Sample records for promote mammary tumor

  1. Folic Acid Supplementation Promotes Mammary Tumor Progression in a Rat Model

    PubMed Central

    Deghan Manshadi, Shaidah; Ishiguro, Lisa; Sohn, Kyoung-Jin; Medline, Alan; Renlund, Richard; Croxford, Ruth; Kim, Young-In

    2014-01-01

    Folic acid supplementation may prevent the development of cancer in normal tissues but may promote the progression of established (pre)neoplastic lesions. However, whether or not folic acid supplementation can promote the progression of established (pre)neoplastic mammary lesions is unknown. This is a critically important issue because breast cancer patients and survivors in North America are likely exposed to high levels of folic acid owing to folic acid fortification and widespread supplemental use after cancer diagnosis. We investigated whether folic acid supplementation can promote the progression of established mammary tumors. Female Sprague-Dawley rats were placed on a control diet and mammary tumors were initiated with 7,12-dimethylbenza[a]anthracene at puberty. When the sentinel tumor reached a predefined size, rats were randomized to receive a diet containing the control, 2.5x, 4x, or 5x supplemental levels of folic acid for up to 12 weeks. The sentinel mammary tumor growth was monitored weekly. At necropsy, the sentinel and all other mammary tumors were analyzed histologically. The effect of folic acid supplementation on the expression of proteins involved in proliferation, apoptosis, and mammary tumorigenesis was determined in representative sentinel adenocarcinomas. Although no clear dose-response relationship was observed, folic acid supplementation significantly promoted the progression of the sentinel mammary tumors and was associated with significantly higher sentinel mammary tumor weight and volume compared with the control diet. Furthermore, folic acid supplementation was associated with significantly higher weight and volume of all mammary tumors. The most significant and consistent mammary tumor-promoting effect was observed with the 2.5x supplemental level of folic acid. Folic acid supplementation was also associated with an increased expression of BAX, PARP, and HER2. Our data suggest that folic acid supplementation may promote the progression

  2. Physiologically activated mammary fibroblasts promote postpartum mammary cancer

    PubMed Central

    Guo, Qiuchen; Burchard, Julja; Spellman, Paul

    2017-01-01

    Women diagnosed with breast cancer within 5 years of childbirth have poorer prognosis than nulliparous or pregnant women. Weaning-induced breast involution is implicated, as the collagen-rich, immunosuppressive microenvironment of the involuting mammary gland is tumor promotional in mice. To investigate the role of mammary fibroblasts, isolated mammary PDGFRα+ cells from nulliparous and postweaning mice were assessed for activation phenotype and protumorigenic function. Fibroblast activation during involution was evident by increased expression of fibrillar collagens, lysyl oxidase, Tgfb1, and Cxcl12 genes. The ability of mammary tumors to grow in an isogenic, orthotopic transplant model was increased when tumor cells were coinjected with involution-derived compared with nulliparous-derived mammary fibroblasts. Mammary tumors in the involution-fibroblast group had increased Ly6C+ monocytes at the tumor border, and decreased CD8+ T cell infiltration and tumor cell death. Ibuprofen treatment suppressed involution-fibroblast activation and tumor promotional capacity, concurrent with decreases in tumor Ly6C+ monocytes, and increases in intratumoral CD8+ T cell infiltration, granzyme levels, and tumor cell death. In total, our data identify a COX/prostaglandin E2 (PGE2)–dependent activated mammary fibroblast within the involuting mammary gland that displays protumorigenic, immunosuppressive activity, identifying fibroblasts as potential targets for the prevention and treatment of postpartum breast cancer. PMID:28352652

  3. Mouse Mammary Tumor Virus c-rel Transgenic Mice Develop Mammary Tumors

    PubMed Central

    Romieu-Mourez, Raphaëlle; Kim, Dong W.; Min Shin, Sang; Demicco, Elizabeth G.; Landesman-Bollag, Esther; Seldin, David C.; Cardiff, Robert D.; Sonenshein, Gail E.

    2003-01-01

    Amplification, overexpression, or rearrangement of the c-rel gene, encoding the c-Rel NF-κB subunit, has been reported in solid and hematopoietic malignancies. For example, many primary human breast cancer tissue samples express high levels of nuclear c-Rel. While the Rev-T oncogene v-rel causes tumors in birds, the ability of c-Rel to transform in vivo has not been demonstrated. To directly test the role of c-Rel in breast tumorigenesis, mice were generated in which overexpression of mouse c-rel cDNA was driven by the hormone-responsive mouse mammary tumor virus long terminal repeat (MMTV-LTR) promoter, and four founder lines identified. In the first cycle of pregnancy, the expression of transgenic c-rel mRNA was observed, and levels of c-Rel protein were increased in the mammary gland. Importantly, 31.6% of mice developed one or more mammary tumors at an average age of 19.9 months. Mammary tumors were of diverse histology and expressed increased levels of nuclear NF-κB. Analysis of the composition of NF-κB complexes in the tumors revealed aberrant nuclear expression of multiple subunits, including c-Rel, p50, p52, RelA, RelB, and the Bcl-3 protein, as observed previously in human primary breast cancers. Expression of the cancer-related NF-κB target genes cyclin D1, c-myc, and bcl-xl was significantly increased in grossly normal transgenic mammary glands starting the first cycle of pregnancy and increased further in mammary carcinomas compared to mammary glands from wild-type mice or virgin transgenic mice. In transient transfection analysis in untransformed breast epithelial cells, c-Rel-p52 or -p50 heterodimers either potently or modestly induced cyclin D1 promoter activity, respectively. Lastly, stable overexpression of c-Rel resulted in increased cyclin D1 and NF-κB p52 and p50 subunit protein levels. These results indicate for the first time that dysregulated expression of c-Rel, as observed in breast cancers, is capable of contributing to mammary

  4. Flor-Essence? Herbal Tonic Promotes Mammary Tumor Development in Sprague Dawley Rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bennett, L; Montgomery, J; Steinberg, S

    Background: Women who are diagnosed with breast cancer often self-administer complementary and alternative medicines to augment their conventional treatments, improve health, or prevent recurrence. Flor-Essence{reg_sign} Tonic is a complex mixture of herbal extracts used by cancer patients because of anecdotal evidence that it can treat or prevent disease. Methods: Female Sprague Dawley rats were given water or exposed to 3% or 6% Flor-Essence{reg_sign} beginning at one day of age. Mammary tumors were induced with a single oral 40 mg/kg/bw dose of dimethylbenz(a)anthracene at 50 days of age and sacrificed at 23 weeks. Rats were maintained on AIN-76A diet. Results: Controlmore » rats had palpable mammary tumor incidence of 51.0% at 19 weeks of age compared to 65.0% and 59.4% for the 3% and 6% Flor-Essence{reg_sign} groups respectively. Overall, no significant difference in time until first palpable tumor was detected among any of the groups. At necropsy, mammary tumor incidence was 82.5% for controls compared to 90.0% and 97.3% for rats consuming 3% and 6% Flor-Essence{reg_sign}, respectively. Mean mammary tumor multiplicity ({+-}SES) for the controls was 2.8 ({+-} 0.5) and statistically different from the 3% or 6% Flor- Essence{reg_sign} groups with 5.2 ({+-} 0.7), and 4.8 ({+-} 0.6), respectively (p{<=}0.01). As expected, the majority of isolated tumors were diagnosed as adenocarcinomas. Conclusions: Flor-Essence{reg_sign} can promote mammary tumor development in the Sprague Dawley rat model. This observation is contrary to widely available anecdotal evidence as well as the desire of the consumer that this commercially available herbal tonic will suppress and/or inhibit tumor growth.« less

  5. Alcohol consumption promotes mammary tumor growth and insulin sensitivity

    PubMed Central

    Hong, Jina; Holcomb, Valerie B.; Tekle, Samrawit A.; Fan, Betty; Núñez, Nomelí P.

    2010-01-01

    Epidemiological data show that in women, alcohol has a beneficial effect by increasing insulin sensitivity but also a deleterious effect by increasing breast cancer risk. These effects have not been shown concurrently in an animal model of breast cancer. Our objective is to identify a mouse model of breast cancer whereby alcohol increases insulin sensitivity and promotes mammary tumorigenesis. Our results from the glucose tolerance test and the homeostasis model assessment show that alcohol consumption improved insulin sensitivity. However, alcohol-consuming mice developed larger mammary tumors and developed them earlier than water-consuming mice. In vitro results showed that alcohol exposure increased the invasiveness of breast cancer cells in a dose-dependent manner. Thus, this animal model, an in vitro model of breast cancer, may be used to elucidate the mechanism(s) by which alcohol affects breast cancer. PMID:20202743

  6. DNA Methylation Status of the Estrogen Receptor α Gene in Canine Mammary Tumors.

    PubMed

    Brandão, Yara de Oliveira; Toledo, Mariana Busato; Chequin, Andressa; Cristo, Thierry Grima; Sousa, Renato Silva; Ramos, Edneia Amancio Souza; Klassen, Giseli

    2018-01-01

    Estrogen receptor α (ERα) has an important role in mammary carcinogenesis, prognosis, and treatment. In human and canine mammary cancer, the most aggressive tumors show loss of ERα expression, which in human breast cancer has been attributed to methylation of the cytosine followed by guanine (CpG) island within the estrogen receptor α gene ( ESR1) promoter. This study aimed to investigate the role of ESR1 CpG island (CGI) methylation in ERα expression in canine mammary tumors. Twenty-one canine mammary samples were sorted into three groups: malignant tumor (n = 9), benign tumor (n = 8), and normal gland (n = 4). Immunohistochemical analysis and reverse-transcription quantitative real-time PCR were performed to assess ERα expression and ESR1 mRNA levels. The methylation status was determined using sodium-bisulfite-treated DNA sequencing. All normal mammary glands and benign tumors showed high ERα expression (score range, 5-8). Six of the nine malignant tumors did not show ERα expression (score 0), two had score 2, and one had score 4. Lower ERα ( P < .005) and ESR1 mRNA levels ( P < .005) were found in malignant mammary tumors than in the other two groups. Canine ESR1 has an intragenic and non-promoter-associated CGI, different from humans. No significant variation in methylation percentage was observed among the groups, suggesting that ESR1 is not regulated by DNA methylation, unlike that in humans. This difference should be considered in further research using ERα as a biomarker for mammary tumors in canine studies on ERα-targeting therapy.

  7. Integrin β4 Signaling Promotes Mammary Tumor Cell Adhesion to Brain Microvascular Endothelium by Inducing ErbB2-mediated Secretion of VEGF

    PubMed Central

    Fan, Jie; Cai, Bin; Zeng, Min; Hao, Yanyan

    2015-01-01

    Prior studies have indicated that the β4 integrin promotes mammary tumor invasion and metastasis by combining with ErbB2 and amplifying its signaling capacity. However, the effector pathways and cellular functions by which the β4 integrin exerts these effects are incompletely understood. To examine if β4 signaling plays a role during mammary tumor cell adhesion to microvascular endothelium, we have examined ErbB2-transformed mammary tumor cells expressing either a wild-type (WT) or a signaling-defective form of β4 (1355T). We report that WT cells adhere to brain microvascular endothelium in vitro to a significantly larger extent as compared to 1355T cells. Interestingly, integrin β4 signaling does not exert a direct effect on adhesion to the endothelium or the underlying basement membrane. Rather, it enhances ErbB2-dependent expression of VEGF by tumor cells. VEGF in turn disrupts the tight and adherens junctions of endothelial monolayers, enabling the exposure of underlying basement membrane and increasing the adhesion of tumor cells to the intercellular junctions of endothelium. Inhibition of ErbB2 on tumor cells or the VEGFR-2 on endothelial cells suppresses mammary tumor cell adhesion to microvascular endothelium. Our results indicate that β4 signaling regulates VEGF expression by the mammary tumor cells thereby enhancing their adhesion to microvascular endothelium. PMID:21556948

  8. Tumor-extrinsic discoidin domain receptor 1 promotes mammary tumor growth by regulating adipose stromal interleukin 6 production in mice.

    PubMed

    Sun, Xiujie; Gupta, Kshama; Wu, Bogang; Zhang, Deyi; Yuan, Bin; Zhang, Xiaowen; Chiang, Huai-Chin; Zhang, Chi; Curiel, Tyler J; Bendeck, Michelle P; Hursting, Stephen; Hu, Yanfen; Li, Rong

    2018-02-23

    Discoidin domain receptor 1 (DDR1) is a collagen receptor that mediates cell communication with the extracellular matrix (ECM). Aberrant expression and activity of DDR1 in tumor cells are known to promote tumor growth. Although elevated DDR1 levels in the stroma of breast tumors are associated with poor patient outcome, a causal role for tumor-extrinsic DDR1 in cancer promotion remains unclear. Here we report that murine mammary tumor cells transplanted to syngeneic recipient mice in which Ddr1 has been knocked out (KO) grow less robustly than in WT mice. We also found that the tumor-associated stroma in Ddr1- KO mice exhibits reduced collagen deposition compared with the WT controls, supporting a role for stromal DDR1 in ECM remodeling of the tumor microenvironment. Furthermore, the stromal-vascular fraction (SVF) of Ddr1 knockout adipose tissue, which contains committed adipose stem/progenitor cells and preadipocytes, was impaired in its ability to stimulate tumor cell migration and invasion. Cytokine array-based screening identified interleukin 6 (IL-6) as a cytokine secreted by the SVF in a DDR1-dependent manner. SVF-produced IL-6 is important for SVF-stimulated tumor cell invasion in vitro , and, using antibody-based neutralization, we show that tumor promotion by IL-6 in vivo requires DDR1. In conclusion, our work demonstrates a previously unrecognized function of DDR1 in promoting tumor growth. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  9. Inhibition of mammary tumor promotion by dietary D,L-2-difluoromethylornithine in combination with omega-3 and omega-6 fatty acids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bunce, O.R.; Abou-El-Ela, S.H.

    1990-02-26

    The authors laboratory has shown an inhibitor effect on mammary tumor promotion by a 20% corn oil diet when D,L-2-difluoromethylornithine (DFMO), an inhibitor of ornithine decarboxylase (ODC), was fed to female rats with 7,12-dimethylbenz(a)anthracene (DMBA)-induced mammary tumors. Analyses of mammary adenocarcinomas from these rats showed that DFMO not only inhibited ODC but also eicosanoid synthesis. Inhibition of tumor promotion, ODC activity and eicosanoid synthesis was additive when dietary combinations of DFMO and menhaden oil were fed. However, when 0.5% DFMO was fed along with 20% dietary fat, signs of toxicity were seen. The overall objective of this study was tomore » establish the minimal and non-toxic dose of DFMO which can give an additive or synergistic antipromoter effect when fed along with dietary n-3 and/or n-6 fatty acids to female Sprague-Dawley rats with DMBA-induced mammary tumors. Four dietary levels of DFMO (0, 0.125, 0.250, and 0.500%) were fed in diets containing 20% fat as either corn, black currant seed or menhaden oil. Dose response effects on tumorigenicity as well as toxicity were noted. Long chain n-3 fatty acids gave greater inhibition of tumorigenesis than shorter chain fatty acids when combined with DFMO. DFMO (0.25%) inhibited tumorigenesis without toxic effects on weight gain, whereas, 0.125% DFMO did not alter tumorigenesis. Supporting biochemical data are presented.« less

  10. Six1 expands the mouse mammary epithelial stem/progenitor cell pool and induces mammary tumors that undergo epithelial-mesenchymal transition

    PubMed Central

    McCoy, Erica L.; Iwanaga, Ritsuko; Jedlicka, Paul; Abbey, Nee-Shamo; Chodosh, Lewis A.; Heichman, Karen A.; Welm, Alana L.; Ford, Heide L.

    2009-01-01

    Six1 is a developmentally regulated homeoprotein with limited expression in most normal adult tissues and frequent misexpression in a variety of malignancies. Here we demonstrate, using a bitransgenic mouse model, that misexpression of human Six1 in adult mouse mammary gland epithelium induces tumors of multiple histological subtypes in a dose-dependent manner. The neoplastic lesions induced by Six1 had an in situ origin, showed diverse differentiation, and exhibited progression to aggressive malignant neoplasms, as is often observed in human carcinoma of the breast. Strikingly, the vast majority of Six1-induced tumors underwent an epithelial-mesenchymal transition (EMT) and expressed multiple targets of activated Wnt signaling, including cyclin D1. Interestingly, Six1 and cyclin D1 coexpression was found to frequently occur in human breast cancers and was strongly predictive of poor prognosis. We further show that Six1 promoted a stem/progenitor cell phenotype in the mouse mammary gland and in Six1-driven mammary tumors. Our data thus provide genetic evidence for a potent oncogenic role for Six1 in mammary epithelial neoplasia, including promotion of EMT and stem cell–like features. PMID:19726883

  11. Number and location of mouse mammary tumor virus proviral DNA in mouse DNA of normal tissue and of mammary tumors.

    PubMed Central

    Groner, B; Hynes, N E

    1980-01-01

    The Southern DNA filter transfer technique was used to characterize the genomic location of the mouse mammary tumor proviral DNA in different inbred strains of mice. Two of the strains (C3H and CBA) arose from a cross of a Bagg albino (BALB/c) mouse and a DBA mouse. The mouse mammary tumor virus-containing restriction enzyme DNA fragments of these strains had similar patterns, suggesting that the proviruses of these mice are in similar genomic locations. Conversely, the pattern arising from the DNA of the GR mouse, a strain genetically unrelated to the others, appeared different, suggesting that its mouse mammary tumor proviruses are located in different genomic sites. The structure of another gene, that coding for beta-globin, was also compared. The mice strains which we studied can be categorized into two classes, expressing either one or two beta-globin proteins. The macroenvironment of the beta-globin gene appeared similar among the mice strains belonging to one genetic class. Female mice of the C3H strain exogenously transmit mouse mammary tumor virus via the milk, and their offspring have a high incidence of mammary tumor occurrence. DNA isolated from individual mammary tumors taken from C3H mice or from BALB/c mice foster nursed on C3H mothers was analyzed by the DNA filter transfer technique. Additional mouse mammary tumor virus-containing fragments were found in the DNA isolated from each mammary tumor. These proviral sequences were integrated into different genomic sites in each tumor. Images PMID:6245257

  12. Mammary gland tumors in captive African hedgehogs.

    PubMed

    Raymond, J T; Gerner, M

    2000-04-01

    From December 1995 to July 1999, eight mammary gland tumors were diagnosed in eight adult captive female African hedgehogs (Atelerix albiventris). The tumors presented as single or multiple subcutaneous masses along the cranial or caudal abdomen that varied in size for each hedgehog. Histologically, seven of eight (88%) mammary gland tumors were malignant. Tumors were classified as solid (4 cases), tubular (2 cases), and papillary (2 cases). Seven tumors had infiltrated into the surrounding stroma and three tumors had histologic evidence of neoplastic vascular invasion. Three hedgehogs had concurrent neoplasms. These are believed to be the first reported cases of mammary gland tumors in African hedgehogs.

  13. Bisected, complex N-glycans and galectins in mouse mammary tumor progression and human breast cancer

    PubMed Central

    Miwa, Hazuki E; Koba, Wade R; Fine, Eugene J; Giricz, Orsi; Kenny, Paraic A; Stanley, Pamela

    2013-01-01

    Bisected, complex N-glycans on glycoproteins are generated by the glycosyltransferase MGAT3 and cause reduced cell surface binding of galectins. Previously, we showed that MGAT3 reduces growth factor signaling and retards mammary tumor progression driven by the Polyoma middle T antigen (PyMT) expressed in mammary epithelium under the mouse mammary tumor virus (MMTV) promoter. However, the penetrance of the tumor phenotype became variable in mixed FVB/N and C57BL/6 female mice and we therefore investigated a congenic C57BL/6 Mgat3−/−/MMTV-PyMT model. In the absence of MGAT3, C57BL/6 Mgat3−/−/MMTV-PyMT females exhibited accelerated tumor appearance and increased tumor burden, glucose uptake in tumors and lung metastasis. Nevertheless, activation of extracellular signal-regulated kinase (ERK)1/2 or protein kinase B (AKT) was reduced in ∼20-week C57BL/6 MMTV-PyMT tumors lacking MGAT3. Activation of focal adhesion kinase (FAK), protein tyrosine kinase Src, and p38 mitogen-activated protein kinase were similar to that of controls. All the eight mouse galectin genes were expressed in mammary tumors and tumor epithelial cells (TECs), but galectin-2 and -12 were not detected by western analysis in tumors, and galectin-7 was not detected in 60% of the TEC lines. From microarray data reported for human breast cancers, at least 10 galectin and 7 N-glycan N-acetylglucosaminyl (GlcNAc)-transferase (MGAT) genes are expressed in tumor tissue, and expression often varies significantly between different breast cancer subtypes. Thus, in summary, while MGAT3 and bisected complex N-glycans retard mouse mammary tumor progression, genetic background may modify this effect; identification of key galectins that promote mammary tumor progression in mice is not straightforward because all the eight galectin genes are expressed; and high levels of MGAT3, galectin-4, -8, -10, -13 and -14 transcripts correlate with better relapse-free survival in human breast cancer. PMID:24037315

  14. Tumor-promoting effect of IL-23 in mammary cancer mediated by infiltration of M2 macrophages and neutrophils in tumor microenvironment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nie, Wen; Yu, Ting; Sang, Yaxiong

    Interleukin 23 (IL-23) is an inflammatory cytokine which plays a vital role in autoimmune diseases as well as in tumorigenesis. However, the role of IL-23 in tumor procession is still controversial and the underlying mechanism remains unclear. Here we established a stable cell line overexpressing IL-23 to prove that IL-23 promoted tumor growth and pulmonary metastasis through induction of tumor-related inflammation and absence of immune surveillance. IL-23 promotes tumor-associate inflammatory response such as infiltration of M2 macrophages, neutrophils and their elevated secretions of immunosuppressive cytokines transforming growth factor-β (TGF-β), IL-10 and vascular endothelial growth factor (VEGF) into tumor tissues, meanwhilemore » the increase of the matrix metalloprotease MMP9. In addition, IL-23 increases the expression of the endothelial marker CD31 and proliferative marker Ki67 in tumors. Moreover, IL23 induces immunosuppression though reducing the infiltration of CD4{sup +}and CD8{sup +}T cells into tumor tissues. In conclusion, IL-23 is a considerable molecular in tumor progression, which simultaneously facilitates processes of pro-tumor inflammation, such as angiogenesis, immunosuppressive cytokines as well as infiltrations of M2 macrophages and neutrophils, and suppresses antitumor immune responses through reduction of CD4{sup +} T cells and CD8{sup +} T cells. - Highlights: • IL-23 promoted mammary tumor growth and pulmonary metastasis. • IL-23 enhanced the infiltration of M2 macrophages and neutrophils into IL-23-dominated tumor microenvironment (TME). • Immunosuppressing cytokines IL-10, TGF-β and VEGF were detected to rise in IL-23-transduced tumor tissues. • IL-23 down regulated the ability of CD8{sup +}T and CD4{sup +}T cells to infiltrate tumors.« less

  15. Leptin deficiency suppresses MMTV-Wnt-1 mammary tumor growth in obese mice and abrogates tumor initiating cell survival.

    PubMed

    Zheng, Qiao; Dunlap, Sarah M; Zhu, Jinling; Downs-Kelly, Erinn; Rich, Jeremy; Hursting, Stephen D; Berger, Nathan A; Reizes, Ofer

    2011-08-01

    Obesity increases both the risk and mortality associated with many types of cancer including that of the breast. In mice, obesity increases both incidence of spontaneous tumors and burden of transplanted tumors. Our findings identify leptin, an adipose secreted cytokine, in promoting increased mammary tumor burden in obese mice and provide a link between this adipokine and cancer. Using a transplantable tumor that develops spontaneously in the murine mammary tumor virus-Wnt-1 transgenic mice, we show that tumors transplanted into obese leptin receptor (LepRb)-deficient (db/db) mice grow to eight times the volume of tumors transplanted into lean wild-type (WT) mice. However, tumor outgrowth and overall tumor burden is reduced in obese, leptin-deficient (ob/ob) mice. The residual tumors in ob/ob mice contain fewer undifferentiated tumor cells (keratin 6 immunopositive) compared with WT or db/db mice. Furthermore, tumors in ob/ob mice contain fewer cells expressing phosphorylated Akt, a growth promoting kinase activated by the LepRb, compared with WT and db/db mice. In vivo limiting dilution analysis of residual tumors from ob/ob mice indicated reduced tumor initiating activity suggesting fewer cancer stem cells (CSCs). The tumor cell populations reduced by leptin deficiency were identified by fluorescence-activated cell sorting and found to express LepRb. Finally, LepRb expressing tumor cells exhibit stem cell characteristics based on the ability to form tumorspheres in vitro and leptin promotes their survival. These studies provide critical new insight on the role of leptin in tumor growth and implicate LepRb as a CSC target.

  16. The Wnt-1 (int-1) oncogene promoter and its mechanism of activation by insertion of proviral DNA of the mouse mammary tumor virus.

    PubMed Central

    Nusse, R; Theunissen, H; Wagenaar, E; Rijsewijk, F; Gennissen, A; Otte, A; Schuuring, E; van Ooyen, A

    1990-01-01

    Wnt-1 (int-1) is a cellular oncogene often activated by insertion of proviral DNA of the mouse mammary tumor virus. We have mapped the 5' end and the promoter area of the Wnt-1 gene by nuclease protection and primer extension assays. In differentiating P19 embryonal carcinoma cells, in which Wnt-1 is naturally expressed, two start sites of transcription were found, one preceded by two TATA boxes and one preceded by several GC boxes. In P19 cells, a 1-kilobase upstream sequence of Wnt-1 was able to confer differentiation-specific expression on a heterologous gene. We have investigated how Wnt-1 transcription was affected by mouse mammary tumor virus proviral integrations in various configurations near the promoters of the gene. One provirus has been inserted in the 5' nontranslated part of Wnt-1, in the same transcriptional orientation, and has functionally replaced the Wnt-1 promoters. Wnt-1 transcription in this tumor starts in the right long terminal repeat of the provirus, with considerable readthrough transcription from the left long terminal repeat. Another provirus has been inserted in the orientation opposite that of Wnt-1 into a GC box, disrupting the first Wnt-1 transcription start site but not the downstream start site. Most insertions have not structurally altered the Wnt-1 transcripts and have enhanced the activity of the normal two promoters. Images PMID:1695322

  17. Mena deficiency delays tumor progression and decreases metastasis in polyoma middle-T transgenic mouse mammary tumors.

    PubMed

    Roussos, Evanthia T; Wang, Yarong; Wyckoff, Jeffrey B; Sellers, Rani S; Wang, Weigang; Li, Jiufeng; Pollard, Jeffrey W; Gertler, Frank B; Condeelis, John S

    2010-01-01

    The actin binding protein Mammalian enabled (Mena), has been implicated in the metastatic progression of solid tumors in humans. Mena expression level in primary tumors is correlated with metastasis in breast, cervical, colorectal and pancreatic cancers. Cells expressing high Mena levels are part of the tumor microenvironment for metastasis (TMEM), an anatomical structure that is predictive for risk of breast cancer metastasis. Previously we have shown that forced expression of Mena adenocarcinoma cells enhances invasion and metastasis in xenograft mice. Whether Mena is required for tumor progression is still unknown. Here we report the effects of Mena deficiency on tumor progression, metastasis and on normal mammary gland development. To investigate the role of Mena in tumor progression and metastasis, Mena deficient mice were intercrossed with mice carrying a transgene expressing the polyoma middle T oncoprotein, driven by the mouse mammary tumor virus. The progeny were investigated for the effects of Mena deficiency on tumor progression via staging of primary mammary tumors and by evaluation of morbidity. Stages of metastatic progression were investigated using an in vivo invasion assay, intravital multiphoton microscopy, circulating tumor cell burden, and lung metastases. Mammary gland development was studied in whole mount mammary glands of wild type and Mena deficient mice. Mena deficiency decreased morbidity and metastatic dissemination. Loss of Mena increased mammary tumor latency but had no affect on mammary tumor burden or histologic progression to carcinoma. Elimination of Mena also significantly decreased epidermal growth factor (EGF) induced in vivo invasion, in vivo motility, intravasation and metastasis. Non-tumor bearing mice deficient for Mena also showed defects in mammary gland terminal end bud formation and branching. Deficiency of Mena decreases metastasis by slowing tumor progression and reducing tumor cell invasion and intravasation. Mena

  18. Downregulation of ATM Gene and Protein Expression in Canine Mammary Tumors.

    PubMed

    Raposo-Ferreira, T M M; Bueno, R C; Terra, E M; Avante, M L; Tinucci-Costa, M; Carvalho, M; Cassali, G D; Linde, S D; Rogatto, S R; Laufer-Amorim, R

    2016-11-01

    The ataxia telangiectasia mutated (ATM) gene encodes a protein associated with DNA damage repair and maintenance of genomic integrity. In women, ATM transcript and protein downregulation have been reported in sporadic breast carcinomas, and the absence of ATM protein expression has been associated with poor prognosis. The aim of this study was to evaluate ATM gene and protein expression in canine mammary tumors and their association with clinical outcome. ATM gene and protein expression was evaluated by reverse transcription-quantitative polymerase chain reaction and immunohistochemistry, respectively, in normal mammary gland samples (n = 10), benign mammary tumors (n = 11), nonmetastatic mammary carcinomas (n = 19), and metastatic mammary carcinomas (n = 11). Lower ATM transcript levels were detected in benign mammary tumors and carcinomas compared with normal mammary glands (P = .011). Similarly, lower ATM protein expression was observed in benign tumors (P = .0003), nonmetastatic mammary carcinomas (P < .0001), and the primary sites of metastatic carcinomas (P < .0001) compared with normal mammary glands. No significant differences in ATM gene or protein levels were detected among benign tumors and nonmetastatic and metastatic mammary carcinomas (P > .05). The levels of ATM gene or protein expression were not significantly associated with clinical and pathological features or with survival. Similar to human breast cancer, the data in this study suggest that ATM gene and protein downregulation is involved in canine mammary gland tumorigenesis. © The Author(s) 2016.

  19. Dicer in Mammary Tumor Stem Cell Maintenance

    DTIC Science & Technology

    2006-03-01

    we are cloning small RNAs from mammary stem cells in order to determine the regulatory niches that miRNAs may fill in this cell type. Our ultimate goal is to assess the role of Dicer in mammary tumor stem cell maintenance.

  20. An autologous dendritic cell canine mammary tumor hybrid-cell fusion vaccine.

    PubMed

    Bird, R Curtis; Deinnocentes, Patricia; Church Bird, Allison E; van Ginkel, Frederik W; Lindquist, Joni; Smith, Bruce F

    2011-01-01

    Mammary cancer is among the most prevalent canine tumors and frequently resulting in death due to metastatic disease that is highly homologous to human breast cancer. Most canine tumors fail to raise effective immune reactions yet, some spontaneous remissions do occur. Hybrid canine dendritic cell-tumor cell fusion vaccines were designed to enhance antigen presentation and tumor immune recognition. Peripheral blood-derived autologous dendritic cell enriched populations were isolated from dogs based on CD11c(+) expression and fused with canine mammary tumor (CMT) cells for vaccination of laboratory Beagles. These hybrid cells were injected into popliteal lymph nodes of normal dogs, guided by ultrasound, and included CpG-oligonucleotide adjuvants. Three rounds of vaccination were delivered. Significant IgG responses were observed in all vaccinated dogs compared to vehicle-injected controls. Canine IgG antibodies recognized shared CMT antigens as was demonstrated by IgG-recognition of three unrelated/independently derived CMT cell lines, and recognition of freshly isolated, unrelated, primary biopsy-derived CMT cells. A bias toward an IgG2 isotype response was observed after two vaccinations in most dogs. Neither significant cytotoxic T cell responses were detected, nor adverse or side-effects due to vaccination or due to the induced immune responses noted. These data provide proof-of-principle for this cancer vaccine strategy and demonstrate the presence of shared CMT antigens that promote immune recognition of mammary cancer.

  1. Hormonally active doses of isoflavone aglycones promote mammary and endometrial carcinogenesis and alter the molecular tumor environment in Donryu rats.

    PubMed

    Kakehashi, Anna; Tago, Yoshiyuki; Yoshida, Midori; Sokuza, Yui; Wei, Min; Fukushima, Shoji; Wanibuchi, Hideki

    2012-03-01

    Our research is focused on modifying effects of an isoflavone aglycones (IAs)-rich extract at a hormonally active dose of 150 mg/kg body weight/day on mammary and endometrial carcinogenesis in female Donryu rats. IA administered for 2 weeks in a phytoestrogen-low diet exerted estrogenic activity and induced cell proliferation in the uterus of ovariectomized rats. Furthermore, administration for 4 weeks resulted in elevation of cell proliferation in the mammary glands of 7,12-dimethylbenz[a]anthracene (DMBA)-treated animals. Forty weeks of postpubertal administration of IA to 5-week-old rats after initiation of mammary and endometrial carcinogenesis with DMBA and N-ethyl-N'-nitro-N-nitrosoguanidine (ENNG) caused significant increase of incidence and multiplicity of mammary adenocarcinoma, multiplicities of endometrial atypical hyperplasia, adenomatous polyps, and an increased trend of uterine adenocarcinomas. Liquid chromatography with tandem mass spectrometry and immunohistochemical analyses revealed significant elevation of tumorigenesis-related proteins such as S100 calcium-binding protein A8, kininogen 1, and annexins 1 and 2 in mammary adenocarcinomas and cadherin EGF LAG seven-pass G-type receptor 2, DEAD box polypeptide 1, and cysteine- and glycine-rich protein 1 in uterine proliferative lesions of IA-treated animals. Those changes are likely to be related to modulation of estrogen receptor (ER), AP1, nuclear factor-kappa B, and actin signaling pathways. Our results indicate that the postpubertal exposure of Donryu rats to IA at an estrogenic dose results in promotion of mammary and uterine carcinogenesis induced by DMBA and ENNG, which might be related to the activation of ER-dependent signaling and alteration of the molecular tumor environment in the mammary gland and endometrium.

  2. Estrogen receptor alpha deletion enhances the metastatic phenotype of Ron overexpressing mammary tumors in mice

    PubMed Central

    2012-01-01

    Background The receptor tyrosine kinase family includes many transmembrane proteins with diverse physiological and pathophysiological functions. The involvement of tyrosine kinase signaling in promoting a more aggressive tumor phenotype within the context of chemotherapeutic evasion is gaining recognition. The Ron receptor is a tyrosine kinase receptor that has been implicated in the progression of breast cancer and evasion of tamoxifen therapy. Results Here, we report that Ron expression is correlated with in situ, estrogen receptor alpha (ERα)-positive tumors, and is higher in breast tumors following neoadjuvant tamoxifen therapy. We also demonstrate that the majority of mammary tumors isolated from transgenic mice with mammary specific-Ron overexpression (MMTV-Ron mice), exhibit appreciable ER expression. Moreover, genetic-ablation of ERα, in the context of Ron overexpression, leads to delayed mammary tumor initiation and growth, but also results in an increased metastasis. Conclusions Ron receptor overexpression is associated with ERα-positive human and murine breast tumors. In addition, loss of ERα on a Ron overexpressing background in mice leads to the development of breast tumors which grow slower but which exhibit more metastasis and suggests that targeting of ERα, as in the case of tamoxifen therapy, may reduce the growth of Ron overexpressing breast cancers but may cause these tumors to be more metastatic. PMID:22226043

  3. Amplification of tumor inducing putative cancer stem cells (CSCs) by vitamin A/retinol from mammary tumors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, Rohit B.; Wang, Qingde; Khillan, Jaspal S., E-mail: khillan@pitt.edu

    Highlights: •Vitamin A supports self renewal of putative CSCs from mammary tumors. •These cells exhibit impaired retinol metabolism into retinoic acid. •CSCs from mammary tumors differentiate into mammary specific cell lineages. •The cells express mammary stem cell specific CD29 and CD49f markers. •Putative CSCs form highly metastatic tumors in NOD SCID mouse. -- Abstract: Solid tumors contain a rare population of cancer stem cells (CSCs) that are responsible for relapse and metastasis. The existence of CSC however, remains highly controversial issue. Here we present the evidence for putative CSCs from mammary tumors amplified by vitamin A/retinol signaling. The cells exhibitmore » mammary stem cell specific CD29{sup hi}/CD49f{sup hi}/CD24{sup hi} markers, resistance to radiation and chemo therapeutic agents and form highly metastatic tumors in NOD/SCID mice. The cells exhibit indefinite self renewal as cell lines. Furthermore, the cells exhibit impaired retinol metabolism and do not express enzymes that metabolize retinol into retinoic acid. Vitamin A/retinol also amplified putative CSCs from breast cancer cell lines that form highly aggressive tumors in NOD SCID mice. The studies suggest that high purity putative CSCs can be isolated from solid tumors to establish patient specific cell lines for personalized therapeutics for pre-clinical translational applications. Characterization of CSCs will allow understanding of basic cellular and molecular pathways that are deregulated, mechanisms of tumor metastasis and evasion of therapies that has direct clinical relevance.« less

  4. A Spectrum of Monoclonal Antibodies Reactive with Human Mammary Tumor Cells

    NASA Astrophysics Data System (ADS)

    Colcher, D.; Horan Hand, P.; Nuti, M.; Schlom, J.

    1981-05-01

    Splenic lymphocytes of mice, immunized with membrane-enriched fractions of metastatic human mammary carcinoma tissues, were fused with the NS-1 non-immunoglobulin-secreting murine myeloma cell line. This resulted in the generation of hybridoma cultures secreting immunoglobulins reactive in solid-phase radioimmunoassays with extracts of metastatic mammary carcinoma cells from involved livers, but not with extracts of apparently normal human liver. As a result of further screening of immunoglobulin reactivities and double cloning of cultures, 11 monoclonal antibodies were chosen that demonstrated reactivities with human mammary tumor cells and not with apparently normal human tissues. These monoclonal antibodies could be placed into at least five major groups on the basis of their differential binding to the surface of various live human mammary tumor cells in culture, to extracts of mammary tumor tissues, or to tissue sections of mammary tumor cells studied by the immunoperoxidase technique. Whereas a spectrum of reactivities to mammary tumors was observed with the 11 monoclonal antibodies, no reactivity was observed to apparently normal cells of the following human tissues: breast, lymph node, lung, skin, testis, kidney, thymus, bone marrow, spleen, uterus, thyroid, intestine, liver, bladder, tonsils, stomach, prostate, and salivary gland. Several of the antibodies also demonstrated a ``pancarcinoma'' reactivity, showing binding to selected non-breast carcinomas. None of the monoclonal antibodies showed binding to purified ferritin or carcinoembryonic antigen. Monoclonal antibodies of all five major groups, however, demonstrated binding to human metastatic mammary carcinoma cells both in axillary lymph nodes and at distal sites.

  5. Evaluation of serum haptoglobin and C-reactive protein in dogs with mammary tumors.

    PubMed

    Planellas, Marta; Bassols, Anna; Siracusa, Carlo; Saco, Yolanda; Giménez, Mercè; Pato, Raquel; Pastor, Josep

    2009-09-01

    In veterinary medicine, there is increasing interest in measuring acute phase proteins as a tool in the diagnosis and monitoring of neoplastic diseases. Although mammary neoplasms are the most common type of cancer in dogs, acute phase proteins have not been extensively evaluated in dogs with mammary tumors. The aim of this study was to evaluate serum haptoglobin (Hp) and C-reactive protein (CRP) concentrations in the dogs with mammary tumors and assess their potential association with malignancy. A retrospective study of dogs with mammary tumors was performed. Serum concentrations of CRP and Hp were determined in healthy control dogs (n=20) and dogs with mammary tumors before surgery (n=41). Mammary tumors were grouped as carcinomas (n=24), fibrosarcoma (n=1), malignant mixed tumors (n=7), benign mixed tumors (n=6), and adenomas (n=3). CRP and Hp concentrations were compared in dogs with different tumor types and were also compared based on tumor size, lymph node infiltration, skin ulceration, fixation to underlying tissue, and time between tumor identification and removal. Hp concentration was significantly (P<.043) higher in dogs with mammary tumors (median 2.03 g/L, range 0.09-2.94 g/L) compared with controls (1.38 g/L, range 0.08-3.00 g/L), but the range of values overlapped considerably. CRP concentration was higher in dogs with carcinomas (4.70 mg/L, range 0.63-128.96 mg/L) vs controls (2.11 mg/L, range 0.25-6.57 mg/L) (P=.0008) and in dogs with ulcerated skin (14.8 mg/L, range 5.7-128.9 mg/L, n=3) compared with those without ulceration (2.4 mg/L, range 0.11-30.3 mg/L, n=38) (P=.048). Serum Hp and CRP do not appear to have value in diagnosing or predicting malignancy of mammary tumors in dogs. Higher CRP concentrations in dogs with mammary carcinoma suggest a role for inflammation in this tumor type.

  6. Principles of treatment for mammary gland tumors.

    PubMed

    Novosad, C Andrew

    2003-05-01

    The mammary glands are frequent locations for the development of tumors. In the dog and cat, early detection and rapid therapy are necessary to prevent both local and distant metastasis. In the dog, this disease can have a range of biologic behaviors, whereas in the cat it is almost always an extremely aggressive disease. Treatment options depend on tumor staging and can include surgery, radiation therapy, chemotherapy, or a combination. As we become better at early diagnosis and are able to implement aggressive therapy, we are becoming more and more successful in the treatment of this disease. In the following article, we will discuss current thoughts surrounding the diagnosis and treatment options for both canine and feline mammary gland tumors.

  7. Basic fibroblast growth factor in an animal model of spontaneous mammary tumor progression.

    PubMed

    Kao, Steven; Mo, Jeffrey; Baird, Andrew; Eliceiri, Brian P

    2012-06-01

    Although basic fibroblast growth factor (FGF2) was the first pro-angiogenic molecule discovered, it has numerous activities on the growth and differentiation of non-vascular cell types. FGF2 is both stimulatory and inhibitory, depending on the cell type evaluated, the experimental design used and the context in which it is tested. Here, we investigated the effects of manipulating endogenous FGF2 on the development of mammary cancer to determine whether its endogenous contribution in vivo is pro- or anti-tumorigenic. Specifically, we examined the effects of FGF2 gene dosing in a cross between a spontaneous breast tumor model (PyVT+ mice) and FGF2-/- (FGF KO) mice. Using these mice, the onset and progression of mammary tumors was determined. As predicted, female FGF2 WT mice developed mammary tumors starting around 60 days after birth and by 80 days, 100% of FGF2 WT female mice had mammary tumors. In contrast, 80% of FGF2 KO female mice had no palpable tumors until nearly three weeks later (85 days) at times when 100% of the WT cohort was tumor positive. All FGF KO mice were tumor-bearing by 115 days. When we compared the onset of mammary tumor development and the tumor progression curves between FGF het and FGF KO mice, we observed a difference, which suggested a gene dosing effect. Analysis of the tumors demonstrated that there were significant differences in tumor size depending on FGF2 status. The delay in tumor onset supports a functional role for FGF2 in mammary tumor progression, but argues against an essential role for FGF2 in overall mammary tumor progression.

  8. A mammary cell-specific enhancer in mouse mammary tumor virus DNA is composed of multiple regulatory elements including binding sites for CTF/NFI and a novel transcription factor, mammary cell-activating factor.

    PubMed Central

    Mink, S; Härtig, E; Jennewein, P; Doppler, W; Cato, A C

    1992-01-01

    Mouse mammary tumor virus (MMTV) is a milk-transmitted retrovirus involved in the neoplastic transformation of mouse mammary gland cells. The expression of this virus is regulated by mammary cell type-specific factors, steroid hormones, and polypeptide growth factors. Sequences for mammary cell-specific expression are located in an enhancer element in the extreme 5' end of the long terminal repeat region of this virus. This enhancer, when cloned in front of the herpes simplex thymidine kinase promoter, endows the promoter with mammary cell-specific response. Using functional and DNA-protein-binding studies with constructs mutated in the MMTV long terminal repeat enhancer, we have identified two main regulatory elements necessary for the mammary cell-specific response. These elements consist of binding sites for a transcription factor in the family of CTF/NFI proteins and the transcription factor mammary cell-activating factor (MAF) that recognizes the sequence G Pu Pu G C/G A A G G/T. Combinations of CTF/NFI- and MAF-binding sites or multiple copies of either one of these binding sites but not solitary binding sites mediate mammary cell-specific expression. The functional activities of these two regulatory elements are enhanced by another factor that binds to the core sequence ACAAAG. Interdigitated binding sites for CTF/NFI, MAF, and/or the ACAAAG factor are also found in the 5' upstream regions of genes encoding whey milk proteins from different species. These findings suggest that mammary cell-specific regulation is achieved by a concerted action of factors binding to multiple regulatory sites. Images PMID:1328867

  9. Downregulation of BTLA on NKT Cells Promotes Tumor Immune Control in a Mouse Model of Mammary Carcinoma

    PubMed Central

    Sekar, Divya; Govene, Luisa; del Río, María-Luisa; Sirait-Fischer, Evelyn; Fink, Annika F.

    2018-01-01

    Natural Killer T cells (NKT cells) are emerging as critical regulators of pro- and anti-tumor immunity, both at baseline and in therapeutic settings. While type I NKT cells can promote anti-tumor immunity, their activity in the tumor microenvironment may be limited by negative regulators such as inhibitory immune checkpoints. We observed dominant expression of B- and T-lymphocyte attenuator (BTLA) on type I NKT cells in polyoma middle T oncogene-driven (PyMT) murine autochthonous mammary tumors. Other immune checkpoint receptors, such as programmed cell death 1 (PD-1) were equally distributed among T cell populations. Interference with BTLA using neutralizing antibodies limited tumor growth and pulmonary metastasis in the PyMT model in a therapeutic setting, correlating with an increase in type I NKT cells and expression of cytotoxic marker genes. While therapeutic application of an anti-PD-1 antibody increased the number of CD8+ cytotoxic T cells and elevated IL-12 expression, tumor control was not established. Expression of ZBTB16, the lineage-determining transcription factor of type I NKT cells, was correlated with a favorable patient prognosis in the METABRIC dataset, and BTLA levels were instrumental to further distinguish prognosis in patents with high ZBTB16 expression. Taken together, these data support a role of BTLA on type I NKT cells in limiting anti-tumor immunity. PMID:29518903

  10. Downregulation of BTLA on NKT Cells Promotes Tumor Immune Control in a Mouse Model of Mammary Carcinoma.

    PubMed

    Sekar, Divya; Govene, Luisa; Del Río, María-Luisa; Sirait-Fischer, Evelyn; Fink, Annika F; Brüne, Bernhard; Rodriguez-Barbosa, José I; Weigert, Andreas

    2018-03-07

    Natural Killer T cells (NKT cells) are emerging as critical regulators of pro- and anti-tumor immunity, both at baseline and in therapeutic settings. While type I NKT cells can promote anti-tumor immunity, their activity in the tumor microenvironment may be limited by negative regulators such as inhibitory immune checkpoints. We observed dominant expression of B- and T-lymphocyte attenuator (BTLA) on type I NKT cells in polyoma middle T oncogene-driven (PyMT) murine autochthonous mammary tumors. Other immune checkpoint receptors, such as programmed cell death 1 (PD-1) were equally distributed among T cell populations. Interference with BTLA using neutralizing antibodies limited tumor growth and pulmonary metastasis in the PyMT model in a therapeutic setting, correlating with an increase in type I NKT cells and expression of cytotoxic marker genes. While therapeutic application of an anti-PD-1 antibody increased the number of CD8+ cytotoxic T cells and elevated IL-12 expression, tumor control was not established. Expression of ZBTB16, the lineage-determining transcription factor of type I NKT cells, was correlated with a favorable patient prognosis in the METABRIC dataset, and BTLA levels were instrumental to further distinguish prognosis in patents with high ZBTB16 expression. Taken together, these data support a role of BTLA on type I NKT cells in limiting anti-tumor immunity.

  11. Over-expression of mammaglobin-B in canine mammary tumors.

    PubMed

    Pandey, Mamta; Sunil Kumar, B V; Gupta, Kuldip; Sethi, Ram Saran; Kumar, Ashwani; Verma, Ramneek

    2018-06-15

    Mammaglobin, a member of secretoglobin family has been recognized as a breast cancer associated protein. Though the exact function of the protein is not fully known, its expression has been reported to be upregulated in human breast cancer.We focused on studying the expression of mammaglobin-B gene and protein in canine mammary tumor (CMT) tissue. Expression of mammaglobin-B mRNA and protein were assessed by quantitative real-time polymerase chain reaction (qRT-PCR) and immunohistochemistry (IHC), respectively. High levels of mammaglobin-B mRNA expression (6.663 ± 0.841times) was observed in CMT as compared to age and breed matched healthy controls. Further, expression of mammaglobin-B protein was detected in paraffin-embedded mammary tumor tissues from the same subjects by IHC. Mammaglobin-B protein was overexpressed only in 6.67% of healthy mammary glands while, a high level of its expression was scored in 76.7% of the CMT subjects. Moreover, no significant differences in terms of IHC score and qRT-PCR score with respect to CMT histotypes or tumor grades were observed, indicating that mammaglobin-B over-expression occurred irrespective of CMT types or grades. Overall, significantly increased expression of mammaglobin-B protein was found in CMTs with respect to healthy mammary glands, which positively correlates to its transcript. These findings suggest that overexpression of mammaglobin-B is associated with tumors of canine mammary glands.

  12. Development of novel murine mammary imaging windows to examine wound healing effects on leukocyte trafficking in mammary tumors with intravital imaging

    PubMed Central

    Sobolik, Tammy; Su, Ying-Jun; Ashby, Will; Schaffer, David K.; Wells, Sam; Wikswo, John P.; Zijlstra, Andries; Richmond, Ann

    2016-01-01

    ABSTRACT We developed mammary imaging windows (MIWs) to evaluate leukocyte infiltration and cancer cell dissemination in mouse mammary tumors imaged by confocal microscopy. Previous techniques relied on surgical resection of a skin flap to image the tumor microenvironment restricting imaging time to a few hours. Utilization of mammary imaging windows offers extension of intravital imaging of the tumor microenvironment. We have characterized strengths and identified some previously undescribed potential weaknesses of MIW techniques. Through iterative enhancements of a transdermal portal we defined conditions for improved quality and extended confocal imaging time for imaging key cell-cell interactions in the tumor microenvironment. PMID:28243517

  13. Development of novel murine mammary imaging windows to examine wound healing effects on leukocyte trafficking in mammary tumors with intravital imaging.

    PubMed

    Sobolik, Tammy; Su, Ying-Jun; Ashby, Will; Schaffer, David K; Wells, Sam; Wikswo, John P; Zijlstra, Andries; Richmond, Ann

    2016-01-01

    We developed mammary imaging windows (MIWs) to evaluate leukocyte infiltration and cancer cell dissemination in mouse mammary tumors imaged by confocal microscopy. Previous techniques relied on surgical resection of a skin flap to image the tumor microenvironment restricting imaging time to a few hours. Utilization of mammary imaging windows offers extension of intravital imaging of the tumor microenvironment. We have characterized strengths and identified some previously undescribed potential weaknesses of MIW techniques. Through iterative enhancements of a transdermal portal we defined conditions for improved quality and extended confocal imaging time for imaging key cell-cell interactions in the tumor microenvironment.

  14. Mammary gland tumors in irradiated and untreated guinea pigs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoch-Ligeti, C.; Liebelt, A.G.; Congdon, C.C.

    1986-01-01

    This is a report of mammary gland tumors from 62 guinea pigs. The tumors arose in the terminal ductal-lobular units as either lobular acinar carcinoma or cystadenocarcinoma or as papillary carcinomas within large ducts near the mammilla. About half the number of the males had terminal ductal-lobular carcinomas and all but 2 of the papillary duct carcinomas also arose in males. Large tumors frequently exhibited squamous, chondromatous, osseous, fatty and myoepitheliomatous types of tissues. In 2 irradiated males and 1 female the tumors metastasized. Whole-body irradiation did not produce significant changes in the number or sex distribution or in themore » morphology of mammary gland tumors in inbred or outbred guinea pigs. All females had cystic ovaries without increase in granulosa cells, 24 (66.6%) had uterine tumors and 13 (34.2%) had adrenal gland tumors; all males had atrophic testes, 5 (16.5%) had testicular and 6 (22.2%) had adrenal gland tumors.« less

  15. Canine mammary tumors as a model for human disease.

    PubMed

    Abdelmegeed, Somaia M; Mohammed, Sulma

    2018-06-01

    Animal models for examining human breast cancer (HBC) carcinogenesis have been extensively studied and proposed. With the recent advent of immunotherapy, significant attention has been focused on the dog as a model for human cancer. Dogs develop mammary tumors and other cancer types spontaneously with an intact immune system, which exhibit a number of clinical and molecular similarities to HBC. In addition to the spontaneous tumor presentation, the clinical similarities between human and canine mammary tumors (CMT) include the age at onset, hormonal etiology and course of the diseases. Furthermore, factors that affect the disease outcome, including tumor size, stage and lymph node invasion, are similar in HBC and CMT. Similarly, the molecular characteristics of steroid receptor, epidermal growth factor, proliferation marker, metalloproteinase and cyclooxygenase expression, and the mutation of the p53 tumor suppressor gene in CMT, mimic HBC. Furthermore, ductal carcinomas in situ in human and canine mammary glands are particularly similar in their pathological, molecular and visual characteristics. These CMT characteristics and their similarities to HBC indicate that the dog could be an excellent model for the study of human disease. These similarities are discussed in detail in the present review, and are compared with the in vitro and other in vivo animal models available.

  16. PKCθ promotes c-Rel–driven mammary tumorigenesis in mice and humans by repressing estrogen receptor α synthesis

    PubMed Central

    Belguise, Karine; Sonenshein, Gail E.

    2007-01-01

    The vast majority of primary human breast cancer tissues display aberrant nuclear NF-κB c-Rel expression. A causal role for c-Rel in mammary tumorigenesis has been demonstrated using a c-Rel transgenic mouse model; however, tumors developed with a long latency, suggesting a second event is needed to trigger tumorigenesis. Here we show that c-Rel activity in the mammary gland is repressed by estrogen receptor α (ERα) signaling, and we identify an epigenetic mechanism in breast cancer mediated by activation of what we believe is a novel PKCθ-Akt pathway that leads to downregulation of ERα synthesis and derepression of c-Rel. ERα levels were lower in c-Rel–induced mammary tumors compared with normal mammary gland tissue. PKCθ induced c-Rel activity and target gene expression and promoted growth of c-Rel- and c-RelxCK2α–driven mouse mammary tumor–derived cell lines. RNA expression levels of PKCθ and c-Rel target genes were inversely correlated with ERα levels in human breast cancer specimens. PKCθ activated Akt, thereby inactivating forkhead box O protein 3a (FOXO3a) and leading to decreased synthesis of its target genes, ERα and p27Kip1. Thus we have shown that activation of PKCθ inhibits the FOXO3a/ERα/p27Kip1 axis that normally maintains an epithelial cell phenotype and induces c-Rel target genes, thereby promoting proliferation, survival, and more invasive breast cancer. PMID:18037997

  17. Chronic expression of wild-type Ret receptor in the mammary gland induces luminal tumors that are sensitive to Ret inhibition.

    PubMed

    Gattelli, Albana; García Solá, Martín E; Roloff, Tim C; Cardiff, Robert D; Kordon, Edith C; Chodosh, Lewis A; Hynes, Nancy E

    2018-04-26

    The receptor tyrosine kinase Ret, a key gain-of-function mutated oncoprotein in thyroid carcinomas, has recently been implicated in other cancer types. While Ret copy number gains and mutations have been reported at low frequencies in breast tumors, we and others have reported that Ret is overexpressed in about 40% of human tumors and this correlates with poor patient prognosis. Ret activation regulates numerous intracellular pathways related to proliferation and inflammation, but it is not known whether abnormal Ret expression is sufficient to induce mammary carcinomas. Using a novel doxycycline-inducible transgenic mouse model with the MMTV promoter controlling Ret expression, we show that overexpression of wild-type Ret in the mammary epithelium produces mammary tumors, displaying a morphology that recapitulates characteristics of human luminal breast tumors. Ret-evoked tumors are estrogen receptor positive and negative for progesterone receptor. Moreover, tumors rapidly regress after doxycycline withdrawal, indicating that Ret is the driving oncoprotein. Using next-generation sequencing, we examined the levels of transcripts in these tumors, confirming a luminal signature. Ret-evoked tumors have been passaged in mice and used to test novel therapeutic approaches. Importantly, we have determined that tumors are resistant to endocrine therapy, but respond successfully to treatment with a Ret kinase inhibitor. Our data provide the first compelling evidence for an oncogenic role of non-mutated Ret in the mammary gland and are an incentive for clinical development of Ret as a cancer biomarker and therapeutic target.

  18. Identification of genetic loci that control mammary tumor susceptibility through the host microenvironment

    DOE PAGES

    Zhang, Pengju; Lo, Alvin; Huang, Yurong; ...

    2015-03-09

    The interplay between host genetics, tumor microenvironment and environmental exposure in cancer susceptibility remains poorly understood. Here we assessed the genetic control of stromal mediation of mammary tumor susceptibility to low dose ionizing radiation (LDIR) using backcrossed F1 into BALB/c (F1Bx) between cancer susceptible (BALB/c) and resistant (SPRET/EiJ) mouse strains. Tumor formation was evaluated after transplantation of non-irradiated Trp53-/- BALB/c mammary gland fragments into cleared fat pads of F1Bx hosts. Genome-wide linkage analysis revealed 2 genetic loci that constitute the baseline susceptibility via host microenvironment. However, once challenged with LDIR, we discovered 13 additional loci that were enriched for genesmore » involved in cytokines, including TGFβ1 signaling. Surprisingly, LDIR-treated F1Bx cohort significantly reduced incidence of mammary tumors from Trp53-/- fragments as well as prolonged tumor latency, compared to sham-treated controls. We demonstrated further that plasma levels of specific cytokines were significantly correlated with tumor latency. Using an ex vivo 3-D assay, we confirmed TGFβ1 as a strong candidate for reduced mammary invasion in SPRET/EiJ, which could explain resistance of this strain to mammary cancer risk following LDIR. Our results open possible new avenues to understand mechanisms of genes operating via the stroma that affect cancer risk from external environmental exposures.« less

  19. Identification of genetic loci that control mammary tumor susceptibility through the host microenvironment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Pengju; Lo, Alvin; Huang, Yurong

    The interplay between host genetics, tumor microenvironment and environmental exposure in cancer susceptibility remains poorly understood. Here we assessed the genetic control of stromal mediation of mammary tumor susceptibility to low dose ionizing radiation (LDIR) using backcrossed F1 into BALB/c (F1Bx) between cancer susceptible (BALB/c) and resistant (SPRET/EiJ) mouse strains. Tumor formation was evaluated after transplantation of non-irradiated Trp53-/- BALB/c mammary gland fragments into cleared fat pads of F1Bx hosts. Genome-wide linkage analysis revealed 2 genetic loci that constitute the baseline susceptibility via host microenvironment. However, once challenged with LDIR, we discovered 13 additional loci that were enriched for genesmore » involved in cytokines, including TGFβ1 signaling. Surprisingly, LDIR-treated F1Bx cohort significantly reduced incidence of mammary tumors from Trp53-/- fragments as well as prolonged tumor latency, compared to sham-treated controls. We demonstrated further that plasma levels of specific cytokines were significantly correlated with tumor latency. Using an ex vivo 3-D assay, we confirmed TGFβ1 as a strong candidate for reduced mammary invasion in SPRET/EiJ, which could explain resistance of this strain to mammary cancer risk following LDIR. Our results open possible new avenues to understand mechanisms of genes operating via the stroma that affect cancer risk from external environmental exposures.« less

  20. Growth hormone mRNA in mammary gland tumors of dogs and cats.

    PubMed Central

    Mol, J A; van Garderen, E; Selman, P J; Wolfswinkel, J; Rijinberk, A; Rutteman, G R

    1995-01-01

    We have shown recently that in the dog progestin administration results in mammary production of immunoreactive growth hormone (GH). At present we demonstrate the expression of the gene encoding GH in the mammary gland of dogs and cats using reverse-transcriptase PCR. GH mRNA was found in the great majority of normal mammary tissues as well as benign and malignant mammary tumors of the dog and was associated with the presence of immunoreactive GH in cryostat sections. The mammary PCR product proved to be identical to that of the pituitary. The highest expression levels were found after prolonged treatment with progestins. In carcinomas GH mRNA was also found in progesterone receptor-negative tissue samples, indicating that after malignant transformation GH gene expression may become progestin independent. GH mRNA was also present in mammary tissues of cats with progestin-induced fibroadenomatous changes. It is concluded that GH gene expression occurs in normal, hyperplastic, and neoplastic mammary tissue of the dog. The expression in normal tissue is stimulated by progestins and might mediate the progestin-stimulated development of canine mammary tumors. The demonstration of progestin-stimulated GH expression in mammary tissue of cats indicates that the phenomenon is more generalized among mammals. Images PMID:7738169

  1. Prevalence of the Prefoldin Subunit 5 Gene Deletion in Canine Mammary Tumors

    PubMed Central

    Bornemann-Kolatzki, Kirsten; Neumann, Stephan; Escobar, Hugo Murua; Nolte, Ingo; Hammer, Susanne Conradine; Hewicker-Trautwein, Marion; Junginger, Johannes; Kaup, Franz-Josef; Brenig, Bertram; Schütz, Ekkehard

    2015-01-01

    Background A somatic deletion at the proximal end of canine chromosome 27 (CFA27) was recently reported in 50% of malignant mammary tumors. This region harbours the tumor suppressor gene prefoldin subunit 5 (PFDN5) and the deletion correlated with a higher Ki-67 score. PFDN5 has been described to repress c-MYC and is, therefore, a candidate tumor-suppressor and cancer-driver gene in canine mammary cancer. Aim of this study was to confirm the recurrent deletion in a larger number of tumors. Methods Droplet digital PCR for PFDN5 was performed in DNA from 102 malignant, 40 benign mammary tumors/dysplasias, 11 non-neoplastic mammary tissues and each corresponding genomic DNA from leukocytes. The copy number of PFDN5 was normalized to a reference amplicon on canine chromosome 32 (CFA32). Z-scores were calculated, based on Gaussian distributed normalized PFDN5 copy numbers of the leukocyte DNA. Z-scores ≤ -3.0 in tissue were considered as being indicative of the PFDN5 deletion and called as such. The Ki-67 proliferation index was assessed in a subset of 79 tissue samples by immunohistochemistry. Results The deletion was confirmed in 24% of all malignant tumors, detected in only 7.5% of the benign tumors and was not present in any normal mammary tissue sample. The subgroup of solid carcinomas (n = 9) showed the highest frequency of the deletion (67%) and those malignomas without microscopical high fraction of benign tissue (n = 71) had a 32% frequency (p<0.01 vs. benign samples). The Ki-67 score was found to be significantly higher (p<0.05) in the PFDN5-deleted group compared to malignant tumors without the deletion. Conclusions A somatic deletion of the PFDN5 gene is recurrently present in canine mammary cancer, supporting a potential role in carcinogenesis. The association of this deletion with higher Ki-67 indicates an increased proliferation rate and thus a link to tumor aggressiveness can be hypothesized. The confirmation of earlier results warrants further studies

  2. Stromal adipocyte enhancer-binding protein (AEBP1) promotes mammary epithelial cell hyperplasia via proinflammatory and hedgehog signaling.

    PubMed

    Holloway, Ryan W; Bogachev, Oleg; Bharadwaj, Alamelu G; McCluskey, Greg D; Majdalawieh, Amin F; Zhang, Lei; Ro, Hyo-Sung

    2012-11-09

    Disruption of mammary stromal-epithelial communication leads to aberrant mammary gland development and induces mammary tumorigenesis. Macrophages have been implicated in carcinogenesis primarily by creating an inflammatory microenvironment, which promotes growth of the adjacent epithelial cells. Adipocyte enhancer-binding protein 1 (AEBP1), a novel proinflammatory mediator, promotes macrophage inflammatory responsiveness by inducing NF-κB activity, which has been implicated in tumor cell growth and survival by aberrant sonic hedgehog (Shh) expression. Here, we show that stromal macrophage AEBP1 overexpression results in precocious alveologenesis in the virgin AEBP1 transgenic (AEBP1(TG)) mice, and the onset of ductal hyperplasia was accelerated in AEBP1(TG) mice fed a high fat diet, which induces endogenous AEBP1 expression. Transplantation of AEBP1(TG) bone marrow cells into non-transgenic (AEBP1(NT)) mice resulted in alveolar hyperplasia with up-regulation of NF-κB activity and TNFα expression as displayed in the AEBP1(TG) mammary macrophages and epithelium. Shh expression was induced in AEBP1(TG) macrophages and RAW264.7 macrophages overexpressing AEBP1. The Shh target genes Gli1 and Bmi1 expression was induced in the AEBP1(TG) mammary epithelium and HC11 mammary epithelial cells co-cultured with AEBP1(TG) peritoneal macrophages. The conditioned AEBP1(TG) macrophage culture media promoted NF-κB activity and survival signal, Akt activation, in HC11 cells, whereas such effects were abolished by TNFα neutralizing antibody treatment. Furthermore, HC11 cells displayed enhanced proliferation in response to AEBP1(TG) macrophages and their conditioned media. Our findings highlight the role of AEBP1 in the signaling pathways regulating the cross-talk between mammary epithelium and stroma that could predispose the mammary tissue to tumorigenesis.

  3. Stromal Adipocyte Enhancer-binding Protein (AEBP1) Promotes Mammary Epithelial Cell Hyperplasia via Proinflammatory and Hedgehog Signaling*

    PubMed Central

    Holloway, Ryan W.; Bogachev, Oleg; Bharadwaj, Alamelu G.; McCluskey, Greg D.; Majdalawieh, Amin F.; Zhang, Lei; Ro, Hyo-Sung

    2012-01-01

    Disruption of mammary stromal-epithelial communication leads to aberrant mammary gland development and induces mammary tumorigenesis. Macrophages have been implicated in carcinogenesis primarily by creating an inflammatory microenvironment, which promotes growth of the adjacent epithelial cells. Adipocyte enhancer-binding protein 1 (AEBP1), a novel proinflammatory mediator, promotes macrophage inflammatory responsiveness by inducing NF-κB activity, which has been implicated in tumor cell growth and survival by aberrant sonic hedgehog (Shh) expression. Here, we show that stromal macrophage AEBP1 overexpression results in precocious alveologenesis in the virgin AEBP1 transgenic (AEBP1TG) mice, and the onset of ductal hyperplasia was accelerated in AEBP1TG mice fed a high fat diet, which induces endogenous AEBP1 expression. Transplantation of AEBP1TG bone marrow cells into non-transgenic (AEBP1NT) mice resulted in alveolar hyperplasia with up-regulation of NF-κB activity and TNFα expression as displayed in the AEBP1TG mammary macrophages and epithelium. Shh expression was induced in AEBP1TG macrophages and RAW264.7 macrophages overexpressing AEBP1. The Shh target genes Gli1 and Bmi1 expression was induced in the AEBP1TG mammary epithelium and HC11 mammary epithelial cells co-cultured with AEBP1TG peritoneal macrophages. The conditioned AEBP1TG macrophage culture media promoted NF-κB activity and survival signal, Akt activation, in HC11 cells, whereas such effects were abolished by TNFα neutralizing antibody treatment. Furthermore, HC11 cells displayed enhanced proliferation in response to AEBP1TG macrophages and their conditioned media. Our findings highlight the role of AEBP1 in the signaling pathways regulating the cross-talk between mammary epithelium and stroma that could predispose the mammary tissue to tumorigenesis. PMID:22995915

  4. SOCS3 promotes apoptosis of mammary differentiated cells.

    PubMed

    Le Provost, Fabienne; Miyoshi, Keiko; Vilotte, Jean-Luc; Bierie, Brian; Robinson, Gertraud W; Hennighausen, Lothar

    2005-12-30

    Growth and function of the mammary gland is regulated by cytokines and modulated by suppressor of cytokine signalling (SOCS) proteins. In vitro experiments demonstrated that SOCS3 can inhibit PRL induction of milk protein gene expression and STAT5 activation. We explored the SOCS3 expression pattern during mouse mammary development and its regulation by PRL and GH in wild-type and STAT5a-null mammary tissue. Our results suggest that, in vivo, PRL stimulates SOCS3 expression in stromal adipocytes, independently of STAT5a stimulation. In mammary epithelial cells, SOCS3 expression appears to be related to STAT3 activation. Together, our results are consistent with a role of SOCS3 in the mammary gland by promoting apoptosis of differentiated cells (adipocytes during gestation and epithelial cells during involution).

  5. Serum acute phase protein concentrations in female dogs with mammary tumors.

    PubMed

    Tecles, Fernando; Caldín, Marco; Zanella, Anna; Membiela, Francisco; Tvarijonaviciute, Asta; Subiela, Silvia Martínez; Cerón, José Joaquín

    2009-03-01

    Acute phase proteins (APPs) are proteins whose concentrations in serum change after any inflammatory stimulus or tissue damage. The aim of the current study was to evaluate 3 positive APPs (C-reactive protein, serum amyloid A, and haptoglobin) and 1 negative APP (albumin) in female dogs with mammary neoplasia. Acute phase proteins were studied in 70 female dogs aged 8-12 years in the following groups: healthy (n = 10); mammary tumors in stages I (n = 19), II (n = 5), III (n = 6), IV (n = 5), and V (n = 7); and with mammary neoplasia plus a concomitant disease (n = 18). In animals with mammary neoplasia, significant increases of positive APPs were only detected in those that had metastasis or a neoplasm with a diameter greater than 5 cm and ulceration. Dogs with mammary neoplasia and a concomitant disease also had high C-reactive protein concentrations. Albumin concentration was decreased in animals with metastasis and with a concomitant disease. The results of the present study indicate that the acute phase response could be stimulated in female dogs with mammary gland tumors because of different factors, such as metastasis, large size of the primary mass, and ulceration or secondary inflammation of the neoplasm.

  6. Influence of caffeine and/or coffee consumption on the initiation and promotion phases of 7,12-dimethylbenz(a)anthracene-induced rat mammary gland tumorigenesis.

    PubMed

    Welsch, C W; DeHoog, J V; O'Connor, D H

    1988-04-15

    The effect of caffeine and/or coffee consumption (via the drinking water) during the initiation phase and promotion phase of 7,12-dimethylbenz(a)anthracene (DMBA)-induced mammary gland tumorigenesis in female Sprague-Dawley rats fed a commercial laboratory animal chow was examined. In the initiation studies, DMBA was administered once at 53-55 days of age; caffeine (100-860 mg/liter of drinking water) and/or coffee (moderate or high dose, sole source of drinking water) treatments were for 32 consecutive days, commencing 29 days prior to DMBA treatment and terminating 3 days after DMBA treatment. In the promotion studies, DMBA was administered once at 54-55 days of age; caffeine and/or coffee treatments were daily from 57-58 days of age to termination of experiments (12-21 weeks after carcinogen treatment). In the initiation studies, either moderate (100-400 mg) or high (860 mg) dose levels of caffeine or moderate to high dose levels of caffeinated coffee significantly (P less than 0.05) reduced mammary carcinoma multiplicity (number of tumors/rat). Consumption of high or moderate dose levels of decaffeinated coffee did not significantly alter mammary carcinoma multiplicity. The addition of caffeine to the moderate dose level of decaffeinated coffee resulted in a significant (P less than 0.05) reduction in mammary carcinoma multiplicity. In the promotion studies, prolonged consumption of moderated dose levels of caffeine or moderate or high dose levels of caffeinated coffee or decaffeinated coffee did not significantly effect mammary carcinoma multiplicity. In the early stages of promotion, however, a significant (p less than 0.05) stimulatory effect of caffeine on mammary carcinoma multiplicity was observed; an effect that was temperate and transitory. In both the initiation and promotion studies caffeine and/or coffee consumption did not significantly affect the incidence of mammary carcinomas (percentage of rats bearing mammary carcinomas) or the mean latency

  7. Menhaden, coconut, and corn oils and mammary tumor incidence in BALB/c virgin female mice treated with DMBA.

    PubMed

    Craig-Schmidt, M; White, M T; Teer, P; Johnson, J; Lane, H W

    1993-01-01

    Omega-3 fatty (n-3) acids are believed to inhibit the rate of occurrence and the growth of mammary tumors in rats treated with 7,12-dimethylbenz[a]anthracene (DMBA). Linoleic acid, on the other hand, has been shown to promote mammary tumorigenesis. This study was undertaken to see whether replacing 18% of the corn oil (high in linoleic acid) in a 20% fat diet with menhaden oil (high in n-3 fatty acids, low in linoleic acid) or coconut oil (low in n-3 fatty acids, low in linoleic acid), while keeping constant the cholesterol, antioxidant, and total fat content, would affect tumor incidence in virgin female BALB/c mice dosed with DMBA. Dietary treatment had no effect on body weight, feed intake, or survival to 44 weeks of age (36 wks after the first of 6 DMBA doses). Mammary tumor incidence was the same in the menhaden oil and coconut oil diet groups but was significantly higher in the 20% corn oil diet group. The protective effect of menhaden oil and coconut oil may be due, at least in part, to the decreased linoleic acid content of these diets relative to the corn oil diet. We conclude that n-3 fatty acids per se do not seem to inhibit tumor formation.

  8. Activation of int-1 and int-2 loci in GRf mammary tumors.

    PubMed

    Gray, D A; Jackson, D P; Percy, D H; Morris, V L

    1986-10-30

    The Mtv-2 locus is known to be associated with a high mammary tumor incidence (97%) and early development of mammary tumors (3-13 months) in GR mice. However, it was not previously known whether the provirus which resides at the Mtv-2 locus is tumorigenic in and of itself or whether reintegration of proviruses generated from Mtv-2 is required for tumorigenesis. Foster-nursing GR mice on C57/BL mice eliminates the milk-borne source of GR virus, and allows the study of Mtv-2 derived proviruses alone. Using this approach, we have tested predictions which follow from the "positional" versus "reintegrational" models of tumorigenesis. Specifically, we have examined tumors from primary foster-nursed (GRf) mice to determine if MMTV proviruses derived from Mtv-2 were scattered randomly throughout the genome or were clustered in the vicinity of the int-1 and int-2 loci, which are thought to be associated with mammary tumorigenesis. It was found that the majority of spontaneous GRf mammary tumors that were tested have MMTV proviral integrations in either or both of the int-1 and int-2 loci and have transcription of either or both of the int loci. Tumors induced by Mtv-2, therefore, appear to have arisen via a mechanism similar to the activation of the int loci by exogenous (milk-borne) MMTV proviruses.

  9. Elevated circulating IGF-I promotes mammary gland development and proliferation.

    PubMed

    Cannata, Dara; Lann, Danielle; Wu, Yingjie; Elis, Sebastien; Sun, Hui; Yakar, Shoshana; Lazzarino, Deborah A; Wood, Teresa L; Leroith, Derek

    2010-12-01

    Animal studies have shown that IGF-I is essential for mammary gland development. Previous studies have suggested that local IGF-I rather than circulating IGF-I is the major mediator of mammary gland development. In the present study we used the hepatic IGF-I transgenic (HIT) and IGF-I knockout/HIT (KO-HIT) mouse models to examine the effects of enhanced circulating IGF-I on mammary development in the presence and absence of local IGF-I. HIT mice express the rat IGF-I transgene under the transthyretin promoter in the liver and have elevated circulating IGF-I and normal tissue IGF-I levels. The KO-HIT mice have no tissue IGF-I and increased circulating IGF-I. Analysis of mammary gland development reveals a greater degree of complexity in HIT mice as compared to control and KO-HIT mice, which demonstrate similar degrees of mammary gland complexity. Immunohistochemical evaluation of glands of HIT mice also suggests an enhanced degree of proliferation of the mammary gland, whereas KO-HIT mice exhibit mammary gland proliferation similar to control mice. In addition, HIT mice have a higher percentage of proliferating myoepithelial and luminal cells than control mice, whereas KO-HIT mice have an equivalent percentage of proliferating myoepithelial and luminal cells as control mice. Thus, our findings show that elevated circulating IGF-I levels are sufficient to promote normal pubertal mammary epithelial development. However, HIT mice demonstrate more pronounced mammary gland development when compared to control and KO-HIT mice. This suggests that both local and endocrine IGF-I play roles in mammary gland development and that elevated circulating IGF-I accelerates mammary epithelial proliferation.

  10. Aluminium chloride promotes tumorigenesis and metastasis in normal murine mammary gland epithelial cells

    PubMed Central

    Tenan, Mirna; Ferrari, Paolo; Sappino, André‐Pascal

    2016-01-01

    Aluminium salts, present in many industrial products of frequent use like antiperspirants, anti‐acid drugs, food additives and vaccines, have been incriminated in contributing to the rise in breast cancer incidence in Western societies. However, current experimental evidence supporting this hypothesis is limited. For example, no experimental evidence that aluminium promotes tumorigenesis in cultured mammary epithelial cells exists. We report here that long‐term exposure to concentrations of aluminium—in the form of aluminium chloride (AlCl3)—in the range of those measured in the human breast, transform normal murine mammary gland (NMuMG) epithelial cells in vitro as revealed by the soft agar assay. Subcutaneous injections into three different mouse strains with decreasing immunodeficiency, namely, NOD SCID gamma (NSG), NOD SCID or nude mice, revealed that untreated NMuMG cells form tumors and metastasize, to a limited extent, in the highly immunodeficient and natural killer (NK) cell deficient NSG strain, but not in the less permissive and NK cell competent NOD SCID or nude strains. In contrast, NMuMG cells transformed in vitro by AlCl3 form large tumors and metastasize in all three mouse models. These effects correlate with a mutagenic activity of AlCl3. Our findings demonstrate for the first time that concentrations of aluminium in the range of those measured in the human breast fully transform cultured mammary epithelial cells, thus enabling them to form tumors and metastasize in well‐established mouse cancer models. Our observations provide experimental evidence that aluminium salts could be environmental breast carcinogens. PMID:27541736

  11. MicroRNA-200, associated with metastatic breast cancer, promotes traits of mammary luminal progenitor cells.

    PubMed

    Sánchez-Cid, Lourdes; Pons, Mònica; Lozano, Juan José; Rubio, Nuria; Guerra-Rebollo, Marta; Soriano, Aroa; Paris-Coderch, Laia; Segura, Miquel F; Fueyo, Raquel; Arguimbau, Judit; Zodda, Erika; Bermudo, Raquel; Alonso, Immaculada; Caparrós, Xavier; Cascante, Marta; Rafii, Arash; Kang, Yibin; Martínez-Balbás, Marian; Weiss, Stephen J; Blanco, Jerónimo; Muñoz, Montserrat; Fernández, Pedro L; Thomson, Timothy M

    2017-10-13

    MicroRNAs are critical regulators of gene networks in normal and abnormal biological processes. Focusing on invasive ductal breast cancer (IDC), we have found dysregulated expression in tumor samples of several microRNAs, including the miR-200 family, along progression from primary tumors to distant metastases, further reflected in higher blood levels of miR-200b and miR-7 in IDC patients with regional or distant metastases relative to patients with primary node-negative tumors. Forced expression of miR-200s in MCF10CA1h mammary cells induced an enhanced epithelial program, aldehyde dehydrogenase (ALDH) activity, mammosphere growth and ability to form branched tubuloalveolar structures while promoting orthotopic tumor growth and lung colonization in vivo . MiR-200s also induced the constitutive activation of the PI3K-Akt signaling through downregulation of PTEN, and the enhanced mammosphere growth and ALDH activity induced in MCF10CA1h cells by miR-200s required the activation of this signaling pathway. Interestingly, the morphology of tumors formed in vivo by cells expressing miR-200s was reminiscent of metaplastic breast cancer (MBC). Indeed, the epithelial components of MBC samples expressed significantly higher levels of miR-200s than their mesenchymal components and displayed a marker profile compatible with luminal progenitor cells. We propose that microRNAs of the miR-200 family promote traits of highly proliferative breast luminal progenitor cells, thereby exacerbating the growth and metastatic properties of transformed mammary epithelial cells.

  12. In situ proliferation contributes to accumulation of tumor-associated macrophages in spontaneous mammary tumors.

    PubMed

    Tymoszuk, Piotr; Evens, Hanneke; Marzola, Vanessa; Wachowicz, Katarzyna; Wasmer, Marie-Helene; Datta, Sebak; Müller-Holzner, Elisabeth; Fiegl, Heidi; Böck, Günther; van Rooijen, Nico; Theurl, Igor; Doppler, Wolfgang

    2014-08-01

    Infiltration of a neoplasm with tumor-associated macrophages (TAMs) is considered an important negative prognostic factor and is functionally associated with tumor vascularization, accelerated growth, and dissemination. However, the ontogeny and differentiation pathways of TAMs are only incompletely characterized. Here, we report that intense local proliferation of fully differentiated macrophages rather than low-pace recruitment of blood-borne precursors drives TAM accumulation in a mouse model of spontaneous mammary carcinogenesis, the MMTVneu strain. TAM differentiation and expansion is regulated by CSF1, whose expression is directly controlled by STAT1 at the gene promoter level. These findings appear to be also relevant for human breast cancer, in which an interrelationship between STAT1, CSF1, and macrophage marker expression was identified. We propose that, akin to various MU subtypes in nonmalignant tissues, local proliferation and CSF1 play a vital role in the homeostasis of TAMs. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Maternal high fat diet promotion of mammary tumor risk in adult progeny is associated with early expansion of mammary cancer stem-like cells and increased maternal oxidative environment

    USDA-ARS?s Scientific Manuscript database

    Many adult chronic diseases might be programmed during early life by maternal nutritional history. Here, we evaluated effects of maternal high fat diet on mammary gland development and tumor formation in adult progeny. Female Wnt-1 transgenic mice exposed to high fat (HFD, 45% kcal fat) or control C...

  14. Mammary Gland Involution Provides a Unique Model to Study the TGF-β Cancer Paradox

    PubMed Central

    Guo, Qiuchen; Betts, Courtney; Pennock, Nathan; Mitchell, Elizabeth; Schedin, Pepper

    2017-01-01

    Transforming Growth Factor-β (TGF-β) signaling in cancer has been termed the “TGF-β paradox”, acting as both a tumor suppresser and promoter. The complexity of TGF-β signaling within the tumor is context dependent, and greatly impacted by cellular crosstalk between TGF-β responsive cells in the microenvironment including adjacent epithelial, endothelial, mesenchymal, and hematopoietic cells. Here we utilize normal, weaning-induced mammary gland involution as a tissue microenvironment model to study the complexity of TGF-β function. This article reviews facets of mammary gland involution that are TGF-β regulated, namely mammary epithelial cell death, immune activation, and extracellular matrix remodeling. We outline how distinct cellular responses and crosstalk between cell types during physiologically normal mammary gland involution contribute to simultaneous tumor suppressive and promotional microenvironments. We also highlight alternatives to direct TGF-β blocking anti-cancer therapies with an emphasis on eliciting concerted microenvironmental-mediated tumor suppression. PMID:28098775

  15. Oncogene cooperation in tumor maintenance and tumor recurrence in mouse mammary tumors induced by Myc and mutant Kras.

    PubMed

    Podsypanina, Katrina; Politi, Katerina; Beverly, Levi J; Varmus, Harold E

    2008-04-01

    Most, if not all, cancers are composed of cells in which more than one gene has a cancer-promoting mutation. Although recent evidence has shown the benefits of therapies targeting a single mutant protein, little attention has been given to situations in which experimental tumors are induced by multiple cooperating oncogenes. Using combinations of doxycycline-inducible and constitutive Myc and mutant Kras transgenes expressed in mouse mammary glands, we show that tumors induced by the cooperative actions of two oncogenes remain dependent on the activity of a single oncogene. Deinduction of either oncogene individually, or both oncogenes simultaneously, led to partial or complete tumor regression. Prolonged remission followed deinduction of Kras(G12D) in the context of continued Myc expression, deinduction of a MYC transgene with continued expression of mutant Kras produced modest effects on life extension, whereas simultaneous deinduction of both MYC and Kras(G12D) transgenes further improved survival. Disease relapse after deinduction of both oncogenes was associated with reactivation of both oncogenic transgenes in all recurrent tumors, often in conjunction with secondary somatic mutations in the tetracycline transactivator transgene, MMTV-rtTA, rendering gene expression doxycycline-independent. These results demonstrate that tumor viability is maintained by each gene in a combination of oncogenes and that targeted approaches will also benefit from combination therapies.

  16. Advanced Imaging Approaches to Characterize Stromal and Metabolic Changes in In Vivo Mammary Tumor Models

    DTIC Science & Technology

    2015-02-01

    Optical imaging , metabolism, tumor microenvironment, NADH, FAD, intravital imaging , collagen, metastasis 3.Overall Project Summary Our preliminary...Keely, KW Eliceiri. Novel Intravital Imaging Approaches to Characterize Collagen Alignment in Defined Mammary Tumor Models. Microscopy and...fixturing for intravital FLIM imaging through a rodent mammary imaging window. Stage is raised to accommodate tall 20xW objective. 14     Figure

  17. Molecular events involved in the increased expression of matrix metalloproteinase-9 by T lymphocytes of mammary tumor-bearing mice.

    PubMed

    Owen, Jennifer L; Torroella-Kouri, Marta; Iragavarapu-Charyulu, Vijaya

    2008-01-01

    Matrix metalloproteinases (MMPs) are a family of extracellular proteinases whose contributions to cancer progression have been studied because of their matrix-degrading abilities and elevated expression in advanced stage tumors. Recent findings suggest a role for MMPs during the multiple stages of tumor progression including establishment and growth, migration, invasion, metastasis, and angiogenesis. MMP-9 regulation at the molecular level can be studied by measuring the effect(s) of a variety of physiological and pharmacological agents on cells. Multiple signaling molecules such as protein kinase C, pertussis toxin-sensitive guanine nucleotide-binding protein G, and protein tyrosine kinases are known to mediate the secretion of MMPs in cell lines. We previously reported an upregulation of MMP-9 in T cells of mammary tumor-bearing mice. In this study, pharmacologic inhibitors were used to dissect the signaling pathways involved in the upregulation of MMP-9 in the splenic T cells of normal and mammary tumor-bearing mice. Staurosporine, a protein kinase inhibitor, stimulated MMP-9 secretion by normal T lymphocytes, while the constitutively high levels of MMP-9 produced by tumor bearers' T cells were decreased by Genistein, a specific tyrosine kinase inhibitor, and Rottlerin, a PKC inhibitor. Using a NF-kappaB specific probe to the murine MMP-9 promoter, electromobility shift assays of nuclear proteins from normal and tumor bearers' splenic T cells revealed a pattern of higher intensity bands from the tumor bearers' nuclear extracts, indicating a greater amount of these transcription factors bound to the recognition motif. When mammary tumor bearers' T cells were cultured with the NF-kappaB inhibitors, N-p-Tosyl-L-lysine chloromethyl ketone hydrochloride and Bay 11-7082, there was a subsequent decreased production of MMP-9. These results suggest that the tumor burden may be activating various signaling pathways within splenic T lymphocytes to upregulate MMP-9

  18. Physiological Levels of Pik3ca H1047R Mutation in the Mouse Mammary Gland Results in Ductal Hyperplasia and Formation of ERα-Positive Tumors

    PubMed Central

    Tikoo, Anjali; Roh, Vincent; Montgomery, Karen G.; Ivetac, Ivan; Waring, Paul; Pelzer, Rebecca; Hare, Lauren; Shackleton, Mark; Humbert, Patrick; Phillips, Wayne A.

    2012-01-01

    PIK3CA, the gene coding for the p110α subunit of phosphoinositide 3-kinase, is frequently mutated in a variety of human tumors including breast cancers. To better understand the role of mutant PIK3CA in the initiation and/or progression of breast cancer, we have generated mice with a conditional knock-in of the common activating mutation, Pik3caH1047R, into one allele of the endogenous gene in the mammary gland. These mice developed a ductal anaplasia and hyperplasia by 6 weeks of age characterized by multi-layering of the epithelial lining of the mammary ducts and expansion of the luminal progenitor (Lin−; CD29lo; CD24+; CD61+) cell population. The Pik3caH1047R expressing mice eventually develop mammary tumors with 100% penetrance but with a long latency (>12 months). This is significantly longer than has been reported for transgenic models where expression of the mutant Pik3ca is driven by an exogenous promoter. Histological analysis of the tumors formed revealed predominantly ERα-positive fibroadenomas, carcinosarcomas and sarcomas. In vitro induction of Pik3caH1047R in immortalized mammary epithelial cells also resulted in tumor formation when injected into the mammary fat pad of immunodeficient recipient mice. This novel model, which reproduces the scenario of a heterozygous somatic mutation occurring in the endogenous PIK3CA gene, will thus be a valuable tool for investigating the role of Pik3caH1047R mutation in mammary tumorigenesis both in vivo and in vitro. PMID:22666336

  19. Pueraria mirifica Exerts Estrogenic Effects in the Mammary Gland and Uterus and Promotes Mammary Carcinogenesis in Donryu Rats

    PubMed Central

    Kakehashi, Anna; Yoshida, Midori; Tago, Yoshiyuki; Ishii, Naomi; Okuno, Takahiro; Gi, Min; Wanibuchi, Hideki

    2016-01-01

    Pueraria mirifica (PM), a plant whose dried and powdered tuberous roots are now widely used in rejuvenating preparations to promote youthfulness in both men and women, may have major estrogenic influence. In this study, we investigated modifying effects of PM at various doses on mammary and endometrial carcinogenesis in female Donryu rats. Firstly, PM administered to ovariectomized animals at doses of 0.03%, 0.3%, and 3% in a phytoestrogen-low diet for 2 weeks caused significant increase in uterus weight. Secondly, a 4 week PM application to non-operated rats at a dose of 3% after 7,12-dimethylbenz[a]anthracene (DMBA) initiation resulted in significant elevation of cell proliferation in the mammary glands. In a third experiment, postpubertal administration of 0.3% (200 mg/kg body weight (b.w.)/day) PM to 5-week-old non-operated animals for 36 weeks following initiation of mammary and endometrial carcinogenesis with DMBA and N-ethyl-N′-nitro-N-nitrosoguanidine (ENNG), respectively, resulted in significant increase of mammary adenocarcinoma incidence. A significant increase of endometrial atypical hyperplasia multiplicity was also observed. Furthermore, PM at doses of 0.3%, and more pronouncedly, at 1% induced dilatation, hemorrhage and inflammation of the uterine wall. In conclusion, postpubertal long-term PM administration to Donryu rats exerts estrogenic effects in the mammary gland and uterus, and at a dose of 200 mg/kg b.w./day was found to promote mammary carcinogenesis initiated by DMBA. PMID:27827907

  20. Pueraria mirifica Exerts Estrogenic Effects in the Mammary Gland and Uterus and Promotes Mammary Carcinogenesis in Donryu Rats.

    PubMed

    Kakehashi, Anna; Yoshida, Midori; Tago, Yoshiyuki; Ishii, Naomi; Okuno, Takahiro; Gi, Min; Wanibuchi, Hideki

    2016-11-04

    Pueraria mirifica (PM), a plant whose dried and powdered tuberous roots are now widely used in rejuvenating preparations to promote youthfulness in both men and women, may have major estrogenic influence. In this study, we investigated modifying effects of PM at various doses on mammary and endometrial carcinogenesis in female Donryu rats. Firstly, PM administered to ovariectomized animals at doses of 0.03%, 0.3%, and 3% in a phytoestrogen-low diet for 2 weeks caused significant increase in uterus weight. Secondly, a 4 week PM application to non-operated rats at a dose of 3% after 7,12-dimethylbenz[a]anthracene (DMBA) initiation resulted in significant elevation of cell proliferation in the mammary glands. In a third experiment, postpubertal administration of 0.3% (200 mg/kg body weight (b.w.)/day) PM to 5-week-old non-operated animals for 36 weeks following initiation of mammary and endometrial carcinogenesis with DMBA and N -ethyl- N '-nitro- N -nitrosoguanidine (ENNG), respectively, resulted in significant increase of mammary adenocarcinoma incidence. A significant increase of endometrial atypical hyperplasia multiplicity was also observed. Furthermore, PM at doses of 0.3%, and more pronouncedly, at 1% induced dilatation, hemorrhage and inflammation of the uterine wall. In conclusion, postpubertal long-term PM administration to Donryu rats exerts estrogenic effects in the mammary gland and uterus, and at a dose of 200 mg/kg b.w./day was found to promote mammary carcinogenesis initiated by DMBA.

  1. Expression and significance of CHIP in canine mammary gland tumors

    PubMed Central

    WANG, Huanan; YANG, Xu; JIN, Yipeng; PEI, Shimin; ZHANG, Di; MA, Wen; HUANG, Jian; QIU, Hengbin; ZHANG, Xinke; JIANG, Qiuyue; SUN, Weidong; ZHANG, Hong; LIN, Degui

    2015-01-01

    CHIP (Carboxy terminus of Hsc70 Interacting Protein) is an E3 ubiquitin ligase that can induce ubiquitination and degradation of several oncogenic proteins. The expression of CHIP is frequently lower in human breast cancer than in normal breast tissue. However, the expression and role of CHIP in the canine mammary gland tumor (CMGT) remain unclear. We investigated the potential correlation between CHIP expression and mammary gland tumor prognosis in female dogs. CHIP expression was measured in 54 dogs by immunohistochemistry and real-time RT-PCR. CHIP protein expression was significantly correlated with the histopathological diagnosis, outcome of disease and tumor classification. The transcriptional level of CHIP was significantly higher in normal tissues (P=0.001) and benign tumors (P=0.009) than it in malignant tumors. CHIP protein expression was significantly correlated with the transcriptional level of CHIP (P=0.0102). The log-rank test survival curves indicated that patients with low expression of CHIP had shorter overall periods of survival than those with higher CHIP protein expression (P=0.050). Our data suggest that CHIP may play an important role in the formation and development of CMGTs and serve as a valuable prognostic marker and potential target for genetic therapy. PMID:26156079

  2. Canine parvovirus NS1 protein exhibits anti-tumor activity in a mouse mammary tumor model.

    PubMed

    Gupta, Shishir Kumar; Yadav, Pavan Kumar; Gandham, Ravi Kumar; Sahoo, A P; Harish, D R; Singh, Arvind Kumar; Tiwari, A K

    2016-02-02

    Many viral proteins have the ability to kill tumor cells specifically without harming the normal cells. These proteins, on ectopic expression, cause lysis or induction of apoptosis in the target tumor cells. Parvovirus NS1 is one of such proteins, which is known to kill high proliferating tumor cells. In the present study, we assessed the apoptosis inducing ability of canine parvovirus type 2 NS1 protein (CPV2.NS1) in vitro in 4T1 cells, and found it to cause significant cell death due to induction of apoptosis through intrinsic or mitochondrial pathway. Further, we also evaluated the oncolytic activity of CPV2.NS1 protein in a mouse mammary tumor model. The results suggested that CPV2.NS1 was able to inhibit the growth of 4T1 induced mouse mammary tumor as indicated by significantly reduced tumor volume, mitotic, AgNOR and PCNA indices. Further, inhibition of tumor growth was found to be because of induction of apoptosis in the tumor cells, which was evident by a significant increase in the number of TUNEL positive cells. Further, CPV2.NS1 was also able to stimulate the immune cells against the tumor antigens as indicated by the increased CD4+ and CD8+ counts in the blood of CVP2.NS1 treated mice. Further optimization of the delivery of NS1 protein and use of an adjuvant may further enhance its anti-tumor activity. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Insulin receptor substrate-2 regulates aerobic glycolysis in mouse mammary tumor cells via glucose transporter 1.

    PubMed

    Pankratz, Shannon L; Tan, Ernest Y; Fine, Yumiko; Mercurio, Arthur M; Shaw, Leslie M

    2009-01-23

    The insulin receptor substrate (IRS) proteins are cytoplasmic adaptor molecules that function as signaling intermediates downstream of activated cell surface receptors. Based on data implicating IRS-2 but not IRS-1 in breast cancer invasion, survival, and metastasis, we assessed the contribution of IRS-1 and IRS-2 to aerobic glycolysis, which is known to impact tumor growth and progression. For this purpose, we used tumor cell lines derived from transgenic mice that express the polyoma virus middle T antigen (PyV-MT) in the mammary gland and that are wild-type (WT) or null for either Irs-1 (Irs-1-/-) or Irs-2 (Irs-2-/-). Aerobic glycolysis, as assessed by the rate of lactic acid production and glucose consumption, was diminished significantly in Irs-2-/- cells when compared with WT and Irs-1-/- cells. Expression of exogenous Irs-2 in Irs-2-/- cells restored the rate of glycolysis to that observed in WT cells. The transcription factor FoxO1 does not appear to be involved in Irs-2-mediated glycolysis. However, Irs-2 does regulate the surface expression of glucose transporter 1 (Glut1) as assessed by flow cytometry using a Glut1-specific ligand. Suppression of Glut1 expression inhibits Irs-2-dependent invasion, which links glycolysis to mammary tumor progression. Irs-2 was shown to be important for mammalian target of rapamycin (mTor) activation, and Irs-2-dependent regulation of Glut1 surface expression is rapamycin-sensitive. Collectively, our data indicate that Irs-2, but not Irs-1, promotes invasion by sustaining the aerobic glycolysis of mouse mammary tumor cells and that it does so by regulating the mTor-dependent surface expression of Glut1.

  4. Bisphenol A Increases Mammary Cancer Risk in Two Distinct Mouse Models of Breast Cancer1

    PubMed Central

    Weber Lozada, Kristen; Keri, Ruth A.

    2011-01-01

    Bisphenol A (BPA) is an industrial plasticizer that leaches from food containers during normal usage, leading to human exposure. Early and chronic exposure to endocrine-disrupting environmental contaminants such as BPA elevates the potential for long-term health consequences. We examined the impact of BPA exposure on fetal programming of mammary tumor susceptibility as well as its growth promoting effects on transformed breast cancer cells in vivo. Fetal mice were exposed to 0, 25, or 250 μg/kg BPA by oral gavage of pregnant dams. Offspring were subsequently treated with the known mammary carcinogen, 7,12-dimethylbenz[a]anthracene (DMBA). While no significant differences in postnatal mammary development were observed, both low- and high-dose BPA cohorts had a statistically significant increase in susceptibility to DMBA-induced tumors compared to vehicle-treated controls. To determine if BPA also promotes established tumor growth, MCF-7 human breast cancer cells were subcutaneously injected into flanks of ovariectomized NCR nu/nu female mice treated with BPA, 17beta-estradiol, or placebo alone or combined with tamoxifen. Both estradiol- and BPA-treated cohorts formed tumors by 7 wk post-transplantation, while no tumors were detected in the placebo cohort. Tamoxifen reversed the effects of estradiol and BPA. We conclude that BPA may increase mammary tumorigenesis through at least two mechanisms: molecular alteration of fetal glands without associated morphological changes and direct promotion of estrogen-dependent tumor cell growth. Both results indicate that exposure to BPA during various biological states increases the risk of developing mammary cancer in mice. PMID:21636739

  5. Obesity, expression of adipocytokines, and macrophage infiltration in canine mammary tumors.

    PubMed

    Lim, H Y; Im, K S; Kim, N H; Kim, H W; Shin, J I; Sur, J H

    2015-03-01

    Obesity influences the development, progression and prognosis of human breast cancer and canine mammary cancer (MC) but the precise underlying mechanism is not well-documented in the fields of either human or veterinary oncology. In the present study, the expression of major adipocytokines, including leptin, adiponectin, and leptin receptor (ObR) in benign (n = 28) and malignant (n = 70) canine mammary tumors was investigated by immunohistochemistry and on the basis of the subject's body condition score (BCS). To evaluate the relationship between obesity and chronic inflammation of the mammary gland, macrophages infiltrating within and around tumoral areas were counted. The mean age of MC development was lower in overweight or obese dogs (9.0 ± 1.8 years) than in lean dogs or optimal bodyweight (10.2 ± 2.9 years), and the evidence of lymphatic invasion of carcinoma cells was found more frequently in overweight or obese group than in lean or optimal groups. Decreased adiponectin expression and increased macrophage numbers in overweight or obese subjects were significantly correlated with factors related to a poor prognosis, such as high histological grade and lymphatic invasion. Leptin expression was correlated with progesterone receptor status, and ObR expression was correlated with estrogen receptor status of MCs, regardless of BCS. Macrophage infiltration within and around the tumor may play an important role in tumor progression and metastasis in obese female dogs and may represent a prognostic factor for canine MCs. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. 5-Fluorouracil may enrich cancer stem cells in canine mammary tumor cells in vitro.

    PubMed

    Zhou, Bin; Jin, Yipeng; Zhang, Di; Lin, Degui

    2018-05-01

    Mammary gland carcinomas are the most common neoplasms in women and unsterilized female dogs. Owing to the existence of cancer stem cells (CSCs), chemotherapy is not able to cure these types of diseases completely. A number of studies have demonstrated that CSCs are resistant to chemotherapeutic drugs, but whether canine mammary tumor cells that have acquired resistance to 5-fluorouracil (5-FU) exhibited properties of CSCs remains unknown. The aim of the present study was to investigate whether 5-fluorouracil-resistant canine mammary tumor cells exhibited properties of CSCs. CSCs were analyzed using western blot assays, ultra-low attachment sphere cultures, flow cytometry and migration (wound healing and Transwell) assays. The results indicated that, compared with parental cells, proteins associated with the Wnt/β-catenin signaling pathway and aldehyde dehydrogenase 1 were overexpressed, the number and size of spheres in the 5-FU-resistant cells were increased, the ratio of CD44 + /CD24 -/low cells was increased and the migratory ability was improved in vitro compared with the 5-FU-susceptible cells. In conclusion, stimulation with chemotherapeutic drugs including 5-FU is a good method for increasing the proportion of canine mammary tumor stem cells in vitro , which may provide further understanding of chemotherapeutic methods and CSCs.

  7. Epidemiological Study of Mammary Tumors in Female Dogs Diagnosed during the Period 2002-2012: A Growing Animal Health Problem

    PubMed Central

    Salas, Yaritza; Márquez, Adelys; Diaz, Daniel; Romero, Laura

    2015-01-01

    Epidemiological studies enable us to analyze disease behavior, define risk factors and establish fundamental prognostic criteria, with the purpose of studying different types of diseases. The aim of this study was to determine the epidemiological characteristics of canine mammary tumors diagnosed during the period 2002-2012. The study was based on a retrospective study consisting of 1,917 biopsies of intact dogs that presented mammary gland lesions. Biopsies were sent to the Department of Pathology FMVZ-UNAM diagnostic service. The annual incidence of mammary tumors was 16.8%: 47.7% (benign) and 47.5% (malignant). The highest number of cases was epithelial, followed by mixed tumors. The most commonly diagnosed tumors were tubular adenoma, papillary adenoma, tubular carcinoma, papillary carcinoma, solid carcinoma, complex carcinoma and carcinosarcoma. Pure breeds accounted for 80% of submissions, and the Poodle, Cocker Spaniel and German Shepherd were consistently affected. Adult female dogs (9 to 12 years old) were most frequently involved, followed by 5- to 8-year-old females. Some association between breeds with histological types of malignant tumors was observed, but no association was found between breeds and BN. Mammary tumors in intact dogs had a high incidence. Benign and malignant tumors had similar frequencies, with an increase in malignant tumors in the past four years of the study. Epithelial tumors were more common, and the most affected were old adult females, purebreds and small-sized dogs. Mammary tumors in dogs are an important animal health problem that needs to be solved by improving veterinary oncology services in Mexico. PMID:25992997

  8. Epidemiological Study of Mammary Tumors in Female Dogs Diagnosed during the Period 2002-2012: A Growing Animal Health Problem.

    PubMed

    Salas, Yaritza; Márquez, Adelys; Diaz, Daniel; Romero, Laura

    2015-01-01

    Epidemiological studies enable us to analyze disease behavior, define risk factors and establish fundamental prognostic criteria, with the purpose of studying different types of diseases. The aim of this study was to determine the epidemiological characteristics of canine mammary tumors diagnosed during the period 2002-2012. The study was based on a retrospective study consisting of 1,917 biopsies of intact dogs that presented mammary gland lesions. Biopsies were sent to the Department of Pathology FMVZ-UNAM diagnostic service. The annual incidence of mammary tumors was 16.8%: 47.7% (benign) and 47.5% (malignant). The highest number of cases was epithelial, followed by mixed tumors. The most commonly diagnosed tumors were tubular adenoma, papillary adenoma, tubular carcinoma, papillary carcinoma, solid carcinoma, complex carcinoma and carcinosarcoma. Pure breeds accounted for 80% of submissions, and the Poodle, Cocker Spaniel and German Shepherd were consistently affected. Adult female dogs (9 to 12 years old) were most frequently involved, followed by 5- to 8-year-old females. Some association between breeds with histological types of malignant tumors was observed, but no association was found between breeds and BN. Mammary tumors in intact dogs had a high incidence. Benign and malignant tumors had similar frequencies, with an increase in malignant tumors in the past four years of the study. Epithelial tumors were more common, and the most affected were old adult females, purebreds and small-sized dogs. Mammary tumors in dogs are an important animal health problem that needs to be solved by improving veterinary oncology services in Mexico.

  9. Morinda citrifolia (Noni) Juice Augments Mammary Gland Differentiation and Reduces Mammary Tumor Growth in Mice Expressing the Unactivated c-erbB2 Transgene.

    PubMed

    Clafshenkel, William P; King, Tracy L; Kotlarczyk, Mary P; Cline, J Mark; Foster, Warren G; Davis, Vicki L; Witt-Enderby, Paula A

    2012-01-01

    Morinda citrifolia (noni) is reported to have many beneficial properties, including on immune, inflammatory, quality of life, and cancer endpoints, but little is known about its ability to prevent or treat breast cancer. To test its anticancer potential, the effects of Tahitian Noni Juice (TNJ) on mammary carcinogenesis were examined in MMTV-neu transgenic mice. Mammary tumor latency, incidence, multiplicity, and metastatic incidence were unaffected by TNJ treatment, which suggests that it would not increase or decrease breast cancer risk in women taking TNJ for its other benefits. However, noni may be useful to enhance treatment responses in women with existing HER2/neu breast cancer since TNJ resulted in significant reductions in tumor weight and volume and in longer tumor doubling times in mice. Remarkably, its ability to inhibit the growth of this aggressive form of cancer occurred with the mouse equivalent of a recommended dose for humans (<3 oz/day). A 30-day treatment with TNJ also induced significant changes in mammary secondary ductule branching and lobuloalveolar development, serum progesterone levels, and estrous cycling. Additional studies investigating TNJ-induced tumor growth suppression and modified reproductive responses are needed to characterize its potential as a CAM therapy for women with and without HER2(+) breast cancer.

  10. Morinda citrifolia (Noni) Juice Augments Mammary Gland Differentiation and Reduces Mammary Tumor Growth in Mice Expressing the Unactivated c-erbB2 Transgene

    PubMed Central

    Clafshenkel, William P.; King, Tracy L.; Kotlarczyk, Mary P.; Cline, J. Mark; Foster, Warren G.; Davis, Vicki L.; Witt-Enderby, Paula A.

    2012-01-01

    Morinda citrifolia (noni) is reported to have many beneficial properties, including on immune, inflammatory, quality of life, and cancer endpoints, but little is known about its ability to prevent or treat breast cancer. To test its anticancer potential, the effects of Tahitian Noni Juice (TNJ) on mammary carcinogenesis were examined in MMTV-neu transgenic mice. Mammary tumor latency, incidence, multiplicity, and metastatic incidence were unaffected by TNJ treatment, which suggests that it would not increase or decrease breast cancer risk in women taking TNJ for its other benefits. However, noni may be useful to enhance treatment responses in women with existing HER2/neu breast cancer since TNJ resulted in significant reductions in tumor weight and volume and in longer tumor doubling times in mice. Remarkably, its ability to inhibit the growth of this aggressive form of cancer occurred with the mouse equivalent of a recommended dose for humans (<3 oz/day). A 30-day treatment with TNJ also induced significant changes in mammary secondary ductule branching and lobuloalveolar development, serum progesterone levels, and estrous cycling. Additional studies investigating TNJ-induced tumor growth suppression and modified reproductive responses are needed to characterize its potential as a CAM therapy for women with and without HER2+ breast cancer. PMID:22619689

  11. Ectodysplasin/NF-κB Promotes Mammary Cell Fate via Wnt/β-catenin Pathway

    PubMed Central

    Voutilainen, Maria; Lönnblad, Darielle; Shirokova, Vera; Elo, Teresa; Rysti, Elisa; Schmidt-Ullrich, Ruth; Schneider, Pascal; Mikkola, Marja L.

    2015-01-01

    Mammary gland development commences during embryogenesis with the establishment of a species typical number of mammary primordia on each flank of the embryo. It is thought that mammary cell fate can only be induced along the mammary line, a narrow region of the ventro-lateral skin running from the axilla to the groin. Ectodysplasin (Eda) is a tumor necrosis factor family ligand that regulates morphogenesis of several ectodermal appendages. We have previously shown that transgenic overexpression of Eda (K14-Eda mice) induces formation of supernumerary mammary placodes along the mammary line. Here, we investigate in more detail the role of Eda and its downstream mediator transcription factor NF-κB in mammary cell fate specification. We report that K14-Eda mice harbor accessory mammary glands also in the neck region indicating wider epidermal cell plasticity that previously appreciated. We show that even though NF-κB is not required for formation of endogenous mammary placodes, it is indispensable for the ability of Eda to induce supernumerary placodes. A genome-wide profiling of Eda-induced genes in mammary buds identified several Wnt pathway components as potential transcriptional targets of Eda. Using an ex vivo culture system, we show that suppression of canonical Wnt signalling leads to a dose-dependent inhibition of supernumerary placodes in K14-Eda tissue explants. PMID:26581094

  12. Inhibitory effect of the peptide epitalon on the development of spontaneous mammary tumors in HER-2/neu transgenic mice.

    PubMed

    Anisimov, Vladimir N; Khavinson, Vladimir K H; Provinciali, Mauro; Alimova, Irina N; Baturin, Dmitri A; Popovich, Irina G; Zabezhinski, Mark A; Imyanitov, Eugeni N; Mancini, Romina; Franceschi, Claudio

    2002-09-01

    Female FVB/N HER-2/neu transgenic mice from the age of 2 months were subcutaneously injected with saline, the peptide Epitalon(R) (Ala-Glu-Asp-Gly) or with the peptide Vilon(R) (Lys-Glu) in a single dose of 1 microg/mouse for 5 consecutive days every month. Epitalon treatment reduced the cumulative number and the maximum size of tumors (p < 0.05). Furthermore, the number of mice bearing 1 mammary tumor was increased, whereas the number of mice bearing 2 or more mammary tumors was reduced in Epitalon-treated in comparison to saline-treated animals (p < 0.05). The size but not the number of lung metastases was reduced in Epitalon-treated compared to saline-treated mice (p < 0.05). The treatment with Vilon produced significant negative effects when compared to the control group, with an increased incidence of mammary cancer development (p < 0.05), a shorter mean latent period of tumors (p < 0.05) and an increased cumulative number of tumors (p < 0.05). A 3.7-fold reduction in the expression of HER-2/neu mRNA was found in mammary tumors from HER-2/neu transgenic mice treated with Epitalon compared to control animals. The expression of mRNA for HER-2/neu was also partially reduced in Vilon-treated mice, but it remained significantly higher in Vilon- than in Epitalon-treated animals (1.9-fold increase). The data demonstrate the inhibitory effect of Epitalon in the development of spontaneous mammary tumors in HER-2/neu mice, suggesting that a downregulation of HER-2/neu gene expression in mammary adenocarcinoma may be responsible, at least in part, for the antitumor effect of the peptide. Copyright 2002 Wiley-Liss, Inc.

  13. APC/β-catenin-rich complexes at membrane protrusions regulate mammary tumor cell migration and mesenchymal morphology

    PubMed Central

    2013-01-01

    Background The APC tumor suppressor is mutated or downregulated in many tumor types, and is prominently localized to punctate clusters at protrusion tips in migratory cells, such as in astrocytes where it has been implicated in directed cell motility. Although APC loss is considered an initiating event in colorectal cancer, for example, it is less clear what role APC plays in tumor cell motility and whether loss of APC might be an important promoter of tumor progression in addition to initiation. Methods The localization of APC and β-catenin was analyzed in multiple cell lines, including non-transformed epithelial lines treated with a proteasome inhibitor or TGFβ to induce an epithelial-to-mesenchymal transition (EMT), as well as several breast cancer lines, by immunofluorescence. APC expression was knocked down in 4T07 mammary tumor cells using lentiviral-mediated delivery of APC-specific short-hairpin (sh) RNAs, and assessed using quantitative (q) reverse-transcriptase (RT)-PCR and western blotting. Tumor cell motility was analyzed by performing wound-filling assays, and morphology via immunofluorescence (IF) and phase-contrast microscopy. Additionally, proliferation was measured using BrdU incorporation, and TCF reporter assays were performed to determine β-catenin/TCF-mediated transcriptional activity. Results APC/β-catenin-rich complexes were observed at protrusion ends of migratory epithelial cells treated with a proteasome inhibitor or when EMT has been induced and in tumor cells with a mesenchymal, spindle-like morphology. 4T07 tumor cells with reduced APC levels were significantly less motile and had a more rounded morphology; yet, they did not differ significantly in proliferation or β-catenin/TCF transcriptional activity. Furthermore, we found that APC/β-catenin-rich complexes at protrusion ends were dependent upon an intact microtubule cytoskeleton. Conclusions These findings indicate that membrane protrusions with APC/β-catenin-containing puncta

  14. Flor-Essence® herbal tonic does not inhibit estrogen receptor negative mammary tumor development in a transgenic mouse model

    PubMed Central

    Bennett, L. Michelle; Montgomery, Jennifer L.; Collins, N. Keith; Steinberg, Seth M.; Kulp, Kristen S.

    2012-01-01

    Women who are diagnosed with breast cancer often self-administer complementary and alternative medicines to augment their conventional treatments, improve health, or prevent recurrence. Flor-Essence® herbal tonic is a complex mixture of eight herbal extracts used by cancer patients because of anecdotal evidence that it can treat or prevent disease. In this study four experimental groups of female MMTV-Neu mice were left untreated or treated with 3% Flor-Essence® in utero, from birth until 5 weeks of age, or throughout their lifetime. Palpable mammary tumor incidence and body weight was determined weekly for each group. The mice were sacrificed at 28 weeks of age and mammary tumors were enumerated to determine average tumor incidence and multiplicity for each group. Female mice exposed to Flor-Essence® herbal tonic in utero weighed significantly more than the control group (p < 0.001). The average tumor incidence and tumor multiplicity in the experimental mice treated with Flor-Essence® herbal tonic did not differ from the control animals. Flor-Essence® does not inhibit mammary tumor incidence or mammary tumor multiplicity in MMTV-Neu transgenic mice. Flor-Essence® exposure in utero causes increased body weight in experimental animals. This conclusion challenges widely available anecdotal information as well as the hopes of the consumer that this product will inhibit or suppress tumor development. Lay Abstract Flor-Essence® herbal tonic is a complex mixture of eight herbal extracts often used by women with breast cancer in hopes that it will help cure disease or prevent recurrence. There is currently very little scientific data to support or refute its self-administration. We tested whether Flor-Essence® would influence tumor development in the mammary glands of a mouse model of Her2/neu breast cancer. The tonic was given at different life stages to determine if timing of the exposure influenced the response to treatment. This report shows that Flor

  15. Obesity-Associated Alterations in Inflammation, Epigenetics, and Mammary Tumor Growth Persist in Formerly Obese Mice.

    PubMed

    Rossi, Emily L; de Angel, Rebecca E; Bowers, Laura W; Khatib, Subreen A; Smith, Laura A; Van Buren, Eric; Bhardwaj, Priya; Giri, Dilip; Estecio, Marcos R; Troester, Melissa A; Hair, Brionna Y; Kirk, Erin L; Gong, Ting; Shen, Jianjun; Dannenberg, Andrew J; Hursting, Stephen D

    2016-05-01

    Using a murine model of basal-like breast cancer, we tested the hypothesis that chronic obesity, an established breast cancer risk and progression factor in women, induces mammary gland epigenetic reprogramming and increases mammary tumor growth. Moreover, we assessed whether the obesity-induced epigenetic and protumor effects are reversed by weight normalization. Ovariectomized female C57BL/6 mice were fed a control diet or diet-induced obesity (DIO) regimen for 17 weeks, resulting in a normal weight or obese phenotype, respectively. Mice on the DIO regimen were then randomized to continue the DIO diet or were switched to the control diet, resulting in formerly obese (FOb) mice with weights comparable with control mice. At week 24, all mice were orthotopically injected with MMTV-Wnt-1 mouse mammary tumor cells. Mean tumor volume, serum IL6 levels, expression of proinflammatory genes in the mammary fat pad, and mammary DNA methylation profiles were similar in DIO and FOb mice and higher than in controls. Many of the genes found to have obesity-associated hypermethylation in mice were also found to be hypermethylated in the normal breast tissue of obese versus nonobese human subjects, and nearly all of these concordant genes remained hypermethylated after significant weight loss in the FOb mice. Our findings suggest that weight normalization may not be sufficient to reverse the effects of chronic obesity on epigenetic reprogramming and inflammatory signals in the microenvironment that are associated with breast cancer progression. Cancer Prev Res; 9(5); 339-48. ©2016 AACR. ©2016 American Association for Cancer Research.

  16. Expression of truncated Int6/eIF3e in mammary alveolar epithelium leads to persistent hyperplasia and tumorigenesis

    PubMed Central

    Mack, David L; Boulanger, Corinne A; Callahan, Robert; Smith, Gilbert H

    2007-01-01

    Introduction Int6 has been shown to be an interactive participant with the protein translation initiation complex eIF3, the COP9 signalosome and the regulatory lid of the 26S proteasome. Insertion of mouse mammary tumor virus into the Int6 locus creates a C-terminally truncated form of the protein. Expression of the truncated form of Int6 (Int6sh) in stably transfected human and mouse mammary epithelial cell lines leads to cellular transformation. In addition, decreased expression of Int6/eIF3e is observed in approximately one third of all human breast carcinomas. Methods To validate that Int6sh has transforming activity in vivo, a transgenic mouse model was designed using the whey acidic protein (Wap) promoter to target expression of truncated Int6 to differentiating alveolar epithelial cells in the mammary gland. Microarray analyses were performed on normal, premalignant and malignant WapInt6sh expressing tissues. Results Mammary tumors developed in 42% of WapInt6sh heterozygous parous females at an average age of 18 months. In WapInt6sh mice, the contralateral mammary glands from both tumorous and non-tumorous tissues contained widespread focal alveolar hyperplasia. Only 4% of WapInt6sh non-breeding females developed tumors by 2 years of age. The Wap promoter is active only during estrus in the mammary tissue of cycling non-pregnant mice. Microarray analyses of mammary tissues demonstrated that Int6sh expression in the alveolar tissue altered the mammary transcriptome in a specific manner that was detectable even in the first pregnancy. This Int6sh-specific transcriptome pattern subsequently persisted in both the Int6sh-expressing alveolar hyperplasia and mammary tumors. These observations are consistent with the conclusion that WapInt6sh-expressing alveolar cells survive involution following the cessation of lactation, and subsequently give rise to the mammary tumors that arise in aging multiparous females. Conclusion These observations provide direct in vivo

  17. Reduced energy intake and moderate exercise reduce mammary tumor incidence in virgin female BALB/c mice treated with 7,12-dimethylbenz(a)anthracene

    NASA Technical Reports Server (NTRS)

    Lane, Helen W.; Teer, Patricia; Keith, Robert E.; White, Marguerite T.; Strahan, Susan

    1991-01-01

    The concurrent effects of diet (standard AIN-76A, restricted AIN-76A and high-fat diet) and moderate rotating-drum treadmill exercise on the incidence of 7,12-dimethylbenz(a)anthracene-induced mammary carcinomas in virgin female BALB/cMed mice free of murine mammary tumor virus are evaluated. Analyses show that, although energy intake was related to mammary tumor incidence, neither body weight nor dietary fat predicted tumor incidence.

  18. Mammary tumor associated Hspb1 mutation and screening of eight cat populations of the world.

    PubMed

    Saif, R; Awan, A R; Lyons, L; Gandolfi, B; Tayyab, M; Ellahi Babar, M; Wasim, M

    2016-01-01

    Current research highlights the Hspb1 based screening of eight cat populations of the world to investigate the association of newly found locus within cat mammary tumors. Total 180 cats were screened on the basis of Hspb1 4 bp deletion locus (1514-1517del4) which was observed in six mammary tumor cases in Siamese cat breed. Case-control association study revealed the non-significance with P=0.201 and an overall mutant allele frequency of 0.30 ranging from 0.20-0.40 was observed in other cat populations. Similarly, HWE was also obeyed in combined population samples with P=0.860 and found non-significant with range of 0.429-0.708 in other non-Pakistani cat populations as well. These results might be helpful to understand the association of this novel locus in a better way with large sample size of cases and may also serve as a potential marker for mammary tumor diagnosis, particularly in cats and generally in all other animal populations in comparative genetics and genomics context.

  19. Misregulation of Stromelysin-1 in Mouse Mammary Tumor Cells Accompanies Acquisition of Stromelysin-1 dependent Invasive Properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lochter, A.; Srebrow, A.; Sympson, C.J.

    1997-02-21

    Stromelysin-1 is a member of the metalloproteinase family of extracellular matrix-degrading enzymes that regulates tissue remodeling. We previously established a transgenic mouse model in which rat stromelysin-1 targeted to the mammary gland augmented expression of endogenous stromelysin-1, disrupted functional differentiation, and induced mammary tumors. A cell line generated from an adenocarcinoma in one of these animals and a previously described mammary tumor cell line generated in culture readily invaded both a reconstituted basement membrane and type I collagen gels, whereas a nonmalignant, functionally normal epithelial cell line did not. Invasion of Matrigel by tumor cells was largely abolished by metalloproteinasemore » inhibitors, but not by inhibitors of other proteinase families. Inhibition experiments with antisense oligodeoxynucleotides revealed that Matrigel invasion of both cell lines was critically dependent on stromelysin-1 expression. Invasion of collagen, on the other hand, was reduced by only 40-50%. Stromelysin-1 was expressed in both malignant and nonmalignant cells grown on plastic substrata. Its expression was completely inhibited in nonmalignant cells, but up-regulated in tumor cells, in response to Matrigel. Thus misregulation of stromelysin-1 expression appears to be an important aspect of mammary tumor cell progression to an invasive phenotype. The matrix metalloproteinases (MMPs) are a family of extracellular matrix (ECM)-degrading enzymes that have been implicated in a variety of normal developmental and pathological processes, including tumorigenesis. The MMP family comprises at least 15 members with different, albeit overlapping, substrate specificities. During activation of latent MMPs, their propeptides are cleaved and they are converted to a lower molecular weight form by other enzymes, including serine proteinases, and by autocatalytic cleavage. Among the MMPs, stromelysin-1 (SL1) possesses the broadest substrate specificity

  20. Mammary Tumors Initiated by Constitutive Cdk2 Activation Contain an Invasive Basal-like Component1

    PubMed Central

    Corsino, Patrick E; Davis, Bradley J; Nörgaard, Peter H; Teoh Parker, Nicole N; Law, Mary; Dunn, William; Law, Brian K

    2008-01-01

    The basal-like subtype of breast cancer is associated with invasiveness, high rates of postsurgical recurrence, and poor prognosis. Aside from inactivation of the BRCA1 tumor-suppressor gene, little is known concerning the mechanisms that cause basal breast cancer or the mechanisms responsible for its invasiveness. Here, we show that the heterogeneous mouse mammary tumor virus-cyclin D1-Cdk2 (MMTV-D1K2) transgenic mouse mammary tumors contain regions of spindle-shaped cells expressing both luminal and myoepithelial markers. Cell lines cultured from these tumors exhibit the same luminal/myoepithelial mixed-lineage phenotype that is associated with human basal-like breast cancer and express a number of myoepithelial markers including cytokeratin 14, P-cadherin, α smooth muscle actin, and nestin. The MMTV-D1K2 tumor-derived cell lines form highly invasive tumors when injected into mouse mammary glands. Invasion is associated with E-cadherin localization to the cytoplasm or loss of E-cadherin expression. Cytoplasmic E-cadherin correlates with lack of colony formation in vitro and β-catenin and p120ctn localization to the cytoplasm. The data suggest that the invasiveness of these cell lines results from a combination of factors including mislocalization of E-cadherin, β-catenin, and p120ctn to the cytoplasm. Nestin expression and E-cadherin mislocalization were also observed in human basal-like breast cancer cell lines, suggesting that these results are relevant to human tumors. Together, these results suggest that abnormal Cdk2 activation may contribute to the formation of basal-like breast cancers. PMID:18953433

  1. The soybean peptide lunasin promotes apoptosis of mammary epithelial cells via induction of tumor suppressor PTEN: similarities and distinct actions from soy isoflavone genistein

    USDA-ARS?s Scientific Manuscript database

    Breast cancer is the leading cause of cancer deaths in women. Diet and lifestyle are major contributing factors to increased breast cancer risk. While mechanisms underlying dietary protection of mammary tumor formation are increasingly elucidated, there remains a dearth of knowledge on the nature an...

  2. MUCI Facilitation of Growth in Chemically Induced Mammary Gland Tumors in Muc-1 Mutant and MUCI Transgenic Mice.

    DTIC Science & Technology

    1998-08-01

    present grant proposed to initiate tumor development using chemical carcinogenesis. Pazos et al. (1991) demonstrated chemical induction of murine...latency of 154 ±19 days. Tumors were mammary adenocarcinomas of the B type of Dunn’s classification ( Pazos , 1991). My hypothesis for these studies was...in rats. Murine response to NMU is only briefly documented in the literature ( Pazos et al., 1991). Following the protocol for NMU induction of mammary

  3. The cell cycle regulator ecdysoneless cooperates with H-Ras to promote oncogenic transformation of human mammary epithelial cells.

    PubMed

    Bele, Aditya; Mirza, Sameer; Zhang, Ying; Ahmad Mir, Riyaz; Lin, Simon; Kim, Jun Hyun; Gurumurthy, Channabasavaiah Basavaraju; West, William; Qiu, Fang; Band, Hamid; Band, Vimla

    2015-01-01

    The mammalian ortholog of Drosophila ecdysoneless (Ecd) gene product regulates Rb-E2F interaction and is required for cell cycle progression. Ecd is overexpressed in breast cancer and its overexpression predicts shorter survival in patients with ErbB2-positive tumors. Here, we demonstrate Ecd knock down (KD) in human mammary epithelial cells (hMECs) induces growth arrest, similar to the impact of Ecd Knock out (KO) in mouse embryonic fibroblasts. Furthermore, whole-genome mRNA expression analysis of control vs. Ecd KD in hMECs demonstrated that several of the top 40 genes that were down-regulated were E2F target genes. To address the role of Ecd in mammary oncogenesis, we overexpressed Ecd and/or mutant H-Ras in hTERT-immortalized hMECs. Cell cycle analyses revealed hMECs overexpressing Ecd+Ras showed incomplete arrest in G1 phase upon growth factor deprivation, and more rapid cell cycle progression in growth factor-containing medium. Analyses of cell migration, invasion, acinar structures in 3-D Matrigel and anchorage-independent growth demonstrated that Ecd+Ras-overexpressing cells exhibit substantially more dramatic transformed phenotype as compared to cells expressing vector, Ras or Ecd. Under conditions of nutrient deprivation, Ecd+Ras-overexpressing hMECs exhibited better survival, with substantial upregulation of the autophagy marker LC3 both at the mRNA and protein levels. Significantly, while hMECs expressing Ecd or mutant Ras alone did not form tumors in NOD/SCID mice, Ecd+Ras-overexpressing hMECs formed tumors, clearly demonstrating oncogenic cooperation between Ecd and mutant Ras. Collectively, we demonstrate an important co-oncogenic role of Ecd in the progression of mammary oncogenesis through promoting cell survival.

  4. An Immunohistochemical Study on the Expression of Sex Steroid Receptors in Canine Mammary Tumors

    PubMed Central

    Port Louis, Leena Rajathy; Varshney, Khub Chandra; Nair, Madhavan Gopalakrishnan

    2012-01-01

    Steroid hormones are found to play a major role in the genesis and progression of mammary tumors. The aim of this study was to immunohistochemically detect the presence of estrogen receptor alpha (ERα), estrogen receptor beta (ERβ), and progesterone receptor (PR) and also to study the association between these markers in 29 cases of benign (11) and malignant (18) canine mammary tumors. ERα immunostaining was noticed in only one case of carcinosarcoma specifically in the nuclei of epithelial and a few myoepithelial cells. ERβ immunostaining was noticed in the nuclei and cytoplasm of epithelial cells and smooth muscles lining the blood vessels. Immunoexpression of ERβ was 82% in benign tumors and 78% in malignant tumors. PR immunostaining was expressed in the nuclei of epithelial cells in both benign and malignant tumors. Among the 15 PR+ cases, 6 (55%) were of benign type, and 9 (50%) were of malignant type. The most common group of hormone receptor was the ERα−/PR+/ERβ+ (46%) in benign tumors and ERα−/PR−/ERβ+ (38%) in malignant tumors. Although there was no significant association between ERα and PR with ERβ, the findings indicated that ERβ was consistently expressed in both benign and malignant tumors, irrespective of ERα and PR status. PMID:23738123

  5. Early-in-life dietary zinc deficiency and supplementation and mammary tumor development in adulthood female rats.

    PubMed

    da Silva, Flávia R M; Grassi, Tony F; Zapaterini, Joyce R; Bidinotto, Lucas T; Barbisan, Luis F

    2017-06-01

    Zinc deficiency during pregnancy and postnatal life can adversely increase risk of developing human diseases at adulthood. The present study was designed to evaluate whether dietary zinc deficiency or supplementation during the pregnancy, lactation and juvenile stages interferes in the development of mammary tumors induced by 7,12-dimethylbenzanthracene (DMBA) in female Sprague-Dawley (SD) rats. Pregnant female SD rats were allocated into three groups: zinc-adequate diet (ZnA - 35-mg/kg chow), zinc-deficient diet (ZnD - 3-mg/kg chow) or zinc-supplemented diet (ZnS - 180-mg/kg chow) during gestational day 10 (GD 10) until the litters' weaning. Female offspring received the same diets as their dams until postnatal day (PND) 51. At PND 51, the animals received a single dose of DMBA (50 mg/kg, ig) and zinc-adequate diets. At PND 180, female were euthanized, and tumor samples were processed for histological evaluation and gene expression microarray analysis. The ZnD induced a significant reduction in female offspring body weight evolution and in mammary gland development. At late in life, the ZnD or ZnS did not alter the latency, incidence, multiplicity, volume or histological types of mammary tumors in relation to the ZnA group. However, the total tumor number in ZnS group was higher than in ZnA group, accompanied by distinct expression of 4 genes up- and 15 genes down-regulated. The present findings indicate that early-in-life dietary zinc supplementation, differently to zinc deficiency, has a potential to modify the susceptibility to the development of mammary tumors induced by DMBA. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Effects of Obesity and Obesity-Related Molecules on Canine Mammary Gland Tumors.

    PubMed

    Lim, H-Y; Im, K-S; Kim, N-H; Kim, H-W; Shin, J-I; Yhee, J-Y; Sur, J-H

    2015-11-01

    Obesity can affect the clinical course of a number of diseases, including breast cancer in women and mammary gland tumors in female dogs, via the secretion of various cytokines and hormones. The objective of this study was to examine the expression patterns of obesity-related molecules such as aromatase, leptin, and insulin-like growth factor 1 receptor (IGF-1 R) in canine mammary carcinomas (CMCs) on the basis of the body condition score (BCS). Comparative analyses of the expression of these molecules, together with prognostic factors for CMCs, including hormone receptors (HRs; estrogen and progesterone receptors), lymphatic invasion, central necrosis of the tumor, and histologic grade, were performed on 56 CMCs. The mean age of CMC onset was lower in the overweight or obese group (8.7 ± 1.9 years) than in the lean or ideal body weight group (10.4 ± 2.7 years). The proportion of poorly differentiated (grade III) tumors was significantly higher in the overweight or obese female dogs. Aromatase expression was significantly higher in the overweight or obese group and was correlated with the expression of HRs (P = .025). These findings suggest that overweight or obese status might affect the development and behavior of CMCs by tumor-adipocyte interactions and increased HR-related tumor growth. © The Author(s) 2015.

  7. Advanced Imaging Approaches to Characterize Stromal and Metabolic Changes in in Vivo Mammary Tumor Models

    DTIC Science & Technology

    2014-03-01

    then locks into the microscope stage for extreme stability. Extremely stable intravital images can then be collected with nearly no breathing...Szulczewski, PJ Keely, KW Eliceiri. Novel Intravital Imaging Approaches to Characterize Collagen Alignment in Defined Mammary Tumor Models. Microscopy and...repeated 3 times on different days. 13   Figure 5: New fixturing for intravital FLIM imaging through a rodent mammary imaging window. Stage is raised

  8. Mammary Adipose Tissue-derived Lysophospholipids Promote Estrogen Receptor-negative Mammary Epithelial Cell Proliferation

    PubMed Central

    Volden, Paul A.; Skor, Maxwell N.; Johnson, Marianna B.; Singh, Puneet; Patel, Feenalie N.; McClintock, Martha K.; Brady, Matthew J.; Conzen, Suzanne D.

    2016-01-01

    Lysophosphatidic acid (LPA), acting in an autocrine or paracrine fashion through G protein-coupled receptors, has been implicated in many physiological and pathological processes including cancer. LPA is converted to lysophosphatidylcholine (LPC) by the secreted phospholipase, autotaxin (ATX). Although various cell types can produce ATX, adipocyte-derived ATX is believed to be the major source of circulating ATX and also to be the major regulator of plasma LPA. In addition to ATX, adipocytes secrete numerous other factors (adipokines); although several adipokines have been implicated in breast cancer biology, the contribution of mammary adipose tissue-derived LPC/ATX/LPA (LPA-axis) signaling to breast cancer is poorly understood. Using mammary fat-conditioned medium, we investigated the contribution of LPA signaling to mammary epithelial cancer cell biology and identified LPA signaling as a significant contributor to the oncogenic effects of the mammary adipose tissue secretome. To interrogate the role of mammary fat in the LPA-axis during breast cancer progression, we exposed mammary adipose tissue to secreted factors from estrogen receptor-negative mammary epithelial cell lines and monitored changes in the mammary fat pad LPA-axis. Our data indicate that bidirectional interactions between mammary cancer cells and mammary adipocytes alter the local LPA-axis and increase ATX expression in the mammary fat pad during breast cancer progression. Thus, the LPC/ATX/LPA axis may be a useful target for prevention in patients at risk of ER-negative breast cancer. PMID:26862086

  9. Deletion of IL-33R attenuates VEGF expression and enhances necrosis in mammary carcinoma

    PubMed Central

    Pejnovic, Nada N.; Mitrovic, Slobodanka L. J.; Arsenijevic, Nebojsa N.; Simovic Markovic, Bojana J.; Lukic, Miodrag L.

    2016-01-01

    Interleukin-33 (IL-33)/IL-33 receptor (IL-33R, ST2) signaling pathway promotes mammary cancer growth and metastasis by inhibiting anti-tumor immunity. However, the role of IL-33/IL-33R axis in neoangiogenesis and tumor necrosis is not elucidated. Therefore, the aim of this study was to investigate the role of IL-33/IL-33R axis in mammary tumor necrosis. Deletion of IL-33R (ST2) gene in BALB/c mice enhanced tumor necrosis and attenuated tumor growth in 4T1 breast cancer model, which was associated with markedly decreased expression of vascular endothelial growth factor (VEGF) and IL-33 in mammary tumor cells. We next analyzed IL-33, IL-33R and VEGF expression and microvascular density (MVD) in breast tumors from 40 female patients with absent or present tumor necrosis. We found significantly higher expression of IL-33, IL-33R and VEGF in breast cancer tissues with absent tumor necrosis. Both, IL-33 and IL-33R expression correlated with VEGF expression in tumor cells. Further, VEGF expression positively correlated with MVD in perinecrotic zone. Taking together, our data indicate that IL-33/IL-33R pathway is critically involved in mammary tumor growth by facilitating expression of pro-angiogenic VEGF in tumor cells and attenuating tumor necrosis. These data add an unidentified mechanism by which IL-33/IL-33R axis facilitates tumor growth. PMID:26919112

  10. Deletion of IL-33R attenuates VEGF expression and enhances necrosis in mammary carcinoma.

    PubMed

    Milosavljevic, Milos Z; Jovanovic, Ivan P; Pejnovic, Nada N; Mitrovic, Slobodanka L J; Arsenijevic, Nebojsa N; Simovic Markovic, Bojana J; Lukic, Miodrag L

    2016-04-05

    Interleukin-33 (IL-33)/IL-33 receptor (IL-33R, ST2) signaling pathway promotes mammary cancer growth and metastasis by inhibiting anti-tumor immunity. However, the role of IL-33/IL-33R axis in neoangiogenesis and tumor necrosis is not elucidated. Therefore, the aim of this study was to investigate the role of IL-33/IL-33R axis in mammary tumor necrosis. Deletion of IL-33R (ST2) gene in BALB/c mice enhanced tumor necrosis and attenuated tumor growth in 4T1 breast cancer model, which was associated with markedly decreased expression of vascular endothelial growth factor (VEGF) and IL-33 in mammary tumor cells. We next analyzed IL-33, IL-33R and VEGF expression and microvascular density (MVD) in breast tumors from 40 female patients with absent or present tumor necrosis. We found significantly higher expression of IL-33, IL-33R and VEGF in breast cancer tissues with absent tumor necrosis. Both, IL-33 and IL-33R expression correlated with VEGF expression in tumor cells. Further, VEGF expression positively correlated with MVD in perinecrotic zone. Taking together, our data indicate that IL-33/IL-33R pathway is critically involved in mammary tumor growth by facilitating expression of pro-angiogenic VEGF in tumor cells and attenuating tumor necrosis. These data add an unidentified mechanism by which IL-33/IL-33R axis facilitates tumor growth.

  11. R-spondin3 is associated with basal-progenitor behavior in normal and tumor mammary cells.

    PubMed

    Tocci, Johanna Melisa; Felcher, Carla María; García Solá, Martín E; Goddio, María Victoria; Zimberlin, María Noel; Rubinstein, Natalia; Srebrow, Anabella; Coso, Omar Adrián; Abba, Martín C; Meiss, Roberto P; Kordon, Edith C

    2018-05-10

    R-spondin3 (RSPO3) is a member of a family of secreted proteins that enhance Wnt signaling pathways in diverse processes including cancer. However, the role of RSPO3 in mammary gland and breast cancer development remains unclear. In this study, we show that RSPO3 is expressed in the basal stem cell-enriched compartment of normal mouse mammary glands but is absent from committed mature luminal cells in which exogenous RSPO3 impairs lactogenic differentiation. RSPO3 knockdown in basal-like mouse mammary tumor cells reduced canonical Wnt signaling, epithelial-to-mesenchymal transition-like features, migration capacity, and tumor formation in vivo. Conversely, RSPO3 overexpression, which was associated with some LGR and RUNX factors, highly correlated with the basal-like subtype among breast cancer patients. Thus we identified RSPO3 as a novel key modulator of breast cancer development and a potential target for treatment of basal-like breast cancers. Copyright ©2018, American Association for Cancer Research.

  12. A heterologous hormone response element enhances expression of rat beta-casein promoter-driven chloramphenicol acetyltransferase fusion genes in the mammary gland of transgenic mice.

    PubMed

    Greenberg, N M; Reding, T V; Duffy, T; Rosen, J M

    1991-10-01

    Previous studies have demonstrated that the entire rat beta-casein (R beta C) gene and a -524/+490 R beta C fragment-chloramphenicol acetyltransferase (CAT) fusion gene are expressed preferentially in the mammary gland of transgenic mice in a developmentally regulated fashion. However, transgene expression was infrequent, less than 1% of that observed for the endogenous gene, and varied as much as 500-fold, presumably due to the site of chromosomal integration. To determine whether a heterologous hormone-responsive enhancer could be used to increase both the level and frequency of expression in the mammary gland, a fragment derived from the mouse mammary tumor virus long terminal repeat containing four hormone response elements (HREs) was inserted into the R beta C promoter at a site not known to contain transcriptional regulatory elements. Transgenic mice generated which carried HRE-enhanced R beta C-CAT fusion genes expressed CAT activity in the mammary glands of all founder lines examined at levels that were on average 13-fold greater than for lines generated with similar constructs not carrying HREs. In the highest expressing line, the level of HRE-enhanced transgene expression was found to be developmentally regulated, increasing 14-fold in the mammary gland from virgin to day 10 of lactation. In this line, expression was also observed in the thymus and spleen; however, the level of CAT activity was 4-fold lower than in the mammary gland and was not developmentally regulated. In adrenalectomized mice, the administration of dexamethasone stimulated CAT expression in the mammary gland but not in the thymus and spleen. These studies demonstrate that in the context of the R beta C promoter, the HRE functions in the mammary gland to increase both the frequency and level of transgene expression.

  13. Selected Alkylating Agents Can Overcome Drug Tolerance of G0-like Tumor Cells and Eradicate BRCA1-Deficient Mammary Tumors in Mice.

    PubMed

    Pajic, Marina; Blatter, Sohvi; Guyader, Charlotte; Gonggrijp, Maaike; Kersbergen, Ariena; Küçükosmanoğlu, Aslι; Sol, Wendy; Drost, Rinske; Jonkers, Jos; Borst, Piet; Rottenberg, Sven

    2017-11-15

    Purpose: We aimed to characterize and target drug-tolerant BRCA1-deficient tumor cells that cause residual disease and subsequent tumor relapse. Experimental Design: We studied responses to various mono- and bifunctional alkylating agents in a genetically engineered mouse model for BRCA1/p53 -mutant breast cancer. Because of the large intragenic deletion of the Brca1 gene, no restoration of BRCA1 function is possible, and therefore, no BRCA1-dependent acquired resistance occurs. To characterize the cell-cycle stage from which Brca1 -/- ;p53 -/- mammary tumors arise after cisplatin treatment, we introduced the fluorescent ubiquitination-based cell-cycle indicator (FUCCI) construct into the tumor cells. Results: Despite repeated sensitivity to the MTD of platinum drugs, the Brca1 -mutated mammary tumors are not eradicated, not even by a frequent dosing schedule. We show that relapse comes from single-nucleated cells delaying entry into the S-phase. Such slowly cycling cells, which are present within the drug-naïve tumors, are enriched in tumor remnants. Using the FUCCI construct, we identified nonfluorescent G 0 -like cells as the population most tolerant to platinum drugs. Intriguingly, these cells are more sensitive to the DNA-crosslinking agent nimustine, resulting in an increased number of multinucleated cells that lack clonogenicity. This is consistent with our in vivo finding that the nimustine MTD, among several alkylating agents, is the most effective in eradicating Brca1 -mutated mouse mammary tumors. Conclusions: Our data show that targeting G 0 -like cells is crucial for the eradication of BRCA1/p53-deficient tumor cells. This can be achieved with selected alkylating agents such as nimustine. Clin Cancer Res; 23(22); 7020-33. ©2017 AACR . ©2017 American Association for Cancer Research.

  14. IL17 Promotes Mammary Tumor Progression by Changing the Behavior of Tumor Cells and Eliciting Tumorigenic Neutrophils Recruitment.

    PubMed

    Benevides, Luciana; da Fonseca, Denise Morais; Donate, Paula Barbim; Tiezzi, Daniel Guimarães; De Carvalho, Daniel D; de Andrade, Jurandyr M; Martins, Gislaine A; Silva, João S

    2015-09-15

    The aggressiveness of invasive ductal carcinoma (IDC) of the breast is associated with increased IL17 levels. Studying the role of IL17 in invasive breast tumor pathogenesis, we found that metastatic primary tumor-infiltrating T lymphocytes produced elevated levels of IL17, whereas IL17 neutralization inhibited tumor growth and prevented the migration of neutrophils and tumor cells to secondary disease sites. Tumorigenic neutrophils promote disease progression, producing CXCL1, MMP9, VEGF, and TNFα, and their depletion suppressed tumor growth. IL17A also induced IL6 and CCL20 production in metastatic tumor cells, favoring the recruitment and differentiation of Th17. In addition, IL17A changed the gene-expression profile and the behavior of nonmetastatic tumor cells, causing tumor growth in vivo, confirming the protumor role of IL17. Furthermore, high IL17 expression was associated with lower disease-free survival and worse prognosis in IDC patients. Thus, IL17 blockade represents an attractive approach for the control of invasive breast tumors. ©2015 American Association for Cancer Research.

  15. Long-term primary culture of mouse mammary tumor cells: production of virus.

    PubMed

    Young, L J; Cardiff, R D; Ashley, R L

    1975-05-01

    Long-term primary cultures of mouse mammary tumor cells proved an excellent source of mouse mammary tumor virus (MMTV). Virus purified from these primary cultures had the same morphologic biochemical, immunologic, and biologic characteristics as MMTV. Quantitation of MMTV-protein equivalents released into the medium was measured by the radioimmunoassay for MMTV. Peak production levels were 20-40 mug MMTV protien equivalents/75-cm-2 flask/24 hours. These cultures produced MMTV for as long as 90 days. MMTV cultivation depended on the initial cell-plating density and hormones. Maximal MMTV release was obtained at a plating density of 1 times 10-6 cells/cm-2 in the presence of insulin and hydrocortisone. Insulin alone gave basal levels of MMTV, and hydrocortisone alone increased MMTV release only three-fold, but insulin and hydrocortisone together effected an eightfold increase in MMTV release. This suggested that hydrocortisone had a primary effect on MMTV release and insulin acted synergistically with hydrocortisone to maximize MMTV release.

  16. IMPACT OF OBESITY ON DEVELOPMENT AND PROGRESSION OF MAMMARY TUMORS IN PRECLINICAL MODELS OF BREAST CANCER

    PubMed Central

    Cleary, Margot P.

    2013-01-01

    Overweight and/or obesity are known risk factors for postmenopausal breast cancer. More recently increased body weight has also been associated with poor prognosis for both pre- and postmenopausal breast cancer. This relationship has primarily been identified through epidemiological studies. Additional information from in vitro studies has also been produced in attempts to delineate mechanisms of action for the association of obesity and body weight and breast cancer. This approach has identified potential growth factors such as insulin, leptin, estrogen and IGF-I which are reported to be modulated by body weight changes. However, in vitro studies are limited in scope and frequently use non-physiological concentrations of growth factors, while long follow-up is needed for human studies. Preclinical animal models provide an intermediary approach to investigate the impact of body weight and potential growth factors on mammary/breast tumor development and progression. Here results of a number of studies addressing this issue are presented. In the majority of the studies either genetically-obese or diet-induced obese rodent models have been used to investigate spontaneous, transgenic and carcinogen-induced mammary tumor development. To study tumor progression the major focus has been allograft studies in mice with either genetic or dietary-induced obesity. In general, obesity has been demonstrated to shorten mammary tumor latency and to impact tumor pathology. However, in rodents with defects in leptin and other growth factors the impact of obesity is not as straightforward. Future studies using more physiologically relevant obesity models and clearly distinguishing diet composition from body weight effects will be important in continuing to understand the factors associated with body weight’s impact on the mammary/breast cancer development and progression. PMID:24122258

  17. Stromal and Epithelial Caveolin-1 Both Confer a Protective Effect Against Mammary Hyperplasia and Tumorigenesis

    PubMed Central

    Williams, Terence M.; Sotgia, Federica; Lee, Hyangkyu; Hassan, Ghada; Di Vizio, Dolores; Bonuccelli, Gloria; Capozza, Franco; Mercier, Isabelle; Rui, Hallgeir; Pestell, Richard G.; Lisanti, Michael P.

    2006-01-01

    Here, we investigate the role of caveolin-1 (Cav-1) in breast cancer onset and progression, with a focus on epithelial-stromal interactions, ie, the tumor microenvironment. Cav-1 is highly expressed in adipocytes and is abundant in mammary fat pads (stroma), but it remains unknown whether loss of Cav-1 within mammary stromal cells affects the differentiated state of mammary epithelia via paracrine signaling. To address this issue, we characterized the development of the mammary ductal system in Cav-1−/− mice and performed a series of mammary transplant studies, using both wild-type and Cav-1−/− mammary fat pads. Cav-1−/− mammary epithelia were hyperproliferative in vivo, with dramatic increases in terminal end bud area and mammary ductal thickness as well as increases in bromodeoxyuridine incorporation, extracellular signal-regulated kinase-1/2 hyperactivation, and up-regulation of STAT5a and cyclin D1. Consistent with these findings, loss of Cav-1 dramatically exacerbated mammary lobulo-alveolar hyperplasia in cyclin D1 Tg mice, whereas overexpression of Cav-1 caused reversion of this phenotype. Most importantly, Cav-1−/− mammary stromal cells (fat pads) promoted the growth of both normal mammary ductal epithelia and mammary tumor cells. Thus, Cav-1 expression in both epithelial and stromal cells provides a protective effect against mammary hyperplasia as well as mammary tumorigenesis. PMID:17071600

  18. Metformin Accumulation Correlates with Organic Cation Transporter 2 Protein Expression and Predicts Mammary Tumor Regression in Vivo

    PubMed Central

    Checkley, L. Allyson; Rudolph, Michael C.; Wellberg, Elizabeth A.; Giles, Erin D.; Wahdan-Alaswad, Reema S.; Houck, Julie A.; Edgerton, Susan M.; Thor, Ann D.; Schedin, Pepper; Anderson, Steven M.; MacLean, Paul S.

    2017-01-01

    Several epidemiological studies have associated metformin treatment with a reduction in breast cancer incidence in pre-diabetic and type II diabetic populations. Uncertainty exists regarding which patient populations and/or tumor subtypes will benefit from metformin treatment, and most preclinical in vivo studies have given little attention to the cellular pharmacology of intratumoral metformin uptake. Epidemiological reports consistently link western-style high fat diets, which drive overweight and obesity, with increased risk of breast cancer. We used a rat model of high fat diet (HFD) induced overweight and mammary carcinogenesis to define intratumoral factors that confer metformin sensitivity. Mammary tumors were initiated with N-methyl-N-nitrosourea (MNU), and rats were randomized into metformin-treated (2 mg/ml drinking water) or control groups (water only) for 8 weeks. Two-thirds of existing mammary tumors responded to metformin treatment with decreased tumor volumes (p<0.05), reduced proliferative index (p<0.01), and activated AMPK (p<0.05). Highly responsive tumors accumulated 3-fold greater metformin amounts (p<0.05) that were positively correlated with organic cation transporter-2 (OCT2) protein expression (r=0.57, P=0.038). Importantly, intratumoral metformin concentration negatively associated with tumor volume (P=0.03), and each 10 pmol increase in intratumoral metformin predicted >0.11 cm3 reduction in tumor volume. Metformin treatment also decreased proinflammatory arachidonic acid >1.5 fold in responsive tumors (P=0.023). Collectively, these preclinical data provide evidence for a direct effect of metformin in vivo and suggest that OCT2 expression may predict metformin uptake and tumor response. PMID:28154203

  19. The cell cycle regulator ecdysoneless cooperates with H-Ras to promote oncogenic transformation of human mammary epithelial cells

    PubMed Central

    Bele, Aditya; Mirza, Sameer; Zhang, Ying; Ahmad Mir, Riyaz; Lin, Simon; Kim, Jun Hyun; Gurumurthy, Channabasavaiah Basavaraju; West, William; Qiu, Fang; Band, Hamid; Band, Vimla

    2015-01-01

    The mammalian ortholog of Drosophila ecdysoneless (Ecd) gene product regulates Rb-E2F interaction and is required for cell cycle progression. Ecd is overexpressed in breast cancer and its overexpression predicts shorter survival in patients with ErbB2-positive tumors. Here, we demonstrate Ecd knock down (KD) in human mammary epithelial cells (hMECs) induces growth arrest, similar to the impact of Ecd Knock out (KO) in mouse embryonic fibroblasts. Furthermore, whole-genome mRNA expression analysis of control vs. Ecd KD in hMECs demonstrated that several of the top 40 genes that were down-regulated were E2F target genes. To address the role of Ecd in mammary oncogenesis, we overexpressed Ecd and/or mutant H-Ras in hTERT-immortalized hMECs. Cell cycle analyses revealed hMECs overexpressing Ecd+Ras showed incomplete arrest in G1 phase upon growth factor deprivation, and more rapid cell cycle progression in growth factor-containing medium. Analyses of cell migration, invasion, acinar structures in 3-D Matrigel and anchorage-independent growth demonstrated that Ecd+Ras-overexpressing cells exhibit substantially more dramatic transformed phenotype as compared to cells expressing vector, Ras or Ecd. Under conditions of nutrient deprivation, Ecd+Ras-overexpressing hMECs exhibited better survival, with substantial upregulation of the autophagy marker LC3 both at the mRNA and protein levels. Significantly, while hMECs expressing Ecd or mutant Ras alone did not form tumors in NOD/SCID mice, Ecd+Ras-overexpressing hMECs formed tumors, clearly demonstrating oncogenic cooperation between Ecd and mutant Ras. Collectively, we demonstrate an important co-oncogenic role of Ecd in the progression of mammary oncogenesis through promoting cell survival. PMID:25616580

  20. t10,c12-Conjugated linoleic acid stimulates mammary tumor progression in Her2/ErbB2 mice through activation of both proliferative and survival pathways

    PubMed Central

    Meng, Xiaojing; Shoemaker, Suzanne F.; McGee, Sibel O.; Ip, Margot M.

    2008-01-01

    The t10,c12 isomer of conjugated linoleic acid (CLA) inhibits rat mammary carcinogenesis, metastasis from a transplantable mouse mammary tumor and angiogenesis; however, it stimulates mammary tumorigenesis in transgenic mice overexpressing ErbB2 in the mammary epithelium (ErbB2 transgenic mice). In the current study, we report that a 4-week supplementation of the diet with 0.5% trans-10, cis-12 conjugated linoleic acid (t10,c12-CLA) stimulated the growth of established ErbB2-overexpressing mammary tumors by 30% and increased the number of new tumors from 11% to 82%. Additionally, when t10,c12-CLA supplementation of ErbB2 transgenic mice was initiated at 21 weeks of age, a time just prior to tumor appearance, overall survival was decreased from 46.4 weeks in the control to 39.0 weeks in the CLA group, and survival after detection of a palpable tumor from 7.5 to 4.6 weeks. Short-term supplementation from 10 to 14 weeks or 21 to 25 weeks of age temporarily accelerated tumor development, but over the long term, there was no significant effect on mammary tumorigenesis. Long term as well as a short 4-week supplementation increased mammary epithelial hyperplasia and lobular development, and altered the mammary stroma; this was reversible in mice returned to the control diet. t10,c12-CLA altered proliferation and apoptosis of the mammary epithelium, although this differed depending on the length of administration and/or the age of the mice. The increased tumor development with t10,c12-CLA was associated with increased phosphorylation of the IGF-I/insulin receptor, as well as increased signaling through the mitogen-activated protein kinase kinase (MEK)/extracellular signal-regulated kinase and phosphatidylinositol 3-kinase/Akt pathways; however, neither phospho-ErbB2 nor ErbB2 was altered. PMID:18339686

  1. Role of host microenvironment in angiogenesis and microvascular functions in human breast cancer xenografts: mammary fat pad versus cranial tumors.

    PubMed

    Monsky, Wayne L; Mouta Carreira, Carla; Tsuzuki, Yoshikazu; Gohongi, Takeshi; Fukumura, Dai; Jain, Rakesh K

    2002-04-01

    The host microenvironment differs between primary and metastatic sites, affecting gene expression and various physiological functions. Here we show the differences in the physiological parameters between orthotopic primary and metastatic breast tumor xenografts using intravital microscopy and reveal the relationship between angiogenic gene expression and microvascular functions in vivo. ZR75-1, a human estrogen-dependent mammary carcinoma, was implanted into the mammary fat pad (primary site) of ovariectomized SCID female mice carrying estrogen pellets. The same tumor line was also grown in the cranial window (metastasis site). When tumors reached the diameter of 2.5 mm, angiogenesis, hemodynamics, and vascular permeability were measured by intravital microscopy, and expression of angiogenic growth factors was determined by quantitative reverse transcription-PCR. ZR75-1 tumors grown in the mammary fat pad had higher microvascular permeability but lower vascular density than the same tumors grown in the cranial window (2.5- and 0.7-fold, respectively). There was no significant difference in RBC velocity, vessel diameter, blood flow rate, and shear rate between two sites. The levels of vascular endothelial growth factor (VEGF), its receptors VEGFR1 and VEGFR2, and angiopoietin-1 mRNA tended to be higher in the mammary fat pad tumors than in the cranial tumors (1.5-, 1.5-, 3-, and 2-fold, respectively). The primary breast cancer exhibited higher vascular permeability, but the cranial tumor showed more angiogenesis, suggesting that the cranial environment is leakage resistant but proangiogenic. Collectively, host microenvironment is an important determinant of tumor gene expression and microvascular functions, and, thus, orthotopic breast tumor models should be useful for obtaining clinically relevant information.

  2. Treatment of natural mammary gland tumors in canines and felines using gold nanorods-assisted plasmonic photothermal therapy to induce tumor apoptosis

    PubMed Central

    Ali, Moustafa R K; Ibrahim, Ibrahim M; Ali, Hala R; Selim, Salah A; El-Sayed, Mostafa A

    2016-01-01

    Plasmonic photothermal therapy (PPTT) is a cancer therapy in which gold nanorods are injected at the site of a tumor before near-infrared light is transiently applied to the tumor causing localized cell death. Previously, PPTT studies have been carried out on xenograft mice models. Herein, we report a study showing the feasibility of PPTT as applied to natural tumors in the mammary glands of dogs and cats, which more realistically represent their human equivalents at the molecular level. We optimized a regime of three low PPTT doses at 2-week intervals that ablated tumors mainly via apoptosis in 13 natural mammary gland tumors from seven animals. Histopathology, X-ray, blood profiles, and comprehensive examinations were used for both the diagnosis and the evaluation of tumor statuses before and after treatment. Histopathology results showed an obvious reduction in the cancer grade shortly after the first treatment and a complete regression after the third treatment. Blood tests showed no obvious change in liver and kidney functions. Similarly, X-ray diffraction showed no metastasis after 1 year of treatment. In conclusion, our study suggests the feasibility of applying the gold nanorods-PPTT on natural tumors in dogs and cats without any relapse or toxicity effects after 1 year of treatment. PMID:27703351

  3. Treatment of natural mammary gland tumors in canines and felines using gold nanorods-assisted plasmonic photothermal therapy to induce tumor apoptosis.

    PubMed

    Ali, Moustafa R K; Ibrahim, Ibrahim M; Ali, Hala R; Selim, Salah A; El-Sayed, Mostafa A

    Plasmonic photothermal therapy (PPTT) is a cancer therapy in which gold nanorods are injected at the site of a tumor before near-infrared light is transiently applied to the tumor causing localized cell death. Previously, PPTT studies have been carried out on xenograft mice models. Herein, we report a study showing the feasibility of PPTT as applied to natural tumors in the mammary glands of dogs and cats, which more realistically represent their human equivalents at the molecular level. We optimized a regime of three low PPTT doses at 2-week intervals that ablated tumors mainly via apoptosis in 13 natural mammary gland tumors from seven animals. Histopathology, X-ray, blood profiles, and comprehensive examinations were used for both the diagnosis and the evaluation of tumor statuses before and after treatment. Histopathology results showed an obvious reduction in the cancer grade shortly after the first treatment and a complete regression after the third treatment. Blood tests showed no obvious change in liver and kidney functions. Similarly, X-ray diffraction showed no metastasis after 1 year of treatment. In conclusion, our study suggests the feasibility of applying the gold nanorods-PPTT on natural tumors in dogs and cats without any relapse or toxicity effects after 1 year of treatment.

  4. Modulation of Glucose Transporter 1 (GLUT1) Expression Levels Alters Mouse Mammary Tumor Cell Growth In Vitro and In Vivo

    PubMed Central

    Young, Christian D.; Lewis, Andrew S.; Rudolph, Michael C.; Ruehle, Marisa D.; Jackman, Matthew R.; Yun, Ui J.; Ilkun, Olesya; Pereira, Renata; Abel, E. Dale; Anderson, Steven M.

    2011-01-01

    Tumor cells exhibit an altered metabolism characterized by elevated aerobic glycolysis and lactate secretion which is supported by an increase in glucose transport and consumption. We hypothesized that reducing or eliminating the expression of the most prominently expressed glucose transporter(s) would decrease the amount of glucose available to breast cancer cells thereby decreasing their metabolic capacity and proliferative potential. Of the 12 GLUT family glucose transporters expressed in mice, GLUT1 was the most abundantly expressed at the RNA level in the mouse mammary tumors from MMTV-c-ErbB2 mice and cell lines examined. Reducing GLUT1 expression in mouse mammary tumor cell lines using shRNA or Cre/Lox technology reduced glucose transport, glucose consumption, lactate secretion and lipid synthesis in vitro without altering the concentration of ATP, as well as reduced growth on plastic and in soft agar. The growth of tumor cells with reduced GLUT1 expression was impaired when transplanted into the mammary fat pad of athymic nude mice in vivo. Overexpression of GLUT1 in a cell line with low levels of endogenous GLUT1 increased glucose transport in vitro and enhanced growth in nude mice in vivo as compared to the control cells with very low levels of GLUT1. These studies demonstrate that GLUT1 is the major glucose transporter in mouse mammary carcinoma models overexpressing ErbB2 or PyVMT and that modulation of the level of GLUT1 has an effect upon the growth of mouse mammary tumor cell lines in vivo. PMID:21826239

  5. Met synergizes with p53 loss to induce mammary tumors that possess features of claudin-low breast cancer

    PubMed Central

    Knight, Jennifer F.; Lesurf, Robert; Zhao, Hong; Pinnaduwage, Dushanthi; Davis, Ryan R.; Saleh, Sadiq M. I.; Zuo, Dongmei; Naujokas, Monica A.; Chughtai, Naila; Herschkowitz, Jason I.; Prat, Aleix; Mulligan, Anna Marie; Muller, William J.; Cardiff, Robert D.; Gregg, Jeff P.; Andrulis, Irene L.; Hallett, Michael T.; Park, Morag

    2013-01-01

    Triple-negative breast cancer (TNBC) accounts for ∼20% of cases and contributes to basal and claudin-low molecular subclasses of the disease. TNBCs have poor prognosis, display frequent mutations in tumor suppressor gene p53 (TP53), and lack targeted therapies. The MET receptor tyrosine kinase is elevated in TNBC and transgenic Met models (Metmt) develop basal-like tumors. To investigate collaborating events in the genesis of TNBC, we generated Metmt mice with conditional loss of murine p53 (Trp53) in mammary epithelia. Somatic Trp53 loss, in combination with Metmt, significantly increased tumor penetrance over Metmt or Trp53 loss alone. Unlike Metmt tumors, which are histologically diverse and enriched in a basal-like molecular signature, the majority of Metmt tumors with Trp53 loss displayed a spindloid pathology with a distinct molecular signature that resembles the human claudin-low subtype of TNBC, including diminished claudins, an epithelial-to-mesenchymal transition signature, and decreased expression of the microRNA-200 family. Moreover, although mammary specific loss of Trp53 promotes tumors with diverse pathologies, those with spindloid pathology and claudin-low signature display genomic Met amplification. In both models, MET activity is required for maintenance of the claudin-low morphological phenotype, in which MET inhibitors restore cell-cell junctions, rescue claudin 1 expression, and abrogate growth and dissemination of cells in vivo. Among human breast cancers, elevated levels of MET and stabilized TP53, indicative of mutation, correlate with highly proliferative TNBCs of poor outcome. This work shows synergy between MET and TP53 loss for claudin-low breast cancer, identifies a restricted claudin-low gene signature, and provides a rationale for anti-MET therapies in TNBC. PMID:23509284

  6. Canonical Wnt Signaling as a Specific Mark of Normal and Tumorigenic Mammary Stem Cells

    DTIC Science & Technology

    2011-02-01

    aggressive mammary tumors. 15. SUBJECT TERMS Breast cancer stem cells, Wnt signaling, canonical Wnt signaling, B-catenin, normal stem cells, adult stem...Wnt pathway is associated with abnormal mouse mammary development, tumorigenesis, and human breast cancer. In addition, increasing evidence suggests...activation occurs in human breast cancer and is required for proliferation of various other stem cell compartments, addressing how Wnt signaling promotes

  7. ΔNp63 promotes stem cell activity in mammary gland development and basal-like breast cancer by enhancing Fzd7 expression and Wnt signaling

    PubMed Central

    Chakrabarti, Rumela; Wei, Yong; Hwang, Julie; Hang, Xiang; Blanco, Mario Andres; Choudhury, Abrar; Tiede, Benjamin; Romano, Rose-Anne; DeCoste, Christina; Mercatali, Laura; Ibrahim, Toni; Amadori, Dino; Kannan, Nagarajan; Eaves, Connie J; Sinha, Satrajit; Kang, Yibin

    2014-01-01

    Emerging evidence suggests that cancer is populated and maintained by tumor initiating cells (TICs) with stem-like properties similar to that of adult tissue stem cells. Despite recent advances, the molecular regulatory mechanisms that may be shared between normal and malignant stem cells remain poorly understood. Here we show that the ΔNp63 isoform of the Trp63 transcription factor promotes normal mammary stem cell (MaSC) activity by increasing the expression of the Wnt receptor Fzd7, thereby enhancing Wnt signaling. Importantly, Fzd7-dependent enhancement of Wnt signaling by ΔNp63 also governs tumor initiating activity of the basal subtype of breast cancer. These findings establish ΔNp63 as a key regulator of stem cells in both normal and malignant mammary tissues and provide direct evidence that breast cancer TICs and normal MaSCs share common regulatory mechanisms. PMID:25241036

  8. Establishment of primary mixed cell cultures from spontaneous canine mammary tumors: Characterization of classic and new cancer-associated molecules

    PubMed Central

    Gentile, Luciana B.; Nagamine, Marcia K.; Biondi, Luiz R.; Sanches, Daniel S.; Toyota, Fábio; Giovani, Tatiane M.; de Jesus, Isis P.; da Fonseca, Ivone I. M.; Queiroz-Hazarbassanov, Nicolle; Diaz, Bruno L.; Salles Gomes, Cristina de O. Massoco

    2017-01-01

    There are many factors which make canine cancer like cancer in humans. The occurrence of spontaneous mammary tumors in pet dogs, tumor genetics, molecular targets and exposure to the same environmental risk factors are among these factors. Therefore, the study of canine cancer can provide useful information to the oncology field. This study aimed to establish and characterize a panel of primary mixed cell cultures obtained from spontaneous canine mammary tumors. Eight established cell cultures obtained from one normal mammary gland, one complex adenoma, one mixed adenoma, two complex carcinomas and two mixed carcinomas were analyzed. The gene expression levels of classic molecular cancer players such as fibroblast growth factor receptor (FGFR) 2, breast cancer (BRCA) 1, BRCA2 and estrogen receptor (ESR) 1 were evaluated. For the first time, three orphan nuclear receptors, estrogen-related receptors (ERRs) α, β and γ were studied in canine mammary cancer. The highest expression level of ERRα was observed in complex carcinoma-derived cell culture, while the highest levels of ERRβ and γ were observed in cells derived from a mixed carcinoma. Meanwhile, complex carcinomas presented the highest levels of expression of ESR1, BRCA1 and FGFR2 among all samples. BRCA2 was found exclusively in complex adenoma. The transcription factor GATA3 had its highest levels in mixed carcinoma samples and its lowest levels in complex adenoma. Proliferation assays were also performed to evaluate the mixed cell cultures response to ER ligands, genistein and DES, both in normoxia and hypoxic conditions. Our results demonstrate that morphological and functional studies of primary mixed cell cultures derived from spontaneous canine mammary tumors are possible and provide valuable tool for the study of various stages of mammary cancer development. PMID:28945747

  9. Role of peptidylarginine deiminase 2 (PAD2) in mammary carcinoma cell migration.

    PubMed

    Horibata, Sachi; Rogers, Katherine E; Sadegh, David; Anguish, Lynne J; McElwee, John L; Shah, Pragya; Thompson, Paul R; Coonrod, Scott A

    2017-05-26

    Penetration of the mammary gland basement membrane by cancer cells is a crucial first step in tumor invasion. Using a mouse model of ductal carcinoma in situ, we previously found that inhibition of peptidylarginine deiminase 2 (PAD2, aka PADI2) activity appears to maintain basement membrane integrity in xenograft tumors. The goal of this investigation was to gain insight into the mechanisms by which PAD2 mediates this process. For our study, we modulated PAD2 activity in mammary ductal carcinoma cells by lentiviral shRNA-mediated depletion, lentiviral-mediated PAD2 overexpression, or PAD inhibition and explored the effects of these treatments on changes in cell migration and cell morphology. We also used these PAD2-modulated cells to test whether PAD2 may be required for EGF-induced cell migration. To determine how PAD2 might promote tumor cell migration in vivo, we tested the effects of PAD2 inhibition on the expression of several cell migration mediators in MCF10DCIS.com xenograft tumors. In addition, we tested the effect of PAD2 inhibition on EGF-induced ductal invasion and elongation in primary mouse mammary organoids. Lastly, using a transgenic mouse model, we investigated the effects of PAD2 overexpression on mammary gland development. Our results indicate that PAD2 depletion or inhibition suppresses cell migration and alters the morphology of MCF10DCIS.com cells. In addition, we found that PAD2 depletion suppresses the expression of the cytoskeletal regulatory proteins RhoA, Rac1, and Cdc42 and also promotes a mesenchymal to epithelial-like transition in tumor cells with an associated increase in the cell adhesion marker, E-cadherin. Our mammary gland organoid study found that inhibition of PAD2 activity suppresses EGF-induced ductal invasion. In vivo, we found that PAD2 overexpression causes hyperbranching in the developing mammary gland. Together, these results suggest that PAD2 plays a critical role in breast cancer cell migration. Our findings that EGF

  10. Mammary stem cells: angels or demons in mammary gland?

    PubMed

    Chen, Xueman; Liu, Qiang; Song, Erwei

    2017-01-01

    A highly dynamic development process exits within the epithelia of mammary gland, featuring morphogenetic variation during puberty, pregnancy, lactation, and regression. The identification of mammary stem cells (MaSCs) via lineage-tracing studies has substantiated a hierarchical organization of the mammary epithelia. A single MaSC is capable of reconstituting the entirely functional mammary gland upon orthotopic transplantation. Although different mammary cell subpopulations can be candidate cells-of-origin for distinct breast tumor subtypes, it still lacks experimental proofs whether MaSCs, the most primitive cells, are the 'seeds' of malignant transformation during most, if not all, tumorigenesis in the breast. Here, we review current knowledge of mammary epithelial hierarchy, highlighting the roles of mammary stem/progenitor cells and breast cancer stem cells (BCSCs) along with their key molecular regulators in organ development and cancer evolution. Clarifying these issues will pave the way for developing novel interventions toward stem/progenitor cells in either prevention or treatment of breast cancer (BrCa).

  11. Mammary stem cells: angels or demons in mammary gland?

    PubMed Central

    Chen, Xueman; Liu, Qiang; Song, Erwei

    2017-01-01

    A highly dynamic development process exits within the epithelia of mammary gland, featuring morphogenetic variation during puberty, pregnancy, lactation, and regression. The identification of mammary stem cells (MaSCs) via lineage-tracing studies has substantiated a hierarchical organization of the mammary epithelia. A single MaSC is capable of reconstituting the entirely functional mammary gland upon orthotopic transplantation. Although different mammary cell subpopulations can be candidate cells-of-origin for distinct breast tumor subtypes, it still lacks experimental proofs whether MaSCs, the most primitive cells, are the ‘seeds’ of malignant transformation during most, if not all, tumorigenesis in the breast. Here, we review current knowledge of mammary epithelial hierarchy, highlighting the roles of mammary stem/progenitor cells and breast cancer stem cells (BCSCs) along with their key molecular regulators in organ development and cancer evolution. Clarifying these issues will pave the way for developing novel interventions toward stem/progenitor cells in either prevention or treatment of breast cancer (BrCa). PMID:29263909

  12. INFLUENCE OF ENDOCRINE DISRUPTING COMPOUNDS (EDCS) ON MAMMARY GLAND DEVELOPMENT AND TUMOR SUSCEPTIBILITY

    EPA Science Inventory

    Influence of Endocrine Disrupting Compounds (EDCs) on Mammary Gland Development and Tumor Susceptibility.

    Suzanne E. Fenton1, and Jennifer Rayner1,2

    1 Reproductive Toxicology Division, NHEERL/ORD, U.S. EPA, Research Triangle Park, NC, and 2 Department of Environmen...

  13. Transforming growth factor-beta regulates mammary carcinoma cell survival and interaction with the adjacent microenvironment.

    PubMed

    Bierie, Brian; Stover, Daniel G; Abel, Ty W; Chytil, Anna; Gorska, Agnieszka E; Aakre, Mary; Forrester, Elizabeth; Yang, Li; Wagner, Kay-Uwe; Moses, Harold L

    2008-03-15

    Transforming growth factor (TGF)-beta signaling has been associated with early tumor suppression and late tumor progression; however, many of the mechanisms that mediate these processes are not known. Using Cre/LoxP technology, with the whey acidic protein promoter driving transgenic expression of Cre recombinase (WAP-Cre), we have now ablated the type II TGF-beta receptor (T beta RII) expression specifically within mouse mammary alveolar progenitors. Transgenic expression of the polyoma virus middle T antigen, under control of the mouse mammary tumor virus enhancer/promoter, was used to produce mammary tumors in the absence or presence of Cre (T beta RII((fl/fl);PY) and T beta RII((fl/fl);PY;WC), respectively). The loss of TGF-beta signaling significantly decreased tumor latency and increased the rate of pulmonary metastasis. The loss of TGF-beta signaling was significantly correlated with increased tumor size and enhanced carcinoma cell survival. In addition, we observed significant differences in stromal fibrovascular abundance and composition accompanied by increased recruitment of F4/80(+) cell populations in T beta RII((fl/fl);PY;WC) mice when compared with T beta RII((fl/fl);PY) controls. The recruitment of F4/80(+) cells correlated with increased expression of known inflammatory genes including Cxcl1, Cxcl5, and Ptgs2 (cyclooxygenase-2). Notably, we also identified an enriched K5(+) dNp63(+) cell population in primary T beta RII((fl/fl);PY;WC) tumors and corresponding pulmonary metastases, suggesting that loss of TGF-beta signaling in this subset of carcinoma cells can contribute to metastasis. Together, our current results indicate that loss of TGF-beta signaling in mammary alveolar progenitors may affect tumor initiation, progression, and metastasis through regulation of both intrinsic cell signaling and adjacent stromal-epithelial interactions in vivo.

  14. Tumor-promoting effect of IL-23 in mammary cancer mediated by infiltration of M2 macrophages and neutrophils in tumor microenvironment.

    PubMed

    Nie, Wen; Yu, Ting; Sang, Yaxiong; Gao, Xiang

    2017-01-22

    Interleukin 23 (IL-23) is an inflammatory cytokine which plays a vital role in autoimmune diseases as well as in tumorigenesis. However, the role of IL-23 in tumor procession is still controversial and the underlying mechanism remains unclear. Here we established a stable cell line overexpressing IL-23 to prove that IL-23 promoted tumor growth and pulmonary metastasis through induction of tumor-related inflammation and absence of immune surveillance. IL-23 promotes tumor-associate inflammatory response such as infiltration of M2 macrophages, neutrophils and their elevated secretions of immunosuppressive cytokines transforming growth factor-β (TGF-β), IL-10 and vascular endothelial growth factor (VEGF) into tumor tissues, meanwhile the increase of the matrix metalloprotease MMP9. In addition, IL-23 increases the expression of the endothelial marker CD31 and proliferative marker Ki67 in tumors. Moreover, IL23 induces immunosuppression though reducing the infiltration of CD4 + and CD8 + T cells into tumor tissues. In conclusion, IL-23 is a considerable molecular in tumor progression, which simultaneously facilitates processes of pro-tumor inflammation, such as angiogenesis, immunosuppressive cytokines as well as infiltrations of M2 macrophages and neutrophils, and suppresses antitumor immune responses through reduction of CD4 + T cells and CD8 + T cells. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Green tea polyphenols as potent enhancers of glucocorticoid-induced mouse mammary tumor virus gene expression.

    PubMed

    Abe, I; Umehara, K; Morita, R; Nemoto, K; Degawa, M; Noguchi, H

    2001-02-16

    The effect of natural and synthetic galloyl esters on glucocorticoid-induced gene expression was evaluated by using rat fibroblast 3Y1 cells stably transfected with a luciferase reporter gene under the transcriptional regulation of the mouse mammary tumor virus promoter. The glucocorticoid-induced gene transcription was strongly suppressed by synthetic alkyl esters; n-dodecyl gallate showed the most potent inhibition (66% inhibition at 10 microM), which was far more potent than that of crude tannic acid. n-Octyl and n-cetyl gallate also showed good inhibition, while gallic acid itself was not so active, suggesting that the presence of hydrophobic side chain is important for the suppressive effect. On the other hand, surprisingly, green tea gallocatechins, (-)-epigallocatechin-3-O-gallate and theasinensin A, potently enhanced the promoter activity (182 and 247% activity at 1 microM, respectively). The regulation of the level of the glucocorticoid-induced gene expression by the antioxidative gallates is of great interest from a therapeutic point of view.

  16. Influence of caffeine consumption on 7,12-dimethylbenz(a)anthracene-induced mammary gland tumorigenesis in female rats fed a chemically defined diet containing standard and high levels of unsaturated fat.

    PubMed

    Welsch, C W; DeHoog, J V

    1988-04-15

    The effect of caffeine (430-500 mg/liter of drinking water) on the initiation and promotion phases of 7,12-dimethylbenz(a)anthracene (DMBA)-induced mammary gland tumorigenesis in female Sprague-Dawley rats fed a chemically defined diet containing standard (5%) or high (20%) levels of fat (corn oil) was examined. In the initiation studies, caffeine and the standard or high fat diet treatments were provided for 34 days, from 24-29 days of age to 58-63 days of age. Three days prior to termination of caffeine-fat diet treatments, each rat received a single dose of DMBA. In the promotion studies, caffeine and the standard or high fat diets were provided commencing 3 days after a single dose of DMBA (at 56-61 days of age) and until termination of the study. Caffeine consumption, during the initiation phase significantly (P less than 0.05) reduced mammary carcinoma multiplicity (number of tumors/rat), in rats fed either a standard or high fat diet. In the promotion studies, prolonged consumption of caffeine in rats fed either a standard or high fat diet did not significantly effect mammary carcinoma multiplicity. In the early stages of promotion, an apparent increase in mammary carcinoma multiplicity was observed; this increase in mammary carcinoma multiplicity did not, however, reach the 5% level of statistical probability. When caffeine was administered during both the initiation and promotion phases, no significant effect on mammary carcinoma multiplicity was observed. Treatment of rats during the initiation or promotion phases with caffeinated coffee (via drinking water) mimicked the mammary tumor modulating activities of caffeine. Decaffeinated coffee consumption did not effect either the initiation or promotion phases of this tumorigenic process. In both the initiation and promotion studies, caffeine and/or coffee consumption did not significantly affect the incidence of mammary carcinomas (percentage of rats bearing mammary carcinomas) or the mean latency period of

  17. Immunologic aspects of fibrosis in mouse mammary carcinomas.

    PubMed

    Vaage, J

    1992-01-02

    The nature of the fibrosis associated with mammary carcinomas MC2 and MC3 was investigated in syngeneic C3H mice. Accelerated and enhanced peri-tumor cellular and fibrotic responses and retarded tumor growth were observed in actively immunized and in adoptively immunized mice, and in mice treated with IL-2. T lymphocytes and, particularly, macrophages were closely associated with collagen deposition at the tumors. The collagen deposition frequently resulted in the encapsulation and regression of the less invasive tumor MC2. A cellular fibrous response was not observed at tumors implanted into athymic C3Hnu/nu mice. The results suggest that tumor fibrosis may in some circumstances be promoted by an immune response.

  18. Enhanced mammary progesterone receptor-A isoform activity in the promotion of mammary tumor progression by dietary soy in rats

    USDA-ARS?s Scientific Manuscript database

    Dietary contribution to breast cancer risk, recurrence, and progression remains incompletely understood. Increased consumption of soy and soy isoflavones is associated with reduced mammary cancer susceptibility in women and in rodent models of carcinogenesis. In rats treated with N-Methyl-N-Nitrosou...

  19. Induction of mammary tumors in rat by intraperitoneal injection of NMU: histopathology and estral cycle influence.

    PubMed

    Rivera, E S; Andrade, N; Martin, G; Melito, G; Cricco, G; Mohamad, N; Davio, C; Caro, R; Bergoc, R M

    1994-11-11

    In order to obtain an experimental model we induced mammary tumors in female Sprague-Dawley rats. The carcinogen N-nitroso-N-methylurea (NMU) was injected intraperitoneally (i.p.) at doses of 50 mg/kg body weight when animals were 50, 80 and 110 days old. Tumor sizes were measured with a caliper and their growth parameters and histopathological properties were tested. For 100 rats, 88.4% of developed lesions were ductal carcinomas, histologically classified as 52.8% cribiform variety, 30.6% solid carcinoma. Metastases in liver, spleen and lung were present. Other primary tumors were detected with low incidence. The influence of the rat estrous cycle during the first exposure to intraperitoneal NMU injection was studied. The latency period in estrus, proestrus and diestrus was 82 +/- 15, 77 +/- 18 and 79 +/- 18 days, respectively. Tumor incidence was significantly higher in estrus (95.2%) than proestrus (71.4%) or diestrus (77.4), (P < 0.01). Mean number or tumors per animal was similar among the three groups (4.4 +/- 3.2, 3.8 +/- 3.6, 3.2 +/- 1.8). The procedure described appears to be the simplest method for inducing experimental mammary tumors in rats.

  20. Development of mammary hyperplasia, dysplasia, and invasive ductal carcinoma in transgenic mice expressing the 8p11 amplicon oncogene NSD3

    PubMed Central

    Turner-Ivey, Brittany; Smith, Ericka L.; Rutkovsky, Alex C.; Spruill, Laura S.; Mills, Jamie N.

    2018-01-01

    Purpose NSD3 has been implicated as a candidate driver oncogene from the 8p11-p12 locus, and we have previously published evidence for its amplification and overexpression in human breast cancer. This aim of this study was to further characterize the transforming function of NSD3 in vivo. Methods We generated a transgenic mouse model in which NSD3 gene expression was driven by the MMTV promoter and expressed in mammary epithelium of FVB mice. Mammary glands were fixed and whole mounts were stained with carmine to visualize gland structure. Mammary tumors were formalin-fixed, and paraffin embedded (FFPE) tumors were stained with hematoxylin and eosin. Results Pups born to transgenic females were significantly underdeveloped compared to pups born to WT females due to a lactation defect in transgenic female mice. Whole mount analysis of the mammary glands of transgenic female mice revealed a profound defect in functional differentiation of mammary gland alveoli that resulted in the lactation defect. We followed parous and virgin NSD3 transgenic and control mice to 50 weeks of age and observed that several NSD3 parous females developed mammary tumors. Whole mount analysis of the mammary glands of tumor-bearing mice revealed numerous areas of mammary hyperplasia and ductal dysplasia. Histological analysis showed that mammary tumors were high-grade ductal carcinomas, and lesions present in other mammary glands exhibited features of alveolar hyperplasia, ductal dysplasia, and carcinoma in situ. Conclusions Our results are consistent with our previous studies and demonstrate that NSD3 is a transforming breast cancer oncogene. PMID:28484924

  1. Establishment and quantitative imaging of a 3D lung organotypic model of mammary tumor outgrowth.

    PubMed

    Martin, Michelle D; Fingleton, Barbara; Lynch, Conor C; Wells, Sam; McIntyre, J Oliver; Piston, David W; Matrisian, Lynn M

    2008-01-01

    The lung is the second most common site of metastatic spread in breast cancer and experimental evidence has been provided in many systems for the importance of an organ-specific microenvironment in the development of metastasis. To better understand the interaction between tumor and host cells in this important secondary site, we have developed a 3D in vitro organotypic model of breast tumor metastatic growth in the lung. In our model, cells isolated from mouse lungs are placed in a collagen sponge to serve as a scaffold and co-cultured with a green fluorescent protein-labeled polyoma virus middle T antigen (PyVT) mammary tumor cell line. Analysis of the co-culture system was performed using flow cytometry to determine the relative constitution of the co-cultures over time. This analysis determined that the cultures consisted of viable lung and breast cancer cells over a 5-day period. Confocal microscopy was then used to perform live cell imaging of the co-cultures over time. Our studies determined that host lung cells influence the ability of tumor cells to grow, as the presence of lung parenchyma positively affected the proliferation of the mammary tumor cells in culture. In summary, we have developed a novel in vitro model of breast tumor cells in a common metastatic site that can be used to study tumor/host interactions in an important microenvironment.

  2. ErbB2-positive mammary tumors can escape PI3K-p110α loss through downregulation of the Pten tumor suppressor

    PubMed Central

    Simond, Alexandra M.; Rao, Trisha; Zuo, Dongmei; Zhao, Jean J.; Muller, William J.

    2017-01-01

    Breast cancer is the most common cancer among women and 30% will be diagnosed with an ErbB2-positive cancer. Forty percent of ErbB2-positive breast tumors have an activating mutation in p110α, a catalytic subunit of phosphoinositide 3-kinase (PI3K). Clinical and experimental data show that breast tumors treated with a p110α-specific inhibitor often circumvent inhibition and resume growth. To understand this mechanism of resistance, we crossed a p110α conditional (p110αflx/flx) mouse model with mice that overexpresses the ErbB2/Neu-IRES-Cre transgene (NIC) specifically in the mammary epithelium. Although mammary-specific deletion of p110α dramatically delays tumor onset, tumors eventually arise and are dependent on p110β. Through biochemical analyses we find that a proportion of p110α-deficient tumors (23%) display downregulation of the Pten tumor suppressor. We further demonstrate that loss of one allele of PTEN is sufficient to shift isoform dependency from p110α to p110β in vivo. These results provide insight into the molecular mechanism by which ErbB2-positive breast cancer escapes p110α inhibition. PMID:28783168

  3. Survival of mouse mammary gland transplants of normal, hyperplastic, and tumor tissues exposed to X-rays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Faulkin, L.J.; Mitchell, D.J.; Cardiff, R.D.

    1982-04-01

    Mouse mammary tissues, including ducts, prelactating lobules, hyperplastic outgrowth lines, and tumors, were exposed to varying doses of X-rays and then transplanted to fat pads of nonirradiated BALB/c mice for study. Estimates of the dose of radiation that would allow survival of 50% of the transplants (SD50) were made with the use of probit analysis. Nearly all duct and lobule transplants survived doses of X-rays from 0 to 800 rad. The survival rate declined rapidly following doses above 800 rad, and the calculated SD50 was 1,020 and 1,260 rad for mammary ducts and lobules, respectively. The three hyperplastic outgrowth linesmore » tested gave very different results. Hyperplastic line Z5C1 transplants had better than 90% survival at doses up to 1,200 rad and an SD50 between 1,200 and 1,600 rad. Hyperplastic line Z5D transplants had an SD50 of between 800 and 1,200 rad. Hyperplastic line D1 transplants had a better than 90% survival following doses of 0-600 rad and an SD50 between 600 and 800 rad. The survival of tumor transplants was 100% following doses of X-rays up to 1,200 rad; the SD50 was in excess of 1,600 rad. The mouse mammary transplantation system can be used to study the direct effect of X-rays on normal, premalignant, and malignant mammary tissues and provides a basis for the study of the radiobiology of mammary tissues.« less

  4. Estrogen receptor positivity in mammary tumors of Wnt-1 transgenic mice is influenced by collaborating oncogenic mutations.

    PubMed

    Zhang, Xiaomei; Podsypanina, Katrina; Huang, Shixia; Mohsin, Syed K; Chamness, Gary C; Hatsell, Sarah; Cowin, Pam; Schiff, Rachel; Li, Yi

    2005-06-16

    The majority (75%) of human breast cancers express estrogen receptor (ER). Although ER-positive tumors usually respond to antiestrogen therapies, 30% of them do not. It is not known what controls the ER status of breast cancers or their responsiveness to antihormone interventions. In this report, we document that transgenic (TG) expression of Wnt-1 in mice induces ER-positive tumors. Loss of Pten or gain of Ras mutations during the evolution of tumors in Wnt-1 TG mice has no effect on the expression of ER, but overexpression of Neu or loss of p53 leads to ER-negative tumors. Thus, our results provide compelling evidence that expression of ER in breast cancer may be influenced by specific genetic changes that promote cancer progression. These findings constitute a first step to explore the molecular mechanisms leading to ER-positive or ER-negative mammary tumors. In addition, we find that ER-positive tumors arising in Wnt-1 TG mice are refractory to both ovariectomy and the ER antagonist tamoxifen, but lose ER expression with tamoxifen, suggesting that antiestrogen selects for ER-negative tumor cells and that the ER-positive cell fraction is dispensable for growth of these tumors. This is a first report of a mouse model of antiestrogen-resistant ER-positive breast cancers, and could provide a powerful tool to study the molecular mechanisms that control antiestrogen resistance.

  5. [Mammary gland tumor induction in rats by N-nitroso-N-methylurea and N-methyl-N1-nitro-N-nitrosoguanidine].

    PubMed

    Eliseev, V V; Vlasov, N N

    1980-01-01

    Cancer of the mammary gland was induced in female non-inbred rats under the local effect of N-nitroso-N-methylurea (NMU) and N-methyl-N-nitro-N-nitrosoguanidine (MNNG). During 10 weeks 2.5 mg of the substance in 0.2 ml of saline was injected in the region of the third mammary gland once a week. Under NMU exposure a primary tumor arose 3 months following the initiation of the experiment, the average latent period being 5.8 months, the incidence rate--76.7%. All tumors of this series were adenocarcinomas, in 5 cases there were noted sites of fibroadenomatosis with malignification along the tumor node margins. MNNG produced a primary tumor at the 7th month of the experiment, an average latent period--8.3 months, the incidence rate--56.7%. Tumors were mostly adenocarcinomas.

  6. Neem leaf extract inhibits mammary carcinogenesis by altering cell proliferation, apoptosis, and angiogenesis

    PubMed Central

    Arumugam, Arunkumar; Agullo, Pamela; Boopalan, Thiyagarajan; Nandy, Sushmita; Lopez, Rebecca; Gutierrez, Christina; Narayan, Mahesh; Rajkumar, Lakshmanaswamy

    2014-01-01

    Plant-based medicines are useful in the treatment of cancer. Many breast cancer patients use complementary and alternative medicine in parallel with conventional treatments. Neem is historically well known in Asia and Africa as a versatile medicinal plant with a wide spectrum of biological activities. The experiments reported herein determined whether the administration of an ethanolic fraction of Neem leaf (EFNL) inhibits progression of chemical carcinogen-induced mammary tumorigenesis in rat models. Seven-week-old female Sprague Dawley rats were given a single intraperitoneal injection of N-methyl-N-nitrosourea (MNU). Upon the appearance of palpable mammary tumors, the rats were divided into vehicle-treated control groups and EFNL-treated groups. Treatment with EFNL inhibited MNU-induced mammary tumor progression. EFNL treatment was also highly effective in reducing mammary tumor burden and in suppressing mammary tumor progression even after the cessation of treatment. Further, we found that EFNL treatment effectively upregulated proapoptotic genes and proteins such as p53, B cell lymphoma-2 protein (Bcl-2)-associated X protein (Bax), Bcl-2-associated death promoter protein (Bad) caspases, phosphatase and tensin homolog gene (PTEN), and c-Jun N-terminal kinase (JNK). In contrast, EFNL treatment caused downregulation of anti-apoptotic (Bcl-2), angiogenic proteins (angiopoietin and vascular endothelial growth factor A [VEGF-A]), cell cycle regulatory proteins (cyclin D1, cyclin-dependent kinase 2 [Cdk2], and Cdk4), and pro-survival signals such as NFκB, mitogen-activated protein kinase 1 (MAPK1). The data obtained in this study demonstrate that EFNL exert a potent anticancer effect against mammary tumorigenesis by altering key signaling pathways. PMID:24146019

  7. Stromal matrix metalloproteinase-11 is involved in the mammary gland postnatal development.

    PubMed

    Tan, J; Buache, E; Alpy, F; Daguenet, E; Tomasetto, C-L; Ren, G-S; Rio, M-C

    2014-07-31

    MMP-11 is a bad prognosis paracrine factor in invasive breast cancers. However, its mammary physiological function remains largely unknown. In the present study we have investigated MMP-11 function during postnatal mammary gland development and function using MMP-11-deficient (MMP-11-/-) mice. Histological and immunohistochemical analyses as well as whole-mount mammary gland staining show alteration of the mammary gland in the absence of MMP-11, where ductal tree, alveolar structures and milk production are reduced. Moreover, a series of transplantation experiments allowed us to demonstrate that MMP-11 exerts an essential local paracrine function that favors mammary gland branching and epithelial cell outgrowth and invasion through adjacent connective tissues. Indeed, MMP-11-/- cleared fat pads are not permissive for wild-type epithelium development, whereas MMP-11-/- epithelium transplants grow normally when implanted in wild-type cleared fat pads. In addition, using primary mammary epithelial organoids, we show in vitro that this MMP-11 pro-branching effect is not direct, suggesting that MMP-11 acts via production/release of stroma-associated soluble factor(s). Finally, the lack of MMP-11 leads to decreased periductal collagen content, suggesting that MMP-11 has a role in collagen homeostasis. Thus, local stromal MMP-11 might also regulate mammary epithelial cell behavior mechanically by promoting extracellular matrix stiffness. Collectively, the present data indicate that MMP-11 is a paracrine factor involved during postnatal mammary gland morphogenesis, and support the concept that the stroma strongly impact epithelial cell behavior. Interestingly, stromal MMP-11 has previously been reported to favor malignant epithelial cell survival and promote cancer aggressiveness. Thus, MMP-11 has a paracrine function during mammary gland development that might be harnessed to promote tumor progression, exposing a new link between development and malignancy.

  8. Stromal matrix metalloprotease-13 knockout alters Collagen I structure at the tumor-host interface and increases lung metastasis of C57BL/6 syngeneic E0771 mammary tumor cells.

    PubMed

    Perry, Seth W; Schueckler, Jill M; Burke, Kathleen; Arcuri, Giuseppe L; Brown, Edward B

    2013-09-05

    Matrix metalloproteases and collagen are key participants in breast cancer, but their precise roles in cancer etiology and progression remain unclear. MMP13 helps regulate collagen structure and has been ascribed largely harmful roles in cancer, but some studies demonstrate that MMP13 may also protect against tumor pathology. Other studies indicate that collagen's organizational patterns at the breast tumor-host interface influence metastatic potential. Therefore we investigated how MMP13 modulates collagen I, a principal collagen subtype in breast tissue, and affects tumor pathology and metastasis in a mouse model of breast cancer. Tumors were implanted into murine mammary tissues, and their growth analyzed in Wildtype and MMP13 KO mice. Following extraction, tumors were analyzed for collagen I levels and collagen I macro- and micro-structural properties at the tumor-host boundary using immunocytochemistry and two-photon and second harmonic generation microscopy. Lungs were analyzed for metastases counts, to correlate collagen I changes with a clinically significant functional parameter. Statistical analyses were performed by t-test, analysis of variance, or Wilcoxon-Mann-Whitney tests as appropriate. We found that genetic ablation of host stromal MMP13 led to: 1. Increased mammary tumor collagen I content, 2. Marked changes in collagen I spatial organization, and 3. Altered collagen I microstructure at the tumor-host boundary, as well as 4. Increased metastasis from the primary mammary tumor to lungs. These results implicate host MMP13 as a key regulator of collagen I structure and metastasis in mammary tumors, thus making it an attractive potential therapeutic target by which we might alter metastatic potential, one of the chief determinants of clinical outcome in breast cancer. In addition to identifying stromal MMP13 is an important regulator of the tumor microenvironment and metastasis, these results also suggest that stromal MMP13 may protect against breast

  9. The angiotensin receptor blocker, Losartan, inhibits mammary tumor development and progression to invasive carcinoma

    PubMed Central

    Coulson, Rhiannon; Liew, Seng H.; Connelly, Angela A.; Yee, Nicholas S.; Deb, Siddhartha; Kumar, Beena; Vargas, Ana C.; O’Toole, Sandra A.; Parslow, Adam C.; Poh, Ashleigh; Putoczki, Tracy; Morrow, Riley J.; Alorro, Mariah; Lazarus, Kyren A.; Yeap, Evie F.W.; Walton, Kelly L.; Harrison, Craig A.; Hannan, Natalie J.; George, Amee J.; Clyne, Colin D.; Ernst, Matthias; Allen, Andrew M.; Chand, Ashwini L.

    2017-01-01

    Drugs that target the Renin-Angiotensin System (RAS) have recently come into focus for their potential utility as cancer treatments. The use of Angiotensin Receptor Blockers (ARBs) and Angiotensin-Converting Enzyme (ACE) Inhibitors (ACEIs) to manage hypertension in cancer patients is correlated with improved survival outcomes for renal, prostate, breast and small cell lung cancer. Previous studies demonstrate that the Angiotensin Receptor Type I (AT1R) is linked to breast cancer pathogenesis, with unbiased analysis of gene-expression studies identifying significant up-regulation of AGTR1, the gene encoding AT1R in ER+ve/HER2−ve tumors correlating with poor prognosis. However, there is no evidence, so far, of the functional contribution of AT1R to breast tumorigenesis. We explored the potential therapeutic benefit of ARB in a carcinogen-induced mouse model of breast cancer and clarified the mechanisms associated with its success. Mammary tumors were induced with 7,12-dimethylbenz[α]antracene (DMBA) and medroxyprogesterone acetate (MPA) in female wild type mice and the effects of the ARB, Losartan treatment assessed in a preventative setting (n = 15 per group). Tumor histopathology was characterised by immunohistochemistry, real-time qPCR to detect gene expression signatures, and tumor cytokine levels measured with quantitative bioplex assays. AT1R was detected with radiolabelled ligand binding assays in fresh frozen tumor samples. We showed that therapeutic inhibition of AT1R, with Losartan, resulted in a significant reduction in tumor burden; and no mammary tumor incidence in 20% of animals. We observed a significant reduction in tumor progression from DCIS to invasive cancer with Losartan treatment. This was associated with reduced tumor cell proliferation and a significant reduction in IL-6, pSTAT3 and TNFα levels. Analysis of tumor immune cell infiltrates, however, demonstrated no significant differences in the recruitment of lymphocytes or tumour

  10. Apigenin prevents development of medroxyprogesterone acetate-accelerated 7,12-dimethylbenz(a)anthracene-induced mammary tumors in Sprague-Dawley rats

    PubMed Central

    Mafuvadze, Benford; Benakanakere, Indira; Lopez, Franklin; Besch-Williford, Cynthia; Ellersieck, Mark R.; Hyder, Salman M.

    2011-01-01

    The use of progestins as a component of hormone replacement therapy has been linked to an increase in breast cancer risk in postmenopausal women. We have previously shown that medroxyprogesterone acetate (MPA), a commonly administered synthetic progestin, increases production of the potent angiogenic factor vascular endothelial growth factor (VEGF) by tumor cells, leading to the development of new blood vessels and tumor growth. We sought to identify nontoxic chemicals that would inhibit progestin-induced tumorigenesis. We used a recently developed progestin-dependent mammary cancer model in which tumors are induced in Sprague-Dawley rats by 7,12-dimethylbenz(a)anthracene (DMBA) treatment. The flavonoid apigenin, which we previously found to inhibit progestin-dependent VEGF synthesis in human breast cancer cells in vitro, significantly delayed the development of, and decreased the incidence and multiplicity of, MPA-accelerated DMBA-induced mammary tumors in this animal model. Whereas apigenin decreased the occurrence of such tumors, it did not block MPA-induced intraductal and lobular epithelial cell hyperplasia in the mammary tissue. Apigenin blocked MPA-dependent increases in VEGF, and suppressed VEGF receptor-2 (VEGFR-2) but not VEGFR-1 in regions of hyperplasia. No differences were observed in estrogen or progesterone receptor levels, or the number of estrogen receptor-positive cells, within the mammary gland of MPA-treated animals administered apigenin, MPA-treated animals, and placebo treated animals. However, the number of progesterone receptor-positive cells was reduced in animals treated with MPA or MPA and apigenin compared with those treated with placebo. These findings suggest that apigenin has important chemopreventive properties for those breast cancers that develop in response to progestins. PMID:21505181

  11. A moderate elevation of circulating levels of IGF-I does not alter ErbB2 induced mammary tumorigenesis

    PubMed Central

    2011-01-01

    Background Epidemiological evidence suggests that moderately elevated levels of circulating insulin-like growth factor-I (IGF-I) are associated with increased risk of breast cancer in women. How circulating IGF-I may promote breast cancer incidence is unknown, however, increased IGF-I signaling is linked to trastuzumab resistance in ErbB2 positive breast cancer. Few models have directly examined the effect of moderately high levels of circulating IGF-I on breast cancer initiation and progression. The purpose of this study was to assess the ability of circulating IGF-I to independently initiate mammary tumorigenesis and/or accelerate the progression of ErbB2 mediated mammary tumor growth. Methods We crossed heterozygous TTR-IGF-I mice with heterozygous MMTV-ErbB2 mice to generate 4 different genotypes: TTR-IGF-I/MMTV-ErbB2 (bigenic), TTR-IGF-I only, MMTV-ErbB2 only, and wild type (wt). Virgin females were palpated twice a week and harvested when tumors reached 1000 mm3. For study of normal development, blood and tissue were harvested at 4, 6 and 9 weeks of age in TTR-IGF-I and wt mice. Results TTR-IGF-I and TTR-IGF-I/ErbB2 bigenic mice showed a moderate 35% increase in circulating total IGF-I compared to ErbB2 and wt control mice. Elevation of circulating IGF-I had no effect upon pubertal mammary gland development. The transgenic increase in IGF-I alone wasn't sufficient to initiate mammary tumorigenesis. Elevated circulating IGF-I had no effect upon ErbB2-induced mammary tumorigenesis or metastasis, with median time to tumor formation being 30 wks and 33 wks in TTR-IGF-I/ErbB2 bigenic and ErbB2 mice respectively (p = 0.65). Levels of IGF-I in lysates from ErbB2/TTR-IGF-I tumors compared to ErbB2 was elevated in a similar manner to the circulating IGF-I, however, there was no effect on the rate of tumor growth (p = 0.23). There were no morphological differences in tumor type (solid adenocarcinomas) between bigenic and ErbB2 mammary glands. Conclusion Using the first

  12. A first immunohistochemistry study of transketolase and transketolase-like 1 expression in canine hyperplastic and neoplastic mammary lesions.

    PubMed

    Burrai, Giovanni Pietro; Tanca, Alessandro; Cubeddu, Tiziana; Abbondio, Marcello; Polinas, Marta; Addis, Maria Filippa; Antuofermo, Elisabetta

    2017-01-31

    Canine mammary tumors represent the most common neoplasm in female dogs, and the discovery of cancer biomarkers and their translation to clinical relevant assays is a key requirement in the war on cancer. Since the description of the 'Warburg effect', the reprogramming of metabolic pathways is considered a hallmark of pathological changes in cancer cells. In this study, we investigate the expression of two cancer-related metabolic enzymes, transketolase (TKT) and transketolase-like 1 (TKTL1), involved in the pentose phosphate pathway (PPP), an alternative metabolic pathway for glucose breakdown that could promote cancer by providing the precursors and energy required for rapidly growing cells. TKT and TKTL1 protein expression was investigated by immunohistochemistry in canine normal (N = 6) and hyperplastic glands (N = 3), as well as in benign (N = 11) and malignant mammary tumors (N = 17). TKT expression was higher in hyperplastic lesions and in both benign and malignant tumors compared to the normal mammary gland, while TKTL1 levels were remarkably higher in hyperplastic lesions, simple adenomas and simple carcinomas than in the normal mammary glands (P < 0.05). This study reveals that the expression of a key PPP enzyme varies along the evolution of canine mammary neoplastic lesions, and supports a role of metabolic changes in the development of canine mammary tumors.

  13. Myeloid Cell COX-2 deletion reduces mammary tumor growth through enhanced cytotoxic T-lymphocyte function

    PubMed Central

    Chen, Edward P.; Markosyan, Nune; Connolly, Emma; Lawson, John A.; Li, Xuanwen; Grant, Gregory R.; Grosser, Tilo; FitzGerald, Garret A.; Smyth, Emer M.

    2014-01-01

    Cyclooxygenase-2 (COX-2) expression is associated with poor prognosis across a range of human cancers, including breast cancer. The contribution of tumor cell-derived COX-2 to tumorigenesis has been examined in numerous studies; however, the role of stromal-derived COX-2 is ill-defined. Here, we examined how COX-2 in myeloid cells, an immune cell subset that includes macrophages, influences mammary tumor progression. In mice engineered to selectively lack myeloid cell COX-2 [myeloid-COX-2 knockout (KO) mice], spontaneous neu oncogene-induced tumor onset was delayed, tumor burden reduced, and tumor growth slowed compared with wild-type (WT). Similarly, growth of neu-transformed mammary tumor cells as orthotopic tumors in immune competent syngeneic myeloid-COX-2 KO host mice was reduced compared with WT. By flow cytometric analysis, orthotopic myeloid-COX-2 KO tumors had lower tumor-associated macrophage (TAM) infiltration consistent with impaired colony stimulating factor-1-dependent chemotaxis by COX-2 deficient macrophages in vitro. Further, in both spontaneous and orthotopic tumors, COX-2-deficient TAM displayed lower immunosuppressive M2 markers and this was coincident with less suppression of CD8+ cytotoxic T lymphocytes (CTLs) in myeloid-COX-2 KO tumors. These studies suggest that reduced tumor growth in myeloid-COX-2 KO mice resulted from disruption of M2-like TAM function, thereby enhancing T-cell survival and immune surveillance. Antibody-mediated depletion of CD8+, but not CD4+ cells, restored tumor growth in myeloid-COX-2 KO to WT levels, indicating that CD8+ CTLs are dominant antitumor effectors in myeloid-COX-2 KO mice. Our studies suggest that inhibition of myeloid cell COX-2 can potentiate CTL-mediated tumor cytotoxicity and may provide a novel therapeutic approach in breast cancer therapy. PMID:24590894

  14. Methylation of p16(INK4a) promoters occurs in vivo in histologically normal human mammary epithelia

    NASA Technical Reports Server (NTRS)

    Holst, Charles R.; Nuovo, Gerard J.; Esteller, Manel; Chew, Karen; Baylin, Stephen B.; Herman, James G.; Tlsty, Thea D.

    2003-01-01

    Cultures of human mammary epithelial cells (HMECs) contain a subpopulation of variant cells with the capacity to propagate beyond an in vitro proliferation barrier. These variant HMECs, which contain hypermethylated and silenced p16(INK4a) (p16) promoters, eventually accumulate multiple chromosomal changes, many of which are similar to those detected in premalignant and malignant lesions of breast cancer. To determine the origin of these variant HMECs in culture, we used Luria-Delbruck fluctuation analysis and found that variant HMECs exist within the population before the proliferation barrier, thereby raising the possibility that variant HMECs exist in vivo before cultivation. To test this hypothesis, we examined mammary tissue from normal women for evidence of p16 promoter hypermethylation. Here we show that epithelial cells with methylation of p16 promoter sequences occur in focal patches of histologically normal mammary tissue of a substantial fraction of healthy, cancer-free women.

  15. Wnt5a suppresses tumor formation and redirects tumor phenotype in MMTV-Wnt1 tumors.

    PubMed

    Easter, Stephanie L; Mitchell, Elizabeth H; Baxley, Sarah E; Desmond, Renee; Frost, Andra R; Serra, Rosa

    2014-01-01

    Wnt5a is a non-canonical signaling Wnt that has been implicated in tumor suppression. We previously showed that loss of Wnt5a in MMTV-PyVmT tumors resulted in a switch in tumor phenotype resulting in tumors with increased basal phenotype and high Wnt/β-catenin signaling. The object of this study was to test the hypothesis that Wnt5a can act to inhibit tumors formed by activation of Wnt/β-catenin signaling. To this end, we characterized tumor and non-tumor mammary tissue from MMTV-Wnt1 and double transgenic MMTV-Wnt1;MMTV-Wnt5a mice. Wnt5a containing mice demonstrated fewer tumors with increased latency when compared to MMTV-Wnt1 controls. Expression of markers for basal-like tumors was down-regulated in the tumors that formed in the presence of Wnt5a indicating a phenotypic switch. Reduced canonical Wnt signaling was detected in double transgenic tumors as a decrease in active β-catenin protein and a decrease in Axin2 mRNA transcript levels. In non-tumor tissues, over-expression of Wnt5a in MMTV-Wnt1 mammary glands resulted in attenuation of phenotypes normally observed in MMTV-Wnt1 glands including hyperbranching and increased progenitor and basal cell populations. Even though Wnt5a could antagonize Wnt/β-catenin signaling in primary mammary epithelial cells in culture, reduced Wnt/β-catenin signaling was not detected in non-tumor MMTV-Wnt1;Wnt5a tissue in vivo. The data demonstrate that Wnt5a suppresses tumor formation and promotes a phenotypic shift in MMTV-Wnt1 tumors.

  16. Combined Allogeneic Tumor Cell Vaccination and Systemic Interleukin 12 Prevents Mammary Carcinogenesis in HER-2/neu Transgenic Mice

    PubMed Central

    Nanni, Patrizia; Nicoletti, Giordano; De Giovanni, Carla; Landuzzi, Lorena; Di Carlo, Emma; Cavallo, Federica; Pupa, Serenella M.; Rossi, Ilaria; Colombo, Mario P.; Ricci, Cinzia; Astolfi, Annalisa; Musiani, Piero; Forni, Guido; Lollini, Pier-Luigi

    2001-01-01

    Transgenic Balb/c mice expressing the transforming rat HER-2/neu oncogene develop early and multifocal mammary carcinomas. Within the first 5 months of life the tissue-specific expression of HER-2/neu causes a progression in all their 10 mammary glands from atypical hyperplasia to invasive carcinoma. It was previously observed that chronic administration of interleukin (IL)-12 increased tumor latency, but every mouse eventually succumbed to multiple carcinomas. A significant improvement in tumor prevention was sought by administering allogeneic mammary carcinoma cells expressing HER-2/neu combined with systemic IL-12. This treatment reduced tumor incidence by 90% and more than doubled mouse lifetime. For the maximum prevention p185neu antigen must be expressed by allogeneic cells. IL-12 treatment strongly increased the cell vaccine efficacy. The mammary glands of mice receiving the combined treatment displayed a markedly reduced epithelial cell proliferation, angiogenesis, and HER-2/neu expression, while the few hyperplastic foci were heavily infiltrated by granulocytes, macrophages, and CD8+ lymphocytes. Specific anti–HER-2/neu antibodies were produced and a nonpolarized activation of CD4+ and CD8+ cells secreting IL-4 and interferon (IFN)-γ were evident. A central role for IFN-γ in the preventive effect was proven by the lack of efficacy of vaccination in IFN-γ gene knockout HER-2/neu transgenic Balb/c mice. A possible requirement for IFN-γ is related to its effect on antibody production, in particular on IgG2a and IgG2b subclasses, that were not induced in IFN-γ knockout HER-2/neu mice. In conclusion, our data show that an allogeneic HER-2/neu–expressing cell vaccine combined with IL-12 systemic treatment can prevent the onset of genetically determined tumors. PMID:11696586

  17. Lifetime genistein intake increases the response of mammary tumors to tamoxifen in rats

    PubMed Central

    Zhang, Xiyuan; Cook, Katherine L; Warri, Anni; Cruz, Idalia M; Rosim, Mariana; Riskin, Jeffrey; Helferich, William; Doerge, Daniel; Clarke, Robert; Hilakivi-Clarke, Leena

    2016-01-01

    Purpose Whether it is safe for estrogen receptor positive (ER+) breast cancer patients to consume soy isoflavone genistein (GEN) remains controversial. We compared the effects of GEN intake mimicking either Asian (lifetime) or Caucasian (adulthood) intake patterns to that of starting its intake during tamoxifen (TAM) therapy using a preclinical model. Experimental Design Female Sprague-Dawley rats were fed an AIN93G diet supplemented with 0 (control diet) or 500 ppm GEN from postnatal day 15 onwards (lifetime GEN). Mammary tumors were induced with 7,12-dimethylbenz(a)anthracene (DMBA), after which a group of control diet fed rats were switched to GEN diet (adult GEN). When the first tumor in a rat reached 1.4 cm in diameter, TAM was added to the diet, and a subset of previously only control diet fed rats also started GEN intake (post-diagnosis GEN). Results Lifetime GEN intake reduced de novo resistance to TAM, compared with post-diagnosis GEN groups. Risk of recurrence was lower both in the lifetime and adult GEN groups than in the post-diagnosis GEN group. We observed downregulation of unfolded protein response (UPR) and autophagy related genes (GRP78, IRE1α, ATF4 and Beclin-1), and genes linked to immunosuppression (TGFβ and Foxp3), and upregulation of cytotoxic T cell marker CD8a in the tumors of the lifetime GEN group, compared with controls, post-diagnosis, and/or adult GEN groups. Conclusions GEN intake mimicking Asian consumption patterns improved response of mammary tumors to TAM therapy, and this effect was linked to reduced activity of UPR and pro-survival autophagy signaling, and increased anti-tumor immunity. PMID:28148690

  18. Membrane Mucin Muc4 Promotes Blood Cell Association with Tumor Cells and Mediates Efficient Metastasis in a Mouse Model of Breast Cancer

    PubMed Central

    Rowson-Hodel, A.R.; Wald, J.H.; Hatakeyama, J.; O’Neal, W.K.; Stonebraker, J.R.; VanderVorst, K.; Saldana, M.J.; Borowsky, A.D.; Sweeney, C.; Carraway, K.L.

    2018-01-01

    Mucin-4 (Muc4) is a large cell surface glycoprotein implicated in the protection and lubrication of epithelial structures. Previous studies suggest that aberrantly expressed Muc4 can influence the adhesiveness, proliferation, viability and invasiveness of cultured tumor cells, as well as the growth rate and metastatic efficiency of xenografted tumors. While it has been suggested that one of the major mechanisms by which Muc4 potentiates tumor progression is via its engagement of the ErbB2/HER2 receptor tyrosine kinase, other mechanisms exist and remain to be delineated. Moreover, the requirement for endogenous Muc4 for tumor growth progression has not been previously explored in the context of gene ablation. To assess the contribution of endogenous Muc4 to mammary tumor growth properties, we first created a genetically-engineered mouse line lacking functional Muc4 (Muc4ko), and then crossed these animals with the NDL model of ErbB2-induced mammary tumorigenesis. We observed that Muc4ko animals are fertile and develop normally, and adult mice exhibit no overt tissue abnormalities. In tumor studies, we observed that although some markers of tumor growth such as vascularity and cyclin D1 expression are suppressed, primary mammary tumors from Muc4ko/NDL female mice exhibit similar latencies and growth rates as Muc4wt/NDL animals. However, the presence of lung metastases is markedly suppressed in Muc4ko/NDL mice. Interestingly, histological analysis of lung lesions from Muc4ko/NDL mice revealed a reduced association of disseminated cells with red and white blood cells. Moreover, isolated cells derived from Muc4ko/NDL tumors interact with fewer blood cells when injected directly into the vasculature or diluted into blood from wild type mice. We further observed that blood cells more efficiently promote the viability of non-adherent Muc4wt/NDL cells than Muc4ko/NDL cells. Together, our observations suggest that Muc4 may facilitate metastasis by promoting the association

  19. Membrane Mucin Muc4 promotes blood cell association with tumor cells and mediates efficient metastasis in a mouse model of breast cancer.

    PubMed

    Rowson-Hodel, A R; Wald, J H; Hatakeyama, J; O'Neal, W K; Stonebraker, J R; VanderVorst, K; Saldana, M J; Borowsky, A D; Sweeney, C; Carraway, K L

    2018-01-11

    Mucin-4 (Muc4) is a large cell surface glycoprotein implicated in the protection and lubrication of epithelial structures. Previous studies suggest that aberrantly expressed Muc4 can influence the adhesiveness, proliferation, viability and invasiveness of cultured tumor cells, as well as the growth rate and metastatic efficiency of xenografted tumors. Although it has been suggested that one of the major mechanisms by which Muc4 potentiates tumor progression is via its engagement of the ErbB2/HER2 receptor tyrosine kinase, other mechanisms exist and remain to be delineated. Moreover, the requirement for endogenous Muc4 for tumor growth progression has not been previously explored in the context of gene ablation. To assess the contribution of endogenous Muc4 to mammary tumor growth properties, we first created a genetically engineered mouse line lacking functional Muc4 (Muc4 ko ), and then crossed these animals with the NDL (Neu DeLetion mutant) model of ErbB2-induced mammary tumorigenesis. We observed that Muc4 ko animals are fertile and develop normally, and adult mice exhibit no overt tissue abnormalities. In tumor studies, we observed that although some markers of tumor growth such as vascularity and cyclin D1 expression are suppressed, primary mammary tumors from Muc4 ko /NDL female mice exhibit similar latencies and growth rates as Muc4 wt /NDL animals. However, the presence of lung metastases is markedly suppressed in Muc4 ko /NDL mice. Interestingly, histological analysis of lung lesions from Muc4 ko /NDL mice revealed a reduced association of disseminated cells with platelets and white blood cells. Moreover, isolated cells derived from Muc4 ko /NDL tumors interact with fewer blood cells when injected directly into the vasculature or diluted into blood from wild type mice. We further observed that blood cells more efficiently promote the viability of non-adherent Muc4 wt /NDL cells than Muc4 ko /NDL cells. Together, our observations suggest that Muc4 may

  20. Expression of autophagy-related protein beclin-1 in malignant canine mammary tumors

    PubMed Central

    2013-01-01

    Background Autophagy is a self-catabolic mechanism that degrades unnecessary cellular components through lysosomal enzymes. Beclin-1, an autophagy-related protein, establishes the first connection between autophagy and tumorigenesis. The purpose of this study is to assess the Beclin-1 expression pattern and to determine its prognostic significance in patients with malignant canine mammary tumor (CMT). Results We examined Beclin-1 expression in 70 cases of malignant CMTs by immunohistochemistry. Cytoplasmic Beclin-1 expression was significantly weaker in cancer cells than in nearby normal mammary glands (p < 0.001). Low cytoplasmic expression (57.14%) was associated with older age, lower degree of tubular formation, increased mitotic activity, higher histologic grade, and extensive necrosis. Low nuclear expression (40%) was connected with older age, lower degree of tubular formation, extensive necrosis, and negative for Her2/neu overexpression. Univariate survival analysis showed that Beclin-1 cytoplasmic expression was a poor prognostic factor for overall survival rate (p < 0.001). Multivariate survival analysis demonstrated that Beclin-1 cytoplasmic expression is an independent prognostic factor (p = 0.016). Conclusions Loss of Beclin-1 is associated with aggressive clinicopathologic features and poor overall survival. The results suggest that Beclin-1 plays an important role in tumor progression of malignant CMTs. PMID:23578251

  1. Clinicopathological Diversity of Canine Mammary Gland Tumors in Sri Lanka: A One-Year Survey on Cases Presented to Two Veterinary Practices.

    PubMed

    Ariyarathna, Harsha; de Silva, Niranjala; Aberdein, Danielle; Kodikara, Dayananda; Jayasinghe, Manjula; Adikari, Ranjith; Munday, John S

    2018-04-27

    Mammary gland tumors (MGTs) are one of the most common neoplasms among dogs in Sri Lanka. However, the clinicopathological diversity of MGTs in Sri Lanka is largely unknown, impeding accurate diagnosis and effective treatment of the disease. The present study investigated the clinicopathological features of MGTs in 74 dogs presented to two veterinary practices in Sri Lanka treated surgically, over a one-year period. Information regarding the patient signalment, clinical presentation, and reproductive history were collected, and each neoplasm was examined histologically. Forty-one (54.4%) dogs were primarily presented for mammary neoplasia, while a MGT was an incidental finding in 33 (44.6%) dogs. The majority of tumors were histologically malignant (n = 65, 87.8%), and 18 malignant tumor sub-types were identified. A significantly higher proportion of malignant tumors were large (>3 cm diameter) and observed in inguinal mammary glands. Nulliparous (n = 42, 55.3%) dogs predominated in the group, and the mean age of MGT diagnosis was 8.0 ± 2.41 years. The present study identified tumor location and size to be predictive of malignancy. A high histological diversity of MGTs was observed. Overall, the present findings emphasize the necessity of improving awareness of MGTs among Sri Lankan clinicians as well as dog owners.

  2. VHL deletion impairs mammary alveologenesis but is not sufficient for mammary tumorigenesis.

    PubMed

    Seagroves, Tiffany N; Peacock, Danielle L; Liao, Debbie; Schwab, Luciana P; Krueger, Robin; Handorf, Charles R; Haase, Volker H; Johnson, Randall S

    2010-05-01

    Overexpression of hypoxia inducible factor-1 (HIF-1)alpha, which is common in most solid tumors, correlates with poor prognosis and high metastatic risk in breast cancer patients. Because HIF-1alpha protein stability is tightly controlled by the tumor suppressor von Hippel-Lindau (VHL), deletion of VHL results in constitutive HIF-1alpha expression. To determine whether VHL plays a role in normal mammary gland development, and if HIF-1alpha overexpression is sufficient to initiate breast cancer, Vhl was conditionally deleted in the mammary epithelium using the Cre/loxP system. During first pregnancy, loss of Vhl resulted in decreased mammary epithelial cell proliferation and impaired alveolar differentiation; despite these phenotypes, lactation was sufficient to support pup growth. In contrast, in multiparous dams, Vhl(-/-) mammary glands exhibited a progressive loss of alveolar epithelium, culminating in lactation failure. Deletion of Vhl in the epithelium also impacted the mammary stroma, as there was increased microvessel density accompanied by hemorrhage and increased immune cell infiltration. However, deletion of Vhl was not sufficient to induce mammary tumorigenesis in dams bred continuously for up to 24 months of age. Moreover, co-deletion of Hif1a could not rescue the Vhl(-/-)-dependent phenotype as dams were unable to successfully lactate during the first lactation. These results suggest that additional VHL-regulated genes besides HIF1A function to maintain the proliferative and regenerative potential of the breast epithelium.

  3. Obesity decreases serum selenium levels in DMBA-induced mammary tumor using Obese Zucker Rat Model

    USDA-ARS?s Scientific Manuscript database

    Recently, we reported that obese Zucker rats had increased susceptibility to DMBA-induced mammary tumors compared to lean Zucker rats. Several studies suggest that lower serum selenium may play an important role in increasing the risk of several types of cancers (e.g, colon, breast and prostate canc...

  4. Selection of early-occurring mutations dictates hormone-independent progression in mouse mammary tumor lines.

    PubMed

    Gattelli, Albana; Zimberlin, María N; Meiss, Roberto P; Castilla, Lucio H; Kordon, Edith C

    2006-11-01

    Mice harboring three mouse mammary tumor virus (MMTV) variants develop pregnancy-dependent (PD) tumors that progress to pregnancy-independent (PI) behavior through successive passages. Herein, we identified 10 predominant insertions in PI transplants from 8 independent tumor lines. These mutations were also detected in small cell populations in the early PD passages. In addition, we identified a new viral insertion upstream of the gene Rspo3, which is overexpressed in three of the eight independent tumor lines and codes for a protein very similar to the recently described protein encoded by Int7. This study suggests that during progression towards hormone independence, clonal expansion of cells with specific mutations might be more relevant than the occurrence of new MMTV insertions.

  5. Selection of Early-Occurring Mutations Dictates Hormone-Independent Progression in Mouse Mammary Tumor Lines▿

    PubMed Central

    Gattelli, Albana; Zimberlin, María N.; Meiss, Roberto P.; Castilla, Lucio H.; Kordon, Edith C.

    2006-01-01

    Mice harboring three mouse mammary tumor virus (MMTV) variants develop pregnancy-dependent (PD) tumors that progress to pregnancy-independent (PI) behavior through successive passages. Herein, we identified 10 predominant insertions in PI transplants from 8 independent tumor lines. These mutations were also detected in small cell populations in the early PD passages. In addition, we identified a new viral insertion upstream of the gene Rspo3, which is overexpressed in three of the eight independent tumor lines and codes for a protein very similar to the recently described protein encoded by Int7. This study suggests that during progression towards hormone independence, clonal expansion of cells with specific mutations might be more relevant than the occurrence of new MMTV insertions. PMID:16971449

  6. HER2 isoforms co-expression differently tunes mammary tumor phenotypes affecting onset, vasculature and therapeutic response

    PubMed Central

    Balboni, Tania; Ianzano, Marianna L.; Laranga, Roberta; Landuzzi, Lorena; Giusti, Veronica; Ceccarelli, Claudio; Santini, Donatella; Taffurelli, Mario; Di Oto, Enrico; Asioli, Sofia; Amici, Augusto; Pupa, Serenella M.; De Giovanni, Carla; Tagliabue, Elda; Iezzi, Manuela; Nanni, Patrizia; Lollini, Pier-Luigi

    2017-01-01

    Full-length HER2 oncoprotein and splice variant Delta16 are co-expressed in human breast cancer. We studied their interaction in hybrid transgenic mice bearing human full-length HER2 and Delta16 (F1 HER2/Delta16) in comparison to parental HER2 and Delta16 transgenic mice. Mammary carcinomas onset was faster in F1 HER2/Delta16 and Delta16 than in HER2 mice, however tumor growth was slower, and metastatic spread was comparable in all transgenic mice. Full-length HER2 tumors contained few large vessels or vascular lacunae, whereas Delta16 tumors presented a more regular vascularization with numerous endothelium-lined small vessels. Delta16-expressing tumors showed a higher accumulation of i.v. injected doxorubicin than tumors expressing full-length HER2. F1 HER2/Delta16 tumors with high full-length HER2 expression made few large vessels, whereas tumors with low full-length HER2 and high Delta16 contained numerous small vessels and expressed higher levels of VEGF and VEGFR2. Trastuzumab strongly inhibited tumor onset in F1 HER2/Delta16 and Delta16 mice, but not in full-length HER2 mice. Addiction of F1 tumors to Delta16 was also shown by long-term stability of Delta16 levels during serial transplants, in contrast full-length HER2 levels underwent wide fluctuations. In conclusion, full-length HER2 leads to a faster tumor growth and to an irregular vascularization, whereas Delta16 leads to a faster tumor onset, with more regular vessels, which in turn could better transport cytotoxic drugs within the tumor, and to a higher sensitivity to targeted therapeutic agents. F1 HER2/Delta16 mice are a new immunocompetent mouse model, complementary to patient-derived xenografts, for studies of mammary carcinoma onset, prevention and therapy. PMID:28903354

  7. Bioavailability and efficacy of a gap junction enhancer (PQ7) in a mouse mammary tumor model.

    PubMed

    Shishido, Stephanie N; Prasain, Keshar; Beck, Amanda; Nguyen, Thi D T; Hua, Duy H; Nguyen, Thu Annelise

    2013-01-01

    The loss of gap junctional intercellular communication is characteristic of neoplastic cells, suggesting that the restoration with a gap junction enhancer may be a new therapeutic treatment option with less detrimental effects than traditional antineoplastic drugs. A gap junction enhancer, 6-methoxy-8-[(2-furanylmethyl) amino]-4-methyl-5-(3-trifluoromethylphenyloxy) quinoline (PQ7), on the normal tissue was evaluated in healthy C57BL/6J mice in a systemic drug distribution study. Immunoblot analysis of the vital organs indicates a reduction in Cx43 expression in PQ7-treated animals with no observable change in morphology. Next the transgenic strain FVB/N-Tg(MMTV-PyVT) 634Mul/J (also known as PyVT) was used as a spontaneous mammary tumor mouse model to determine the biological and histological effects of PQ7 on tumorigenesis and metastasis at three stages of development: Pre tumor, Early tumor, and Late tumor formation. PQ7 was assessed to have a low toxicity through intraperitoneal administration, with the majority of the compound being detected in the heart, liver, and lungs six hours post injection. The treatment of tumor bearing animals with PQ7 had a 98% reduction in tumor growth, while also decreasing the total tumor burden compared to control mice during the Pre stage of development. PQ7 treatment increased Cx43 expression in the neoplastic tissue during Pre-tumor formation; however, this effect was not observed in Late stage tumor formation. This study shows that the gap junction enhancer, PQ7, has low toxicity to normal tissue in healthy C57BL/6J mice, while having clinical efficacy in the treatment of spontaneous mammary tumors of PyVT mice. Additionally, gap junctional intercellular communication and neoplastic cellular growth are shown to be inversely related, while treatment with PQ7 inhibits tumor growth through targeting gap junction expression.

  8. ATRAZINE INCREASES DIMETHYLBENZ[A]ANTHRACENE-INDUCED MAMMARY TUMOR INCIDENCE IN LONG EVANS OFFSPRING EXPOSED IN UTERO

    EPA Science Inventory

    ATRAZINE INCREASES DIMETHYLBENZ[A]ANTHRACENE-INDUCED MAMMARY TUMOR INCIDENCE IN LONG EVANS OFFSPRING EXPOSED IN UTERO.

    SE Fenton and CC Davis

    Reproductive Toxicology Division, NHEERL, ORD, USEPA, Durham, NC, USA

    Recently, we found that ATR exposure during ma...

  9. Raising gestational choline intake alters gene expression in DMBA-evoked mammary tumors and prolongs survival.

    PubMed

    Kovacheva, Vesela P; Davison, Jessica M; Mellott, Tiffany J; Rogers, Adrianne E; Yang, Shi; O'Brien, Michael J; Blusztajn, Jan Krzysztof

    2009-04-01

    Choline is an essential nutrient that serves as a donor of metabolic methyl groups used during gestation to establish the epigenetic DNA methylation patterns that modulate tissue-specific gene expression. Because the mammary gland begins its development prenatally, we hypothesized that choline availability in utero may affect the gland's susceptibility to cancer. During gestational days 11-17, pregnant rats were fed a control, choline-supplemented, or choline-deficient diet (8, 36, and 0 mmol/kg of choline, respectively). On postnatal day 65, the female offspring received 25 mg/kg of a carcinogen 7,12-dimethylbenz[alpha]anthracene. Approximately 70% of the rats developed mammary adenocarcinomas; prenatal diet did not affect tumor latency, incidence, size, and multiplicity. Tumor growth rate was inversely related to choline content in the prenatal diet, resulting in 50% longer survival until euthanasia, determined by tumor size, of the prenatally choline-supplemented rats compared with the prenatally choline-deficient rats. This was accompanied by distinct expression patterns of approximately 70 genes in tumors derived from the three dietary groups. Tumors from the prenatally choline-supplemented rats overexpressed genes that confer favorable prognosis in human cancers (Klf6, Klf9, Nid2, Ntn4, Per1, and Txnip) and underexpressed those associated with aggressive disease (Bcar3, Cldn12, Csf1, Jag1, Lgals3, Lypd3, Nme1, Ptges2, Ptgs1, and Smarcb1). DNA methylation within the tumor suppressor gene, stratifin (Sfn, 14-3-3sigma), was proportional to the prenatal choline supply and correlated inversely with the expression of its mRNA and protein in tumors, suggesting that an epigenetic mechanism may underlie the altered molecular phenotype and tumor growth. Our results suggest a role for adequate maternal choline nutrition during pregnancy in prevention/alleviation of breast cancer in daughters.

  10. Progesterone facilitates chromosome instability (aneuploidy) in p53 null normal mammary epithelial cells

    NASA Technical Reports Server (NTRS)

    Goepfert, T. M.; McCarthy, M.; Kittrell, F. S.; Stephens, C.; Ullrich, R. L.; Brinkley, B. R.; Medina, D.

    2000-01-01

    Mammary epithelial cells from p53 null mice have been shown recently to exhibit an increased risk for tumor development. Hormonal stimulation markedly increased tumor development in p53 null mammary cells. Here we demonstrate that mammary tumors arising in p53 null mammary cells are highly aneuploid, with greater than 70% of the tumor cells containing altered chromosome number and a mean chromosome number of 56. Normal mammary cells of p53 null genotype and aged less than 14 wk do not exhibit aneuploidy in primary cell culture. Significantly, the hormone progesterone, but not estrogen, increases the incidence of aneuploidy in morphologically normal p53 null mammary epithelial cells. Such cells exhibited 40% aneuploidy and a mean chromosome number of 54. The increase in aneuploidy measured in p53 null tumor cells or hormonally stimulated normal p53 null cells was not accompanied by centrosome amplification. These results suggest that normal levels of progesterone can facilitate chromosomal instability in the absence of the tumor suppressor gene, p53. The results support the emerging hypothesis based both on human epidemiological and animal model studies that progesterone markedly enhances mammary tumorigenesis.

  11. 1H-NMR METABONOMICS ANALYSIS OF SERA DIFFERENTIATES BETWEEN MAMMARY TUMOR-BEARING MICE AND HEALTHY CONTROLS

    EPA Science Inventory

    Global analysis of 1H-NMR spectra of serum is an appealing approach for the rapid detection of cancer. To evaluate the usefulness of this method in distinguishing between mammary tumor-bearing mice and healthy controls, we conducted 1H-NMR metabonomic analyses on serum samples ob...

  12. OVOL2 antagonizes TGF-β signaling to regulate epithelial to mesenchymal transition during mammary tumor metastasis

    PubMed Central

    Wu, Di; Liu, Na; Liu, Qing-Feng; Wu, Qiu-Wan; Xie, Yuan-Yuan; Liu, Yun-Jia; Zheng, Zhong-Zheng; Chan, Err-Cheng; Zhang, Zhi-Ming; Li, Bo-An

    2017-01-01

    Great progress has been achieved in the study of the role of TGF-β signaling in triggering epithelial-mesenchymal transition (EMT) in a variety of cancers; however, the regulation of TGF-β signaling during EMT in mammary tumor metastasis has not been completely defined. In the present study, we demonstrated that OVOL2, a zinc finger transcription factor, inhibits TGF-β signaling-induced EMT in mouse and human mammary tumor cells, as well as in mouse tumor models. Data from the Oncomine databases indicated a strong negative relationship between OVOL2 expression and breast cancer progression. Moreover, our experiments revealed that OVOL2 inhibits TGF-β signaling at multiple levels, including inhibiting Smad4 mRNA expression and inducing Smad7 mRNA expression, blocking the binding between Smad4 and target DNA, and interfering with complex formation between Smad4 and Smad2/3. These findings reveal a novel mechanism that controls the TGF-β signaling output level in vitro and in vivo. The modulation of these molecular processes may represent a strategy for inhibiting breast cancer invasion by restoring OVOL2 expression. PMID:28455959

  13. Rapamycin Promotes Mouse 4T1 Tumor Metastasis that Can Be Reversed by a Dendritic Cell-Based Vaccine

    PubMed Central

    Lin, Tien-Jen; Liang, Wen-Miin; Hsiao, Pei-Wen; M. S, Pradeep; Wei, Wen-Chi; Lin, Hsin-Ting; Yin, Shu-Yi; Yang, Ning-Sun

    2015-01-01

    Suppression of tumor metastasis is a key strategy for successful cancer interventions. Previous studies indicated that rapamycin (sirolimus) may promote tumor regression activity or enhance immune response against tumor targets. However, rapamycin also exhibits immunosuppressant effects and is hence used clinically as an organ transplantation drug. We hypothesized that the immunosuppressive activities of rapamycin might also negatively mediate host immunity, resulting in promotion of tumor metastasis. In this study, the effects of rapamycin and phytochemical shikonin were investigated in vitro and in vivo in a 4T1 mouse mammary tumor model through quantitative assessment of immunogenic cell death (ICD), autophagy, tumor growth and metastasis. Tumor-bearing mice were immunized with test vaccines to monitor their effect on tumor metastasis. We found that intraperitoneal (ip) administration of rapamycin after a tumor-resection surgery drastically increased the metastatic activity of 4T1 tumors. Possible correlation of this finding to human cancers was suggested by epidemiological analysis of data from Taiwan’s National Health Insurance Research Database (NHIRD). Since our previous studies showed that modified tumor cell lysate (TCL)-pulsed, dendritic cell (DC)-based cancer vaccines can effectively suppress metastasis in mouse tumor models, we assessed whether such vaccines may help offset this rapamycin-promoted metastasis. We observed that shikonin efficiently induced ICD of 4T1 cells in culture, and DC vaccines pulsed with shikonin-treated TCL (SK-TCL-DC) significantly suppressed rapamycin-enhanced metastasis and Treg cell expansion in test mice. In conclusion, rapamycin treatment in mice (and perhaps in humans) promotes metastasis and the effect may be offset by treatment with a DC-based cancer vaccine. PMID:26426423

  14. The effect of dietary zinc - and polyphenols intake on DMBA-induced mammary tumorigenesis in rats

    PubMed Central

    2012-01-01

    content in the cancerous tissue in comparison with the healthy mammary tissue. The application of combined diet supplementation with zinc ions and resveratrol considerably promoted the rate of carcinogenesis and increased the number of DMBA-induced mammary tumors. PMID:22507225

  15. HORMONAL CONTROL OF OVARIAN FUNCTION FOLLOWING CHLOROTRIAZINE EXPOSURE: EFFECT ON REPRODUCTIVE FUNCTION AND MAMMARY GLAND TUMOR DEVELOPMENT

    EPA Science Inventory

    Hormonal Control of Ovarian Function Following Chlorotriazine Exposure: Effect on Reproductive Function and Mammary Gland Tumor Development.

    Ralph L. Cooper, Susan C. Laws, Michael G. Narotsky, Jerome M. Goldman, and Tammy E. Stoker

    Abstract
    The studies review...

  16. Three-dimensional imaging of the metabolic state of c-MYC-induced mammary tumor with the cryo-imager

    NASA Astrophysics Data System (ADS)

    Zhang, Zhihong; Liu, Qian; Luo, Qingming; Zhang, Min Z.; Blessington, Dana M.; Zhou, Lanlan; Chodosh, Lewis A.; Zheng, Gang; Chance, Britton

    2003-07-01

    This study imaged the metabolic state of a growing tumor and the relationship between energy metabolism and the ability of glucose uptake in whole tumor tissue with cryo-imaging at 77° K. A MTB/TOM mouse model, bearing c-MYC-induced mammary tumor, was very rapidly freeze-trapped 2 hrs post Pyro-2DG injection. The fluorescence signals of oxidized flavoprotein (Fp), reduced pyridine nucleotide (PN), pyro-2DG, and the reflection signal of deoxy-hemoglobin were imaged every 100 μm from the top surface to the bottom of the tumor sequentially, 9 sections in total. Each of the four signals was constructed into 3D images with Amira software. Both Fp and PN signals could be detected in the growing tumor regions, and a higher reduction state where was shown in the ratio images. The necrotic tumor regions displayed a very strong Fp signal and weak PN signal. In the bloody extravasation regions, Fp and PN signals were observably diminished. Therefore, the regions of high growth and necrosis in the tumor could be determined according to the Fp and PN signals. The content of deoxy-hemoglobin (Hb) in the tumor was positively correlated with the reduced PN signal. Pyro-2DG signal was only evident in the growing condition region in the tumor. Normalized 3D cross-correlation showed that Pyro-2DG signal was similar to the redox ratio. The results indicated that glucose uptake in the tumor was consistent with the redox state of the tumor. And both Pyro-2DG and mitochondrial NADH fluorescence showed bimodal histograms suggesting that the two population of c-MYC induced mammary tumor, one of which could be controlled by c-MYC transgene.

  17. In Utero Exposure to Low-Dose Alcohol Induces Reprogramming of Mammary Development and Tumor Risk in MMTV-erbB-2 Transgenic Mice

    PubMed Central

    Ma, Zhikun; Blackwelder, Amanda J.; Lee, Harry; Zhao, Ming; Yang, Xiaohe

    2015-01-01

    There is increasing evidence that prenatal exposure to environmental factors may modify breast cancer risk later in life. This study aimed to investigate the effects of in utero exposure to low-dose alcohol on mammary development and tumor risk. Pregnant MMTV-erbB-2 mice were exposed to alcohol (6 g/kg/day) between day 13 and day 19 of gestation, and the female offspring were examined for tumor risk. Whole mount analysis indicated that in utero exposure to low-dose alcohol induced significant increases in ductal extension at 10 weeks of age. Molecular analysis showed that in utero alcohol exposure induced upregulation of ERα signaling and activation of Akt and Erk1/2 in pubertal mammary glands. However, enhanced signaling in the EGFR/erbB-2 pathway appeared to be more prominent in 10-week-old glands than did signaling in the other pathways. Interestingly, tumor development in mice with in utero exposure to low-dose alcohol was slightly delayed compared to control mice, but tumor multiplicity was increased. The results indicate that in utero exposure to low-dose alcohol induces the reprogramming of mammary development by mechanisms that include altered signaling in the estrogen receptor (ER) and erbB-2 pathways. The intriguing tumor development pattern might be related to alcohol dose and exposure conditions, and warrants further investigation. PMID:25853264

  18. NCOA1 promotes angiogenesis in breast tumors by simultaneously enhancing both HIF1α- and AP-1-mediated VEGFa transcription

    PubMed Central

    Qin, Li; Xu, Yan; Xu, Yixiang; Ma, Gang; Liao, Lan; Wu, Yelin; Li, Yi; Wang, Xian; Wang, Xiaosong; Jiang, Jun; Wang, Jin; Xu, Jianming

    2015-01-01

    Nuclear receptor coactivator 1 (NCOA1) is overexpressed in a subset of breast cancer and its increased expression positively correlates with disease recurrence and metastasis. Although NCOA1 is known to promote breast cancer metastasis through working with multiple transcription factors to upregulate the expression of Twist1, ITGA5, CSF-1, SDF1 and CXCR4, the role of NCOA1 in breast tumor angiogenesis has not been investigated. In this study, we found that the microvascular density (MVD) was significantly decreased and increased in Ncoa1-knockout and NCOA1-overexpressing mammary tumors, respectively, in several breast cancer mouse models. Knockout or knockdown of NCOA1 in breast cancer cell lines also markedly compromised their capability to induce angiogenesis in Matrigel plugs embedded subcutaneously in mice, while this compromised capability could be rescued by VEGFa treatment. At the molecular level, NCOA1 upregulates VEGFa expression in both mouse mammary tumors and cultured breast cancer cells, and it does so by associating with both c-Fos, which is recruited to the AP-1 site at bp −938 of the VEGFa promoter, and HIF1α, which is recruited to the HIF1α-binding element at bp −979 of the VEGFa promoter, to enhance VEGFa transcription. In 140 human breast tumors, high NCOA1 protein correlates with high MVD and patients with both high NCOA1 and high MVD showed significantly shorter survival time. In summary, this study revealed a novel mechanism that NCOA1 potentiates breast cancer angiogenesis through upregulating HIF1α and AP-1-mediated VEGFa expression, which reinforces the rational of targeting NCOA1 in controlling breast cancer progression and metastasis. PMID:26287601

  19. Pilot study of p62 DNA vaccine in dogs with mammary tumors.

    PubMed

    Gabai, Vladimir; Venanzi, Franco M; Bagashova, Elena; Rud, Oksana; Mariotti, Francesca; Vullo, Cecilia; Catone, Giuseppe; Sherman, Michael Y; Concetti, Antonio; Chursov, Andrey; Latanova, Anastasia; Shcherbinina, Vita; Shifrin, Victor; Shneider, Alexander

    2014-12-30

    Our previous data demonstrated profound anti-tumor and anti-metastatic effects of p62 (sqstm1) DNA vaccine in rodents with various types of transplantable tumors. Testing anti-cancer medicine in dogs as an intermediary step of translational research program provides two major benefits. First, clinical data collected in target animals is required for FDA/USDA approval as a veterinary anti-cancer drug or vaccine. It is noteworthy that the veterinary community is in need of novel medicine for the prevention and treatment of canine and feline cancers. The second more important benefit of testing anti-cancer vaccines in dogs is that spontaneous tumors in dogs may provide invaluable information for human trials. Here, we evaluated the effect(s) of p62 DNA vaccine on mammary tumors of dogs. We found that p62 DNA vaccine administered i.m. decreased or stabilized growth of locally advanced lesions in absence of its overall toxic effects. The observed antitumor activity was associated with lymphocyte infiltration and tumor encapsulation via fibrotic reaction. This data justifies both human clinical trials and veterinary application of p62 DNA vaccine.

  20. Breed- and age-related differences in canine mammary tumors

    PubMed Central

    Kim, Hyun-Woo; Lim, Ha-Young; Shin, Jong-Il; Seung, Byung-Joon; Ju, Jung-Hyung; Sur, Jung-Hyang

    2016-01-01

    Triple-negative breast cancer is a type of breast cancer that does not express the genes for estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor-2 (HER-2). It is an important and clinically relevant condition as it has a poor prognosis and is difficult to treat. Basal-like triple-negative cancer is highly prevalent in both African-Americans and adolescents. We therefore examined whether such a cancer likewise occurs in specific breeds and age groups in dogs, focusing on basal-like triple-negative cancer in particular. In this study, 181 samples from dogs with malignant mammary carcinoma from the 5 most common breeds and 2 age groups in Korea were analyzed. Histological classification and molecular subtyping, including assessment of immunohistochemical findings, were carried out. Twenty-five of 28 (89.3%) triple-negative carcinomas were identified as basal-like triple-negative carcinomas. Analysis of associations of classified factors revealed that the shih tzu breed (9/25, 36.0%) and advanced-age (19/25, 76.0%) groups were characterized by higher prevalence of basal-like triple-negative tumors with diverse histological types and of a higher grade. These results suggest that breed- and age-related differences can be identified in canine mammary carcinoma and, notably, in the shih tzu breed and at older ages. Further investigation of these distinguishing characteristics of the shih tzu breed is warranted. PMID:27127342

  1. Early detection, aggressive therapy: optimizing the management of feline mammary masses.

    PubMed

    Giménez, Fernanda; Hecht, Silke; Craig, Linden E; Legendre, Alfred M

    2010-03-01

    This article reviews the incidence, etiology, diagnosis, treatment and prognosis of mammary tumors in cats. Approximately 80% of feline mammary masses are malignant, with adenocarcinoma being the most common tumor type. Early diagnosis is, therefore, essential to improve the prognosis and quality of life of affected cats. Surgery is the most widely used treatment for malignant tumors. However, as mammary tumors are often advanced and metastasis has already occurred by the time of diagnosis, surgery routinely does not provide a cure. Ovariohysterectomy or hormonal therapy are the treatments of choice for fibroadenomatous hyperplasia (the most common benign mass) and usually lead to a successful outcome. Copyright 2010. Published by Elsevier Ltd.

  2. Distinct Luminal-Type Mammary Carcinomas Arise from Orthotopic Trp53-Null Mammary Transplantation of Juvenile versus Adult Mice

    DOE PAGES

    Nguyen, David H.; Ouyang, Haoxu; Mao, Jian-Hua; ...

    2014-12-01

    Age and physiologic status, such as menopause, are risk factors for breast cancer. Less clear is what factors influence the diversity of breast cancer. In this study, we investigated the effect of host age on the distribution of tumor subtypes in mouse mammary chimera consisting of wild-type hosts and Trp53 nullizygous epithelium, which undergoes a high rate of neoplastic transformation. Wild-type mammary glands cleared of endogenous epithelium at 3 weeks of age were subsequently transplanted during puberty (5 weeks) or at maturation (10 weeks) with syngeneic Trp53-null mammary tissue fragments and monitored for one year. Tumors arose sooner from adultmore » hosts (AH) compared with juvenile hosts (JH). However, compared with AH tumors, JH tumors grew several times faster, were more perfused, exhibited a two-fold higher mitotic index, and were more highly positive for insulin-like growth factor receptor phosphorylation. Most tumors in each setting were estrogen receptor (ER)-positive (80% JH vs. 70% AH), but JH tumors were significantly more ER-immunoreactive (P = 0.0001) than AH tumors. A differential expression signature (JvA) of juvenile versus adult tumors revealed a luminal transcriptional program. Centroids of the human homologs of JvA genes showed that JH tumors were more like luminal A tumors and AH tumors were more like luminal B tumors. Hierarchical clustering with the JvA human ortholog gene list segregated luminal A and luminal B breast cancers across datasets. Lastly, these data support the notion that age-associated host physiology greatly influences the intrinsic subtype of breast cancer.« less

  3. Distinct Luminal-Type Mammary Carcinomas Arise from Orthotopic Trp53-Null Mammary Transplantation of Juvenile versus Adult Mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nguyen, David H.; Ouyang, Haoxu; Mao, Jian-Hua

    Age and physiologic status, such as menopause, are risk factors for breast cancer. Less clear is what factors influence the diversity of breast cancer. In this study, we investigated the effect of host age on the distribution of tumor subtypes in mouse mammary chimera consisting of wild-type hosts and Trp53 nullizygous epithelium, which undergoes a high rate of neoplastic transformation. Wild-type mammary glands cleared of endogenous epithelium at 3 weeks of age were subsequently transplanted during puberty (5 weeks) or at maturation (10 weeks) with syngeneic Trp53-null mammary tissue fragments and monitored for one year. Tumors arose sooner from adultmore » hosts (AH) compared with juvenile hosts (JH). However, compared with AH tumors, JH tumors grew several times faster, were more perfused, exhibited a two-fold higher mitotic index, and were more highly positive for insulin-like growth factor receptor phosphorylation. Most tumors in each setting were estrogen receptor (ER)-positive (80% JH vs. 70% AH), but JH tumors were significantly more ER-immunoreactive (P = 0.0001) than AH tumors. A differential expression signature (JvA) of juvenile versus adult tumors revealed a luminal transcriptional program. Centroids of the human homologs of JvA genes showed that JH tumors were more like luminal A tumors and AH tumors were more like luminal B tumors. Hierarchical clustering with the JvA human ortholog gene list segregated luminal A and luminal B breast cancers across datasets. Lastly, these data support the notion that age-associated host physiology greatly influences the intrinsic subtype of breast cancer.« less

  4. SnoN regulates mammary gland alveologenesis and onset of lactation by promoting prolactin/Stat5 signaling

    PubMed Central

    Jahchan, Nadine S.; Wang, Douglas; Bissell, Mina J.; Luo, Kunxin

    2012-01-01

    Mammary epithelial cells undergo structural and functional differentiation at late pregnancy and parturition to produce and secrete milk. Both TGF-β and prolactin pathways are crucial regulators of this process. However, how the activities of these two antagonistic pathways are orchestrated to initiate lactation has not been well defined. Here, we show that SnoN, a negative regulator of TGF-β signaling, coordinates TGF-β and prolactin signaling to control alveologenesis and lactogenesis. SnoN expression is induced at late pregnancy by the coordinated actions of TGF-β and prolactin. The elevated SnoN promotes Stat5 signaling by enhancing its stability, thereby sharply increasing the activity of prolactin signaling at the onset of lactation. SnoN–/– mice display severe defects in alveologenesis and lactogenesis, and mammary epithelial cells from these mice fail to undergo proper morphogenesis. These defects can be rescued by an active Stat5. Thus, our study has identified a new player in the regulation of milk production and revealed a novel function of SnoN in mammary alveologenesis and lactogenesis in vivo through promotion of Stat5 signaling. PMID:22833129

  5. Synergistic anti-tumor effects of melatonin and PUFAs from walnuts in a murine mammary adenocarcinoma model.

    PubMed

    Garcia, Carolina P; Lamarque, Alicia L; Comba, Andrea; Berra, María A; Silva, Renata A; Labuckas, Diana O; Das, Undurti N; Eynard, Aldo R; Pasqualini, Maria E

    2015-04-01

    The aim of this study was to determine the effects of some polyunsaturated fatty acids plus phytomelatonin from walnuts in the development of mammary gland adenocarcinoma. BALB/c mice were fed a semisynthetic diet supplemented with either 6% walnut oil and 8% walnut flour containing phytomelatonin (walnut diet: WD); or 6% corn oil plus commercial melatonin (melatonin diet: MD), or the control group (CD), which received only 6% of corn oil. Membrane fatty acids of tumor cells (TCs) were analyzed by gas liquid chromatography, cyclooxygenase (COX) and lipoxygenase (LOX) derivatives, and plasma melatonin by high-performance liquid chromatography; apoptosis and tumor-infiltrating lymphocytes by flow cytometry. TCs from the MD and WD mice showed significant decreases in linoleic acid compared with the CD group (P < 0.05). Significantly lower levels of LOX-[13(S)-HODE] were found in TCs from the MD and WD group than in CD (P < 0.0001). COX-[12(S)-HHT] was lower and 12 LOX-[12(S)-HETE] was higher in TCs from the MD group than form the WD and CD arms (P < 0.05). Plasma melatonin, apoptosis, tumor infiltration, and survival time were significantly lower in CD mice than in MD and WD mice (P < 0.05). This study shows that melatonin, along with polyunsaturated fatty acids, exerts a selective inhibition of some COX and LOX activities and has a synergistic anti-tumor effect on a mammary gland adenocarcinoma model. Published by Elsevier Inc.

  6. SIRT3 Is a Mitochondrial Tumor Suppressor and Genetic Loss Results in a Murine Model for ER/PR-Positive Mammary Tumors Connecting Metabolism and Carcinogenesis

    DTIC Science & Technology

    2012-09-01

    and determine if these targets are regulated by extracellular stimuli known to activate sirtuin function (e.g., resveratrol ). These targets will... resveratrol or overexpression of a MnSOD gene will prevent increases in ROS in MEFs and/or decrease the development of mammary tumors in Sirt3

  7. Keeping abreast of the mammary epithelial hierarchy and breast tumorigenesis.

    PubMed

    Visvader, Jane E

    2009-11-15

    The epithelium of the mammary gland exists in a highly dynamic state, undergoing dramatic morphogenetic changes during puberty, pregnancy, lactation, and regression. The recent identification of stem and progenitor populations in mouse and human mammary tissue has provided evidence that the mammary epithelium is organized in a hierarchical manner. Characterization of these normal epithelial subtypes is an important step toward understanding which cells are predisposed to oncogenesis. This review summarizes progress in the field toward defining constituent cells and key molecular regulators of the mammary epithelial hierarchy. Potential relationships between normal epithelial populations and breast tumor subtypes are discussed, with implications for understanding the cellular etiology underpinning breast tumor heterogeneity.

  8. Silencing vimentin expression decreases pulmonary metastases in a pre-diabetic mouse model of mammary tumor progression.

    PubMed

    Zelenko, Z; Gallagher, E J; Tobin-Hess, A; Belardi, V; Rostoker, R; Blank, J; Dina, Y; LeRoith, D

    2017-03-01

    Increased breast cancer risk and mortality has been associated with obesity and type 2 diabetes (T2D). Hyperinsulinemia, a key factor in obesity, pre-diabetes and T2D, has been associated with decreased breast cancer survival. In this study, a mouse model of pre-diabetes (MKR mouse) was used to investigate the mechanisms through which endogenous hyperinsulinemia promotes mammary tumor metastases. The MKR mice developed larger primary tumors and greater number of pulmonary metastases compared with wild-type (WT) mice after injection with c-Myc/Vegf overexpressing MVT-1 cells. Analysis of the primary tumors showed significant increase in vimentin protein expression in the MKR mice compared with WT. We hypothesized that vimentin was an important mediator in the effect of hyperinsulinemia on breast cancer metastasis. Lentiviral short hairpin RNA knockdown of vimentin led to a significant decrease in invasion of the MVT-1 cells and abrogated the increase in cell invasion in response to insulin. In the pre-diabetic MKR mouse, vimentin knockdown led to a decrease in pulmonary metastases. In vitro, we found that insulin increased pAKT, prevented caspase 3 activation, and increased vimentin. Inhibiting the phosphatidylinositol 3 kinase/AKT pathway, using NVP-BKM120, increased active caspase 3 and decreased vimentin levels. This study is the first to show that vimentin has an important role in tumor metastasis in vivo in the setting of pre-diabetes and endogenous hyperinsulinemia. Vimentin targeting may be an important therapeutic strategy to reduce metastases in patients with obesity, pre-diabetes or T2D.

  9. Normal and cancer mammary stem cells evade interferon-induced constraint through the miR-199a-LCOR Axis

    PubMed Central

    Celià-Terrassa, Toni; Liu, Daniel; Choudhury, Abrar; Hang, Xiang; Wei, Yong; Zamalloa, Jose; Alfaro-Aco, Raymundo; Chakrabarti, Rumela; Jiang, Yi-Zhou; Koh, Bong Ihn; Smith, Heath; DeCoste, Christina; Li, Jun-Jing; Shao, Zhi-Ming; Kang, Yibin

    2017-01-01

    Tumor-initiating cells (TICs), or cancer stem cells (CSC), possess stem cell-like properties observed in normal adult tissue stem cells. Normal and cancerous stem cells may therefore share regulatory mechanisms for maintaining self-renewing capacity and resisting differentiation elicited by cell-intrinsic or microenvironmental cues. Here, we show that miR-199a promotes stem cell properties in mammary stem cells (MaSCs) and breast CSCs by directly repressing nuclear receptor corepressor LCOR, which primes interferon (IFN) responses. Elevated miR-199a expression in stem cell-enriched populations protects normal and malignant stem-like cells from differentiation and senescence induced by IFNs that are produced by epithelial and immune cells in the mammary gland. Importantly, the miR-199a-LCOR-IFN axis is activated in poorly differentiated ER− breast tumors, functionally promotes tumor initiation and metastasis, and is associated with poor clinical outcome. Our study therefore reveals a common mechanism shared by normal and malignant stem cells to protect them from suppressive immune cytokine signaling. PMID:28530657

  10. Congenic rats with higher arylamine N-acetyltransferase 2 activity exhibit greater carcinogen-induced mammary tumor susceptibility independent of carcinogen metabolism.

    PubMed

    Stepp, Marcus W; Doll, Mark A; Samuelson, David J; Sanders, Mary Ann G; States, J Christopher; Hein, David W

    2017-03-31

    Recent investigations suggest role(s) of human arylamine N-acetyltransferase 1 (NAT1) in breast cancer. Rat NAT2 is orthologous to human NAT1 and the gene products are functional homologs. We conducted in vivo studies using F344.WKY-Nat2 rapid/slow rats, congenic at rat Nat2 for high (rapid) and low (slow) arylamine N-acetyltransferase activity, to assess a possible role for rat NAT2 in mammary tumor susceptibility. Mammary carcinogens, methylnitrosourea (MNU) and 7,12-dimethylbenzanthracene (DMBA) neither of which is metabolized by N-acetyltransferase, were administered to assess mammary tumors. MNU was administered at 3 or 8 weeks of age. DMBA was administered at 8 weeks of age. NAT2 enzymatic activity and endogenous acetyl-coenzyme A (AcCoA) levels were measured in tissue samples and embryonic fibroblasts isolated from the congenic rats. Tumor latency was shorter in rapid NAT2 rats compared to slow NAT2 rats, with statistical significance for MNU administered at 3 and 8 weeks of age (p = 0.009 and 0.050, respectively). Tumor multiplicity and incidence were higher in rapid NAT2 rats compared to slow NAT2 rats administered MNU or DMBA at 8 weeks of age (MNU, p = 0.050 and 0.035; DMBA, p = 0.004 and 0.027, respectively). Recombinant rat rapid-NAT2, as well as tissue samples and embryonic fibroblasts derived from rapid NAT2 rats, catalyzed p-aminobenzoic acid N-acetyl transfer and folate-dependent acetyl-coenzyme A (AcCoA) hydrolysis at higher rates than those derived from rat slow-NAT2. Embryonic fibroblasts isolated from rapid NAT2 rats displayed lower levels of cellular AcCoA than slow NAT2 rats (p < 0.01). A novel role for rat NAT2 in mammary cancer was discovered unrelated to carcinogen metabolism, suggesting a role for human NAT1 in breast cancer.

  11. Efficacy and toxicity of plasmonic photothermal therapy (PPTT) using gold nanorods (GNRs) against mammary tumors in dogs and cats.

    PubMed

    Abdoon, Ahmed S; Al-Ashkar, Emad A; Kandil, Omaima M; Shaban, Ahmed M; Khaled, Hussein M; El Sayed, Mostafa A; El Shaer, Marwa M; Shaalan, Asharaf H; Eisa, Wael H; Eldin, Amina A Gamal; Hussein, Hany A; El Ashkar, Mohammad R; Ali, Moustafa R; Shabaka, Ali A

    2016-11-01

    Plasmonic photothermal therapy (PPTT) was introduced as a promising treatment of cancer. This work was conducted to evaluate the cytotoxic effect of intratumoral (IT) injection of 75μg gold nanorods (GNRs)/kg of body weight followed by direct exposure to 2 w/cm 2 near infra-red laser light for 10min on ablation of mammary tumor in 10 dogs and 6 cats. Complete blood count (CBC), liver and kidney function were checked before the start of treatment and one month after injection of GNRs. Results showed that 62.5% (10/16), 25% (4/16) and 12.5% (2/16) of treated animals showed complete remission, partial remission and no response, respectively. Tumor was relapsed in 4 cases of initially responding animals (25%). Overall survival rate was extended to 315.5±20.5days. GNRs have no toxic effect on blood profile, liver or kidney functions. In conclusion, GNRs can be safely used for treatment of mammary tumors in dogs and cats. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. CSF-1R as an inhibitor of apoptosis and promoter of proliferation, migration and invasion of canine mammary cancer cells

    PubMed Central

    2013-01-01

    Background Tumor-associated macrophages (TAMs) have high impact on the cancer development because they can facilitate matrix invasion, angiogenesis, and tumor cell motility. It gives cancer cells the capacity to invade normal tissues and metastasize. The signaling of colony-stimulating factor-1 receptor (CSF-1R) which is an important regulator of proliferation and differentiation of monocytes and macrophages regulates most of the tissue macrophages. However, CSF-1R is expressed also in breast epithelial tissue during some physiological stages i.g.: pregnancy and lactation. Its expression has been also detected in various cancers. Our previous study has showed the expression of CSF-1R in all examined canine mammary tumors. Moreover, it strongly correlated with grade of malignancy and ability to metastasis. This study was therefore designed to characterize the role of CSF-1R in canine mammary cancer cells proliferation, apoptosis, migration, and invasion. As far as we know, the study presented hereby is a pioneering experiment in this field of veterinary medicine. Results We showed that csf-1r silencing significantly increased apoptosis (Annexin V test), decreased proliferation (measured as Ki67 expression) and decreased migration (“wound healing” assay) of canine mammary cancer cells. Treatment of these cells with CSF-1 caused opposite effect. Moreover, csf-1r knock-down changed growth characteristics of highly invasive cell lines on Matrigel matrix, and significantly decreased the ability of these cells to invade matrix. CSF-1 treatment increased invasion of cancer cells. Conclusion The evidence of the expression and functional role of the CSF-1R in canine mammary cancer cells indicate that CSF-1R targeting may be a good therapeutic approach. PMID:23561040

  13. Canonical Wnt Signaling as a Specific Marker of Normal and Tumorigenic Mammary Stem Cells

    DTIC Science & Technology

    2010-02-01

    for mammary stem cells and be a target for transformation that results in the formation of aggressive mammary tumors. Breast cancer stem cells, Wnt...tumorigenesis, and human breast cancer. In addition, increasing evidence suggests that tumors arise from either normal stem or progenitor cells...population of mammary tumor cells that are CD24+/CD49++. Since Wnt pathway activation occurs in human breast cancer and is required for

  14. Cutaneous metastases of a mammary carcinoma in a llama.

    PubMed Central

    Leichner, T L; Turner, O; Mason, G L; Barrington, G M

    2001-01-01

    An 8-year-old, female llama was evaluated for nonhealing, ulcerative, cutaneous lesions, which also involved the mammary gland. Biopsies of the lesions distant from and within the mammary gland area revealed an aggressive carcinoma. The tumor was confirmed at necropsy to be a mammary gland adenocarcinoma with cutaneous metastasis. Images Figure 1. PMID:11265189

  15. Venezuelan Equine Encephalitis Replicon Immunization Overcomes Intrinsic Tolerance and Elicits Effective Anti-Tumor Immunity to the ’Self’ Tumor-Associated Antigen, neu in a Rat Mammary Tumor Model

    DTIC Science & Technology

    2003-01-01

    rat mammary tumor model Edward L. Nelson1, Darue Prieto2, Terri G. Alexander1, Peter Pushko3, Loreen A. Lofts3, Jonathan O. Rayner4, Kurt I. Kamrud4...7861–7867, 2001 28. Lachman LB, Rao XM, Kremer RH, Ozpolat B, Kiriakova G, Price JE: DNA vaccination against neu reduces breast can- cer incidence and

  16. Embryonic mammary signature subsets are activated in Brca1-/- and basal-like breast cancers

    PubMed Central

    2013-01-01

    Introduction Cancer is often suggested to result from development gone awry. Links between normal embryonic development and cancer biology have been postulated, but no defined genetic basis has been established. We recently published the first transcriptomic analysis of embryonic mammary cell populations. Embryonic mammary epithelial cells are an immature progenitor cell population, lacking differentiation markers, which is reflected in their very distinct genetic profiles when compared with those of their postnatal descendents. Methods We defined an embryonic mammary epithelial signature that incorporates the most highly expressed genes from embryonic mammary epithelium when compared with the postnatal mammary epithelial cells. We looked for activation of the embryonic mammary epithelial signature in mouse mammary tumors that formed in mice in which Brca1 had been conditionally deleted from the mammary epithelium and in human breast cancers to determine whether any genetic links exist between embryonic mammary cells and breast cancers. Results Small subsets of the embryonic mammary epithelial signature were consistently activated in mouse Brca1-/- tumors and human basal-like breast cancers, which encoded predominantly transcriptional regulators, cell-cycle, and actin cytoskeleton components. Other embryonic gene subsets were found activated in non-basal-like tumor subtypes and repressed in basal-like tumors, including regulators of neuronal differentiation, transcription, and cell biosynthesis. Several embryonic genes showed significant upregulation in estrogen receptor (ER)-negative, progesterone receptor (PR)-negative, and/or grade 3 breast cancers. Among them, the transcription factor, SOX11, a progenitor cell and lineage regulator of nonmammary cell types, is found highly expressed in some Brca1-/- mammary tumors. By using RNA interference to silence SOX11 expression in breast cancer cells, we found evidence that SOX11 regulates breast cancer cell

  17. Dominant negative retinoic acid receptor initiates tumor formation in mice.

    PubMed

    Kupumbati, Tara S; Cattoretti, Giorgio; Marzan, Christine; Farias, Eduardo F; Taneja, Reshma; Mira-y-Lopez, Rafael

    2006-03-24

    Retinoic acid suppresses cell growth and promotes cell differentiation, and pharmacological retinoic acid receptor (RAR) activation is anti-tumorigenic. This begs the question of whether chronic physiological RAR activation by endogenous retinoids is likewise anti-tumorigenic. To address this question, we generated transgenic mice in which expression of a ligand binding defective dominant negative RARalpha (RARalphaG303E) was under the control of the mouse mammary tumor virus (MMTV) promoter. The transgene was expressed in the lymphoid compartment and in the mammary epithelium. Observation of aging mice revealed that transgenic mice, unlike their wild type littermates, developed B cell lymphomas at high penetrance, with a median latency of 40 weeks. MMTV-RARalphaG303E lymphomas were high grade Pax-5+, surface H+L Ig negative, CD69+ and BCL6- and cytologically and phenotypically resembled human adult high grade (Burkitt's or lymphoblastic) lymphomas. We postulated that mammary tumors might arise after a long latency period as seen in other transgenic models of breast cancer. We tested this idea by transplanting transgenic epithelium into the cleared fat pads of wild type hosts, thus bypassing lymphomagenesis. At 17 months post-transplantation, a metastatic mammary adenocarcinoma developed in one of four transplanted glands whereas no tumors developed in sixteen of sixteen endogenous glands with wild type epithelium. These findings suggest that physiological RAR activity may normally suppress B lymphocyte and mammary epithelial cell growth and that global RAR inactivation is sufficient to initiate a stochastic process of tumor development requiring multiple transforming events. Our work makes available to the research community a new animal resource that should prove useful as an experimental model of aggressive sporadic lymphoma in immunologically uncompromised hosts. We anticipate that it may also prove useful as a model of breast cancer.

  18. GosB Inhibits Triacylglycerol Synthesis and Promotes Cell Survival in Mouse Mammary Epithelial Cells.

    PubMed

    Xu, Gaoxiao; Duan, Saixing; Hou, Jianye; Wei, Zhongxin; Zhao, Guangwei

    2017-01-01

    It has been demonstrated that the activator protein related transcription factor Finkel-Biskis-Jinkins murine osteosarcoma B (GosB) is involved in preadipocyte differentiation and triacylglycerol synthesis. However, the role of GosB in regulating the synthesis of milk fatty acid in mouse mammary glands remains unclear. This research uncovered potentially new roles of GosB in suppressing milk fatty acid synthesis. Results revealed that GosB had the highest expression in lung tissue and showed a higher expression level during nonlactation than during lactation. GosB inhibited the expression of fatty acid synthase (FASN) , stearoyl-CoA desaturase (SCD) , fatty acid binding protein 4 (FABP4) , diacylglycerol acyltransferase 1 (DGAT1) , perilipin 2 (PLIN2) , perilipin 3 (PLIN3) , and C/EBPα in mouse mammary gland epithelial cells (MEC). In addition, GosB reduced cellular triglyceride content and the accumulation of lipid droplets; in particular, GosB enhanced saturated fatty acid concentration (C16:0 and C18:0). The PPAR γ agonist, rosiglitazone (ROSI), promoted apoptosis and inhibited cell proliferation. GosB increased the expression of Bcl-2 and protected MEC from ROSI-induced apoptosis. Furthermore, MECs were protected from apoptosis through the GosB regulation of intracellular calcium concentrations. These findings suggest that GosB may regulate mammary epithelial cells milk fat synthesis and apoptosis via PPAR γ in mouse mammary glands.

  19. [Development of a Computer-aided Diagnosis System to Distinguish between Benign and Malignant Mammary Tumors in Dynamic Magnetic Resonance Images: Automatic Detection of the Position with the Strongest Washout Effect in the Tumor].

    PubMed

    Miyazaki, Yoshiaki; Tabata, Nobuyuki; Taroura, Tomomi; Shinozaki, Kenji; Kubo, Yuichiro; Tokunaga, Eriko; Taguchi, Kenichi

    We propose a computer-aided diagnostic (CAD) system that uses time-intensity curves to distinguish between benign and malignant mammary tumors. Many malignant tumors show a washout pattern in time-intensity curves. Therefore, we designed a program that automatically detects the position with the strongest washout effect using the technique, such as the subtraction technique, which extracts only the washout area in the tumor, and by scanning data in 2×2 pixel region of interest (ROI). Operation of this independently developed program was verified using a phantom system that simulated tumors. In three cases of malignant tumors, the washout pattern detection rate in images with manually set ROI was ≤6%, whereas the detection rate with our novel method was 100%. In one case of a benign tumor, when the same method was used, we checked that there was no washout effect and detected the persistent pattern. Thus, the distinction between benign and malignant tumors using our method was completely consistent with the pathological diagnoses made. Our novel method is therefore effective for differentiating between benign and malignant mammary tumors in dynamic magnetic resonance images.

  20. Apples prevent mammary tumors in rats.

    PubMed

    Liu, Rui Hai; Liu, Jiaren; Chen, Bingqing

    2005-03-23

    Regular consumption of fruits and vegetables has been consistently shown to be associated with reduced risk of developing chronic diseases such as cancer and cardiovascular disease. Apples are commonly consumed and are the major contributors of phytochemicals in human diets. It was previously reported that apple extracts exhibit strong antioxidant and antiproliferative activities and that the major part of total antioxidant activity is from the combination of phytochemicals. Phytochemicals, including phenolics and flavonoids, are suggested to be the bioactive compounds contributing to the health benefits of apples. Here it is shown that whole apple extracts prevent mammary cancer in a rat model in a dose-dependent manner at doses comparable to human consumption of one, three, and six apples a day. This study demonstrated that whole apple extracts effectively inhibited mammary cancer growth in the rat model; thus, consumption of apples may be an effective strategy for cancer protection.

  1. Metabolic Alterations in Mammary Cancer Prevention by Withaferin A in a Clinically Relevant Mouse Model

    PubMed Central

    2013-01-01

    Background Efficacy of withaferin A (WA), an Ayurvedic medicine constituent, for prevention of mammary cancer and its associated mechanisms were investigated using mouse mammary tumor virus–neu (MMTV-neu) transgenic model. Methods Incidence and burden of mammary cancer and pulmonary metastasis were scored in female MMTV-neu mice after 28 weeks of intraperitoneal administration with 100 µg WA (three times/week) (n = 32) or vehicle (n = 29). Mechanisms underlying mammary cancer prevention by WA were investigated by determination of tumor cell proliferation, apoptosis, metabolomics, and proteomics using plasma and/or tumor tissues. Spectrophotometric assays were performed to determine activities of complex III and complex IV. All statistical tests were two-sided. Results WA administration resulted in a statistically significant decrease in macroscopic mammary tumor size, microscopic mammary tumor area, and the incidence of pulmonary metastasis. For example, the mean area of invasive cancer was lower by 95.14% in the WA treatment group compared with the control group (mean = 3.10 vs 63.77mm2, respectively; difference = –60.67mm2; 95% confidence interval = –122.50 to 1.13mm2; P = .0536). Mammary cancer prevention by WA treatment was associated with increased apoptosis, inhibition of complex III activity, and reduced levels of glycolysis intermediates. Proteomics confirmed downregulation of many glycolysis-related proteins in the tumor of WA-treated mice compared with control, including M2-type pyruvate kinase, phospho glycerate kinase, and fructose-bisphosphate aldolase A isoform 2. Conclusions This study reveals suppression of glycolysis in WA-mediated mammary cancer prevention in a clinically relevant mouse model. PMID:23821767

  2. Active immunization to luteinizing hormone releasing hormone to inhibit the induction of mammary tumors in the rat

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ravdin, P.M.; Jordan, V.C.

    1988-01-01

    Immunization of female rats with a bovine serum albumin-luteinizing hormone releasing hormone conjugate results in suppression of dimethylbenzanthracene mammary tumor incidence. Tumor incidence was 1.3, and 1.29 tumors per rat in bovine serum albumin alone (n = 10) and unimmunized (n = 18) control groups, but no tumors were found in the bovine serum albumin-luteinizing hormone releasing hormone conjugate immunized animals (n = 10). In a second experiment immunization with bovine serum albumin-luteinizing hormone releasing hormone conjugates reduced tumor incidence to 0.3 tumors per rat (n = 10) from the 1.2 tumors per animal seen in the control animals (nmore » = 10) immunized with bovine serum albumin alone. Bovine serum albumin-luteinizing hormone immunization caused the production of anti-LHRH antibodies, an interruption of estrous cycles, lowered serum estradiol and progesterone levels, and atrophy of the ovaries and uteri. Immunization BSA-hormone conjugates is a novel anti-tumor strategy.« less

  3. The influence of tumor necrosis factor-α on the tumorigenic Wnt-signaling pathway in human mammary tissue from obese women.

    PubMed

    Roubert, Agathe; Gregory, Kelly; Li, Yuyang; Pfalzer, Anna C; Li, Jinchao; Schneider, Sallie S; Wood, Richard J; Liu, Zhenhua

    2017-05-30

    Epidemiological studies have convincingly suggested that obesity is an important risk factor for postmenopausal breast cancer, but the mechanisms responsible for this relationship are still not fully understood. We hypothesize that obesity creates a low-grade inflammatory microenvironment, which stimulates Wnt-signaling and thereby promotes the development of breast cancer. To test this hypothesis, we evaluated the correlations between expression of multiple inflammatory cytokines and Wnt pathway downstream genes in mammary tissues from women (age ≥ 50) undergoing reduction mammoplasty. Moreover, we specifically examined the role of tumor necrosis factor-α (TNF-α), an important proinflammatory cytokine associated with obesity and a possible modulator of the Wnt pathway. The regulatory effects of TNF-α on Wnt pathway targets were measured in an ex vivo culture of breast tissue treated with anti-TNF-α antibody or TNF-α recombinant protein. We found that BMI was positively associated with the secretion of inflammatory cytokines IL-1β, IL-6 and TNF-α, all of which were negatively correlated with the expression of SFRP1. The transcriptional expression of Wnt-signaling targets, AXIN2 and CYCLIN D1, were higher in mammary tissue from women with BMI ≥ 30 compared to those with BMI < 30. Our ex vivo work confirmed that TNF-α is causally linked to the up-regulation of active β-CATENIN, a key component in the Wnt pathway, and several Wnt-signaling target genes (i.e. CYCLIN D1, AXIN2, P53 and COX-2). Collectively, these findings indicate that obesity-driven inflammation elevates Wnt-signaling in mammary tissue and thereby creates a microenvironment conducive to the development of breast cancer.

  4. Sasa health exerts a protective effect on Her2/NeuN mammary tumorigenesis.

    PubMed

    Ren, Mingqiang; Reilly, R Todd; Sacchi, Nicoletta

    2004-01-01

    Bamboo grass leaves of different Sasa species have been widely used in food and medicine in Eastern Asia for hundreds of years. Of special interest are Kumazasa (Sasa senanensis rehder) leaves used to prepare an alkaline extract known as Sasa Health. This extract was reported to inhibit both the development and growth of mammary tumors in a mammary tumor strain of virgin SHN mice (1). We found that Sasa Health exerts a significant protective effect on spontaneous mammary tumorigenesis in another mouse model of human breast cancer, the transgenic FVB-Her2/NeuN mouse model. Two cohorts of Her2/NeuN female mice of different age (eleven-week-old and twenty-four-week-old) chronically treated with Sasa Health in drinking water showed both a delay in the development of tumors and reduced tumor multiplicity. Sasa Health also induced inhibition of mammary duct branching and side bud development in association with reduced angiogenesis. Altogether these findings indicate that Sasa Health contains phytochemicals that can effectively retard spontaneous mammary tumorigenesis.

  5. Oncogene pathway activation in mammary tumors dictates [18F]-FDG-PET uptake

    PubMed Central

    Alvarez, James V.; Belka, George K.; Pan, Tien-chi; Chen, Chien-Chung; Blankemeyer, Eric; Alavi, Abass; Karp, Joel; Chodosh, Lewis A.

    2015-01-01

    Increased glucose utilization is a hallmark of human cancer that is used to image tumors clinically. In this widely used application, glucose uptake by tumors is monitored by positron emission tomography (PET) of the labeled glucose analog F-18-2-fluoro-2-deoxyglucose (18F-FDG). Despite its widespread clinical use, the cellular and molecular mechanisms that determine FDG uptake - a tool that can monitor tumor heterogeneity - remain poorly understood. In this study, we compared FDG uptake in mammary tumors driven by the Akt1, c-MYC, HER2/neu, Wnt1 or H-Ras oncogenes in genetically engineered mice, correlating it to tumor growth, cell proliferation and levels of gene expression involved in key steps of glycolytic metabolism. We found that FDG uptake by tumors was dictated principally by the driver oncogene and was not independently associated with tumor growth or cellular proliferation. Oncogene downregulation resulted in a rapid decrease in FDG uptake, preceding effects on tumor regression, irrespective of the baseline level of uptake. FDG uptake correlated positively with expression of hexokinase-2 (HK2) and HIF-1α and associated negatively with PFK-2b expression and p-AMPK. The correlation of HK2 and FDG uptake was independent of all variables tested, including the initiating oncogene, suggesting that HK2 is an independent predictor of FDG uptake. In contrast, expression of Glut1 was correlated with FDG uptake only in tumors driven by Akt or HER2/neu. Together, these results showed that the oncogenic pathway activated within a tumor is a primary determinant of its FDG uptake, mediated by key glycolytic enzymes that provide a framework to interpret effects on this key parameter in clinical imaging. PMID:25239452

  6. Cyclic-glycine-proline accelerates mammary involution by promoting apoptosis and inhibiting IGF-1 function.

    PubMed

    Singh-Mallah, Gagandeep; McMahon, Christopher D; Guan, Jian; Singh, Kuljeet

    2017-12-01

    In rodents, post-lactational involution of mammary glands is characterized by the loss of mammary epithelial cells via apoptosis, which is associated with a decline in the expression of insulin-like growth factor-1 (IGF-1). Overexpression of IGF-1 delays involution by inhibiting apoptosis of epithelial cells and preserving the remaining secretory alveoli. Cyclic-glycine-proline (cGP), a metabolite of IGF-1, normalizes IGF-1 function under pathological conditions by regulating the bioavailability of IGF-1. The present study investigated the effect of cGP on the physiological decline in IGF-1 function during post-lactational mammary involution. Rat dams were gavaged with either cGP (3 mg/kg) or saline once per day from post-natal d8-22. Before collecting tissue on post-natal d23, a pair of mammary glands were sealed on d20 (72 hr-engorgement, thus representative of late-involution) and d22 (24 hr-engorgement, thus representative of mid-involution), while the remaining glands were allowed to involute naturally (early-involution). During early-involution, cGP accelerated the loss of mammary cells through apoptosis, resulting in an earlier clearance of intact secretory alveoli compared with the control group. This coincided with an earlier up-regulation of the cell survival factors, Bcl-xl and IGF-1R, in the early-involution cGP glands compared with the control glands. During late-involution, cGP reduced the bioactivity of IGF-1, which was evident through decreased phosphorylation of IGF-1R in the regressed alveoli. Maternal administration of cGP did not alter milk production and composition during early-, peak-, or late-stage of lactation. These data show that cGP accelerates post-lactational involution by promoting apoptosis and the physiological decline in IGF-1 function. © 2017 Wiley Periodicals, Inc.

  7. Genistein-mediated inhibition of mammary stromal adipocyte differentiation limits expansion of mammary stem/progenitor cells by paracrine signaling

    USDA-ARS?s Scientific Manuscript database

    Mammary adiposity may contribute to breast cancer development and progression by releasing cytokines and other inflammatory mediators that promote mammary epithelial proliferation. We evaluated the effects of soy isoflavone genistein (GEN) on the adipogenic differentiation of a SV40-immortalized mou...

  8. Gestational high-fat diet and bisphenol A exposure heightens mammary cancer risk

    PubMed Central

    Leung, Yuet-Kin; Govindarajah, Vinothini; Cheong, Ana; Veevers, Jennifer; Song, Dan; Gear, Robin; Zhu, Xuegong; Ying, Jun; Kendler, Ady; Medvedovic, Mario; Belcher, Scott

    2017-01-01

    In utero exposure to bisphenol A (BPA) increases mammary cancer susceptibility in offspring. High-fat diet is widely believed to be a risk factor of breast cancer. The objective of this study was to determine whether maternal exposure to BPA in addition to high-butterfat (HBF) intake during pregnancy further influences carcinogen-induced mammary cancer risk in offspring, and its dose–response curve. In this study, we found that gestational HBF intake in addition to a low-dose BPA (25 µg/kg BW/day) exposure increased mammary tumor incidence in a 50-day-of-age chemical carcinogen administration model and altered mammary gland morphology in offspring in a non-monotonic manner, while shortening tumor-free survival time compared with the HBF-alone group. In utero HBF and BPA exposure elicited differential effects at the gene level in PND21 mammary glands through DNA methylation, compared with HBF intake in the absence of BPA. Top HBF + BPA-dysregulated genes (ALDH1B1, ASTL, CA7, CPLX4, KCNV2, MAGEE2 and TUBA3E) are associated with poor overall survival in The Cancer Genomic Atlas (TCGA) human breast cancer cohort (n = 1082). Furthermore, the prognostic power of the identified genes was further enhanced in the survival analysis of Caucasian patients with estrogen receptor-positive tumors. In conclusion, concurrent HBF dietary and a low-dose BPA exposure during pregnancy increases mammary tumor incidence in offspring, accompanied by alterations in mammary gland development and gene expression, and possibly through epigenetic reprogramming. PMID:28487351

  9. A functional study of proximal goat β-casein promoter and intron 1 in immortalized goat mammary epithelial cells.

    PubMed

    Kung, M H; Lee, Y J; Hsu, J T; Huang, M C; Ju, Y T

    2015-06-01

    Goat β-casein (CSN2) promoter has been extensively used to derive expression of recombinant therapeutic protein in transgenic goats; however, little direct evidence exists for signaling molecules and the cis-elements of goat CSN2 promoter in response to lactogenic hormone stimulation in goat mammary epithelial cells. Here, we use an immortalized caprine mammary epithelial cell line (CMC) to search for evidence of the above. Serial 5'-flanking regions deleted of promoter and intron 1 in goat CSN2 (-4,047 to +2,054) driven by firefly luciferase reporter gene were constructed and applied to measure promoter activity in CMC. The intron 1 region (+393 to +501) significantly decreased basal activity of the promoter. This finding contradicts other studies of the role of intron 1. The signal transducer and activator of transcription (STAT)5a played a significant role in activating promoter activity by prolactin stimulation. Hydrocortisone enhanced and prolonged the activity of STAT5a and promoter in CMC, but was independent of the glucocorticoid receptor response element. The minimum length of the CSN2 promoter segment in response to lactogenic stimulation was confirmed by 5' serial deletions. A cis-element located from -300 to -90 in proximal goat CSN2 promoter that is absent in bovine and human CSN2 promoter was newly identified. We demonstrated the presence of a STAT5a binding site (-102 to -82) and preservation of the guanosine nucleotide at position -90 based on responses to the presence of lactogenic hormone using internal deletions and point mutations of the predicted STAT5a binding site, and chromatin immunoprecipitation assay. Together, these findings demonstrate that the proximal -300 bp of goat CSN2 promoter containing the STAT5a binding site (-102 to -82) is the response element for lactogenic hormone stimulation. Additionally, intron 1 may be required for tissue or developmental stage-specific expression in mammary gland. The role of the far-distal regions of

  10. Increased levels of interleukins 8 and 10 as findings of canine inflammatory mammary cancer.

    PubMed

    de Andrés, Paloma Jimena; Illera, Juan Carlos; Cáceres, Sara; Díez, Lucía; Pérez-Alenza, Maria Dolores; Peña, Laura

    2013-04-15

    Inflammatory mammary cancer (IMC) is a distinct form of mammary cancer that affects dogs and women [in humans, IMC is known as inflammatory breast cancer (IBC)], and is characterized by a sudden onset and an aggressive clinical course. Spontaneous canine IMC shares epidemiologic, histopathological and clinical characteristics with the disease in humans and has been proposed as the best spontaneous animal model for studying IBC, although several aspects remain unstudied. Interleukins (ILs) play an important role in cancer as potential modulators of angiogenesis, leukocyte infiltration and tumor growth. The aims of the present study were to assess serum and tumor levels of several ILs (IL-1α, IL-1β, IL-6, IL-8 and IL-10) by enzyme-immunoassay in dogs bearing benign and malignant mammary tumors, including dogs with IMC, for a better understanding of this disease. Forty-eight dogs were prospectively included. Animals consisted of 7 healthy Beagles used as donors for normal mammary glands (NMG) and serum controls (SCs), 10 dogs with hyperplasias and benign mammary tumors (HBMT), 24 with non-inflammatory malignant mammary tumors (non-IMC MMT) and 7 dogs with clinical and pathological IMC. IL-8 (serum) and IL-10 (serum and tissue homogenate) levels were higher in the dogs with IMC compared with the non-IMC MMT group. ILs were increased with tumor malignancy as follows: in tumor homogenates IL-6 levels were higher in malignant tumors (IMC and non-IMC MMT) versus HBMT and versus NMG and tumor IL-8 was increased in malignant tumors versus NMG; in serum, IL-1α and IL-8 levels were higher in the malignant groups respect to HBMT and SCs; interestingly, IL-10 was elevated only in the serum of IMC animals. To the best of our knowledge, this is the first report that analyzes ILs in IMC and IL-10 in canine mammary tumors. Our results indicate a role for IL-6, IL-8 and IL-10 in canine mammary malignancy and specific differences in ILs content in IMC versus non-IMC MMT that could

  11. Proliferation of human mammary cancer cells exposed to 27-hydroxycholesterol

    PubMed Central

    CRUZ, PAMELA; TORRES, CRISTIAN; RAMÍREZ, MARÍA EUGENIA; EPUÑÁN, MARÍA JOSÉ; VALLADARES, LUIS EMILIO; SIERRALTA, WALTER DANIEL

    2010-01-01

    The aim of the present study was to identify the possible mechanisms by which certain estradiol receptor (ER)-positive mammary tumor cells remain resistant to treatment with anti-estrogens or inhibitors of local estradiol (E2) production. To this end, we compared the proliferative effects on mammary cancer cells of the novel selective ER modulator 27-hydroxycholesterol (27OHC) to those of E2, and evaluated their inhibition by ICI 182,780 (ICI). Analysis of the effects on the cell cycle of 27OHC and E2 in the absence or presence of ICI was conducted. In ER-positive mammary tumor cells, we detected the blocking of 27OHC proliferation-stimulatory activity by simvastatin, as well as the inhibition of E2-stimulated proliferation by an α-fetoprotein-derived cyclic nonapeptide. The effects reported herein may be extrapolated to infiltrating mammary cancer, where the activity of local macrophages may stimulate tumor growth. We suggest that increased breast cancer growth in obese patients may be related to increased 27OHC circulatory levels. PMID:22993572

  12. Proliferation of human mammary cancer cells exposed to 27-hydroxycholesterol.

    PubMed

    Cruz, Pamela; Torres, Cristian; Ramírez, María Eugenia; Epuñán, María José; Valladares, Luis Emilio; Sierralta, Walter Daniel

    2010-05-01

    The aim of the present study was to identify the possible mechanisms by which certain estradiol receptor (ER)-positive mammary tumor cells remain resistant to treatment with anti-estrogens or inhibitors of local estradiol (E(2)) production. To this end, we compared the proliferative effects on mammary cancer cells of the novel selective ER modulator 27-hydroxycholesterol (27OHC) to those of E(2), and evaluated their inhibition by ICI 182,780 (ICI). Analysis of the effects on the cell cycle of 27OHC and E(2) in the absence or presence of ICI was conducted. In ER-positive mammary tumor cells, we detected the blocking of 27OHC proliferation-stimulatory activity by simvastatin, as well as the inhibition of E(2)-stimulated proliferation by an α-fetoprotein-derived cyclic nonapeptide. The effects reported herein may be extrapolated to infiltrating mammary cancer, where the activity of local macrophages may stimulate tumor growth. We suggest that increased breast cancer growth in obese patients may be related to increased 27OHC circulatory levels.

  13. Zoledronic acid prevents the tumor-promoting effects of mesenchymal stem cells via MCP-1 dependent recruitment of macrophages.

    PubMed

    Jia, Xiao-Hua; Du, Yang; Mao, Duo; Wang, Zhong-Liang; He, Zhen-Qiang; Qiu, Jing-Dan; Ma, Xi-Bo; Shang, Wen-Ting; Ding, Dan; Tian, Jie

    2015-09-22

    Zoledronic acid (ZA) has been tested in clinical trials as an additive therapy for early-stage breast cancer. However, the mechanism by which ZA exerts its antitumor activity is still unclear. The aim of this study is to investigate whether the prevention of tumor growth by ZA is through regulating the mesenchymal stem cells (MSC)-monocyte chemotactic protein 1 (MCP-1)-macrophages axis in the tumor microenvironment. To address this issue, MDA-MB-231-FLUC human breast cancer cells were cultured and injected either alone, or coupled with MSC into the mammary fat pads of nude mice. MSC were treated with either ZA or untreated. Tumor growth was determined by using an in vivo bioluminescence imaging (BLI) and the tumor-associated macrophages (TAMs) in tumor tissues were immunohistochemically analyzed by using CD206 antibody. The effects of ZA on the cytokine related gene expression of MSC were assessed by using real-time PCR. In this study, we found that ZA-treated mice showed a significant delay in tumor growth. In addition, our data revealed that ZA weakened the ability of MSC to promote tumor growth by impairing TAMs recruitment and tumor vascularization. Furthermore, it was found that ZA decreased MCP-1 expression of MSC, and therefore reduced the recruitment of TAMs to the tumor sites and hence inhibited the tumor growth. Altogether, our study demonstrated ZA can prevent the tumor-promoting effects of MSC. The antitumor effects of ZA were caused by decreasing the MCP-1 expression of MSC, which further decreased the infiltration of TAMs into tumor sites, and therefore inhibited the tumor growth.

  14. The Role of BRCA1 in Suppressing Epithelial Mesenchymal Transition in Mammary Gland and Tumor Development

    DTIC Science & Technology

    2016-11-01

    2015;6:7505. doi: 10.1038/ncomms8505. PubMed PMID: 26106036; PubMed Central PMCID: PMC4491827. 19. Kalluri R, Weinberg RA. The basics of epithelial...Gupta PB, Evans KW, Hollier BG, Ram PT, Lander ES, Rosen JM, Weinberg RA, Mani SA. Core epithelial-to- mesenchymal transition interactome gene...Molecular analysis reveals heterogeneity of mouse mammary tumors conditionally mutant for Brca1. Mol Cancer 2008;7:29. 14. Kalluri R, Weinberg RA. The basics

  15. The Human Splice Variant Δ16HER2 Induces Rapid Tumor Onset in a Reporter Transgenic Mouse

    PubMed Central

    Iezzi, Manuela; Zenobi, Santa; Montani, Maura; Pietrella, Lucia; Kalogris, Cristina; Rossini, Anna; Ciravolo, Valentina; Castagnoli, Lorenzo; Tagliabue, Elda; Pupa, Serenella M.; Musiani, Piero; Monaci, Paolo; Menard, Sylvie; Amici, Augusto

    2011-01-01

    Several transgenic mice models solidly support the hypothesis that HER2 (ERBB2) overexpression or mutation promotes tumorigenesis. Recently, a HER2 splice variant lacking exon-16 (Δ16HER2) has been detected in human breast carcinomas. This alternative protein, a normal byproduct of HER2, has an increased transforming potency compared to wild-type (wt) HER2 receptors. To examine the ability of Δ16HER2 to transform mammary epithelium in vivo and to monitor Δ16HER2-driven tumorigenesis in live mice, we generated and characterized a mouse line that transgenically expresses both human Δ16HER2 and firefly luciferase under the transcriptional control of the MMTV promoter. All the transgenic females developed multifocal mammary tumors with a rapid onset and an average latency of 15.11 weeks. Immunohistochemical analysis revealed the concurrent expression of luciferase and the human Δ16HER2 oncogene only in the mammary gland and in strict correlation with tumor development. Transgenic Δ16HER2 expressed on the tumor cell plasma membrane from spontaneous mammary adenocarcinomas formed constitutively active homodimers able to activate the oncogenic signal transduction pathway mediated through Src kinase. These new transgenic animals demonstrate the ability of the human Δ16HER2 isoform to transform “per se” mammary epithelium in vivo. The high tumor incidence as well as the short latency strongly suggests that the Δ16HER2 splice variant represents the transforming form of the HER2 oncoprotein. PMID:21559085

  16. Oxidative DNA damage and mammary cell proliferation by alcohol-derived salsolinol.

    PubMed

    Murata, Mariko; Midorikawa, Kaoru; Kawanishi, Shosuke

    2013-10-21

    Drinking alcohol is a risk factor for breast cancer. Salsolinol (SAL) is endogenously formed by a condensation reaction of dopamine with acetaldehyde, a major ethanol metabolite, and SAL is detected in blood and urine after alcohol intake. We investigated the possibility that SAL can participate in tumor initiation and promotion by causing DNA damage and cell proliferation, leading to alcohol-associated mammary carcinogenesis. SAL caused oxidative DNA damage including 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG), in the presence of transition metal ions, such as Cu(II) and Fe(III)EDTA. Inhibitory effects of scavengers on SAL-induced DNA damage and the electron spin resonance study indicated the involvement of H₂O₂, which is generated via the SAL radical. Experiments on scavengers and site specificity of DNA damage suggested ·OH generation via a Fenton reaction and copper-peroxide complexes in the presence of Fe(III)EDTA and Cu(II), respectively. SAL significantly increased 8-oxodG formation in normal mammary epithelial MCF-10A cells. In addition, SAL induced cell proliferation in estrogen receptor (ER)-negative MCF-10A cells, and the proliferation was inhibited by an antioxidant N-acetylcysteine and an epidermal growth factor receptor (EGFR) inhibitor AG1478, suggesting that reactive oxygen species may participate in the proliferation of MCF-10A cells via EGFR activation. Furthermore, SAL induced proliferation in estrogen-sensitive breast cancer MCF-7 cells, and a surface plasmon resonance sensor revealed that SAL significantly increased the binding activity of ERα to the estrogen response element but not ERβ. In conclusion, SAL-induced DNA damage and cell proliferation may play a role in tumor initiation and promotion of multistage mammary carcinogenesis in relation to drinking alcohol.

  17. Downregulation of Programmed Cell Death 4 by Inflammatory Conditions Contributes to the Generation of the Tumor Promoting Microenvironment

    PubMed Central

    Yasuda, Michiko; Schmid, Tobias; Rübsamen, Daniela; Colburn, Nancy H.; Irie, Kazuhiro; Murakami, Akira

    2012-01-01

    Ample evidence has shown key roles of inflammation in tumor promotion and carcinogenesis, and tumor-associated macrophages are known to promote tumor growth and dissemination. Programmed cell death 4 (Pdcd4) is a novel tumor suppressor, and although various studies have revealed that the functions and expression mechanisms of Pdcd4 in tumor promotion, those in regard to inflammation remain unclear. In the present study, we examined whether inflammatory stimuli regulate Pdcd4 expression. 12-O-tetradecanoylphorbol 13-acetate (TPA) suppressed expression of pdcd4 mRNA in human monocytic cell lines (U937, THP-1). Similarly, the bacterial endotoxin lipopolysaccharide (LPS) downregulated pdcd4 level in mouse RAW264.7 and peritoneal macrophages. Furthermore, conditioned medium from LPS-stimulated RAW264.7 macrophages suppressed pdcd4 mRNA in RAW264.7 macrophages, and findings obtained with recombinant tumor necrosis factor-α (TNF-α) and TNF-α-specific siRNA suggested that TNF-α partly mediates LPS-triggered Pdcd4 downregulation via an autocrine mechanism. Specific inhibitors of phosphoinositide-3-kinase (PI3K) and c-jun N-terminus kinase (JNK) restored LPS-abolished pdcd4 mRNA. Consistently, in MCF7 mammary carcinoma cells, conditioned medium from TPA-differentiated/activated U937 cells suppressed pdcd4 mRNA. Additionally, knockdown of pdcd4 in RAW264.7 macrophages using siRNA significantly enhanced LPS-induced TNF-α protein production, and interferon-γ, CC chemokine ligand (Ccl) 1, Ccl20, and interleukin-10 mRNA expression. These results suggest that Pdcd4 suppresses the induction of these inflammatory mediators. Taken together, loss of Pdcd4 in macrophages may be a critical step in establishing the inflammatory environment while that in tumor cells contributes to tumor progression. PMID:20607724

  18. Characterization of protein marker expression, tumorigenicity, and doxorubicin chemoresistance in two new canine mammary tumor cell lines.

    PubMed

    Hsiao, Yen-Ling; Hsieh, Tai-Zu; Liou, Chian-Jiun; Cheng, Yeong-Hsiang; Lin, Chung-Tien; Chang, Chi-Yao; Lai, Yu-Shen

    2014-09-30

    Canine mammary tumors (CMTs) are the most common type of cancer found in female dogs. Establishment and evaluation of tumor cell lines can facilitate investigations of the biological mechanisms of cancer. Different cell models are used to investigate genetic, epigenetic, and cellular pathways, cancer progression, and cancer therapeutics. Establishment of new cell models will greatly facilitate research in this field. In the present study, we established and characterized two new CMT cell lines derived from a single CMT. We established two cell lines from a single malignant CMT specimen: DTK-E and DTK-SME. Morphologically, the DTK-E cells were large, flat, and epithelial-like, whereas DTK-SME cells were round and epithelial-like. Doubling times were 24 h for DTK-E and 18 h for DTK-SME. On western blots, both cell lines expressed cytokeratin AE1, vimentin, cytokeratin 7 (CK7), and heat shock protein 27 (HSP27). Moreover, investigation of chemoresistance revealed that DTK-SME was more resistant to doxorubicin-induced apoptosis than DTK-E was. After xenotransplantation, both DTK-E and DTK-SME tumors appeared within 14 days, but the average size of DTK-SME tumors was greater than that of DTK-E tumors after 56 days. We established two new cell lines from a single CMT, which exhibit significant diversity in cell morphology, protein marker expression, tumorigenicity, and chemoresistance. The results of this study revealed that the DTK-SME cell line was more resistant to doxorubicin-induced apoptosis and exhibited higher tumorigenicity in vivo than the DTK-E cell line. We anticipate that the two novel CMT cell lines established in this study will be useful for investigating the tumorigenesis of mammary carcinomas and for screening anticancer drugs.

  19. Inducible transgenics. New lessons on events governing the induction and commitment in mammary tumorigenesis.

    PubMed

    Hulit, J; Di Vizio, D; Pestell, R G

    2001-01-01

    Breast cancer arises from multiple genetic events that together contribute to the established, irreversible malignant phenotype. The development of inducible tissue-specific transgenics has allowed a careful dissection of the events required for induction and subsequent maintenance of tumorigenesis. Mammary gland targeted expression of oncogenic Ras or c-Myc is sufficient for the induction of mammary gland tumorigenesis in the rodent, and when overexpressed together the rate of tumor onset is substantially enhanced. In an exciting recent finding, D'Cruz et al discovered tetracycline-regulated c-Myc overexpression in the mammary gland induced invasive mammary tumors that regressed upon withdrawal of c-Myc expression. Almost one-half of the c-Myc-induced tumors harbored K-ras or N-ras gene point mutations, correlating with tumor persistence on withdrawal of c-Myc transgene expression. These findings suggest maintenance of tumorigenesis may involve a second mutation within the Ras pathway.

  20. Prostate and mammary adenocarcinoma in transgenic mice carrying a rat C3(1) simian virus 40 large tumor antigen fusion gene.

    PubMed Central

    Maroulakou, I G; Anver, M; Garrett, L; Green, J E

    1994-01-01

    A transgenic mouse model for prostate and mammary cancer has been developed in mice containing a recombinant gene expressing the simian virus 40 early-region transforming sequences under the regulatory control of the rat prostatic steroid binding protein [C3(1)] gene. Male transgenic mice develop prostatic hyperplasia in early life that progresses to adenoma or adenocarcinoma in most animals surviving to longer than 7 months of age. Prostate cancer metastases to lung have been observed. Female animals from the same founder lines generally develop mammary hyperplasia by 3 months of age with subsequent development of mammary adenocarcinoma by 6 months of age in 100% of the animals. The development of tumors correlates with the expression of the transgene as determined by Northern blot and immunohistochemical analyses. The results of these experiments demonstrate that the C3(1) regulatory region used in these experiments is useful for targeting expression to the prostate and mammary gland. To our knowledge, this experimental system is the first reported transgenic mouse model for prostate cancer. These transgenic animals offer the opportunity to study hormone response elements in vivo and the multistage progression from normal tissue to carcinoma in the prostate and mammary glands. Images PMID:7972041

  1. Comparison of ovariectomy and retinyl acetate on the growth of established 7,12-dimethylbenz(a)anthracene-induced mammary tumors in the rat

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gandlihon, P.; Melancon, R.; Djiane, J.

    1982-08-01

    Prolonged exposure to retinyl acetate (RA) in the diet inhibits the development of 7,12-dimethylbenz(a)anthracene (DMBA)-induced mammary cancers in rats. The effectiveness of RA was examined when given 6 months after the administration of DMBA. Non-inbred female Sprague-Dawley rats with DMBA-induced mammary tumors were divided into 3 groups and treated for 4 weeks as follows: Group 1 served as controls, group 2 was ovariectomized, and group 3 received 328 mg RA/kg diet. Ovariectomy (OVX) markedly reduced both the number and size of the tumors. RA administration failed to induce any significant regression in tumor number but significantly retarded tumor growth whenmore » compared to tumor growth in group 1 controls. The levels of estradiol, progestin, and prolactin (PRL) receptors were significantly reduced after OVX, whereas only the levels of PRL receptors declined significantly after RA administration. Circulating progesterone concentrations were not affected in the RA-treated group but the plasma PRL level was significantly increased. The present studies show that if treatment with RA is delayed until 6 months after carcinogen administration, the protective effect of RA can still be observed although its effectiveness is less dramatic than when it is administered earlier.« less

  2. ApcMin, A Mutation in the Murine Apc Gene, Predisposes to Mammary Carcinomas and Focal Alveolar Hyperplasias

    NASA Astrophysics Data System (ADS)

    Moser, Amy Rapaich; Mattes, Ellen M.; Dove, William F.; Lindstrom, Mary J.; Haag, Jill D.; Gould, Michael N.

    1993-10-01

    ApcMin (Min, multiple intestinal neoplasia) is a point mutation in the murine homolog of the APC gene. Min/+ mice develop multiple intestinal adenomas, as do humans carrying germ-line mutations in APC. Female mice carrying Min are also prone to develop mammary tumors. Min/+ mammary glands are more sensitive to chemical carcinogenesis than are +/+ mammary glands. Transplantation of mammary cells from Min/+ or +/+ donors into +/+ hosts demonstrates that the propensity to develop mammary tumors is intrinsic to the Min/+ mammary cells. Long-term grafts of Min/+ mammary glands also gave rise to focal alveolar hyperplasias, indicating that the presence of the Min mutation also has a role in the development of these lesions.

  3. Unsaturated fatty acids promote proliferation via ERK1/2 and Akt pathway in bovine mammary epithelial cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yonezawa, Tomo; Haga, Satoshi; Kobayashi, Yosuke

    2008-03-21

    GPR40 has recently been identified as a G protein-coupled cell-surface receptor for long-chain fatty acids (LCFAs). The mRNA of the bovine ortholog of GPR40 (bGPR40) was detected by RT-PCR in cloned bovine mammary epithelial cells (bMEC) and in the bovine mammary gland at various stages of lactation. Oleate and linoleate caused an increase in intracellular Ca{sup 2+} concentrations in these cells, and significantly reduced forskolin-induced cAMP concentrations. Phosphorylation of extracellular signal-regulated kinase (ERK) 1/2 and Akt kinase, which regulates cell proliferation and survival, was rapidly increased by oleate. Incubation with oleate and linoleate for 24 h significantly promoted cell proliferation.more » Moreover, in serum-free medium, oleate significantly stimulated cell proliferation during a 7-day culture. These results suggest that bGPR40 mediates LCFA signaling in mammary epithelial cells and thereby plays an important role in cell proliferation and survival.« less

  4. Inflammation-induced synergetic enhancement of nanoparticle treatments with DOXIL® and 90Y-Lactosome for orthotopic mammary tumor

    NASA Astrophysics Data System (ADS)

    Kurihara, Kensuke; Ueda, Motoki; Hara, Isao; Hara, Eri; Sano, Kohei; Makino, Akira; Ozeki, Eiichi; Yamamoto, Fumihiko; Saji, Hideo; Togashi, Kaori; Kimura, Shunsaku

    2016-05-01

    Polymeric micelles (Lactosome) in the size of 20-30 nm were labeled with radionuclides of 111In (111In-DOTA-Lactosome) for SPECT imaging and 90Y (90Y-DOTA-Lactosome) for β-ray irradiation for mammary tumor in mice. The tumor site at the femoral right leg grafted with 4T1 cells was clearly imaged at 24 h after the intravenous injection. Biodistribution revealed that the half-life time of 111In-DOTA-Lactosome was 11 h, which enabled the nanoparticle selectively accumulated in tumor site due to the enhanced permeability and retention (EPR) effect. The anti-tumor therapeutic effect of 90Y-DOTA-Lactosome was observed depending on the dose frequency and amount. Under the condition of the percutaneous ethanol injection treatment, the therapeutic effect of 90Y-DOTA-Lactosome was enhanced due to the super EPR effect. Owing to the super EPR effect, co-administration of 90Y-DOTA-Lactosome and DOXIL® inhibited the tumor growth during 15 days with their administrations.

  5. Steroid receptors analysis in human mammary tumors by isoelectric focusing in agarose.

    PubMed

    Bailleul, S; Gauduchon, P; Malas, J P; Lechevrel, C; Roussel, G; Goussard, J

    1988-08-01

    A high resolution and quantitative method for isoelectric focusing has been developed to separate the isoforms of estrogen and progesterone receptors in human mammary tumor cytosols stabilized by sodium molybdate. Agarose gels (0.5%) were used. Six samples can be analyzed on one gel in about 2 h, and 35-microliters samples are sufficient to determine the estrogen receptor isoform pattern. The constant yields and the reproducibility of data allow a quantitative analysis of these receptors. Four estrogen receptor isoforms have been observed (pI 4.7, 5.5, 6, and 6.5), isoforms with pI 4.7 and 6.5 being present in all tumors. After incubation at 28 degrees C in high ionic strength, the comparison of isoelectric focusing and high-performance size exclusion chromatography patterns of estrogen receptor confirms the oligomeric structure of the pI 4.7 isoform and suggests a monomeric structure for the pI 6.5 isoform. Under the same conditions of analysis, only one progesterone receptor isoform has been detected with pI 4.7.

  6. DNMT1 is essential for mammary and cancer stem cell maintenance and tumorigenesis

    PubMed Central

    Pathania, Rajneesh; Ramachandran, Sabarish; Elangovan, Selvakumar; Padia, Ravi; Yang, Pengyi; Cinghu, Senthilkumar; Veeranan-Karmegam, Rajalakshmi; Arjunan, Pachiappan; Gnana-Prakasam, Jaya P.; Fulzele, Sadanand; Pei, Lirong; Chang, Chang-Sheng; Choi, Hyeon; Shi, Huidong; Manicassamy, Santhakumar; Prasad, Puttur D.; Sharma, Suash; Ganapathy, Vadivel; Jothi, Raja; Thangaraju, Muthusamy

    2015-01-01

    Mammary stem/progenitor cells (MaSCs) maintain self-renewal of the mammary epithelium during puberty and pregnancy. DNA methylation provides a potential epigenetic mechanism for maintaining cellular memory during self-renewal. Although DNA methyltransferases (DNMTs) are dispensable for embryonic stem cell maintenance, their role in maintaining MaSCs and cancer stem cells (CSCs) in constantly replenishing mammary epithelium is unclear. Here we show that DNMT1 is indispensable for MaSC maintenance. Furthermore, we find that DNMT1 expression is elevated in mammary tumors, and mammary gland-specific DNMT1 deletion protects mice from mammary tumorigenesis by limiting the CSC pool. Through genome-scale methylation studies, we identify ISL1 as a direct DNMT1 target, hypermethylated and downregulated in mammary tumors and CSCs. DNMT inhibition or ISL1 expression in breast cancer cells limits CSC population. Altogether, our studies uncover an essential role for DNMT1 in MaSC and CSC maintenance and identify DNMT1-ISL1 axis as a potential therapeutic target for breast cancer treatment. PMID:25908435

  7. No association between Epstein-Barr Virus and Mouse Mammary Tumor Virus with Breast Cancer in Mexican Women

    NASA Astrophysics Data System (ADS)

    Morales-Sánchez, Abigail; Molina-Muñoz, Tzindilú; Martínez-López, Juan L. E.; Hernández-Sancén, Paulina; Mantilla, Alejandra; Leal, Yelda A.; Torres, Javier; Fuentes-Pananá, Ezequiel M.

    2013-10-01

    Breast cancer is the most frequent malignancy affecting women worldwide. It has been suggested that infection by Epstein Barr Virus (EBV), Mouse Mammary Tumor Virus or a similar virus, MMTV-like virus (MMTV-LV), play a role in the etiology of the disease. However, studies looking at the presence of these viruses in breast cancer have produced conflicting results, and this possible association remains controversial. Here, we used polymerase chain reaction assay to screen specific sequences of EBV and MMTV-LV in 86 tumor and 65 adjacent tissues from Mexican women with breast cancer. Neither tumor samples nor adjacent tissue were positive for either virus in a first round PCR and only 4 tumor samples were EBV positive by a more sensitive nested PCR. Considering the study's statistical power, these results do not support the involvement of EBV and MMTV-LV in the etiology of breast cancer.

  8. CLINICOPATHOLOGIC FEATURES OF MAMMARY MASSES IN CAPTIVE LIONS (PANTHERA LEO).

    PubMed

    Sadler, Ryan A; Craig, Linden E; Ramsay, Edward C; Helmick, Kelly; Collins, Darin; Garner, Michael M

    2016-03-01

    A multi-institutional retrospective analysis of 330 pathology accessions from 285 different lions found 15 captive, female African lions (Panthera leo) with confirmed mammary masses. Aside from the presence of a mammary mass, the most common initial clinical sign was inappetence. Histologic diagnoses were predominantly adenocarcinoma (n = 12), though two benign masses (mammary hyperplasia and a mammary cyst) and one squamous cell carcinoma were identified. Nine of 13 malignant tumors had metastasized to lymph nodes or viscera at the time of necropsy. Six lions with adenocarcinoma and two lions with benign mammary masses had received hormonal contraception, though little evidence of mammary lobular hyperplasia was seen in association with the adenocarcinomas. The most common concurrent disease processes found at necropsy were chronic urinary tract disease and other malignancies. These cases demonstrate that mammary malignancies occur in captive lions and frequently metastasize.

  9. Understanding Collagen Organization in Breast Tumors to Predict and Prevent Metastasis

    DTIC Science & Technology

    2015-11-01

    and their mechanism of action. We have explored stromal effects of macrophages in the E0771 murine mammary adenocarcinoma grown in the mammary fat ...and impacted tumor progression in breast tumor cell lines grown in the mammary fat pad (Figure 2 in Madden K, et al. 2013, Figure 9 here). We then...expression of TNF-α. To test this hypothesis, we grew mammary fat pad (MFP) tumors using a breast tumor cell line (E0771, a mammary adenocarcinoma derived from

  10. DDT acceleration of mammary gland tumors induced in the male Sprague-Dawley rat by 2-acetamidophenanthrene.

    PubMed

    Scribner, J D; Mottet, N K

    1981-01-01

    2-Acetamidophenanthrene (AAP) yields adducts to rat liver DNA and RNA in amounts comparable to those found for the potent hepatocarcinogen 2-acetamidofluorene, but is not hepatocarcinogenic. This suggested that AAP might initiate liver tumors, but was incapable of causing their progression to a detectable state. To test this hypothesis, the protocol devised by Peraino was used, in which 21-day-old male Sprague-Dawley rats were fed 0.02% AAP in a grain diet for three weeks. this was followed by long-term feeding of 0.05% 1,1,1-trichloro-2,2-bis(4-chlorophenyl)ethane (DDT). The mean latent period of all tumors (primarily mammary tumors) was reduced about six months by the DDT feeding. No tumors were found in rats treated with DDT only. Livers in all animals appeared normal at autopsy or on laparotomy, and showed barely detectable signs of toxicity upon histological examination. Thus, we have found that a once wide-spread environmental chemical acts as a tumor accelerator on a major target for human tumors. Because this finding is in the male rat, the significance of this result for breast cancer in women is uncertain.

  11. A review of the incidence and coincidence of uterine and mammary tumors in Wistar and Sprague-Dawley rats based on the RITA database and the role of prolactin.

    PubMed

    Harleman, Johannes H; Hargreaves, Adam; Andersson, Håkan; Kirk, Sarah

    2012-08-01

    Wistar rats are frequently selected for use in carcinogenicity studies because of their advantageous survival rate, which is more favorable than other strains such as the Sprague-Dawley (SD) strain. Uterine and mammary tumors are relatively common spontaneous neoplasms of both strains. We examined the incidence and coincidence of uterine tumors and mammary tumors in control animals of both strains within the RITA database. There was a strong inverse relationship between these tumor types in Wistar rats (p < .001). A less strong relationship was present in SD rats (p = .057). This association is likely to be related to prolactin. A short review of the role of prolactin in rats is given. These results are also discussed in the background of nonspecific toxicity at high dose levels in carcinogenicity studies above MTD levels resulting in reduction in body weights of >10%.

  12. Diagnostic PET Imaging of Mammary Microcalcifications Using 64Cu-DOTA-Alendronate in a Rat Model of Breast Cancer

    PubMed Central

    Ahrens, Bradley J.; Li, Lin; Ciminera, Alexandra K.; Chea, Junie; Poku, Erasmus; Bading, James R.; Weist, Michael R.; Miller, Marcia M.; Colcher, David M.

    2017-01-01

    The development of improved breast cancer screening methods is hindered by a lack of cancer-specific imaging agents and effective small-animal models to test them. The purpose of this study was to evaluate 64Cu-DOTA-alendronate as a mammary microcalcification-targeting PET imaging agent, using an ideal rat model. Our long-term goal is to develop 64Cu-DOTA-alendronate for the detection and noninvasive differentiation of malignant versus benign breast tumors with PET. Methods: DOTA-alendronate was synthesized, radiolabeled with 64Cu, and administered to normal or tumor-bearing aged, female, retired breeder Sprague–Dawley rats for PET imaging. Mammary tissues were subsequently labeled and imaged with light, confocal, and electron microscopy to verify microcalcification targeting specificity of DOTA-alendronate and elucidate the histologic and ultrastructural characteristics of the microcalcifications in different mammary tumor types. Tumor uptake, biodistribution, and dosimetry studies were performed to evaluate the efficacy and safety of 64Cu-DOTA-alendronate. Results: 64Cu-DOTA-alendronate was radiolabeled with a 98% yield. PET imaging using aged, female, retired breeder rats showed specific binding of 64Cu-DOTA-alendronate in mammary glands and mammary tumors. The highest uptake of 64Cu-DOTA-alendronate was in malignant tumors and the lowest uptake in benign tumors and normal mammary tissue. Confocal analysis with carboxyfluorescein-alendronate confirmed the microcalcification binding specificity of alendronate derivatives. Biodistribution studies revealed tissue alendronate concentrations peaking within the first hour, then decreasing over the next 48 h. Our dosimetric analysis demonstrated a 64Cu effective dose within the acceptable range for clinical PET imaging agents and the potential for translation into human patients. Conclusion: 64Cu-DOTA-alendronate is a promising PET imaging agent for the sensitive and specific detection of mammary tumors as well as

  13. Elevated expression of activated forms of Neu/ErbB-2 and ErbB-3 are involved in the induction of mammary tumors in transgenic mice: implications for human breast cancer.

    PubMed Central

    Siegel, P M; Ryan, E D; Cardiff, R D; Muller, W J

    1999-01-01

    To assess the importance of Neu activation during mammary tumorigenesis, altered receptors harboring in-frame deletions within the extracellular domain were expressed in transgenic mice. Females from several independent lines develop multiple mammary tumors that frequently metastasize to the lung. Tumor progression in these strains was associated with elevated levels of tyrosine-phosphorylated Neu and ErbB-3. Consistent with these observations, a survey of primary human breast tumors revealed frequent co-expression of both erbB-2 and erbB-3 transcripts. The ability of altered Neu receptors to induce mammary tumorigenesis in transgenic mice prompted us to examine whether similar mutations occurred in ErbB-2 during human breast cancer progression. Interestingly, an alternatively spliced form of erbB-2, closely resembling spontaneous activated forms of neu, was detected in human breast tumors. The ErbB-2 receptor encoded by this novel transcript harbors an in-frame deletion of 16 amino acids in the extracellular domain and can transform Rat-1 fibroblasts. Together, these observations argue that co-expression of ErbB-2 and ErbB-3 may play a critical role in the induction of human breast tumors, and raise the possibility that activating mutations in the ErbB-2 receptor may also contribute to this process. PMID:10205169

  14. Correlation of tumor-infiltrating lymphocytes to histopathological features and molecular phenotypes in canine mammary carcinoma: A morphologic and immunohistochemical morphometric study.

    PubMed

    Kim, Jong-Hyuk; Chon, Seung-Ki; Im, Keum-Soon; Kim, Na-Hyun; Sur, Jung-Hyang

    2013-04-01

    Abundant lymphocyte infiltration is frequently found in canine malignant mammary tumors, but the pathological features and immunophenotypes associated with the infiltration remain to be elucidated. The aim of the present study was to evaluate the relationship between lymphocyte infiltration, histopathological features, and molecular phenotype in canine mammary carcinoma (MC). The study was done with archived formalin-fixed, paraffin-embedded samples (n = 47) by histologic and immunohistochemical methods. The degree of lymphocyte infiltration was evaluated by morphologic analysis, and the T- and B-cell populations as well as the T/B-cell ratio were evaluated by morphometric analysis; results were compared with the histologic features and molecular phenotypes. The degree of lymphocyte infiltration was significantly higher in MCs with lymphatic invasion than in those without lymphatic invasion (P < 0.0001) and in tumors of high histologic grade compared with those of lower histologic grade (P = 0.045). Morphometric analysis showed a larger amount of T-cells and B-cells in MCs with a higher histologic grade and lymphatic invasion, but the T/B ratio did not change. Lymphocyte infiltration was not associated with histologic type or molecular phenotype, as assessed from the immunohistochemical expression of epidermal growth factor receptor 2, estrogen receptor, cytokeratin 14, and p63. Since intense lymphocyte infiltration was associated with aggressive histologic features, lymphocytes may be important for tumor aggressiveness and greater malignant behavior in the tumor microenvironment.

  15. Transgenes expressing the Wnt-1 and int-2 proto-oncogenes cooperate during mammary carcinogenesis in doubly transgenic mice.

    PubMed Central

    Kwan, H; Pecenka, V; Tsukamoto, A; Parslow, T G; Guzman, R; Lin, T P; Muller, W J; Lee, F S; Leder, P; Varmus, H E

    1992-01-01

    The Wnt-1 and int-2 proto-oncogenes are transcriptionally activated by mouse mammary tumor virus insertion mutations in virus-induced tumors and encode secretory glycoproteins. To determine whether these two genes can cooperate during carcinogenesis, we have crossed two previously characterized lines of transgenic mice to obtain bitransgenic animals carrying both Wnt-1 and int-2 transgenes under the control of the mouse mammary tumor virus long terminal repeat. Mammary carcinomas appear earlier and with higher frequency in the bitransgenic animals, especially the males, than in either parental line. Nearly all bitransgenic males develop mammary neoplasms within 8 months of birth, whereas only 15% of Wnt-1 transgenic males and none of the int-2 transgenic males have tumors. In virgin bitransgenic females, tumors occur approximately 2 months earlier than in their Wnt-1 transgenic siblings; int-2 transgenic females rarely exhibit tumors. Preneoplastic glands from the bitransgenic animals of either sex demonstrate pronounced epithelial hyperplasia similar to that seen in Wnt-1 transgenic virgin females and males, and both transgenes are expressed in the hyperplastic glands and mammary tumors. RNA from the int-2 transgene is more abundant in mammary glands from bitransgenic animals than from int-2 transgenic animals; the increase is associated with high levels of RNA specific for keratin genes 14 and 18, suggesting that Wnt-1-induced epithelial hyperplasia is responsible for the observed increase in expression of the int-2 transgene. Images PMID:1530875

  16. Mixed tocopherols prevent mammary tumorigenesis by inhibiting estrogen action and activating PPAR-γ

    PubMed Central

    Lee, Hong Jin; Ju, Jihyeung; Paul, Shiby; So, Jae-Young; DeCastro, Andrew; Smolarek, Amanda; Lee, Mao-Jung; Yang, Chung S.; Newmark, Harold L.; Suh, Nanjoo

    2009-01-01

    Purpose Tocopherols are lipophilic antioxidants present in vegetable oils. Although the antioxidant and anticancer activities of α-tocopherol (vitamin E) have been studied for decades, recent intervention studies with α-tocopherol have been negative for protection from cancer in humans. The tocopherols consist of 4 isoforms, α, β, γ, and δ variants, and recent attention is being made to other isoforms. In the present study, we investigated the inhibitory effect of a tocopherol mixture rich in γ- and δ-tocopherols against mammary tumorigenesis. Experimental Design Female Sprague Dawley rats were treated with N-methyl-N-nitrosourea (NMU), and then fed diets containing 0.1%, 0.3%, or 0.5% mixed tocopherols rich in γ- and δ-tocopherols for 9 weeks. Tumor burden and multiplicity were determined, and the levels of markers of inflammation, proliferation and apoptosis were evaluated in the serum and in mammary tumors. The regulation of nuclear receptor signaling by tocopherols was studied in mammary tumors and in breast cancer cells. Results Dietary administration of 0.1%, 0.3%, or 0.5% mixed tocopherols suppressed mammary tumor growth by 38%, 50%, or 80%, respectively. Tumor multiplicity was also significantly reduced in all three mixed tocopherol groups. Mixed tocopherols increased the expression of p21, p27, caspase-3 and peroxisome proliferator activated receptor-γ (PPAR-γ), and inhibited AKT and estrogen signaling in mammary tumors. Our mechanistic study found that γ- and δ-tocopherols, but not α-tocopherol, activated PPAR-γ and antagonized estrogen action in breast cancer. Conclusion The results suggest that γ- and δ-tocopherols may be effective agents for the prevention of breast cancer. PMID:19509159

  17. Tumor-Infiltrating Immune Cells Promoting Tumor Invasion and Metastasis: Existing Theories

    PubMed Central

    Man, Yan-gao; Stojadinovic, Alexander; Mason, Jeffrey; Avital, Itzhak; Bilchik, Anton; Bruecher, Bjoern; Protic, Mladjan; Nissan, Aviram; Izadjoo, Mina; Zhang, Xichen; Jewett, Anahid

    2013-01-01

    It is a commonly held belief that infiltration of immune cells into tumor tissues and direct physical contact between tumor cells and infiltrated immune cells is associated with physical destructions of the tumor cells, reduction of the tumor burden, and improved clinical prognosis. An increasing number of studies, however, have suggested that aberrant infiltration of immune cells into tumor or normal tissues may promote tumor progression, invasion, and metastasis. Neither the primary reason for these contradictory observations, nor the mechanism for the reported diverse impact of tumor-infiltrating immune cells has been elucidated, making it difficult to judge the clinical implications of infiltration of immune cells within tumor tissues. This mini-review presents several existing hypotheses and models that favor the promoting impact of tumor-infiltrating immune cells on tumor invasion and metastasis, and also analyzes their strength and weakness. PMID:23386907

  18. Synergistic effect of sequential administration of mitoguazone (MGBG) and gemcitabine in treating tissue cultured human breast cancer cells and mammary rat tumors.

    PubMed

    Ishmael, D Richard; Chen, Wei R; Nordquist, John A; Liu, Hong; Nordquist, Robert E

    2003-04-01

    Modulation of cancer chemotherapeutic drugs has been attempted to increase efficacy and overcome resistance to the chemotherapeutic agent. Studies have shown schedule-dependent interactions in combined use of chemotherapeutic drugs. Mitoguazone (MGBG), an old drug with possible modulating activity, was used in combination with gemcitabine, a relatively new cancer drug, in treating tissue cultured human breast cancer cells and mammary rat tumors. Tissue cultured BOT-2 cancer cells were first treated with varying concentrations of gemcitabine and MGBG, independently. Combinations of the two drugs were then used with different scheduled administrations. Marked synergistic activity was found between gemcitabine and MGBG when the MGBG was given first, followed by gemcitabine 24 hours later. A non-toxic dose of MGBG enhanced the toxicity of gemcitabine by eight orders of magnitude using MTT assays in the tissue cultured human breast cancer cell study. The sequential administration of MGBG and gemcitabine also increased the survival rate of rats bearing mammary tumors in our pilot animal study.

  19. ADAM12 induction by Twist1 promotes tumor invasion and metastasis via regulation of invadopodia and focal adhesions

    PubMed Central

    Eckert, Mark A.; Santiago-Medina, Miguel; Lwin, Thinzar M.; Kim, Jihoon; Courtneidge, Sara A.

    2017-01-01

    ABSTRACT The Twist1 transcription factor promotes tumor invasion and metastasis by inducing epithelial–mesenchymal transition (EMT) and invadopodia-mediated extracellular matrix (ECM) degradation. The critical transcription targets of Twist1 for mediating these events remain to be uncovered. Here, we report that Twist1 strongly induces expression of a disintegrin and metalloproteinase 12 (ADAM12). We observed that the expression levels of Twist1 mRNA and ADAM12 mRNA are tightly correlated in human breast tumors. Knocking down ADAM12 blocked cell invasion in a 3D mammary organoid culture. Suppression of ADAM12 also inhibited Twist1-induced tumor invasion and metastasis in human breast tumor xenografts, without affecting primary tumor formation. Mechanistically, knockdown of ADAM12 in breast cancer cells significantly reduced invadopodia formation and matrix degradation, and simultaneously increased overall cell adhesion to the ECM. Live-imaging analysis showed that knockdown of ADAM12 significantly inhibited focal adhesion turnover. Mechanistically, both the disintegrin and metalloproteinase domains of ADAM12 are required for its function at invadopodia, whereas the metalloproteinase domain is dispensable for its function at focal adhesions. Taken together, these data suggest that ADAM12 plays a crucial role in tumor invasion and metastasis by regulating both invadopodia and focal adhesions. PMID:28468988

  20. Targeting tumor hypoxia: suppression of breast tumor growth and metastasis by novel carbonic anhydrase IX inhibitors.

    PubMed

    Lou, Yuanmei; McDonald, Paul C; Oloumi, Arusha; Chia, Stephen; Ostlund, Christina; Ahmadi, Ardalan; Kyle, Alastair; Auf dem Keller, Ulrich; Leung, Samuel; Huntsman, David; Clarke, Blaise; Sutherland, Brent W; Waterhouse, Dawn; Bally, Marcel; Roskelley, Calvin; Overall, Christopher M; Minchinton, Andrew; Pacchiano, Fabio; Carta, Fabrizio; Scozzafava, Andrea; Touisni, Nadia; Winum, Jean-Yves; Supuran, Claudiu T; Dedhar, Shoukat

    2011-05-01

    Carbonic anhydrase IX (CAIX) is a hypoxia and HIF-1-inducible protein that regulates intra- and extracellular pH under hypoxic conditions and promotes tumor cell survival and invasion in hypoxic microenvironments. Interrogation of 3,630 human breast cancers provided definitive evidence of CAIX as an independent poor prognostic biomarker for distant metastases and survival. shRNA-mediated depletion of CAIX expression in 4T1 mouse metastatic breast cancer cells capable of inducing CAIX in hypoxia resulted in regression of orthotopic mammary tumors and inhibition of spontaneous lung metastasis formation. Stable depletion of CAIX in MDA-MB-231 human breast cancer xenografts also resulted in attenuation of primary tumor growth. CAIX depletion in the 4T1 cells led to caspase-independent cell death and reversal of extracellular acidosis under hypoxic conditions in vitro. Treatment of mice harboring CAIX-positive 4T1 mammary tumors with novel CAIX-specific small molecule inhibitors that mimicked the effects of CAIX depletion in vitro resulted in significant inhibition of tumor growth and metastasis formation in both spontaneous and experimental models of metastasis, without inhibitory effects on CAIX-negative tumors. Similar inhibitory effects on primary tumor growth were observed in mice harboring orthotopic tumors comprised of lung metatstatic MDA-MB-231 LM2-4(Luc+) cells. Our findings show that CAIX is vital for growth and metastasis of hypoxic breast tumors and is a specific, targetable biomarker for breast cancer metastasis.

  1. A trisubstituted pyrazole derivative reduces DMBA-induced mammary tumor growth in rats by inhibiting estrogen receptor-α expression.

    PubMed

    Ananda, Hanumappa; Sharath Kumar, Kothanahally S; Sudhanva, Muddenahalli S; Rangappa, Shobith; Rangappa, Kanchugarakoppal S

    2018-05-18

    Aberrant expression of estrogen receptor alpha (ER-α) is observed in many pathological complications like breast cancer, endometrial cancer, and in osteoporosis. ER-α plays a vital role in the initiation and progression of breast cancer and confers chemo and radioresistance to the cancer cells by upregulating expression of anti-apoptotic proteins. The synthetic pyrazole derivative 3-(1-(4-bromophenyl)-5-phenyl-1H-pyrazol-3-yl)pyridine (compound 5d) displays significant cytotoxicity against mammary carcinoma cells. Molecular docking studies revealed that compound 5d binds to ligand binding domain of (ER-α). In vivo studies were carried out to investigate ER-α expression by immunohistochemistry and quantitative RT-PCR, which revealed reduction of ER-α in tumor cells upon treatment with compound 5d indicating its ER-α antagonistic effect. Our study ascertains compound 5d as a potent inhibitor of mammary carcinoma cells.

  2. Diagnostic PET Imaging of Mammary Microcalcifications Using 64Cu-DOTA-Alendronate in a Rat Model of Breast Cancer.

    PubMed

    Ahrens, Bradley J; Li, Lin; Ciminera, Alexandra K; Chea, Junie; Poku, Erasmus; Bading, James R; Weist, Michael R; Miller, Marcia M; Colcher, David M; Shively, John E

    2017-09-01

    The development of improved breast cancer screening methods is hindered by a lack of cancer-specific imaging agents and effective small-animal models to test them. The purpose of this study was to evaluate 64 Cu-DOTA-alendronate as a mammary microcalcification-targeting PET imaging agent, using an ideal rat model. Our long-term goal is to develop 64 Cu-DOTA-alendronate for the detection and noninvasive differentiation of malignant versus benign breast tumors with PET. Methods: DOTA-alendronate was synthesized, radiolabeled with 64 Cu, and administered to normal or tumor-bearing aged, female, retired breeder Sprague-Dawley rats for PET imaging. Mammary tissues were subsequently labeled and imaged with light, confocal, and electron microscopy to verify microcalcification targeting specificity of DOTA-alendronate and elucidate the histologic and ultrastructural characteristics of the microcalcifications in different mammary tumor types. Tumor uptake, biodistribution, and dosimetry studies were performed to evaluate the efficacy and safety of 64 Cu-DOTA-alendronate. Results: 64 Cu-DOTA-alendronate was radiolabeled with a 98% yield. PET imaging using aged, female, retired breeder rats showed specific binding of 64 Cu-DOTA-alendronate in mammary glands and mammary tumors. The highest uptake of 64 Cu-DOTA-alendronate was in malignant tumors and the lowest uptake in benign tumors and normal mammary tissue. Confocal analysis with carboxyfluorescein-alendronate confirmed the microcalcification binding specificity of alendronate derivatives. Biodistribution studies revealed tissue alendronate concentrations peaking within the first hour, then decreasing over the next 48 h. Our dosimetric analysis demonstrated a 64 Cu effective dose within the acceptable range for clinical PET imaging agents and the potential for translation into human patients. Conclusion: 64 Cu-DOTA-alendronate is a promising PET imaging agent for the sensitive and specific detection of mammary tumors as

  3. In vitro expansion of the mammary stem/progenitor cell population by xanthosinetreatment

    USDA-ARS?s Scientific Manuscript database

    Background: Mammary stem cells are critical for growth and maintenance of the mammary gland and therefore of considerable interest for improving productivity and efficiency of dairy animals. Xanthosine (Xs) treatment has been demonstrated to promote expansion of putative mammary stem cells in vivo ...

  4. THE TUMOR MACROENVIRONMENT: CANCER-PROMOTING NETWORKS BEYOND TUMOR BEDS

    PubMed Central

    Rutkowski, Melanie R.; Svoronos, Nikolaos; Puchalt, Alfredo Perales; Conejo-Garcia, Jose R.

    2015-01-01

    During tumor progression, alterations within the systemic tumor environment, or macroenvironment, result in the promotion of tumor growth, tumor invasion to distal organs, and eventual metastatic disease. Distally produced hormones, commensal microbiota residing within mucosal surfaces, and myeloid cells and even the bone marrow impact the systemic immune system, tumor growth, and metastatic spread. Understanding the reciprocal interactions between the cells and soluble factors within the macroenvironment and the primary tumor will enable the design of specific therapies that have the potential to prevent dissemination and metastatic spread. This chapter will summarize recent findings detailing how the primary tumor and systemic tumor macroenvironment coordinate malignant progression. PMID:26216635

  5. Mammary gland neoplasia in long-term rodent studies.

    PubMed Central

    Russo, I H; Russo, J

    1996-01-01

    Breast cancer, the most frequent spontaneous malignancy diagnosed in women in the western world, is continuously increasing in incidence in industrialized nations. Although breast cancer develops in women as the result of a combination of external and endogenous factors such as exposure to ionizing radiation, diet, socioeconomic status, and endocrinologic, familial, or genetic factors, no specific etiologic agent(s) or the mechanisms responsible of the disease has been identified as yet. Thus, experimental models that exhibit the same complex interactions are needed for testing various mechanisms and for assessing the carcinogenic potential of given chemicals. Rodent mammary carcinomas represent such a model to a great extent because, in these species, mammary cancer is a multistep complex process that can be induced by either chemicals, radiation, viruses, or genetic factors. Long-term studies in rodent models have been particularly useful for dissecting the initiation, promotion, and progression steps of carcinogenesis. The susceptibility of the rodent mammary gland to develop neoplasms has made this organ a unique target for testing the carcinogenic potential of specific genotoxic chemicals and environmental agents. Mammary tumors induced by indirect- or direct-acting carcinogens such as 7, 12-dimethlbenz(a)anthracene or N-methyl-N-nitrosourea are, in general, hormone dependent adenocarcinomas whose incidence, number of tumors per animal, tumor latency, and tumor type are influenced by the age, reproductive history, and endocarinologic milieu of the host at the time of carcinogen exposure. Rodent models are informative in the absence of human data. They have provided valuable information on the dose and route of administration to be used and optimal host conditions for eliciting maximal tumorigenic response. Studies of the influence of normal gland development on the pathogenesis of chemically induced mammary carcinomas have clarified the role of differentiation

  6. [Neratinib + Valproate] exposure permanently reduces ERBB1 and RAS expression in 4T1 mammary tumors and enhances M1 macrophage infiltration.

    PubMed

    Booth, Laurence; Roberts, Jane L; Rais, Rumeesa; Kirkwood, John; Avogadri-Connors, Francesca; Cutler, Richard E; Lalani, Alshad S; Poklepovic, Andrew; Dent, Paul

    2018-01-19

    The irreversible ERBB1/2/4 inhibitor neratinib has been shown in vitro to rapidly reduce the expression of ERBB1/2/4 and RAS proteins via autophagic/lysosomal degradation. We have recently demonstrated that neratinib and valproate interact to suppress the growth of 4T1 mammary tumors but had not defined whether the [neratinib + valproate] drug combination, in a mouse, had altered the biology of the 4T1 cells. Exposure of 4T1 mammary tumors to [neratinib + valproate] for three days resulted, two weeks later, in tumors that expressed less ERBB1, K-RAS, N-RAS, indoleamine-pyrrole 2,3-dioxygenase (IDO-1), ornithine decarboxylase (ODC) and had increased Class I MHCA expression. Tumors previously exposed to [neratinib + valproate] grew more slowly than those exposed to vehicle control and contained more CD8+ cells and activated NK cells. M1 but not M2 macrophage infiltration was significantly enhanced by the drug combination. In vitro exposure of 4T1 tumor cells to [neratinib + valproate] variably reduced the expression of histone deacetylases 1-11. In vivo , prior exposure of tumors to [neratinib + valproate] permanently reduced the expression of HDACs 1-3, 6 and 10. Combined knock down of HDACs 1/2/3 or of 3/10 rapidly reduced the expression IDO-1, and ODC and increased the expression of MHCA. H&E staining of normal tissues at animal nadir revealed no obvious cyto-architectural differences between control and drug-treated animals. We conclude that [neratinib + valproate] evolves 4T1 tumors to grow more slowly and to be more sensitive to checkpoint immunotherapy antibodies.

  7. [Neratinib + Valproate] exposure permanently reduces ERBB1 and RAS expression in 4T1 mammary tumors and enhances M1 macrophage infiltration

    PubMed Central

    Booth, Laurence; Roberts, Jane L.; Rais, Rumeesa; Kirkwood, John; Avogadri-Connors, Francesca; Cutler, Richard E.; Lalani, Alshad S.; Poklepovic, Andrew; Dent, Paul

    2018-01-01

    The irreversible ERBB1/2/4 inhibitor neratinib has been shown in vitro to rapidly reduce the expression of ERBB1/2/4 and RAS proteins via autophagic/lysosomal degradation. We have recently demonstrated that neratinib and valproate interact to suppress the growth of 4T1 mammary tumors but had not defined whether the [neratinib + valproate] drug combination, in a mouse, had altered the biology of the 4T1 cells. Exposure of 4T1 mammary tumors to [neratinib + valproate] for three days resulted, two weeks later, in tumors that expressed less ERBB1, K-RAS, N-RAS, indoleamine-pyrrole 2,3-dioxygenase (IDO-1), ornithine decarboxylase (ODC) and had increased Class I MHCA expression. Tumors previously exposed to [neratinib + valproate] grew more slowly than those exposed to vehicle control and contained more CD8+ cells and activated NK cells. M1 but not M2 macrophage infiltration was significantly enhanced by the drug combination. In vitro exposure of 4T1 tumor cells to [neratinib + valproate] variably reduced the expression of histone deacetylases 1-11. In vivo, prior exposure of tumors to [neratinib + valproate] permanently reduced the expression of HDACs 1-3, 6 and 10. Combined knock down of HDACs 1/2/3 or of 3/10 rapidly reduced the expression IDO-1, and ODC and increased the expression of MHCA. H&E staining of normal tissues at animal nadir revealed no obvious cyto-architectural differences between control and drug-treated animals. We conclude that [neratinib + valproate] evolves 4T1 tumors to grow more slowly and to be more sensitive to checkpoint immunotherapy antibodies. PMID:29464055

  8. c-MYC-regulated miR-23a/24-2/27a Cluster Promotes Mammary Carcinoma Cell Invasion and Hepatic Metastasis by Targeting Sprouty2*

    PubMed Central

    Li, Xiaoni; Liu, Xin; Xu, Weiyi; Zhou, Peng; Gao, Ping; Jiang, Songshan; Lobie, Peter E.; Zhu, Tao

    2013-01-01

    Emerging evidence indicates that the miR-23a/24-2/27a cluster may possess a causal role in mammary tumorigenesis and function as a novel class of oncogenes. However, the regulatory mechanism of the miR-23a/24-2/27a cluster in mammary carcinoma cell invasion and migration is still largely unknown. We observed that the expression levels of miR-23a, miR-24-2 and miR-27a were significantly higher in breast cancer with lymph node metastasis, compared with that from patients without lymph node metastasis or normal tissue. Forced expression of the miR-23a/24-2/27a cluster promoted mammary carcinoma cell migration, invasion, and hepatic metastasis, through targeting Sprouty2 (SPRY2) and consequent activation of p44/42 MAPK. Epidermal growth factor induced the expression of the transcription factor c-MYC, which promoted the expression of mature miR-23a, miR-24-2, and miR-27a and subsequently decreased expression of SPRY2 and activated p44/42 MAPK to promote mammary carcinoma cell migration and invasion. We therefore suggest a novel link between epidermal growth factor and the miR-23a/24-2/27a cluster via the regulation of c-MYC, providing the potential for the miR-23a/24-2/27a cluster to be used as biomarker in the diagnosis and/or treatment of breast cancer. PMID:23649631

  9. Canine mammary minute oncocytomas with neuroendocrine differentiation associated with multifocal acinar cell oncocytic metaplasia.

    PubMed

    Nagahara, Rei; Kimura, Masayuki; Itahashi, Megu; Sugahara, Go; Kawashima, Masashi; Murayama, Hirotada; Yoshida, Toshinori; Shibutani, Makoto

    2016-11-01

    Two solitary and minute tumors of 1 and 1.5 mm diameter were identified by microscopy in the left fourth mammary gland of a 13-year-old female Labrador Retriever dog, in addition to multiple mammary gland tumors. The former tumors were well circumscribed and were composed of small-to-large polyhedral neoplastic oncocytes with finely granular eosinophilic cytoplasm, and were arranged in solid nests separated by fine fibrovascular septa. Scattered lumina of variable sizes containing eosinophilic secretory material were evident. Cellular atypia was minimal, and no mitotic figures were visible. One tumor had several oncocytic cellular foci revealing cellular transition, with perivascular pseudorosettes consisting of columnar epithelial cells surrounding the fine vasculature. Scattered foci of mammary acinar cell hyperplasia showing oncocytic metaplasia were also observed. Immunohistochemically, the cytoplasm of neoplastic cells of the 2 microtumors showed diffuse immunoreactivity to anti-cytokeratin antibody AE1/AE3, and finely granular immunoreactivity for 60-kDa heat shock protein, mitochondrial membrane ATP synthase complex V beta subunit, and chromogranin A. One tumor also had oncocytic cellular foci forming perivascular pseudorosettes showing cellular membrane immunoreactivity for neural cell adhesion molecule. The tumors were negative for smooth muscle actin, neuron-specific enolase, vimentin, desmin, S100, and synaptophysin. Ultrastructural observation confirmed the abundant mitochondria in the cytoplasm of both neoplastic and hyperplastic cells, the former cells also having neuroendocrine granule-like electron-dense bodies. From these results, our case was diagnosed with mammary oncocytomas accompanied by neuroendocrine differentiation. Scattered foci of mammary oncocytosis might be related to the multicentric occurrence of these oncocytomas. © 2016 The Author(s).

  10. Histopathological and in vivo evidence of regucalcin as a protective molecule in mammary gland carcinogenesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marques, Ricardo; Vaz, Cátia V.; Maia, Cláudio J.

    Regucalcin (RGN) is a calcium-binding protein, which has been shown to be underexpressed in cancer cases. This study aimed to determine the association of RGN expression with clinicopathological parameters of human breast cancer. In addition, the role of RGN in malignancy of mammary gland using transgenic rats overexpressing the protein (Tg-RGN) was investigated. Wild-type (Wt) and Tg-RGN rats were treated with 7,12-dimethylbenz[α]anthracene (DMBA). Carcinogen-induced tumors were histologically classified and the Ki67 proliferation index was estimated. Immunohistochemistry analysis showed that RGN immunoreactivity was negatively correlated with the histological grade of breast infiltrating ductal carcinoma suggesting that progression of breast cancer ismore » associated with loss of RGN. Tg-RGN rats displayed lower incidence of carcinogen-induced mammary gland tumors, as well as lower incidence of invasive forms. Moreover, higher proliferation was observed in non-invasive tumors of Wt animals comparatively with Tg-RGN. Overexpression of RGN was associated with diminished expression of cell-cycle inhibitors and increased expression of apoptosis inducers. Augmented activity of apoptosis effector caspase-3 was found in the mammary gland of Tg-RGN. RGN overexpression protected from carcinogen-induced mammary gland tumor development and was linked with reduced proliferation and increased apoptosis. These findings indicated the protective role of RGN in the carcinogenesis of mammary gland. - Highlights: • RGN immunoreactivity was negatively correlated with breast cancer differentiation. • Transgenic overexpression of RGN diminished incidence of carcinogen-induced tumors. • Transgenic overexpression of RGN restricted proliferation and fostered apoptosis. • RGN has a protective role in the carcinogenesis of mammary gland.« less

  11. CD24 cell surface expression in Mvt1 mammary cancer cells serves as a biomarker for sensitivity to anti-IGF1R therapy.

    PubMed

    Rostoker, Ran; Ben-Shmuel, Sarit; Rashed, Rola; Shen Orr, Zila; LeRoith, Derek

    2016-05-14

    The pro-tumorigenic effects of the insulin-like growth factor receptor (IGF1R) are well described. IGF1R promotes cancer cell survival and proliferation and prevents apoptosis, and, additionally it was shown that IGF1R levels are significantly elevated in most common human malignancies including breast cancer. However, results from phase 3 clinical trials in unselected patients demonstrated lack of efficacy for anti-IGF1R therapy. These findings suggest that predictive biomarkers are greatly warranted in order to identify patients that will benefit from anti-IGF1R therapeutic strategies. Using the delivery of shRNA vectors into the Mvt1 cell line, we tested the role of the IGF1R in the development of mammary tumors. Based on CD24 cell surface expression, control and IGF1R-knockdown (IGF1R-KD) cells were FACS sorted into CD24(-) and CD24(+) subsets and further characterized in vitro. The tumorigenic capacity of each was determined following orthotopic inoculation into the mammary fat pad of female mice. Tumor cells were FACS characterized upon sacrifice to determine IGF1R effect on the plasticity of this cell's phenotype. Metastatic capacity of the cells was assessed using the tail vein assay. In this study we demonstrate that downregulation of the IGF1R specifically in cancer cells expressing CD24 on the cell surface membrane affect both their morphology (from mesenchymal-like into epithelial-like morphology) and phenotype in vitro. Moreover, we demonstrate that IGF1R-KD abolished both CD24(+) cells capacity to form mammary tumors and lung metastatic lesions. We found in both cells and tumors a marked upregulation in CTFG and a significant reduction of SLP1 expression in the CD24(+)/IGF1R-KD; tumor-suppressor and tumor-promoting genes respectively. Moreover, we demonstrate here that the IGF1R is essential for the maintenance of stem/progenitor-like cancer cells and we further demonstrate that IGF1R-KD induces in vivo differentiation of the CD24(+) cells toward the

  12. BRCA1-deficient mammary tumor cells are dependent on EZH2 expression and sensitive to Polycomb Repressive Complex 2-inhibitor 3-deazaneplanocin A.

    PubMed

    Puppe, Julian; Drost, Rinske; Liu, Xiaoling; Joosse, Simon A; Evers, Bastiaan; Cornelissen-Steijger, Paulien; Nederlof, Petra; Yu, Qiang; Jonkers, Jos; van Lohuizen, Maarten; Pietersen, Alexandra M

    2009-01-01

    Treatment of breast cancer is becoming more individualized with the recognition of tumor subgroups that respond differently to available therapies. Breast cancer 1 gene (BRCA1)-deficient tumors are usually of the basal subtype and associated with poor survival rates, highlighting the need for more effective therapy. We investigated a mouse model that closely mimics breast cancer arising in BRCA1-mutation carriers to better understand the molecular mechanism of tumor progression and tested whether targeting of the Polycomb-group protein EZH2 would be a putative therapy for BRCA1-deficient tumors. Gene expression analysis demonstrated that EZH2 is overexpressed in BRCA1-deficient mouse mammary tumors. By immunohistochemistry we show that an increase in EZH2 protein levels is also evident in tumors from BRCA1-mutation carriers. EZH2 is responsible for repression of genes driving differentiation and could thus be involved in the undifferentiated phenotype of these tumors. Importantly, we show that BRCA1-deficient cancer cells are selectively dependent on their elevated EZH2 levels. In addition, a chemical inhibitor of EZH2, 3-deazaneplanocin A (DZNep), is about 20-fold more effective in killing BRCA1-deficient cells compared to BRCA1-proficient mammary tumor cells. We demonstrate by specific knock-down experiments that EZH2 overexpression is functionally relevant in BRCA1-deficient breast cancer cells. The effectiveness of a small molecule inhibitor indicates that EZH2 is a druggable target. The overexpression of EZH2 in all basal-like breast cancers warrants further investigation of the potential for targeting the genetic make-up of this particular breast cancer type.

  13. The Tumor Macroenvironment: Cancer-Promoting Networks Beyond Tumor Beds.

    PubMed

    Rutkowski, Melanie R; Svoronos, Nikolaos; Perales-Puchalt, Alfredo; Conejo-Garcia, Jose R

    2015-01-01

    During tumor progression, alterations within the systemic tumor environment, or macroenvironment, result in the promotion of tumor growth, tumor invasion to distal organs, and eventual metastatic disease. Distally produced hormones, commensal microbiota residing within mucosal surfaces, myeloid cells and even the bone marrow impact the systemic immune system, tumor growth, and metastatic spread. Understanding the reciprocal interactions between the cells and soluble factors within the macroenvironment and the primary tumor will enable the design of specific therapies that have the potential to prevent dissemination and metastatic spread. This chapter will summarize recent findings detailing how the primary tumor and systemic tumor macroenvironment coordinate malignant progression. © 2015 Elsevier Inc. All rights reserved.

  14. Immune response to a mammary adenocarcinoma. V. Sera from tumor-bearing rats contain multiple factors blocking cell-mediated cytotoxicity.

    PubMed

    Huber, S A; Lucas, Z J

    1978-12-01

    Sera from Fischer rats 3 to 13 days after i.p. injection of syngeneic 13762A mammary adenocarcinoma contain three factors specifically blocking cell-mediated cytotoxicity (CMC). The major blocking factor is a 160,000-dalton IgG that combines specifically to cytolytic lymphocytes but not to tumor cells or tumor antigen, and that is not dissociated after treatment with 8 M urea. The other factors have been putatively identified as tumor antigen (less than 70,000 daltons) and as soluble antigen-antibody complexes (greater than 200,000 daltons). Injecting the tumor antigen into tumor-free rats induced spleen cells specifically cytotoxic to the 13762A tumor and provided partial protection to challenge with live tumor cells. Treating soluble antigen-antibody complexes with 8 M urea decreased the size of the blocking activity from greater than 200,000 to less than 70,000 daltons. Although the IgG fraction dissociated from the complex did not block CMC, it did recombine with the tumor antigen fraction to transfer activity to the greater than 200,000-dalton fraction. In contrast, mixing tumor antigen with the IgG fraction that did block CMC did not alter the size of the blocking activities.

  15. Incidence of mammary tumors in the canine population living in the Veneto region (Northeastern Italy): Risk factors and similarities to human breast cancer.

    PubMed

    Vascellari, Marta; Capello, Katia; Carminato, Antonio; Zanardello, Claudia; Baioni, Elisa; Mutinelli, Franco

    2016-04-01

    Although mammary gland tumors (MT) are the most-common type of tumor in intact female dogs, there is little information about their incidence in dog population. Data on MT in female dogs was retrieved from the Animal Tumor registry of dogs and cats of Venice and Vicenza provinces during 2005-2013 and was analyzed to visualize crude incidence rates by breed and across age categories. Overall, 2744 mammary tumors were reported accounting for 54% of all tumors in female dogs. The annual incidence rate (IR) was 250 cases per 100,000 dogs. The most frequent malignant tumors were complex carcinomas, consisting of both epithelial and myoepithelial tissues (IR=71.89), and simple carcinomas (IR=62.59). The MT incidence rate increased through the study period; particularly in the last 4 years, and malignant neoplasms occurred more frequently (70%) than the benign counterparts (30%). Seventy-four percent of tumors were diagnosed in intact females, and the mean age at diagnosis was significantly higher for spayed dogs than for intact ones. MT were less frequent in dogs younger than 6 years and increased up to approximately 60% for ages between 8 and 13 years. The purebred dogs had a higher probability to have a malignant neoplasm than mixed-breed dogs, particularly in dogs younger than 7 years, and the Samoyed, Dobermann, Schnauzer and Yorkshire Terrier breeds were more inclined to develop malignant MT. The incidence of MT in dogs is increasing, and IRs are comparable to that in women. The epidemiological similarities between dogs and women support the validity of canine MT as a model for human breast cancer. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Optical Imaging of Mammary and Prostate Tumors in Living Animals using a Synthetic Near Infrared Zinc(II)-Dipicolylamine Probe for Anionic Cell Surfaces

    PubMed Central

    Smith, Bryan A.; Akers, Walter J.; Leevy, W. Matthew; Lampkins, Andrew J.; Xiao, Shuzhang; Wolter, William; Suckow, Mark A.; Achilefu, Samuel; Smith, Bradley D.

    2009-01-01

    In vivo optical imaging shows that a fluorescent imaging probe, comprised of a near-infrared fluorophore attached to an affinity group containing two zinc(II)-dipicolylamine (Zn-DPA) units, targets prostate and mammary tumors in two different xenograft animal models. The tumor selectivity is absent with control fluorophores whose structures do not have appended Zn-DPA targeting ligands. Ex vivo biodistribution and histological analyses indicate that the probe is targeting the necrotic regions of the tumors, which is consistent with in vitro microscopy showing selective targeting of the anionic membrane surfaces of dead and dying cells. PMID:20014845

  17. Differentiation Generates Paracrine Cell Pairs That Maintain Basaloid Mouse Mammary Tumors: Proof of Concept

    PubMed Central

    Kim, Soyoung; Goel, Shruti; Alexander, Caroline M.

    2011-01-01

    There is a paradox offered up by the cancer stem cell hypothesis. How are the mixed populations that are characteristic of heterogeneous solid tumors maintained at constant proportion, given their high, and different, mitotic indices? In this study, we evaluate a well-characterized mouse model of human basaloid tumors (induced by the oncogene Wnt1), which comprise mixed populations of mammary epithelial cells resembling their normal basal and luminal counterparts. We show that these cell types are substantially inter-dependent, since the MMTV LTR drives expression of Wnt1 ligand in luminal cells, whereas the functional Wnt1-responsive receptor (Lrp5) is expressed by basal cells, and both molecules are necessary for tumor growth. There is a robust tumor initiating activity (tumor stem cell) in the basal cell population, which is associated with the ability to differentiate into luminal and basal cells, to regenerate the oncogenic paracrine signaling cell pair. However, we found an additional tumor stem cell activity in the luminal cell population. Knowing that tumors depend upon Wnt1-Lrp5, we hypothesized that this stem cell must express Lrp5, and found that indeed, all the stem cell activity could be retrieved from the Lrp5-positive cell population. Interestingly, this reflects post-transcriptional acquisition of Lrp5 protein expression in luminal cells. Furthermore, this plasticity of molecular expression is reflected in plasticity of cell fate determination. Thus, in vitro, Wnt1-expressing luminal cells retro-differentiate to basal cell types, and in vivo, tumors initiated with pure luminal cells reconstitute a robust basal cell subpopulation that is indistinguishable from the populations initiated by pure basal cells. We propose this is an important proof of concept, demonstrating that bipotential tumor stem cells are essential in tumors where oncogenic ligand-receptor pairs are separated into different cell types, and suggesting that Wnt-induced molecular and

  18. MMTV insertional mutagenesis identifies genes, gene families and pathways involved in mammary cancer.

    PubMed

    Theodorou, Vassiliki; Kimm, Melanie A; Boer, Mandy; Wessels, Lodewyk; Theelen, Wendy; Jonkers, Jos; Hilkens, John

    2007-06-01

    We performed a high-throughput retroviral insertional mutagenesis screen in mouse mammary tumor virus (MMTV)-induced mammary tumors and identified 33 common insertion sites, of which 17 genes were previously not known to be associated with mammary cancer and 13 had not previously been linked to cancer in general. Although members of the Wnt and fibroblast growth factors (Fgf) families were frequently tagged, our exhaustive screening for MMTV insertion sites uncovered a new repertoire of candidate breast cancer oncogenes. We validated one of these genes, Rspo3, as an oncogene by overexpression in a p53-deficient mammary epithelial cell line. The human orthologs of the candidate oncogenes were frequently deregulated in human breast cancers and associated with several tumor parameters. Computational analysis of all MMTV-tagged genes uncovered specific gene families not previously associated with cancer and showed a significant overrepresentation of protein domains and signaling pathways mainly associated with development and growth factor signaling. Comparison of all tagged genes in MMTV and Moloney murine leukemia virus-induced malignancies showed that both viruses target mostly different genes that act predominantly in distinct pathways.

  19. Antisense protein kinase A RIalpha inhibits 7,12-dimethylbenz(a)anthracene-induction of mammary cancer: blockade at the initial phase of carcinogenesis.

    PubMed

    Nesterova, Maria V; Cho-Chung, Yoon S

    2004-07-01

    There are two types of cyclic AMP (cAMP)-dependent protein kinase (PKA), type I (PKA-I) and type II (PKA-II), which share a common catalytic (C) subunit but contain distinct regulatory (R) subunits, RI versus RII, respectively. Evidence suggests that increased expression of PKA-I and its regulatory subunit (RIalpha) correlates with tumorigenesis and tumor growth. We investigated the effect of sequence-specific inhibition of RIalpha gene expression at the initial phase of 7,12-dimethylbenz(alphaa)anthracene (DMBA)-induced mammary carcinogenesis. Antisense RIalpha oligodeoxynucleotide (ODN) targeted against PKA RIalpha was administered (0.1 mg/day/rat, i.p.) 1 day before DMBA intubation and during the first 9 days post-DMBA intubation to determine the anticarcinogenic effects. Antisense RIalpha, in a sequence-specific manner, inhibited the tumor production. At 90 days after DMBA intubation, untreated controls and RIalpha-antisense-treated rats exhibited an average mean number of tumors per rat of 4.2 and 1.8, respectively, and 90% of control and 45% of antisense-treated animals had tumors. The antisense also delayed the first tumor appearance. An increase in RIalpha and PKA-I levels in the mammary gland and liver preceded DMBA-induced tumor production, and antisense down-regulation of RIalpha restored normal levels of PKA-I and PKA-II in these tissues. Antisense RIalpha in the liver induced the phase II enzymes, glutathione S-transferase and quinone oxidoreductase, c-fos protein, and activator protein 1 (AP-1)- and cAMP response element (CRE)-directed transcription. In the mammary glands, antisense RIalpha promoted DNA repair processes. In contrast, the CRE transcription-factor decoy could not mimic these effects of antisense RIalpha. The results demonstrate that RIalpha antisense produces dual anticarcinogenic effects: (a) increasing DMBA detoxification in the liver by increasing phase II enzyme activities, increasing CRE-binding-protein phosphorylation and

  20. Silencing of Kv4.1 potassium channels inhibits cell proliferation of tumorigenic human mammary epithelial cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jang, Soo Hwa; Choi, Changsun; Hong, Seong-Geun

    2009-06-26

    Potassium channel activity has been shown to facilitate cell proliferation in cancer cells. In the present study, the role of Kv4.1 channels in immortal and tumorigenic human mammary epithelial cells was investigated. Kv4.1 protein expression was positively correlated with tumorigenicity. Moreover, transfection with siRNAs targeting Kv4.1 mRNA suppressed proliferation of tumorigenic mammary epithelial cells. Experiments using mRNA isolated from human breast cancer tissues revealed that the level of Kv4.1 mRNA expression varied depending on the stage of the tumor. Kv4.1 protein expression increased during stages T2 and T3 compared to normal tissue. These results demonstrated that Kv4.1 plays a rolemore » in proliferation of tumorigenic human mammary epithelial cells. In addition, elevated Kv4.1 expression may be useful as a diagnostic marker for staging mammary tumors and selective blockers of Kv4.1 may serve to suppress tumor cell proliferation.« less

  1. Chemoprevention of Rat Mammary Carcinogenesis by Apiaceae Spices.

    PubMed

    Aqil, Farrukh; Jeyabalan, Jeyaprakash; Munagala, Radha; Ravoori, Srivani; Vadhanam, Manicka V; Schultz, David J; Gupta, Ramesh C

    2017-02-16

    Scientific evidence suggests that many herbs and spices have medicinal properties that alleviate symptoms or prevent disease. In this study, we examined the chemopreventive effects of the Apiaceae spices, anise, caraway, and celery seeds against 17β-estrogen (E2)-mediated mammary tumorigenesis in an ACI (August-Copenhagen Irish) rat model. Female ACI rats were given either control diet (AIN 93M) or diet supplemented with 7.5% ( w / w ) of anise, caraway, or celery seed powder. Two weeks later, one half of the animals in each group received subcutaneous silastic implants of E2. Diet intake and body weight were recorded weekly, and animals were euthanized after 3 and 12 weeks. E2-treatment showed significantly (2.1- and 3.4-fold) enhanced growth of pituitary gland at 3 and 12 weeks, respectively. All test spices significantly offset the pituitary growth by 12 weeks, except celery which was effective as early as three weeks. Immunohistochemical analysis for proliferative cell nuclear antigen (PCNA) in mammary tissues showed significant reduction in E2-mediated mammary cell proliferation. Test spices reduced the circulating levels of both E2 and prolactin at three weeks. This protection was more pronounced at 12 weeks, with celery eliciting the highest effect. RT-PCR and western blot analysis were performed to determine the potential molecular targets of the spices. Anise and caraway diets significantly offset estrogen-mediated overexpression of both cyclin D1 and estrogen receptor α (ERα). The effect of anise was modest. Likewise, expression of CYP1B1 and CYP1A1 was inhibited by all test spices. Based on short-term molecular markers, caraway was selected over other spices based on its enhanced effect on estrogen-associated pathway. Therefore, a tumor-end point study in ACI rats was conducted with dietary caraway. Tumor palpation from 12 weeks onwards revealed tumor latency of 29 days in caraway-treated animals compared with first tumor appearance at 92 days in

  2. Chemoprevention of Rat Mammary Carcinogenesis by Apiaceae Spices

    PubMed Central

    Aqil, Farrukh; Jeyabalan, Jeyaprakash; Munagala, Radha; Ravoori, Srivani; Vadhanam, Manicka V.; Schultz, David J.; Gupta, Ramesh C.

    2017-01-01

    Scientific evidence suggests that many herbs and spices have medicinal properties that alleviate symptoms or prevent disease. In this study, we examined the chemopreventive effects of the Apiaceae spices, anise, caraway, and celery seeds against 17β-estrogen (E2)-mediated mammary tumorigenesis in an ACI (August-Copenhagen Irish) rat model. Female ACI rats were given either control diet (AIN 93M) or diet supplemented with 7.5% (w/w) of anise, caraway, or celery seed powder. Two weeks later, one half of the animals in each group received subcutaneous silastic implants of E2. Diet intake and body weight were recorded weekly, and animals were euthanized after 3 and 12 weeks. E2-treatment showed significantly (2.1- and 3.4-fold) enhanced growth of pituitary gland at 3 and 12 weeks, respectively. All test spices significantly offset the pituitary growth by 12 weeks, except celery which was effective as early as three weeks. Immunohistochemical analysis for proliferative cell nuclear antigen (PCNA) in mammary tissues showed significant reduction in E2-mediated mammary cell proliferation. Test spices reduced the circulating levels of both E2 and prolactin at three weeks. This protection was more pronounced at 12 weeks, with celery eliciting the highest effect. RT-PCR and western blot analysis were performed to determine the potential molecular targets of the spices. Anise and caraway diets significantly offset estrogen-mediated overexpression of both cyclin D1 and estrogen receptor α (ERα). The effect of anise was modest. Likewise, expression of CYP1B1 and CYP1A1 was inhibited by all test spices. Based on short-term molecular markers, caraway was selected over other spices based on its enhanced effect on estrogen-associated pathway. Therefore, a tumor-end point study in ACI rats was conducted with dietary caraway. Tumor palpation from 12 weeks onwards revealed tumor latency of 29 days in caraway-treated animals compared with first tumor appearance at 92 days in control

  3. The Role of DN-GSK3beta in Mammary Tumorigenesis

    DTIC Science & Technology

    2006-07-01

    factors and dramatically increases their transcriptional activity. Genes up- regulated by TCF/LEF include embryologic genes, such as siamois and engrailed...and increased apoptosis occurs in the mammary epithelia (33). Overexpression of the regulator CK2a also promotes mammary tumorigenesis (34). In this

  4. Variation in tumor response to fluosol-DA (20%)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sasai, K.; Ono, K.; Nishidai, T.

    1989-05-01

    The effects of Fluosol-DA 20% (FDA) and carbogen (95% O2/5% CO/sub 2/) on radiosensitivity of the three experimental tumors, SCC VII tumor, RIF-I tumor, and transplanted mammary tumor of C/sub 3/H/He mouse, subcutaneously inoculated in the leg were examined. The effect of FDA plus carbogen, and carbogen alone on radiosensitivity of SCC VII and RIF-I tumors was tested using the in vivo-in vitro assay. The growth curves were obtained for both SCC VII tumor and transplanted mammary tumor. The effect of the combination of FDA and carbogen was only observed in the transplanted mammary tumor. In the other two tumors,more » only the effect of inspiring carbogen was observed. We concluded that the effect of FDA on the radiosensitivity of experimental tumors varies with the kind of tumor systems.« less

  5. Calmodulin-mediated activation of Akt regulates survival of c-Myc-overexpressing mouse mammary carcinoma cells.

    PubMed

    Deb, Tushar B; Coticchia, Christine M; Dickson, Robert B

    2004-09-10

    c-Myc-overexpressing mammary epithelial cells are proapoptotic; their survival is strongly promoted by epidermal growth factor (EGF). We now demonstrate that EGF-induced Akt activation and survival in transgenic mouse mammary tumor virus-c-Myc mouse mammary carcinoma cells are both calcium/calmodulin-dependent. Akt activation is abolished by the phospholipase C-gamma inhibitor U-73122, by the intracellular calcium chelator BAPTA-AM, and by the specific calmodulin antagonist W-7. These results implicate calcium/calmodulin in the activation of Akt in these cells. In addition, Akt activation by serum and insulin is also inhibited by W-7. EGF-induced and calcium/calmodulin-mediated Akt activation occurs in both tumorigenic and non-tumorigenic mouse and human mammary epithelial cells, independent of their overexpression of c-Myc. These results imply that calcium/calmodulin may be a common regulator of Akt activation, irrespective of upstream receptor activator, mammalian species, and transformation status in mammary epithelial cells. However, only c-Myc-overexpressing mouse mammary carcinoma cells (but not normal mouse mammary epithelial cells) undergo apoptosis in the presence of the calmodulin antagonist W-7, indicating the vital selective role of calmodulin for survival of these cells. Calcium/calmodulin-regulated Akt activation is mediated directly by neither calmodulin kinases nor phosphatidylinositol 3-kinase (PI-3 kinase). Pharmacological inhibitors of calmodulin kinase kinase and calmodulin kinases II and III do not inhibit EGF-induced Akt activation, and calmodulin antagonist W-7 does not inhibit phosphotyrosine-associated PI-3 kinase activation. Akt is, however, co-immunoprecipitated with calmodulin in an EGF-dependent manner, which is inhibited by calmodulin antagonist W-7. We conclude that calmodulin may serve a vital regulatory function to direct the localization of Akt to the plasma membrane for its activation by PI-3 kinase.

  6. Dual systemic tumor targeting with ligand-directed phage and Grp78 promoter induces tumor regression.

    PubMed

    Kia, Azadeh; Przystal, Justyna M; Nianiaris, Nastasia; Mazarakis, Nicholas D; Mintz, Paul J; Hajitou, Amin

    2012-12-01

    The tumor-specific Grp78 promoter is overexpressed in aggressive tumors. Cancer patients would benefit greatly from application of this promoter in gene therapy and molecular imaging; however, clinical benefit is limited by lack of strategies to target the systemic delivery of Grp78-driven transgenes to tumors. This study aims to assess the systemic efficacy of Grp78-guided expression of therapeutic and imaging transgenes relative to the standard cytomegalovirus (CMV) promoter. Combination of ligand and Grp78 transcriptional targeting into a single vector would facilitate systemic applications of the Grp78 promoter. We generated a dual tumor-targeted phage containing the arginine-glycine-aspartic acid tumor homing ligand and Grp78 promoter. Next, we combined flow cytometry, Western blot analysis, bioluminescence imaging of luciferase, and HSVtk/ganciclovir gene therapy and compared efficacy to conventional phage carrying the CMV promoter in vitro and in vivo in subcutaneous models of rat and human glioblastoma. We show that double-targeted phage provides persistent transgene expression in vitro and in tumors in vivo after systemic administration compared with conventional phage. Next, we showed significant tumor killing in vivo using the HSVtk/ganciclovir gene therapy and found a systemic antitumor effect of Grp78-driven HSVtk against therapy-resistant tumors. Finally, we uncovered a novel mechanism of Grp78 promoter activation whereby HSVtk/ganciclovir therapy upregulates Grp78 and transgene expression via the conserved unfolded protein response signaling cascade. These data validate the potential of Grp78 promoter in systemic cancer gene therapy and report the efficacy of a dual tumor targeting phage that may prove useful for translation into gene therapy and molecular imaging applications.

  7. Korean red ginseng extract enhances paclitaxel distribution to mammary tumors and its oral bioavailability by P-glycoprotein inhibition.

    PubMed

    Bae, Jin Kyung; Kim, You-Jin; Chae, Hee-Sung; Kim, Do Yeun; Choi, Han Seok; Chin, Young-Won; Choi, Young Hee

    2017-05-01

    1. Drug efflux by P-glycoprotein (P-gp) is a common resistance mechanism of breast cancer cells to paclitaxel, the primary chemotherapy in breast cancer. As a means of overcoming the drug resistance-mediated failure of paclitaxel chemotherapy, the potential of Korean red ginseng extract (KRG) as an adjuvant chemotherapy has been reported only in in vitro. Therefore, we assessed whether KRG alters P-gp mediated paclitaxel efflux, and therefore paclitaxel efficacy in in vitro and vivo models. 2. KRG inhibited P-gp protein expression and transcellular efflux of paclitaxel in MDCK-mdr1 cells, but KRG was not a substrate of P-gp ATPase. In female rats with mammary tumor, the combination of paclitaxel with KRG showed the greater reduction of tumor volumes, lower P-gp protein expression and higher paclitaxel distribution in tumors, and greater oral bioavailability of paclitaxel than paclitaxel alone. 3. From these results, KRG increased systemic circulation of oral paclitaxel and its distribution to tumors via P-gp inhibition in rats and under the current study conditions.

  8. Chemoprevention and therapy of mouse mammary carcinomas with doxorubicin encapsulated in sterically stabilized liposomes.

    PubMed

    Vaage, J; Donovan, D; Loftus, T; Abra, R; Working, P; Huang, A

    1994-05-01

    The objective of this study was to determine the ability of doxorubicin, encapsulated in sterically stabilized liposomes (Doxil [Liposome Technology, Inc., Menlo Park, CA]), to inhibit the spontaneous development of mammary carcinomas in mice. Monthly prophylactic intravenous injections of 6 mg/kg doses of Doxil were started when retired breeding C3H/He mice were 26 weeks old. Mice that developed a mammary carcinoma were then given weekly intravenous injections of 6 mg/kg doses to determine whether the tumors were susceptible or resistant to Doxil therapy. The monthly injections reduced the incidence of first mammary carcinomas in up to 88-week-old retired breeding C3H/He mice from 65 of 66 (98%) in untreated mice to 22 of 47 (47%) in treated mice. The first 15 mice that developed a mammary tumor while on the prophylactic protocol were then placed on a weekly therapeutic protocol. The therapeutic use of Doxil cured 3 of 15 mice and inhibited the growth of 12 tumors. Drug resistance as a result of treatments was not observed. The mean survival of tumor-bearing mice was extended from 24 days in untreated mice to 87 days in treated mice. Toxic side effects were limited to transient weight loss during the weekly Doxil treatments and to epidermal necrosis and dermal fibrosis due to drug extravasation at the sites of intravenous injections. The authors concluded that doxorubicin in sterically stabilized liposomes deserves to be explored further in comparative studies with free doxorubicin for the prophylaxis and therapy of mammary cancer.

  9. Evaluating mononuclear cells as nanoparticle delivery vehicles for the treatment of breast tumors

    NASA Astrophysics Data System (ADS)

    Murton, Jaclyn K.; Hu, Chelin; Ahmed, Mona M.; Hathaway, Helen J.; Nysus, Monique; Anderson Daniels, Tamara; Norenberg, Jeffrey P.; Adolphi, Natalie L.

    2015-08-01

    In breast cancer, certain types of circulating immune cells respond to long-range chemical signals from tumors by leaving the blood stream to actively infiltrate tumor tissue. The aim of this study was to evaluate whether immune cells could be used to deliver therapeutic nanoparticles into breast tumors in mice. Mononuclear splenocytes (MS) were harvested from donor mice, labeled with Indium-111, injected intravenously into immune-competent recipient mice (3 tumor-bearing and 3 control), and imaged longitudinally by SPECT/CT. For comparison, the biodistribution of bonemarrow derived macrophages (BMDM) in one pair of mice was also imaged. Quantitative analysis of the SPECT images demonstrates that, after 24 hours, the concentration of MS detected in mammary tumors is more than 3-fold higher than the concentration detected in normal mammary glands. The ratio of MS concentration in mammary tissue to MS concentration in non-target tissues (muscle, lung, heart, liver, spleen, and kidney) was enhanced in tumor-bearing mice (compared to controls), with statistical significance achieved for mammary/muscle (p<0.01), mammary/lung (p<0.05), and mammary/kidney (p<0.05). By contrast, BMDM did not show a different affinity for tumors relative to normal mammary tissue. MS were incubated with 100 nm red fluorescent nanoparticles, and flow cytometry demonstrated that ~35% of the MS population exhibited strong phagocytic uptake of the nanoparticles. After intravenous injection into tumor-bearing mice, fluorescence microscopy images of tumor sections show qualitatively that nanoparticle-loaded MS retain the ability to infiltrate mammary tumors. Taken together, these results suggest that MS carriers are capable of actively targeting therapeutic nanoparticles to breast tumors.

  10. Repression of mammary adipogenesis by genistein limits mammosphere formation of human MCF-7 cells

    USDA-ARS?s Scientific Manuscript database

    Mammary adipose tissue may contribute to breast cancer development and progression by altering neighboring epithelial cell behavior and phenotype through paracrine signaling. Dietary exposure to soy foods is associated with lower mammary tumor risk and reduced body weight and adiposity in humans and...

  11. Sequence Variants and Haplotype Analysis of Cat ERBB2 Gene: A Survey on Spontaneous Cat Mammary Neoplastic and Non-Neoplastic Lesions

    PubMed Central

    Santos, Sara; Bastos, Estela; Baptista, Cláudia S.; Sá, Daniela; Caloustian, Christophe; Guedes-Pinto, Henrique; Gärtner, Fátima; Gut, Ivo G.; Chaves, Raquel

    2012-01-01

    The human ERBB2 proto-oncogene is widely considered a key gene involved in human breast cancer onset and progression. Among spontaneous tumors, mammary tumors are the most frequent cause of cancer death in cats and second most frequent in humans. In fact, naturally occurring tumors in domestic animals, more particularly cat mammary tumors, have been proposed as a good model for human breast cancer, but critical genetic and molecular information is still scarce. The aims of this study include the analysis of the cat ERBB2 gene partial sequences (between exon 17 and 20) in order to characterize a normal and a mammary lesion heterogeneous populations. Cat genomic DNA was extracted from normal frozen samples (n = 16) and from frozen and formalin-fixed paraffin-embedded mammary lesion samples (n = 41). We amplified and sequenced two cat ERBB2 DNA fragments comprising exons 17 to 20. It was possible to identify five sequence variants and six haplotypes in the total population. Two sequence variants and two haplotypes show to be specific for cat mammary tumor samples. Bioinformatics analysis predicts that four of the sequence variants can produce alternative transcripts or activate cryptic splicing sites. Also, a possible association was identified between clinicopathological traits and the variant haplotypes. As far as we know, this is the first attempt to examine ERBB2 genetic variations in cat mammary genome and its possible association with the onset and progression of cat mammary tumors. The demonstration of a possible association between primary tumor size (one of the two most important prognostic factors) and the number of masses with the cat ERBB2 variant haplotypes reveal the importance of the analysis of this gene in veterinary medicine. PMID:22489125

  12. Decreased adrenal medullary tyrosine hydroxylase mRNA in DMBA (7,12-dimethylbenz(a)anthracene)-induced mammary carcinoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bunce, O.R.; Badary, O.A.; Abou El-Ela, S.

    1991-03-15

    Adrenal cortical hormones suppress initiation and promotion of DMBA-induced mammary tumorigenesis. The authors found a positive correlation between presence of DMBA-induced adrenal cortical necrosis and mammary tumor incidence. Because they find adrenal medullary as well as cortical lesions in tumor bearing (TB) DMBA-treated rats, they evaluated medullary function by quantitating hybridized cDNA- TH-S{sup 35} with in situ TH-mRNA u sing computer assisted quantitative autoradiographic technique. Virgin female Sprague-Dawley rats were given a 10 mg i.g. dose of DMBA. Three wks later, rats were placed on 20% polyunsaturated (PUFA) fat diets containing omega-6 and omega-3 fatty acids. All were killed 15more » wks post-DMBA. TH-mRNA levels in adrenal medullae of TB animals were decreased compared to non-TB rats. Histopathology indicated a high incidence of medullary necrosis in TB rats, whereas, adrenal necrosis did not occur in non-TB animals. Adrenal necrosis correlated positively with tumor burden, but no correlation was found between incidence of adrenal lesions and type of PUFA in the diet. The authors suggest that DMBA adrenal necrosis may reduce TH-mRNA in the medulla, compromise its catecholamine synthetic capability, and thereby contribute to the overall metabolic stress condition of TB rats.« less

  13. Ocular melanoma and mammary mucinous carcinoma in an African lion.

    PubMed

    Cagnini, Didier Q; Salgado, Breno S; Linardi, Juliana L; Grandi, Fabrizio; Rocha, Rafael M; Rocha, Noeme S; Teixeira, Carlos R; Del Piero, Fabio; Sequeira, Julio L

    2012-09-25

    Reports of neoplasms in Panthera species are increasing, but they are still an uncommon cause of disease and death in captive wild felids. The presence of two or more primary tumor in large felids is rarely reported, and there are no documented cases of ocular melanoma and mammary mucinous carcinoma in African lions. An ocular melanoma and a mammary mucinous carcinoma are described in an African lion (Panthera leo). The first tumour was histologically characterized by the presence of epithelioid and fusiform melanocytes, while the latter was composed of mucus-producing cells with an epithelial phenotype that contained periodic acid-Schiff (PAS) and Alcian blue staining mucins. Metastases of both tumor were identified in various organs and indirect immunohistochemistry was used to characterize them. Peribiliary cysts were observed in the liver. This is the first description of these tumor in African lions.

  14. Increased expression of CYP4Z1 promotes tumor angiogenesis and growth in human breast cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Wei; Chai, Hongyan; Li, Ying

    2012-10-01

    Cytochrome P450 (CYP) 4Z1, a novel CYP4 family member, is over-expressed in human mammary carcinoma and associated with high-grade tumors and poor prognosis. However, the precise role of CYP4Z1 in tumor progression is unknown. Here, we demonstrate that CYP4Z1 overexpression promotes tumor angiogenesis and growth in breast cancer. Stable expression of CYP4Z1 in T47D and BT-474 human breast cancer cells significantly increased mRNA expression and production of vascular endothelial growth factor (VEGF)-A, and decreased mRNA levels and secretion of tissue inhibitor of metalloproteinase-2 (TIMP-2), without affecting cell proliferation and anchorage-independent cell growth in vitro. Notably, the conditioned medium from CYP4Z1-expressingmore » cells enhanced proliferation, migration and tube formation of human umbilical vein endothelial cells, and promoted angiogenesis in the zebrafish embryo and chorioallantoic membrane of the chick embryo. In addition, there were lower levels of myristic acid and lauric acid, and higher contents of 20-hydroxyeicosatetraenoic acid (20-HETE) in CYP4Z1-expressing T47D cells compared with vector control. CYP4Z1 overexpression significantly increased tumor weight and microvessel density by 2.6-fold and 1.9-fold in human tumor xenograft models, respectively. Moreover, CYP4Z1 transfection increased the phosphorylation of ERK1/2 and PI3K/Akt, while PI3K or ERK inhibitors and siRNA silencing reversed CYP4Z1-mediated changes in VEGF-A and TIMP-2 expression. Conversely, HET0016, an inhibitor of the CYP4 family, potently inhibited the tumor-induced angiogenesis with associated changes in the intracellular levels of myristic acid, lauric acid and 20-HETE. Collectively, these data suggest that increased CYP4Z1 expression promotes tumor angiogenesis and growth in breast cancer partly via PI3K/Akt and ERK1/2 activation. -- Highlights: ► CYP4Z1 overexpression promotes human breast cancer growth and angiogenesis. ► The pro-angiogenic effects of CYP

  15. Pomegranate exerts chemoprevention of experimentally induced mammary tumorigenesis by suppression of cell proliferation and induction of apoptosis.

    PubMed

    Bishayee, Anupam; Mandal, Animesh; Bhattacharyya, Piyali; Bhatia, Deepak

    2016-01-01

    Breast cancer is the second leading cause of cancer-related death in women in the United States and discovery and development of safe chemopreventive drugs is urgently needed. The fruit pomegranate (Punica granatum) is gaining importance because of its various health benefits. This study was initiated to investigate chemopreventive potential of a pomegranate emulsion (PE) against 7,12-dimethylbenz(a)anthracene (DMBA) rat mammary carcinogenesis. The animals were orally administered with PE (0.2-5.0 g/kg), starting 2 wk before and 16 wk following DMBA treatment. PE exhibited a striking reduction of DMBA-induced mammary tumor incidence, total tumor burden, and reversed histopathological changes. PE dose-dependently suppressed cell proliferation and induced apoptosis in mammary tumors. Immunohistochemical studies showed that PE increased intratumor Bax, decreased Bcl2 and manifested a proapoptotic shift in Bax/Bcl2 ratio. In addition, our gene expression study showed PE-mediated upregulation of Bad, caspase-3, caspase-7, caspase-9, poly (ADP ribose) polymerase and cytochrome c in mammary tumors. Thus, PE exerts chemoprevention of mammary carcinogenesis by suppressing cell proliferation and inducing apoptosis mediated through upregulation of Bax and downregulation of Bcl2 in concert with caspase cascades. Pomegranate bioactive phytoconstituents could be developed as a chemopreventive drug to reduce the risk of breast cancer.

  16. Ltbp1L is focally induced in embryonic mammary mesenchyme, demarcates the ductal luminal lineage and is upregulated during involution

    PubMed Central

    2013-01-01

    Introduction Latent TGFβ binding proteins (LTBPs) govern TGFβ presentation and activation and are important for elastogenesis. Although TGFβ is well-known as a tumor suppressor and metastasis promoter, and LTBP1 is elevated in two distinct breast cancer metastasis signatures, LTBPs have not been studied in the normal mammary gland. Methods To address this we have examined Ltbp1 promoter activity throughout mammary development using an Ltbp1L-LacZ reporter as well as expression of both Ltbp1L and 1S mRNA and protein by qRT-PCR, immunofluorescence and flow cytometry. Results Our data show that Ltbp1L is transcribed coincident with lumen formation, providing a rare marker distinguishing ductal from alveolar luminal lineages. Ltbp1L and Ltbp1S are silent during lactation but robustly induced during involution, peaking at the stage when the remodeling process becomes irreversible. Ltbp1L is also induced within the embryonic mammary mesenchyme and maintained within nipple smooth muscle cells and myofibroblasts. Ltbp1 protein exclusively ensheaths ducts and side branches. Conclusions These data show Ltbp1 is transcriptionally regulated in a dynamic manner that is likely to impose significant spatial restriction on TGFβ bioavailability during mammary development. We hypothesize that Ltbp1 functions in a mechanosensory capacity to establish and maintain ductal luminal cell fate, support and detect ductal distension, trigger irreversible involution, and facilitate nipple sphincter function. PMID:24262428

  17. Interstitial Fluid Sphingosine-1-Phosphate in Murine Mammary Gland and Cancer and Human Breast Tissue and Cancer Determined by Novel Methods.

    PubMed

    Nagahashi, Masayuki; Yamada, Akimitsu; Miyazaki, Hiroshi; Allegood, Jeremy C; Tsuchida, Junko; Aoyagi, Tomoyoshi; Huang, Wei-Ching; Terracina, Krista P; Adams, Barbara J; Rashid, Omar M; Milstien, Sheldon; Wakai, Toshifumi; Spiegel, Sarah; Takabe, Kazuaki

    2016-06-01

    The tumor microenvironment is a determining factor for cancer biology and progression. Sphingosine-1-phosphate (S1P), produced by sphingosine kinases (SphKs), is a bioactive lipid mediator that regulates processes important for cancer progression. Despite its critical roles, the levels of S1P in interstitial fluid (IF), an important component of the tumor microenvironment, have never previously been measured due to a lack of efficient methods for collecting and quantifying IF. The purpose of this study is to clarify the levels of S1P in the IF from murine mammary glands and its tumors utilizing our novel methods. We developed an improved centrifugation method to collect IF. Sphingolipids in IF, blood, and tissue samples were measured by mass spectrometry. In mice with a deletion of SphK1, but not SphK2, levels of S1P in IF from the mammary glands were greatly attenuated. Levels of S1P in IF from mammary tumors were reduced when tumor growth was suppressed by oral administration of FTY720/fingolimod. Importantly, sphingosine, dihydro-sphingosine, and S1P levels, but not dihydro-S1P, were significantly higher in human breast tumor tissue IF than in the normal breast tissue IF. To our knowledge, this is the first reported S1P IF measurement in murine normal mammary glands and mammary tumors, as well as in human patients with breast cancer. S1P tumor IF measurement illuminates new aspects of the role of S1P in the tumor microenvironment.

  18. Advanced Imaging Approaches to Characterize Stromal and Metabolic Changes in In Vivo Mammary Tumor Models

    DTIC Science & Technology

    2013-03-01

    characterization and toward future intravital studies. Preliminary fluorescence lifetime images were also collected intravitally through a mammary imaging window...intend to use this characterization to understand shifts in fluorescence lifetime collected by intravital imaging using a mammary imaging window...collected intravitally through a mammary imaging window implanted in a female, PyVT positive, Col1a1 heterozygote, mouse (Figure 7). A paper has

  19. Prognostic Significance of Loss-of-Heterozygosity of the CUTL1 Putative Tumor Suppressor Gene in Breast Cancers

    DTIC Science & Technology

    2000-08-01

    the mouse mammary tumor virus long terminal repeat (MMTV-LTR) frequently develop mammary tumors and uterine leiomyomas (4). The results of...coimmunoprecipitation analyses revealed that specific complexes of CDP/Cut and PyV LT antigen could be detected in both leiomyomas and mammary tumors (4...Martinsoudant, N., Nepveu, A., Cardiff, R. D., and Muller, W. J. The Induction Of Uterine Leiomyomas and Mammary Tumors In Transgenic Mice Expressing

  20. Tracing anti-cancer and cancer-promoting actions of all-trans retinoic acid in breast cancer to a RARα epigenetic mechanism of mammary epithelial cell fate.

    PubMed

    Rossetti, Stefano; Ren, MingQiang; Visconti, Nicolo; Corlazzoli, Francesca; Gagliostro, Vincenzo; Somenzi, Giulia; Yao, Jin; Sun, Yijun; Sacchi, Nicoletta

    2016-12-27

    A hallmark of cancer cells is the ability to evade the growth inhibitory/pro-apoptotic action of physiological all-trans retinoic acid (RA) signal, the bioactive derivative of Vitamin A. However, as we and others reported, RA can also promote cancer cell growth and invasion. Here we show that anticancer and cancer-promoting RA actions in breast cancer have roots in a mechanism of mammary epithelial cell morphogenesis that involves both transcriptional (epigenetic) and non-transcriptional RARα (RARA) functions. We found that the mammary epithelial cell-context specific degree of functionality of the RARA transcriptional (epigenetic) component of this mechanism, by tuning the effects of the non-transcriptional RARA component, determines different cell fate decisions during mammary morphogenesis. Indeed, factors that hamper the RARA epigenetic function make physiological RA drive aberrant morphogenesis via non-transcriptional RARA, thus leading to cell transformation. Remarkably, also the cell context-specific degree of functionality of the RARA epigenetic component retained by breast cancer cells is critical to determine cell fate decisions in response to physiological as well as supraphysiological RA variation. Overall this study supports the proof of principle that the epigenetic functional plasticity of the mammary epithelial cell RARA mechanism, which is essential for normal morphogenetic processes, is necessary to deter breast cancer onset/progression consequent to the insidious action of physiological RA.

  1. CDB-4124, a progesterone receptor modulator, inhibits mammary carcinogenesis by suppressing cell proliferation and inducing apoptosis.

    PubMed

    Wiehle, Ronald; Lantvit, Daniel; Yamada, Tohru; Christov, Konstantin

    2011-03-01

    CDB-4124 (Proellex or telapristone acetate) is a modulator of progesterone receptor (PR) signaling, which is currently employed in preclinical studies for prevention and treatment of breast cancer and has been used in clinical studies for treatment of uterine fibroids and endometriosis. Here we provide evidence for its action on steroid hormone-signaling, cell cycle-regulated genes and in vivo on mammary carcinogenesis. When CDB-4124 is given to rats at 200 mg/kg for 24 months, it prevents the development of spontaneous mammary hyperplastic and premalignant lesions. Also, CDB-4124 given as subcutaneous pellets at two different doses suppressed, dose dependently, N-methyl-N-nitrosourea (MNU)-induced mammary carcinogenesis. The high dose (30 mg, over 84 days) increased tumor latency from 66 ± 24 days to 87 ± 20 days (P < 0.02), decreased incidence from 85% to 35% (P < 0.001), and reduced multiplicity from 3.0 to 1.1 tumors/animal (P < 0.001). Tumor burden decreased from 2.6 g/animal to 0.26 g/animal (P < 0.01). CDB-4124 inhibited cell proliferation and induced apoptosis in MNU-induced mammary tumors, which correlated with a decreased proportion of PR(+) tumor cells and with decreased serum progesterone. CDB-4124 did not affect serum estradiol. In a mechanistic study employing T47D cells we found that CDB-4124 suppressed G(1)/G(0)-S transition by inhibiting CDK2 and CDK4 expressions, which correlated with inhibition of estrogen receptor (ER) expression. Taken together, these data indicate that CDB-4124 can suppress the development of precancerous lesions and carcinogen-induced ER(+) mammary tumors in rats, and may have implications for prevention and treatment of human breast cancer.

  2. Tumor Suppression and Promotion by Autophagy

    PubMed Central

    Ávalos, Yenniffer; Canales, Jimena; Criollo, Alfredo; Quest, Andrew F. G.

    2014-01-01

    Autophagy is a highly regulated catabolic process that involves lysosomal degradation of proteins and organelles, mostly mitochondria, for the maintenance of cellular homeostasis and reduction of metabolic stress. Problems in the execution of this process are linked to different pathological conditions, such as neurodegeneration, aging, and cancer. Many of the proteins that regulate autophagy are either oncogenes or tumor suppressor proteins. Specifically, tumor suppressor genes that negatively regulate mTOR, such as PTEN, AMPK, LKB1, and TSC1/2 stimulate autophagy while, conversely, oncogenes that activate mTOR, such as class I PI3K, Ras, Rheb, and AKT, inhibit autophagy, suggesting that autophagy is a tumor suppressor mechanism. Consistent with this hypothesis, the inhibition of autophagy promotes oxidative stress, genomic instability, and tumorigenesis. Nevertheless, autophagy also functions as a cytoprotective mechanism under stress conditions, including hypoxia and nutrient starvation, that promotes tumor growth and resistance to chemotherapy in established tumors. Here, in this brief review, we will focus the discussion on this ambiguous role of autophagy in the development and progression of cancer. PMID:25328887

  3. Tumor suppression and promotion by autophagy.

    PubMed

    Ávalos, Yenniffer; Canales, Jimena; Bravo-Sagua, Roberto; Criollo, Alfredo; Lavandero, Sergio; Quest, Andrew F G

    2014-01-01

    Autophagy is a highly regulated catabolic process that involves lysosomal degradation of proteins and organelles, mostly mitochondria, for the maintenance of cellular homeostasis and reduction of metabolic stress. Problems in the execution of this process are linked to different pathological conditions, such as neurodegeneration, aging, and cancer. Many of the proteins that regulate autophagy are either oncogenes or tumor suppressor proteins. Specifically, tumor suppressor genes that negatively regulate mTOR, such as PTEN, AMPK, LKB1, and TSC1/2 stimulate autophagy while, conversely, oncogenes that activate mTOR, such as class I PI3K, Ras, Rheb, and AKT, inhibit autophagy, suggesting that autophagy is a tumor suppressor mechanism. Consistent with this hypothesis, the inhibition of autophagy promotes oxidative stress, genomic instability, and tumorigenesis. Nevertheless, autophagy also functions as a cytoprotective mechanism under stress conditions, including hypoxia and nutrient starvation, that promotes tumor growth and resistance to chemotherapy in established tumors. Here, in this brief review, we will focus the discussion on this ambiguous role of autophagy in the development and progression of cancer.

  4. Initiation of oncogenic transformation in human mammary epithelial cells by charged particles

    NASA Technical Reports Server (NTRS)

    Yang, T. C.; Georgy, K. A.; Craise, L. M.; Durante, M.

    1997-01-01

    Experimental studies have shown that high linear-energy transfer (LET) charged particles can be more effective than x-rays and gamma-rays in inducing oncogenic transformation in cultured cells and tumors in animals. Based on these results, experiments were designed and performed with an immortal human mammary epithelial cell line (H184B5), and several clones transformed by heavy ions were obtained. Cell fusion experiments were subsequently done, and results indicate that the transforming gene(s) is recessive. Chromosome analysis with fluorescence in situ hybridization (FISH) techniques also showed additional translocations in transformed human mammary epithelial cells. In addition, studies with these cell lines indicate that heavy ions can effectively induce deletion, break, and dicentrics. Deletion of tumor suppressor gene(s) and/or formation of translocation through DNA double strand breaks is a likely mechanism for the initiation of oncogenic transformation in human mammary epithelial cells.

  5. Pericyte–fibroblast transition promotes tumor growth and metastasis

    PubMed Central

    Hosaka, Kayoko; Yang, Yunlong; Seki, Takahiro; Fischer, Carina; Dubey, Olivier; Fredlund, Erik; Hartman, Johan; Religa, Piotr; Ishii, Yoko; Sasahara, Masakiyo; Larsson, Ola; Cossu, Giulio; Cao, Renhai; Lim, Sharon; Cao, Yihai

    2016-01-01

    Vascular pericytes, an important cellular component in the tumor microenvironment, are often associated with tumor vasculatures, and their functions in cancer invasion and metastasis are poorly understood. Here we show that PDGF-BB induces pericyte–fibroblast transition (PFT), which significantly contributes to tumor invasion and metastasis. Gain- and loss-of-function experiments demonstrate that PDGF-BB-PDGFRβ signaling promotes PFT both in vitro and in in vivo tumors. Genome-wide expression analysis indicates that PDGF-BB–activated pericytes acquire mesenchymal progenitor features. Pharmacological inhibition and genetic deletion of PDGFRβ ablate the PDGF-BB–induced PFT. Genetic tracing of pericytes with two independent mouse strains, TN-AP-CreERT2:R26R-tdTomato and NG2-CreERT2:R26R-tdTomato, shows that PFT cells gain stromal fibroblast and myofibroblast markers in tumors. Importantly, coimplantation of PFT cells with less-invasive tumor cells in mice markedly promotes tumor dissemination and invasion, leading to an increased number of circulating tumor cells and metastasis. Our findings reveal a mechanism of vascular pericytes in PDGF-BB–promoted cancer invasion and metastasis by inducing PFT, and thus targeting PFT may offer a new treatment option of cancer metastasis. PMID:27608497

  6. Maternal dioxin exposure combined with a diet high in fat increases mammary cancer incidence in mice.

    PubMed

    La Merrill, Michele; Harper, Rachel; Birnbaum, Linda S; Cardiff, Robert D; Threadgill, David W

    2010-05-01

    RESULTS from previous studies have suggested that breast cancer risk correlates with total lifetime exposure to estrogens and that early-life 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) exposure or diets high in fat can also increase cancer risk. Because both TCDD and diet affect the estrogen pathway, we examined how TCDD and a high-fat diet (HFD) interact to alter breast cancer susceptibility. We exposed pregnant female FVB/NJ mice (12.5 days postcoitus) to 1 microg/kg TCDD or vehicle; at parturition, the dams were randomly assigned to a low-fat diet (LFD) or a high-fat diet (HFD). Female offspring were maintained on the same diets after weaning and were exposed to 7,12-dimethylbenz[a]anthracene on postnatal days (PNDs) 35, 49, and 63 to initiate mammary tumors. A second cohort of females was treated identically until PND35 or PND49, when mammary gland morphology was examined, or PND50, when mammary gland mRNA was analyzed. We found that maternal TCDD exposure doubled mammary tumor incidence only in mice fed the HFD. Among HFD-fed mice, maternal TCDD exposure caused rapid mammary development with increased Cyp1b1 (cytochrome P450 1B1) expression and decreased Comt (catechol-O-methyltransferase) expression in mammary tissue. Maternal TCDD exposure also increased mammary tumor Cyp1b1 expression. Our data suggest that the HFD increases sensitivity to maternal TCDD exposure, resulting in increased breast cancer incidence, by changing metabolism capability. These results provide a mechanism to explain epidemiological data linking early-life TCDD exposure and diets high in fat to increased risk for breast cancer in humans.

  7. Detection of neuroendocrine tumors using promoter-specific secreted Gaussia luciferase.

    PubMed

    Tseng, Alan Wei-Shun; Akerstrom, Victoria; Chen, Chiachen; Breslin, Mary B; Lan, Michael S

    2016-01-01

    Accurate detection of neuroendocrine (NE) tumors is critically important for better prognosis and treatment outcomes in patients. To demonstrate the efficacy of using an adenoviral vector for the detection of NE tumors, we have constructed a pair of adenoviral vectors which, in combination, can conditionally replicate and release Gaussia luciferase into the circulation after infecting the NE tumors. The expression of these two vectors is regulated upstream by an INSM1-promoter (insulinoma-associated-1) that is specifically active in NE tumors and developing NE tissues, but silenced in normal adult tissues. In order to retain the tumor-specificity of the INSM1 promoter, we have modified the promoter using the core insulator sequence from the chicken β-globin HS4 insulator and the neuronal restrictive silencing element (NRSE). This modified INSM1-promoter can retain NE tumor specificity in an adenoviral construct while driving a mutated adenovirus E1A gene (∆24E1A), the Metridia, or Gaussia luciferase gene. The in vitro cell line and mouse xenograft human tumor studies revealed the NE specificity of the INSM1-promoter in NE lung cancer, neuroblastoma, medulloblastoma, retinoblastoma, and insulinoma. When we combined the INSM1-promoter driven Gaussia luciferase with ∆24E1A, the co-infected NE tumor secreted higher levels of Gaussia luciferase as compared to the INSM1p-Gaussia virus alone. In a mouse subcutaneous xenograft tumor model, the combination viruses secreted detectable level of Gaussia luciferase after infecting an INSM1-positive NE lung tumor for ≥12 days. Therefore, the INSM1-promoter specific conditional replicating adenovirus represents a sensitive diagnostic tool to aid clinicians in the detection of NE tumors.

  8. Mammary stem cell and macrophage markers are enriched in normal tissue adjacent to inflammatory breast cancer.

    PubMed

    Reddy, Jay P; Atkinson, Rachel L; Larson, Richard; Burks, Jared K; Smith, Daniel; Debeb, Bisrat G; Ruffell, Brian; Creighton, Chad J; Bambhroliya, Arvind; Reuben, James M; Van Laere, Steven J; Krishnamurthy, Savitri; Symmans, William F; Brewster, Abenaa M; Woodward, Wendy A

    2018-06-01

    We hypothesized that breast tissue not involved by tumor in inflammatory breast cancer (IBC) patients contains intrinsic differences, including increased mammary stem cells and macrophage infiltration, which may promote the IBC phenotype. Normal breast parenchyma ≥ 5 cm away from primary tumors was obtained from mastectomy specimens. This included an initial cohort of 8 IBC patients and 60 non-IBC patients followed by a validation cohort of 19 IBC patients and 25 non-IBC patients. Samples were immunostained for either CD44 + CD49f + CD133/2 + mammary stem cell markers or the CD68 macrophage marker and correlated with IBC status. Quantitation of positive cells was determined using inForm software from PerkinElmer. We also examined the association between IBC status and previously published tumorigenic stem cell and IBC tumor signatures in the validation cohort samples. 8 of 8 IBC samples expressed isolated CD44 + CD49f + CD133/2 + stem cell marked cells in the initial cohort as opposed to 0/60 non-IBC samples (p = 0.001). Similarly, the median number of CD44 + CD49f + CD133/2 + cells was significantly higher in the IBC validation cohort as opposed to the non-IBC validation cohort (25.7 vs. 14.2, p = 0.007). 7 of 8 IBC samples expressed CD68 + histologically confirmed macrophages in initial cohort as opposed to 12/48 non-IBC samples (p = 0.001). In the validation cohort, the median number of CD68 + cells in IBC was 3.7 versus 1.0 in the non-IBC cohort (p = 0.06). IBC normal tissue was positively associated with a tumorigenic stem cell signature (p = 0.02) and with a 79-gene IBC signature (p < 0.001). Normal tissue from IBC patients is enriched for both mammary stem cells and macrophages and has higher association with both a tumorigenic stem cell signature and IBC-specific tumor signature. Collectively, these data suggest that IBC normal tissue differs from non-IBC tissue. Whether these changes occur before the tumor develops or

  9. Low-Dose Alkylphenol Exposure Promotes Mammary Epithelium Alterations and Transgenerational Developmental Defects, But Does Not Enhance Tumorigenic Behavior of Breast Cancer Cells

    PubMed Central

    Chamard-Jovenin, Clémence; Thiebaut, Charlène; Chesnel, Amand; Bresso, Emmanuel; Morel, Chloé; Smail-Tabbone, Malika; Devignes, Marie-Dominique; Boukhobza, Taha; Dumond, Hélène

    2017-01-01

    Fetal and neonatal exposure to long-chain alkylphenols has been suspected to promote breast developmental disorders and consequently to increase breast cancer risk. However, disease predisposition from developmental exposures remains unclear. In this work, human MCF-10A mammary epithelial cells were exposed in vitro to a low dose of a realistic (4-nonylphenol + 4-tert-octylphenol) mixture. Transcriptome and cell-phenotype analyses combined to functional and signaling network modeling indicated that long-chain alkylphenols triggered enhanced proliferation, migration ability, and apoptosis resistance and shed light on the underlying molecular mechanisms which involved the human estrogen receptor alpha 36 (ERα36) variant. A male mouse-inherited transgenerational model of exposure to three environmentally relevant doses of the alkylphenol mix was set up in order to determine whether and how it would impact on mammary gland architecture. Mammary glands from F3 progeny obtained after intrabuccal chronic exposure of C57BL/6J P0 pregnant mice followed by F1–F3 male inheritance displayed an altered histology which correlated with the phenotypes observed in vitro in human mammary epithelial cells. Since cellular phenotypes are similar in vivo and in vitro and involve the unique ERα36 human variant, such consequences of alkylphenol exposure could be extrapolated from mouse model to human. However, transient alkylphenol treatments combined to ERα36 overexpression in mammary epithelial cells were not sufficient to trigger tumorigenesis in xenografted Nude mice. Therefore, it remains to be determined if low-dose alkylphenol transgenerational exposure and subsequent abnormal mammary gland development could account for an increased breast cancer susceptibility. PMID:29109696

  10. Adipocyte differentiation-related protein promotes lipid accumulation in goat mammary epithelial cells.

    PubMed

    Shi, H B; Yu, K; Luo, J; Li, J; Tian, H B; Zhu, J J; Sun, Y T; Yao, D W; Xu, H F; Shi, H P; Loor, J J

    2015-10-01

    Milk fat originates from the secretion of cytosolic lipid droplets (CLD) synthesized within mammary epithelial cells. Adipocyte differentiation-related protein (ADRP; gene symbol PLIN2) is a CLD-binding protein that is crucial for synthesis of mature CLD. Our hypothesis was that ADRP regulates CLD production and metabolism in goat mammary epithelial cells (GMEC) and thus plays a role in determining milk fat content. To understand the role of ADRP in ruminant milk fat metabolism, ADRP (PLIN2) was overexpressed or knocked down in GMEC using an adenovirus system. Immunocytochemical staining revealed that ADRP localized to the surface of CLD. Supplementation with oleic acid (OA) enhanced its colocalization with CLD surface and enhanced lipid accumulation. Overexpression of ADRP increased lipid accumulation and the concentration of triacylglycerol in GMEC. In contrast, morphological examination revealed that knockdown of ADRP decreased lipid accumulation even when OA was supplemented. This response was confirmed by the reduction in mass of cellular TG when ADRP was knocked down. The fact that knockdown of ADRP did not completely eliminate lipid accumulation at a morphological level in GMEC without OA suggests that some other compensatory factors may also aid in the process of CLD formation. The ADRP reversed the decrease of CLD accumulation induced by adipose triglyceride lipase. This is highly suggestive of ADRP promoting triacylglycerol stability within CLD by preventing access to adipose triglyceride lipase. Collectively, these data provide direct in vitro evidence that ADRP plays a key role in CLD formation and stability in GMEC. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  11. TERT promoter mutation in adult granulosa cell tumor of the ovary.

    PubMed

    Pilsworth, Jessica A; Cochrane, Dawn R; Xia, Zhouchunyang; Aubert, Geraldine; Färkkilä, Anniina E M; Horlings, Hugo M; Yanagida, Satoshi; Yang, Winnie; Lim, Jamie L P; Wang, Yi Kan; Bashashati, Ali; Keul, Jacqueline; Wong, Adele; Norris, Kevin; Brucker, Sara Y; Taran, Florin-Andrei; Krämer, Bernhard; Staebler, Annette; Oliva, Esther; Shah, Sohrab P; Kommoss, Stefan; Kommoss, Friedrich; Gilks, C Blake; Baird, Duncan M; Huntsman, David G

    2018-02-15

    The telomerase reverse transcriptase (TERT) gene is highly expressed in stem cells and silenced upon differentiation. Cancer cells can attain immortality by activating TERT to maintain telomere length and telomerase activity, which is a crucial step of tumorigenesis. Two somatic mutations in the TERT promoter (C228T; C250T) have been identified as gain-of-function mutations that promote transcriptional activation of TERT in multiple cancers, such as melanoma and glioblastoma. A recent study investigating TERT promoter mutations in ovarian carcinomas found C228T and C250T mutations in 15.9% of clear cell carcinomas. However, it is unknown whether these mutations are frequent in other ovarian cancer subtypes, in particular, sex cord-stromal tumors including adult granulosa cell tumors. We performed whole-genome sequencing on ten adult granulosa cell tumors with matched normal blood and identified a TERT C228T promoter mutation in 50% of tumors. We found that adult granulosa cell tumors with mutated TERT promoter have increased expression of TERT mRNA and exhibited significantly longer telomeres compared to those with wild-type TERT promoter. Extension cohort analysis using allelic discrimination revealed the TERT C228T mutation in 51 of 229 primary adult granulosa cell tumors (22%), 24 of 58 recurrent adult granulosa cell tumors (41%), and 1 of 22 other sex cord-stromal tumors (5%). There was a significant difference in overall survival between patients with TERT C228T promoter mutation in the primary tumors and those without it (p = 0.00253, log-rank test). In seven adult granulosa cell tumors, we found the TERT C228T mutation present in recurrent tumors and absent in the corresponding primary tumor. Our data suggest that TERT C228T promoter mutations may have an important role in progression of adult granulosa cell tumors.

  12. Brca1 regulates in vitro differentiation of mammary epithelial cells.

    PubMed

    Kubista, Marion; Rosner, Margit; Kubista, Ernst; Bernaschek, Gerhard; Hengstschläger, Markus

    2002-07-18

    Murine Brca1 is widely expressed during development in different tissues. Why alterations of BRCA1 lead specifically to breast and ovarian cancer is currently not clarified. Here we show that Brca1 protein expression is upregulated during mammary epithelial differentiation of HC11 cells, during differentiation of C2C12 myoblasts into myotubes and during neuronal differentiation of N1E-115 cells. Ectopic overexpression of BRCA1 and downregulation of endogenous Brca1 expression specifically affect the regulation of mammary epithelial cell differentiation. Accelerated mammary epithelial cell differentiation upon high ectopic BRCA1 expression is not a consequence of the anti-proliferative capacity of this tumor suppressor and independent of functional p53. Overexpression of the BRCA1 variant lacking the large central exon 11 has no effects on mammary epithelial cell differentiation. These data provide new insights into the cellular role of Brca1.

  13. Short interspersed CAN SINE elements as prognostic markers in canine mammary neoplasia.

    PubMed

    Gelaleti, Gabriela B; Granzotto, Adriana; Leonel, Camila; Jardim, Bruna V; Moschetta, Marina G; Carareto, Claudia M A; Zuccari, Debora Ap P C

    2014-01-01

    The genome of mammals is characterized by a large number of non-LTR retrotransposons, and among them, the CAN SINEs are characteristics of the canine species. Small amounts of DNA freely circulate in normal blood serum and high amounts are found in human patients with cancer, characterizing it as a candidate tumor-biomarker. The aim of this study was to estimate, through its absolute expression, the number of copies of CAN SINE sequences present in free circulating DNA of female dogs with mammary cancer, in order to correlate with the clinical and pathological characteristics and the follow-up period. The copy number of CAN SINE sequences was estimated by qPCR in 28 female dogs with mammary neoplasia. The univariate analysis showed an increased number of copies in female dogs with mammary tumor in female dogs >10 years old (p=0.02) and tumor time >18 months (p<0.05). The Kaplan-Meier test demonstrated a negative correlation between an increased number of copies and survival time (p=0.03). High amounts of CAN SINE fragments can be good markers for the detection of tumor DNA in blood and may characterize it as a marker of poor prognosis, being related to female dogs with shorter survival times. This estimate can be used as a prognostic marker in non-invasive breast cancer research and is useful in predicting tumor progression and patient monitoring.

  14. Chemopreventive efficacy of anethole trithione, N-acetyl-L-cysteine, miconazole and phenethylisothiocyanate in the DMBA-induced rat mammary cancer model.

    PubMed

    Lubet, R A; Steele, V E; Eto, I; Juliana, M M; Kelloff, G J; Grubbs, C J

    1997-07-03

    The chemopreventive efficacy of N-acetyl-L-cysteine (NAC), anethole trithione, miconazole and phenethylisothiocyanate (PEITC), each of which would be expected to alter carcinogen metabolism, was examined in the dimethylbenzanthracene (DMBA) mammary carcinogenesis model. In this protocol, animals were exposed to non-toxic doses of the chemopreventives in the diet beginning 7 days prior to DMBA administration and then continuously throughout the duration of the assay (100 days post carcinogen). Miconazole, an antifungal agent with relatively broad inhibitory activity toward a variety of cytochromes P450, increased mammary tumor latency, decreased tumor incidence at the highest dose and decreased tumor multiplicity up to 60%. Anethole trithione, a substituted dithiolthione and an analog of the relatively broad-spectrum chemopreventive oltipraz, was administered in the diet and significantly inhibited mammary cancer multiplicity but not cancer incidence. NAC, an antimucolytic agent, failed to inhibit DMBA-induced mammary tumorigenesis. Surprisingly, treatment with DMBA plus PEITC, a potent inhibitor of cytochrome P450 2E1, actually increased the multiplicity of tumors relative to that observed with DMBA alone.

  15. Imaging macrophage distribution and density in mammary tumors and lung metastases using fluorine-19 MRI cell tracking.

    PubMed

    Makela, Ashley V; Foster, Paula J

    2018-09-01

    The presence of tumor-associated macrophages (TAMs) correlates with breast cancer progression and metastatic spread. Metastasis-associated macrophages (MAMs) are also recruited to distant sites, where they support metastatic growth. In this study, we demonstrate that in vivo fluorine-19 ( 19 F)-based MRI cell tracking can evaluate the density and distribution of macrophages within murine breast cancer tumors and associated metastases. Three murine breast cancer cell lines with different metastatic potentials (4T1, 168FARN, and 67NR) were implanted into the mammary fat pad in mice. In vivo whole body 19 F MRI was performed on tumor-bearing mice 24 hours post-intravenous injection of a perfluorocarbon (PFC) agent, which was taken up by macrophages in situ. TAMs were detected mainly in the periphery of primary tumors, and higher numbers of TAMs were detected in the more aggressive 4T1 tumors. Tumors had significantly greater 19 F spins/mm 3 when they were smaller, suggesting more TAM infiltration in early-stage tumors. 19 F signal was observed within lung metastases in mice with 4T1 tumors, and fluorescence microscopy confirmed the presence of PFC-positive macrophages. This study shows for the first time proof of the ability to use MRI cell tracking to visualize MAMs in the lungs. The ability to detect and monitor the number of TAMs in individual tumors with 19 F MRI would allow for identification of breast tumors with heavy infiltration of TAMs and could be used as a biomarker for decisions about how to best treat these patients as well as for monitoring responses to therapy. Magn Reson Med 80:1138-1147, 2018. © 2018 International Society for Magnetic Resonance in Medicine. © 2018 International Society for Magnetic Resonance in Medicine.

  16. Lipoxygenase mediates invasion of intrametastatic lymphatic vessels and propagates lymph node metastasis of human mammary carcinoma xenografts in mouse

    PubMed Central

    Kerjaschki, Dontscho; Bago-Horvath, Zsuzsanna; Rudas, Margaretha; Sexl, Veronika; Schneckenleithner, Christine; Wolbank, Susanne; Bartel, Gregor; Krieger, Sigurd; Kalt, Romana; Hantusch, Brigitte; Keller, Thomas; Nagy-Bojarszky, Katalin; Huttary, Nicole; Raab, Ingrid; Lackner, Karin; Krautgasser, Katharina; Schachner, Helga; Kaserer, Klaus; Rezar, Sandra; Madlener, Sybille; Vonach, Caroline; Davidovits, Agnes; Nosaka, Hitonari; Hämmerle, Monika; Viola, Katharina; Dolznig, Helmut; Schreiber, Martin; Nader, Alexander; Mikulits, Wolfgang; Gnant, Michael; Hirakawa, Satoshi; Detmar, Michael; Alitalo, Kari; Nijman, Sebastian; Offner, Felix; Maier, Thorsten J.; Steinhilber, Dieter; Krupitza, Georg

    2011-01-01

    In individuals with mammary carcinoma, the most relevant prognostic predictor of distant organ metastasis and clinical outcome is the status of axillary lymph node metastasis. Metastases form initially in axillary sentinel lymph nodes and progress via connecting lymphatic vessels into postsentinel lymph nodes. However, the mechanisms of consecutive lymph node colonization are unknown. Through the analysis of human mammary carcinomas and their matching axillary lymph nodes, we show here that intrametastatic lymphatic vessels and bulk tumor cell invasion into these vessels highly correlate with formation of postsentinel metastasis. In an in vitro model of tumor bulk invasion, human mammary carcinoma cells caused circular defects in lymphatic endothelial monolayers. These circular defects were highly reminiscent of defects of the lymphovascular walls at sites of tumor invasion in vivo and were primarily generated by the tumor-derived arachidonic acid metabolite 12S-HETE following 15-lipoxygenase-1 (ALOX15) catalysis. Accordingly, pharmacological inhibition and shRNA knockdown of ALOX15 each repressed formation of circular defects in vitro. Importantly, ALOX15 knockdown antagonized formation of lymph node metastasis in xenografted tumors. Furthermore, expression of lipoxygenase in human sentinel lymph node metastases correlated inversely with metastasis-free survival. These results provide evidence that lipoxygenase serves as a mediator of tumor cell invasion into lymphatic vessels and formation of lymph node metastasis in ductal mammary carcinomas. PMID:21540548

  17. Intermediate-grade mammary gland adenocarcinoma in an 18-year-old female black leopard (Panthera pardus) with acute pancreatic necrosis and chronic interstitial nephropathy.

    PubMed

    Nakamura, Misato; Yoshida, Toshinori; Eguchi, Ayumi; Inohana, Mari; Nagahara, Rei; Shiraki, Ayako; Ito, Nanao; Shibutani, Makoto

    2018-03-02

    An 18-year-old female black leopard (Panthera pardus) showed renal failure, leukocytosis and presence of subcutaneous masses in the lower abdominal region and right shoulder; she eventually died. Histopathological observations included a mammary gland carcinoma with comedo, solid and tubulopapillary patterns in subcutaneous tissue, and highly proliferated tumor cells in systemic organs. The tumor cells were positive for cytokeratin AE1/AE3. The mammary gland tumor was diagnosed as intermediate-grade adenocarcinoma, based on a previously reported histological grading system of feline mammary carcinomas. Chronic interstitial nephritis was estimated to have been ongoing for 5 years, whilst acute necrotic pancreatitis in relation to tumor metastasis could have been the cause of death.

  18. Single-cell RNA-Seq reveals cell heterogeneity and hierarchy within mouse mammary epithelia.

    PubMed

    Sun, Heng; Miao, Zhengqiang; Zhang, Xin; Chan, Un In; Su, Sek Man; Guo, Sen; Wong, Chris Koon Ho; Xu, Xiaoling; Deng, Chu-Xia

    2018-06-01

    The mammary gland is very intricately and well organized into distinct tissues, including epithelia, endothelia, adipocytes, and stromal and immune cells. Many mammary gland diseases, such as breast cancer, arise from abnormalities in the mammary epithelium, which is mainly composed of two distinct lineages, the basal and luminal cells. Because of the limitation of traditional transcriptome analysis of bulk mammary cells, the hierarchy and heterogeneity of mammary cells within these two lineages remain unclear. To this end, using single-cell RNA-Seq coupled with FACS analysis and principal component analysis, we determined gene expression profiles of mammary epithelial cells of virgin and pregnant mice. These analyses revealed a much higher heterogeneity among the mammary cells than has been previously reported and enabled cell classification into distinct subgroups according to signature gene markers present in each group. We also identified and verified a rare CDH5 + cell subpopulation within a basal cell lineage as quiescent mammary stem cells (MaSCs). Moreover, using pseudo-temporal analysis, we reconstructed the developmental trajectory of mammary epithelia and uncovered distinct changes in gene expression and in biological functions of mammary cells along the developmental process. In conclusion, our work greatly refines the resolution of the cellular hierarchy in developing mammary tissues. The discovery of CDH5 + cells as MaSCs in these tissues may have implications for our understanding of the initiation, development, and pathogenesis of mammary tumors. © 2018 Sun et al.

  19. Aluminium chloride promotes anchorage-independent growth in human mammary epithelial cells.

    PubMed

    Sappino, André-Pascal; Buser, Raphaële; Lesne, Laurence; Gimelli, Stefania; Béna, Frédérique; Belin, Dominique; Mandriota, Stefano J

    2012-03-01

    Aluminium salts used as antiperspirants have been incriminated as contributing to breast cancer incidence in Western societies. To date, very little or no epidemiological or experimental data confirm or infirm this hypothesis. We report here that in MCF-10A human mammary epithelial cells, a well-established normal human mammary epithelial cell model, long-term exposure to aluminium chloride (AlCl(3) ) concentrations of 10-300 µ m, i.e. up to 100 000-fold lower than those found in antiperspirants, and in the range of those recently measured in the human breast, results in loss of contact inhibition and anchorage-independent growth. These effects were preceded by an increase of DNA synthesis, DNA double strand breaks (DSBs), and senescence in proliferating cultures. AlCl(3) also induced DSBs and senescence in proliferating primary human mammary epithelial cells. In contrast, it had no similar effects on human keratinocytes or fibroblasts, and was not detectably mutagenic in bacteria. MCF-10A cells morphologically transformed by long-term exposure to AlCl(3) display strong upregulation of the p53/p21(Waf1) pathway, a key mediator of growth arrest and senescence. These results suggest that aluminium is not generically mutagenic, but similar to an activated oncogene, it induces proliferation stress, DSBs and senescence in normal mammary epithelial cells; and that long-term exposure to AlCl(3) generates and selects for cells able to bypass p53/p21(Waf1) -mediated cellular senescence. Our observations do not formally identify aluminium as a breast carcinogen, but challenge the safety ascribed to its widespread use in underarm cosmetics. Copyright © 2012 John Wiley & Sons, Ltd.

  20. Alteration by prolactin of surface charge and membrane fluidity of rat 13762 mammary ascites tumor cells.

    PubMed

    Zarkower, D A; Plank, L D; Kunze, E; Keith, A; Todd, P; Hymer, W C

    1984-03-01

    Intraperitoneal injection of ovine prolactin (100 micrograms/d) in Fischer 344 rats bearing transplantable 13762 mammary ascites tumor (MAT) cells modifies the surface charge density and membrane fluidity of the tumor cells. In each of five experiments the mean electrophoretic mobility (epm) of MAT cells taken from prolactin-treated rats was significantly lower than that of cells from nonhormone-treated controls. Prolactin concentrations were increased in vivo by (a) direct intraperitoneal injection of ovine prolactin; (b) subcutaneous implantation of diethylstilbestrol-containing silastic capsules to produce pituitary prolactin secreting tumors; or (c) a single subcutaneous injection of polyestradiol phosphate, a long-acting estrogen. In an effort to establish that the prolactin effect was a direct one, two in vivo protocols were used: (a) MAT cells were coincubated with anterior pituitary halves obtained from nontumor-bearing littermates; or (b) rat or ovine prolactin was added to serum-free culture media containing MAT cells. In both protocols, the epm of the prolactin-treated cells was significantly lower. The isoelectric focusing pH of whole cells was increased by prolactin treatment from 4.93 to 5.12, consistent with a reduction in the number of surface carboxyl groups. The fluidity of membranes of treated cells was drastically increased, as measured by spin-label probe rotation rates. These combined results imply that the hormone exerts its effect by stimulating events in the cell that lead to a reduction of the average density of carboxylic acid residues on the tumor cell surface.

  1. NTP Studies of Magnetic Field Promotion (DMBA Initiation) in Female Sprague-Dawley Rats (Whole-body Exposure/Gavage Studies).

    PubMed

    1999-08-01

    Electric and magnetic fields are associated with the production, transmission, and use of electricity; thus, the potential for human exposure is high. These elec-tric and magnetic fields are predominantly of low fre-quency (60 Hz in the United States and 50 Hz in Europe) and generally of low intensity. Because some epidemiology studies and initiation/promotion studies in rats have suggested a potential for increased breast cancer rates with increasing magnetic field exposure, the ability of 50- and 60-Hz magnetic fields to pro-mote mammary gland tumors initiated by the administration of 7,12-dimethylbenz(a)anthracene (DMBA) was examined in female Sprague-Dawley rats in 13- and 26-week whole-body exposure studies. Additional animals were evaluated for changes in pineal gland and serum melatonin concentrations. FIRST 13-WEEK STUDY: Groups of 100 female Sprague-Dawley rats were ad-ministered 20 mg DMBA (four weekly gavage doses of 5 mg in sesame oil) and exposed to 1 G 50-Hz, 5 G 50-Hz, or 1 G 60-Hz magnetic fields for 18.5 hours per day, 7 days per week, for 13 weeks. A group of 100 rats administered 20 mg DMBA served as DMBA controls. A group of 100 vehicle control rats was administered only sesame oil on the same schedule. Additional groups of 10 rats receiving similar treatment were evaluated for pineal gland and serum melatonin concentrations at 4, 8, or 12 weeks. All vehicle control rats survived to the end of the study. Of the animals administered 20 mg DMBA, 6 rats in the DMBA control group, 13 in the DMBA/1 G 50-Hz group, eight in the DMBA/5 G 50-Hz group, and five in the DMBA/1 G 60-Hz group died or were removed from the study prior to the final necropsy. Final mean body weights and body weight gains of the DMBA/1 G 50-Hz and DMBA/1 G 60-Hz groups and the mean body weight gain of the DMBA/5 G 50-Hz group were slightly greater than those of the DMBA control group. Clinical findings including torso masses and ulcers (on the mammary masses) were attributed to

  2. Influence of tangeretin on tamoxifen's therapeutic benefit in mammary cancer.

    PubMed

    Bracke, M E; Depypere, H T; Boterberg, T; Van Marck, V L; Vennekens, K M; Vanluchene, E; Nuytinck, M; Serreyn, R; Mareel, M M

    1999-02-17

    Tamoxifen and the citrus flavonoid tangeretin exhibit similar inhibitory effects on the growth and invasive properties of human mammary cancer cells in vitro; furthermore, the two agents have displayed additive effects in vitro. In this study, we examined whether tangeretin would enhance tamoxifen's therapeutic benefit in vivo. Female nude mice (n = 80) were inoculated subcutaneously with human MCF-7/6 mammary adenocarcinoma cells. Groups of 20 mice were treated orally by adding the following substances to their drinking water: tamoxifen (3 x 10(-5) M), tangeretin (1 x 10(-4) M), tamoxifen plus tangeretin (3 x 10(-5) M plus 1 x 10(-4) M), or solvent. Oral treatment of mice with tamoxifen resulted in a statistically significant inhibition of tumor growth compared with solvent treatment (two-sided P = .001). Treatment with tangeretin did not inhibit tumor growth, and addition of this compound to drinking water with tamoxifen completely neutralized tamoxifen's inhibitory effect. The median survival time of tumor-bearing mice treated with tamoxifen plus tangeretin was reduced in comparison with that of mice treated with tamoxifen alone (14 versus 56 weeks; two-sided P = .002). Tangeretin (1 x 10(-6) M or higher) inhibited the cytolytic effect of murine natural killer cells on MCF-7/6 cells in vitro, which may explain why tamoxifen-induced inhibition of tumor growth in mice is abolished when tangeretin is present in drinking water. We describe an in vivo model to study potential interference of dietary compounds, such as flavonoids, with tamoxifen, which could lead to reduced efficacy of adjuvant therapy. In our study, the tumor growth-inhibiting effect of oral tamoxifen was reversed upon addition of tangeretin to the diet. Our data argue against excessive consumption of tangeretin-added products and supplements by patients with mammary cancer during tamoxifen treatment.

  3. Biological Function of Plasma Kallikrein in Mammary Gland Stromal Development and Tumor Metastasis

    DTIC Science & Technology

    2008-03-01

    mammary gland as well as to identify targets of PKal activity during involution. Furthermore, mast cells are required for normal mammary duct branching...litters were generated, and no live homozygous mutant animals were identified . Wild-type and heterozygous mice appeared in nearly all litters, and of...to identify homozygous mutants in utero. F2 litters from heterozygous crosses were analyzed at embryonic day (E) 12, 10.5, 9.5, 8, and 7.5. At E12

  4. Quantitative Ultrasound Comparison of MAT and 4T1 Mammary Tumors in Mice and Rats Across Multiple Imaging Systems.

    PubMed

    Wirtzfeld, Lauren A; Ghoshal, Goutam; Rosado-Mendez, Ivan M; Nam, Kibo; Park, Yeonjoo; Pawlicki, Alexander D; Miller, Rita J; Simpson, Douglas G; Zagzebski, James A; Oelze, Michael L; Hall, Timothy J; O'Brien, William D

    2015-08-01

    Quantitative ultrasound estimates such as the frequency-dependent backscatter coefficient (BSC) have the potential to enhance noninvasive tissue characterization and to identify tumors better than traditional B-mode imaging. Thus, investigating system independence of BSC estimates from multiple imaging platforms is important for assessing their capabilities to detect tissue differences. Mouse and rat mammary tumor models, 4T1 and MAT, respectively, were used in a comparative experiment using 3 imaging systems (Siemens, Ultrasonix, and VisualSonics) with 5 different transducers covering a range of ultrasonic frequencies. Functional analysis of variance of the MAT and 4T1 BSC-versus-frequency curves revealed statistically significant differences between the two tumor types. Variations also were found among results from different transducers, attributable to frequency range effects. At 3 to 8 MHz, tumor BSC functions using different systems showed no differences between tumor type, but at 10 to 20 MHz, there were differences between 4T1 and MAT tumors. Fitting an average spline model to the combined BSC estimates (3-22 MHz) demonstrated that the BSC differences between tumors increased with increasing frequency, with the greatest separation above 15 MHz. Confining the analysis to larger tumors resulted in better discrimination over a wider bandwidth. Confining the comparison to higher ultrasonic frequencies or larger tumor sizes allowed for separation of BSC-versus-frequency curves from 4T1 and MAT tumors. These constraints ensure that a greater fraction of the backscattered signals originated from within the tumor, thus demonstrating that statistically significant tumor differences were detected. © 2015 by the American Institute of Ultrasound in Medicine.

  5. PPARδ induces estrogen receptor-positive mammary neoplasia through an inflammatory and metabolic phenotype linked to mTOR activation.

    PubMed

    Yuan, Hongyan; Lu, Jin; Xiao, Junfeng; Upadhyay, Geeta; Umans, Rachel; Kallakury, Bhaskar; Yin, Yuhzi; Fant, Michael E; Kopelovich, Levy; Glazer, Robert I

    2013-07-15

    The peroxisome proliferator-activated receptor-δ (PPARδ) regulates a multitude of physiological processes associated with glucose and lipid metabolism, inflammation, and proliferation. One or more of these processes are potential risk factors for the ability of PPARδ agonists to promote tumorigenesis in the mammary gland. In this study, we describe a new transgenic mouse model in which activation of PPARδ in the mammary epithelium by endogenous or synthetic ligands resulted in progressive histopathologic changes that culminated in the appearance of estrogen receptor- and progesterone receptor-positive and ErbB2-negative infiltrating ductal carcinomas. Multiparous mice presented with mammary carcinomas after a latency of 12 months, and administration of the PPARδ ligand GW501516 reduced tumor latency to 5 months. Histopathologic changes occurred concurrently with an increase in an inflammatory, invasive, metabolic, and proliferative gene signature, including expression of the trophoblast gene, Plac1, beginning 1 week after GW501516 treatment, and remained elevated throughout tumorigenesis. The appearance of malignant changes correlated with a pronounced increase in phosphatidylcholine and lysophosphatidic acid metabolites, which coincided with activation of Akt and mTOR signaling that were attenuated by treatment with the mTOR inhibitor everolimus. Our findings are the first to show a direct role of PPARδ in the pathogenesis of mammary tumorigenesis, and suggest a rationale for therapeutic approaches to prevent and treat this disease. ©2013 AACR.

  6. Oxidative stress and inflammatory response biomarkers in dogs with mammary carcinoma.

    PubMed

    Machado, Vanessa S; Crivellenti, Leandro Z; Bottari, Nathieli B; Tonin, Alexandre A; Pelinson, Luana P; Borin-Crivellenti, Sofia; Santana, Aureo E; Torbitz, Vanessa D; Moresco, Rafael N; Duarte, Thiago; Duarte, Marta M M F; Schetinger, Maria Rosa C; Morsch, Vera M; Jaques, Jeandre A; Tinucci-Costa, Mirela; Da Silva, Aleksandro S

    2015-09-01

    Mammary carcinoma is the most common cancer that affects dogs, and in many cases it leads to death. Thus, given the importance of this disease, to clarify its pathogenesis is an important measure. In this sense, the aim of this study was to investigate the levels of cytokines and nitric oxide (NO), oxidative and antioxidant status, as well as the activity of adenosine deaminase (ADA) and butyrylcholinesterase (BChE) in dogs diagnosed with mammary carcinoma. With this purpose, thirty-three (33) serum samples from female dogs with histopathological diagnosis of mammary carcinoma, without evidence of metastasis, were used (group B). The material was classified based on the degree of malignancy, as follows: subgroup B1 (low-grade malignancy; n=26) and subgroup B2 (high grade of malignancy; n=7). Serum samples from healthy females (group A; n=10) were used as negative control. Our results showed that levels of cytokines (TNF-α, INF-γ, IL-1, and IL-6), NOx (nitrite/nitrate), AOPP (protein oxidation), and FRAP (antioxidant power) were significantly (P<0.05) increased in dogs with mammary carcinoma (group B), when compared with group A. On the other hand, ADA activity was significantly decreased (P<0.05) in both subgroups B1 and B2, when compared with group A. BChE activity, however, was reduced (P<0.05) only in subgroup B2 when compared with group A and subgroup B1. Unlike other variables, NO, AOPP, and IFN-γ were influenced by the degree of tumor malignancy, i.e., their levels were even higher in subgroup B2. Therefore, based on these results, we can conclude that all variables investigated are related to the pathogenesis of this disease, since they were altered in dogs with mammary tumor. Additionally, we suggest that ADA activity had an anti-inflammatory effect on these tumor samples, probably in order to modulate the inflammatory response. Copyright © 2015 Elsevier GmbH. All rights reserved.

  7. 14-3-3ζ turns TGF-β's function from tumor suppressor to metastasis promoter in breast cancer by contextual changes of Smad partners from p53 to Gli2.

    PubMed

    Xu, Jia; Acharya, Sunil; Sahin, Ozgur; Zhang, Qingling; Saito, Yohei; Yao, Jun; Wang, Hai; Li, Ping; Zhang, Lin; Lowery, Frank J; Kuo, Wen-Ling; Xiao, Yi; Ensor, Joe; Sahin, Aysegul A; Zhang, Xiang H-F; Hung, Mien-Chie; Zhang, Jitao David; Yu, Dihua

    2015-02-09

    Transforming growth factor β (TGF-β) functions as a tumor suppressor in premalignant cells but as a metastasis promoter in cancer cells. The dichotomous functions of TGF-β are proposed to be dictated by different partners of its downstream effector Smads. However, the mechanism for the contextual changes of Smad partners remained undefined. Here, we demonstrate that 14-3-3ζ destabilizes p53, a Smad partner in premalignant mammary epithelial cells, by downregulating 14-3-3σ, thus turning off TGF-β's tumor suppression function. Conversely, 14-3-3ζ stabilizes Gli2 in breast cancer cells, and Gli2 partners with Smads to activate PTHrP and promote TGF-β-induced bone metastasis. The 14-3-3ζ-driven contextual changes of Smad partners from p53 to Gli2 may serve as biomarkers and therapeutic targets of TGF-β-mediated cancer progression. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Targeted overexpression of EZH2 in the mammary gland disrupts ductal morphogenesis and causes epithelial hyperplasia.

    PubMed

    Li, Xin; Gonzalez, Maria E; Toy, Katherine; Filzen, Tracey; Merajver, Sofia D; Kleer, Celina G

    2009-09-01

    The Polycomb group protein enhancer of zeste homolog 2 (EZH2), which has roles during development of numerous tissues, is a critical regulator of cell type identity. Overexpression of EZH2 has been detected in invasive breast carcinoma tissue samples and is observed in human breast tissue samples of morphologically normal lobules up to 12 years before the development of breast cancer. The function of EZH2 during preneoplastic progression in the mammary gland is unknown. To investigate the role of EZH2 in the mammary gland, we targeted the expression of EZH2 to mammary epithelial cells using the mouse mammary tumor virus long terminal repeat. EZH2 overexpression resulted in aberrant terminal end bud architecture. By the age of 4 months, 100% of female mouse mammary tumor virus-EZH2 virgin mice developed intraductal epithelial hyperplasia resembling the human counterpart accompanied by premature differentiation of ductal epithelial cells and up-regulation of the luminal marker GATA-3. In addition, remodeling of the mammary gland after parturition was impaired and EZH2 overexpression caused delayed involution. Mechanistically, we found that EZH2 physically interacts with beta-catenin, inducing beta-catenin nuclear accumulation in mammary epithelial cells and activating Wnt/beta-catenin signaling. The biological significance of these data to human hyperplasias is demonstrated by EZH2 up-regulation and colocalization with beta-catenin in human intraductal epithelial hyperplasia, the earliest histologically identifiable precursor of breast carcinoma.

  9. Targeted Overexpression of EZH2 in the Mammary Gland Disrupts Ductal Morphogenesis and Causes Epithelial Hyperplasia

    PubMed Central

    Li, Xin; Gonzalez, Maria E.; Toy, Katherine; Filzen, Tracey; Merajver, Sofia D.; Kleer, Celina G.

    2009-01-01

    The Polycomb group protein enhancer of zeste homolog 2 (EZH2), which has roles during development of numerous tissues, is a critical regulator of cell type identity. Overexpression of EZH2 has been detected in invasive breast carcinoma tissue samples and is observed in human breast tissue samples of morphologically normal lobules up to 12 years before the development of breast cancer. The function of EZH2 during preneoplastic progression in the mammary gland is unknown. To investigate the role of EZH2 in the mammary gland, we targeted the expression of EZH2 to mammary epithelial cells using the mouse mammary tumor virus long terminal repeat. EZH2 overexpression resulted in aberrant terminal end bud architecture. By the age of 4 months, 100% of female mouse mammary tumor virus-EZH2 virgin mice developed intraductal epithelial hyperplasia resembling the human counterpart accompanied by premature differentiation of ductal epithelial cells and up-regulation of the luminal marker GATA-3. In addition, remodeling of the mammary gland after parturition was impaired and EZH2 overexpression caused delayed involution. Mechanistically, we found that EZH2 physically interacts with β-catenin, inducing β-catenin nuclear accumulation in mammary epithelial cells and activating Wnt/β-catenin signaling. The biological significance of these data to human hyperplasias is demonstrated by EZH2 up-regulation and colocalization with β-catenin in human intraductal epithelial hyperplasia, the earliest histologically identifiable precursor of breast carcinoma. PMID:19661437

  10. Loss of chromosomal integrity in human mammary epithelial cells subsequent to escape from senescence

    NASA Technical Reports Server (NTRS)

    Tlsty, T. D.; Romanov, S. R.; Kozakiewicz, B. K.; Holst, C. R.; Haupt, L. M.; Crawford, Y. G.

    2001-01-01

    The genomic changes that foster cancer can be either genetic or epigenetic in nature. Early studies focused on genetic changes and how mutational events contribute to changes in gene expression. These point mutations, deletions and amplifications are known to activate oncogenes and inactivate tumor suppressor genes. More recently, multiple epigenetic changes that can have a profound effect on carcinogenesis have been identified. These epigenetic events, such as the methylation of promoter sequences in genes, are under active investigation. In this review we will describe a methylation event that occurs during the propagation of human mammary epithelial cells (HMEC) in culture and detail the accompanying genetic alterations that have been observed.

  11. Garlic and associated allyl sulfur components inhibit N-methyl-N-nitrosourea induced rat mammary carcinogenesis.

    PubMed

    Schaffer, E M; Liu, J Z; Green, J; Dangler, C A; Milner, J A

    1996-04-19

    Our previous studies demonstrated that dietary garlic powder supplementation inhibits N-nitrosamine induced DNA alkylation in liver and mammary tissue. The present studies compared the impact of dietary supplementation with garlic powder or two garlic constituents, water-soluble S-allyl cysteine (SAC) and oil-soluble diallyl disulfide (DADS), on the incidence of mammary tumorigenesis induced by N-methyl-N-nitrosourea (MNU). Female Sprague-Dawley rats were fed semi-purified casein based diets with or without supplements of garlic powder(20g/kg), SAC (57 micromol/kg) or DADS (57 micromol/kg) for 2 weeks prior to treatment with MNU (15 mg/kg body wt). Garlic powder, SAC and DADS supplementation significantly delayed the onset of mammary tumors compared to rats receiving the unsupplemented diet. Tumor incidence 23 weeks after MNU treatment was reduced by 76, 41 and 53% in rats fed garlic, SAC and DADS, respectively, compared to controls (P<0.05). Total tumor number was reduced 81, 35 and 65% by these supplements, respectively (P<0.05). In a separate study the quantity of mammary DNA alkylation occurring 3 h after MNU treatment was reduced in rats fed garlic, SAC or DADS (P<0.05). Specifically, O(6)-methylguanine adducts were reduced by 27, 18 and 23% in rats fed supplemental garlic, SAC and DADS, respectively, compared to controls. N(7)-Methylguanine adducts decreased by 48, 22 and 21% respectively, compared to rats fed the control diet. These studies demonstrate that garlic and associated allyl sulfur components, SAC and DADS, are effective inhibitors of MNU-induced mammary carcinogenesis.

  12. Spontaneous feline mammary intraepithelial lesions as a model for human estrogen receptor- and progesterone receptor-negative breast lesions

    PubMed Central

    2010-01-01

    Background Breast cancer is the most frequently diagnosed cancer in women. Intraepithelial lesions (IELs), such as usual ductal hyperplasia (UH), atypical ductal hyperplasia (ADH), and ductal carcinoma in situ (DCIS) are risk factors that predict a woman's chance of developing invasive breast cancer. Therefore, a comparative study that establishes an animal model of pre-invasive lesions is needed for the development of preventative measures and effective treatment for both mammary IELs and tumors. The purpose of this study was to characterize the histologic and molecular features of feline mammary IELs and compare them with those in women. Methods Formalin-fixed, paraffin-embedded specimens (n = 205) from 203 female cats with clinical mammary disease were retrieved from the archives of the Purdue University Animal Disease Diagnostic Laboratory and Veterinary Teaching Hospital (West Lafayette, IN), and the Department of Pathology and Veterinary Clinic, School of Veterinary Medicine (Sassari, Italy). Histologic sections, stained with hematoxylin and eosin (HE), were evaluated for the presence of IELs in tissue adjacent to excised mammary tumors. Lesions were compared to those of humans. Immunohistochemistry for estrogen receptor (ER-alpha), progesterone receptor (PR), human epidermal growth factor receptor 2 (HER-2/neu) and Ki-67 was performed in IELs and adjacent tumor tissues. Results Intraepithelial lesions were found in 57 of 203 (28%) feline mammary specimens and were categorized as UH (27%), ADH (29%), and DCIS (44%). Most IELs with atypia (ADH and DCIS) were associated with mammary cancer (91%), whereas UH was associated with benign lesions in 53% of cases. Feline IELs were remarkably similar to human IELs. No ER or PR immunoreactivity was detected in intermediate-grade or high-grade DCIS or their associated malignant tumors. HER-2 protein overexpression was found in 27% of IELs. Conclusion The remarkable similarity of feline mammary IELs to those of humans

  13. Quantitative Methylation Profiles for Multiple Tumor Suppressor Gene Promoters in Salivary Gland Tumors

    PubMed Central

    Durr, Megan L.; Mydlarz, Wojciech K.; Shao, Chunbo; Zahurak, Marianna L.; Chuang, Alice Y.; Hoque, Mohammad O.; Westra, William H.; Liegeois, Nanette J.; Califano, Joseph A.; Sidransky, David; Ha, Patrick K.

    2010-01-01

    Background Methylation profiling of tumor suppressor gene (TSGs) promoters is quickly becoming a powerful diagnostic tool for the early detection, prognosis, and even prediction of clinical response to treatment. Few studies address this in salivary gland tumors (SGTs); hence the promoter methylation profile of various TSGs was quantitatively assessed in primary SGT tissue to determine if tumor-specific alterations could be detected. Methodology DNA isolated from 78 tumor and 17 normal parotid gland specimens was assayed for promoter methylation status of 19 TSGs by fluorescence-based, quantitative methylation-specific PCR (qMSP). The data were utilized in a binary fashion as well as quantitatively (using a methylation quotient) allowing for better profiling and interpretation of results. Principal Findings The average number of methylation events across the studied genes was highest in salivary duct carcinoma (SDC), with a methylation value of 9.6, compared to the normal 4.5 (p<0.0003). There was a variable frequency and individual methylation quotient detected, depending on the TSG and the tumor type. When comparing normal, benign, and malignant SGTs, there was a statistically significant trend for increasing methylation in APC, Mint 1, PGP9.5, RAR-β, and Timp3. Conclusions/Significance Screening promoter methylation profiles in SGTs showed considerable heterogeneity. The methylation status of certain markers was surprisingly high in even normal salivary tissue, confirming the need for such controls. Several TSGs were found to be associated with malignant SGTs, especially SDC. Further study is needed to evaluate the potential use of these associations in the detection, prognosis, and therapeutic outcome of these rare tumors. PMID:20520817

  14. GAS6 is an estrogen-inducible gene in mammary epithelial cells

    PubMed Central

    Mo, Rigen; Zhu, Yiwei Tony; Zhang, Zhongyi; Rao, Sambasiva M.; Zhu, Yi-Jun

    2007-01-01

    To identify estrogen responsive genes in mammary glands, microarray assays were performed. Twenty genes were found to be up-regulated while 16 genes were repressed in the 9h estrogen treated glands. The induction of GAS6, one of the genes up-regulated by estrogen, was confirmed by RNase protection assay. Furthermore, GAS6 was also demonstrated to be induced by estrogen in ER positive breast cancer cells. Analysis of GAS6 promoter revealed that GAS6 promoter was regulated by estrogen. An estrogen response element (ERE) was identified in the GAS6 promoter. Electrophoretic mobility shift assay revealed that ERα interacted with the ERE in the GAS6 promoter. Chromatin immunoprecipitation demonstrated that ERα was recruited to the GAS6 promoter upon estrogen stimulation. These results suggested that GAS6 is an estrogen target gene in mammary epithelial cells. PMID:17174935

  15. Assessment of thermal effects of interstitial laser phototherapy on mammary tumors using proton resonance frequency method

    PubMed Central

    Le, Kelvin; Li, Xiaosong; Figueroa, Daniel; Towner, Rheal A.; Garteiser, Philippe; Saunders, Debra; Smith, Nataliya; Liu, Hong; Hode, Tomas; Nordquist, Robert E.; Chen, Wei R.

    2011-01-01

    Laser immunotherapy (LIT) uses a synergistic approach to treat cancer systemically through local laser irradiation and immunological stimulation. Currently, LIT utilizes dye-assisted noninvasive laser irradiation to achieve selective photothermal interaction. However, LIT faces difficulties treating deeper tumors or tumors with heavily pigmented overlying skin. To circumvent these barriers, we use interstitial laser irradiation to induce the desired photothermal effects. The purpose of this study is to analyze the thermal effects of interstitial irradiation using proton resonance frequency (PRF). An 805-nm near-infrared laser with an interstitial cylindrical diffuser was used to treat rat mammary tumors. Different power settings (1.0, 1.25, and 1.5 W) were applied with an irradiation duration of 10 min. The temperature distributions of the treated tumors were measured by a 7 T magnetic resonance imager using PRF. We found that temperature distributions in tissue depended on both laser power and time settings, and that variance in tissue composition has a major influence in temperature elevation. The temperature elevations measured during interstitial laser irradiation by PRF and thermocouple were consistent, with some variations due to tissue composition and the positioning of the thermocouple's needle probes. Our results indicated that, for a tissue irradiation of 10 min, the elevation of rat tumor temperature ranged from 8 to 11°C for 1 W and 8 to 15°C for 1.5 W. This is the first time a 7 T magnetic resonance imager has been used to monitor interstitial laser irradiation via PRF. Our work provides a basic understanding of the photothermal interaction needed to control the thermal damage inside a tumor using interstitial laser treatment. Our work may lead to an optimal protocol for future cancer treatment using interstitial phototherapy in conjunction with immunotherapy. PMID:22191937

  16. Microvesicle-mediated Wnt/β-Catenin Signaling Promotes Interspecies Mammary Stem/Progenitor Cell Growth.

    PubMed

    Bussche, Leen; Rauner, Gat; Antonyak, Marc; Syracuse, Bethany; McDowell, Melissa; Brown, Anthony M C; Cerione, Richard A; Van de Walle, Gerlinde R

    2016-11-18

    Signaling mechanisms that regulate mammary stem/progenitor cell (MaSC) self-renewal are essential for developmental changes that occur in the mammary gland during pregnancy, lactation, and involution. We observed that equine MaSCs (eMaSCs) maintain their growth potential in culture for an indefinite period, whereas canine MaSCs (cMaSCs) lose their growth potential in long term cultures. We then used this system to investigate the role of microvesicles (MVs) in promoting self-renewal properties. We found that Wnt3a and Wnt1 were expressed at higher levels in MVs isolated from eMaSCs compared with those from cMaSCs. Furthermore, eMaSC-MVs were able to induce Wnt/β-catenin signaling in different target cells, including cMaSCs. Interestingly, the induction of Wnt/β-catenin signaling in cMaSCs was prolonged when using eMaSC-MVs compared with recombinant Wnt proteins, indicating that MVs are not only important for transport of Wnt proteins, but they also enhance their signaling activity. Finally, we demonstrate that the eMaSC-MVs-mediated activation of the Wnt/β-catenin signaling pathway in cMaSCs significantly improves the ability of cMaSCs to grow as mammospheres and, importantly, that this effect is abolished when eMaSC-MVs are treated with Wnt ligand inhibitors. This suggests that this novel form of intercellular communication plays an important role in self-renewal. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  17. Monitoring of Breast Tumor Response to Local Chemotherapeutic Agent Delivered by Biodegradable Fibers

    DTIC Science & Technology

    2006-05-01

    mammary adenocarcinomas : one group received a radiation therapy during air inhalation and the other group was treated by irradiation during oxygen...procedures The tumor line was rat mammary adenocarcinomas 13762NF (cells originally provided by the Division of Cancer Therapeutics, NCI), and the...and Tumor Model Rat mammary 13762NF adenocarcinomas (original obtained from the Division of Cancer Therapeutics, NIH, Bethesda, Maryland) were

  18. 14-3-3ζ turns TGF-β’s function from tumor suppressor to metastasis promoter in breast cancer by contextual changes of Smad partners from p53 to Gli2

    PubMed Central

    Xu, Jia; Acharya, Sunil; Sahin, Ozgur; Zhang, Qingling; Saito, Yohei; Yao, Jun; Wang, Hai; Li, Ping; Zhang, Lin; Lowery, Frank J; Kuo, Wen-Ling; Xiao, Yi; Ensor, Joe; Sahin, Aysegul A; Zhang, Xiang H.-F.; Hung, Mien-Chie; Zhang, Jitao David; Yu, Dihua

    2015-01-01

    Summary Transforming growth factor-β (TGF-β) functions as a tumor suppressor in pre-malignant cells but as a metastasis promoter in cancer cells. The dichotomous functions of TGF-β are proposed to be dictated by different partners of its downstream effectors Smads. However, the mechanism for the contextual changes of Smad partners remained undefined. Here, we demonstrate that 14-3-3ζ destabilizes p53, a Smad partner in pre-malignant mammary epithelial cells, by downregulating 14-3-3σ, thus turning off TGF-β’s tumor suppression function. Conversely, 14-3-3ζ stabilizes Gli2 in breast cancer cells, and Gli2 partners with Smads to activate PTHrP and promote TGF-β-induced bone metastasis. The 14-3-3ζ-driven contextual changes of Smad partners from p53 to Gli2 may serve as biomarkers and therapeutic targets of TGF-β-mediated cancer progression. PMID:25670079

  19. Dissociated overexpression of cathepsin D and estrogen receptor alpha in preinvasive mammary tumors.

    PubMed

    Roger, P; Daures, J P; Maudelonde, T; Pignodel, C; Gleizes, M; Chapelle, J; Marty-Double, C; Baldet, P; Mares, P; Laffargue, F; Rochefort, H

    2000-05-01

    The role of estrogen as a promoter agent of sporadic breast cancer has been considered by assaying, in benign breast disease (BBD) and in situ carcinomas (CIS), 2 markers, the estrogen receptor alpha (ERalpha) and cathepsin D (cath-D) involved in estrogen action on mammary tissue. ERalpha and cath-D were assayed by quantitative immunohistochemistry using an image analyzer in 170 lesions of varying histological risk (94 BBD and 76 CIS), and in "normal" glands close to these lesions. The ERalpha level increased significantly in proliferative BBD with atypia (P < .001), in non-high-grade CIS (P < .001), and in adjacent "normal" glands. ERalpha level was decreased in high-grade ductal CIS (DCIS) and also in adjacent "normal" glands. Cath-D level increased in ductal proliferative BBD (P < or = .01) and in high-grade DCIS (P < or = .003), but not in the other lesions. After menopause, ERalpha level was increased (P = .012) but not cath-D level. According to Mac Neman test, the high-grade DCIS were predominantly ERalpha negative and cath-D positive (P = .0017), and the other CIS were predominantly ERalpha positive and cath-D negative (P = .0002). The 2 markers are overexpressed early in premalignant lesions, but independently. This dissociation suggests a branched model of mammary carcinogenesis involving 1 estrogen-independent pathway with high cath-D and low ERalpha levels (including high-grade DCIS) and 1 estrogen-dependent pathway, with high ERalpha level (including proliferative BBD with atypia and low-grade DCIS). We propose that ERalpha-negative breast cancers may develop directly from high-grade DCIS and that ERalpha assay in preinvasive lesions should be considered in prevention trials with antiestrogens.

  20. Nitric Oxide in Mammary Tumor Progession

    DTIC Science & Technology

    1999-07-01

    healing , embryonic development and endometrial proliferation. Numerous pathological conditions, such as diabetic retinopathy, rheumatoid arthritis and...serum NO levels have been observed in many cancer patients (26) indicating that tumor cells or host cells serve as the additional source of NO in these... patients . A high expression of active NOS enzymes in tumor cells (27,28,31-33), endothelial cells in tumor vasculature (28) or tumor-infiltrating

  1. Genistein and resveratrol: mammary cancer chemoprevention and mechanisms of action in the rat.

    PubMed

    Whitsett, Timothy G; Lamartiniere, Coral A

    2006-12-01

    The environment, including diet, plays a critical role in a woman's subsequent risk of breast cancer. Two dietary polyphenols that have received attention from the health and research communities for their ability to protect against breast cancer are: genistein, a component of soy; and resveratrol, a phytoalexin found in red grapes and red wine. We and others have shown that both genistein and resveratrol can protect against mammary cancer in rodents. The timing of exposure to genistein appears critical for its mammary protective effects. It has been reported that genistein early in life causes enhanced mammary gland differentiation, alterations in cell proliferation and apoptosis, and upregulation of tumor-suppressor genes. With resveratrol in the diet, changes in cell proliferation and apoptosis in terminal ductal structures of the mammary gland might help to explain its protective effects. We conclude that genistein and resveratrol can protect against breast cancer by regulating important mammary growth and differentiation pathways.

  2. ATM is required for SOD2 expression and homeostasis within the mammary gland.

    PubMed

    Dyer, Lisa M; Kepple, Jessica D; Ai, Lingbao; Kim, Wan-Ju; Stanton, Virginia L; Reinhard, Mary K; Backman, Lindsey R F; Streitfeld, W Scott; Babu, Nivetha Ramesh; Treiber, Nicolai; Scharffetter-Kochanek, Karin; McKinnon, Peter J; Brown, Kevin D

    2017-12-01

    ATM activates the NF-κB transcriptional complex in response to genotoxic and oxidative stress. The purpose of this study was to examine if the NF-κB target gene and critical antioxidant SOD2 (MnSOD) in cultured mammary epithelium is also ATM-dependent, and what phenotypes arise from deletion of ATM and SOD2 within the mammary gland. SOD2 expression was studied in human mammary epithelial cells and MCF10A using RNAi to knockdown ATM or the NF-κB subunit RelA. To study ATM and SOD2 function in mammary glands, mouse lines containing Atm or Sod2 genes containing LoxP sites were mated with mice harboring Cre recombinase under the control of the whey acidic protein promoter. Quantitative PCR was used to measure gene expression, and mammary gland structure was studied using histology. SOD2 expression is ATM- and RelA-dependent, ATM knockdown renders cells sensitive to pro-oxidant exposure, and SOD mimetics partially rescue this sensitivity. Mice with germline deletion of Atm fail to develop mature mammary glands, but using a conditional knockout approach, we determined that Atm deletion significantly diminished the expression of Sod2. We also observed that these mice (termed Atm Δ/Δ ) displayed a progressive lactation defect as judged by reduced pup growth rate, aberrant lobulo-alveolar structure, diminished milk protein gene expression, and increased apoptosis within lactating glands. This phenotype appears to be linked to dysregulated Sod2 expression as mammary gland-specific deletion of Sod2 phenocopies defects observed in Atm Δ/Δ dams. We conclude that ATM is required to promote expression of SOD2 within the mammary epithelium, and that both ATM and SOD2 play a crucial role in mammary gland homeostasis.

  3. Mammary Stem Cells and Breast Cancer Stem Cells: Molecular Connections and Clinical Implications.

    PubMed

    Celià-Terrassa, Toni

    2018-05-04

    Cancer arises from subpopulations of transformed cells with high tumor initiation and repopulation ability, known as cancer stem cells (CSCs), which share many similarities with their normal counterparts. In the mammary gland, several studies have shown common molecular regulators between adult mammary stem cells (MaSCs) and breast cancer stem cells (bCSCs). Cell plasticity and self-renewal are essential abilities for MaSCs to maintain tissue homeostasis and regenerate the gland after pregnancy. Intriguingly, these properties are similarly executed in breast cancer stem cells to drive tumor initiation, tumor heterogeneity and recurrence after chemotherapy. In addition, both stem cell phenotypes are strongly influenced by external signals from the microenvironment, immune cells and supportive specific niches. This review focuses on the intrinsic and extrinsic connections of MaSC and bCSCs with clinical implications for breast cancer progression and their possible therapeutic applications.

  4. A soluble form of Siglec-9 provides an antitumor benefit against mammary tumor cells expressing MUC1 in transgenic mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tomioka, Yukiko, E-mail: ytomi@muses.tottori-u.ac.jp; Avian Zoonosis Research Center, Faculty of Agriculture, Tottori University, Tottori 680-8553; Morimatsu, Masami, E-mail: mmorimat@vetmed.hokudai.ac.jp

    Highlights: • Tumor-associated antigen MUC1 binds to Siglec-9. • Soluble Siglec-9 reduced proliferation of MUC1-positive tumor in transgenic mice. • Soluble Siglec-9 and MUC1 on tumor cells were colocalized in transgenic mice. • MUC1 expression on tumor cells were reduced in soluble Siglec-9 transgenic mice. - Abstract: Tumor-associated MUC1 binds to Siglec-9, which is expected to mediate tumor cell growth and negative immunomodulation. We hypothesized that a soluble form of Siglec-9 (sSiglec-9) competitively inhibits a binding of MUC1 to its receptor molecules like human Siglec-9, leading to provide antitumor benefit against MUC1-expressing tumor, and generated transgenic mouse lines expressing sSiglec-9more » (sSiglec-9 Tg). When mammary tumor cells expressing MUC1 were intraperitoneally transplanted into sSiglec-9 Tg, tumor proliferation was slower with the lower histological malignancy as compared with non-transgenic mice. The sSiglec-9 was detected in the ascites caused by the tumor in the sSiglec-9 Tg, and sSiglec-9 and MUC1 were often colocalized on surfaces of the tumor cells. PCNA immunohistochemistry also revealed the reduced proliferation of the tumor cells in sSiglec-9 Tg. In sSiglec-9 Tg with remarkable suppression of tumor proliferation, MUC1 expressions were tend to be reduced. In the ascites of sSiglec-9 Tg bearing the tumor, T cells were uniformly infiltrated, whereas aggregations of degenerative T cells were often observed in the non-transgenic mice. These results suggest that sSiglec-9 has an antitumor benefit against MUC1-expressing tumor in the transgenic mice, which may avoid the negative immunomodulation and/or suppress tumor-associated MUC1 downstream signal transduction, and subsequent tumor proliferation.« less

  5. A simple ductal mammary papilloma in a male maned wolf (Chrysocyon brachyurus).

    PubMed

    Cassali, Geovanni D; Bertagnolli, Angélica C; Ferreira, Enio; Malta, Marcelo C C

    2009-01-01

    A 1-cm-diameter nodule was identified in the left inguinal mammary gland of a 9-year-old male maned wolf (Chrysocyon brachyurus). The mass was surgically excised and examined histologically. Microscopically, the neoplasm consisted of papillary proliferations of epithelial cells on well-defined fibrovascular stalks. A myoepithelial layer was located between the single layer of epithelial cells and the fibrovascular stalk. This histologic appearance was compatible with a diagnosis of simple ductal mammary papilloma. Immunohistochemical staining was positive for p63, cytokeratins AE1/AE3, and estrogen receptors. The clinical and histologic observations in the present case indicate that male maned wolves may develop mammary tumors that are similar to those observed in domestic dogs and humans.

  6. In utero exposure of rats to high-fat diets perturbs gene-expression profiles and cancer susceptibility of prepubertal mammary glands

    PubMed Central

    Ying, Jun; Gear, Robin; Bornschein, Robert L; Medvedovic, Mario; Ho, Shuk-Mei

    2015-01-01

    Human studies suggest that high-fat diets (HFD) increase the risk of breast cancer. The 7,12 dimethylbenz[a]anthracene (DMBA)-induced mammary carcinogenesis rat model is commonly used to evaluate the effects of lifestyle factors such as HFD on mammary-tumor risk. Past studies focused primarily on the effects of continuous maternal exposure on the risk of offspring at the end of puberty (PND50). We assessed the effects of prenatal HFD exposure on cancer susceptibility in prepubertal mammary glands and identified key gene networks associated with such disruption. During pregnancy, dams were fed AIN93G-based diets with isocaloric high olive oil, butterfat, or safflower oil. The control group received AIN-93G. Female offspring were treated with DMBA on PND21. However, a significant increase in tumor volume and a trend of shortened tumor latency were observed in rats with HFD exposure against the controls (p=0.048 and p=0.067 respectively). Large-volume tumors harbored carcinoma in situ. Transcriptome profiling identified 43 differentially expressed genes in the mammary glands of the HFBUTTER group as compared with control. Rapid hormone signaling was the most dysregulated pathway. The diet also induced aberrant expression of Dnmt3a, Mbd1, and Mbd3, consistent with potential epigenetic disruption. Collectively, these findings provide the first evidence supporting susceptibility of prepubertal mammary glands to DMBA-induced tumorigenesis that can be modulated by dietary fat that involves aberrant gene expression and likely epigenetic dysregulation. PMID:26895667

  7. Abnormal Mammary Development in 129:STAT1-Null Mice is Stroma-Dependent

    PubMed Central

    Cardiff, Robert D.; Trott, Josephine F.; Hovey, Russell C.; Hubbard, Neil E.; Engelberg, Jesse A.; Tepper, Clifford G.; Willis, Brandon J.; Khan, Imran H.; Ravindran, Resmi K.; Chan, Szeman R.; Schreiber, Robert D.; Borowsky, Alexander D.

    2015-01-01

    Female 129:Stat1-null mice (129S6/SvEvTac-Stat1tm1Rds homozygous) uniquely develop estrogen-receptor (ER)-positive mammary tumors. Herein we report that the mammary glands (MG) of these mice have altered growth and development with abnormal terminal end buds alongside defective branching morphogenesis and ductal elongation. We also find that the 129:Stat1-null mammary fat pad (MFP) fails to sustain the growth of 129S6/SvEv wild-type and Stat1-null epithelium. These abnormalities are partially reversed by elevated serum progesterone and prolactin whereas transplantation of wild-type bone marrow into 129:Stat1-null mice does not reverse the MG developmental defects. Medium conditioned by 129:Stat1-null epithelium-cleared MFP does not stimulate epithelial proliferation, whereas it is stimulated by medium conditioned by epithelium-cleared MFP from either wild-type or 129:Stat1-null females having elevated progesterone and prolactin. Microarrays and multiplexed cytokine assays reveal that the MG of 129:Stat1-null mice has lower levels of growth factors that have been implicated in normal MG growth and development. Transplanted 129:Stat1-null tumors and their isolated cells also grow slower in 129:Stat1-null MG compared to wild-type recipient MG. These studies demonstrate that growth of normal and neoplastic 129:Stat1-null epithelium is dependent on the hormonal milieu and on factors from the mammary stroma such as cytokines. While the individual or combined effects of these factors remains to be resolved, our data supports the role of STAT1 in maintaining a tumor-suppressive MG microenvironment. PMID:26075897

  8. Mouse mammary tumor virus-like RNA transcripts and DNA are found in affected cells of human breast cancer.

    PubMed

    Ford, Caroline E; Faedo, Margaret; Rawlinson, William D

    2004-11-01

    Identifiable risk factors for the development of breast cancer include age, diet, family history, and lifetime estrogen exposure. An infectious agent (mouse mammary tumor virus; MMTV) is known to cause murine breast tumors and may be involved in the pathogenesis of human disease. Multiple studies have detected MMTV-like sequences in 30 to 60% of breast cancer samples and up to 1.8% of samples from normal breast. Using in situ PCR of MMTV-like sequences of formalin-fixed, paraffin-embedded breast tissue, viral sequences have been located in cancerous epithelial cells in breast acini of male and female breast tumors, but not in adjacent nonmalignant cells. MMTV-like sequences were also located in the epithelial cells of male gynecomastia samples. Using reverse transcriptase in situ PCR, RNA transcripts from the env gene were also detected within cancerous epithelial cells of 78% of DNA-positive tumors, 80% of gynecomastia samples, and 0% of normal tissues screened. This suggests the virus may be replicating in these cells. The epidemiologic and histopathological data are consistent with the association of an MMTV-like virus with breast cancers in men and women. The association with gynecomastia, a benign, possibly premalignant condition suggests hormonal influences, rather than cancer per se, may be the dominant factor in determining viral presence and replication.

  9. Immortalized bovine mammary epithelial cells express stem cell markers and differentiate in vitro.

    PubMed

    Hu, Han; Zheng, Nan; Gao, Haina; Dai, Wenting; Zhang, Yangdong; Li, Songli; Wang, Jiaqi

    2016-08-01

    The bovine mammary epithelial cell is a secretory cell, and its cell number and secretory activity determine milk production. In this study, we immortalized a bovine mammary epithelial cell line by SV40 large T antigen gene using a retrovirus based on Chinese Holstein primary mammary epithelial cells (CMEC) cultured in vitro. An immortalized bovine mammary epithelial cell line surpassed the 50-passage mark and was designated the CMEC-H. The immortalized mammary epithelial cells grew in close contact with each other and exhibited the typical cobblestone morphology characteristic with obvious boundaries. The telomerase expression of CMEC-H has consistently demonstrated the presence of telomerase activity as an immortalized cell line, but the cell line never induced tumor formation in nude mice. CMEC-H expressed epithelial (cytokeratins CK7, CK8, CK18, and CK19), mesenchymal (vimentin), and stem/progenitor (CD44 and p63) cell markers. The induced expression of milk proteins, αS1 -casein, β-casein, κ-casein, and butyrophilin, indicated that CMEC-H maintained the synthesis function of the mammary epithelial cells. The established immortalized bovine mammary epithelial cell line CMEC-H is capable of self-renewal and differentiation and can serve as a valuable reagent for studying the physiological mechanism of the mammary gland. © 2016 International Federation for Cell Biology.

  10. Palytoxin: exploiting a novel skin tumor promoter to explore signal transduction and carcinogenesis.

    PubMed

    Wattenberg, Elizabeth V

    2007-01-01

    Palytoxin is a novel skin tumor promoter, which has been used to help probe the role of different types of signaling mechanisms in carcinogenesis. The multistage mouse skin model indicates that tumor promotion is an early, prolonged, and reversible phase of carcinogenesis. Understanding the molecular mechanisms underlying tumor promotion is therefore important for developing strategies to prevent and treat cancer. Naturally occurring tumor promoters that bind to specific cellular receptors have proven to be useful tools for investigating important biochemical events in multistage carcinogenesis. For example, the identification of protein kinase C as the receptor for the prototypical skin tumor promoter 12-O-tetradecanoylphorbol-13-acetate (TPA) (also called phorbol 12-myristate 13-acetate, PMA) provided key evidence that tumor promotion involves the aberrant modulation of signaling cascades that govern cell fate and function. The subsequent discovery that palytoxin, a marine toxin isolated from zoanthids (genus Palythoa), is a potent skin tumor promoter yet does not activate protein kinase C indicated that investigating palytoxin action could help reveal new aspects of tumor promotion. Interestingly, the putative receptor for palytoxin is the Na(+),K(+)-ATPase. This review focuses on palytoxin-stimulated signaling and how palytoxin has been used to investigate alternate biochemical mechanisms by which important targets in carcinogenesis can be modulated.

  11. Differences in the Rate of In Situ Mammary Gland Development and Other Developmental Endpoints in Three Strains of Female Rat Commonly Used in Mammary Carcinogenesis Studies: Implications for Timing of Carcinogen Exposure

    PubMed Central

    Stanko, Jason P.; Kissling, Grace E.; Chappell, Vesna A.; Fenton, Suzanne E.

    2016-01-01

    The potential of chemicals to alter susceptibility to mammary tumor formation is often assessed using a carcinogen-induced study design in various rat strains. The rate of mammary gland development must be considered so that the timing of carcinogen administration is impactful. In this study, in situ mammary gland (MG) development was assessed in females of the Harlan Sprague Dawley (Hsd:SD), Charles River Sprague Dawley (Crl:SD), and Charles River Long Evans (Crl:LE) rat strains at postnatal day (PND) 25, 33, and 45. Development was evaluated by physical assessment of growth parameters, developmental scoring, and quantitative morphometric analysis. Though body weight was consistently lower and day of vaginal opening (VO) occurred latest in female Hsd:SD rats, they exhibited accelerated pre-and peripubertal MG development compared to other strains. Glands of Crl:SD and Crl:LE rats exhibited significantly more terminal end buds (TEBs) and TEB/mm than Hsd:SD rats around the time of VO. These data suggest a considerable difference in rate of MG development across commonly used strains, which is independent of body weight and timing of VO. In mammary tumor induction studies employing these strains, administration of the carcinogen should be timed appropriately, based on strain, to specifically target the peak of TEB occurrence. PMID:27613105

  12. Obesity and perinatal TCDD exposure increases mammary tumors in FVB mice

    EPA Science Inventory

    Risk of breast cancer has been consistently shown to correlate to total lifetime exposure to estrogens. Because both TCDD exposure and the state of obesity interact with the estrogen pathway, we wanted to investigate how TCDD and obesity interact with mammary cancer susceptibili...

  13. IL-33 activates tumor stroma to promote intestinal polyposis.

    PubMed

    Maywald, Rebecca L; Doerner, Stephanie K; Pastorelli, Luca; De Salvo, Carlo; Benton, Susan M; Dawson, Emily P; Lanza, Denise G; Berger, Nathan A; Markowitz, Sanford D; Lenz, Heinz-Josef; Nadeau, Joseph H; Pizarro, Theresa T; Heaney, Jason D

    2015-05-12

    Tumor epithelial cells develop within a microenvironment consisting of extracellular matrix, growth factors, and cytokines produced by nonepithelial stromal cells. In response to paracrine signals from tumor epithelia, stromal cells modify the microenvironment to promote tumor growth and metastasis. Here, we identify interleukin 33 (IL-33) as a regulator of tumor stromal cell activation and mediator of intestinal polyposis. In human colorectal cancer, IL-33 expression was induced in the tumor epithelium of adenomas and carcinomas, and expression of the IL-33 receptor, IL1RL1 (also referred to as IL1-R4 or ST2), localized predominantly to the stroma of adenoma and both the stroma and epithelium of carcinoma. Genetic and antibody abrogation of responsiveness to IL-33 in the Apc(Min/+) mouse model of intestinal tumorigenesis inhibited proliferation, induced apoptosis, and suppressed angiogenesis in adenomatous polyps, which reduced both tumor number and size. Similar to human adenomas, IL-33 expression localized to tumor epithelial cells and expression of IL1RL1 associated with two stromal cell types, subepithelial myofibroblasts and mast cells, in Apc(Min/+) polyps. In vitro, IL-33 stimulation of human subepithelial myofibroblasts induced the expression of extracellular matrix components and growth factors associated with intestinal tumor progression. IL-33 deficiency reduced mast cell accumulation in Apc(Min/+) polyps and suppressed the expression of mast cell-derived proteases and cytokines known to promote polyposis. Based on these findings, we propose that IL-33 derived from the tumor epithelium promotes polyposis through the coordinated activation of stromal cells and the formation of a protumorigenic microenvironment.

  14. Mammary fibroadenoma in a lamb

    PubMed Central

    Guvenc, Tolga; Yarim, Murat; Kabak, Yonca B.; Sozgen, Yuksel

    2007-01-01

    A fibroadenoma was diagnosed in the left udder of a 3-month-old female Chios lamb. No recurrence was observed after surgery. Grossly, the tumor had a whitish-gray lobular appearance, and the lobules were interlaced with thin septa. Microscopically, the tumor was composed of proliferating fibroepithelial tissue, including differentiated ducts lined by whorls and interlacing bundles of abundant loose fibrovascular stroma. Immunohistochemistry revealed the ductal epithelium to be positive for pancytokeratin (AE1/AE3) and loose fibrovascular stroma was positive for vimentin and basal cells covering the ductal epithelium of alpha-smooth-muscle actin. Immunostaining for the estrogen and progesterone receptors was negative. A diagnosis of mammary fibroadenoma was made based on the histological and immunohistochemical findings. PMID:17993758

  15. Chemopreventive efficacy and anti-lipid peroxidative potential of Jasminum grandiflorum Linn. on 7,12-dimethylbenz(a)anthracene-induced rat mammary carcinogenesis.

    PubMed

    Kolanjiappan, K; Manoharan, S

    2005-12-01

    The aim of this study was to investigate the chemopreventive efficacy and anti-lipid peroxidative potential of Jasminum grandiflorum Linn. on 7,12-dimethylbenz(a)anthracene (DMBA)-induced rat mammary carcinogenesis. Mammary tumors were developed by a single subcutaneous injection of 25 mg DMBA in 1 mL emulsion of sunflower oil and physiological saline. The tumor incidence and tumor volume that formed in the breast were determined. Oral administration of ethanolic extract of J. grandiflorum flowers (JgEt) at a dose of 300 mg/kg body weight for 14 weeks to DMBA-injected animals completely prevented the formation of tumors in the pre-initiation period. JgEt also exerted significant anti-lipid peroxidative effect and improved the antioxidant defense system in DMBA-treated rats. The results of this study clearly indicate that JgEt has potent chemopreventive efficacy in experimental mammary carcinogenesis and further studies are warranted to isolate and characterize the bioactive principle from JgEt.

  16. Metastatic canine mammary carcinomas can be identified by a gene expression profile that partly overlaps with human breast cancer profiles

    PubMed Central

    2010-01-01

    Background Similar to human breast cancer mammary tumors of the female dog are commonly associated with a fatal outcome due to the development of distant metastases. However, the molecular defects leading to metastasis are largely unknown and the value of canine mammary carcinoma as a model for human breast cancer is unclear. In this study, we analyzed the gene expression signatures associated with mammary tumor metastasis and asked for parallels with the human equivalent. Methods Messenger RNA expression profiles of twenty-seven lymph node metastasis positive or negative canine mammary carcinomas were established by microarray analysis. Differentially expressed genes were functionally characterized and associated with molecular pathways. The findings were also correlated with published data on human breast cancer. Results Metastatic canine mammary carcinomas had 1,011 significantly differentially expressed genes when compared to non-metastatic carcinomas. Metastatic carcinomas had a significant up-regulation of genes associated with cell cycle regulation, matrix modulation, protein folding and proteasomal degradation whereas cell differentiation genes, growth factor pathway genes and regulators of actin organization were significantly down-regulated. Interestingly, 265 of the 1,011 differentially expressed canine genes are also related to human breast cancer and, vice versa, parts of a human prognostic gene signature were identified in the expression profiles of the metastatic canine tumors. Conclusions Metastatic canine mammary carcinomas can be discriminated from non-metastatic carcinomas by their gene expression profiles. More than one third of the differentially expressed genes are also described of relevance for human breast cancer. Many of the differentially expressed genes are linked to functions and pathways which appear to be relevant for the induction and maintenance of metastatic progression and may represent new therapeutic targets. Furthermore, dogs

  17. Biological and genetic properties of the p53 null preneoplastic mammary epithelium

    NASA Technical Reports Server (NTRS)

    Medina, Daniel; Kittrell, Frances S.; Shepard, Anne; Stephens, L. Clifton; Jiang, Cheng; Lu, Junxuan; Allred, D. Craig; McCarthy, Maureen; Ullrich, Robert L.

    2002-01-01

    The absence of the tumor suppressor gene p53 confers an increased tumorigenic risk for mammary epithelial cells. In this report, we describe the biological and genetic properties of the p53 null preneoplastic mouse mammary epithelium in a p53 wild-type environment. Mammary epithelium from p53 null mice was transplanted serially into the cleared mammary fat pads of p53 wild-type BALB/c female to develop stable outgrowth lines. The outgrowth lines were transplanted for 10 generations. The outgrowths were ductal in morphology and progressed through ductal hyperplasia and ductal carcinoma in situ before invasive cancer. The preneoplastic outgrowth lines were immortal and exhibited activated telomerase activity. They are estrogen and progesterone receptor-positive, and aneuploid, and had various levels of tumorigenic potential. The biological and genetic properties of these lines are distinct from those found in most hyperplastic alveolar outgrowth lines, the form of mammary preneoplasia occurring in most traditional models of murine mammary tumorigenesis. These results indicate that the preneoplastic cell populations found in this genetically engineered model are similar in biological properties to a subset of precurser lesions found in human breast cancer and provide a unique model to identify secondary events critical for tumorigenicity and invasiveness.

  18. Anticancer Potential of Nutraceutical Formulations in MNU-induced Mammary Cancer in Sprague Dawley Rats.

    PubMed

    Pitchaiah, Gummalla; Akula, Annapurna; Chandi, Vishala

    2017-01-01

    Nutraceuticals help in combating some of the major health problems of the century including cancer, and 'nutraceutical formulations' have led to the new era of medicine and health. To develop different nutraceutical formulations and to assess the anticancer potential of nutraceutical formulations in N-methyl-N-nitrosourea (MNU)-induced mammary cancer in Sprague Dawley rats. Different nutraceutical formulations were prepared using fine powders of amla, apple, garlic, onion, papaya, turmeric, and wheat grass with and without cow urine distillate. Total phenolic content, acute oral toxicity, and microbial load of nutraceutical formulations were assessed. The anticancer potential of nutraceutical formulations was evaluated against MNU-induced mammary cancer in female Sprague Dawley rats. Improvement in total phenolic content was significant ( P < 0.001) after self-fortification process. Toxicity studies showed that the nutraceutical formulations were safe to use in animals. Microbial load was within the limits. Significant longer tumor-free days ( P < 0.01), lower tumor incidence ( P < 0.01), lower tumor multiplicity ( P < 0.05) and tumor burden ( P < 0.01) were observed for nutraceutical formulation-treated groups. Combination of whole food-based nutraceuticals acted synergistically in the prevention of mammary cancer. Further, the process of fortification is novel and enhanced the anticancer potential of nutraceutical formulations. Nutraceuticals help in combating some of the major health problems of the century including cancer, and 'nutraceutical formulations' have led to the new era of medicine and health. In this study, different nutraceutical formulations using fine powders of amla, apple, garlic, onion, papaya, turmeric, and wheat grass with and without cow urine distillate. Total phenolic content, acute oral toxicity, and microbial load of nutraceutical formulations were assessed. The anticancer potential of nutraceutical formulations was evaluated against MNU

  19. A cyclized peptide derived from alpha fetoprotein inhibits the proliferation of ER-positive canine mammary cancer cells.

    PubMed

    Torres, Cristian Gabriel; Pino, Ana María; Sierralta, Walter Daniel

    2009-06-01

    The effects of estradiol (E2) and of an AFP-derived cyclized peptide (cP) on the proliferation of primary cultures of cancer cells isolated from spontaneous canine mammary tumors were studied. The cellular response to E2 and cP was related to the expression of estradiol receptor (isoforms alpha and beta). In ER-positive cells, 2 nM estradiol increased cell proliferation and the phosphorylation of ERK1/2; 2 microg/ml cP inhibited all these effects. Estradiol also increased HER2 immunoreactivity in ER-positive cells, an effect that was reverted to its basal values by cP. Estradiol stimulated in these cells the release of MMP2 and MMP9 and the shedding of HB-EGF, effects that the cP did not affect. ER-negative cells were refractory to estradiol or cP. All canine mammary tumor cells in culture responded to treatments analogously to human mammary cancer cells. Our results support the proposal of cP as a new, potentially effective therapeutic agent for the management of mammary cancer.

  20. Amphiregulin mediates self-renewal in an immortal mammary epithelial cell line with stem cell characteristics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Booth, Brian W., E-mail: brbooth@clemson.edu; Institute for Biological Interfaces of Engineering, Clemson University, Clemson, SC 29634; Boulanger, Corinne A.

    2010-02-01

    Amphiregulin (AREG), a ligand for epidermal growth factor receptor, is required for mammary gland ductal morphogenesis and mediates estrogen actions in vivo, emerging as an essential growth factor during mammary gland growth and differentiation. The COMMA-D {beta}-geo (CD{beta}geo) mouse mammary cell line displays characteristics of normal mammary progenitor cells including the ability to regenerate a mammary gland when transplanted into the cleared fat pad of a juvenile mouse, nuclear label retention, and the capacity to form anchorage-independent mammospheres. We demonstrate that AREG is essential for formation of floating mammospheres by CD{beta}geo cells and that the mitogen activated protein kinase signalingmore » pathway is involved in AREG-mediated mammosphere formation. Addition of exogenous AREG promotes mammosphere formation in cells where AREG expression is knocked down by siRNA and mammosphere formation by AREG{sup -/-} mammary epithelial cells. AREG knockdown inhibits mammosphere formation by duct-limited mammary progenitor cells but not lobule-limited mammary progenitor cells. These data demonstrate AREG mediates the function of a subset of mammary progenitor cells in vitro.« less

  1. Amphiregulin mediates self-renewal in an immortal mammary epithelial cell line with stem cell characteristics.

    PubMed

    Booth, Brian W; Boulanger, Corinne A; Anderson, Lisa H; Jimenez-Rojo, Lucia; Brisken, Cathrin; Smith, Gilbert H

    2010-02-01

    Amphiregulin (AREG), a ligand for epidermal growth factor receptor, is required for mammary gland ductal morphogenesis and mediates estrogen actions in vivo, emerging as an essential growth factor during mammary gland growth and differentiation. The COMMA-D beta-geo (CDbetageo) mouse mammary cell line displays characteristics of normal mammary progenitor cells including the ability to regenerate a mammary gland when transplanted into the cleared fat pad of a juvenile mouse, nuclear label retention, and the capacity to form anchorage-independent mammospheres. We demonstrate that AREG is essential for formation of floating mammospheres by CDbetageo cells and that the mitogen activated protein kinase signaling pathway is involved in AREG-mediated mammosphere formation. Addition of exogenous AREG promotes mammosphere formation in cells where AREG expression is knocked down by siRNA and mammosphere formation by AREG(-/-) mammary epithelial cells. AREG knockdown inhibits mammosphere formation by duct-limited mammary progenitor cells but not lobule-limited mammary progenitor cells. These data demonstrate AREG mediates the function of a subset of mammary progenitor cells in vitro. Copyright 2009 Elsevier Inc. All rights reserved.

  2. Palytoxin: Exploiting a novel skin tumor promoter to explore signal transduction and carcinogenesis

    PubMed Central

    Wattenberg, Elizabeth V.

    2006-01-01

    Palytoxin is a novel skin tumor promoter, which has been used to help probe the role of different types of signaling mechanisms in carcinogenesis. The multi-stage mouse skin model indicates that tumor promotion is an early, prolonged, and reversible phase of carcinogenesis. Understanding the molecular mechanisms underlying tumor promotion is therefore important for developing strategies to prevent and treat cancer. Naturally occurring tumor promoters that bind to specific cellular receptors have proven to be useful tools for investigating important biochemical events in multi-stage carcinogenesis. For example, the identification of protein kinase C as the receptor for the prototypical skin tumor promoter 12-O-tetradecanoylphorbol-13-acetate (TPA) (also called phorbol-12-myristate-13-acetate or PMA) provided key evidence that tumor promotion involves the aberrant modulation of signaling cascades that govern cell fate and function. The subsequent discovery that palytoxin, a marine toxin isolated from zoanthids (genus Palythoa), is a potent skin tumor promoter yet does not activate protein kinase C indicated that investigating palytoxin action could help reveal new aspects of tumor promotion. Interestingly, the putative receptor for palytoxin is the Na+,K+-ATPase. This review focuses on palytoxin-stimulated signaling, and how palytoxin has been used to investigate alternate biochemical mechanisms by which important targets in carcinogenesis can be modulated. PMID:16855216

  3. Aspiration biopsy of mammary analogue secretory carcinoma of accessory parotid gland: another diagnostic dilemma in matrix-containing tumors of the salivary glands.

    PubMed

    Levine, Pascale; Fried, Karen; Krevitt, Lane D; Wang, Beverly; Wenig, Bruce M

    2014-01-01

    Mammary analogue secretory carcinoma (MASC) is a newly described rare salivary gland tumor, which shares morphologic features with acinic cell carcinoma, low-grade cystadenocarcinoma, and secretory carcinoma of the breast. This is the first reported case of MASC of an accessory parotid gland detected by aspiration biopsy with radiologic and histologic correlation in a 34-year-old patient. Sonographically-guided aspiration biopsy showed cytologic features mimicking those of low-grade mucoepidermoid carcinoma, including sheets of bland epithelial cells, dissociated histiocytoid cells with intracytoplasmic mucinous material, and spindle cells lying in a web-like matrix. Histologic sections showed a circumscribed tumor with microcystic spaces lined by bland uniform epithelial cells and containing secretory material. The tumor cells expressed mammaglobin and BRST-2. The cytologic features, differential diagnosis, and pitfalls are discussed. The pathologic stage was pT1N0. The patient showed no evidence of disease at 1 year follow-up. Copyright © 2012 Wiley Periodicals, Inc.

  4. The CAR agonist TCPOBOP inhibits lipogenesis and promotes fibrosis in the mammary gland of adolescent female mice.

    PubMed

    Xu, Pengfei; Hong, Fan; Wang, Jing; Dai, Shu; Wang, Jialin; Zhai, Yonggong

    2018-06-15

    Constitutive androstane receptor (CAR) is a nuclear receptor that not only regulates drug-metabolizing enzymes but also influences energy metabolism. TC, 1, 4-bis [2-(3, 5-dichloropyridyloxy)] benzene (TCPOBOP) has been shown to inhibit lipogenesis in the liver and adipose tissues. The mammary gland is mainly composed of fat pads and duct systems in adolescent female mice. Here, activation of CAR by TC reduces the mammary gland weight, blocks lipid accumulation by inhibiting lipogenesis and gluconeogenesis, and accelerates collagen formation and fibrosis in the mammary fat pad of adolescent female mice. This information provides a reference for CAR activation, which may affect mammary gland development in adolescent females. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. The Mammary Stem Cell Hierarchy: A Looking Glass into Heterogeneous Breast Cancer Landscapes

    PubMed Central

    Sreekumar, Amulya; Roarty, Kevin; Rosen, Jeffrey M.

    2015-01-01

    The mammary gland is a dynamic organ that undergoes extensive morphogenesis during the different stages of embryonic development, puberty, estrus, pregnancy, lactation and involution. Systemic and local cues underlie this constant tissue remodeling and act by eliciting an intricate pattern of responses in the mammary epithelial and stromal cells. Decades of studies utilizing methods such as transplantation and lineage tracing have identified a complex hierarchy of mammary stem cells, progenitors and differentiated epithelial cells that fuel mammary epithelial development. Importantly, these studies have extended our understanding of the molecular crosstalk between cell types, and signaling pathways maintaining normal homeostasis that often are deregulated during tumorigenesis. While several questions remain, this research has many implications for breast cancer. Fundamental among these are the identification of the cells of origin for the multiple subtypes of breast cancer and the understanding of tumor heterogeneity. A deeper understanding of these critical questions will unveil novel breast cancer drug targets and treatment paradigms. In this review, we provide a current overview of normal mammary development and tumorigenesis from a stem cell perspective. PMID:26206777

  6. Using 3D Culture of Primary Mammary Epithelial Cells to Define Molecular Entities Required for Acinus Formation: Analyzing MAP Kinase Phosphatases.

    PubMed

    Gajewska, Malgorzata; McNally, Sara

    2017-01-01

    Three-dimensional (3D) cell cultures on reconstituted basement membrane (rBM) enable the study of complex interactions between extracellular matrix (ECM) components and epithelial cells, which are crucial for the establishment of cell polarity and functional development of epithelia. 3D cultures of mammary epithelial cells (MECs) on Matrigel (a laminin-rich ECM derived from the Engelbreth-Holm-Swarm (EHS) murine tumor) promote interactions of MECs with the matrix via integrins, leading to formation of spherical monolayers of polarized cells surrounding a hollow lumen (acini). Acini closely resemble mammary alveoli found in the mammary gland. Thus, it is possible to study ECM-cell interactions and signalling pathways that regulate formation and maintenance of tissue-specific shape and functional differentiation of MECs in 3D under in vitro conditions. Here we present experimental protocols used to investigate the role of mitogen-activated protein kinase phosphatases (MKPs) during development of the alveoli-like structures by primary mouse mammary epithelial cells (PMMEC) cultured on Matrigel. We present detailed protocols for PMMEC isolation, and establishment of 3D cultures using an "on top" method, use of specific kinase and phosphatases inhibitors (PD98059 and pervanadate, respectively) administered at different stages of acinus development, and give examples of analyses carried out post-culture (Western blot, immunofluorescence staining, and confocal imaging).

  7. Role of Mammary Prolactin in Carcinogenesis

    DTIC Science & Technology

    1998-10-01

    severity jectives were to 1) demonstrate local expression of both of breast cancer, and treatments that suppress pituitary PRL PRL and PRL receptor, and 2...factors in the haemopoietic system. Immunol Today 14: mammary tumors and effect of antiestrogen treatment on the de- 212-214 velopment and growth of...PRL is stimulated by interleukin-2 (IL-2), is quence analysis of decidual PRL cDNA (103) has established maximal within 6 h of treatment , and is

  8. Synthetic α-mangostin dilaurate strongly suppresses wide-spectrum organ metastasis in a mouse model of mammary cancer.

    PubMed

    Shibata, Masa-Aki; Hamaoka, Hitomi; Morimoto, Junji; Kanayama, Tadashi; Maemura, Kentaro; Ito, Yuko; Iinuma, Munekazu; Kondo, Yoichi

    2018-03-30

    We previously reported that, in a mouse model of mammary cancer, α-mangostin alone exhibits anti-metastatic properties. To enhance this anti-metastatic effect, we examined the efficacy of synthetic α-mangostin dilaurate (MGD), prepared by adding lauric acid to α-mangostin, in the same experimental system wherein mice bearing mammary tumors are exposed to dietary MGD at 0, 2000 and 4000 ppm. Lauric acid has a high propensity for lymphatic absorption, which is the most common pathway of initial dissemination of many solid malignancies. Both mammary tumor volumes and wide-spectrum organ metastasis were markedly reduced at 2000 and 4000 ppm: furthermore, survival in the 4000-ppm group was significantly greater than in control mice. Apoptosis in mammary carcinomas was also significantly increased in the 4000-ppm group, whereas blood microvessel density and lymphatic vessel invasion were markedly reduced. In real-time PCR analyses of tumor samples, increased p21 and decreased Pcna expression were observed with 4000 ppm but values were not statistically significant when compared to expression in control tumors. However, exposure to 4000 ppm significantly decreased expression of phospho-Akt (Ser473/Thr308) as compared to the control, indicating a role in the anti-tumorigenic effects of MGD. These findings suggest that MGD may be useful for adjuvant therapy and chemoprevention and that conjugated medium-chain fatty acids may enhance the efficacy of certain chemotherapeutic agents. © 2018 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.

  9. A functional in vivo screen for regulators of tumor progression identifies HOXB2 as a regulator of tumor growth in breast cancer

    PubMed Central

    Boimel, Pamela J.; Cruz, Cristian; Segall, Jeffrey E.

    2011-01-01

    Microarray profiling in breast cancer patients have identified genes correlated with prognosis whose functions are unknown. The purpose of this study was to develop an in vivo assay for functionally screening regulators of tumor progression using a mouse model. Transductant shRNA cell lines were made in the MDA-MB-231 breast cancer line. A pooled population of 25 transductants was injected into the mammary fat pads and tail veins of mice to evaluate tumor growth, and experimental metastasis. The proportions of transductants were evaluated in the tumor and metastases using barcodes specific to each shRNA transductant. We characterized the homeobox 2 transcription factor as a negative regulator, decreasing tumor growth in MDA-MB-231, T47D, and MTLn3 mammary adenocarcinoma cell lines. Homeobox genes have been correlated with cancer patient prognosis and tumorigenesis. Here we use a novel in vivo shRNA screen to identify a new role for a homeobox gene in human mammary adenocarcinoma. PMID:21672623

  10. Low-grade and high-grade mammary carcinomas in WAP-T transgenic mice are independent entities distinguished by Met expression.

    PubMed

    Otto, Benjamin; Gruner, Katharina; Heinlein, Christina; Wegwitz, Florian; Nollau, Peter; Ylstra, Bauke; Pantel, Klaus; Schumacher, Udo; Baumbusch, Lars O; Martin-Subero, José Ignacio; Siebert, Reiner; Wagener, Christoph; Streichert, Thomas; Deppert, Wolfgang; Tolstonog, Genrich V

    2013-03-15

    Mammary carcinomas developing in SV40 transgenic WAP-T mice arise in two distinct histological phenotypes: as differentiated low-grade and undifferentiated high-grade tumors. We integrated different types of information such as histological grading, analysis of aCGH-based gene copy number and gene expression profiling to provide a comprehensive molecular description of mammary tumors in WAP-T mice. Applying a novel procedure for the correlation of gene copy number with gene expression on a global scale, we observed in tumor samples a global coherence between genotype and transcription. This coherence can be interpreted as a matched transcriptional regulation inherited from the cells of tumor origin and determined by the activity of cancer driver genes. Despite common recurrent genomic aberrations, e.g. gain of chr. 15 in most WAP-T tumors, loss of chr. 19 frequently occurs only in low-grade tumors. These tumors show features of "basal-like" epithelial differentiation, particularly expression of keratin 14. The high-grade tumors are clearly separated from the low-grade tumors by strong expression of the Met gene and by coexpression of epithelial (e.g. keratin 18) and mesenchymal (e.g. vimentin) markers. In high-grade tumors, the expression of the nonmutated Met protein is associated with Met-locus amplification and Met activity. The role of Met as a cancer driver gene is supported by the contribution of active Met signaling to motility and growth of mammary tumor-derived cells. Finally, we discuss the independent origin of low- and high-grade tumors from distinct cells of tumor origin, possibly luminal progenitors, distinguished by Met gene expression and Met signaling. Copyright © 2012 UICC.

  11. TRIENNIAL LACTATION SYMPOSIUM/BOLFA: Plasticity of mammary development in the prepubertal bovine mammary gland.

    PubMed

    Akers, R M

    2017-12-01

    Although peripubertal mammary development represents only a small fraction of the total mass of mammary parenchyma present in the udder at the end of gestation and into lactation, there is increasing evidence that the tissue foundations created in early life can affect future mammary development and function. Studies on expression of estrogen and progesterone receptors seem to confirm the relevance of these steroids in prepubertal mammary development, but connections with other growth factors, hormones, and local tissue factors remain elusive. Enhanced preweaning feeding in the bovine appears to enhance the capacity of mammary tissue to response to mammogenic stimulation. This suggests the possibility that improved early nutrition might allow for creation of stem or progenitor cell populations to better support the massive ductal growth and lobulo-alveolar development during gestation. Increasing evidence that immune cells are involved in mammary development suggests there are unexpected and poorly understood connections between the immune system and mammary development. This is nearly unexplored in ruminants. Development of new tools to identify, isolate, and characterize cell populations within the developing bovine mammary gland offer the possibility of identifying and perhaps altering populations of mammary stem cells or selected progenitor cells to modulate mammary development and, possibly, mammary function.

  12. Mammary cell-activating factor regulates the hormone-independent transcription of the early lactation protein (ELP) gene in a marsupial.

    PubMed

    Pharo, Elizabeth A; Renfree, Marilyn B; Cane, Kylie N

    2016-11-15

    The regulation of the tammar wallaby (Macropus eugenii) early lactation protein (ELP) gene is complex. ELP is responsive to the lactogenic hormones; insulin (I), hydrocortisone (HC) and prolactin (PRL) in mammary gland explants but could not be induced with lactogenic hormones in tammar primary mammary gland cells, nor in KIM-2 conditionally immortalised murine mammary epithelial cells. Similarly, ELP promoter constructs transiently-transfected into human embryonic kidney (HEK293T) cells constitutively expressing the prolactin receptor (PRLR) and Signal Transducer and Activator of Transcription (STAT)5A were unresponsive to prolactin, unlike the rat and mouse β-casein (CSN2) promoter constructs. Identification of the minimal promoter required for the hormone-independent transcription of tammar ELP in HEK293Ts and comparative analysis of the proximal promoters of marsupial ELP and the orthologous eutherian colostrum trypsin inhibitor (CTI) gene suggests that mammary cell-activating factor (MAF), an E26 transformation-specific (ETS) factor, may bind to an AGGAAG motif and activate tammar ELP. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  13. The relationship of blood vessel proximity and time after radiolabeled thymidine administration to tumor cell population kinetics in a transplanted mouse mammary tumor.

    PubMed Central

    Pavelic, Z. P.; Allen, L. M.; Mihich, E.

    1981-01-01

    The relation between the time of administration of tritiated thymidine and the proximity of cells to blood vessels and their labeling index, grain density per labeled cells, mitotic index, and growth fraction have been determined autoradiographically in a transplanted mammary tumor of mice. The tumor was rich in blood vessels, and the cells were densely packed, showing a few glandular structures. Shortly after tritiated thymidine administration, cells closer to the blood vessels (0-70 mu) showed a higher percentage of labeled and mitotic cells, more grains per labeled cells, and a higher growth fraction than the cells located in the outer zone (70-140 mu). Eight days later the values of these parameters were similar in both areas. The cell cycle time, the duration of mitosis, the S phase, the G1 phase and the G2 phase were essentially the same in both zones. These results could be attributed either to reutilization of nucleic acid metabolites or release of the original precursor from cells. It is suggested that label redistribution, which may perturb the measurement of the apparent turnover of labeled proliferating cellular systems in the body should be considered in all cases of autoradiographic or labeled purine-pyrimidine turnover studies. Images Figure 4 Figure 5 PMID:7468761

  14. Malignant neoplasm in the axilla of a male: suspected primary carcinoma of an accessory mammary gland.

    PubMed

    Takeyama, Hiroshi; Takahashi, Hiroyuki; Tabei, Isao; Fukuchi, Osamu; Nogi, Hiroko; Kinoshita, Satoki; Uchida, Ken; Morikawa, Toshiaki

    2010-04-01

    A 58-year-old Japanese male patient visited our hospital for evaluation of an elastic hard mass, measuring 80 x 50 mm, in the right axillary area. Incisional biopsy for suspected malignancy was performed, and histopathologic examination by hematoxylin-eosin (H&E) staining yielded a diagnosis of poorly differentiated adenocarcinoma metastatic from an unknown primary. As the tumor was immunohistochemically positive for both ER and PgR, metastatic breast cancer was strongly suspected. Ultrasonography, CT, and MRI revealed no evidence of tumors in the bilateral mammary glands. Detailed examination of the head and neck region, lung, and upper and lower gastrointestinal tract also revealed no evidence of a primary tumor. After chemotherapy, the patient underwent tumor resection with axillary lymph node dissection. On the basis of the histological features of H&E-stained specimens and immunohistochemistry of the resected tumor, this case was diagnosed as breast cancer of unknown origin in a male. The tumor could have been an axillary lymph node metastasis from an occult breast carcinoma, or primary cancer arising in an accessory mammary gland.

  15. Gene Electrotransfer of Plasmid with Tissue Specific Promoter Encoding shRNA against Endoglin Exerts Antitumor Efficacy against Murine TS/A Tumors by Vascular Targeted Effects.

    PubMed

    Stimac, Monika; Dolinsek, Tanja; Lampreht, Ursa; Cemazar, Maja; Sersa, Gregor

    2015-01-01

    Vascular targeted therapies, targeting specific endothelial cell markers, are promising approaches for the treatment of cancer. One of the targets is endoglin, transforming growth factor-β (TGF-β) co-receptor, which mediates proliferation, differentiation and migration of endothelial cells forming neovasculature. However, its specific, safe and long-lasting targeting remains the challenge. Therefore, in our study we evaluated the transfection efficacy, vascular targeted effects and therapeutic potential of the plasmid silencing endoglin with the tissue specific promoter, specific for endothelial cells marker endothelin-1 (ET) (TS plasmid), in comparison to the plasmid with constitutive promoter (CON plasmid), in vitro and in vivo. Tissue specificity of TS plasmid was demonstrated in vitro on several cell lines, and its antiangiogenic efficacy was demonstrated by reducing tube formation of 2H11 endothelial cells. In vivo, on a murine mammary TS/A tumor model, we demonstrated good antitumor effect of gene electrotransfer (GET) of either of both plasmids in treatment of smaller tumors still in avascular phase of growth, as well as on bigger tumors, already well vascularized. In support to the observations on predominantly vascular targeted effects of endoglin, histological analysis has demonstrated an increase in necrosis and a decrease in the number of blood vessels in therapeutic groups. A significant antitumor effect was observed in tumors in avascular and vascular phase of growth, possibly due to both, the antiangiogenic and the vascular disrupting effect. Furthermore, the study indicates on the potential use of TS plasmid in cancer gene therapy since the same efficacy as of CON plasmid was determined.

  16. Tumor-educated mesenchymal stem cells promote pro-metastatic phenotype

    PubMed Central

    Passaro, Nunzia; Zannetti, Antonella

    2017-01-01

    Multipotent mesenchymal stem cells (MSCs) are recruited into tumor microenvironment in response to multiple signals produced by cancer cells. Molecules involved in their homing to tumors are the same inflammatory mediators produced by injured tissues: chemokines, cytokines and growth factors. When MSCs arrive into the tumor microenvironment these are “educated” to have pro-metastatic behaviour. Firstly, they promote cancer immunosuppression modulating both innate and adaptive immune systems. Moreover, tumor associated-MSCs trans-differentiating into cancer-associated fibroblasts can induce epithelial-mesenchymal-transition program in tumor cells. This process determinates a more aggressive phenotype of cancer cells by increasing their motility and invasiveness and favoring their dissemination to distant sites. In addition, MSCs are involved in the formation and modelling of pre-metastatic niches creating a supportive environment for colonization of circulating tumor cells. The development of novel therapeutic approaches targeting the different functions of MSCs in promoting tumor progression as well as the mechanisms underlying their activities could enhance the efficacy of conventional and immune anti-cancer therapies. Furthermore, many studies report the use of MSCs engineered to express different genes or as vehicle to specifically deliver novel drugs to tumors exploiting their strong tropism. Importantly, this approach can enhance local therapeutic efficacy and reduce the risk of systemic side effects. PMID:29069870

  17. Epigenetic reprogramming governs EcSOD expression during human mammary epithelial cell differentiation, tumorigenesis and metastasis

    PubMed Central

    Teoh-Fitzgerald, ML; Fitzgerald, MP; Zhong, W; Askeland, RW; Domann, FE

    2013-01-01

    Expression of the antioxidant enzyme EcSOD in normal human mammary epithelial cells was not recognized until recently. Although expression of EcSOD was not detectable in non-malignant human mammary epithelial cells (HMEC) cultured in conventional two-dimensional (2D) culture conditions, EcSOD protein expression was observed in normal human breast tissues, suggesting that the 2D-cultured condition induces a repressive status of EcSOD gene expression in HMEC. With the use of laminin-enriched extracellular matrix (lrECM), we were able to detect expression of EcSOD when HMEC formed polarized acinar structures in a 3D-culture condition. Repression of the EcSOD-gene expression was again seen when the HMEC acini were sub-cultured as a monolayer, implying that lrECM-induced acinar morphogenesis is essential in EcSOD-gene activation. We have further shown the involvement of DNA methylation in regulating EcSOD expression in HMEC under these cell culture conditions. EcSOD mRNA expression was strongly induced in the 2D-cultured HMEC after treatment with a DNA methyltransferase inhibitor. In addition, epigenetic analyses showed a decrease in the degree of CpG methylation in the EcSOD promoter in the 3D versus 2D-cultured HMEC. More importantly, >80% of clinical mammary adenocarcinoma samples showed significantly decreased EcSOD mRNA and protein expression levels compared with normal mammary tissues and there is an inverse correlation between the expression levels of EcSOD and the clinical stages of breast cancer. Combined bisulfite restriction analysis analysis of some of the tumors also revealed an association of DNA methylation with the loss of EcSOD expression in vivo. Furthermore, overexpression of EcSOD inhibited breast cancer metastasis in both the experimental lung metastasis model and the syngeneic mouse model. This study suggests that epigenetic silencing of EcSOD may contribute to mammary tumorigenesis and that restoring the extracellular superoxide scavenging

  18. Curcumin and Turmeric Modulate the Tumor-Promoting Effects of Iron In Vitro.

    PubMed

    Messner, Donald J; Robinson, Todd; Kowdley, Kris V

    2017-04-01

    Free or loosely chelated iron has tumor-promoting properties in vitro. Curcumin, a polyphenol derived from the food spice turmeric (Curcuma longa), is a potent antioxidant that binds iron. The primary aim of this study was to investigate whether curcuminoids prevent tumor-promoting effects of iron in T51B cells, a non-neoplastic rat liver epithelial cell line. Purified curcuminoids (curcumin) or a standardized turmeric extract similarly reduced oxidative stress and cytotoxicity associated with iron overload (IC 50 values near 10 μM, P < 0.05). Inhibition of iron-induced tumor promotion (seen upon treatment with 200 μM ferric ammonium citrate ± curcumin/turmeric for 16 wk in culture; subsequently assayed by soft agar colony formation) was nearly complete at 20 μM of total curcuminoids (P < 0.05), a concentration predicted to only partially chelate the added iron. Surprisingly, lower curcumin concentrations (10 μM) increased tumor promotion (P < 0.01). Curcuminoids delivered as a standardized turmeric extract were taken up better by cells, had a longer half-life, and appeared more effective in blocking tumor promotion (P < 0.01), suggesting enhanced curcuminoid delivery to cells in culture. The primary finding that curcuminoids can inhibit tumor promotion caused by iron in T51B cells is tempered by evidence for an underlying increase in neoplastic transformation at lower concentrations.

  19. Curcumin and Turmeric Modulate the Tumor-Promoting Effects of Iron In Vitro

    PubMed Central

    Messner, Donald J.; Robinson, Todd; Kowdley, Kris V.

    2018-01-01

    Free or loosely chelated iron has tumor-promoting properties in vitro. Curcumin, a polyphenol derived from the food spice turmeric (Curcuma longa), is a potent antioxidant that binds iron. The primary aim of this study was to investigate whether curcuminoids prevent tumor-promoting effects of iron in T51B cells, a non-neoplastic rat liver epithelial cell line. Purified curcuminoids (curcumin) or a standardized turmeric extract similarly reduced oxidative stress and cytotoxicity associated with iron overload (IC50 values near 10 μM, P < 0.05). Inhibition of iron-induced tumor promotion (seen upon treatment with 200 μM ferric ammonium citrate ± curcumin/turmeric for 16 wk in culture; subsequently assayed by soft agar colony formation) was nearly complete at 20 μM of total curcuminoids (P < 0.05), a concentration predicted to only partially chelate the added iron. Surprisingly, lower curcumin concentrations (10 μM) increased tumor promotion (P < 0.01). Curcuminoids delivered as a standardized turmeric extract were taken up better by cells, had a longer half-life, and appeared more effective in blocking tumor promotion (P < 0.01), suggesting enhanced curcuminoid delivery to cells in culture. The primary finding that curcuminoids can inhibit tumor promotion caused by iron in T51B cells is tempered by evidence for an underlying increase in neoplastic transformation at lower concentrations. PMID:28129008

  20. Arginine inhibits the malignant transformation induced by interferon-gamma through the NF-κB-GCN2/eIF2α signaling pathway in mammary epithelial cells in vitro and in vivo.

    PubMed

    Ren, Wenbo; Li, Yang; Xia, Xiaojing; Guo, Wenfei; Zhai, Taiyu; Jin, Yuting; Che, Yanyi; Gao, Haidi; Duan, Xiumei; Ma, Hongxi; Huang, Tinghao; Huang, Jing; Lei, Liancheng

    2018-07-15

    Breast cancer is the most common female malignant tumors in the world. It seriously affects women's physical and mental health and the leading cause of cancer death among women. Our previous study demonstrated that diet-derived IFN-γ promoted the malignant transformation of primary bovine mammary epithelial cells by accelerating arginine depletion. The current study aimed to explore whether arginine addition could inhibit the degree of malignant transformation and its molecular mechanism. The results indicate that arginine addition could alleviate the malignant transformation of mammary epithelial cells induced by IFN-γ, including reducing cell proliferation, cell migration and colony formation, through the NF-κB-GCN2/eIF2α pathway. The in vivo experiments also consistently confirmed that arginine supplementation could significantly inhibit tumor growth in tumor-bearing mice. Furthermore, the investigation of the clinical data also revealed that the plasma or tissue from human breast cancer patients owned lower arginine level and higher IFN-γ level than that from patients with benign breast disease, showing IFN-γ may be a potential control target. Our findings demonstrate that arginine supplement could antagonize the malignant transformation of mammary epithelial cells induced by IFN-γ (nutritionally induced) both in vitro and in vivo, and IFN-γ was higher in breast cancer women. This might provide a novel strategy for the prevention and treatment of breast cancer regarding to nutrition. Copyright © 2018 Elsevier Inc. All rights reserved.

  1. Targeting fibroblast growth factor receptors blocks PI3K/AKT signaling, induces apoptosis, and impairs mammary tumor outgrowth and metastasis.

    PubMed

    Dey, Julien H; Bianchi, Fabrizio; Voshol, Johannes; Bonenfant, Debora; Oakeley, Edward J; Hynes, Nancy E

    2010-05-15

    Members of the fibroblast growth factor receptor (FGFR) family have essential roles in normal physiology and in cancer where they control diverse processes. FGFRs have been associated with breast cancer development. Thus, models to study the role of FGFR in breast cancer and their targeting potential are important. We present an in vitro and in vivo analysis of FGFRs in the breast cancer model cell lines 67NR and 4T1. We show that both tumor cell lines coexpress FGFRs and ligands and display autocrine FGFR signaling activity. Fibroblast growth factor receptor substrate 2 (FRS2), a downstream mediator of FGFR, is constitutively tyrosine phosphorylated and multiple signaling pathways are active. Treatment of 67NR and 4T1 cultures with TKI258, an FGFR tyrosine kinase inhibitor (TKI), caused a rapid decrease in FRS2 phosphorylation; decreased the activity of extracellular signal-regulated kinase 1/2 (ERK1/2), AKT, and phospholipase Cgamma; and blocked proliferation of both tumor lines. Furthermore, TKI258 induced 4T1 apoptotic cell death via blockade of the phosphoinositide 3-kinase/AKT pathway. In vivo, one dose of TKI258 rapidly lowered FRS2 phosphorylation and ERK1/2 and AKT activity in mammary tumors. Long-term TKI258 treatment of 4T1 tumor- and 67NR tumor-bearing mice had a significant effect on primary tumor outgrowth and 4T1 tumor-induced lung metastases. A microarray analysis was carried out to identify targets with roles in TKI258 antitumor activity and potential prognostic markers in human breast tumors. Of interest are the downregulated matrix metalloproteases (MMP), in particular MMP9, which is essential for metastatic spread of 4T1 tumors. (c)2010 AACR.

  2. Peroxisome proliferator-activated receptor δ (PPARδ) induces estrogen receptor-positive mammary neoplasia through an inflammatory and metabolic phenotype linked to mTor activation

    PubMed Central

    Yuan, Hongyan; Lu, Jin; Xiao, Junfeng; Upadhyay, Geeta; Umans, Rachel; Kallakury, Bhaskar; Yin, Yuhzi; Fant, Michael E.; Kopelovich, Levy; Glazer, Robert I.

    2013-01-01

    The peroxisome proliferator-activated receptor-δ (PPARδ) regulates a multitude of physiological processes associated with glucose and lipid metabolism, inflammation and proliferation. One or more of these processes are potential risk factors for the ability of PPARδ agonists to promote tumorigenesis in the mammary gland. In the present study, we describe a new transgenic mouse model in which activation of PPARδ in the mammary epithelium by endogenous or synthetic ligands resulted in progressive histopathological changes that culminated in the appearance of estrogen receptor- and progesterone receptor-positive and ErbB2-negative infiltrating ductal carcinomas. Multiparous mice presented with mammary carcinomas after a latency of 12 months, and administration of the PPARδ ligand GW501516 reduced tumor latency to five months. Histopathological changes occurred concurrently with an increase in an inflammatory, invasive, metabolic and proliferative gene signature, including expression of the trophoblast gene, Plac1, beginning one week after GW501516 treatment, and remained elevated throughout tumorigenesis. The appearance of malignant changes correlated with a pronounced increase in phosphatidylcholine and lysophosphatidic acid metabolites, which coincided with activation of Akt and mTor signaling that were attenuated by treatment with the mTor inhibitor everolimus. Our findings are the first to demonstrate a direct role of PPARδ in the pathogenesis of mammary tumorigenesis, and suggest a rationale for therapeutic approaches to prevent and treat this disease. PMID:23811944

  3. Obesity and perinatal TCDD exposure increases mammary tumor incidence in FVB mice

    EPA Science Inventory

    Breast cancer risk consistently correlates with total lifetime exposure to estrogens. Because both TCDD and adipocytes impact the estrogen pathway, we examined how TCDD and obesity interact to alter mammary cancer susceptibility. At 12.5 days post conception, we exposed FVB fema...

  4. The matricellular protein CYR61 promotes breast cancer lung metastasis by facilitating tumor cell extravasation and suppressing anoikis.

    PubMed

    Huang, Yu-Ting; Lan, Qiang; Lorusso, Girieca; Duffey, Nathalie; Rüegg, Curzio

    2017-02-07

    Matricellular proteins play multiple roles in primary tumor growth, local invasion and tumor angiogenesis. However, their contribution to metastasis and the putative mechanisms involved are less well characterized. In ER-negative human breast cancer, elevated expression levels of the matricellular protein Cysteine-rich angiogenic inducer 61 (CYR61) are associated with more aggressive progression. Here, we investigated the role of CYR61 in breast cancer lung metastasis using the triple negative human breast cancer cell lines MDA-MB-231 and SUM159. Silencing of CYR61 significantly decreased lung metastasis from tumors orthotopically implanted in pre-irradiated or naive mammary tissue and upon tail vein injection. Constitutive CYR61 silencing impaired cancer cell extravasation to the lung during the first 24 hours after tail vein injection. In contrast, CYR61 inducible silencing starting 24 hours after cancer cell injection had no impact on lung metastasis formation. In vitro experiments revealed that CYR61 silencing decreased cancer cell transendothelial migration and motility, reduced CYR61 levels present at the cell surface and sensitized cancer cells to anoikis. Furthermore, we demonstrate that CYR61-dependent cell survival under non-adhesive conditions relied, at least partially, on β1 integrin ligation and AMPKα signaling while it was independent of AKT, FAK and ERK1/2 activation. Our data provide the first evidence that CYR61 promotes breast cancer lung metastasis by facilitating tumor cell extravasation and protecting from anoikis during initial seeding to the lung. The uncovered CYR61-β1 integrin-AMPKα axis may serve as a potential therapeutic target to prevent breast cancer metastasis to the lung.

  5. Effect of an Extract of Withania somnifera Root on Estrogen Receptor-positive Mammary Carcinomas

    PubMed Central

    KHAZAL, KAMEL F.; SAMUEL, TEMESGEN; HILL, DONALD L.; GRUBBS, CLINTON J.

    2013-01-01

    The chemopreventive activity of an extract of Withania somnifera (WS) roots was examined in female Sprague-Dawley rats that received the mammary carcinogen methylnitrosourea (MNU). The dose of the extract, administered by gavage, was 150 mg/kg body weight daily for 155 days after injection of MNU. Rats in the treated group (N=15) had an average of 3.47 tumors, and rats in the control group (N=15) had 4.53, a reduction of 23%. The average weights of tumors were 4.98 g for rats in the treated group and 6.30 g for the controls, a difference of 21%. Labeling indices for Ki67 and proliferating cell nuclear antigen (PCNA) markers in cancers of the treated group were 42% and 38% lower, respectively, than those of the corresponding indices for the control group. These results indicate that the root extract significantly reduced the rate of cell division in the mammary tumors. PMID:23564793

  6. RASSF1A promoter methylation in high-grade serous ovarian cancer: A direct comparison study in primary tumors, adjacent morphologically tumor cell-free tissues and paired circulating tumor DNA.

    PubMed

    Giannopoulou, Lydia; Chebouti, Issam; Pavlakis, Kitty; Kasimir-Bauer, Sabine; Lianidou, Evi S

    2017-03-28

    The RASSF1A promoter is frequently methylated in high-grade serous ovarian cancer (HGSC). We examined RASSF1A promoter methylation in primary tumors, adjacent morphologically tumor cell-free tissues and corresponding circulating tumor DNA (ctDNA) samples of patients with HGSC, using a real-time methylation specific PCR (real-time MSP) and a methylation-sensitive high-resolution melting analysis (MS-HRMA) assay for the detection and semi-quantitative estimation of methylation, respectively. Two groups of primary HGSC tumor FFPE samples were recruited (Group A n=67 and Group B n=61), along with matched adjacent morphologically tumor cell-free tissues (n=58) and corresponding plasma samples (n=59) for group B. Using both assays, RASSF1A promoter was found highly methylated in primary tumors of both groups, and at lower percentages in the adjacent morphologically tumor cell-free tissues. Interestingly, RASSF1A promoter methylation was also observed in ctDNA by real-time MSP. Overall survival (OS) was significantly associated with RASSF1A promoter methylation in primary tumor samples using MS-HRMA (P=0.023). Our results clearly indicate that RASSF1A promoter is methylated in adjacent tissue surrounding the tumor in HGSC patients. We report for the first time that RASSF1A promoter methylation provides significant prognostic information in HGSC patients.

  7. RASSF1A promoter methylation in high-grade serous ovarian cancer: A direct comparison study in primary tumors, adjacent morphologically tumor cell-free tissues and paired circulating tumor DNA

    PubMed Central

    Giannopoulou, Lydia; Chebouti, Issam; Pavlakis, Kitty; Kasimir-Bauer, Sabine; Lianidou, Evi S.

    2017-01-01

    The RASSF1A promoter is frequently methylated in high-grade serous ovarian cancer (HGSC). We examined RASSF1A promoter methylation in primary tumors, adjacent morphologically tumor cell-free tissues and corresponding circulating tumor DNA (ctDNA) samples of patients with HGSC, using a real-time methylation specific PCR (real-time MSP) and a methylation-sensitive high-resolution melting analysis (MS-HRMA) assay for the detection and semi-quantitative estimation of methylation, respectively. Two groups of primary HGSC tumor FFPE samples were recruited (Group A n=67 and Group B n=61), along with matched adjacent morphologically tumor cell-free tissues (n=58) and corresponding plasma samples (n=59) for group B. Using both assays, RASSF1A promoter was found highly methylated in primary tumors of both groups, and at lower percentages in the adjacent morphologically tumor cell-free tissues. Interestingly, RASSF1A promoter methylation was also observed in ctDNA by real-time MSP. Overall survival (OS) was significantly associated with RASSF1A promoter methylation in primary tumor samples using MS-HRMA (P=0.023). Our results clearly indicate that RASSF1A promoter is methylated in adjacent tissue surrounding the tumor in HGSC patients. We report for the first time that RASSF1A promoter methylation provides significant prognostic information in HGSC patients. PMID:28206954

  8. Paracrine-acting adiponectin promotes mammary epithelial differentiation and synergizes with genistein to enhance transcriptional response to estrogen receptor beta signaling

    USDA-ARS?s Scientific Manuscript database

    Mammary stromal adipocytes constitute an active site for the synthesis of the adipokine adiponectin (APN) that may influence the mammary epithelial microenvironment. The relationship between 'local', mammary tissue-derived APN and breast cancer risk is poorly understood. Herein, we identify a novel ...

  9. Hormone Receptor Expression Analyses in Neoplastic and Non-Neoplastic Canine Mammary Tissue by a Bead Based Multiplex Branched DNA Assay: A Gene Expression Study in Fresh Frozen and Formalin-Fixed, Paraffin-Embedded Samples.

    PubMed

    Mohr, Annika; Lüder Ripoli, Florenza; Hammer, Susanne Conradine; Willenbrock, Saskia; Hewicker-Trautwein, Marion; Kiełbowicz, Zdzisław; Murua Escobar, Hugo; Nolte, Ingo

    2016-01-01

    Immunohistochemistry (IHC) is currently considered the method of choice for steroid hormone receptor status evaluation in human breast cancer and, therefore, it is commonly utilized for assessing canine mammary tumors. In case of low hormone receptor expression, IHC is limited and thus is complemented by molecular analyses. In the present study, a multiplex bDNA assay was evaluated as a method for hormone receptor gene expression detection in canine mammary tissues. Estrogen receptor (ESR1), progesterone receptor (PGR), prolactin receptor (PRLR) and growth hormone receptor (GHR) gene expressions were evaluated in neoplastic and non-neoplastic canine mammary tissues. A set of 119 fresh frozen and 180 formalin-fixed, paraffin-embedded (FFPE) was comparatively analyzed and used for assay evaluation. Furthermore, a possible association between the hormone receptor expression in different histological subtypes of canine malignant mammary tumors and the castration status, breed and invasive growth of the tumor were analyzed. The multiplex bDNA assay proved to be more sensitive for fresh frozen specimens. Hormone receptor expression found was significantly decreased in malignant mammary tumors in comparison to non-neoplastic tissue and benign mammary tumors. Among the histological subtypes the lowest gene expression levels of ESR1, PGR and PRLR were found in solid, anaplastic and ductal carcinomas. In summary, the evaluation showed that the measurement of hormone receptors with the multiplex bDNA assay represents a practicable method for obtaining detailed quantitative information about gene expression in canine mammary tissue for future studies. Still, comparison with IHC or quantitative real-time PCR is needed for further validation of the present method.

  10. Dynamic interactions between the promoter and terminator regions of the mammalian BRCA1 gene.

    PubMed

    Tan-Wong, Sue Mei; French, Juliet D; Proudfoot, Nicholas J; Brown, Melissa A

    2008-04-01

    The 85-kb breast cancer-associated gene BRCA1 is an established tumor suppressor gene, but its regulation is poorly understood. We demonstrate by gene conformation analysis in both human cell lines and mouse mammary tissue that gene loops are imposed on BRCA1 between the promoter, introns, and terminator region. Significantly, association between the BRCA1 promoter and terminator regions change upon estrogen stimulation and during lactational development. Loop formation is transcription-dependent, suggesting that transcriptional elongation plays an active role in BRCA1 loop formation. We show that the BRCA1 terminator region can suppress estrogen-induced transcription and so may regulate BRCA1 expression. Significantly, BRCA1 promoter and terminator interactions vary in different breast cancer cell lines, indicating that defects in BRCA1 chromatin structure may contribute to dysregulated expression of BRCA1 seen in breast tumors.

  11. A functional in vivo screen for regulators of tumor progression identifies HOXB2 as a regulator of tumor growth in breast cancer.

    PubMed

    Boimel, Pamela J; Cruz, Cristian; Segall, Jeffrey E

    2011-09-01

    Microarray profiling in breast cancer patients has identified genes correlated with prognosis whose functions are unknown. The purpose of this study was to develop an in vivo assay for functionally screening regulators of tumor progression using a mouse model. Transductant shRNA cell lines were made in the MDA-MB-231 breast cancer line. A pooled population of 25 transductants was injected into the mammary fat pads and tail veins of mice to evaluate tumor growth, and experimental metastasis. The proportions of transductants were evaluated in the tumor and metastases using barcodes specific to each shRNA transductant. We characterized the homeobox 2 transcription factor as a negative regulator, decreasing tumor growth in MDA-MB-231, T47D, and MTLn3 mammary adenocarcinoma cell lines. Homeobox genes have been correlated with cancer patient prognosis and tumorigenesis. Here we use a novel in vivo shRNA screen to identify a new role for a homeobox gene in human mammary adenocarcinoma. Copyright © 2011 Elsevier Inc. All rights reserved.

  12. Mouse Mammary Tumor Virus Signal Peptide Uses a Novel p97-Dependent and Derlin-Independent Retrotranslocation Mechanism To Escape Proteasomal Degradation

    PubMed Central

    Byun, Hyewon; Das, Poulami; Yu, Houqing; Aleman, Alejandro; Lozano, Mary M.; Matouschek, Andreas

    2017-01-01

    ABSTRACT Multiple pathogens, including viruses and bacteria, manipulate endoplasmic reticulum-associated degradation (ERAD) to avoid the host immune response and promote their replication. The betaretrovirus mouse mammary tumor virus (MMTV) encodes Rem, which is a precursor protein that is cleaved into a 98-amino-acid signal peptide (SP) and a C-terminal protein (Rem-CT). SP uses retrotranslocation for ER membrane extraction and yet avoids ERAD by an unknown mechanism to enter the nucleus and function as a Rev-like protein. To determine how SP escapes ERAD, we used a ubiquitin-activated interaction trap (UBAIT) screen to trap and identify transient protein interactions with SP, including the ERAD-associated p97 ATPase, but not E3 ligases or Derlin proteins linked to retrotranslocation, polyubiquitylation, and proteasomal degradation of extracted proteins. A dominant negative p97 ATPase inhibited both Rem and SP function. Immunoprecipitation experiments indicated that Rem, but not SP, is polyubiquitylated. Using both yeast and mammalian expression systems, linkage of a ubiquitin-like domain (UbL) to SP or Rem induced degradation by the proteasome, whereas SP was stable in the absence of the UbL. ERAD-associated Derlin proteins were not required for SP activity. Together, these results suggested that Rem uses a novel p97-dependent, Derlin-independent retrotranslocation mechanism distinct from other pathogens to avoid SP ubiquitylation and proteasomal degradation. PMID:28351922

  13. The Cytoplasmic Domain of MUC1 Induces Hyperplasia in the Mammary Gland and Correlates with Nuclear Accumulation of β-Catenin

    PubMed Central

    Li, Yuan; Yi, Haiying; Yao, Yixin; Liao, Xiaodong; Xie, Yiqun; Yang, Jie; Yan, Zheng; Wang, Long; Lu, Shunyuan; Kuang, Ying; Gu, Mingmin; Fei, Jian; Wang, Zhugang; Huang, Lei

    2011-01-01

    MUC1 is an oncoprotein that is overexpressed in up to 90% of breast carcinomas. A previous in vitro study by our group demonstrated that the cytoplasmic domain of MUC1 (MUC1-CD), the minimal functional unit of MUC1, contributes to the malignant phenotype in cells by binding directly to β-catenin and protecting β-catenin from GSK3β-induced degradation. To understand the in vivo role of MUC1-CD in breast development, we generated a MUC1-CD transgenic mouse model under the control of the MMTV promoter in a C57BL/6J background, which is more resistant to breast tumor. We show that the expression of MUC1-CD in luminal epithelial cells of the mammary gland induced a hyperplasia phenotype characterized by the development of hyper-branching and extensive lobuloalveoli in transgenic mice. In addition to this hyperplasia, there was a marked increase in cellular proliferation in the mouse mammary gland. We further show that MUC1-CD induces nuclear localization of β-catenin, which is associated with a significant increase of β-catenin activity, as shown by the elevated expression of cyclin D1 and c-Myc in MMTV-MUC1-CD mice. Consistent with this finding, we observed that overexpression of MUC1-C is associated with β-catenin nuclear localization in tumor tissues and increased expression of Cyclin D1 and c-Myc in breast carcinoma specimens. Collectively, our data indicate a critical role for MUC1-CD in the development of mammary gland preneoplasia and tumorigenesis, suggesting MUC1-CD as a potential target for the diagnosis and chemoprevention of human breast cancer. PMID:21533058

  14. Wnt proteins are self-renewal factors for mammary stem cells and promote their long-term expansion in culture.

    PubMed

    Zeng, Yi Arial; Nusse, Roel

    2010-06-04

    Adult stem cells have the ability to self-renew and to generate specialized cells. Self-renewal is dependent on extrinsic niche factors but few of those signals have been identified. In addition, stem cells tend to differentiate in the absence of the proper signals and are therefore difficult to maintain in cell culture. The mammary gland provides an excellent system to study self-renewal signals, because the organ develops postnatally, arises from stem cells, and is readily generated from transplanted cells. We show here that adult mammary glands contain a Wnt-responsive cell population that is enriched for stem cells. In addition, stem cells mutant for the negative-feedback regulator Axin2 and therefore sensitized to Wnt signals have a competitive advantage in mammary gland reconstitution assays. In cell culture experiments, exposure to purified Wnt protein clonally expands mammary stem cells for many generations and maintains their ability to generate functional glands in transplantation assays. We conclude that Wnt proteins serve as rate-limiting self-renewal signals acting directly on mammary stem cells. Copyright 2010 Elsevier Inc. All rights reserved.

  15. Stromal fibroblasts derived from mammary gland of bovine with mastitis display inflammation-specific changes

    PubMed Central

    Chen, Qing; He, Guiliang; Zhang, Wenyao; Xu, Tong; Qi, Hongliang; Li, Jing; Zhang, Yong; Gao, Ming-Qing

    2016-01-01

    Fibroblasts are predominant components of mammary stromal cells and play crucial roles in the development and involution of bovine mammary gland; however, whether these cells contribute to mastitis has not been demonstrated. Thus, we have undertaken biological and molecular characterization of inflammation-associated fibroblasts (INFs) extracted from bovine mammary glands with clinical mastitis and normal fibroblasts (NFs) from slaughtered dairy cows because of fractured legs during lactation. The functional contributions of INFs to normal epithelial cells were also investigated by using an in vitro co-culture model. We present evidence that the INFs were activated fibroblasts and showed inflammation-related features. Moreover, INFs significantly inhibited the proliferation and β-casein secretion of epithelial cells, as well as upregulated the expression of tumor necrosis factor-α and interleukin-8 in epithelial cells. These findings indicate that functional alterations can occur in stromal fibroblasts within the bovine mammary gland during mastitis, demonstrating the importance of stromal fibroblasts in bovine mastitis and its treatment. PMID:27272504

  16. Stromal fibroblasts derived from mammary gland of bovine with mastitis display inflammation-specific changes.

    PubMed

    Chen, Qing; He, Guiliang; Zhang, Wenyao; Xu, Tong; Qi, Hongliang; Li, Jing; Zhang, Yong; Gao, Ming-Qing

    2016-06-07

    Fibroblasts are predominant components of mammary stromal cells and play crucial roles in the development and involution of bovine mammary gland; however, whether these cells contribute to mastitis has not been demonstrated. Thus, we have undertaken biological and molecular characterization of inflammation-associated fibroblasts (INFs) extracted from bovine mammary glands with clinical mastitis and normal fibroblasts (NFs) from slaughtered dairy cows because of fractured legs during lactation. The functional contributions of INFs to normal epithelial cells were also investigated by using an in vitro co-culture model. We present evidence that the INFs were activated fibroblasts and showed inflammation-related features. Moreover, INFs significantly inhibited the proliferation and β-casein secretion of epithelial cells, as well as upregulated the expression of tumor necrosis factor-α and interleukin-8 in epithelial cells. These findings indicate that functional alterations can occur in stromal fibroblasts within the bovine mammary gland during mastitis, demonstrating the importance of stromal fibroblasts in bovine mastitis and its treatment.

  17. Cloning and Characterizing Genes Involved in Monoterpene Induced Mammary Tumor Regression

    DTIC Science & Technology

    1998-05-01

    Monoterpene -induced/repressed genes were identified in regressing rat mammary carcinomas treated with dietary limonene using a newly developed method...termed subtractive display. The subtractive display screen identified 42 monoterpene -induced genes comprising 9 known genes and 33 unidentified genes...as well as 58 monoterpene -repressed genes comprising 1 known gene and 57 unidentified genes. Several of the identified differentially expressed

  18. The transcriptional co-factor RIP140 regulates mammary gland development by promoting the generation of key mitogenic signals.

    PubMed

    Nautiyal, Jaya; Steel, Jennifer H; Mane, Meritxell Rosell; Oduwole, Olayiwola; Poliandri, Ariel; Alexi, Xanthippi; Wood, Nicholas; Poutanen, Matti; Zwart, Wilbert; Stingl, John; Parker, Malcolm G

    2013-03-01

    Nuclear receptor interacting protein (Nrip1), also known as RIP140, is a co-regulator for nuclear receptors that plays an essential role in ovulation by regulating the expression of the epidermal growth factor-like family of growth factors. Although several studies indicate a role for RIP140 in breast cancer, its role in the development of the mammary gland is unclear. By using RIP140-null and RIP140 transgenic mice, we demonstrate that RIP140 is an essential factor for normal mammary gland development and that it functions by mediating oestrogen signalling. RIP140-null mice exhibit minimal ductal elongation with no side-branching, whereas RIP140-overexpressing mice show increased cell proliferation and ductal branching with age. Tissue recombination experiments demonstrate that RIP140 expression is required in both the mammary epithelial and stromal compartments for ductal elongation during puberty and that loss of RIP140 leads to a catastrophic loss of the mammary epithelium, whereas RIP140 overexpression augments the mammary basal cell population and shifts the progenitor/differentiated cell balance within the luminal cell compartment towards the progenitors. For the first time, we present a genome-wide global view of oestrogen receptor-α (ERα) binding events in the developing mammary gland, which unravels 881 ERα binding sites. Unbiased evaluation of several ERα binding sites for RIP140 co-occupancy reveals selectivity and demonstrates that RIP140 acts as a co-regulator with ERα to regulate directly the expression of amphiregulin (Areg), the progesterone receptor (Pgr) and signal transducer and activator of transcription 5a (Stat5a), factors that influence key mitogenic pathways that regulate normal mammary gland development.

  19. Mouse mammary tumor virus-like gene sequences are present in lung patient specimens

    PubMed Central

    2011-01-01

    Background Previous studies have reported on the presence of Murine Mammary Tumor Virus (MMTV)-like gene sequences in human cancer tissue specimens. Here, we search for MMTV-like gene sequences in lung diseases including carcinomas specimens from a Mexican population. This study was based on our previous study reporting that the INER51 lung cancer cell line, from a pleural effusion of a Mexican patient, contains MMTV-like env gene sequences. Results The MMTV-like env gene sequences have been detected in three out of 18 specimens studied, by PCR using a specific set of MMTV-like primers. The three identified MMTV-like gene sequences, which were assigned as INER6, HZ101, and HZ14, were 99%, 98%, and 97% homologous, respectively, as compared to GenBank sequence accession number AY161347. The INER6 and HZ-101 samples were isolated from lung cancer specimens, and the HZ-14 was isolated from an acute inflammatory lung infiltrate sample. Two of the env sequences exhibited disruption of the reading frame due to mutations. Conclusion In summary, we identified the presence of MMTV-like gene sequences in 2 out of 11 (18%) of the lung carcinomas and 1 out of 7 (14%) of acute inflamatory lung infiltrate specimens studied of a Mexican Population. PMID:21943279

  20. Poly (I:C) enhances the anti-tumor activity of canine parvovirus NS1 protein by inducing a potent anti-tumor immune response.

    PubMed

    Gupta, Shishir Kumar; Yadav, Pavan Kumar; Tiwari, A K; Gandham, Ravi Kumar; Sahoo, A P

    2016-09-01

    The canine parvovirus NS1 (CPV2.NS1) protein selectively induces apoptosis in the malignant cells. However, for an effective in vivo tumor treatment strategy, an oncolytic agent also needs to induce a potent anti-tumor immune response. In the present study, we used poly (I:C), a TLR3 ligand, as an adjuvant along with CPV2.NS1 to find out if the combination can enhance the oncolytic activity by inducing a potent anti-tumor immune response. The 4T1 mammary carcinoma cells were used to induce mammary tumor in Balb/c mice. The results suggested that poly (I:C), when given along with CPV2.NS1, not only significantly reduced the tumor growth but also augmented the immune response against tumor antigen(s) as indicated by the increase in blood CD4+ and CD8+ counts and infiltration of immune cells in the tumor tissue. Further, blood serum analysis of the cytokines revealed that Th1 cytokines (IFN-γ and IL-2) were significantly upregulated in the treatment group indicating activation of cell-mediated immune response. The present study reports the efficacy of CPV2.NS1 along with poly (I:C) not only in inhibiting the mammary tumor growth but also in generating an active anti-tumor immune response without any visible toxicity. The results of our study may help in developing CPV2.NS1 and poly (I: C) combination as a cancer therapeutic regime to treat various malignancies.

  1. Osthole promotes anti-tumor immune responses in tumor-bearing mice with hepatocellular carcinoma.

    PubMed

    Zhang, Lurong; Jiang, Guorong; Yao, Fei; Liang, Guoqiang; Wang, Fei; Xu, Heng; Wu, Yan; Yu, Xiao; Liu, Haiyan

    2015-06-01

    Osthole, a natural coumarin derivative, has been shown to have anti-tumor and anti-inflammatory activity. However, the effect of osthole on anti-tumor immune responses in tumor-bearing mice has not yet been reported. In the present study, osthole treatment did not affect the weight and the coefficient of thymus and spleen in tumor-bearing mice with hepatocellular carcinoma (HCC). However, osthole administration significantly elevated the proportion and number of the splenic CD8(+) T cells, the proportion of CD4(+) T and CD8(+) T cells in tumor tissues, and the levels of IL-2 and TNF-α in the serum of HCC tumor-bearing mice. Our results suggested that osthole could promote the activation of the tumor-infiltrating CD4(+) T and CD8(+) T cells, and elevate the proportion of CD4(+) and CD8(+) effector T cells. Osthole treatment also significantly decreased the proportion of CD4(+)CD25(+)Foxp3(+) regulatory T cells in the spleen. Taken together, osthole could enhance the T cell mediated anti-tumor immune responses in the tumor-bearing mice with HCC.

  2. Human Breast Cancer Cells Are Redirected to Mammary Epithelial Cells upon Interaction with the Regenerating Mammary Gland Microenvironment In-Vivo

    PubMed Central

    Bussard, Karen M.; Smith, Gilbert H.

    2012-01-01

    Breast cancer is the second leading cause of cancer deaths in the United States. At present, the etiology of breast cancer is unknown; however the possibility of a distinct cell of origin, i.e. a cancer stem cell, is a heavily investigated area of research. Influencing signals from the tissue niche are known to affect stem cells. Literature has shown that cancer cells lose their tumorigenic potential and display ‘normal’ behavior when placed into ‘normal’ ontogenic environments. Therefore, it may be the case that the tissue microenvironment is able to generate signals to redirect cancer cell fate. Previously, we showed that pluripotent human embryonal carcinoma cells could be redirected by the regenerating mammary gland microenvironment to contribute epithelial progeny for ‘normal’ gland development in-vivo. Here, we show that that human metastatic, non-metastatic, and metastasis-suppressed breast cancer cells proliferate and contribute to normal mammary gland development in-vivo without tumor formation. Immunochemistry for human-specific mitochondria, keratin 8 and 14, as well as human-specific milk proteins (alpha-lactalbumin, impregnated transplant hosts) confirmed the presence of human cell progeny. Features consistent with normal mammary gland development as seen in intact hosts (duct, lumen formation, development of secretory acini) were recapitulated in both primary and secondary outgrowths from chimeric implants. These results suggest the dominance of the tissue microenvironment over cancer cell fate. This work demonstrates that cultured human breast cancer cells (metastatic and non-metastatic) respond developmentally to signals generated by the mouse mammary gland microenvironment during gland regeneration in-vivo. PMID:23155468

  3. In vitro and in vivo antiproliferative activity of metformin on stem-like cells isolated from spontaneous canine mammary carcinomas: translational implications for human tumors.

    PubMed

    Barbieri, Federica; Thellung, Stefano; Ratto, Alessandra; Carra, Elisa; Marini, Valeria; Fucile, Carmen; Bajetto, Adriana; Pattarozzi, Alessandra; Würth, Roberto; Gatti, Monica; Campanella, Chiara; Vito, Guendalina; Mattioli, Francesca; Pagano, Aldo; Daga, Antonio; Ferrari, Angelo; Florio, Tullio

    2015-04-07

    Cancer stem cells (CSCs) are considered the cell subpopulation responsible for breast cancer (BC) initiation, growth, and relapse. CSCs are identified as self-renewing and tumor-initiating cells, conferring resistance to chemo- and radio-therapy to several neoplasias. Nowadays, th (about 10mM)e pharmacological targeting of CSCs is considered an ineludible therapeutic goal. The antidiabetic drug metformin was reported to suppress in vitro and in vivo CSC survival in different tumors and, in particular, in BC preclinical models. However, few studies are available on primary CSC cultures derived from human postsurgical BC samples, likely because of the limited amount of tissue available after surgery. In this context, comparative oncology is acquiring a relevant role in cancer research, allowing the analysis of larger samples from spontaneous pet tumors that represent optimal models for human cancer. Isolation of primary canine mammary carcinoma (CMC) cells and enrichment in stem-like cell was carried out from fresh tumor specimens by culturing cells in stem-permissive conditions. Phenotypic and functional characterization of CMC-derived stem cells was performed in vitro, by assessment of self-renewal, long-lasting proliferation, marker expression, and drug sensitivity, and in vivo, by tumorigenicity experiments. Corresponding cultures of differentiated CMC cells were used as internal reference. Metformin efficacy on CMC stem cell viability was analyzed both in vitro and in vivo. We identified a subpopulation of CMC cells showing human breast CSC features, including expression of specific markers (i.e. CD44, CXCR4), growth as mammospheres, and tumor-initiation in mice. These cells show resistance to doxorubicin but were highly sensitive to metformin in vitro. Finally, in vivo metformin administration significantly impaired CMC growth in NOD-SCID mice, associated with a significant depletion of CSCs. Similarly to the human counterpart, CMCs contain stem

  4. Deficiency of Kruppel-like factor KLF4 in mammary tumor cells inhibits tumor growth and pulmonary metastasis and is accompanied by compromised recruitment of myeloid-derived suppressor cells

    PubMed Central

    Yu, Fang; Shi, Ying; Wang, Junfeng; Li, Juan; Fan, Daping; Ai, Walden

    2013-01-01

    Increasing evidence indicates that myeloid-derived suppressor cells (MDSCs) negatively regulate immune responses during tumor progression, inflammation and infection. However, the underlying molecular mechanisms of their development and mobilization remain to be fully delineated. Kruppel-like factor KLF4 is a transcription factor that has an oncogenic function in breast cancer development, but its function in tumor microenvironment, a critical component for tumorigenesis, has not been examined. By using a spontaneously metastatic 4T1 breast cancer mouse model and an immunodeficient NOD/SCID mouse model, we demonstrated that KLF4 knockdown delayed tumor development and inhibited pulmonary metastasis, which was accompanied by decreased accumulation of MDSCs in bone marrow, spleens and primary tumors. Mechanistically, we found that KLF4 knockdown resulted in a significant decrease of circulating GM-CSF, an important cytokine for MDSC biology. Consistently, recombinant GM-CSF restored the frequency of MDSCs in purified bone marrow cells incubated with conditioned medium from KLF4 deficient cells. In addition, we identified CXCL5 as a critical mediator to enhance the expression and function of GM-CSF. Reduced CXCL5 expression by KLF4 knockdown in primary tumors and breast cancer cells was correlated with a decreased GM-CSF expression in our mouse models. Finally, we found that CXCL5/CXCR2 axis facilitated MDSC migration and that anti-GM-CSF antibodies neutralized CXCL5-induced accumulation of MDSCs. Taken together, our data suggest that KLF4 modulates maintenance of MDSCs in bone marrow by inducing GM-CSF production via CXCL5 and regulates recruitment of MDSCs into the primary tumors through the CXCL5/CXCR2 axis, both of which contribute to KLF4-mediated mammary tumor development. PMID:23737434

  5. Early impact of social isolation and breast tumor progression in mice.

    PubMed

    Madden, Kelley S; Szpunar, Mercedes J; Brown, Edward B

    2013-03-01

    Evidence from cancer patients and animal models of cancer indicates that exposure to psychosocial stress can promote tumor growth and metastasis, but the pathways underlying stress-induced cancer pathogenesis are not fully understood. Social isolation has been shown to promote tumor progression. We examined the impact of social isolation on breast cancer pathogenesis in adult female severe combined immunodeficiency (SCID) mice using the human breast cancer cell line, MDA-MB-231, a high β-adrenergic receptor (AR) expressing line. When group-adapted mice were transferred into single housing (social isolation) one week prior to MB-231 tumor cell injection into a mammary fat pad (orthotopic), no alterations in tumor growth or metastasis were detected compared to group-housed mice. When social isolation was delayed until tumors were palpable, tumor growth was transiently increased in singly-housed mice. To determine if sympathetic nervous system activation was associated with increased tumor growth, spleen and tumor norepinephrine (NE) was measured after social isolation, in conjunction with tumor-promoting macrophage populations. Three days after transfer to single housing, spleen weight was transiently increased in tumor-bearing and non-tumor-bearing mice in conjunction with reduced splenic NE concentration and elevated CD11b+Gr-1+ macrophages. At day 10 after social isolation, no changes in spleen CD11b+ populations or NE were detected in singly-housed mice. In the tumors, social isolation increased CD11b+Gr-1+, CD11b+Gr-1-, and F4/80+ macrophage populations, with no change in tumor NE. The results indicate that a psychological stressor, social isolation, elicits dynamic but transient effects on macrophage populations that may facilitate tumor growth. The transiency of the changes in peripheral NE suggest that homeostatic mechanisms may mitigate the impact of social isolation over time. Studies are underway to define the neuroendocrine mechanisms underlying the

  6. Molecular Action of a Potential Tumor Suppression in Mammary Carcinogenesis

    DTIC Science & Technology

    2006-05-01

    translocation in MDA-MB231 cells, as shown in Fig. 5D , indicating that Tid1 inhibits FVII -induced IL-8 production and cell migration by blocking NF-nB...tissue factor - FVIIa pathway modulates the migratory potential of cancer cells through IL-8 production (7). As Tid1 blocks the IL-8 production of...Introduction: ErbB family of growth factor receptors (ErbB1-4) are critically involved in the derivation of certain mammary cancers [1-3]. Among them

  7. Mouse mammary tumour virus (MMTV) and human breast cancer with neuroendocrine differentiation.

    PubMed

    Js, Lawson; Cc, Ngan; Wk, Glenn; Dd, Tran

    2017-01-01

    Mouse mammary tumour viruses (MMTVs) may have a role in a subset of human breast cancers. MMTV positive human breast cancers have similar histological characteristics to neuroendocrine breast cancers and to MMTV positive mouse mammary tumours. The purpose of this study was to investigate the expression of neuroendocrine biomarkers - synaptophysin and chromogranin, to determine if these histological characteristics and biomarker expression were due to the influences of MMTV. Immunohistochemistry analyses to identify synaptophysin and chromogranin were conducted on a series of human breast cancers in which (i) MMTV had been previously identified and had similar histological characteristics to MMTV positive mouse mammary tumours and (ii) MMTV positive mouse mammary tumours. The expression of synaptophysin and chromogranin in MMTV positive mouse mammary tumors were all positive (7 of 7 specimens - 100% positive). The expression of synaptophysin and chromogranin in MMTV positive human breast cancers was much less prevalent (3 of 22 - 14%). There was no expression of synaptophysin and chromogranin in the normal breast tissue control specimens. It is not possible to draw any firm conclusions from these observations. However, despite the small numbers of MMTV positive mouse mammary tumours in this study, the universal expression in these specimens of synaptophysin and chromogranin proteins is striking. This pattern of synaptophysin and chromogranin expression is very different from their expression in MMTV positive human breast cancers. The reason for these differences is not known. The high prevalence of positive expression of synaptophysin and chromogranin in MMTV positive mouse mammary tumours and low expression of synaptophysin and chromogranin in MMTV positive human breast cancers indicates that MMTV is not usually associated with neuroendocrine human breast cancers.

  8. Beneficial bacteria stimulate host immune cells to counteract dietary and genetic predisposition to mammary cancer in mice.

    PubMed

    Lakritz, Jessica R; Poutahidis, Theofilos; Levkovich, Tatiana; Varian, Bernard J; Ibrahim, Yassin M; Chatzigiagkos, Antonis; Mirabal, Sheyla; Alm, Eric J; Erdman, Susan E

    2014-08-01

    Recent studies suggest health benefits including protection from cancer after eating fermented foods such as probiotic yogurt, though the mechanisms are not well understood. Here we tested mechanistic hypotheses using two different animal models: the first model studied development of mammary cancer when eating a Westernized diet, and the second studied animals with a genetic predilection to breast cancer. For the first model, outbred Swiss mice were fed a Westernized chow putting them at increased risk for development of mammary tumors. In this Westernized diet model, mammary carcinogenesis was inhibited by routine exposure to Lactobacillus reuteri ATCC-PTA-6475 in drinking water. The second model was FVB strain erbB2 (HER2) mutant mice, genetically susceptible to mammary tumors mimicking breast cancers in humans, being fed a regular (non-Westernized) chow diet. We found that oral supplement with these purified lactic acid bacteria alone was sufficient to inhibit features of mammary neoplasia in both models. The protective mechanism was determined to be microbially-triggered CD4+CD25+ lymphocytes. When isolated and transplanted into other subjects, these L. reuteri-stimulated lymphocytes were sufficient to convey transplantable anti-cancer protection in the cell recipient animals. These data demonstrate that host immune responses to environmental microbes significantly impact and inhibit cancer progression in distal tissues such as mammary glands, even in genetically susceptible mice. This leads us to conclude that consuming fermentative microbes such as L. reuteri may offer a tractable public health approach to help counteract the accumulated dietary and genetic carcinogenic events integral in the Westernized diet and lifestyle. © 2013 The Authors. Published by Wiley Periodicals, Inc. on behalf of UICC.

  9. Lauric Acid Stimulates Mammary Gland Development of Pubertal Mice through Activation of GPR84 and PI3K/Akt Signaling Pathway.

    PubMed

    Meng, Yingying; Zhang, Jing; Zhang, Fenglin; Ai, Wei; Zhu, Xiaotong; Shu, Gang; Wang, Lina; Gao, Ping; Xi, Qianyun; Zhang, Yongliang; Liang, Xingwei; Jiang, Qingyan; Wang, Songbo

    2017-01-11

    It has been demonstrated that dietary fat affects pubertal mammary gland development. However, the role of lauric acid (LA) in this process remains unclear. Thus, this study aimed to investigate the effects of LA on mammary gland development in pubertal mice and to explore the underlying mechanism. In vitro, 100 μM LA significantly promoted proliferation of mouse mammary epithelial cell line HC11 by regulating expression of proliferative markers (cyclin D1/3, p21, PCNA). Meanwhile, LA activated the G protein-coupled receptor 84 (GPR84) and PI3K/Akt signaling pathway. In agreement, dietary 1% LA enhanced mammary duct development, increased the expression of GPR84 and cyclin D1, and activated PI3K/Akt in mammary gland of pubertal mice. Furthermore, knockdown of GPR84 or inhibition of PI3K/Akt totally abolished the promotion of HC11 proliferation induced by LA. These results showed that LA stimulated mammary gland development of pubertal mice through activation of GPR84 and PI3K/Akt signaling pathway.

  10. Xanthosine administration does not affect the proportion of epithelial stem cells in bovine mammary tissue, but has a latent negative effect on cell proliferation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rauner, Gat, E-mail: gat.rauner@mail.huji.ac.il; The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem; Barash, Itamar, E-mail: itamar.barash@mail.huji.ac.il

    The challenge in manipulating the proportion of somatic stem cells lies in having to override tissue homeostasis. Xanthosine infusion via the teat canal has been reported to augment the number of label-retaining cells in the mammary gland of 3-month-old bovine calves. To further delineate xanthosine's effect on defined stem cells in the mammary gland of heifers—which are candidates for increased prospective milk production following such manipulation—bovine mammary parenchymal tissue was transplanted and integrated into the cleared mammary fat pad of immunodeficient mice. Xanthosine administration for 14 days did not affect the number of label-retaining cells after 10- and 11-week chases.more » No change in stem cell proportion, analyzed according to CD49f and CD24 expression, was noted. Clone formation and propagation rate of cultured cells, as well as expression of stem cell markers, were also unaffected. In contrast, a latent 50% decrease in bovine mammary cell proliferation rate was observed 11 weeks after xanthosine administration. Tumor development in mice was also limited by xanthosine administration. These effects may have resulted from an initial decrease in expression of the rate-limiting enzyme in guanine synthesis, IMPDH. The data indicate that caution should be exerted when considering xanthosine for stem cell manipulation. - Highlights: • Novel “bovinized“ mouse model for exogenous effects on bovine mammary gland. • Xanthosine did not affect stem cell number/function in bovine mammary gland. • Xanthosine caused an immediate decrease in IMPDH expression in bovine mammary gland. • Xanthosine had latent negative effect on cell proliferation in bovine mammary gland. • Xanthosine administration limited mammary tumor growth.« less

  11. MAMMARY GLAND ADENOCARCINOMA IN A MALE BORNEAN ORANGUTAN (PONGO PYGMAEUS).

    PubMed

    Carpenter, Nancy A; Crook, Erika K

    2017-03-01

    An adult male Bornean orangutan ( Pongo pygmaeus ) was diagnosed with invasive, poorly differentiated grade 9/9 mammary gland adenocarcinoma from a subcutaneous mass that was surgically removed during a routine preventative health examination. The tumor was tested for estrogen and progesterone receptors, human epidermal growth factor receptor 2 (HER2), and HER2 fluorescence in situ hybridization (HER2 FISH). Whole blood was tested for breast cancer 1 (BRCA1) and breast cancer 2 (BRCA2) genes. The orangutan was treated orally with two common human breast cancer drugs; tamoxifen and anastrozole. The orangutan lived for 4.5 yr postdetection, dying from an unrelated cause. This is the first reported case of mammary gland adenocarcinoma in a male great ape.

  12. Activation-induced cytidine deaminase (AID) is necessary for the epithelial–mesenchymal transition in mammary epithelial cells

    PubMed Central

    Muñoz, Denise P.; Lee, Elbert L.; Takayama, Sachiko; Coppé, Jean-Philippe; Heo, Seok-Jin; Boffelli, Dario; Di Noia, Javier M.; Martin, David I. K.

    2013-01-01

    Activation-induced cytidine deaminase (AID), which functions in antibody diversification, is also expressed in a variety of germ and somatic cells. Evidence that AID promotes DNA demethylation in epigenetic reprogramming phenomena, and that it is induced by inflammatory signals, led us to investigate its role in the epithelial–mesenchymal transition (EMT), a critical process in normal morphogenesis and tumor metastasis. We find that expression of AID is induced by inflammatory signals that induce the EMT in nontransformed mammary epithelial cells and in ZR75.1 breast cancer cells. shRNA–mediated knockdown of AID blocks induction of the EMT and prevents cells from acquiring invasive properties. Knockdown of AID suppresses expression of several key EMT transcriptional regulators and is associated with increased methylation of CpG islands proximal to the promoters of these genes; furthermore, the DNA demethylating agent 5 aza-2'deoxycytidine (5-Aza-dC) antagonizes the effects of AID knockdown on the expression of EMT factors. We conclude that AID is necessary for the EMT in this breast cancer cell model and in nontransformed mammary epithelial cells. Our results suggest that AID may act near the apex of a hierarchy of regulatory steps that drive the EMT, and are consistent with this effect being mediated by cytosine demethylation. This evidence links our findings to other reports of a role for AID in epigenetic reprogramming and control of gene expression. PMID:23882083

  13. The open reading frames in the 3' long terminal repeats of several mouse mammary tumor virus integrants encode V beta 3-specific superantigens

    PubMed Central

    1992-01-01

    Mice expressing the minor lymphocyte stimulation antigens, Mls-1a, -2a, or -3a, singly on the B10.BR background have been generated. Mls phenotypes correlate with the integration of mouse mammary tumor viruses (MTV) in the mouse genome. The open reading frames within the 3' long terminal repeats of the integrated MTVs 1, 3, 6, and 13 encode V beta 3-specific superantigens. Sequence data for these viral superantigens is presented, indicating that it is the COOH-terminal portion of the viral superantigen that interacts with the T cell receptor V beta element. PMID:1309854

  14. FOXA1 is an essential determinant of ERα expression and mammary ductal morphogenesis

    PubMed Central

    Bernardo, Gina M.; Lozada, Kristen L.; Miedler, John D.; Harburg, Gwyndolen; Hewitt, Sylvia C.; Mosley, Jonathan D.; Godwin, Andrew K.; Korach, Kenneth S.; Visvader, Jane E.; Kaestner, Klaus H.; Abdul-Karim, Fadi W.; Montano, Monica M.; Keri, Ruth A.

    2010-01-01

    FOXA1, estrogen receptor α (ERα) and GATA3 independently predict favorable outcome in breast cancer patients, and their expression correlates with a differentiated, luminal tumor subtype. As transcription factors, each functions in the morphogenesis of various organs, with ERα and GATA3 being established regulators of mammary gland development. Interdependency between these three factors in breast cancer and normal mammary development has been suggested, but the specific role for FOXA1 is not known. Herein, we report that Foxa1 deficiency causes a defect in hormone-induced mammary ductal invasion associated with a loss of terminal end bud formation and ERα expression. By contrast, Foxa1 null glands maintain GATA3 expression. Unlike ERα and GATA3 deficiency, Foxa1 null glands form milk-producing alveoli, indicating that the defect is restricted to expansion of the ductal epithelium, further emphasizing the novel role for FOXA1 in mammary morphogenesis. Using breast cancer cell lines, we also demonstrate that FOXA1 regulates ERα expression, but not GATA3. These data reveal that FOXA1 is necessary for hormonal responsiveness in the developing mammary gland and ERα-positive breast cancers, at least in part, through its control of ERα expression. PMID:20501593

  15. Nitric Oxide in Mammary Tumor Progression

    DTIC Science & Technology

    1998-07-01

    and endothelial cells, and poor cent work utilizing live videomicroscopy has dem- in human macrophages [24]. onstrated that even after successful...AC: Steps in tumor metastasis: New tion. concepts in intravital videomicroscopy . Cancer Met Rev 14: 2. How universal is the phenomenon of NO-medi- 1279... videomicroscopy . It is shown phokine (IL-2) activated killer (LAK) cells can in- that endogenous NO (derived from tumor vascular flict direct damage to

  16. Mesenchymal Stem Cells in the Bone Marrow Provide a Supportive Niche for Early Disseminated Breast Tumor Initiating Cells

    DTIC Science & Technology

    2013-06-01

    transplanted into the mammary fat pad of NUDE mice to establish tumorigenicity in vivo. At 3 months post- injection , micrometastases to the lung, liver...E-cadherin, nuclear β catenin and fibronectin but were negative for ERα and vimentin. The injection of bone marrow isolated from mice previously... injected with tumorspheres into the mammary fat pad, resulted in large tumor formation in the mammary fat pad 2 months post- injection . The tumors

  17. STAT6 Deletion Enhances Immunity to Mammary Carcinoma

    DTIC Science & Technology

    2005-06-01

    probably oxygen intermediates, such as hydrogen peroxide and nitric oxide, not involved in the IFN--y effect on the 4TI mammary carcinoma, which are...mechanistic explanation for the improved tumor immunity is not clear. The purpose of this project is to determine the potency of the Stat6 effect for enhancing...Staining with DCFDA, which measures hydrogen peroxide , hydroxyl radical, by BALB/c, but not CD 1-V, MSC is arginase-dependent. peroxynitrile, and

  18. Lung tumor promotion by chromium-containing welding particulate matter in a mouse model.

    PubMed

    Zeidler-Erdely, Patti C; Meighan, Terence G; Erdely, Aaron; Battelli, Lori A; Kashon, Michael L; Keane, Michael; Antonini, James M

    2013-09-05

    Epidemiology suggests that occupational exposure to welding particulate matter (PM) may increase lung cancer risk. However, animal studies are lacking to conclusively link welding with an increased risk. PM derived from stainless steel (SS) welding contains carcinogenic metals such as hexavalent chromium and nickel. We hypothesized that welding PM may act as a tumor promoter and increase lung tumor multiplicity in vivo. Therefore, the capacity of chromium-containing gas metal arc (GMA)-SS welding PM to promote lung tumors was evaluated using a two-stage (initiation-promotion) model in lung tumor susceptible A/J mice. Male mice (n = 28-30/group) were treated either with the initiator 3-methylcholanthrene (MCA;10 μg/g; IP) or vehicle (corn oil) followed by 5 weekly pharyngeal aspirations of GMA-SS (340 or 680 μg/exposure) or PBS. Lung tumors were enumerated at 30 weeks post-initiation. MCA initiation followed by GMA-SS welding PM exposure promoted tumor multiplicity in both the low (12.1 ± 1.5 tumors/mouse) and high (14.0 ± 1.8 tumors/mouse) exposure groups significantly above MCA/sham (4.77 ± 0.7 tumors/mouse; p = 0.0001). Multiplicity was also highly significant (p < 0.004) across all individual lung regions of GMA-SS-exposed mice. No exposure effects were found in the corn oil groups at 30 weeks. Histopathology confirmed the gross findings and revealed increased inflammation and a greater number of malignant lesions in the MCA/welding PM-exposed groups. GMA-SS welding PM acts as a lung tumor promoter in vivo. Thus, this study provides animal evidence to support the epidemiological data that show welders have an increased lung cancer risk.

  19. An interferon signature identified by RNA-sequencing of mammary tissues varies across the estrous cycle and is predictive of metastasis-free survival

    DOE PAGES

    Snijders, Antoine M.; Langley, Sasha; Mao, Jian-Hua; ...

    2014-06-30

    The concept that a breast cancer patient's menstrual stage at the time of tumor surgery influences risk of metastases remains controversial. The scarcity of comprehensive molecular studies of menstrual stage-dependent fluctuations in the breast provides little insight. To gain a deeper understanding of the biological changes in mammary tissue and blood during the menstrual cycle and to determine the influence of environmental exposures, such as low-dose ionizing radiation (LDIR), we used the mouse to characterize estrous-cycle variations in mammary gene transcripts by RNA-sequencing, peripheral white blood cell (WBC) counts and plasma cytokine levels. We identified an estrous-variable and hormone-dependent genemore » cluster enriched for Type-1 interferon genes. Cox regression identified a 117-gene signature of interferon-associated genes, which correlated with lower frequencies of metastasis in breast cancer patients. LDIR (10cGy) exposure had no detectable effect on mammary transcripts. However, peripheral WBC counts varied across the estrous cycle and LDIR exposure reduced lymphocyte counts and cytokine levels in tumor-susceptible mice. Our finding of variations in mammary Type-1 interferon and immune functions across the estrous cycle provides a mechanism by which timing of breast tumor surgery during the menstrual cycle may have clinical relevance to a patient's risk for distant metastases.« less

  20. An interferon signature identified by RNA-sequencing of mammary tissues varies across the estrous cycle and is predictive of metastasis-free survival

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Snijders, Antoine M.; Langley, Sasha; Mao, Jian-Hua

    The concept that a breast cancer patient's menstrual stage at the time of tumor surgery influences risk of metastases remains controversial. The scarcity of comprehensive molecular studies of menstrual stage-dependent fluctuations in the breast provides little insight. To gain a deeper understanding of the biological changes in mammary tissue and blood during the menstrual cycle and to determine the influence of environmental exposures, such as low-dose ionizing radiation (LDIR), we used the mouse to characterize estrous-cycle variations in mammary gene transcripts by RNA-sequencing, peripheral white blood cell (WBC) counts and plasma cytokine levels. We identified an estrous-variable and hormone-dependent genemore » cluster enriched for Type-1 interferon genes. Cox regression identified a 117-gene signature of interferon-associated genes, which correlated with lower frequencies of metastasis in breast cancer patients. LDIR (10cGy) exposure had no detectable effect on mammary transcripts. However, peripheral WBC counts varied across the estrous cycle and LDIR exposure reduced lymphocyte counts and cytokine levels in tumor-susceptible mice. Our finding of variations in mammary Type-1 interferon and immune functions across the estrous cycle provides a mechanism by which timing of breast tumor surgery during the menstrual cycle may have clinical relevance to a patient's risk for distant metastases.« less

  1. Insulin-like growth factor (IGF)-I obliterates the pregnancy-associated protection against mammary carcinogenesis in rats: evidence that IGF-I enhances cancer progression through estrogen receptor-α activation via the mitogen-activated protein kinase pathway

    PubMed Central

    Thordarson, Gudmundur; Slusher, Nicole; Leong, Harriet; Ochoa, Dafne; Rajkumar, Lakshmanaswamy; Guzman, Raphael; Nandi, Satyabrata; Talamantes, Frank

    2004-01-01

    Introduction Pregnancy protects against breast cancer development in humans and rats. Parous rats have persistently reduced circulating levels of growth hormone, which may affect the activity of the growth hormone/insulin-like growth factor (IGF)-I axis. We investigated the effects of IGF-I on parity-associated protection against mammary cancer. Methods Three groups of rats were evaluated in the present study: IGF-I-treated parous rats; parous rats that did not receive IGF-I treatment; and age-matched virgin animals, which also did not receive IGF-I treatment. Approximately 60 days after N-methyl-N-nitrosourea injection, IGF-I treatment was discontinued and all of the animal groups were implanted with a silastic capsule containing 17β-estradiol and progesterone. The 17β-estradiol plus progesterone treatment continued for 135 days, after which the animals were killed. Results IGF-I treatment of parous rats increased mammary tumor incidence to 83%, as compared with 16% in parous rats treated with 17β-estradiol plus progesterone only. Tumor incidence and average number of tumors per animal did not differ between IGF-I-treated parous rats and age-matched virgin rats. At the time of N-methyl-N-nitrosourea exposure, DNA content was lowest but the α-lactalbumin concentration highest in the mammary glands of untreated parous rats in comparison with age-matched virgin and IGF-I-treated parous rats. The protein levels of estrogen receptor-α in the mammary gland was significantly higher in the age-matched virgin animals than in untreated parous and IGF-I-treated parous rats. Phosphorylation (activation) of the extracellular signal-regulated kinase-1/2 (ERK1/2) and expression of the progesterone receptor were both increased in IGF-I-treated parous rats, as compared with those in untreated parous and age-matched virgin rats. Expressions of cyclin D1 and transforming growth factor-β3 in the mammary gland were lower in the age-matched virgin rats than in the untreated

  2. Pleiotrophin (PTN) Expression and Function and in the Mouse Mammary Gland and Mammary Epithelial Cells

    PubMed Central

    Rosenfield, Sonia M.; Bowden, Emma T.; Cohen-Missner, Shani; Gibby, Krissa A.; Ory, Virginie; Henke, Ralf T.; Riegel, Anna T.; Wellstein, Anton

    2012-01-01

    Expression of the heparin-binding growth factor, pleiotrophin (PTN) in the mammary gland has been reported but its function during mammary gland development is not known. We examined the expression of PTN and its receptor ALK (Anaplastic Lymphoma Kinase) at various stages of mouse mammary gland development and found that their expression in epithelial cells is regulated in parallel during pregnancy. A 30-fold downregulation of PTN mRNA expression was observed during mid-pregnancy when the mammary gland undergoes lobular-alveolar differentiation. After weaning of pups, PTN expression was restored although baseline expression of PTN was reduced significantly in mammary glands of mice that had undergone multiple pregnancies. We found PTN expressed in epithelial cells of the mammary gland and thus used a monoclonal anti-PTN blocking antibody to elucidate its function in cultured mammary epithelial cells (MECs) as well as during gland development. Real-time impedance monitoring of MECs growth, migration and invasion during anti-PTN blocking antibody treatment showed that MECs motility and invasion but not proliferation depend on the activity of endogenous PTN. Increased number of mammospheres with laminin deposition after anti-PTN blocking antibody treatment of MECs in 3D culture and expression of progenitor markers suggest that the endogenously expressed PTN inhibits the expansion and differentiation of epithelial progenitor cells by disrupting cell-matrix adhesion. In vivo, PTN activity was found to inhibit ductal outgrowth and branching via the inhibition of phospho ERK1/2 signaling in the mammary epithelial cells. We conclude that PTN delays the maturation of the mammary gland by maintaining mammary epithelial cells in a progenitor phenotype and by inhibiting their differentiation during mammary gland development. PMID:23077670

  3. Varying Susceptibility of the Female Mammary Gland to In Utero Windows of BPA Exposure.

    PubMed

    Hindman, Andrea R; Mo, Xiaokui Molly; Helber, Hannah L; Kovalchin, Claire E; Ravichandran, Nanditha; Murphy, Alina R; Fagan, Abigail M; St John, Pamela M; Burd, Craig J

    2017-10-01

    In utero exposure to the endocrine disrupting compound bisphenol A (BPA) is known to disrupt mammary gland development and increase tumor susceptibility in rodents. It is unclear whether different periods of in utero development might be more susceptible to BPA exposure. We exposed pregnant CD-1 mice to BPA at different times during gestation that correspond to specific milestones of in utero mammary gland development. The mammary glands of early-life and adult female mice, exposed in utero to BPA, were morphologically and molecularly (estrogen receptor-α and Ki67) evaluated for developmental abnormalities. We found that BPA treatment occurring before mammary bud invasion into the mesenchyme [embryonic day (E)12.5] incompletely resulted in the measured phenotypes of mammary gland defects. Exposing mice up to the point at which the epithelium extends into the precursor fat pad (E16.5) resulted in a nearly complete BPA phenotype and exposure during epithelial extension (E15.5 to E18.5) resulted in a partial phenotype. Furthermore, the relative differences in phenotypes between exposure windows highlight the substantial correlations between early-life molecular changes (estrogen receptor-α and Ki67) in the stroma and the epithelial elongation defects in mammary development. These data further implicate BPA action in the stroma as a critical mediator of epithelial phenotypes. Copyright © 2017 Endocrine Society.

  4. Chemotherapeutic tumor microparticles combining low-dose irradiation reprogram tumor-promoting macrophages through a tumor-repopulating cell-curtailing pathway

    PubMed Central

    Sun, Yanling; Zheng, Zu'an; Zhang, Huafeng; Yu, Yuandong; Ma, Jingwei; Tang, Ke; Xu, Pingwei; Ji, Tiantian; Liang, Xiaoyu; Chen, Degao; Jin, Xun; Zhang, Tianzhen; Long, Zhixiong; Liu, Yuying; Huang, Bo

    2017-01-01

    ABSTRACT Stem cell-like tumor-repopulating cells (TRCs) have a critical role in establishing a tumor immunosuppressive microenvironment. However, means to enhance antitumor immunity by disrupting TRCs are absent. Our previous studies have shown that tumor cell-derived microparticles (T-MPs) preferentially abrogate TRCs by delivering antitumor drugs into nuclei of TRCs. Here, we show that low dose irradiation (LDI) enhances the effect of cisplatin-packaging T-MPs (Cis-MPs) on TRCs, leading to inhibiting tumor growth in different tumor models. This antitumor effect is not due to the direct killing of tumor cells but is T cell-dependent and relies on macrophages for their efficacy. The underlying mechanism is involved in therapeutic reprograming macrophages from tumor-promotion to tumor-inhibition by disrupting TRCs and curtailing their vicious education on macrophages. These findings provide a novel strategy to reset macrophage polarization and confer their function more like M1 than M2 types with highly promising potential clinical applications. PMID:28680743

  5. Progesterone regulation of stem and progenitor cells in normal and malignant breast

    PubMed Central

    Axlund, Sunshine Daddario; Sartorius, Carol A.

    2011-01-01

    Progesterone plays an important, if not controversial, role in mammary epithelial cell proliferation and differentiation. Evidence supports that progesterone promotes rodent mammary carcinogenesis under some conditions, progesterone receptors (PR) are necessary for murine mammary gland tumorigenesis, and exogenous progestin use in post-menopausal women increases breast cancer risk. Thus, the progesterone/PR signaling axis can promote mammary tumorigenesis, albeit in a context dependent manner. A mechanistic basis for the tumor promoting actions of progesterone has thus far remained unknown. Recent studies, however, have identified a novel role for progesterone in controlling the number and function of stem and progenitor cell populations in the normal human and mouse mammary glands, and in human breast cancers. These discoveries promise to reshape our perception of progesterone function in the mammary gland, and have spawned new hypotheses for how progestins may increase the risk of breast cancer. Here we review studies on progesterone regulation of mammary stem cells in normal and malignant tissue, and their implications for breast cancer risk, tumorigenesis, and tumor behavior. PMID:21945473

  6. Mammary tumors and serum hormones in the bitch treated with medroxyprogesterone acetate or progesterone for four years

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frank, D.W.; Kirton, K.T.; Murchison, T.E.

    After four years of a long term contraceptive steroid safety study, the incidence and the histologic type of mammary dysplasia produced is similar in beagles treated with medroxyprogesterone acetate (medroxyprogesterone) or progesterone. Serum insulin, thyroid stimulating hormone (TSH), triiodothyronine, growth hormone, prolactin, 17..beta..-estradiol, progesterone, and cortisol were determined by radioimmunoassay on samples collected after 45 months of treatment. Serum growth hormone and insulin concentrations were elevated in a dose related manner in both treatment groups. Triiodothyronine, cortisol, and estradiol-17..beta.. (medroxyprogesterone only) were lowered. TSH and prolactin concentrations were not changed. Pituitary--gonadal hormone interaction in the pathogenesis of mammary neoplasia ofmore » the dog is discussed. Prolonged treatment of the beagle with massive doses of progesterone or medroxyprogesterone results in a dose related incidence of mammary modules.« less

  7. Stromal CCR6 drives tumor growth in a murine transplantable colon cancer through recruitment of tumor-promoting macrophages

    PubMed Central

    Nandi, Bisweswar; Shapiro, Mia; Samur, Mehmet K.; Pai, Christine; Frank, Natasha Y.; Yoon, Charles; Prabhala, Rao H.; Munshi, Nikhil C.; Gold, Jason S.

    2016-01-01

    ABSTRACT Interactions between the inflammatory chemokine CCL20 and its receptor CCR6 have been implicated in promoting colon cancer; however, the mechanisms behind this effect are poorly understood. We have previously demonstrated that deficiency of CCR6 is associated with decreased tumor macrophage accumulation in a model of sporadic intestinal tumorigenesis. In this study, we aimed to determine the role of stromal CCR6 expression in a murine syngeneic transplantable colon cancer model. We show that deficiency of host CCR6 is associated with decreased growth of syngeneic CCR6-expressing colon cancers. Colon cancers adoptively transplanted into CCR6-deficient mice have decreased tumor-associated macrophages without alterations in the number of monocytes in blood or bone marrow. CCL20, the unique ligand for CCR6, promotes migration of monocytes in vitro and promotes accumulation of macrophages in vivo. Depletion of tumor-associated macrophages decreases the growth of tumors in the transplantable tumor model. Macrophages infiltrating the colon cancers in this model secrete the inflammatory mediators CCL2, IL-1α, IL-6 and TNFα. Ccl2, Il1α and Il6 are consequently downregulated in tumors from CCR6-deficient mice. CCL2, IL-1α and IL-6 also promote proliferation of colon cancer cells, linking the decreased macrophage migration into tumors mediated by CCL20–CCR6 interactions to the delay in tumor growth in CCR6-deficient hosts. The relevance of these findings in human colon cancer is demonstrated through correlation of CCR6 expression with that of the macrophage marker CD163 as well as that of CCL2, IL1α and TNFα. Our findings support the exploration of targeting the CCL20–CCR6 pathway for the treatment of colon cancer. PMID:27622061

  8. Lung tumor promotion by chromium-containing welding particulate matter in a mouse model

    PubMed Central

    2013-01-01

    Background Epidemiology suggests that occupational exposure to welding particulate matter (PM) may increase lung cancer risk. However, animal studies are lacking to conclusively link welding with an increased risk. PM derived from stainless steel (SS) welding contains carcinogenic metals such as hexavalent chromium and nickel. We hypothesized that welding PM may act as a tumor promoter and increase lung tumor multiplicity in vivo. Therefore, the capacity of chromium-containing gas metal arc (GMA)-SS welding PM to promote lung tumors was evaluated using a two-stage (initiation-promotion) model in lung tumor susceptible A/J mice. Methods Male mice (n = 28-30/group) were treated either with the initiator 3-methylcholanthrene (MCA;10 μg/g; IP) or vehicle (corn oil) followed by 5 weekly pharyngeal aspirations of GMA-SS (340 or 680 μg/exposure) or PBS. Lung tumors were enumerated at 30 weeks post-initiation. Results MCA initiation followed by GMA-SS welding PM exposure promoted tumor multiplicity in both the low (12.1 ± 1.5 tumors/mouse) and high (14.0 ± 1.8 tumors/mouse) exposure groups significantly above MCA/sham (4.77 ± 0.7 tumors/mouse; p = 0.0001). Multiplicity was also highly significant (p < 0.004) across all individual lung regions of GMA-SS-exposed mice. No exposure effects were found in the corn oil groups at 30 weeks. Histopathology confirmed the gross findings and revealed increased inflammation and a greater number of malignant lesions in the MCA/welding PM-exposed groups. Conclusions GMA-SS welding PM acts as a lung tumor promoter in vivo. Thus, this study provides animal evidence to support the epidemiological data that show welders have an increased lung cancer risk. PMID:24107379

  9. Tumor cell-intrinsic PD-L1 promotes tumor-initiating cell generation and functions in melanoma and ovarian cancer

    PubMed Central

    Gupta, Harshita B; Clark, Curtis A; Yuan, Bin; Sareddy, Gangadhara; Pandeswara, Srilakshmi; Padron, Alvaro S; Hurez, Vincent; Conejo-Garcia, José; Vadlamudi, Ratna; Li, Rong; Curiel, Tyler J

    2016-01-01

    As tumor PD-L1 provides signals to anti-tumor PD-1+ T cells that blunt their functions, αPD-1 and αPD-L1 antibodies have been developed as anti-cancer immunotherapies based on interrupting this signaling axis. However, tumor cell-intrinsic PD-L1 signals also regulate immune-independent tumor cell proliferation and mTOR signals, among other important effects. Tumor-initiating cells (TICs) generate carcinomas, resist treatments and promote relapse. We show here that in murine B16 melanoma and ID8agg ovarian carcinoma cells, TICs express more PD-L1 versus non-TICs. Silencing PD-L1 in B16 and ID8agg cells by shRNA (‘PD-L1lo’) reduced TIC numbers, the canonical TIC genes nanog and pou5f1 (oct4), and functions as assessed by tumorosphere development, immune-dependent and immune-independent tumorigenesis, and serial transplantability in vivo. Strikingly, tumor PD-L1 sensitized TIC to interferon-γ and rapamycin in vitro. Cell-intrinsic PD-L1 similarly drove functional TIC generation, canonical TIC gene expression and sensitivity to interferon-γ and rapamycin in human ES2 ovarian cancer cells. Thus, tumor-intrinsic PD-L1 signals promote TIC generation and virulence, possibly by promoting canonical TIC gene expression, suggesting that PD-L1 has novel signaling effects on cancer pathogenesis and treatment responses. PMID:28798885

  10. The Predominant Proteins that React to the MC-20 Estrogen Receptor Alpha Antibody Differ in Molecular Weight between the Mammary Gland and Uterus in the Mouse and Rat.

    PubMed

    Bollig-Fischer, Aliccia; Thakur, Archana; Sun, Yuan; Wu, Jiusheng; Liao, D Joshua

    2012-03-01

    There are many estrogen receptor α (ERα) antibodies available but few of them target a rodent ERα. Using the MC-20 antibody raised against the C-terminus of mouse ERα, we show in this communication that in the mammary gland of female mice and rats, the wild type (wt) ERα was detected on immunoblots as a dominant protein only during lactation, and the protein was lactating specific as it migrated slightly faster than the 67-kD wt ERα in the uterus, likely due to a different phosphorylation status. In contrast, in the nulliparous, pregnant, involuting and involuted mammary glands, the dominant protein recognized by MC-20 was about 61-kD, which is dubbed herein as "MC-20 reactive protein" or MC20RP in abbreviation as its identity is unknown. Our results showed that it was not derived from proteolysis or de-phosphorylation of the 67-kD ERα and was unlikely to be translated from an ERα mRNA variant. Ovariectomy decreased the lactating specific wt ERα but increased the 61-kD MC20RP in the mammary tumors from MMTV-c-myc transgenic mice but these two proteins in the uterus were unaffected. The 61-kD MC20RP was decreased in the mammary tumors, compared with proliferating mammary glands, in estrogen-treated ACI rats. These results suggest that while the lactating specific wt ERα alone or together with the MC20RP may sustain lactation, the MC20RP may support proliferation of the mammary gland and some mammary tumors.

  11. Lineage-Restricted Mammary Stem Cells Sustain the Development, Homeostasis, and Regeneration of the Estrogen Receptor Positive Lineage.

    PubMed

    Van Keymeulen, Alexandra; Fioramonti, Marco; Centonze, Alessia; Bouvencourt, Gaëlle; Achouri, Younes; Blanpain, Cédric

    2017-08-15

    The mammary gland (MG) is composed of different cell lineages, including the basal and the luminal cells (LCs) that are maintained by distinct stem cell (SC) populations. LCs can be subdivided into estrogen receptor (ER) + and ER - cells. LCs act as the cancer cell of origin in different types of mammary tumors. It remains unclear whether the heterogeneity found in luminal-derived mammary tumors arises from a pre-existing heterogeneity within LCs. To investigate LC heterogeneity, we used lineage tracing to assess whether the ER + lineage is maintained by multipotent SCs or by lineage-restricted SCs. To this end, we generated doxycycline-inducible ER-rtTA mice that allowed us to perform genetic lineage tracing of ER + LCs and study their fate and long-term maintenance. Our results show that ER + cells are maintained by lineage-restricted SCs that exclusively contribute to the expansion of the ER + lineage during puberty and their maintenance during adult life. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  12. Frequency of TERT promoter mutations in primary tumors of the liver.

    PubMed

    Quaas, Alexander; Oldopp, Theresa; Tharun, Lars; Klingenfeld, Catina; Krech, Till; Sauter, Guido; Grob, Tobias J

    2014-12-01

    Transcriptional regulation of the TERT gene is a major cause of the cancer-specific increase in telomerase activity. Recently, frequent somatic mutations in the TERT promoter have been described in several tumor entities such as melanoma, glioblastoma, bladder cancer, and hepatocellular carcinoma. By generating a putative consensus binding site for ETS transcription factors within the TERT promoter, these mutations are predicted to increase promoter activity and TERT transcription. In order to improve the understanding of the role of TERT promoter mutation in liver tumorigenesis, the mutational status of the TERT promoter was analyzed in 78 hepatocellular carcinomas, 15 hepatocellular adenomas, and 52 intrahepatic cholangiocarciomas. The promoter region of TERT was screened for the two hotspot mutations using PCR and restriction fragment length analysis, utilizing the introduction of novel restriction sites by the somatic mutations. TERT promoter mutation was found in 37 of 78 hepatocellular carcinomas (47 %) and was restricted to the -124C>T mutation. Frequency of mutations was associated with grade of differentiation ranging from 39 % in well-differentiated tumors to 73 % in high-grade hepatocellular carcinomas. TERT promoter mutations were not found in 15 hepatocellular adenomas and 52 intrahepatic cholangiocarcinomas. These data show that TERT promoter mutation is the most frequent genetic alteration in hepatocellular carcinoma known at this time. The striking predominance of the -124C>T mutation compared with other tumor entities suggest a biological difference of the two hotspot mutations. Analysis of TERT promoter mutation might become a diagnostic tool distinguishing hepatocellular adenoma from well-differentiated hepatocellular carcinoma.

  13. Mammary epithelial-specific disruption of focal adhesion kinase retards tumor formation and metastasis in a transgenic mouse model of human breast cancer.

    PubMed

    Provenzano, Paolo P; Inman, David R; Eliceiri, Kevin W; Beggs, Hilary E; Keely, Patricia J

    2008-11-01

    Focal adhesion kinase (FAK) is a central regulator of the focal adhesion, influencing cell proliferation, survival, and migration. Despite evidence demonstrating FAK overexpression in human cancer, its role in tumor initiation and progression is not well understood. Using Cre/LoxP technology to specifically knockout FAK in the mammary epithelium, we showed that FAK is not required for tumor initiation but is required for tumor progression. The mechanistic underpinnings of these results suggested that FAK regulates clinically relevant gene signatures and multiple signaling complexes associated with tumor progression and metastasis, such as Src, ERK, and p130Cas. Furthermore, a systems-level analysis identified FAK as a major regulator of the tumor transcriptome, influencing genes associated with adhesion and growth factor signaling pathways, and their cross talk. Additionally, FAK was shown to down-regulate the expression of clinically relevant proliferation- and metastasis-associated gene signatures, as well as an enriched group of genes associated with the G(2) and G(2)/M phases of the cell cycle. Computational analysis of transcription factor-binding sites within ontology-enriched or clustered gene sets suggested that the differentially expressed proliferation- and metastasis-associated genes in FAK-null cells were regulated through a common set of transcription factors, including p53. Therefore, FAK acts as a primary node in the activated signaling network in transformed motile cells and is a prime candidate for novel therapeutic interventions to treat aggressive human breast cancers.

  14. Chemoprevention of Radiation Induced Rat Mammary Neoplasms

    NASA Technical Reports Server (NTRS)

    Huso, David L.

    1999-01-01

    Radiations encountered in space include protons and heavy ions such as iron as well as their secondaries. The relative biological effect (RBE) of these ions is not known, particularly at the doses and dose-rates expected for planetary missions. Neutrons, are not particularly relevant to space travel, but have been found experimentally to have an increase in their RBE with decreasing dose. If a similar trend of increasing RBE with decreasing dose is present for heavy ions and protons during irradiation in space, the small doses received during space travel could potentially have substantial carcinogenic risk. Clearly more investigation of the effects of heavy ions and protons is needed before accurate risk assessment for prolonged travel in space can be done. One means to mitigate the increased risk of cancer due to radiation exposure in space is by developing effective countermeasures that can reduce the incidence of tumor development. Tamoxifen has recently been shown to be an effective chemopreventive agent in both animal models and humans for the prevention of mammary tumors. Tamoxifen is a unique drug, with a highly specific mechanism of action affecting a specific radiation-sensitive population of epithelial cells in the mammary gland. In human studies, the annual incidence of a primary tumor in the contralateral breast of women with previous breast cancer is about 8 per 1000, making them an exceedingly high-risk group for the development of breast cancer. In this high risk group, treated with tamoxifen, daily, for 2 years, the incidence of a new primary tumor in the contralateral breast was approximately one third of that noted in the non-tamoxifen treatment group. Tamoxifen antagonizes the action of estrogen by competing for the nuclear receptor complex thereby altering the association of the receptor complex and nuclear binding sites. Its effects in reducing the development of breast cancer could be accomplished by controlling clinically undetectable

  15. Specificity of gap junction communication among human mammary cells and connexin transfectants in culture

    PubMed Central

    1993-01-01

    In a previous paper (Lee et al., 1992), it was shown that normal human mammary epithelial cells (NMEC) express two connexin genes, Cx26 and Cx43, whereas neither gene is transcribed in a series of mammary tumor cell lines (TMEC). In this paper it is shown that normal human mammary fibroblasts (NMF) communicate and express Cx43 mRNA and protein. Transfection of either Cx26 or Cx43 genes into a tumor line, 21MT-2, induced the expression of the corresponding mRNAs and proteins as well as communication via gap junctions (GJs), although immunofluorescence demonstrated that the majority of Cx26 and Cx43 proteins present in transfected TMEC was largely cytoplasmic. Immunoblotting demonstrated that NMEC, NMF, and transfected TMEC each displayed a unique pattern of posttranslationally modified forms of Cx43 protein. The role of different connexins in regulating gap junction intercellular communication (GJIC) was examined using a novel two-dye method to assess homologous and heterologous communication quantitatively. The recipient cell population was prestained with a permanent non-toxic lipophilic dye that binds to membranes irreversibly (PKH26, Zynaxis); and the donor population is treated with a GJ-permeable dye Calcein, a derivative of fluorescein diacetate (Molecular Probes). After mixing the two cell populations under conditions promoting GJ formation, cells were analyzed by flow cytometry to determine the percentage of cells containing both dyes. It is shown here that Cx26 and Cx43 transfectants display strong homologous communication, as do NMEC and NMF. Furthermore, NMEC mixed with NMF communicate efficiently, Cx26 transfectants communicate with NMEC but not with NMF, and Cx43 transfectants communicate with NMF. Communication between Cx26 TMEC transfectants and NMEC was asymetrical with preferential movement of calcein from TMEC to NMEC. Despite the presence of Cx43 as well as Cx26 encoded proteins in the GJs of NMEC, few Cx43 transfectants communicated with NMEC

  16. Mammary Gland Development

    PubMed Central

    Macias, Hector

    2012-01-01

    The mammary gland develops through several distinct stages. The first transpires in the embryo as the ectoderm forms a mammary line that resolves into placodes. Regulated by epithelial/mesenchymal interactions, the placodes descend into the underlying mesenchyme and produce the rudimentary ductal structure of the gland present at birth. Subsequent stages of development – pubertal growth, pregnancy, lactation and involution – occur postnatally under the regulation of hormones. Puberty initiates branching morphogenesis, which requires growth hormone and estrogen, as well as IGF1, to create a ductal tree that fills the fat pad. Upon pregnancy the combined actions of progesterone and prolactin generate alveoli, which secrete milk during lactation. Lack of demand for milk at weaning initiates the process of involution whereby the gland is remodeled back to its pre-pregnancy state. These processes require numerous signaling pathways that have distinct regulatory functions at different stages of gland development. Signaling pathways also regulate a specialized subpopulation of mammary stem cells that fuel the dramatic changes in the gland occurring with each pregnancy. Our knowledge of mammary gland development and mammary stem cell biology has significantly contributed to our understanding of breast cancer and has advanced the discovery of therapies to treat this disease. PMID:22844349

  17. Cystatin C deficiency suppresses tumor growth in a breast cancer model through decreased proliferation of tumor cells.

    PubMed

    Završnik, Janja; Butinar, Miha; Prebanda, Mojca Trstenjak; Krajnc, Aleksander; Vidmar, Robert; Fonović, Marko; Grubb, Anders; Turk, Vito; Turk, Boris; Vasiljeva, Olga

    2017-09-26

    Cysteine cathepsins are proteases that, in addition to their important physiological functions, have been associated with multiple pathologies, including cancer. Cystatin C (CstC) is a major endogenous inhibitor that regulates the extracellular activity of cysteine cathepsins. We investigated the role of cystatin C in mammary cancer using CstC knockout mice and a mouse model of breast cancer induced by expression of the polyoma middle T oncoprotein (PyMT) in the mammary epithelium. We showed that the ablation of CstC reduced the rate of mammary tumor growth. Notably, a decrease in the proliferation of CstC knockout PyMT tumor cells was demonstrated ex vivo and in vitro , indicating a role for this protease inhibitor in signaling pathways that control cell proliferation. An increase in phosphorylated p-38 was observed in CstC knockout tumors, suggesting a novel function for cystatin C in cancer development, independent of the TGF-β pathway. Moreover, proteomic analysis of the CstC wild-type and knockout PyMT primary cell secretomes revealed a decrease in the levels of 14-3-3 proteins in the secretome of knock-out cells, suggesting a novel link between cysteine cathepsins, cystatin C and 14-3-3 proteins in tumorigenesis, calling for further investigations.

  18. Mammary-specific inactivation of E-cadherin and p53 impairs functional gland development and leads to pleomorphic invasive lobular carcinoma in mice.

    PubMed

    Derksen, Patrick W B; Braumuller, Tanya M; van der Burg, Eline; Hornsveld, Marten; Mesman, Elly; Wesseling, Jelle; Krimpenfort, Paul; Jonkers, Jos

    2011-05-01

    Breast cancer is the most common malignancy in women of the Western world. Even though a large percentage of breast cancer patients show pathological complete remission after standard treatment regimes, approximately 30-40% are non-responsive and ultimately develop metastatic disease. To generate a good preclinical model of invasive breast cancer, we have taken a tissue-specific approach to somatically inactivate p53 and E-cadherin, the cardinal cell-cell adhesion receptor that is strongly associated with tumor invasiveness. In breast cancer, E-cadherin is found mutated or otherwise functionally silenced in invasive lobular carcinoma (ILC), which accounts for 10-15% of all breast cancers. We show that mammary-specific stochastic inactivation of conditional E-cadherin and p53 results in impaired mammary gland function during pregnancy through the induction of anoikis resistance of mammary epithelium, resulting in loss of epithelial organization and a dysfunctional mammary gland. Moreover, combined inactivation of E-cadherin and p53 induced lactation-independent development of invasive and metastatic mammary carcinomas, which showed strong resemblance to human pleomorphic ILC. Dissemination patterns of mouse ILC mimic the human malignancy, showing metastasis to the gastrointestinal tract, peritoneum, lung, lymph nodes and bone. Our results confirm that loss of E-cadherin contributes to both mammary tumor initiation and metastasis, and establish a preclinical mouse model of human ILC that can be used for the development of novel intervention strategies to treat invasive breast cancer.

  19. Codon 61 mutations in the c-Harvey-ras gene in mouse skin tumors induced by 7,12-dimethylbenz[a]anthracene plus okadaic acid class tumor promoters.

    PubMed

    Fujiki, H; Suganuma, M; Yoshizawa, S; Kanazawa, H; Sugimura, T; Manam, S; Kahn, S M; Jiang, W; Hoshina, S; Weinstein, I B

    1989-01-01

    Three okadaic acid class tumor promoters, okadaic acid, dinophysistoxin-1, and calyculin A, have potent tumor-promoting activity in two-stage carcinogenesis experiments on mouse skin. DNA isolated from tumors induced by 7,12-dimethylbenz[a]anthracene (DMBA) and each of these tumor promoters revealed the same mutation at the second nucleotide of codon 61 (CAA----CTA) in the c-Ha-ras gene, determined by the polymerase chain reaction procedure and DNA sequencing. Three potent 12-O-tetradecanoylphorbol-13-acetate (TPA)-type tumor promoters, TPA, teleocidin, and aplysiatoxin, showed the same effects. These results provide strong evidence that this mutation in the c-Ha-ras gene is due to a direct effect of DMBA rather than a selective effect of specific tumor promoters.

  20. Prevention of carcinogenesis of mouse mammary epithelial cells RIII/MG by epigallocatechin gallate.

    PubMed

    Yanaga, Hiroshi; Fujii, Teruhiko; Koga, Toshihiro; Araki, Ruriko; Shirouzu, Kazuo

    2002-09-01

    The chemopreventive effect of the polyphenols abundant in green tea on carcinogenesis has been attracting attention in recent years. Among tea polyphenols, epigallocatechin gallate (EGCG) has been studied as a preventive substance for carcinogenesis. We investigated the chemopreventive effect in a group treated with EGCG in vitro and in vivo using mouse mammary epithelial cells RIII/MG. In the in vitro experiment, crude catechin (catechin) containing 50% or more EGCG significantly inhibited the growth of RIII/MG cells, which were precancerous cultured cells. Many cells died, and a DNA ladder was observed. In the in vivo experiment, RIII/MG cells formed a tumor after 13 weeks in a group without catechin treatment, and the tumor formation rate in the 20th week was 40%. In a group treated with 0.1% catechin, a tumor began to grow in the 13th week, and the tumor formation rate in the 20th week was 20%. In a group treated with 1% catechin, no tumor was detected even in the 20th week. There was no significant difference in the change in body weight between the catechin treatment groups and the non-treatment group during the observation period. Tissue samples were stained by the nick-end-labeling method and apoptosis was observed in many cells. Based on the above findings, EGCG inhibited growth in the mouse viral mammary epithelial carcinogenesis model RIII/MG, and induced apoptosis, suggesting a clinical usefulness of EGCG as a chemopreventive substance.

  1. Lactation-induced WAP-SV40 Tag transgene expression in C57BL/6J mice leads to mammary carcinoma.

    PubMed

    Hüsler, M R; Kotopoulis, K A; Sundberg, J P; Tennent, B J; Kunig, S V; Knowles, B B

    1998-07-01

    Two transgenic lineages were generated by directing the expression of SV40 T antigen to the mammary gland of inbred C57BL/6J mice using the whey acidic protein (WAP) promoter. In one lineage, WAPTag 1, multiparous female mice developed mammary adenocarcinoma with an average latency period of 13 months. The histopathological phenotype was heterogeneous, tumours occurred in a stochastic fashion, normal tissue was located next to neoplastic tissue, the mammary tumours usually developed and were remarkably similar to that observed in human cases. In addition, male and virgin females developed a poorly differentiated SV40 T antigen-positive soft tissue sarcoma, also at 13 months of age. In the other lineage, WAPTag 3, some parous females developed mammary tumours, but most mice succumbed to osteosarcomas arising from the os petrosum at 5.5 to 6 months of age and on necropsy, renal adenocarcinomas were also found. Appearance of these unexpected tumour types demonstrates the non-specific expression of SV40 Tag under the control of the WAP promoter. The expression of SV40 Tag in mammary glands at different stages of development was also examined, and only actively lactating glands were positive. This suggests that the abundant cyclic synthesis of SV40 Tag associated with pregnancy is required for mammary tumorigenesis in these lineages.

  2. MicroRNAs in the development and neoplasia of the mammary gland.

    PubMed

    Jena, Manoj Kumar

    2017-01-01

    Study on the role of microRNAs (miRs) as regulators of gene expression through posttranscriptional gene silencing is currently gaining much interest,due to their wide involvement in different physiological processes. Understanding mammary gland development, lactation, and neoplasia in relation to miRs is essential. miR expression profiling of the mammary gland from different species in various developmental stages shows their role as critical regulators of development. miRs such as miR-126, miR-150, and miR-145 have been shown to be involved in lipid metabolism during lactation. In addition, lactogenic hormones influence miR expression as evidenced by overexpression of miR-148a in cow mammary epithelial cells, leading to enhanced lactation. Similarly, the miR-29 family modulates lactation-related gene expression by regulating DNA methylation of their promoters. Besides their role in development, lactation and involution, miRs are responsible for breast cancer development. Perturbed estrogen (E2) signaling is one of the major causes of breast cancer. Increased E2 levels cause altered expression of ERα, and ERα-miR cross-talk promotes tumour progression. miRs, such as miR-206, miR-34a, miR-17-5p, and miR-125 a/b are found to be tumour suppressors; whereas miR-21, miR-10B, and miR-155 are oncogenes. Oncogenic miRs like miR-21, miR-221, and miR-210 are overexpressed in triple negative breast cancer cases which can be diagnostic biomarker for this subtype of cancer.  This review focuses on the recent findings concerning the role of miRs in developmental stages of the mammary gland (mainly lactation and involution stages) and their involvement in breast cancer progression. Further studies in this area will help us to understand the molecular details of mammary gland biology, as well as miRs that could be therapeutic targets of breast cancer.

  3. Bisphenol A (BPA) Exposure In Utero Leads to Immunoregulatory Cytokine Dysregulation in the Mouse Mammary Gland: A Potential Mechanism Programming Breast Cancer Risk.

    PubMed

    Fischer, Catha; Mamillapalli, Ramanaiah; Goetz, Laura G; Jorgenson, Elisa; Ilagan, Ysabel; Taylor, Hugh S

    2016-08-01

    Bisphenol-A (BPA) is a ubiquitous estrogen-like endocrine disrupting compound (EDC). BPA exposure in utero has been linked to breast cancer and abnormal mammary gland development in mice. The recent rise in incidence of human breast cancer and decreased age of first detection suggests a possible environmental etiology. We hypothesized that developmental programming of carcinogenesis may involve an aberrant immune response. Both innate and adaptive immunity play a role in tumor suppression through cytolytic CD8, NK, and Th1 T-cells. We hypothesized that BPA exposure in utero would lead to dysregulation of both innate and adaptive immunity in the mammary gland. CD1 mice were exposed to BPA in utero during gestation (days 9-21) via osmotic minipump. At 6 weeks, the female offspring were ovariectomized and estradiol was given at 8 weeks. RNA and protein were extracted from the posterior mammary glands, and the mRNA and protein levels were measured by PCR array, qRT-PCR, and western blot. In mouse mammary tissue, BPA exposure in utero significantly decreased the expression of members of the chemokine CXC family (Cxcl2, Cxcl4, Cxcl14, and Ccl20), interleukin 1 (Il1) gene family (Il1β and Il1rn), interleukin 2 gene family (Il7 receptor), and interferon gene family (interferon regulatory factor 9 (Irf9), as well as immune response gene 1 (Irg1). Additionally, BPA exposure in utero decreased Esr1 receptor gene expression and increased Esr2 receptor gene expression. In utero exposure of BPA resulted in significant changes to inflammatory modulators within mammary tissue. We suggest that dysregulation of inflammatory cytokines, both pro-inflammatory and anti-inflammatory, leads to a microenvironment that may promote disordered cell growth through inhibition of the immune response that targets cancer cells.

  4. Synergistic effects of androgen and estrogen on the mouse uterus and mammary gland.

    PubMed

    Zhang, Jian; Sun, Yibin; Liu, Yunhai; Sun, Yi; Liao, Dezhong Joshua

    2004-10-01

    Many studies have suggested that elevated estrogens and androgens may be etiologically related to the development of breast cancer, endometrial cancer and uterine leiomyomas. We and other investigators have previously shown that estrogen and androgen are synergistic in the induction of mammary carcinogenesis in the Noble rat. However, the mechanisms behind the synergy is unknown, and it is unclear whether such synergy is unique for the Noble rat and for the mammary gland. In this study we treated female FVB mice with 17beta-estradiol (E2) and 5alpha-dihydrotestosterone-bezonate (DHT-B), alone and in combination, using silastic tubing for 2-7 months. The results showed that DHT-B alone induced proliferation of uterine endometrial epithelium and myometrial smooth muscle cells, whereas E2 alone induced much more pronounced growth of endometrial epithelium without affecting smooth muscle cells. Combined treatment with E2+DHT-B caused an even more severe hyperplasia of endometrial epithelium and myometrial muscle cells, compared with the treatment with each hormone alone. Uterine leiomyomas were observed in 2 of 6 mice at 7 months of combined treatment but not in any of 6 or 7 mice receiving each single hormone. DHT-B alone induced growth and secretion of mammary ductal cells, as well as growth of mammary stroma. E2 alone stimulated much more pronounced growth of both ductal cells and alveolar cells and secretion of alveolar cells, but had no effect on mammary stroma. Treatment with both E2 and DHT-B caused more severe hyperplasia of mammary ducts and alveoli, compared to the treatment with each hormone alone. Intraductal hyperplasia occurred early and frequently in the E2+DHT-B- treated mice, but no mammary tumors were observed. These results suggest that E2 and DHT-B have synergistic effects on the growth of uterine endometrial epithelium and myometrial muscle cells, as well as mammary epithelial ducts and alveoli.

  5. Attenuated mutant strain of Salmonella Typhimurium lacking the ZnuABC transporter contrasts tumor growth promoting anti-cancer immune response.

    PubMed

    Chirullo, Barbara; Ammendola, Serena; Leonardi, Leonardo; Falcini, Roberto; Petrucci, Paola; Pistoia, Claudia; Vendetti, Silvia; Battistoni, Andrea; Pasquali, Paolo

    2015-07-10

    Salmonella Typhimurium has been shown to be highly effective as antitumor agent. The aim of this study was to investigate the tumor targeting efficacy and the mechanism of action of a specific attenuated mutant strain of Salmonella Typhimurium (STM) devoid of the whole operon coding for the high-affinity zinc transporter ZnuABC, which is required for bacterial growth in environments poor in zinc and for conferring full virulence to different Gram-negative pathogens.We showed that STM is able to penetrate and replicate into tumor cells in in vitro and in vivo models. The subcutaneous administration of STM in mammary adenocarcinoma mouse model led to both reduction of tumor growth and increase in life expectancy of STM treated mice. Moreover, investigating the potential mechanism behind the favorable clinical outcomes, we provide evidence that STM stimulates a potent inflammatory response and a specific immune pattern, recruiting a large number of innate and adaptive immune cells capable to contrast the immunosuppressive environment generated by tumors.

  6. Genes involved in immortalization of human mammary cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stampfer, Martha R.; Yaswen, Paul

    2001-09-27

    Breast cancer progression is characterized by inappropriate cell growth. Normal cells cease growth after a limited number of cell divisions--a process called cellular senescence-while tumor cells may acquire the ability to proliferate indefinitely (immortality). Inappropriate expression of specific oncogenes in a key cellular signaling pathway (Ras, Raf) can promote tumorigenicity in immortal cells, while causing finite lifespan cells to undergo a rapid senescence-like arrest. We have studied when in the course of transformation of cultured human mammary epithelial cells (HMEC), the response to overexpressed oncogenic Raf changes from being tumor-suppressive to tumor enhancing, and what are the molecular underpinnings ofmore » this response. Our data indicate: (1) HMEC acquire the ability to maintain growth in the presence of oncogenic Raf not simply as a consequence of overcoming senescence, but as a result of a newly discovered step in the process of immortal transformation uncovered by our lab, termed conversion. Immortal cells that have not undergone conversion (e.g., cells immortalized by exogenous introduction of the immortalizing enzyme, telomerase) remain growth inhibited. (2) Finite lifespan HMEC growth arrest in response to oncogenic Raf using mediators of growth inhibition that are very different from those used in response to oncogenic Raf by rodent cells and certain other human cell types, including the connective tissue cells from the same breast tissue. While many diverse cell types appear to have in common a tumor-suppressive response to this oncogenic signal, they also have developed multiple mechanisms to elicit this response. Understanding how cancer cells acquire the crucial capacity to be immortal and to abrogate normal tumor-suppressive mechanisms may serve both to increase our understanding of breast cancer progression, and to provide new targets for therapeutic intervention. Our results indicate that normal HMEC have novel means of

  7. Epigenetic Modifications Unlock the Milk Protein Gene Loci during Mouse Mammary Gland Development and Differentiation

    PubMed Central

    Rijnkels, Monique; Freeman-Zadrowski, Courtneay; Hernandez, Joseph; Potluri, Vani; Wang, Liguo; Li, Wei; Lemay, Danielle G.

    2013-01-01

    Background Unlike other tissues, development and differentiation of the mammary gland occur mostly after birth. The roles of systemic hormones and local growth factors important for this development and functional differentiation are well-studied. In other tissues, it has been shown that chromatin organization plays a key role in transcriptional regulation and underlies epigenetic regulation during development and differentiation. However, the role of chromatin organization in mammary gland development and differentiation is less well-defined. Here, we have studied the changes in chromatin organization at the milk protein gene loci (casein, whey acidic protein, and others) in the mouse mammary gland before and after functional differentiation. Methodology/Principal Findings Distal regulatory elements within the casein gene cluster and whey acidic protein gene region have an open chromatin organization after pubertal development, while proximal promoters only gain open-chromatin marks during pregnancy in conjunction with the major induction of their expression. In contrast, other milk protein genes, such as alpha-lactalbumin, already have an open chromatin organization in the mature virgin gland. Changes in chromatin organization in the casein gene cluster region that are present after puberty persisted after lactation has ceased, while the changes which occurred during pregnancy at the gene promoters were not maintained. In general, mammary gland expressed genes and their regulatory elements exhibit developmental stage- and tissue-specific chromatin organization. Conclusions/Significance A progressive gain of epigenetic marks indicative of open/active chromatin on genes marking functional differentiation accompanies the development of the mammary gland. These results support a model in which a chromatin organization is established during pubertal development that is then poised to respond to the systemic hormonal signals of pregnancy and lactation to achieve the

  8. Long-Chain Omega-3 Polyunsaturated Fatty Acids Modulate Mammary Gland Composition and Inflammation.

    PubMed

    Khadge, Saraswoti; Thiele, Geoffrey M; Sharp, John Graham; McGuire, Timothy R; Klassen, Lynell W; Black, Paul N; DiRusso, Concetta C; Talmadge, James E

    2018-06-01

    Studies in rodents have shown that dietary modifications as mammary glands (MG) develop, regulates susceptibility to mammary tumor initiation. However, the effects of dietary PUFA composition on MGs in adult life, remains poorly understood. This study investigated morphological alterations and inflammatory microenvironments in the MGs of adult mice fed isocaloric and isolipidic liquid diets with varying compositions of omega (ω)-6 and long-chain (Lc)-ω3FA that were pair-fed. Despite similar consumption levels of the diets, mice fed the ω-3 diet had significantly lower body-weight gains, and abdominal-fat and mammary fat pad (MFP) weights. Fatty acid analysis showed significantly higher levels of Lc-ω-3FAs in the MFPs of mice on the ω-3 diet, while in the MFPs from the ω-6 group, Lc-ω-3FAs were undetectable. Our study revealed that MGs from ω-3 group had a significantly lower ductal end-point density, branching density, an absence of ductal sprouts, a thinner ductal stroma, fewer proliferating epithelial cells and a lower transcription levels of estrogen receptor 1 and amphiregulin. An analysis of the MFP and abdominal-fat showed significantly smaller adipocytes in the ω-3 group, which was accompanied by lower transcription levels of leptin, IGF1, and IGF1R. Further, MFPs from the ω-3 group had significantly decreased numbers and sizes of crown-like-structures (CLS), F4/80+ macrophages and decreased expression of proinflammatory mediators including Ptgs2, IL6, CCL2, TNFα, NFκB, and IFNγ. Together, these results support dietary Lc-ω-3FA regulation of MG structure and density and adipose tissue inflammation with the potential for dietary Lc-ω-3FA to decrease the risk of mammary gland tumor formation.

  9. Soy protein isolate inhibits hepatic tumor promotion in mice fed a high-fat liquid diet.

    PubMed

    Mercer, Kelly E; Pulliam, Casey F; Pedersen, Kim B; Hennings, Leah; Ronis, Martin Jj

    2017-03-01

    Alcoholic and nonalcoholic fatty liver diseases are risk factors for development of hepatocellular carcinoma, but the underlying mechanisms are poorly understood. On the other hand, ingestion of soy-containing diets may oppose the development of certain cancers. We previously reported that replacing casein with a soy protein isolate reduced tumor promotion in the livers of mice with alcoholic liver disease after feeding a high fat ethanol liquid diet following initiation with diethylnitrosamine. Feeding soy protein isolate inhibited processes that may contribute to tumor promotion including inflammation, sphingolipid signaling, and Wnt/β-catenin signaling. We have extended these studies to characterize liver tumor promotion in a model of nonalcoholic fatty liver disease produced by chronic feeding of high-fat liquid diets in the absence of ethanol. Mice treated with diethylnitrosamine on postnatal day 14 were fed a high-fat liquid diet made with casein or SPI as the sole protein source for 16 weeks in adulthood. Relative to mice fed normal chow, a high fat/casein diet led to increased tumor promotion, hepatocyte proliferation, steatosis, and inflammation. Replacing casein with soy protein isolate counteracted these effects. The high fat diets also resulted in a general increase in transcripts for Wnt/β-catenin pathway components, which may be an important mechanism, whereby hepatic tumorigenesis is promoted. However, soy protein isolate did not block Wnt signaling in this nonalcoholic fatty liver disease model. We conclude that replacing casein with soy protein isolate blocks development of steatosis, inflammation, and tumor promotion in diethylnitrosamine-treated mice fed high fat diets. Impact statement The impact of dietary components on cancer is a topic of great interest for both the general public and the scientific community. Liver cancer is currently the second leading form of cancer deaths worldwide. Our study has addressed the effect of the protein

  10. Recruitment of Mesenchymal Stem Cells Into Prostate Tumors Promotes Metastasis

    PubMed Central

    Jung, Younghun; Kim, Jin Koo; Shiozawa, Yusuke; Wang, Jingcheng; Mishra, Anjali; Joseph, Jeena; Berry, Janice E.; McGee, Samantha; Lee, Eunsohl; Sun, Hongli; Wang, Jianhua; Jin, Taocong; Zhang, Honglai; Dai, Jinlu; Krebsbach, Paul H.; Keller, Evan T.; Pienta, Kenneth J.; Taichman, Russell S.

    2013-01-01

    Tumors recruit mesenchymal stem cells (MSCs) to facilitate healing, which induces their conversion into cancer-associated fibroblasts that facilitate metastasis. However, this process is poorly understood on the molecular level. Here we show that the CXCR6 ligand CXCL16 facilitates MSC or Very Small Embryonic-Like (VSEL) cells recruitment into prostate tumors. CXCR6 signaling stimulates the conversion of MSCs into cancer-associated fibroblasts, which secrete stromal-derived factor-1, also known as CXCL12. CXCL12 expressed by cancer-associated fibroblasts then binds to CXCR4 on tumor cells and induces an epithelial to mesenchymal transition, which ultimately promotes metastasis to secondary tumor sites. Our results provide the molecular basis for MSC recruitment into tumors and how this process leads to tumor metastasis. PMID:23653207

  11. Intraductal administration of a polymeric nanoparticle formulation of curcumin (NanoCurc) significantly attenuates incidence of mammary tumors in a rodent chemical carcinogenesis model: Implications for breast cancer chemoprevention in at-risk populations

    PubMed Central

    Chun, Yong Soon; Maitra, Anirban; Sukumar, Saraswati

    2012-01-01

    Multiple lines of evidence support a role for curcumin in cancer chemoprevention. Nonetheless, despite its reported efficacy and safety profile, clinical translation of curcumin has been hampered by low oral bioavailability, requiring infeasible ‘mega’ doses for achieving detectable tissue levels. We have engineered a polymeric nanoparticle encapsulated formulation of curcumin (NanoCurc) to harness its full therapeutic potential. In the current study, we assessed the chemoprevention efficacy of NanoCurc administered via direct intraductal (i.duc) injection in a chemical carcinogen-induced rodent mammary cancer model. Specifically, Sprague–Dawley rats exposed to systemic N-methyl-N-nitrosourea were randomized to receive either oral free curcumin at a previously reported ‘mega’ dose (200mg/kg) or by direct i.duc injection of free curcumin or NanoCurc, respectively, each delivering 168 µg equivalent of curcumin per rodent teat (a ~20-fold lower dose per animal compared to oral administration). All three chemoprevention modalities resulted in significantly lower mammary tumor incidence compared with control rats; however, there was no significant difference in cancer incidence between the oral dosing and either i.duc arms. On the other hand, mean tumor size, was significantly smaller in the i.duc NanoCurc cohort compared with i.duc free curcumin (P < 0.0001), suggesting the possibility of better resectability for ‘breakthrough’ cancers. Reduction in cancer incidence was associated with significant decrease in nuclear factor -κB activation in the NanoCurc treated mammary epithelium explants, compared to either control or oral curcumin-administered rats. Our studies confirm the potential for i.duc NanoCurc as an alternative to the oral route for breast cancer chemoprevention in high-risk cohorts. PMID:22831956

  12. Mammary gland-specific nuclear factor activity is positively regulated by lactogenic hormones and negatively by milk stasis.

    PubMed

    Schmitt-Ney, M; Happ, B; Hofer, P; Hynes, N E; Groner, B

    1992-12-01

    The mammary gland-specific nuclear factor (MGF) is a crucial contributor to the regulation of transcription from the beta-casein gene promoter. The beta-casein gene encodes a major milk protein, which is expressed in mammary epithelial cells during lactation and can be induced by lactogenic hormones in the clonal mammary epithelial cell line HC11. We have investigated the specific DNA-binding activity of MGF in mammary epithelial cells in vivo and in vitro. Comparison of MGF in HC11 cells and mammary gland cells from lactating mice revealed molecules with identical DNA-binding properties. Bandshift and UV cross-linking experiments indicated that MGF in HC11 cells has a higher mol wt than MGF found in mice. Little MGF activity was detected in nuclear extracts from HC11 cells cultured in the absence of lactogenic hormones. Lactogenic hormone treatment of HC11 cells led to a strong induction of MGF activity. The induction of MGF activity as well as utilization of the beta-casein promoter were suppressed when epidermal growth factor was present in the tissue culture medium simultaneously with the lactogenic hormones. In lactating animals, MGF activity is regulated by suckling, milk stasis, and systemic hormone signals. The mammary glands from maximally lactating animals, 16 days postpartum, contain drastically reduced MGF activity after removal of the pups for only 8 h. The down-regulation of MGF by pup withdrawal was slower in early lactation, 6 days postpartum. We also investigated the relative contributions of local signals, generated by milk stasis, and systemic hormone signals to the regulation of MGF activity. The access to one row of mammary glands of lactating mothers was denied to the pups for 24 h. High levels of MGF were found in the accessible mammary glands, and intermediate levels of MGF were found in the inaccessible glands of the same mouse. Very low MGF levels were detected when the pups were removed from the dams for 24 h. We conclude that systemic as

  13. SOX10-positive salivary gland tumors: a growing list, including mammary analogue secretory carcinoma of the salivary gland, sialoblastoma, low-grade salivary duct carcinoma, basal cell adenoma/adenocarcinoma, and a subgroup of mucoepidermoid carcinoma.

    PubMed

    Hsieh, Min-Shu; Lee, Yi-Hsuan; Chang, Yih-Leong

    2016-10-01

    Transcription factor SRY-related HMG-box 10 (SOX10) is an important marker for melanocytic, schwannian, myoepithelial, and some salivary gland tumors. The aim of this study was to investigate SOX10 expression more thoroughly in the salivary gland neoplasms, including mammary analogue secretory carcinoma and hyalinizing clear cell carcinoma harboring specific genetic rearrangements. A new rabbit monoclonal anti-SOX10 antibody (clone EP268) was used to examine SOX10 expression in 14 different types of salivary gland tumors. We found that acinic cell carcinoma (AciCC), adenoid cystic carcinoma, mammary analogue secretory carcinoma (MASC), epithelial-myoepithelial carcinoma, low-grade salivary duct carcinoma, sialoblastoma, basal cell adenocarcinoma, basal cell adenoma, and pleomorphic adenoma were SOX10 positive. Salivary duct carcinoma, lymphoepithelial carcinoma, hyalinizing clear cell carcinoma, and oncocytoma were SOX10 negative. Earlier, mucoepidermoid carcinoma (MEC) was considered a SOX10-negative tumor. This study identified a subgroup of SOX10-positive MEC cases with characteristic polygonal epithelial cells, pale-to-eosinophilic cytoplasm, and colloid-like dense eosinophilic material. Our data show SOX10 expression can be observed in salivary gland tumors with either one of the 4 cell types: acinic cells, cuboidal ductal cells with low-grade cytologic features, basaloid cells, and myoepithelial cells. In this article we thoroughly evaluated SOX10 expression in salivary gland tumors. SOX10 is useful in the differential diagnosis between myoepithelial carcinoma with clear cell features and hyalinizing clear cell carcinoma. It can also be used to discriminate low-grade salivary duct carcinoma from high-grade ones. Pathologists should be cautious with the interpretation of SOX10 positivity in salivary gland tumors, and correlation with histologic feature is mandatory. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Mechano-Signal Transduction in Mesenchymal Stem Cells Induces Prosaposin Secretion to Drive the Proliferation of Breast Cancer Cells.

    PubMed

    Ishihara, Seiichiro; Inman, David R; Li, Wan-Ju; Ponik, Suzanne M; Keely, Patricia J

    2017-11-15

    In response to chemical stimuli from cancer cells, mesenchymal stem cells (MSC) can differentiate into cancer-associated fibroblasts (CAF) and promote tumor progression. How mechanical stimuli such as stiffness of the extracellular matrix (ECM) contribute to MSC phenotype in cancer remains poorly understood. Here, we show that ECM stiffness leads to mechano-signal transduction in MSC, which promotes mammary tumor growth in part through secretion of the signaling protein prosaposin. On a stiff matrix, MSC cultured with conditioned media from mammary cancer cells expressed increased levels of α-smooth muscle actin, a marker of CAF, compared with MSC cultured on a soft matrix. By contrast, MSC cultured on a stiff matrix secreted prosaposin that promoted proliferation and survival of mammary carcinoma cells but inhibited metastasis. Our findings suggest that in addition to chemical stimuli, increased stiffness of the ECM in the tumor microenvironment induces differentiation of MSC to CAF, triggering enhanced proliferation and survival of mammary cancer cells. Cancer Res; 77(22); 6179-89. ©2017 AACR . ©2017 American Association for Cancer Research.

  15. Interplay between Notch1 and Notch3 promotes EMT and tumor initiation in squamous cell carcinoma.

    PubMed

    Natsuizaka, Mitsuteru; Whelan, Kelly A; Kagawa, Shingo; Tanaka, Koji; Giroux, Veronique; Chandramouleeswaran, Prasanna M; Long, Apple; Sahu, Varun; Darling, Douglas S; Que, Jianwen; Yang, Yizeng; Katz, Jonathan P; Wileyto, E Paul; Basu, Devraj; Kita, Yoshiaki; Natsugoe, Shoji; Naganuma, Seiji; Klein-Szanto, Andres J; Diehl, J Alan; Bass, Adam J; Wong, Kwok-Kin; Rustgi, Anil K; Nakagawa, Hiroshi

    2017-11-24

    Notch1 transactivates Notch3 to drive terminal differentiation in stratified squamous epithelia. Notch1 and other Notch receptor paralogs cooperate to act as a tumor suppressor in squamous cell carcinomas (SCCs). However, Notch1 can be stochastically activated to promote carcinogenesis in murine models of SCC. Activated form of Notch1 promotes xenograft tumor growth when expressed ectopically. Here, we demonstrate that Notch1 activation and epithelial-mesenchymal transition (EMT) are coupled to promote SCC tumor initiation in concert with transforming growth factor (TGF)-β present in the tumor microenvironment. We find that TGFβ activates the transcription factor ZEB1 to repress Notch3, thereby limiting terminal differentiation. Concurrently, TGFβ drives Notch1-mediated EMT to generate tumor initiating cells characterized by high CD44 expression. Moreover, Notch1 is activated in a small subset of SCC cells at the invasive tumor front and predicts for poor prognosis of esophageal SCC, shedding light upon the tumor promoting oncogenic aspect of Notch1 in SCC.

  16. Characterization of Human Mammary Epithelial Stem Cells

    DTIC Science & Technology

    2010-10-01

    This term reflects the method used to detect murine mammary stem cells which is based on their individual ability to regenerate an entire mammary tree......mammary stem cells. We now describe a method for detecting an analogous subpopulation in normal human mammary tissue. Dissociated cells are suspended

  17. JS-K, a nitric oxide-releasing prodrug, induces breast cancer cell death while sparing normal mammary epithelial cells.

    PubMed

    McMurtry, Vanity; Saavedra, Joseph E; Nieves-Alicea, René; Simeone, Ann-Marie; Keefer, Larry K; Tari, Ana M

    2011-04-01

    Targeted therapy with reduced side effects is a major goal in cancer research. We investigated the effects of JS-K, a nitric oxide (NO) prodrug designed to release high levels of NO when suitably activated, on human breast cancer cell lines, on non-transformed human MCF-10A mammary cells, and on normal human mammary epithelial cells (HMECs). Cell viability assay, flow cytometry, electron microscopy, and Western blot analysis were used to study the effects of JS-K on breast cancer and on mammary epithelial cells. After a 3-day incubation, the IC50s of JS-K against the breast cancer cells ranged from 0.8 to 3 µM. However, JS-K decreased the viability of the MCF-10A cells by only 20% at 10-µM concentration, and HMECs were unaffected by 10 µM JS-K. Flow cytometry indicated that JS-K increased the percentages of breast cancer cells under-going apoptosis. Interestingly, flow cytometry indicated that JS-K increased acidic vesicle organelle formation in breast cancer cells, suggesting that JS-K induced autophagy in breast cancer cells. Electron microscopy confirmed that JS-K-treated breast cancer cells underwent autophagic cell death. Western blot analysis showed that JS-K induced the expression of microtubule light chain 3-II, another autophagy marker, in breast cancer cells. However, JS-K did not induce apoptosis or autophagy in normal human mammary epithelial cells. These data indicate that JS-K selectively induces programmed cell death in breast cancer cells while sparing normal mammary epithelial cells under the same conditions. The selective anti-tumor activity of JS-K warrants its further investigation in breast tumors.

  18. Luminal epithelial cells within the mammary gland can produce basal cells upon oncogenic stress.

    PubMed

    Hein, S M; Haricharan, S; Johnston, A N; Toneff, M J; Reddy, J P; Dong, J; Bu, W; Li, Y

    2016-03-17

    In the normal mammary gland, the basal epithelium is known to be bipotent and can generate either basal or luminal cells, whereas the luminal epithelium has not been demonstrated to contribute to the basal compartment in an intact and normally developed mammary gland. It is not clear whether cellular heterogeneity within a breast tumor results from transformation of bipotent basal cells or from transformation and subsequent basal conversion of the more differentiated luminal cells. Here we used a retroviral vector to express an oncogene specifically in a small number of the mammary luminal epithelial cells and tested their potential to produce basal cells during tumorigenesis. This in-vivo lineage-tracing work demonstrates that luminal cells are capable of producing basal cells on activation of either polyoma middle T antigen or ErbB2 signaling. These findings reveal the plasticity of the luminal compartment during tumorigenesis and provide an explanation for cellular heterogeneity within a cancer.

  19. Luminal Epithelial Cells within the Mammary Gland Can Produce Basal Cells upon Oncogenic Stress

    PubMed Central

    Hein, Sarah M.; Haricharan, Svasti; Johnston, Alyssa N.; Toneff, Michael J.; Reddy, Jay P.; Dong, Jie; Bu, Wen; Li, Yi

    2015-01-01

    In the normal mammary gland, the basal epithelium is known to be bi-potent and can generate either basal or luminal cells, whereas the luminal epithelium has not been demonstrated to contribute to the basal compartment in an intact and normally developed mammary gland. It is not clear whether cellular heterogeneity within a breast tumor results from transformation of bi-potent basal cells or from transformation and subsequent basal conversion of the more differentiated luminal cells. Here, we used a retroviral vector to express an oncogene specifically in a small number of the mammary luminal epithelial cells and tested their potential to produce basal cells during tumorigenesis. This in vivo lineage tracing work demonstrates that luminal cells are capable of producing basal cells upon activation of either Polyoma Middle T antigen (PyMT) or ErbB2 signaling. These findings reveal the plasticity of the luminal compartment during tumorigenesis and provide an explanation for cellular heterogeneity within a cancer. PMID:26096929

  20. Trans-Fatty Acid-Stimulated Mammary Gland Growth in Ovariectomized Mice is Fatty Acid Type and Isomer Specific.

    PubMed

    Berryhill, Grace E; Miszewski, Susan G; Trott, Josephine F; Kraft, Jana; Lock, Adam L; Hovey, Russell C

    2017-03-01

    We previously reported that the trans-18:2 fatty acid trans-10, cis-12 conjugated linoleic acid (t10,c12-CLA) stimulates mammary gland development independent of estrogen and its receptor. Given the negative consequences of dietary trans-fatty acids on various aspects of human health, we sought to establish whether other trans-fatty acids could similarly induce ovary-independent mammary gland growth in mice. Prepubertal BALB/cJ mice were ovariectomized at 21 days of age then were fed diets enriched with cis-9, trans-11 CLA (c9,t11-CLA), or mixtures of trans-18:1 fatty acids supplied by partially hydrogenated sunflower, safflower, or linseed oil. The resultant mammary phenotype was evaluated 3 weeks later and compared to the growth response elicited by t10,c12-CLA, or the defined control diet. Whereas partially hydrogenated safflower oil increased mammary gland weight, none of the partially hydrogenated vegetable oils promoted mammary ductal growth. Similarly, the c9,t11-CLA supplemented diet was without effect on mammary development. Taken together, our data emphasize a unique effect of t10,c12-CLA in stimulating estrogen-independent mammary gland growth manifest as increased mammary ductal area and elongation that was not recapitulated by c9,t11-CLA or the partially hydrogenated vegetable oil diets.

  1. EMMPRIN (basigin/CD147) expression is not correlated with MMP activity during adult mouse mammary gland development.

    PubMed

    Szymanowska, Malgorzata; Hendry, Kay A K; Robinson, Claire; Kolb, Andreas F

    2009-01-01

    Extracellular matrix metalloproteinase inducer (EMMPRIN/basigin/CD147) is a cell surface protein, which has been associated with the induction of matrix metalloproteinase (MMP) genes during cancer metastasis. EMMPRIN plays a role in a variety of physiological processes as is evident by the diverse deficiencies detectable in EMMPRIN knockout mice. We have analysed the role of EMMPRIN in the induction of MMP genes during mammary gland differentiation and involution. Co-transfection studies showed that EMMPRIN has diverse effects on MMP promoter activity in different mammary and non-mammary cell lines. Expression of EMMPRIN mRNA is enhanced markedly by insulin in a mammary gland cell line but appears to have no direct effect on MMP gene expression in these cells. Microarray analysis and quantitative PCR show that EMMPRIN is expressed throughout mammary gland differentiation in the mouse. Its expression decreases during early pregnancy and briefly after induction of mammary gland involution by litter removal. Immunohistochemical analysis shows that EMMPRIN expression is limited to the stromal compartment during pregnancy, whereas it is strongly expressed in the epithelium during lactation. In summary the data argue against a causal role for EMMPRIN for the induction of MMP gene expression during adult mammary gland development. These data therefore support a physiological role for EMMPRIN other than MMP induction in mammary gland biology. 2008 Wiley-Liss, Inc.

  2. Tumor promotion and inhibition by phenobarbital in livers of conditional Apc-deficient mice.

    PubMed

    Braeuning, Albert; Gavrilov, Alina; Geissler, Miriam; Wenz, Christine; Colnot, Sabine; Templin, Markus F; Metzger, Ute; Römer, Michael; Zell, Andreas; Schwarz, Michael

    2016-06-01

    Activation of Wnt/β-catenin signaling is important for human and rodent hepatocarcinogenesis. In mice, the tumor promoter phenobarbital (PB) selects for hepatocellular tumors with activating β-catenin mutations via constitutive androstane receptor activation. PB-dependent tumor promotion was studied in mice with genetic inactivation of Apc, a negative regulator of β-catenin, to circumvent the problem of randomly induced mutations by chemical initiators and to allow monitoring of PB- and Wnt/β-catenin-dependent tumorigenesis in the absence of unknown genomic alterations. Moreover, the study was designed to investigate PB-induced proliferation of liver cells with activated β-catenin. PB treatment provided Apc-deficient hepatocytes with only a minor proliferative advantage, and additional connexin 32 deficiency did not affect the proliferative response. PB significantly promoted the outgrowth of Apc-deficient hepatocellular adenoma (HCA), but simultaneously inhibited the formation of Apc-deficient hepatocellular carcinoma (HCC). The probability of tumor promotion by PB was calculated to be much lower for hepatocytes with loss of Apc, as compared to mutational β-catenin activation. Comprehensive transcriptomic and phosphoproteomic characterization of HCA and HCC revealed molecular details of the two tumor types. HCC were characterized by a loss of differentiated hepatocellular gene expression, enhanced proliferative signaling, and massive over-activation of Wnt/β-catenin signaling. In conclusion, PB exerts a dual role in liver tumor formation by promoting the growth of HCA but inhibiting the growth of HCC. Data demonstrate that one and the same compound can produce opposite effects on hepatocarcinogenesis, depending on context, highlighting the necessity to develop a more differentiated view on the tumorigenicity of this model compound.

  3. Clinical Outcomes of Surgically Managed Spontaneous Tumors in 114 Client-owned Dogs

    PubMed Central

    Choi, Ji-Won; Yoon, Hun-Young

    2016-01-01

    Medical records of 139 tumors from 114 dogs that underwent surgery from May 2010 through March 2015 were retrospectively reviewed. Among 114 dogs, females (64.9%) were significantly more common than males (35.1%) (p<0.05). Dogs aged 6 to 10 years were more presented than non-tumor patients, however, there was no significant difference. The mean age (±SD) was 10.3±3.0 years. Although we found no significant difference of breed predisposition, the most common breed was Maltese (19.3%), followed by Shih-Tzu (14.0%), and Yorkshire terrier (13.2%). Proportional morbidity ratios (PMRs) of mammary gland, oral cavity, and skin tumors were high in Poodles, Yorkshire terriers, and Golden retrievers, respectively. Mammary gland (36.0%) was the most common site, followed by skin and soft tissues (12.2%), oral cavity (10.8%), and digestive organs (8.6%), but there was no significant difference. The objectives of surgery were curative surgery (86.2%), biopsy (4.9%), and palliative surgery (6.5%). In this study, 123 of 139 tumors had histopathological diagnoses. Adenocarcinoma was the most common type (n=24), followed by adenoma (n=17), soft tissue sarcoma (n=13), benign mixed tumor (n=5), and others (n=64). Recurrence or suspected metastasis was identified in 26 dogs. Median survival times of malignant mammary gland tumors, skin and subcutaneous tumors, and splenic tumors were 1,563.0±1,201.7, 469, and 128 days, respectively. PMID:27162528

  4. Proliferation of Estrogen Receptor alpha Positive Mammary Epithelial Cells is Restrained by TGFbeta1 in Adult Mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ewan, Kenneth B.R.; Oketch-Rabah, Hellen A.; Ravani, Shraddha A.

    2005-03-03

    Transforming growth factor {beta}1 (TGF{beta}1) is a potent inhibitor of mammary epithelial proliferation. In human breast, estrogen receptor {alpha} (ER{alpha}) cells rarely co-localize with markers of proliferation, but their increased frequency correlates with breast cancer risk. To determine whether TGF{beta}1 is necessary for the quiescence of ER{alpha}-positive population, we examined mouse mammary epithelial gland at estrus. Approximately 35% of cells showed TGF{beta}1 activation, which co-localized with nuclear receptor-phosphorylated Smad 2/3, indicating that TGF{beta} signaling is autocrine. Furthermore, nuclear Smad co-localized with nuclear ER{alpha}. To test whether TGF{beta} was functional, we examined genetically engineered mice with different levels of TGF{beta}1. ER{alpha}more » co-localization with markers of proliferation (i.e. Ki-67 or BrdU) at estrus was significantly increased in the mammary glands of Tgf{beta}1 C57/bl/129SV heterozygote mice. This relationship was maintained following pregnancy, but was absent at puberty. Conversely, mammary epithelial expression of constitutively active TGF{beta}1 via the MMTV promoter suppressed proliferation of ER{alpha} positive cells. Thus, TGF{beta}1 activation functionally restrains ER{alpha} positive cells from proliferating in adult mammary gland. Accordingly, we propose that TGF{beta}1 dysregulation may promote proliferation of ER{alpha} positive cells associated with breast cancer risk in humans.« less

  5. Inhibition of the mammary carcinoma angiogenic switch in C3(1)/SV40 transgenic mice by a mutated form of human endostatin.

    PubMed

    Calvo, Alfonso; Yokoyama, Yumi; Smith, Lois E; Ali, Iqbal; Shih, Shu-Ching; Feldman, Andrew L; Libutti, Steven K; Sundaram, Ramakrishnan; Green, Jeffrey E

    2002-09-20

    Cancer therapies based on the inhibition of angiogenesis by endostatin have recently been developed. We demonstrate that a mutated form of human endostatin (P125A) can inhibit the angiogenic switch in the C3(1)/Tag mammary cancer model. P125A has a stronger growth-inhibitory effect on endothelial cell proliferation than wild-type endostatin. We characterize the angiogenic switch, which occurs during the transition from preinvasive lesions to invasive carcinoma in this model, and which is accompanied by a significant increase in total protein levels of vascular endothelial growth factor (VEGF) and an invasion of blood vessels. Expression of the VEGF(188) mRNA isoform, however, is suppressed in invasive carcinomas. The VEGF receptors fetal liver kinase-1 (Flk-1) and Fms-like tyrosine kinase-1 (Flt-1) become highly expressed in epithelial tumor and endothelial cells in the mammary carcinomas, suggesting a potential autocrine effect for VEGF on tumor cell growth. Angiopoietin-2 mRNA levels are also increased during tumor progression. CD-31 (platelet-endothelial cell adhesion molecule [PECAM]) staining revealed that blood vessels developed in tumors larger than 1 mm The administration of P125A human endostatin in C3(1)/Tag females resulted in a significant delay in tumor onset, decreased tumor multiplicity and tumor burden and prolonged survival of the animals. Endostatin treatment did not reduce the number of preinvasive lesions, proliferation rates or apoptotic index, compared with controls. However, mRNA levels of a variety of proangiogenic factors (VEGF, VEGF receptors Flk-1 and Flt-1, angiopoietin-2, Tie-1, cadherin-5 and PECAM) were significantly decreased in the endostatin-treated group compared with controls. These results demonstrate that P125A endostatin inhibits the angiogenic switch during mammary gland adenocarcinoma tumor progression in the C3(1)/Tag transgenic model. Copyright 2002 Wiley-Liss, Inc.

  6. Lactation stage-dependent expression of transporters in rat whole mammary gland and primary mammary epithelial organoids.

    PubMed

    Gilchrist, Samuel E; Alcorn, Jane

    2010-04-01

    Since solute carrier (SLC) and ATP-binding cassette (ABC) transporters play pivotal roles in the transport of both nutrients and drugs into breast milk, drug-nutrient transport interactions at the lactating mammary gland are possible. Our purpose was to characterize lactation stage-dependent changes in transporter expression in rat mammary gland and isolated mammary epithelial organoids (MEO) to provide additional insight for the safe use of maternal medications during breastfeeding. We used quantitative reverse transcription-polymerase chain reaction to assess the temporal expression patterns of SLC and ABC transporters in rat mammary gland and isolated MEO at different stages of lactation. In whole mammary gland five distinct patterns of expression emerged relative to late gestation: (i) decreasing throughout lactation (Mdr1a, Mdr1b, Mrp1, Octn2, Ent2, Ent3, Ncbt2, Mtx1); (ii) prominent increase in early lactation, which may remain elevated or decline with advancing lactation (Octn1, Cnt2, Cnt3, Ent1, Pept1, Pept2); (iii) constant but decreasing later in lactation (Octn3, Dmt1); (iv) increasing until mid-to-late lactation (Oct1, Cnt1); and (v) prominent increase late in lactation (Ncbt1). In isolated MEO (an enriched source of mammary epithelial cells) major differences in expression patterns were noted for Octn3, Ncbt1, and Mtx1, but otherwise were reasonably similar with the whole mammary gland. In conclusion our study augments existing data on transporter expression in the lactating mammary gland. These data should facilitate investigations into lactation-stage dependent changes in drug or nutrient milk-to-serum concentration ratios, the potential for drug- or disease-transporter interactions, and mechanistic studies of transporter function in the lactating mammary gland.

  7. The ShcA SH2 domain engages a 14-3-3/PI3'K signaling complex and promotes breast cancer cell survival.

    PubMed

    Ursini-Siegel, J; Hardy, W R; Zheng, Y; Ling, C; Zuo, D; Zhang, C; Podmore, L; Pawson, T; Muller, W J

    2012-11-29

    The ShcA adapter protein transmits activating signals downstream of receptor and cytoplasmic tyrosine kinases through the establishment of phosphotyrosine-dependent complexes. In this regard, ShcA possesses both a phosphotyrosine-binding domain (PTB) and Src homology 2 domain (SH2), which bind phosphotyrosine residues in a sequence-specific manner. Although the majority of receptor tyrosine kinases expressed in breast cancer cells bind the PTB domain, very little is known regarding the biological importance of SH2-driven ShcA signaling during mammary tumorigenesis. To address this, we employed transgenic mice expressing a mutant ShcA allele harboring a non-functional SH2 domain (ShcR397K) under the transcriptional control of the endogenous ShcA promoter. Using transplantation approaches, we demonstrate that SH2-dependent ShcA signaling within the mammary epithelial compartment is essential for breast tumor outgrowth, survival and the development of lung metastases. We further show that the ShcA SH2 domain activates the AKT pathway, potentially through a novel SH2-mediated complex between ShcA, 14-3-3ζ and the p85 regulatory subunit of phosphatidylinositol 3 (PI3') kinase. This study is the first to demonstrate that the SH2 domain of ShcA is critical for tumor survival during mammary tumorigenesis.

  8. RUNX1 and FOXP3 interplay regulates expression of breast cancer related genes

    PubMed Central

    Recouvreux, María Sol; Grasso, Esteban Nicolás; Echeverria, Pablo Christian; Rocha-Viegas, Luciana; Castilla, Lucio Hernán; Schere-Levy, Carolina; Tocci, Johanna Melisa; Kordon, Edith Claudia; Rubinstein, Natalia

    2016-01-01

    Runx1 participation in epithelial mammary cells is still under review. Emerging data indicates that Runx1 could be relevant for breast tumor promotion. However, to date no studies have specifically evaluated the functional contribution of Runx1 to control gene expression in mammary epithelial tumor cells. It has been described that Runx1 activity is defined by protein context interaction. Interestingly, Foxp3 is a breast tumor suppressor gene. Here we show that endogenous Runx1 and Foxp3 physically interact in normal mammary cells and this interaction blocks Runx1 transcriptional activity. Furthermore we demonstrate that Runx1 is able to bind to R-spondin 3 (RSPO3) and Gap Junction protein Alpha 1 (GJA1) promoters. This binding upregulates Rspo3 oncogene expression and downregulates GJA1 tumor suppressor gene expression in a Foxp3-dependent manner. Moreover, reduced Runx1 transcriptional activity decreases tumor cell migration properties. Collectively, these data provide evidence of a new mechanism for breast tumor gene expression regulation, in which Runx1 and Foxp3 physically interact to control mammary epithelial cell gene expression fate. Our work suggests for the first time that Runx1 could be involved in breast tumor progression depending on Foxp3 availability. PMID:26735887

  9. RUNX1 and FOXP3 interplay regulates expression of breast cancer related genes.

    PubMed

    Recouvreux, María Sol; Grasso, Esteban Nicolás; Echeverria, Pablo Christian; Rocha-Viegas, Luciana; Castilla, Lucio Hernán; Schere-Levy, Carolina; Tocci, Johanna Melisa; Kordon, Edith Claudia; Rubinstein, Natalia

    2016-02-09

    Runx1 participation in epithelial mammary cells is still under review. Emerging data indicates that Runx1 could be relevant for breast tumor promotion. However, to date no studies have specifically evaluated the functional contribution of Runx1 to control gene expression in mammary epithelial tumor cells. It has been described that Runx1 activity is defined by protein context interaction. Interestingly, Foxp3 is a breast tumor suppressor gene. Here we show that endogenous Runx1 and Foxp3 physically interact in normal mammary cells and this interaction blocks Runx1 transcriptional activity. Furthermore we demonstrate that Runx1 is able to bind to R-spondin 3 (RSPO3) and Gap Junction protein Alpha 1 (GJA1) promoters. This binding upregulates Rspo3 oncogene expression and downregulates GJA1 tumor suppressor gene expression in a Foxp3-dependent manner. Moreover, reduced Runx1 transcriptional activity decreases tumor cell migration properties. Collectively, these data provide evidence of a new mechanism for breast tumor gene expression regulation, in which Runx1 and Foxp3 physically interact to control mammary epithelial cell gene expression fate. Our work suggests for the first time that Runx1 could be involved in breast tumor progression depending on Foxp3 availability.

  10. Establishment of mammary gland model in vitro: culture and evaluation of a yak mammary epithelial cell line.

    PubMed

    Fu, Mei; Chen, Yabing; Xiong, Xianrong; Lan, Daoliang; Li, Jian

    2014-01-01

    This study aimed to establish yak mammary epithelial cells (YMECs) for an in vitro model of yak mammary gland biology. The primary culture of YMECs was obtained from mammary gland tissues of lactating yak and then characterized using immunocytochemistry, RT-PCR, and western blot analysis. Whether foreign genes could be transfected into the YMECs were examined by transfecting the EGFP gene into the cells. Finally, the effect of Staphylococcus aureus infection on YMECs was determined. The established YMECs retained the mammary epithelial cell characteristics. A spontaneously immortalized yak mammary epithelial cell line was established and could be continuously subcultured for more than 60 passages without senescence. The EGFP gene was successfully transferred into the YMECs, and the transfected cells could be maintained for a long duration in the culture by continuous subculturing. The cells expressed more antimicrobial peptides upon S.aureus invasion. Therefore, the established cell line could be considered a model system to understand yak mammary gland biology.

  11. Circulating tumor cells promote the metastatic colonization of disseminated carcinoma cells by inducing systemic inflammation

    PubMed Central

    Luo, Chao; Shu, Yu; Luo, Jing; Qin, Jian; Wang, Yu; Li, Dong; Wang, Shan-Shan; Chi, Gang; Guo, Fang; Zhang, Gui-Mei; Feng, Zuo-Hua

    2017-01-01

    Circulating tumor cells (CTCs) have been studied well in the prognosis for malignant diseases as liquid biopsy, but their contribution to tumor metastasis is not clearly defined. Here we report that CTCs could promote the metastatic colonization of disseminated carcinoma cells by inducing systemic inflammation and neutrophil recruitment to pre-metastatic organs. Depletion of neutrophils in vivo could effectively abrogate the promoting effect of CTCs on tumor cell metastasis. In the presence of CTCs, the pro-tumor function of neutrophils was augmented, whereas the antitumor function of neutrophils was suppressed. Mechanically, CTC-derived ligands for TLR2 and TLR4 (TLR2/4) induced the systemic inflammation, thus increasing the production of proinflammatory cytokines such as G-CSF and IL-6 that could induce the conversion of neutrophil function from tumor-suppressing to tumor-promoting. Moreover, CTCs induced the production of endogenous TLR2/4 ligands such as S100A8, S100A9, and SAA3, which may amplify the stimulating effect that induces the expression of proinflammatory cytokines. The promoting effect of CTCs on tumor cell metastasis could be abrogated by suppressing inflammatory response with IL-37, an anti-inflammatory cytokine, or blocking CTC-derived ligands for TLR2/4. Identification of the metastatic axis of CTCs/systemic inflammation/neutrophils may provide potential targets for preventing tumor cell metastasis. PMID:28415700

  12. A 3D Fibroblast-Epithelium Co-culture Model for Understanding Microenvironmental Role in Branching Morphogenesis of the Mammary Gland.

    PubMed

    Koledova, Zuzana; Lu, Pengfei

    2017-01-01

    The mammary gland consists of numerous tissue compartments, including mammary epithelium, an array of stromal cells, and the extracellular matrix (ECM). Bidirectional interactions between the epithelium and its surrounding stroma are essential for proper mammary gland development and homeostasis, whereas their deregulation leads to developmental abnormalities and cancer. To study the relationships between the epithelium and the stroma, development of models that could recapitulate essential aspects of these interacting systems in vitro has become necessary. Here we describe a three-dimensional (3D) co-culture assay and show that the addition of fibroblasts to mammary organoid cultures promotes the epithelium to undergo branching morphogenesis, thus allowing the role of the stromal microenvironment to be examined in this essential developmental process.

  13. In vivo and in vitro anti-tumor and anti-metastasis effects of Coriolus versicolor aqueous extract on mouse mammary 4T1 carcinoma.

    PubMed

    Luo, Ke-Wang; Yue, Grace Gar-Lee; Ko, Chun-Hay; Lee, Julia Kin-Ming; Gao, Si; Li, Long-Fei; Li, Gang; Fung, Kwok-Pui; Leung, Ping-Chung; Lau, Clara Bik-San

    2014-01-01

    Coriolus versicolor (CV), a medicinal mushroom widely consumed in Asian countries, has been demonstrated to be effective in stimulation of immune system and inhibition of tumor growth. The present study aimed to investigate the anti-tumor and anti-metastasis effects of CV aqueous extract in mouse mammary carcinoma 4T1 cells and in 4T1-tumor bearing mouse model. Our results showed that CV aqueous extract (0.125-2 mg/ml) did not inhibit 4T1 cell proliferation while the non-cytotoxic dose of CV extract (1-2 mg/ml) significantly inhibited cell migration and invasion (p<0.05). Besides, the enzyme activities and protein levels of MMP-9 were suppressed by CV extract significantly. Animal studies showed that CV aqueous extract (1 g/kg, orally-fed daily for 4 weeks) was effective in decreasing the tumor weight by 36%, and decreased the lung metastasis by 70.8% against untreated control. Besides, micro-CT analysis of the tumor-bearing mice tibias indicated that CV extract was effective in bone protection against breast cancer-induced bone destruction as the bone volume was significantly increased. On the other hand, CV aqueous extract treatments resulted in remarkable immunomodulatory effects, which was reflected by the augmentation of IL-2, 6, 12, TNF-α and IFN-γ productions from the spleen lymphocytes of CV-treated tumor-bearing mice. In conclusion, our results demonstrated for the first time that the CV aqueous extract exhibited anti-tumor, anti-metastasis and immunomodulation effects in metastatic breast cancer mouse model, and could protect the bone from breast cancer-induced bone destruction. These findings provided scientific evidences for the clinical application of CV aqueous extract in breast cancer patients. Copyright © 2014 Elsevier GmbH. All rights reserved.

  14. Isolation of stem-like cells from spontaneous feline mammary carcinomas: phenotypic characterization and tumorigenic potential.

    PubMed

    Barbieri, Federica; Wurth, Roberto; Ratto, Alessandra; Campanella, Chiara; Vito, Guendalina; Thellung, Stefano; Daga, Antonio; Cilli, Michele; Ferrari, Angelo; Florio, Tullio

    2012-04-15

    Current carcinogenesis theory states that only a small subset of tumor cells, the cancer stem cells or tumor initiating cells (TICs), are responsible for tumor formation and progression. Human breast cancer-initiating cells have been identified as CD44-expressing cells, which retain tumorigenic activity and display stem cell-like properties. Spontaneous feline mammary carcinoma (FMC) is an aggressive cancer, which shows biological similarities to the human tumor counterpart. We report the isolation and phenotypic characterization of FMC-derived stem/progenitor cells, showing in vitro self-renewal, long-lasting proliferation and in vivo tumorigenicity. Twenty-one FMC samples were collected, histologically classified and characterized for the expression of Ki67, EGFR, ER-α and CD44, by immunohistochemistry. By culture in stem cell permissive conditions, we isolated, from 13 FMCs, a CD44-positive subpopulation able to survive and proliferate in vitro as mammospheres of different sizes and morphologies. When injected in NOD/SCID mice, FMC stem-like cells initiate tumors, generating cell heterogeneity and recapitulating the original histotype. In serum-containing medium, spheroid cells showed differentiation properties as shown by morphological changes, the loss of CD44 expression and tumorigenic potential. These data show that stem-defined culture of FMC enriches for TICs and validate the use of these cells as a suitable model for comparative oncology studies of mammary biology and testing therapeutic strategies aimed at eradicating TICs. Copyright © 2012 Elsevier Inc. All rights reserved.

  15. The irreversible ERBB1/2/4 inhibitor neratinib interacts with the BCL-2 inhibitor venetoclax to kill mammary cancer cells.

    PubMed

    Booth, Laurence; Roberts, Jane L; Avogadri-Connors, Francesca; Cutler, Richard E; Lalani, Alshad S; Poklepovic, Andrew; Dent, Paul

    2018-03-04

    The irreversible ERBB1/2/4 inhibitor, neratinib, down-regulates the expression of ERBB1/2/4 as well as the levels of MCL-1 and BCL-XL. Venetoclax (ABT199) is a BCL-2 inhibitor. At physiologic concentrations neratinib interacted in a synergistic fashion with venetoclax to kill HER2 + and TNBC mammary carcinoma cells. This was associated with the drug-combination: reducing the expression and phosphorylation of ERBB1/2/3; in an eIF2α-dependent fashion reducing the expression of MCL-1 and BCL-XL and increasing the expression of Beclin1 and ATG5; and increasing the activity of the ATM-AMPKα-ULK1 S317 pathway which was causal in the formation of toxic autophagosomes. Although knock down of BAX or BAK reduced drug combination lethality, knock down of BAX and BAK did not prevent the drug combination from increasing autophagosome and autolysosome formation. Knock down of ATM, AMPKα, Beclin1 or over-expression of activated mTOR prevented the induction of autophagy and in parallel suppressed tumor cell killing. Knock down of ATM, AMPKα, Beclin1 or cathepsin B prevented the drug-induced activation of BAX and BAK whereas knock down of BID was only partially inhibitory. A 3-day transient exposure of established estrogen-independent HER2 + BT474 mammary tumors to neratinib or venetoclax did not significantly alter tumor growth whereas exposure to [neratinib + venetoclax] caused a significant 7-day suppression of growth by day 19. The drug combination neither altered animal body mass nor behavior. We conclude that venetoclax enhances neratinib lethality by facilitating toxic BH3 domain protein activation via autophagy which enhances the efficacy of neratinib to promote greater levels of cell killing.

  16. Carcinoma associated fibroblasts (CAFs) promote breast cancer motility by suppressing mammalian Diaphanous-related formin-2 (mDia2).

    PubMed

    Dvorak, Kaitlyn M; Pettee, Krista M; Rubinic-Minotti, Kaitlin; Su, Robin; Nestor-Kalinoski, Andrea; Eisenmann, Kathryn M

    2018-01-01

    The tumor microenvironment (TME) promotes tumor cell invasion and metastasis. An important step in the shift to a pro-cancerous microenvironment is the transformation of normal stromal fibroblasts to carcinoma-associated fibroblasts (CAFs). CAFs are present in a majority of solid tumors and can directly promote tumor cell motility via cytokine, chemokine and growth factor secretion into the TME. The exact effects that the TME has upon cytoskeletal regulation in motile tumor cells remain enigmatic. The conserved formin family of cytoskeleton regulating proteins plays an essential role in the assembly and/or bundling of unbranched actin filaments. Mammalian Diaphanous-related formin 2 (mDia2/DIAPH3/Drf3/Dia) assembles a dynamic F-actin cytoskeleton that underlies tumor cell migration and invasion. We therefore sought to understand whether CAF-derived chemokines impact breast tumor cell motility through modification of the formin-assembled F-actin cytoskeleton. In MDA-MB-231 cells, conditioned media (CM) from WS19T CAFs, a human breast tumor-adjacent CAF line, significantly and robustly increased wound closure and invasion relative to normal human mammary fibroblast (HMF)-CM. WS19T-CM also promoted proteasome-mediated mDia2 degradation in MDA-MB-231 cells relative to control HMF-CM and WS21T CAF-CM, a breast CAF cell line that failed to promote robust MDA-MB-231 migration. Cytokine array analysis of CM identified up-regulated secreted factors in WS19T relative to control WS21T CM. We identified CXCL12 as a CM factor influencing loss of mDia2 protein while increasing MDA-MB-231 cell migration. Our data suggest a mechanism whereby CAFs promote tumor cell migration and invasion through CXCL12 secretion to regulate the mDia2-directed cytoskeleton in breast tumor cells.

  17. Salvia officinalis L. induces alveolar bud growing in adult female rat mammary glands

    PubMed Central

    Monsefi, Malihezaman; Abedian, Mehrnaz; Azarbahram, Zahra; Ashraf, Mohammad Javad

    2015-01-01

    Objectives: In traditional medicine Salvia officinalis (sage) has been used as menstrual cycle regulator. In the present study the effects of sage extract on breast tissue were examined. Materials and Methods: Fourteen female rats were divided into two groups: 1) Distilled water-treated rats (Con) that were gavaged with 1ml distilled water and 2) Saliva officinalis hydroalcoholic extract (SHE)-treated rats that were gavaged with 30mg/kg/body weight of sage extract for 30 days. The estrus cycle changes were monitored by daily examination of vaginal smear. Whole mounts of right pelvic breast were spread on the slide and stained by carmine. The number of alveolar buds (ABs) type 1 and 2 and lobules of mammary gland were scored. Tissue sections of left pelvic mammary gland were prepared and its histomorphometrical changes were measured. Blood samples were taken from dorsal aorta and estradiol and progesterone concentrations were measured using radioimmunoassay. Results: Estrous cycles decreased significantly in SHE-treated animals. The number of alveolar buds and lobules in mammary gland whole mount of SHE-treated group were higher than the Con group. The number and diameter of ducts in histological section of mammary gland in SHE-treated group increased as compared to the Con group. Conclusion: Sage promotes alveologenesis of mammary glands and it can be used as a lactiferous herb. PMID:26693413

  18. Mammary gland development and response to prenatal atrazine exposure in the Sprague Dawley and Long-Evans rats.

    EPA Science Inventory

    Mammary gland (MG) tumor development in Sprague Dawley (SD) rats is increased by longterm dietary exposure to the chlorotriazine herbicide atrazine (ATR). ATR is proposed to cause these changes in the adult SD rat by altering hormonally-regulated estrous cyclicity. In Long-Evans...

  19. Inhibition of benzo(a)pyrene-induced mammary carcinogenesis by retinyl acetate. [Rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCormick, D.L.; Burns, F.J.; Albert, R.E.

    1981-03-01

    The administration of a 250-ppM retinyl acetate dietary supplement for various periods relative to intragastric administration of 50 mg benzo(a)pyrene (BP) significantly inhibited the induction of mammary cancers in virgin female inbred LEW/Mai rats. With day of BP administration taken as time 0, groups receiving the retinoid from weeks -2 to +1, +1 to +90, +20 to +90, and -2 to +90 showed a significant reduction in tumor response as compared to controls. The inhibition of carcinogenesis achieved by a +1 to +20 administration schedule was temporary. A 2-week exposure to supplemental retinyl acetate significantly reduced the mammary gland parenchymalmore » cell labeling index in ductal, alveolar, and terminal end bud structures. Beginning the retinyl acetate supplement 1 week after the administration of BP significantly reduced the number of terminal ductal hyperplasias. The inhibition of carcinogenesis achieved by a short period of retinyl acetate administration before and during the period of carcinogen availability as well as the inhibition achieved by long-term postcarcinogen retinoid exposure may involve an antiproliferative effect on the rat mammary gland.« less

  20. Diverse spectrum of tumors in male Sprague-Dawley rats following single high doses of N-ethyl-N-nitrosourea (ENU).

    PubMed Central

    Stoica, G.; Koestner, A.

    1984-01-01

    In this study, 30-day-old male Sprague-Dawley rats, were inoculated intraperitoneally with a single dose of 45, 90, and 180 mg/kg of N-ethyl-N-Nitrosourea (ENU). A wide spectrum of neoplasms occurred. The most common tumors were those of the mammary gland and of the nervous system. Although the incidence of mammary tumors was highest in the two high-dose groups (90 and 180 mg/kg ENU), the incidence of neurogenic tumors was highest in the 45 mg/kg dose group. Mammary tumor development led to early death and precluded development of tumors of the nervous system, which require a longer latency period. A variety of neoplasms of other organs have been associated particularly with high doses of ENU, including ameloblastic tumors, carcinomas of the thyroid, prostate, kidney, pancreas, intestine, and lung, hemilymphatic tumors, and sarcomas. It is concluded that large doses of ENU are capable of expanding the tumor spectrum in young male rats beyond the target organs generally affected with lower doses, as described in earlier reports. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 PMID:6465287

  1. Virus-like particles in cystic mammary adenoma of a snow leopard.

    PubMed

    Chandra, S; Laughlin, D C

    1975-11-01

    Virus-like particles were observed in the giant cells of a mammary adenoma of a snow leopard kept in captivity. Particles that measured 115 to 125 nm in diameter budded from the lamella of endoplasmic reticulum and were studded on their inner surfaces with dense granules (approximately 12 nm) that gave them their unique ultrastructural morphology. Such particles were not observed extracellularly. Type B or type C particles were not seen in the tumor tissue.

  2. Radiogenic transformation of human mammary epithelial cells in vitro

    NASA Technical Reports Server (NTRS)

    Yang, T. C.; Georgy, K. A.; Tavakoli, A.; Craise, L. M.; Durante, M.

    1996-01-01

    Cancer induction by space radiations is a major concern for manned space exploration. Accurate assessment of radiation risk at low doses requires basic understanding of mechanism(s) of radiation carcinogenesis. For determining the oncogenic effects of ionizing radiation in human epithelial cells, we transformed a mammary epithelial cell line (185B5), which was immortalized by benzo(a)pyrene, with energetic heavy ions and obtained several transformed clones. These transformed cells showed growth properties on Matrigel similar to human mammary tumor cells. To better understand the mechanisms of radiogenic transformation of human cells, we systematically examined the alterations in chromosomes and cancer genes. Among 16 autosomes examined for translocations, by using fluorescence in situ hybridization (FISH) technique, chromosomes 3, 12, 13, 15, 16, and 18 appeared to be normal in transformed cells. Chromosomes 1, 4, 6, 8, and 17 in transformed cells, however, showed patterns different from those in nontransformed cells. Southern blot analyses indicated no detectable alterations in myc, ras, Rb, or p53 genes. Further studies of chromosome 17 by using in situ hybridization with unique sequence p53 gene probe and a centromere probe showed no loss of p53 gene in transformed cells. Experimental results from cell fusion studies indicated that the transforming gene(s) is recessive. The role of genomic instability and tumor suppressor gene(s) in radiogenic transformation of human breast cells remains to be identified.

  3. Using Mouse Mammary Tumor Cells to Teach Core Biology Concepts: A Simple Lab Module.

    PubMed

    McIlrath, Victoria; Trye, Alice; Aguanno, Ann

    2015-06-18

    Undergraduate biology students are required to learn, understand and apply a variety of cellular and molecular biology concepts and techniques in preparation for biomedical, graduate and professional programs or careers in science. To address this, a simple laboratory module was devised to teach the concepts of cell division, cellular communication and cancer through the application of animal cell culture techniques. Here the mouse mammary tumor (MMT) cell line is used to model for breast cancer. Students learn to grow and characterize these animal cells in culture and test the effects of traditional and non-traditional chemotherapy agents on cell proliferation. Specifically, students determine the optimal cell concentration for plating and growing cells, learn how to prepare and dilute drug solutions, identify the best dosage and treatment time course of the antiproliferative agents, and ascertain the rate of cell death in response to various treatments. The module employs both a standard cell counting technique using a hemocytometer and a novel cell counting method using microscopy software. The experimental procedure lends to open-ended inquiry as students can modify critical steps of the protocol, including testing homeopathic agents and over-the-counter drugs. In short, this lab module requires students to use the scientific process to apply their knowledge of the cell cycle, cellular signaling pathways, cancer and modes of treatment, all while developing an array of laboratory skills including cell culture and analysis of experimental data not routinely taught in the undergraduate classroom.

  4. Effects of Dietary Xanthophylls, Canthaxanthin and Astaxanthin on N-Methyl-N-nitrosourea-induced Rat Mammary Carcinogenesis.

    PubMed

    Yuri, Takashi; Yoshizawa, Katsuhiko; Emoto, Yuko; Kinoshita, Yuichi; Yuki, Michiko; Tsubura, Airo

    Natural xanthophylls, canthaxanthin and astaxanthin are known to exhibit anticancer activity. However, the dietary effects of canthaxanthin and astaxanthin on N-methyl-N-nitrosourea (MNU)-induced mammary cancer remain controversial, and their mechanisms of action have not been clearly identified. Three-week-old female Sprague-Dawley rats were fed a xanthophyll-free (basal diet) diet or experimental diets containing canthaxanthin or astaxanthin (0.04% and 0.4%) for 5 weeks (until 8 weeks of age), after which all rats were provided the basal diet (n=15 each). Rats were administered MNU at 6 weeks of age, and the incidence of mammary tumors at 20 weeks of age was compared. The expression of adiponectin in mammary adipose tissues taken at 7 weeks of age was also compared. Compared to the basal diet group, the 0.4% (but not the 0.04%) astaxanthin diet significantly reduced the incidence of palpable mammary carcinoma (92% vs. 42%; p<0.05), while the low and high canthaxanthin diets produced no significant inhibition. Adiponectin immunoblotting showed significantly higher expression in the 0.4% astaxanthin diet group, while the other groups were similar to the basal diet group. High concentrations of astaxanthin suppress MNU-induced mammary carcinoma. Changes in adiponectin may be involved in the mechanism of action. Copyright © 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  5. Polyamine-Blocking Therapy Reverses Immunosuppression in the Tumor Microenvironment

    PubMed Central

    Hayes, Candace S.; Shicora, Allyson C.; Keough, Martin P.; Snook, Adam E.; Burns, Mark R.; Gilmour, Susan K.

    2014-01-01

    Correcting T cell immunosuppression may unleash powerful antitumor responses, however, knowledge about the mechanisms and modifiers that may be targeted to improve therapy remains incomplete. Here we report that polyamine elevation in cancer, a common metabolic aberration in aggressive lesions, contributes significantly to tumor immunosuppression and that a polyamine depletion strategy can exert antitumor effects that may also promote immunity. A polyamine-blocking therapy (PBT) that combines the well-characterized ornithine decarboxylase (ODC) inhibitor difluoromethylornithine (DFMO) with AMXT1501, a novel inhibitor of the polyamine transport system, blocked tumor growth in immunocompetent mice but not in athymic nude mice lacking T cells. PBT had little effect on the proliferation of epithelial tumor cells but it increased the number of apoptotic cells. Analysis of CD45+ tumor immune infiltrates revealed that PBT decreased levels of Gr-1+CD11b+ myeloid suppressor cells and increased CD3+ T cells. Strikingly, in a model of neoadjuvant therapy, mice administered PBT one week before surgical resection of engrafted mammary tumors exhibited resistance to subsequent tumor re-challenge. Collectively, our results indicate that therapies targeting polyamine metabolism do not act exclusively as anti-proliferative agents, but also act strongly to prevent immune escape by the tumor. PBT may offer a general approach to heighten immune responses in cancer. PMID:24778323

  6. Strain Differences in Dimethylbenz[a]anthracene-Induced Mammary Tumor Incidence in Long Evans and Sprague Dawley Rat Offspring Following Prenatal Atrazine Exposure

    EPA Science Inventory

    It has been shown that prenatal exposure to the chlorotriazine herbicide atrazine (ATR) during mammary bud outgrowth (late gestation) delays postnatal mammary epithelial progression in Long Evans (LE) rats. Our laboratory has recently found that prenatal exposure to ATR also effe...

  7. Primary mammary mucinous cystadenocarcinoma: cytological and histological findings.

    PubMed

    Sentani, Kazuhiro; Tashiro, Takashi; Uraoka, Naohiro; Aosaki, Yoriyuki; Yano, Satomi; Takaeko, Fumio; Yasui, Wataru

    2012-07-01

    Mucinous cystadenocarcinoma (MCA), commonly encountered in the ovary or pancreas, is rare in the breast and was only recently described as a distinct variant of invasive ductal carcinoma of the breast. Only 11 cases of primary mammary MCA have been reported. In this article, we report a case of primary mammary MCA with focus on cytological and histological findings. A 65-year-old female noticed right palpable breast mass. Sonography showed an irregularly shaped 2.8 × 2.4 cm lesion in the upper outer quadrant of the right breast. Fine-needle aspiration cytology was performed on the right breast nodule, and cytopathologic examination suggested an adenocarcinoma composed of tall columnar cells with mucin. A partial mastectomy of the right breast and the axillary lymph nodes dissection was performed. The gross examination revealed a well-demarcated and mucus-filled tumor. Histologically, it had complex papillae, some of which were supported by delicate fibrovascular stroma lined by simple to slightly stratified columnar neoplastic epithelial cells with intracellular mucin, coexisting with MCA in situ and ordinary intraductal carcinoma component (ICC). Immunohistochemically, ICC was HER2-negative and estrogen receptor/progesterone receptor-positive, while MCA was triple negative. MCA might be derived from a metaplasia of ordinary ICC, but its pathogenesis and biologic behavior remains unclear. Despite the invasive nature of mammary MCA, these carcinomas appear to be associated with a good prognosis. The patient has remained well and disease-free for 6 months after the operation. Copyright © 2011 Wiley Periodicals, Inc.

  8. Senescence from glioma stem cell differentiation promotes tumor growth

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ouchi, Rie; Laboratory of Molecular Target Therapy of Cancer, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 3-8-31 Ariake, Koto-ku, Tokyo 135-8550; Okabe, Sachiko

    Glioblastoma (GBM) is a lethal brain tumor composed of heterogeneous cellular populations including glioma stem cells (GSCs) and differentiated non-stem glioma cells (NSGCs). While GSCs are involved in tumor initiation and propagation, NSGCs' role remains elusive. Here, we demonstrate that NSGCs undergo senescence and secrete pro-angiogenic proteins, boosting the GSC-derived tumor formation in vivo. We used a GSC model that maintains stemness in neurospheres, but loses the stemness and differentiates into NSGCs upon serum stimulation. These NSGCs downregulated telomerase, shortened telomeres, and eventually became senescent. The senescent NSGCs released pro-angiogenic proteins, including vascular endothelial growth factors and senescence-associated interleukins, such asmore » IL-6 and IL-8. Conditioned medium from senescent NSGCs promoted proliferation of brain microvascular endothelial cells, and mixed implantation of GSCs and senescent NSGCs into mice enhanced the tumorigenic potential of GSCs. The senescent NSGCs seem to be clinically relevant, because both clinical samples and xenografts of GBM contained tumor cells that expressed the senescence markers. Our data suggest that senescent NSGCs promote malignant progression of GBM in part via paracrine effects of the secreted proteins. - Highlights: • Non-stem glioma cells (NSGCs) lose telomerase and eventually become senescent. • Senescent NSGCs secrete pro-angiogenic proteins, such as VEGFs, IL-6, and IL-8. • Senescent NSGCs enhance the growth of brain microvascular endothelial cells. • Senescent NSGCs enhance the tumorigenic potential of glioma stem cells in vivo.« less

  9. Mammary and extramammary Paget's disease*

    PubMed Central

    Lopes, Lauro Lourival; Lopes, Ione Maria Ribeiro Soares; Lopes, Lauro Rodolpho Soares; Enokihara, Milvia M. S. S.; Michalany, Alexandre Osores; Matsunaga, Nobuo

    2015-01-01

    Paget's disease, described by Sir James Paget in 1874, is classified as mammary and extramammary. The mammary type is rare and often associated with intraductal cancer (93-100% of cases). It is more prevalent in postmenopausal women and it appears as an eczematoid, erythematous, moist or crusted lesion, with or without fine scaling, infiltration and inversion of the nipple. It must be distinguished from erosive adenomatosis of the nipple, cutaneous extension of breast carcinoma, psoriasis, atopic dermatitis, contact dermatitis, chronic eczema, lactiferous ducts ectasia, Bowen's disease, basal cell carcinoma, melanoma and intraductal papilloma. Diagnosis is histological and prognosis and treatment depend on the type of underlying breast cancer. Extramammary Paget's disease is considered an adenocarcinoma originating from the skin or skin appendages in areas with apocrine glands. The primary location is the vulvar area, followed by the perianal region, scrotum, penis and axillae. It starts as an erythematous plaque of indolent growth, with well-defined edges, fine scaling, excoriations, exulcerations and lichenification. In most cases it is not associated with cancer, although there are publications linking it to tumors of the vulva, vagina, cervix and corpus uteri, bladder, ovary, gallbladder, liver, breast, colon and rectum. Differential diagnoses are candidiasis, psoriasis and chronic lichen simplex. Histopathology confirms the diagnosis. Before treatment begins, associated malignancies should be investigated. Surgical excision and micrographic surgery are the best treatment options, although recurrences are frequent. PMID:25830993

  10. In Vivo Monitoring of pH, Redox Status, and Glutathione Using L-Band EPR for Assessment of Therapeutic Effectiveness in Solid Tumors

    PubMed Central

    Bobko, Andrey A.; Eubank, Timothy D.; Voorhees, Jeffrey L.; Efimova, Olga V.; Kirilyuk, Igor A.; Petryakov, Sergey; Trofimiov, Dmitrii G.; Marsh, Clay B.; Zweier, Jay L.; Grigor’ev, Igor A.; Samouilov, Alexandre; Khramtsov, Valery V.

    2011-01-01

    Approach for in vivo real-time assessment of tumor tissue extracellular pH (pHe), redox, and intracellular glutathione based on L-band EPR spectroscopy using dual function pH and redox nitroxide probe and disulfide nitroxide biradical, is described. These parameters were monitored in PyMT mice bearing breast cancer tumors during treatment with granulocyte macrophage colony-stimulating factor. It was observed that tumor pHe is about 0.4 pH units lower than that in normal mammary gland tissue. Treatment with granulocyte macrophage colony-stimulating factor decreased the value of pHe by 0.3 units compared with PBS control treatment. Tumor tissue reducing capacity and intracellular glutathione were elevated compared with normal mammary gland tissue. Granulocyte macrophage colony-stimulating factor treatment resulted in a decrease of the tumor tissue reducing capacity and intracellular glutathione content. In addition to spectroscopic studies, pHe mapping was performed using recently proposed variable frequency proton–electron double-resonance imaging. The pH mapping superimposed with MRI image supports probe localization in mammary gland/tumor tissue, shows high heterogeneity of tumor tissue pHe and a difference of about 0.4 pH units between average pHe values in tumor and normal mammary gland. In summary, the developed multifunctional approach allows for in vivo, noninvasive pHe, extracellular redox, and intracellular glutathione content monitoring during investigation of various therapeutic strategies for solid tumors. Magn Reson Med 000:000–000, 2011. PMID:22113626

  11. Identification of CRASH, a gene deregulated in gynecological tumors.

    PubMed

    Evtimova, Vesna; Zeillinger, Robert; Kaul, Sepp; Weidle, Ulrich H

    2004-01-01

    We have identified CRASH, a human asparaginase-like protein which is composed of 308 amino acids and exhibits 32% homology to human aspartylglucosaminadase at the amino acid level. Database analysis revealed that the gene corresponding to CRASH is composed of 7 exons and 6 introns. Steady-state level of CRASH mRNA was found to be increased in 5 cell lines derived from metastatic lesions compared with 2 cell lines derived from primary mammary carcinoma and HMEC (human mammary epithelial cells). We found that the mRNA level of CRASH correlates with the metastatic propensity of several isogenic human colon cancer and pancreatic carcinoma cell lines. CRASH corresponds to a recently identified sperm autoantigen and furthermore we have demonstrated inducibility of CRASH mRNA by androgen and progesterone. Investigation of several types of human cancers and their corresponding normal tissues revealed high levels of CRASH mRNA in uterine, mammary and ovarian tumors compared with the corresponding normal tissues. CRASH mRNA expression was analysed in breast cancer samples with disclosed clinico-pathological features and corresponding normal tissues. The levels of CRASH mRNA were significantly up-regulated in tumors compared with normal breast tissues and correlate with lack of estrogen receptor expression of the tumors.

  12. Human mammary microenvironment better regulates the biology of human breast cancer in humanized mouse model.

    PubMed

    Zheng, Ming-Jie; Wang, Jue; Xu, Lu; Zha, Xiao-Ming; Zhao, Yi; Ling, Li-Jun; Wang, Shui

    2015-02-01

    During the past decades, many efforts have been made in mimicking the clinical progress of human cancer in mouse models. Previously, we developed a human breast tissue-derived (HB) mouse model. Theoretically, it may mimic the interactions between "species-specific" mammary microenvironment of human origin and human breast cancer cells. However, detailed evidences are absent. The present study (in vivo, cellular, and molecular experiments) was designed to explore the regulatory role of human mammary microenvironment in the progress of human breast cancer cells. Subcutaneous (SUB), mammary fat pad (MFP), and HB mouse models were developed for in vivo comparisons. Then, the orthotopic tumor masses from three different mouse models were collected for primary culture. Finally, the biology of primary cultured human breast cancer cells was compared by cellular and molecular experiments. Results of in vivo mouse models indicated that human breast cancer cells grew better in human mammary microenvironment. Cellular and molecular experiments confirmed that primary cultured human breast cancer cells from HB mouse model showed a better proliferative and anti-apoptotic biology than those from SUB to MFP mouse models. Meanwhile, primary cultured human breast cancer cells from HB mouse model also obtained the migratory and invasive biology for "species-specific" tissue metastasis to human tissues. Comprehensive analyses suggest that "species-specific" mammary microenvironment of human origin better regulates the biology of human breast cancer cells in our humanized mouse model of breast cancer, which is more consistent with the clinical progress of human breast cancer.

  13. Long non-coding RNA CRNDE promotes tumor growth in medulloblastoma.

    PubMed

    Song, H; Han, L-M; Gao, Q; Sun, Y

    2016-06-01

    Medulloblastoma is the most common malignant brain tumor in children. Despite remarkable advances over the past decades, a novel therapeutic strategy is urgently required to increase long-term survival. This study aimed to understand the role of a long non-coding RNA (lncRNA), colorectal neoplasia differentially expressed (CRNDE), in medulloblastoma tumor growth. The transcript level of CRNDE was initially examined in dissected clinical tissues and cultured cancerous cells. Effects of CRNDE knockdown on cell viability and colony formation in vitro were assessed using the CCK-8 and colony formation assays, respectively. Cell cycle progression and survival were also determined after CRNDE knockdown. A xenograft mouse model of human medulloblastoma was established by injecting nude mice with medulloblastoma cells stably depleted of CRNDE expression. Our data suggest that transcript levels of CRNDE are elevated in clinical medulloblastoma tissues instead of in adjacent non-cancerous tissues. Knockdown of CRNDE significantly slowed cell proliferation rates and inhibited colony formation in Daoy and D341 cells. Tumor growth in vivo was also inhibited after CRNDE knockdown. Moreover, after knockdown of CRNDE, cell cycle progression was arrested in S phase and apoptosis was promoted by 15-20% in Daoy and D341 cells. In vivo data further showed that proliferating cell nuclei antigen (PCNA) was decreased, whereas the apoptosis initiator cleaved-caspase-3 was increased upon CRNDE knockdown in cancerous tissues from the mouse model. All these data suggest that CRNDE promotes tumor growth both in vitro and in vivo. This growth-promotion effect might be achieved via arresting cell cycle progression and inhibiting apoptosis. Therapeutics against CRNDE may be a novel strategy for the treatment of medulloblastoma.

  14. Cadmium mimics the in vivo effects of estrogen in the uterus and mammary gland.

    PubMed

    Johnson, Michael D; Kenney, Nicholas; Stoica, Adriana; Hilakivi-Clarke, Leena; Singh, Baljit; Chepko, Gloria; Clarke, Robert; Sholler, Peter F; Lirio, Apolonio A; Foss, Colby; Reiter, Ronald; Trock, Bruce; Paik, Soonmyoung; Martin, Mary Beth

    2003-08-01

    It has been suggested that environmental contaminants that mimic the effects of estrogen contribute to disruption of the reproductive systems of animals in the wild, and to the high incidence of hormone-related cancers and diseases in Western populations. Previous studies have shown that functionally, cadmium acts like steroidal estrogens in breast cancer cells as a result of its ability to form a high-affinity complex with the hormone binding domain of the estrogen receptor. The results of the present study show that cadmium also has potent estrogen-like activity in vivo. Exposure to cadmium increased uterine wet weight, promoted growth and development of the mammary glands and induced hormone-regulated genes in ovariectomized animals. In the uterus, the increase in wet weight was accompanied by proliferation of the endometrium and induction of progesterone receptor (PgR) and complement component C3. In the mammary gland, cadmium promoted an increase in the formation of side branches and alveolar buds and the induction of casein, whey acidic protein, PgR and C3. In utero exposure to the metal also mimicked the effects of estrogens. Female offspring experienced an earlier onset of puberty and an increase in the epithelial area and the number of terminal end buds in the mammary gland.

  15. Advancing bioluminescence imaging technology for the evaluation of anticancer agents in the MDA-MB-435-HAL-Luc mammary fat pad and subrenal capsule tumor models.

    PubMed

    Zhang, Cathy; Yan, Zhengming; Arango, Maria E; Painter, Cory L; Anderes, Kenna

    2009-01-01

    Tumors grafted s.c. or under the mammary fat pad (MFP) rarely develop efficient metastasis. By applying bioluminescence imaging (BLI) technology, the MDA-MB-435-HAL-Luc subrenal capsule (SRC) model was compared with the MFP model for disease progression, metastatic potential, and response to therapy. The luciferase-expressing MDA-MB-435-HAL-Luc cell line was used in both MFP and SRC models. BLI technology allowed longitudinal assessment of disease progression and the therapeutic response to PD-0332991, Avastin, and docetaxel. Immunohistochemical analysis of Ki67 and CD31 staining in the primary tumors was compared in these models. Caliper measurement was used in the MFP model to validate the BLI quantification of primary tumors. The primary tumors in MDA-MB-435-HAL-Luc MFP and SRC models displayed comparable growth rates and vascularity. However, tumor-bearing mice in the SRC model developed lung metastases much earlier (4 weeks) than in the MFP model (>7 weeks), and the metastatic progression contributed significantly to the survival time. In the MFP model, BLI and caliper measurements were comparable for quantifying palpable tumors, but BLI offered an advantage for detecting the primary tumors that fell below a palpable threshold and for visualizing metastases. In the SRC model, BLI allowed longitudinal assessment of the antitumor and antimetastatic effects of PD-0332991, Avastin, and docetaxel, and the results correlated with the survival benefits of these agents. The MDA-MB-435-HAL-Luc SRC model and the MFP model displayed differences in disease progression. BLI is an innovative approach for developing animal models and creates opportunities for improving preclinical evaluations of anticancer agents.

  16. Cyclic AMP regulates formation of mammary epithelial acini in vitro

    PubMed Central

    Nedvetsky, Pavel I.; Kwon, Sang-Ho; Debnath, Jayanta; Mostov, Keith E.

    2012-01-01

    Epithelial cells form tubular and acinar structures notable for a hollow lumen. In three-dimensional culture utilizing MCF10A mammary epithelial cells, acini form due to integrin-dependent polarization and survival of cells contacting extracellular matrix (ECM), and the apoptosis of inner cells of acini lacking contact with the ECM. In this paper, we report that cyclic AMP (cAMP)-dependent protein kinase A (PKA) promotes acinus formation via two mechanisms. First, cAMP accelerates redistribution of α6-integrin to the periphery of the acinus and thus facilitates the polarization of outer acinar cells. Blocking of α6-integrin function by inhibitory antibody prevents cAMP-dependent polarization. Second, cAMP promotes the death of inner cells occupying the lumen. In the absence of cAMP, apoptosis is delayed, resulting in perturbed luminal clearance. cAMP-dependent apoptosis is accompanied by a posttranscriptional PKA-dependent increase in the proapoptotic protein Bcl-2 interacting mediator of cell death. These data demonstrate that cAMP regulates lumen formation in mammary epithelial cells in vitro, both through acceleration of polarization of outer cells and apoptosis of inner cells of the acinus. PMID:22675028

  17. Enhancement of NAD+-dependent SIRT1 deacetylase activity by methylselenocysteine resets the circadian clock in carcinogen-treated mammary epithelial cells

    PubMed Central

    Fang, Mingzhu; Guo, Wei-Ren; Park, Youngil; Kang, Hwan-Goo; Zarbl, Helmut

    2015-01-01

    We previously reported that dietary methylselenocysteine (MSC) inhibits N-methyl-N-nitrosourea (NMU)-induced mammary tumorigenesis by resetting circadian gene expression disrupted by the carcinogen at the early stage of tumorigenesis. To investigate the underlying mechanism, we developed a circadian reporter system comprised of human mammary epithelial cells with a luciferase reporter driven by the promoter of human PERIOD 2 (PER2), a core circadian gene. In this in vitro model, NMU disrupted cellular circadian rhythm in a pattern similar to that observed with SIRT1-specific inhibitors; in contrast, MSC restored the circadian rhythms disrupted by NMU and protected against SIRT1 inhibitors. Moreover, NMU inhibited intracellular NAD+/NADH ratio and reduced NAD+-dependent SIRT1 activity in a dose-dependent manner, while MSC restored NAD+/NADH and SIRT1 activity in the NMU-treated cells, indicating that the NAD+-SIRT1 pathway was targeted by NMU and MSC. In rat mammary tissue, a carcinogenic dose of NMU also disrupted NAD+/NADH oscillations and decreased SIRT1 activity; dietary MSC restored NAD+/NADH oscillations and increased SIRT1 activity in the mammary glands of NMU-treated rats. MSC-induced SIRT1 activity was correlated with decreased acetylation of BMAL1 and increased acetylation of histone 3 lysine 9 at the Per2 promoter E-Box in mammary tissue. Changes in SIRT1 activity were temporally correlated with loss or restoration of rhythmic Per2 mRNA expression in NMU-treated or MSC-rescued rat mammary glands, respectively. Together with our previous findings, these results suggest that enhancement of NAD+-dependent SIRT1 activity contributes to the chemopreventive efficacy of MSC by restoring epigenetic regulation of circadian gene expression at early stages of mammary tumorigenesis. PMID:26544624

  18. Diagnostic efficacy of smear cytology and Robinson’s cytological grading of canine mammary tumors with respect to histopathology, cytomorphometry, metastases and overall survival

    PubMed Central

    Czopowicz, Michał; Gruk-Jurka, Anna; Wojtkowska, Agata; Sapierzyński, Rafał; Jurka, Piotr

    2018-01-01

    Cytology is a simple, rapid, and inexpensive method used for pre-operative diagnosis of canine mammary tumors (CMTs) in veterinary practice. Studies related to human breast cancer showed the Robinson’s grading system—established for invasive ductal carcinoma, not otherwise specified (IDC, NOS) and used on cytological material—to not only closely correspond to the histopathological grading but also be helpful in assessing prognosis and selecting most suitable treatments before surgery. The objectives of this study were: to evaluate the accuracy of cytological diagnosis and cytological Robinson’s grading system compared to the histopathological examination of CMTs; to compare of cytological features and cytomorphometric parameters with tumor behavior, as well as cytological and histological grading; and to determine an association of the Robinson’s grading system and cytological background details with metastases, and patients’ survival. We report substantial diagnostic accuracy in detecting simple types and high grade tumors. Cytological diagnosis of tumor behavior showed relatively low sensitivity and specificity compared to human studies, and this might be caused by the heterogeneous morphology of CMTs. The presence of mucosecretory material and extracellular matrix was not significantly associated with tumor behavior. We report a positive correlation between both grading systems and cytological features (included in Robinson’s grading), the presence of necrotic debris, inflammation, and red blood cells. A negative correlation was determined only for the presence of extracellular matrix. The univariate and multivariate analyses confirmed a significantly higher risk of developing metastasis and shorter overall survival for dogs with tumors of grade 2 or 3 on cytology. In addition, these tumors were the most common cause of CMT-related deaths in dogs. Taken together, our findings suggest that the Robinson’s method of cytological grading applied for

  19. TNF{alpha} acting on TNFR1 promotes breast cancer growth via p42/P44 MAPK, JNK, Akt and NF-{kappa}B-dependent pathways

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rivas, Martin A.; Carnevale, Romina P.; Proietti, Cecilia J.

    2008-02-01

    Tumor necrosis factor {alpha} (TNF{alpha}) enhances proliferation of chemically-induced mammary tumors and of T47D human cell line through not fully understood pathways. Here, we explored the intracellular signaling pathways triggered by TNF{alpha}, the participation of TNF{alpha} receptor (TNFR) 1 and TNFR2 and the molecular mechanism leading to breast cancer growth. We demonstrate that TNF{alpha} induced proliferation of C4HD murine mammary tumor cells and of T47D cells through the activation of p42/p44 MAPK, JNK, PI3-K/Akt pathways and nuclear factor-kappaB (NF-{kappa}B) transcriptional activation. A TNF{alpha}-specific mutein selectively binding to TNFR1 induced p42/p44 MAPK, JNK, Akt activation, NF-{kappa}B transcriptional activation and cell proliferation,more » just like wild-type TNF{alpha}, while a mutein selective for TNFR2 induced only p42/p44 MAPK activation. Interestingly, blockage of TNFR1 or TNFR2 with specific antibodies was enough to impair TNF{alpha} signaling and biological effect. Moreover, in vivo TNF{alpha} administration supported C4HD tumor growth. We also demonstrated, for the first time, that injection of a selective inhibitor of NF-{kappa}B activity, Bay 11-7082, resulted in regression of TNF{alpha}-promoted tumor. Bay 11-7082 blocked TNF{alpha} capacity to induce cell proliferation and up-regulation of cyclin D1 and of Bcl-x{sub L}in vivo and in vitro. Our results reveal evidence for TNF{alpha} as a breast tumor promoter, and provide novel data for a future therapeutic approach using TNF{alpha} antagonists and NF-{kappa}B pharmacological inhibitors in established breast cancer treatment.« less

  20. Pim-1 kinase expression during murine mammary development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gapter, Leslie A.; School of Molecular Biosciences, Washington State University, Pullman, WA 99164-4234; Magnuson, Nancy S.

    2006-07-07

    Pim-1 kinase phosphorylates substrates whose activities are linked to proliferation, survival, differentiation, and apoptosis. Although pim-1 is induced by hormones and cytokines, the hormonal control and contribution of Pim-1 to mammary gland development have not been evaluated. We examined Pim-1 expression in mammary cell lines, investigated whether Pim-1 levels could be altered in breast epithelia by mammogenic hormones, and evaluated Pim-1 expression during mammary development. We found that Pim-1 was elevated in most mammary carcinoma cell lines and progesterone increased Pim-1 protein to some extent in non-tumorigenic mammary epithelia. Pim-1 expression in situ was consistent with the documented profile ofmore » progesterone activity in mouse mammary glands. Pim-1 nuclear localization correlated with cytoplasmic distribution for its substrate, p21{sup CIP/Waf1}, and we found that Pim-1 and p21 associate in vitro. Our results suggest that Pim-1 expression may be regulated by progesterone during mammary development and Pim-1 associates with p21 in mammary epithelial cells.« less

  1. Expansion of myeloid immune suppressor Gr+CD11b+ cells in tumor-bearing host directly promotes tumor angiogenesis | Center for Cancer Research

    Cancer.gov

    We demonstrate a novel tumor-promoting role of myeloid immune suppressor Gr+CD11b+ cells, which are evident in cancer patients and tumor-bearing animals. These cells constitute approximately 5% of total cells in tumors. Tumors coinjected with Gr+CD11b+ cells exhibited increased vascular density, vascular maturation, and decreased necrosis. These immune cells produce high

  2. TGF-β induced PAR-1 expression promotes tumor progression and osteoclast differentiation in giant cell tumor of bone.

    PubMed

    Wang, Ting; Jiao, Jian; Zhang, Hao; Zhou, Wang; Li, Zhenxi; Han, Shuai; Wang, Jing; Yang, Xinghai; Huang, Quan; Wu, Zhipeng; Yan, Wangjun; Xiao, Jianru

    2017-10-15

    Although protease activated receptor-1 (PAR-1) has been confirmed as an oncogene in many cancers, the role of PAR-1 in giant cell tumor (GCT) of bone has been rarely reported. The mechanism of PAR-1 in tumor-induced osteoclastogenesis still remains unclear. In the present study, we detected that PAR-1 was significantly upregulated in GCT of bone compared to normal tissues, while TGF-β was also overexpressed in GCT tissues and could promote the expression of PAR-1 in a dose and time dependent manner. Using the luciferase reporter assay, we found that two downstreams of TGF-β, Smad3 and Smad4, could activate the promoter of PAR-1, which might explain the mechanism of TGF-β induced PAR-1 expression. Meanwhile, PAR-1 was also overexpressed in microvesicles from stromal cells of GCT (GCTSCs), and might be transported from GCTSCs to monocytes through microvesicles. In addition, knockout of PAR-1 by TALENs in GCTSCs inhibited tumor growth, angiogenesis and osteoclastogenesis in GCT in vitro. Using the chick CAM models, we further showed that inhibition of PAR-1 suppressed tumor growth and giant cell formation in vivo. Using microarray assay, we detected a number of genes involved in osteoclastogenesis as the possible downstreams of PAR-1, which may partly explain the mechanism of PAR-1 in GCT. In brief, for the first time, these results reveal an upstream regulatory role of TGF-β in PAR-1 expression, and PAR-1 expression promotes tumor growth, angiogenesis and osteoclast differentiation in GCT of bone. Hence, PAR-1 represents a novel potential therapeutic target for GCT of bone. © 2017 UICC.

  3. Chemoprevention of Breast Cancer by Transdermal Delivery of α-Santalol through Breast Skin and Mammary Papilla (Nipple).

    PubMed

    Dave, Kaushalkumar; Alsharif, Fahd M; Islam, Saiful; Dwivedi, Chandradhar; Perumal, Omathanu

    2017-09-01

    Almost all breast cancers originate from epithelial cells lining the milk ducts in the breast. To this end, the study investigated the feasibility of localized transdermal delivery of α-santalol, a natural chemopreventive agent to the breast. Different α-santalol formulations (cream, solution and microemulsion) were developed and the in vitro permeability was studied using excised animal (porcine and rat) and human breast skin/mammary papilla (nipple). The in vivo biodistribution and efficacy studies were conducted in female rats. A chemical carcinogenesis model of breast cancer was used for the efficacy studies. Phospholipid based α-santalol microemulsion showed the highest penetration through the nipple and breast skin. Delivery of α-santalol through the entire breast (breast skin and nipple) in vivo in rats resulted in significantly higher concentration in the mammary gland compared to transdermal delivery through the breast skin or nipple. There was no measurable α-santalol concentration in the blood. Transdermal delivery of α-santalol reduced the tumor incidence and tumor multiplicity. Furthermore, the tumor size was significantly reduced with α-santalol treatment. The findings from this study demonstrate the feasibility of localized transdermal delivery of α-santalol for chemoprevention of breast cancer.

  4. Imaging Tumor Cell Movement In Vivo

    PubMed Central

    Entenberg, David; Kedrin, Dmitriy; Wyckoff, Jeffrey; Sahai, Erik; Condeelis, John; Segall, Jeffrey E.

    2013-01-01

    This unit describes the methods that we have been developing for analyzing tumor cell motility in mouse and rat models of breast cancer metastasis. Rodents are commonly used both to provide a mammalian system for studying human tumor cells (as xenografts in immunocompromised mice) as well as for following the development of tumors from a specific tissue type in transgenic lines. The Basic Protocol in this unit describes the standard methods used for generation of mammary tumors and imaging them. Additional protocols for labeling macrophages, blood vessel imaging, and image analysis are also included. PMID:23456602

  5. Association between promoter hypermethylation of the DACT2 gene and tumor stages in breast cancer.

    PubMed

    Marusa Borgonio-Cuadra, Veronica; Miranda-Duarte, Antonio; Rojas-Toledo, Xochitl; Garcia-Hernandez, Normand; Alfredo Sierra-Ramirez, Jose; Cardenas-Garcia, Maura; Elena Hernandez-Caballero, Marta

    2018-01-01

    Aberrant methylation of CpG islands in the promoter is a hallmark of cancer, leading to transcriptional silencing of tumor suppressor genes. The aim of this work was to evaluate the promoter methylation status of the DACT2 gene in breast cancer (BC) tissue and to analyze its possible effect on tumor type or grade. CpG island from the DACT2 promoter in region -240 to -14 from transcriptional start site (TSS) were obtained. Through the use of sodium bisulfite DNA conversion analysis, followed by detection with MSP (methylation specific PCR), we analyzed 79 BC and 15 adjacent healthy samples. T he c ases a nalyzed w ere i n s tage I ( 2.5%), I I (38%), or III (59.5%). The most frequent tumor type was invasive ductal carcinoma (71.4%). Methylation analysis comparing tumor tissues with adjacent non-cancerous tissues showed statistical significance. Methylation was observed in 32.9% (26/79) of the samples; no methylation was found in adjacent healthy tissue. DACT2 methylation was associated with tumor stage I-II (p=0.03) and stage III (p=0.004). An association was found of DACT2 promoter methylation with advanced tumor stages. This gene has been suggested as a potential biomarker, however, more investigation is required to validate this function.

  6. Age Modifies the Effect of 2-MeV Fast Neutrons on Rat Mammary Carcinogenesis.

    PubMed

    Imaoka, Tatsuhiko; Nishimura, Mayumi; Daino, Kazuhiro; Hosoki, Ayaka; Takabatake, Masaru; Kokubo, Toshiaki; Doi, Kazutaka; Showler, Kaye; Nishimura, Yukiko; Moriyama, Hitomi; Morioka, Takamitsu; Shimada, Yoshiya; Kakinuma, Shizuko

    2017-10-01

    The relative biological effectiveness (RBE) of neutrons depends on their physical nature (e.g., energy) and the biological context (e.g., end points, materials). From the perspective of radiological protection, age is an important biological context that influences radiation-related cancer risk, but very few studies have addressed its potential impact on neutron effects. We therefore investigated the influence of age on the effect of accelerator-generated fast neutrons (mean energy, ∼2 MeV) in an animal model of breast carcinogenesis. Female Sprague-Dawley rats at 1, 3 and 7 weeks of age were irradiated with fast neutrons at absorbed doses of 0.0485-0.97 Gy. All animals were kept under specific pathogen-free conditions and screened weekly for mammary tumors by palpation until they were 90 weeks old. Tumors were diagnosed based on histology. Mathematical modeling was used to analyze mammary cancer incidence, collectively using data from this study and a previously reported experiment on 137 Cs gamma rays. The results indicate that neutron irradiation elevated the risk of palpable mammary carcinoma with a linear dose response, the slope of which depended on age at time of irradiation. The RBE of neutron radiation was 7.5 ± 3.4, 9.3 ± 3.5 and 26.1 ± 8.9 (mean ± SE) for animals exposed at 1, 3 and 7 weeks of age, respectively. Our results indicate that age of the animal is an important factor influencing the effect of fast neutrons on breast cancer risk.

  7. Emodin inhibits breast cancer growth by blocking the tumor-promoting feedforward loop between cancer cells and macrophages

    PubMed Central

    Iwanowycz, Stephen; Wang, Junfeng; Hodge, Johnie; Wang, Yuzhen; Yu, Fang; Fan, Daping

    2016-01-01

    Macrophage infiltration correlates with severity in many types of cancer. Tumor cells recruit macrophages and educate them to adopt an M2-like phenotype through the secretion of chemokines and growth factors, such as MCP1 and CSF1. Macrophages in turn promote tumor growth through supporting angiogenesis, suppressing anti-tumor immunity, modulating extracellular matrix remodeling, and promoting tumor cell migration. Thus tumor cells and macrophages interact to create a feedforward loop supporting tumor growth and metastasis. In this study, we tested the ability of emodin, a Chinese herb-derived compound, to inhibit breast cancer growth in mice and examined the underlying mechanisms. Emodin was used to treat mice bearing EO771 or 4T1 breast tumors. It was shown that emodin attenuated tumor growth by inhibiting macrophage infiltration and M2-like polarization, accompanied by increased T cell activation and reduced angiogenesis in tumors. The tumor inhibitory effects of emodin were lost in tumor-bearing mice with macrophage depletion. Emodin inhibited IRF4, STAT6, and C/EBPβ signaling and increased inhibitory histone H3 lysine 27 tri-methylation (H3K27m3) on the promoters of M2 related genes in tumor-associated macrophages. In addition, emodin inhibited tumor cell secretion of MCP1and CSF1, as well as expression of surface anchoring molecule Thy-1, thus suppressing macrophage migration towards and adhesion to tumor cells. These results suggest that emodin acts on both breast cancer cells and macrophages and effectively blocks the tumor-promoting feedforward loop between the two cell types, thereby inhibiting breast cancer growth and metastasis. PMID:27196773

  8. Mammary and extramammary Paget's disease

    PubMed Central

    Lloyd, J; Flanagan, A

    2000-01-01

    Mammary and extramammary Paget's disease are uncommon intraepithelial adenocarcinomas. Both conditions have similar clinical features, which mimic inflammatory and infective diseases. Histological diagnostic confusion can arise between Paget's disease and other neoplastic conditions affecting the skin, with the most common differential diagnoses being malignant melanoma and atypical squamous disease. The glandular differentiation of both mammary Paget's disease and extramammary Paget's disease is indicated by morphological appearances, the presence of intracellular mucin in many cases, and positive immunohistochemical staining for glandular cytokeratins, epithelial membrane antigen, and carcinoembryonic antigen. This article provides an overview of mammary and extramammary Paget's disease and discusses recent evidence regarding the cell of origin. The concepts of primary and secondary Paget's disease are presented and the differential diagnosis is discussed with reference to immunohistochemical markers that might be of diagnostic value. Key Words: mammary Paget's disease • extramammary Paget's disease PMID:11064666

  9. Phospholipid makeup of the breast adipose tissue is impacted by obesity and mammary cancer in the mouse: results of a pilot study

    PubMed Central

    Margolis, Michael; Perez, Osvaldo; Martinez, Mitchel; Santander, Ana M.; Mendez, Armando J.; Nadji, Mehrdad; Nayer, Ali; Bhattacharya, Sanjoy; Torroella-Kouri, Marta

    2014-01-01

    Obesity, an established risk factor for breast cancer (BC), is associated with systemic inflammation. The breast contains adipose tissue (bAT), yet whether it plays a role in BC progression in obese females is being intensively studied. There is scarce knowledge on the lipid composition of bAT in health and disease. The purpose of this pilot study was: 1) to determine whether obesity and BC are associated with inflammatory changes in bAT 2) to analyze for the first time the lipid profile of bAT in obese and lean mammary tumor-bearing and normal mice. Syngeneic E0771 mammary tumor cells were implanted into the mammary fat pad of lean and diet-induced obese C57BL/6 mice. BATs were analyzed four weeks after tumor cell inoculation by immunohistochemistry and mass spectrometry. Phospholipids were identified and subjected to ratiometric quantification using a TSQ Quantum Access Max triple quadrupole mass spectrometer utilizing precursor ion scan or neutral ion loss scan employing appropriate class specific lipid standards in a two step quantification process. Four main classes of phospholipids were analyzed: phosphatidylcholines phosphatidylserines, phosphatidylethanolamines and phosphatidylinositols. Our results showed that bAT in obese (normal and tumor-bearing) mice contained hypertrophic adipocytes compared with their corresponding samples in lean mice; higher numbers of macrophages and crown-like structures were observed in obese tumor bearers compared to obese normal mice. BAT from normal obese mice revealed higher concentrations of phosphatidylethanolamines. Furthermore, bAT from tumor-bearing mice expressed higher phosphatidylcholines than that from non-tumor bearing mice, suggesting the presence of the tumor is associated with phosphatidylcholines. Conversion of phosphatidylethanolamines to phosphatidylcholines will be investigated in E0771 cells. Additional studies are projected to investigate macrophage activation by these specific classes of phospholipids

  10. Heparanase promotes tumor infiltration and antitumor activity of CAR-redirected T-lymphocytes

    PubMed Central

    Caruana, Ignazio; Savoldo, Barbara; Hoyos, Valentina; Weber, Gerrit; Liu, Hao; Kim, Eugene S.; Ittmann, Michael M.; Marchetti, Dario; Dotti, Gianpietro

    2015-01-01

    Adoptive transfer of chimeric antigen receptor (CAR)-redirected T lymphocytes (CAR-T cells) has had less striking effects in solid tumors1–3 than in lymphoid malignancies4, 5. Although active tumor-mediated immunosuppression may play a role in limiting efficacy6, functional changes in T lymphocytes following their ex vivo manipulation may also account for cultured CAR-T cells’ reduced ability to penetrate stroma-rich solid tumors. We therefore studied the capacity of human in vitro-cultured CAR-T cells to degrade components of the extracellular matrix (ECM). In contrast to freshly isolated T lymphocytes, we found that in vitro-cultured T lymphocytes lack expression of the enzyme heparanase (HPSE) that degrades heparan sulphate proteoglycans, which are main components of ECM. We found that HPSE mRNA is down regulated in in vitro-expanded T cells, which may be a consequence of p53 binding to the HPSE gene promoter. We therefore engineered CAR-T cells to express HPSE and showed improved capacity to degrade ECM, which promoted tumor T-cell infiltration and antitumor activity. Employing this strategy may enhance the activity of CAR-T cells in individuals with stroma-rich solid tumors. PMID:25849134

  11. CD13-positive bone marrow-derived myeloid cells promote angiogenesis, tumor growth, and metastasis.

    PubMed

    Dondossola, Eleonora; Rangel, Roberto; Guzman-Rojas, Liliana; Barbu, Elena M; Hosoya, Hitomi; St John, Lisa S; Molldrem, Jeffrey J; Corti, Angelo; Sidman, Richard L; Arap, Wadih; Pasqualini, Renata

    2013-12-17

    Angiogenesis is fundamental to tumorigenesis and an attractive target for therapeutic intervention against cancer. We have recently demonstrated that CD13 (aminopeptidase N) expressed by nonmalignant host cells of unspecified types regulate tumor blood vessel development. Here, we compare CD13 wild-type and null bone marrow-transplanted tumor-bearing mice to show that host CD13(+) bone marrow-derived cells promote cancer progression via their effect on angiogenesis. Furthermore, we have identified CD11b(+)CD13(+) myeloid cells as the immune subpopulation directly regulating tumor blood vessel development. Finally, we show that these cells are specifically localized within the tumor microenvironment and produce proangiogenic soluble factors. Thus, CD11b(+)CD13(+) myeloid cells constitute a population of bone marrow-derived cells that promote tumor progression and metastasis and are potential candidates for the development of targeted antiangiogenic drugs.

  12. 5-Azacytidine treatment induces demethylation of DAPK1 and MGMT genes and inhibits growth in canine mammary gland tumor cells.

    PubMed

    Ren, Xiaoli; Li, Huatao; Song, Xianyi; Wu, Yuhong; Liu, Yun

    2018-01-01

    Canine mammary gland tumors (CMGTs) are the most common, spontaneous types of neoplasias in female dogs. Aberrant DAPK1 and MGMT methylation associated with tumor formation and development in various cancers. 5-Azacytidine is a known specific demethylation drug that covalently binds to DNA methyltransferase. However, the methylation of the DAPK1 and MGMT is unknown with respect to CMGTs. Therefore, we sought to demonstrate the effects of 5-azacytidine on the proliferation of CMGTs cell, and elucidate the potential molecular mechanisms of action in these cancerous cells. The effects of 5-azacytidine on CHMm and CHMp cell proliferation were evaluated by MTT assay. The DAPK1 and MGMT gene methylation patterns in CHMm and CHMp cells and CMGTs blood/tissue samples were analyzed by MSP assay. Effect of 5-azacytidine on the methylation of DAPK1 and MGMT gene, and DAPK1 and MGMT mRNA expression in CHMm and CHMp cells were analyzed by MSP assay and qRT-PCR assay, respectively. 5-Azacytidine may suppress the proliferation of CHMm and CHMp cells. Furthermore, the DAPK1 and MGMT genes were hypermethylated in CHMm/CHMp cells and clinical malignant tumor samples, but not in normal female dogs' blood and tissue. However, the DAPK1 and MGMT genes were re-inducible in CHMm and CHMp cells treated with 5 μM 5-azacytidine. Meanwhile, 5-azacytidine increased the expression of DAPK1 and MGMT mRNA. These results suggest that DAPK1 and MGMT methylation can serve as sensitive diagnostic biomarkers and therapeutic targets for CMGTs. 5-Azacytidine also could be a potential therapeutic candidate for CMGTs.

  13. Epigenetic dysregulation of key developmental genes in radiation-induced rat mammary carcinomas.

    PubMed

    Daino, Kazuhiro; Nishimura, Mayumi; Imaoka, Tatsuhiko; Takabatake, Masaru; Morioka, Takamitsu; Nishimura, Yukiko; Shimada, Yoshiya; Kakinuma, Shizuko

    2018-02-13

    With the increase in the number of long-term cancer survivors worldwide, there is a growing concern about the risk of secondary cancers induced by radiotherapy. Epigenetic modifications of genes associated with carcinogenesis are attractive targets for the prevention of cancer owing to their reversible nature. To identify genes with possible changes in functionally relevant DNA methylation patterns in mammary carcinomas induced by radiation exposure, we performed microarray-based global DNA methylation and expression profiling in γ-ray-induced rat mammary carcinomas and normal mammary glands. The gene expression profiling identified dysregulation of developmentally related genes, including the downstream targets of polycomb repressive complex 2 (PRC2) and overexpression of enhancer of zeste homolog 2, a component of PRC2, in the carcinomas. By integrating expression and DNA methylation profiles, we identified ten hypermethylated and three hypomethylated genes that possibly act as tumor-suppressor genes and oncogenes dysregulated by aberrant DNA methylation; half of these genes encode developmental transcription factors. Bisulfite sequencing and quantitative PCR confirmed the dysregulation of the polycomb-regulated developmentally related transcription-factor genes Dmrt2, Hoxa7, Foxb1, Sox17, Lhx8, Gata3 and Runx1. Silencing of Hoxa7 was further verified by immunohistochemistry. These results suggest that, in radiation-induced mammary gland carcinomas, PRC2-mediated aberrant DNA methylation leads to dysregulation of developmentally related transcription-factor genes. Our findings provide clues to molecular mechanisms linking epigenetic regulation and radiation-induced breast carcinogenesis and underscore the potential of such epigenetic mechanisms as targets for cancer prevention. © 2018 UICC.

  14. Testing for tumor promoters in Euphorbia lathyris: Analysis of possible health hazards

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bissell, M.J.; Nemethy, E.K.; Riddle, L.

    1981-12-01

    A sensitive test system for the detection of unknown tumor promoters is reported. A description is given of the use of the system in detecting promoter activity in Euphorbia lathyris extracts before and after treatment with organic solvents in the preparation of synthetic fuels. Using both normal and ts-virus infected cells, tumor promoter-like activities were detected and identified as ingenol esters in the active fraction of the latex of E. lathyris. These activities were shown to be inactive after extraction of potential sources of fuel. Results indicate that there should be no toxicological dangers after mechanical harvesting and drying. Thismore » finding has much potential significance, both for the further processing of E. lathyris and for other possible sources of energy. (JMT)« less

  15. Protein kinase C (PKC) isoforms in cancer, tumor promotion and tumor suppression.

    PubMed

    Isakov, Noah

    2018-02-01

    The AGC family of serine/threonine kinases (PKA, PKG, PKC) includes more than 60 members that are critical regulators of numerous cellular functions, including cell cycle and differentiation, morphogenesis, and cell survival and death. Mutation and/or dysregulation of AGC kinases can lead to malignant cell transformation and contribute to the pathogenesis of many human diseases. Members of one subgroup of AGC kinases, the protein kinase C (PKC), have been singled out as critical players in carcinogenesis, following their identification as the intracellular receptors of phorbol esters, which exhibit tumor-promoting activities. This observation attracted the attention of researchers worldwide and led to intense investigations on the role of PKC in cell transformation and the potential use of PKC as therapeutic drug targets in cancer diseases. Studies demonstrated that many cancers had altered expression and/or mutation of specific PKC genes. However, the causal relationships between the changes in PKC gene expression and/or mutation and the direct cause of cancer remain elusive. Independent studies in normal cells demonstrated that activation of PKC is essential for the induction of cell activation and proliferation, differentiation, motility, and survival. Based on these observations and the general assumption that PKC isoforms play a positive role in cell transformation and/or cancer progression, many PKC inhibitors have entered clinical trials but the numerous attempts to target PKC in cancer has so far yielded only very limited success. More recent studies demonstrated that PKC function as tumor suppressors, and suggested that future clinical efforts should focus on restoring, rather than inhibiting, PKC activity. The present manuscript provides some historical perspectives on the tumor promoting function of PKC, reviewing some of the observations linking PKC to cancer progression, and discusses the role of PKC in the pathogenesis of cancer diseases and its

  16. Comparative proteomic analysis of proteins expression changes in the mammary tissue of cows infected with Escherichia coli mastitis.

    PubMed

    Zhao, Xiao-wei; Yang, Yong-xin; Huang, Dong-wei; Cheng, Guang-long; Zhao, Hui-ling

    2015-01-01

    Cows infected with Escherichia (E.) coli usually experience severe clinical symptoms, including damage to mammary tissues, reduced milk yield, and altered milk composition. In order to investigate the host response to E. coli infection and discover novel markers for mastitis treatment, mammary tissue samples were collected from healthy cows and bovines with naturally occurring severe E. coli mastitis. Changes of mammary tissue proteins were examined using two-dimensional gel electrophoresis and label-free proteomic approaches. A total of 95 differentially expressed proteins were identified. Of these, 56 proteins were categorized according to molecular function, cellular component, and biological processes. The most frequent biological processes influenced by the proteins were response to stress, transport, and establishment of localization. Furthermore, a network analysis of the proteins with altered expression in mammary tissues demonstrated that these factors are predominantly involved with binding and structural molecule activities. Vimentin and a-enolase were central "functional hubs" in the network. Based on results from the present study, disease-induced alterations of protein expression in mammary glands and potential markers for the effective treatment of E. coli mastitis were identified. These data have also helped elucidate defense mechanisms that protect the mammary glands and promote the pathogenesis of E. coli mastitis.

  17. Comparative proteomic analysis of proteins expression changes in the mammary tissue of cows infected with Escherichia coli mastitis

    PubMed Central

    Zhao, Xiao-wei; Huang, Dong-wei; Cheng, Guang-long; Zhao, Hui-ling

    2015-01-01

    Cows infected with Escherichia (E.) coli usually experience severe clinical symptoms, including damage to mammary tissues, reduced milk yield, and altered milk composition. In order to investigate the host response to E. coli infection and discover novel markers for mastitis treatment, mammary tissue samples were collected from healthy cows and bovines with naturally occurring severe E. coli mastitis. Changes of mammary tissue proteins were examined using two-dimensional gel electrophoresis and label-free proteomic approaches. A total of 95 differentially expressed proteins were identified. Of these, 56 proteins were categorized according to molecular function, cellular component, and biological processes. The most frequent biological processes influenced by the proteins were response to stress, transport, and establishment of localization. Furthermore, a network analysis of the proteins with altered expression in mammary tissues demonstrated that these factors are predominantly involved with binding and structural molecule activities. Vimentin and α-enolase were central "functional hubs" in the network. Based on results from the present study, disease-induced alterations of protein expression in mammary glands and potential markers for the effective treatment of E. coli mastitis were identified. These data have also helped elucidate defense mechanisms that protect the mammary glands and promote the pathogenesis of E. coli mastitis. PMID:25549220

  18. Tumor promotion by exposure to radiofrequency electromagnetic fields below exposure limits for humans.

    PubMed

    Lerchl, Alexander; Klose, Melanie; Grote, Karen; Wilhelm, Adalbert F X; Spathmann, Oliver; Fiedler, Thomas; Streckert, Joachim; Hansen, Volkert; Clemens, Markus

    2015-04-17

    The vast majority of in vitro and in vivo studies did not find cancerogenic effects of exposure to electromagnetic fields (RF-EMF), i.e. emitted by mobile phones and base stations. Previously published results from a pilot study with carcinogen-treated mice, however, suggested tumor-promoting effects of RF-EMF (Tillmann et al., 2010). We have performed a replication study using higher numbers of animals per group and including two additional exposure levels (0 (sham), 0.04, 0.4 and 2 W/kg SAR). We could confirm and extend the originally reported findings. Numbers of tumors of the lungs and livers in exposed animals were significantly higher than in sham-exposed controls. In addition, lymphomas were also found to be significantly elevated by exposure. A clear dose-response effect is absent. We hypothesize that these tumor-promoting effects may be caused by metabolic changes due to exposure. Since many of the tumor-promoting effects in our study were seen at low to moderate exposure levels (0.04 and 0.4 W/kg SAR), thus well below exposure limits for the users of mobile phones, further studies are warranted to investigate the underlying mechanisms. Our findings may help to understand the repeatedly reported increased incidences of brain tumors in heavy users of mobile phones. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Interactions between Exosomes from Breast Cancer Cells and Primary Mammary Epithelial Cells Leads to Generation of Reactive Oxygen Species Which Induce DNA Damage Response, Stabilization of p53 and Autophagy in Epithelial Cells

    PubMed Central

    Dutta, Sujoy; Warshall, Case; Bandyopadhyay, Chirosree; Dutta, Dipanjan; Chandran, Bala

    2014-01-01

    Exosomes are nanovesicles originating from multivesicular bodies and are released by all cell types. They contain proteins, lipids, microRNAs, mRNAs and DNA fragments, which act as mediators of intercellular communications by inducing phenotypic changes in recipient cells. Tumor-derived exosomes have been shown to play critical roles in different stages of tumor development and metastasis of almost all types of cancer. One of the ways by which exosomes affect tumorigenesis is to manipulate the tumor microenvironments to create tumor permissive “niches”. Whether breast cancer cell secreted exosomes manipulate epithelial cells of the mammary duct to facilitate tumor development is not known. To address whether and how breast cancer cell secreted exosomes manipulate ductal epithelial cells we studied the interactions between exosomes isolated from conditioned media of 3 different breast cancer cell lines (MDA-MB-231, T47DA18 and MCF7), representing three different types of breast carcinomas, and normal human primary mammary epithelial cells (HMECs). Our studies show that exosomes released by breast cancer cell lines are taken up by HMECs, resulting in the induction of reactive oxygen species (ROS) and autophagy. Inhibition of ROS by N-acetyl-L-cysteine (NAC) led to abrogation of autophagy. HMEC-exosome interactions also induced the phosphorylation of ATM, H2AX and Chk1 indicating the induction of DNA damage repair (DDR) responses. Under these conditions, phosphorylation of p53 at serine 15 was also observed. Both DDR responses and phosphorylation of p53 induced by HMEC-exosome interactions were also inhibited by NAC. Furthermore, exosome induced autophagic HMECs were found to release breast cancer cell growth promoting factors. Taken together, our results suggest novel mechanisms by which breast cancer cell secreted exosomes manipulate HMECs to create a tumor permissive microenvironment. PMID:24831807

  20. Extravascular red blood cells and hemoglobin promote tumor growth and therapeutic resistance as endogenous danger signals.

    PubMed

    Yin, Tao; He, Sisi; Liu, Xiaoling; Jiang, Wei; Ye, Tinghong; Lin, Ziqiang; Sang, Yaxiong; Su, Chao; Wan, Yang; Shen, Guobo; Ma, Xuelei; Yu, Min; Guo, Fuchun; Liu, Yanyang; Li, Ling; Hu, Qiancheng; Wang, Yongsheng; Wei, Yuquan

    2015-01-01

    Hemorrhage is a common clinical manifestation in patients with cancer. Intratumor hemorrhage has been demonstrated to be a poor prognostic factor for cancer patients. In this study, we investigated the role of RBCs and hemoglobin (Hb) in the process of tumor progression and therapeutical response. RBCs and Hb potently promoted tumor cell proliferation and syngenic tumor growth. RBCs and Hb activated the reactive oxygen species-NF-κB pathway in both tumor cells and macrophages. RBCs and Hb also induced chemoresistance mediated, in part, by upregulating ABCB1 gene expression. Tumor growth induced by RBCs was accompanied by an inflammatory signature, increased tumor vasculature, and influx of M2 macrophages. In both the peritoneal cavity and tumor microenvironment, extravascular RBCs rapidly recruited monocyte-macrophages into the lesion sites. In addition, RBCs and Hb increased several nucleotide-binding oligomerization domain-like receptors' expression and induced IL-1β release. Our results provide novel insights into the protumor function of RBCs and Hb as endogenous danger signals, which can promote tumor cell proliferation, macrophage recruitment, and polarization. Hemorrhage may represent a useful prognostic factor for cancer patients because of its role in tumor promotion and chemoresistance. Copyright © 2014 by The American Association of Immunologists, Inc.

  1. Apical electrolyte concentration modulates barrier function and tight junction protein localization in bovine mammary epithelium.

    PubMed

    Quesnell, Rebecca R; Erickson, Jamie; Schultz, Bruce D

    2007-01-01

    In vitro mammary epithelial cell models typically fail to form a consistently tight barrier that can effectively separate blood from milk. Our hypothesis was that mammary epithelial barrier function would be affected by changes in luminal ion concentration and inflammatory cytokines. Bovine mammary epithelial (BME-UV cell line) cells were grown to confluence on permeable supports with a standard basolateral medium and either high-electrolyte (H-elec) or low-electrolyte (L-elec) apical medium for 14 days. Apical media were changed to/from H-elec medium at predetermined times prior to assay. Transepithelial electrical resistance (R(te)) was highest in monolayers continuously exposed to apical L-elec. A time-dependent decline in R(te) began within 24 h of H-elec medium exposure. Change from H-elec medium to L-elec medium time-dependently increased R(te). Permeation by FITC-conjugated dextran was elevated across monolayers exposed to H-elec, suggesting compromise of a paracellular pathway. Significant alteration in occludin distribution was evident, concomitant with the changes in R(te), although total occludin was unchanged. Neither substitution of Na(+) with N-methyl-d-glucosamine (NMDG(+)) nor pharmacological inhibition of transcellular Na(+) transport pathways abrogated the effects of apical H-elec medium on R(te). Tumor necrosis factor alpha, but not interleukin-1beta nor interleukin-6, in the apical compartment caused a significant decrease in R(te) within 8 h. These results indicate that mammary epithelium is a dynamic barrier whose cell-cell contacts are acutely modulated by cytokines and luminal electrolyte environment. Results not only demonstrate that BME-UV cells are a model system representative of mammary epithelium but also provide critical information that can be applied to other mammary model systems to improve their physiological relevance.

  2. Dissociation of sensitivities to tumor promotion and progression in outbred and inbred SENCAR mice.

    PubMed

    Gimenez-Conti, I B; Bianchi, A B; Fischer, S M; Reiners, J J; Conti, C J; Slaga, T J

    1992-06-15

    The sensitivity of outbred SENCAR mice and inbred SENCAR (SSIN) mice to multistage carcinogenesis was studied. Tumors were induced using either 7,12-dimethylbenz[a]anthracene or N-methyl-N'-nitro-N-nitrosoguanidine as initiators and 12-O-tetradecanoylphorbol-13-acetate or benzoyl peroxide as promoting agents. Although the number of papillomas per mouse was higher in SSIN than in outbred SENCAR mice, the number of carcinomas observed in the SSIN strain was significantly lower regardless of the initiator or promoter used. It was also observed that the expression of markers of premalignant progression (i.e., dysplasia, expression of keratin K13, and loss of keratin K1 expression) was markedly suppressed in SSIN papillomas. After 50 wk of promotion with 12-O-tetradecanoylphorbol-13-acetate, the pattern of expression of K13 and K1 in SSIN mice was comparable to the pattern observed in outbred SENCAR mice after 10 to 20 wk of promotion with 12-O-tetradecanoylphorbol-13-acetate. It was also observed that 67% of the tumors induced in SSIN mice by initiation with 7,12-dimethylbenz[a]anthracene exhibited a mutation in codon 61 of the Ha-ras-1 gene. This latter finding suggests that the differences observed in tumor progression between the inbred strain and the outbred stock are not related to a genetic alteration in the Ha-ras-1 gene but rather to an independent event that we have postulated to involve a putative suppressor gene. The data reported here suggest that the putative gene(s) that confers susceptibility to tumor promotion was segregated from the gene(s) involved in tumor progression during selection and inbreeding of the SENCAR mouse stock.

  3. The stimulus-dependent co-localization of serum- and glucocorticoid-regulated protein kinase (Sgk) and Erk/MAPK in mammary tumor cells involves the mutual interaction with the importin-alpha nuclear import protein

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buse, Patricia; Maiyar, Anita C.; Failor, Kim L.

    2007-09-10

    In Con8 rat mammary epithelial tumor cells, indirect immunofluorescence revealed that Sgk (serum- and glucocorticoid-regulated kinase) and Erk/MAPK (extracellular signal-regulated protein kinase/mitogen activated protein kinase) co-localized to the nucleus in serum-treated cells and to the cytoplasmic compartment in cells treated with the synthetic glucocorticoid dexamethasone. Moreover, the subcellular distribution of the importin-alpha nuclear transport protein was similarly regulated in a signal-dependent manner. In vitro GST-pull down assays revealed the direct interaction of importin-alpha with either Sgk or Erk/MAPK, while RNA interference knockdown of importin-alpha expression disrupted the localization of both Sgk and Erk into the nucleus of serum-treated cells. Wildmore » type or kinase dead forms of Sgk co-immunoprecipitated with Erk/MAPK from either serum- or dexamethasone-treated mammary tumor cells, suggesting the existence of a protein complex containing both kinases. In serum-treated cells, nucleus residing Sgk and Erk/MAPK were both hyperphosphorylated, indicative of their active states, whereas, in dexamethasone-treated cells Erk/MAPK, but not Sgk, was in its inactive hypophosphorylated state. Treatment with a MEK inhibitor, which inactivates Erk/MAPK, caused the relocalization of both Sgk and ERK to the cytoplasm. We therefore propose that the signal-dependent co-localization of Sgk and Erk/MAPK mediated by importin-alpha represents a new pathway of signal integration between steroid and serum/growth factor-regulated pathways.« less

  4. SDF-1 in Mammary Fibroblasts of Bovine with Mastitis Induces EMT and Inflammatory Response of Epithelial Cells.

    PubMed

    He, Guiliang; Ma, Mengru; Yang, Wei; Wang, Hao; Zhang, Yong; Gao, Ming-Qing

    2017-01-01

    Fibroblasts constitute the majority of the stromal cells within bovine mammary gland, yet the functional contributions of these cells to mastitis and fibrosis and the mechanism are poorly understood. In this study, we demonstrate that inflammation-associated fibroblasts (INFs) extracted from bovine mammary glands with clinical mastitis had different expression pattern regarding to several extracellular matrix (ECM) proteins, chemokines and cytokines compared to normal fibroblasts (NFs) from dairy cows during lactation. The INFs induced epithelial-mesenchymal transition (EMT) and inflammatory responses of mammary epithelial cells in a vitro co-culture model. These functional contributions of INFs to normal epithelial cells were mediated through their ability to secrete stromal cell-derived factor 1 (SDF-1). SDF-1 was highly secreted/expressed by INFs, lipopolysaccharide (LPS) -treated NFs, lipoteichoic acid (LTA) -treated NFs, as well as mastitic tissue compared to their counterparts. Exogenous SDF-1 promoted EMT on epithelial cells through activating NF-κB pathway, induced inflammation response and inhibited proliferation of epithelial cells. In addition, SDF-1 was able to induce mastitis and slight fibrosis of mouse mammary gland, which was attenuated by a specific inhibitor of the receptor of SDF-1. Our findings indicate that stromal fibroblasts within mammary glands with mastitis contribute to EMT and inflammatory responses of epithelial cells through the secretion of SDF-1, which could result in the inflammation spread and fibrosis within mammary gland.

  5. Macrophage PPARγ inhibits Gpr132 to mediate the anti-tumor effects of rosiglitazone

    PubMed Central

    Cheng, Wing Yin; Huynh, HoangDinh; Chen, Peiwen; Peña-Llopis, Samuel; Wan, Yihong

    2016-01-01

    Tumor-associated macrophage (TAM) significantly contributes to cancer progression. Human cancer is enhanced by PPARγ loss-of-function mutations, but inhibited by PPARγ agonists such as TZD diabetes drugs including rosiglitazone. However, it remains enigmatic whether and how macrophage contributes to PPARγ tumor-suppressive functions. Here we report that macrophage PPARγ deletion in mice not only exacerbates mammary tumor development but also impairs the anti-tumor effects of rosiglitazone. Mechanistically, we identify Gpr132 as a novel direct PPARγ target in macrophage whose expression is enhanced by PPARγ loss but repressed by PPARγ activation. Functionally, macrophage Gpr132 is pro-inflammatory and pro-tumor. Genetic Gpr132 deletion not only retards inflammation and cancer growth but also abrogates the anti-tumor effects of PPARγ and rosiglitazone. Pharmacological Gpr132 inhibition significantly impedes mammary tumor malignancy. These findings uncover macrophage PPARγ and Gpr132 as critical TAM modulators, new cancer therapeutic targets, and essential mediators of TZD anti-cancer effects. DOI: http://dx.doi.org/10.7554/eLife.18501.001 PMID:27692066

  6. Modulation of Mammary Stromal Cell Lactate Dynamics by Ambient Glucose and Epithelial Factors.

    PubMed

    Tobar, Nicolas; Porras, Omar; Smith, Patricio C; Barros, L Felipe; Martínez, Jorge

    2017-01-01

    Hyperglycemia is a risk factor for a variety of human cancers. Increased access to glucose and that tumor metabolize glucose by a glycolytic process even in the presence of oxygen (Warburg effect), provide a framework to analyze a particular set of metabolic adaptation mechanisms that may explain this phenomenon. In the present work, using a mammary stromal cell line derived from healthy tissue that was subjected to a long-term culture in low (5 mM) or high (25 mM) glucose, we analyzed kinetic parameters of lactate transport using a FRET biosensor. Our results indicate that the glucose pre-culture and soluble epithelial factors constitute a stimulus for lactate stromal production, factors that also modify the kinetic parameters and the monocarboxylate transporters expression in stromal cells. We also observed a vectorial flux of lactate from stroma to epithelial cells in a co-culture setting and found that the uptake of lactate by epithelial cells correlates with the degree of malignancy. Glucose preconditioning of the stromal cell stimulated epithelial motility. Our findings suggest that lactate generated by stromal cells in the high glucose condition stimulate epithelial migration. Overall, our results support the notion that glucose not only provides a substrate for tumor nutrition but also behaves as a signal promoting malignancy. J. Cell. Physiol. 232: 136-144, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  7. Comparative Roles of Overexpressed and Mutated H- and K-ras in Mammary Carcinogenesis.

    DTIC Science & Technology

    1996-08-01

    transgene of these tumors. 14. SUBJECT TERMS 15. NUMBER OF PAGES Breast Cancer , mammary carcinogenesis, oncogenes, ras genes, 44 replication defective...27 Appendix 5 29 Appendix 6 31 Appendix 7 33 Appendix 8 35 Appendix 9 37 Appendix 10 39 Introduction Breast cancer development involves multiple poorly...understood steps (25). Currently, several genes that may participate in breast cancer development are under investigation. The ras family of genes

  8. AZU-1: A Candidate Breast Tumor Suppressor and Biomarker for Tumor Progression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Huei-Mei; Schmeichel, Karen L; Mian, I. Saira

    2000-02-04

    To identify genes misregulated in the final stages of breast carcinogenesis, we performed differential display to compare the gene expression patterns of the human tumorigenic mammary epithelial cells, HMT-3522-T4-2, with those of their immediate premalignant progenitors, HMT-3522-S2. We identified a novel gene, called anti-zuai-1 (AZU-1), that was abundantly expressed in non- and premalignant cells and tissues but was appreciably reduced in breast tumor cell types and in primary tumors. The AZU-1 gene encodes an acidic 571-amino-acid protein containing at least two structurally distinct domains with potential protein-binding functions: an N-terminal serine and proline-rich domain with a predicted immunoglobulin-like fold andmore » a C-terminal coiled-coil domain. In HMT-3522 cells, the bulk of AZU-1 protein resided in a detergent-extractable cytoplasmic pool and was present at much lower levels in tumorigenic T4-2 cells than in their nonmalignant counterparts. Reversion of the tumorigenic phenotype of T4-2 cells, by means described previously, was accompanied by the up-regulation of AZU-1. In addition, reexpression of AZU-1 in T4-2 cells, using viral vectors, was sufficient to reduce their malignant phenotype substantially, both in culture and in vivo. These results indicate that AZU-1 is a candidate breast tumor suppressor that may exert its effects by promoting correct tissue morphogenesis.« less

  9. Modulation of tumor fatty acids, through overexpression or loss of thyroid hormone responsive protein spot 14 is associated with altered growth and metastasis.

    PubMed

    Wellberg, Elizabeth A; Rudolph, Michael C; Lewis, Andrew S; Padilla-Just, Nuria; Jedlicka, Paul; Anderson, Steven M

    2014-12-04

    Spot14 (S14), encoded by the THRSP gene, regulates de novo fatty acid synthesis in the liver, adipose, and lactating mammary gland. We recently showed that S14 stimulated fatty acid synthase (FASN) activity in vitro, and increased the synthesis of fatty acids in mammary epithelial cells in vivo. Elevated de novo fatty acid synthesis is a distinguishing feature of many solid tumors compared with adjacent normal tissue. This characteristic is thought to be acquired during tumor progression, as rapidly proliferating cells have a heightened requirement for membrane phospholipids. Further, overexpression of FASN is sufficient to stimulate cell proliferation. While many studies have focused on the FASN enzyme in cancer biology, few studies have addressed the roles of proteins that modify FASN activity, such as S14. Tumor fatty acids were modulated using two mouse models, mouse mammary tumor virus (MMTV)-neu mice overexpressing S14 and MMTV-polyomavirus middle T antigen (PyMT) mice lacking S14, and associations between elevated or impaired fatty acid synthesis on tumor latency, growth, metastasis, and signaling pathways were investigated. We evaluated S14-dependent gene expression profiles in mouse tumors by microarray and used publicly available microarray datasets of human breast tumors. S14 overexpression in the MMTV-Neu transgenic model is associated with elevated medium-chain fatty acids, increased proliferation and a shorter tumor latency, but reduced tumor metastasis compared to controls. Loss of S14 in the MMTV-PyMT model decreased FASN activity and the synthesis of medium-chain fatty acids but did not alter tumor latency. Impaired fatty acid synthesis was associated with reduced solid tumor cell proliferation, the formation of cystic lesions in some animals, and decreased phosphorylation of Src and protein kinase B (Akt). Analysis of gene expression in these mouse and human tumors revealed a relationship between S14 status and the expression of genes associated

  10. Dose response study of conjugated fatty acid derived from safflower oil on mammary and colon carcinogenesis pretreated with 7,12-dimethylbenz[a]anthracene (DMBA) and 1,2-dimethylhydrazine (DMH) in female Sprague-Dawley rats.

    PubMed

    Cheng, Jing Lei; Futakuchi, Mitsuru; Ogawa, Kumiko; Iwata, Toshio; Kasai, Masaaki; Tokudome, Shinkan; Hirose, Masao; Shirai, Tomoyuki

    2003-07-10

    To clarify the chemopreventive effects of conjugated fatty acid derived from safflower oil (CFA-S), rich in conjugated linoleic acid (CLA), on mammary and colon carcinogenesis, 6 week old female Sprague-Dawley (SD) rats received diet containing 0.01, 0.05, 0.1, 1, or 2% CFA-S subsequent to five times subcutaneous injections of 1,2-dimethyl-hydrazine (DMH) at a dose of 40 mg/kg b.w. and a single 50 mg/kg b.w. intragastric application of 7,12-dimethylbenz[a]anthracene (DMBA) during the first 11 days. The experiment was terminated at week 36. Numbers of mammary tumors, colon aberrant crypt foci (ACF), and proliferative indices of mammary tumors, and colon epithelium were analyzed. The 1% dose was found to be optimal for suppression of carcinogenesis in both target organs, a good correlation being noted with between data for cell proliferation. These results suggest that a diet containing appropriate levels of CFA-S may be useful for prevention of mammary and colon cancer.

  11. The tumor promoter arsenite stimulates AP-1 activity by inhibiting a JNK phosphatase.

    PubMed Central

    Cavigelli, M; Li, W W; Lin, A; Su, B; Yoshioka, K; Karin, M

    1996-01-01

    Trivalent arsenic (As3+) is highly carcinogenic, but devoid of known mutagenic activity. Therefore, it is likely to act as a tumor promoter. To understand the molecular basis for the tumor-promoting activity of As3+, we examined its effect on transcription factor AP-1, whose activity is stimulated by several other tumor promoters. We found that As3+, but not As5+, which is toxic but not carcinogenic, is a potent stimulator of AP-1 transcriptional activity and an efficient inducer of c-fos and c-jun gene expression. Induction of c-jun and c-fos transcription by As3+ correlates with activation of Jun kinases (JNKs) and p38/Mpk2, which phosphorylate transcription factors that activate these immediate early genes. No effect on ERK activity was observed. As5+, on the other hand, had a negligible effect on JNK or p38/Mpk2 activity. Biochemical analysis and co-transfection experiments strongly suggest that the primary mechanism by which As3+ stimulates JNK activity involves the inhibition of a constitutive dual-specificity JNK phosphatase. This phosphatase activity appears to be responsible for maintaining low basal JNK activity in non-stimulated cells and its inhibition may lead to tumor promotion through induction of proto-oncogenes such as c-jun and c-fos, and stimulation of AP-1 activity. The same phosphatase may also regulate p38/Mpk2 activity. Images PMID:8947050

  12. Emodin Inhibits Breast Cancer Growth by Blocking the Tumor-Promoting Feedforward Loop between Cancer Cells and Macrophages.

    PubMed

    Iwanowycz, Stephen; Wang, Junfeng; Hodge, Johnie; Wang, Yuzhen; Yu, Fang; Fan, Daping

    2016-08-01

    Macrophage infiltration correlates with severity in many types of cancer. Tumor cells recruit macrophages and educate them to adopt an M2-like phenotype through the secretion of chemokines and growth factors, such as MCP1 and CSF1. Macrophages in turn promote tumor growth through supporting angiogenesis, suppressing antitumor immunity, modulating extracellular matrix remodeling, and promoting tumor cell migration. Thus, tumor cells and macrophages interact to create a feedforward loop supporting tumor growth and metastasis. In this study, we tested the ability of emodin, a Chinese herb-derived compound, to inhibit breast cancer growth in mice and examined the underlying mechanisms. Emodin was used to treat mice bearing EO771 or 4T1 breast tumors. It was shown that emodin attenuated tumor growth by inhibiting macrophage infiltration and M2-like polarization, accompanied by increased T-cell activation and reduced angiogenesis in tumors. The tumor inhibitory effects of emodin were lost in tumor-bearing mice with macrophage depletion. Emodin inhibited IRF4, STAT6, and C/EBPβ signaling and increased inhibitory histone H3 lysine 27 tri-methylation (H3K27m3) on the promoters of M2-related genes in tumor-associated macrophages. In addition, emodin inhibited tumor cell secretion of MCP1 and CSF1, as well as expression of surface anchoring molecule Thy-1, thus suppressing macrophage migration toward and adhesion to tumor cells. These results suggest that emodin acts on both breast cancer cells and macrophages and effectively blocks the tumor-promoting feedforward loop between the two cell types, thereby inhibiting breast cancer growth and metastasis. Mol Cancer Ther; 15(8); 1931-42. ©2016 AACR. ©2016 American Association for Cancer Research.

  13. Comparative bladder tumor promoting activity of sodium saccharin, sodium ascorbate, related acids, and calcium salts in rats.

    PubMed

    Cohen, S M; Ellwein, L B; Okamura, T; Masui, T; Johansson, S L; Smith, R A; Wehner, J M; Khachab, M; Chappel, C I; Schoenig, G P

    1991-04-01

    Sodium saccharin and sodium ascorbate are known to promote urinary bladder carcinogenesis in rats following initiation with N-[4-(5-nitro-2-furyl)-2-thiazolyl]formamide (FANFT) or N-butyl-N-(4-hydroxybutyl) nitrosamine. Sodium salts of other organic acids have also been shown to be bladder tumor promoters. In addition, these substances increase urothelial proliferation in short term assays in rats when fed at high doses. When they have been tested, the acid forms of these salts are without either promoting or cell proliferative inducing activity. The following experiment was designed to compare the tumor promoting activity of various forms of saccharin and to evaluate the role in promotion of urinary sodium, calcium, and pH as well as other factors. Twenty groups of 40 male F344 rats, 5 weeks of age, were fed either FANFT or control diet during a 6-week initiation phase followed by feeding of a test compound for 72 weeks in the second phase. The chemicals were administered to the first 18 groups in Agway Prolab 3200 diet and the last 2 groups were fed NIH-07 diet. The treatments were as follows: (a) FANFT----5% sodium saccharin (NaS); (b) FANFT----3% NaS; (c) FANFT----5.2% calcium saccharin (CaS); (d) FANFT----3.12% CaS; (e) FANFT----4.21% acid saccharin (S); (f) FANFT----2.53% S; (g) FANFT----5% sodium ascorbate; (h) FANFT----4.44% ascorbic acid; (i) FANFT----5% NaS plus 1.15% CaCO3; (j) FANFT----5.2% CaS plus 1.34% NaCl; (k) FANFT----5% NaS plus 1.23% NH4Cl; (l) FANFT----1.15% CaCO3; (m) FANFT----1.34% NaCl; (n) FANFT----control; (o) control----5% NaS; (p) control----5.2% CaS; (q) control----4.21% S; (r) Control----control; (s) FANFT----5% NaS (NIH-07 diet); (t) FANFT----control (NIH-07 diet). NaS, CaS and S without prior FANFT administration were without tumorigenic activity. NaS was found to have tumor promoting activity, showing a positive response at the 5 and 3% dose levels, with significantly greater activity at the higher dose. CaS had slight tumor

  14. Tumor-secreted PGE2 inhibits CCL5 production in activated macrophages through cAMP/PKA signaling pathway.

    PubMed

    Qian, Xuesong; Zhang, Jidong; Liu, Jianguo

    2011-01-21

    One of the major characteristics of tumors is their ability to evade immunosurveillance through altering the properties and functions of host stromal and/or immune cells. CCL5 has been shown to play important roles in T cell proliferation, IFN-γ, and IL-2 production, which promotes the differentiation and proliferation of Th1 cells important for immune defense against intracellular infection. In this study we found that tumor-bearing mice were more susceptible to bacterial infection and showed reduced CCL5 levels in serum during endotoxic shock. Our data further demonstrated that the soluble factors secreted by mammary gland tumor cells but not normal mammary gland epithelial cells inhibited CCL5 expression in macrophages in response to LPS, but not to TNF-α stimulation. The inhibitory effect of tumor-secreted molecules on LPS-induced CCL5 expression was regulated at the post-transcriptional level. Blocking PGE(2) synthesis by NS398 or through the use of PGE(2) receptor antagonists AH-6809 (EP2 antagonist) and AH-23848 (EP4 antagonist) completely reversed the inhibitory effect of tumor-conditioned medium (TCM) on LPS-induced CCL5 expression. Moreover, PGE(2) and the cAMP analog forskolin could mimic tumor-mediated CCL5 inhibition, and the inhibitory effects of TCM, PGE(2), and cAMP analog on LPS-induced CCL5 expression could be completely reversed by the PKA inhibitor H89. Furthermore, blocking PGE(2) synthesis in vivo led to partial recovery of CCL5 production during endotoxic shock. Taken together, our data indicate that PGE(2) secreted from breast cancer cells suppresses CCL5 secretion in LPS-activated macrophages through a cAMP/PKA signaling pathway, which may result in suppression of host immune responses against subsequent bacterial infection.

  15. Ku80 cooperates with CBP to promote COX-2 expression and tumor growth

    PubMed Central

    Qin, Yu; Xuan, Yang; Jia, Yunlu; Hu, Wenxian; Yu, Wendan; Dai, Meng; Li, Zhenglin; Yi, Canhui; Zhao, Shilei; Li, Mei; Du, Sha; Cheng, Wei; Xiao, Xiangsheng; Chen, Yiming; Wu, Taihua; Meng, Songshu; Yuan, Yuhui; Liu, Quentin; Huang, Wenlin; Guo, Wei; Wang, Shusen; Deng, Wuguo

    2015-01-01

    Cyclooxygenase-2 (COX-2) plays an important role in lung cancer development and progression. Using streptavidin-agarose pulldown and proteomics assay, we identified and validated Ku80, a dimer of Ku participating in the repair of broken DNA double strands, as a new binding protein of the COX-2 gene promoter. Overexpression of Ku80 up-regulated COX-2 promoter activation and COX-2 expression in lung cancer cells. Silencing of Ku80 by siRNA down-regulated COX-2 expression and inhibited tumor cell growth in vitro and in a xenograft mouse model. Ku80 knockdown suppressed phosphorylation of ERK, resulting in an inactivation of the MAPK pathway. Moreover, CBP, a transcription co-activator, interacted with and acetylated Ku80 to co-regulate the activation of COX-2 promoter. Overexpression of CBP increased Ku80 acetylation, thereby promoting COX-2 expression and cell growth. Suppression of CBP by a CBP-specific inhibitor or siRNA inhibited COX-2 expression as well as tumor cell growth. Tissue microarray immunohistochemical analysis of lung adenocarcinomas revealed a strong positive correlation between levels of Ku80 and COX-2 and clinicopathologic variables. Overexpression of Ku80 was associated with poor prognosis in patients with lung cancers. We conclude that Ku80 promotes COX-2 expression and tumor growth and is a potential therapeutic target in lung cancer. PMID:25797267

  16. CMTM5 exhibits tumor suppressor activity through promoter methylation in oral squamous cell carcinoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Heyu; Nan, Xu; Li, Xuefen

    Highlights: • Down-regulation of CMTM5 expression in OSCC tissues was found. • The promoter methylation status of CMTM5 was measured. • CMTM5-v1 inhibited cell proliferation and migration and induced apoptosis. • CMTM5 might act as a putative tumor suppressor gene in OSCC. - Abstract: Oral squamous cell carcinoma (OSCC) is one of the most common types of malignancies in the head and neck region. CKLF-like MARVEL transmembrane domain-containing member 5 (CMTM5) has been recently implicated as a tumor suppressor gene in several cancer types. Herein, we examined the expression and function of CMTM5 in oral squamous cell carcinoma. CMTM5 wasmore » down-regulated in oral squamous cell lines and tumor samples from patients with promoter methylation. Treatment with the demethylating agent 5-aza-2′-deoxycytidine restored CMTM5 expression. In the OSCC cell lines CAL27 and GNM, the ectopic expression of CMTM5-v1 strongly inhibited cell proliferation and migration and induced apoptosis. In addition, CMTM5-v1 inhibited tumor formation in vivo. Therefore, CMTM5 might act as a putative tumor suppressor gene through promoter methylation in oral squamous cell carcinoma.« less

  17. 17β-Estradiol and ICI182,780 Differentially Regulate STAT5 Isoforms in Female Mammary Epithelium, With Distinct Outcomes

    PubMed Central

    Jallow, Fatou; Brockman, Jennifer L; Helzer, Kyle T; Rugowski, Debra E; Goffin, Vincent; Alarid, Elaine T; Schuler, Linda A

    2018-01-01

    Abstract Prolactin (PRL) and estrogen cooperate in lobuloalveolar development of the mammary gland and jointly regulate gene expression in breast cancer cells in vitro. Canonical PRL signaling activates STAT5A/B, homologous proteins that have different target genes and functions. Although STAT5A/B are important for physiological mammary function and tumor pathophysiology, little is known about regulation of their expression, particularly of STAT5B, and the consequences for hormone action. In this study, we examined the effect of two estrogenic ligands, 17β-estradiol (E2) and the clinical antiestrogen, ICI182,780 (ICI, fulvestrant) on expression of STAT5 isoforms and resulting crosstalk with PRL in normal and tumor murine mammary epithelial cell lines. In all cell lines, E2 and ICI significantly increased protein and corresponding nascent and mature transcripts for STAT5A and STAT5B, respectively. Transcriptional regulation of STAT5A and STAT5B by E2 and ICI, respectively, is associated with recruitment of estrogen receptor alpha and increased H3K27Ac at a common intronic enhancer 10 kb downstream of the Stat5a transcription start site. Further, E2 and ICI induced different transcripts associated with differentiation and tumor behavior. In tumor cells, E2 also significantly increased proliferation, invasion, and stem cell-like activity, whereas ICI had no effect. To evaluate the role of STAT5B in these responses, we reduced STAT5B expression using short hairpin (sh) RNA. shSTAT5B blocked ICI-induced transcripts associated with metastasis and the epithelial mesenchymal transition in both cell types. shSTAT5B also blocked E2-induced invasion of tumor epithelium without altering E2-induced transcripts. Together, these studies indicate that STAT5B mediates a subset of protumorigenic responses to both E2 and ICI, underscoring the need to understand regulation of its expression and suggesting exploration as a possible therapeutic target in breast cancer. PMID:29594259

  18. Temperature uniformity in hyperthermal tumor therapy

    NASA Technical Reports Server (NTRS)

    Harrison, G. H.; Robinson, J. E.; Samaras, G. M.

    1978-01-01

    Mouse mammary tumors heated by water bath or by microwave-induced hyperthermia exhibit a response that varies sharply with treatment temperature; therefore, uniform heating of the tumor is essential to quantitate the biological response as a function of temperature. C3H tumors implanted on the mouse flank were easily heated to uniformities within 0.1 C by using water baths. Cold spots up to 1 C below the desired treatment temperature were observed in the same tumors implanted on the hind leg. These cold spots were attributed to cooling by major blood vessels near the tumor. In this case temperature uniformity was achieved by the deposition of 2450 MHz microwave energy into the tumor volume by using parallel-opposed applicators.

  19. RXRα and LXR activate two promoters in placenta- and tumor-specific expression of PLAC1

    PubMed Central

    Chen, Yaohui; Moradin, Adi; Schlessinger, David; Nagaraja, Ramaiah

    2011-01-01

    PLAC1 expression, first characterized as restricted to developing placenta among normal tissues, is also found in a wide range of tumors and transformed cell lines. To understand the basis for its unusual expression profile, we have analyzed the gene structure and its mode of transcription. We find that the gene has a hitherto unique feature, with two promoters, P1 and P2, separated by 105 kb. P2 has been described before. Here we define P1 and show that it and P2 are activated by RXRα in conjunction with LXRα or LXRβ. In placenta, P2 is the preferred promoter, whereas various tumor cell lines tend to express predominantly either one or the other promoter. Furthermore, when each promoter is fused to a luciferase reporter gene and transfected into cancer cell lines, the promoter corresponding to the more active endogenous promoter is preferentially transcribed. Joint expression of activating nuclear receptors can partially account for the restricted expression of PLAC1 in placenta, and may be co-opted for preferential P1 or P2 PLAC1 expression in various tumor cells. PMID:21937108

  20. Inhibition of mammary gland carcinogenesis by green tea catechins and other naturally occurring antioxidants in female Sprague-Dawley rats pretreated with 7,12-dimethylbenz[alpha]anthracene.

    PubMed

    Hirose, M; Hoshiya, T; Akagi, K; Futakuchi, M; Ito, N

    1994-08-15

    Effects of the naturally occurring antioxidants on mammary gland carcinogenesis were examined in female Sprague-Dawley rats pretreated with 7,12-dimethylbenz[alpha]anthracene (DMBA). Groups of 15-16 7-week-old rats received a 50 mg/kg body weight intra-gastric dose of DMBA, and starting one week thereafter placed on diet containing 0.4% catechol, 1.0% gamma-oryzanol, 2.0% phytic acid, 1.0% green tea catechins (GTC), 1.0% tannic acid or basal diet alone for 35 weeks. Although the final incidences and multiplicities of mammary tumors were not significantly different between DMBA-treated groups, the numbers of survivors in the antioxidant-treated groups at the end of the experiment at week 36 were significantly higher than in the basal diet group. In particular, the survival rate of the GTC group at 93.8% strongly contrasted with that of only 33.3% for rats on the basal diet. At the end of week 18, when all the animals were still alive, the average size of palpable mammary tumors was significantly smaller in the catechol, phytic acid and catechins groups. These results indicate that antioxidants, and GTC in particular, inhibit rat mammary gland carcinogenesis after DMBA initiation.