until collapse due to muscle weakness (range of exercise duration 29 to 40 min). During the exercise oxygen uptake rose progressively from approximately 45% of the previously determined VO2max at 10 min to approximately 65% at the end of the exercise. Following the exercise there was an immediate, significant, and sustained reduction in maximal voluntary isometric contraction, and short term (anaerobic) power output measured concentrically on an isokinetic ergometer. These reductions in muscle function persisted for 96 hours post exercise, and were reflected by significant reductions in the tension generated at low frequency (20 Hz) relative to higher frequency (50 Hz) percutaneous stimulation of the quadriceps. All four subjects showed an increase in plasma levels of creatine kinase post eccentric exercise. Performing concentric contractions by walking uphill for one hour at a significantly greater metabolic cost failed to induce comparable reductions in muscle function. These results provide evidence for the consequences of prolonged eccentric work upon dynamic function which complements earlier reports of structural, enzymatic, and static function changes. PMID:3678226

  14. Brain glycogen decreases during prolonged exercise

    PubMed Central

    Matsui, Takashi; Soya, Shingo; Okamoto, Masahiro; Ichitani, Yukio; Kawanaka, Kentaro; Soya, Hideaki

    2011-01-01

    Abstract Brain glycogen could be a critical energy source for brain activity when the glucose supply from the blood is inadequate (hypoglycaemia). Although untested, it is hypothesized that during prolonged exhaustive exercise that induces hypoglycaemia and muscular glycogen depletion, the resultant hypoglycaemia may cause a decrease in brain glycogen. Here, we tested this hypothesis and also investigated the possible involvement of brain monoamines with the reduced levels of brain glycogen. For this purpose, we exercised male Wistar rats on a treadmill for different durations (30–120 min) at moderate intensity (20 m min−1) and measured their brain glycogen levels using high-power microwave irradiation (10 kW). At the end of 30 and 60 min of running, the brain glycogen levels remained unchanged from resting levels, but liver and muscle glycogen decreased. After 120 min of running, the glycogen levels decreased significantly by ∼37–60% in five discrete brain loci (the cerebellum 60%, cortex 48%, hippocampus 43%, brainstem 37% and hypothalamus 34%) compared to those of the sedentary control. The brain glycogen levels in all five regions after running were positively correlated with the respective blood and brain glucose levels. Further, in the cortex, the levels of methoxyhydroxyphenylglycol (MHPG) and 5-hydroxyindoleacetic acid (5-HIAA), potential involved in degradation of the brain glycogen, increased during prolonged exercise and negatively correlated with the glycogen levels. These results support the hypothesis that brain glycogen could decrease with prolonged exhaustive exercise. Increased monoamines together with hypoglycaemia should be associated with the development of decreased brain glycogen, suggesting a new clue towards the understanding of central fatigue during prolonged exercise. PMID:21521757

  15. Mental fatigue induced by prolonged self-regulation does not exacerbate central fatigue during subsequent whole-body endurance exercise

    PubMed Central

    Pageaux, Benjamin; Marcora, Samuele M.; Rozand, Vianney; Lepers, Romuald

    2015-01-01

    It has been shown that the mental fatigue induced by prolonged self-regulation increases perception of effort and reduces performance during subsequent endurance exercise. However, the physiological mechanisms underlying these negative effects of mental fatigue are unclear. The primary aim of this study was to test the hypothesis that mental fatigue exacerbates central fatigue induced by whole-body endurance exercise. Twelve subjects performed 30 min of either an incongruent Stroop task to induce a condition of mental fatigue or a congruent Stroop task (control condition) in a random and counterbalanced order. Both cognitive tasks (CTs) were followed by a whole-body endurance task (ET) consisting of 6 min of cycling exercise at 80% of peak power output measured during a preliminary incremental test. Neuromuscular function of the knee extensors was assessed before and after CT, and after ET. Rating of perceived exertion (RPE) was measured during ET. Both CTs did not induce any decrease in maximal voluntary contraction (MVC) torque (p = 0.194). During ET, mentally fatigued subjects reported higher RPE (mental fatigue 13.9 ± 3.0, control 13.3 ± 3.2, p = 0.044). ET induced a similar decrease in MVC torque (mental fatigue –17 ± 15%, control –15 ± 11%, p = 0.001), maximal voluntary activation level (mental fatigue –6 ± 9%, control –6 ± 7%, p = 0.013) and resting twitch (mental fatigue –30 ± 14%, control –32 ± 10%, p < 0.001) in both conditions. These findings reject our hypothesis and confirm previous findings that mental fatigue does not reduce the capacity of the central nervous system to recruit the working muscles. The negative effect of mental fatigue on perception of effort does not reflect a greater development of either central or peripheral fatigue. Consequently, mentally fatigued subjects are still able to perform maximal exercise, but they are experiencing an altered performance during submaximal exercise due to higher

  16. Fatigue reduces the complexity of knee extensor torque fluctuations during maximal and submaximal intermittent isometric contractions in man

    PubMed Central

    Pethick, Jamie; Winter, Samantha L; Burnley, Mark

    2015-01-01

    Neuromuscular fatigue increases the amplitude of fluctuations in torque output during isometric contractions, but the effect of fatigue on the temporal structure, or complexity, of these fluctuations is not known. We hypothesised that fatigue would result in a loss of temporal complexity and a change in fractal scaling of the torque signal during isometric knee extensor exercise. Eleven healthy participants performed a maximal test (5 min of intermittent maximal voluntary contractions, MVCs), and a submaximal test (contractions at a target of 40% MVC performed until task failure), each with a 60% duty factor (6 s contraction, 4 s rest). Torque and surface EMG signals were sampled continuously. Complexity and fractal scaling of torque were quantified by calculating approximate entropy (ApEn), sample entropy (SampEn) and the detrended fluctuation analysis (DFA) scaling exponent α. Fresh submaximal contractions were more complex than maximal contractions (mean ± SEM, submaximal vs. maximal: ApEn 0.65 ± 0.09 vs. 0.15 ± 0.02; SampEn 0.62 ± 0.09 vs. 0.14 ± 0.02; DFA α 1.35 ± 0.04 vs. 1.55 ± 0.03; all P < 0.005). Fatigue reduced the complexity of submaximal contractions (ApEn to 0.24 ± 0.05; SampEn to 0.22 ± 0.04; DFA α to 1.55 ± 0.03; all P < 0.005) and maximal contractions (ApEn to 0.10 ± 0.02; SampEn to 0.10 ± 0.02; DFA α to 1.63 ± 0.02; all P < 0.01). This loss of complexity and shift towards Brownian-like noise suggests that as well as reducing the capacity to produce torque, fatigue reduces the neuromuscular system's adaptability to external perturbations. PMID:25664928

  17. Effect of mental fatigue on induced tremor in human knee extensors.

    PubMed

    Budini, Francesco; Lowery, Madeleine; Durbaba, Rade; De Vito, Giuseppe

    2014-06-01

    In this study, the effects of mental fatigue on mechanically induced tremor at both a low (3-6Hz) and high (8-12Hz) frequency were investigated. The two distinct tremor frequencies were evoked using two springs of different stiffness, during 20s sustained contractions of the knee extensor muscles at 30% maximum voluntary contraction (MVC) before and after 100min of a mental fatigue task, in 12 healthy (29±3.7years) participants. Mental fatigue resulted in a 6.9% decrease in MVC and in a 9.4% decrease in the amplitude of the agonist muscle EMG during sustained 30% MVC contractions in the induced high frequency only. Following the mental fatigue task, the coefficient of variation and standard deviation of the force signal decreased at 8-12Hz induced tremor by 31.7% and 35.2% respectively, but not at 3-6Hz induced tremor. Similarly, the maximum value and area underneath the peak in the power spectrum of the force signal decreased by 55.5% and 53.1% respectively in the 8-12Hz range only. In conclusion, mental fatigue decreased mechanically induced 8-12Hz tremor and had no effect on induced 3-6Hz tremor. We suggest that the reduction could be attributed to the decreased activation of the agonist muscles. PMID:24613661

  18. Severe COPD Alters Muscle Fiber Conduction Velocity During Knee Extensors Fatiguing Contraction.

    PubMed

    Boccia, Gennaro; Coratella, Giuseppe; Dardanello, Davide; Rinaldo, Nicoletta; Lanza, Massimo; Schena, Federico; Rainoldi, Alberto

    2016-10-01

    The aim of this study was to assess the changes in muscle fiber conduction velocity (CV), as a sign of fatigue during knee extensor contraction in patients with chronic obstructive pulmonary disease (COPD) as compared with healthy controls. Eleven male patients (5 with severe and 6 with moderate COPD; age 67 ± 5 years) and 11 age-matched healthy male controls (age 65 ± 4 years) volunteered for the study. CV was obtained by multichannel surface electromyography (EMG) from the vastus lateralis (VL) and medialis (VM) of the quadriceps muscle during isometric, 30-second duration knee extension at 70% of maximal voluntary contraction. The decline in CV in both the VL and VM was steeper in the severe COPD patients than in healthy controls (for VL: severe COPD vs. controls -0.45 ± 0.07%/s; p < 0.001, and for VM: severe COPD vs. controls -0.54 ± 0.09%/s, p < 0.001). No difference in CV decline was found between the moderate COPD patients and the healthy controls. These findings suggest that severe COPD may impair muscle functions, leading to greater muscular fatigue, as expressed by CV changes. The results may be due to a greater involvement of anaerobic metabolism and a shift towards fatigable type II fibers in the muscle composition of the severe COPD patients. PMID:27007486

  19. Isokinetic dynamometry of the knee extensors and flexors in Iranian healthy males and females

    PubMed Central

    Rezaei, Mandana; Ebrahimi, Ismael; Vassaghi- Gharamaleki, Behnoush; Pirali, Milad; Mortaza, Niyousha; Malmir, Kazem; Ghasemi, Kobra; A. Jamshidi, Ali

    2014-01-01

    Background: This paper explores the gender-related bilateral differences of extensor and flexor torques of the knee joint at low and high angular velocities in Iranian healthy males and females. Methods: 70 healthy subjects (29 males (26.61±4.34 yrs and 41 females with average age of 23.07±3.70 yrs)) were participated in this study. Isokinetic peak torque values for knee extensors and flexors in concentric and eccentric contraction modes were measured and flexors and extensors strength ratios (HQR) computed among both dominant and non-dominant legs in lying position at 60 and 180°.s-1angular velocities. Results: There was significant gender-velocity interactions detected for knee flexor to extensor strength ratios presenting that increasing velocity escaled this, ratios in females more than males (p<0.05). There was no gender- velocity-leg side interaction (p>0.05). Bilateral differences were found for eccentric flexor peak torques (p<0.05). By increasing velocity, peak torque values decreased and HQR was increased (p<0.05). Conclusion: Measurement procedures including test position is an important factor when interpreting genderrelated and bilateral differences of isokinetic knee strength ratios in healthy individuals. PMID:25664309

  20. Modulation of recurrent inhibition from knee extensors to ankle motoneurones during human walking

    PubMed Central

    Lamy, Jean-Charles; Iglesias, Caroline; Lackmy, Alexandra; Nielsen, Jens Bo; Katz, Rose; Marchand-Pauvert, Véronique

    2008-01-01

    The neural control for muscle coordination during human locomotion involves spinal and supraspinal networks, but little is known about the exact mechanisms implicated. The present study focused on modulation of heteronymous recurrent inhibition from knee extensors to ankle motoneurones at different times in the gait cycle, when quadriceps (Quad) muscle activity overlaps that in tibialis anterior (TA) and soleus (Sol). The effects of femoral nerve stimulation on ankle motoneurones were investigated during treadmill walking and during tonic co-contraction of Quad and TA/Sol while standing. Recurrent inhibition of TA motoneurones depended on the level of background EMG, and was similar during walking and standing for matched background EMG levels. On the other hand, recurrent inhibition in Sol was reduced in early stance, with respect to standing, and enhanced in late stance. Reduced inhibition in Sol was also observed when Quad was coactivated with TA around the time of heel contact, compared to standing at matched background EMG levels in the two muscles. The modulation of recurrent inhibition of Sol during walking might reflect central and/or peripheral control of the Renshaw cells. These modulations could be implicated in the transition phases, from swing to stance to assist Sol activation during the stance phase, and from stance to swing, for its deactivation. PMID:18936080

  1. The effects of isometric resistance training on stretch reflex induced tremor in the knee extensor muscles.

    PubMed

    Durbaba, Rade; Cassidy, Angela; Budini, Francesco; Macaluso, Andrea

    2013-06-15

    This study examines the effect of 4 wk of high-intensity isometric resistance training on induced tremor in knee extensor muscles. Fourteen healthy volunteers were assigned to either the training group (n = 7) or the nontraining control group (n = 7). Induced tremor was assessed by measuring force fluctuations during anisometric contractions against spring loading, whose compliance was varied to allow for preferential activation of the short or long latency stretch reflex components. Effects of high-intensity isometric resistance training on induced tremor was assessed under two contraction conditions: relative force matching, where the relative level of activity was equal for both pre- and post-training sessions, set at 30% maximum voluntary contraction (MVC), and absolute force matching, where the level of activity was set to 30% pretrained MVC. The training group experienced a 26.5% increase in MVC in contrast to the 0.8% for the control group. For relative force-matching contractions, induced tremor amplitude and frequency did not change in either the training or control group. During absolute force-matching contractions, induced tremor amplitude was decreased by 37.5% and 31.6% for the short and long components, respectively, with no accompanying change in frequency, for the training group. No change in either measure was observed in the control group for absolute force-matching contractions. The results are consistent with high-intensity isometric resistance training induced neural changes leading to increased strength, coupled with realignment of stretch reflex automatic gain compensation to the new maximal force output. Also, previous reported reductions in anisometric tremor following strength training may partly be due to changed stretch reflex behavior. PMID:23580599

  2. Relationship of body composition, knee extensor strength, and standing balance to lumbar bone mineral density in postmenopausal females

    PubMed Central

    Shin, Seungsub; Lee, Kyeongjin; Song, Changho

    2016-01-01

    [Purpose] This study aimed to investigate correlations between lumbar bone mineral density (BMD) and general characteristics of postmenopausal females, including body composition, knee extensor strength, standing balance, and femur BMD. [Subjects and Methods] A total of 40 postmenopausal females (55.6 ± 4.6 years) who were caregivers or guardians of patients in the K hospital were included in the study. The weight, height, body composition, left and right knee extensor strength, standing balance, femur BMD, and lumbar BMD measurements of the subjects were obtained. [Results] The effect of measurement variables on lumbar BMD was examined. Increases in age and menopausal duration were observed to significantly increase lumbar BMD, whereas an increase in height was found to significantly decrease lumbar BMD. An increase in soft lean mass, skeletal muscle mass, fat-free mass, and femur BMD was also associated with significantly decreased lumbar BMD. [Conclusion] Age, menopausal duration, soft lean mass, skeletal muscle mass, and fat-free mass were factors that decreased lumbar BMD in menopausal females. This study is expected to provide basic knowledge for osteoporosis prevention and treatment programs for postmenopausal females. PMID:27512276

  3. Relationship of body composition, knee extensor strength, and standing balance to lumbar bone mineral density in postmenopausal females.

    PubMed

    Shin, Seungsub; Lee, Kyeongjin; Song, Changho

    2016-07-01

    [Purpose] This study aimed to investigate correlations between lumbar bone mineral density (BMD) and general characteristics of postmenopausal females, including body composition, knee extensor strength, standing balance, and femur BMD. [Subjects and Methods] A total of 40 postmenopausal females (55.6 ± 4.6 years) who were caregivers or guardians of patients in the K hospital were included in the study. The weight, height, body composition, left and right knee extensor strength, standing balance, femur BMD, and lumbar BMD measurements of the subjects were obtained. [Results] The effect of measurement variables on lumbar BMD was examined. Increases in age and menopausal duration were observed to significantly increase lumbar BMD, whereas an increase in height was found to significantly decrease lumbar BMD. An increase in soft lean mass, skeletal muscle mass, fat-free mass, and femur BMD was also associated with significantly decreased lumbar BMD. [Conclusion] Age, menopausal duration, soft lean mass, skeletal muscle mass, and fat-free mass were factors that decreased lumbar BMD in menopausal females. This study is expected to provide basic knowledge for osteoporosis prevention and treatment programs for postmenopausal females. PMID:27512276

  4. Effect of acute dietary nitrate intake on maximal knee extensor speed and power in healthy men and women

    PubMed Central

    Coggan, Andrew R.; Leibowitz, Joshua L.; Kadkhodayan, Ana; Thomas, Deepak T.; Ramamurthy, Sujata; Spearie, Catherine Anderson; Waller, Suzannea; Farmer, Marsha; Peterson, Linda R.

    2014-01-01

    Nitric oxide (NO) has been demonstrated to enhance the maximal shortening velocity and maximal power of rodent muscle. Dietary nitrate (NO3-) intake has been demonstrated to increase NO bioavailability in humans. We therefore hypothesized that acute dietary NO3- intake (in the form of a concentrated beetroot juice (BRJ) supplement) would improve muscle speed and power in humans. To test this hypothesis, healthy men and women (n=12; age=22-50 y) were studied using a randomized, double-blind, placebo-controlled crossover design. After an overnight fast, subjects ingested 140 mL of BRJ either containing or devoid of 11.2 mmol of NO3-. After 2 h, knee extensor contractile function was assessed using a Biodex 4 isokinetic dynamometer. Breath NO levels were also measured periodically using a Niox Mino analyzer as a biomarker of whole-body NO production. No significant changes in breath NO were observed in the placebo trial, whereas breath NO rose by 61% (P<0.001; effect size=1.19) after dietary NO3- intake. This was accompanied by a 4% (P<0.01; effect size=0.74) increase in peak knee extensor power at the highest angular velocity tested (i.e., 6.28 rad/s). Calculated maximal knee extensor power was therefore greater (i.e., 7.90±0.59 vs. 7.44±0.53 W/kg; P<0.05; effect size=0.63) after dietary NO3- intake, as was the calculated maximal velocity (i.e., 14.5±0.9 vs. 13.1±0.8 rad/s; P<0.05; effect size=0.67). No differences in muscle function were observed during 50 consecutive knee extensions performed at 3.14 rad/s. We conclude that acute dietary NO3- intake increases whole-body NO production and muscle speed and power in healthy men and women. PMID:25199856

  5. Effect of acute dietary nitrate intake on maximal knee extensor speed and power in healthy men and women.

    PubMed

    Coggan, Andrew R; Leibowitz, Joshua L; Kadkhodayan, Ana; Thomas, Deepak P; Ramamurthy, Sujata; Spearie, Catherine Anderson; Waller, Suzanne; Farmer, Marsha; Peterson, Linda R

    2015-08-01

    Nitric oxide (NO) has been demonstrated to enhance the maximal shortening velocity and maximal power of rodent muscle. Dietary nitrate (NO3(-)) intake has been demonstrated to increase NO bioavailability in humans. We therefore hypothesized that acute dietary NO3(-) intake (in the form of a concentrated beetroot juice (BRJ) supplement) would improve muscle speed and power in humans. To test this hypothesis, healthy men and women (n = 12; age = 22-50 y) were studied using a randomized, double-blind, placebo-controlled crossover design. After an overnight fast, subjects ingested 140 mL of BRJ either containing or devoid of 11.2 mmol of NO3(-). After 2 h, knee extensor contractile function was assessed using a Biodex 4 isokinetic dynamometer. Breath NO levels were also measured periodically using a Niox Mino analyzer as a biomarker of whole-body NO production. No significant changes in breath NO were observed in the placebo trial, whereas breath NO rose by 61% (P < 0.001; effect size = 1.19) after dietary NO3(-) intake. This was accompanied by a 4% (P < 0.01; effect size = 0.74) increase in peak knee extensor power at the highest angular velocity tested (i.e., 6.28 rad/s). Calculated maximal knee extensor power was therefore greater (i.e., 7.90 ± 0.59 vs. 7.44 ± 0.53 W/kg; P < 0.05; effect size = 0.63) after dietary NO3(-) intake, as was the calculated maximal velocity (i.e., 14.5 ± 0.9 vs. 13.1 ± 0.8 rad/s; P < 0.05; effect size = 0.67). No differences in muscle function were observed during 50 consecutive knee extensions performed at 3.14 rad/s. We conclude that acute dietary NO3(-) intake increases whole-body NO production and muscle speed and power in healthy men and women. PMID:25199856

  6. Effects Of Exercise During Prolonged Bed Rest

    NASA Technical Reports Server (NTRS)

    Arnaud, S.; Berry, P; Cohen, M.; Danelis, J.; Deroshia, C.; Greenleaf, J.; Harris, B.; Keil, L.; Bernauer, E.; Bond, M.; Ellis, S.; Lee, P.; Selzer, R.; Wade, C.

    1992-01-01

    Report describes experiment to investigate effects of isotonic and isokinetic leg exercises in counteracting effects of bed rest upon physical and mental conditions of subjects. Data taken on capacity for work, endurance and strength, tolerance to sitting up, equilibrium, posture, gait, atrophy, mineralization and density of bones, endocrine analyses concerning vasoactivity and fluid and electrolyte balances, intermediary metabolism of muscles, mood, and performance.

  7. Maximal aerobic exercise following prolonged sleep deprivation.

    PubMed

    Goodman, J; Radomski, M; Hart, L; Plyley, M; Shephard, R J

    1989-12-01

    The effect of 60 h without sleep upon maximal oxygen intake was examined in 12 young women, using a cycle ergometer protocol. The arousal of the subjects was maintained by requiring the performance of a sequence of cognitive tasks throughout the experimental period. Well-defined oxygen intake plateaus were obtained both before and after sleep deprivation, and no change of maximal oxygen intake was observed immediately following sleep deprivation. The endurance time for exhausting exercise also remained unchanged, as did such markers of aerobic performance as peak exercise ventilation, peak heart rate, peak respiratory gas exchange ratio, and peak blood lactate. However, as in an earlier study of sleep deprivation with male subjects (in which a decrease of treadmill maximal oxygen intake was observed), the formula of Dill and Costill (4) indicated the development of a substantial (11.6%) increase of estimated plasma volume percentage with corresponding decreases in hematocrit and red cell count. Possible factors sustaining maximal oxygen intake under the conditions of the present experiment include (1) maintained arousal of the subjects with no decrease in peak exercise ventilation or the related respiratory work and (2) use of a cycle ergometer rather than a treadmill test with possible concurrent differences in the impact of hematocrit levels and plasma volume expansion upon peak cardiac output and thus oxygen delivery to the working muscles. PMID:2628360

  8. Effects of strength training program on hip extensors and knee extensors strength of lower limb in children with spastic diplegic cerebral palsy

    PubMed Central

    Aye, Thanda; Thein, Soe; Hlaing, Thaingi

    2016-01-01

    [Purpose] The purpose of this study was to determine whether strength training programs for hip extensors and knee extensors improve gross motor function of children with cerebral palsy in Myanmar. [Subjects and Methods] Forty children (25 boys and 15 girls, mean age: 6.07 ± 2.74 years) from National Rehabilitation Hospital, Yangon, Myanmar, who had been diagnosed with spastic diplegic cerebral palsy, Gross Motor Classification System I and II participated in a 6-week strength training program (45 minutes per day, 3 days per week) on hip and knee extensors. Assessment was made, before and after intervention, of the amount of training weight in pounds, as well as Gross Motor Function Measure (GMFM) dimensions D (standing) and E (walking, running, jumping). [Results] All scores had increased significantly after the strength-training program. [Conclusion] A simple method of strength-training program for hip and knee extensors might lead to improved muscle strength and gross motor function in children with spastic diplegic cerebral palsy. PMID:27065561

  9. Breathing during prolonged exercise in humans.

    PubMed Central

    Kearon, M C; Summers, E; Jones, N L; Campbell, E J; Killian, K J

    1991-01-01

    1. Six normal subjects cycled to endurance or for 60 min at four work rates (WR 1-4): mean of 34% working capacity (93 watts for 60 min); 43% (120 watts for 56 min); 63% (177 watts for 37 min); and 84% (233 watts for 12 min), to determine how breathing pattern and dyspnoea change during prolonged activity. Four to six minutes were allowed to establish steady state and subsequent changes were considered to be endurance related. 2. Dyspnoea (Borg scale, 0-10) increased with the duration of activity at all work rates. 3. Ventilation (VE) did not change at WR1; increased from 44 to 47 l min-1 at WR2; from 60 to 88 l min-1 at WR3; and from 111 to 132 l min-1 at WR4. Dyspnoea was significantly and independently related to ventilation and duration of activity: dyspnoea = 0.004 VE1.36 time 0.25 (r = 0.81; partial F 202 and 26 respectively). 4. Inspiratory resistance did not increase at any work rate. Dynamic elastance remained constant during WR1, WR2 and WR3 but increased from 7.4 to 9.1 cmH2O l-1 during WR4. 5. Peak inspiratory pressure did not increase, and the increase in VE was accomplished by an increased breathing frequency without change in duty cycle. 6. Duration of activity is an important contributor to dyspnoea independent of changes in respiratory muscle contractile activity. PMID:1798038

  10. Effects of isokinetic training of the knee extensors on isometric strength and peak power output during cycling.

    PubMed

    Mannion, A F; Jakeman, P M; Willan, P L

    1992-01-01

    Isokinetic training of right and left quadriceps femoris was undertaken three times per week for 16 weeks. One group of subjects (n = 13) trained at an angular velocity of 4.19 rad.s-1 and a second group (n = 10) at 1.05 rad.s-1. A control group (n = 10) performed no training. Maximal voluntary contraction (MVC) of the quadriceps, and peak pedal velocity nu p,peak) and peak power output (Wpeak) during all-out cycling (against loads equivalent to 9, 10, 11, 12, 13 and 14% MVC) were assessed before and after training. The two training groups did not differ significantly from each other in their training response to any of the performance variables (P > 0.05). No significant difference in MVC was observed for any group after the 16-week period (P = 0.167). The post-training increases in average Wpeak (7%) and nu p,peak (6%) during the cycle tests were each significantly different from the control group response (P = 0.018 and P = 0.008, respectively). It is concluded that 16 weeks of isokinetic strength training of the knee extensors is able to significantly improve nu p, peak and Wpeak during spring cycling, an activity which demands considerable involvement of the trained muscle group but with its own distinct pattern of coordination. PMID:1425638

  11. Low-level intermittent quadriceps activity during transcranial direct current stimulation facilitates knee extensor force-generating capacity.

    PubMed

    Washabaugh, Edward P; Santos, Luciana; Claflin, Edward S; Krishnan, Chandramouli

    2016-08-01

    Anodal transcranial direct current stimulation (tDCS) is known to increase the force-generating capacity of the skeletal muscles. However, when tDCS is concurrently combined with a motor task, interference may occur that hinders tDCS effects. Here, we tested the interaction and time course of tDCS effects on force production when paired with a low-level force-matching task. Twenty-two subjects were randomized into two groups: tDCS-Matching and tDCS-Resting. Each group received tDCS and a sham stimulation, separated by one week. Maximal knee extensor and flexor torques were measured before and up to twenty-five minutes following the stimulation. The tDCS-Matching group produced greater knee extension torques relative to sham when compared with the tDCS-Resting group. There was no significant effect for knee flexion. This suggests that interference does not occur for force production tasks when tDCS is combined with a motor task. Rather, the task appears to aid and isolate the effects to the muscle groups involved in the task. PMID:27138643

  12. Cerebral ammonia uptake and accumulation during prolonged exercise in humans

    PubMed Central

    Nybo, Lars; Dalsgaard, Mads K; Steensberg, Adam; Møller, Kirsten; Secher, Niels H

    2005-01-01

    We evaluated whether peripheral ammonia production during prolonged exercise enhances the uptake and subsequent accumulation of ammonia within the brain. Two studies determined the cerebral uptake of ammonia (arterial and jugular venous blood sampling combined with Kety–Schmidt-determined cerebral blood flow; n = 5) and the ammonia concentration in the cerebrospinal fluid (CSF; n = 8) at rest and immediately following prolonged exercise either with or without glucose supplementation. There was a net balance of ammonia across the brain at rest and at 30 min of exercise, whereas 3 h of exercise elicited an uptake of 3.7 ± 1.3 μmol min−1 (mean ±s.e.m.) in the placebo trial and 2.5 ± 1.0 μmol min−1 in the glucose trial (P < 0.05 compared to rest, not different across trials). At rest, CSF ammonia was below the detection limit of 2 μm in all subjects, but it increased to 5.3 ± 1.1 μm following exercise with glucose, and further to 16.1 ± 3.3 μm after the placebo trial (P < 0.05). Correlations were established between both the cerebral uptake (r2 = 0.87; P < 0.05) and the CSF concentration (r2 = 0.72; P < 0.05) and the arterial ammonia level and, in addition, a weaker correlation (r2 = 0.37; P < 0.05) was established between perceived exertion and CSF ammonia at the end of exercise. The results let us suggest that during prolonged exercise the cerebral uptake and accumulation of ammonia may provoke fatigue, e.g. by affecting neurotransmitter metabolism. PMID:15611036

  13. Exercise as a countermeasure for physiological adaptation to prolonged spaceflight.

    PubMed

    Convertino, V A

    1996-08-01

    Exercise represents the primary countermeasure used during spaceflight to maintain or restore maximal aerobic capacity (VO2max), musculoskeletal structure, and orthostatic function. However, no single exercise or combination of prescriptions has proven entirely effective in restoring cardiovascular and musculoskeletal functions to preflight levels following prolonged spaceflight. As human spaceflight exposures increase in duration, assessment and development of various effective exercise-based protective procedures become paramount. This must involve improvement in specific countermeasure prescription as well as development of additional approaches that will allow space travelers greater flexibility and medical safety during long flights. Effective exercise prescription will be based on identification of basic physiological stimuli that maintain normal function in terrestrial gravity and understanding of how specific combinations of exercise characteristics e.g., duration, frequency, intensity, mode) can mimic these stimuli and affect the overall process of adaptation to microgravity. This can be accomplished only with greater emphasis of research on ground-based experiments. Future attention must be directed to improving exercise compliance while minimizing both crew time and the impact of the exercise on life-support resources. PMID:8871910

  14. Exercise as a countermeasure for physiological adaptation to prolonged spaceflight

    NASA Technical Reports Server (NTRS)

    Convertino, V. A.

    1996-01-01

    Exercise represents the primary countermeasure used during spaceflight to maintain or restore maximal aerobic capacity (VO2max), musculoskeletal structure, and orthostatic function. However, no single exercise or combination of prescriptions has proven entirely effective in restoring cardiovascular and musculoskeletal functions to preflight levels following prolonged spaceflight. As human spaceflight exposures increase in duration, assessment and development of various effective exercise-based protective procedures become paramount. This must involve improvement in specific countermeasure prescription as well as development of additional approaches that will allow space travelers greater flexibility and medical safety during long flights. Effective exercise prescription will be based on identification of basic physiological stimuli that maintain normal function in terrestrial gravity and understanding of how specific combinations of exercise characteristics e.g., duration, frequency, intensity, mode) can mimic these stimuli and affect the overall process of adaptation to microgravity. This can be accomplished only with greater emphasis of research on ground-based experiments. Future attention must be directed to improving exercise compliance while minimizing both crew time and the impact of the exercise on life-support resources.

  15. Effects of Between-Set Interventions on Neuromuscular Function During Isokinetic Maximal Concentric Contractions of the Knee Extensors

    PubMed Central

    Cometti, Carole; Deley, Gaelle; Babault, Nicolas

    2011-01-01

    The presents study investigated the effects of between-set interventions on neuromuscular function of the knee extensors during six sets of 10 isokinetic (120°·s-1) maximal concentric contractions separated by three minutes. Twelve healthy men (age: 23.9 ± 2.4 yrs) were tested for four different between-set recovery conditions applied during two minutes: passive recovery, active recovery (cycling), electromyostimulation and stretching, in a randomized, crossover design. Before, during and at the end of the isokinetic session, torque and thigh muscles electromyographic activity were measured during maximal voluntary contractions and electrically-evoked doublets. Activation level was calculated using the twitch interpolation technique. While quadriceps electromyographic activity and activation level were significantly decreased at the end of the isokinetic session (-5.5 ± 14.2 % and -2.7 ± 4.8 %; p < 0.05), significant decreases in maximal voluntary contractions and doublets were observed after the third set (respectively -0.8 ± 12.1% and -5.9 ± 9.9%; p < 0.05). Whatever the recovery modality applied, torque was back to initial values after each recovery period. The present results showed that fatigue appeared progressively during the isokinetic session with peripheral alterations occurring first followed by central ones. Recovery interventions between sets did not modify fatigue time course as compared with passive recovery. It appears that the interval between sets (3 min) was long enough to provide recovery regardless of the interventions. Key points Allowing three minutes of recovery between sets of 10 maximal concentric contractions would help the subjects to recover from the peripheral fatigue induced by each set and therefore to start each new set with a high intensity. During this type of session, with three minutes between sets, passive recovery is sufficient; there is no need to apply complicated recovery interventions. PMID:24149550

  16. Neuromuscular adjustments of the knee extensors and plantar flexors following match-play tennis in the heat

    PubMed Central

    Périard, Julien D; Girard, Olivier; Racinais, Sébastien

    2014-01-01

    Objectives This study tested the hypothesis that impairments in lower limb maximal strength and voluntary activation (VA) are exacerbated following match-play tennis in hot compared with cool conditions. Methods Torque and VA were evaluated during brief (5 s) and sustained (20 s) maximal voluntary isometric contractions of the knee extensors (KE) and plantar flexors (PF) in 12 male tennis players before (pre) and after (post, 24 h and 48 h) ∼115 min of play in hot (∼37°C) and cool (∼22°C) conditions. Results Rectal temperature was higher following play in hot than in cool (∼39.2 vs ∼38.5°C; p<0.05). Torque production decreased from prematch to postmatch during the brief and sustained contractions in hot (KE: ∼22%; PF: ∼13%) and cool (KE: ∼9%, PF: ∼7%) (p<0.05). KE strength losses in hot were greater than in cool (p<0.05) and persisted for 24 h (p<0.05). Postmatch brief and sustained KE VA was lower in hot than in cool (p<0.05), in which VA was maintained. PF VA was maintained throughout the protocol. Peak twitch torque and maximum rates of torque development and relaxation in the KE and PF were equally reduced postmatch relative to prematch in hot and cool conditions (p<0.05), and were restored near baseline within 24 h. Conclusions Neuromuscular system integrity of the lower limbs is compromised immediately following match-play tennis in hot and cool conditions due to the development of peripheral fatigue. The larger and persistent KE strength losses observed under heat stress are associated with greater levels of central fatigue especially during sustained contractions. PMID:24668379

  17. Influence of length-restricted strength training on athlete's power-load curves of knee extensors and flexors.

    PubMed

    Ullrich, Boris; Kleinöder, Heinz; Brüggemann, Gert-Peter

    2010-03-01

    This study investigated whether different length-restricted strength training regimens affect voluntary explosive concentric power-load curves of the quadriceps femoris (QF) and hamstring (HAM) muscles. Thirty-two athletes were divided into 3 different training groups (G1-G3): G1 performed isometric training at knee joint angles corresponding to long muscle-tendon unit (MTU) length for QF and HAM; G2 conducted concentric-eccentric contraction cycles that were restricted to a knee joint range of motion corresponding to predominantly long MTU length for QF and HAM; and G3 combined the protocols of G1 and G2. Knee joint angle-dependent power-load curves during maximal voluntary explosive concentric knee extensions and flexions were measured for loads corresponding to 40, 60, and 80% of individual 1 repetition maximum at 5 different occasions: 2 times before, after 5 and 8 weeks of training, and 4 weeks post training. Power values of each subject were normalized to the largest value produced at any knee joint position (percent maximum). Obtained by curve fitting, the optimal knee joint angle for power production of QF and HAM remained unaltered throughout the course of the study for all testing loads and training groups. Therefore, different strength training regimens with a common restriction to long MTU lengths failed to induce length-dependent alterations in athlete's voluntary concentric power-load curves of knee extensors and flexors. The approach to develop strength training programs that induce systematic shifts in length-dependent power production of QF and HAM is of direct practical relevance for athletic activities such as cycling, ice skating, and skiing. However, restricting the muscle excursion range during loading seems to be an inappropriate trigger to cause length-dependent alterations in athlete's voluntary concentric power-load curves. PMID:20145573

  18. Isometric knee extensor fatigue following a Wingate test: peripheral and central mechanisms.

    PubMed

    Fernandez-del-Olmo, M; Rodriguez, F A; Marquez, G; Iglesias, X; Marina, M; Benitez, A; Vallejo, L; Acero, R M

    2013-02-01

    Central and peripheral fatigue have been explored during and after running or cycling exercises. However, the fatigue mechanisms associated with a short maximal cycling exercise (30 s Wingate test) have not been investigated. In this study, 10 volunteer subjects performed several isometric voluntary contractions using the leg muscle extensors before and after two bouts of cycling at 25% of maximal power output and two bouts of Wingate tests. Transcranial magnetic stimulation (TMS) and electrical motor nerve stimulation (NM) were applied at rest and during the voluntary contractions. Maximal voluntary contraction (MVC), voluntary activation (VA), twitch amplitude evoked by electrical nerve stimulation, M wave and motor potential evoked by TMS (MEP) were recorded. MVC, VA and twitch amplitude evoked at rest by NM decreased significantly after the first and second Wingate tests, indicating central and peripheral fatigue. MVC and VA, but not the twitch amplitude evoked by NM, recovered before the second Wingate test. These results suggest that the Wingate test results in a decrease in MVC associated with peripheral and central fatigue. While the peripheral fatigue is associated with an intramuscular impairment, the central fatigue seems to be the main reason for the Wingate test-induced impairment of MVC. PMID:21812824

  19. Reproducibility of cardiac biomarkers response to prolonged treadmill exercise.

    PubMed

    Tian, Ye; Nie, Jinlei; George, Keith P; Huang, Chuanye

    2014-03-01

    We examined the reproducibility of alterations in cardiac biomarkers after two identical bouts of prolonged exercise in young athletes. Serum high-sensitivity cardiac troponin T (hs-cTnT) and N-terminal pro-brain natriuretic peptide (NT-proBNP) levels were assessed before and after exercise. Significant rises in median hs-cTnT and NT-proBNP occurred in both trials. While the absolute changes in hs-cTnT were smaller after trial 2, the pattern of change was similar and the delta scores were significantly related. However, the change in NT-proBNP was not correlated between trials. The hs-cTnT release demonstrates some consistency after exercise although the blunted hc-cTnT response requires further study. PMID:24451016

  20. Electromechanical delay of the knee extensor muscles is not altered after harvesting the patellar tendon as a graft for ACL reconstruction: implications for sports performance.

    PubMed

    Georgoulis, A D; Ristanis, S; Papadonikolakis, A; Tsepis, E; Moebius, U; Moraiti, C; Stergiou, N

    2005-09-01

    Although the scar tissue, which heals the donor site defect, has different elasticity from the neighbouring patellar tissue, it remains unclear if this scar tissue can lead to the changes of the electromechanical delay (EMD) of the knee extensor muscles. If such changes do exist, they can possibly affect both the utilization of the stored energy in the series elastic component, as well as the optimal performance of the knee joint movement. The purpose of this study was to investigate the influence of harvesting the patellar tendon during anterior cruciate ligament (ACL) reconstruction and the associated patellar tendon scar tissue development on the EMD of the rectus femoris (RF) and vastus medialis (VM) muscles. Seventeen patients who underwent an ACL reconstruction using the medial third of the patellar tendon were divided in two groups based upon their post-operative time interval. Maximal voluntary contraction from the knee extensors, surface EMG activity, and ultrasonographic measurements of the patellar tendon cross-section area were obtained from both knees. Our results revealed that no significant changes for the maximal voluntary contraction of the knee extensors and for the EMD of the RF and the VM muscles due to patellar scar tissue development after harvesting the tendon for ACL reconstruction. The EMD, as a component of the stretch reflex, is important for the utilization of the stored energy in the series elastic component and thus, optimal sports performance. However, from our results, it can be implied that the ACL reconstruction using a patellar tendon graft would not impair sports performance as far as EMD is concerned. PMID:15968530

  1. Alteration of Muscle Function After Electrical Stimulation Bout of Knee Extensors and Flexors

    PubMed Central

    Vanderthommen, Marc; Triffaux, Mylène; Demoulin, Christophe; Crielaard, Jean-Michel; Croisier, Jean-Louis

    2012-01-01

    The purpose was to study the effects on muscle function of an electrical stimulation bout applied unilaterally on thigh muscles in healthy male volunteers. One group (ES group, n = 10) received consecutively 100 isometric contractions of quadriceps and 100 isometric contractions of hamstrings (on-off ratio 6-6 s) induced by neuromuscular electrical stimulations (NMES). Changes in muscle torque, muscle soreness (0-10 VAS), muscle stiffness and serum creatine kinase (CK) activity were assessed before the NMES exercise (pre-ex) as well as 24h (d+1), 48h (d+2) and 120h (d+5) after the bout. A second group (control group, n = 10) were submitted to the same test battery than the ES group and with the same time-frame. The between-group comparison indicated a significant increase in VAS scores and in serum levels of CK only in the ES group. In the ES group, changes were more pronounced in hamstrings than in quadriceps and peaked at d+2 (quadriceps VAS scores = 2.20 ± 1.55 a.u. (0 at pre-ex); hamstrings VAS scores = 3.15 ± 2.14 a.u. (0 at pre-ex); hip flexion angle = 62 ± 5° (75 ± 6° at pre-ex); CK activity = 3021 ± 2693 IU·l-1 (136 ± 50 IU·l-1 at pre-ex)). The results of the present study suggested the occurrence of muscle damage that could have been induced by the peculiar muscle recruitment in NMES and the resulting overrated mechanical stress. The sensitivity to the damaging effects of NMES appeared higher in the hamstrings than in quadriceps muscles. Key points A stimulation bout of quadriceps and hamstrings that reflects usual application of NMES, increases indirect markers of muscle damage (muscle soreness, muscle weakness and stiffness and serum CK activity). The occurrence of muscle damage could have been induced by the peculiar muscle recruitment in NMES and the resulting overrated mechanical stress. The sensitivity to the damaging effects of NMES appears higher in the hamstrings than in quadriceps muscles. PMID:24150067

  2. Performance predicting factors in prolonged exhausting exercise of varying intensity.

    PubMed

    Björklund, Glenn; Pettersson, Sofia; Schagatay, Erika

    2007-03-01

    Several endurance sports, e.g. road cycling, have a varying intensity profile during competition. At present, few laboratory tests take this intensity profile into consideration. Thus, the purpose of this study was to examine the prognostic value of heart rate (HR), lactate (La(-1)), potassium (K(+)), and respiratory exchange ratio (RER) performance at an exhausting cycling exercise with varying intensity. Eight national level cyclists performed two cycle tests each on a cycle ergometer: (1) a incremental test to establish VO(2max), maximum power (W (max)), and lactate threshold (VO(2LT)), and (2) a variable intensity protocol (VIP). Exercise intensity for the VIP was based upon the VO(2max) obtained during the incremental test. The VIP consisted of six high intense (HI) workloads at 90% of VO(2max) for 3 min each, interspersed by five middle intense (MI) workloads at 70% of VO(2max )for 6 min each. VO(2 )and HR were continuously measured throughout the tests. Venous blood samples were taken before, during, and after the test. Increases in HR, La(-), K(+), and RER were observed when workload changed from MI to HI workload (P < 0.05). Potassium and RER decreased after transition from HI to MI workloads (P < 0.05). There was a negative correlation between time to exhaustion and decrease in La(-) concentration during the first MI (r = -0.714; P = 0.047). Furthermore, time to exhaustion correlated with VO(2LT )calculated from the ramp test (r = 0.738; P = 0.037). Our results suggest that the magnitude of decrease of La(-1) between the first HI workload and the consecutive MI workload could predict performance during prolonged exercise with variable intensity. PMID:17186302

  3. Artificial gravity as a countermeasure to microgravity: a pilot study examining the effects on knee extensor and plantar flexor muscle groups

    PubMed Central

    Caiozzo, V. J.; Haddad, F.; Lee, S.; Baker, M.; Paloski, William; Baldwin, K. M.

    2009-01-01

    The goal of this project was to examine the effects of artificial gravity (AG) on skeletal muscle strength and key anabolic/catabolic markers known to regulate muscle mass. Two groups of subjects were selected for study: 1) a 21 day-bed rest (BR) group (n = 7) and 2) an AG group (n = 8), which was subjected to 21 days of 6° head-down tilt bed rest plus daily 1-h exposures to AG (2.5 G at the feet). Centrifugation was produced using a short-arm centrifuge with the foot plate ∼220 cm from the center of rotation. The torque-velocity relationships of the knee extensors and plantar flexors of the ankle were determined pre- and posttreatment. Muscle biopsy samples obtained from the vastus lateralis and soleus muscles were used for a series of gene expression analyses (mRNA abundance) of key factors implicated in the anabolic vs. catabolic state of the muscle. Post/pre torque-velocity determinations revealed greater decrements in knee extensor performance in the BR vs. AG group (P < 0.04). The plantar flexors of the AG subjects actually demonstrated a net gain in the torque-velocity relationship, whereas in the BR group, the responses declined (AG vs. BR, P < 0.001). Muscle fiber cross-sectional area decreased by ∼20% in the BR group, whereas no losses were evident in the AG group. RT-PCR analyses of muscle biopsy specimens demonstrated that markers of growth and cytoskeletal integrity were higher in the AG group, whereas catabolic markers were elevated in the BR group. Importantly, these patterns were seen in both muscles. We conclude that paradigms of AG have the potential to maintain the functional, biochemical, and structural homeostasis of skeletal muscle in the face of chronic unloading. PMID:19286573

  4. Influence of obstructive sleep apnea syndrome in the fluctuation of the submaximal isometric torque of knee extensors in patients with early-grade osteoarthritis

    PubMed Central

    Silva, Andressa; Mello, Marco T.; Serrão, Paula R.; Luz, Roberta P.; Bittencourt, Lia R.; Mattiello, Stela M.

    2015-01-01

    OBJECTIVE: The aim of this study was to investigate whether obstructive sleep apnea (OSA) alters the fluctuation of submaximal isometric torque of the knee extensors in patients with early-grade osteoarthritis (OA). METHOD: The study included 60 male volunteers, aged 40 to 70 years, divided into four groups: Group 1 (G1) - Control (n=15): without OA and without OSA; Group 2 (G2) (n=15): with OA and without OSA; Group 3 (G3) (n=15): without OA and with OSA; and Group 4 (G4) (n=15) with OA and with OSA. Five patients underwent maximal isometric contractions of 10 seconds duration each, with the knee at 60° of flexion to determine peak torque at 60°. To evaluate the fluctuation of torque, 5 submaximal isometric contractions (50% of maximum peak torque) of 10 seconds each, which were calculated from the standard deviation of torque and coefficient of variation, were performed. RESULTS: Significant differences were observed between groups for maximum peak torque, while G4 showed a lower value compared with G1 (p=0.005). Additionally, for the average torque exerted, G4 showed a lower value compared to the G1 (p=0.036). However, no differences were found between the groups for the standard deviation (p=0.844) and the coefficient of variation (p=0.143). CONCLUSION: The authors concluded that OSA did not change the parameters of the fluctuation of isometric submaximal torque of knee extensors in patients with early-grade OA. PMID:26443974

  5. Artificial gravity as a countermeasure to microgravity: a pilot study examining the effects on knee extensor and plantar flexor muscle groups.

    PubMed

    Caiozzo, V J; Haddad, F; Lee, S; Baker, M; Paloski, William; Baldwin, K M

    2009-07-01

    The goal of this project was to examine the effects of artificial gravity (AG) on skeletal muscle strength and key anabolic/catabolic markers known to regulate muscle mass. Two groups of subjects were selected for study: 1) a 21 day-bed rest (BR) group (n = 7) and 2) an AG group (n = 8), which was subjected to 21 days of 6 degrees head-down tilt bed rest plus daily 1-h exposures to AG (2.5 G at the feet). Centrifugation was produced using a short-arm centrifuge with the foot plate approximately 220 cm from the center of rotation. The torque-velocity relationships of the knee extensors and plantar flexors of the ankle were determined pre- and posttreatment. Muscle biopsy samples obtained from the vastus lateralis and soleus muscles were used for a series of gene expression analyses (mRNA abundance) of key factors implicated in the anabolic vs. catabolic state of the muscle. Post/pre torque-velocity determinations revealed greater decrements in knee extensor performance in the BR vs. AG group (P < 0.04). The plantar flexors of the AG subjects actually demonstrated a net gain in the torque-velocity relationship, whereas in the BR group, the responses declined (AG vs. BR, P < 0.001). Muscle fiber cross-sectional area decreased by approximately 20% in the BR group, whereas no losses were evident in the AG group. RT-PCR analyses of muscle biopsy specimens demonstrated that markers of growth and cytoskeletal integrity were higher in the AG group, whereas catabolic markers were elevated in the BR group. Importantly, these patterns were seen in both muscles. We conclude that paradigms of AG have the potential to maintain the functional, biochemical, and structural homeostasis of skeletal muscle in the face of chronic unloading. PMID:19286573

  6. Salivary and serum cortisol levels during recovery from intense exercise and prolonged, moderate exercise

    PubMed Central

    Powell, J; DiLeo, T; Roberge, R; Coca, A

    2015-01-01

    The aim of this study was to compare serum (SERc) and salivary cortisol (SALc) responses during recovery from two different exhaustive exercises to determine peak cortisol sampling time and the agreement between SERc and SALc levels. Twelve healthy men underwent a maximal treadmill graded exercise to exhaustion (MEx) and a prolonged, submaximal cycle exercise in the heat for 90 min (PEx) while SERc and SALc samples were taken in parallel at baseline, end of exercise, and 15 min intervals over one hour of recovery. MEx and PEx significantly increased SERc and SALc levels (p < 0.01) while absolute SERc levels were approximately 7-10 folds higher than SALc. SERc and SALc showed highly positive correlation (R = 0.667-0.910, p < 0.05) at most sampling times and only a few individual values were out of 95% limit of agreement when analyzed by Bland-Altman plots. However, peak SERc levels (MEx: 784.0±147, PEx: 705.5±212.0 nmol · L−1) occurred at 15 min of recovery, whereas peak SALc levels (MEx: 102.7±46.4, PEx: 95.7±40.9 nmol · L−1) were achieved at the end of exercise in MEx and PEx. The recovery trend of SERc and SALc also differed following MEx and PEx. Activity of 11β-hydroxysteroid dehydrogenase type 2 enzymes may be suppressed following MEx compared to PEx. In conclusion, sampling for peak SERc and SALc levels should take into account their evolution and clearance characteristics as well as type of exercise performed, whereas SALc appeared to be a more sensitive marker than SERc for the measurement of cortisol responses during exercise recovery. PMID:26028807

  7. Salivary and serum cortisol levels during recovery from intense exercise and prolonged, moderate exercise.

    PubMed

    Powell, J; DiLeo, T; Roberge, R; Coca, A; Kim, J-H

    2015-06-01

    The aim of this study was to compare serum (SERc) and salivary cortisol (SALc) responses during recovery from two different exhaustive exercises to determine peak cortisol sampling time and the agreement between SERc and SALc levels. Twelve healthy men underwent a maximal treadmill graded exercise to exhaustion (MEx) and a prolonged, submaximal cycle exercise in the heat for 90 min (PEx) while SERc and SALc samples were taken in parallel at baseline, end of exercise, and 15 min intervals over one hour of recovery. MEx and PEx significantly increased SERc and SALc levels (p < 0.01) while absolute SERc levels were approximately 7-10 folds higher than SALc. SERc and SALc showed highly positive correlation (R = 0.667-0.910, p < 0.05) at most sampling times and only a few individual values were out of 95% limit of agreement when analyzed by Bland-Altman plots. However, peak SERc levels (MEx: 784.0±147, PEx: 705.5±212.0 nmol · L(-1)) occurred at 15 min of recovery, whereas peak SALc levels (MEx: 102.7±46.4, PEx: 95.7±40.9 nmol · L(-1)) were achieved at the end of exercise in MEx and PEx. The recovery trend of SERc and SALc also differed following MEx and PEx. Activity of 11β-hydroxysteroid dehydrogenase type 2 enzymes may be suppressed following MEx compared to PEx. In conclusion, sampling for peak SERc and SALc levels should take into account their evolution and clearance characteristics as well as type of exercise performed, whereas SALc appeared to be a more sensitive marker than SERc for the measurement of cortisol responses during exercise recovery. PMID:26028807

  8. Influence of exercise duration and hydration status on cognitive function during prolonged cycling exercise.

    PubMed

    Grego, F; Vallier, J-M; Collardeau, M; Rousseu, C; Cremieux, J; Brisswalter, J

    2005-01-01

    The purpose of the present study was to examine the influence of submaximal aerobic exercise duration on simple and complex cognitive performance. Eight well-trained male subjects agreed to participate in this study (trial group). A control group of eight regularly trained male subjects was included for comparative purposes. For the trial group, the experiment involved a critical flicker fusion test (CFF) and a map recognition task performed before, every 20 min during, and immediately after, a 3-h cycling task at an intensity corresponding to approximately 60 % of VO2max. Data were obtained over two experimental sessions with fluid ingestion (F) or no fluid (NF) ingestion. For the control group the experiment was the same but without exercise and fluid ingestion. In the trial group, a significant effect of hydration status was observed on physiological parameters (p <0.05). No effect was found on cognitive performance. A significant decrease in CFF performance was observed after 120 min of exercise when compared with the first 20 min (respectively for CFFmdi: 2.6 vs. 3.8 Hz), irrespective of experimental condition. A significant improvement in speed of response (respectively: 3291 vs. 3062 msec for 20 and 120 min, respectively) and a decrease in error number (21.5 % vs. 6.0 % for 20 and 120 min, respectively) during the map recognition task were recorded between 80 min and 120 min when compared with the first 20 min of exercise. After 120 min the number of recorded errors was significantly greater indicating a shift in the accuracy-speed trade-off (6.0 % vs. 14.1 % for 120 and 180 min, respectively). These results provide some evidence for exercise-induced facilitation of cognitive function. However this positive effect disappears during prolonged exercise--as evidenced within our study by an increase in errors during the complex task and an alteration in perceptual response (i.e. the appearance of symptoms of central fatigue). PMID:15643531

  9. Influence of preliminary exercise training on muscle damage indices in rats after one bout of prolonged treadmill exercise.

    PubMed

    Hyun, Ju; Kim, Young Mi; Hwangbo, Kak; Kim, Young Mi

    2016-06-01

    [Purpose] The purpose of this study was to investigate the effects of exercise on muscle damage indices in male Sprague-Dawley rats. Two groups of rats were trained in either moderate- or high-intensity treadmill running for 4 weeks. Subsequently, the concentrations of creatine kinase, lactate dehydrogenase, and high-sensitivity C-reactive protein were examined following a single bout of prolonged (3-h) intensive exercise. [Subjects and Methods] The study included forty 6-week-old male Sprague-Dawley rats weighing 150-180 g each. The aerobic exercise group was divided into high-intensity (28 m/min) and moderate-intensity (15 m/min) subgroups. Both subgroups were trained for 35 min daily for 6 days per week (excluding Sunday) over a 4-week period. Following training, the high- and moderate-intensity exercise groups and a non-exercise group performed one bout of prolonged (3-h) treadmill exercise for 3 hours at a speed of 15 m/min. [Results] Creatine kinase and lactate dehydrogenase levels differed significantly among the groups. [Conclusion] The preliminary exercise groups showed lower muscle damage and inflammatory response levels than the non-exercise group after the bout of prolonged intensive exercise. PMID:27390433

  10. Influence of preliminary exercise training on muscle damage indices in rats after one bout of prolonged treadmill exercise

    PubMed Central

    Hyun, Ju; Kim, Young Mi; Hwangbo, Kak; Kim, Young Mi

    2016-01-01

    [Purpose] The purpose of this study was to investigate the effects of exercise on muscle damage indices in male Sprague-Dawley rats. Two groups of rats were trained in either moderate- or high-intensity treadmill running for 4 weeks. Subsequently, the concentrations of creatine kinase, lactate dehydrogenase, and high-sensitivity C-reactive protein were examined following a single bout of prolonged (3-h) intensive exercise. [Subjects and Methods] The study included forty 6-week-old male Sprague-Dawley rats weighing 150–180 g each. The aerobic exercise group was divided into high-intensity (28 m/min) and moderate-intensity (15 m/min) subgroups. Both subgroups were trained for 35 min daily for 6 days per week (excluding Sunday) over a 4-week period. Following training, the high- and moderate-intensity exercise groups and a non-exercise group performed one bout of prolonged (3-h) treadmill exercise for 3 hours at a speed of 15 m/min. [Results] Creatine kinase and lactate dehydrogenase levels differed significantly among the groups. [Conclusion] The preliminary exercise groups showed lower muscle damage and inflammatory response levels than the non-exercise group after the bout of prolonged intensive exercise. PMID:27390433

  11. Acute moderate exercise does not attenuate cardiometabolic function associated with a bout of prolonged sitting.

    PubMed

    Younger, Amanda M; Pettitt, Robert W; Sexton, Patrick J; Maass, William J; Pettitt, Cherie D

    2016-01-01

    Epidemiological studies suggest that prolonged sitting increases all-cause mortality; yet, physiological causes underpinning prolonged sitting remain elusive. We evaluated cardiometabolic function during prolonged sitting (5 h) in 10 adults with and without 30 min of moderate exercise leading up to the sitting. Mean arterial blood pressure (MAP), heart rate (HR) and posterior tibial artery blood velocity were measured at baseline and every hour subsequently. Blood glucose was measured at baseline, 3 and 5 h, with consumption of a caloric beverage at 1 h. Seated MAP and HR values were ~17 mmHg (P < 0.001) and ~4 bpm (P < 0.05) higher for the moderate exercise versus sitting conditions. A ~ 4 cm·s(-1) (16%) (P < 0.05) decline in posterior tibial artery blood velocity from prolonged sitting was observed, with no benefit conferred from moderate exercise. Postprandial glucose metabolism was not different between conditions (P > 0.05). We conclude prolonged sitting may be related to decreased posterior tibial artery blood velocity. Moreover, an acute bout of moderate exercise does not seem to attenuate cardiometabolic function during prolonged sitting in healthy, young adults. PMID:26186044

  12. Knee extensor loss and proximal tibial soft tissue defect managed successfully with simultaneous medial gastrocnemius flap, saphenous fasciocutaneous flap and medial hemisoleus flap: a case report

    PubMed Central

    2013-01-01

    Introduction Open fractures of the proximal tibia often pose serious challenges to the treating orthopedic surgeon. Management of these complex injuries becomes difficult if they are associated with damage to the extensor mechanism and an exposed knee joint. The scenario becomes more difficult to manage when the soft tissue defect extends to the middle third of the leg. We report a case where we used an extended medial gastrocnemius flap in combination with a saphenous artery fasciocutaneous flap and a medial hemisoleus flap for treatment of an infected proximal tibia fracture with loss of the extensor mechanism and soft tissue defect. To the best of our knowledge, combined use of these three flaps for the management of such injuries has not been reported elsewhere to date. Case presentation A 28-year-old Indian man presented to our Out-patient Department with complaints of pain and pus discharge from his left proximal leg for four weeks. He had sustained an open fracture of his left proximal tibia in a road traffic accident five weeks ago and had been operated on elsewhere. He had a stiff, painful knee with an infected wound of 4×4cm over the proximal third of his leg exposing infected, necrotic patellar tendon. He was successfully managed with debridement and simultaneously elevated flaps as described. Conclusions This procedure avoids the donor site morbidity associated with free flaps harvested from sites distant from the site of injury, and also does not need the expertise of microvascular reconstruction. To the best of our knowledge, this is also the first report of the combined use of three local flaps for knee extensor reconstruction and soft tissue coverage around the knee. PMID:23506268

  13. Carbohydrate vs protein supplementation for recovery of neuromuscular function following prolonged load carriage

    PubMed Central

    2010-01-01

    Background This study examined the effect of carbohydrate and whey protein supplements on recovery of neuromuscular function after prolonged load carriage. Methods Ten male participants (body mass: 81.5 ± 10.5 kg, age: 28 ± 9 years, O2max: 55.0 ± 5.5 ml·kg-1·min-1) completed three treadmill walking tests (2 hr, 6.5 km·h-1), carrying a 25 kg backpack consuming 500 ml of either: (1) Placebo (flavoured water) [PLA], (2) 6.4% Carbohydrate Solution [CHO] or (3) 7.0% Whey Protein Solution [PRO]. For three days after load carriage, participants consumed two 500 ml supplement boluses. Muscle performance was measured before and at 0, 24, 48 and 72 h after load carriage, during voluntary and electrically stimulated contractions. Results Isometric knee extension force decreased immediately after load carriage with no difference between conditions. During recovery, isometric force returned to pre-exercise values at 48 h for CHO and PRO but at 72 h for PLA. Voluntary activation decreased immediately after load carriage and returned to pre-exercise values at 24 h in all conditions (P = 0.086). During recovery, there were no differences between conditions for the change in isokinetic peak torque. Following reductions immediately after load carriage, knee extensor and flexor peak torque (60°·s-1) recovered to pre-exercise values at 72 h. Trunk extensor and flexor peak torque (15°·s-1) recovered to pre-exercise values at 24 h (P = 0.091) and 48 h (P = 0.177), respectively. Conclusion Recovery of neuromuscular function after prolonged load carriage is improved with either carbohydrate or whey protein supplementation for isometric contractions but not for isokinetic contractions. PMID:20157419

  14. Forearm training attenuates sympathetic responses to prolonged rhythmic forearm exercise

    NASA Technical Reports Server (NTRS)

    Sinoway, L.; Shenberger, J.; Leaman, G.; Zelis, R.; Gray, K.; Baily, R.; Leuenberger, U.

    1996-01-01

    We previously demonstrated that nonfatiguing rhythmic forearm exercise at 25% maximal voluntary contraction (12 2-s contractions/min) evokes sympathoexcitation without significant engagement of metabolite-sensitive muscle afferents (B.A. Batman, J.C. Hardy, U.A. Leuenberger, M.B. Smith, Q.X. Yang and L.I. Sinoway. J. Appl. Physiol. 76: 1077-1081, 1994). This is in contrast to the sympathetic nervous system responses observed during fatiguing static forearm exercise where metabolite-sensitive afferents are the key determinants of sympathetic activation. In this report we examined whether forearm exercise training would attenuate sympathetic nervous system responses to rhythmic forearm exercise. We measured heart rate, mean arterial blood pressure (MAP), muscle sympathetic nerve activity (microneurography), plasma norepinephrine (NE), and NE spillover and clearance (tritiated NE kinetics) during nonfatiguing rhythmic forearm exercise before and after a 4-wk unilateral forearm training paradigm. Training had no effect on forearm mass, maximal voluntary contraction, or heart rate but did attenuate the increase in MAP (increase in MAP: from 15.2 +/- 1.8 before training to 11.4 +/- 1.4 mmHg after training; P < 0.017), muscle sympathetic nerve activity (increase in bursts: from 10.8 +/- 1.4 before training to 6.2 +/- 1.1 bursts/min after training; P < 0.030), and the NE spillover (increases in arterial spillover: from 1.3 +/- 0.2 before training to 0.6 +/- 0.2 nmol.min-1.m-2 after training, P < 0.014; increase in venous spillover: from 2.0 +/- 0.6 before training to 1.0 +/- 0.5 nmol.min-1.m-2 after training, P < 0.037) seen in response to exercise performed by the trained forearm. Thus forearm training reduces sympathetic responses during a nonfatiguing rhythmic handgrip paradigm that does not engage muscle metaboreceptors. We speculate that this effect is due to a conditioning-induced reduction in mechanically sensitive muscle afferent discharge.

  15. Space physiology VI: exercise, artificial gravity, and countermeasure development for prolonged space flight.

    PubMed

    Hargens, Alan R; Bhattacharya, Roshmi; Schneider, Suzanne M

    2013-09-01

    When applied individually, exercise countermeasures employed to date do not fully protect the cardiovascular and musculoskeletal systems during prolonged spaceflight. Recent ground-based research suggests that it is necessary to perform exercise countermeasures within some form of artificial gravity to prevent microgravity deconditioning. In this regard, it is important to provide normal foot-ward loading and intravascular hydrostatic-pressure gradients to maintain musculoskeletal and cardiovascular function. Aerobic exercise within a centrifuge restores cardiovascular function, while aerobic exercise within lower body negative pressure restores cardiovascular function and helps protect the musculoskeletal system. Resistive exercise with vibration stimulation may increase the effectiveness of resistive exercise by preserving muscle function, allowing lower intensity exercises, and possibly reducing risk of loss of vision during prolonged spaceflight. Inexpensive methods to induce artificial gravity alone (to counteract head-ward fluid shifts) and exercise during artificial gravity (for example, by short-arm centrifuge or exercise within lower body negative pressure) should be developed further and evaluated as multi-system countermeasures. PMID:23079865

  16. High altitude, prolonged exercise, and the athlete biological passport.

    PubMed

    Schumacher, Yorck O; Garvican, Laura A; Christian, Ryan; Lobigs, Louisa M; Qi, Jiliang; Fan, Rongyun; He, Yingying; Wang, Hailing; Gore, Christopher J; Ma, Fuhai

    2015-01-01

    The Athlete Biological Passport (ABP) detects blood doping in athletes through longitudinal monitoring of erythropoietic markers. Mathematical algorithms are used to define individual reference ranges for these markers for each athlete. It is unclear if altitude and exercise can affect the variables included in these calculations in a way that the changes might be mistaken for blood manipulation. The aim of this study was to investigate the influence of the simultaneous strenuous exercise and low to high altitude exposure on the calculation algorithms of the ABP. 14 sea level (SL) and 11 altitude native (ALT) highly trained athletes participated in a 14-day cycling stage race taking place at an average altitude of 2496 m above sea level (min. 1014 m, max. 4120 m), race distances ranged between 96 and 227 km per day. ABP blood measures were taken on days -1,3,6,10,14 (SL) and -1,9,15 (ALT) of the race. Four results from three samples of two different SL athletes exceeded the individual limits at the 99% specificity threshold and one value at 99.9%. In ALT, three results from three samples of three different athletes were beyond the individual limits at 99%, one at 99.9%. The variations could be explained by the expected physiological reaction to exercise and altitude. In summary, the abnormalities observed in the haematological ABP´s of well-trained athletes during extensive exercise at altitude are limited and in line with expected physiological changes. PMID:25252093

  17. Plasma cell-free mitochondrial DNA declines in response to prolonged moderate aerobic exercise.

    PubMed

    Shockett, Penny E; Khanal, Januka; Sitaula, Alina; Oglesby, Christopher; Meachum, William A; Castracane, V Daniel; Kraemer, Robert R

    2016-01-01

    Increased plasma cell-free mitochondrial DNA (cf-mDNA), a damage-associated molecular pattern (DAMP) produced by cellular injury, contributes to neutrophil activation/inflammation in trauma patients and arises in cancer and autoimmunity. To further understand relationships between cf-mDNA released by tissue injury, inflammation, and health benefits of exercise, we examined cf-mDNA response to prolonged moderate aerobic exercise. Seven healthy moderately trained young men (age = 22.4 ± 1.2) completed a treadmill exercise trial for 90 min at 60% VO2 max and a resting control trial. Blood was sampled immediately prior to exercise (0 min = baseline), during (+18, +54 min), immediately after (+90 min), and after recovery (R40). Plasma was analyzed for cf-mDNA, IL-6, and lactate. A significant difference in cf-mDNA response was observed between exercise and control trials, with cf-mDNA levels reduced during exercise at +54 and +90 (with or without plasma volume shift correction). Declines in cf-mDNA were accompanied by increased lactate and followed by an increase in IL-6, suggesting a temporal association with muscle stress and inflammatory processes. Our novel finding of cf-mDNA decline with prolonged moderate treadmill exercise provides evidence for increased clearance from or reduced release of cf-mDNA into the blood with prolonged exercise. These studies contrast with previous investigations involving exhaustive short-term treadmill exercise, in which no change in cf-mDNA levels were reported, and contribute to our understanding of differences between exercise- and trauma-induced inflammation. We propose that transient declines in cf-mDNA may induce health benefits, by reducing systemic inflammation. PMID:26755735

  18. Effect of Prolonged Moderate Exercise on the Changes of Nonneuronal Cells in Early Myocardial Infarction.

    PubMed

    Rinaldi, Barbara; Guida, Francesca; Furiano, Anna; Donniacuo, Maria; Luongo, Livio; Gritti, Giulia; Urbanek, Konrad; Messina, Giovanni; Maione, Sabatino; Rossi, Francesco; de Novellis, Vito

    2015-01-01

    Myocardial infarction (MI) is one of the leading causes of death in developed countries and it is characterized by several associated symptomatologies and poor quality of life. Recent data showed a possible interaction between infarction and brain inflammation and activity. Previous studies have demonstrated the beneficial effect of exercise training on deterioration in cardiac function after MI. In this study we analyzed in sedentary and trained rats the microglia and astrocytes 48 hours after MI in PVN, thalamus, prefrontal cortex, and hippocampus through immunofluorescence approach. We found significant changes in specific microglia phenotypes in the brain areas analyzed together with astrocytes activation. Prolonged exercise normalized these morphological changes of microglia and astrocytes in the prefrontal cortex, hippocampus, and thalamus but not in the PVN. Our data suggest that there is an early brain reaction to myocardial infarction induction, involving nonneuronal cells, that is attenuated by the prolonged exercise. PMID:26266053

  19. Effect of Prolonged Moderate Exercise on the Changes of Nonneuronal Cells in Early Myocardial Infarction

    PubMed Central

    Rinaldi, Barbara; Guida, Francesca; Furiano, Anna; Donniacuo, Maria; Luongo, Livio; Gritti, Giulia; Urbanek, Konrad; Messina, Giovanni; Maione, Sabatino; Rossi, Francesco; de Novellis, Vito

    2015-01-01

    Myocardial infarction (MI) is one of the leading causes of death in developed countries and it is characterized by several associated symptomatologies and poor quality of life. Recent data showed a possible interaction between infarction and brain inflammation and activity. Previous studies have demonstrated the beneficial effect of exercise training on deterioration in cardiac function after MI. In this study we analyzed in sedentary and trained rats the microglia and astrocytes 48 hours after MI in PVN, thalamus, prefrontal cortex, and hippocampus through immunofluorescence approach. We found significant changes in specific microglia phenotypes in the brain areas analyzed together with astrocytes activation. Prolonged exercise normalized these morphological changes of microglia and astrocytes in the prefrontal cortex, hippocampus, and thalamus but not in the PVN. Our data suggest that there is an early brain reaction to myocardial infarction induction, involving nonneuronal cells, that is attenuated by the prolonged exercise. PMID:26266053

  20. Lack of Skeletal Muscle IL-6 Affects Pyruvate Dehydrogenase Activity at Rest and during Prolonged Exercise

    PubMed Central

    Gudiksen, Anders; Schwartz, Camilla Lindgren; Bertholdt, Lærke; Joensen, Ella; Knudsen, Jakob G.; Pilegaard, Henriette

    2016-01-01

    Pyruvate dehydrogenase (PDH) plays a key role in the regulation of skeletal muscle substrate utilization. IL-6 is produced in skeletal muscle during exercise in a duration dependent manner and has been reported to increase whole body fatty acid oxidation, muscle glucose uptake and decrease PDHa activity in skeletal muscle of fed mice. The aim of the present study was to examine whether muscle IL-6 contributes to exercise-induced PDH regulation in skeletal muscle. Skeletal muscle-specific IL-6 knockout (IL-6 MKO) mice and floxed littermate controls (control) completed a single bout of treadmill exercise for 10, 60 or 120 min, with rested mice of each genotype serving as basal controls. The respiratory exchange ratio (RER) was overall higher (P<0.05) in IL-6 MKO than control mice during the 120 min of treadmill exercise, while RER decreased during exercise independent of genotype. AMPK and ACC phosphorylation also increased with exercise independent of genotype. PDHa activity was in control mice higher (P<0.05) at 10 and 60 min of exercise than at rest but remained unchanged in IL-6 MKO mice. In addition, PDHa activity was higher (P<0.05) in IL-6 MKO than control mice at rest and 60 min of exercise. Neither PDH phosphorylation nor acetylation could explain the genotype differences in PDHa activity. Together, this provides evidence that skeletal muscle IL-6 contributes to the regulation of PDH at rest and during prolonged exercise and suggests that muscle IL-6 normally dampens carbohydrate utilization during prolonged exercise via effects on PDH. PMID:27327080

  1. Liver glycogen metabolism during and after prolonged endurance-type exercise.

    PubMed

    Gonzalez, Javier T; Fuchs, Cas J; Betts, James A; van Loon, Luc J C

    2016-09-01

    Carbohydrate and fat are the main substrates utilized during prolonged endurance-type exercise. The relative contribution of each is determined primarily by the intensity and duration of exercise, along with individual training and nutritional status. During moderate- to high-intensity exercise, carbohydrate represents the main substrate source. Because endogenous carbohydrate stores (primarily in liver and muscle) are relatively small, endurance-type exercise performance/capacity is often limited by endogenous carbohydrate availability. Much exercise metabolism research to date has focused on muscle glycogen utilization, with little attention paid to the contribution of liver glycogen. (13)C magnetic resonance spectroscopy permits direct, noninvasive measurements of liver glycogen content and has increased understanding of the relevance of liver glycogen during exercise. In contrast to muscle, endurance-trained athletes do not exhibit elevated basal liver glycogen concentrations. However, there is evidence that liver glycogenolysis may be lower in endurance-trained athletes compared with untrained controls during moderate- to high-intensity exercise. Therefore, liver glycogen sparing in an endurance-trained state may account partly for training-induced performance/capacity adaptations during prolonged (>90 min) exercise. Ingestion of carbohydrate at a relatively high rate (>1.5 g/min) can prevent liver glycogen depletion during moderate-intensity exercise independent of the type of carbohydrate (e.g., glucose vs. sucrose) ingested. To minimize gastrointestinal discomfort, it is recommended to ingest specific combinations or types of carbohydrates (glucose plus fructose and/or sucrose). By coingesting glucose with either galactose or fructose, postexercise liver glycogen repletion rates can be doubled. There are currently no guidelines for carbohydrate ingestion to maximize liver glycogen repletion. PMID:27436612

  2. Role of nitric oxide in exercise hyperaemia during prolonged rhythmic handgripping in humans.

    PubMed Central

    Dyke, C K; Proctor, D N; Dietz, N M; Joyner, M J

    1995-01-01

    1. We sought to determine whether the vasodilating molecule nitric oxide (NO) contributes to the forearm hyperaemia observed during prolonged rhythmic handgripping in humans. 2. Two bouts of exercise were performed during experimental protocols conducted on separate days. During each protocol the subject performed a 10 min and a 20 min bout of rhythmic (30 min-1) handgripping at 15% of maximum. Two exercise bouts were required to facilitate pharmacological interventions during the second protocol. Blood flow in the exercising forearm was measured every minute with plethysmography during brief pauses in the contractions. During both exercise bouts in the first protocol, forearm blood flow increased 2- to 3-fold above rest after 1 min of handgripping and remained constant at that level throughout the exercise. 3. During the 10 min bout of exercise in the second protocol, acetylcholine was given via a brachial artery catheter at 16 micrograms min-1 for 3 min to evoke NO release from the vascular endothelium. This caused forearm blood flow to increase above the values observed during exercise alone. 4. During the 20 min trial of handgripping in the second protocol, the NO synthase blocker NG-monomethyl-L-arginine (L-NMMA) was infused in the exercising forearm via the brachial catheter after 5 min of handgripping. The L-NMMA was infused at 4 mg min-1 for 10 min. 5. L-NMMA during exercise caused forearm blood flow to fall to values approximately 20-30% lower than those observed during exercise alone. When ACh was given during exercise after L-NMMA administration the rise in blood flow was also blunted, indicating blockade of NO synthase. These data suggest NO plays a role in exercise hyperaemia in humans. Images Figure 1 PMID:8568663

  3. Hypertrophy of chronically unloaded muscle subjected to resistance exercise.

    PubMed

    Tesch, P A; Trieschmann, J T; Ekberg, A

    2004-04-01

    In an effort to simulate the compromised function and atrophy of lower limb muscles experienced by astronauts after spaceflight, 21 men and women age 30-56 yr were subjected to unilateral lower limb unloading for 5 wk. Whereas 10 of these subjects performed unilateral knee extensor resistance exercise (ULRE) two or three times weekly, 11 subjects (UL) refrained from training. The exercise regimen consisted of four sets of seven maximal actions, using an apparatus that offers concentric and eccentric resistance by utilizing the inertia of rotating flywheel(s). Knee extensor muscle strength was measured before and after UL and ULRE, and knee extensor and ankle plantar flexor muscle volumes were determined by means of magnetic resonance imaging. Surface electromyographic activity measured after UL inferred increased muscle use to perform a given motor task. UL induced an 8.8% decrease (P < 0.05) in knee extensor muscle volume. After ULRE and as a result of only approximately 16 min of maximal contractile activity over the 5-wk course, muscle volume increased 7.7% (P < 0.05). Muscle strength decreased 24-32% (P < 0.05) in response to UL. Group ULRE showed maintained (P > 0.05) strength. Ankle plantar flexor muscle volume of the unloaded limb decreased (P < 0.05) in both groups (UL 10.5%; ULRE 11.1%). In neither group did the right weight-bearing limb show any change (P > 0.05) in muscle volume or strength. The results of this study provide evidence that resistance exercise not only may offset muscle atrophy but is in fact capable of promoting marked hypertrophy of chronically unloaded muscle. PMID:14660503

  4. Carbohydrate metabolism during prolonged exercise and recovery: interactions between pyruvate dehydrogenase, fatty acids, and amino acids.

    PubMed

    Mourtzakis, Marina; Saltin, Bengt; Graham, Terry; Pilegaard, Henriette

    2006-06-01

    During prolonged exercise, carbohydrate oxidation may result from decreased pyruvate production and increased fatty acid supply and ultimately lead to reduced pyruvate dehydrogenase (PDH) activity. Pyruvate also interacts with the amino acids alanine, glutamine, and glutamate, whereby the decline in pyruvate production could affect tricarboxycylic acid cycle flux as well as gluconeogenesis. To enhance our understanding of these interactions, we studied the time course of changes in substrate utilization in six men who cycled at 44+/-1% peak oxygen consumption (mean+/-SE) until exhaustion (exhaustion at 3 h 23 min+/-11 min). Femoral arterial and venous blood, blood flow measurements, and muscle samples were obtained hourly during exercise and recovery (3 h). Carbohydrate oxidation peaked at 30 min of exercise and subsequently decreased for the remainder of the exercise bout (P<0.05). PDH activity peaked at 2 h of exercise, whereas pyruvate production peaked at 1 h of exercise and was reduced (approximately 30%) thereafter, suggesting that pyruvate availability primarily accounted for reduced carbohydrate oxidation. Increased free fatty acid uptake (P<0.05) was also associated with decreasing PDH activity (P<0.05) and increased PDH kinase 4 mRNA (P<0.05) during exercise and recovery. At 1 h of exercise, pyruvate production was greatest and was closely linked to glutamate, which was the predominant amino acid taken up during exercise and recovery. Alanine and glutamine were also associated with pyruvate metabolism, and they comprised approximately 68% of total amino-acid release during exercise and recovery. Thus reduced pyruvate production was primarily associated with reduced carbohydrate oxidation, whereas the greatest production of pyruvate was related to glutamate, glutamine, and alanine metabolism in early exercise. PMID:16424076

  5. Muscle ultrastructural changes from exhaustive exercise performed after prolonged restricted activity and retraining in dogs

    NASA Technical Reports Server (NTRS)

    Nazar, K.; Greenleaf, J. E.; Philpott, D.; Pohoska, E.; Olszewska, K.; Kaciuba-Uscilko, H.

    1991-01-01

    The effect of exhaustive treadmill exercise on ultrastructural changes in the quadriceps femoris muscle was studied in 7 normal, healthy dogs, before and after restricted activity (RA), and following a subsequent 2 month treadmill exercise retraining period for the 5 mo group. Mean time to exhaustion in the 2 mo group decreased from 177 + or - 22 min before to 90 + or - 32 min after RA. Retraining increased tolerance to 219 + or - 73 min; 24 pct. above the before RA and 143 pct. above the after RA time. After RA exhaustion time in the 5 mo group was 25 and 45 min. Before RA, pre-exercise muscle structure was normal and post exercise there was only slight swelling of mitochondria. After RA, pre-exercise, numerous glycogen granules and lipid droplets appeared in the muscle fibers, mitochondria were smaller, and sarcoplasmic reticulum channels widened; post exercise these changes were accentuated and some areas were devoid of glycogen, and there was fiber degradation. After 5 mo RA pre-exercise there were more pronounced changes; mitochondria were very small and dense, there were many lipid droplets, myofibrils were often separated, and the fibers appeared edematous and degenerating; post exercise the sarcoplasmic reticulum was swollen, no glycogen was present, and there was marked swelling and deformation of mitochondria. After retraining, both pre-exercise and post exercise there was still evidence of fiber degeneration. Thus, susceptibility of active skeletal muscle structures and subcellular elements, e.g., mitochondria, to the action of damaging factors occurring during exhaustive exercise is enhanced considerably by prolonged disuse.

  6. Changes in Voluntary Activation Assessed by Transcranial Magnetic Stimulation during Prolonged Cycling Exercise

    PubMed Central

    Perrey, Stephane; Temesi, John; Wuyam, Bernard; Levy, Patrick; Verges, Samuel; Millet, Guillaume Y.

    2014-01-01

    Maximal central motor drive is known to decrease during prolonged exercise although it remains to be determined whether a supraspinal deficit exists, and if so, when it appears. The purpose of this study was to evaluate corticospinal excitability and muscle voluntary activation before, during and after a 4-h cycling exercise. Ten healthy subjects performed three 80-min bouts on an ergocycle at 45% of their maximal aerobic power. Before exercise and immediately after each bout, neuromuscular function was evaluated in the quadriceps femoris muscles under isometric conditions. Transcranial magnetic stimulation was used to assess voluntary activation at the cortical level (VATMS), corticospinal excitability via motor-evoked potential (MEP) and intracortical inhibition by cortical silent period (CSP). Electrical stimulation of the femoral nerve was used to measure voluntary activation at the peripheral level (VAFNES) and muscle contractile properties. Maximal voluntary force was significantly reduced after the first bout (13±9%, P<0.01) and was further decreased (25±11%, P<0.001) at the end of exercise. CSP remained unchanged throughout the protocol. Rectus femoris and vastus lateralis but not vastus medialis MEP normalized to maximal M-wave amplitude significantly increased during cycling. Finally, significant decreases in both VATMS and VAFNES (∼8%, P<0.05 and ∼14%, P<0.001 post-exercise, respectively) were observed. In conclusion, reductions in VAFNES after a prolonged cycling exercise are partly explained by a deficit at the cortical level accompanied by increased corticospinal excitability and unchanged intracortical inhibition. When comparing the present results with the literature, this study highlights that changes at the cortical and/or motoneuronal levels depend not only on the type of exercise (single-joint vs. whole-body) but also on exercise intensity and/or duration. PMID:24586559

  7. Carbohydrate supplementation during prolonged cycling exercise spares muscle glycogen but does not affect intramyocellular lipid use

    PubMed Central

    Boon, Hanneke; Gijsen, Annemie P.; Stegen, Jos H. C. H.; Kuipers, Harm; van Loon, Luc J. C.

    2007-01-01

    Using contemporary stable-isotope methodology and fluorescence microscopy, we assessed the impact of carbohydrate supplementation on whole-body and fiber-type-specific intramyocellular triacylglycerol (IMTG) and glycogen use during prolonged endurance exercise. Ten endurance-trained male subjects were studied twice during 3 h of cycling at 63 ± 4% of maximal O2 uptake with either glucose ingestion (CHO trial; 0.7 g CHO kg−1 h−1) or without (CON placebo trial; water only). Continuous infusions with [U-13C] palmitate and [6,6-2H2] glucose were applied to quantify plasma free fatty acids (FFA) and glucose oxidation rates and to estimate intramyocellular lipid and glycogen use. Before and after exercise, muscle biopsy samples were taken to quantify fiber-type-specific IMTG and glycogen content. Plasma glucose rate of appearance (Ra) and carbohydrate oxidation rates were substantially greater in the CHO vs CON trial. Carbohydrate supplementation resulted in a lower muscle glycogen use during the first hour of exercise in the CHO vs CON trial, resulting in a 38 ± 19 and 57 ± 22% decreased utilization in type I and II muscle-fiber glycogen content, respectively. In the CHO trial, both plasma FFA Ra and subsequent plasma FFA concentrations were lower, resulting in a 34 ± 12% reduction in plasma FFA oxidation rates during exercise (P < 0.05). Carbohydrate intake did not augment IMTG utilization, as fluorescence microscopy revealed a 76 ± 21 and 78 ± 22% reduction in type I muscle-fiber lipid content in the CHO and CON trial, respectively. We conclude that carbohydrate supplementation during prolonged cycling exercise does not modulate IMTG use but spares muscle glycogen use during the initial stages of exercise in endurance-trained men. PMID:17333244

  8. Interaction of hyperthermia and heart rate on stroke volume during prolonged exercise.

    PubMed

    Trinity, Joel D; Pahnke, Matthew D; Lee, Joshua F; Coyle, Edward F

    2010-09-01

    People who become hyperthermic during exercise display large increases in heart rate (HR) and reductions in stroke volume (SV). It is not clear if the reduction in SV is due primarily to hyperthermia or if it is a secondary effect of an elevation in HR reducing ventricular filling. In the present study, the upward drift of HR during prolonged exercise was prevented by a very small dose of the β1-adrenoreceptor blocker (atenolol; βB), thus allowing SV to be compared at a given HR during normothermia and hyperthermia. Eleven men cycled for 60 min at 57% of peak O2 uptake after receiving placebo control (PL) or a low dose (0.2 mg/kg) of βB. Hyperthermia was induced by reducing heat dissipation during exercise. Four experimental conditions were studied: normothermia-PL, normothermia-βB, hyperthermia-PL, and hyperthermia-βB. Hyperthermia increased skin and core temperature by 4.3 degrees C and 0.8 degrees C (P<0.01), respectively. βB prevented HR elevation with hyperthermia: HR values were similar at minute 60 during normothermia-PL and hyperthermia-βB (155±11 and 154±13 beats/min, respectively, P=0.82). However, SV was increased by 7% during the final 20 min of exercise during hyperthermia-βB compared with normothermia-PL (treatment×time interaction, P=0.03). In conclusion, when matched for HR, mild hyperthermia increased SV during exercise. Furthermore, the reduction in SV throughout prolonged exercise under normothermic and mildly hyperthermic conditions appears to be due to the increase in HR. PMID:20595543

  9. Reduced mechanical efficiency in chronic obstructive pulmonary disease but normal peak VO2 with small muscle mass exercise.

    PubMed

    Richardson, Russell S; Leek, Bryan T; Gavin, Timothy P; Haseler, Luke J; Mudaliar, Sundar R D; Henry, Robert; Mathieu-Costello, Odile; Wagner, Peter D

    2004-01-01

    We studied six patients with chronic obstructive pulmonary disease (COPD) (FEV1 = 1.1 +/- 0.2 L, 32% of predicted) and six age- and activity level-matched control subjects while performing both maximal bicycle exercise and single leg knee-extensor exercise. Arterial and femoral venous blood sampling, thermodilution blood flow measurements, and needle biopsies allowed the assessment of muscle oxygen supply, utilization, and structure. Maximal work rates and single leg VO2max (control subjects = 0.63 +/- 0.1; patients with COPD = 0.37 +/- 0.1 L/minute) were significantly greater in the control group during bicycle exercise. During knee-extensor exercise this difference in VO2max disappeared, whereas maximal work capacity was reduced (flywheel resistance: control subjects = 923 +/- 198; patients with COPD = 612 +/- 81 g) revealing a significantly reduced mechanical efficiency (work per unit oxygen consumed) with COPD. The patients had an elevated number of less efficient type II muscle fibers, whereas muscle fiber cross-sectional areas, capillarity, and mitochondrial volume density were not different between the groups. Therefore, although metabolic capacity per se is unchanged, fiber type differences associated with COPD may account for the reduced muscular mechanical efficiency that becomes clearly apparent during knee-extensor exercise, when muscle function is no longer overshadowed by the decrement in lung function. PMID:14500263

  10. Effect of exercise-induced fatigue on postural control of the knee.

    PubMed

    Hassanlouei, H; Arendt-Nielsen, L; Kersting, U G; Falla, D

    2012-06-01

    Muscle fatigue is associated with reduced power output and work capacity of the skeletal muscle. Fatigue-induced impairments in muscle function are believed to be a potential cause of increased injury rates during the latter stages of athletic competition and often occur during unexpected perturbations. However the effect of fatigue on functionally relevant, full body destabilizing perturbations has not been investigated. This study examines the effect of muscle fatigue on the activation of the quadriceps and hamstrings to fast, full body perturbations evoked by a moveable platform. Surface electromyographic (EMG) signals were recorded from the knee extensor (vastus medialis, rectus femoris, and vastus lateralis) and flexor muscles (biceps femoris and semitendinosus) of the right leg in nine healthy men during full body perturbations performed at baseline and immediately following high intensity exercise performed on a bicycle ergometer. In each condition, participants stood on a moveable platform during which 16 randomized postural perturbations (eight repetitions of two perturbation types: 8 cm forward slides, 8 cm backward slides) with varying inter-perturbation time intervals were performed over a period of 2-3 min. Maximal voluntary knee extension force was measured before and after the high intensity exercise protocol to confirm the presence of fatigue. Immediately after exercise, the maximal force decreased by 63% and 66% for knee extensors and flexors, respectively (P<0.0001). During the post-exercise postural perturbations, the EMG average rectified value (ARV) was significantly lower than the baseline condition for both the knee extensors (average across all muscles; baseline: 19.7±25.4μV, post exercise: 16.2±19.4 μV) and flexors (baseline: 24.3±20.9 μV, post exercise: 13.8±11.0 μV) (both P<0.05). Moreover the EMG onset was significantly delayed for both the knee extensors (baseline: 132.7±32.9 ms, post exercise: 170.8±22.9 ms) and flexors

  11. Timing Carbohydrate Beverage Intake During Prolonged Moderate Intensity Exercise Does Not Affect Cycling Performance

    PubMed Central

    SCHWEITZER, GEORGE G.; SMITH, JOHN D.; LECHEMINANT, JAMES D.

    2009-01-01

    Carbohydrate beverages consumed during long-term exercise have been shown to attenuate fatigue and improve performance; however, the optimal timing of ingestion is unclear. Therefore, the purpose of this study was to determine if timing the carbohydrate ingestion (continual loading (CL), front-loading (FL), and end-loading (EL)) during prolonged exercise influenced exercise performance in competitive cyclists. Ten well-trained cyclists completed three separate exercise bouts on a bicycle ergometer, each lasting 2 hours at an intensity of ~67% VO2 max, followed by a 15-minute “all out” time trial. In the CL trial, a carbohydrate beverage was ingested throughout the trial. In the FL trial, participants ingested a carbohydrate beverage during the first hour and a placebo beverage during the second hour. In the EL trial, a carbohydrate beverage was ingested during the second hour and a placebo during the first hour. The amount of carbohydrate consumed (75 g) was the same among conditions. The order of conditions was single-blinded, counterbalanced, and determined randomly. Performance was measured by the work output during the 15-minute performance ride. There were no differences in work output among the three conditions during the final time trial. In the first hour of exercise, peak venous blood glucose was highest in the FL condition. In the second hour, peak venous blood glucose was highest in the EL condition. Following the time trial, venous blood glucose levels were similar among CL, FL, and EL. Overall, the timing of carbohydrate beverage consumption during prolonged moderate intensity cycling did not alter cycling performance.

  12. Life-long spontaneous exercise does not prolong lifespan but improves health span in mice

    PubMed Central

    2013-01-01

    Background Life expectancy at birth in the first world has increased from 35 years at the beginning of the 20th century to more than 80 years now. The increase in life expectancy has resulted in an increase in age-related diseases and larger numbers of frail and dependent people. The aim of our study was to determine whether life-long spontaneous aerobic exercise affects lifespan and healthspan in mice. Results Male C57Bl/6J mice, individually caged, were randomly assigned to one of two groups: sedentary (n = 72) or spontaneous wheel-runners (n = 72). We evaluated longevity and several health parameters including grip strength, motor coordination, exercise capacity (VO2max) and skeletal muscle mitochondrial biogenesis. We also measured the cortical levels of the brain-derived neurotrophic factor (BDNF), a neurotrophin associated with brain plasticity. In addition, we measured systemic oxidative stress (malondialdehyde and protein carbonyl plasma levels) and the expression and activity of two genes involved in antioxidant defense in the liver (that is, glutathione peroxidase (GPx) and manganese superoxide dismutase (Mn-SOD)). Genes that encode antioxidant enzymes are considered longevity genes because their over-expression may modulate lifespan. Aging was associated with an increase in oxidative stress biomarkers and in the activity of the antioxidant enzymes, GPx and Mn-SOD, in the liver in mice. Life-long spontaneous exercise did not prolong longevity but prevented several signs of frailty (that is, decrease in strength, endurance and motor coordination). This improvement was accompanied by a significant increase in the mitochondrial biogenesis in skeletal muscle and in the cortical BDNF levels. Conclusion Life-long spontaneous exercise does not prolong lifespan but improves healthspan in mice. Exercise is an intervention that delays age-associated frailty, enhances function and can be translated into the clinic. PMID:24472376

  13. The Effects of Montmorency Tart Cherry Concentrate Supplementation on Recovery Following Prolonged, Intermittent Exercise.

    PubMed

    Bell, Phillip G; Stevenson, Emma; Davison, Gareth W; Howatson, Glyn

    2016-01-01

    This study investigated Montmorency tart cherry concentrate (MC) supplementation on markers of recovery following prolonged, intermittent sprint activity. Sixteen semi-professional, male soccer players, who had dietary restrictions imposed for the duration of the study, were divided into two equal groups and consumed either MC or placebo (PLA) supplementation for eight consecutive days (30 mL twice per day). On day 5, participants completed an adapted version of the Loughborough Intermittent Shuttle Test (LISTADAPT). Maximal voluntary isometric contraction (MVIC), 20 m Sprint, counter movement jump (CMJ), agility and muscle soreness (DOMS) were assessed at baseline, and 24, 48 and 72 h post-exercise. Measures of inflammation (IL-1-β, IL-6, IL-8, TNF-α, hsCRP), muscle damage (CK) and oxidative stress (LOOH) were analysed at baseline and 1, 3, 5, 24, 48 and 72 h post-exercise. Performance indices (MVIC, CMJ and agility) recovered faster and muscle soreness (DOMS) ratings were lower in the MC group (p < 0.05). Additionally, the acute inflammatory response (IL-6) was attenuated in the MC group. There were no effects for LOOH and CK. These findings suggest MC is efficacious in accelerating recovery following prolonged, repeat sprint activity, such as soccer and rugby, and lends further evidence that polyphenol-rich foods like MC are effective in accelerating recovery following various types of strenuous exercise. PMID:27455316

  14. The Effects of Montmorency Tart Cherry Concentrate Supplementation on Recovery Following Prolonged, Intermittent Exercise

    PubMed Central

    Bell, Phillip G.; Stevenson, Emma; Davison, Gareth W.; Howatson, Glyn

    2016-01-01

    This study investigated Montmorency tart cherry concentrate (MC) supplementation on markers of recovery following prolonged, intermittent sprint activity. Sixteen semi-professional, male soccer players, who had dietary restrictions imposed for the duration of the study, were divided into two equal groups and consumed either MC or placebo (PLA) supplementation for eight consecutive days (30 mL twice per day). On day 5, participants completed an adapted version of the Loughborough Intermittent Shuttle Test (LISTADAPT). Maximal voluntary isometric contraction (MVIC), 20 m Sprint, counter movement jump (CMJ), agility and muscle soreness (DOMS) were assessed at baseline, and 24, 48 and 72 h post-exercise. Measures of inflammation (IL-1-β, IL-6, IL-8, TNF-α, hsCRP), muscle damage (CK) and oxidative stress (LOOH) were analysed at baseline and 1, 3, 5, 24, 48 and 72 h post-exercise. Performance indices (MVIC, CMJ and agility) recovered faster and muscle soreness (DOMS) ratings were lower in the MC group (p < 0.05). Additionally, the acute inflammatory response (IL-6) was attenuated in the MC group. There were no effects for LOOH and CK. These findings suggest MC is efficacious in accelerating recovery following prolonged, repeat sprint activity, such as soccer and rugby, and lends further evidence that polyphenol-rich foods like MC are effective in accelerating recovery following various types of strenuous exercise. PMID:27455316

  15. Cardiovascular strain impairs prolonged self-paced exercise in the heat.

    PubMed

    Périard, Julien D; Cramer, Matthew N; Chapman, Phillip G; Caillaud, Corinne; Thompson, Martin W

    2011-02-01

    It has been proposed that self-paced exercise in the heat is regulated by an anticipatory reduction in work rate based on the rate of heat storage. However, performance may be impaired by the development of hyperthermia and concomitant rise in cardiovascular strain increasing relative exercise intensity. This study evaluated the influence of thermal strain on cardiovascular function and power output during self-paced exercise in the heat. Eight endurance-trained cyclists performed a 40 km simulated time trial in hot (35°C) and thermoneutral conditions (20°C), while power output, mean arterial pressure, heart rate, oxygen uptake and cardiac output were measured. Time trial duration was 64.3 ± 2.8 min (242.1 W) in the hot condition and 59.8 ± 2.6 min (279.4 W) in the thermoneutral condition (P < 0.01). Power output in the heat was depressed from 20 min onwards compared with exercise in the thermoneutral condition (P < 0.05). Rectal temperature reached 39.8 ± 0.3 (hot) and 38.9 ± 0.2°C (thermoneutral; P < 0.01). From 10 min onwards, mean skin temperature was ~7.5°C higher in the heat, and skin blood flow was significantly elevated (P < 0.01). Heart rate was ~8 beats min(-1) higher throughout hot exercise, while stroke volume, cardiac output and mean arterial pressure were significantly depressed compared with the thermoneutral condition (P < 0.05). Peak oxygen uptake measured during the final kilometre of exercise at maximal effort reached 77 (hot) and 95% (thermoneutral) of pre-experimental control values (P < 0.01). We conclude that a thermoregulatory-mediated rise in cardiovascular strain is associated with reductions in sustainable power output, peak oxygen uptake and maximal power output during prolonged, intense self-paced exercise in the heat. PMID:20851861

  16. Tyrosine supplementation does not influence the capacity to perform prolonged exercise in a warm environment.

    PubMed

    Watson, Phillip; Enever, Sophie; Page, Andrew; Stockwell, Jenna; Maughan, Ronald J

    2012-10-01

    Eight young men were recruited to a study designed to examine the effect of tyrosine (TYR) supplementation on the capacity to perform prolonged exercise in a warm environment. Subjects entered the laboratory in the morning and remained seated for 1 hr before cycling to exhaustion at 70% VO2peak. Two 250-ml aliquots of a placebo (PLA ) or a TYR solution were ingested at 30-min intervals before exercise, with an additional 150 ml consumed every 15 min throughout exercise (total TYR dose: 150 mg/kg BM). Cognitive function was assessed before drink ingestion, at the end of the rest period, and at exhaustion. TYR ingestion had no effect on exercise capacity (PLA 61.4 ± 13.7 min, TYR 60.2 ± 15.4 min; p = .505). No differences in heart rate (p = .380), core temperature (p = .554), or weighted mean skin temperature (p = .167) were apparent between trials. Ingestion of TYR produced a marked increase in serum TYR concentrations (+236 ± 46 μmol/L; p < .001), with this difference maintained throughout exercise. No change was apparent during the PLA trial (p = .924). Exercise caused an increase in error rate during the complex component of the Stroop test (p = .034), but this response was not influenced by the drink ingested. No other component of cognitive function was altered by the protocol (all p > .05). Ingestion of a TYR solution did not influence time to exhaustion or several aspects of cognitive function when exercise was undertaken in a warm environment. PMID:23011654

  17. Water and carbohydrate ingestion during prolonged exercise increase maximal neuromuscular power.

    PubMed

    Fritzsche, R G; Switzer, T W; Hodgkinson, B J; Lee, S H; Martin, J C; Coyle, E F

    2000-02-01

    This study investigated the individual and combined effects of water and carbohydrate ingestion during prolonged cycling on maximal neuromuscular power (P(max)), thermoregulation, cardiovascular function, and metabolism. Eight endurance-trained cyclists exercised for 122 min at 62% maximal oxygen uptake in a 35 degrees C environment (50% relative humidity, 2 m/s fan speed). P(max) was measured in triplicate during 6-min periods beginning at 26, 56, 86, and 116 min. On four different occasions, immediately before and during exercise, subjects ingested 1) 3.28 +/- 0.21 liters of water with no carbohydrate (W); 2) 3.39 +/- 0.23 liters of a solution containing 204 +/- 14 g of carbohydrate (W+C); 3) 204 +/- 14 g of carbohydrate in only 0.49 +/- 0.03 liter of solution (C); and 4) 0. 37 +/- 0.02 liter of water with no carbohydrate (placebo; Pl). These treatments were randomized, disguised, and presented double blind. At 26 min of exercise, P(max) was similar in all trials. From 26 to 116 min, P(max) declined 15.2 +/- 3.3 and 14.5 +/- 2.1% during C and Pl, respectively; 10.4 +/- 1.9% during W (W > C, W > Pl; P < 0.05); and 7.4 +/- 2.2% during W+C (W+C > W, W+C > C, and W+C > Pl; P < 0. 05). As an interesting secondary findings, we also observed that carbohydrate ingestion increased heat production, final core temperature, and whole body sweating rate. We conclude that, during prolonged moderate-intensity exercise in a warm environment, ingestion of W attenuates the decline in P(max). Furthermore, ingestion of W+C attenuates the decline in maximal power more than does W alone, and ingestion of C alone does not attenuate the decline in P(max) compared with Pl. PMID:10658044

  18. The effects of ingesting polylactate or glucose polymer drinks during prolonged exercise.

    PubMed

    Fahey, T D; Larsen, J D; Brooks, G A; Colvin, W; Henderson, S; Lary, D

    1991-09-01

    Five trained, fasted male cyclists rode a cycle ergometer three times at 50% of VO2max for 180 min. Using a balanced order, double-blind procedure, subjects were given either a solution containing polylactate (PL: 80% polylactate, 20% sodium lactate, in 7% solution with water), glucose polymer (GP: multidextrin in 7% solution with water), or control (C: water sweetened with aspartame) 5 min before exercise and at 20-min intervals during exercise. Venous blood samples were taken at rest and at 20-min intervals during exercise. In general, PL and GP rendered similar results except that pH and bicarbonate (HCO3-) were higher in PL. There were no differences between treatments in perceived exertion, sodium, potassium, chloride, lactate, heart rate, oxygen consumption, rectal temperature, or selected skin temperatures. These data show that polylactate may help maintain blood glucose and enhance blood buffering capacity during prolonged exercise and could be a useful component in an athletic fluid replacement beverage. PMID:1844999

  19. Effects of selective cooling of the facial area on physiological and metabolic output during graded maximal or prolonged submaximal exercise

    NASA Astrophysics Data System (ADS)

    Quirion, A.; Boisvert, P.; Brisson, G. R.; Decarufel, D.; Laurencelle, L.; Dulac, S.; Vogelaere, P.; Therminarias, A.

    1989-06-01

    Physiological and metabolic output responses to facial cooling during a graded maximal exercise and a prolonged submaximal exercise lasting 30 min at 65%dot VO_2 max were investigated in five male subjects. Pedalling on a cycle ergometer was performed both with and without facial cooling (10°C, 4.6 m s-1). Facial cooling at the end of graded maximal exercise apparently had no effect on plasma lactate (LA), maximal oxygen consumption (dot VO_2 max), maximal heart rate (HR max), rectal temperature ( T re), work-load, lactate threshold (LT), ventilatory threshold (VT) and onset of blood lactate accumulation (OBLA). However, the response to facial cooling after prolonged submaximal exercise is significantly different for heart rate and work-load. The results suggest that facial wind stimulation during maximal exercise does not produce a stress high enough to alter the metabolic and physiological responses.

  20. Glucose kinetics during prolonged exercise in highly trained human subjects: effect of glucose ingestion

    PubMed Central

    Jeukendrup, Asker E; Raben, Anne; Gijsen, Annemie; Stegen, Jos H C H; Brouns, Fred; Saris, Wim H M; Wagenmakers, Anton J M

    1999-01-01

    The objectives of this study were (1) to investigate whether glucose ingestion during prolonged exercise reduces whole body muscle glycogen oxidation, (2) to determine the extent to which glucose disappearing from the plasma is oxidized during exercise with and without carbohydrate ingestion and (3) to obtain an estimate of gluconeogenesis. After an overnight fast, six well-trained cyclists exercised on three occasions for 120 min on a bicycle ergometer at 50% maximum velocity of O2 uptake and ingested either water (Fast), or a 4% glucose solution (Lo-Glu) or a 22% glucose solution (Hi-Glu) during exercise. Dual tracer infusion of [U-13C]-glucose and [6,6-2H2]-glucose was given to measure the rate of appearance (Ra) of glucose, muscle glycogen oxidation, glucose carbon recycling, metabolic clearance rate (MCR) and non-oxidative disposal of glucose. Glucose ingestion markedly increased total Ra especially with Hi-Glu. After 120 min Ra and rate of disappearance (Rd) of glucose were 51-52 μmol kg−1 min−1 during Fast, 73-74 μmol kg−1 min−1 during Lo-Glu and 117–119 μmol kg−1 min−1 during Hi-Glu. The percentage of Rd oxidized was between 96 and 100% in all trials. Glycogen oxidation during exercise was not reduced by glucose ingestion. The vast majority of glucose disappearing from the plasma is oxidized and MCR increased markedly with glucose ingestion. Glucose carbon recycling was minimal suggesting that gluconeogenesis in these conditions is negligible. PMID:10050023

  1. Treadmill Exercise Within LBNP as an Integrated Coutermeasure to Microgravity

    NASA Technical Reports Server (NTRS)

    Lee, Stuart; Hargens, A. R.; Schneider, S. M.; Watenpaugh, D. E.

    2010-01-01

    An integrated exercise countermeasure for microgravity is needed to protect multiple physiologic systems and save crew time. Such a countermeasure should protect orthostatic tolerance, upright ambulatory capability (including sprinting), aerobic capacity, muscle strength/endurance, and other physiologic parameters relevant to human performance. We developed a novel physiologic countermeasure, treadmill exercise within LBNP, for preventing cardiovascular and musculoskeletal deconditioning associated with prolonged bed rest and spaceflight. We evaluated 40 min of daily LBNP treadmill exercise by a battery of physiologic parameters relevant to maintaining exercise performance and health of both women and men during bed-rest (simulated microgravity) studies lasting from 5 to 60 days. For 30 day studies, we employed identical twins with one twin as the control and the other twin as the exerciser to improve comparative power. During the WISE 60-day HDT study, the treadmill exercise within LBNP was performed 3-4 days each week and resistive exercise was performed 2-3 days each week. Our treadmill within LBNP protocol maintained plasma volume and sprint speed (30 day HDT bed-rest studies of identical twins), orthostatic tolerance to a degree, upright exercise capacity, muscle strength and endurance, and some bone parameters during 30 day (twin studies) and 60 day (WISE-2005) bed-rest simulations of microgravity. When combining treadmill exercise within LBNP and resistive exercise (WISE), cardiac mass increased significantly in the exercise (EX) group during bed rest relative to controls (CON). Upright peak VO2, and knee extensor strength and endurance decreased significantly in CON subjects; but these parameters were preserved in the EX group. In the 60 day WISE study, each LBNP exercise session was followed immediately by 10 minutes of static LBNP, and the last such session occurred three days before the end of bed rest. Still, orthostatic tolerance was better maintained

  2. Menstrual cycle phase effects free testosterone responses to prolonged aerobic exercise.

    PubMed

    Lane, A R; O'Leary, C B; Hackney, A C

    2015-09-01

    Research has shown that total testosterone (tT) levels in women increase acutely during a prolonged bout of aerobic exercise. Few studies, however, have considered the impact of the menstrual cycle phase on this response or have looked at the biologically active free testosterone (fT) form responses. Therefore, this study examined the fT concentration response independently and as a percentage (fT%) of tT to prolonged aerobic exercise during phases of the menstrual cycle with low estrogen-progesterone (L-EP; i.e., follicular phase) and high estrogen-progesterone (H-EP; i.e., luteal phase). Ten healthy, recreationally trained, eumennorrheic women (X ± SD: age = 20 ± 2 y, mass = 58.7 ± 8.3 kg, body fat = 22.3 ± 4.9 %, VO(2max) = 50.7 ± 9.0 ml/kg/min) participated in a laboratory based study and completed a 60-minute treadmill run during the L-EP and H-EP menstrual phases at ~70% of VO(2max). Blood was drawn prior to (PRE), immediately after (POST) and following 30 minutes of recovery (30POST) with each 60-minute run. During H-EP, there was a significant increase in fT concentrations from PRE to POST (p < 0.01) while in L-EP fT levels were unchanged; which resulted in fT being significantly higher at H-EP POST versus L-EP POST (p < 0.03). Area-under-the-curve (AUC) responses were calculated, for fT the total AUC was greater in H-EP than L-EP (p < 0.04). There was no significant interaction of fT% between phases and exercise sampling time. There was, however, a main effect for exercise where fT% POST was a greater proportion of tT than at PRE (p < 0.01). In summary, hormonal changes associated with the menstrual cycle impact fT response to a prolonged aerobic exercise bout; specifically, there being higher levels under H-EP conditions. This suggests more biologically active T is available during exercise in this phase. This response may be a function of the higher core temperatures found with H-EP causing greater sex hormone binding protein release of T, or could

  3. Effect of initial core temperature on hyperthermic hyperventilation during prolonged submaximal exercise in the heat.

    PubMed

    Tsuji, Bun; Honda, Yasushi; Fujii, Naoto; Kondo, Narihiko; Nishiyasu, Takeshi

    2012-01-01

    We investigated whether a core temperature threshold for hyperthermic hyperventilation is seen during prolonged submaximal exercise in the heat when core temperature before the exercise is reduced and whether the evoked hyperventilatory response is affected by altering the initial core temperature. Ten male subjects performed three exercise trials at 50% of peak oxygen uptake in the heat (37°C and 50% relative humidity) after altering their initial esophageal temperature (T(es)). Initial T(es) was manipulated by immersion for 25 min in water at 18°C (Precooling), 35°C (Control), or 40°C (Preheating). T(es) after the water immersion was significantly higher in the Preheating trial (37.5 ± 0.3°C) and lower in the Precooling trial (36.1 ± 0.3°C) than in the Control trial (36.9 ± 0.3°C). In the Precooling trial, minute ventilation (Ve) showed little change until T(es) reached 37.1 ± 0.4°C. Above this core temperature threshold, Ve increased linearly in proportion to increasing T(es). In the Control trial, Ve increased as T(es) increased from 37.0°C to 38.6°C after the onset of exercise. In the Preheating trial, Ve increased from the initially elevated levels of T(es) (from 37.6 to 38.6°C) and Ve. The sensitivity of Ve to increasing T(es) above the threshold for hyperventilation (the slope of the T(es)-Ve relation) did not significantly vary across trials (Precooling trial = 10.6 ± 5.9, Control trial = 8.7 ± 5.1, and Preheating trial = 9.2 ± 6.9 L·min(-1)·°C(-1)). These results suggest that during prolonged submaximal exercise at a constant workload in humans, there is a clear core temperature threshold for hyperthermic hyperventilation and that the evoked hyperventilatory response is unaffected by altering initial core temperature. PMID:21957164

  4. Branched-chain amino acid supplementation during repeated prolonged skiing exercises at altitude.

    PubMed

    Bigard, A X; Lavier, P; Ullmann, L; Legrand, H; Douce, P; Guezennec, C Y

    1996-09-01

    This study was conducted to test the hypothesis that a branched-chain amino acid (BCAA) supplementation would minimize changes in body composition and alterations in plasma amino acid profile induced by prolonged exercises at altitude. Twenty-four highly trained subjects participated in six successive sessions of ski mountaineering (6-8 hr duration, altitude 2,500-4,100 m). Twelve subjects took a dietary supplement of BCAA (BCAA group) and 12 took a dietary supplement that was 98% carbohydrate (C group). Body weight decreased in C subjects (-2.1%, p < .01), while the body weight loss recorded in the BCAA group was not statistically significant (-1.2%, NS). Changes in body composition that resulted from repeated skiing exercise at altitude were not significantly minimized by BCAA administration. Peak power output recorded during an incremental bicycle exercise decreased in C subjects but did not change significantly in BCAA subjects. Results of this study demonstrate that neither changes in body composition related to the ski mountaineering program nor muscular performance during isometric contraction was significantly affected by BCAA administration. PMID:8876349

  5. Dietary selenium and prolonged exercise alter gene expression and activity of antioxidant enzymes in equine skeletal muscle.

    PubMed

    White, S H; Johnson, S E; Bobel, J M; Warren, L K

    2016-07-01

    Untrained Thoroughbred horses (6 mares and 6 geldings; 11 yr [SE 1] and 565 kg [SE 11]) were used to evaluate antioxidant gene expression and enzyme activity in blood and skeletal muscle in response to prolonged exercise after receiving 2 levels of dietary selenium for 36 d: 0.1 (CON; = 6) or 0.3 mg/kg DM (SEL; = 6). Horses were individually fed 1.6% BW coastal bermudagrass hay, 0.4% BW whole oats, and a mineral/vitamin premix containing no Se. Sodium selenite was added to achieve either 0.1 or 0.3 mg Se/kg DM in the total diet. On d 35, horses underwent 2 h of submaximal exercise in a free-stall exerciser. Blood samples were obtained before (d 0) and after 34 d of Se supplementation and on d 35 to 36 immediately after exercise and at 6 and 24 h after exercise. Biopsies of the middle gluteal muscle were obtained on d 0, before exercise on d 34, and at 6 and 24 h after exercise. Supplementation with Se above the NRC requirement (SEL) increased serum Se ( = 0.011) and muscle thioredoxin reductase (TrxR) activity ( = 0.051) but had no effect on glutathione peroxidase (GPx) activity in plasma, red blood cell (RBC) lysate, or muscle in horses at rest. Serum creatine kinase activity increased ( < 0.0001) in response to prolonged exercise but was not affected by dietary treatment. Serum lipid hydroperoxides were affected by treatment ( = 0.052) and were higher ( = 0.012) in horses receiving CON than SEL immediately following exercise. Muscle expression of was unchanged at 6 h but increased ( = 0.005) 2.8-fold 24 h after exercise, whereas muscle TrxR activity remained unchanged. Glutathione peroxidase activity increased in plasma (P < 0.0001) and decreased in RBC lysate ( = 0.010) after prolonged exercise. A Se treatment × time interaction was observed for RBC GPx activity (P = 0.048). Muscle and expression and GPx activity did not change during the 24-h period after exercise. Level of dietary Se had no overall effect on expression of , , , , , , or in muscle following

  6. Hyperinsulinemia prevents prolonged hyperglycemia after intense exercise in insulin-dependent diabetic subjects.

    PubMed

    Sigal, R J; Purdon, C; Fisher, S J; Halter, J B; Vranic, M; Marliss, E B

    1994-10-01

    Hyperglycemia with accompanying hyperinsulinemia occurs after brief, greater than 85% maximum oxygen consumption exercise to exhaustion in normal subjects and persists up to 60 min of recovery. To determine the importance of endogenous insulin secretion during and after intense exercise, responses to exercise of lean fit male post-absorptive insulin-dependent diabetes mellitus (IDDM) subjects, aged 18-34 yr, were compared with those of control subjects (C; n = 6). Three iv insulin protocols were employed: hyperglycemic (HG; n = 7) and euglycemic (EG1; n = 6) with constant insulin infusion, and euglycemic with doubled insulin infusion during recovery (EG2; n = 6). Overnight iv insulin was adjusted to achieve prolonged euglycemia (5.4 +/- 0.3 mmol/L) or hyperglycemia (8.6 +/- 0.3 mmol/L) before exercise. This allowed for comparisons between HG and EG1 (constant infusion) and between C and EG2 (to approximate physiological hyperinsulinemia by doubling the infusion rates at exhaustion for 56 +/- 7 min during recovery). Subjects exercised to 89-98% of their individual maximum oxygen consumption for 12.8 +/- 0.3 min. Glycemia increased to maximum values at 6 min of recovery (9.8 +/- 0.5 in HG, 6.9 +/- 0.4 in EG1, 7.3 +/- 0.3 in EG2, and 6.9 +/- 0.4 mmol/L in C). Whereas in EG2 and C, glucose returned to resting values in 50-80 min, it remained elevated at 120 min recovery in HG and EG1. During exercise, [3-3H]-glucose-determined glucose production increased markedly and exceeded disappearance in all groups, but less so in the HG subjects than in the other groups. An early recovery decline in glucose production did not differ among groups, but MCR (rate of glucose disappearance/glycemia) were markedly lower in HG and EG1, in whom plasma free insulin remained unchanged from 15 min of recovery onward (MCR, 1.6-1.9 vs. 2.3-2.8 mL/kg.min in C). Doubling the insulin infusion rate in EG2 restored the MCR response to that of C subjects. In summary, constant insulin infusion is

  7. Dehydration accelerates reductions in cerebral blood flow during prolonged exercise in the heat without compromising brain metabolism.

    PubMed

    Trangmar, Steven J; Chiesa, Scott T; Llodio, Iñaki; Garcia, Benjamin; Kalsi, Kameljit K; Secher, Niels H; González-Alonso, José

    2015-11-01

    Dehydration hastens the decline in cerebral blood flow (CBF) during incremental exercise, whereas the cerebral metabolic rate for O2 (CMRO2 ) is preserved. It remains unknown whether CMRO2 is also maintained during prolonged exercise in the heat and whether an eventual decline in CBF is coupled to fatigue. Two studies were undertaken. In study 1, 10 male cyclists cycled in the heat for ∼2 h with (control) and without fluid replacement (dehydration) while internal and external carotid artery blood flow and core and blood temperature were obtained. Arterial and internal jugular venous blood samples were assessed with dehydration to evaluate CMRO2 . In study 2, in 8 male subjects, middle cerebral artery blood velocity was measured during prolonged exercise to exhaustion in both dehydrated and euhydrated states. After a rise at the onset of exercise, internal carotid artery flow declined to baseline with progressive dehydration (P < 0.05). However, cerebral metabolism remained stable through enhanced O2 and glucose extraction (P < 0.05). External carotid artery flow increased for 1 h but declined before exhaustion. Fluid ingestion maintained cerebral and extracranial perfusion throughout nonfatiguing exercise. During exhaustive exercise, however, euhydration delayed but did not prevent the decline in cerebral perfusion. In conclusion, during prolonged exercise in the heat, dehydration accelerates the decline in CBF without affecting CMRO2 and also restricts extracranial perfusion. Thus, fatigue is related to a reduction in CBF and extracranial perfusion rather than CMRO2 . PMID:26371170

  8. Influence of body temperature on the development of fatigue during prolonged exercise in the heat.

    PubMed

    González-Alonso, J; Teller, C; Andersen, S L; Jensen, F B; Hyldig, T; Nielsen, B

    1999-03-01

    We investigated whether fatigue during prolonged exercise in uncompensable hot environments occurred at the same critical level of hyperthermia when the initial value and the rate of increase in body temperature are altered. To examine the effect of initial body temperature [esophageal temperature (Tes) = 35.9 +/- 0.2, 37.4 +/- 0. 1, or 38.2 +/- 0.1 (SE) degrees C induced by 30 min of water immersion], seven cyclists (maximal O2 uptake = 5.1 +/- 0.1 l/min) performed three randomly assigned bouts of cycle ergometer exercise (60% maximal O2 uptake) in the heat (40 degrees C) until volitional exhaustion. To determine the influence of rate of heat storage (0.10 vs. 0.05 degrees C/min induced by a water-perfused jacket), four cyclists performed two additional exercise bouts, starting with Tes of 37.0 degrees C. Despite different initial temperatures, all subjects fatigued at an identical level of hyperthermia (Tes = 40. 1-40.2 degrees C, muscle temperature = 40.7-40.9 degrees C, skin temperature = 37.0-37.2 degrees C) and cardiovascular strain (heart rate = 196-198 beats/min, cardiac output = 19.9-20.8 l/min). Time to exhaustion was inversely related to the initial body temperature: 63 +/- 3, 46 +/- 3, and 28 +/- 2 min with initial Tes of approximately 36, 37, and 38 degrees C, respectively (all P < 0.05). Similarly, with different rates of heat storage, all subjects reached exhaustion at similar Tes and muscle temperature (40.1-40.3 and 40. 7-40.9 degrees C, respectively), but with significantly different skin temperature (38.4 +/- 0.4 vs. 35.6 +/- 0.2 degrees C during high vs. low rate of heat storage, respectively, P < 0.05). Time to exhaustion was significantly shorter at the high than at the lower rate of heat storage (31 +/- 4 vs. 56 +/- 11 min, respectively, P < 0.05). Increases in heart rate and reductions in stroke volume paralleled the rise in core temperature (36-40 degrees C), with skin blood flow plateauing at Tes of approximately 38 degrees C. These

  9. Changes in Fatigue, Multiplanar Knee Laxity, and Landing Biomechanics During Intermittent Exercise

    PubMed Central

    Shultz, Sandra J.; Schmitz, Randy J.; Cone, John R.; Henson, Robert A.; Montgomery, Melissa M.; Pye, Michele L.; Tritsch, Amanda J.

    2015-01-01

    Context: Knee laxity increases during exercise. However, no one, to our knowledge, has examined whether these increases contribute to higher-risk landing biomechanics during prolonged, fatiguing exercise. Objectives: To examine associations between changes in fatigue (measured as sprint time [SPTIME]), multiplanar knee laxity (anterior-posterior [APLAX], varus-valgus [VVLAX] knee laxity, and internal-external rotation [IERLAX]) knee laxity and landing biomechanics during prolonged, intermittent exercise. Design: Descriptive laboratory study. Setting: Laboratory and gymnasium. Patients or Other Participants: A total of 30 male (age = 20.3 ± 2.0 years, height = 1.79 ± 0.05 m, mass = 75.2 ± 7.2 kg) and 29 female (age = 20.5 ± 2.3 years, height = 1.67 ± 0.08 m, mass = 61.8 ± 9.0 kg) competitive athletes. Intervention(s): A 90-minute intermittent exercise protocol (IEP) designed to simulate the physiologic and biomechanical demands of a soccer match. Main Outcome Measure(s): We measured SPTIME, APLAX, and landing biomechanics before and after warm-up, every 15 minutes during the IEP, and every 15 minutes for 1 hour after the IEP. We measured VVLAX and IERLAX before and after the warm-up, at 45 and 90 minutes during the IEP, and at 30 minutes after the IEP. We used hierarchical linear modeling to examine associations between exercise-related changes in SPTIME and knee laxity with exercise-related changes in landing biomechanics while controlling for initial (before warm-up) knee laxity. Results: We found that SPTIME had a more global effect on landing biomechanics in women than in men, resulting in a more upright landing and a reduction in landing forces and out-of-plane motions about the knee. As APLAX increased with exercise, women increased their knee internal-rotation motion (P = .02), and men increased their hip-flexion motion and energy-absorption (P = .006) and knee-extensor loads (P = .04). As VVLAX and IERLAX increased, women went through greater knee

  10. Is Sodium Supplementation Necessary to Avoid Dehydration During Prolonged Exercise in the Heat?

    PubMed

    Hoffman, Martin D; Stuempfle, Kristin J

    2016-03-01

    The primary purpose of this work was to gain further insight into the need for sodium supplementation for maintenance of appropriate hydration during prolonged exercise under hot conditions. Participants of a 161-km ultramarathon (ambient temperature reaching 39° C) underwent body weight measurements immediately before, during, and after the race, and completed a postrace questionnaire about supplemental sodium intake and drinking strategies during 4 race segments. The postrace questionnaire was completed by 233 (78.7%) race finishers. Significant direct relationships were found for percentage weight change during the race with intake rate (r = 0.18, p = 0.0058) and total amount (r = 0.24, p = 0.0002) of sodium in supplements. Comparing those using no sodium supplements throughout the race (n = 15) with those using sodium supplements each race segment (n = 138), body weight change across the course showed significant group (p = 0.022), course location (p < 0.0001), and interaction (p = 0.0098) effects. Posttests revealed greater weight loss at 90 km (p = 0.016, -3.2 ± 1.6% vs. -2.2 ± 1.5%, mean ± SD) and the finish (p = 0.014, -3.2 ± 1.5% vs. -1.9 ± 1.9%) for those using no sodium supplements compared with those using sodium supplements each segment. Six runners who used no sodium supplements, drank to thirst, and only drank water or a mixture of mostly water with some electrolyte-containing drink finished with mean weight change of -3.4%. Although the use of supplemental sodium enhanced body weight maintenance, those not using sodium supplements maintained a more appropriate weight than those consistently using sodium supplements. Therefore, we conclude that the supplemental sodium is unnecessary to maintain appropriate hydration during prolonged exercise in the heat. PMID:26907835

  11. Changes of central haemodynamic parameters during mental stress and acute bouts of static and dynamic exercise.

    PubMed

    Lydakis, C; Momen, A; Blaha, C; Gugoff, S; Gray, K; Herr, M; Leuenberger, U A; Sinoway, L I

    2008-05-01

    Chronic dynamic (aerobic) exercise decreases central arterial stiffness, whereas chronic resistance exercise evokes the opposite effect. Nevertheless, there is little information available on the effects of acute bouts of exercise. Also, there is limited data showing an increase of central arterial stiffness during acute mental stress. This study aimed to determine the effect of acute mental and physical (static and dynamic exercise) stress on indices of central arterial stiffness. Fifteen young healthy volunteers were studied. The following paradigms were performed: (1) 2 min of mental arithmetic, (2) short bouts (20 s) of static handgrip at 20 and 70% of maximal voluntary contraction (MVC), (3) fatiguing handgrip at 40% MVC and (4) incremental dynamic knee extensor exercise. Central aortic waveforms were assessed using SphygmoCor software. As compared to baseline, pulse wave transit time decreased significantly for all four interventions indicating that central arterial stiffness increased. During fatiguing handgrip there was a fall in the ratio of peripheral to central pulse pressure from 1.69+/-0.02 at baseline to 1.56+/-0.05 (P<0.05). In the knee extensor protocol a non-significant trend for the opposite effect was noted. The augmentation index increased significantly during the arithmetic, short static and fatiguing handgrip protocols, whereas there was no change in the knee extensor protocol. We conclude that (1) during all types of acute stress tested in this study (including dynamic exercise) estimated central stiffness increased, (2) during static exercise the workload posed on the left ventricle (expressed as change in central pulse pressure) is relatively higher than that posed during dynamic exercise (given the same pulse pressure change in the periphery). PMID:18273040

  12. Cerebral volumetric changes induced by prolonged hypoxic exposure and whole-body exercise.

    PubMed

    Rupp, Thomas; Jubeau, Marc; Lamalle, Laurent; Warnking, Jan M; Millet, Guillaume Y; Wuyam, Bernard; Esteve, François; Levy, Patrick; Krainik, Alexandre; Verges, Samuel

    2014-11-01

    The present study assessed the isolated and synergetic effects of hypoxic exposure and prolonged exercise on cerebral volume and subedema and symptoms of acute mountain sickness (AMS). Twelve healthy males performed three semirandomized blinded 11-hour sessions with (1) an inspiratory oxygen fraction (FiO2) of 12% and 4-hour cycling, (2) FiO2=21% and 4-hour cycling, and (3) FiO2=8.5% to 12% at rest (matching arterial oxygen saturation measured during the first hypoxic session). Volumetric, apparent diffusion coefficient (ADC), and arterial spin labelling 3T magnetic resonance imaging sequences were performed after 30 minutes and 10 hours in each session. Thirty minutes of hypoxia at rest induced a significant increase in white-matter volume (+0.8±1.0% compared with normoxia) that was exacerbated after 10 hours of hypoxia at rest (+1.5±1.1%) or with cycling (+1.6±1.1%). Total brain parenchyma volume increased significantly after 10 hours of hypoxia with cycling only (+1.3±1.1%). Apparent diffusion coefficient was significantly reduced after 10 hours of hypoxia at rest or with cycling. No significant change in cerebral blood flow was observed. These results demonstrate changes in white-matter volume as early as after 30 minutes of hypoxia that worsen after 10 hours, probably due to cytotoxic edema. Exercise accentuates the effect of hypoxia by increasing total brain volume. These changes do not however correlate with AMS symptoms. PMID:25160673

  13. Influence of statins on distinct circulating microRNAs during prolonged aerobic exercise.

    PubMed

    Min, Pil-Ki; Park, Joseph; Isaacs, Stephanie; Taylor, Beth A; Thompson, Paul D; Troyanos, Chris; D'Hemecourt, Pierre; Dyer, Sophia; Chan, Stephen Y; Baggish, Aaron L

    2016-03-15

    Statins exacerbate exercise-induced skeletal muscle injury. Muscle-specific microRNAs (myomiRs) increase in plasma after prolonged exercise, but the patterns of myomiRs release after statin-associated muscle injury have not been examined. We examined the relationships between statin exposure, in vitro and in vivo muscle contraction, and expression of candidate circulating myomiRs. We measured plasma levels of myomiRs, circulating microRNA-1 (c-miR-1), c-miR-133a, c-miR-206, and c-miR-499-5p from 28 statin-using and 28 nonstatin-using runners before (PRE), immediately after (FINISH), and 24 h after they ran a 42-km footrace (the 2011 Boston marathon) (POST-24). To examine these cellular-regulation myomiRs, we used contracting mouse C2C12 myotubes in culture with and without statin exposure to compare intracellular and extracellular expression of these molecules. In marathoners, c-miR-1, c-miR-133a, and c-miR-206 increased at FINISH, returned to baseline at POST-24, and were unaffected by statin use. In contrast, c-miR-499-5p was unchanged at FINISH but increased at POST-24 among statin users compared with PRE and runners who did not take statins. In cultured C2C12 myotubes, extracellular c-miR-1, c-miR-133a, and c-miR-206 were significantly increased by muscle contraction regardless of statin use. In contrast, extracellular miR-499-5p was unaffected by either isolated statin exposure or isolated carbachol exposure but it was increased when muscle contraction was combined with statin exposure. In summary, we found that statin-potentiated muscle injury during exercise is accompanied by augmented extracellular release of miR-499-5p. Thus c-miR-499-5p may serve as a biomarker of statin-potentiated muscle damage. PMID:26472872

  14. Plasma catecholamines and hyperglycaemia influence thermoregulation in man during prolonged exercise in the heat.

    PubMed

    Mora-Rodríguez, R; González-Alonso, J; Below, P R; Coyle, E F

    1996-03-01

    1. We manipulated plasma catecholamines (combined adrenaline and noradrenaline concentrations) to three levels during prolonged exercise to determine their effect on cutaneous and forearm vascular conductance (CVC and FVC), oesophageal temperature (T(oes)) and cardiovascular responses. 2. On three occasions, seven endurance-trained men cycled at 65% VO2, max in the heat (33.1 +/- 0.7 degrees C) for 120-150 min. During the control trial (150 min duration), 0.45% saline was intravenously infused (SI) starting at 30 min, at a rate that replaced a third of the fluid losses. The infusion start time and rate were identical in all three trials. During SI, plasma catecholamine levels increased progressively and were 18.2 +/- 2.7 pmol ml-1 at 150 min. In another trial (120 min duration), adrenaline was infused (AI) at 0.1 microgram kg-1 min-1 and plasma catecholamine levels were elevated 6 pmol ml-1 above SI during the 60-120 min period. In a third trial (150 min duration), an 18% glucose solution was infused (GI) at a rate that maintained plasma glucose levels above 11 mM and plasma catecholamine levels were 5.0-5.5 pmol ml-1 lower (P < 0.05) than SI from 120-150 min. 3. Heat production and sweat rate were not different during the three trials and neither was the decline in stroke volume, cardiac output and mean arterial pressure. 4. Soon after beginning AI, CVC decreased 15%, T(oes) increased by 0.4 +/- 0.1 degree C and heart rate increased by 6 +/- 1 beats min-1; these significant (P < 0.05) differences from SI were maintained throughout the bout. As a result of GI, FVC was 15% higher than SI and T(oes) and heart rate were attenuated by 0.3 +/- 0.1 degree C and 7 +/- 1 beats min-1 at 150 min compared with SI (P < 0.05). 5. In conclusion, large increases in plasma catecholamine levels cause hyperthermia during exercise by vasoconstricting the skin. The mechanisms by which hyperglycaemia (i.e. 11 mM) attenuates hyperthermia are less clear and may be due to others factors

  15. Evaluation of fatigue of respiratory and lower limb muscles during prolonged aerobic exercise.

    PubMed

    Nadiv, Yaara; Vachbroit, Ricki; Gefen, Amit; Elad, David; Zaretsky, Uri; Moran, Dani; Halpern, Pinchas; Ratnovsky, Anat

    2012-05-01

    The respiratory muscles may fatigue during prolonged exercises and thereby become a factor that limits extreme physical activity. The aim of the current study was to determine whether respiratory muscle fatigue imposes a limitation on extreme physical activity of well-trained young men. Electromyography (EMG) signals of respiratory (external intercostal and sternomastoid) and calf muscles (gastrocnemius) were measured (N = 8) during 1 hr of treadmill marching at a speed of 8 km/hr with and without a 15 kg backpack. The root mean square (RMS) and the mean power frequency of the EMG signals were evaluated for calculating fatigue indices. The EMG RMS revealed that the respiratory and calf muscles did not fatigue during the marching without a backpack load. The study did show, however, a significant rise in the EMG values when a backpack was carried with respect to the no-load condition (p < .05), which suggests that respiratory muscles should be trained in military recruits who are required to carry loaded backpacks while marching. PMID:22723112

  16. Exercise performance, core temperature, and metabolism after prolonged restricted activity and retraining in dogs

    NASA Technical Reports Server (NTRS)

    Nazar, K.; Greenleaf, J. E.; Pohoska, E.; Turlejska, E.; Kaciuba-Uscilko, H.; Kozlowski, S.

    1992-01-01

    Physiological effects of restricted activity (RA) and subsequent retraining have been studied. Ten male mongrel dogs performed a submaximal exercise endurance test on a treadmill during kennel control, after 8 weeks of cage confinement and after eight weeks of retraining using the same treadmill protocol 1 h/d for 6 d/week. Data obtained show that RA reduces exercise endurance, the effectiveness of exercise thermoregulation, muscle glycogen stores, and the lipolytic response to exercise and to noradrenaline stimulation.

  17. Phagocytic responses of peritoneal macrophages and neutrophils are different in rats following prolonged exercise

    PubMed Central

    Ferreira, Clílton K O; Prestes, Jonato; Donatto, Felipe F; Verlengia, Rozangela; Navalta, James W; Cavaglieri, Cláudia R

    2010-01-01

    OBJECTIVE: To analyze the effects of exhausting long‐duration physical exercise (swimming) sessions of different durations and intensities on the number and phagocytic capacity of macrophages and neutrophils in sedentary rats. INTRODUCTION: Exercise intensity, duration and frequency are important factors in determining immune response to physical effort. Thus, the effects of exhausting long‐duration exercise are unclear. METHODS: Wistar rats were divided into two groups: an untreated group (macrophage study) and oyster glycogen‐treated rats (neutrophil study). In each group, the animals were subdivided into five groups (10 rats per group): unexercised controls, an unadapted low‐intensity exercise group, an unadapted moderate‐intensity exercise group, a preadapted low‐intensity exercise group and a preadapted moderate‐intensity exercise group. All exercises were performed to exhaustion, and preadaptation consisted of 5, 15, 30 and 45 min sessions. RESULTS: Macrophage study: the number of peritoneal macrophages significantly decreased (9.22 ± 1.78 × 106) after unadapted exercise but increased (21.50 ± 0.63 × 106) after preadapted low‐intensity exercise, with no changes in the moderate‐intensity exercise group. Phagocytic capacity, however, increased by more than 80% in all exercise groups (low/moderate, unadapted/preadapted). Neutrophil study: the number of peritoneal neutrophils significantly decreased after unadapted (29.20 ± 3.34 × 106) and preadapted (50.00 ± 3.53 × 106) low‐intensity exercise but increased after unadapted (127.60 ± 5.14 × 106) and preadapted (221.80 ± 14.85 × 106) moderate exercise. Neutrophil phagocytic capacity decreased by 63% after unadapted moderate exercise but increased by 90% after corresponding preadapted sessions, with no changes in the low‐intensity exercise groups. CONCLUSION: Neutrophils and macrophages of sedentary rats respond differently to exercise‐induced stress. Adaptation sessions reduce

  18. Absence of humoral mediated 5'AMP-activated protein kinase activation in human skeletal muscle and adipose tissue during exercise.

    PubMed

    Kristensen, Jonas Møller; Johnsen, Anders Bo; Birk, Jesper B; Nielsen, Jakob Nis; Jensen, Bente Rona; Hellsten, Ylva; Richter, Erik A; Wojtaszewski, Jørgen F P

    2007-12-15

    5'AMP-activated protein kinase (AMPK) exists as a heterotrimer comprising a catalytic alpha subunit and regulatory beta and gamma subunits. The AMPK system is activated under conditions of cellular stress, indicated by an increase in the AMP/ATP ratio, as observed, e.g. in muscles during contractile activity. AMPK was originally thought to be activated only by local intracellular mechanisms. However, recently it has become apparent that AMPK in mammals is also regulated by humoral substances, e.g. catecholamines. We studied whether humoral factors released during exercise regulate AMPK activity in contracting and resting muscles as well as in abdominal subcutaneous adipose tissue in humans. In resting leg muscle and adipose tissue the AMPK activity was not up-regulated by humoral factors during one-legged knee extensor exercise even when arm cranking exercise, inducing a approximately 20-fold increase in plasma catecholamine level, was added simultaneously. In exercising leg muscle the AMPK activity was increased by one-legged knee extensor exercise eliciting a whole body respiratory load of only 30% .VO(2,peak) but was not further increased by adding arm cranking exercise. In conclusion, during exercise with combined leg kicking and arm cranking, the AMPK activity in human skeletal muscle is restricted to contracting muscle without influence of marked increased catecholamine levels. Also, with this type of exercise the catecholamines or other humoral factors do not seem to be physiological regulators of AMPK in the subcutaneous adipose tissue. PMID:17962330

  19. Prevention of glycogen supercompensation prolongs the increase in muscle GLUT4 after exercise.

    PubMed

    Garcia-Roves, Pablo M; Han, Dong-Ho; Song, Zheng; Jones, Terry E; Hucker, Kathleen A; Holloszy, John O

    2003-10-01

    Exercise induces an increase in GLUT4 in skeletal muscle with a proportional increase in glucose transport capacity. This adaptation results in enhanced glycogen accumulation, i.e., "supercompensation," in response to carbohydrate feeding after glycogen-depleting exercise. The increase in GLUT4 reverses within 40 h after exercise in carbohydrate-fed rats. The purpose of this study was to determine whether prevention of skeletal muscle glycogen supercompensation after exercise results in maintenance of the increases in GLUT4 and the capacity for glycogen supercompensation. Rats were exercised by means of three daily bouts of swimming. GLUT4 mRNA was increased approximately 3-fold and GLUT4 protein was increased approximately 2-fold 18 h in epitrochlearis muscle after exercise. These increases in GLUT4 mRNA and protein reversed completely within 42 h after exercise in rats fed a high-carbohydrate diet. In contrast, the increases in GLUT4 protein, insulin-stimulated glucose transport, and increased capacity for glycogen supercompensation persisted unchanged for 66 h in rats fed a carbohydrate-free diet that prevented glycogen supercompensation after exercise. GLUT4 mRNA was still elevated at 42 h but had returned to baseline by 66 h after exercise in rats fed the carbohydrate-free diet. Glycogen-depleted rats fed carbohydrate 66 h after exercise underwent muscle glycogen supercompensation with concomitant reversal of the increase in GLUT4. These findings provide evidence that prevention of glycogen supercompensation after exercise results in persistence of exercise-induced increases in GLUT4 protein and enhanced capacity for glycogen supercompensation. PMID:12799316

  20. Carbohydrate supplementation and prolonged intermittent high-intensity exercise in adolescents: research findings, ethical issues and suggestions for the future.

    PubMed

    Phillips, Shaun M

    2012-10-01

    knowledge while safeguarding the health and well-being of young participants. It could be deemed unethical to continue study into carbohydrate supplementation while ignoring the potential health concerns and the possibility of generating similar performance enhancements using natural dietary interventions. Therefore, future work should investigate the influence of pre-exercise dietary intake on the prolonged intermittent, high-intensity exercise performance of adolescents. This would enable quantification of whether pre-exercise nutrition can modulate exercise performance and, if so, the optimum dietary composition to achieve this. Research could then combine this knowledge with ingestion of carbohydrate-containing products during exercise to facilitate ethical and healthy nutritional guidelines for enhancing the exercise performance of adolescents. This article addresses the available evidence regarding carbohydrate supplementation and prolonged intermittent, high-intensity exercise in adolescent team games players. It discusses the potential health concerns associated with the frequent use of carbohydrate-containing products by adolescents and how this affects the research ethics of the field, and considers directions for future work. PMID:22901040

  1. High Intensity Exercise Countermeasures does not Prevent Orthostatic Intolerance Following Prolonged Bed Rest

    NASA Technical Reports Server (NTRS)

    Platts, Steven H.; Stenger, Michael B.; Ploutz-Snyder, Lori L.; Lee, Stuart M. C.

    2014-01-01

    Approximately 20% of Space Shuttle astronauts became presyncopal during operational stand and 80deg head-up tilt tests, and the prevalence of orthostatic intolerance increases after longer missions. Greater than 60% of the US astronauts participating in Mir and early International Space Station missions experienced presyncope during post-flight tilt tests, perhaps related to limitations of the exercise hardware that prevented high intensity exercise training until later ISS missions. The objective of this study was to determine whether an intense resistive and aerobic exercise countermeasure program designed to prevent cardiovascular and musculoskeletal deconditioning during 70 d of bed rest (BR), a space flight analog, would protect against post-BR orthostatic intolerance. METHODS Twenty-six subjects were randomly assigned to one of three groups: non-exercise controls (n=11) or one of two exercise groups (ExA, n=8; ExB, n=7). Both ExA and ExB groups performed the same resistive and aerobic exercise countermeasures during BR, but one exercise group received testosterone supplementation while the other received a placebo during BR in a double-blinded fashion. On 3 d/wk, subjects performed lower body resistive exercise and 30 min of continuous aerobic exercise (=75% max heart rate). On the other 3 d/wk, subjects performed only highintensity, interval-style aerobic exercise. Orthostatic intolerance was assessed using a 15-min 80? head-up tilt test performed 2 d (BR-2) before and on the last day of BR (BR70). Plasma volume was measured using carbon monoxide rebreathing on BR-3 and before rising on the first recovery day (BR+0). The code for the exercise groups has not been broken, and results are reported here without group identification. RESULTS Only one subject became presyncopal during tilt testing on BR-2, but 7 of 11 (63%) controls, 3 of 8 (38%) ExA, and 4 of 7 (57%) ExB subjects were presyncopal on BR70. Survival analysis of post-BR tilt tests revealed no

  2. Benefits of exercise training in Spanish prison inmates.

    PubMed

    Pérez-Moreno, F; Cámara-Sánchez, M; Tremblay, J F; Riera-Rubio, V J; Gil-Paisán, L; Lucia, A

    2007-12-01

    Prison populations are growing in Western countries. Imprisoned people usually have a poor health status and an increased risk to suffer chronic debilitating conditions as coinfection with the HIV and hepatitis C virus (HCV) and/or opioid dependency. We studied the effects of a 4-month concurrent cardiorespiratory and resistance training program on the cardiorespiratory fitness, lower and upper body dynamic strength endurance (6-RM test for bench press and knee-extensor exercise, respectively), muscle mass and quality of life (QOL) of adult prison inmates who are HIV/HVC co-infected and enrolled in a methadone maintenance program (n = 9; mean [SD] age: 37 [3] yrs). We also evaluated a control group (n = 10; 37 [2] yrs). A significant combined effect of group and time was found for peak completed workload (W) (p < 0.01), peak heart rate (HR (peak)) (p < 0.05) and rate of HR decrease at 1-min postexercise compared to HR (peak) (p < 0.05), respectively, in a gradual cycle ergometer test. A significant combined effect of group and time was also found for both bench press and knee-extensor 6-RM tests, respectively (p < 0.05). Supervised exercise training can improve the overall physical fitness of incarcerated people. Our results suggest that this type of intervention could be applied in prisons of Western societies. PMID:17549659

  3. Muscle mitochondrial density after exhaustive exercise in dogs - Prolonged restricted activity and retraining

    NASA Technical Reports Server (NTRS)

    Nazar, K.; Greenleaf, J. E.; Philpott, D.; Pohoska, E.; Olszewska, K.; Kaciuba-Uscilko, H.

    1993-01-01

    The effect of exhaustive treadmill exercise on mitochondrial density (MD) and ultrastructural changes in quadriceps femoris muscle was studied in 7 normal, healthy, male mongrel dogs before and after restricted activity (RA) and following a subsequent 2-month exercise retraining period. Mean time to exhaustion in the 2-month group decreased from 177 +/- 11 min before to 90 +/- 16 min after RA; retraining increased tolerance to 219 +/- 36 min above the pre-RA and 143 percent above the post-RA time. Post-RA exhaustion time in the 5-months group was 25 and 45 min. Muscle samples taken after RA showed abnormalities indicative of degeneration, which were reversed by retraining. Resting MD decreased from a control level of 27.8 percent to 14.7 percent and 16.3 percent, and was restored to 27.1 percent after retraining. Exhaustive exercise caused an increase in MD under control conditions and after RA, but not following retraining. Disruption of mitochondria after exercise was evident after 5-month confinement. Factors causing mitochondrial changes and eventually their disruption during exercise after restricted activity are not related as much to the state of fatigue as to the pre-exercise quality of the muscle modified by disease or training.

  4. What are the Physiological Mechanisms for Post-Exercise Cold Water Immersion in the Recovery from Prolonged Endurance and Intermittent Exercise?

    PubMed

    Ihsan, Mohammed; Watson, Greig; Abbiss, Chris R

    2016-08-01

    training performances. The efficacy of CWI for attenuating the secondary effects of EIMD seems dependent on the mode of exercise utilised. For instance, CWI application seems to demonstrate limited recovery benefits when EIMD was induced by single-joint eccentrically biased contractions. In contrast, CWI seems more effective in ameliorating effects of EIMD induced by whole body prolonged endurance/intermittent based exercise modalities. PMID:26888646

  5. The influence of wearing compression stockings on performance indicators and physiological responses following a prolonged trail running exercise.

    PubMed

    Vercruyssen, Fabrice; Easthope, Christopher; Bernard, Thierry; Hausswirth, Christophe; Bieuzen, Francois; Gruet, Mathieu; Brisswalter, Jeanick

    2014-01-01

    The objective of this study was to investigate the effects of wearing compression socks (CS) on performance indicators and physiological responses during prolonged trail running. Eleven trained runners completed a 15.6 km trail run at a competition intensity whilst wearing or not wearing CS. Counter movement jump, maximal voluntary contraction and the oxygenation profile of vastus lateralis muscle using near-infrared spectroscopy (NIRS) method were measured before and following exercise. Run time, heart rate (HR), blood lactate concentration and ratings of perceived exertion were evaluated during the CS and non-CS sessions. No significant difference in any dependent variables was observed during the run sessions. Run times were 5681.1 ± 503.5 and 5696.7 ± 530.7 s for the non-CS and CS conditions, respectively. The relative intensity during CS and non-CS runs corresponded to a range of 90.5-91.5% HRmax. Although NIRS measurements such as muscle oxygen uptake and muscle blood flow significantly increased following exercise (+57.7% and + 42.6%,+59.2% and + 32.4%, respectively for the CS and non-CS sessions, P<0.05), there was no difference between the run conditions. The findings suggest that competitive runners do not gain any practical or physiological benefits from wearing CS during prolonged off-road running. PMID:24533521

  6. Sex differences in the response to resistance exercise training in older people.

    PubMed

    Da Boit, Mariasole; Sibson, Rachael; Meakin, Judith R; Aspden, Richard M; Thies, Frank; Mangoni, Arduino A; Gray, Stuart Robert

    2016-06-01

    Resistance exercise training is known to be effective in increasing muscle mass in older people. Acute measurement of protein metabolism data has indicated that the magnitude of response may differ between sexes. We compared adaptive responses in muscle mass and function to 18 weeks resistance exercise training in a cohort of older (>65 years) men and women. Resistance exercise training improved knee extensor maximal torque, 4 m walk time, time to complete five chair rises, muscle anatomical cross-sectional area (ACSA) and muscle quality with no effect on muscle fat/water ratio or plasma glucose, insulin, triacylglycerol, IL-6, and TNF-α Differences between sexes were observed for knee extensor maximal torque and muscle quality with greater increases observed in men versus women (P < 0.05). Maximal torque increased by 15.8 ± 10.6% in women and 41.7 ± 25.5% in men, whereas muscle quality increased by 8.8 ± 17.5% in women and by 33.7 ± 25.6% in men. In conclusion, this study has demonstrated a difference in the magnitude of adaptation, of some of the outcome measures employed, in response to 18 weeks of resistance exercise training between men and women. The mechanisms underlying this observation remain to be established. PMID:27354538

  7. Reduction in Cerebral Oxygenation After Prolonged Exercise in Hypoxia is Related to Changes in Blood Pressure.

    PubMed

    Horiuchi, Masahiro; Dobashi, Shohei; Kiuchi, Masataka; Endo, Junko; Koyama, Katsuhiro; Subudhi, Andrew W

    2016-01-01

    We investigated the relation between blood pressure and cerebral oxygenation (COX) immediately after exercise in ten healthy males. Subjects completed an exercise and recovery protocol while breathing either 21% (normoxia) or 14.1% (hypoxia) O2 in a randomized order. Each exercise session included four sets of cycling (30 min/set, 15 min rest) at 50% of altitude-adjusted peak oxygen uptake, followed by 60 min of recovery. After exercise, mean arterial pressure (MAP; 87±1 vs. 84±1 mmHg, average values across the recovery period) and COX (68±1% vs. 58±1%) were lower in hypoxia compared to normoxia (P<0.001). Changes in MAP and COX were correlated during the recovery period in hypoxia (r=0.568, P<0.001) but not during normoxia (r=0.028, not significant). These results demonstrate that reductions in blood pressure following exercise in hypoxia are (1) more pronounced than in normoxia, and (2) associated with reductions in COX. Together, these results suggest an impairment in cerebral autoregulation as COX followed changes in MAP more passively in hypoxia than in normoxia. These findings could help explain the increased risk for postexercise syncope at high altitude. PMID:26782200

  8. Statins Attenuate the Increase in P-Selectin Produced by Prolonged Exercise

    PubMed Central

    Zaleski, Amanda; Capizzi, Jeffrey; Ballard, Kevin D.; Troyanos, Christopher; Baggish, Aaron; D'Hemecourt, Pierre; Thompson, Paul D.; Parker, Beth

    2013-01-01

    Strenuous endurance exercise increases inflammatory markers and acutely increases cardiovascular risk; however, statins may mitigate this response. We measured serum levels of p-selectin in 37 runners treated with statins and in 43 nonstatin treated controls running the 2011 Boston Marathon. Venous blood samples were obtained the day before (PRE) as well as within 1 hour after (FINISH) and 24 hours after (POST) the race. The increase in p-selectin immediately after exercise was lower in statin users (PRE to FINISH: 20.5 ± 19.4 ng/mL) than controls (PRE to FINISH: 30.9 ± 27.1 ng/mL; P < 0.001). The increase in p-selectin 24 hours after exercise was also lower in statin users (PRE to POST: 21.5 ± 26.6 ng/mL) than controls (PRE to POST: 29.3 ± 31.9 ng/mL; P < 0.001). Furthermore, LDL-C was positively correlated with p-selectin at FINISH and POST (P < 0.01 and P < 0.05, resp.), irrespective of drug treatment, suggesting that lower levels of LDL-C are associated with a reduced inflammatory response to exercise. We conclude that statins blunt the exercise-induced increase in p-selectin following a marathon and that the inflammatory response to a marathon varies directly with LDL-C levels. PMID:26464882

  9. Erythropoietin enhances whole body lipid oxidation during prolonged exercise in humans.

    PubMed

    Caillaud, Corinne; Connes, Philippe; Ben Saad, Helmi; Mercier, Jacques

    2015-03-01

    Animal studies have suggested that erythropoietin, besides its well-known hematopoietic effects, can modulate metabolism and prevent fat accumulation. We investigated the effects of repeated injections of recombinant human erythropoietin (EPO) on the balance of substrate oxidation during aerobic exercise in humans. Twelve healthy aerobically trained males received subcutaneously either moderate dose of EPO (50 U/kg, EPO) or saline injections (NaCl 0.9 %, control) three times a week for 4 weeks. Body weight, % fat, maximal aerobic capacity, and substrate utilization during exercise were assessed before and after treatment, while hemoglobin and hematocrit were monitored regularly during the treatment. Carbohydrate and fat oxidation were evaluated via indirect calorimetry, during a submaximal exercise performed at 75 % of the participants' maximal aerobic capacity (V̇(O2max)) for 60 min. Results showed that 4 weeks of EPO treatment significantly enhanced fat oxidation (+56 % in EPO versus -9 % in control) during exercise, independent of its effects on hematological parameters or V̇(O2max). This study shows that EPO can modulate substrate utilization during exercise, leading to enhanced fat utilization and lower use of carbohydrates. This opens new research directions exploring whether systemic EPO levels, in physiological conditions, participate to the modulation of fat oxidation. PMID:25567744

  10. Statins Attenuate the Increase in P-Selectin Produced by Prolonged Exercise.

    PubMed

    Zaleski, Amanda; Capizzi, Jeffrey; Ballard, Kevin D; Troyanos, Christopher; Baggish, Aaron; D'Hemecourt, Pierre; Thompson, Paul D; Parker, Beth

    2013-01-01

    Strenuous endurance exercise increases inflammatory markers and acutely increases cardiovascular risk; however, statins may mitigate this response. We measured serum levels of p-selectin in 37 runners treated with statins and in 43 nonstatin treated controls running the 2011 Boston Marathon. Venous blood samples were obtained the day before (PRE) as well as within 1 hour after (FINISH) and 24 hours after (POST) the race. The increase in p-selectin immediately after exercise was lower in statin users (PRE to FINISH: 20.5 ± 19.4 ng/mL) than controls (PRE to FINISH: 30.9 ± 27.1 ng/mL; P < 0.001). The increase in p-selectin 24 hours after exercise was also lower in statin users (PRE to POST: 21.5 ± 26.6 ng/mL) than controls (PRE to POST: 29.3 ± 31.9 ng/mL; P < 0.001). Furthermore, LDL-C was positively correlated with p-selectin at FINISH and POST (P < 0.01 and P < 0.05, resp.), irrespective of drug treatment, suggesting that lower levels of LDL-C are associated with a reduced inflammatory response to exercise. We conclude that statins blunt the exercise-induced increase in p-selectin following a marathon and that the inflammatory response to a marathon varies directly with LDL-C levels. PMID:26464882

  11. The effects of compression garments on performance of prolonged manual-labour exercise and recovery.

    PubMed

    Chan, Val; Duffield, Rob; Watsford, Mark

    2016-02-01

    This study investigated the effects of wearing compression garments during and 24 h following a 4-h exercise protocol simulating manual-labour tasks. Ten physically trained male participants, familiar with labouring activities, undertook 4 h of work tasks characteristic of industrial workplaces. Participants completed 2 testing sessions, separated by at least 1 week. In the experimental condition, participants wore a full-length compression top and compression shorts during the exercise protocol and overnight recovery, with normal work clothes worn in the control condition. Testing for serum creatine kinase and C-reactive protein, handgrip strength, knee flexion and extension torque, muscle stiffness, perceived muscle soreness and fatigue as well as heart rate and rating of perceived exertion (RPE) responses to 4-min cycling were performed before, following, and 24 h after exercise. Creatine kinase, muscle soreness, and rating of perceived fatigue increased following the exercise protocol (p < 0.05) as did RPE to a standardised cycling warm-up bout. Conversely, no postexercise changes were observed in C-reactive protein, handgrip strength, peak knee flexion torque, or stiffness measures (p > 0.05). Knee extension torque was significantly higher in the control condition at 24 h postexercise (3.1% ± 5.4% change; compression: 2.2% ± 11.1% change), although no other variables were different between conditions at any time. However, compression demonstrated a moderate-large effect (d > 0.60) to reduce perceived muscle soreness, fatigue, and RPE from standardised warm-up at 24 h postexercise. The current findings suggest that compression may assist in perceptual recovery from manual-labour exercise with implications for the ability to perform subsequent work bouts. PMID:26778138

  12. Prolonged Exercise in Type 1 Diabetes: Performance of a Customizable Algorithm to Estimate the Carbohydrate Supplements to Minimize Glycemic Imbalances

    PubMed Central

    Francescato, Maria Pia; Stel, Giuliana; Stenner, Elisabetta; Geat, Mario

    2015-01-01

    Physical activity in patients with type 1 diabetes (T1DM) is hindered because of the high risk of glycemic imbalances. A recently proposed algorithm (named Ecres) estimates well enough the supplemental carbohydrates for exercises lasting one hour, but its performance for prolonged exercise requires validation. Nine T1DM patients (5M/4F; 35–65 years; HbA1c 54±13 mmol·mol-1) performed, under free-life conditions, a 3-h walk at 30% heart rate reserve while insulin concentrations, whole-body carbohydrate oxidation rates (determined by indirect calorimetry) and supplemental carbohydrates (93% sucrose), together with glycemia, were measured every 30 min. Data were subsequently compared with the corresponding values estimated by the algorithm. No significant difference was found between the estimated insulin concentrations and the laboratory-measured values (p = NS). Carbohydrates oxidation rate decreased significantly with time (from 0.84±0.31 to 0.53±0.24 g·min-1, respectively; p<0.001), being estimated well enough by the algorithm (p = NS). Estimated carbohydrates requirements were practically equal to the corresponding measured values (p = NS), the difference between the two quantities amounting to –1.0±6.1 g, independent of the elapsed exercise time (time effect, p = NS). Results confirm that Ecres provides a satisfactory estimate of the carbohydrates required to avoid glycemic imbalances during moderate intensity aerobic physical activity, opening the prospect of an intriguing method that could liberate patients from the fear of exercise-induced hypoglycemia. PMID:25918842

  13. Timing and distribution of protein ingestion during prolonged recovery from resistance exercise alters myofibrillar protein synthesis

    PubMed Central

    Areta, José L; Burke, Louise M; Ross, Megan L; Camera, Donny M; West, Daniel W D; Broad, Elizabeth M; Jeacocke, Nikki A; Moore, Daniel R; Stellingwerff, Trent; Phillips, Stuart M; Hawley, John A; Coffey, Vernon G

    2013-01-01

    Quantity and timing of protein ingestion are major factors regulating myofibrillar protein synthesis (MPS). However, the effect of specific ingestion patterns on MPS throughout a 12 h period is unknown. We determined how different distributions of protein feeding during 12 h recovery after resistance exercise affects anabolic responses in skeletal muscle. Twenty-four healthy trained males were assigned to three groups (n= 8/group) and undertook a bout of resistance exercise followed by ingestion of 80 g of whey protein throughout 12 h recovery in one of the following protocols: 8 × 10 g every 1.5 h (PULSE); 4 × 20 g every 3 h (intermediate: INT); or 2 × 40 g every 6 h (BOLUS). Muscle biopsies were obtained at rest and after 1, 4, 6, 7 and 12 h post exercise. Resting and post-exercise MPS (l-[ring-13C6] phenylalanine), and muscle mRNA abundance and cell signalling were assessed. All ingestion protocols increased MPS above rest throughout 1–12 h recovery (88–148%, P < 0.02), but INT elicited greater MPS than PULSE and BOLUS (31–48%, P < 0.02). In general signalling showed a BOLUS>INT>PULSE hierarchy in magnitude of phosphorylation. MuRF-1 and SLC38A2 mRNA were differentially expressed with BOLUS. In conclusion, 20 g of whey protein consumed every 3 h was superior to either PULSE or BOLUS feeding patterns for stimulating MPS throughout the day. This study provides novel information on the effect of modulating the distribution of protein intake on anabolic responses in skeletal muscle and has the potential to maximize outcomes of resistance training for attaining peak muscle mass. PMID:23459753

  14. The effect of hip abductor exercise on muscle strength and trunk stability after an injury of the lower extremities

    PubMed Central

    Kak, Hwang-Bo; Park, Sun-Ja; Park, Byun-Joon

    2016-01-01

    [Purpose] The gluteus medius, a hip abductor, controls femoral movement and stabilizes the pelvis during lower extremity mobilization. [Subjects] This study enrolled 24 subjects into control and experimental groups. [Methods] This randomized controlled study included patients who underwent arthroscopy after meniscus injury and started a rehabilitative exercise program 8 weeks after surgery. Subjects were divided into the experimental gluteus medius resistance exercise group (n=12) and the control group (n=12). The study investigated muscle strength and balance of the flexors, extensors, and abductors of the knee for 8 weeks. [Results] Strengths of knee extensors in patients who underwent rehabilitative exercise for 8 weeks were measured. Strength of the knee extensors of the experimental and control groups increased by 40% and 31%, respectively; strength of the hip flexors of the experimental and control groups increased by 31% and 18%, respectively. Strength of the hip joint muscles showed a 40% increase in the experimental group and a 14% increase in the control group. However, there was a significant difference (18%) in muscle strength of the hip abductors between the groups. Measurements of trunk lateral flexion showed a difference within a group, but no intergroup difference was found. [Conclusion] This study investigated the effect of hip abductor exercise on muscular strength and trunk stability in patients with a meniscus injury. PMID:27134387

  15. Changes in Drop-Jump Landing Biomechanics During Prolonged Intermittent Exercise

    PubMed Central

    Schmitz, Randy J.; Cone, John C.; Tritsch, Amanda J.; Pye, Michele L.; Montgomery, Melissa M.; Henson, Robert A.; Shultz, Sandra J.

    2014-01-01

    Background: As injury rates rise in the later stages of sporting activities, a better understanding of lower extremity biomechanics in the later phases of gamelike situations may improve training and injury prevention programs. Hypothesis: Lower extremity biomechanics of a drop-jump task (extracted from a principal components analysis) would reveal factors associated with risk of anterior cruciate ligament injury during a 90-minute individualized intermittent exercise protocol (IEP) and for 1 hour following the IEP. Study Design: Controlled laboratory study. Level of Evidence: Level 4. Methods: Fifty-nine athletes (29 women, 30 men) completed 3 sessions. The first session assessed fitness for an IEP designed to simulate the demands of a soccer match. An experimental session assessed drop-jump biomechanics, after a dynamic warm-up, every 15 minutes during the 90-minute IEP, and for 1 hour following the IEP. A control session with no exercise assessed drop-jump performance at the same intervals. Results: Two biomechanical factors early in the first half (hip flexion at initial contact and hip loading; ankle loading and knee shear force) decreased at the end of the IEP and into the 60-minute recovery period, while a third factor (knee loading) decreased only during the recovery period (P ≤ 0.05). Conclusion: The individualized sport-specific IEP may have more subtle effects on landing biomechanics when compared with short-term, exhaustive fatigue protocols. Clinical Relevance: Potentially injurious landing biomechanics may not occur until the later stages of soccer activity. PMID:24587862

  16. The Prolonged Intake of L-Arginine-L-Aspartate Reduces Blood Lactate Accumulation and Oxygen Consumption During Submaximal Exercise

    PubMed Central

    Burtscher, Martin; Brunner, Fritz; Faulhaber, Martin; Hotter, Barbara; Likar, Rudolf

    2005-01-01

    L-arginine-L-aspartate is widely used by athletes for its potentially ergogenic properties. However, only little information on its real efficacy is available from controlled studies. Therefore, we evaluated the effects of prolonged supplementation with L-arginine-L-aspartate on metabolic and cardiorespiratory responses to submaximal exercise in healthy athletes by a double blind placebo-controlled trial. Sixteen healthy male volunteers (22 ± 3 years) performed incremental cycle spiroergometry up to 150 watts before and after intake of L-arginine-L-aspartate (3 grams per day) or placebo for a period of 3 weeks. After intake of L-arginine-L-aspartate, blood lactate at 150 watts dropped from 2.8 ± 0.8 to 2.0 ± 0.9 mmol·l-1 (p < 0.001) and total oxygen consumption during the 3-min period at 150 watts from 6.32 ± 0.51 to 5.95 ± 0.40 l (p = 0.04) compared to placebo (2.7 ± 1.1 to 2.7 ± 1.4 mmol·l-1; p = 0.9 and 6.07 ± 0.51 to 5.91 ± 0.50 l; p = 0.3). Additionally, L-arginine-L-aspartate supplementation effected an increased fat utilisation at 50 watts. L-arginine and L-aspartate seem to have induced synergistic metabolic effects. L-arginine might have reduced lactic acid production by the inhibition of glycolysis and L-aspartate may have favoured fatty acid oxidation. Besides, the results indicate improved work efficiency after L-arginine-L-aspartate intake. The resulting increases of submaximal work capacity and exercise tolerance may have important implications for athletes as well as patients. Key Points Amino acids are among the most common nutritional supplements taken by athletes. They are involved in numerous metabolic pathways that affect exercise metabolism. Three weeks of L-arginine-L-aspartate supplementation resulted in lower blood lactate concentrations and oxygen consumption, diminished glucose and enhanced fat oxidation, and reduced heart rate and ventilation during submaximal cycle exercise. This implies increased submaximal work capacity and

  17. Effect of inspiratory resistance to prolonged exercise in a hot environment wearing protective clothing

    NASA Astrophysics Data System (ADS)

    Jetté, Maurice; Quenneville, Josée; Thoden, James; Livingstone, Sydney

    1992-09-01

    The effects of inspiratory resistance on prolonged work in a hot environment wearing a nuclear, bacteriological and chemical warfare (NBCW) mask and overgarment were assessed in 10 males. Subjects walked on a treadmill at 5 km/hr, 2% gradient, until their core temperature reached 39° C or for a duration of 90 min. Rectal temperature, heart rate, ventilation, oxygen consumption and rate of perceived breathing were measured. There were no differences between break-point time without the canister (62.2 ± 21 min) and with the canister (58.9 ± 17 min). Regression analysis indicated that the mean core temperature increased by 0.02° C for every minute of work performed and heart rate by 6 beats/min for every increase of 0.2° C in core temperature. Reduction in heat transfer brought about by wearing the protective overgarment and mask with or without the canister will significantly increase core temperature and limit the performance of moderate work to approximately 1 h in a moderately fit individual.

  18. Effectiveness of therapeutic physical exercise in the treatment of patellofemoral pain syndrome: a systematic review

    PubMed Central

    Alba-Martín, Pablo; Gallego-Izquierdo, T; Plaza-Manzano, Gustavo; Romero-Franco, Natalia; Núñez-Nagy, Susana; Pecos-Martín, Daniel

    2015-01-01

    [Purpose] The aim of this study was to analyze the effectiveness of conservative treatment of patellofemoral pain syndrome with physical exercise. [Subjects and Methods] A computer-based review conducted of four databases (PubMed, the Cochrane Library, PEDro, and the University Library) was completed based on the inclusion criteria of patellofemoral pain syndrome patients treated with physical exercise methods and examination with self-reported pain and/or functional questionnaires. [Results] The findings of ten clinical trials of moderate to high quality were evaluated to determine the effectiveness of physical exercise as conservative management for patellofemoral pain syndrome. [Conclusion] The intervention programs that were most effective in relieving pain and improving function in patellofemoral pain syndrome included proprioceptive neuromuscular facilitation stretching and strengthening exercises for the hip external rotator and abductor muscles and knee extensor muscles. PMID:26311988

  19. Influence of Hydration Status on Changes in Plasma Cortisol, Leukocytes, and Antigen-Stimulated Cytokine Production by Whole Blood Culture following Prolonged Exercise.

    PubMed

    Svendsen, Ida S; Killer, Sophie C; Gleeson, Michael

    2014-01-01

    Elevated antigen-stimulated anti-inflammatory cytokine production appears to be a risk factor for upper respiratory tract illness in athletes. The purpose of this study was to determine the effects of prolonged exercise and hydration on antigen-stimulated cytokine production. Twelve healthy males cycled for 120 min at 60% [Formula: see text] on two occasions, either euhydrated or moderately hypohydrated (induced by fluid restriction for 24 h). Blood samples were collected before and after exercise and following 2 h recovery for determination of cell counts, plasma cortisol, and in vitro antigen-stimulated cytokine production by whole blood culture. Fluid restriction resulted in mean body mass loss of 1.3% and 3.9% before and after exercise, respectively. Exercise elicited a significant leukocytosis and elevated plasma cortisol, with no differences between trials. IL-6 production was significantly reduced 2 h postexercise (P < 0.05), while IL-10 production was elevated postexercise (P < 0.05). IFN- γ and IL-2 production tended to decrease postexercise. No significant effect of hydration status was observed for the measured variables. Prolonged exercise appears to result in augmented anti-inflammatory cytokine release in response to antigen challenge, possibly coupled with acute suppression of proinflammatory cytokine production, corresponding with studies using mitogen or endotoxin as stimulant. Moderate hypohydration does not appear to influence these changes. PMID:24967270

  20. The influence of ice slushy on voluntary contraction force following exercise-induced hyperthermia.

    PubMed

    Burdon, Catriona A; Easthope, Christopher S; Johnson, Nathan A; Chapman, Phillip G; O'Connor, Helen

    2014-07-01

    This study aimed to investigate the effect of exercise-induced hyperthermia on central fatigue and force decline in exercised and nonexercised muscles and whether ingestion of ice slushy (ICE) ameliorates fatigue. Eight participants (5 males, 3 females) completed 45 s maximal voluntary isometric contractions (MVIC) with elbow flexors and knee extensors at baseline and following an exercise-induced rectal temperature (Trec) of 39.3 ± 0.2 °C. Percutaneous electrical muscle stimulation was superimposed at 15, 30 and 44 s during MVICs to assess muscle activation. To increase Trec to 39.3 °C, participants cycled at 60% maximum power output for 42 ± 11 min in 40 °C and 50% relative humidity. Immediately prior to each MVIC, participants consumed 50 g of ICE (-1 °C) or thermoneutral drink (38 °C, CON) made from 7.4% carbohydrate beverage. Participants consumed water (19 °C) during exercise to prevent hypohydration. Voluntary muscle force production and activation in both muscle groups were unchanged at Trec 39.3 °C with ICE (knee extensors: 209 ± 152 N) versus CON (knee extensors: 255 ± 157 N, p = 0.19). At Trec 39.3 °C, quadriceps mean force (232 ± 151 N) decreased versus baseline (302 ± 180 N, p < 0.001) and mean voluntary activation was also decreased (by 15% ± 11%, p < 0.001). Elbow flexor mean force decreased from 179 ± 67 N to 148 ± 65 N when Trec was increased to 39.3 °C (p < 0.001) but mean voluntary activation was not reduced at 39.3 °C (5% ± 25%, p = 0.79). After exercise-induced hyperthermia, ICE had no effect on voluntary activation or force production; however, both were reduced from baseline in the exercised muscle group. Peripheral fatigue was greater than the central component and limited the ability of an intervention designed to alter central fatigue. PMID:24971678

  1. Ingestion of glucose or sucrose prevents liver but not muscle glycogen depletion during prolonged endurance-type exercise in trained cyclists.

    PubMed

    Gonzalez, Javier T; Fuchs, Cas J; Smith, Fiona E; Thelwall, Pete E; Taylor, Roy; Stevenson, Emma J; Trenell, Michael I; Cermak, Naomi M; van Loon, Luc J C

    2015-12-15

    The purpose of this study was to define the effect of glucose ingestion compared with sucrose ingestion on liver and muscle glycogen depletion during prolonged endurance-type exercise. Fourteen cyclists completed two 3-h bouts of cycling at 50% of peak power output while ingesting either glucose or sucrose at a rate of 1.7 g/min (102 g/h). Four cyclists performed an additional third test for reference in which only water was consumed. We employed (13)C magnetic resonance spectroscopy to determine liver and muscle glycogen concentrations before and after exercise. Expired breath was sampled during exercise to estimate whole body substrate use. After glucose and sucrose ingestion, liver glycogen levels did not show a significant decline after exercise (from 325 ± 168 to 345 ± 205 and 321 ± 177 to 348 ± 170 mmol/l, respectively; P > 0.05), with no differences between treatments. Muscle glycogen concentrations declined (from 101 ± 49 to 60 ± 34 and 114 ± 48 to 67 ± 34 mmol/l, respectively; P < 0.05), with no differences between treatments. Whole body carbohydrate utilization was greater with sucrose (2.03 ± 0.43 g/min) vs. glucose (1.66 ± 0.36 g/min; P < 0.05) ingestion. Both liver (from 454 ± 33 to 283 ± 82 mmol/l; P < 0.05) and muscle (from 111 ± 46 to 67 ± 31 mmol/l; P < 0.01) glycogen concentrations declined during exercise when only water was ingested. Both glucose and sucrose ingestion prevent liver glycogen depletion during prolonged endurance-type exercise. Sucrose ingestion does not preserve liver glycogen concentrations more than glucose ingestion. However, sucrose ingestion does increase whole body carbohydrate utilization compared with glucose ingestion. This trial was registered at https://www.clinicaltrials.gov as NCT02110836. PMID:26487008

  2. WISE 2005: LBNP Exercise and Flywheel Resistive Exercise as an Effective Countermeasure Combination

    NASA Technical Reports Server (NTRS)

    Meuche, S.; Schneider, S. M.; Lee, S. M. C.; Macias, B. R.; Smith, S. M.; Watenpaugh, D. E.; Hargens, A. R.

    2006-01-01

    Long-term exposure to microgravity can cause a severe musculoskeletal loss and cardiovascular deconditioning in astronauts. In this report, the effectiveness of combined supine treadmill exercise in a lower body negative pressure chamber (LBNPex) and flywheel resistive exercise (Rex) countermeasures was determined to prevent bone loss, reduced aerobic upright exercise capacity and reduced muscle strength. We hypothesized that exercise subjects (EX) would show less decrease in bone mineral density (BMD), peak oxygen consumption (VO2pk) and knee extensor strength (KES) than control subjects (CON). Sixteen healthy female subjects (34 plus or minus 4yrs, 164 plus or minus 6.5cm, 58 plus or minus 5kg; mean plus or minus SD) participated in a 60-d 6 degree head-down tilt bed rest (BR) study after providing written informed consent. Subjects were assigned to one of two groups: a non- exercising CON group or an EX group performing LBNPex 2-4 d/wk and Rex every 3rd-d. VO2pk was measured with a maximal, graded, upright treadmill test performed pre-BR and on 3-d after BR. BMD was assessed pre-BR and 3-d after BR by dual energy x-ray absorptiometry total body DEXA scan (DEXA; HOLOGIC QDR 4500 Elite ). A Cybex dynamometer was employed to measure the isokinetic KES before and 5-d after BR. Two-way repeated measures ANOVA were performed with time as the repeated factor. Statistical significance was set at p less than 0.05. CON experienced a significant decrease in BMD in the trochanter (PRE: 0.670 0.045; POST: 0.646 0.352 g(raised dot) per square centimeter) and in the whole hip (PRE: 0.894 0.059; POST: 0.858 0.057 g(raised dot) per square centimeter). BMD also decreased significantly in EX in the trochanter (PRE: 0.753 plus or minus 0.0617; POST: 0.741 plus or minus 0.061 g(raised dot) per square centimeter) and whole hip (PRE: 0.954 plus or minus 0.067; POST: 0.935 plus or minus 0.069 g(raised dot) per square centimeter). BMD losses were significantly less in EX than in CON

  3. Supine Treadmill Exercise in Lower Body Negative Pressure Combined with Resistive Exercise Counteracts Bone Loss, Reduced Aerobic Upright Exercise Capacity and Reduced Muscle Strength

    NASA Technical Reports Server (NTRS)

    Meuche, Sabine; Schneider, S. M.; Lee, S. M. C.; Macias, B. R.; Smith, S. M.; Watenpaugh, D. E.; Hargens, A. R.

    2006-01-01

    Long-term exposure to weightlessness leads to cardiovascular and musculoskeletal deconditioning. In this report, the effectiveness of combined supine treadmill exercise in a lower body negative pressure chamber (LBNPex) and flywheel resistive exercise (Rex) countermeasures was determined to prevent bone loss, reduced aerobic upright exercise capacity and reduced muscle strength. We hypothesized that exercise subjects would show less decrease in bone mineral density (BMD), peak oxygen consumption (VO2pk) and knee extensor strength (KES) than control subjects. Sixteen healthy female subjects participated in a 60-d 6(sup 0) head-down tilt bed rest (BR) study after providing written informed consent. Subjects were assigned to one of two groups: a non-exercising control group CON or an exercise group EX performing LBNPex 2-4 d/wk and Rex every 3rd-d. VO2pk was measured with a maximal, graded, upright treadmill test performed pre-BR and on 3-d after BR. BMD was assessed before and 3-d after BR. Isokinetic KES was measured before and 5-d after BR. Two-way repeated measures ANOVA were performed. Statistical significance was set at p less than 0.05. CON experienced a significant decrease in BMD in the trochanter (PRE: 0.670 plus or minus 0.045; POST: 0.646 plus or minus 0.352 g (raised dot) per square centimeter) and in the whole hip (PRE=0.894 plus or minus 0.059; POST: 0.858 plus or minus 0.057 g (raised dot) per square centimeter). BMD also decreased significantly in EX in the trochanter (PRE: 0.753 plus or minus 0.0617; POST: 0.741 plus or minus 0.061 g (raised dot) per square centimeter) and whole hip (PRE: 0.954 plus or minus 0.067; POST: 0.935 plus or minus 0.069 g (raised dot) per square centimeter). BMD losses were significantly less in EX than in CON subjects. VO2pk was significantly decreased in the CON after BR (PRE: 38.0 plus or minus 4.8; POST: 29.9 plus or minus 4.2 ml (raised dot) per kilogram per minute), but not in the EX (PRE: 39.0 plus or minus 2.0; POST

  4. Roles of nitric oxide synthase and cyclooxygenase in leg vasodilation and oxygen consumption during prolonged low-intensity exercise in untrained humans.

    PubMed

    Schrage, William G; Wilkins, Brad W; Johnson, Christopher P; Eisenach, John H; Limberg, Jacqueline K; Dietz, Niki M; Curry, Timothy B; Joyner, Michael J

    2010-09-01

    The vasodilator signals regulating muscle blood flow during exercise are unclear. We tested the hypothesis that in young adults leg muscle vasodilation during steady-state exercise would be reduced independently by sequential pharmacological inhibition of nitric oxide synthase (NOS) and cyclooxygenase (COX) with NG-nitro-L-arginine methyl ester (L-NAME) and ketorolac, respectively. We tested a second hypothesis that NOS and COX inhibition would increase leg oxygen consumption (VO2) based on the reported inhibition of mitochondrial respiration by nitric oxide. In 13 young adults, we measured heart rate (ECG), blood pressure (femoral venous and arterial catheters), blood gases, and venous oxygen saturation (indwelling femoral venous oximeter) during prolonged (25 min) steady-state dynamic knee extension exercise (60 kick/min, 19 W). Leg blood flow (LBF) was determined by Doppler ultrasound of the femoral artery. Whole body VO2 was measured, and leg VO2 was calculated from blood gases and LBF. Resting intra-arterial infusions of acetylcholine (ACh) and nitroprusside (NTP) tested inhibitor efficacy. Leg vascular conductance (LVC) to ACh was reduced up to 53±4% by L-NAME+ketorolac infusion, and the LVC responses to NTP were unaltered. Exercise increased LVC from 4±1 to 33.1±2 ml.min(-1).mmHg(-1) and tended to decrease after L-NAME infusion (31±2 ml.min(-1).mmHg(-1), P=0.09). With subsequent administration of ketorolac LVC decreased to 29.6±2 ml.min(-1).mmHg(-1) (P=0.02; n=9). While exercise continued, LVC returned to control values (33±2 ml.min(-1).mmHg(-1)) within 3 min, suggesting involvement of additional vasodilator mechanisms. In four additional subjects, LVC tended to decrease with L-NAME infusion alone (P=0.08) but did not demonstrate the transient recovery. Whole body and leg VO2 increased with exercise but were not altered by L-NAME or L-NAME+ketorolac. These data indicate a modest role for NOS- and COX-mediated vasodilation in the leg of exercising

  5. The Effects of Nandrolone Decanoate Along with Prolonged Low-Intensity Exercise on Susceptibility to Ventricular Arrhythmias.

    PubMed

    Binayi, Fateme; Joukar, Siyavash; Najafipour, Hamid; Karimi, Abdolah; Karimi, Ali; Abdollahi, Farzane; Masumi, Yaser

    2016-01-01

    We examined the influence of chronic administration of nandrolone decanoate with low-intensity endurance swimming exercise on susceptibility to lethal ventricular arrhythmias in rat. The animal groups included the control group, exercise group (EX), nandrolone group (Nan), vehicle group (Arach), trained vehicle group (Arach + Ex) and trained nandrolone group (Nan + Ex) that treated for 8 weeks. Then, arrhythmia induction was performed by intravenous infusion of aconitine and electrocardiogram recorded. Then, malondialdehyde (MDA), hydroxyproline (HYP) and glutathione peroxidase of heart tissue were measured. Chronic administration of nandrolone with low-intensity endurance swimming exercise had no significant effect on blood pressure, heart rate and basal ECG parameters except RR interval that showed increase (P < 0.05). Low-intensity exercise could prevent the incremental effect of nandrolone on MDA and HYP significantly. It also increased the heart hypertrophy index (P < 0.05) and reduced the abating effect of nandrolone on animal weighting. Nandrolone along with exercise significantly increased the duration of VF (P < 0.05) and reduced the VF latency (P < 0.05). The findings suggest that chronic co-administration of nandrolone with low-intensity endurance swimming exercise to some extent facilitates the occurrence of ventricular fibrillation in rat. Complementary studies are needed to elucidate the involved mechanisms of this abnormality. PMID:25636207

  6. Effects of supplementation with free glutamine and the dipeptide alanyl-glutamine on parameters of muscle damage and inflammation in rats submitted to prolonged exercise.

    PubMed

    Cruzat, Vinicius Fernandes; Rogero, Marcelo Macedo; Tirapegui, Julio

    2010-01-01

    In this study, we investigated the effect of the supplementation with the dipeptide L-alanyl-L-glutamine (DIP) and a solution containing L-glutamine and L-alanine on plasma levels markers of muscle damage and levels of pro-inflammatory cytokines and glutamine metabolism in rats submitted to prolonged exercise. Rats were submitted to sessions of swim training for 6 weeks. Twenty-one days prior to euthanasia, the animals were supplemented with DIP (n = 8) (1.5 g.kg(-1)), a solution of free L-glutamine (1 g.kg(-1)) and free L-alanine (0.61 g.kg(-1)) (G&A, n = 8) or water (control (CON), n = 8). Animals were killed at rest before (R), after prolonged exercise (PE-2 h of exercise). Plasma concentrations of glutamine, glutamate, tumour necrosis factor-alpha (TNF-alpha), prostaglandin E2 (PGE2) and activity of creatine kinase (CK), lactate dehydrogenase (LDH) and muscle concentrations of glutamine and glutamate were measured. The concentrations of plasma TNF-alpha, PGE2 and the activity of CK were lower in the G&A-R and DIP-R groups, compared to the CON-R. Glutamine in plasma (p < 0.04) and soleus muscle (p < 0.001) was higher in the DIP-R and G&A-R groups relative to the CON-R group. G&A-PE and DIP-PE groups exhibited lower concentrations of plasma PGE2 (p < 0.05) and TNF-alpha (p < 0.05), and higher concentrations of glutamine and glutamate in soleus (p < 0.001) and gastrocnemius muscles (p < 0.05) relative to the CON-PE group. We concluded that supplementation with free L-glutamine and the dipeptide LL-alanyl-LL-glutamine represents an effective source of glutamine, which may attenuate inflammation biomarkers after periods of training and plasma levels of CK and the inflammatory response induced by prolonged exercise. PMID:19885855

  7. Caffeine vs caffeine-free sports drinks: effects on urine production at rest and during prolonged exercise.

    PubMed

    Wemple, R D; Lamb, D R; McKeever, K H

    1997-01-01

    We compared the effects of caffeinated vs non-caffeinated carbohydrate electrolyte (CE) drinks on urine volume (UV), free water clearance (CH2O), fractional excretion of water (FEH2O), and osmolar excretion during 4 h of rest or 1 h rest followed by 3 h of cycling at 60% VO2max in six subjects. We also tested maximal performance at 85% VO2max following the 3-h exercise trials. Throughout the two resting trials and the two rest + exercise trials, subjects ingested CE (total volume = 35 ml/kg) without (PLAC) or with (CAFF) caffeine (25 mg/dl). Blood samples were collected, and body weight and UV were recorded every hour. Urine and blood were analyzed for osmolality and creatinine, and plasma catecholamine concentrations were determined. At rest, mean (+/-SE) UV between 60 min and 240 min was greater for CAFF (1843 +/- 166 ml) vs PLAC (1411 +/- 181 ml) (p < 0.01); during exercise the difference in UV between CAFF (398 +/- 32 ml) and PLAC (490 +/- 57 ml) was not significant. Cycling performance was unaffected by caffeine. Plasma catecholamine concentrations were not different between PLAC and CAFF but were greater during exercise than rest (p < 0.01) and may have counteracted the diuretic effect of caffeine observed at rest. Thus, CAFF consumed in CE during moderate endurance exercise apparently does not compromise bodily hydration status. PMID:9059904

  8. Dietary Supplementation with the Microalga Galdieria sulphuraria (Rhodophyta) Reduces Prolonged Exercise-Induced Oxidative Stress in Rat Tissues

    PubMed Central

    Carfagna, Simona; Napolitano, Gaetana; Barone, Daniela; Pinto, Gabriele; Venditti, Paola

    2015-01-01

    We studied the effects of ten-day 1% Galdieria sulphuraria dietary supplementation on oxidative damage and metabolic changes elicited by acute exercise (6-hour swimming) determining oxygen consumption, lipid hydroperoxides, protein bound carbonyls in rat tissue (liver, heart, and muscle) homogenates and mitochondria, tissue glutathione peroxidase and glutathione reductase activities, glutathione content, and rates of H2O2 mitochondrial release. Exercise increased oxidative damage in tissues and mitochondria and decreased tissue content of reduced glutathione. Moreover, it increased State 4 and decreased State 3 respiration in tissues and mitochondria. G. sulphuraria supplementation reduced the above exercise-induced variations. Conversely, alga supplementation was not able to modify the exercise-induced increase in mitochondrial release rate of hydrogen peroxide and in liver and heart antioxidant enzyme activities. The alga capacity to reduce lipid oxidative damage without reducing mitochondrial H2O2 release can be due to its high content of C-phycocyanin and glutathione, which are able to scavenge peroxyl radicals and contribute to phospholipid hydroperoxide metabolism, respectively. In conclusion, G. sulphuraria ability to reduce exercise-linked oxidative damage and mitochondrial dysfunction makes it potentially useful even in other conditions leading to oxidative stress, including hyperthyroidism, chronic inflammation, and ischemia/reperfusion. PMID:25874021

  9. Dietary supplementation with the microalga Galdieria sulphuraria (Rhodophyta) reduces prolonged exercise-induced oxidative stress in rat tissues.

    PubMed

    Carfagna, Simona; Napolitano, Gaetana; Barone, Daniela; Pinto, Gabriele; Pollio, Antonino; Venditti, Paola

    2015-01-01

    We studied the effects of ten-day 1% Galdieria sulphuraria dietary supplementation on oxidative damage and metabolic changes elicited by acute exercise (6-hour swimming) determining oxygen consumption, lipid hydroperoxides, protein bound carbonyls in rat tissue (liver, heart, and muscle) homogenates and mitochondria, tissue glutathione peroxidase and glutathione reductase activities, glutathione content, and rates of H2O2 mitochondrial release. Exercise increased oxidative damage in tissues and mitochondria and decreased tissue content of reduced glutathione. Moreover, it increased State 4 and decreased State 3 respiration in tissues and mitochondria. G. sulphuraria supplementation reduced the above exercise-induced variations. Conversely, alga supplementation was not able to modify the exercise-induced increase in mitochondrial release rate of hydrogen peroxide and in liver and heart antioxidant enzyme activities. The alga capacity to reduce lipid oxidative damage without reducing mitochondrial H2O2 release can be due to its high content of C-phycocyanin and glutathione, which are able to scavenge peroxyl radicals and contribute to phospholipid hydroperoxide metabolism, respectively. In conclusion, G. sulphuraria ability to reduce exercise-linked oxidative damage and mitochondrial dysfunction makes it potentially useful even in other conditions leading to oxidative stress, including hyperthyroidism, chronic inflammation, and ischemia/reperfusion. PMID:25874021

  10. The effect of ice-slushy consumption on plasma vasoactive intestinal peptide during prolonged exercise in the heat.

    PubMed

    Burdon, Catriona A; Ruell, Patricia; Johnson, Nathan; Chapman, Phillip; O'Brien, Sinead; O'Connor, Helen T

    2015-01-01

    The aim of this study was to determine the effect of exercise in the heat on thermoregulatory responses and plasma vasoactive intestinal peptide concentration (VIP) and whether it is modulated by ice-slushy consumption. Ten male participants cycled at 62% V̇O2max for 90min in 32°C and 40% relative humidity. A thermoneutral (37°C) or ice-slushy (-1°C) sports drink was given at 3.5mlkg(-1) body mass every 15min during exercise. VIP and rectal temperature increased during exercise (mean±standard deviation: 4.6±4.4pmolL(-1), P=0.005; and 1.3±0.4°C, P<0.001 respectively) and were moderately associated (r=0.35, P=0.008). While rectal temperature and VIP were not different between trials, ice-slushy significantly reduced heat storage (P=0.010) and skin temperature (time×trial interaction P=0.038). It appears that VIP does not provide the signal linking cold beverage ingestion and lower skin temperature in the heat. PMID:25526655

  11. Handgrip and general muscular strength and endurance during prolonged bedrest with isometric and isotonic leg exercise training

    NASA Technical Reports Server (NTRS)

    Greenleaf, J. E.; Starr, J. C.; Van Beaumont, W.; Convertino, V. A.

    1983-01-01

    Measurements of maximal grip strength and endurance at 40 percent max strength were obtained for 7 men 19-21 years of age, 1-2 days before and on the first recovery day during three 2-week bedrest (BR) periods, each separated by a 3-week ambulatory recovery period. The subjects performed isometric exercise (IME) for 1 hr/day, isotonic exercise (ITE) for 1 hr/day, and no exercise (NOE) in the three BR periods. It was found that the mean maximal grip strength was unchanged after all three BR periods. Mean grip endurance was found to be unchanged after IME and ITE training, but was significantly reduced after NOE. These results indicate that IME and ITE training during BR do not increase or decrease maximal grip strength, alghough they prevent loss of grip endurance, while the maximal strength of all other major muscle groups decreases in proportion to the length of BR to 70 days. The maximal strength reduction of the large muscle groups was found to be about twice that of the small muscle groups during BR. In addition, it is shown that changes in maximal strength after spaceflight, BR, or water immersion deconditioning cannot be predicted from changes in submaximal or maximal oxygen uptake values.

  12. Concurrent Exercise on a Gravity-Independent Device during Simulated Microgravity

    PubMed Central

    Cotter, Joshua A.; Yu, Alvin; Haddad, Fadia; Kreitenberg, Arthur; Baker, Michael J.; Tesch, Per A.; Baldwin, Kenneth M.; Caiozzo, Vincent J.; Adams, Gregory R.

    2014-01-01

    Purpose To examine the effect of a high-intensity concurrent training program utilizing a single gravity-independent device on maintaining skeletal muscle function and aerobic capacity during short-term unilateral lower limb suspension (ULLS). Methods Nineteen subjects (10 male; 9 female; 21.0 ± 2.5 yr, 65.4 ± 12.2 kg) were separated into 2 groups: 1) 10 day unilateral lower limb suspension only (ULLS; n = 9) and 2) 10 day ULLS plus aerobic and resistance training (ULLS+EX; n = 10). Exercise was performed on a single gravity-independent Multi-Mode Exercise Device (M-MED) with alternating days of high-intensity interval aerobic training and maximal exertion resistance training. Results Aerobic capacity increased by 7% in ULLS+EX (P < 0.05). Knee extensor and ankle plantar flexor three repetition max increased in the ULLS+EX group (P < 0.05) but this change was only different than ULLS in the plantar flexors (P < 0.05). Peak torque levels decreased with ULLS but were increased for the knee extensors and attenuated for the ankle plantar flexors with ULLS+EX (P < 0.05). A shift towards type IIx myosin heavy chain mRNA occurred with ULLS and was reversed with ULLS+EX in the vastus lateralis (P < 0.05) but not the soleus. Myostatin and atrogin increased with ULLS in both the vastus lateralis and soleus but this change was mitigated with ULLS+EX only in the vastus lateralis (P = 0.0551 for myostatin; P < 0.05 for atrogin). Citrate synthase was decreased in the soleus during ULLS but was increased with ULLS+EX (P < 0.05). Conclusion These results indicate that an M-MED class countermeasure device appears to be effective at mitigating the deconditioning effects of microgravity simulated during a modified-ULLS protocol. PMID:25160844

  13. Exercises

    MedlinePlus

    ... Obstructive Pulmonary Disease (COPD) COPD: Lifestyle Management Exercises Exercises Make an Appointment Refer a Patient Ask a ... riding a stationary bike. Medication to Help You Exercise People with COPD often use a metered-dose ...

  14. Effectiveness of ice-vest cooling in prolonging work tolerance time during heavy exercise in the heat for personnel wearing Canadian forces chemical defense ensembles

    SciTech Connect

    Bain, B.

    1991-01-01

    Effectiveness of a portable, ice-pack cooling vest (Steelevest) in prolonging work tolerance time in chemical defense clothing in the heat (33 C dry bulb, 33% relative humidity or 25 C WBGT) was evaluated while subjects exercised at a metabolic rate of approx. 700 watts. Subjects were six male volunteers. The protocol consisted of a 20 minute treadmill walk at 1.33 m/s. and 7.5% grade, followed by 15 minutes of a lifting task, 5 minutes rest, then another 20 minutes of lifting task for a total of one hour. The lifting task consisted of lifting of 20 kg box, carrying it 3 meters and setting it down. This was followed by a 6 m walk (3m back to the start point and 3 m back to the box) 15 sec after which the lifting cycle began again. The work was classified as heavy as previously defined. This protocol was repeated until the subjects were unable to continue or they reached a physiological endpoint. Time to voluntary cessation or physiological endpoint was called the work tolerance time. Physiological endpoints were rectal temperature of 39 C, heart rate exceeding 95% of maximum for two consecutive minutes or visible loss of motor control or nausea. The cooling vest had no effect on work tolerance time, rate of rise of rectal temperature or sweat loss. It was concluded that the Steelvest ice-vest is ineffective in prolonging work tolerance time and preventing increases in rectal temperature while wearing chemical protective clothing.

  15. Spartathlon, a 246 kilometer foot race: effects of acute inflammation induced by prolonged exercise on circulating progenitor reparative cells.

    PubMed

    Goussetis, Evgenios; Spiropoulos, Antonia; Tsironi, Maria; Skenderi, Katerina; Margeli, Alexandra; Graphakos, Stelios; Baltopoulos, Panayiotis; Papassotiriou, Ioannis

    2009-01-01

    Endothelial progenitor cells (EPCs) and the recently described circulating fibrocytes (CFs) are strongly associated with tissue repair. We investigated the kinetics of both "repair" progenitor cells in healthy athletes who participated in the "Spartahlon" ultradistance foot race (246 km continuous running exercise), which provides a unique model of inducing dramatic systemic inflammatory changes. Peripheral blood mononuclear cells (PBMCs) were isolated from 10 volunteer athletes, who completed successfully the race, before, at the end, and at 48 h post-race. EPCs and CFs were detected as endothelial colony-forming units (CFU-ECs) and as the number of adherent with a spindle-shaped morphology Collagen I(+) cells detected after 6-day culture of PBMCs, respectively. The marked increase of plasma levels of CRP, IL-6, SAA, MCP-1, IL-8, sVCAM-1, sICAM-1, thrombomodulin (sTM) and NT-pro-BNP at the end of race established acute inflammation and tissue injury. EPCs increased by nearly eleven-fold in peripheral blood at the end of the race from 44.5+/-2.5/ml to 494.6+/-27.9/ml and remained increased 428.5+/-31.5/ml at 48 h post-race (p<0.0001). The number of the fibrocytes cultured from PBMCs obtained before, at the end, and 48 h post-race did not reveal any significant difference. These findings indicate that bone marrow responses to acute inflammatory damage, induced by exhausting exercise, with a rapid release of EPCs but not CFs into circulation. Given the ability of EPCs to promote angiogenesis and vascular regeneration, we may suggest that this kind of cell mobilization may serve as a physiologic repair mechanism in acute inflammatory tissue injury. PMID:19233694

  16. The Accumulative Effect of Concentric-Biased and Eccentric-Biased Exercise on Cardiorespiratory and Metabolic Responses to Subsequent Low-Intensity Exercise: A Preliminary Study

    PubMed Central

    Gavin, James Peter; Myers, Stephen; Willems, Mark Elisabeth Theodorus

    2015-01-01

    The study investigated the accumulative effect of concentric-biased and eccentric-biased exercise on cardiorespiratory, metabolic and neuromuscular responses to low-intensity exercise performed hours later. Fourteen young men cycled at low-intensity (~60 rpm at 50% maximal oxygen uptake) for 10 min before, and 12 h after: concentric-biased, single-leg cycling exercise (CON) (performed ~19:30 h) and eccentric-biased, double-leg knee extension exercise (ECC) (~06:30 h the following morning). Respiratory measures were sampled breath-by-breath, with oxidation values derived from stoichiometry equations. Knee extensor neuromuscular function was assessed before and after CON and ECC. Cardiorespiratory responses during low-intensity cycling were unchanged by accumulative CON and ECC. The RER was lower during low-intensity exercise 12 h after CON and ECC (0.88 ± 0.08), when compared to baseline (0.92 ± 0.09; p = 0.02). Fat oxidation increased from baseline (0.24 ± 0.2 g·min−1) to 12 h after CON and ECC (0.39 ± 0.2 g·min−1; p = 0.01). Carbohydrate oxidation decreased from baseline (1.59 ± 0.4 g·min−1) to 12 h after CON and ECC (1.36 ± 0.4 g·min−1; p = 0.03). These were accompanied by knee extensor force loss (right leg: −11.6%, p < 0.001; left leg: −10.6%, p = 0.02) and muscle soreness (right leg: 2.5 ± 0.9, p < 0.0001; left leg: 2.3 ± 1.2, p < 0.01). Subsequent concentric-biased and eccentric-biased exercise led to increased fat oxidation and decreased carbohydrate oxidation, without impairing cardiorespiration, during low-intensity cycling. An accumulation of fatiguing and damaging exercise increases fat utilisation during low intensity exercise performed as little as 12 h later. PMID:26839613

  17. Exercise training, but not resveratrol, improves metabolic and inflammatory status in skeletal muscle of aged men

    PubMed Central

    Olesen, Jesper; Gliemann, Lasse; Biensø, Rasmus; Schmidt, Jakob; Hellsten, Ylva; Pilegaard, Henriette

    2014-01-01

    The aim was to investigate the metabolic and anti-inflammatory effects of resveratrol alone and when combined with exercise training in skeletal muscle of aged human subjects. Healthy, physically inactive men (60–72 years old) were randomized to either 8 weeks of daily intake of 250 mg resveratrol or placebo or to 8 weeks of high-intensity exercise training with 250 mg resveratrol or placebo. Before and after the interventions, resting blood samples and muscle biopsies were obtained and a one-legged knee-extensor endurance exercise test was performed. Exercise training increased skeletal muscle peroxisome proliferator-activated receptor-γ co-activator-1α mRNA ∼1.5-fold, cytochrome c protein ∼1.3-fold, cytochrome c oxidase I protein ∼1.5-fold, citrate synthase activity ∼1.3-fold, 3-hydroxyacyl-CoA dehydrogenase activity ∼1.3-fold, inhibitor of κB-α and inhibitor of κB-β protein content ∼1.3-fold and time to exhaustion in the one-legged knee-extensor endurance exercise test by ∼1.2-fold, with no significant additive or adverse effects of resveratrol on these parameters. Despite an overall ∼25% reduction in total acetylation level in skeletal muscle with resveratrol, no exclusive resveratrol-mediated metabolic effects were observed on the investigated parameters. Notably, however, resveratrol blunted an exercise training-induced decrease (∼20%) in protein carbonylation and decrease (∼40%) in tumour necrosis factor α mRNA content in skeletal muscle. In conclusion, resveratrol did not elicit metabolic improvements in healthy aged subjects; in fact, resveratrol even impaired the observed exercise training-induced improvements in markers of oxidative stress and inflammation in skeletal muscle. Collectively, this highlights the metabolic efficacy of exercise training in aged subjects and does not support the contention that resveratrol is a potential exercise mimetic in healthy aged subjects. PMID:24514907

  18. A rare knee extensor mechanism injury: Vastus intermedius tendon rupture

    PubMed Central

    Cetinkaya, Engin; Aydin, Canan Gonen; Akman, Yunus Emre; Gul, Murat; Arikan, Yavuz; Aycan, Osman Emre; Kabukcuoglu, Yavuz Selim

    2015-01-01

    Introduction Quadriceps tendon injuries are rare. There is a limited number of studies in the literature, reporting partial quadriceps tendon ruptures. We did not find any study reporting an isolated vastus intermedius tendon injury in the literature. Presentation of case A 22 years old professional rugby player with the complaints of pain in the right lower limb, decreased range of motion in right knee and a mass in the mid-anterior of the right thigh applied following an overloading on his hyperflexed knee during a rugby match. T2 sequence magnetic resonance images revealed discontinuity in the vastus intermedius tendon and intramuscular hematoma. The patient has been conservatively treated. Discussion Quadriceps tendon ruptures generally occur after the 4th decade in the presence of degenerative changes. Our case is a young professional rugby player. Isolated vastus intermedius tendon rupture is unusual. Conservative treatment is performed as the intermedius tendon is in the deepest layer of the quadriceps muscle. Conclusion We report the first case of isolated rupture of the vastus intermedius tendon in the literature and we claim that disorder may be succesfully treated with conservative treatment and adequate physiotheraphy. PMID:26298093

  19. Heat stress exacerbates the reduction in middle cerebral artery blood velocity during prolonged self-paced exercise.

    PubMed

    Périard, J D; Racinais, S

    2015-06-01

    This study examined the influence of hyperthermia on middle cerebral artery mean blood velocity (MCA Vmean). Eleven cyclists undertook a 750 kJ self-paced time trial in HOT (35 °C) and COOL (20 °C) conditions. Exercise time was longer in HOT (56 min) compared with COOL (49 min; P < 0.001). Power output in HOT was significantly lower from 40% of work completed onward (P < 0.01). Rectal temperature increased to 39.6 ± 0.6 °C (HOT) and 38.8 ± 0.5 °C (COOL; P < 0.01). Skin temperature, skin blood flow, and heart rate were higher throughout HOT compared with COOL (P < 0.05). A similar increase in ventilation (P < 0.05) and decrease in end-tidal partial pressure of CO2 (PETCO2 ; P < 0.05) occurred in both conditions. Arterial blood pressure and oxygen uptake were lower from 50% of work completed onward in HOT compared with COOL (P < 0.01). MCA Vmean increased at 10% in both conditions (P < 0.01), decreasing thereafter (P < 0.01) and to a greater extent in HOT from 40% of work completed onward (P < 0.05). Therefore, despite a comparable ventilatory response and PETCO2 in the HOT and COOL conditions, the greater level of thermal strain developing in the heat appears to have exacerbated the reduction in MCA Vmean, in part via increases in peripheral blood flow and a decrease in arterial blood pressure. PMID:25943664

  20. Inhibition of α-adrenergic vasoconstriction in exercising human thigh muscles

    PubMed Central

    Wray, D Walter; Fadel, Paul J; Smith, Michael L; Raven, Peter; Sander, Mikael

    2004-01-01

    The mechanisms underlying metabolic inhibition of sympathetic responses within exercising skeletal muscle remain incompletely understood. The aim of the present study was to test whether α2-adrenoreceptor-mediated vasoconstriction was more sensitive to metabolic inhibition than α1-vasoconstriction during dynamic knee-extensor exercise. We studied healthy volunteers using two protocols: (1) wide dose ranges of the α-adrenoreceptor agonists phenylephrine (PE, α1 selective) and BHT-933 (BHT, α2 selective) were administered intra-arterially at rest and during 27 W knee-extensor exercise (n = 13); (2) flow-adjusted doses of PE (0.3 μg kg−1 l−1) and BHT (15 μg kg−1 l−1) were administered at rest and during ramped exercise (7 W to 37 W; n= 10). Ultrasound Doppler and thermodilution techniques provided direct measurements of femoral blood flow (FBF). PE (0.8 μg kg−1) and BHT (40 μg kg−1) produced comparable maximal reductions in FBF at rest (−58 ± 6 versus−64 ± 4%). Despite increasing the doses, PE (1.6 μg kg−1 min−1) and BHT (80 μg kg−1 min−1) caused significantly smaller changes in FBF during 27 W exercise (−13 ± 4 versus−3 ± 5%). During ramped exercise, significant vasoconstriction at lower intensities (7 and 17 W) was seen following PE (−16 ± 5 and −16 ± 4%), but not BHT (−2 ± 4 and −4 ± 5%). At the highest intensity (37 W), FBF was not significantly changed by either drug. Collectively, these data demonstrate metabolic inhibition of α-adrenergic vasoconstriction in large postural muscles of healthy humans. Both α1- and α2-adrenoreceptor agonists produce comparable vasoconstriction in the resting leg, and dynamic thigh exercise attenuates α1- and α2-mediated vasoconstriction similarly. However, α2-mediated vasoconstriction appears more sensitive to metabolic inhibition, because α2 is completely inhibited even at low workloads, whereas α1 becomes progressively inhibited with increasing workloads. PMID

  1. Exerciser

    NASA Technical Reports Server (NTRS)

    Lem, J. D.

    1977-01-01

    The Mark I exerciser which was added for the second and third Skylab missions, was used for a number of arm and leg exercises. This unit is a modified version of a commercial device. This is an iso-kinetic, or constant velocity, exerciser which retards the speed at which the user is allowed to move. The user applies a maximum effort and the device automatically varies the opposing resistance to maintain speed of translation at a constant preselected value.

  2. Movement-Related Cortical Potential Amplitude Reduction after Cycling Exercise Relates to the Extent of Neuromuscular Fatigue.

    PubMed

    Spring, Jérôme Nicolas; Place, Nicolas; Borrani, Fabio; Kayser, Bengt; Barral, Jérôme

    2016-01-01

    Exercise-induced fatigue affects the motor control and the ability to generate a given force or power. Surface electroencephalography allows researchers to investigate movement-related cortical potentials (MRCP), which reflect preparatory brain activity 1.5 s before movement onset. Although the MRCP amplitude appears to increase after repetitive single-joint contractions, the effects of large-muscle group dynamic exercise on such pre-motor potential remain to be described. Sixteen volunteers exercised 30 min at 60% of the maximal aerobic power on a cycle ergometer, followed by a 10-km all-out time trial. Before and after each of these tasks, knee extensor neuromuscular function was investigated using maximal voluntary contractions (MVC) combined with electrical stimulations of the femoral nerve. MRCP was recorded during 60 knee extensions after each neuromuscular sequence. The exercise resulted in a significant decrease in the knee extensor MVC force after the 30-min exercise (-10 ± 8%) and the time trial (-21 ± 9%). The voluntary activation level (VAL; -6 ± 8 and -12 ± 10%), peak twitch (Pt; -21 ± 16 and -32 ± 17%), and paired stimuli (P100 Hz; -7 ± 11 and -12 ± 13%) were also significantly reduced after the 30-min exercise and the time trial. The first exercise was followed by a decrease in the MRCP, mainly above the mean activity measured at electrodes FC1-FC2, whereas the reduction observed after the time trial was related to the FC1-FC2 and C2 electrodes. After both exercises, the reduction in the late MRCP component above FC1-FC2 was significantly correlated with the reduction in P100 Hz (r = 0.61), and the reduction in the same component above C2 was significantly correlated with the reduction in VAL (r = 0.64). In conclusion, large-muscle group exercise induced a reduction in pre-motor potential, which was related to muscle alterations and resulted in the inability to produce a maximal voluntary contraction. PMID:27313522

  3. Movement-Related Cortical Potential Amplitude Reduction after Cycling Exercise Relates to the Extent of Neuromuscular Fatigue

    PubMed Central

    Spring, Jérôme Nicolas; Place, Nicolas; Borrani, Fabio; Kayser, Bengt; Barral, Jérôme

    2016-01-01

    Exercise-induced fatigue affects the motor control and the ability to generate a given force or power. Surface electroencephalography allows researchers to investigate movement-related cortical potentials (MRCP), which reflect preparatory brain activity 1.5 s before movement onset. Although the MRCP amplitude appears to increase after repetitive single-joint contractions, the effects of large-muscle group dynamic exercise on such pre-motor potential remain to be described. Sixteen volunteers exercised 30 min at 60% of the maximal aerobic power on a cycle ergometer, followed by a 10-km all-out time trial. Before and after each of these tasks, knee extensor neuromuscular function was investigated using maximal voluntary contractions (MVC) combined with electrical stimulations of the femoral nerve. MRCP was recorded during 60 knee extensions after each neuromuscular sequence. The exercise resulted in a significant decrease in the knee extensor MVC force after the 30-min exercise (−10 ± 8%) and the time trial (−21 ± 9%). The voluntary activation level (VAL; −6 ± 8 and −12 ± 10%), peak twitch (Pt; −21 ± 16 and −32 ± 17%), and paired stimuli (P100 Hz; −7 ± 11 and −12 ± 13%) were also significantly reduced after the 30-min exercise and the time trial. The first exercise was followed by a decrease in the MRCP, mainly above the mean activity measured at electrodes FC1-FC2, whereas the reduction observed after the time trial was related to the FC1-FC2 and C2 electrodes. After both exercises, the reduction in the late MRCP component above FC1-FC2 was significantly correlated with the reduction in P100 Hz (r = 0.61), and the reduction in the same component above C2 was significantly correlated with the reduction in VAL (r = 0.64). In conclusion, large-muscle group exercise induced a reduction in pre-motor potential, which was related to muscle alterations and resulted in the inability to produce a maximal voluntary contraction. PMID:27313522

  4. Comparison of energy supplements during prolonged exercise for maintenance of cardiac function: carbohydrate only versus carbohydrate plus whey or casein hydrolysate.

    PubMed

    Oosthuyse, Tanja; Millen, Aletta M E

    2016-06-01

    Cardiac function is often suppressed following prolonged strenuous exercise and this may occur partly because of an energy deficit. This study compared left ventricular (LV) function by 2-dimensional echocardiography and tissue Doppler imaging (TDI) before and after ∼2.5 h of cycling (2-h steady-state 60% peak aerobic power output plus 16 km time trial) in 8 male cyclists when they ingested either placebo, carbohydrate-only (CHO-only), carbohydrate-casein hydrolysate (CHO-casein), or carbohydrate-whey hydrolysate (CHO-whey). No treatment-by-time interactions occurred, but pre-to-postexercise time effects occurred selectively. Although diastolic function measured by pulsed-wave Doppler early-to-late (E/A) transmitral blood flow velocity was suppressed in all trials from pre- to postexercise (mean change post-pre exercise: -0.53 (95% CI -0.15 to -0.91)), TDI early-to-late (e'/a') tissue velocity was significantly suppressed pre- to postexercise only with placebo, CHO-only, and CHO-whey (septal and lateral wall e'/a' average change: -0.62 (95% CI -1.12 to -0.12); -0.69 (95% CI -1.19 to -0.20); and -0.79 (95% CI -1.28 to -0.29), respectively) but not with CHO-casein (-0.40 (95% CI -0.90 to 0.09)). LV contractility was, or tended to be, significantly reduced pre- to postexercise with placebo, CHO-only, and CHO-whey (systolic blood pressure/end systolic volume change, mm Hg·mL(-1): -0.8 (95% CI -1.2 to -0.4), p = 0.0003; -0.5 (95% CI -0.9 to -0.02), p = 0.035; and -0.4 (95% CI -0.8 to 0.04), p = 0.086, respectively), but not with CHO-casein (-0.3 (95% CI -0.8 to 0.1), p = 0.22). However, ejection fraction (EF) and ventricular-arterial coupling were significantly reduced pre- to postexercise only with placebo (placebo change: EF, -4.6 (95% CI -8.4 to -0.7)%; stroke volume/end systolic volume, -0.3 (95% CI -0.6 to -0.04)). Despite no treatment-by-time interactions, pre-to-postexercise time effects observed with specific beverages may be meaningful for athletes

  5. Exercise

    MedlinePlus

    ... article Exercise / physical activity with MS Judy Boone, physical therapist Lynn Williams, Dan Melfi and Dave Altman discuss ... adjusted as changes occur in MS symptoms. A physical therapist experienced with MS can be helpful in designing, ...

  6. Efficacy of exercise training in SCT patients--who benefits most?

    PubMed

    Wiskemann, J; Kuehl, R; Dreger, P; Schwerdtfeger, R; Huber, G; Ulrich, C M; Jaeger, D; Bohus, M

    2014-03-01

    Patients undergoing allo-HCT often experience a substantial loss in physical performance. We have recently published the general effectiveness of an exercise intervention in 105 allo-HCT patients on physical performance and psychosocial well-being. However, predictor variables for differentiated treatment response remained unclear. To determine the impact of basic physical performance on treatment response, we assessed muscle strength and endurance performance at four assessment points before and after allo-HCT. The exercise group started training 2 weeks before admission and ended 6-8 weeks after discharge. Comparing initially fit with unfit classified patients, the fit patients lost 31% of the strength of the knee-extensors, whereas the unfit patients lost only 1% (P<0.05). For endurance capacity, fit patients lost 4% of their walking capability, whereas unfit patients gained 13% (P<0.05). The individual percent change was statistically different at the 0.05 level in all measures of physical performance. Individual training response in allo-HCT patients strongly depends on the initial physical performance level. Unfit patients can be trained safely and may benefit more from this exercise intervention than fit patients. This result is of major clinical relevance and should encourage hematologists to promote exercise even more in impaired/unfit allo-HCT patients. PMID:24317122

  7. Attenuation of eccentric exercise-induced muscle damage conferred by maximal isometric contractions: a mini review

    PubMed Central

    Lima, Leonardo C. R.; Denadai, Benedito S.

    2015-01-01

    Although, beneficial in determined contexts, eccentric exercise-induced muscle damage (EIMD) might be unwanted during training regimens, competitions and daily activities. There are a vast number of studies investigating strategies to attenuate EIMD response after damaging exercise bouts. Many of them consist of performing exercises that induce EIMD, consuming supplements or using equipment that are not accessible for most people. It appears that performing maximal isometric contractions (ISOs) 2–4 days prior to damaging bouts promotes significant attenuation of EIMD symptoms that are not related to muscle function. It has been shown that the volume of ISOs, muscle length in which they are performed, and interval between them and the damaging bout influence the magnitude of this protection. In addition, it appears that this protection is not long-lived, lasting no longer than 4 days. Although no particular mechanisms for these adaptations were identified, professionals should consider applying this non-damaging stimulus before submitting their patients to unaccustomed exercised. However, it seems not to be the best option for athletes or relatively trained individuals. Future, studies should focus on establishing if ISOs protect other populations (i.e., trained individuals) or muscle groups (i.e., knee extensors) against EIMD, as well as investigate different mechanisms for ISO-induced protection. PMID:26578972

  8. Shear-Wave Elastography Assessments of Quadriceps Stiffness Changes prior to, during and after Prolonged Exercise: A Longitudinal Study during an Extreme Mountain Ultra-Marathon.

    PubMed

    Andonian, Pierre; Viallon, Magalie; Le Goff, Caroline; de Bourguignon, Charles; Tourel, Charline; Morel, Jérome; Giardini, Guido; Gergelé, Laurent; Millet, Grégoire P; Croisille, Pierre

    2016-01-01

    In sports medicine, there is increasing interest in quantifying the elastic properties of skeletal muscle, especially during extreme muscular stimulation, to improve our understanding of the impact of alterations in skeletal muscle stiffness on resulting pain or injuries, as well as the mechanisms underlying the relationships between these parameters. Our main objective was to determine whether real-time shear-wave elastography (SWE) can monitor changes in quadriceps muscle elasticity during an extreme mountain ultra-marathon, a powerful mechanical stress model. Our study involved 50 volunteers participating in an extreme mountain marathon (distance: 330 km, elevation: +24,000 m). Quantitative SWE velocity and shear modulus measurements were performed in most superficial quadriceps muscle heads at the following 4 time points: before the race, halfway through the race, upon finishing the race and after recovery (+48 h). Blood biomarker levels were also measured. A significant decrease in the quadriceps shear modulus was observed upon finishing the race (3.31±0.61 kPa) (p<0.001) compared to baseline (3.56±0.63 kPa), followed by a partial recovery +48 h after the race (3.45±0.6 kPa) (p = 0.002) across all muscle heads, as well as for each of the following three muscle heads: the rectus femoris (p = 0.003), the vastus medialis (p = 0.033) and the vastus lateralis (p = 0.001). Our study is the first to assess changes in muscle stiffness during prolonged extreme physical endurance exercises based on shear modulus measurements using non-invasive SWE. We concluded that decreases in stiffness, which may have resulted from quadriceps overuse in the setting of supra-physiological stress caused by the extreme distance and unique elevation of the race, may have been responsible for the development of inflammation and muscle swelling. SWE may hence represent a promising tool for monitoring physiologic or pathological variations in muscle stiffness and may be useful for

  9. Effects of blood flow restriction duration on muscle activation and microvascular oxygenation during low-volume isometric exercise.

    PubMed

    Cayot, Trent E; Lauver, Jakob D; Silette, Christopher R; Scheuermann, Barry W

    2016-07-01

    The purpose of the investigation was to observe how varying occlusion durations affected neuromuscular activation and microvascular oxygenation during low-volume isometric knee extension exercise. Healthy, recreationally active males performed isometric knee extension at a variety of submaximal intensities under different blood flow restriction (BFR) occlusion durations. The occlusion pressure (130% SBP) was applied either 5 min prior to exercise (PO), immediately prior to exercise (IO) or not during exercise (CON). Surface electromyography (sEMG) and near-infrared spectroscopy (NIRS) was used to record the neuromuscular activation and microvascular oxygenation of the knee extensors during exercise. No difference in sEMG was observed in the vastus lateralis or vastus medialis during any exercise condition or any submaximal intensity. PO elicited greater microvascular deoxygenation (deoxy-[Hb + Mb]) compared to CON (P≤0·05) at all submaximal intensities and also compared to IO at 20% maximal voluntary contraction (MVC). IO resulted in a greater deoxy-[Hb + Mb] response during low-intensity exercise (20% and 40% MVC) compared to CON (P≤0·05). These findings suggest that applying BFR 5 min before exercise can enhance the exercise-induced metabolic stress (i.e. deoxy-[Hb + Mb]), measured via NIRS, during low-intensity exercise (20% MVC) compared to applying BFR immediately prior to exercise. Furthermore, the increased metabolic stress observed during IO is attenuated during high-intensity (60% MVC, 80% MVC) exercise when compared to CON conditions. Knowledge of the changes in exercise-induced metabolic stress between the various occlusion durations may assist in developing efficient BFR exercise programmes. PMID:25564998

  10. Effects of exercise-induced muscle damage on resting metabolic rate, sub-maximal running and post-exercise oxygen consumption.

    PubMed

    Burt, Dean Gareth; Lamb, Kevin; Nicholas, Ceri; Twist, Craig

    2014-01-01

    Exercise-induced muscle damage (EIMD), described as the acute weakness of the musculature after unaccustomed eccentric exercise, increases oxidative metabolism at rest and during endurance exercise. However, it is not known whether oxygen uptake during recovery from endurance exercise is increased when experiencing symptoms of EIMD. Therefore, the purpose of this study was to investigate the effects of EIMD on physiological and metabolic responses before, during and after sub-maximal running. After a 12 h fast, eight healthy male participants completed baseline measurements comprising resting metabolic rate (RMR), indirect markers of EIMD, 10 min of sub-maximal running and 30 min of recovery to ascertain excess post-exercise oxygen consumption (EPOC). Measurements were then repeated at 24 and 48 h after 100 Smith-machine squats. Data analysis revealed significant (P<0.05) increases in muscle soreness and creatine kinase (CK) and decreases in peak knee extensor torque at 24 and 48 h after squatting exercise. Moreover, RMR, physiological, metabolic and perceptual responses during sub-maximal running and EPOC were increased in the two days after squatting exercise (P<0.05). It is suggested that the elevated RMR was a consequence of a raised energy requirement for the degradation and resynthesis of damaged muscle fibres. The increased oxygen demand during sub-maximal running after muscle damage was responsible for the increase in EPOC. Individuals engaging in unaccustomed resistance exercise that results in muscle damage should be mindful of the increases in resting energy expenditure and increased metabolic demand to exercise in the days that follow. PMID:23566074

  11. Sarcoplasmic reticulum function and muscle contractile character following fatiguing exercise in humans

    PubMed Central

    Hill, Christopher A; Thompson, Martin W; Ruell, Patricia A; Thom, Jeanette M; White, Michael J

    2001-01-01

    This study examined the alterations in calcium release, calcium uptake and calcium ATPase activity of skeletal muscle sarcoplasmic reticulum in response to a bout of intense dynamic knee extensor exercise, and the relationship between these changes and alterations in muscle contractile characteristics in the human quadriceps. In biopsy samples taken from the vastus lateralis, sarcoplasmic reticulum calcium release and calcium uptake were significantly depressed (P < 0.01 and 0.05, respectively) immediately following the exercise with no alteration in the sarcoplasmic reticulum Ca2+-ATPase activity. A 33 % reduction in the maximum voluntary isometric torque was found following the exercise, with reduced torques from electrically evoked isometric contractions at low frequencies of stimulation (10 and 20 Hz) but not at higher frequencies (50 and 100 Hz). The depressed calcium release was correlated (P < 0.05) with a decreased ratio of torques generated at 20:50 Hz, indicating an involvement in low frequency fatigue; however, no correlations between the muscle relaxation times or rates of change of torque and calcium uptake were observed. PMID:11251066

  12. The impact of 100 hours of exercise and sleep deprivation on cognitive function and physical capacities.

    PubMed

    Lucas, Samuel J E; Anson, J Greg; Palmer, Craig D; Hellemans, Ien J; Cotter, James D

    2009-05-01

    In this study, we examined the effect of 96-125 h of competitive exercise on cognitive and physical performance. Cognitive performance was assessed using the Stroop test (n = 9) before, during, and after the 2003 Southern Traverse adventure race. Strength (MVC) and strength endurance (time to failure at 70% current MVC) of the knee extensor and elbow flexor muscles were assessed before and after racing. Changes in vertical jump (n = 24) and 30-s Wingate performance (n = 27) were assessed in a different group of athletes. Complex response times were affected by the race (16% slower), although not significantly so (P = 0.18), and were dependent on exercise intensity (less so at 50% peak power output after racing). Reduction of strength (P < 0.05) of the legs (17%) and arms (11%) was equivalent (P = 0.17). Reductions in strength endurance were inconsistent (legs 18%, P = 0.09; arms 13%, P = 0.40), but were equivalent between limbs (P = 0.80). Similar reductions were observed in jump height (-8 +/- 9%, P < 0.01) and Wingate peak power (-7 +/- 15%, P = 0.04), mean power (-7 +/- 11%, P < 0.01), and end power (-10 +/- 11%, P < 0.01). We concluded that: moderate-intensity exercise may help complex decision making during sustained stress; functional performance was modestly impacted, and the upper and lower limbs were affected similarly despite being used disproportionately. PMID:19437188

  13. Effects of a low-volume, vigorous intensity step exercise program on functional mobility in middle-aged adults.

    PubMed

    Doheny, Emer P; McGrath, Denise; Ditroilo, Massimiliano; Mair, Jacqueline L; Greene, Barry R; Caulfield, Brian; De Vito, Giuseppe; Lowery, Madeleine M

    2013-08-01

    Aging-related decline in functional mobility is associated with loss of independence. This decline may be mitigated through programs of physical activity. Despite reports of aging-related mobility impairment in middle-aged adults, this age group has been largely overlooked in terms of exercise programs that target functional mobility and the preservation of independence in older age. A method to quantitatively assess changes in functional mobility could direct rehabilitation in a proactive rather than reactive manner. Thirty-three healthy but sedentary middle-aged adults participated in a four week low-volume, vigorous intensity stepping exercise program. Two baseline testing sessions and one post-training testing session were conducted. Functional mobility was assessed using the timed up and go (TUG) test, with its constituent sit-to-walk and walk-to-sit phases examined using a novel inertial sensor-based method. Additionally, semi-tandem balance and knee extensor muscle isometric torque were assessed. Trunk acceleration during walk-to-sit reduced significantly post-training, suggesting altered movement control due to the exercise program. No significant training-induced changes in sit-to-walk acceleration, TUG time, balance or torque were observed. The novel method of functional mobility assessment presented provides a reliable means to quantify subtle changes in mobility during postural transitions. Over time, this exercise program may improve functional mobility. PMID:23568151

  14. Creatine ingestion augments dietary carbohydrate mediated muscle glycogen supercompensation during the initial 24 h of recovery following prolonged exhaustive exercise in humans.

    PubMed

    Roberts, Paul A; Fox, John; Peirce, Nicholas; Jones, Simon W; Casey, Anna; Greenhaff, Paul L

    2016-08-01

    Muscle glycogen availability can limit endurance exercise performance. We previously demonstrated 5 days of creatine (Cr) and carbohydrate (CHO) ingestion augmented post-exercise muscle glycogen storage compared to CHO feeding alone in healthy volunteers. Here, we aimed to characterise the time-course of this Cr-induced response under more stringent and controlled experimental conditions and identify potential mechanisms underpinning this phenomenon. Fourteen healthy, male volunteers cycled to exhaustion at 70 % VO2peak. Muscle biopsies were obtained at rest immediately post-exercise and after 1, 3 and 6 days of recovery, during which Cr or placebo supplements (20 g day(-1)) were ingested along with a prescribed high CHO diet (37.5 kcal kg body mass(-1) day(-1), >80 % calories CHO). Oral-glucose tolerance tests (oral-GTT) were performed pre-exercise and after 1, 3 and 6 days of Cr and placebo supplementation. Exercise depleted muscle glycogen content to the same extent in both treatment groups. Creatine supplementation increased muscle total-Cr, free-Cr and phosphocreatine (PCr) content above placebo following 1, 3 and 6 days of supplementation (all P < 0.05). Creatine supplementation also increased muscle glycogen content noticeably above placebo after 1 day of supplementation (P < 0.05), which was sustained thereafter. This study confirmed dietary Cr augments post-exercise muscle glycogen super-compensation, and demonstrates this occurred during the initial 24 h of post-exercise recovery (when muscle total-Cr had increased by <10 %). This marked response ensued without apparent treatment differences in muscle insulin sensitivity (oral-GTT, muscle GLUT4 mRNA), osmotic stress (muscle c-fos and HSP72 mRNA) or muscle cell volume (muscle water content) responses, such that another mechanism must be causative. PMID:27193231

  15. Hemodynamic responses to small muscle mass exercise in heart failure patients with reduced ejection fraction.

    PubMed

    Barrett-O'Keefe, Zachary; Lee, Joshua F; Berbert, Amanda; Witman, Melissa A H; Nativi-Nicolau, Jose; Stehlik, Josef; Richardson, Russell S; Wray, D Walter

    2014-11-15

    To better understand the mechanisms responsible for exercise intolerance in heart failure with reduced ejection fraction (HFrEF), the present study sought to evaluate the hemodynamic responses to small muscle mass exercise in this cohort. In 25 HFrEF patients (64 ± 2 yr) and 17 healthy, age-matched control subjects (64 ± 2 yr), mean arterial pressure (MAP), cardiac output (CO), and limb blood flow were examined during graded static-intermittent handgrip (HG) and dynamic single-leg knee-extensor (KE) exercise. During HG exercise, MAP increased similarly between groups. CO increased significantly (+1.3 ± 0.3 l/min) in the control group, but it remained unchanged across workloads in HFrEF patients. At 15% maximum voluntary contraction (MVC), forearm blood flow was similar between groups, while HFrEF patients exhibited an attenuated increase at the two highest intensities compared with controls, with the greatest difference at the highest workload (352 ± 22 vs. 492 ± 48 ml/min, HFrEF vs. control, 45% MVC). During KE exercise, MAP and CO increased similarly across work rates between groups. However, HFrEF patients exhibited a diminished leg hyperemic response across all work rates, with the most substantial decrement at the highest intensity (1,842 ± 64 vs. 2,675 ± 81 ml/min; HFrEF vs. control, 15 W). Together, these findings indicate a marked attenuation in exercising limb perfusion attributable to impairments in peripheral vasodilatory capacity during both arm and leg exercise in patients with HFrEF, which likely plays a role in limiting exercise capacity in this patient population. PMID:25260608

  16. Pre-Exercise Hyperhydration-Induced Bodyweight Gain Does Not Alter Prolonged Treadmill Running Time-Trial Performance in Warm Ambient Conditions

    PubMed Central

    Gigou, Pierre-Yves; Dion, Tommy; Asselin, Audrey; Berrigan, Felix; Goulet, Eric D. B.

    2012-01-01

    This study compared the effect of pre-exercise hyperhydration (PEH) and pre-exercise euhydration (PEE) upon treadmill running time-trial (TT) performance in the heat. Six highly trained runners or triathletes underwent two 18 km TT runs (~28 °C, 25%–30% RH) on a motorized treadmill, in a randomized, crossover fashion, while being euhydrated or after hyperhydration with 26 mL/kg bodyweight (BW) of a 130 mmol/L sodium solution. Subjects then ran four successive 4.5 km blocks alternating between 2.5 km at 1% and 2 km at 6% gradient, while drinking a total of 7 mL/kg BW of a 6% sports drink solution (Gatorade, USA). PEH increased BW by 1.00 ± 0.34 kg (P < 0.01) and, compared with PEE, reduced BW loss from 3.1% ± 0.3% (EUH) to 1.4% ± 0.4% (HYP) (P < 0.01) during exercise. Running TT time did not differ between groups (PEH: 85.6 ± 11.6 min; PEE: 85.3 ± 9.6 min, P = 0.82). Heart rate (5 ± 1 beats/min) and rectal (0.3 ± 0.1 °C) and body (0.2 ± 0.1 °C) temperatures of PEE were higher than those of PEH (P < 0.05). There was no significant difference in abdominal discomfort and perceived exertion or heat stress between groups. Our results suggest that pre-exercise sodium-induced hyperhydration of a magnitude of 1 L does not alter 80–90 min running TT performance under warm conditions in highly-trained runners drinking ~500 mL sports drink during exercise. PMID:23016126

  17. Pre-exercise hyperhydration-induced bodyweight gain does not alter prolonged treadmill running time-trial performance in warm ambient conditions.

    PubMed

    Gigou, Pierre-Yves; Dion, Tommy; Asselin, Audrey; Berrigan, Felix; Goulet, Eric D B

    2012-08-01

    This study compared the effect of pre-exercise hyperhydration (PEH) and pre-exercise euhydration (PEE) upon treadmill running time-trial (TT) performance in the heat. Six highly trained runners or triathletes underwent two 18 km TT runs (~28 °C, 25%-30% RH) on a motorized treadmill, in a randomized, crossover fashion, while being euhydrated or after hyperhydration with 26 mL/kg bodyweight (BW) of a 130 mmol/L sodium solution. Subjects then ran four successive 4.5 km blocks alternating between 2.5 km at 1% and 2 km at 6% gradient, while drinking a total of 7 mL/kg BW of a 6% sports drink solution (Gatorade, USA). PEH increased BW by 1.00 ± 0.34 kg (P < 0.01) and, compared with PEE, reduced BW loss from 3.1% ± 0.3% (EUH) to 1.4% ± 0.4% (HYP) (P < 0.01) during exercise. Running TT time did not differ between groups (PEH: 85.6 ± 11.6 min; PEE: 85.3 ± 9.6 min, P = 0.82). Heart rate (5 ± 1 beats/min) and rectal (0.3 ± 0.1 °C) and body (0.2 ± 0.1 °C) temperatures of PEE were higher than those of PEH (P < 0.05). There was no significant difference in abdominal discomfort and perceived exertion or heat stress between groups. Our results suggest that pre-exercise sodium-induced hyperhydration of a magnitude of 1 L does not alter 80-90 min running TT performance under warm conditions in highly-trained runners drinking ~500 mL sports drink during exercise. PMID:23016126

  18. Effects of Combined Aerobic and Resistance Exercise on Exercise Capacity, Muscle Strength and Quality of Life in HIV-Infected Patients: A Systematic Review and Meta-Analysis

    PubMed Central

    Gomes Neto, Mansueto; Conceição, Cristiano Sena; Carvalho, Vitor Oliveira; Brites, Carlos

    2015-01-01

    Background Many HIV-infected patients demonstrate disability and lower aerobic capacity. The inclusion of resistance training combined with aerobic exercise in a single program is known as combined aerobic and resistance exercise (CARE) and seems to be an effective strategy to improve muscle weakness, as well as aerobic capacity in HIV-infected patients. We performed a meta-analysis to investigate the effects of CARE in HIV-infected patients. Methods We searched MEDLINE, Cochrane Controlled Trials Register, EMBASE, CINAHL (from the earliest date available to august 2014) for controlled trials that evaluated the effects of CARE in HIV-infected patients. Weighted mean differences (WMD) and 95% confidence intervals (CIs) were calculated, and heterogeneity was assessed using the I2 test. Results Seven studies met the study criteria. CARE resulted in improvement in Peak VO2 WMD (4.48 mL·kg-1·min-1 95% CI: 2.95 to 6.0), muscle strength of the knee extensors WMD (25.06 Kg 95% CI: 10.46 to 39.66) and elbow flexors WMD (4.44 Kg 95% CI: 1.22 to 7.67) compared with no exercise group. The meta-analyses also showed significant improvement in Health status, Energy/Vitality and physical function domains of quality of life for participants in the CARE group compared with no exercise group. A nonsignificant improvement in social function domain of quality of life was found for participants in the CARE group compared with no exercise group. Conclusions Combined aerobic and resistance exercise may improve peak VO2, muscle strength and health status, energy and physical function domains of quality of life and should be considered as a component of care of HIV-infected individuals. PMID:26378794

  19. Prolonged pregnancy.

    PubMed

    Hollis, Brian

    2002-04-01

    Prolonged pregnancy is defined as any pregnancy that lasts 294 days or more. It is now well recognized that prolonged pregnancy is associated with an increased risk of perinatal mortality and morbidity. It is these complications of pregnancy that have led obstetricians to adopt a policy of induction of labour before the onset of the post-term period. The induction of labour between 41 and 42 weeks is, however, a very crude strategy for reducing term and post-term stillbirth rates. Although the risk of fetal death is increased after 42 weeks, many more fetuses die in utero between 37 and 42 weeks than die in the post-term period. It appears that smaller term fetuses run a greater risk than their larger counterparts, and that current methods of antepartum assessment of the term fetus are still inadequate. It behoves us as obstetricians to improve our capabilities in identifying the compromised fetus at term. This review puts into perspective the most recent publications and highlights areas requiring further study. PMID:11914699

  20. Effects of stabilization exercises with a Swiss ball on neck-shoulder pain and mobility of adults with prolonged exposure to VDTs.

    PubMed

    Ahn, Jeoung-Ah; Kim, Joong-Hwi; Bendik, Anthony L; Shin, Ju-Yong

    2015-04-01

    [Purpose] This study compared the effects on neck-shoulder pain and mobility of strengthening exercises for the neck flexors and scapular retractors performed on a Swiss ball and a mat. [Subjects] Twenty student volunteers were the subjects. [Methods] The students were randomly assigned to two groups: Mat group (n=10), and Swiss ball group (n=10). At pre-test, post-test, and 1-week follow-up pain was assessed using the visual analogue scale (VAS), the pain pressure threshold (PPT) of the shoulder was measured with an algometer, and neck mobility was measured with a Zebris. [Results] The data analysis revealed that there was a significant decrease in pain and significant increase in neck flexion in both groups, and the Swiss ball group showed better results. [Conclusion] Strengthening the neck flexors and scapular retractors for stabilization of the neck using exercises on a Swiss ball was more effective at reducing the pain and stabilizing the neck than mat exercises. PMID:25995537

  1. Oral antioxidants improve leg blood flow during exercise in patients with chronic obstructive pulmonary disease.

    PubMed

    Rossman, Matthew J; Trinity, Joel D; Garten, Ryan S; Ives, Stephen J; Conklin, Jamie D; Barrett-O'Keefe, Zachary; Witman, Melissa A H; Bledsoe, Amber D; Morgan, David E; Runnels, Sean; Reese, Van R; Zhao, Jia; Amann, Markus; Wray, D Walter; Richardson, Russell S

    2015-09-01

    The consequence of elevated oxidative stress on exercising skeletal muscle blood flow as well as the transport and utilization of O2 in patients with chronic obstructive pulmonary disease (COPD) is not well understood. The present study examined the impact of an oral antioxidant cocktail (AOC) on leg blood flow (LBF) and O2 consumption during dynamic exercise in 16 patients with COPD and 16 healthy subjects. Subjects performed submaximal (3, 6, and 9 W) single-leg knee extensor exercise while LBF (Doppler ultrasound), mean arterial blood pressure, leg vascular conductance, arterial O2 saturation, leg arterial-venous O2 difference, and leg O2 consumption (direct Fick) were evaluated under control conditions and after AOC administration. AOC administration increased LBF (3 W: 1,604 ± 100 vs. 1,798 ± 128 ml/min, 6 W: 1,832 ± 109 vs. 1,992 ± 120 ml/min, and 9W: 2,035 ± 114 vs. 2,187 ± 136 ml/min, P < 0.05, control vs. AOC, respectively), leg vascular conductance, and leg O2 consumption (3 W: 173 ± 12 vs. 210 ± 15 ml O2/min, 6 W: 217 ± 14 vs. 237 ± 15 ml O2/min, and 9 W: 244 ± 16 vs 260 ± 18 ml O2/min, P < 0.05, control vs. AOC, respectively) during exercise in COPD, whereas no effect was observed in healthy subjects. In addition, the AOC afforded a small, but significant, improvement in arterial O2 saturation only in patients with COPD. Thus, these data demonstrate a novel beneficial role of AOC administration on exercising LBF, O2 consumption, and arterial O2 saturation in patients with COPD, implicating oxidative stress as a potential therapeutic target for impaired exercise capacity in this population. PMID:26188020

  2. The effect of hip joint muscle exercise on muscle strength and balance in the knee joint after meniscal injury.

    PubMed

    Park, Sun Ja; Kim, Young Mi; Kim, Ha Roo

    2016-04-01

    [Purpose] This study aimed to evaluate the effect of hip muscle strengthening on muscle strength and balance in the knee joint after a meniscal injury. [Subjects and Methods] This randomized control study enrolled 24 patients who had undergone arthroscopic treatment after a meniscal injury and began a rehabilitative exercise program 8 weeks after surgery. Subjects were divided into 2 groups of 12 subjects each: gluteus medius resistance exercise group and control group. This study investigated muscle strength and balance in the knee joint flexor, extensor, and abductor during an 8-week period. [Results] Measurements of knee extensor muscle strength revealed no significant difference between the control group and the experimental group. Measurements of abductor muscle strength, however, identified a significant difference between the 2 groups. The groups did not differ significantly with regard to balance measurements. [Conclusion] The results of this study suggest that this subject should be approached in light of the correlation between the hip abductor and injury to the lower extremities. PMID:27190461

  3. The effect of hip joint muscle exercise on muscle strength and balance in the knee joint after meniscal injury

    PubMed Central

    Park, Sun Ja; Kim, Young Mi; Kim, Ha Roo

    2016-01-01

    [Purpose] This study aimed to evaluate the effect of hip muscle strengthening on muscle strength and balance in the knee joint after a meniscal injury. [Subjects and Methods] This randomized control study enrolled 24 patients who had undergone arthroscopic treatment after a meniscal injury and began a rehabilitative exercise program 8 weeks after surgery. Subjects were divided into 2 groups of 12 subjects each: gluteus medius resistance exercise group and control group. This study investigated muscle strength and balance in the knee joint flexor, extensor, and abductor during an 8-week period. [Results] Measurements of knee extensor muscle strength revealed no significant difference between the control group and the experimental group. Measurements of abductor muscle strength, however, identified a significant difference between the 2 groups. The groups did not differ significantly with regard to balance measurements. [Conclusion] The results of this study suggest that this subject should be approached in light of the correlation between the hip abductor and injury to the lower extremities. PMID:27190461

  4. Maximal-intensity isometric and dynamic exercise performance after eccentric muscle actions.

    PubMed

    Byrne, Christopher; Eston, Roger

    2002-12-01

    A well-documented observation after eccentric exercise is a reduction in maximal voluntary force. However, little is known about the ability to maintain maximal isometric force or generate and maintain dynamic peak power. These aspects of muscle function were studied in seven participants (5 males, 2 females). Knee extensor isometric strength and rate of fatigue were assessed by a sustained 60 s maximal voluntary contraction at 80 degrees and 40 degrees knee flexion, corresponding to an optimal and a shortened muscle length, respectively. Dynamic peak power and rate of fatigue were assessed during a 30 s Wingate cycle test. Plasma creatine kinase was measured from a fingertip blood sample. These variables were measured before, 1 h after and 1, 2, 3 and 7 days after 100 repetitions of the eccentric phase of the barbell squat exercise (10 sets x 10 reps at 80% concentric one-repetition maximum). Eccentric exercise resulted in elevations in creatine kinase activity above baseline (274+/-109 U x l(-1); mean +/- s(x)) after 1 h (506+/-116 U x l(-1), P < 0.05) and 1 day (808+/-117 U x l(-1), P < 0.05). Isometric strength was reduced (P < 0.05) for 7 days (35% at 1 h, 5% at day 7) and the rate of fatigue was lower (P < 0.05) for 3 days at 80 degrees and for 1 day at 40 degrees. Wingate peak power was reduced to a lesser extent (P < 0.05) than isometric strength at 1 h (13%) and, although the time course of recovery was equal, the two variables differed in their pattern of recovery. Eccentrically exercised muscle was characterized by an inability to generate high force and power, but an improved ability to maintain force and power. Such functional outcomes are consistent with the proposition that type II fibres are selectively recruited or damaged during eccentric exercise. PMID:12477004

  5. The effects of electrical stimulation exercise on muscles injected with botulinum toxin type-A (botox).

    PubMed

    Fortuna, Rafael; Horisberger, Monika; Vaz, Marco Aurélio; Van der Marel, Robert; Herzog, Walter

    2013-01-01

    Botulinum toxin type A (BTX-A) is a frequently used treatment modality for a variety of neuromuscular disorders. It acts by preventing acetylcholine release at the motor nerve endings, inducing muscle paralysis. Although considered safe, studies suggest that BTX-A injections create adverse effects on target and non-target muscles. We speculate that these adverse effects are reduced by direct electrical stimulation (ES) exercising of muscles. The aims were to determine the effects of ES exercise on strength, mass, and contractile material in BTX-A injected muscles, and to investigate if BTX-A injections affect non-target muscles. Seventeen New Zealand White (NZW) rabbits were divided into three groups: (1) Control group received saline injections; (2) BTX-A group received monthly BTX-A (3.5 U/kg) injections into the quadriceps for six months and (3) BTX-A+ES group received monthly BTX-A injections and ES exercise three times a week for six months. Outcome measures included knee extensor torque, muscle mass, and contractile material percentage area in injected and contralateral, non-injected quadriceps. Glycogen depletion and direct muscle stimulation were used to assess possible muscle inhibition in non-injected quadriceps. ES exercise partially prevented muscle weakness, atrophy, and contractile material loss in injected muscles, and mostly prevented muscle degeneration in contralateral, non-injected muscles. Non-injected muscles of BTX-A+ES group showed higher force with direct muscle compared to nerve stimulation, and retained glycogen following the depletion protocol, suggesting that BTX-A inhibited activation in non-target muscles. We conclude that ES exercise provides some protection from degeneration to target and non-target muscles during BTX-A treatments. PMID:23122225

  6. Prolonged ingestion of prehydrolyzed whey protein induces little or no change in digestive enzymes, but decreases glutaminase activity in exercising rats.

    PubMed

    Nery-Diez, Ana Cláudia C; Carvalho, Iara R; Amaya-Farfán, Jaime; Abecia-Soria, Maria Inés; Miyasaka, Célio K; Ferreira, Clécio da S

    2010-08-01

    Because consumption of whey protein hydrolysates is on the increase, the possibility that prolonged ingestion of whey protein hydrolysates affect the digestive system of mammals has prompted us to evaluate the enzymatic activities of pepsin, leucine-aminopeptidase, chymotrypsin, trypsin, and glutaminase in male Wistar rats fed diets containing either a commercial whey isolate or a whey protein hydrolysate with medium degree of hydrolysis and to compare the results with those produced by physical training (sedentary, sedentary-exhausted, trained, and trained-exhausted) in the treadmill for 4 weeks. The enzymatic activities were determined by classical procedures in all groups. No effect due to the form of the whey protein in the diet was seen in the activities of pepsin, trypsin, chymotrypsin, and leucine-aminopeptidase. Training tended to increase the activity of glutaminase, but exhaustion promoted a decrease in the trained animals, and consumption of the hydrolysate decreased it even further. The results are consistent with the conclusion that chronic consumption of a whey protein hydrolysate brings little or no modification of the proteolytic digestive system and that the lowering of glutaminase activity may be associated with an antistress effect, counteracting the effect induced by training in the rat. PMID:20482282

  7. Effects of diets supplemented with branched-chain amino acids on the performance and fatigue mechanisms of rats submitted to prolonged physical exercise.

    PubMed

    Falavigna, Gina; Alves de Araújo, Jonas; Rogero, Marcelo Macedo; Pires, Ivanir Santana de Oliveira; Pedrosa, Rogério Graça; Martins, Eivor; Alves de Castro, Inar; Tirapegui, Julio

    2012-11-01

    This study aimed to determine the effects of diets chronically supplemented with branched-chain amino acids (BCAA) on the fatigue mechanisms of trained rats. Thirty-six adult Wistar rats were trained for six weeks. The training protocol consisted of bouts of swimming exercise (one hour a day, five times a week, for six weeks). The animals received a control diet (C) (n = 12), a diet supplemented with 3.57% BCAA (S1) (n = 12), or a diet supplemented with 4.76% BCAA (S2) (n = 12). On the last day of the training protocol, half the animals in each group were sacrificed after one hour of swimming (1H), and the other half after a swimming exhaustion test (EX). Swimming time until exhaustion was increased by 37% in group S1 and reduced by 43% in group S2 compared to group C. Results indicate that the S1 diet had a beneficial effect on performance by sparing glycogen in the soleus muscle (p < 0.05) and by inducing a lower concentration of plasma ammonia, whereas the S2 diet had a negative effect on performance due to hyperammonemia (p < 0.05). The hypothalamic concentration of serotonin was not significantly different between the 1H and EX conditions. In conclusion, chronic BCAA supplementation led to increased performance in rats subjected to a swimming test to exhaustion. However, this is a dose-dependent effect, since chronic ingestion of elevated quantities of BCAA led to a reduction in performance. PMID:23201847

  8. On the contribution of group III and IV muscle afferents to the circulatory response to rhythmic exercise in humans

    PubMed Central

    Amann, Markus; Runnels, Sean; Morgan, David E; Trinity, Joel D; Fjeldstad, Anette S; Wray, D Walter; Reese, Van R; Richardson, Russell S

    2011-01-01

    Abstract We investigated the role of skeletal muscle afferent feedback in circulatory control during rhythmic exercise in humans. Nine healthy males performed single leg knee-extensor exercise (15/30/45 watts, 3 min each) under both control conditions (Ctrl) and with lumbar intrathecal fentanyl impairing μ-opioid receptor-sensitive muscle afferents. Cardiac output and femoral blood flow were determined, and femoral arterial/venous blood samples were collected during the final minute of each workload. To rule out cephalad migration of fentanyl to the brainstem, we documented unchanged resting ventilatory responses to different levels of hypercapnia. There were no haemodynamic differences between conditions at rest. However, during exercise cardiac output was ∼20% lower with fentanyl blockade compared to control (P < 0.05), secondary to a 6% and 13% reduction in heart rate and stroke volume, respectively. Throughout exercise mean arterial pressure (MAP) was reduced by 7% (P < 0.01) which is likely to have contributed to the 15% fall in femoral blood flow. However, MAP was not completely responsible for this peripheral haemodynamic change as vascular conductance was also attenuated (∼9%). Evidence of increasing noradrenaline spillover (P = 0.09) implicated an elevation in sympathetic outflow in this response. The attenuated femoral blood flow during exercise with fentanyl was associated with a 17% reduction in leg O2 delivery (P < 0.01) and a concomitant rise in the arteriovenous O2 difference (4–9%), but leg O2 consumption remained 7–13% lower than control (P < 0.05). Our findings reveal an essential contribution of continuous muscle afferent feedback to ensure the appropriate haemodynamic and ultimately metabolic response to rhythmic exercise in humans. PMID:21646407

  9. The effect of rowing ergometry and resistive exercise on skeletal muscle structure and function during bed rest.

    PubMed

    Krainski, Felix; Hastings, Jeffrey L; Heinicke, Katja; Romain, Nadine; Pacini, Eric L; Snell, Peter G; Wyrick, Phil; Palmer, M Dean; Haller, Ronald G; Levine, Benjamin D

    2014-06-15

    Exposure to microgravity causes functional and structural impairment of skeletal muscle. Current exercise regimens are time-consuming and insufficiently effective; an integrated countermeasure is needed that addresses musculoskeletal along with cardiovascular health. High-intensity, short-duration rowing ergometry and supplemental resistive strength exercise may achieve these goals. Twenty-seven healthy volunteers completed 5 wk of head-down-tilt bed rest (HDBR): 18 were randomized to exercise, 9 remained sedentary. Exercise consisted of rowing ergometry 6 days/wk, including interval training, and supplemental strength training 2 days/wk. Measurements before and after HDBR and following reambulation included assessment of strength, skeletal muscle volume (MRI), and muscle metabolism (magnetic resonance spectroscopy); quadriceps muscle biopsies were obtained to assess muscle fiber types, capillarization, and oxidative capacity. Sedentary bed rest (BR) led to decreased muscle volume (quadriceps: -9 ± 4%, P < 0.001; plantar flexors: -19 ± 6%, P < 0.001). Exercise (ExBR) reduced atrophy in the quadriceps (-5 ± 4%, interaction P = 0.018) and calf muscle, although to a lesser degree (-14 ± 6%, interaction P = 0.076). Knee extensor and plantar flexor strength was impaired by BR (-14 ± 15%, P = 0.014 and -22 ± 7%, P = 0.001) but preserved by ExBR (-4 ± 13%, P = 0.238 and +13 ± 28%, P = 0.011). Metabolic capacity, as assessed by maximal O2 consumption, (31)P-MRS, and oxidative chain enzyme activity, was impaired in BR but stable or improved in ExBR. Reambulation reversed the negative impact of BR. High-intensity, short-duration rowing and supplemental strength training effectively preserved skeletal muscle function and structure while partially preventing atrophy in key antigravity muscles. Due to its integrated cardiovascular benefits, rowing ergometry could be a primary component of exercise prescriptions for astronauts or patients suffering from severe

  10. Impact of resistance exercise during bed rest on skeletal muscle sarcopenia and myosin isoform distribution

    NASA Technical Reports Server (NTRS)

    Bamman, M. M.; Clarke, M. S.; Feeback, D. L.; Talmadge, R. J.; Stevens, B. R.; Lieberman, S. A.; Greenisen, M. C.

    1998-01-01

    Because resistance exercise (REx) and bed-rest unloading (BRU) are associated with opposing adaptations, our purpose was to test the efficacy of REx against the effects of 14 days of BRU on the knee-extensor muscle group. Sixteen healthy men were randomly assigned to no exercise (NoEx; n = 8) or REx (n = 8). REx performed five sets of leg press exercise with 80-85% of one repetition maximum (1 RM) every other day during BRU. Muscle samples were removed from the vastus lateralis muscle by percutaneous needle biopsy. Myofiber distribution was determined immunohistochemically with three monoclonal antibodies against myosin heavy chain (MHC) isoforms (I, IIa, IIx). MHC distribution was further assessed by quantitative gel electrophoresis. Dynamic 1-RM leg press and unilateral maximum voluntary isometric contraction (MVC) were determined. Maximal neural activation (root mean squared electromyogram) and rate of torque development (RTD) were measured during MVC. Reductions (P < 0.05) in type I (15%) and type II (17%) myofiber cross-sectional areas were found in NoEx but not in REx. Electrophoresis revealed no changes in MHC isoform distribution. The percentage of type IIx myofibers decreased (P < 0.05) in REx from 9 to 2% and did not change in NoEx. 1 RM was reduced (P < 0.05) by 9% in NoEx but was unchanged in REx. MVC fell by 15 and 13% in NoEx and REx, respectively. The agonist-to-antagonist root mean squared electromyogram ratio decreased (P < 0.05) 19% in REx. RTD slowed (P < 0.05) by 54% in NoEx only. Results indicate that REx prevented BRU-induced myofiber atrophy and also maintained training-specific strength. Unlike spaceflight, BRU did not induce shifts in myosin phenotype. The reported benefits of REx may prove useful in prescribing exercise for astronauts in microgravity.

  11. Associated decrements in rate of force development and neural drive after maximal eccentric exercise.

    PubMed

    Farup, J; Rahbek, S K; Bjerre, J; de Paoli, F; Vissing, K

    2016-05-01

    The present study investigated the changes in contractile rate of force development (RFD) and the neural drive following a single bout of eccentric exercise. Twenty-four subjects performed 15 × 10 maximal isokinetic eccentric knee extensor contractions. Prior to and at 24, 48, 72, 96, and 168 h during post-exercise recovery, isometric RFD (30, 50 100, and 200 ms), normalized RFD [1/6,1/2, and 2/3 of maximal voluntary contraction (MVC)] and rate of electromyography rise (RER; 30, 50, and 75 ms) were measured. RFD decreased by 28-42% peaking at 48 h (P < 0.01-P < 0.001) and remained depressed at 168 h (P < 0.05). Normalized RFD at 2/3 of MVC decreased by 22-39% (P < 0.01), peaked at 72 h and returned to baseline at 168 h. These changes in RFD were associated with a decrease in RER at 48 h-96 h (P < 0.05-P < 0.001). Accumulated changes (area under curve) revealed a greater relative decrease in accumulated RFD at 100 ms by -2727 ± 309 (%h; P < 0.05) and 200 ms by -3035 ± 271 (%h; P < 0.001) compared with MVC, which decreased, by -1956 ± 234 (%h). In conclusion, RFD and RER are both markedly reduced following a bout of maximal eccentric exercise. This association suggests that exercise-induced decrements in RFD can, in part, be explained decrements in neural drive. PMID:25944178

  12. The acute effects of flotation restricted environmental stimulation technique on recovery from maximal eccentric exercise.

    PubMed

    Morgan, Paul M; Salacinski, Amanda J; Stults-Kolehmainen, Matthew A

    2013-12-01

    Flotation restricted environmental stimulation technique (REST) involves compromising senses of sound, sight, and touch by creating a quiet dark environment. The individual lies supine in a tank of Epsom salt and water heated to roughly skin temperature (34-35° C). This study was performed to determine if a 1-hour flotation REST session would aid in the recovery process after maximal eccentric knee extensions and flexions. Twenty-four untrained male students (23.29 ± 2.1 years, 184.17 ± 6.85 cm, 85.16 ± 11.54 kg) participated in a randomized, repeated measures crossover study. The participants completed 2 exercise and recovery protocols: a 1-hour flotation REST session and a 1-hour seated control (passive recovery). After isometric muscle strength testing, participants were fatigued with eccentric isokinetic muscle contractions (50 repetitions at 60°·s) of the nondominant knee extensors and flexors. Blood lactate, blood glucose, heart rate, OMNI-rating of perceived exertion for resistance exercise (OMNI-RPE), perceived pain, muscle soreness, and isometric strength were collected before exercise, after treatment, and 24 and 48 hours later. A multivariate analysis of covariance found that treatment had a significant main effect on blood lactate, whereas subsequent univariate analyses of variance found statistical significance with the immediate posttreatment blood lactate measures. The results indicate that flotation REST appears to have a significant impact on blood lactate and perceived pain compared with a 1-hour passive recovery session in untrained healthy men. No difference was found between conditions for muscle strength, blood glucose, muscle soreness, heart rate, or OMNI-RPE. Flotation REST may be used for recreational and professional athletes to help reduce blood lactate levels after eccentric exercise. PMID:23478477

  13. Exercise Responses to Gravity-Independent Flywheel Aerobic and Resistance Training

    PubMed Central

    Owerkowicz, Tomasz; Cotter, Joshua A.; Haddad, Fadia; Yu, Alvin M.; Camilon, Marinelle L.; Hoang, Theresa; Jimenez, Daniel; Kreitenberg, Arthur; Tesch, Per A.; Caiozzo, Vincent J.; Adams, Gregory R.

    2016-01-01

    Background Although a number of exercise systems have been developed to mitigate the physiological deconditioning that occurs in microgravity, few have the capacity to positively impact multiple physiological systems and still meet the volume/mass requirements needed for missions beyond low earth orbit. The purpose of this study was to test the gravity-independent Multi-Mode Exercise Device (M-MED) for both resistance (RE) and aerobic (AE) training stimuli. Methods Eight men and nine women (mean age 22.0±0.4 years) completed five weeks of training on the M-MED: RE 4×7 squats two days a week, and AE 4×4-min rowing bouts at ~90% VO2max three days a week. Pre- and post-training data collection included an aerobic capacity test, MR imaging, strength testing, and vastus lateralis muscle biopsy. Results VO2max increased 8%, 3RM strength 18%, and quadriceps femoris cross-sectional area (CSA) 10%. Knee extensor strength increased at all isokinetic speeds tested. Subjects also demonstrated improved resistance to fatigue in knee extension. At the cellular and molecular level, the biopsy revealed increases in mixed myofiber CSA (13%), citrate synthase activity (26%), total RNA concentration (24%), IGF-I mRNA (77%), Type IIa Myosin Heavy Chain (MHC) mRNA (8%), and concomitant decrease in Type IIx MHC mRNA (−23%). None of the changes were gender-specific. Discussion Both the functional outcomes and biomarker changes indicate that a very low volume of M-MED exercise results in robust adaptation in the cardiovascular and musculoskeletal systems. The M-MED has the potential to provide a wide range of countermeasure exercises and should be considered for testing in ground-based spaceflight simulation. PMID:26802373

  14. Effects of ankle joint mobilization with movement and weight-bearing exercise on knee strength, ankle range of motion, and gait velocity in patients with stroke: a pilot study

    PubMed Central

    An, Chang-Man; Won, Jong-Im

    2016-01-01

    [Purpose] The purpose of this study was to investigate the effects of ankle joint mobilization with movement on knee strength, ankle range of motion, and gait velocity, compared with weight-bearing exercise in stroke patients. [Subjects and Methods] Thirty subjects with chronic stroke were divided into three groups: MWM (n = 12), WBE (n = 8), and control (n = 10). All groups attended physical therapy sessions 3 times a week for 5 weeks. Subjects in the MWM group performed mobilization with movement exercises, whilst participants in the WBE group performed weight-bearing exercises. Knee peak torque, ankle range of motion, and spatiotemporal gait parameters were evaluated before and after the interventions. [Results] Knee extensor peak torque increased significantly in both MWM and WBE groups. However, only the MWM group showed significant improvement in passive and active ankle range of motion and gait velocity, among the three groups. [Conclusion] Ankle joint mobilization with movement intervention is more effective than simple weight-bearing intervention in improving gait speed in stroke patients with limited ankle motion. PMID:27065565

  15. Quadriceps exercise intolerance in patients with chronic obstructive pulmonary disease: the potential role of altered skeletal muscle mitochondrial respiration.

    PubMed

    Gifford, Jayson R; Trinity, Joel D; Layec, Gwenael; Garten, Ryan S; Park, Song-Young; Rossman, Matthew J; Larsen, Steen; Dela, Flemming; Richardson, Russell S

    2015-10-15

    This study sought to determine if qualitative alterations in skeletal muscle mitochondrial respiration, associated with decreased mitochondrial efficiency, contribute to exercise intolerance in patients with chronic obstructive pulmonary disease (COPD). Using permeabilized muscle fibers from the vastus lateralis of 13 patients with COPD and 12 healthy controls, complex I (CI) and complex II (CII)-driven State 3 mitochondrial respiration were measured separately (State 3:CI and State 3:CII) and in combination (State 3:CI+CII). State 2 respiration was also measured. Exercise tolerance was assessed by knee extensor exercise (KE) time to fatigue. Per milligram of muscle, State 3:CI+CII and State 3:CI were reduced in COPD (P < 0.05), while State 3:CII and State 2 were not different between groups. To determine if this altered pattern of respiration represented qualitative changes in mitochondrial function, respiration states were examined as percentages of peak respiration (State 3:CI+CII), which revealed altered contributions from State 3:CI (Con 83.7 ± 3.4, COPD 72.1 ± 2.4%Peak, P < 0.05) and State 3:CII (Con 64.9 ± 3.2, COPD 79.5 ± 3.0%Peak, P < 0.05) respiration, but not State 2 respiration in COPD. Importantly, a diminished contribution of CI-driven respiration relative to the metabolically less-efficient CII-driven respiration (CI/CII) was also observed in COPD (Con 1.28 ± 0.09, COPD 0.81 ± 0.05, P < 0.05), which was related to exercise tolerance of the patients (r = 0.64, P < 0.05). Overall, this study indicates that COPD is associated with qualitative alterations in skeletal muscle mitochondria that affect the contribution of CI and CII-driven respiration, which potentially contributes to the exercise intolerance associated with this disease. PMID:26272320

  16. Treadmill exercise within lower body negative pressure protects leg lean tissue mass and extensor strength and endurance during bed rest.

    PubMed

    Schneider, Suzanne M; Lee, Stuart M C; Feiveson, Alan H; Watenpaugh, Donald E; Macias, Brandon R; Hargens, Alan R

    2016-08-01

    Leg muscle mass and strength are decreased during reduced activity and non-weight-bearing conditions such as bed rest (BR) and spaceflight. Supine treadmill exercise within lower body negative pressure (LBNPEX) provides full-body weight loading during BR and may prevent muscle deconditioning. We hypothesized that a 40-min interval exercise protocol performed against LBNPEX 6 days week(-1) would attenuate losses in leg lean mass (LLM), strength, and endurance during 6° head-down tilt BR, with similar benefits for men and women. Fifteen pairs of healthy monozygous twins (8 male and 7 female pairs) completed 30 days of BR with one sibling of each twin pair assigned randomly as the non-exercise control (CON) and the other twin as the exercise subject (EX). Before and after BR, LLM and isokinetic leg strength and endurance were measured. Mean knee and ankle extensor and flexor strength and endurance and LLM decreased from pre- to post-BR in the male CON subjects (P < 0.01), but knee extensor strength and endurance, ankle extensor strength, and LLM were maintained in the male EX subjects. In contrast, no pre- to post-BR changes were significant in the female subjects, either CON or EX, likely due to their lower pre-BR values. Importantly, the LBNPEX countermeasure prevents or attenuates declines in LLM as well as extensor leg strength and endurance. Individuals who are stronger, have higher levels of muscular endurance, and/or have greater LLM are likely to experience greater losses during BR than those who are less fit. PMID:27495299

  17. Evidence of skeletal muscle metabolic reserve during whole body exercise in patients with chronic obstructive pulmonary disease.

    PubMed

    Richardson, R S; Sheldon, J; Poole, D C; Hopkins, S R; Ries, A L; Wagner, P D

    1999-03-01

    When freed from central cardiorespiratory limitations, healthy human skeletal muscle has exhibited a significant metabolic reserve. We studied the existence of this reserve in 10 severely compromised (FEV1 = 0.97 +/- SE 0.01) patients with chronic obstructive pulmonary disease (COPD). To manipulate O2 supply and O2 demand in locomotor and respiratory muscles, subjects performed both maximal conventional two-legged cycle ergometry (large muscle mass) and single-leg knee extensor exercise (KE, small muscle mass) while breathing room air (RA), 100% O2, and 79% helium + 21% O2 (HeO2). With each gas mixture, peak ventilation, peak heart rate, and perceived breathlessness were lower in KE than cycle exercise (p < 0. 05). Arterial O2 saturation and maximal work capacity increased in both exercise modalities while subjects breathed 100% O2 (work: +10% bike, +25% KE, p < 0.05). HeO2 increased maximal work capacity on the cycle (+14%, p < 0.05) but had no effect on KE. HeO2 resulted in the greatest maximum minute ventilation in both bike and KE (p < 0. 05) but had no effect on arterial O2 saturation. Thus, a skeletal muscle metabolic reserve in these patients with COPD is evidenced by: (1) greater muscle mass specific work in KE; (2) greater work rates with higher fraction of inspired oxygen (FIO2); (3) an even greater effect of FIO2 during KE (i.e., when the lungs are less challenged); and (4) the positive effect of HeO2 on bicycle work rate. This skeletal muscle metabolic reserve suggests that reduced whole body exercise capacity in COPD is the result of central restraints rather than peripheral skeletal muscle dysfunction, while the beneficial effect of 100% O2 (with no change in maximum ventilation) suggests that the respiratory system is not the sole constraint to oxygen consumption. PMID:10051266

  18. The comparison of cold-water immersion and cold air therapy on maximal cycling performance and recovery markers following strength exercises

    PubMed Central

    Hayter, Kane J.; Schumann, Moritz; Deakin, Glen B.

    2016-01-01

    This study examined the effects of cold-water immersion (CWI) and cold air therapy (CAT) on maximal cycling performance (i.e. anaerobic power) and markers of muscle damage following a strength training session. Twenty endurance-trained but strength-untrained male (n = 10) and female (n = 10) participants were randomised into either: CWI (15 min in 14 °C water to iliac crest) or CAT (15 min in 14 °C air) immediately following strength training (i.e. 3 sets of leg press, leg extensions and leg curls at 6 repetition maximum, respectively). Creatine kinase, muscle soreness and fatigue, isometric knee extensor and flexor torque and cycling anaerobic power were measured prior to, immediately after and at 24 (T24), 48 (T48) and 72 (T72) h post-strength exercises. No significant differences were found between treatments for any of the measured variables (p > 0.05). However, trends suggested recovery was greater in CWI than CAT for cycling anaerobic power at T24 (10% ± 2%, ES = 0.90), T48 (8% ± 2%, ES = 0.64) and T72 (8% ± 7%, ES = 0.76). The findings suggest the combination of hydrostatic pressure and cold temperature may be favourable for recovery from strength training rather than cold temperature alone. PMID:27069791

  19. Exhausting stretch-shortening cycle (SSC) exercise causes greater impairment in SSC performance than in pure concentric performance.

    PubMed

    Horita, T; Komi, P V; Hämäläinen, I; Avela, J

    2003-02-01

    The purpose of the present study was to investigate the fatigue effect of repeated exhaustive stretch-shortening cycle (SSC) exercise on concentric muscle function. Ten healthy male subjects performed SSC exercise [92 (30) jumps] on a special sledge apparatus. Exhaustion occurred on average within 3 min. A squat jump (SJ) test utilizing a concentric-only action was performed immediately before and after the SSC exercise, and then 10 min, 20 min, 2 days and 4 days later. In addition, a drop jump (DJ) test using an SSC was also performed immediately before and 20 min after the SSC exercise, and 2 days and 4 days later. During jump tests, lower limb joint moment, power, and work contributions were analyzed by using the kinetic and kinematic data. The fatigue exercise was characterized by a relatively high blood lactate concentration [7.2 (0.8) mmol x l(-1)] and a 2-day delayed increase in serum creatine kinase activity [486 (300) U x l(-1)]. SJ performance decreased markedly immediately after the SSC exercise (P<0.05) and then recovered within 10 min. In contrast, DJ performance and knee joint contribution showed a delayed decrease 2 days after the SSC exercise bout. The surface electromyographic (EMG) activity of the lower limb muscles showed no obvious change in the SJ in comparison to the DJ, although in the latter there was a delayed decrease of knee extensor EMG during the pre-activation and braking phases. The results suggest that isolated concentric muscle function is affected mainly by acute metabolic fatigue after SSC exercise. During a follow-up period after the exercise, changes in hip and knee joint contribution in SJ showed a different recovery pattern compared to those in eccentric DJ. It could be suggested that exhaustive SSC exercise would mainly influence the relative power-work balance between the hip and knee joints during the eccentric phase of SSC. Thus different motor control strategies may account for the distinctive fatigue responses observed

  20. Exercise Induced Cardiac Fatigue Following Prolonged Exercise in Road Cyclists

    ERIC Educational Resources Information Center

    Wyatt, Frank; Pawar, Ganesh; Kilgore, Lon

    2011-01-01

    The purpose of this study was to examine cardiac function following a 100-mile ride in high ambient temperatures by healthy, competitive cyclists. Methods: Subjects were six (n=6) competitive cyclists racing in a 100-mile road race. Measures (pre/post) included: body mass (kg); E:A ratio (ventricular compliance); stroke volume (ml); ejection…

  1. Erythrocyte-dependent regulation of human skeletal muscle blood flow: role of varied oxyhemoglobin and exercise on nitrite, S-nitrosohemoglobin, and ATP.

    PubMed

    Dufour, Stéphane P; Patel, Rakesh P; Brandon, Angela; Teng, Xinjun; Pearson, James; Barker, Horace; Ali, Leena; Yuen, Ada H Y; Smolenski, Ryszard T; González-Alonso, José

    2010-12-01

    The erythrocyte is proposed to play a key role in the control of local tissue perfusion via three O(2)-dependent signaling mechanisms: 1) reduction of circulating nitrite to vasoactive NO, 2) S-nitrosohemoglobin (SNO-Hb)-dependent vasodilatation, and 3) release of the vasodilator and sympatholytic ATP; however, their relative roles in vivo remain unclear. Here we evaluated each mechanism to gain insight into their roles in the regulation of human skeletal muscle blood flow during hypoxia and hyperoxia at rest and during exercise. Arterial and femoral venous hemoglobin O(2) saturation (O(2)Hb), plasma and erythrocyte NO and ATP metabolites, and leg and systemic hemodynamics were measured in 10 healthy males exposed to graded hypoxia, normoxia, and graded hyperoxia both at rest and during submaximal one-legged knee-extensor exercise. At rest, leg blood flow and NO and ATP metabolites in plasma and erythrocytes remained unchanged despite large alterations in O(2)Hb. During exercise, however, leg and systemic perfusion and vascular conductance increased in direct proportion to decreases in arterial and venous O(2)Hb (r(2) = 0.86-0.98; P = 0.01), decreases in venous plasma nitrite (r(2) = 0.93; P < 0.01), increases in venous erythrocyte nitroso species (r(2) = 0.74; P < 0.05), and to a lesser extent increases in erythrocyte SNO (r(2) = 0.59; P = 0.07). No relationship was observed with plasma ATP (r(2) = 0.01; P = 0.99) or its degradation compounds. These in vivo data indicate that, during low-intensity exercise and hypoxic stress, but not hypoxic stress alone, plasma nitrite consumption and formation of erythrocyte nitroso species are associated with limb vasodilatation and increased blood flow in the human skeletal muscle vasculature. PMID:20852046

  2. Erythrocyte-dependent regulation of human skeletal muscle blood flow: role of varied oxyhemoglobin and exercise on nitrite, S-nitrosohemoglobin, and ATP

    PubMed Central

    Patel, Rakesh P.; Brandon, Angela; Teng, Xinjun; Pearson, James; Barker, Horace; Ali, Leena; Yuen, Ada H. Y.; Smolenski, Ryszard T.; González-Alonso, José

    2010-01-01

    The erythrocyte is proposed to play a key role in the control of local tissue perfusion via three O2-dependent signaling mechanisms: 1) reduction of circulating nitrite to vasoactive NO, 2) S-nitrosohemoglobin (SNO-Hb)-dependent vasodilatation, and 3) release of the vasodilator and sympatholytic ATP; however, their relative roles in vivo remain unclear. Here we evaluated each mechanism to gain insight into their roles in the regulation of human skeletal muscle blood flow during hypoxia and hyperoxia at rest and during exercise. Arterial and femoral venous hemoglobin O2 saturation (O2Hb), plasma and erythrocyte NO and ATP metabolites, and leg and systemic hemodynamics were measured in 10 healthy males exposed to graded hypoxia, normoxia, and graded hyperoxia both at rest and during submaximal one-legged knee-extensor exercise. At rest, leg blood flow and NO and ATP metabolites in plasma and erythrocytes remained unchanged despite large alterations in O2Hb. During exercise, however, leg and systemic perfusion and vascular conductance increased in direct proportion to decreases in arterial and venous O2Hb (r2 = 0.86–0.98; P = 0.01), decreases in venous plasma nitrite (r2 = 0.93; P < 0.01), increases in venous erythrocyte nitroso species (r2 = 0.74; P < 0.05), and to a lesser extent increases in erythrocyte SNO (r2 = 0.59; P = 0.07). No relationship was observed with plasma ATP (r2 = 0.01; P = 0.99) or its degradation compounds. These in vivo data indicate that, during low-intensity exercise and hypoxic stress, but not hypoxic stress alone, plasma nitrite consumption and formation of erythrocyte nitroso species are associated with limb vasodilatation and increased blood flow in the human skeletal muscle vasculature. PMID:20852046

  3. Skeletal muscle blood flow and oxygen uptake at rest and during exercise in humans: a pet study with nitric oxide and cyclooxygenase inhibition.

    PubMed

    Heinonen, Ilkka; Ilkka, Heinonen; Saltin, Bengt; Bengt, Saltin; Kemppainen, Jukka; Jukka, Kemppainen; Sipilä, Hannu T; Oikonen, Vesa; Vesa, Oikonen; Nuutila, Pirjo; Pirjo, Nuutila; Knuuti, Juhani; Juhani, Knuuti; Kalliokoski, Kari; Kari, Kalliokoski; Hellsten, Ylva; Ylva, Hellsten

    2011-04-01

    The aim of the present study was to determine the effect of nitric oxide and prostanoids on microcirculation and oxygen uptake, specifically in the active skeletal muscle by use of positron emission tomography (PET). Healthy males performed three 5-min bouts of light knee-extensor exercise. Skeletal muscle blood flow and oxygen uptake were measured at rest and during the exercise using PET with H(2)O(15) and (15)O(2) during: 1) control conditions; 2) nitric oxide synthase (NOS) inhibition by arterial infusion of N(G)-monomethyl-L-arginine (L-NMMA), and 3) combined NOS and cyclooxygenase (COX) inhibition by arterial infusion of L-NMMA and indomethacin. At rest, inhibition of NOS alone and in combination with indomethacin reduced (P < 0.05) muscle blood flow. NOS inhibition increased (P < 0.05) limb oxygen extraction fraction (OEF) more than the reduction in muscle blood flow, resulting in an ∼20% increase (P < 0.05) in resting muscle oxygen consumption. During exercise, muscle blood flow and oxygen uptake were not altered with NOS inhibition, whereas muscle OEF was increased (P < 0.05). NOS and COX inhibition reduced (P < 0.05) blood flow in working quadriceps femoris muscle by 13%, whereas muscle OEF and oxygen uptake were enhanced by 51 and 30%, respectively. In conclusion, by specifically measuring blood flow and oxygen uptake by the use of PET instead of whole limb measurements, the present study shows for the first time in humans that inhibition of NO formation enhances resting muscle oxygen uptake and that combined inhibition of NOS and COX during exercise increases muscle oxygen uptake. PMID:21257921

  4. SIMULTANEOUS BILATERAL TEAR OF THE KNEE EXTENSOR MECHANISM IN A PRE-ADOLESCENT: CASE REPORT

    PubMed Central

    Albuquerque, Rodrigo Pires; Giordano, Vincenzo; Albuquerque, Maria Isabel Pires; Carvalho, Antonio Carlos Pires; do Amaral, Ney Pecegueiro; Barretto, João Maurício

    2015-01-01

    Unilateral tearing of a patellar tendon and a contralateral sleeve fracture in a pre-adolescent are rare lesions. We report a case in which a pre-adolescent sustained a fall while jumping during a soccer match. No predisposing risk factors were identified. The injuries were treated with surgical repairs and transosseous suturing. The aim of this study was to present a case of spontaneous concurrent tearing of the extensor mechanism of the knee in a pre-adolescent. PMID:27047882

  5. Effects of Constant and Doublet Frequency Electrical Stimulation Patterns on Force Production of Knee Extensor Muscles

    PubMed Central

    Cometti, Carole; Babault, Nicolas; Deley, Gaëlle

    2016-01-01

    This study compared knee extensors’ neuromuscular fatigue in response to two 30-minute stimulation patterns: constant frequency train (CFT) and doublet frequency train (DFT). Fifteen men underwent two separate sessions corresponding to each pattern. Measurements included torque evoked by each contraction and maximal voluntary contractions (MVC) measured before and immediately after the stimulation sessions. In addition, activation level and torque evoked during doublets (Pd) and tetanic contractions at 80-Hz (P80) and 20-Hz (P20) were determined in six subjects. Results indicated greater mean torque during the DFT stimulation session as compared with CFT. But, no difference was obtained between the two stimulation patterns for MVC and evoked torque decreases. Measurements conducted in the subgroup depicted a significant reduction of Pd, P20 and P80. Statistical analyses also revealed bigger P20 immediate reductions after CFT than after DFT. We concluded that DFT could be a useful stimulation pattern to produce and maintain greater force with quite similar fatigue than CFT. PMID:27167066

  6. PROTECTION DEVICE ON THE REPAIR OF RUPTURES OF KNEE EXTENSOR MECHANISM

    PubMed Central

    Arguello Frutos, Carlos Francisco; Arbix Camargo, Osmar Pedro; Severino, Nilson Roberto; Leite Cury, Ricardo de Paula; de Oliveira, Victor Marques; Aihara, Tatsuo; Avakian, Roger

    2015-01-01

    To evaluate results obtained using the protection device technique for osteosintesis or suture of extensor mechanism lesions. Material and Methods: The authors reviewed 18 charts of patients submitted to protection device technique due to traumatic lesion of extensor mechanism that had occurred between the anterior tibial tuberosity and the apical portion of patella. Age ranged from 22 to 69 years, with a mean of 44 years. Male patients prevailed, with 67% of the cases. The most affected spot was, in 83% of the cases, the apical distal third. A protocol was created to collect data, listing the patients and the clinical history from their medical records. Results: The authors observed consolidation of the patella fracture in all 17 patients, and cicatrization of the patellar ligament in one patient. Pain was described in four patients. There were no complications related to the procedure. Conclusion: The protection device showed to be efficient when used in surgical treatment of lesions between the apical patella and the anterior tibial tuberosity, providing active and passive mobility in the early postoperative time. PMID:26998454

  7. Knee Extensor and Flexor Torque Development with Concentric and Eccentric Isokinetic Training

    ERIC Educational Resources Information Center

    Miller, Larry E.; Pierson, Lee M.; Nickols-Richardson, Sharon M.; Wootten, David F.; Selmon, Serah E.; Ramp, Warren K.; Herbert, William G.

    2006-01-01

    This study assessed muscular torque and rate of torque development following concentric (CON) or eccentric (ECC) isokinetic training. Thirty-eight women were randomly assigned to either CON or ECC training groups. Training consisted of knee extension and flexion of the nondominant leg three times per week for 20 weeks (SD = 1). Eccentric training…

  8. Exercise: Benefits of Exercise

    MedlinePlus Videos and Cool Tools

    ... show that people with arthritis, heart disease, or diabetes benefit from regular exercise. Exercise also helps people ... or difficulty walking. To learn about exercise and diabetes, see "Exercise and Type 2 Diabetes" from Go4Life®, ...

  9. Myofibrillar protein synthesis following ingestion of soy protein isolate at rest and after resistance exercise in elderly men

    PubMed Central

    2012-01-01

    Background Increased amino acid availability stimulates muscle protein synthesis, however, aged muscle appears less responsive to the anabolic effects of amino acids when compared to the young. We aimed to compare changes in myofibrillar protein synthesis (MPS) in elderly men at rest and after resistance exercise following ingestion of different doses of soy protein and compare the responses to those we previously observed with ingestion of whey protein isolate. Methods Thirty elderly men (age 71 ± 5 y) completed a bout of unilateral knee-extensor resistance exercise prior to ingesting no protein (0 g), or either 20 g or 40 g of soy protein isolate (0, S20, and S40 respectively). We compared these responses to previous responses from similar aged men who had ingested 20 g and 40 g of whey protein isolate (W20 and W40). A primed constant infusion of L-[1-13 C]leucine and L-[ring-13 C6]phenylalanine and skeletal muscle biopsies were used to measure whole-body leucine oxidation and MPS over 4 h post-protein consumption in both exercised and non-exercised legs. Results Whole-body leucine oxidation increased with protein ingestion and was significantly greater for S20 vs. W20 (P = 0.003). Rates of MPS for S20 were less than W20 (P = 0.02) and not different from 0 g (P = 0.41) in both exercised and non-exercised leg muscles. For S40, MPS was also reduced compared with W40 under both rested and post-exercise conditions (both P < 0.005); however S40 increased MPS greater than 0 g under post-exercise conditions (P = 0.04). Conclusions The relationship between protein intake and MPS is both dose and protein source-dependent, with isolated soy showing a reduced ability, as compared to isolated whey protein, to stimulate MPS under both rested and post-exercise conditions. These differences may relate to the lower postprandial leucinemia and greater rates of amino acid oxidation following ingestion of soy versus whey protein. PMID

  10. Isolated quadriceps training increases maximal exercise capacity in chronic heart failure: The role of skeletal muscle convective and diffusive oxygen transport

    PubMed Central

    Esposito, Fabio; Reese, Van; Shabetai, Ralph; Wagner, Peter D.; Richardson, Russell S.

    2011-01-01

    Objectives This study sought to elucidate the mechanisms responsible for the benefits of small muscle mass exercise training in patients with chronic heart failure (CHF). Background How central cardiorespiratory and/or peripheral skeletal muscle factors are altered with small muscle mass training in CHF is unknown. Methods We studied muscle structure and oxygen (O2) transport and metabolism at maximal cycle (whole body) and knee-extensor exercise (KE) (small muscle mass) in 6 healthy controls and 6 patients with CHF who then performed 8 weeks of KE training (both legs, separately) and repeated these assessments. Results Pre-training cycling and KE peak leg O2 uptake (VO2peak) were ~17% and ~15% lower, respectively, in the patients compared to controls. Structurally, KE training increased quadriceps muscle capillarity and mitochondrial density by ~21 and ~25%, respectively. Functionally, despite not altering maximal cardiac output, KE training increased maximal O2 delivery (~54%), arterial-venous O2 (a–v O2) difference (~10%), and muscle O2 diffusive conductance (DMO2) (~39%) (assessed during KE), thereby increasing single leg VO2peak by ~53%, to a level exceeding that of the untrained controls. Post-training, during maximal cycling, O2 delivery (~40%), a–v O2 difference (~15%), and DMO2 (~52%) all increased, yielding an increase in VO2peak of ~40%, matching the controls. Conclusions In the face of continued central limitations, clear improvements in muscle structure, peripheral convective and diffusive O2 transport, and subsequently O2 utilization support the efficacy of local skeletal muscle training as a powerful approach to combat exercise intolerance in CHF. PMID:21920265

  11. Local temperature-sensitive mechanisms are important mediators of limb tissue hyperemia in the heat-stressed human at rest and during small muscle mass exercise.

    PubMed

    Chiesa, Scott T; Trangmar, Steven J; Kalsi, Kameljit K; Rakobowchuk, Mark; Banker, Devendar S; Lotlikar, Makrand D; Ali, Leena; González-Alonso, José

    2015-07-15

    Limb tissue and systemic blood flow increases with heat stress, but the underlying mechanisms remain poorly understood. Here, we tested the hypothesis that heat stress-induced increases in limb tissue perfusion are primarily mediated by local temperature-sensitive mechanisms. Leg and systemic temperatures and hemodynamics were measured at rest and during incremental single-legged knee extensor exercise in 15 males exposed to 1 h of either systemic passive heat-stress with simultaneous cooling of a single leg (n = 8) or isolated leg heating or cooling (n = 7). Systemic heat stress increased core, skin and heated leg blood temperatures (Tb), cardiac output, and heated leg blood flow (LBF; 0.6 ± 0.1 l/min; P < 0.05). In the cooled leg, however, LBF remained unchanged throughout (P > 0.05). Increased heated leg deep tissue blood flow was closely related to Tb (R(2) = 0.50; P < 0.01), which is partly attributed to increases in tissue V̇O2 (R(2) = 0.55; P < 0.01) accompanying elevations in total leg glucose uptake (P < 0.05). During isolated limb heating and cooling, LBFs were equivalent to those found during systemic heat stress (P > 0.05), despite unchanged systemic temperatures and hemodynamics. During incremental exercise, heated LBF was consistently maintained ∼ 0.6 l/min higher than that in the cooled leg (P < 0.01), with LBF and vascular conductance in both legs showing a strong correlation with their respective local Tb (R(2) = 0.85 and 0.95, P < 0.05). We conclude that local temperature-sensitive mechanisms are important mediators in limb tissue perfusion regulation both at rest and during small-muscle mass exercise in hyperthermic humans. PMID:25934093

  12. Inhibition of nitric oxide and prostaglandins, but not endothelial-derived hyperpolarizing factors, reduces blood flow and aerobic energy turnover in the exercising human leg.

    PubMed

    Mortensen, Stefan P; González-Alonso, José; Damsgaard, Rasmus; Saltin, Bengt; Hellsten, Ylva

    2007-06-01

    Prostaglandins, nitric oxide (NO) and endothelial-derived hyperpolarizing factors (EDHFs) are substances that have been proposed to be involved in the regulation of skeletal muscle blood flow during physical activity. We measured haemodynamics, plasma ATP at rest and during one-legged knee-extensor exercise (19 +/- 1 W) in nine healthy subjects with and without intra-arterial infusion of indomethacin (Indo; 621 +/- 17 microg min(-1)), Indo + N(G)-monomethyl-L-arginine (L-NMMA; 12.4 +/- 0.3 mg min(-1)) (double blockade) and Indo + L-NMMA + tetraethylammonium chloride (TEA; 12.4 +/- 0.3 mg min(-1)) (triple blockade). Double and triple blockade lowered leg blood flow (LBF) at rest (P<0.05), while it remained unchanged with Indo. During exercise, LBF and vascular conductance were 2.54 +/- 0.10 l min(-1) and 25 +/- 1 mmHg, respectively, in control and they were lower with double (33 +/- 3 and 36 +/- 4%, respectively) and triple (26 +/- 4 and 28 +/- 3%, respectively) blockade (P<0.05), while there was no difference with Indo. The lower LBF and vascular conductance with double and triple blockade occurred in parallel with a lower O(2) delivery, cardiac output, heart rate and plasma [noradrenaline] (P<0.05), while blood pressure remained unchanged and O(2) extraction and femoral venous plasma [ATP] increased. Despite the increased O(2) extraction, leg was 13 and 17% (triple and double blockade, respectively) lower than control in parallel to a lower femoral venous temperature and lactate release (P<0.05). These results suggest that NO and prostaglandins play important roles in skeletal muscle blood flow regulation during moderate intensity exercise and that EDHFs do not compensate for the impaired formation of NO and prostaglandins. Moreover, inhibition of NO and prostaglandin formation is associated with a lower aerobic energy turnover and increased concentration of vasoactive ATP in plasma. PMID:17347273

  13. Positron emission tomography detects greater blood flow and less blood flow heterogeneity in the exercising skeletal muscles of old compared with young men during fatiguing contractions

    PubMed Central

    Rudroff, Thorsten; Weissman, Jessica A; Bucci, Marco; Seppänen, Marko; Kaskinoro, Kimmo; Heinonen, Ilkka; Kalliokoski, Kari K

    2014-01-01

    The purpose of this study was to investigate blood flow and its heterogeneity within and among the knee muscles in five young (26 ± 6 years) and five old (77 ± 6 years) healthy men with similar levels of physical activity while they performed two types of submaximal fatiguing isometric contraction that required either force or position control. Positron emission tomography (PET) and [15O]-H2O were used to determine blood flow at 2 min (beginning) and 12 min (end) after the start of the tasks. Young and old men had similar maximal forces and endurance times for the fatiguing tasks. Although muscle volumes were lower in the older subjects, total muscle blood flow was similar in both groups (young men: 25.8 ± 12.6 ml min−1; old men: 25.1 ± 15.4 ml min−1; age main effect, P = 0.77) as blood flow per unit mass of muscle in the exercising knee extensors was greater in the older (12.5 ± 6.2 ml min−1 (100 g)−1) than the younger (8.6 ± 3.6 ml min−1 (100 g)−1) men (age main effect, P = 0.001). Further, blood flow heterogeneity in the exercising knee extensors was significantly lower in the older (56 ± 27%) than the younger (67 ± 34%) men. Together, these data show that although skeletal muscles are smaller in older subjects, based on the intact neural drive to the muscle and the greater, less heterogeneous blood flow per gram of muscle, old fit muscle achieves adequate exercise hyperaemia. Key points The results of previous studies that attempted to demonstrate the effects of ageing on skeletal muscle blood flow are controversial because these studies used indirect assessments of skeletal muscle blood flow obtained via whole limb blood flow measurements that provide no information on the distribution of blood flow within particular muscles. We used positron emission tomography to measure blood flow per gram of muscle in old and young men with similar levels of physical activity

  14. Changes in Indirect Markers of Muscle Damage and Tendons After Daily Drop Jumping Exercise with Rapid Load Increase

    PubMed Central

    Paleckis, Vidas; Mickevičius, Mantas; Snieckus, Audrius; Streckis, Vytautas; Pääsuke, Mati; Rutkauskas, Saulius; Steponavičiūtė, Rasa; Skurvydas, Albertas; Kamandulis, Sigitas

    2015-01-01

    The aim of this study was to assess changes in indirect markers of muscle damage and type I collagen degradation, as well as, patellar and Achilles tendon morphological differences during nine daily drop-jumps sessions with constant load alternated with rapid increases in load to test the hypothesis that frequent drop-jump training results in negative muscular and tendon adaptation. Young men (n = 9) performed daily drop jump workouts with progression every 3 days in terms of number of jumps, platform height and squat amplitude. Voluntary and electrically evoked knee extensor torque, muscle soreness, blood plasma creatine kinase (CK) activity and carboxyterminal cross-linked telopeptide (ICTP), patellar and Achilles tendon thickness and cross-sectional area (CSA) were assessed at different time points during the training period and again on days 1, 3, 10 and 17 after the training. The findings were as follows: (1) steady decline in maximal muscle strength with major recovery within 24 hours after the first six daily training sessions; (2) larger decline in electrically induced muscle torque and prolonged recovery during last three training sessions; (3) increase in patellar and Achilles tendons CSA without change in thickness towards the end of training period; (4) increase in jump height but not in muscle strength after whole training period. Our findings suggest that frequent drop-jump sessions with constant load alternated with rapid increases in load do not induce severe muscle damage or major changes in tendons, nonetheless, this type of loading is not advisable for muscle strength improvement. Key points Frequent drop jump training induces activation mode dependent muscle torque depression late in the training period. No significant changes in the thickness of patellar and Achilles tendons are observed during frequent training, while CSA increases towards the end of training period. Longitudinal effect for jump height but not for muscle strength is evident

  15. Piroxicam fails to reduce myocellular enzyme leakage and delayed onset muscle soreness induced by isokinetic eccentric exercise

    PubMed Central

    Croisier, J-L.; Monfils, T.; Deby-Dupon, G.; Fafchamps, M.; Venneman, I.; Crielaard, J-M.; Juchmès-Ferir, A.; Lhermerout, C.; Lamy, M.; Deby, C.

    1996-01-01

    To test the hypothesis that delayed onset muscular soreness (DOMS) following intense eccentric muscle contraction could be due to increased production of prostaglandin E2 (PGE2), ten healthy male subjects were studied. Using a double-blind randomized crossover design, each subject performed two isokinetic tests separated by a period of at least 6 weeks: once with placebo, and once with piroxicam (Feldene®). They were given one capsule containing either placebo or piroxicam (20 mg) per day for 6 days with initial doses given starting 3 days prior to isokinetic testing. Exercise consisted of eight stages of five maximal contractions of the knee extensor and flexor muscle groups of both legs separated by 1 min rest phases, on a Kin Trex device at 60°/s angular velocity. The subjective presence and intensity of DOMS were evaluated using a visual analogue scale immediately after, and 24 and 48 h after each test. The mean plasma concentration of PGE2 measured at rest and after exercise was significantly lower in the group treated with piroxicam (p < 0.05). However, statistical analysis (two-way ANOVA test) revealed that exercise did not cause any significant change of mean plasma PGE2 over time in either of the two groups. Eccentric work was followed by severe muscle pain in extensor and flexor muscle groups. Maximal soreness was noted 48 h postexercise. Serum creatine kinase activity and the serum concentration of myoglobin increased significantly, and reached peak values 48 h after exercise in both experimental conditions (p < 0.001). By paired t-test, it appeared that there were no significant differences in the serum levels of these two markers of muscle damage between the two groups at any time point. We conclude that: (1) oral administration of piroxicam fails to reduce muscle damage and DOMS caused by strenuous eccentric exercise; and (2) the hypothetical role of increased PGE2 production in eccentric exercise-induced muscle damage, DOMS, and reduced isokinetic

  16. Changes in the human blood coagulating system during prolonged hypokinesia

    NASA Technical Reports Server (NTRS)

    Filatova, L. M.; Anashkin, O. D.

    1978-01-01

    Changes in the coagulating system of the blood were studied in six subjects during prolonged hypokinesia. Thrombogenic properties of the blood rose in all cases on the 8th day. These changes are explained by stress reaction due to unusual conditions for a healthy person. Changes in the blood coagulating system in the group subjected to physical exercise and without it ran a practically parallel course. Apparently physical exercise is insufficient to prevent such changes that appear in the coagulating system of the blood during prolonged hypokinesia.

  17. Aerobic exercise training improves whole muscle and single myofiber size and function in older women

    PubMed Central

    Konopka, Adam R.; Douglass, Matthew D.; Minchev, Kiril; Kaminsky, Leonard A.; Trappe, Todd A.; Trappe, Scott

    2009-01-01

    To comprehensively assess the influence of aerobic training on muscle size and function, we examined seven older women (71 ± 2 yr) before and after 12 wk of cycle ergometer training. The training program increased (P < 0.05) aerobic capacity by 30 ± 6%. Quadriceps muscle volume, determined by magnetic resonance imaging (MRI), was 12 ± 2% greater (P < 0.05) after training and knee extensor power increased 55 ± 7% (P < 0.05). Muscle biopsies were obtained from the vastus lateralis to determine size and contractile properties of individual slow (MHC I) and fast (MHC IIa) myofibers, myosin light chain (MLC) composition, and muscle protein concentration. Aerobic training increased (P < 0.05) MHC I fiber size 16 ± 5%, while MHC IIa fiber size was unchanged. MHC I peak power was elevated 21 ± 8% (P < 0.05) after training, while MHC IIa peak power was unaltered. Peak force (Po) was unchanged in both fiber types, while normalized force (Po/cross-sectional area) was 10% lower (P < 0.05) for both MHC I and MHC IIa fibers after training. The decrease in normalized force was likely related to a reduction (P < 0.05) in myofibrillar protein concentration after training. In the absence of an increase in Po, the increase in MHC I peak power was mediated through an increased (P < 0.05) maximum contraction velocity (Vo) of MHC I fibers only. The relative proportion of MLC1s (Pre: 0.62 ± 0.01; Post: 0.58 ± 0.01) was lower (P < 0.05) in MHC I myofibers after training, while no differences were present for MLC2s and MLC3f isoforms. These data indicate that aerobic exercise training improves muscle function through remodeling the contractile properties at the myofiber level, in addition to pronounced muscle hypertrophy. Progressive aerobic exercise training should be considered a viable exercise modality to combat sarcopenia in the elderly population. PMID:19692660

  18. [Prolonged or chronic fatigue of unknown origin].

    PubMed

    Favrat, Bernard; Guessous, Idris; Gonthier, Ariane; Cornuz, Jacques

    2015-04-22

    Although prolonged or chronic fatigue is a very common complaint in primary care medicine, a biomedical obvious cause is often not found. In such a case, for women between 18 and 50 years with a ferritin level of less than 50 µg/l in the absence of anaemia, an iron supplementation may be associated with an improvement in fatigue. Appropriate treatment is also important for depression, anxiety or insomnia. In other cases, the approach is essentially non-pharmacological in the form of lifestyle advice, empathy and cognitive behavioural therapy as well as progressive and adapted physical exercises. PMID:26072601

  19. Preservation of human performance capacity under prolonged space flight conditions

    NASA Technical Reports Server (NTRS)

    Yeremin, A. V.; Bogdashevskiy, R. M.; Baburin, Y. F.

    1975-01-01

    Prophylactic measures directed toward preservation of health and maintenance of the performance ability of a man during prolonged space flight stress center on the selection of optimum work and rest cycles, physical exercises, the use of pharmacological agents, conditioning of the cardiovascular apparatus, etc. A specially selected set of hormone and pharmacological preparations is recommended to stimulate hemopoiesis.

  20. The Influence of Oral L-Glutamine Supplementation on Muscle Strength Recovery and Soreness Following Unilateral Knee Extension Eccentric Exercise.

    PubMed

    Legault, Zachary; Bagnall, Nicholas; Kimmerly, Derek S

    2015-10-01

    The study aimed to examine the effects that L-glutamine supplementation has on quadriceps muscle strength and soreness ratings following eccentric exercise. It was hypothesized that glutamine ingestion would quicken the recovery rate of peak force production and decrease muscle soreness ratings over a 72-hr recovery period. Sixteen healthy participants (8♀/8♂; 22 ± 4 years) volunteered in a double-blind, randomized, placebo-controlled crossover study. Supplement conditions consisted of isoenergetic placebo (maltodextrin, 0.6 g·kg-1·day-1) and L-glutamine (0.3 g·kg-1·day-1 + 0.3 g·kg-1·day-1 maltodextrin) ingestion once per day over 72 hr. Knee extensor peak torque at 0°, 30°, and 180° per second and muscle soreness were measured before, immediately following, 24, 48, and 72 hr posteccentric exercise. Eccentric exercise consisted of 8 sets (10 repetitions/set) of unilateral knee extension at 125% maximum concentric force with 2-min rest intervals. L-glutamine resulted in greater relative peak torque at 180°/sec both immediately after (71 ± 8% vs. 66 ± 9%), and 72 hr (91 ± 8% vs. 86 ± 7%) postexercise (all, p < .01). In men, L-glutamine produced greater (p < .01) peak torques at 30°/ sec postexercise. Men also produced greater normalized peak torques at 30°/sec (Nm/kg) in the L-glutamine condition than women (all, p < .05). In the entire sample, L-glutamine resulted in lower soreness ratings at 24 (2.8 ± 1.2 vs. 3.4 ± 1.2), 48 (2.6 ± 1.4 vs. 3.9 ± 1.2), and 72 (1.7 ± 1.2 vs. 2.9 ± 1.3) hr postexercise (p < .01). The L-glutamine supplementation resulted in faster recovery of peak torque and diminished muscle soreness following eccentric exercise. The effect of L-glutamine on muscle force recovery may be greater in men than women. PMID:25811544

  1. Central alterations of neuromuscular function and feedback from group III-IV muscle afferents following exhaustive high-intensity one-leg dynamic exercise.

    PubMed

    Pageaux, Benjamin; Angius, Luca; Hopker, James G; Lepers, Romuald; Marcora, Samuele M

    2015-06-15

    The aims of this investigation were to describe the central alterations of neuromuscular function induced by exhaustive high-intensity one-leg dynamic exercise (OLDE, study 1) and to indirectly quantify feedback from group III-IV muscle afferents via muscle occlusion (MO, study 2) in healthy adult male humans. We hypothesized that these central alterations and their recovery are associated with changes in afferent feedback. Both studies consisted of two time-to-exhaustion tests at 85% peak power output. In study 1, voluntary activation level (VAL), M-wave, cervicomedullary motor evoked potential (CMEP), motor evoked potential (MEP), and MEP cortical silent period (CSP) of the knee extensor muscles were measured. In study 2, mean arterial pressure (MAP) and leg muscle pain were measured during MO. Measurements were performed preexercise, at exhaustion, and after 3 min recovery. Compared with preexercise values, VAL was lower at exhaustion (-13 ± 13%, P < 0.05) and after 3 min of recovery (-6 ± 6%, P = 0.05). CMEP area/M area was lower at exhaustion (-38 ± 13%, P < 0.01) and recovered after 3 min. MEP area/M area was higher at exhaustion (+25 ± 27%, P < 0.01) and after 3 min of recovery (+17 ± 20%, P < 0.01). CSP was higher (+19 ± 9%, P < 0.01) only at exhaustion and recovered after 3 min. Markers of afferent feedback (MAP and leg muscle pain during MO) were significantly higher only at exhaustion. These findings suggest that the alterations in spinal excitability and CSP induced by high-intensity OLDE are associated with an increase in afferent feedback at exhaustion, whereas central fatigue does not fully recover even when significant afferent feedback is no longer present. PMID:25855308

  2. Impaired Hyperemic Response to Exercise Post Stroke

    PubMed Central

    Durand, Matthew J.; Murphy, Spencer A.; Schaefer, Kathleen K.; Hunter, Sandra K.; Schmit, Brian D.; Gutterman, David D.; Hyngstrom, Allison S.

    2015-01-01

    Individuals with chronic stroke have reduced perfusion of the paretic lower limb at rest; however, the hyperemic response to graded muscle contractions in this patient population has not been examined. This study quantified blood flow to the paretic and non-paretic lower limbs of subjects with chronic stroke after submaximal contractions of the knee extensor muscles and correlated those measures with limb function and activity. Ten subjects with chronic stroke and ten controls had blood flow through the superficial femoral artery quantified with ultrasonography before and immediately after 10 second contractions of the knee extensor muscles at 20, 40, 60, and 80% of the maximal voluntary contraction (MVC) of the test limb. Blood flow to the paretic and non-paretic limb of stroke subjects was significantly reduced at all load levels compared to control subjects even after normalization to lean muscle mass. Of variables measured, increased blood flow after an 80% MVC was the single best predictor of paretic limb strength, the symmetry of strength between the paretic and non-paretic limbs, coordination of the paretic limb, and physical activity. The impaired hemodynamic response to high intensity contractions was a better predictor of lower limb function than resting perfusion measures. Stroke-dependent weakness and atrophy of the paretic limb do not explain the reduced hyperemic response to muscle contraction alone as the response is similarly reduced in the non-paretic limb when compared to controls. These data may suggest a role for perfusion therapies to optimize rehabilitation post stroke. PMID:26630380

  3. The effects of short-term detraining on exercise performance in soccer players.

    PubMed

    Joo, Chang Hwa

    2016-02-01

    The aim of the present study was to determine whether 1 week of training cessation can affect exercise performance in well-trained soccer players. Upon the completion of a competitive season, 11 male soccer players went through 1-week training cessation. Performances in the 5-m (1.05±0.04 sec vs 1.02±0.03 sec, P=0.03) and 10-m (1.79±0.06 sec vs 1.74±0.06 sec, P=0.03) sprints were significantly increased after 1 week of detraining with a trend for an increase in the 20-m sprint performance (3.07±0.06 sec vs 3.02±0.07 sec, P=0.06). However, the repeated sprint performance (total sprint time [45.7±2.6 sec vs 48.0±2.6 sec, P=0.01] and fatigue index [5.8%±2.8% vs 7.8%±3.2%; P=0.04]) were reduced. In addition, no significant differences were observed for the 30 m (4.23±0.06 sec vs 4.24±0.09 sec, P=0.63), agility (right: 8.08±0.17 sec vs 8.03±0.37 sec, P=0.54; left: 8.05±0.21 sec vs 8.04±0.30 sec, P=0.84), coordination (13.98±1.21 sec vs 14.06±1.34 sec, P=0.75), Yo-Yo intermittent recovery level 2 (1,040.0±291.8 m vs 1,134.5±232.7 m, P=0.08), and knee extensors and flexors peak torques at all applied angular velocities (P<0.05) after detraining. These results indicate that short-term detraining for well-trained soccer players has a significant effect on the speed endurance performance. It is therefore important for the players and their coaches to plan a suitable training program to maintain exercise performance especially speed endurance during off-season. PMID:26933661

  4. The effects of short-term detraining on exercise performance in soccer players

    PubMed Central

    Joo, Chang Hwa

    2016-01-01

    The aim of the present study was to determine whether 1 week of training cessation can affect exercise performance in well-trained soccer players. Upon the completion of a competitive season, 11 male soccer players went through 1-week training cessation. Performances in the 5-m (1.05±0.04 sec vs 1.02±0.03 sec, P=0.03) and 10-m (1.79±0.06 sec vs 1.74±0.06 sec, P=0.03) sprints were significantly increased after 1 week of detraining with a trend for an increase in the 20-m sprint performance (3.07±0.06 sec vs 3.02±0.07 sec, P=0.06). However, the repeated sprint performance (total sprint time [45.7±2.6 sec vs 48.0±2.6 sec, P=0.01] and fatigue index [5.8%±2.8% vs 7.8%±3.2%; P=0.04]) were reduced. In addition, no significant differences were observed for the 30 m (4.23±0.06 sec vs 4.24±0.09 sec, P=0.63), agility (right: 8.08±0.17 sec vs 8.03±0.37 sec, P=0.54; left: 8.05±0.21 sec vs 8.04±0.30 sec, P=0.84), coordination (13.98±1.21 sec vs 14.06±1.34 sec, P=0.75), Yo-Yo intermittent recovery level 2 (1,040.0±291.8 m vs 1,134.5±232.7 m, P=0.08), and knee extensors and flexors peak torques at all applied angular velocities (P<0.05) after detraining. These results indicate that short-term detraining for well-trained soccer players has a significant effect on the speed endurance performance. It is therefore important for the players and their coaches to plan a suitable training program to maintain exercise performance especially speed endurance during off-season. PMID:26933661

  5. Nutrition Coupled with High-Load Traditional or Low-Load Blood Flow Restricted Exercise During Human Limb Suspension

    NASA Technical Reports Server (NTRS)

    Hackney, K. J.; Everett, M.; Ploutz-Snyder, L. L.

    2011-01-01

    High-load resistance exercise (HRE) and low-load blood flow restricted (BFR) exercise have demonstrated efficacy for attenuating unloading related muscle atrophy and dysfunction. In recreational exercisers, protein consumption immediately before and/or after exercise has been shown to increase the skeletal muscle anabolic response to resistance training. PURPOSE: To compare the skeletal muscle adaptations when chocolate milk intake was coupled with HRE or low-load BFR exercise [3 d/wk] during simulated lower limb weightlessness. METHODS: Eleven subjects were counterbalanced [based on age and gender] to HRE (31 +/- 14 yr, 170 +/- 13 cm, 71 +/- 18 kg, 2M/3W) or low-load BFR exercise (31 +/- 12 yr, 169 +/- 13 cm, 66 +/- 14 kg, 2M/4W) during 30 days of unilateral lower limb suspension (ULLS). Both HRE and BFR completed 3 sets of single leg press and calf raise exercise during ULLS. BFR exercise intensity was 20% of repetition maximum (1RM) with a cuff inflation pressure of 1.3 systolic blood pressure (143 4 mmHg). Cuff pressure was maintained during all 3 sets including rest intervals (90s). HRE intensity was 75% 1RM and was performed without cuff inflation. Immediately (<10 min) before and after exercise 8 fl oz of chocolate milk (150 kcal, 2.5g total fat, 22g total carbohydrate, 8g protein) was consumed to optimize acute exercise responses in favor of muscle anabolism. ULLS analog compliance was assessed from leg skin temperature recordings and plantar accelerometry. Muscle cross-sectional area (CSA) for knee extensor and plantar flexor muscle groups were determined from analysis of magnetic resonance images using ImageJ software. 1RM strength for leg press and calf raise was assessed on the Agaton exercise system. Muscular endurance during leg press and calf raise was evaluated from the maximal number of repetitions performed to volitional fatigue using 40% of pre-ULLS 1RM. RESULTS: Steps detected by plantar acceleometry declined by 98.9% during ULLS relative to an

  6. Effects Of Exercise During Bed Rest

    NASA Technical Reports Server (NTRS)

    Greenleaf, John E.; Bernauer, Edmund M.

    1993-01-01

    Pair of reports adds to growing body of knowledge of physical deconditioning caused by prolonged bed rest and effectiveness of various exercise regimens in preserving or restoring fitness. Major objective to determine what regimens to prescribe to astronauts before flight, during prolonged weightlessness, and immediately before returning to Earth. Knowledge also benefits patients confined by illness or injury. First report discusses experiment on effects of two types of periodic, intense, short-duration exercise during bed rest. Experiment also discussed in documents "Effects Of Exercise During Prolonged Bed Rest" (ARC-12190), and "Isotonic And Isokinetic Exercise During Bed Rest" (ARC-12180). Second report reviews knowledge acquired with view toward development of protocols for exercise regimens.

  7. [Excessive energy drink consumption caused marked QT prolongation. Case report].

    PubMed

    Tomcsányi, János; Jávor, Kinga

    2015-10-25

    The authors report a case of a 22-year-old man with atypical chest pain after consumption of six energy drinks (1.5 liter containing 470 mg coffein) with vodka. On admission ECG showed marked QT/QTc prolongation (QT/QTc, 520/580 msec). Next day the QT/QTc returned to fully normal (QT/QTc, 360/430 msec). It was assumed that the patient had a silent long QT syndrome and that high dose of highly caffeinated energy drink triggered the (paradoxical) prolonged QT/QTc. The authors conclude that excessive energy drink intake with alcohol or during physical exercise should be avoided. PMID:26477618

  8. Questionable Exercises.

    ERIC Educational Resources Information Center

    Liemohn, Wendell; Haydu, Traci; Phillips, Dawn

    1999-01-01

    This publication presents general guidelines for exercise prescription that have an anatomical basis but also consider the exerciser's ability to do the exercise correctly. It reviews various common questionable exercises, explaining how some exercises, especially those designed for flexibility and muscle fitness, can cause harm. Safer…

  9. On the biomechanics of cycling. A study of joint and muscle load during exercise on the bicycle ergometer.

    PubMed

    Ericson, M

    1986-01-01

    The aim of the study was to quantify the load induced in the lower limb joints and muscles during exercise on a bicycle ergometer and to study how these loads changed with adjustments of the bicycle ergometer or cycling technique. The forces, load moments and muscular power output acting on and about the hip, knee and ankle joints during cycling were determined using cine-film, pedal force measurements and biomechanical calculations based upon static and dynamic mechanics. The muscular activity of eleven lower limb muscles was recorded and quantified using EMG. The load moments acting about the bilateral hip, knee and ankle joint axes were found to be generally lower than those induced during normal level walking. The varus and valgus load moments acting about the antero-posterior knee joint axis were approximately the same as those induced during walking. The tibio-femoral compressive joint force and the anteriorly directed tibio-femoral shear force mainly stressing the anterior cruciate ligament were low. The talocrural joint compressive force and achilles tendon tensile force were low compared to those in level walking. The magnitude of lower limb muscular activity during cycling approximated that obtained during walking, with three major exceptions. M. vastus medialis et lateralis were more activated during cycling than during walking, and tibialis anterior was less activated. The hip extensor muscles produced 27%, hip flexors 4%, knee extensors 39%, knee flexors 10% and ankle plantar flexors 20% of the total positive mechanical work. Of the four parameters studied (workload, pedalling rate, saddle height, pedal foot position) workload was the most important adjustment factor for change of joint load and muscular activity. An increased pedalling rate increased the muscular activity in most of the muscles investigated, generally without changing the joint load. Increased saddle height decreased the maximum flexing knee load moment, but did not significantly

  10. Blood flow-restricted exercise in space

    PubMed Central

    2012-01-01

    Prolonged exposure to microgravity results in chronic physiological adaptations including skeletal muscle atrophy, cardiovascular deconditioning, and bone demineralization. To attenuate the negative consequences of weightlessness during spaceflight missions, crewmembers perform moderate- to high-load resistance exercise in conjunction with aerobic (cycle and treadmill) exercise. Recent evidence from ground-based studies suggests that low-load blood flow-restricted (BFR) resistance exercise training can increase skeletal muscle size, strength, and endurance when performed in a variety of ambulatory populations. This training methodology couples a remarkably low exercise training load (approximately 20%–50% one repetition maximum (1RM)) with an inflated external cuff (width, ranging between approximately 30–90 mm; pressure, ranging between approximately 100–250 mmHg) that is placed around the exercising limb. BFR aerobic (walking and cycling) exercise training methods have also recently emerged in an attempt to enhance cardiovascular endurance and functional task performance while incorporating minimal exercise intensity. Although both forms of BFR exercise training have direct implications for individuals with sarcopenia and dynapenia, the application of BFR exercise training during exposure to microgravity to prevent deconditioning remains controversial. The aim of this review is to present an overview of BFR exercise training and discuss the potential usefulness of this method as an adjunct exercise countermeasure during prolonged spaceflight. The work will specifically emphasize ambulatory BFR exercise training adaptations, mechanisms, and safety and will provide directions for future research. PMID:23849078

  11. Fluid balance and exercise.

    PubMed

    Maughan, R J

    1992-10-01

    The rate of metabolic heat production during prolonged exercise may be increased to 15-20 times that at rest. Evaporation of sweat secreted onto the skin can effectively limit the rise in body temperature which would otherwise occur, but results in the loss of water and electrolytes from the body. Dehydration and an increased thermal load can accelerate the onset of fatigue during exercise. The available evidence supports the idea that ingestion of fluids during prolonged exercise can improve performance. Heart rate and rectal temperature will generally be lower, and plasma volume will be better maintained when fluids are given. There is, however, no general agreement on the optimum formulation nor on the frequency or volume of drinking that is most appropriate. In practice, the ideal solution will depend on a number of factors, including the duration and intensity of the exercise, the environmental conditions and the characteristics of the individual. The variation between individuals is, however, large and the optimum strategy can only be established by subjective experience. PMID:1483752

  12. Exercise-induced purpura.

    PubMed

    Ramelet, Albert-Adrien

    2004-01-01

    Exercise-induced purpura (EIP) occurs on the lower legs after unusual or major muscular activity, as in marathon runners or as after long walks, especially in the mountains in hot weather. In leisure walkers, patients are otherwise healthy females. There is no relation with chronic venous disorder. Erythematous, urticarial or purpuric plaques arise on the lower leg, usually sparing the skin compressed by socks. Symptoms include itch, pain and a burning sensation. Histopathology demonstrates leukocytoclastic vasculitis. The lesions fade after some days, with frequent relapses at further muscular exercises and may be prevented in some cases by compression, intake of venoactive drugs and local application of steroids. EIP is not uncommon, even if very few descriptions have yet been published. It appears to be consecutive to venous stasis induced by an acute failure of the muscle pump of the calf and thermoregulation decompensation, after a prolonged and unusual exercise, such as running or walking in hot weather. PMID:15178910

  13. Function of a large biarticular hip and knee extensor during walking and running in guinea fowl (Numida meleagris)

    PubMed Central

    Carr, Jennifer A.; Ellerby, David J.; Marsh, Richard L.

    2011-01-01

    SUMMARY Physiological and anatomical evidence suggests that in birds the iliotibialis lateralis pars postacetabularis (ILPO) is functionally important for running. Incorporating regional information, we estimated the mean sarcomere strain trajectory and electromyographic (EMG) amplitude of the ILPO during level and incline walking and running. Using these data and data in the literature of muscle energy use, we examined three hypotheses: (1) active lengthening will occur on the ascending limb of the length–tension curve to avoid potential damage caused by stretch on the descending limb; (2) the active strain cycle will shift to favor active shortening when the birds run uphill and shortening will occur on the plateau and shallow ascending limb of the length–tension curve; and (3) measures of EMG intensity will correlate with energy use when the mechanical function of the muscle is similar. Supporting the first hypothesis, we found that the mean sarcomere lengths at the end of active lengthening during level locomotion were smaller than the predicted length at the start of the plateau of the length–tension curve. Supporting the second hypothesis, the magnitude of active lengthening decreased with increasing slope, whereas active shortening increased. In evaluating the relationship between EMG amplitude and energy use (hypothesis 3), we found that although increases in EMG intensity with speed, slope and loading were positively correlated with muscle energy use, the quantitative relationships between these variables differed greatly under different conditions. The relative changes in EMG intensity and energy use by the muscle probably varied because of changes in the mechanical function of the muscle that altered the ratio of muscle energy use to active muscle volume. Considering the overall function of the cycle of active lengthening and shortening of the fascicles of the ILPO, we conclude that the function of active lengthening is unlikely to be energy conservation and may instead be related to promoting stability at the knee. The work required to lengthen the ILPO during stance is provided by co-contracting knee flexors. We suggest that this potentially energetically expensive co-contraction serves to stabilize the knee in early stance by increasing the mechanical impedance of the joint. PMID:21957104

  14. Sleep and exercise: a reciprocal issue?

    PubMed

    Chennaoui, Mounir; Arnal, Pierrick J; Sauvet, Fabien; Léger, Damien

    2015-04-01

    Sleep and exercise influence each other through complex, bilateral interactions that involve multiple physiological and psychological pathways. Physical activity is usually considered as beneficial in aiding sleep although this link may be subject to multiple moderating factors such as sex, age, fitness level, sleep quality and the characteristics of the exercise (intensity, duration, time of day, environment). It is therefore vital to improve knowledge in fundamental physiology in order to understand the benefits of exercise on the quantity and quality of sleep in healthy subjects and patients. Conversely, sleep disturbances could also impair a person's cognitive performance or their capacity for exercise and increase the risk of exercise-induced injuries either during extreme and/or prolonged exercise or during team sports. This review aims to describe the reciprocal fundamental physiological effects linking sleep and exercise in order to improve the pertinent use of exercise in sleep medicine and prevent sleep disorders in sportsmen. PMID:25127157

  15. Oxygen cost of dynamic or isometric exercise relative to recruited muscle mass

    PubMed Central

    Elder, Christopher P; Mahoney, Edward T; Black, Christopher D; Slade, Jill M; Dudley, Gary A

    2006-01-01

    Background Oxygen cost of different muscle actions may be influenced by different recruitment and rate coding strategies. The purpose of this study was to account for these strategies by comparing the oxygen cost of dynamic and isometric muscle actions relative to the muscle mass recruited via surface electrical stimulation of the knee extensors. Methods Comparisons of whole body pulmonary Δ V˙ MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaqabeGadaaakeaacuWGwbGvgaGaaaaa@2DEA@O2 were made in seven young healthy adults (1 female) during 3 minutes of dynamic or isometric knee extensions, both induced by surface electrical stimulation. Recruited mass was quantified in T2 weighted spin echo magnetic resonance images. Results The Δ V˙ MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaqabeGadaaakeaacuWGwbGvgaGaaaaa@2DEA@O2 for dynamic muscle actions, 242 ± 128 ml • min-1 (mean ± SD) was greater (p = 0.003) than that for isometric actions, 143 ± 99 ml • min-1. Recruited muscle mass was also greater (p = 0.004) for dynamic exercise, 0.716 ± 282 versus 0.483 ± 0.139 kg. The rate of oxygen consumption per unit of recruited muscle (V˙O2RM MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaqabeGadaaakeaacuqGwbGvgaGaaiabb+eapnaaBaaaleaacqaIYaGmdaahaaadbeqaaiabbkfasjabb2eanbaaaSqabaaaaa@32B0@) was similar in dynamic and isometric exercise (346 ± 162 versus 307 ± 198 ml • kg-1 • min-1; p = 0.352), but the V˙O2RM MathType@MTEF@5

  16. Troponin and exercise.

    PubMed

    Gresslien, T; Agewall, S

    2016-10-15

    Cardiac troponins are the preferred biomarkers in diagnostic of myocardial infarction, but these markers also can rise in response to exercise. Multiple studies have assessed troponins post-exercise, but the results have varied and there have been disagreements about the mechanism of troponin release. The aim of this paper was to review the literature, and to consider factors and mechanisms regarding exercise-induced increase of troponin. 145 studies were found after a search in pubmed and inclusion of additional articles found in the reference list of the first articles. Results showed that troponin rises in 0-100% of subjects after prolonged heavy exercise like marathon, but also after short-term and intermittent exercise like 30min of running and basketball. The variation can be due to factors like intensity, age, training experience, variation in sample size, blood sample timing and troponin assay. The pattern of troponin level post-exercise corresponds to release from the cytosolic compartment of cardiomyocytes. Increased membrane permeability might be caused by production of reactive oxygen species or alterations in calcium, pH, glucose/fat metabolism or in communication between integrins. Other suggested mechanisms are increased cardiovascular stress, inflammation, vasculitis, release of troponin degradation products in "blebs", dehydration, impaired renal clearance and expression of cardiac troponin in skeletal muscle. It can be concluded that both heavy and light exercise may cause elevated troponin, which have to be considered when patient are suspected to have a myocardial infarction. Several factors probably influence post-exercise levels of troponin, but the mechanism of release is most likely physiologic. PMID:27420587

  17. Exercise Prescription.

    ERIC Educational Resources Information Center

    Ribisl, Paul M.

    If exercise programs are to become effective in producing the desired results, then the correct exercise prescription must be applied. Four variables should be controlled in the prescription of exercise: (a) type of activity, (b) intensity, (c) duration, and (d) frequency. The long-term prescription of exercise involves the use of a (a) starter…

  18. Plasma atriopeptin response to prolonged cycling in humans.

    PubMed

    Perrault, H; Cantin, M; Thibault, G; Brisson, G R; Brisson, G; Beland, M

    1991-03-01

    The exercise-induced increase in plasma atriopeptin (ANP) has been related to exercise intensity. The independent effect of duration on the ANP response to dynamic exercise remains incompletely documented. The purpose of this study was to describe the time course of plasma ANP concentration during a 90-min cycling exercise protocol and to examine this in light of concurrent variations in plasma arginine vasopressin (AVP), aldosterone (ALD), and catecholamine (norepinephrine and epinephrine) concentrations as well as plasma renin activity (PRA). Seven male and four female healthy college students (23 +/- 2 yr) completed a prolonged exercise protocol on a cycle ergometer at an intensity of 67% of maximal O2 uptake. Venous blood was sampled through an indwelling catheter at rest, after 15, 30, 45, 60, and 90 min of exercise, and after 30 min of passive upright recovery. Results (means +/- SE) indicate an increase in ANP from rest (22 +/- 2.6 pg/ml) at 15 min of exercise (45.3 +/- 7.4 pg/ml) with a further increase at 30 min (59.4 +/- 9.8 pg/ml) and a leveling-off thereafter until completion of the exercise protocol (51.7 +/- 10.7 pg/ml). In plasma ALD and PRA, a significant increase was found from rest (ALD, 21.4 +/- 6.4 ng/dl), PRA, 2.5 +/- 0.5 ng.ml-1.h-1 after 30 min of cycling, which continued to increase until completion of the exercise (ALD 46.6 +/- 8.7 ng/dl, PRA 9.5 +/- 0.9 ng.ml-1.h-1.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1827790

  19. Dynamic asymmetry of phosphocreatine concentration and O2 uptake between the on- and off-transients of moderate- and high-intensity exercise in humans

    PubMed Central

    Rossiter, H B; Ward, S A; Kowalchuk, J M; Howe, F A; Griffiths, J R; Whipp, B J

    2002-01-01

    The on- and off-transient (i.e. phase II) responses of pulmonary oxygen uptake (V̇O2) to moderate-intensity exercise (i.e. below the lactate threshold, θL) in humans has been shown to conform to both mono-exponentiality and ‘on-off’ symmetry, consistent with a system manifesting linear control dynamics. However above θL the V̇O2 kinetics have been shown to be more complex: during high-intensity exercise neither mono-exponentiality nor ‘on-off’ symmetry have been shown to appropriately characterise the V̇O2 response. Muscle [phosphocreatine] ([PCr]) responses to exercise, however, have been proposed to be dynamically linear with respect to work rate, and to demonstrate ‘on-off’ symmetry at all work intenisties. We were therefore interested in examining the kinetic characteristics of the V̇O2 and [PCr] responses to moderate- and high-intensity knee-extensor exercise in order to improve our understanding of the factors involved in the putative phosphate-linked control of muscle oxygen consumption. We estimated the dynamics of intramuscular [PCr] simultaneously with those of V̇O2 in nine healthy males who performed repeated bouts of both moderate- and high-intensity square-wave, knee-extension exercise for 6 min, inside a whole-body magnetic resonance spectroscopy (MRS) system. A transmit-receive surface coil placed under the right quadriceps muscle allowed estimation of intramuscular [PCr]; V̇O2 was measured breath-by-breath using a custom-designed turbine and a mass spectrometer system. For moderate exercise, the kinetics were well described by a simple mono-exponential function (following a short cardiodynamic phase for V̇O2,), with time constants (τ) averaging: τV̇O2,on 35 ± 14 s (± s.d.), τ[PCr]on 33 ± 12 s, τV̇O2,off 50 ± 13 s and τ[PCr]off 51 ± 13 s. The kinetics for both V̇O2 and [PCr] were more complex for high-intensity exercise. The fundamental phase expressing average τ values of τV̇O2,on 39 ± 4 s, τ[PCr]on 38 ± 11 s

  20. Compulsive Exercise

    MedlinePlus

    ... of power to help them cope with low self-esteem. Although compulsive exercising doesn't have to accompany ... a downward spiral of negative thinking and low self-esteem. continue Why Is Exercising Too Much a Bad ...

  1. Exercise & Sleep

    MedlinePlus

    ... on. Feature: Back to School, the Healthy Way Exercise & Sleep Past Issues / Fall 2012 Table of Contents ... helps kids. Photo: iStock 6 "Bests" About Kids' Exercise At least one hour of physical activity a ...

  2. Physiology Of Prolonged Bed Rest

    NASA Technical Reports Server (NTRS)

    Greenleaf, John E.

    1991-01-01

    Report describes physiological effects of prolonged bed rest. Rest for periods of 24 hours or longer deconditions body to some extent; healing proceeds simultaneously with deconditioning. Report provides details on shifts in fluid electrolytes and loss of lean body mass, which comprises everything in body besides fat - that is, water, muscle, and bone. Based on published research.

  3. Measures that Prolong Work Life.

    ERIC Educational Resources Information Center

    Nusberg, Charlotte

    1986-01-01

    Discusses measures that have been adopted by France, Great Britain, Sweden, the Netherlands, the United States, and Japan to prolong the work life of older workers. Measures include job transfer and exemption, dismissal protection, retirement policies, and reintegration of unemployed older workers. (JOW)

  4. Prolonged abulia following putaminal hemorrhage.

    PubMed

    Nagaratnam, N; Fanella, S; Gopinath, S; Goodwin, A

    2001-01-01

    Abulia, akinetic mutism, and other conditions causing reduced activity and slowness are a continuum of severity of behavior. Unilateral lesions usually cause transient symptoms. This article describes a patient with prolonged abulia lasting 12 weeks after aspontaneous left putaminal hemorrhage. He developed seizures that could be a contributing factor. The pathophysiologic mechanisms are discussed. PMID:17903806

  5. Caffeine and exercise.

    PubMed

    Paluska, Scott A

    2003-08-01

    Caffeine is the most commonly consumed drug in the world, and athletes frequently use it as an ergogenic aid. It improves performance and endurance during prolonged, exhaustive exercise. To a lesser degree it also enhances short-term, high-intensity athletic performance. Caffeine improves concentration, reduces fatigue, and enhances alertness. Habitual intake does not diminish caffeine's ergogenic properties. Several mechanisms have been proposed to explain the physiologic effects of caffeine, but adenosine receptor antagonism most likely accounts for the primary mode of action. It is relatively safe and has no known negative performance effects, nor does it cause significant dehydration or electrolyte imbalance during exercise. Routine caffeine consumption may cause tolerance or dependence, and abrupt discontinuation produces irritability, mood shifts, headache, drowsiness, or fatigue. Major sport governing bodies ban excessive use of caffeine, but current monitoring techniques are inadequate, and ethical dilemmas persist regarding caffeine intake by athletes. PMID:12834577

  6. Morning Exercise

    ERIC Educational Resources Information Center

    Schmitt, Natalie Crohn

    2006-01-01

    In this article, Natalie Schmitt recalls her teaching experiences with morning exercise programs, beginning with her first teaching job as assistant Morning Exercise teacher at the Francis W. Parker School in Chicago. In the Morning Exercises, students were encouraged to employ all means of expression: speaking, drawing, dancing, singing, acting.…

  7. Propofol-associated QTc prolongation

    PubMed Central

    Scalese, Michael J.; Herring, Holly R.; Rathbun, R. Chris; Skrepnek, Grant H.; Ripley, Toni L.

    2016-01-01

    Objectives: Propofol is a preferred agent for sedation in patients in the intensive care unit (ICU) due, in part, to its established safety profile. Despite this, recent case reports have suggested a potential for prolongation of the corrected QT interval (QTc) in ICU patients receiving propofol, though limited empirical work has been conducted to evaluate this association. As such, the purpose of this study was to assess the relationship between propofol infusion and QTc prolongation in a historical cohort of ICU patients. Methods: A single-center, historical, observational, pre-post cohort analysis of medical records from admitted patients ⩾18 years old with cardiovascular disease was conducted, involving cases who received propofol infusion for ⩾3 hours with sequential electrocardiogram monitoring from 2006 to 2012. A multivariable, generalized linear model regression was employed to assess the primary outcome of on-propofol QTc interval (QTc2), controlling for various demographic and clinical factors. Results: A total of 96 patients met inclusion criteria, averaging 56.1 ± 14.1 years of age and 86.1 ± 25.0 kg, with 37.5% being female. A mean prolongation in QTc interval of 30.4 ± 55.5 ms (p < 0.001) was observed during the propofol infusion, with 43.8% of cases exhibiting an on-infusion QTc2 of ⩾ 500 ms. Regression analyses suggested that prolongation in on-propofol QTc was independently associated with baseline QTc interval and amiodarone use, while weight as inversely associated with QTc2 (p < 0.05). Conclusion: This historical cohort analysis of adult ICU patients receiving propofol suggests that on-infusion QTc prolongation was associated with increasing baseline QTc interval and with amiodarone use. Further research is needed to evaluate the clinical significance and cause-and-effect relationship between potential QTc changes and propofol use in the ICU. PMID:27298717

  8. Prolonged stimulus exposure reveals prolonged neurobehavioral response patterns.

    PubMed

    Johnson, Brett A; Woo, Cynthia C; Zeng, Yu; Xu, Zhe; Hingco, Edna E; Ong, Joan; Leon, Michael

    2010-05-15

    Although it has been shown repeatedly that minimum response times in sensory systems can be quite short, organisms more often continue to respond to sensory stimuli over considerably longer periods of time. The continuing response to sensory stimulation may be a more realistic assessment of natural sensory responses, so we determined for how long a stimulus would evoke a response in naïve, freely moving animals. Specifically, we determined for how long such rats responded to odorants during continuous passive exposures by monitoring their sniffing with whole-body plethysmography. We found that naïve rats continue to sniff odorants vigorously for up to 3 minutes, much longer than what has been reported for highly trained, highly motivated rats. Patterns of 2-deoxyglucose (2-DG) uptake in the glomerular layer of the rat olfactory bulb also were seen after only 1-5 minutes of odorant exposure, overlapping with the period of increased respiration to odorants. Moreover, these 2-DG uptake patterns closely resembled the patterns that emerge from prolonged odorant exposures, suggesting that activity mapping over prolonged periods can identify areas of activity that are present when rats are still attending and responding to odorant stimuli. Given these findings, it seems important to consider the possibility that prolonged exposure to other sensory stimuli will reveal more realistic neural response patterns. PMID:20232477

  9. Brain glycogen supercompensation following exhaustive exercise.

    PubMed

    Matsui, Takashi; Ishikawa, Taro; Ito, Hitoshi; Okamoto, Masahiro; Inoue, Koshiro; Lee, Min-Chul; Fujikawa, Takahiko; Ichitani, Yukio; Kawanaka, Kentaro; Soya, Hideaki

    2012-02-01

    Brain glycogen localized in astrocytes, a critical energy source for neurons, decreases during prolonged exhaustive exercise with hypoglycaemia. However, it is uncertain whether exhaustive exercise induces glycogen supercompensation in the brain as in skeletal muscle. To explore this question, we exercised adult male rats to exhaustion at moderate intensity (20 m min(-1)) by treadmill, and quantified glycogen levels in several brain loci and skeletal muscles using a high-power (10 kW) microwave irradiation method as a gold standard. Skeletal muscle glycogen was depleted by 82-90% with exhaustive exercise, and supercompensated by 43-46% at 24 h after exercise. Brain glycogen levels decreased by 50-64% with exhaustive exercise, and supercompensated by 29-63% (whole brain 46%, cortex 60%, hippocampus 33%, hypothalamus 29%, cerebellum 63% and brainstem 49%) at 6 h after exercise. The brain glycogen supercompensation rates after exercise positively correlated with their decrease rates during exercise. We also observed that cortical and hippocampal glycogen supercompensation were sustained until 24 h after exercise (long-lasting supercompensation), and their basal glycogen levels increased with 4 weeks of exercise training (60 min day(-1) at 20 m min(-1)). These results support the hypothesis that, like the effect in skeletal muscles, glycogen supercompensation also occurs in the brain following exhaustive exercise, and the extent of supercompensation is dependent on that of glycogen decrease during exercise across brain regions. However, supercompensation in the brain preceded that of skeletal muscles. Further, the long-lasting supercompensation of the cortex and hippocampus is probably a prerequisite for their training adaptation (increased basal levels), probably to meet the increased energy demands of the brain in exercising animals. PMID:22063629

  10. [Recovery after prolonged muscular work].

    PubMed

    Viru, A A; Varrik, E V; Eépik, V E; Smirnova, T A; Viru, M A

    1985-11-01

    Increased protein, tyrosine and 3-methylhistidine content has been observed in the skeletal muscles of rats 2-24 h after a 10-hour swimming period. This was accompanied by a significant rise in 3-methylhistidine excretion during the second day of the recovery period. Such combination of alterations suggests simultaneous augmentation of both protein synthesis and decomposition in the muscles after active work. The start of the alterations coincides with post-exercise increase of blood corticosterone level (2-6 h after work) and with the achievement of glycogen supercompensation in the liver and muscles. PMID:4063500

  11. Moving frames and prolongation algebras

    NASA Technical Reports Server (NTRS)

    Estabrook, F. B.

    1982-01-01

    Differential ideals generated by sets of 2-forms which can be written with constant coefficients in a canonical basis of 1-forms are considered. By setting up a Cartan-Ehresmann connection, in a fiber bundle over a base space in which the 2-forms live, one finds an incomplete Lie algebra of vector fields in the fields in the fibers. Conversely, given this algebra (a prolongation algebra), one can derive the differential ideal. The two constructs are thus dual, and analysis of either derives properties of both. Such systems arise in the classical differential geometry of moving frames. Examples of this are discussed, together with examples arising more recently: the Korteweg-de Vries and Harrison-Ernst systems.

  12. Healthy Exercise

    PubMed Central

    Oberman, Albert

    1984-01-01

    Persons at any age can substantially improve their fitness for work and play through appropriate exercise training. Considerable evidence indicates that physical activity is valuable for weight control, modifying lipids and improving carbohydrate tolerance. Less rigorous scientific data are available for associated long-term blood pressure and psychological changes with habitual exercise. Strenuous physical activity most likely reduces the incidence of coronary heart disease and the detrimental impact of certain chronic diseases on health. Adverse effects may result from a training program, but the major concern is the susceptibility to cardiovascular events during and immediately after exertion. To achieve optimal benefits with minimal risk, exercise must be carefully prescribed within the context of overall health and training objectives. Taken altogether, a distinct rationale exists for regular vigorous exercise as an integral part of a personal health maintenance program. PMID:6395501

  13. Exercise Habit

    MedlinePlus

    ... lungs. Examples of aerobic exercise include walking, hiking, running, aerobic dance, biking, rowing, swimming, and cross-country ... Brisk walking can burn as many calories as running, but it is less likely to cause injuries ...

  14. Compulsive Exercise

    MedlinePlus

    ... diseases. Many teens who play sports have higher self-esteem than their less active pals, and exercise can ... may have a distorted body image and low self-esteem. They may see themselves as overweight or out ...

  15. The Association between Job-Related Psychosocial Factors and Prolonged Fatigue among Industrial Employees in Taiwan

    PubMed Central

    Tang, Feng-Cheng; Li, Ren-Hau; Huang, Shu-Ling

    2016-01-01

    Background and Objectives Prolonged fatigue is common among employees, but the relationship between prolonged fatigue and job-related psychosocial factors is seldom studied. This study aimed (1) to assess the individual relations of physical condition, psychological condition, and job-related psychosocial factors to prolonged fatigue among employees, and (2) to clarify the associations between job-related psychosocial factors and prolonged fatigue using hierarchical regression when demographic characteristics, physical condition, and psychological condition were controlled. Methods A cross-sectional study was employed. A questionnaire was used to obtain information pertaining to demographic characteristics, physical condition (perceived physical health and exercise routine), psychological condition (perceived mental health and psychological distress), job-related psychosocial factors (job demand, job control, and workplace social support), and prolonged fatigue. Results A total of 3,109 employees were recruited. Using multiple regression with controlled demographic characteristics, psychological condition explained 52.0% of the variance in prolonged fatigue. Physical condition and job-related psychosocial factors had an adjusted R2 of 0.370 and 0.251, respectively. Hierarchical multiple regression revealed that, among job-related psychosocial factors, job demand and job control showed significant associations with fatigue. Conclusion Our findings highlight the role of job demand and job control, in addition to the role of perceived physical health, perceived mental health, and psychological distress, in workers’ prolonged fatigue. However, more research is required to verify the causation among all the variables. PMID:26930064

  16. Exercise response

    NASA Technical Reports Server (NTRS)

    Rummel, J. A.; Sawin, C. F.; Michel, E. L.

    1975-01-01

    The bicycle ergometer and a graded stress protocol were used to conduct exercise stress tests for the Apollo project. The graded exercise tests permitted a progressive evaluation of physiological control system response and provided a better understanding of safe stress limits; heart rate was used for determining stress levels. During each test, workload, heart rate, blood pressure, and respiratory gas exchange (oxygen consumption, carbon dioxide production, and minute volume) measurements were made. The results are presented and discussed.

  17. Exercise, nutrition and immune function.

    PubMed

    Gleeson, Michael; Nieman, David C; Pedersen, Bente K

    2004-01-01

    Strenuous bouts of prolonged exercise and heavy training are associated with depressed immune cell function. Furthermore, inadequate or inappropriate nutrition can compound the negative influence of heavy exertion on immunocompetence. Dietary deficiencies of protein and specific micronutrients have long been associated with immune dysfunction. An adequate intake of iron, zinc and vitamins A, E, B6 and B12 is particularly important for the maintenance of immune function, but excess intakes of some micronutrients can also impair immune function and have other adverse effects on health. Immune system depression has also been associated with an excess intake of fat. To maintain immune function, athletes should eat a well-balanced diet sufficient to meet their energy requirements. An athlete exercising in a carbohydrate-depleted state experiences larger increases in circulating stress hormones and a greater perturbation of several immune function indices. Conversely, consuming 30-60 g carbohydrate x h(-1) during sustained intensive exercise attenuates rises in stress hormones such as cortisol and appears to limit the degree of exercise-induced immune depression. Convincing evidence that so-called 'immune-boosting' supplements, including high doses of antioxidant vitamins, glutamine, zinc, probiotics and Echinacea, prevent exercise-induced immune impairment is currently lacking. PMID:14971437

  18. Physiology of prolonged bed rest

    NASA Technical Reports Server (NTRS)

    Greenleaf, J. E.

    1988-01-01

    Bed rest has been a normal procedure used by physicians for centuries in the treatment of injury and disease. Exposure of patients to prolonged bed rest in the horizontal position induces adaptive deconditioning responses. While deconditioning responses are appropriate for patients or test subjects in the horizontal position, they usually result in adverse physiological responses (fainting, muscular weakness) when the patient assume the upright posture. These deconditioning responses result from reduction in hydrostatic pressure within the cardiovascular system, virtual elimination of longitudinal pressure on the long bones, some decrease in total body metabolism, changes in diet, and perhaps psychological impact from the different environment. Almost every system in the body is affected. An early stimulus is the cephalic shift of fluid from the legs which increases atrial pressure and induces compensatory responses for fluid and electrolyte redistribution. Without countermeasures, deterioration in strength and muscle function occurs within 1 wk while increased calcium loss may continue for months. Research should also focus on drug and carbohydrate metabolism.

  19. Exercise regulation of intestinal tight junction proteins.

    PubMed

    Zuhl, Micah; Schneider, Suzanne; Lanphere, Katherine; Conn, Carole; Dokladny, Karol; Moseley, Pope

    2014-06-01

    Gastrointestinal distress, such as diarrhoea, cramping, vomiting, nausea and gastric pain are common among athletes during training and competition. The mechanisms that cause these symptoms are not fully understood. The stress of heat and oxidative damage during exercise causes disruption to intestinal epithelial cell tight junction proteins resulting in increased permeability to luminal endotoxins. The endotoxin moves into the blood stream leading to a systemic immune response. Tight junction integrity is altered by the phosphoylation state of the proteins occludin and claudins, and may be regulated by the type of exercise performed. Prolonged exercise and high-intensity exercise lead to an increase in key phosphorylation enzymes that ultimately cause tight junction dysfunction, but the mechanisms are different. The purpose of this review is to (1) explain the function and physiology of tight junction regulation, (2) discuss the effects of prolonged and high-intensity exercise on tight junction permeability leading to gastrointestinal distress and (3) review agents that may increase or decrease tight junction integrity during exercise. PMID:23134759

  20. Metabolic response to exercise.

    PubMed

    De Feo, P; Di Loreto, C; Lucidi, P; Murdolo, G; Parlanti, N; De Cicco, A; Piccioni, F; Santeusanio, F

    2003-09-01

    At the beginning, the survival of humans was strictly related to their physical capacity. There was the need to resist predators and to provide food and water for life. Achieving these goals required a prompt and efficient energy system capable of sustaining either high intensity or maintaining prolonged physical activity. Energy for skeletal muscle contraction is supplied by anaerobic and aerobic metabolic pathways. The former can allow short bursts of intense physical activity (60-90 sec) and utilizes as energetic source the phosphocreatine shuttle and anaerobic glycolysis. The aerobic system is the most efficient ATP source for skeletal muscle. The oxidative phosporylation of carbohydrates, fats and, to a minor extent, proteins, can sustain physical activity for many hours. Carbohydrates are the most efficient fuel for working muscle and their contribution to total fuel oxidation is positively related to the intensity of exercise. The first metabolic pathways of carbohydrate metabolism to be involved are skeletal muscle glycogenolysis and glycolysis. Later circulating glucose, formed through activated gluconeogenesis, becomes an important energetic source. Among glucose metabolites, lactate plays a primary role as either direct or indirect (gluconeogenesis) energy source for contracting skeletal muscle. Fat oxidation plays a primary role during either low-moderate intensity exercise or protracted physical activity (over 90-120 min). Severe muscle glycogen depletion results in increased rates of muscle proteolysis and branched chain amino acid oxidation. Endurance training ameliorates physical performance by improving cardiopulmonary efficiency and optimizing skeletal muscle supply and oxidation of substrates. PMID:14964437

  1. Daily exercise routines

    NASA Technical Reports Server (NTRS)

    Anderson, Patrick L.; Amoroso, Michael T.

    1990-01-01

    Viewgraphs on daily exercise routines are presented. Topics covered include: daily exercise and periodic stress testings; exercise equipment; physiological monitors; exercise protocols; physiological levels; equipment control; control systems; and fuzzy logic control.

  2. Exercise and age

    MedlinePlus

    Age and exercise ... It is never too late to start exercising. Exercise has benefits at any age. Don't worry ... as you age. The right kind of regular exercise can also reduce your risk of heart disease, ...

  3. Exercise and Posture

    MedlinePlus

    ... Info For Teens Message Boards & Forums Donate Shop Exercise & Posture About Spondylitis / Exercise & Posture Overview For The ... Diet Blood Work and Spondylitis Spondylitis Awareness Month Exercise Exercise is an integral part of any spondylitis ...

  4. Exercise-Induced Bronchoconstriction

    MedlinePlus

    ... Conditions & Treatments ▸ Conditions Dictionary ▸ Exercise-Induced Bronchoconstriction Share | Exercise-Induced Bronchoconstriction (EIB) « Back to A to Z Listing Exercise-Induced Bronchoconstriction, (EIB), often known as exercise-induced ...

  5. Diabetes and exercise

    MedlinePlus

    ... medlineplus.gov/ency/patientinstructions/000083.htm Diabetes and exercise To use the sharing features on this page, ... not exercising at all. Your Blood Sugar and Exercise Check your blood sugar before you exercise. Also, ...

  6. Exercise at Home

    MedlinePlus

    ... Divisions Home Health Insights Exercise Exercise at Home Exercise at Home Make an Appointment Ask a Question ... with the movement and contact your provider. Posture Exercises Better posture means better breathing and movement. Axial ...

  7. Exercise-induced asthma

    MedlinePlus

    Wheezing - exercise-induced; Reactive airway disease - exercise ... Having asthma symptoms when you exercise does not mean you cannot or should not exercise. But be aware of your EIA triggers. Cold or dry air may ...

  8. Exercise apparatus

    NASA Technical Reports Server (NTRS)

    Schaffner, Grant (Inventor); Bentley, Jason R. (Inventor); Loehr, James A. (Inventor); Gundo, Daniel P. (Inventor)

    2006-01-01

    An apparatus and method for exercising whereby the user is supported by various mechanisms in such as way that the user's shoulder area is free to translate and rotate; the user's pelvic area is free to translate and rotate; or in any combination.

  9. Budget Exercise.

    ERIC Educational Resources Information Center

    Clowes, Darrel A.

    Following a discussion of the factors to be considered in constructing feasible college budgets, an exercise in budget development is presented involving a hypothetical community college with 2,500 full-time equivalent (FTE) students, 500 in developmental education, 750 each in transfer and technical programs, and 500 undecided. Exercise…

  10. Time Course of Central and Peripheral Alterations after Isometric Neuromuscular Electrical Stimulation-Induced Muscle Damage

    PubMed Central

    Fouré, Alexandre; Nosaka, Kazunori; Wegrzyk, Jennifer; Duhamel, Guillaume; Le Troter, Arnaud; Boudinet, Hélène; Mattei, Jean-Pierre; Vilmen, Christophe; Jubeau, Marc; Bendahan, David; Gondin, Julien

    2014-01-01

    Isometric contractions induced by neuromuscular electrostimulation (NMES) have been shown to result in a prolonged force decrease but the time course of the potential central and peripheral factors have never been investigated. This study examined the specific time course of central and peripheral factors after isometric NMES-induced muscle damage. Twenty-five young healthy men were subjected to an NMES exercise consisting of 40 contractions for both legs. Changes in maximal voluntary contraction force of the knee extensors (MVC), peak evoked force during double stimulations at 10 Hz (Db10) and 100 Hz (Db100), its ratio (10∶100), voluntary activation, muscle soreness and plasma creatine kinase activity were assessed before, immediately after and throughout four days after NMES session. Changes in knee extensors volume and T2 relaxation time were also assessed at two (D2) and four (D4) days post-exercise. MVC decreased by 29% immediately after NMES session and was still 19% lower than the baseline value at D4. The decrease in Db10 was higher than in Db100 immediately and one day post-exercise resulting in a decrease (−12%) in the 10∶100 ratio. On the contrary, voluntary activation significantly decreased at D2 (−5%) and was still depressed at D4 (−5%). Muscle soreness and plasma creatine kinase activity increased after NMES and peaked at D2 and D4, respectively. T2 was also increased at D2 (6%) and D4 (9%). Additionally, changes in MVC and peripheral factors (e.g., Db100) were correlated on the full recovery period, while a significant correlation was found between changes in MVC and VA only from D2 to D4. The decrease in MVC recorded immediately after the NMES session was mainly due to peripheral changes while both central and peripheral contributions were involved in the prolonged force reduction. Interestingly, the chronological events differ from what has been reported so far for voluntary exercise-induced muscle damage. PMID:25215511

  11. Circadian, endocrine, and metabolic effects of prolonged bedrest: Two 56-day bedrest studies

    NASA Technical Reports Server (NTRS)

    Vernikos-Danellis, J.; Winget, C. M.; Leach, C. S.; Rambaut, P. C.

    1974-01-01

    Two bedrest studies of 56 days each have been conducted to evaluate the effects of prolonged bedrest on circadian synchrony and endocrine and metabolic function. Measurements included the pituitary-adrenal, thyroid, parathyroid, insulin-glucose-growth hormones, catecholamine excretion, body temperature, and heart rate. The results indicated that a rigorous regimen of exercise did not prevent the endocrine and metabolic effects of prolonged bedrest. Changes in circadian, endocrine, and metabolic functions in bedrest appear to be due to changes in hydrostatic pressure and lack of postural cues rather than to inactivity, confinement, or the bleeding schedule. Prolonged bedrest, particularly beyond 24 days, resulted in rhythm desynchronization in spite of well regulated light/dark cycles, temperature, humidity, activity, and meal times and meal composition and in increased lability of all endocrine parameter measured. It also resulted in an apparent insensitivity of the glucose response to insulin, of cortisol secretion to ACTH, and of growth hormone secretion to hypoglycemia.

  12. Considerations for an exercise prescription

    NASA Technical Reports Server (NTRS)

    Convertino, Victor A.

    1989-01-01

    A number of past and most recent research findings that describe some of the physiological responses to exercise in man and their relationship with exposure to various gravitational environments are discussed. Most of the data pertain to adaptations of the cardiovascular and body fluid systems. It should be kept in mind that the data from studies on microgravity simulation in man include exposures of relatively short duration (5 hours to 14 days). However, it is argued that the results may provide important guidelines for the consideration of many variables which are pertinent to the development of exercise prescription for long-duration space flight. The following considerations for exercise prescriptions during long-duration space flight are noted: (1) Relatively high aerobic fitness and strength, especially of the upper body musculature, should be a criterion for selection of astronauts who will be involved in EVA, since endurance and strength appear to be predominant characteristics for work performance. (2) Some degree of upper body strength will probably be required for effective performance of EVA. However, the endurance and strength required by the upper body for EVA can probably be obtained through preflight exercise prescription which involves swimming. (3) Although some degree of arm exercise may be required to maintain preflight endurance and strength, researchers propose that regular EVA will probably be sufficient to maintain the endurance and strength required to effectively perform work tasks during space flight. (4) A minimum of one maximal aerobic exercise every 7 to 10 days during space flight may be all that is necessary for maintenance of normal cardiovascular responsiveness and replacement of body fluids for reentry following prolonged space flight. (5) The possible reduction in the amount of exercise required for maintenance of cardiovascular system and body fluids in combination with the use of electromyostimulation (EMS) or methods other

  13. Stigma Prolongs Global HIV Epidemic Among Gays

    MedlinePlus

    ... gov/medlineplus/news/fullstory_159757.html Stigma Prolongs Global HIV Epidemic Among Gays High-risk men still ... some countries will repeal anti-gay laws. "The global epidemic of HIV in gay men is ongoing ...

  14. Prolonged partial epilepsy: a case report

    SciTech Connect

    Wilson, M.A.

    1980-11-01

    The case study of a patient with prolonged partial epilepsy is presented. There was a discrepancy between the extent of the abnormality seen on the radionuclide angiogram and that seen on the static brain scan.

  15. Metabolic control of hepatic gluconeogenesis during exercise.

    PubMed Central

    Dohm, G L; Newsholme, E A

    1983-01-01

    Prolonged exercise increased the concentrations of the hexose phosphates and phosphoenolpyruvate and depressed those of fructose 1,6-bisphosphate, triose phosphates and pyruvate in the liver of the rat. Since exercise increases gluconeogenic flux, these changes in metabolite concentrations suggest that metabolic control is exerted, at least, at the fructose 6-phosphate/fructose 1,6-bisphosphate and phosphoenolpyruvate/pyruvate substrate cycles. Exercise increased the maximal activities of glucose 6-phosphatase, fructose 1,6-bisphosphatase, pyruvate kinase and pyruvate carboxylase in the liver, but there were no changes in those of glucokinase, 6-phosphofructokinase and phosphoenolpyruvate carboxykinase. Exercise changed the concentrations of several allosteric effectors of the glycolytic or gluconeogenic enzymes in liver; the concentrations of acetyl-CoA, ADP and AMP were increased, whereas those of ATP, fructose 1,6-bisphosphate and fructose 2,6-bisphosphate were decreased. The effect of exercise on the phosphorylation-dephosphorylation state of pyruvate kinase was investigated by measuring the activities under conditions of saturating and subsaturating concentrations of substrate. The submaximal activity of pyruvate kinase (0.5 mM-phosphoenolpyruvate), expressed as percentage of Vmax., decreased in the exercised animals to less than half that found in the controls. These changes suggest that hepatic pyruvate kinase is less active during exercise, possibly owing to phosphorylation of the enzyme, and this may play a role in increasing the rate of gluconeogenesis. PMID:6224482

  16. Neurophysiological effects of exercise in the heat.

    PubMed

    Roelands, B; De Pauw, K; Meeusen, R

    2015-06-01

    Fatigue during prolonged exercise is a multifactorial phenomenon. The complex interplay between factors originating from both the periphery and the brain will determine the onset of fatigue. In recent years, electrophysiological and imaging tools have been fine-tuned, allowing for an improved understanding of what happens in the brain. In the first part of the review, we present literature that studied the changes in electrocortical activity during and after exercise in normal and high ambient temperature. In general, exercise in a thermo-neutral environment or at light to moderate intensity increases the activity in the β frequency range, while exercising at high intensity or in the heat reduces β activity. In the second part, we review literature that manipulated brain neurotransmission, through either pharmacological or nutritional means, during exercise in the heat. The dominant outcomes were that manipulations changing brain dopamine concentration have the potential to delay fatigue, while the manipulation of serotonin had no effect and noradrenaline reuptake inhibition was detrimental for performance in the heat. Research on the effects of neurotransmitter manipulations on brain activity during or after exercise is scarce. The combination of brain imaging techniques with electrophysiological measures presents one of the major future challenges in exercise physiology/neurophysiology. PMID:25943657

  17. Exercise Prescriptions to Prevent Musculoskeletal Disorders in Dentists

    PubMed Central

    Kumar, Dodda Kiran; Mohan, Sreevalli; Begum, Mohammadi; Prasad, Bhanu; Prasad, Eswar Ravi Vara

    2014-01-01

    Since the number of dental patients is increasing day by day dentists are forced to spend longer times in dental chairs. This is increasing the prevalence of musculoskeletal disorders in dentists. This article reviews the mechanisms causing musculoskeletal disorders among dentists and also covers the exercises that can be done to prevent them. Exercises that increase the fitness of a dentist are divided into aerobic exercises – concentrating on total body fitness, stretching exercises – that concentrate on the muscles that tend to tighten in prolonged dental postures and strengthening exercises – that concentrate on the muscles that are opposite to the tight muscles. These exercises are made simple and of minimal intensity so that a dentist can practice them independently. PMID:25177661

  18. Exercise prescriptions to prevent musculoskeletal disorders in dentists.

    PubMed

    Kumar, Dodda Kiran; Rathan, Neelima; Mohan, Sreevalli; Begum, Mohammadi; Prasad, Bhanu; Prasad, Eswar Ravi Vara

    2014-07-01

    Since the number of dental patients is increasing day by day dentists are forced to spend longer times in dental chairs. This is increasing the prevalence of musculoskeletal disorders in dentists. This article reviews the mechanisms causing musculoskeletal disorders among dentists and also covers the exercises that can be done to prevent them. Exercises that increase the fitness of a dentist are divided into aerobic exercises - concentrating on total body fitness, stretching exercises - that concentrate on the muscles that tend to tighten in prolonged dental postures and strengthening exercises - that concentrate on the muscles that are opposite to the tight muscles. These exercises are made simple and of minimal intensity so that a dentist can practice them independently. PMID:25177661

  19. Exercise During Pregnancy: Current State of the Art

    PubMed Central

    Shangold, Mona M.

    1989-01-01

    Women should be encouraged to become fit before they become pregnant. During pregnancy, those who were accustomed to aerobic exercise before pregnancy can probably continue their sports involvement throughout pregnancy, at the same perceived level of exertion. Weight training and calisthenics are advisable during pregnancy, even for those who never practised them before. Pregnant women should avoid high intensity, prolonged duration, hyperthermia, dehydration, abdominal trauma, and low oxygen availability in exercise. PMID:21248873

  20. Orthostasis: exercise and exercise training

    NASA Technical Reports Server (NTRS)

    Geelen, G.; Greenleaf, J. E.

    1993-01-01

    There are two major problems here that are not independent. One is the more practically oriented problem of determining the effect of various modes of exercise training on gravitational tolerances, i.e., the point of syncope (unconsciousness) usually estimated from the time of appearance of presyncopal signs and symptoms. The other is more theoretical and concerns the mechanism of blood pressure failure that results in syncope. In many experimental designs these two problems or purposes have been intermingled, with equivocal results.

  1. Exercise and Compulsive Behavior.

    ERIC Educational Resources Information Center

    Polivy, Janet; Clendenen, Vanessa

    Although reports on the positive effects of fitness and exercise predominate in the exercise literature, some researchers describe frequent exercise as compulsive or addictive behavior. This paper addresses these "negative addictions" of exercise. As early as 1970, researchers recognized the addictive qualities of exercise. Short-term studies on…

  2. Effects of Lumbosacral Manipulation on Isokinetic Strength of the Knee Extensors and Flexors in Healthy Subjects: A Randomized, Controlled, Single-Blind Crossover Trial

    PubMed Central

    Sanders, Grant D.; Nitz, Arthur J.; Abel, Mark G.; Symons, T. Brock; Shapiro, Robert; Black, W. Scott; Yates, James W.

    2015-01-01

    Objective The purpose of this study was to investigate the effect of manual manipulations targeting the lumbar spine and/or sacroiliac joint on concentric knee extension and flexion forces. Torque production was measured during isometric and isokinetic contractions. Methods This was a randomized, controlled, single-blind crossover design with 21 asymptomatic, college-aged subjects who had never received spinal manipulation. During 2 separate sessions, subjects’ peak torques were recorded while performing maximal voluntary contractions on an isokinetic dynamometer. Isometric knee extension and flexion were recorded at 60° of knee flexion, in addition to isokinetic measurements obtained at 60°/s and 180°/s. Baseline measurements were acquired before either treatment form of lumbosacral manipulation or sham manipulation, followed by identical peak torque measurements within 5 and 20 minutes posttreatment. Data were analyzed with a repeated measures analysis of variance. Results A statistically significant difference did not occur between the effects of lumbosacral manipulation or the sham manipulation in the percentage changes of knee extension and flexion peak torques at 5 and 20 minutes posttreatment. Similar, nonsignificant results were observed in the overall percentage changes of isometric contractions (spinal manipulation 4.0 ± 9.5 vs sham 1.2 ± 6.3, P = .067), isokinetic contractions at 60°/s (spinal manipulation − 4.0 ± 14.2 vs sham − 0.3 ± 8.2, P = .34), and isokinetic contractions at 180°/s (spinal manipulation − 1.4 ± 13.9 vs sham − 5.5 ± 20.0, P = .18). Conclusion The results of the current study suggest that spinal manipulation does not yield an immediate strength-enhancing effect about the knee in healthy, college-aged subjects when measured with isokinetic dynamometry. PMID:26793035

  3. The role of exercise in the rehabilitation of patients with severe burns

    PubMed Central

    Porter, Craig; Hardee, Justin; Herndon, David N; Suman, Oscar E

    2014-01-01

    Severe burn trauma results in persistent skeletal muscle catabolism and prolonged immobilization. We hypothesize that structured rehabilitative exercise is a safe and efficacious strategy to restores lean body mass and physical function in burn victims. Here, we review the evidence for the utility of rehabilitative exercise training in restoring physiological function in burn survivors. PMID:25390300

  4. The response of the pulmonary circulation and right ventricle to exercise: exercise-induced right ventricular dysfunction and structural remodeling in endurance athletes (2013 Grover Conference series).

    PubMed

    La Gerche, André; Roberts, Timothy; Claessen, Guido

    2014-09-01

    There is unequivocal evidence that exercise results in considerable health benefits. These are the result of positive hormonal, metabolic, neuronal, and structural changes brought about by the intermittent physiological challenge of exercise. However, there is evolving evidence that intense exercise may place disproportionate physiological stress on the right ventricle (RV) and the pulmonary circulation. Both echocardiographic and invasive studies are consistent in demonstrating that pulmonary arterial pressures increase progressively with exercise intensity, such that the harder one exercises, the greater the load on the RV. This disproportionate load can result in fatigue or damage of the RV if the intensity and duration of exercise is sufficiently prolonged. This is distinctly different from the load imposed by exercise on the left ventricle (LV), which is moderated by a greater capacity for reductions in systemic afterload. Finally, given the increasing RV demand during exercise, it may be hypothesized that chronic exercise-induced cardiac remodeling (the so-called athlete's heart) may also disproportionately affect the RV. Indeed, there is evidence, although somewhat inconsistent, that RV volume increases may be relatively greater than those for the LV. Perhaps more importantly, there is a suggestion that chronic endurance exercise may cause electrical remodeling, predisposing some athletes to serious arrhythmias originating from the RV. Thus, a relatively consistent picture is emerging of acute stress, prolonged fatigue, and long-term remodeling, which all disproportionately affect the RV. Thus, we contend that the RV should be considered a potential Achilles' heel of the exercising heart. PMID:25621154

  5. Diet and Exercise Tips

    MedlinePlus

    ... Health News & Publications Annual Meeting Calendar Diet and Exercise Tips Diet and Exercise Tips News media interested in covering the latest ... Health Statistics concludes that 35 percent of adults exercise regularly (more than 6 of 10 don’t), ...

  6. Why Exercise Is Cool

    MedlinePlus

    ... Homework? Here's Help White House Lunch Recipes Why Exercise Is Cool KidsHealth > For Kids > Why Exercise Is ... day and your body will thank you later! Exercise Makes Your Heart Happy You may know that ...

  7. Rotator cuff exercises

    MedlinePlus

    Shoulder exercises ... A key part in your recovery is doing exercises to make the muscles and tendons in your ... for everyday tasks or sports activities Before doing exercises at home, ask your doctor or physical therapist ...

  8. Exercise and Physical Activity

    MedlinePlus

    Alzheimer ’s Caregiving Tips Exercise and Physical Activity Being active and getting exercise helps people with Alzheimer’s disease feel better. Exercise helps keep their muscles, joints, and heart in ...

  9. Exercise and immunity

    MedlinePlus

    ... know exactly if or how exercise increases your immunity to certain illnesses, but there are several theories ( ... not exercise more intensely just to increase their immunity. Heavy, long-term exercise (such as marathon running ...

  10. Intense exercise training and immune function.

    PubMed

    Gleeson, Michael; Williams, Clyde

    2013-01-01

    Regular moderate exercise reduces the risk of infection compared with a sedentary lifestyle, but very prolonged bouts of exercise and periods of intensified training are associated with increased infection risk. In athletes, a common observation is that symptoms of respiratory infection cluster around competitions, and even minor illnesses such as colds can impair exercise performance. There are several behavioral, nutritional and training strategies that can be adopted to limit exercise-induced immunodepression and minimize the risk of infection. Athletes and support staff can avoid transmitting infections by avoiding close contact with those showing symptoms of infection, by practicing good hand, oral and food hygiene and by avoiding sharing drinks bottles and cutlery. Medical staff should consider appropriate immunization for their athletes particularly when travelling to international competitions. The impact of intensive training stress on immune function can be minimized by getting adequate sleep, minimizing psychological stress, avoiding periods of dietary energy restriction, consuming a well-balanced diet that meets energy and protein needs, avoiding deficiencies of micronutrients (particularly iron, zinc, and vitamins A, D, E, B6 and B12), ingesting carbohydrate during prolonged training sessions, and consuming - on a daily basis - plant polyphenol containing supplements or foodstuffs and Lactobacillus probiotics. PMID:23899753

  11. Management of children with prolonged diarrhea

    PubMed Central

    Giannattasio, Antonietta; Guarino, Alfredo; Lo Vecchio, Andrea

    2016-01-01

    Prolonged diarrhea is usually defined as acute-onset diarrhea lasting 7 days or more, but less than 14 days. Its trend has been declining in recent years because of improvement in the management of acute diarrhea, which represents the ideal strategy to prevent prolonged diarrhea. The pathogenesis of prolonged diarrhea is multifactorial and essentially based on persistent mucosal damage due to specific infections or sequential infections with different pathogens, host-related factors including micronutrient and/or vitamin deficiency, undernutrition and immunodeficiency, high mucosal permeability due to previous infectious processes and nutrient deficiency with consequential malabsorption, and microbiota disruption. Infections seem to play a major role in causing prolonged diarrhea in both developing and developed areas. However, single etiologic pathogens have not been identified, and the pattern of agents varies according to settings, host risk factors, and previous use of antibiotics and other drugs. The management of prolonged diarrhea is complex. Because of the wide etiologic spectrum, diagnostic algorithms should take into consideration the age of the patient, clinical and epidemiological factors, and the nutritional status and should always include a search for enteric pathogens. Often, expensive laboratory evaluations are of little benefit in guiding therapy, and an empirical approach may be effective in the majority of cases. The presence or absence of weight loss is crucial for driving the initial management of prolonged diarrhea. If there is no weight loss, generally there is no need for further evaluation. If weight loss is present, empiric anti-infectious therapy or elimination diet may be considered once specific etiologies have been excluded. PMID:26962439

  12. Management of children with prolonged diarrhea.

    PubMed

    Giannattasio, Antonietta; Guarino, Alfredo; Lo Vecchio, Andrea

    2016-01-01

    Prolonged diarrhea is usually defined as acute-onset diarrhea lasting 7 days or more, but less than 14 days. Its trend has been declining in recent years because of improvement in the management of acute diarrhea, which represents the ideal strategy to prevent prolonged diarrhea. The pathogenesis of prolonged diarrhea is multifactorial and essentially based on persistent mucosal damage due to specific infections or sequential infections with different pathogens, host-related factors including micronutrient and/or vitamin deficiency, undernutrition and immunodeficiency, high mucosal permeability due to previous infectious processes and nutrient deficiency with consequential malabsorption, and microbiota disruption. Infections seem to play a major role in causing prolonged diarrhea in both developing and developed areas. However, single etiologic pathogens have not been identified, and the pattern of agents varies according to settings, host risk factors, and previous use of antibiotics and other drugs. The management of prolonged diarrhea is complex. Because of the wide etiologic spectrum, diagnostic algorithms should take into consideration the age of the patient, clinical and epidemiological factors, and the nutritional status and should always include a search for enteric pathogens. Often, expensive laboratory evaluations are of little benefit in guiding therapy, and an empirical approach may be effective in the majority of cases. The presence or absence of weight loss is crucial for driving the initial management of prolonged diarrhea. If there is no weight loss, generally there is no need for further evaluation. If weight loss is present, empiric anti-infectious therapy or elimination diet may be considered once specific etiologies have been excluded. PMID:26962439

  13. Cerebral perturbations during exercise in hypoxia.

    PubMed

    Verges, Samuel; Rupp, Thomas; Jubeau, Marc; Wuyam, Bernard; Esteve, François; Levy, Patrick; Perrey, Stéphane; Millet, Guillaume Y

    2012-04-15

    Reduction of aerobic exercise performance observed under hypoxic conditions is mainly attributed to altered muscle metabolism due to impaired O(2) delivery. It has been recently proposed that hypoxia-induced cerebral perturbations may also contribute to exercise performance limitation. A significant reduction in cerebral oxygenation during whole body exercise has been reported in hypoxia compared with normoxia, while changes in cerebral perfusion may depend on the brain region, the level of arterial oxygenation and hyperventilation induced alterations in arterial CO(2). With the use of transcranial magnetic stimulation, inconsistent changes in cortical excitability have been reported in hypoxia, whereas a greater impairment in maximal voluntary activation following a fatiguing exercise has been suggested when arterial O(2) content is reduced. Electromyographic recordings during exercise showed an accelerated rise in central motor drive in hypoxia, probably to compensate for greater muscle contractile fatigue. This accelerated development of muscle fatigue in moderate hypoxia may be responsible for increased inhibitory afferent signals to the central nervous system leading to impaired central drive. In severe hypoxia (arterial O(2) saturation <70-75%), cerebral hypoxia per se may become an important contributor to impaired performance and reduced motor drive during prolonged exercise. This review examines the effects of acute and chronic reduction in arterial O(2) (and CO(2)) on cerebral blood flow and cerebral oxygenation, neuronal function, and central drive to the muscles. Direct and indirect influences of arterial deoxygenation on central command are separated. Methodological concerns as well as future research avenues are also considered. PMID:22319046

  14. Pre-exercise glycerol hydration improves cycling endurance time

    NASA Technical Reports Server (NTRS)

    Montner, P.; Stark, D. M.; Riedesel, M. L.; Murata, G.; Robergs, R.; Timms, M.; Chick, T. W.

    1996-01-01

    The effects of glycerol ingestion (GEH) on hydration and subsequent cycle ergometer submaximal load exercise were examined in well conditioned subjects. We hypothesized that GEH would reduce physiologic strain and increase endurance. The purpose of Study I (n = 11) was to determine if pre-exercise GEH (1.2 gm/kg glycerol in 26 ml/kg solution) compared to pre-exercise placebo hydration (PH) (26 ml/kg of aspartame flavored water) lowered heart rate (HR), lowered rectal temperature (Tc), and prolonged endurance time (ET) during submaximal load cycle ergometry. The purpose of Study II (n = 7) was to determine if the same pre-exercise regimen followed by carbohydrate oral replacement solution (ORS) during exercise also lowered HR, Tc, and prolonged ET. Both studies were double-blind, randomized, crossover trials, performed at an ambient temperature of 23.5-24.5 degrees C, and humidity of 25-27%. Mean HR was lower by 2.8 +/- 0.4 beats/min (p = 0.05) after GEH in Study I and by 4.4 +/- 1.1 beats/min (p = 0.01) in Study II. Endurance time was prolonged after GEH in Study I (93.8 +/- 14 min vs. 77.4 +/- 9 min, p = 0.049) and in Study II (123.4 +/- 17 min vs. 99.0 +/- 11 min, p = 0.03). Rectal temperature did not differ between hydration regimens in both Study I and Study II. Thus, pre-exercise glycerol-enhanced hyperhydration lowers HR and prolongs ET even when combined with ORS during exercise. The regimens tested in this study could potentially be adapted for endurance activities.

  15. Basic science behind the cardiovascular benefits of exercise.

    PubMed

    Wilson, Mathew G; Ellison, Georgina M; Cable, N Tim

    2016-01-01

    Cardiorespiratory fitness is a strong predictor of cardiovascular (CV) disease and all-cause mortality, with increases in cardiorespiratory fitness associated with corresponding decreases in CV disease risk. The effects of exercise upon the myocardium and vascular system are dependent upon the frequency, intensity and duration of the exercise itself. Following a prolonged period (≥6 months) of regular intensive exercise in previously untrained individuals, resting and submaximal exercising heart rates are typically 5-20 beats lower, with an increase in stroke volume of ∼20% and enhanced myocardial contractility. Structurally, all four heart chambers increase in volume with mild increases in wall thickness, resulting in greater cardiac mass due to increased myocardial cell size. With this in mind, the present paper aims to review the basic science behind the CV benefits of exercise. Attention will be paid to understanding (1) the relationship between exercise and cardiac remodelling; (2) the cardiac cellular and molecular adaptations in response to exercise, including the examination of molecular mechanisms of physiological cardiac growth and applying these mechanisms to identify new therapeutic targets to prevent or reverse pathological remodelling and heart failure; and (3) vascular adaptations in response to exercise. Finally, this review will briefly examine how to optimise the CV benefits of exercise by considering how much and how intense exercise should be. PMID:26729891

  16. Basic science behind the cardiovascular benefits of exercise.

    PubMed

    Wilson, Mathew G; Ellison, Georgina M; Cable, N Tim

    2015-12-01

    Cardiorespiratory fitness is a strong predictor of cardiovascular (CV) disease and all-cause mortality, with increases in cardiorespiratory fitness associated with corresponding decreases in CV disease risk. The effects of exercise upon the myocardium and vascular system are dependent upon the frequency, intensity and duration of the exercise itself. Following a prolonged period (≥ 6 months) of regular intensive exercise in previously untrained individuals, resting and submaximal exercising heart rates are typically 5-20 beats lower, with an increase in stroke volume of ∼ 20% and enhanced myocardial contractility. Structurally, all four heart chambers increase in volume with mild increases in wall thickness, resulting in greater cardiac mass due to increased myocardial cell size. With this in mind, the present paper aims to review the basic science behind the CV benefits of exercise. Attention will be paid to understanding (1) the relationship between exercise and cardiac remodelling; (2) the cardiac cellular and molecular adaptations in response to exercise, including the examination of molecular mechanisms of physiological cardiac growth and applying these mechanisms to identify new therapeutic targets to prevent or reverse pathological remodelling and heart failure; and (3) vascular adaptations in response to exercise. Finally, this review will briefly examine how to optimise the CV benefits of exercise by considering how much and how intense exercise should be. PMID:26607736

  17. Basic science behind the cardiovascular benefits of exercise.

    PubMed

    Wilson, Mathew G; Ellison, Georgina M; Cable, N Tim

    2015-05-15

    Cardiorespiratory fitness is a strong predictor of cardiovascular (CV) disease and all-cause mortality, with increases in cardiorespiratory fitness associated with corresponding decreases in CV disease risk. The effects of exercise upon the myocardium and vascular system are dependent upon the frequency, intensity and duration of the exercise itself. Following a prolonged period (≥6 months) of regular intensive exercise in previously untrained individuals, resting and submaximal exercising heart rates are typically 5-20 beats lower, with an increase in stroke volume of ∼20% and enhanced myocardial contractility. Structurally, all four heart chambers increase in volume with mild increases in wall thickness, resulting in greater cardiac mass due to increased myocardial cell size. With this in mind, the present paper aims to review the basic science behind the CV benefits of exercise. Attention will be paid to understanding (1) the relationship between exercise and cardiac remodelling; (2) the cardiac cellular and molecular adaptations in response to exercise, including the examination of molecular mechanisms of physiological cardiac growth and applying these mechanisms to identify new therapeutic targets to prevent or reverse pathological remodelling and heart failure; and (3) vascular adaptations in response to exercise. Finally, this review will briefly examine how to optimise the CV benefits of exercise by considering how much and how intense exercise should be. PMID:25911667

  18. Disproportional changes in hematocrit, plasma volume, and proteins during exercise and bed rest.

    NASA Technical Reports Server (NTRS)

    Van Beaumont, W.; Greenleaf, J. E.; Juhos, L.

    1972-01-01

    The interrelationships between the changes in plasma volume, hematocrit, and plasma proteins during muscular exercise and bed rest were investigated. Proportionally, the changes in hematocrit are always smaller than the changes in plasma volume. For this reason changes in the concentration of blood constituents can only be quantitated on the basis of plasma volume changes. During short periods of intensive exercise, there was a small loss of plasma proteins. With prolonged submaximal exercise there was a net gain in plasma protein, which contributes to stabilization of the vascular volume. Prolonged bed rest induced hypoproteinemia; this loss of plasma protein probably plays an important role in recumbency hypovolemia.

  19. Fuel utilization during exercise after 7 days of bed rest

    NASA Technical Reports Server (NTRS)

    Barrows, Linda H.; Harris, Bernard A.; Moore, Alan D.; Siconolfi, Steven F.

    1992-01-01

    Energy yield from carbohydrate, fat, and protein during physical activity is partially dependent on an individual's fitness level. Prolonged exposure to microgravity causes musculoskeletal and cardiovascular deconditioning; these adaptations may alter fuel utilization during space flight. Carbohydrate and fat metabolism during exercise were analyzed before and after 7 days of horizontal bed rest.

  20. Neurological complications of prolonged hunger strike.

    PubMed

    Başoğlu, M; Yetimalar, Y; Gürgör, N; Büyükçatalbaş, S; Kurt, T; Seçil, Y; Yeniocak, A

    2006-10-01

    We investigated neurological findings in 41 prisoners (mean age: 28.6) who participated in a hunger strike between 2000 and 2002. All cases were evaluated using neuropsychological, neuroradiological, and electrophysiological methods. The total duration of fasting ranged from 130 to 324 days (mean 199 days). All cases had 200-600 mg/day thiamine orally for 60-294 days (mean 156) during the hunger strike, and had neurological findings consistent with Wernicke-Korsakoff syndrome. All 41 patients exhibited altered consciousness which lasted from 3 to 31 days. All patients also presented gaze-evoked horizontal nystagmus and truncal ataxia. Paralysis of lateral rectus muscles was found in 14. Amnesia was apparent in all cases. Abnormal nerve conduction study parameters were not found in the patient group, but the amplitude of compound muscle action potential of the median and fibular nerves and sensory nerve action potential amplitude of the sural nerve were lower than the control group, and distal motor latency of the posterior tibial nerve was significantly prolonged as compared with the control group. The latency of visual evoked potential was prolonged in 22 cases. Somatosensory evoked potential (P37) was prolonged but not statistically significant. Our most significant finding was that the effect of hunger was more prominent on the central nervous system than on the neuromuscular system, despite the fact that all patients were taking thiamine. In our opinion, partial recovery of neurological, and neurocognitive signs in prolonged hunger could be a result of permanent neurological injury. PMID:16987161

  1. Prolonged Starvation—A Dangerous Procedure

    PubMed Central

    Runcie, J.; Thomson, T. J.

    1970-01-01

    Experience with 18 obese patients who have undergone prolonged (60 days) therapeutic starvation shows that in general this is a safe procedure, but there are significant associated hazards, particularly a breakdown in electrolyte homoeostasis. The need for close biochemical control of such patients is stressed. PMID:5454322

  2. S2k-Guideline "Prolonged Weaning".

    PubMed

    Schönhofer, B; Geiseler, J; Dellweg, D; Moerer, O; Barchfeld, T; Fuchs, H; Karg, O; Rosseau, S; Sitter, H; Weber-Carstens, S; Westhoff, M; Windisch, W

    2015-10-01

    All mechanically ventilated patients must be weaned from the ventilator at some stage. According to an International Consensus Conference the criteria for "prolonged weaning" are fulfilled if patients fail at least 3 weaning attempts (i. e. spontaneous breathing trial, SBT) or require more than 7 days of weaning after the first SBT. This occurs in about 15 - 20 % of patients.Because of the growing number of patients requiring prolonged weaning a German guideline on prolonged weaning has been developed. It is an initiative of the German Respiratory Society (Deutsche Gesellschaft für Pneumologie und Beatmungsmedizin e. V., DGP) in cooperation with other societies (see acknowledgement) engaged in the field chaired by the Association of Scientific and Medical Societies in Germany (Arbeitsgemeinschaft der Wissenschaftlichen Medizinischen Fachgesellschaften, AWMF).This guideline deals with the definition, epidemiology, weaning categories, underlying pathophysiology, therapeutic strategies, the weaning unit, transition to out-of-hospital ventilation and therapeutic recommendations for end of life care. This short version summarises recommendations on prolonged weaning from the German guideline. PMID:26444135

  3. Effects of Prolonged Deprivation on Learned Helplessness.

    ERIC Educational Resources Information Center

    Mal, Suraj; And Others

    1990-01-01

    Investigated influence of prolonged deprivation on responses to uncontrollable outcome among 104 Indian students in the tenth grade. Finds high-deprived and female students displayed greater helplessness than did their low-deprived and male counterparts. Females and high-deprives students attributed uncontrollable outcome more to internal, stable,…

  4. Exercise countermeasures for spaceflight.

    PubMed

    Convertino, V A; Sandler, H

    1995-01-01

    The authors present a physiological basis for the use of exercise as a weightlessness countermeasure, outline special considerations for the development of exercise countermeasures, review and evaluate exercise used during space flight, and provide new approaches and concepts for the implementation of novel exercise countermeasures for future space flight. The discussion of the physiological basis for countermeasures examines maximal oxygen uptake, blood volume, metabolic responses to work, muscle function, bone loss, and orthostatic instability. The discussion of considerations for exercise prescriptions during space flight includes operational considerations, type of exercise, fitness considerations, age and gender, and psychological considerations. The discussion of exercise currently used in space flight examines cycle ergometry, the treadmill, strength training devices, electrical stimulation, and the Penguin suit worn by Russian crews. New approaches to exercise countermeasures include twin bicycles, dynamic resistance exercisers, maximal exercise effects, grasim (gravity simulators), and the relationship between exercise and LBNP. PMID:11541470

  5. Effects of cadence on aerobic capacity following a prolonged, varied intensity cycling trial.

    PubMed

    Stebbins, Charles L; Moore, Jesse L; Casazza, Gretchen A

    2014-01-01

    We determined if high cadences, during a prolonged cycling protocol with varying intensities (similar to race situations) decrease performance compared to cycling at a lower, more energetically optimal, cadence. Eight healthy, competitive male road cyclists (35 ± 2 yr) cycled for 180 min at either 80 or 100 rpm (randomized) with varying intensities of power outputs corresponding to 50, 65 and 80% of VO2max. At the end of this cycling period, participants completed a ramped exercise test to exhaustion at their preferred cadence (90 ± 7 rpm). There were no cadence differences in blood glucose, respiratory exchange ratio or rate of perceived exertion. Heart Rate, VO2 and blood lactate were higher at 100 rpm vs. 80 rpm. The total energy cost while cycling during the 65% and 80% VO2max intervals at 100 rpm (15.2 ± 2.7 and 19.1 ± 2.5 kcal∙min(-1), respectively) were higher than at 80 rpm (14.3 ± 2.7 and 18.3± 2.2 kcal∙min(-1), respectively) (p < 0.05). Gross efficiency was higher at 80 rpm vs. 100 rpm during both the 65% (22.8 ± 1.0 vs. 21.3 ± 4.5%) and the 80% (23.1 vs. 22.1 ± 0.9%) exercise intensities (P< 0.05). Maximal power during the performance test (362 ± 38 watts) was greater at 80 rpm than 100 rpm (327 ± 27 watts) (p < 0.05). Findings suggest that in conditions simulating those seen during prolonged competitive cycling, higher cadences (i.e., 100 vs. 80 rpm) are less efficient, resulting in greater energy expenditure and reduced peak power output during maximal performance. Key PointsWhen competitive cyclists perform prolonged exercise that simulates racing conditions (i.e., variable, low-moderate submaximal cycling), a higher cadence results in excess energy expenditure and lower gross efficiency compared to a lower cadence at the same power output.Consequently, maximal power output is reduced during a subsequent exercise bout to exhaustion after using a higher cadence.Selection of a lower, more energetically optimal cadence during prolonged

  6. Hypothalamic, rectal, and muscle temperatures in exercising dogs - Effect of cooling

    NASA Technical Reports Server (NTRS)

    Kruk, B.; Kaciuba-Uscilko, H.; Nazar, K.; Greenleaf, J. E.; Kozlowski, S.

    1985-01-01

    An experimental investigation of the mechanisms of performance prolongation during exercise is presented. Measurements were obtained of the rectal, muscle, and hypothalamic temperature of dogs during treadmill exercise at an ambient temperature of 22 + or - 1 C, with and without cooling by use of ice packs. In comparison with exercise without cooling, exercise with cooling was found to: (1) increase exercise duration from 90 + or - 14 to 145 + or - 15 min; (2) attenuate increases in hypothalamic, rectal and muscle temperature; (3) decrease respiratory and heart rates; and (4) lower blood lactic acid content. It is shown that although significant differences were found between the brain, core, and muscle temperatures during exercise with and without cooling, an inverse relation was observed between muscle temperature and the total duration of exercise. It is suggested that sustained muscle hyperthermia may have contributed to the limitation of working ability in exercise with and without cooling.

  7. Central and regional hemodynamics in prolonged space flights

    NASA Astrophysics Data System (ADS)

    Gazenko, O. G.; Shulzhenko, E. B.; Turchaninova, V. F.; Egorov, A. D.

    This paper presents the results of measuring central and regional (head, forearm, calf) hemodynamics at rest and during provocative tests by the method of tetrapolar rheography in the course of Salyut-6-Soyuz and Salyut-7-Soyuz missions. The measurements were carried out during short-term (19 man-flights of 7 days in duration) and long-term (21 man-flights of 65-237 days in duration) manned missions. At rest, stroke volume (SV) and cardiac output (CO) as well as heart rate (HR) decreased insignificantly (in short-term flights) or remained essentially unchanged (in long-term flights). In prolonged flights CO increased significantly in response to exercise tests due to an increase in HR and the lack of changes in SV. After exercise tests SV and CO decreased as compared to the preflight level. During lower body negative pressure (LBNP) tests HR and CO were slightly higher than preflight. Changes in regional hemodynamics included a distinct decrease of pulse blood filling (PBF) of the calf, a reduction of the tone of large vessels of the calf and small vessels of the forearm. Head examination (in the region of the internal carotid artery) showed a decrease of PBF of the left hemisphere (during flight months 2-8) and a distinct decline of the tone of small vessels, mainly, in the right hemisphere. During LBNP tests the tone of pre- and postcapillary vessels of the brain returned to normal while PBF of the right and left hemisphere vessels declined. It has been shown that regional circulation variations depend on the area examined and are induced by a rearrangement of total hemodynamics of the human body in microgravity. This paper reviews the data concerning changes in central and regional circulation of men in space flights of different duration.

  8. The response of the pulmonary circulation and right ventricle to exercise: exercise-induced right ventricular dysfunction and structural remodeling in endurance athletes (2013 Grover Conference series)

    PubMed Central

    Roberts, Timothy; Claessen, Guido

    2014-01-01

    Abstract There is unequivocal evidence that exercise results in considerable health benefits. These are the result of positive hormonal, metabolic, neuronal, and structural changes brought about by the intermittent physiological challenge of exercise. However, there is evolving evidence that intense exercise may place disproportionate physiological stress on the right ventricle (RV) and the pulmonary circulation. Both echocardiographic and invasive studies are consistent in demonstrating that pulmonary arterial pressures increase progressively with exercise intensity, such that the harder one exercises, the greater the load on the RV. This disproportionate load can result in fatigue or damage of the RV if the intensity and duration of exercise is sufficiently prolonged. This is distinctly different from the load imposed by exercise on the left ventricle (LV), which is moderated by a greater capacity for reductions in systemic afterload. Finally, given the increasing RV demand during exercise, it may be hypothesized that chronic exercise–induced cardiac remodeling (the so-called athlete’s heart) may also disproportionately affect the RV. Indeed, there is evidence, although somewhat inconsistent, that RV volume increases may be relatively greater than those for the LV. Perhaps more importantly, there is a suggestion that chronic endurance exercise may cause electrical remodeling, predisposing some athletes to serious arrhythmias originating from the RV. Thus, a relatively consistent picture is emerging of acute stress, prolonged fatigue, and long-term remodeling, which all disproportionately affect the RV. Thus, we contend that the RV should be considered a potential Achilles’ heel of the exercising heart. PMID:25621154

  9. Effect Of Leg Exercise On Vascular Volumes During Bed Rest

    NASA Technical Reports Server (NTRS)

    Greenleaf, J. E.; Vernikos, J.; Wade, C. E.; Barnes, P. R.

    1993-01-01

    Report describes experiments on effects of no-exercise regimen and of two leg-exercise regimens on volumes of plasma, volumes of red blood cells, densities of bodies, and water balances of 19 men (32 to 42 years old) confined to minus 6 degrees-head-down bed rest for 30 days. Purpose of study to determine whether either or both exercise regimens maintain plasma volume and to relate levels of hypovolemia to body fluid balances. Results showed during bed rest, plasma volume maintained in isotomic group but not in other two groups, and no significant differences in body densities, body weights, or water balances among three groups. Concludes isotonic-exercise regimen better than isokinetic-exercise regimen for maintaining plasma volume during prolonged exposure to bed rest.

  10. Exercise Is Medicine.

    ERIC Educational Resources Information Center

    Elrick, Harold

    1996-01-01

    Suggests that exercise should be the first-line therapy for preventing and treating many common diseases; however, physicians need more training in how best to use exercise therapy. The paper explains the power of exercise and discusses how to motivate individuals to start safe, enjoyable, and life-saving exercise routines. (SM)

  11. Kegel Exercise Tips

    MedlinePlus

    ... PDF, 345 KB) Alternate Language URL Español Kegel Exercise Tips Page Content What are Kegel exercises? To do Kegel exercises, you just squeeze your ... help with your bladder control. How do you exercise your pelvic muscles? Find the right muscles. Try ...

  12. Greater impact of acute high-intensity interval exercise on post-exercise executive function compared to moderate-intensity continuous exercise.

    PubMed

    Tsukamoto, Hayato; Suga, Tadashi; Takenaka, Saki; Tanaka, Daichi; Takeuchi, Tatsuya; Hamaoka, Takafumi; Isaka, Tadao; Hashimoto, Takeshi

    2016-03-01

    Aerobic moderate-intensity continuous exercise (MCE) can improve executive function (EF) acutely, potentially through the activation of both physiological and psychological factors. Recently, high-intensity interval exercise (HIIE) has been reported to be more beneficial for physical adaptation than MCE. Factors for EF improvement can potentially be more enhanced by HIIE than by MCE; but the effects of HIIE on EF remain unknown. Therefore, we aimed to examine to what extent HIIE impacts post-exercise EF immediately after exercise and during post-exercise recovery, compared with traditional MCE. Twelve healthy male subjects performed cycle ergometer exercise based on either HIIE or MCE protocols in a randomized and counterbalanced order. The HIIE protocol consisted of four 4-min bouts at 90% of peak VO2 with 3-min active recovery at 60% of peak VO2. A volume-matched MCE protocol was applied at 60% of peak VO2. To evaluate EF, a color-words Stroop task was performed pre- and post-exercise. Improvement in EF immediately after exercise was the same for the HIIE and MCE protocols. However, the improvement of EF by HIIE was sustained during 30 min of post-exercise recovery, during which MCE returned to the pre-exercise level. The EF response in the post-exercise recovery was associated with changes in physiological and psychological responses. The present findings showed that HIIE and MCE were capable of improving EF. Moreover, HIIE could prolong improvement in EF during post-exercise recovery. For the first time, we suggest that HIIE may be more effective strategy than MCE for improving EF. PMID:26723268

  13. The regulation of autophagy during exercise in skeletal muscle.

    PubMed

    Vainshtein, Anna; Hood, David A

    2016-03-15

    The merits of exercise on muscle health and well-being are numerous and well documented. However, the mechanisms underlying the robust adaptations induced by exercise, particularly on mitochondria, are less clear and much sought after. Recently, an evolutionary conserved cellular recycling mechanism known as autophagy has been implicated in the adaptations to acute and chronic exercise. A basal level of autophagy is constantly ongoing in cells and tissues, ensuring cellular clearance and energy homeostasis. This pathway can be further induced, as a survival mechanism, by cellular perturbations, such as energetic imbalance and oxidative stress. During exercise, a biphasic autophagy response is mobilized, leading to both an acute induction and a long-term potentiation of the process. Posttranslational modifications arising from upstream signaling cascades induce an acute autophagic response during a single bout of exercise by mobilizing core autophagy machinery. A transcriptional program involving the regulators Forkhead box O, transcription factor EB, p53, and peroxisome proliferator coactivator-1α is also induced to fuel sustained increases in autophagic capacity. Autophagy has also been documented to mediate chronic exercise-induced metabolic benefits, and animal models in which autophagy is perturbed do not adapt to exercise to the same extent. In this review, we discuss recent developments in the field of autophagy and exercise. We specifically highlight the molecular mechanisms activated during acute exercise that lead to a prolonged adaptive response. PMID:26679612

  14. Pulmonary function and clearance after prolonged sulfuric acid aerosol exposure

    SciTech Connect

    Ives, P.J. ); Gerrity, T.R.; DeWitt, P.; Folinsbee, L.J. )

    1991-03-15

    The authors studied pulmonary function and clearance responses after a 4 H exposure to 75-100 {mu}g/m{sup 3} sulfuric acid aerosol (SAA). Healthy subjects, who exercised for 30 min/H at ventilation of about 25 L/min, were exposed once to clean air and once to SAA. Oral hygiene and acidic juice gargle were used to minimize oral ammonia. Lung function tests, including spirometry, plethysmography, and partial flow-volume (PEFV) curves were performed before and after exposure. Clearance of 99m-Technetium labeled iron oxide was assessed after each exposure. The first moment of fractional tracheobronchial retention (M1TBR), after correcting for 24 H retention and normalizing to time zero, was used as an index of clearance. There were no significant changes in lung volumes, airways resistance, or maximum expiratory flows after SAA exposure. Flow at 40% of total lung capacity on PEFV curves decreased 17% (NS) after SAA exposure. Tracheobronchial clearance was accelerated after a single exposure to SAA; M1TBR decreased from 73 {plus minus} 5 min (air) to 69 {plus minus} 5 min (SAA). These results suggest that acute prolonged exposure to low levels of SAA has minimal effects on lung mechanics in healthy subjects but does produce a modest acceleration of particle clearance.

  15. Severe bradycardia and prolonged hypotension in ciguatera.

    PubMed

    Chan, Thomas Yan Keung

    2013-06-01

    Ciguatera results when ciguatoxin-contaminated coral reef fish from tropical or subtropical waters are consumed. The clinical features that present in affected persons are mainly gastrointestinal, neurological, general, and much less commonly, cardiovascular. We report the case of a 50-year-old man who developed the characteristic combination of acute gastrointestinal and neurological symptoms after the consumption of an unidentified coral reef fish head. In addition to those symptoms, he developed dizziness, severe bradycardia (46 bpm) and prolonged hypotension, which required the administration of intravenous atropine and over three days of intravenous fluid replacement with dopamine infusion. Patients with ciguatera can develop severe bradycardia and prolonged hypotension. Physicians should recognise the possible cardiovascular complications of ciguatera and promptly initiate treatment with intravenous atropine, intravenous fluid replacement and inotropic therapy if such complications are observed. PMID:23665698

  16. Prolonged grief: setting the research agenda

    PubMed Central

    Rosner, Rita

    2015-01-01

    Background Prolonged grief disorder is proposed for the International Classification of Diseases (ICD-11), though it was rejected as a diagnosis for DSM-5. Objective This review outlines findings and defines important areas for future research viewed from a lifespan perspective. Results The development and psychometric evaluation of measures for the new diagnosis is paramount, specifically for children and adolescents. Treatments need to be adapted for specific subgroups and research findings have to be disseminated into various professional settings. PMID:25994020

  17. Exercise, training and neutrophil microbicidal activity.

    PubMed

    Smith, J A; Telford, R D; Mason, I B; Weidemann, M J

    1990-06-01

    The concentration in human plasma of putative neutrophil-"priming" cytokines like endogenous pyrogens is known to increase significantly in response to moderate exercise (11). This is characteristic of an acute-phase response. The ability of blood neutrophils isolated from both trained and untrained human subjects (n = 11, 9) to produce microbicidal reactive oxygen species was determined using luminol-enhanced chemiluminescence both before and after one hour of aerobic exercise at 60% VO2max. Irrespective of training and stimulus concentration, exercise nearly always caused significant "priming" of the capacity of neutrophils to produce H2O2 and HOCl upon stimulation with opsonized zymosan (P less than 0.01); however, compared to their untrained counterparts, the activity of cells isolated from trained individuals was depressed about 50% at unit stimulus concentration, both before and after exercise (P less than 0.075), whilst remaining unaltered at saturating concentrations. Although neutrophil oxygenation activity is only one parameter that contributes to immunological status, regular episodes of moderate exercise may increase resistance to infection by priming the "killing capacity" of neutrophils. In contrast, prolonged periods of intensive training may lead to increased susceptibility to common infections by diminishing this activity. PMID:2115507

  18. Prolonged contraction duration in aged myocardium.

    PubMed

    Lakatta, E G; Gerstenblith, G; Angell, C S; Shock, N W; Weisfeldt, M L

    1975-01-01

    Isometric performance at 29degreesC was measured in left ventricular trabeculae carneae from young adult (6-mo) and aged (25-mo) rats (n equals 18 in each group). Active tension and maximal rate of tension development did not differ with age, but contraction duration was 255plus or minus6 ms in the young adult and 283plus or minus6 ms in the aged group (P less than0.001). Although catecholamine content per gram heart weight was less in the aged myocardium, additional experiments showed that neither 1 times 10-6 M propranolol nor pretreatment with 6-hydroxydopamine eliminated the age difference in contraction duration. To determine if this age difference resulted from a prolonged active state, electromechanical dissociation and the overshoot of contraction duration during recovery from hypoxia were measured. During paired stimulation greater mechanical refractoriness was found in aged muscles (P less than0.01), but intracellular action potential recordings showed no age difference in the electrical refractory period. On recovery from hypoxia, contraction duration overshoot was 117plus or minus 4percent of control in the young and 138plus or minus 4percent of control in the aged muscles (P less than0.01). The greater electromechanical dissociation and greater overshoot in contraction duration following hypoxia in aged myocardium suggests that prolonged contraction duration in aged myocardium results from a prolonged active state rather than changes in passive properties or myocardial catecholamine content. PMID:1109181

  19. Prolonging life: legal, ethical, and social dilemmas.

    PubMed

    Paulson, Steve; Comfort, Christopher P; Lee, Barbara Coombs; Shemie, Sam; Solomon, Mildred Z

    2014-11-01

    The ability of modern medicine to prolong life has raised a variety of difficult legal, ethical, and social issues on which reasonable minds can differ. Among these are the morality of euthanasia in cases of deep coma or irreversible injury, as well as the Dead Donor Rule with respect to organ harvesting and transplants. As science continues to refine and develop lifesaving technologies, questions remain as to how much medical effort and financial resources should be expended to prolong the lives of patients suspended between life and death. At what point should death be considered irreversible? What criteria should be used to determine when to withhold or withdraw life-prolonging treatments in cases of severe brain damage and terminal illness? To explore these complex dilemmas, Steve Paulson, executive producer and host of To the Best of Our Knowledge, moderated a discussion panel. Pediatrician Sam Shemie, hospice medical director Christopher P. Comfort, bioethicist Mildred Z. Solomon, and attorney Barbara Coombs Lee examined the underlying assumptions and considerations that ultimately shape individual and societal decisions surrounding these issues. The following is an edited transcript of the discussion that occurred November 12, 2013, 7:00-8:30 PM, at the New York Academy of Sciences in New York City. PMID:25079490

  20. The effect of changes in cerebral blood flow on cognitive function during exercise

    PubMed Central

    Ogoh, Shigehiko; Tsukamoto, Hayato; Hirasawa, Ai; Hasegawa, Hiroshi; Hirose, Norikazu; Hashimoto, Takeshi

    2014-01-01

    Abstract No studies have identified the direct effect of changes in cerebral blood flow (CBF) on cognitive function at rest and during exercise. In this study, we manipulated CBF using hypercapnic gas to examine whether an increase in CBF improves cognitive function during prolonged exercise. The speed and the accuracy of cognitive function were assessed using the Stroop color‐word test. After the Stroop test at rest, the subjects began exercising on a cycling ergometer in which the workload was increased by 0.5 kilopond every minute until a target heart rate of 140 beats/min was achieved. Then, the subjects continued to cycle at a constant rate for 50 min. At four time points during the exercise (0, 10, 20, 50 min), the subjects performed a Stroop test with and without hypercapnic respiratory gas (2.0% CO2), with a random order of the exposures in the two tests. Despite a decrease in the mean blood flow velocity in the middle cerebral artery (MCA Vmean), the reaction time for the Stroop test gradually decreased during the prolonged exercise without any loss of performance accuracy. In addition, the hypercapnia‐induced increase in MCA Vmean produced neither changes in the reaction time nor error in the Stroop test during exercise. These findings suggest that the changes in CBF are unlikely to affect cognitive function during prolonged exercise. Thus, we conclude that improved cognitive function may be due to cerebral neural activation associated with exercise rather than global cerebral circulatory condition. PMID:25263210

  1. The effect of changes in cerebral blood flow on cognitive function during exercise.

    PubMed

    Ogoh, Shigehiko; Tsukamoto, Hayato; Hirasawa, Ai; Hasegawa, Hiroshi; Hirose, Norikazu; Hashimoto, Takeshi

    2014-09-01

    No studies have identified the direct effect of changes in cerebral blood flow (CBF) on cognitive function at rest and during exercise. In this study, we manipulated CBF using hypercapnic gas to examine whether an increase in CBF improves cognitive function during prolonged exercise. The speed and the accuracy of cognitive function were assessed using the Stroop color-word test. After the Stroop test at rest, the subjects began exercising on a cycling ergometer in which the workload was increased by 0.5 kilopond every minute until a target heart rate of 140 beats/min was achieved. Then, the subjects continued to cycle at a constant rate for 50 min. At four time points during the exercise (0, 10, 20, 50 min), the subjects performed a Stroop test with and without hypercapnic respiratory gas (2.0% CO2), with a random order of the exposures in the two tests. Despite a decrease in the mean blood flow velocity in the middle cerebral artery (MCA Vmean), the reaction time for the Stroop test gradually decreased during the prolonged exercise without any loss of performance accuracy. In addition, the hypercapnia-induced increase in MCA Vmean produced neither changes in the reaction time nor error in the Stroop test during exercise. These findings suggest that the changes in CBF are unlikely to affect cognitive function during prolonged exercise. Thus, we conclude that improved cognitive function may be due to cerebral neural activation associated with exercise rather than global cerebral circulatory condition. PMID:25263210

  2. Exercise Training During Bed Rest Attenuates Deconditioning

    NASA Technical Reports Server (NTRS)

    Greenleaf, J. E.; Hargens, Alan R. (Technical Monitor)

    1995-01-01

    A 30-day 6 deg. head-down bed rest study was conducted to evaluate high-intensity, short-duration, alternating isotonic cycle ergometer exercise (ITE) training and high-intensity intermittent isokinetic exercise (IKE) training regiments designed to maintain peak VO2 and muscle mass, strength, and endurance at ambulatory control levels throughout prolonged bed rest. Other elements of the deconditioning (acclimation) syndrome, such as proprioception, psychological performance, hypovolemia, water balance, body composition, and orthostatic tolerance, were also measured. Compared with response during bed rest of the no exercise (NOE) control group: the ITE training regimen (a) maintained work capacity (peak VO2), (b) maintained plasma and red cell volume, (c) induced positive body water balance, (d) decreased quality of sleep and mental concentration, and (e) had no effect on the decrease in orthostatic tolerance; the IKE training regimen (a) attenuated the decrease in peak VO2 by 50%, (b) attenuated loss of red cell volume by 40%, but had no effect on loss of plasma volume, (c) induced positive body water balance, (d) had no adverse effect on quality of sleep or concentration, and (e) had no effect on the decrease in orthostatic tolerance. These findings suggest that various elements of the deconditioning syndrome can be manipulated by duration and intensity of ITE or IKE training regiments, and that several different training protocols will be required to maintain or restore physiological and psychological performance of individuals confined to prolonged bed rest.

  3. Achilles tendon mechanical properties after both prolonged continuous running and prolonged intermittent shuttle running in cricket batting.

    PubMed

    Houghton, Laurence; Dawson, Brian; Rubenson, Jonas

    2013-08-01

    Effects of prolonged running on Achilles tendon properties were assessed after a 60 min treadmill run and 140 min intermittent shuttle running (simulated cricket batting innings). Before and after exercise, 11 participants performed ramp-up plantar flexions to maximum-voluntary-contraction before gradual relaxation. Muscle-tendon-junction displacement was measured with ultrasonography. Tendon force was estimated using dynamometry and a musculoskeletal model. Gradients of the ramp-up force-displacement curves fitted between 0-40% and 50-90% of the preexercise maximal force determined stiffness in the low- and high-force-range, respectively. Hysteresis was determined using the ramp-up and relaxation force-displacement curves and elastic energy storage from the area under the ramp-up curve. In simulated batting, correlations between tendon properties and shuttle times were also assessed. After both protocols, Achilles tendon force decreased (4% to 5%, P < .050), but there were no changes in stiffness, hysteresis, or elastic energy. In simulated batting, Achilles tendon force and stiffness were both correlated to mean turn and mean sprint times (r = -0.719 to -0.830, P < .050). Neither protocol resulted in fatigue-related changes in tendon properties, but higher tendon stiffness and plantar flexion force were related to faster turn and sprint times, possibly by improving force transmission and control of movement when decelerating and accelerating. PMID:22923384

  4. Exercise and immune function. Recent developments.

    PubMed

    Nieman, D C; Pedersen, B K

    1999-02-01

    Comparison of immune function in athletes and nonathletes reveals that the adaptive immune system is largely unaffected by athletic endeavour. The innate immune system appears to respond differentially to the chronic stress of intensive exercise, with natural killer cell activity tending to be enhanced while neutrophil function is suppressed. However, even when significant changes in the level and functional activity of immune parameters have been observed in athletes, investigators have had little success in linking these to a higher incidence of infection and illness. Many components of the immune system exhibit change after prolonged heavy exertion. During this 'open window' of altered immunity (which may last between 3 and 72 hours, depending on the parameter measured), viruses and bacteria may gain a foothold, increasing the risk of subclinical and clinical infection. However, no serious attempt has been made by investigators to demonstrate that athletes showing the most extreme post-exercise immunosuppression are those that contract an infection during the ensuing 1 to 2 weeks. This link must be established before the 'open window' theory can be wholly accepted. The influence of nutritional supplements, primarily zinc, vitamin C, glutamin and carbohydrate, on the acute immune response to prolonged exercise has been measured in endurance athletes. Vitamin C and glutamine have received much attention, but the data thus far are inconclusive. The most impressive results have been reported in the carbohydrate supplementation studies. Carbohydrate beverage ingestion has been associated with higher plasma glucose levels, an attenuated cortisol and growth hormone response, fewer perturbations in blood immune cell counts, lower granulocyte and monocyte phagocytosis and oxidative burst activity, and a diminished pro- and anti-inflammatory cytokine response. It remains to be shown whether carbohydrate supplementation diminishes the frequency of infections in the

  5. Exercise and the asthmatic.

    PubMed

    Bundgaard, A

    1985-01-01

    Physical exercise is not hazardous to asthmatics. Some asthmatics may benefit from physical training, and almost all asthmatics can perform any kind of physical exercise. Free running was earlier thought to induce more asthma than swimming, for example; however, when ventilation is identical during running and swimming, the exercise-induced asthma will also be the same. Hyperventilation alone is as good as physical exercise to induce exercise-induced asthma. If the physical exercise provokes an asthmatic attack, this is most often easily reversed by inhaled beta 2-agonists. Pretreatment of exercise-induced asthma is most efficient by inhaled beta 2-agonist; orally dosed beta 2-agonist is not as efficient as inhaled beta 2-agonist in the pretreatment of exercise-induced asthma. Inhaled sodium cromoglycate diminishes exercise-induced asthma, and the effect seems to be better in children than in adults. Inhaled steroids have no immediate effect on exercise-induced asthma, but long term treatment with steroids diminishes exercise-induced asthma. The pathogenesis of exercise-induced asthma remains obscure. If the water content is low in the inhaled air, e.g. in cold air, the changes in ventilatory capacity following exercise. will be greater than when the exercise is performed while inhaling hot air with high humidity. Almost all asthmatics present changes in the ventilatory capacity following exercise. Seasonal changes in exercise-induced asthma are only present in asthmatics with seasonal allergies, e.g. pollen allergy. No diurnal variation is found in exercise-induced asthma. Asthmatics can do any form of physical exercise. Almost all asthmatics can prevent major changes in ventilatory capacity by pretreatment of exercise-induced asthma or be treated for exercise-induced asthma during the physical activity so that they will not suffer from asthma while performing physical exercise. Asthmatics who have been successfully treated for exercise-induced asthma can do

  6. Exercise training in asthma.

    PubMed

    Satta, A

    2000-12-01

    Asthma is a chronic disease that is often limiting the exercise capacity. Rehabilitation programs are recommended and widely applied in asthmatic patients, and exercise prescription is a keystone of these programs. The impairment of exercise performance in asthmatics, the role of exercise training in such patients, the mechanisms of its beneficial effects and the suggested programs are discussed in a review, accordingly to the current evidence and available data in scientific literature. Exercise performance is impaired in most asthmatics. There is no conclusive evidence that asthma may involve a ventilatory limitation to exercise. The lesser fitness in asthmatics seems mainly due to inactivity and sedentary lifestyle. Exercise induced asthma (EIA) is a significant problem, and the best approach to minimise its effects on exercise capacity is prevention. Exercise training has been proved to have health-related benefits and to improve the quality of life. There is substantial evidence that exercise training increases exercise performance and fitness in asthmatics. It is still unclear whether physical training improves pulmonary function and bronchial responsiveness. Since asthma ranges widely, exercise prescription varies for each patient. The proper selection of the patients and the choice of exercise programs are the steps required. Accordingly with the severity of the disease, exercise strategies may range from sports activities to, when the disease is severe, inpatient hospital programs that overlap with COPD rehabilitation. Further research to clarify some aspects (effects on pulmonary function and EIA, outcomes, cost-benefit relationship) is necessary. PMID:11296996

  7. Increased atrial arrhythmia susceptibility induced by intense endurance exercise in mice requires TNFα

    PubMed Central

    Aschar-Sobbi, Roozbeh; Izaddoustdar, Farzad; Korogyi, Adam S.; Wang, Qiongling; Farman, Gerrie P.; Yang, FengHua; Yang, Wallace; Dorian, David; Simpson, Jeremy A.; Tuomi, Jari M.; Jones, Douglas L.; Nanthakumar, Kumaraswamy; Cox, Brian; Wehrens, Xander H.T.; Dorian, Paul; Backx, Peter H.

    2015-01-01

    Atrial fibrillation (AF) is the most common supraventricular arrhythmia that, for unknown reasons, is linked to intense endurance exercise. Our studies reveal that 6 weeks of swimming or treadmill exercise improves heart pump function and reduces heart-rates. Exercise also increases vulnerability to AF in association with inflammation, fibrosis, increased vagal tone, slowed conduction velocity, prolonged cardiomyocyte action potentials and RyR2 phosphorylation (CamKII-dependent S2814) in the atria, without corresponding alterations in the ventricles. Microarray results suggest the involvement of the inflammatory cytokine, TNFα, in exercised-induced atrial remodelling. Accordingly, exercise induces TNFα-dependent activation of both NFκB and p38MAPK, while TNFα inhibition (with etanercept), TNFα gene ablation, or p38 inhibition, prevents atrial structural remodelling and AF vulnerability in response to exercise, without affecting the beneficial physiological changes. Our results identify TNFα as a key factor in the pathology of intense exercise-induced AF. PMID:25598495

  8. Increased atrial arrhythmia susceptibility induced by intense endurance exercise in mice requires TNFα.

    PubMed

    Aschar-Sobbi, Roozbeh; Izaddoustdar, Farzad; Korogyi, Adam S; Wang, Qiongling; Farman, Gerrie P; Yang, FengHua; Yang, Wallace; Dorian, David; Simpson, Jeremy A; Tuomi, Jari M; Jones, Douglas L; Nanthakumar, Kumaraswamy; Cox, Brian; Wehrens, Xander H T; Dorian, Paul; Backx, Peter H

    2015-01-01

    Atrial fibrillation (AF) is the most common supraventricular arrhythmia that, for unknown reasons, is linked to intense endurance exercise. Our studies reveal that 6 weeks of swimming or treadmill exercise improves heart pump function and reduces heart-rates. Exercise also increases vulnerability to AF in association with inflammation, fibrosis, increased vagal tone, slowed conduction velocity, prolonged cardiomyocyte action potentials and RyR2 phosphorylation (CamKII-dependent S2814) in the atria, without corresponding alterations in the ventricles. Microarray results suggest the involvement of the inflammatory cytokine, TNFα, in exercised-induced atrial remodelling. Accordingly, exercise induces TNFα-dependent activation of both NFκB and p38MAPK, while TNFα inhibition (with etanercept), TNFα gene ablation, or p38 inhibition, prevents atrial structural remodelling and AF vulnerability in response to exercise, without affecting the beneficial physiological changes. Our results identify TNFα as a key factor in the pathology of intense exercise-induced AF. PMID:25598495

  9. Reactivity of organism in prolonged space flights

    NASA Technical Reports Server (NTRS)

    Vasilyev, P. V.

    1980-01-01

    An analysis of published data are presented as well as the results of experiments which show that the state of weightlessness and hypodynamia result in a reduced orthostatic and vestibular resistance, increased sensitivity to infections, decreased endurance of accelerations and physical exercises, and altered reactivity of the organism to drugs. Various consequences of weightlessness on the human body, especially weightlessness combined with other factors linked to long space flights are also considered.

  10. Metabolism of normothermic woodchucks during prolonged fasting.

    PubMed

    Reidy, Shannon P; Weber, Jean-Michel

    2004-12-01

    The energy metabolism of hibernators has not been characterized for normothermic fasting, and our goal was to quantify oxidative fuel selection of non-hibernating woodchucks Marmota monax during prolonged food deprivation. Indirect calorimetry and nitrogen excretion measurements were used to assess changes in metabolic rate (VO2), fuel selection and composition of nitrogen wastes, as well as seasonal differences. For reference, matching experiments were also performed on rabbits. The results show that woodchucks have a higher metabolic rate in summer (271 micromol O2 kg(-1) min(-1)) than in spring (200 micromol O2 kg(-1) min(-1)) and that fasting-induced metabolic depression is only possible in summer (-25% in 14 days). The metabolic rate of rabbits is high at all times (383 micromol O2 kg(-1) min(-1)), but they show a more rapid depression in response to fasting (-32% in 7 days). Woodchucks have a naturally low reliance on proteins in the fed state (accounting for 8% VO2) in spring; 17% VO2 in summer; vs 28% VO2 in rabbits) and are able to decrease it even further during fasting (spring, 5% VO2); summer, 6% VO2; vs 20% VO2 in rabbits). This study shows that, apart from their notorious capacity for hibernation, woodchucks are particularly well adapted for normothermic fasting. Their ability to cope with prolonged food deprivation is based on a series of integrated responses eliciting deep metabolic depression and a rapid change in fuel selection to spare limited protein reserves. Information presently available on prolonged fasting suggests that such an ability for metabolic depression, possibly down to minimal levels still compatible with normothermic life, may be common among mammals. In contrast, the extreme protein sparing demonstrated in woodchucks is a unique metabolic feature of fasting champions. PMID:15579548

  11. Stimulation of Myofibrillar Protein Synthesis in Hindlimb Suspended Rats by Resistance Exercise and Growth Hormone

    NASA Technical Reports Server (NTRS)

    Linderman, Jon K.; Whittall, Justen B.; Gosselink, Kristin L.; Wang, Tommy J.; Mukku, Venkat R.; Booth, Frank W.; Grindeland, Richard E.

    1995-01-01

    The objective of this study was to determine the ability of a single bout of resistance exercise alone or in combination with recombinant human growth hormone (rhGH) to stimulate myofibrillar protein synthesis (Ks) in hindlimb suspended (HLS) adult female rats. Plantar flexor muscles were stimulated with resistance exercise, consisting of 10 repetitions of ladder climbing on a 1 m grid (85 deg.), carrying an additional 50% of their body weight attached to their tails. Saline or rhGH (1 mg/kg) was administered 30' prior to exercise, and Ks was determined with a constant infusion of H-3-Leucine at 15', 60', 180', and 360' following exercise. Three days of HLS depressed Ks is approx. equal to 65% and 30-40% in the soleus and gastrocnemius muscles, respectively (p is less than or equal to 0.05). Exercise increased soleus Ks in saline-treated rats 149% 60' following exercise (p less than or equal to 0.05), decaying to that of non-exercised animals during the next 5 hours. Relative to suspended, non-exercised rats rhGH + exercise increased soleus Ks 84%, 108%, and 72% at 15', 60' and 360' following exercise (p is less than or equal to 0.05). Gastrocnemius Ks was not significantly increased by exercise or the combination of rhGH and exercise up to 360' post-exercise. Results from this study indicate that resistance exercise stimulated Ks 60' post-exercise in the soleus of HLS rats, with no apparent effect of rhGH to enhance or prolong exercise-induced stimulation. Results suggests that exercise frequency may be important to maintenance of the slow-twitch soleus during non-weightbearing, but that the ability of resistance exercise to maintain myofibrillar protein content in the gastrocnemius of hindlimb suspended rats cannot be explained by acute stimulation of synthesis.

  12. Performance and mood-state parameters during 30-day 6 deg head-down bed rest with exercise training

    NASA Technical Reports Server (NTRS)

    Deroshia, Charles W.; Greenleaf, J. E.

    1993-01-01

    A study aimed at determining if the performance and mood impairments occur in bed-rested subjects, and if different exercise-training regimens modify or prevent them is presented. Eighteen healthy men were divided into three groups performing no exercise, isotonic exercise, and isokinetic exercise. Few deleterious changes occurred in performance and mood of the three groups which did not exceed baseline ambulatory levels. It is concluded that mood and performance did not deteriorate in response to prolonged bedrest and were not altered by exercise training.

  13. Prolonged cataleptogenic effects of potentized homoeopathic drugs.

    PubMed

    Sukul, N C; Bala, S K; Bhattacharyya, B

    1986-01-01

    The four homoeopathic drugs, Gelsemium, Cannabis Indica, Graphites and Agaricus Muscarius, administered orally in 30th and 200th potencies on white rats, enhanced restraint-induced catalepsy in a similar manner to the two standard drugs pilocarpine and haloperidol (IP injection at 5 mg/kg). All the drugs tested differed from each other in the duration of cataleptogenic effect, which was more prolonged with Cannabis, Graphites and Agaricus than with Gelsemium and the two non-homoeopathic drugs used. The 200th potency of any homoeopathic drug tested acted longer than its 30th potency. PMID:3088660

  14. Writing Exercises from "Exercise Exchange." Volume II.

    ERIC Educational Resources Information Center

    Duke, Charles R., Ed.

    Reflecting current practices in the teaching of writing, the exercises in this compilation were drawn from the journal "Exercise Exchange." The articles are arranged into six sections: sources for writing; prewriting; modes for writing; writing and reading; language, mechanics, and style; and revising, responding, and evaluating. Among the topics…

  15. Learn to love exercise

    MedlinePlus

    ... can join. Choose your sweet spot. Do you love being outdoors? Choose activities that get you outside, ... Council on Exercise. 5 Tips for Learning to Love Exercise (or at Least Develop a Crush on ...

  16. Clinical Applications for Exercise.

    ERIC Educational Resources Information Center

    Goldstein, David

    1989-01-01

    Patients with chronic conditions such as coronary artery disease, hypertension, diabetes, and obesity might benefit from prescribed exercise. Although exercise does not reverse pathologic changes, it may play a role in disease management. (JD)

  17. Exercise and Physical Fitness

    MedlinePlus

    ... Increase your chances of living longer Fitting regular exercise into your daily schedule may seem difficult at ... fine. The key is to find the right exercise for you. It should be fun and should ...

  18. Exercise and Osteoporosis

    MedlinePlus

    ... My Go4Life Get Free Stuff Be a Partner Exercise and Osteoporosis Osteoporosis is a disease that weakens ... calcium and vitamin D. Include regular weight-bearing exercise in your lifestyle. Stop smoking. Limit how much ...

  19. Learn to love exercise

    MedlinePlus

    ... mix it up. For example, you might play golf on a Saturdays, take tango classes on Mondays, ... American Council on Exercise. 5 Tips for Learning to Love Exercise (or at Least Develop a Crush on It). ... ...

  20. Kids and Exercise

    MedlinePlus

    ... Kids For Parents MORE ON THIS TOPIC Cold-Weather Sports and Your Family How Can Families Be ... a Fit Kid Why Exercise Is Cool Cold-Weather Sports Strength Training Weight Management: Strength Training Exercises ( ...

  1. Exercising on a budget

    MedlinePlus

    ... use proper form, go to the online exercise library at the American Council on Exercise. They also have sample workout routines you can try. Look for low-cost fitness options Many sports and activities are free ...

  2. Exercise and Asthma

    MedlinePlus

    ... Issues Listen Español Text Size Email Print Share Exercise and Asthma Page Content Article Body Almost every ... children more likely to develop asthma. How does exercise cause asthma symptoms? The symptoms of asthma are ...

  3. Exercise for Seniors

    MedlinePlus

    Exercise and physical activity are good for just about everyone, including older adults. There are four main ... jogging, dancing, swimming, and biking are examples. Strength exercises make your muscles stronger. Lifting weights or using ...

  4. Why Exercise Is Wise

    MedlinePlus

    ... for Parents for Kids for Teens Teens Home Body Mind Sexual Health Food & Fitness Diseases & Conditions Infections Q& ... the reasons: Exercise benefits every part of the body, including the mind. Exercising causes the body to produce endorphins, chemicals ...

  5. Exercise for Seniors

    MedlinePlus

    ... and heart rate. Brisk walking or jogging, dancing, swimming, and biking are examples. Strength exercises make your muscles stronger. Lifting weights or using a resistance band can build strength. Balance exercises help prevent ...

  6. Exercise during Pregnancy

    MedlinePlus

    ... Pregnancy Patient Education FAQs Exercise During Pregnancy Patient Education Pamphlets - Spanish Exercise During Pregnancy FAQ119, May 2016 PDF Format ... Your Practice Patient Safety & Quality Payment Reform (MACRA) Education & Events Annual ... Pamphlets Teen Health About ACOG About Us Leadership & ...

  7. Exercise After Pregnancy

    MedlinePlus

    ... Pregnancy Patient Education FAQs Exercise After Pregnancy Patient Education Pamphlets - Spanish Exercise After Pregnancy FAQ131, June 2015 PDF Format ... Your Practice Patient Safety & Quality Payment Reform (MACRA) Education & Events Annual ... Pamphlets Teen Health About ACOG About Us Leadership & ...

  8. Diet and Exercise

    MedlinePlus

    ... Types Risk Factors Prevention & Early Detection Diet And Exercise Transplant recipients need to be aware of the ... help arrange for counseling and other support services. Exercise After a Transplant Most people are weak after ...

  9. Exercise-Induced Syncope in a Sedentary Woman

    PubMed Central

    Rickard, John W.; Zakaria, Sammy

    2014-01-01

    Vasovagal (neurocardiogenic) syncope, a subtype of reflex syncope, has many well-known triggers. However, we found no previous report of vasovagal exercise-induced syncope in a sedentary person. We present the case of a 35-year-old sedentary woman who experienced vasovagal syncope as she underwent an exercise stress test. Results of evaluations, including resting and stress electrocardiography and echocardiography, were normal. Her presentation is highly unusual: syncope has typically not been associated with exercise except in young athletes, people with structural heart abnormalities, or people with a prolonged QT syndrome. To our knowledge, this is the first report of vasovagal syncope associated with exercise in a sedentary patient who had normal cardiac and electrophysiologic function. We suggest possible physiologic mechanisms and diagnostic strategies. PMID:25593529

  10. Neuromuscular aspects in development of exercise countermeasures

    NASA Technical Reports Server (NTRS)

    Convertino, Victor A.

    1991-01-01

    The paper reviews data obtained at the Human Life Sciences Research Program at the Kennedy Space Center on the structural and functional characteristics of the human muscle and on the effects of simulated microgravity (head-down bed rest) and exercise on the muscle. It is shown that prolonged exposure to microgravity induced ultrastructural abnormalities and the atrophy of muscle and impaired muscle functioning (especially upon return to terrestrial gravity) and that ground-based models can be effectively used to study these changes. Results indicate that the incorporation of resistive exercise with a strong emphasis on the use of eccentric muscle action, in addition to concentric action, may provide a very effective countermeasure against muscle atrophy and dysfunction caused by long-duration exposures to microgravity.

  11. Review and Outcome of Prolonged Cardiopulmonary Resuscitation

    PubMed Central

    Youness, Houssein; Al Halabi, Tarek; Hussein, Hussein; Awab, Ahmed; Jones, Kellie; Keddissi, Jean

    2016-01-01

    The maximal duration of cardiopulmonary resuscitation (CPR) is unknown. We report a case of prolonged CPR. We have then reviewed all published cases with CPR duration equal to or more than 20 minutes. The objective was to determine the survival rate, the neurological outcome, and the characteristics of the survivors. Measurements and Main Results. The CPR data for 82 patients was reviewed. The median duration of CPR was 75 minutes. Patients mean age was 43 ± 21 years with no significant comorbidities. The main causes of the cardiac arrests were myocardial infarction (29%), hypothermia (21%), and pulmonary emboli (12%). 74% of the arrests were witnessed, with a mean latency to CPR of 2 ± 6 minutes and good quality chest compression provided in 96% of the cases. Adjunct therapy included extracorporeal membrane oxygenation (18%), thrombolysis (15.8%), and rewarming for hypothermia (19.5%). 83% were alive at 1 year, with full neurological recovery reported in 63 patients. Conclusion. Patients undergoing prolonged CPR can survive with good outcome. Young age, myocardial infarction, and potentially reversible causes of cardiac arrest such as hypothermia and pulmonary emboli predict a favorable result, especially when the arrest is witnessed and followed by prompt and good resuscitative efforts. PMID:26885387

  12. Prolonged Sleep under Stone Age Conditions

    PubMed Central

    Piosczyk, Hannah; Landmann, Nina; Holz, Johannes; Feige, Bernd; Riemann, Dieter; Nissen, Christoph; Voderholzer, Ulrich

    2014-01-01

    Study Objectives: We report on a unique experiment designed to investigate the impact of prehistoric living conditions on sleep-wake behavior. Methods: A group of five healthy adults were assessed during life in a Stone Age-like settlement over two months. Results: The most notable finding was that nocturnal time in bed and estimated sleep time, as measured by actigraphy, markedly increased during the experimental period compared to the periods prior to and following the experiment. These increases were primarily driven by a phase-advance shift of sleep onset. Subjective assessments of health and functioning did not reveal any relevant changes across the study. Conclusions: Our observations provide further evidence for the long-held belief that the absence of modern living conditions is associated with an earlier sleep phase and prolonged sleep duration. Commentary: A commentary on this article appears in this issue on page 723. Citation: Piosczyk H, Landmann N, Holz J, Feige B, Riemann D, Nissen C, Voderholzer U. Prolonged sleep under Stone Age conditions. J Clin Sleep Med 2014;10(7):719-722. PMID:25024647

  13. Stretch Band Exercise Program

    ERIC Educational Resources Information Center

    Skirka, Nicholas; Hume, Donald

    2007-01-01

    This article discusses how to use stretch bands for improving total body fitness and quality of life. A stretch band exercise program offers a versatile and inexpensive option to motivate participants to exercise. The authors suggest practical exercises that can be used in physical education to improve or maintain muscular strength and endurance,…

  14. Advanced resistive exercise device

    NASA Technical Reports Server (NTRS)

    Raboin, Jasen L. (Inventor); Niebuhr, Jason (Inventor); Cruz, Santana F. (Inventor); Lamoreaux, Christopher D. (Inventor)

    2008-01-01

    The present invention relates to an exercise device, which includes a vacuum cylinder and a flywheel. The flywheel provides an inertial component to the load, which is particularly well suited for use in space as it simulates exercising under normal gravity conditions. Also, the present invention relates to an exercise device, which has a vacuum cylinder and a load adjusting armbase assembly.

  15. Exercise and Your Heart.

    ERIC Educational Resources Information Center

    National Heart and Lung Inst. (DHHS/NIH), Bethesda, MD.

    This pamphlet presents information on the effects of physical activity on the heart and practical guidelines for starting and staying on an exercise program. The following topics are discussed: (1) the benefits of getting sufficient exercise; (2) possible risks in exercising compared to benefits; (3) when to seek doctor's advice and prevention of…

  16. Exercising in Cold Weather

    MedlinePlus

    ... www.nia.nih.gov/Go4Life Exercising in Cold Weather Exercise has benefits all year, even during winter. ... activities when it’s cold outside: l Check the weather forecast. If it’s very windy or cold, exercise ...

  17. Sleep, Exercise, and Nutrition.

    ERIC Educational Resources Information Center

    Harrelson, Orvis A.; And Others

    The first part of this booklet concerns why sleep and exercise are necessary. It includes a discussion of what occurs during sleep and what dreams are. It also deals with the benefits of exercise, fatigue, posture, and the correlation between exercise and personality. The second part concerns nutrition and the importance of food. This part covers…

  18. Exercise, Aging and Longevity.

    ERIC Educational Resources Information Center

    Brown, Stanley P.; Cundiff, David E.

    1988-01-01

    The question of whether or not a lifelong program of exercise actually has a bearing on longevity is discussed. The effects of exercise on the aging process, and the longevity-exercise relationship are reviewed. The conflicting evidence on the subject is presented. (JL)

  19. Japanese Radio Exercises. Revised.

    ERIC Educational Resources Information Center

    Young, Jocelyn

    This unit focuses on Japanese radio exercises which became popular in Japan just after World War II and are still used among students and workers in companies to help raise morale and form group unity. The exercises reflect the general role of exercise in Japanese culture--to serve as a symbol of unity and cooperation among the Japanese, as well…

  20. Prenatal exercise research.

    PubMed

    Field, Tiffany

    2012-06-01

    In this review of recent research on prenatal exercise, studies from several different countries suggest that only approximately 40% of pregnant women exercise, even though about 92% are encouraged by their physicians to exercise, albeit with some 69% of the women being advised to limit their exercise. A moderate exercise regime reputedly increases infant birthweight to within the normal range, but only if exercise is decreased in late pregnancy. Lower intensity exercise such as water aerobics has decreased low back pain more than land-based physical exercise. Heart rate and blood pressure have been lower following yoga than walking, and complications like pregnancy-induced hypertension with associated intrauterine growth retardation and prematurity have been less frequent following yoga. No studies could be found on tai chi with pregnant women even though balance and the risk of falling are great concerns during pregnancy, and tai chi is one of the most effective forms of exercise for balance. Potential underlying mechanisms for exercise effects are that stimulating pressure receptors during exercise increases vagal activity which, in turn, decreases cortisol, increases serotonin and decreases substance P, leading to decreased pain. Decreased cortisol is particularly important inasmuch as cortisol negatively affects immune function and is a significant predictor of prematurity. Larger, more controlled trials are needed before recommendations can be made about the type and amount of pregnancy exercise. PMID:22721740

  1. Prolonged grief disorder and depression in a German community sample.

    PubMed

    Schaal, Susanne; Richter, Anne; Elbert, Thomas

    2014-01-01

    The aims of this study were to examine rates and risk factors for prolonged grief and to investigate the association between prolonged grief and depression. The authors interviewed a heterogeneous bereaved sample of 61 Germans, 6 of whom had prolonged grief and depression, respectively. The 2 syndromes were strongly linked to one another. Risk factors for prolonged grief were being a woman and having high levels of religious beliefs and low levels of satisfaction with one's religious beliefs, emotional closeness to the deceased, and unanticipated loss. Symptoms of prolonged grief may endure years post-loss and often overlap with depression. PMID:24758218

  2. Exercise thermoregulation with bed rest, confinement, and immersion deconditioning

    NASA Technical Reports Server (NTRS)

    Greenleaf, J. E.

    1997-01-01

    Altered thermoregulation following exposure to prolonged (12-14 days) of bed rest and 6 hr of head-down thermoneutral water immersion in humans, and cage confinement (8 weeks) in male, mongrel dogs resulted in occasional increased core temperature (Tcore) at rest, but consistent "excessive" increase in Tcore during submaximal exercise. This excessive increase in Tcore in nonexercising and exercising subjects was independent of the mode (isometric or isotonic) of exercise training during bed rest, and was associated with the consistent hypovolemia in men but not in women taking estrogen supplementation (1.25 mg premarin/ day) which restored plasma volume during bed rest to ambulatory control levels. Post-bed rest exercise sweating (evaporative heat loss) was unchanged or higher than control levels; however, calculated tissue heat conductance was significantly lower in men, and forearm venoconstriction was greater (venous volume was reduced) in women during exercise after bed rest. Because sweating appeared proportional to the increased level of Tcore, these findings suggest that one major factor for the excessive hyperthermia is decreased core to periphery heat conduction. Exercising dogs respond like humans with excessive increase in both rectal (Tre) and exercising muscle temperatures (Tmu) after confinement and, after eight weeks of exercise training on a treadmill following confinement, they had an attenuated rate of increase of Tre even below ambulatory control levels. Intravenous infusion of glucose also attenuated not only the rise in Tre during exercise in normal dogs, but also the excessive rise in Tre and exercising Tmu after confinement. Oral glucose also appeared to reduce the rate of increase in excessive Tre in men after immersion deconditioning. There was a greater rate of rise in Tcore in two cosmonauts during supine submaximal exercise (65% VO2 max) on the fifth recovery day after the 115-day Mir 18 mission. Thus, the excessive rise in core

  3. Skeletal muscle responses to unweighting in humans

    NASA Technical Reports Server (NTRS)

    Dudley, Gary A.

    1991-01-01

    An overview of earth-based studies is presented emphasizing the data on muscular strength and size derived from experiments under simulated microgravity. The studies involve the elimination of weight-bearing responsibility of lower-limb human musculature to simulate the unweighting effects of space travel in the absence of exercise. Reference is given to bedrest and unilateral lower-limb suspension, both of which provide data that demonstrate the decreased strength of the knee extensors of 20-25 percent. The response is related to the decrease in cross-sectional area of the knee extensors which is a direct indication of muscle-fiber atrophy. Most of the effects of unweighting are associated with extensor muscles in the lower limbs and not with postural muscles. Unweighting is concluded to cause significant adaptations in the human neuromuscular system that require further investigation.

  4. Cardiovascular responses during hypoventilation at exercise.

    PubMed

    Woorons, X; Bourdillon, N; Lamberto, C; Vandewalle, H; Richalet, J-P; Mollard, P; Pichon, A

    2011-06-01

    This study aimed to determine the cardiovascular responses during a prolonged exercise with voluntary hypoventilation (VH). 7 men performed 3 series of 5-min exercise at 65% of normoxic maximal O (2) uptake under 3 conditions: (1) normal breathing (NB) in normoxia (NB (0.21)), (2) VH in normoxia (VH (0.21)), (3) NB in hypoxia (NB (0.157), inspired oxygen fraction=0.157). In both VH (0.21) and NB (0.157), there was a similar drop in arterial oxygen saturation and arterial O (2) content (CaO (2)) which were lower than in NB (0.21). Heart rate (HR), stroke volume, and cardiac output (-) were higher in VH (0.21) than in NB (0.21) during most parts of exercise whereas there was no difference between NB (0.157) and VH (0.21) or NB (0.21). HR variability analysis suggested an increased sympathetic modulation in VH (0.21) only. O (2) transport and oxygen uptake were generally not different between interventions. Mixed venous O (2) content (C-O (2)) was lower in NB (0.157) than in both VH (0.21) and NB (0.21) and not different between the latter. CaO (2)-C-O (2) was not different between NB (0.157) and NB (0.21) but lower in VH (0.21). This study shows that a prolonged exercise with VH leads to a greater cardiac activity, independent from the hypoxic effect. The greater - in VH compared to normal breathing seems to be the main factor for compensating the drop of arterial oxygen content. PMID:21563023

  5. Optimal use of fluids of varying formulations to minimise exercise-induced disturbances in homeostasis.

    PubMed

    Lamb, D R; Brodowicz, G R

    1986-01-01

    The rationale underlying the development of various formulations of beverages for consumption before, during, and/or after physical exercise is that such formulations should minimise some of the disturbances in physiological homeostasis that occur during exercise and thereby prevent injury and/or enhance performance. Exercise- and dehydration-induced increases in core temperature, body fluid osmolality, heart rate, losses of plasma and other body fluid volumes, and carbohydrate depletion are probably the most important homeostatic disturbances that can be ameliorated by fluid consumption. With the exception of athletes subject to hyponatraemia after consumption of ordinary water during prolonged activity, changes in electrolyte concentrations in the body fluids of most athletes do not justify the inclusion of electrolytes in fluid replacement beverages to be consumed during exercise. However, small amounts of sodium added to water does speed gastric emptying and fluid absorption from the intestine. Recent evidence suggests that a precompetition meal high in easily digested carbohydrates should be consumed not later than 5 to 6 hours before competition. There is little published research on the optimal composition of this meal. Water ingestion 30 to 60 minutes before exercise seems to be of benefit to temperature regulation and cardiovascular homeostasis if the exercise is of moderate intensity (50 to 65% VO2max), but probably has little effect at the higher intensities of athletic performance. There is no systematic evidence to support the inclusion of calcium or sodium chloride in drinks consumed an hour or 2 before exercise. Furthermore, if glucose solutions are fed 15 to 45 minutes before prolonged exercise, they will probably cause a fall in blood glucose during exercise and may adversely affect performance. These adverse effects are not present when fructose is consumed before exercise. Contrary to the adverse effects of glucose feedings 15 to 60 minutes

  6. Drug-induced QT interval prolongation: mechanisms and clinical management

    PubMed Central

    Nachimuthu, Senthil; Assar, Manish D.

    2012-01-01

    The prolonged QT interval is both widely seen and associated with the potentially deadly rhythm, Torsades de Pointes (TdP). While it can occur spontaneously in the congenital form, there is a wide array of drugs that have been implicated in the prolongation of the QT interval. Some of these drugs have either been restricted or withdrawn from the market due to the increased incidence of fatal polymorphic ventricular tachycardia. The list of drugs that cause QT prolongation continues to grow, and an updated list of specific drugs that prolong the QT interval can be found at www.qtdrugs.org. This review focuses on the mechanism of drug-induced QT prolongation, risk factors for TdP, culprit drugs, prevention and monitoring of prolonged drug-induced QT prolongation and treatment strategies. PMID:25083239

  7. Exercise and airway injury in athletes.

    PubMed

    Couto, Mariana; Silva, Diana; Delgado, Luis; Moreira, André

    2013-01-01

    Olympic level athletes present an increased risk for asthma and allergy, especially those who take part in endurance sports, such as swimming or running, and in winter sports. Classical postulated mechanisms behind EIA include the osmotic, or airway-drying, hypothesis. Hyperventilation leads to evaporation of water and the airway surface liquid becomes hyperosmolar, providing a stimulus for water to move from any cell nearby, which results in the shrinkage of cells and the consequent release of inflammatory mediators that cause airway smooth muscle contraction. But the exercise-induced asthma/bronchoconstriction explanatory model in athletes probably comprises the interaction between environmental training factors, including allergens and ambient conditions such as temperature, humidity and air quality; and athlete's personal risk factors, such as genetic and neuroimmuneendocrine determinants. After the stress of training and competitions athletes experience higher rate of upper respiratory tract infections (URTI), compared with lesser active individuals. Increasing physical activity in non-athletes is associated with a decreased risk of URTI. Heavy exercise induces marked immunodepression which is multifactorial in origin. Prolonged, high intensity exercise temporarily impairs the immune competence while moderate activity may enhance immune function. The relationship between URTI and exercise is affected by poorly known individual determinants such genetic susceptibility, neurogenic mediated immune inflammation and epithelial barrier dysfunction. Further studies should better define the aetiologic factors and mechanisms involved in the development of asthma in athletes, and propose relevant preventive and therapeutic measures. PMID:23697359

  8. Brain mapping after prolonged cycling and during recovery in the heat

    PubMed Central

    De Pauw, Kevin; Roelands, Bart; Marušič, Uroš; Tellez, Helio Fernandez; Knaepen, Kristel

    2013-01-01

    The aim of this study was to determine the effect of prolonged intensive cycling and postexercise recovery in the heat on brain sources of altered brain oscillations. After a max test and familiarization trial, nine trained male subjects (23 ± 3 yr; maximal oxygen uptake = 62.1 ± 5.3 ml·min−1·kg−1) performed three experimental trials in the heat (30°C; relative humidity 43.7 ± 5.6%). Each trial consisted of two exercise tasks separated by 1 h. The first was a 60-min constant-load trial, followed by a 30-min simulated time trial (TT1). The second comprised a 12-min simulated time trial (TT2). After TT1, active recovery (AR), passive rest (PR), or cold water immersion (CWI) was applied for 15 min. Electroencephalography was measured at baseline and during postexercise recovery. Standardized low-resolution brain electromagnetic tomography was applied to accurately pinpoint and localize altered electrical neuronal activity. After CWI, PR and AR subjects completed TT2 in 761 ± 42, 791 ± 76, and 794 ± 62 s, respectively. A prolonged intensive cycling performance in the heat decreased β activity across the whole brain. Postexercise AR and PR elicited no significant electrocortical differences, whereas CWI induced significantly increased β3 activity in Brodmann areas (BA) 13 (posterior margin of insular cortex) and BA 40 (supramarginal gyrus). Self-paced prolonged exercise in the heat seems to decrease β activity, hence representing decreased arousal. Postexercise CWI increased β3 activity at BA 13 and 40, brain areas involved in somatosensory information processing. PMID:23990240

  9. Brain mapping after prolonged cycling and during recovery in the heat.

    PubMed

    De Pauw, Kevin; Roelands, Bart; Marusic, Uros; Tellez, Helio Fernandez; Knaepen, Kristel; Meeusen, Romain

    2013-11-01

    The aim of this study was to determine the effect of prolonged intensive cycling and postexercise recovery in the heat on brain sources of altered brain oscillations. After a max test and familiarization trial, nine trained male subjects (23 ± 3 yr; maximal oxygen uptake = 62.1 ± 5.3 ml·min(-1)·kg(-1)) performed three experimental trials in the heat (30°C; relative humidity 43.7 ± 5.6%). Each trial consisted of two exercise tasks separated by 1 h. The first was a 60-min constant-load trial, followed by a 30-min simulated time trial (TT1). The second comprised a 12-min simulated time trial (TT2). After TT1, active recovery (AR), passive rest (PR), or cold water immersion (CWI) was applied for 15 min. Electroencephalography was measured at baseline and during postexercise recovery. Standardized low-resolution brain electromagnetic tomography was applied to accurately pinpoint and localize altered electrical neuronal activity. After CWI, PR and AR subjects completed TT2 in 761 ± 42, 791 ± 76, and 794 ± 62 s, respectively. A prolonged intensive cycling performance in the heat decreased β activity across the whole brain. Postexercise AR and PR elicited no significant electrocortical differences, whereas CWI induced significantly increased β3 activity in Brodmann areas (BA) 13 (posterior margin of insular cortex) and BA 40 (supramarginal gyrus). Self-paced prolonged exercise in the heat seems to decrease β activity, hence representing decreased arousal. Postexercise CWI increased β3 activity at BA 13 and 40, brain areas involved in somatosensory information processing. PMID:23990240

  10. Dengue haemorrhagic fever with unusual prolonged thrombocytopaenia.

    PubMed

    Kamil, S M; Mohamad, N H; Narazah, M Y; Khan, F A

    2006-04-01

    We describe a case of dengue haemorrhagic fever with prolonged thrombocytopaenia. A 22-year-old Malay man with no prior illness presented with a history of fever and generalised macular rash of four days duration. Initial work-up suggested the diagnosis of dengue haemorrhagic fever based on thrombocytopaenia and positive dengue serology. Patient recovered from acute illness by day ten, and was discharged from the hospital with improving platelet count. He was then noted to have declining platelet count on follow-up and required another hospital admission on day 19 of his illness because of declining platelet count. The patient remained hospitalised till day 44 of his illness and managed with repeated platelet transfusion and supportive care till he recovered spontaneously. PMID:16572249

  11. Bilateral Scapulohumeral Ankylosis after Prolonged Mechanical Ventilation.

    PubMed

    van Lotten, Manon L; Schreinemakers, J Rieneke; van Noort, Arthur; Rademakers, Maarten V

    2016-09-01

    This case demonstrates a rarely reported bilateral scapulohumeral bony ankylosis. A young woman developed extensive heterotopic ossifications (HOs) in both shoulder joints after being mechanically ventilated for several months at the intensive care unit in a comatose status. She presented with a severe movement restriction of both shoulder joints. Surgical resection of the bony bridges was performed in 2 separate sessions with a significant improvement of shoulder function afterwards. No postoperative complications, pain, or recurrence of HOs were noted at 1-year follow-up. Mechanical ventilation, immobilization, neuromuscular blockage, and prolonged sedation are known risk factors for the development of HOs in the shoulder joints. Relatively early surgical resection of the HOs can be performed safely in contrary to earlier belief. Afterwards, nonsteroidal anti-inflammatory drugs and/or radiation therapy can be possible treatment modalities to prevent recurrence of HOs. PMID:27583120

  12. Bilateral Scapulohumeral Ankylosis after Prolonged Mechanical Ventilation

    PubMed Central

    Schreinemakers, J. Rieneke; van Noort, Arthur; Rademakers, Maarten V.

    2016-01-01

    This case demonstrates a rarely reported bilateral scapulohumeral bony ankylosis. A young woman developed extensive heterotopic ossifications (HOs) in both shoulder joints after being mechanically ventilated for several months at the intensive care unit in a comatose status. She presented with a severe movement restriction of both shoulder joints. Surgical resection of the bony bridges was performed in 2 separate sessions with a significant improvement of shoulder function afterwards. No postoperative complications, pain, or recurrence of HOs were noted at 1-year follow-up. Mechanical ventilation, immobilization, neuromuscular blockage, and prolonged sedation are known risk factors for the development of HOs in the shoulder joints. Relatively early surgical resection of the HOs can be performed safely in contrary to earlier belief. Afterwards, nonsteroidal anti-inflammatory drugs and/or radiation therapy can be possible treatment modalities to prevent recurrence of HOs. PMID:27583120

  13. Liver and kidney metabolism during prolonged starvation

    PubMed Central

    Owen, Oliver E.; Felig, Philip; Morgan, Alfred P.; Wahren, John; Cahill, George F.

    1969-01-01

    This study quantifies the concentrations of circulating insulin, growth hormone, glucose, free fatty acids, glycerol, β-hydroxybutyrate, acetoacetate, and alpha amino nitrogen in 11 obese subjects during prolonged starvation. The sites and estimated rates of gluconeogenesis and ketogenesis after 5-6 wk of fasting were investigated in five of the subjects. Blood glucose and insulin concentrations fell acutely during the 1st 3 days of fasting, and alpha amino nitrogen after 17 days. The concentration of free fatty acids, β-hydroxybutyrate, and acetoacetate did not reach a plateau until after 17 days. Estimated glucose production at 5-6 wk of starvation is reduced to approximately 86 g/24 hr. Of this amount the liver contributes about one-half and the kidney the remainder. Approximately all of the lactate, pyruvate, glycerol, and amino acid carbons which are removed by liver and kidney are converted into glucose, as evidenced by substrate balances across these organs. Images PMID:5773093

  14. Prolonging Microgravity on Parabolic Airplane Flights

    NASA Technical Reports Server (NTRS)

    Robinson, David W.

    2003-01-01

    Three techniques have been proposed to prolong the intervals of time available for microgravity experiments aboard airplanes flown along parabolic trajectories. Typically, a pilot strives to keep an airplane on such a trajectory during a nominal time interval as long as 25 seconds, and an experimental apparatus is released to float freely in the airplane cabin to take advantage of the microgravitational environment of the trajectory for as long as possible. It is usually not possible to maintain effective microgravity during the entire nominal time interval because random aerodynamic forces and fluctuations in pilot control inputs cause the airplane to deviate slightly from a perfect parabolic trajectory, such that the freely floating apparatus bumps into the ceiling, floor, or a wall of the airplane before the completion of the parabola.

  15. The evolution of prolonged life after reproduction.

    PubMed

    Croft, Darren P; Brent, Lauren J N; Franks, Daniel W; Cant, Michael A

    2015-07-01

    Why females of some species cease ovulation before the end of their natural lifespan is a longstanding evolutionary puzzle. For many species in captivity, post-reproductive life is simply an epiphenomenon of lengthened lifespan. Yet in natural populations of humans as well as some cetaceans and insects, reproductive senescence occurs much faster than somatic aging and females exhibit prolonged post-reproductive lifespans (PRLSs). Determining the mechanisms and functions that underpin PRLSs has proved a significant challenge. Here we bring together both classic and modern hypotheses proposed to explain PRLSs and discuss their application to both human and nonhuman animals. By taking an integrative and broad taxonomic approach we highlight the need to consider multiple interacting explanations for the evolution of PRLSs. PMID:25982154

  16. The effect of high-intensity intermittent swimming on post-exercise glycogen supercompensation in rat skeletal muscle.

    PubMed

    Sano, Akiko; Koshinaka, Keiichi; Abe, Natsuki; Morifuji, Masashi; Koga, Jinichiro; Kawasaki, Emi; Kawanaka, Kentaro

    2012-01-01

    A single bout of prolonged endurance exercise stimulates glucose transport in skeletal muscles, leading to post-exercise muscle glycogen supercompensation if sufficient carbohydrate is provided after the cessation of exercise. Although we recently found that short-term sprint interval exercise also stimulates muscle glucose transport, the effect of this type of exercise on glycogen supercompensation is uncertain. Therefore, we compared the extent of muscle glycogen accumulation in response to carbohydrate feeding following sprint interval exercise with that following endurance exercise. In this study, 16-h-fasted rats underwent a bout of high-intensity intermittent swimming (HIS) as a model of sprint interval exercise or low-intensity prolonged swimming (LIS) as a model of endurance exercise. During HIS, the rats swam for eight 20-s sessions while burdened with a weight equal to 18% of their body weight. The LIS rats swam with no load for 3 h. The exercised rats were then refed for 4, 8, 12, or 16 h. Glycogen levels were almost depleted in the epitrochlearis muscles of HIS- or LIS-exercised rats immediately after the cessation of exercise. A rapid increase in muscle glycogen levels occurred during 4 h of refeeding, and glycogen levels had peaked at the end of 8 h of refeeding in each group of exercised refed rats. The peak glycogen levels during refeeding were not different between HIS- and LIS-exercised refed rats. Furthermore, although a large accumulation of muscle glycogen in response to carbohydrate refeeding is known to be associated with decreased insulin responsiveness of glucose transport, and despite the fact that muscle glycogen supercompensation was observed in the muscles of our exercised rats at the end of 4 h of refeeding, insulin responsiveness was not decreased in the muscles of either HIS- or LIS-exercised refed rats compared with non-exercised fasted control rats at this time point. These results suggest that sprint interval exercise

  17. Effects of Prolonged Centrifugation on Orthostasis

    NASA Technical Reports Server (NTRS)

    Cohen, Malcolm M..; Hargens, A. R.; Yates, B. J.; Bowley, Susan M. (Technical Monitor)

    2000-01-01

    A feasibility study conducted on the Ames 20-G Human Centrifuge examined how well humans can maintain orthostatic tolerance during and after prolonged exposures to hypergravity. Three adult males lived for periods of 22 hours in the centrifuge while it was at rest (1.00 G), and while it rotated at 9.38 RPM to provide 1.25 G-total at the mean radius of 7.62 m. Two participants also experienced 22-hour habitation sessions at 11.46 RPM, which provided 1.50 G-total. Both before and after each habitation session, the participants were given gradual onset rate (GOR) acceleration profiles at 0.067 G/sec to determine their Gz tolerance. In addition, cardiovascular responses were compared while subjects were supine, siting, and standing at various times during the habitation (stand test), and cardiovascular responsiveness was determined using a lower body negative pressure tilt table (LBNPTT) at the beginning of the experiment and after each session. Post-Pre changes in G tolerance were -0.33 (mean) +/- 0.11 (std. error) Gz for habitation at 1.00 G, -0.02 +/- 0.12 Gz for habitation at 1.25 G, and +0.41 +/- 0.13 Gz for habitation at 1.50 G. Performance on the stand test generally improved with duration of habitation in hypergravity. Our results suggest that habitation in a confined chamber at 1.00 G reduces G tolerance and leads to lowered LBNPTT tolerance. Exposure to increased G in the centrifuge leads to enhanced performance on the stand test, and to increased GOR acceleration tolerance, but only when fluid balance is maintained; when motion sickness and negative fluid balance were observed, G tolerance was reduced. The data indicate that enhanced G tolerance can result from prolonged exposure to hypergravity, but that these changes are complex and depend on multiple underlying physiological processes.

  18. Prolonged space flight-induced alterations in the structure and function of human skeletal muscle fibres

    PubMed Central

    Fitts, R H; Trappe, S W; Costill, D L; Gallagher, P M; Creer, A C; Colloton, P A; Peters, J R; Romatowski, J G; Bain, J L; Riley, D A

    2010-01-01

    The primary goal of this study was to determine the effects of prolonged space flight (∼180 days) on the structure and function of slow and fast fibres in human skeletal muscle. Biopsies were obtained from the gastrocnemius and soleus muscles of nine International Space Station crew members ∼45 days pre- and on landing day (R+0) post-flight. The main findings were that prolonged weightlessness produced substantial loss of fibre mass, force and power with the hierarchy of the effects being soleus type I > soleus type II > gastrocnemius type I > gastrocnemius type II. Structurally, the quantitatively most important adaptation was fibre atrophy, which averaged 20% in the soleus type I fibres (98 to 79 μm diameter). Atrophy was the main contributor to the loss of peak force (P0), which for the soleus type I fibre declined 35% from 0.86 to 0.56 mN. The percentage decrease in fibre diameter was correlated with the initial pre-flight fibre size (r = 0.87), inversely with the amount of treadmill running (r = 0.68), and was associated with an increase in thin filament density (r = 0.92). The latter correlated with reduced maximal velocity (V0) (r = −0.51), and is likely to have contributed to the 21 and 18% decline in V0 in the soleus and gastrocnemius type I fibres. Peak power was depressed in all fibre types with the greatest loss (∼55%) in the soleus. An obvious conclusion is that the exercise countermeasures employed were incapable of providing the high intensity needed to adequately protect fibre and muscle mass, and that the crew's ability to perform strenuous exercise might be seriously compromised. Our results highlight the need to study new exercise programmes on the ISS that employ high resistance and contractions over a wide range of motion to mimic the range occurring in Earth's 1 g environment. PMID:20660569

  19. Effect of exercise intensity on postexercise energy expenditure in women.

    PubMed Central

    Sedlock, D A

    1991-01-01

    This study was designed to examine the effect of exercise intensity on the magnitude and duration of excess postexercise oxygen consumption (EPOC) in women. On separate days and in a counterbalanced order, seven moderately active young adult women performed a 850 kJ cycle ergometer exercise at an intensity of 40 or 60% of their previously determined peak oxygen uptake (VO2). Baseline VO2 and heart rate (HR) were recorded during the last 10 min of a 45 min seated rest. VO2 and HR were measured continuously during recovery until VO2 returned to baseline. There was no significant difference noted in the baseline measures between the two exercise programmes. Magnitude of EPOC was comparable (P greater than 0.05) being mean (s.d.) of 30(17) and 36(13) kJ after 40 and 60% exercises respectively. Although the EPOC duration was 53% longer following the 40% exercise than following 60% (27(15) min and 18(8) min, respectively) this difference was not statistically significant. These exercise conditions failed to produce a prolonged EPOC in the women of this study, and values recorded for magnitude of EPOC indicate that it was not significant with regard to the overall energy expenditure of the activity. It was concluded that both magnitude and duration of EPOC seemed to be independent of the chosen exercise intensities used by the women in this study. PMID:1913030

  20. Prolonged Sleep Deprivation and Continuous Exercise: Effects on Melatonin, Tympanic Temperature, and Cognitive Function

    PubMed Central

    Davis, Greggory R.; Etheredge, Corey E.; Marcus, Lena; Bellar, David

    2014-01-01

    The purpose of this study was to examine tympanic temperature, melatonin, and cognitive function during a 36-hour endurance event. Nine male and three female participants took part in a 36-hour sustained endurance event without sleep (N = 12, mean age = 31.8 ± 5.0 yrs). Participants were stopped for data collection at checkpoints throughout the 36-hour event. Tympanic temperature was assessed, a psychomotor vigilance test (PVT) was administered, and saliva samples were collected. Salivary melatonin was determined via immunoassay. During the 36 hours of competition, melatonin levels were negatively correlated with the day of the race (rs = −0.277, P = 0.039) and positively associated with nighttime (rs = 0.316, P = 0.021). Significant main effects of tympanic temperature (P < 0.001), day of the competition (P = 0.018), and a tympanic temperature ∗ day of competition interaction (P < 0.001) were used to predict minor lapses in attention. No associations between melatonin levels and cognitive function were observed (P > 0.05). During the event tympanic temperature declined and was associated with an increase in lapses in attention. With sustained endurance events becoming more popular future research is warranted to evaluate the physiological impact of participation. PMID:25110695

  1. Intensive exercise training suppresses testosterone during bed rest

    NASA Technical Reports Server (NTRS)

    Wade, C. E.; Stanford, K. I.; Stein, T. P.; Greenleaf, J. E.

    2005-01-01

    Spaceflight and prolonged bed rest (BR) alter plasma hormone levels inconsistently. This may be due, in part, to prescription of heavy exercise as a countermeasure for ameliorating the adverse effects of disuse. The initial project was to assess exercise programs to maintain aerobic performance and leg strength during BR. The present study evaluates the effect of BR and the performance of the prescribed exercise countermeasures on plasma steroid levels. In a 30-day BR study of male subjects, the efficacy of isotonic (ITE, n = 7) or isokinetic exercise (IKE, n = 7) training was evaluated in contrast to no exercise (n = 5). These exercise countermeasures protected aerobic performance and leg strength successfully. BR alone (no-exercise group) did not change steroidogenesis, as assessed by the plasma concentrations of cortisol, progesterone, aldosterone, and free (FT) and total testosterone (TT). In the exercise groups, both FT and TT were decreased (P < 0.05): FT during IKE from 24 +/- 1.7 to 18 +/- 2.0 pg/ml and during ITE from 21 +/- 1.5 to 18 +/- 1 pg/ml, and TT during IKE from 748 +/- 68 to 534 +/- 46 ng/dl and during ITE from 565 +/- 36 to 496 +/- 38 ng/dl. The effect of intensive exercise countermeasures on plasma testosterone was not associated with indexes of overtraining. The reduction in plasma testosterone associated with both the IKE and ITE countermeasures during BR supports our hypothesis that intensive exercise countermeasures may, in part, contribute to changes in plasma steroid concentrations during spaceflight.

  2. Effects of positional restraint on oxygen saturation and heart rate following exercise.

    PubMed

    Reay, D T; Howard, J D; Fligner, C L; Ward, R J

    1988-03-01

    This report assesses the effects on peripheral oxygen saturation and heart rate that positional restraint induces when a person is prone, handcuffed, and "hog-tied." Peripheral oxygen saturation and heart rate were monitored at rest, during exercise, and during recovery from exercise for 10 adult subjects. The effects of positional restraint produced a mean recovery time that was significantly prolonged. Consequently, the physiological effects produced by positional restraint should be recognized in deaths where such measures are used. PMID:3354518

  3. Prolonged administration of recombinant human erythropoietin increases submaximal performance more than maximal aerobic capacity.

    PubMed

    Thomsen, J J; Rentsch, R L; Robach, P; Calbet, J A L; Boushel, R; Rasmussen, P; Juel, C; Lundby, C

    2007-11-01

    The effects of recombinant human erythropoietin (rHuEpo) treatment on aerobic power (VO2max) are well documented, but little is known about the effects of rHuEpo on submaximal exercise performance. The present study investigated the effect on performance (ergometer cycling, 20-30 min at 80% of maximal attainable workload), and for this purpose eight subjects received either 5,000 IU rHuEpo or placebo every second day for 14 days, and subsequently a single dose of 5,000 IU/placebo weekly/10 weeks. Exercise performance was evaluated before treatment and after 4 and 11 weeks of treatment. With rHuEpo treatment VO2max increased (P<0.05) by 12.6 and 11.6% in week 4 and 11, respectively, and time-to-exhaustion (80% VO2max) was increased by 54.0 and 54.3% (P<0.05) after 4 and 11 weeks of treatment, respectively. However, when normalizing the workload to the same relative intensity (only done at time point week 11), TTE was decreased by 26.8% as compared to pre rHuEpo administration. In conclusion, in healthy non-athlete subjects rHuEpo administration prolongs submaximal exercise performance by about 54% independently of the approximately 12% increase in VO2max. PMID:17668232

  4. The effect of exercise on coagulation and fibrinolysis factors in patients with peripheral arterial disease.

    PubMed

    Patelis, Nikolaos; Karaolanis, Georgios; Kouvelos, Georgios N; Hart, Collin; Metheiken, Sean

    2016-09-01

    Peripheral arterial disease is a widely prevalent atherosclerotic occlusive disorder. Symptoms commence with exercise-induced pain in the lower extremities, known as claudication. Despite the fact that exercise has been shown to improve fibrinolytic profile some patients, the effect of exercise on coagulation and fibrinolysis cascades in claudicants has not been comprehensively defined. Literature search in English language yielded 13 studies of exercise on claudicants, including 420 patients. Claudicants tend to have a higher coagulation activity at rest compared to healthy individuals, a trend that persists even after exercise. Post-exercise coagulation activity of claudicants is increased when compared to their respective baseline levels, but it is so in a non-consistent manner. From the available data, it has been suggested that claudicants have a functional and effective fibrinolytic mechanism in place, operating continuously at a relatively higher activity level compared to healthy individuals. Fibrinolysis seems to be activated by exercise; a positive outcome with a prolonged effect as shown by a few of the studies. A final conclusion whether coagulation or fibrinolysis activity is affected mostly by exercise type and intensity in claudicants could not be answered. All conclusions regarding the effect of exercise on the coagulation and fibrinolysis mechanisms should be taken under cautious consideration, due to the limited number of studies, the small number of patients and the different exercise strategies employed in each study. Further randomized studies with similar exercise protocols could provide safer conclusions in the future. PMID:27444152

  5. Ursolic acid stimulates mTORC1 signaling after resistance exercise in rat skeletal muscle.

    PubMed

    Ogasawara, Riki; Sato, Koji; Higashida, Kazuhiko; Nakazato, Koichi; Fujita, Satoshi

    2013-09-15

    A recent study identified ursolic acid (UA) as a potent stimulator of muscle protein anabolism via PI3K/Akt signaling, thereby suggesting that UA can increase Akt-independent mTOR complex 1 (mTORC1) activation induced by resistance exercise via Akt signaling. The purpose of the present study was to investigate the effect of UA on resistance exercise-induced mTORC1 activation. The right gastrocnemius muscle of male Sprague-Dawley rats aged 11 wk was isometrically exercised via percutaneous electrical stimulation (stimulating ten 3-s contractions per set for 5 sets), while the left gastrocnemius muscle served as the control. UA or placebo (PLA; corn oil only) was injected intraperitoneally immediately after exercise. The rats were killed 1 or 6 h after the completion of exercise and the target tissues removed immediately. With placebo injection, the phosphorylation of p70(S6K) at Thr(389) increased 1 h after resistance exercise but attenuated to the control levels 6 h after the exercise. On the other hand, the augmented phosphorylation of p70(S6K) was maintained even 6 h after exercise when UA was injected immediately after exercise. A similar trend of prolonged phosphorylation was observed in PRAS40 Thr(246), whereas UA alone or resistance exercise alone did not alter its phosphorylation level at 6 h after intervention. These results indicate that UA is able to sustain resistance exercise-induced mTORC1 activity. PMID:23900420

  6. Cardiorespiratory effects of water ingestion during and after exercise

    PubMed Central

    2013-01-01

    Background In prolonged exercise, the state of hypohydration due to sweating raises physiological stress and induces a drop in sports performance. However, the impact of water intake in cardiorespiratory parameters when administered during and after physical activity has not been well studied. This study aimed to analyze the effects of water intake in heart rate (HR), systolic blood pressure (SBP), diastolic blood pressure (DBP), partial oxygen saturation (SpO2) and respiratory rate during and after prolonged exercise. Methods Thirty-one young males (21.55 ± 1.89 yr) performed three different protocols (48 h interval between each stage): I) maximal exercise test to determine the load for the protocols; II) Control protocol (CP) and; III) Experimental protocol (EP). The protocols consisted of 10 min at rest with the subject in the supine position, 90 min of treadmill exercise (60% of VO2 peak) and 60 min of rest placed in the dorsal decubitus position. No rehydration beverage consumption was allowed during CP. During EP, however, the subjects were given water (Vittalev, Spaipa, Brazil). The parameters HR, SBP, DBP, SpO2 and respiratory rate were measured at the end of the rest, in 30, 60 and 90 minutes of the activity, except the respiratory rate parameter, and at 1, 3, 5, 7, 10, 20, 30, 40, 50 and 60 minute post- exercise. Results The hydration protocol provided minimal changes in SBP and DBP and a smaller increase in HR and did not significantly affect SpO2 during exercise and better HR recovery, faster return of SBP and DBP and a better performance for SpO2 and respiratory rate post-exercise. Conclusion Hydration with water influenced the behavior of cardiorespiratory parameters in healthy young subjects. PMID:24059759

  7. Grace's story: prolonged incestuous abuse from childhood into adulthood.

    PubMed

    Salter, Michael

    2013-02-01

    Some sexually abused women in mental health settings are reporting prolonged incest and yet little is known about the circumstances that enable fathers to sexually abuse their daughters over a period of decades. This article draws from the life history of Grace, a woman who survived prolonged incest, in order to document and analyze the interplay of familial, social, and political factors that entrap girls and women within prolonged incestuous abuse. PMID:23420835

  8. A geometric interpretation of prolongation by means of connections

    NASA Astrophysics Data System (ADS)

    Bracken, Paul

    2010-11-01

    A geometric interpretation of prolongation can be formulated by using the theory of connections. A fiber bundle can be established which is composed of a base manifold and variables which span a prolongation space. A particular connection is introduced in terms of these coordinates. This provides a very different way of viewing the technique and for introducing prolongation algebras as well as generating integrable equations in a novel way.

  9. Aging, exercise, and attention.

    PubMed

    Hawkins, H L; Kramer, A F; Capaldi, D

    1992-12-01

    The authors investigated the relationship among aging, attentional processes, and exercise in 2 experiments. First they examined age differences on 2 attentional tasks, a time-sharing task and an attentional flexibility task. Young adults alternated attention between 2 sequenced tasks more rapidly and time-shared the processing of 2 tasks more efficiently than older adults. They then investigated the effects of aerobic exercise on the same 2 attentional tasks in older adults. Following the 10-week exercise program, older exercisers showed substantially more improvement in alternation speed and time-sharing efficiency than older controls. Interestingly, this exercise effect was specific to dual-task processing. Both groups of subjects showed equivalent effects on single-task performance. These results indicate that aerobic exercise can exert a beneficial influence on the efficiency of at least 2 different attentional processes in older adults. PMID:1466833

  10. Candidate Exercise Technologies and Prescriptions

    NASA Technical Reports Server (NTRS)

    Loerch, Linda H.

    2010-01-01

    This slide presentation reviews potential exercise technologies to counter the effects of space flight. It includes a overview of the exercise countermeasures project, a review of some of the candidate exercise technologies being considered and a few of the analog exercise hardware devices, and a review of new studies that are designed to optimize the current and future exercise protocols.

  11. Exercise for the Overweight Patient.

    ERIC Educational Resources Information Center

    Work, Janis A.

    1990-01-01

    Exercise can help patients maintain lean body mass during weight loss. Although exercise is not extremely useful in shedding excess pounds, it helps keep off weight lost through calorie restriction. This article discusses the specifics of exercise prescription, types of exercise, motivation to exercise, and special problems such as diabetes. (SM)

  12. Gluteal compartment syndrome after prolonged immobilisation.

    PubMed

    Liu, H L; Wong, David S Y

    2009-04-01

    Muscles in the gluteal region are confined by distinct fascial attachments which can potentially result in compartment syndrome. A 74-year-old chronic drinker was admitted to the medical ward after being found drunk on the street. He noticed acute painful swelling of the right side of his buttock the following morning and recalled a slip and fall prior to his blackout. The whole right half of the buttock was tense with erythematous overlying skin. Examination revealed sciatic nerve palsy and myoglobinuria. Emergency fasciotomy and debridement were performed. Intra-operative pressure measurement confirmed a grossly elevated intra-compartmental pressure. Gluteal compartment syndrome is an extremely rare condition and has only been scantily documented previously in case reports. Early diagnosis is crucial but delay recognition is common from lack of knowledge of the condition and readily results in permanent sciatic nerve injury and acute renal shutdown from myoglobinuria. Awareness of the condition, early diagnosis and prompt exploration provide the only chance of avoiding these devastating consequences. Acute swelling diffusely affecting the whole or one side of the buttock, a history of trauma and prolonged local pressure impingement associated with pain out of proportion to the clinical signs should raise a suspicion of this rare condition. PMID:19423461

  13. Are steady magnetospheric convection events prolonged substorms?

    NASA Astrophysics Data System (ADS)

    Walach, M.-T.; Milan, S. E.

    2015-03-01

    Magnetospheric modes, including substorms, sawtooth events, and steady magnetospheric convection events, have in the past been described as different responses of the magnetosphere to coupling with the solar wind. Using previously determined event lists for sawtooth events, steady magnetospheric convection events, and substorms, we produce a statistical study of these event types to examine their similarities and behavior in terms of solar wind parameters, auroral brightness, open magnetospheric flux, and geomagnetic indices. A superposed epoch analysis shows that individual sawteeth show the same signatures as substorms but occur during more extreme cases of solar wind driving as well as geomagnetic activity. We also explore the limitations of current methods of identifying steady magnetospheric convection events and explain why some of those events are flagged inappropriately. We show that 58% of the steady magnetospheric convection events considered, as identified by criteria defined in previous studies are part of a prolonged version of substorms due to continued dayside driving during expansion phase. The remaining 42% are episodes of enhanced magnetospheric convection, occurring after extended periods of dayside driving.

  14. [A case of prolonged paroxysmal sympathetic hyperactivity].

    PubMed

    Yamamoto, Akiko; Ide, Shuhei; Iwasaki, Yuji; Kaga, Makiko; Arima, Masataka

    2016-03-01

    We report the case of a 4-year-old girl who presented with paroxysmal sympathetic hyperactivity (PSH), after developing severe hypoxic-ischemic-encephalopathy because of cardiopulmonary arrest. She showed dramatic paroxysmal sympathetic activity with dystonia. She was treated with wide variety of medications against PSH, which were found to be effective in previous studies. Among them, morphine, bromocriptine, propranolol, and clonidine were effective in reducing the frequency of her attacks while gabapentin, baclofen, dantrolene, and benzodiazepine were ineffective. Though the paroxysms decreased markedly after the treatment, they could not be completely controlled beyond 500 days. Following the treatment, levels of plasma catecholamines and their urinary metabolites decreased to normal during inter- paroxysms. However, once a paroxysm had recurred, these levels were again very high. This case study is considered significant for two rea- sons. One is that PSH among children have been rarely reported, and the other is that this case of prolonged PSH delineated the transition of plasma catecholamines during the treatment. The excitatory: inhibitory ratio (EIR) model proposed by Baguley was considered while dis- cussing drug sensitivity in this case. Accumulation of similar case studies will help establish more effective treatment strategies and elucidate the pathophysiology of PSH. PMID:27149743

  15. Prolonged and recurrent fevers in children.

    PubMed

    Marshall, Gary S

    2014-01-01

    Some children referred for prolonged fever are actually not having elevated temperatures; the approach here requires dissection of the history and correction of health misperceptions. Others have well-documented fevers associated with clinical, laboratory, or epidemiologic findings that should point to a specific diagnosis. "Fever-of-Unknown-Origin" (FUO) is the clinical scenario of daily fever for ≥ 14 days that defies explanation after a careful history, physical examination, and basic laboratory tests. The diagnostic approach requires a meticulous fever diary, serial clinical and laboratory evaluations, vigilance for the appearance of new signs and symptoms, and targeted investigations; the pace of the work-up is determined by the severity of the illness. Approximately half of children with FUO will have a self-limited illness and will never have a specific diagnosis made; the other half will ultimately be found to have, in order, infectious, inflammatory, or neoplastic conditions. Irregular, intermittent, recurrent fevers in the well-appearing child are likely to be sequential viral illnesses. Monogenic autoinflammatory diseases should be considered in those who do not fit the picture of recurrent infections and who do not have hallmarks of immune deficiency. Stereotypical febrile illnesses that recur with clockwork periodicity should raise the possibilities of cyclic neutropenia, if the cycle is approximately 21 days, or periodic fever, aphthous stomatitis, pharyngitis, and adenitis (PFAPA) syndrome, the most common periodic fever in childhood. PMID:24120354

  16. Exercise in cancer

    PubMed Central

    Rajarajeswaran, P.; Vishnupriya, R.

    2009-01-01

    Physical exercise has attracted increased interest in rehabilitation of oncological patients. The purpose of this paper is to review the literature and summarize the evidence of physical exercise in preventing cancer, its ability in attenuating the effect of cancer and its treatments and to provide guidelines for exercise prescription Review of recent literature by electronic search of MEDline (Pub Med), Cancer lit, Cochrane libraries, CINAHL were done using Keywords and the variables were identified and systematically evaluated. There is strong evidence for reduced risk of colorectal and breast cancer with possible association for prostate, endometrial and lung cancer with increasing physical activity. Exercise helps cancer survivors cope with and recover from treatment; exercise may improve the health of long term cancer survivors and extend survival. Physical exercise will benefit throughout the spectrum of cancer. However, an understanding of the amount, type and intensity of exercise needed has not been fully elucidated. There is sufficient evidence to promote exercise in cancer survivors following careful assessment and tailoring on exercise prescription. PMID:20596305

  17. Drug- and non-drug-associated QT interval prolongation

    PubMed Central

    van Noord, Charlotte; Eijgelsheim, Mark; Stricker, Bruno H Ch

    2010-01-01

    Sudden cardiac death is among the most common causes of cardiovascular death in developed countries. The majority of sudden cardiac deaths are caused by acute ventricular arrhythmia following repolarization disturbances. An important risk factor for repolarization disturbances is use of QT prolonging drugs, probably partly explained by gene–drug interactions. In this review, we will summarize QT interval physiology, known risk factors for QT prolongation, including drugs and the contribution of pharmacogenetics. The long QT syndrome can be congenital or acquired. The congenital long QT syndrome is caused by mutations in ion channel subunits or regulatory protein coding genes and is a rare monogenic disorder with a mendelian pattern of inheritance. Apart from that, several common genetic variants that are associated with QT interval duration have been identified. Acquired QT prolongation is more prevalent than the congenital form. Several risk factors have been identified with use of QT prolonging drugs as the most frequent cause. Most drugs that prolong the QT interval act by blocking hERG-encoded potassium channels, although some drugs mainly modify sodium channels. Both pharmacodynamic as well as pharmacokinetic mechanisms may be responsible for QT prolongation. Pharmacokinetic interactions often involve drugs that are metabolized by cytochrome P450 enzymes. Pharmacodynamic gene–drug interactions are due to genetic variants that potentiate the QT prolonging effect of drugs. QT prolongation, often due to use of QT prolonging drugs, is a major public health issue. Recently, common genetic variants associated with QT prolongation have been identified. Few pharmacogenetic studies have been performed to establish the genetic background of acquired QT prolongation but additional studies in this newly developing field are warranted. PMID:20642543

  18. Exercise and diabetes.

    PubMed

    Zisser, H; Gong, P; Kelley, C M; Seidman, J S; Riddell, M C

    2011-02-01

    Diet and exercise form the foundation of a healthy lifestyle. These are especially important for people living with diabetes mellitus, as they are the most practical non-pharmacological means by which patients may significantly improve their blood glucose levels. Exercise increases insulin sensitivity (both short and long term), lowers blood sugar levels, reduces body fat and improves cardiovascular (CV) function. Because of this, exercise offers enormous benefit to patients with diabetes. Blood glucose levels can significantly drop during and after physical activities, due to the increased utilisation of glucose as a fuel during exercise and the up-regulation of glucose transport into working muscles. Therefore, patients (especially those with type 1 diabetes) must account for the effects of exercise and adjust their medications and nutrition accordingly. Improvements in real-time continuous glucose monitoring and optimisation of basal insulin dosing may offer significant benefit to preventing hypoglycaemia in patients with type 1 diabetes who regularly exercise. Diverse exercise programmes and devices can also assist patients in monitoring their activities as well as motivating them to achieve their exercise goals. For patients with type 1 diabetes, questions such as how much, how long, how strenuous and what kind of exercise must be addressed in order for healthcare professionals to offer maximum benefit to their patients. Additionally, since patients with type 2 diabetes often have other significant co-morbidities such as obesity and CV disease, care providers must evaluate each patient's risk factors before designing an exercise programme. Several publications in the last year have addressed these issues and may serve as a valuable resource to provide safe and effective recommendations to patients and their healthcare providers. To be included in the Exercise and Diabetes chapter for the 2010 YEARBOOK, we reviewed leading peer-reviewed manuscripts that were

  19. Effect of Daytime Exercise on Sleep Eeg and Subjective Sleep

    NASA Astrophysics Data System (ADS)

    Sasazawa, Y.; Kawada, T.; Kiryu, Y.

    1997-08-01

    This study was designed to assess the effects of daytime physical exercise on the quality of objective and subjective sleep by examining all-night sleep EEGs. The subjects were five male students, aged 19 to 20 years, who were in the habit of performing regular daytime exercise. The sleep polygraphic parameters in this study were sleep stage time as a percentage of total sleep time (%S1, %S2, %S(3+4), %SREM, %MT), time in bed (TIB), sleep time (ST), total sleep time (TST), sleep onset latency (SOL), waking from sleep, sleep efficiency, number of awakenings, number of stage shifts, number of spindles, and percentages of α and δ waves, all of which were determined by an automatic computer analysis system. The OSA questionnaire was used to investigate subjective sleep. The five scales of the OSA used were sleepiness, sleep maintenance, worry, integrated sleep feeling, and sleep initiation. Each sleep parameter was compared in the exercise and the non-exercise groups. Two-way analysis of variance was applied using subject factor and exercise factor. The main effect of the subject was significant in all parameters and the main effect of exercise in %S(3+4), SOL and sleep efficiency, among the objective sleep parameters. The main effects of the subject, except sleepiness, were significant, as was the main effect of exercise on sleep initiation, among the subjective sleep parameters. These findings suggest that daytime exercise shortened sleep latency and prolonged slow-wave sleep, and that the subjects fell asleep more easily on exercise days. There were also significant individual differences in both the objective and subjective sleep parameters.

  20. Exercises to help prevent falls

    MedlinePlus

    ... can be active You can do the following exercises anytime and almost anywhere. As you get stronger, ... your ankles. This will increase how effective the exercise is. Try to exercise 2 or more days ...

  1. Exercises to help prevent falls

    MedlinePlus

    ... this page: //medlineplus.gov/ency/patientinstructions/000493.htm Exercises to help prevent falls To use the sharing ... and easily. Do not hold your breath. Balance exercises You can do some balance exercises during everyday ...

  2. Stay active and exercise - arthritis

    MedlinePlus

    ... your overall health and sense of well-being. Exercise keeps your muscles strong and increases your range ... Water exercises may be the best exercise for your arthritis. Swimming laps, water aerobics, or even just walking in ...

  3. Exercises to Improve Gait Abnormalities

    MedlinePlus

    ... Home About iChip Articles Directories Videos Resources Contact Exercises to Improve Gait Abnormalities Home » Article Categories » Exercise and Fitness Font Size: A A A A Exercises to Improve Gait Abnormalities Next Page The manner ...

  4. Pelvic floor muscle training exercises

    MedlinePlus

    Pelvic floor muscle training exercises are a series of exercises designed to strengthen the muscles of the pelvic floor. ... Pelvic floor muscle training exercises are recommended for: Women ... Men with urinary stress incontinence after prostate surgery ...

  5. Neuromuscular adaptations during submaximal prolonged cycling.

    PubMed

    Castronovo, A M; De Marchis, C; Bibbo, D; Conforto, S; Schmid, M; D'Alessio, T

    2012-01-01

    This study aims at evaluating the neuromuscular adaptations occurring during submaximal prolonged cycling tasks. In particular, we want to assess changes in surface electromyographic (sEMG) signal recorded during a pedaling task, performed by six subjects on a cycle-simulator at a constant power output, until voluntary exhaustion. Task failure was defined as the instant the subject was no longer able to maintain the required task. Electromyographic activity was recorded from eight muscles of the dominant leg and burst characteristics of sEMG signals were analyzed in order to assess the changes in muscle activity level produced by the occurrence of neuromuscular fatigue. In particular, three features were extracted from the sEMG signal for each burst: amplitude, location of the maxima and mean profile of the burst envelope. We have reported an increase in the amplitude parameter for all subjects only for Vastii while bi-articular muscles presented a high variability among subjects. Also the location of the maximal values of the mean envelope of the bursts was found to change when considering bi-articular or mono-articular muscles. The envelope profile was found not to be subject to alterations when comparing the end of the task with the beginning. We speculated that neuromuscular fatigue induces changes essentially in the mono-articular muscles which produce power. This phenomenon is highly correlated with the adopted pedaling strategy which, being not constrained, induces subjects to express the maximal power in the downstroke phase, related to knee extension and involving mainly mono-articular muscles. PMID:23366709

  6. Recovery After Prolonged Bed-Rest Deconditioning

    NASA Technical Reports Server (NTRS)

    Greenleaf, John E.; Quach, David T.

    2003-01-01

    Recovery data were analyzed from normal healthy test subjects maintained in the horizontal or head-down body position in well-controlled bed rest (BR) studies in which adherence to the well-designed protocol was monitored. Because recovery data were almost always of secondary importance to the data collected during the BR period, there was little consistency in the recovery experimental designs regarding control factors (e.g., diet or exercise), duration, or timing of data collection. Thus, only about half of the BR studies that provided appropriate data were analyzed here. These recovery data were sorted into two groups: those from BR protocols of less than 37 days, and those from protocols greater than 36 days. There was great disparity in the unchanged responses at the end of BR in these two groups. Likewise with the variables that required more than 40 days for recovery; for example, some immune variables required more than 180 days. Knowledge of the recovery process after BR in healthy people should assist rehabilitation workers in differentiating "healthy" BR recovery responses from those of the infirmity of sick or injured patients; this should result in more appropriate and efficient health care.

  7. QT prolongation and torsades de pointes with psychotropic agents

    PubMed Central

    Desai, Nagaraj; Venkatesh, Chilkunda Raviprakash; Kumar, Shambu Sunil

    2015-01-01

    The unexpected and catastrophic cardiovascular effects of psychotropic drugs are well described albeit uncommon. The list of drugs which have been associated with prolonging QT interval and hence potentially causing Torsades de pointes is exhaustive. The insight into the plausible mechanisms are largely unclear. However, the practical implications of anticipating and recognizing QT prolongation cannot be overemphasized. PMID:26600587

  8. Epidemiology of prolonged testicular infections with bovine viral diarrhea virus.

    PubMed

    Givens, M Daniel; Riddell, Kay P; Edmondson, Misty A; Walz, Paul H; Gard, Julie A; Zhang, Yijing; Galik, Patricia K; Brodersen, Bruce W; Carson, Robert L; Stringfellow, David A

    2009-10-20

    Previously, bovine viral diarrhea virus (BVDV) had been found in prolonged testicular infections following acute infection of immunocompetent bulls. The primary purpose of this research was to evaluate the production and maintenance of prolonged testicular infections after exposure to BVDV of seronegative bulls in varying circumstances. The secondary objective was to initiate assessment of the potential for transmission of BVDV via semen of bulls exhibiting a prolonged testicular infection. In total, 10 research trials were conducted. The first trial examined the duration of detectable virus in semen after intranasal inoculation of peri-pubertal bulls. The second to fifth trials examined the potential for prolonged testicular infections resulting from natural exposure of seronegative bulls to persistently infected heifers. In the last five trials, the potential for viral transmission from bulls exhibiting prolonged testicular infections to a small number of exposed animals (n=28) was evaluated. Results of this research demonstrated that prolonged testicular infections could result in detection of viral RNA in semen for 2.75 years with infectious virus grown from testicular tissue 12.5 months after viral exposure. A type 1b strain of BVDV caused prolonged testicular infection after natural exposure of seronegative bulls to a persistently infected heifer. However, transmission of BVDV to susceptible animals was not detected in the final five trials of this research. In conclusion, BVDV can persist in testicular tissue after acute infection for several years, but the potential for viral transmission from these prolonged testicular infections appears to be low. PMID:19473788

  9. Prolonged Field Care Working Group Fluid Therapy Recommendations.

    PubMed

    Baker, Benjamin L; Powell, Doug; Riesberg, Jamie; Keenan, Sean

    2016-01-01

    The Prolonged Field Care Working Group concurs that fresh whole blood (FWB) is the fluid of choice for patients in hemorrhagic shock, and the capability to transfuse FWB should be a basic skill set for Special Operations Forces (SOF) Medics. Prolonged field care (PFC) must also address resuscitative and maintenance fluid requirements in nonhemorrhagic conditions. PMID:27045508

  10. Lab Exercises for Kinesiology.

    ERIC Educational Resources Information Center

    Mills, Brett D.; And Others

    This monograph presents descriptions of various exercises and athletic activities with a kinesiological and biomechanical analysis of the muscle systems involved. It is intended as examples of laboratory activities and projects in a college course in kinesiology. A listing of the required laboratory exercises precedes the examples. Specific…

  11. Rotator Cuff Exercises

    MedlinePlus

    ... you finish doing all 4 exercises, put an ice pack on your shoulder for 20 minutes. It's best to use a plastic bag with ice cubes in it or a bag of frozen peas, not gel packs. If you do all 4 exercises 3 to ...

  12. Exercise and Children's Health.

    ERIC Educational Resources Information Center

    Rowland, Thomas W.

    This book paints a broad picture of the role of exercise in children's health and provides information for the physician and other health care providers on healthful forms of physical activity for children. The book is divided into three parts: (1) "Developmental Exercise Physiology: The Physiological Basis of Physical Fitness in Children"; (2)…

  13. Exercise through Menopause.

    ERIC Educational Resources Information Center

    Stuhr, Robyn M.

    2002-01-01

    Menopause is associated with many different health effects and symptoms. This paper explains that regular exercise can play a critical role in protecting health and battling the increased risk of cardiovascular disease, osteoporosis, pelvic floor atrophy, and joint stiffness associated with menopause. Exercise programs for menopausal women should…

  14. Literature: Released Exercises.

    ERIC Educational Resources Information Center

    Education Commission of the States, Denver, CO. National Assessment of Educational Progress.

    This volume contains 1970-71 Literature assessment exercises (all in the public domain) which have been selected for release at this time by the National Assessment of Educational Progress. Information furnished for each exercise includes: the literature objective it was designed to measure, the theme (section) in which it appears, relevant…

  15. Water Exercise Causes Ripples.

    ERIC Educational Resources Information Center

    Koszuta, Laurie Einstein

    1986-01-01

    Water exercise provides benefits independently of participants' skill levels, and reduces the likelihood of injury from overuse syndromes and heat-related problems. The advantages of water resistance exercises for athletes and for elderly, overweight, or physically disabled people are discussed. (MT)

  16. [Exercise and aging: regulation of mitochondrial function and redox system].

    PubMed

    Sun, Li-Juan; Zhang, Yong; Liu, Jian-Kang

    2014-10-01

    Evidence shows that aging is closely related to mitochondrial decay and redox imbalance. With aging, both mitochondrial content and protein synthesis declined and free radicals, the by-products of mitochondrial metabolism and their oxidation to lipids, proteins and nuclear acids increased. The age-related declines in mitochondrial function and redox imbalance affect physical function, induce insulin resistance and neurodegenerative diseases, such as Alzheimer's and Parkinson's disease, thus, play a major role in regulation of life span. Therefore, mitochondrion may be the most important determinant of life span. Increasing evidence demonstrates that long-term aerobic exercise could prevent age-related diseases and improve life quality of aged people. Exercise may possibly stimulate mitochondrial biogenesis and phase II antioxidant defense system to regulate mitochondrial function and balance of redox system. Therefore, regular aerobic exercise may prevent age-related diseases, increase life quality and prolong life span through regulation of mitochondrial function and redox balance. PMID:25764789

  17. Cardioprotection Acquired Through Exercise: The Role of Ischemic Preconditioning

    PubMed Central

    Marongiu, Elisabetta; Crisafulli, Antonio

    2014-01-01

    A great bulk of evidence supports the concept that regular exercise training can reduce the incidence of coronary events and increase survival chances after myocardial infarction. These exercise-induced beneficial effects on the myocardium are reached by means of the reduction of several risk factors relating to cardiovascular disease, such as high cholesterol, hypertension, obesity etc. Furthermore, it has been demonstrated that exercise can reproduce the “ischemic preconditioning” (IP), which refers to the capacity of short periods of ischemia to render the myocardium more resistant to subsequent ischemic insult and to limit infarct size during prolonged ischemia. However, IP is a complex phenomenon which, along with infarct size reduction, can also provide protection against arrhythmia and myocardial stunning due to ischemia-reperfusion. Several clues demonstrate that preconditioning may be directly induced by exercise, thus inducing a protective phenotype at the heart level without the necessity of causing ischemia. Exercise appears to act as a physiological stress that induces beneficial myocardial adaptive responses at cellular level. The purpose of the present paper is to review the latest data on the role played by exercise in triggering myocardial preconditioning. PMID:24720421

  18. Merits of exercise therapy before and after major surgery

    PubMed Central

    Hoogeboom, Thomas J.; Dronkers, Jaap J.; Hulzebos, Erik H.J.; van Meeteren, Nico L.U.

    2014-01-01

    Purpose of review Advances in medical care have led to an increasing elderly population. Elderly individuals should be able to participate in society as long as possible. However, with an increasing age their adaptive capacity gradually decreases, specially before and after major life events (like hospitalization and surgery) making them vulnerable to reduced functioning and societal participation. Therapeutic exercise before and after surgery might augment the postoperative outcomes by improving functional status and reducing the complication and mortality rate. Recent findings There is high quality evidence that preoperative exercise in patients scheduled for cardiovascular surgery is well tolerated and effective. Moreover, there is circumstantial evidence suggesting preoperative exercise for thoracic, abdominal and major joint replacement surgery is effective, provided that this is offered to the high-risk patients. Postoperative exercise should be initiated as soon as possible after surgery according to fast-track or enhanced recovery after surgery principles. Summary The perioperative exercise training protocol known under the name ‘Better in, Better out’ could be implemented in clinical care for the vulnerable group of patients scheduled for major elective surgery who are at risk for prolonged hospitalization, complications and/or death. Future research should aim to include this at-risk group, evaluate perioperative high-intensity exercise interventions and conduct adequately powered trials. PMID:24500337

  19. Pre-exercise glucose ingestion at different time periods and blood glucose concentration during exercise.

    PubMed

    Tokmakidis, S P; Volaklis, K A

    2000-08-01

    The purpose of this study was to investigate the effects of glucose ingestion (GI) at different time periods prior to exercise on blood glucose (BG) levels during prolonged treadmill running. Eight subjects (X+/-SD), age 20+/-0.5yr, bodymass 70.7+/-4.1 kg, height 177+/-4 cm, VO2max 52.8+/-7.8 ml x kg(-1) x min(-1) who underwent different experimental conditions ingested a glucose solution (1 g/kg at 350 ml) 30 min (gl-30), 60 min (gl-60), 90 min (gl-90), and a placebo one 60 min (pl-60) prior to exercise in a counterbalanced design. Afterwards they ran at 65% of VO2max for 1 hour and then at 75 % of VO2max till exhaustion. Fingertip blood samples (10 microl) were drawn every 15 min before and during exercise for the determination of BG levels. Oxygen uptake (VO2), heart rate (HR), and blood lactate (La) were also measured every 15 min during exercise. Peak BG values were reached within 30 min after GI but were different (p < 0.01) at the onset of exercise (gl-30: 147+/-22, gl-60: 118+/-25, gl-90: 109+/-22, pl-60: 79+/-5mg/dl). The two-way ANOVA repeated measures and the Tukey post-hoc test revealed a higher BG concentration (p < 0.05) for the gl-30 and the pl-60 as compared to the gl-60 and gl-90 during running (e.g. 15min run: 82+/-11, 68+/-5, 64+/-3, 78+/-7, and 60min run: 98+/-12, 85+/-12, 83+/-11, 94+/-11 mg/dl for gl-30, gl-60, gl-90, and pl-60, respectively). However, this did not significantly affect the duration of treadmill running. The La levels were higher (p < 0.05) after GI as compared to placebo throughout exercise (values at exhaustion: 4.6+/-0.2, 5.0+/-1.5, 4.8+/- 1.7 mmol/l for gl-30, gl-60, gl-90, and 3.5+/-0.8 mmol/l for placebo). The gl-30 and the placebo fluctuated closer to normoglycaemic levels. The glucose ingestion (60 to 90 min) prior to exercise lowered the blood glucose levels without affecting the duration of running performance at 75% VO2max. Thus, in order to maintain normoglycaemic levels, pre-exercise glucose supplementation should

  20. Exercise and functional foods.

    PubMed

    Aoi, Wataru; Naito, Yuji; Yoshikawa, Toshikazu

    2006-01-01

    Appropriate nutrition is an essential prerequisite for effective improvement of athletic performance, conditioning, recovery from fatigue after exercise, and avoidance of injury. Nutritional supplements containing carbohydrates, proteins, vitamins, and minerals have been widely used in various sporting fields to provide a boost to the recommended daily allowance. In addition, several natural food components have been found to show physiological effects, and some of them are considered to be useful for promoting exercise performance or for prevention of injury. However, these foods should only be used when there is clear scientific evidence and with understanding of the physiological changes caused by exercise. This article describes various "functional foods" that have been reported to be effective for improving exercise performance or health promotion, along with the relevant physiological changes that occur during exercise. PMID:16749944

  1. Exercise and cancer recovery.

    PubMed

    Visovsky, Constance; Dvorak, Colleen

    2005-05-01

    Disease and cancer treatment-related side effects such as decreased energy level, muscle weakness, and declines in functional status and body mass have been well documented. There is evidence that exercise, such as low intensity aerobics walking, Tai Chi, or cycling, results in an overall decrease in fatigue levels over the course of cancer treatment. Additionally, there is evidence that regular physical activity or exercise can decrease emotional stress, blood pressure, the duration of neutropenia, thrombocytopenia, and pain. Exercise also has been shown to increase quality of life and improve the maximal oxygen uptake during exertion, sleep patterns, and cognition. However, the majority of studies of exercise and cancer have been conducted with women with early stage breast cancer, limiting the generalizability of these studies to other cancer populations. The purpose of this systematic review is to provide a synthesis of the extant research evidence about th e benefits of exercise related to cancer recovery. PMID:15977980

  2. Exercise and functional foods

    PubMed Central

    Aoi, Wataru; Naito, Yuji; Yoshikawa, Toshikazu

    2006-01-01

    Appropriate nutrition is an essential prerequisite for effective improvement of athletic performance, conditioning, recovery from fatigue after exercise, and avoidance of injury. Nutritional supplements containing carbohydrates, proteins, vitamins, and minerals have been widely used in various sporting fields to provide a boost to the recommended daily allowance. In addition, several natural food components have been found to show physiological effects, and some of them are considered to be useful for promoting exercise performance or for prevention of injury. However, these foods should only be used when there is clear scientific evidence and with understanding of the physiological changes caused by exercise. This article describes various "functional foods" that have been reported to be effective for improving exercise performance or health promotion, along with the relevant physiological changes that occur during exercise. PMID:16749944

  3. Exercise intensity modulates brachial artery retrograde blood flow and shear rate during leg cycling in hypoxia.

    PubMed

    Iwamoto, Erika; Katayama, Keisho; Ishida, Koji

    2015-06-01

    The purpose of this study was to elucidate the effect of exercise intensity on retrograde blood flow and shear rate (SR) in an inactive limb during exercise under normoxic and hypoxic conditions. The subjects performed two maximal exercise tests on a semi-recumbent cycle ergometer to estimate peak oxygen uptake (V˙O2peak) while breathing normoxic (inspired oxygen fraction [FIO2 = 0.21]) and hypoxic (FIO2 = 0.12 or 0.13) gas mixtures. Subjects then performed four exercise bouts at the same relative intensities (30 and 60% V˙O2peak) for 30 min under normoxic or hypoxic conditions. Brachial artery diameter and blood velocity were simultaneously recorded, using Doppler ultrasonography. Retrograde SR was enhanced with increasing exercise intensity under both conditions at 10 min of exercise. Thereafter, retrograde blood flow and SR in normoxia returned to pre-exercise levels, with no significant differences between the two exercise intensities. In contrast, retrograde blood flow and SR in hypoxia remained significantly elevated above baseline and was significantly greater at 60% than at 30% V˙O2peak. We conclude that differences in exercise intensity affect brachial artery retrograde blood flow and SR during prolonged exercise under hypoxic conditions. PMID:26038470

  4. Hypoglycemia during moderate intensity exercise reduces counterregulatory responses to subsequent hypoglycemia.

    PubMed

    Cade, W Todd; Khoury, Nadia; Nelson, Suzanne; Shackleford, Angela; Semenkovich, Katherine; Krauss, Melissa J; Arbeláez, Ana María

    2016-09-01

    Hypoglycemia, which occurs commonly during and following exercise in people with diabetes, is thought to be due to attenuated counterregulation in the setting of therapeutic insulin excess. To better understand the pathophysiology of counterregulation, we aimed to determine if dextrose administration to maintain euglycemia during moderate intensity exercise alters the attenuation of counterregulatory responses to subsequent hypoglycemia in healthy adults : Counterregulatory responses to hypoglycemia were assessed in 18 healthy adults after bed rest and following exercise with (n = 9) and without (n = 9) dextrose infusion. Responses were measured during a stepped euglycemic-hypoglycemic clamp 24 h after either bed rest or two 90-min bouts of exercise at 70% peak oxygen uptake : Hypoglycemia occurred during the second bout of exercise without dextrose infusion. Plasma glucagon and epinephrine responses to stepped hypoglycemia after antecedent exercise without dextrose infusion were significantly lower at the 45 mg/dL glycemic level compared to after bed rest. However, no attenuation of the counterregulatory responses to hypoglycemia was evident after antecedent exercise when dextrose was infused. This study suggests that the attenuation of the counterregulatory responses during hypoglycemia after exercise is likely due to the hypoglycemia that occurs during moderate prolonged exercise and not solely due to exercise or its intensity. PMID:27597762

  5. Exercise intensity modulates brachial artery retrograde blood flow and shear rate during leg cycling in hypoxia

    PubMed Central

    Iwamoto, Erika; Katayama, Keisho; Ishida, Koji

    2015-01-01

    The purpose of this study was to elucidate the effect of exercise intensity on retrograde blood flow and shear rate (SR) in an inactive limb during exercise under normoxic and hypoxic conditions. The subjects performed two maximal exercise tests on a semi-recumbent cycle ergometer to estimate peak oxygen uptake (O2peak) while breathing normoxic (inspired oxygen fraction [FIO2 = 0.21]) and hypoxic (FIO2 = 0.12 or 0.13) gas mixtures. Subjects then performed four exercise bouts at the same relative intensities (30 and 60% O2peak) for 30 min under normoxic or hypoxic conditions. Brachial artery diameter and blood velocity were simultaneously recorded, using Doppler ultrasonography. Retrograde SR was enhanced with increasing exercise intensity under both conditions at 10 min of exercise. Thereafter, retrograde blood flow and SR in normoxia returned to pre-exercise levels, with no significant differences between the two exercise intensities. In contrast, retrograde blood flow and SR in hypoxia remained significantly elevated above baseline and was significantly greater at 60% than at 30% O2peak. We conclude that differences in exercise intensity affect brachial artery retrograde blood flow and SR during prolonged exercise under hypoxic conditions. PMID:26038470

  6. Prediction of Prolonged Hemodynamic Instability During Carotid Angioplasty and Stenting

    PubMed Central

    Rhim, Jong Kook; Park, Jeong Jin; Choi, Hyuk Jai; Cho, Young Dae; Sheen, Seung Hun; Jang, Kyung-Sool

    2016-01-01

    Purpose The aim of this study was to assess the risk factors of prolonged hemodynamic instability (HDI) after carotid angioplasty and stenting (CAS). Herein, a simplified predictive scoring system for prolonged HDI is proposed. Materials and Methods Sixty-six patients who had CAS from 2011 to 2016 at a single institution were evaluated. Prolonged HDI was defined as systolic blood pressure >160 mm Hg or <90 mm Hg or heart rate <50 beats/min, lasting over 30 minutes despite medical treatments. For the study, clinical data and radiologic data, including plaque morphology and stenosis were analyzed. Results Prolonged HDI was observed in 21 patients (31.8%). Multivariable analysis revealed that calcification (OR, 6.726; p=0.006), eccentric stenosis (OR, 3.645; p=0.047) and extensive plaque distribution (OR, 7.169; p=0.006) were related to prolonged HDI. According to these results, a simplified scoring scale was proposed based on the summation of points: 2 points for calcified plaque, 2 points for extensive plaque distribution, and 1 point for eccentric stenosis. The percentages of prolonged HDI according to the total score were as follows: score 0, 8.7%; score 1, 20.0%; score 2, 38.5%; score 3, 72.7%; score 4, 66.7%; score 5, 100%. From the analysis, the total score in patients with prolonged HDI was significantly higher than those without prolonged HDI (p<0.001). Conclusion Prolonged HDI can be associated with calcification of plaque, eccentric stenosis and extensive plaque distribution, and a simplified scoring system enables prediction of prolonged HDI according to our cohort. PMID:27621949

  7. High muscle blood flow in man: is maximal O2 extraction compromised?

    PubMed

    Richardson, R S; Poole, D C; Knight, D R; Kurdak, S S; Hogan, M C; Grassi, B; Johnson, E C; Kendrick, K F; Erickson, B K; Wagner, P D

    1993-10-01

    During conventional cycle ergometry, as work rate (WR) is increased toward maximum, O2 extraction increases hyperbolically, typically achieving values of 80-90% at peak O2 uptake (VO2). In contrast, studies using isolated knee-extensor exercise report much higher mass-specific blood flows (Q) and lower maximal O2 extractions (approximately 70%), which have been interpreted as transit time limitation to O2 movement out of the muscle capillary. However, maximal achievable WR levels during conventional cycle ergometry are generally reached (over 10-15 min) after rapid increases in WR, whereas the reported knee-extensor studies have used only more lengthy protocols (45 min). The duration of these protocols may have prevented the attainment of high WR levels and thus high O2 extraction ratios. Accordingly, this investigation examined leg Q and O2 extraction responses during single-leg knee-extensor exercise incremented rapidly (steps of 15-25 W per 2- to 3-min interval), which produced fatigue in 13-15 min. Q and muscle VO2 increased linearly with WR to fatigue with Q-WR and VO2-WR slopes similar to those reported in previous knee-extensor studies. However, with the use of this protocol, very high maximal achievable WR [99 +/- 6 (SE) W] and muscle Q (385 +/- 26 ml.min-1 x 100 g-1) levels were attained, some 80% greater than previously reported. An O2 extraction of 84.6 +/- 2.1% was reached, giving a maximal VO2 of 60.2 +/- 5.8 ml.min-1 x 100 g-1. We conclude that, even under the high Q conditions of single-leg knee-extensor exercise, O2 extraction does not reach a plateau on the basis of short transit times and that previous conclusions to the contrary reflect failure to attain sufficiently high WR levels. Maximal VO2, Q, and O2 extraction in this model have yet to be defined. PMID:8282650

  8. NK cells and exercise: implications for cancer immunotherapy and survivorship.

    PubMed

    Bigley, Austin B; Simpson, Richard J

    2015-06-01

    Natural Killer (NK) cells are cytotoxic effectors of the innate immune system that are able to recognize and eradicate tumor cells without prior antigenic exposure. Tumor infiltration by NK-cells is associated with prolonged survival in cancer patients and high NK-cell cytotoxicity has been linked to decreased cancer risk. Allogeneic adoptive transfer of NK-cells from healthy donors to cancer patients has shown promise as a means of controlling or reversing the spread of multiple human malignancies including multiple myeloma and acute myeloid leukemia. However, multiple issues remain that undermine the efficacy of long-term cancer treatment using adoptive transfer of NK-cells including loss of activating receptors and cytotoxic potential in transferred NK-cells. Moreover, chronic exercise has been linked to improved NK-cell cytotoxicity, prognosis, and survival in cancer patients, and cytomegalovirus (CMV) reactivation is associated with enhanced NK-cell function after hematopoietic stem cell transplantation and decreased relapse risk in AML patients. In this work, we explore the potential of exercise- and CMV-driven alterations in NK-cell phenotype and function to increase the efficacy of NK-cells for cancer immunotherapy and prolong survival in cancer patients. We conclude that acute exercise and CMV are both capable of enhancing NK-cell cytotoxicity through distinct mechanisms; however, these effects are not additive as CMV infection is associated with an impaired acute exercise response. Thus, we suggest that either acute exercise or in vitro expansion of NKG2C+/NKG2A- NK-cells (as seen in those with CMV) could serve as a simple strategy for enhancing the anti-tumor cytotoxicity of NK-cells for immunotherapy, and that exercise training could be used to improve survivorship in cancer patients being treated with either HSCT or NK-cell infusions. PMID:26175401

  9. The "Space Cycle" Self Powered Human Centrifuge: a proposed countermeasure for prolonged human spaceflight.

    PubMed

    Kreitenberg, A; Baldwin, K M; Bagian, J P; Cotten, S; Witmer, J; Caiozzo, V J

    1998-01-01

    The Self Powered Human Centrifuge, or Space Cycle, is a countermeasure to the adverse physiologic effects of prolonged human exposure to spaceflight microgravity. This unique device simultaneously provides exercise, impact loading and gravity analogous acceleration to emulate conditions on Earth. One or two crewmembers pedal themselves about a shaft mounted to the space craft located "above" their heads. This creates a short arm centrifuge with a head-to-toe acceleration orientation. The potential advantages of the Space Cycle include: a) reversal of cephalad fluid shift, minimizing post flight orthostatic intolerance; b) pedaling to maintain muscular and cardiovascular fitness; and c) enhancement of skeletal homeostasis by impact loading with a pedal-crank mounted cam and frame mounted resistive device. Other anticipated advantages include generation of usable electricity, physiologic monitoring and a means of mass measurement. Motion sickness is controlled with restraints and virtual reality headsets. The device is compatible with International Space Station dimensional constraints. PMID:9451537

  10. Urolithin A induces mitophagy and prolongs lifespan in C. elegans and increases muscle function in rodents.

    PubMed

    Ryu, Dongryeol; Mouchiroud, Laurent; Andreux, Pénélope A; Katsyuba, Elena; Moullan, Norman; Nicolet-Dit-Félix, Amandine A; Williams, Evan G; Jha, Pooja; Lo Sasso, Giuseppe; Huzard, Damien; Aebischer, Patrick; Sandi, Carmen; Rinsch, Chris; Auwerx, Johan

    2016-08-01

    The biological effects of urolithins remain poorly characterized, despite wide-spread human exposure via the dietary consumption of their metabolic precursors, the ellagitannins, which are found in the pomegranate fruit, as well as in nuts and berries. We identified urolithin A (UA) as a first-in-class natural compound that induces mitophagy both in vitro and in vivo following oral consumption. In C. elegans, UA prevented the accumulation of dysfunctional mitochondria with age and extended lifespan. Likewise, UA prolonged normal activity during aging in C. elegans, including mobility and pharyngeal pumping, while maintaining mitochondrial respiratory capacity. These effects translated to rodents, where UA improved exercise capacity in two different mouse models of age-related decline of muscle function, as well as in young rats. Our findings highlight the health benefits of urolithin A and its potential application in strategies to improve mitochondrial and muscle function. PMID:27400265

  11. Intestinal temperature does not reflect rectal temperature during prolonged, intense running with cold fluid ingestion.

    PubMed

    Savoie, Félix A; Dion, Tommy; Asselin, Audrey; Gariepy, Carolanne; Boucher, Pierre M; Berrigan, Félix; Goulet, Eric D B

    2015-02-01

    It is generally assumed that intestinal temperature (Tint), as measured with a telemetric pill, agrees relatively well with rectal temperature (Trec) during exercise. However, whether Tint reflects Trec during prolonged, intense and continuous exercise when cold fluids are consumed is unknown. Therefore, we compared Trec and Tint during a half-marathon during which cold water was ingested to prevent bodyweight (BW) losses >2%. Nine endurance athletes (age 30  ±  5 years) underwent a 21.1 km running time-trial (TT) in the heat (~30 °C and 44% RH) while BW losses were maintained to ~1% with continuous cold (4 °C) water provision. Tint and Trec were monitored throughout the TT. Hypohydration level, TT time and fluid intake were 1.2  ±  0.4% BW, 93.2  ±  9.9 min and 2143  ±  264 ml, respectively. Trec was systematically higher than Tint by 0.25 °C (95% CI: 0.14-0.37 °C). Tint and Trec showed an excellent relative (r = 0.90, p < 0.01), but poor absolute agreement as reflected by a 95% limit of agreement of ±1.07 °C and a standard error of measurement of ±0.39 °C. In conclusion, Tint does not mirror Trec during prolonged, intense running with cold fluid ingestion and, therefore, these measures should not be used interchangeably under this scenario. PMID:25582636

  12. Dynamic changes in dna methylation status in peripheral blood Mononuclear cells following an acute bout of exercise: Potential impact of exercise-induced elevations in interleukin-6 concentration.

    PubMed

    Robson-Ansley, P J; Saini, A; Toms, C; Ansley, L; Walshe, I H; Nimmo, M A; Curtin, J A

    2014-01-01

    The aim of the present study was to examine the relationship between interleukin (IL)-6 concentrations and DNA methylation in the peripheral blood mononuclear cells (PBMCs) of trained runners after a bout of prolonged, strenuous exercise. Eight healthy trained males completed a treadmill run at 60% vVO(2max) for 120 min followed by a 5-km time trial in a fasted condition. Whole blood samples were taken prior to, immediately before and 24 h following exercise. From these samples, PBMCs were isolated for analysis and plasma IL-6 concentrations were measured. The methylation status of DNA extracted from PBMCs was analysed using the Illumina 27k methylation beadchip platform. Global DNA methylation status was unaltered immediately and up to 24 hours following a bout of prolonged exercise in comparison to pre-exercise. Despite no change in global DNA methylation, plasma IL-6 concentrations were significantly related to the DNA methylation status of 11 genes. Our study demonstrates that the methylome is stable, while discovering a novel link between exercise-induced increases in circulating IL-6 and the DNA methylation status of 11 individual genes. Based on our preliminary findings, the mechanisms by which changes in plasma IL-6 concentrations and DNA methylation in response to exercise interact require further study. PMID:25316129

  13. Exercise and Inherited Arrhythmias.

    PubMed

    Cheung, Christopher C; Laksman, Zachary W M; Mellor, Gregory; Sanatani, Shubhayan; Krahn, Andrew D

    2016-04-01

    Sudden cardiac death (SCD) in an apparently healthy individual is a tragedy that prompts a series of investigations to identify the cause of death and to prevent SCD in potentially at-risk family members. Several inherited channelopathies and cardiomyopathies, including long QT syndrome (LQTS), catecholaminergic polymorphic ventricular cardiomyopathy (CPVT), hypertrophic cardiomyopathy (HCM), and arrhythmogenic right ventricular cardiomyopathy (ARVC) are associated with exercise-related SCD. Exercise restriction has been a historical mainstay of therapy for these conditions. Syncope and cardiac arrest occur during exercise in LQTS and CPVT because of ventricular arrhythmias, which are managed with β-blockade and exercise restriction. Exercise may provoke hemodynamic or ischemic changes in HCM, leading to ventricular arrhythmias. ARVC is a disease of the desmosome, whose underlying disease process is accelerated by exercise. On this basis, expert consensus has erred on the side of caution, recommending rigorous exercise restriction for all inherited arrhythmias. With time, as familiarity with inherited arrhythmia conditions has increased and patients with milder forms of disease are diagnosed, practitioners have questioned the historical rigorous restrictions advocated for all. This change has been driven by the fact that these are often children and young adults who wish to lead active lives. Recent evidence suggests a lower risk of exercise-related arrhythmias in treated patients than was previously assumed, including those with previous symptoms managed with an implantable cardioverter-defibrillator. In this review, we emphasize shared decision making, monitored medical therapy, individual and team awareness of precautions and emergency response measures, and a more permissive approach to recreational and competitive exercise. PMID:26927864

  14. Effects of a 2-hour run on metabolic economy and lower extremity strength in men and women.

    PubMed

    Glace, B W; McHugh, M P; Gleim, G W

    1998-03-01

    Changes in running economy, or the oxygen cost of running at a given submaximal speed (ml/m/kg), during prolonged exercise have been well described in men but not in women. Lower extremity strength changes associated with prolonged exercise have never been addressed. We examined changes in running economy and strength following a 2-hour run in eight men and eight women. Knee and hip strength were measured pre- and post-running. Peak oxygen consumption (VO2peak) and oxygen consumption at ventilatory threshold were determined. Subjects then ran for 2 hours at an intensity which elicited ventilatory threshold (68.7% vs. 66.6% of VO2peak for men and women, p = 0.5). Water was ingested at a rate of 0.5% of body weight each half hour. Oxygen uptake (VO2) and respiratory exchange ratio were measured initially and at 1 and 2 hours. Body weight declined in the men (p = 0.001) but not in the women (p = 0.12). Running economy decreased in the men (p < 0.001) but not in the women (p = 0.084). At 2 hours of running, knee flexion and extension strength declined significantly in the men only (effect of gender x time, p < 0.014), but hip flexion, abduction, and adduction strength declined in both genders. Decreased knee extensor/flexor strength was evident in men only, while decreased hip strength was independent of gender. We conclude that 2 hours of running produced changes in knee strength and running economy in men only. PMID:9513864

  15. Diabetes, Nutrition, and Exercise.

    PubMed

    Abdelhafiz, Ahmed H; Sinclair, Alan J

    2015-08-01

    Aging is associated with body composition changes that lead to glucose intolerance and increased risk of diabetes. The incidence of diabetes increases with aging, and the prevalence has increased because of the increased life expectancy of the population. Lifestyle modifications through nutrition and exercise in combination with medications are the main components of diabetes management. The potential benefits of nutrition and exercise intervention in older people with diabetes are enormous. Nutrition and exercise training are feasible even in frail older people living in care homes and should take into consideration individual circumstances, cultural factors, and ethnic preferences. PMID:26195102

  16. [Clinical and neurophysiological characteristics of motor cortical responsiveness during prolonged cranial osteoplasty].

    PubMed

    Shevtsov, V I; Khudiaev, A T; Shein, A P; D'iachkov, A N; Men'shchikova, I A; Krivonogova, Z M; Mukhtiaev, S V

    2002-01-01

    The data of global and stimulation poly-EMG were used to estimate the outcomes of multimodality treatment of sequelae of brain injury and stroke, which was based on the vasoactive effects of prolonged cranial osteoplasty. Thirteen patients (7 males and 6 females) aged 19 to 64 (mean 42 +/- 4) years who had signs of left- (n = 2) and right-sided (n = 11) spastic hemiparesis. Global and stimulation poly-EMG, which involved recording and analysis of resting and total EMG under the maximum voluntary tension, M-waves H-reflexes, transcranially evoked potentials. The muscles of the shoulder, forearm, hand, femur, leg, and foot were studied. The surgical procedure developed at the Russian Research Center "VTO" for stimulation of cerebral blood flow in combination with conventional conservative treatments (physiotherapy, therapeutical exercises, and adequate drug therapy) was shown to increase the transmission coefficient of an efferent signal in the motor cortex-spinal motor neurons-muscle system, which is clinically accompanied by improved coordination of simple and complex movements realized with the participation of the muscles of both the paretic and contralateral extremity. The ambiguous effects of the vasoactive factors of prolonged osteoplasty on the functions of unequally modal pathologically changed cerebral motor structures were noted. The findings may be considered as evidence for the low traumatic ability of the VTO's techniques for replacing posttraumatic defects of skull vault bones. PMID:11989287

  17. The influence of fatigue-induced increase in relative work rate on temperature regulation during exercise.

    PubMed

    Kacin, Alan; Golja, Petra; Tipton, Michael J; Eiken, Ola; Mekjavic, Igor B

    2008-05-01

    Heat-loss responses during steady-load exercise are affected by an increase in relative work rate induced by muscle ischaemia or hypoxaemia. The present study investigated whether progressive increases in perception of exertion and relative oxygen uptake %VO2peak which occur during prolonged steady-load exercise as a result of progressively increased peripheral fatigue, might also affect the regulation of heat loss responses and hence the exercise-induced increase in mean body temperature. Ten male subjects first performed a ramp-test to exhaustion on a cycle ergometer to evaluate their initial peak oxygen uptake (Control VO2peak). On a separate day, 120 min of cycling at constant power output corresponding to 60% of Control VO2peak was performed in thermoneutral environment (Ta = 23 degrees C, RH = 50%, wind speed = 5 m s(-1)). This was immediately followed by another maximal performance test (Fatigue VO2peak). During prolonged exercise, median (range) rating of perceived exertion for whole-body (RPEwb) increased (P < 0.01) from initial 3.5 (1-5) to 5.5 (5-9) at the end of exercise. Fatigue VO2peak and peak power output were 9 (5) and 10 (5)% lower (P < 0.01) when compared to control values. At the onset of exercise, heat production, mechanical efficiency, heat loss and mean body temperature increased towards asymptotic values, thereafter remained constant throughout the 120 min exercise, despite the concomitant progressive increase in relative work rate, as reflected in increased RPEwb and relative oxygen uptake. It is thus concluded that the increase in relative work rate induced predominantly by peripheral muscle fatigue affects neither the level of increase in mean body temperature nor the regulation of heat loss responses during prolonged steady-load exercise. PMID:18202847

  18. Aging, exercise, and muscle protein metabolism.

    PubMed

    Koopman, René; van Loon, Luc J C

    2009-06-01

    Aging is accompanied by a progressive loss of skeletal muscle mass and strength, leading to the loss of functional capacity and an increased risk of developing chronic metabolic disease. The age-related loss of skeletal muscle mass is attributed to a disruption in the regulation of skeletal muscle protein turnover, resulting in an imbalance between muscle protein synthesis and degradation. As basal (fasting) muscle protein synthesis rates do not seem to differ substantially between the young and elderly, many research groups have started to focus on the muscle protein synthetic response to the main anabolic stimuli, i.e., food intake and physical activity. Recent studies suggest that the muscle protein synthetic response to food intake is blunted in the elderly. The latter is now believed to represent a key factor responsible for the age-related decline in skeletal muscle mass. Physical activity and/or exercise stimulate postexercise muscle protein accretion in both the young and elderly. However, the latter largely depends on the timed administration of amino acids and/or protein before, during, and/or after exercise. Prolonged resistance type exercise training represents an effective therapeutic strategy to augment skeletal muscle mass and improve functional performance in the elderly. The latter shows that the ability of the muscle protein synthetic machinery to respond to anabolic stimuli is preserved up to very old age. Research is warranted to elucidate the interaction between nutrition, exercise, and the skeletal muscle adaptive response. The latter is needed to define more effective strategies that will maximize the therapeutic benefits of lifestyle intervention in the elderly. PMID:19131471

  19. Aquatic Exercise for the Aged.

    ERIC Educational Resources Information Center

    Daniel, Michael; And Others

    The development and implementation of aquatic exercise programs for the aged are discussed in this paper. Program development includes a discussion of training principles, exercise leadership and the setting up of safe water exercise programs for the participants. The advantages of developing water exercise programs and not swimming programs are…

  20. Rotator cuff exercises

    MedlinePlus

    ... activities, including your shoulder joint and your shoulder blade Observe your spine and posture as you stand ... band Isometric shoulder exercises Wall push-ups Shoulder blade (scapular) retraction - no tubing Shoulder blade (scapular) retraction - ...

  1. Exercise and immunity

    MedlinePlus

    ... Going to the gym every other day Playing golf regularly Exercise can help you feel better about ... important distinction for online health information and services. Learn more about A.D.A.M.'s editorial policy , ...

  2. Getting Exercise in College

    MedlinePlus

    ... for Parents for Kids for Teens Teens Home Body Mind Sexual Health Food & Fitness Diseases & Conditions Infections Q& ... hours of studying burn mental energy, both your body and mind need physical exercise to function at their peak. ...

  3. Hand and Finger Exercises

    MedlinePlus

    Hand and Finger Exercises  Place your palm flat on a table. Raise and lower your fingers one ... times for ____ seconds.  Pick up objects with your hand. Start out with larger objects. Repeat ____ times for ____ ...

  4. Exercise stress test

    MedlinePlus

    ... on a treadmill or pedal on an exercise bicycle. Slowly (about every 3 minutes), you will be ... walking on a treadmill or pedaling a stationary bicycle. The pace and incline of the treadmill (or ...

  5. Exercises in Applied Geochemistry

    ERIC Educational Resources Information Center

    Shackleton, W. G.

    1977-01-01

    Reviews exercises in the analysis of samples and interpretations of results from the geochemical survey portion of a three year teacher education program in geology presented at Salisbury College of Advanced Education. (SL)

  6. Exercise and Fitness

    MedlinePlus

    ... supporting your weight against gravity. This promotes bone density and protects against osteoporosis. What does cardiovascular exercise ... doing different activities, such as tennis and swimming. Water-based activities, such as swimming or water aerobics, ...

  7. Exercise and Physical Fitness

    MedlinePlus

    ... cancers Strengthen your bones and muscles Improve your mental health and mood Improve your ability to do daily activities and prevent falls, if you're an older adult Increase your chances of living longer Fitting regular exercise ...

  8. Prescribing exercise for women.

    PubMed

    Senter, Carlin; Appelle, Nicole; Behera, Sarina K

    2013-06-01

    One- half of women in the United States do not meet the weekly dose of physical activity recommended by the Centers for Disease Control. Many women could benefit tremendously if they were to adopt a more active lifestyle. Health benefits from exercise include lowering the risk for cardiovascular disease, slowing the rate of bone loss in osteoporosis, and improving mood during pregnancy. In this article, we review the health benefits that women may gain from physical activity and the recommendations for physical activity for adults in the United States. We offer evidence supporting use of the exercise prescription, discuss how to write an exercise prescription, and how to tailor the exercise prescription for women with particular medical problems. PMID:23553380

  9. Exercise-Induced Bronchospasm

    MedlinePlus

    ... symptoms of EIB. Avoid exercising in extremely cold temperatures or when you have a respiratory infection, such ... by T Sinha, MD; AK David, MD (American Family Physician February 15, 2003, http://www.aafp.org/ ...

  10. Gene deletion of P2Y4 receptor lowers exercise capacity and reduces myocardial hypertrophy with swimming exercise.

    PubMed

    Horckmans, Michael; Léon-Gómez, Elvira; Robaye, Bernard; Balligand, Jean-Luc; Boeynaems, Jean-Marie; Dessy, Chantal; Communi, Didier

    2012-10-01

    Nucleotides released within the heart under pathological conditions can be involved in cardioprotection or cardiac fibrosis through the activation purinergic P2Y(2) and P2Y(6) receptors, respectively. We previously demonstrated that adult P2Y(4)-null mice display a microcardia phenotype related to a cardiac angiogenic defect. To evaluate the functional consequences of this defect, we performed here a combination of cardiac monitoring and exercise tests. We investigated the exercise capacity of P2Y(4) wild-type and P2Y(4)-null mice in forced swimming and running tests. Analysis of their stress, locomotion, and resignation was realized in open field, black and white box, and tail suspension experiments. Exercise-induced cardiac hypertrophy was evaluated after repeated and prolonged exercise in P2Y(4) wild-type and P2Y(4)-null hearts. We showed that P2Y(4)-null mice have a lower exercise capacity in both swimming and treadmill tests. This was not related to decreased motivation or increased stress, since open field, white and black box, and mouse tail suspension tests gave comparable results in P2Y(4) wild-type and P2Y(4)-null mice. Heart rate and blood pressure rose normally in P2Y(4)-null swimming mice equipped with a telemetric implant. On the contrary, we observed a delayed recovery of postexercise blood pressure after exercise in P2Y(4)-null mice. The heart rate increment in response to catecholamines was also similar in P2Y(4) wild-type and P2Y(4)-null implanted mice, which is consistent with a similar level of cardiac β-receptor expression. Interestingly, the heart of P2Y(4)-null mice displayed a reduced sympathetic innervation associated with a decreased norepinephrine level. We also demonstrated that exercise-induced cardiac hypertrophy was lower in P2Y(4)-null mice after repeated and prolonged exercise. This was associated with a lower increase in cardiomyocyte size and microvessel density. In conclusion, besides its role in cardiac development, P2Y(4

  11. PULMONARY CIRCULATION AT EXERCISE

    PubMed Central

    NAEIJE, R; CHESLER, N

    2012-01-01

    The pulmonary circulation is a high flow and low pressure circuit, with an average resistance of 1 mmHg.min.L−1 in young adults, increasing to 2.5 mmHg.min.L−1 over 4–6 decades of life. Pulmonary vascular mechanics at exercise are best described by distensible models. Exercise does not appear to affect the time constant of the pulmonary circulation or the longitudinal distribution of resistances. Very high flows are associated with high capillary pressures, up to a 20–25 mmHg threshold associated with interstitial lung edema and altered ventilation/perfusion relationships. Pulmonary artery pressures of 40–50 mmHg, which can be achieved at maximal exercise, may correspond to the extreme of tolerable right ventricular afterload. Distension of capillaries that decrease resistance may be of adaptative value during exercise, but this is limited by hypoxemia from altered diffusion/perfusion relationships. Exercise in hypoxia is associated with higher pulmonary vascular pressures and lower maximal cardiac output, with increased likelihood of right ventricular function limitation and altered gas exchange by interstitial lung edema. Pharmacological interventions aimed at the reduction of pulmonary vascular tone have little effect on pulmonary vascular pressure-flow relationships in normoxia, but may decrease resistance in hypoxia, unloading the right ventricle and thereby improving exercise capacity. Exercise in patients with pulmonary hypertension is associated with sharp increases in pulmonary artery pressure and a right ventricular limitation of aerobic capacity. Exercise stress testing to determine multipoint pulmonary vascular pressures-flow relationships may uncover early stage pulmonary vascular disease. PMID:23105961

  12. Chemo May Prolong Lives of Some Brain Cancer Patients

    MedlinePlus

    ... 158167.html Chemo May Prolong Lives of Some Brain Cancer Patients: Study Those with slow-growing gliomas ... the lives of people with certain slow-growing brain tumors, a new study finds. The findings come ...

  13. Interactions Between Fatty Acid Transport Proteins, Genes That Encode for Them, and Exercise: A Systematic Review.

    PubMed

    Jayewardene, Avindra F; Mavros, Yorgi; Reeves, Anneliese; Hancock, Dale P; Gwinn, Tom; Rooney, Kieron B

    2016-08-01

    Long-chain fatty acid (LCFA) movement into skeletal muscle involves a highly mediated process in which lipid rafts are utilized in the cellular membrane, involving numerous putative plasma membrane-associated LCFA transport proteins. The process of LCFA uptake and oxidation is of particular metabolic significance both at rest and during light to moderate exercise. A comprehensive systematic search of electronic databases was conducted to investigate whether exercise alters protein and/or gene expression of putative LCFA transport proteins. There were 31 studies meeting all eligibility criteria, of these 13 utilized an acute exercise protocol and 18 examined chronic exercise adaptations. Seventeen involved a study design incorporating an exercise stimulus, while the remaining 14 incorporated a combined exercise and diet stimulus. Divergent data relating to acute exercise, as well as prolonged exercise training (≥3 weeks), on protein content (PC) response was identified for proteins CD36, FABPpm and CAV1. Messenger ribonucleic acid (mRNA) data did not always correspond to functional PC, supporting previous suggestions of a disconnect due to potentially limiting factors post gene expression. The large array of study designs, cohorts, and primary dependent variables within the studies included in the present review elucidate the complexity of the interaction between exercise and LCFA transport proteins. Summary of the results in the present review validate the need for further targeted investigation within this topic, and provide an important information base for such research. J. Cell. Physiol. 231: 1671-1687, 2016. © 2015 Wiley Periodicals, Inc. PMID:26638980

  14. Parkinson disease and exercise.

    PubMed

    Earhart, Gammon M; Falvo, Michael J

    2013-04-01

    Parkinson disease (PD) is a progressive, neurodegenerative movement disorder. PD was originally attributed to neuronal loss within the substantia nigra pars compacta, and a concomitant loss of dopamine. PD is now thought to be a multisystem disorder that involves not only the dopaminergic system, but other neurotransmitter systems whose role may become more prominent as the disease progresses (189). PD is characterized by four cardinal symptoms, resting tremor, rigidity, bradykinesia, and postural instability, all of which are motor. However, PD also may include any combination of a myriad of nonmotor symptoms (195). Both motor and nonmotor symptoms may impact the ability of those with PD to participate in exercise and/or impact the effects of that exercise on those with PD. This article provides a comprehensive overview of PD, its symptoms and progression, and current treatments for PD. Among these treatments, exercise is currently at the forefront. People with PD retain the ability to participate in many forms of exercise and generally respond to exercise interventions similarly to age-matched subjects without PD. As such, exercise is currently an area receiving substantial research attention as investigators seek interventions that may modify the progression of the disease, perhaps through neuroprotective mechanisms. PMID:23720332

  15. [Exercise-induced bronchoconstriction].

    PubMed

    Hildebrand, Katarzyna

    2011-01-01

    Terms exercise-induced asthma (EIA) or exercise-induced bronchoconstriction (EIB) are used to describe transient bronchoconstriction occurring during or immediately after vigorous exercise in some subjects. For the diagnosis of EIB it is necessary to show at least 10% decrease in FEV1 from baseline following physical exercise. The prevalence of EIB has been reported to be 12-15% in general population, 10-20% in summer olympic athletes, affecting up to 50-70% of winter athletes (particularly ski runners and skaters). There are two key theories explaining EIB: thermal and osmotic. Differential diagnosis of EIB should include chronic cardio-pulmonary diseases, vocal cord dysfunction, hyperventilation syndrome and poor physical fitness or overtraining. According to the ATS guidelines from 1999 for the diagnosis of EIB a standardized exercise on a treadmill or cycle ergometer test with stable environmental conditions regarding temperature and humidity of inhaled air, should be employed. Other laboratory tests assessing bronchial hyperresponsiveness to indirect stimuli including eucapnic voluntary hyperpnea (EVH), mannitol, hypertonic saline, AMP or measurement of exhaled nitric oxide (FENO) are also successfully used. In the prevention of EIB include both pharmacologic and non-pharmacologic treatment. In patients with poorly controlled asthma intensification of anti-inflammatory treatment can decrease the frequency and severity of EIB. Short and long acting beta2-agonists, antileukotriene drugs can be used prior to exercise to prevent EIB. PMID:21190152

  16. Prolongation of RBC survival in the hypophysectomized rat.

    NASA Technical Reports Server (NTRS)

    Landaw, S. A.; Bristol, S. K.

    1971-01-01

    Red blood cell (RBC) survival was prolonged in hypophysectomized rats. While the rate of random hemolysis was decreased in some hypophysectomized hosts, in all directly injected and cross-transfused hypophysectomized rat hosts, there was a significant prolongation of the phase of senescent death. In contrast, RBCs from hypophysectomized donors survived normally in normal hosts. These experiments are further evidence of a relationship between RBC aging and metabolic rate, and suggest an intimate involvement with the calorigenic hormones.

  17. Antimicrobial agents-associated with QT interval prolongation.

    PubMed

    Bril, Fernando; Gonzalez, Claudio Daniel; Di Girolamo, Guillermo

    2010-01-01

    QT interval prolongation is one of the most important causes of withdrawal of drugs from the market, due to its association with Torsades de Pointes (TdP), a potentially fatal arrhythmia. Although many antimicrobial drugs are capable of inducing this type of arrhythmia, the importance of this effect is usually underestimated. Macrolides, quinolones, azoles, pentamidine, protease inhibitors, antimalarial drugs and cotrimoxazole are the anti-infective agents more frequently associated with this adverse effect. Despite the fact that the risk of QT prolongation and TdP under single antimicrobial therapy is low, these drugs are so extensively used that sporadic cases of this arrhythmia are reported. Moreover, antimicrobial drugs are susceptible to pharmacokinetic and pharmacodynamic interactions with other drugs, which may increase the risk of this arrhythmia. Therefore, physicians must be familiar with not only the antimicrobial drugs capable of producing QT interval prolongation, but also their potential interactions. In addition, patient's specific risk factors of prolonging QT interval or producing TdP must be taken into account. This article reviews the role of anti-infective drugs in QT prolongation, focusing on QT prolongation mechanisms, potential drug interactions, and patients' predisposing factors to this arrhythmia. PMID:20210724

  18. Effect of dichloroacetate on plasma lactic acid in exercising dogs.

    PubMed

    Merrill, G F; Zambraski, E J; Grassl, S M

    1980-03-01

    Dichloroacetate sodium (DCA) has been shown to reduce circulating levels of lactic acid (LA) under a variety of experimental and clinical conditions. We have examined the effect of DCA on the lactacidemia of exercise in treadmill-exercised dogs. One group of animals (n = 8) was tested at light, moderate, and heavy exercise work loads. Plasma LA, 19 +/- 2mg/dl at rest, increased to 26 +/- 4, 38 +/- 5, and 52 +/- 6 mg/dl during the three workloads, respectively. In the same animals, when identical treadmill tests were conducted after DCA (100 mg/kg, iv), the rise in LA was significantly attenuated. Lactic acid values were 11 +/- 2 mg/dl at rest after DCA and 15 +/- 2, 20 +/- 4, and 23 +/- 3 mg/dl for the light, moderate, and heavy workloads, respectively. Another group of dogs (n = 6) performed prolonged moderate exercise. Under untreated conditions, LA increased from 24 +/- 1 mg/dl at rest, to 41 +/- 6 mg/dl at 10 min, and 50 +/- 5 mg/dl at 50 min. During repeat tests, DCA was given at 12 min when LA was 30 +/- 6 mg/dl. At 50 min, LA was 18 +/- 3 mg/dl or 60% lower than that observed during the untreated run. Because DCA has been shown to increase pyruvate dehydrogenase enzyme activity, these data suggest that this enzyme may be an important factor in LA metabolism during exercise. PMID:7372512

  19. The effect of dehydration on muscle metabolism and time trial performance during prolonged cycling in males.

    PubMed

    Logan-Sprenger, Heather M; Heigenhauser, George J F; Jones, Graham L; Spriet, Lawrence L

    2015-08-01

    This study combined overnight fluid restriction with lack of fluid intake during prolonged cycling to determine the effects of dehydration on substrate oxidation, skeletal muscle metabolism, heat shock protein 72 (Hsp72) response, and time trial (TT) performance. Nine males cycled at ~65% VO2peak for 90 min followed by a TT (6 kJ/kg BM) either with fluid (HYD) or without fluid (DEH). Blood samples were taken every 20 min and muscle biopsies were taken at 0, 45, and 90 min of exercise and after the TT. DEH subjects started the trial with a -0.6% BM from overnight fluid restriction and were dehydrated by 1.4% after 45 min, 2.3% after 90 min of exercise, and 3.1% BM after the TT. There were no significant differences in oxygen uptake, carbon dioxide production, or total sweat loss between the trials. However, physiological parameters (heart rate [HR], rate of perceived exertion, core temperature [Tc], plasma osmolality [Posm], plasma volume [Pvol] loss, and Hsp72), and carbohydrate (CHO) oxidation and muscle glycogen use were greater during 90 min of moderate cycling when subjects progressed from 0.6% to 2.3% dehydration. TT performance was 13% slower when subjects began 2.3% and ended 3.1% dehydrated. Throughout the TT, Tc, Posm, blood and muscle lactate [La], and serum Hsp72 were higher, even while working at a lower power output (PO). The accelerated muscle glycogen use during 90 min of moderate intensity exercise with DEH did not affect subsequent TT performance, rather augmented Tc, RPE and the additional physiological factors were more important in slowing performance when dehydrated. PMID:26296770

  20. The effect of dehydration on muscle metabolism and time trial performance during prolonged cycling in males

    PubMed Central

    Logan-Sprenger, Heather M; Heigenhauser, George JF; Jones, Graham L; Spriet, Lawrence L

    2015-01-01

    This study combined overnight fluid restriction with lack of fluid intake during prolonged cycling to determine the effects of dehydration on substrate oxidation, skeletal muscle metabolism, heat shock protein 72 (Hsp72) response, and time trial (TT) performance. Nine males cycled at ∼65% VO2peak for 90 min followed by a TT (6 kJ/kg BM) either with fluid (HYD) or without fluid (DEH). Blood samples were taken every 20 min and muscle biopsies were taken at 0, 45, and 90 min of exercise and after the TT. DEH subjects started the trial with a −0.6% BM from overnight fluid restriction and were dehydrated by 1.4% after 45 min, 2.3% after 90 min of exercise, and 3.1% BM after the TT. There were no significant differences in oxygen uptake, carbon dioxide production, or total sweat loss between the trials. However, physiological parameters (heart rate [HR], rate of perceived exertion, core temperature [Tc], plasma osmolality [Posm], plasma volume [Pvol] loss, and Hsp72), and carbohydrate (CHO) oxidation and muscle glycogen use were greater during 90 min of moderate cycling when subjects progressed from 0.6% to 2.3% dehydration. TT performance was 13% slower when subjects began 2.3% and ended 3.1% dehydrated. Throughout the TT, Tc, Posm, blood and muscle lactate [La], and serum Hsp72 were higher, even while working at a lower power output (PO). The accelerated muscle glycogen use during 90 min of moderate intensity exercise with DEH did not affect subsequent TT performance, rather augmented Tc, RPE and the additional physiological factors were more important in slowing performance when dehydrated. PMID:26296770

  1. Aerobic performance of Special Operations Forces personnel after a prolonged submarine deployment.

    PubMed

    Fothergill, D M; Sims, J R

    2000-10-01

    The US Navy's Sea, Air and Land Special Operations Forces personnel (SEALs) perform a physically demanding job that requires them to maintain fitness levels equivalent to elite athletes. As some missions require SEALs to be deployed aboard submarines for extended periods of time, the prolonged confinement could lead to deconditioning and impaired mission-related performance. The objective of this field study was to quantify changes in aerobic performance of SEAL personnel following a 33-day submarine deployment. Two age-matched groups of SEALs, a non-deployed SEAL team (NDST, n = 9) and a deployed SEAL team (DST, n = 10), performed two 12-min runs for distance (Cooper tests) 5 days apart pre-deployment and one Cooper test post-deployment. Subjects wore a Polar Vantage NVTM heart rate (HR) monitor during the tests to record exercise and recovery HR. Variables calculated from the HR profiles included mean exercise heart rate (HRmean), maximum exercise heart rate (HRmax), the initial slope of the HR recovery curve (HRrecslope) and HR recovery time (HRrectime). The second pre-deployment test (which was used in the comparison with the post-deployment test) showed a 2% mean increase in the distance achieved compared with the first (n = 18, p < 0.05) with no difference in HRmean, HRmax, HRrecslope and HRrectime. The test-retest correlation coefficient and 95% limits of agreement for the Cooper tests were 0.79 (p < 0.001) and -68.6 +/- 267.5 m, respectively. For the NDST there were no changes in any of the HR measures or the distance run between the pre- and post-deployment tests. When individual running performances were expressed as a percentage change in the distance run between the pre- and post-deployment tests, the DST performed significantly worse than the NDST (p < 0.01). The DST showed a 7% mean decrement in the distance run following deployment (p < 0.01). The decrement in performance of the DST was not associated with any changes in HRmean or HRmax; however

  2. Is recovery driven by central or peripheral factors? A role for the brain in recovery following intermittent-sprint exercise

    PubMed Central

    Minett, Geoffrey M.; Duffield, Rob

    2013-01-01

    Prolonged intermittent-sprint exercise (i.e., team sports) induce disturbances in skeletal muscle structure and function that are associated with reduced contractile function, a cascade of inflammatory responses, perceptual soreness, and a delayed return to optimal physical performance. In this context, recovery from exercise-induced fatigue is traditionally treated from a peripheral viewpoint, with the regeneration of muscle physiology and other peripheral factors the target of recovery strategies. The direction of this research narrative on post-exercise recovery differs to the increasing emphasis on the complex interaction between both central and peripheral factors regulating exercise intensity during exercise performance. Given the role of the central nervous system (CNS) in motor-unit recruitment during exercise, it too may have an integral role in post-exercise recovery. Indeed, this hypothesis is indirectly supported by an apparent disconnect in time-course changes in physiological and biochemical markers resultant from exercise and the ensuing recovery of exercise performance. Equally, improvements in perceptual recovery, even withstanding the physiological state of recovery, may interact with both feed-forward/feed-back mechanisms to influence subsequent efforts. Considering the research interest afforded to recovery methodologies designed to hasten the return of homeostasis within the muscle, the limited focus on contributors to post-exercise recovery from CNS origins is somewhat surprising. Based on this context, the current review aims to outline the potential contributions of the brain to performance recovery after strenuous exercise. PMID:24550837

  3. Exercising in environmental extremes : a greater threat to immune function?

    PubMed

    Walsh, Neil P; Whitham, Martin

    2006-01-01

    functional immune modifications associated with prolonged exercise. Studies investigating the effects of cold, high altitude and microgravity on immunity and infection incidence are often hindered by extraneous stressors (e.g. isolation). Nevertheless, the available evidence does not support the popular belief that short- or long-term cold exposure, with or without exercise, suppresses immunity and increases infection incidence. In fact, controlled laboratory studies indicate immuno-stimulatory effects of cold exposure. Although some evidence shows that ascent to high altitude increases infection incidence, clear conclusions are difficult to make because of some overlap with the symptoms of acute mountain sickness. Studies have reported suppressed cell-mediated immunity in mountaineers at high altitude and in astronauts after re-entering the normal gravity environment; however, the impact of this finding on resistance to infection remains unclear. PMID:17052132

  4. Pharmacometabolomic Approach to Predict QT Prolongation in Guinea Pigs

    PubMed Central

    Lee, Hae Won; Lim, Mi-sun; Seong, Sook Jin; Seo, Jeong Ju; Kim, Eun-Jung; Kang, Wonku; Yoon, Young-Ran

    2013-01-01

    Drug-induced torsades de pointes (TdP), a life-threatening arrhythmia associated with prolongation of the QT interval, has been a significant reason for withdrawal of several medicines from the market. Prolongation of the QT interval is considered as the best biomarker for predicting the torsadogenic risk of a new chemical entity. Because of the difficulty assessing the risk for TdP during drug development, we evaluated the metabolic phenotype for predicting QT prolongation induced by sparfloxacin, and elucidated the metabolic pathway related to the QT prolongation. We performed electrocardiography analysis and liquid chromatography–mass spectroscopy-based metabolic profiling of plasma samples obtained from 15 guinea pigs after administration of sparfloxacin at doses of 33.3, 100, and 300 mg/kg. Principal component analysis and partial least squares modelling were conducted to select the metabolites that substantially contributed to the prediction of QT prolongation. QTc increased significantly with increasing dose (r = 0.93). From the PLS analysis, the key metabolites that showed the highest variable importance in the projection values (>1.5) were selected, identified, and used to determine the metabolic network. In particular, cytidine-5′-diphosphate (CDP), deoxycorticosterone, L-aspartic acid and stearic acid were found to be final metabolomic phenotypes for the prediction of QT prolongation. Metabolomic phenotypes for predicting drug-induced QT prolongation of sparfloxacin were developed and can be applied to cardiac toxicity screening of other drugs. In addition, this integrative pharmacometabolomic approach would serve as a good tool for predicting pharmacodynamic or toxicological effects caused by changes in dose. PMID:23593245

  5. Factors Influencing Prolonged ICU Stay After Open Heart Surgery

    PubMed Central

    Azarfarin, Rasoul; Ashouri, Nasibeh; Totonchi, Ziae; Bakhshandeh, Hooman; Yaghoubi, Alireza

    2014-01-01

    Background: There are different risk factors that affect the intensive care unit (ICU) stay after cardiac surgery. Objectives: The aim of this study was to evaluate possible risk factors influencing prolonged ICU stay in a large referral hospital. Patients and Methods: We conducted a case-control study to determinate causes of prolonged ICU stay in 280 adult patients undergoing cardiac surgery in a tertiary care center for cardiovascular patients, Tehran, Iran. These patients were divided into two groups according to ICU stay ≤ 96 and > 96 hours. We evaluated perioperative risk factors of ICU stay > 96 hours. Results: Among the 280 patients studied, 184 (65.7%) had stayed ≤ 96 hours and 96 (34.3%) had stayed > 96 hours in ICU. Frequency of prolonged ICU stay was 34.2% in patients undergoing coronary artery bypass graft (CABG), 30.8% in patients with valve surgery, and 44.8% in patients with CABG plus valve surgery. Patients with > 96 hours of ICU stay received more blood transfusion and intravenous inotropes. They also had longer anesthesia, cardiopulmonary bypass, and postoperative intubation time. There were higher incidence of postoperative tamponade, re-exploration, re-intubation, hemodialysis, and hypotension in this group (P < 0.05 for all comparisons). Conclusions: In this study, about one-third of patients had prolonged ICU stay. Factors influencing prolonged ICU stay were medical and some non-medical factors. In the present study, up to 30% of the patients had a prolonged ICU stay of > 96 hours. Additional data from well-designed investigations are needed for further assessment of the factors influencing prolonged ICU stay after cardiac surgery. PMID:25785249

  6. β-Adrenergic receptor desensitization in man: insight into post-exercise attenuation of cardiac function

    PubMed Central

    Hart, Emma; Dawson, Ellen; Rasmussen, Peter; George, Keith; Secher, Niels H; Whyte, Greg; Shave, Rob

    2006-01-01

    Desensitization of the β-adrenoreceptors (β-AR) may contribute to a post-exercise reduction in left ventricular (LV) function. However, attenuation of the chronotropic and inotropic responses to a β-AR agonist may depend upon alterations in parasympathetic tone. Furthermore, changes in cardiac output Q˙ and LV diastolic function in response to a β-AR agonist, pre- to post-prolonged exercise, remain unclear. Seven trained males (mean ± s.d., age 27 ± 6 years) performed 4 h of ergometer rowing. Peak heart rate (HR) and LV systolic and diastolic functional responses to incremental isoproterenol (isoprenaline) infusion (2, 4 and 6 μg kg min−1) were assessed after vagal blockade (glycopyrrolate, 1.2 mg). LV systolic function was assessed by the pressure/volume ratio (systolic blood pressure/end systolic volume) and Q˙, whilst diastolic function was evaluated as peak early and late transmitral filling velocities. Following exercise, the pressure/volume ratio decreased by 25% (P < 0.05), whereas Q˙ was unchanged (P > 0.05). The early/late filling ratio was reduced by 36% after exercise, due to an elevation in late LV filling (P < 0.01). The increase in HR response to isoproterenol infusion was blunted post-exercise at both 4 and 6 μg kg min−1 (127 ± 7 and 132 ± 6 beats min−1) compared with pre-exercise (138 ± 8 and 141 ± 12 beats min−1, P < 0.05). Additionally, the pressure/volume ratio and Q˙ were blunted post-exercise in response to isoproterenol (P < 0.05). In contrast, diastolic function was similar before and after exercise during isoproterenol infusion (P > 0.05). Desensitization of the β-AR contributes to an attenuated left ventricular systolic but not diastolic function following prolonged exercise. PMID:16973702

  7. Fish under exercise.

    PubMed

    Palstra, Arjan P; Planas, Josep V

    2011-06-01

    Improved knowledge on the swimming physiology of fish and its application to fisheries science and aquaculture (i.e., farming a fitter fish) is currently needed in the face of global environmental changes, high fishing pressures, increased aquaculture production as well as increased concern on fish well-being. Here, we review existing data on teleost fish that indicate that sustained exercise at optimal speeds enhances muscle growth and has consequences for flesh quality. Potential added benefits of sustained exercise may be delay of ovarian development and stimulation of immune status. Exercise could represent a natural, noninvasive, and economical approach to improve growth, flesh quality as well as welfare of aquacultured fish: a FitFish for a healthy consumer. All these issues are important for setting directions for policy decisions and future studies in this area. For this purpose, the FitFish workshop on the Swimming Physiology of Fish ( http://www.ub.edu/fitfish2010 ) was organized to bring together a multidisciplinary group of scientists using exercise models, industrial partners, and policy makers. Sixteen international experts from Europe, North America, and Japan were invited to present their work and view on migration of fishes in their natural environment, beneficial effects of exercise, and applications for sustainable aquaculture. Eighty-eight participants from 19 different countries contributed through a poster session and round table discussion. Eight papers from invited speakers at the workshop have been contributed to this special issue on The Swimming Physiology of Fish. PMID:21611721

  8. Mitohormesis in exercise training.

    PubMed

    Merry, Troy L; Ristow, Michael

    2016-09-01

    Hormesis is a process whereby exposure to a low dose of a potentially harmful stressor promotes adaptive changes to the cell that enables it to better tolerate subsequent stress. In recent years this concept has been applied specifically to the mitochondria (mitohormesis), suggesting that in response to a perturbation the mitochondria can initiate and transduce a signal to the nucleus that coordinates a transcriptional response resulting in both mitochondrial and non-mitochondrial adaptations that return and maintain cellular homeostasis. In this review we summarize the evidence that mitohormesis is a significant adaptive-response signaling pathway, and suggest that it plays a role in mediating exercise-induced adaptations. We discuss potential mitochondrial emitters of retrograde signals that may activate known exercise-sensitive transcription factors to modulate transcription responses to exercise, and draw on evidence from mitochondrial dysfunction animal models to support a role for mitohormesis in mitochondrial biogenesis. Studies directly linking mitohormesis to the exercise training response are lacking, however mounting evidence suggests numerous signals are emitted from the mitochondria during exercise and have the potential to induce a nuclear transcription response, with reactive oxygen species (ROS) being the primary candidate. PMID:26654757

  9. Exercise and Sarcopenia.

    PubMed

    Phu, Steven; Boersma, Derek; Duque, Gustavo

    2015-01-01

    Sarcopenia is a major component of the frailty syndrome and is also a strong predictor of disability, morbidity, and mortality in older persons. Without any available pharmacological intervention to sarcopenia, non-pharmacological interventions are the only option to prevent these poor outcomes in sarcopenic patients. Among those interventions, physical activity with or without protein supplementation has demonstrated to be effective in improving muscle mass and function and in preventing disability and frailty in older persons. Additionally, to the beneficial effect of physical activity on metabolic and cardiovascular diseases, a regular exercise program (3 times/wk) that includes resistance and endurance exercise training would have a major positive effect on sarcopenic muscle through improving muscle mass, strength, and function. In this review, we looked at the effect of exercise on sarcopenic frail older persons from the biological aspects of the response of the muscle to exercise to some practical aspects of exercise prescription in this high-risk population. We conclude that, although challenging, older persons should be encouraged to participate in this type of programs, which would improve not only their function and independence but also their quality of life. PMID:26071171

  10. Exercise and longevity.

    PubMed

    Gremeaux, Vincent; Gayda, Mathieu; Lepers, Romuald; Sosner, Philippe; Juneau, Martin; Nigam, Anil

    2012-12-01

    Aging is a natural and complex physiological process influenced by many factors, some of which are modifiable. As the number of older individuals continues to increase, it is important to develop interventions that can be easily implemented and contribute to "successful aging". In addition to a healthy diet and psychosocial well-being, the benefits of regular exercise on mortality, and the prevention and control of chronic disease affecting both life expectancy and quality of life are well established. We summarize the benefits of regular exercise on longevity, present the current knowledge regarding potential mechanisms, and outline the main recommendations. Exercise can partially reverse the effects of the aging process on physiological functions and preserve functional reserve in the elderly. Numerous studies have shown that maintaining a minimum quantity and quality of exercise decreases the risk of death, prevents the development of certain cancers, lowers the risk of osteoporosis and increases longevity. Training programs should include exercises aimed at improving cardiorespiratory fitness and muscle function, as well as flexibility and balance. Though the benefits of physical activity appear to be directly linked to the notion of training volume and intensity, further research is required in the elderly, in order to develop more precise recommendations, bearing in mind that the main aim is to foster long-term adherence to physical activity in this growing population. PMID:23063021

  11. Epilepsy and physical exercise.

    PubMed

    Pimentel, José; Tojal, Raquel; Morgado, Joana

    2015-02-01

    Epilepsy is one of the commonest neurologic diseases and has always been associated with stigma. In the interest of safety, the activities of persons with epilepsy (PWE) are often restricted. In keeping with this, physical exercise has often been discouraged. The precise nature of a person's seizures (or whether seizures were provoked or unprovoked) may not have been considered. Although there has been a change in attitude over the last few decades, the exact role of exercise in inducing seizures or aggravating epilepsy still remains a matter of discussion among experts in the field. Based mainly on retrospective, but also on prospective, population and animal-based research, the hypothesis that physical exercise is prejudicial has been slowly replaced by the realization that physical exercise might actually be beneficial for PWE. The benefits are related to improvement of physical and mental health parameters and social integration and reduction in markers of stress, epileptiform activity and the number of seizures. Nowadays, the general consensus is that there should be no restrictions to the practice of physical exercise in people with controlled epilepsy, except for scuba diving, skydiving and other sports at heights. Whilst broader restrictions apply for patients with uncontrolled epilepsy, individual risk assessments taking into account the seizure types, frequency, patterns or triggers may allow PWE to enjoy a wide range of physical activities. PMID:25458104

  12. From prolonging life to prolonging working life: Tackling unemployment among liver-transplant recipients.

    PubMed

    Åberg, Fredrik

    2016-04-14

    Return to active and productive life is a key goal of modern liver transplantation (LT). Despite marked improvements in quality of life and functional status, a substantial proportion of LT recipients are unable to resume gainful employment. Unemployment forms a threat to physical and psychosocial health, and impairs LT cost-utility through lost productivity. In studies published after year 2000, the average post-LT employment rate is 37%, ranging from 22% to 55% by study. Significant heterogeneity exists among studies. Nonetheless, these employment rates are lower than in the general population and kidney-transplant population. Most consistent employment predictors include pre-LT employment status, male gender, functional/health status, and subjective work ability. Work ability is impaired by physical fatigue and depression, but affected also by working conditions and society. Promotion of post-LT employment is hampered by a lack of interventional studies. Prevention of pre-LT disability by effective treatment of (minimal) hepatic encephalopathy, maintaining mobility, and planning work adjustments early in the course of chronic liver disease, as well as timely post-LT physical rehabilitation, continuous encouragement, self-efficacy improvements, and depression management are key elements of successful employment-promoting strategies. Prolonging LT recipients' working life would further strengthen the success of transplantation, and this is likely best achieved through multidisciplinary efforts ideally starting even before LT candidacy. PMID:27076755

  13. From prolonging life to prolonging working life: Tackling unemployment among liver-transplant recipients

    PubMed Central

    Åberg, Fredrik

    2016-01-01

    Return to active and productive life is a key goal of modern liver transplantation (LT). Despite marked improvements in quality of life and functional status, a substantial proportion of LT recipients are unable to resume gainful employment. Unemployment forms a threat to physical and psychosocial health, and impairs LT cost-utility through lost productivity. In studies published after year 2000, the average post-LT employment rate is 37%, ranging from 22% to 55% by study. Significant heterogeneity exists among studies. Nonetheless, these employment rates are lower than in the general population and kidney-transplant population. Most consistent employment predictors include pre-LT employment status, male gender, functional/health status, and subjective work ability. Work ability is impaired by physical fatigue and depression, but affected also by working conditions and society. Promotion of post-LT employment is hampered by a lack of interventional studies. Prevention of pre-LT disability by effective treatment of (minimal) hepatic encephalopathy, maintaining mobility, and planning work adjustments early in the course of chronic liver disease, as well as timely post-LT physical rehabilitation, continuous encouragement, self-efficacy improvements, and depression management are key elements of successful employment-promoting strategies. Prolonging LT recipients’ working life would further strengthen the success of transplantation, and this is likely best achieved through multidisciplinary efforts ideally starting even before LT candidacy. PMID:27076755

  14. Prolonging dying is the same as prolonging living--one more response to Long.

    PubMed

    Kuhse, H; Singer, P

    1991-12-01

    In earlier publications, we had argued that Paul Ramsey is inconsistent because he simultaneously asserts that (i) 'all our days and years are of equal worth' and (ii) 'that it is permissible to refrain from prolonging the lives of some dying patients'. Thomas Long has suggested that we have not shown that Paul Ramsey is inconsistent. Ramsey and we, he holds, start from incommensurable metaphysical views: for Ramsey, the dying process has religious significance--God is calling his servant home. While it is normally a good thing to keep a patient alive, it would, for Ramsey, show deafness to God's call to keep a dying patient alive. It is true we do not share Paul Ramsey's religious views. It is, however, not necessary to rely on any particular metaphysical views to refute Ramsey's position. For Ramsey's view to be internally consistent, Ramsey would have to be able to distinguish between dying and non-dying patients. We examine some of Ramsey's examples and show that his practical judgements do not allow us to draw this distinction. This means that, contra Long, we hold fast to our charge that Ramsey's view is inconsistent. PMID:1787522

  15. The regulation of carbohydrate and fat metabolism during and after exercise.

    PubMed

    Holloszy, J O; Kohrt, W M; Hansen, P A

    1998-09-15

    The rate of carbohydrate utilization during prolonged, strenuous exercise is closely geared to the energy needs of the working muscles. In contrast, fat utilization during exercise is not tightly regulated, as there are no mechanisms for closely matching availability and metabolism of fatty acids to the rate of energy expenditure. As a result, the rate of fat oxidation during exercise is determined by the availability of fatty acids and the rate of carbohydrate utilization. Blood glucose and muscle glycogen are essential for prolonged strenuous exercise, and exhaustion can result either from development of hypoglycemia or depletion of muscle glycogen. Both absolute and relative (i.e. % of maximal O2 uptake) exercise intensities play important roles in the regulation of substrate metabolism. The absolute work rate determines the total quantity of fuel required, while relative exercise intensity plays a major role in determining the proportions of carbohydrate and fat oxidized by the working muscles. As relative exercise intensity is increased, there is a decrease in the proportion of the energy requirement derived from fat oxidation and an increase in that provided by carbohydrate oxidation. During moderately strenuous exercise of an intensity that can be maintained for 90 minutes or longer ( approximately 55-75% of VO2max), there is a progressive decline in the proportion of energy derived from muscle glycogen and a progressive increase in plasma fatty acid oxidation. The adaptations induced by endurance exercise training result in a marked sparing of carbohydrate during exercise, with an increased proportion of the energy being provided by fat oxidation. The mechanisms by which training decreases utilization of blood glucose are not well understood. However, the slower rate of glycogenolysis can be explained on the basis of lower concentrations of inorganic phosphate (Pi) in trained, as compared to untrained, muscles during exercise of the same intensity. The

  16. Effect of exhaustive exercise on myocardial performance

    SciTech Connect

    Grimditch, G.K.; Barnard, R.J.; Duncan, H.W.

    1981-11-01

    Possible changes in cardiac functional capacity in the intact heart following prolonged exhaustive exercise are investigated. Cardiac output, coronary blood flow, aortic blood pressure, left ventricular pressure, maximum rate of left ventricular pressure development and maximum rate of left ventricular pressure relaxation were measured in eight chronically instrumented adult mongrel dogs run at a constant work load to exhaustion signalled by the animals' refusal or inability to continue. All cardiovascular parameters, with the exception of stroke volume, are found to increase significantly during the transition from rest to steady-state exercise at about 75% of maximum heart rate. In the transition from steady state to exhaustion, only the maximum rates of left ventricular pressure development and relaxation are observed to increase significantly, while all other values exhibited no significant change. Similarly, no significant changes are observed in measurements of maximum cardiac parameters before and after exhaustion. Results indicate that cardiac function and hemodynamic parameters are not depressed at exhaustion in dogs despite observed ultrastructural changes.

  17. Exercise in Pregnancy: Guidelines.

    PubMed

    Artal, Raul

    2016-09-01

    In recent years it has been recognized that in all phases of life, including pregnancy, physical activity promotes health benefits and precludes comorbidities, the scientific evidence is indisputable. Several organizations around the world have updated in recent years the guidelines and recommendations for exercise in pregnancy. The December 2015, updated guidelines of the American College of Obstetricians and Gynecologists emphasize that physical activity in pregnancy has minimal risk. Although recommending exercise in pregnancy, the anatomic/physiological changes, absolute and relative contraindications should be considered. Women who exercised regularly before pregnancy, in the absence of contraindications, can continue and engage in moderate to strenuous activities, although information on strenuous activities in pregnancy is still limited. This review summarizes the most recent published and recommended guidelines. PMID:27398880

  18. Locomotor exercise in weightlessness

    NASA Technical Reports Server (NTRS)

    Thornton, W.; Whitmore, H.

    1991-01-01

    The requirements for exercise in space by means of locomotion are established and addressed with prototype treadmills for use during long-duration spaceflight. The adaptation of the human body to microgravity is described in terms of 1-G locomotor biomechanics, the effects of reduced activity, and effective activity-replacement techniques. The treadmill is introduced as a complement to other techniques of force replacement with reference given to the angle required for exercise. A motor-driven unit is proposed that can operate at a variety of controlled speeds and equivalent grades. The treadmills permit locomotor exercise as required for long-duration space travel to sustain locomotor and cardiorespiratory capacity at a level consistent with postflight needs.

  19. Exercise and autonomic function.

    PubMed

    Goldsmith, R L; Bloomfield, D M; Rosenwinkel, E T

    2000-03-01

    The complex interplay between the dichotomous subdivisions of the autonomic nervous system establishes and maintains a delicately tuned homeostasis in spite of an ever-changing environment. Aerobic exercise training can increase activity of the parasympathetic nervous system and decrease sympathetic activity. Conversely, it is well-documented that cardiac disease is often characterized by attenuated parasympathetic activity and heightened sympathetic tone. A correlation between autonomic disequilibrium and disease has led to the hypothesis that exercise training, as a therapy that restores the autonomic nervous system towards normal function, may be associated with, and possibly responsible for, outcome improvements in various populations. This is merely one of the many benefits that is conferred by chronic exercise training and reviewed in this issue. PMID:10758814

  20. [Metabolic intolerance to exercise].

    PubMed

    Arenas, J; Martín, M A

    2003-01-01

    Exercise intolerance (EI) is a frequent cause of medical attention, although it is sometimes difficult to come to a final diagnosis. However, there is a group of patients in whom EI is due to a metabolic dysfunction. McArdle's disease (type V glucogenosis) is due to myophosphorylase (MPL) deficiency. The ischemic exercise test shows a flat lactate curve. The most frequent mutations in the PYGM gene (MPL gene) in Spanish patients with MPL deficiency are R49X and W797R. Carnitine palmitoyltransferase (CPT) II deficiency is invariably associated to repetitive episodes of myoglobinuria triggered by exercise, cold, fever or fasting. The diagnosis depends on the demonstration of CPT II deficiency in muscle. The most frequent mutation in the CPT2 gene is the S113L. Patients with muscle adenylate deaminase deficiency usually show either a mild myopathy or no symptom. The diagnosis is based on the absence of enzyme activity in muscle and the lack of rise of ammonia in the forearm ischemic exercise test. The mutation Q12X in the AMPD1 gene is strongly associated with the disease. Exercise intolerance is a common complaint in patients with mitochondrial respiratory chain (MRC) deficiencies, although it is often overshadowed by other symptoms and signs. Only recently we have come to appreciate that exercise intolerance can be the sole presentation of defects in the mtDNA, particularly in complex I, complex III, complex IV, or in some tRNAs. In addition, myoglobinuria can be observed in patients under statin treatment, particularly if associated with fibrates, due to an alteration in the assembly of the complex IV of the MRC. PMID:12838448

  1. Exercise, immunity and aging.

    PubMed

    Venjatraman, J T; Fernandes, G

    1997-01-01

    In general population, many protective immune responses are impaired in old age, leading to an increased risk of infection. However, recent studies in SENIEUR subjects (healthy centenarians who are examples of successful aging) suggest that complex remodeling and reshaping of the immune system occurs with aging. An appropriate regular regimen of endurance exercise might help elderly to lead a quality of life by preserving immune function. However, very little is known regarding the interaction between exercise, aging and the immune system. Given that a number of age-related changes occur in many physiological systems which are known to alter the immune function both at rest and during exercise, it would be of value to learn the extent to which both acute and chronic exercise influence immune function in the elderly. The immune system response to exercise is multifaceted, depending on the nature of exercise. Significant interaction between the neuroendocrine and immune systems, and the role of lifestyle factors in immune function are known to occur. In theory, moderate exercise should help to reverse the adverse effects of aging upon the immune system by increasing the production of endocrine hormones which may contribute to less accumulation of autoreactive immune cells by enhancing the programmed cell death. Active elderly subjects demonstrated a significantly greater proliferative response to phytohemagglutinins (PHA) and to pokeweed mitogen (PWM), and higher rates of interleukin-2 (IL-2), interferon-gamma (IFN-gamma) and interleukin-4 (IL-4) production. A moderate training program can enhance the resting natural killer (NK) cell function of healthy elderly people, potentially increasing resistance to both viral infections and preventing the formation of malignant cells. Recent studies have suggested that endurance training in later life is associated with a lesser age-related decline in certain aspects of circulating T cell function and related cytokine

  2. Muscle changes with eccentric exercise: Implications on earth and in space

    NASA Technical Reports Server (NTRS)

    Hargens, Alan R.; Parazynski, Scott; Aratow, Michael; Friden, Jan

    1989-01-01

    Recent investigations of fluid pressure, morpholo gy, and enzyme activities of skeletal muscle exercised eccentrically or concentrically in normal human subjects are reviewed. Intramuscular pressures were measured before, during, and after submaximal exercise and correlated with subjective muscle soreness, fiber size, water content, and blood indices of muscle enzymes. High intensity eccentric exercise is characterized by post exercise pain, elevated intramuscular pressures, and swelling of both type 1 and 2 fibers as compared to concentric exercise. Thus, long periods of unaccustomed, high level eccentric contraction may cause muscle injury, fiber swelling, fluid accumulation, elevated intramuscular pressure, and delayed muscle soreness. Training regimens of progressively increasing eccentric exercise, however, cause less soreness and are extremely efficacious in increasing muscle mass and strength. It is proposed that on Earth, postural muscles are uniquely adapted to low levels of prolonged eccentric contraction that are absent during weightlessness. The almost complete absence of eccentric exercise in space may be an important contributor to muscle atrophy and therefore equipment should be designed to integrate eccentric contractions into exercise protocols for long-term spaceflight.

  3. Cardiovascular exercise in the U.S. space program: Past, present and future

    NASA Astrophysics Data System (ADS)

    Moore, Alan D.; Lee, Stuart M. C.; Stenger, Michael B.; Platts, Steven H.

    2010-04-01

    Exercise deconditioning during space flight may impact a crewmember's ability to perform strenuous or prolonged tasks during and after a spaceflight mission. In this paper, we review the cardiovascular exercise data from U.S. spaceflights from the Mercury Project through International Space Station (ISS) expeditions and potential implications upon current and future missions. During shorter spaceflights (<16 days), the heart rate (HR) response to exercise testing and maximum oxygen consumption (VO 2 max) are not changed. The submaximal exercise HR responses during longer duration flights are less consistent, and VO 2 max has not been measured. Skylab data demonstrated no change in the exercise HR response during flight which would be consistent with no change in VO 2 max; however, during ISS flight exercise HR is elevated early in the mission, but approaches preflight levels later during the missions, perhaps due to performance of exercise countermeasures. An elevated exercise HR is consistently observed after both short and long duration spaceflight, and crewmembers appear to recover at rates which are affected by the length of the mission.

  4. Exercise acts as a drug; the pharmacological benefits of exercise

    PubMed Central

    Vina, J; Sanchis-Gomar, F; Martinez-Bello, V; Gomez-Cabrera, MC

    2012-01-01

    The beneficial effects of regular exercise for the promotion of health and cure of diseases have been clearly shown. In this review, we would like to postulate the idea that exercise can be considered as a drug. Exercise causes a myriad of beneficial effects for health, including the promotion of health and lifespan, and these are reviewed in the first section of this paper. Then we deal with the dosing of exercise. As with many drugs, dosing is extremely important to get the beneficial effects of exercise. To this end, the organism adapts to exercise. We review the molecular signalling pathways involved in these adaptations because understanding them is of great importance to be able to prescribe exercise in an appropriate manner. Special attention must be paid to the psychological effects of exercise. These are so powerful that we would like to propose that exercise may be considered as a psychoactive drug. In moderate doses, it causes very pronounced relaxing effects on the majority of the population, but some persons may even become addicted to exercise. Finally, there may be some contraindications to exercise that arise when people are severely ill, and these are described in the final section of the review. Our general conclusion is that exercise is so effective that it should be considered as a drug, but that more attention should be paid to the dosing and to individual variations between patients. PMID:22486393

  5. Exercise, Lymphokines, Calories, and Cancer.

    ERIC Educational Resources Information Center

    Eichner, Edward R.

    1987-01-01

    A review of epidemiological studies suggesting that exercise reduces the risk of cancer concludes that exercise may help defend against cancer by preventing obesity, stimulating lymphokines, and/or facilitating other healthful changes in behavior. (Author/CB)

  6. Exercise Helps Ease Psychosis Symptoms

    MedlinePlus

    ... has shown that exercise can benefit people with schizophrenia. The study was published recently in the journal ... Health Topics Exercise and Physical Fitness Psychotic Disorders Schizophrenia About MedlinePlus Site Map FAQs Contact Us Get ...

  7. Eye Exercises and Reading Efficiency

    ERIC Educational Resources Information Center

    Heath, Earl J.; And Others

    1976-01-01

    Evaluated with a total of 60 primary-grade children was the effectiveness in improving ocular motor control of three training programs: the Bender proprioceptive facilitative feedback exercises, the Marsden ball program, and perceptual exercises. (DB)

  8. ISS Update: SPRINT Exercise Program

    NASA Video Gallery

    NASA Public Affairs Officer Amiko Kauderer interviews Lori Ploutz-Snyder, Ph.D., NASA Lead Exercise Physiology Scientist, about the SPRINT exercise program used by the crew members aboard the Inter...

  9. Exercising with a Muscle Disease

    MedlinePlus

    ... are: • cramping in muscles (probably related to insufficient energy supply for muscles) • pain in muscles • weakness of exercised muscles • dark urine that looks like cola, following exercise (seek ...

  10. Kegel exercises - self-care

    MedlinePlus

    ... page: //medlineplus.gov/ency/patientinstructions/000141.htm Kegel exercises - self-care To use the sharing features on ... move up and down. How to do Kegel Exercises Once you know what the movement feels like, ...

  11. Exercise for Your Bone Health

    MedlinePlus

    ... supported by your browser. Home Bone Basics Lifestyle Exercise for Your Bone Health Publication available in: PDF ( ... A Complete Osteoporosis Program For Your Information Why Exercise? Like muscle, bone is living tissue that responds ...

  12. Exercise to Improve Your Balance

    MedlinePlus

    ... nia.nih.gov/Go4Life Exercise to Improve Your Balance Having good balance is important for many everyday activities, such as ... fracture of the arm, hand, ankle, or hip. Balance exercises can help you prevent falls and avoid ...

  13. Exercise, lifestyle, and your bones

    MedlinePlus

    Osteoporosis - exercise; Low bone density - exercise ... Osteoporosis is a disease that causes bones to become brittle and more likely to fracture (break). With osteoporosis, the bones lose density. Bone density is the amount of bone ...

  14. Drug-induced QT interval prolongation and torsades de pointes

    PubMed Central

    Tisdale, James E.

    2016-01-01

    Torsades de pointes (TdP) is a life-threatening arrhythmia associated with prolongation of the corrected QT (QTc) interval on the electrocardiogram. More than 100 drugs available in Canada, including widely used antibiotics, antidepressants, cardiovascular drugs and many others, may cause QTc interval prolongation and TdP. Risk factors for TdP include QTc interval >500 ms, increase in QTc interval ≥60 ms from the pretreatment value, advanced age, female sex, acute myocardial infarction, heart failure with reduced ejection fraction, hypokalemia, hypomagnesemia, hypocalcemia, bradycardia, treatment with diuretics and elevated plasma concentrations of QTc interval–prolonging drugs due to drug interactions, inadequate dose adjustment of renally eliminated drugs in patients with kidney disease and rapid intravenous administration. Pharmacokinetic drug interactions associated with the highest risk of TdP include antifungal agents, macrolide antibiotics (except azithromycin) and drugs to treat human immunodeficiency virus interacting with amiodarone, disopyramide, dofetilide or pimozide. Other important pharmacokinetic interactions include antidepressants (bupropion, duloxetine, fluoxetine, paroxetine) interacting with flecainide, quinidine or thioridazine. Pharmacists play an important role in minimizing the risk of drug-induced QTc interval prolongation and TdP through knowledge of drugs that are associated with a known or possible risk of TdP, individualized assessment of risk of drug-induced QTc interval prolongation, awareness of drug interactions most likely to result in TdP and attention to dose reduction of renally eliminated QTc interval-prolonging drugs in patients with kidney disease. Treatment of hemodynamically stable TdP consists of discontinuation of the offending drug(s), correction of electrolyte abnormalities and administration of intravenous magnesium sulfate 1 to 2 g. PMID:27212965

  15. Considerations in prescribing preflight aerobic exercise for astronauts

    NASA Technical Reports Server (NTRS)

    Frey, Mary Anne Bassett

    1987-01-01

    The physiological effects of prolonged exposure to weightlessness are discussed together with the effects of aerobic exercise on human characteristics affected by weightlessness. It is noted that, although early data on orthostatic intolerance after spaceflight led to a belief that a high level of aerobic fitness for astronauts was detrimental to orthostatic tolerance on return to earth, most of the data available today do not suport this contention. Aerobic fitness was found to be beneficial to cardiovascular function and to mental performance; therefore, it may be important in performing extravehicular activities during flight.

  16. Interleukin-6 and associated cytokine responses to an acute bout of high-intensity interval exercise: the effect of exercise intensity and volume.

    PubMed

    Cullen, Tom; Thomas, Andrew W; Webb, Richard; Hughes, Michael G

    2016-08-01

    Acute increases in interleukin (IL)-6 following prolonged exercise are associated with the induction of a transient anti-inflammatory state (e.g., increases in IL-10) that is partly responsible for the health benefits of regular exercise. The purposes of this study were to investigate the IL-6-related inflammatory response to high-intensity interval exercise (HIIE) and to determine the impact of exercise intensity and volume on this response. Ten participants (5 males and 5 females) completed 3 exercise bouts of contrasting intensity and volume (LOW, MOD, and HIGH). The HIGH protocol was based upon standard HIIE protocols, while the MOD and LOW protocols were designed to enable a comparison of exercise intensity and volume with a fixed duration. Inflammatory cytokine concentrations were measured in plasma (IL-6, IL-10) and also determined the level of gene expression (IL-6, IL-10, and IL-4R) in peripheral blood. The plasma IL-6 response to exercise (reported as fold changes) was significantly greater in HIGH (2.70 ± 1.51) than LOW (1.40 ± 0.32) (P = 0.04) and was also positively correlated to the mean exercise oxygen uptake (r = 0.54, P < 0.01). However, there was no change in anti-inflammatory IL-10 or IL-4R responses in plasma or at the level of gene expression. HIIE caused a significant increase in IL-6 and was greater than that seen in low-intensity exercise of the same duration. The increases in IL-6 were relatively small in magnitude, and appear to have been insufficient to induce the acute systemic anti-inflammatory effects, which are evident following longer duration exercise. PMID:27377137

  17. COPD: benefits of exercise training.

    PubMed

    2016-03-01

    In patients with stable, moderate or severe chronic obstructive pulmonary disease (COPD), general exercise training, including limb exercises, provides sustained improvement in various quality of life domains, compared with care without pulmonary rehabilitation. After a COPD exacerbation, exercise training appears to reduce the risk of hospitalisation in the following months by at least half. Few studies have evaluated the adverse effects of exercise training in COPD, but based on the data available in 2015, its harm-benefit balance appears favourable. PMID:27152405

  18. Spontaneous hepatic hemorrhage secondary to prolonged use of oral contraceptives.

    PubMed

    Jaffar, Reema; Pechet, Liberto; Whalen, Giles Francis; Banner, Barbara F

    2010-05-15

    Oral contraceptive pills (OCP) are the most commonly used form of contraception throughout the United States of America. The prolonged usage of oral contraceptives leads to a variety of complications, ranging from subclinical modifications of liver function tests to the development of benign and malignant tumors of the liver. Spontaneous hepatic hemorrhage secondary to oral contraceptive use was only reported once in the early 1980s. We report a case of spontaneous hepatic hemorrhage secondary to prolonged ingestion of combined OCPs followed by multiple pulmonary emboli without underlying thrombophilia. PMID:19577854

  19. Interventions in the prolongation of reproductive life in women.

    PubMed

    Barlow, David H

    2011-03-01

    Women may seek to prolong their reproductive span for a variety of reasons. For many this implies reproduction at a late age, possibly driven by lifestyle decisions, but for others affected by a natural or a cancer treatment-induced premature ovarian failure it may simply mean seeking to achieve the normal reproductive span. The range of interventions now available to address the issue of prolonging reproductive life has never been greater, although several of the approaches discussed remain in the realm of future application through being dependent on ongoing scientific developments. PMID:21401623

  20. Risk assessment of drug-induced QT prolongation

    PubMed Central

    Isbister, Geoffrey K

    2015-01-01

    SUMMARY Drugs can cause prolongation of the QT interval, alone or in combination, potentially leading to fatal arrhythmias such as torsades de pointes. When prescribing drugs that prolong the QT interval, the balance of benefit versus harm should always be considered. Readouts from automated ECG machines are unreliable. The QT interval should be measured manually. Changes in heart rate influence the absolute QT interval. Heart rate correction formulae are inaccurate, particularly for fast and slow heart rates. The QT nomogram, a plot of QT interval versus heart rate, can be used as a risk assessment tool to detect an abnormal QT interval. PMID:26648606