Science.gov

Sample records for promotes eeg theta

  1. Theta EEG neurofeedback benefits early consolidation of motor sequence learning.

    PubMed

    Rozengurt, Roman; Barnea, Anat; Uchida, Sunao; Levy, Daniel A

    2016-07-01

    Procedural learning is subject to consolidation processes believed to depend on the modulation of functional connections involved in representing the acquired skill. While sleep provides the most commonly studied framework for such consolidation processes, posttraining modulation of oscillatory brain activity may also impact on plasticity processes. Under the hypothesis that consolidation of motor learning is associated with theta band activity, we used EEG neurofeedback (NFB) to enable participants to selectively increase either theta or beta power in their EEG spectra following the acquisition phase of motor sequence learning. We tested performance on a motor task before and after training, right after the NFB session to assess immediate NFB effects, 1 day after NFB to assess interaction between NFB effects and overnight sleep-dependent stabilization, and 1 week after the initial session, to assess the effects of NFB on long-term stabilization of motor training. We also explored the extent of the influence of single-electrode NFB on EEG recorded across the scalp. Results revealed a significantly greater improvement in performance immediately after NFB in the theta group than in the beta group. This effect continued for testing up to 1 week following training. Across participants, post-NFB improvement correlated positively with theta/beta ratio change achieved during NFB. Additionally, NFB was found to cause widespread band-power modulation beyond the electrode used for feedback. Thus, upregulating postlearning theta power may yield contributions to the immediate performance and subsequent consolidation of an acquired motor skill. PMID:27080752

  2. Modulation of EEG Theta Band Signal Complexity by Music Therapy

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Joydeep; Lee, Eun-Jeong

    The primary goal of this study was to investigate the impact of monochord (MC) sounds, a type of archaic sounds used in music therapy, on the neural complexity of EEG signals obtained from patients undergoing chemotherapy. The secondary goal was to compare the EEG signal complexity values for monochords with those for progressive muscle relaxation (PMR), an alternative therapy for relaxation. Forty cancer patients were randomly allocated to one of the two relaxation groups, MC and PMR, over a period of six months; continuous EEG signals were recorded during the first and last sessions. EEG signals were analyzed by applying signal mode complexity, a measure of complexity of neuronal oscillations. Across sessions, both groups showed a modulation of complexity of beta-2 band (20-29Hz) at midfrontal regions, but only MC group showed a modulation of complexity of theta band (3.5-7.5Hz) at posterior regions. Therefore, the neuronal complexity patterns showed different changes in EEG frequency band specific complexity resulting in two different types of interventions. Moreover, the different neural responses to listening to monochords and PMR were observed after regular relaxation interventions over a short time span.

  3. Sex differences in human EEG theta oscillations during spatial navigation in virtual reality.

    PubMed

    Kober, Silvia Erika; Neuper, Christa

    2011-03-01

    The present study examines theta oscillations (electroencephalographic (EEG) activity with a frequency of 4-8 Hz) in male and female young adults during spatial navigation in virtual environments. Twenty-seven participants (13 males and 14 females) performed a spatial navigation task in a virtual maze where they had to find the shortest ways between landmarks. Absolute theta band power and event-related desynchronisation/synchronisation (ERD/ERS) in the theta frequency band was used to analyze the EEG data. Processing of spatial cues or landmarks induced cortical theta activity compared to a baseline condition, confirming the hypothesis that theta oscillations reflect sensorimotor integration. The sensorimotor integration hypothesis proposes that theta oscillations coordinate sensory information with a motor plan to direct wayfinding behaviour to known goal locations. No sex differences were found in spatial performance. However, female participants showed a stronger increase in theta oscillations during processing of landmarks as navigational aids compared to a baseline condition than men. Additionally, a higher theta power was associated with an increased navigation performance in women, whereas an increase in theta power was associated with a decreased navigation performance in men. These results might indicate a stronger sensorimotor integration in females than in males. Possible explanations for the emerged sex differences in cortical theta activity are discussed. PMID:21146566

  4. Frontal and rostral anterior cingulate (rACC) theta EEG in depression: implications for treatment outcome?

    PubMed

    Arns, Martijn; Etkin, Amit; Hegerl, Ulrich; Williams, Leanne M; DeBattista, Charles; Palmer, Donna M; Fitzgerald, Paul B; Harris, Anthony; deBeuss, Roger; Gordon, Evian

    2015-08-01

    In major depressive disorder (MDD), elevated theta current density in the rostral anterior cingulate (rACC), as estimated by source localization of scalp-recorded electroencenphalogram (EEG), has been associated with response to antidepressant treatments, whereas elevated frontal theta has been linked to non-response. This study used source localization to attempt to integrate these apparently opposite results and test, whether antidepressant response is associated with elevated rACC theta and non-response with elevated frontal theta and whether theta activity is a differential predictor of response to different types of commonly used antidepressants. In the international Study to Predict Optimized Treatment in Depression (iSPOT-D), a multi-center, international, randomized, prospective practical trial, 1008 MDD participants were randomized to escitalopram, sertraline or venlafaxine-XR. The study also recruited 336 healthy controls. Treatment response and remission were established after eight weeks using the 17-item Hamilton Rating Scale for Depression (HRSD17). The resting-state EEG was assessed at baseline with eyes closed and source localization (eLORETA) was employed to extract theta from the rACC and frontal cortex. Patients with MDD had elevated theta in both frontal cortex and rACC, with small effect sizes. High frontal and rACC theta were associated with treatment non-response, but not with non-remission, and this effect was most pronounced in a subgroup with previous treatment failures. Low theta in frontal cortex and rACC are found in responders to antidepressant treatments with a small effect size. Future studies should investigate in more detail the role of previous treatment (failure) in the association between theta and treatment outcome. PMID:25936227

  5. EEG Theta and Gamma Responses to Semantic Violations in Online Sentence Processing

    ERIC Educational Resources Information Center

    Hald, Lea A.; Bastiaansen, Marcel C. M.; Hagoort, Peter

    2006-01-01

    We explore the nature of the oscillatory dynamics in the EEG of subjects reading sentences that contain a semantic violation. More specifically, we examine whether increases in theta ([Approximately]3-7 Hz) and gamma (around 40 Hz) band power occur in response to sentences that were either semantically correct or contained a semantically…

  6. Theta and alpha EEG frequency interplay in subjects with mild cognitive impairment: evidence from EEG, MRI, and SPECT brain modifications

    PubMed Central

    Moretti, Davide V.

    2015-01-01

    Background: Temporo-parietal and medial temporal cortex atrophy are associated with mild cognitive impairment (MCI) due to Alzheimer disease (AD) as well as the reduction of regional cerebral blood perfusion in hippocampus. Moreover, the increase of EEG alpha3/alpha2 power ratio has been associated with MCI due to AD and with an increase in theta frequency power in a group of subjects with impaired cerebral perfusion in hippocampus. Methods: Seventy four adult subjects with MCI underwent clinical and neuropsychological evaluation, electroencephalogram (EEG) recording and high resolution 3D magnetic resonance imaging (MRI). Among the patients, a subset of 27 subjects underwent also perfusion single-photon emission computed tomography and hippocampal atrophy evaluation. Alpha3/alpha2 power ratio as well as cortical thickness was computed for each subject. Three MCI groups were detected according to increasing tertile values of alpha3/alpha2 power ratio and difference of cortical thickness among the groups estimated. Results: Higher alpha3/alpha2 power ratio group had wider cortical thinning than other groups, mapped to the Supramarginal and Precuneus bilaterally. Subjects with higher alpha3/alpha2 frequency power ratio showed a constant trend to a lower perfusion than lower alpha3/alpha2 group. Moreover, this group correlates with both a bigger hippocampal atrophy and an increase of theta frequency power. Conclusion: Higher EEG alpha3/alpha2 power ratio was associated with temporo-parietal cortical thinning, hippocampal atrophy and reduction of regional cerebral perfusion in medial temporal cortex. In this group an increase of theta frequency power was detected inMCI subjects. The combination of higher EEG alpha3/alpha2 power ratio, cortical thickness measure and regional cerebral perfusion reveals a complex interplay between EEG cerebral rhythms, structural and functional brain modifications. PMID:25926789

  7. Developmental change in EEG theta activity in the medial prefrontal cortex during response control.

    PubMed

    Liu, Zhong-Xu; Woltering, Steven; Lewis, Marc D

    2014-01-15

    Cognitive control functions continue to improve from infancy until early adulthood, allowing flexible adaptation to a complex environment. However, it remains controversial how this development in cognitive capabilities is mediated by changes in cortical activity: both age-related increases and decreases of mediofrontal neural activity have been observed and interpreted as neural underpinnings of this functional development. To better understand this developmental process, we examined EEG theta activity in the mediofrontal region using a Go/No-go response control task. We found that both pre-stimulus baseline theta-power and theta-power during the response control task, without baseline-correction, decreased with age. Conversely, when task-related theta-power was baseline corrected (using a ratio method), it exhibited a positive developmental trajectory. The age-related theta-power increase was source-localized to the anterior cingulate cortex. This increase in theta activity also partially mediated age-related improvements in response control and was greatest in a condition that demanded greater effort. Theta activity in older children also showed greater temporal reliability across trials as measured by inter-trial phase-coherence. Interestingly, directly subtracting baseline activity from task-related activity did not yield significant developmental effects, which highlights the necessity of separating and contrasting the pre-stimulus baseline with task-related processing in the understanding of neurodevelopmental changes. PMID:24007804

  8. Genetic variability in the human cannabinoid receptor 1 is associated with resting state EEG theta power in humans.

    PubMed

    Heitland, I; Kenemans, J L; Böcker, K B E; Baas, J M P

    2014-11-01

    It has long been postulated that exogenous cannabinoids have a profound effect on human cognitive functioning. These cannabinoid effects are thought to depend, at least in parts, on alterations of phase-locking of local field potential neuronal firing. The latter can be measured as activity in the theta frequency band (4-7Hz) by electroencephalogram. Theta oscillations are supposed to serve as a mechanism in neural representations of behaviorally relevant information. However, it remains unknown whether variability in endogenous cannabinoid activity is involved in theta rhythms and therefore, may serve as an individual differences index of human cognitive functioning. To clarify this issue, we recorded resting state EEG activity in 164 healthy human subjects and extracted EEG power across frequency bands (δ, θ, α, and β). To assess variability in the endocannabinoid system, two genetic polymorphisms (rs1049353, rs2180619) within the cannabinoid receptor 1 (CB1) were determined in all participants. As expected, we observed significant effects of rs1049353 on EEG power in the theta band at frontal, central and parietal electrode regions. Crucially, these effects were specific for the theta band, with no effects on activity in the other frequency bands. Rs2180619 showed no significant associations with theta power after Bonferroni correction. Taken together, we provide novel evidence in humans showing that genetic variability in the cannabinoid receptor 1 is associated with resting state EEG power in the theta frequency band. This extends prior findings of exogenous cannabinoid effects on theta power to the endogenous cannabinoid system. PMID:25116250

  9. Coherent theta-band EEG activity predicts item-context binding during encoding.

    PubMed

    Summerfield, Christopher; Mangels, Jennifer A

    2005-02-01

    Episodic memories consist of semantic information coupled with a rich array of contextual detail. Here, we investigate the neural processes by which information about the sensory context of a learning event is "bound" to the semantic representation of the to-be-encoded item. We present evidence that item-context binding during encoding is mediated by frontoposterior electroencephalographic (EEG) phase locking within and between hemispheres in the theta (4-8 Hz) band. During a task in which subjects encoded words in different font colors, later memory for the word was associated with sustained frontal theta activity and frontoposterior theta-band coherence, primarily within the left hemisphere. When the word-color association was later successfully retrieved, however, neurons synchronized their theta-band responses bilaterally in a more sustained fashion, particularly during the latter part of the stimulus epoch (>800 ms). Our results confirm the importance of functional coupling between frontal and posterior regions for successful encoding. One interpretation of these data is hemispheric contributions to item and context encoding may be asymmetric, with left hemisphere coherence facilitating semantic processing of an item and right hemisphere coherence facilitating processing of sensory context. Theta-band coherence may be an important mechanism by which brain networks exchange information during learning. PMID:15652304

  10. Frontal EEG theta changes assess the training improvements of novices in flight simulation tasks.

    PubMed

    Borghini, G; Arico, P; Astolfi, L; Toppi, J; Cincotti, F; Mattia, D; Cherubino, P; Vecchiato, G; Maglione, A G; Graziani, I; Babiloni, F

    2013-01-01

    The aim of the study is to analyze the variation of the EEG power spectra in theta band when a novice starts to learn a new task. In particular, the goal is to find out the differences from the beginning of the training to the session in which the performance level is good enough for considering him/her able to complete the task without any problems. While the novices were engaged in the flight simulation tasks we recorded the brain activity by using high resolution EEG techniques as well as neurophysiologic variables such as heart rate (HR) and eye blinks rate (EBR). Results show clear changes in the EEG power spectra in theta band over the frontal brain areas, either over the left, the midline and the right side, during the learning process of the task. These results are also supported by the autonomic signals of HR and EBR, by the performances' trends and by the questionnaires for the evaluation of the perceived workload level. PMID:24111260

  11. EEG theta and beta power spectra in adolescents with ADHD versus adolescents with ASD + ADHD.

    PubMed

    Bink, M; van Boxtel, G J M; Popma, A; Bongers, I L; Denissen, A J M; van Nieuwenhuizen, Ch

    2015-08-01

    Attention problems are common in youngsters with attention deficit hyperactivity disorder (ADHD) as well as in adolescents with combined autism spectrum disorder (ASD) and ADHD. However, it is unknown whether there is psychophysiological overlap and/or a difference in electroencephalogram (EEG) power spectra between ADHD and comorbid ASD and ADHD (ASD + ADHD), on and off stimulant medication. To explore potential differences and overlap, measures of theta and beta power in adolescents diagnosed with ADHD (n = 33) versus adolescents with combined ASD + ADHD (n = 20), categorized by stimulant medication use (57 % of the total sample), were compared. EEG measures were acquired in three conditions: (1) resting state, eyes closed (2) resting state, eyes open and (3) during an oddball task. In addition, performance on the d2 attention test was analyzed. Adolescents with ADHD displayed more absolute theta activity than adolescents with ASD + ADHD during the eyes open and task conditions, independent of stimulant medication use. In addition, only the adolescents with ADHD showed an association between diminished attention test performance and increased theta in the eyes open condition. Results of the current study suggest that although there is behavioral overlap between ADHD characteristics in adolescents with ADHD and adolescents with combined ASD + ADHD, the underlying psychophysiological mechanisms may be different. Adolescents with ASD + ADHD exhibited fewer of the EEG physiological signs usually associated with ADHD, although there was an overlap in attentional problems between the groups. This may indicate that treatments developed for ADHD work differently in some adolescents with ASD + ADHD and adolescents with ADHD only. PMID:25374034

  12. Individual differences in EEG theta and alpha dynamics during working memory correlate with fMRI responses across subjects

    PubMed Central

    Meltzer, Jed A.; Negishi, Michiro; Mayes, Linda C.; Constable, R. Todd

    2007-01-01

    Objective Theta and alpha range EEG oscillations are commonly induced in cognitive tasks, but their possible relationship to the BOLD signal of fMRI is not well understood, and individual variability is high. We explored individual differences in EEG reactivity to determine whether it is positively or negatively correlated with BOLD across subjects. Methods A Sternberg working memory task with 2, 4, or 6 digits was administered to 18 subjects in separate fMRI and EEG sessions. Memory load dependent theta and alpha reactivity was quantified and used as a regressor to reveal brain areas exhibiting EEG-fMRI correlation across subjects. Results Theta increases localized to medial prefrontal cortex, and correlated negatively with BOLD in that region and in other “default mode” areas. Alpha modulation localized to parietal-occipital midline cortex and also correlated negatively with BOLD. Conclusions Individual tendencies to exhibit memory-load dependent oscillations are associated with negative BOLD responses certain brain regions. Significance Positive BOLD responses and increased EEG oscillations do not necessarily arise in the same regions. Negative BOLD responses may also relate to cognitive activity, as traditionally indexed by increased EEG power in the theta band. PMID:17900976

  13. Resting posterior versus frontal delta/theta EEG activity is associated with extraversion and the COMT VAL(158)MET polymorphism.

    PubMed

    Wacker, Jan; Gatt, Justine Megan

    2010-07-01

    Recent studies suggest that resting posterior versus frontal EEG delta/theta activity (delta/theta Pz-Fz) is both sensitive to pharmacological manipulations of neural dopamine and associated with the agency facet of extraversion (i.e., a motivational disposition comprising enthusiasm, energy, assertiveness, achievement striving and social dominance). These observations suggest that posterior versus frontal resting EEG delta/theta activity may represent a useful marker for investigating the molecular genetic basis of extraversion. The present study aimed to test the novel hypothesis of an association between delta/theta Pz-Fz and a functional polymorphism of the enzyme catechol-O-methyltransferase (COMT VAL(158)MET) involved in dopamine catabolism. This was conducted in a large EEG data set from the Brain Resource International Database (BRID; resting EEG from N=1093 healthy individuals, 382 of which also genotyped for COMT VAL(158)MET). In summary, we (1) showed for the first time that the VAL allele is associated with increased delta/theta Pz-Fz; (2) replicated the association between extraversion and delta/theta Pz-Fz in a large, heterogeneous sample including both genders; and (3) documented that the VAL allele of the COMT VAL(158)MET is associated with increased extraversion scores, as previously reported for an overlapping BRID sample. This coherent pattern of findings adds further support to the suggestion that the posterior-anterior distribution of resting EEG slow wave activity in the delta/theta range represents a useful tool for probing the dopaminergic basis of extraversion. PMID:20450956

  14. EEG theta and Mu oscillations during perception of human and robot actions.

    PubMed

    Urgen, Burcu A; Plank, Markus; Ishiguro, Hiroshi; Poizner, Howard; Saygin, Ayse P

    2013-01-01

    The perception of others' actions supports important skills such as communication, intention understanding, and empathy. Are mechanisms of action processing in the human brain specifically tuned to process biological agents? Humanoid robots can perform recognizable actions, but can look and move differently from humans, and as such, can be used in experiments to address such questions. Here, we recorded EEG as participants viewed actions performed by three agents. In the Human condition, the agent had biological appearance and motion. The other two conditions featured a state-of-the-art robot in two different appearances: Android, which had biological appearance but mechanical motion, and Robot, which had mechanical appearance and motion. We explored whether sensorimotor mu (8-13 Hz) and frontal theta (4-8 Hz) activity exhibited selectivity for biological entities, in particular for whether the visual appearance and/or the motion of the observed agent was biological. Sensorimotor mu suppression has been linked to the motor simulation aspect of action processing (and the human mirror neuron system, MNS), and frontal theta to semantic and memory-related aspects. For all three agents, action observation induced significant attenuation in the power of mu oscillations, with no difference between agents. Thus, mu suppression, considered an index of MNS activity, does not appear to be selective for biological agents. Observation of the Robot resulted in greater frontal theta activity compared to the Android and the Human, whereas the latter two did not differ from each other. Frontal theta thus appears to be sensitive to visual appearance, suggesting agents that are not sufficiently biological in appearance may result in greater memory processing demands for the observer. Studies combining robotics and neuroscience such as this one can allow us to explore neural basis of action processing on the one hand, and inform the design of social robots on the other. PMID:24348375

  15. EEG theta and Mu oscillations during perception of human and robot actions

    PubMed Central

    Urgen, Burcu A.; Plank, Markus; Ishiguro, Hiroshi; Poizner, Howard; Saygin, Ayse P.

    2013-01-01

    The perception of others’ actions supports important skills such as communication, intention understanding, and empathy. Are mechanisms of action processing in the human brain specifically tuned to process biological agents? Humanoid robots can perform recognizable actions, but can look and move differently from humans, and as such, can be used in experiments to address such questions. Here, we recorded EEG as participants viewed actions performed by three agents. In the Human condition, the agent had biological appearance and motion. The other two conditions featured a state-of-the-art robot in two different appearances: Android, which had biological appearance but mechanical motion, and Robot, which had mechanical appearance and motion. We explored whether sensorimotor mu (8–13 Hz) and frontal theta (4–8 Hz) activity exhibited selectivity for biological entities, in particular for whether the visual appearance and/or the motion of the observed agent was biological. Sensorimotor mu suppression has been linked to the motor simulation aspect of action processing (and the human mirror neuron system, MNS), and frontal theta to semantic and memory-related aspects. For all three agents, action observation induced significant attenuation in the power of mu oscillations, with no difference between agents. Thus, mu suppression, considered an index of MNS activity, does not appear to be selective for biological agents. Observation of the Robot resulted in greater frontal theta activity compared to the Android and the Human, whereas the latter two did not differ from each other. Frontal theta thus appears to be sensitive to visual appearance, suggesting agents that are not sufficiently biological in appearance may result in greater memory processing demands for the observer. Studies combining robotics and neuroscience such as this one can allow us to explore neural basis of action processing on the one hand, and inform the design of social robots on the other. PMID

  16. Morning nutrition and executive function processes in preadolescents: gender variations in phasic modulation of frontal eeg theta activity during a go/ no-go task

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Frontal EEG theta activity has been related to executive functions (i.e., goal-directed behavior such as inhibition and flexibility of action). We studied the effects of morning nutritional status on frontal theta-executive function relationships using stimulus-locked responses [event-related increa...

  17. Frontal predominance of a relative increase in sleep delta and theta EEG activity after sleep loss in humans

    NASA Technical Reports Server (NTRS)

    Cajochen, C.; Foy, R.; Dijk, D. J.; Czeisler, C. A. (Principal Investigator)

    1999-01-01

    The effect of sleep deprivation (40 h) on topographic and temporal aspects of electroencephalographic (EEG) activity during sleep was investigated by all night spectral analysis in six young volunteers. The sleep-deprivation-induced increase of EEG power density in the delta and theta frequencies (1-7 Hz) during nonREM sleep, assessed along the antero-posterior axis (midline: Fz, Cz, Pz, Oz), was significantly larger in the more frontal derivations (Fz, Cz) than in the more parietal derivations (Pz, Oz). This frequency-specific frontal predominance was already present in the first 30 min of recovery sleep, and dissipated in the course of the 8-h sleep episode. The data demonstrate that the enhancement of slow wave EEG activity during sleep following extended wakefulness is most pronounced in frontal cortical areas.

  18. Mammalian Polymerase Theta Promotes Alternative-NHEJ and Suppresses Recombination

    PubMed Central

    Mateos-Gomez, Pedro A.; Gong, Fade; Nair, Nidhi; Miller, Kyle M.; Lazzerini-Denchi, Eros; Sfeir, Agnel

    2016-01-01

    The alternative nonhomologous end-joining (alt-NHEJ) machinery facilitates a number of genomic rearrangements, some of which can lead to cellular transformation. This error-prone repair pathway is triggered upon telomere de-protection to promote the formation of deleterious chromosome end-to-end fusions1,2,3. Using next-generation sequencing technology, we found that repair by alt-NHEJ yields non-TTAGGG nucleotide insertions at fusion breakpoints of dysfunctional telomeres. Investigating the enzymatic activity responsible for the random insertions enabled us to identify Polymerase theta (Polθ; encoded by PolQ) as a critical alt-NHEJ factor in mammalian cells. PolQ inhibition suppresses alt-NHEJ at dysfunctional telomeres, and hinders chromosomal translocations at non-telomeric loci. In addition, we found that PolQ loss results in increased rates of homology directed repair (HDR), evident by recombination of dysfunctional telomeres and accumulation of Rad51 at double stranded breaks. Lastly, we show that depletion of PolQ has a synergistic impact on cell survival in the absence of BRCA genes, suggesting that the inhibition of this mutagenic polymerase represents a valid therapeutic avenue for tumors carrying mutations in HDR genes. PMID:25642960

  19. Human brain EEG indices of emotions: delineating responses to affective vocalizations by measuring frontal theta event-related synchronization.

    PubMed

    Bekkedal, Marni Y V; Rossi, John; Panksepp, Jaak

    2011-10-01

    At present there is no direct brain measure of basic emotional dynamics from the human brain. EEG provides non-invasive approaches for monitoring brain electrical activity to emotional stimuli. Event-related desynchronization/synchronization (ERD/ERS) analysis, based on power shifts in specific frequency bands, has some potential as a method for differentiating responses to basic emotions as measured during brief presentations of affective stimuli. Although there appears to be fairly consistent theta ERS in frontal regions of the brain during the earliest phases of processing affective auditory stimuli, the patterns do not readily distinguish between specific emotions. To date it has not been possible to consistently differentiate brain responses to emotion-specific affective states or stimuli, and some evidence to suggests the theta ERS more likely measures general arousal processes rather than yielding veridical indices of specific emotional states. Perhaps cortical EEG patterns will never be able to be used to distinguish discrete emotional states from the surface of the brain. The implications and limitations of such approaches for understanding human emotions are discussed. PMID:21596060

  20. Paradoxical dopaminergic drug effects in extraversion: dose- and time-dependent effects of sulpiride on EEG theta activity

    PubMed Central

    Chavanon, Mira-Lynn; Wacker, Jan; Stemmler, Gerhard

    2013-01-01

    Dopaminergic drugs frequently produce paradoxical effects depending on baseline performance levels, genotype, or personality traits. The present study for the first time aimed to specify the mechanisms underlying such opposite effects using the following recently reported scenario as an example: depending on the personality trait agentic extraversion (agentic facet, aE; i.e., assertiveness, dominance, ambition, positive emotionality) the selective dopamine D2 receptor antagonist sulpiride (200 mg) had opposite effects on resting posterior vs. anterior theta activity in the electroencephalogram (EEG). In order to better describe these opposite pharmaco-EEG effects and to generate hypotheses regarding the underlying mechanisms, we measured the EEG intermittently over 5 h in 80 healthy male volunteers extremely high or low in aE who had received either placebo or one of three doses of sulpiride (50, 200, or 400 mg). The findings suggest a model postulating stronger pre- vs. postsynaptic subreceptor effects in high aE individuals compared to low aE individuals. Future studies may now systematically apply the model to other examples of paradoxical dopaminergic drug effects and examine the molecular basis of individual differences in pre- vs. postsynaptic dopamine D2 subreceptor sensitivities and densities. PMID:23580360

  1. Positive Emotional Experience: Induced by Vibroacoustic Stimulation Using a Body Monochord in Patients with Psychosomatic Disorders: Is Associated with an Increase in EEG-Theta and a Decrease in EEG-Alpha Power.

    PubMed

    Sandler, H; Tamm, S; Fendel, U; Rose, M; Klapp, B F; Bösel, R

    2016-07-01

    Relaxation and meditation techniques are generally characterized by focusing attention, which is associated with an increase of frontal EEG Theta. Some studies on music perception suggest an activation of Frontal Midline Theta during emotionally positive attribution, others display a lateralization of electrocortical processes in the attribution of music induced emotion of different valence. The present study examined the effects of vibroacoustic stimulation using a Body Monochord and the conventional relaxation music from an audio CD on the spontaneous EEG of patients suffering from psychosomatic disorders (N = 60). Each treatment took about 20 min and was presented to the patients in random order. Subjective experience was recorded via self-rating scale. EEG power spectra of the Theta, Alpha-1 and Alpha-2 bands were analysed and compard between the two treatment conditions. There was no lateralization of electrocortical activity in terms of the emotional experience of the musical pieces. A reduction in Alpha-2 power occurred during both treatments. An emotionally positive attribution of the experience of the vibroacoustically induced relaxation state is characterized by a more pronounced release of control. In the context of focused attention this is interpreted as flow experience. The spontaneous EEG showed an increase in Theta power, particularly in the frontal medial and central medial area, and a greater reduction in Alpha-2 power. The intensity of positive emotional feelings during the CD music showed no significant effect on the increase in Theta power. PMID:26936595

  2. Interhemispheric Asymmetries and Theta Activity in the Rostral Anterior Cingulate Cortex as EEG Signature of HIV-Related Depression: Gender Matters.

    PubMed

    Kremer, Heidemarie; Lutz, Franz P C; McIntosh, Roger C; Dévieux, Jessy G; Ironson, Gail

    2016-04-01

    Resting EEGs of 40 people living with HIV (PLWH) on long-term antiretroviral treatment were examined for z-scored deviations from a healthy control (normative database) to examine the main and interaction effects of depression and gender. Regions of interest were frontal (alpha) and central (all bands) for interhemispheric asymmetries in quantitative EEGs and theta in the rostral anterior cingulate cortex (rACC) in low-resolution electromagnetic tomography (LORETA). Z-scored normed deviations of depressed PLWH, compared with nondepressed, showed right-dominant interhemispheric asymmetries in all regions. However, after adjusting for multiple testing, significance remained only central for theta, alpha, and beta. Reversed (left-dominant) frontal alpha asymmetry is a potential EEG marker of depression in the HIV negative population that was not reversed in depressive PLWH; however, corresponding with extant literature, gender had an effect on the size of frontal alpha asymmetry. The LORETA analysis revealed a trending interactional effect of depression and gender on theta activity in the rACC in Brodmann area 32. We found that compared to men, women had greater right-dominant frontal alpha-asymmetry and elevated theta activity in voxels of the rACC, which may indicate less likelihood of depression and a higher likelihood of response to antidepressants. In conclusion, subtle EEG deviations, such as right-dominant central theta, alpha, and beta asymmetries and theta activity in the rACC may mark HIV-related depressive symptoms and may predict the likelihood of response to antidepressants but gender effects need to be taken into account. Although this study introduced the use of LORETA to examine the neurophysiological correlates of negative affect in PLWH, further research is needed to assess the utility of this tool in diagnostics and treatment monitoring of depression in PLWH. PMID:25568149

  3. EEG theta/beta ratio as a potential biomarker for attentional control and resilience against deleterious effects of stress on attention.

    PubMed

    Putman, Peter; Verkuil, Bart; Arias-Garcia, Elsa; Pantazi, Ioanna; van Schie, Charlotte

    2014-06-01

    Anxious stress compromises cognitive executive performance. This occurs, for instance, in cognitive performance anxiety (CPA), in which anxiety about one's cognitive performance causes that performance to actually deteriorate (e.g., test anxiety). This is thought to result from a prefrontal cortically (PFC) mediated failure of top-down attentional control over stress-induced automatic processing of threat-related information. In addition, stress-induced increased catecholamine influx into the PFC may directly compromise attentional function. Previous research has suggested that the ratio between resting state electroencephalographic (EEG) low- and high-frequency power (the theta/beta ratio) is related to trait attentional control, which might moderate these effects of stress on attentional function. The goals of the present study were to test the novel prediction that theta/beta ratio moderates the deleterious effects of CPA-like anxious stress on state attentional control and to replicate a previous finding that the theta/beta ratio is related to self-reported trait attentional control. After recording of baseline frontal EEG signals, 77 participants performed a stress induction or a control procedure. Trait attentional control was assessed with the Attentional Control Scale, whereas stress-induced changes in attentional control and anxiety were measured with self-report visual analogue scales. The hypothesized moderating influence of theta/beta ratio on the effects of stress on state attentional control was confirmed. Theta/beta ratio explained 28% of the variance in stress-induced deterioration of self-reported attentional control. The negative relationship between theta/beta ratio and trait attentional control was replicated (r = -.33). The theta/beta ratio reflects, likely prefrontally mediated, attentional control, and should be a useful biomarker for the study of CPA and other anxiety-cognition interactions. PMID:24379166

  4. Use of EEG Beta-1 Power and Theta/Beta Ratio Over Broca's Area to confirm Diagnosis of Attention Deficit/Hyperactivity Disorder in Children.

    PubMed

    Sangal, R Bart; Sangal, JoAnne M

    2015-07-01

    The Food and Drug Administration has approved a medical device using the electroencephalogram (EEG) theta/beta ratio (tbr) to help assess pediatric attention deficit/hyperactivity disorder (ADHD). Tbr is reported to be higher in ADHD, with increased theta and decreased beta. This study examined theta and beta-1 power differences between ADHD and normal children, during tasks of selective attention, and elucidated topographical differences. EEGs were collected from 28 normal and 58 ADHD children, aged 6 to 14 years, using 31 scalp electrodes during auditory and visual tasks requiring selective attention. Spectral analysis was performed. Tbr was higher in ADHD than in normal children (2.60 vs 2.25, P = .007), with lower beta-1 (3.66 vs 4.22, P = .01), but no difference in theta power. There was lower beta-1 (P < .001) and higher tbr (P = .002) over Broca's area (electrode locations F7 and FC5). Beta-1 power over Broca's area was the best diagnostic test, with sensitivity 0.86 and specificity 0.57. Tbr is higher and beta-1 power lower in ADHD than in normal children, especially over Broca's area. Beta-1 power and tbr assist in confirming the diagnosis of ADHD in a sample with moderate pretest probability of ADHD. PMID:24973230

  5. Increased Prevalence of Intermittent Rhythmic Delta or Theta Activity (IRDA/IRTA) in the Electroencephalograms (EEGs) of Patients with Borderline Personality Disorder

    PubMed Central

    Tebartz van Elst, Ludger; Fleck, Max; Bartels, Susanne; Altenmüller, Dirk-Matthias; Riedel, Andreas; Bubl, Emanuel; Matthies, Swantje; Feige, Bernd; Perlov, Evgeniy; Endres, Dominique

    2016-01-01

    Introduction: An increased prevalence of pathological electroencephalography (EEG) signals has been reported in patients with borderline personality disorder (BPD). In an elaborative case description of such a patient with intermittent rhythmic delta and theta activity (IRDA/IRTA), the BPD symptoms where linked to the frequency of the IRDAs/IRTAs and vanished with the IRDAs/IRTAs following anticonvulsive therapy. This observation raised a question regarding the prevalence of such EEG abnormalities in BPD patients. The aim of this retrospective study was to identify the frequency of EEG abnormalities in a carefully analyzed psychiatric collective. Following earlier reports, we hypothesized an increased prevalence of EEG abnormalities in BPD patients. Participants and Methods: We recruited 96 consecutive patients with BPD from the archive of a university clinic for psychiatry and psychotherapy, and compared the prevalence of EEG abnormalities to those of 76 healthy controls subjects. The EEGs were rated by three different blinded clinicians, including a consultant specializing in epilepsy from the local epilepsy center. Results: We found a significant increase in the prevalence of IRDAs and IRTAs in BPD patients (14.6%) compared to the control subjects (3.9%; p = 0.020). Discussion: In this blinded retrospective case-control study, we were able to confirm an increased prevalence of pathological EEG findings (IRDAs/IRTAs only) in BPD patients. The major limitation of this study is that the control group was not matched on age and gender. Therefore, the results should be regarded as preliminary findings of an open uncontrolled, retrospective study. Future research performing prospective, controlled studies is needed to verify our findings and answer the question of whether such EEG findings might predict a positive response to anticonvulsive pharmacological treatment. PMID:26941624

  6. Successful memory encoding is associated with increased cross-frequency coupling between frontal theta and posterior gamma oscillations in human scalp-recorded EEG.

    PubMed

    Friese, Uwe; Köster, Moritz; Hassler, Uwe; Martens, Ulla; Trujillo-Barreto, Nelson; Gruber, Thomas

    2013-02-01

    Although previous studies have established that successful memory encoding is associated with increased synchronization of theta-band and gamma-band oscillations, it is unclear if there is a functional relationship between oscillations in these frequency bands. Using scalp-recorded EEG in healthy human participants, we demonstrate that cross-frequency coupling between frontal theta phase and posterior gamma power is enhanced during the encoding of visual stimuli which participants later on remember versus items which participants subsequently forget ("subsequent memory effect," SME). Conventional wavelet analyses and source localizations revealed SMEs in spectral power of theta-, alpha-, and gamma-band. Successful compared to unsuccessful encoding was reflected in increased theta-band activity in right frontal cortex as well as increased gamma-band activity in parietal-occipital regions. Moreover, decreased alpha-band activity in prefrontal and occipital cortex was also related to successful encoding. Overall, these findings support the idea that during the formation of new memories frontal cortex regions interact with cortical representations in posterior areas. PMID:23142278

  7. EEG Theta Dynamics within Frontal and Parietal Cortices for Error Processing during Reaching Movements in a Prism Adaptation Study Altering Visuo-Motor Predictive Planning

    PubMed Central

    Bonfiglio, Luca; Minichilli, Fabrizio; Cantore, Nicoletta; Carboncini, Maria Chiara; Piccotti, Emily; Rossi, Bruno

    2016-01-01

    Modulation of frontal midline theta (fmθ) is observed during error commission, but little is known about the role of theta oscillations in correcting motor behaviours. We investigate EEG activity of healthy partipants executing a reaching task under variable degrees of prism-induced visuo-motor distortion and visual occlusion of the initial arm trajectory. This task introduces directional errors of different magnitudes. The discrepancy between predicted and actual movement directions (i.e. the error), at the time when visual feedback (hand appearance) became available, elicits a signal that triggers on-line movement correction. Analysis were performed on 25 EEG channels. For each participant, the median value of the angular error of all reaching trials was used to partition the EEG epochs into high- and low-error conditions. We computed event-related spectral perturbations (ERSP) time-locked either to visual feedback or to the onset of movement correction. ERSP time-locked to the onset of visual feedback showed that fmθ increased in the high- but not in the low-error condition with an approximate time lag of 200 ms. Moreover, when single epochs were sorted by the degree of motor error, fmθ started to increase when a certain level of error was exceeded and, then, scaled with error magnitude. When ERSP were time-locked to the onset of movement correction, the fmθ increase anticipated this event with an approximate time lead of 50 ms. During successive trials, an error reduction was observed which was associated with indices of adaptations (i.e., aftereffects) suggesting the need to explore if theta oscillations may facilitate learning. To our knowledge this is the first study where the EEG signal recorded during reaching movements was time-locked to the onset of the error visual feedback. This allowed us to conclude that theta oscillations putatively generated by anterior cingulate cortex activation are implicated in error processing in semi-naturalistic motor

  8. Aperiodic phase re-setting in scalp EEG of beta-gamma oscillations by state transitions at alpha-theta rates.

    PubMed

    Freeman, Walter J; Burke, Brian C; Holmes, Mark D

    2003-08-01

    We evaluated the rapid changes in regional scalp EEG synchronization in normal subjects with spatial and temporal resolution exceeding prior art 10-fold with a high spatial density array and the Hilbert transform. A curvilinear array of 64 electrodes 3 mm apart extending 18.9 cm across the scalp was used to record EEG at 200/sec. Analytic amplitude (AA) and phase (AP) were calculated at each time step for the 64 traces in the analog pass band of 0.5-120 Hz. AP differences approximated the AP derivative (instantaneous frequency). The AP from unfiltered EEG revealed no reproducible patterns. Filtering was necessary in the beta and gamma ranges according to a technique that optimized the correlation of the AP differences with the activity band pass filtered in the alpha range. The sizes of temporal AP differences were usually within +/-0.5 radian from the average step corresponding to the center frequency of the pass band. Large AP differences were often synchronized over distances of 6 to 19 cm. An optimal pass band to detect and measure these recurring jumps in AP in the beta and gamma ranges was found by maximizing the alpha peak in the cospectrum of the correlation between unfiltered EEG and the band pass AP differences. Synchronized AP jumps recurred in clusters (CAP) at alpha and theta rates in resting subjects and with EMG. Cortex functions by serial changes in state. The Hilbert transform of EEG from high-density arrays can visualize these state transitions with high temporal and spatial resolution and should be useful in relating EEG to cognition. PMID:12874778

  9. EEG

    MedlinePlus

    ... is also used to: Evaluate problems with sleep ( sleep disorders ) Monitor the brain during brain surgery An EEG ... in some cases) Seizure disorder (such as epilepsy) Sleep disorder (such as narcolepsy ) Swelling of the brain (edema)

  10. EEG

    MedlinePlus

    ... is also used to: Evaluate problems with sleep ( sleep disorders ) Monitor the brain during brain surgery An EEG ... in some cases) Seizure disorder (such as epilepsy) Sleep disorder (such as narcolepsy ) Swelling of the brain (edema) ...

  11. Background rhythm frequency and theta power of quantitative EEG analysis: predictive biomarkers for cognitive impairment post-cerebral infarcts.

    PubMed

    Song, Yang; Zang, Da-Wei; Jin, Yan-Yu; Wang, Zhi-Jun; Ni, Hong-Yan; Yin, Jian-Zhong; Ji, Dong-Xu

    2015-04-01

    In clinical settings, cerebral infarct is a common disease of older adults, which usually increases the risk of cognitive impairment. This study aims to assess the quantitative electroencephalography (qEEG) as a predictive biomarker for the development of cognitive impairment, post-cerebral infarcts, in subjects from the Department of Neurology. They underwent biennial EEG recording. Cerebral infarct subjects, with follow-up cognitive evaluation, were analyzed for qEEG measures of background rhythm frequency (BRF) and relative δ, θ, α, and β band power. The relationship between cognitive impairment and qEEG, and other possible predictors, was assessed by Cox regression. The results showed that the risk hazard of developing cognitive impairment was 14 times higher for those with low BRF than for those with high BRF (P < .001). Hazard ratio (HR) was also significant for more than median θ band power (HR = 5, P = .002) compared with less than median θ band power. The HRs for δ, α, and β bands were equal to the baseline demographic, and clinical characteristics were not significantly different. In conclusion, qEEG measures of BRF, and relative power in θ band, are potential predictive biomarkers for cognitive impairment in patients with cerebral infarcts. These biomarkers might be valuable in early prediction of cognitive impairment in patients with cerebral infarcts. PMID:24699438

  12. Fronto-Central Theta Oscillations Are Related to Oscillations in Saccadic Response Times (SRT): An EEG and Behavioral Data Analysis

    PubMed Central

    Diederich, Adele; Schomburg, Annette; van Vugt, Marieke

    2014-01-01

    The phase reset hypothesis states that the phase of an ongoing neural oscillation, reflecting periodic fluctuations in neural activity between states of high and low excitability, can be shifted by the occurrence of a sensory stimulus so that the phase value become highly constant across trials (Schroeder et al., 2008). From EEG/MEG studies it has been hypothesized that coupled oscillatory activity in primary sensory cortices regulates multi sensory processing (Senkowski et al. 2008). We follow up on a study in which evidence of phase reset was found using a purely behavioral paradigm by including also EEG measures. In this paradigm, presentation of an auditory accessory stimulus was followed by a visual target with a stimulus-onset asynchrony (SOA) across a range from 0 to 404 ms in steps of 4 ms. This fine-grained stimulus presentation allowed us to do a spectral analysis on the mean SRT as a function of the SOA, which revealed distinct peak spectral components within a frequency range of 6 to 11 Hz with a modus of 7 Hz. The EEG analysis showed that the auditory stimulus caused a phase reset in 7-Hz brain oscillations in a widespread set of channels. Moreover, there was a significant difference in the average phase at which the visual target stimulus appeared between slow and fast SRT trials. This effect was evident in three different analyses, and occurred primarily in frontal and central electrodes. PMID:25405521

  13. Medial septal GABAergic projection neurons promote object exploration behavior and type 2 theta rhythm

    PubMed Central

    Gangadharan, Gireesh; Shin, Jonghan; Kim, Seong-Wook; Kim, Angela; Paydar, Afshin; Kim, Duk-Soo; Miyazaki, Taisuke; Watanabe, Masahiko; Yanagawa, Yuchio; Kim, Jinhyun; Kim, Yeon-Soo; Kim, Daesoo; Shin, Hee-Sup

    2016-01-01

    Exploratory drive is one of the most fundamental emotions, of all organisms, that are evoked by novelty stimulation. Exploratory behavior plays a fundamental role in motivation, learning, and well-being of organisms. Diverse exploratory behaviors have been described, although their heterogeneity is not certain because of the lack of solid experimental evidence for their distinction. Here we present results demonstrating that different neural mechanisms underlie different exploratory behaviors. Localized Cav3.1 knockdown in the medial septum (MS) selectively enhanced object exploration, whereas the null mutant (KO) mice showed enhanced-object exploration as well as open-field exploration. In MS knockdown mice, only type 2 hippocampal theta rhythm was enhanced, whereas both type 1 and type 2 theta rhythm were enhanced in KO mice. This selective effect was accompanied by markedly increased excitability of septo-hippocampal GABAergic projection neurons in the MS lacking T-type Ca2+ channels. Furthermore, optogenetic activation of the septo-hippocampal GABAergic pathway in WT mice also selectively enhanced object exploration behavior and type 2 theta rhythm, whereas inhibition of the same pathway decreased the behavior and the rhythm. These findings define object exploration distinguished from open-field exploration and reveal a critical role of T-type Ca2+ channels in the medial septal GABAergic projection neurons in this behavior. PMID:27208094

  14. Medial septal GABAergic projection neurons promote object exploration behavior and type 2 theta rhythm.

    PubMed

    Gangadharan, Gireesh; Shin, Jonghan; Kim, Seong-Wook; Kim, Angela; Paydar, Afshin; Kim, Duk-Soo; Miyazaki, Taisuke; Watanabe, Masahiko; Yanagawa, Yuchio; Kim, Jinhyun; Kim, Yeon-Soo; Kim, Daesoo; Shin, Hee-Sup

    2016-06-01

    Exploratory drive is one of the most fundamental emotions, of all organisms, that are evoked by novelty stimulation. Exploratory behavior plays a fundamental role in motivation, learning, and well-being of organisms. Diverse exploratory behaviors have been described, although their heterogeneity is not certain because of the lack of solid experimental evidence for their distinction. Here we present results demonstrating that different neural mechanisms underlie different exploratory behaviors. Localized Cav3.1 knockdown in the medial septum (MS) selectively enhanced object exploration, whereas the null mutant (KO) mice showed enhanced-object exploration as well as open-field exploration. In MS knockdown mice, only type 2 hippocampal theta rhythm was enhanced, whereas both type 1 and type 2 theta rhythm were enhanced in KO mice. This selective effect was accompanied by markedly increased excitability of septo-hippocampal GABAergic projection neurons in the MS lacking T-type Ca(2+) channels. Furthermore, optogenetic activation of the septo-hippocampal GABAergic pathway in WT mice also selectively enhanced object exploration behavior and type 2 theta rhythm, whereas inhibition of the same pathway decreased the behavior and the rhythm. These findings define object exploration distinguished from open-field exploration and reveal a critical role of T-type Ca(2+) channels in the medial septal GABAergic projection neurons in this behavior. PMID:27208094

  15. Morning nutrition and executive function processes in preadolescents: modulation of frontal event-related theta, beta and gamma EEG oscillations during a go/ no-go task

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Executive functions (i.e., goal-directed behavior such as inhibition and flexibility of action) have been linked to frontal brain regions and to covariations in oscillatory brain activity, e.g., theta and gamma activity. We studied the effects of morning nutritional status on executive function rel...

  16. Mechanism of Microhomology-Mediated End-Joining Promoted by Human DNA Polymerase Theta

    PubMed Central

    Kent, Tatiana; Chandramouly, Gurushankar; McDevitt, Shane Michael; Ozdemir, Ahmet Y.; Pomerantz, Richard T.

    2014-01-01

    Microhomology-mediated end-joining (MMEJ) is an error-prone alternative double-strand break repair pathway that utilizes sequence microhomology to recombine broken DNA. Although MMEJ is implicated in cancer development, the mechanism of this pathway is unknown. We demonstrate that purified human DNA polymerase θ (Polθ) performs MMEJ of DNA containing 3’ single-strand DNA overhangs with two or more base-pairs of homology, including DNA modeled after telomeres, and show that MMEJ is dependent on Polθ in human cells. Our data support a mechanism whereby Polθ facilitates end-joining and microhomology annealing then utilizes the opposing overhang as a template in trans which stabilizes the DNA synapse. Polθ exhibits a preference for DNA containing a 5’-terminal phosphate, similar to polymerases involved in non-homologous end-joining. Lastly, we identify a conserved loop domain that is essential for MMEJ and higher-order structures of Polθ which likely promote DNA synapse formation. PMID:25643323

  17. Hypnotic induction is followed by state-like changes in the organization of EEG functional connectivity in the theta and beta frequency bands in high-hypnotically susceptible individuals

    PubMed Central

    Jamieson, Graham A.; Burgess, Adrian P.

    2014-01-01

    Altered state theories of hypnosis posit that a qualitatively distinct state of mental processing, which emerges in those with high hypnotic susceptibility following a hypnotic induction, enables the generation of anomalous experiences in response to specific hypnotic suggestions. If so then such a state should be observable as a discrete pattern of changes to functional connectivity (shared information) between brain regions following a hypnotic induction in high but not low hypnotically susceptible participants. Twenty-eight channel EEG was recorded from 12 high susceptible (highs) and 11 low susceptible (lows) participants with their eyes closed prior to and following a standard hypnotic induction. The EEG was used to provide a measure of functional connectivity using both coherence (COH) and the imaginary component of coherence (iCOH), which is insensitive to the effects of volume conduction. COH and iCOH were calculated between all electrode pairs for the frequency bands: delta (0.1–3.9 Hz), theta (4–7.9 Hz) alpha (8–12.9 Hz), beta1 (13–19.9 Hz), beta2 (20–29.9 Hz) and gamma (30–45 Hz). The results showed that there was an increase in theta iCOH from the pre-hypnosis to hypnosis condition in highs but not lows with a large proportion of significant links being focused on a central-parietal hub. There was also a decrease in beta1 iCOH from the pre-hypnosis to hypnosis condition with a focus on a fronto-central and an occipital hub that was greater in high compared to low susceptibles. There were no significant differences for COH or for spectral band amplitude in any frequency band. The results are interpreted as indicating that the hypnotic induction elicited a qualitative change in the organization of specific control systems within the brain for high as compared to low susceptible participants. This change in the functional organization of neural networks is a plausible indicator of the much theorized “hypnotic-state.” PMID:25104928

  18. Interindividual Differences in Alpha and Theta Power Reflect Memory Performance.

    ERIC Educational Resources Information Center

    Klimesch, W.; Vogt, F.; Doppelmayr, M.

    1999-01-01

    Tested whether tonic EEG power is related to memory performance by analyzing ongoing EEG for 60 subjects in 5 experimental conditions. Subjects with good memory performance had significantly larger upper alpha power, but less theta and lower alpha power. Also discusses findings for subjects good at calculation. (SLD)

  19. Neural circuits underlying the generation of theta oscillations.

    PubMed

    Pignatelli, Michele; Beyeler, Anna; Leinekugel, Xavier

    2012-01-01

    Theta oscillations represent the neural network configuration underlying active awake behavior and paradoxical sleep. This major EEG pattern has been extensively studied, from physiological to anatomical levels, for more than half a century. Nevertheless the cellular and network mechanisms accountable for the theta generation are still not fully understood. This review synthesizes the current knowledge on the circuitry involved in the generation of theta oscillations, from the hippocampus to extra hippocampal structures such as septal complex, entorhinal cortex and pedunculopontine tegmentum, a main trigger of theta state through direct and indirect projections to the septal complex. We conclude with a short overview of the perspectives offered by technical advances for deciphering more precisely the different neural components underlying the emergence of theta oscillations. PMID:21964249

  20. Prognostically important EEG coma patterns in diffuse anoxic and traumatic encephalopathies in adults.

    PubMed

    Synek, V M

    1988-04-01

    Because of the paucity in the English literature of a detailed and universally accepted EEG grading scale relating to survival after diffuse traumatic and anoxic brain insults, prognostically oriented EEG patterns including recently described abnormalities are presented and discussed. The significance of these patterns may also apply in cases of coma of other etiologies, which can present morphologically similar features. EEG patterns have been classified into five major grades based on an internationally accepted scale. Individual patterns have been more clearly defined on the basis of the morphology of dominant activities, their distribution, persistence, and reactivity to external stimulation. Favorable outcome with survival seems to occur with both grade 1 and the "reactive type" of grade 2 abnormalities, with preservation of normal sleep features, and with frontal monorhythmic delta activity. Prognostically uncertain patterns are "nonreactive" grade 2 abnormalities, diffuse delta activity with grade 3 abnormality, and the "reactive type of alpha pattern coma." The following patterns are suggested to be prognostically malignant if persistent: grade 3 abnormality with small amplitude, diffuse, irregular delta activity; grade 4 ("burst suppression pattern"), in particular when epileptiform discharges are present and with "low-output EEG"; and grade 5 ("isoelectric EEG"). Fatal outcome is also common with the "nonreactive type of alpha pattern coma" and the recently reported "theta pattern coma." These patterns are presented in the illustrations. It is intended that this more detailed subdivision will promote understanding between electroencephalographers using visual EEG assessment in cases of coma. PMID:3074973

  1. Test-retest reliability of cognitive EEG

    NASA Technical Reports Server (NTRS)

    McEvoy, L. K.; Smith, M. E.; Gevins, A.

    2000-01-01

    OBJECTIVE: Task-related EEG is sensitive to changes in cognitive state produced by increased task difficulty and by transient impairment. If task-related EEG has high test-retest reliability, it could be used as part of a clinical test to assess changes in cognitive function. The aim of this study was to determine the reliability of the EEG recorded during the performance of a working memory (WM) task and a psychomotor vigilance task (PVT). METHODS: EEG was recorded while subjects rested quietly and while they performed the tasks. Within session (test-retest interval of approximately 1 h) and between session (test-retest interval of approximately 7 days) reliability was calculated for four EEG components: frontal midline theta at Fz, posterior theta at Pz, and slow and fast alpha at Pz. RESULTS: Task-related EEG was highly reliable within and between sessions (r0.9 for all components in WM task, and r0.8 for all components in the PVT). Resting EEG also showed high reliability, although the magnitude of the correlation was somewhat smaller than that of the task-related EEG (r0.7 for all 4 components). CONCLUSIONS: These results suggest that under appropriate conditions, task-related EEG has sufficient retest reliability for use in assessing clinical changes in cognitive status.

  2. Subsequent memory effect in intracranial and scalp EEG

    PubMed Central

    Long, Nicole M.; Burke, John F.; Kahana, Michael J.

    2013-01-01

    Successful memory encoding is marked by increases in 30-100 Hz gamma-band activity in a broad network of brain regions. Activity in the 3-8 Hz theta band has also been shown to modulate memory encoding, but this effect has been found to vary in direction across studies. Because of the diversity in memory tasks, and in recording and data-analytic methods, our knowledge of the theta frequency modulations remains limited. The difference in the directionality of these theta effects could arise from a distinction between global cortical and deeper subcortical effects. To address this issue, we examined the spectral correlates of successful memory encoding using intracranial EEG recordings in neurosurgical patients and scalp EEG recordings in healthy controls. We found significant theta (3-8 Hz) power modulations (both increases and decreases) and high gamma (44 - 100 Hz) power increases in both samples of participants. These results suggest that (1) there are two separate theta mechanisms supporting memory success, a broad theta decrease present across both the cortex and hippocampus as well as a theta power increase in the frontal cortex, (2) scalp EEG is capable of resolving high frequency gamma activity, and (3) iEEG theta effects are likely not the result of epileptic pathology. PMID:24012858

  3. Gender differences in EEG coherent activity before and after training navigation skills in virtual environments.

    PubMed

    Ramos-Loyo, J; Sanchez-Loyo, L M

    2011-01-01

    Gender differences in electroencephalographic activity (EEG) changes during navigation task performance after training were assessed in young adults. Female and male subjects were matched on initial navigation performance. EEG recordings were obtained while subjects navigated in an immersive virtual environment without visual cues, before and after a navigational skills training (9 sessions). In spite of task performance was similar in both groups, females showed higher theta band coherent activity between frontal and parietal and frontal and central regions than males before training. Correlation in theta band between fronto-central, fronto-parietal, and centro-parietal regions was enhanced in the left hemisphere for females but in the right hemisphere for males after training. Females also demonstrated a decreased in correlation in theta band over the right hemisphere between centro-parietal regions, whereas males demonstrated a similar effect over the left hemisphere. Navigation training seems to promote fronto-central-parietal synchronization in both genders but in different hemisphere. These results are interpreted as reflecting verbal-analytical working memory functions in females and global-spatial working memory mode in males. PMID:22332431

  4. Differential Effects of Sodium Oxybate and Baclofen on EEG, Sleep, Neurobehavioral Performance, and Memory

    PubMed Central

    Vienne, Julie; Lecciso, Gianpaolo; Constantinescu, Irina; Schwartz, Sophie; Franken, Paul; Heinzer, Raphaël; Tafti, Mehdi

    2012-01-01

    Study Objectives: Sodium oxybate (SO) is a GABAB agonist used to treat the sleep disorder narcolepsy. SO was shown to increase slow wave sleep (SWS) and EEG delta power (0.75-4.5 Hz), both indexes of NREM sleep (NREMS) intensity and depth, suggesting that SO enhances recuperative function of NREM. We investigated whether SO induces physiological deep sleep. Design: SO was administered before an afternoon nap or before the subsequent experimental night in 13 healthy volunteers. The effects of SO were compared to baclofen (BAC), another GABAB receptor agonist, to assess the role of GABAB receptors in the SO response. Measurements and Results: As expected, a nap significantly decreased sleep need and intensity the subsequent night. Both drugs reversed this nap effect on the subsequent night by decreasing sleep latency and increasing total sleep time, SWS during the first NREMS episode, and EEG delta and theta (0.75-7.25 Hz) power during NREMS. The SO-induced increase in EEG delta and theta power was, however, not specific to NREMS and was also observed during REM sleep (REMS) and wakefulness. Moreover, the high levels of delta power during a nap following SO administration did not affect delta power the following night. SO and BAC taken before the nap did not improve subsequent psychomotor performance and subjective alertness, or memory consolidation. Finally, SO and BAC strongly promoted the appearance of sleep onset REM periods. Conclusions: The SO-induced EEG slow waves seem not to be functionally similar to physiological slow waves. Our findings also suggest a role for GABAB receptors in REMS generation. Citation: Vienne J; Lecciso G; Constantinescu I; Schwartz S; Franken P; Heinzer R; Tafti M. Differential effects of sodium oxybate and baclofen on EEG, sleep, neurobehavioral performance, and memory. SLEEP 2012;35(8):1071–1084. PMID:22851803

  5. Mobile EEG and its potential to promote the theory and application of imagery-based motor rehabilitation.

    PubMed

    Kranczioch, Cornelia; Zich, Catharina; Schierholz, Irina; Sterr, Annette

    2014-01-01

    Studying the brain in its natural state remains a major challenge for neuroscience. Solving this challenge would not only enable the refinement of cognitive theory, but also provide a better understanding of cognitive function in the type of complex and unpredictable situations that constitute daily life, and which are often disturbed in clinical populations. With mobile EEG, researchers now have access to a tool that can help address these issues. In this paper we present an overview of technical advancements in mobile EEG systems and associated analysis tools, and explore the benefits of this new technology. Using the example of motor imagery (MI) we will examine the translational potential of MI-based neurofeedback training for neurological rehabilitation and applied research. PMID:24144637

  6. Validity and reliability of electroencephalographic frontal alpha asymmetry and frontal midline theta as biomarkers for depression.

    PubMed

    Gold, Christian; Fachner, Jörg; Erkkilä, Jaakko

    2013-04-01

    Electroencephalographic (EEG) frontal alpha asymmetry (FAA) and frontal midline (FM) theta have been suggested as biomarkers for depression and anxiety, but have mostly been assessed in small and non-clinical studies. In a clinical sample of 79 adults with depression (ICD-10: F32), resting EEG and scales of depression (MADRS) and anxiety (HADS-A) were measured at intake and after 3 months. FAA and FM theta values were referenced to a normative population database. Internal consistency, test-retest reliability, and correlations with psychiatric tests were examined. Reliability was sufficient. However, FAA and FM theta values were close to the general population, and correlations with psychiatric tests were mostly small and non-significant, with the exception of FAA on F7-F8 z-scores and HADS-A. We conclude that the validity of FAA and FM theta and therefore their potential as biomarkers for depression and anxiety remain unclear. PMID:23278257

  7. Frontal theta as a mechanism for cognitive control

    PubMed Central

    Cavanagh, James F.; Frank, Michael J.

    2014-01-01

    Recent advancements in cognitive neuroscience have afforded a description of neural responses in terms of latent algorithmic operations. However, the adoption of this approach to human scalp EEG has been more limited, despite the ability of this methodology to quantify canonical neuronal processes. Here we provide evidence that theta band activities over the mid-frontal cortex appear to reflect a common computation used for realizing the need for cognitive control. Moreover, by virtue of inherent properties of field oscillations, these theta band processes may be used to communicate this need and subsequently implement such control across disparate brain regions. Frontal theta is thus a compelling candidate mechanism by which emergent processes such as ‘cognitive control’ may be biophysically realized. PMID:24835663

  8. Increased oscillatory theta activation evoked by violent digital game events.

    PubMed

    Salminen, Mikko; Ravaja, Niklas

    2008-04-11

    The authors examined electroencephalographic (EEG) oscillatory responses to two violent events, the player character wounding and killing an opponent character with a gun, in the digital game James Bond 007: NightFire. EEG was recorded from 25 (16 male) right-handed healthy young adults. EEG data were segmented into one 1-s baseline epoch before each event and two 1-s epochs after event onset. Power estimates (microV(2)) were derived with the fast Fourier transform (FFT) for each artefact free event. Both of the studied events evoked increased occipital theta (4-6Hz) responses as compared to the pre-event baseline. The wounding event evoked also increased occipital high theta (6-8Hz) response and the killing event evoked low alpha (8-10Hz) asymmetry over the central electrodes, both relative to the pre-event baseline. The results are discussed in light of facial electromyographic and electrodermal activity responses evoked by these same events, and it is suggested that the reported EEG responses may be attributable to affective processes related to these violent game events. PMID:18325669

  9. Intermittent Theta-Burst Stimulation of the Right Dorsolateral Prefrontal Cortex to Promote Metaphor Comprehension in Parkinson Disease: A Case Study.

    PubMed

    Tremblay, Christina; Monetta, Laura; Langlois, Mélanie; Schneider, Cyril

    2016-01-01

    This single-case research-designed study explored whether intermittent theta-burst stimulation (iTBS) of the right dorsolateral prefrontal cortex (DLPFC) could improve metaphor comprehension in people with Parkinson disease (PD) and language impairments. A right-handed participant with PD diagnosed 9 years ago, receiving long-term treatment with levodopa, and with metaphor comprehension impairment was recruited to undergo 10 sessions of sham stimulation (in 2wk), a washout period (6wk), and then 10 sessions of iTBS (in 2wk). Clinical scores of metaphor comprehension and motor evaluation (Unified Parkinson Disease Rating Scale part III) and transcranial magnetic stimulation to test the excitability of the primary motor cortex (M1) were used at baseline, postsham, post-iTBS, and at 3 follow-ups (8, 14, and 20wk post-iTBS). Metaphor comprehension was improved after iTBS, and the highest scores were obtained 8 weeks later (P=.01). This improvement was correlated with the increase of the right M1 excitability (r=-.86, P=.03) and with the decrease of transcallosal inhibition latency from the left to the right hemisphere (r=-.88, P=.02). Sham yielded no effect (P>.05). Administration of iTBS over the right DLPFC improved metaphor comprehension likely by a long-term influence on brain synaptic plasticity, including improvement of interhemispheric dialogue. More studies are warranted to confirm these findings in larger samples of participants with PD. PMID:26407481

  10. Understanding the theta aurora

    NASA Astrophysics Data System (ADS)

    Fear, Robert; Milan, Steve; Carter, Jennifer; Maggiolo, Romain; Fazakerley, Andrew; Dandouras, Iannis; Mende, Stephen

    2015-04-01

    The theta aurora, first observed by Dynamics Explorer in the 1980s, is a configuration of the Earth's aurora in which auroral emissions extend into and across the polar cap in the form of a transpolar arc. It is well established that the theta aurora occurs predominantly when the interplanetary magnetic field has a northward component, but over the last thirty years various mechanisms have been put forward to explain this intriguing phenomenon. In the last couple of years, a range of evidence has accumulated which strongly suggests that the transpolar arc is formed as proposed by Milan et al. (2005): magnetotail reconnection occurs during intervals of northward IMF, which results in a local "wedge" of closed magnetospheric flux that remains trapped in the magnetotail. Precipitation on these closed field lines results in the transpolar arc analogously to the formation of the aurora in the main oval. Evidence for magnetotail reconnection as the cause of the theta aurora includes the timescales necessary to influence the location at which the transpolar arc forms, and the presence of characteristic ionospheric flows which are excited by magnetotail reconnection and which are statistically associated with transpolar arcs (Fear & Milan, 2012a,b). Most recently, direct observation has been made of a localised wedge of closed magnetic flux, "trapped" in the lobe, which was observed to move back and forth in a manner which (to our knowledge) can only be explained by the magnetotail reconnection mechanism (Fear et al., 2014). In this talk, we summarise the evidence for the formation of the theta aurora by magnetotail reconnection, and discuss the remaining challenges in obtaining a comprehensive understanding of this spectacular phenomenon.

  11. Developmental changes of BOLD signal correlations with global human EEG power and synchronization during working memory.

    PubMed

    Michels, Lars; Lüchinger, Rafael; Koenig, Thomas; Martin, Ernst; Brandeis, Daniel

    2012-01-01

    In humans, theta band (5-7 Hz) power typically increases when performing cognitively demanding working memory (WM) tasks, and simultaneous EEG-fMRI recordings have revealed an inverse relationship between theta power and the BOLD (blood oxygen level dependent) signal in the default mode network during WM. However, synchronization also plays a fundamental role in cognitive processing, and the level of theta and higher frequency band synchronization is modulated during WM. Yet, little is known about the link between BOLD, EEG power, and EEG synchronization during WM, and how these measures develop with human brain maturation or relate to behavioral changes. We examined EEG-BOLD signal correlations from 18 young adults and 15 school-aged children for age-dependent effects during a load-modulated Sternberg WM task. Frontal load (in-)dependent EEG theta power was significantly enhanced in children compared to adults, while adults showed stronger fMRI load effects. Children demonstrated a stronger negative correlation between global theta power and the BOLD signal in the default mode network relative to adults. Therefore, we conclude that theta power mediates the suppression of a task-irrelevant network. We further conclude that children suppress this network even more than adults, probably from an increased level of task-preparedness to compensate for not fully mature cognitive functions, reflected in lower response accuracy and increased reaction time. In contrast to power, correlations between instantaneous theta global field synchronization and the BOLD signal were exclusively positive in both age groups but only significant in adults in the frontal-parietal and posterior cingulate cortices. Furthermore, theta synchronization was weaker in children and was--in contrast to EEG power--positively correlated with response accuracy in both age groups. In summary we conclude that theta EEG-BOLD signal correlations differ between spectral power and synchronization and that

  12. Memory activation enhances EEG abnormality in mild cognitive impairment.

    PubMed

    van der Hiele, K; Vein, A A; Kramer, C G S; Reijntjes, R H A M; van Buchem, M A; Westendorp, R G J; Bollen, E L E M; van Dijk, J G; Middelkoop, H A M

    2007-01-01

    This exploratory study investigated EEG power changes during memory activation in patients with amnestic mild cognitive impairment (MCI). Twelve MCI patients and 16 age-matched controls underwent EEG registration during two conventional EEG conditions ('eyes closed' and 'eyes open') and three memory conditions ('word memory', 'picture memory' and 'animal fluency'). For all conditions, EEG power in the theta (4-8 Hz), lower alpha (8-10.5 Hz) and upper alpha (10.5-13 Hz) bands were expressed as percentile changes compared to 'eyes closed'. MCI patients showed significantly less decrease in the lower alpha band than controls (p=0.04) during picture memory activation. The word memory task showed a trend towards a similar effect (p=0.09). This study suggests that memory activation reveals EEG differences between MCI patients and controls while conventional EEG conditions do not. PMID:16406153

  13. Ramanujan's mock theta functions.

    PubMed

    Griffin, Michael; Ono, Ken; Rolen, Larry

    2013-04-01

    In his famous deathbed letter, Ramanujan introduced the notion of a mock theta function, and he offered some alleged examples. Recent work by Zwegers [Zwegers S (2001) Contemp Math 291:268-277 and Zwegers S (2002) PhD thesis (Univ of Utrecht, Utrecht, The Netherlands)] has elucidated the theory encompassing these examples. They are holomorphic parts of special harmonic weak Maass forms. Despite this understanding, little attention has been given to Ramanujan's original definition. Here, we prove that Ramanujan's examples do indeed satisfy his original definition. PMID:23536292

  14. Memory activation reveals abnormal EEG in preclinical Huntington's disease.

    PubMed

    van der Hiele, Karin; Jurgens, Caroline K; Vein, Alla A; Reijntjes, Robert H A M; Witjes-Ané, Marie-Noëlle W; Roos, Raymund A C; van Dijk, Gert; Middelkoop, Huub A M

    2007-04-15

    The EEG is potentially useful as a marker of early Huntington's disease (HD). In dementia, the EEG during a memory activation challenge showed abnormalities where the resting EEG did not. We investigated whether memory activation also reveals EEG abnormalities in preclinical HD. Sixteen mutation carriers for HD and 13 nonmutation carriers underwent neurological, neuropsychological, MRI and EEG investigations. The EEG was registered during a rest condition, i.e. eyes closed, and a working memory task. In each condition we determined absolute power in the theta (4-8 Hz) and alpha (8-13 Hz) bands and subsequently calculated relative alpha power. The EEG during eyes closed did not differ between groups. The EEG during memory activation showed less relative alpha power in mutation carriers as compared to nonmutation carriers, even though memory performance was similar [F (1,27) = 10.87; P = 0.003]. Absolute powers also showed less alpha power [F (1,27) = 7.02; P = 0.013] but similar theta power. No correlations were found between absolute and relative alpha power on the one hand and neuropsychological scores, motor scores or number of CAG repeats on the other. In conclusion, memory activation reveals functional brain changes in Huntington's disease before clinical signs become overt. PMID:17266047

  15. The theta aurora

    NASA Technical Reports Server (NTRS)

    Frank, L. A.; Craven, J. D.; Gurnett, D. A.; Shawhan, S. D.; Burch, J. L.; Winningham, J. D.; Chappell, C. R.; Waite, J. H.; Maynard, N. C.; Sugiura, M.

    1986-01-01

    A comprehensive review is presented of the characteristics of theta aurora as revealed from four imaging efforts with the DE 1 and 2 satellites. The theta aurora consists of an auroral oval with a sun-aligned arc extending from the dayside to the nightside sectors of the oval. The DE 1 spacecraft provided high altitude simultaneous measurements of the electric and magnetic fields and plasma and the DE 2 collected equivalent low altitude data on the four events. The plasma was found to convect sunward when the transpolar arc appeared, while the convection was antisunward in other regions over the polar cap. The arc plasmas featured field-aligned electron acceleration into the polar atmosphere and field-aligned current sheets, both of which were sparse over the rest of the polar cap. The ions originated in the ionosphere and the solar wind; ions over the rest of the polar cap mainly arrived from the magnetosphere. Further discussions are provided of the dominant electrons and ions and the associated flow directions into and out of the various regions of the pole, similarities between the transpolar arc and the auroral oval, and interactions between the ionosphere and the auroral phenomena.

  16. Characterization of the Theta to Beta Ratio in ADHD: Identifying Potential Sources of Heterogeneity

    ERIC Educational Resources Information Center

    Loo, Sandra K.; Cho, Alexander; Hale, T. Sigi; McGough, James; McCracken, James; Smalley, Susan L.

    2013-01-01

    Objective: The goal of this study is to characterize the theta to beta ratio (THBR) obtained from electroencephalogram (EEG) measures, in a large sample of community and clinical participants with regard to (a) ADHD diagnosis and subtypes, (b) common psychiatric comorbidities, and (c) cognitive correlates. Method: The sample includes 871…

  17. Theta vocabulary II. Multidimensional case

    NASA Astrophysics Data System (ADS)

    Kharchev, S.; Zabrodin, A.

    2016-06-01

    It is shown that the Jacobi and Riemann identities of degree four for the multidimensional theta functions as well as the Weierstrass identities emerge as algebraic consequences of the fundamental multidimensional binary identities connecting the theta functions with Riemann matrices τ and 2 τ.

  18. Alpha-theta effects associated with ageing during the Stroop test.

    PubMed

    Nombela, Cristina; Nombela, Manuel; Castell, Pedro; García, Teodoro; López-Coronado, Juan; Herrero, María Trinidad

    2014-01-01

    The Stroop effect is considered as a standard attentional measure to study conflict resolution in humans. The response of the brain to conflict is supposed to change over time and it is impaired in certain pathological conditions. Neuropsychological Stroop test measures have been complemented with electroencephalography (EEG) techniques to evaluate the mechanisms in the brain that underlie conflict resolution from the age of 20 to 70. To study the changes in EEG activity during life, we recruited a large sample of healthy subjects of different ages that included 90 healthy individuals, divided by age into decade intervals, which performed the Stroop test while recording a 14 channel EEG. The results highlighted an interaction between age and stimulus that was focused on the prefrontal (Alpha and Theta band) and Occipital (Alpha band) areas. We concluded that behavioural Stroop interference is directly influenced by opposing Alpha and Theta activity and evolves across the decades of life. PMID:24867024

  19. Alpha-Theta Effects Associated with Ageing during the Stroop Test

    PubMed Central

    Nombela, Cristina; Nombela, Manuel; Castell, Pedro; García, Teodoro; López-Coronado, Juan; Herrero, María Trinidad

    2014-01-01

    The Stroop effect is considered as a standard attentional measure to study conflict resolution in humans. The response of the brain to conflict is supposed to change over time and it is impaired in certain pathological conditions. Neuropsychological Stroop test measures have been complemented with electroencephalography (EEG) techniques to evaluate the mechanisms in the brain that underlie conflict resolution from the age of 20 to 70. To study the changes in EEG activity during life, we recruited a large sample of healthy subjects of different ages that included 90 healthy individuals, divided by age into decade intervals, which performed the Stroop test while recording a 14 channel EEG. The results highlighted an interaction between age and stimulus that was focused on the prefrontal (Alpha and Theta band) and Occipital (Alpha band) areas. We concluded that behavioural Stroop interference is directly influenced by opposing Alpha and Theta activity and evolves across the decades of life. PMID:24867024

  20. Decrease of theta response in euthymic bipolar patients during an oddball paradigm.

    PubMed

    Atagün, M İ; Güntekin, B; Ozerdem, A; Tülay, E; Başar, E

    2013-06-01

    Theta oscillations are related to cognitive functions and reflect functional integration of frontal and medial temporal structures into coherent neurocognitive networks. This study assessed event-related theta oscillations in medication-free, euthymic patients with bipolar disorder upon auditory oddball paradigm. Twenty-two DSM-IV euthymic bipolar I (n = 19) and II (n = 3) patients and twenty-two healthy subjects were included. Patients were euthymic for at least 6 months, and psychotropic-free for at least 2 weeks. EEG was recorded at 30 electrode sites. Auditory oddball paradigm and sensory stimuli were used. Event-related Oscillations were analyzed using adaptive filtering in two different theta frequency bands (4-6 Hz, 6-8 Hz). In healthy subjects, slow theta (4-6 Hz) responses were significantly higher than those of euthymic patients upon target, non-target and sensory stimuli (p < 0.05). Fast theta (6-8 Hz) responses of healthy subjects were significantly higher than those of euthymic patients upon target-only stimuli (p < 0.05). Reduced theta oscillations during auditory processing provide strong quantitative evidence of activation deficits in related networks in bipolar disorder. Fast theta responses are related to cognitive functions, whereas slow theta responses are related to sensory processes more than cognitive processes. PMID:24427202

  1. Frontal midline theta as a neurophysiological correlate for deficits of attentional orienting in children with developmental coordination disorder.

    PubMed

    Wang, Chun-Hao; Lo, Yu-Hui; Pan, Chien-Yu; Chen, Fu-Chen; Liang, Wei-Kuang; Tsai, Chia-Liang

    2015-06-01

    Children with developmental coordination disorder (DCD) have been demonstrated to show attentional orienting deficits. The neural mechanism, however, has thus far remained elusive. Here, we measure oscillations in the EEG associated with attentional orienting to address this issue. The EEG was recorded from DCD children and typical developing (TD) controls during an eye-gaze cueing paradigm. DCD group responded more slowly than TD group across all conditions. Additionally, TD group showed higher frontal midline theta activities in both valid and invalid conditions relative to a neutral condition, with such an effect absent in the DCD group. Theta oscillations might reflect attentional processing in relation to the cues being performed in TD group, with the lessened modulation of theta in DCD group possibly reflecting a deficit in attentional orienting. Possible explanations for the DCD-TD differences in theta oscillation and attentional orienting are discussed. PMID:25529042

  2. Self-regulation of frontal-midline theta facilitates memory updating and mental set shifting

    PubMed Central

    Enriquez-Geppert, Stefanie; Huster, René J.; Figge, Christian; Herrmann, Christoph S.

    2014-01-01

    Frontal-midline (fm) theta oscillations as measured via the electroencephalogram (EEG) have been suggested as neural “working language” of executive functioning. Their power has been shown to increase when cognitive processing or task performance is enhanced. Thus, the question arises whether learning to increase fm-theta amplitudes would functionally impact the behavioral performance in tasks probing executive functions (EFs). Here, the effects of neurofeedback (NF), a learning method to self-up-regulate fm-theta over fm electrodes, on the four most representative EFs, memory updating, set shifting, conflict monitoring, and motor inhibition are presented. Before beginning and after completing an individualized, eight-session gap-spaced NF intervention, the three-back, letter/number task-switching, Stroop, and stop-signal tasks were tested while measuring the EEG. Self-determined up-regulation of fm-theta and its putative role for executive functioning were compared to an active control group, the so-called pseudo-neurofeedback group. Task-related fm-theta activity after training differed significantly between groups. More importantly, though, after NF significantly enhanced behavioral performance was observed. The training group showed higher accuracy scores in the three-back task and reduced mixing and shifting costs in letter/number task-switching. However, this specific protocol type did not affect performance in tasks probing conflict monitoring and motor inhibition. Thus, our results suggest a modulation of proactive but not reactive mechanisms of cognitive control. Furthermore, task-related EEG changes show a distinct pattern for fm-theta after training between the NF and the pseudo-neurofeedback group, which indicates that NF training indeed tackles EFs-networks. In sum, the modulation of fm-theta via NF may serve as potent treatment approach for executive dysfunctions. PMID:25538585

  3. Spectral modulation of frontal EEG during motor skill acquisition: a mobile EEG study.

    PubMed

    Wong, Savio W H; Chan, Rosa H M; Mak, Joseph N

    2014-01-01

    This study investigates the modulation of frontal EEG dynamics with respect to progress in motor skill acquisition using a wireless EEG system with a single dry sensor. Participants were required to complete repeated trials of a computerized visual-motor task similar to mirror drawing while the EEG was collected. In each trial, task performance of the participants was summarized with a familiarity index which took into account the performance accuracy, completion rate and time. Our findings demonstrated that certain EEG power spectra decreased with an increase in motor task familiarity. In particular, frontal EEG activities in delta and theta bands of the whole trial and in gamma band in the middle of the trial are having a significant negative relationship with the overall familiarity level of the task. The findings suggest that frontal EEG spectra are significantly modulated during motor skill acquisition. Results of this study shed light on the possibility of simultaneous monitoring of brain activity during an unconstrained natural task with a single dry sensor mobile EEG in an everyday environment. PMID:24095979

  4. Association of Electroencephalography (EEG) Power Spectra with Corneal Nerve Fiber Injury in Retinoblastoma Patients.

    PubMed

    Liu, Jianliang; Sun, Juanjuan; Diao, Yumei; Deng, Aijun

    2016-01-01

    BACKGROUND In our clinical experience we discovered that EEG band power may be correlated with corneal nerve injury in retinoblastoma patients. This study aimed to investigate biomarkers obtained from electroencephalography (EEG) recordings to reflect corneal nerve injury in retinoblastoma patients. MATERIAL AND METHODS Our study included 20 retinoblastoma patients treated at the Department of Ophthalmology, Affiliated Hospital of Weifang Medical University between 2010 and 2014. Twenty normal individuals were included in the control group. EEG activity was recorded continuously with 32 electrodes using standard EEG electrode placement for detecting EEG power. A cornea confocal microscope was used to examine corneal nerve injury in retinoblastoma patients and normal individuals. Spearman rank correlation analysis was used to analyze the correlation between corneal nerve injury and EEG power changes. The sensitivity and specificity of changed EEG power in diagnosis of corneal nerve injury were also analyzed. RESULTS The predominantly slow EEG oscillations changed gradually into faster waves in retinoblastoma patients. The EEG pattern in retinoblastoma patients was characterized by a distinct increase of delta (P<0.01) and significant decrease of theta power P<0.05). Corneal nerves were damaged in corneas of retinoblastoma patients. Corneal nerve injury was positively correlated with delta EEG spectra power and negatively correlated with theta EEG spectra power. The diagnostic sensitivity and specificity by compounding in the series were 60% and 67%, respectively. CONCLUSIONS Changes in delta and theta of EEG appear to be associated with occurrence of corneal nerve injury. Useful information can be provided for evaluating corneal nerve damage in retinoblastoma patients through analyzing EEG power bands. PMID:27592207

  5. Correlation of hippocampal theta rhythm with changes in cutaneous temperature. [evoked neuron response in thermoregulation

    NASA Technical Reports Server (NTRS)

    Horowitz, J. M.; Saleh, M. A.; Karem, R. D.

    1974-01-01

    A possible role for the hippocampus in alerting an animal to changes in cutaneous temperature was examined. Following local warming or cooling of the ears of unanesthetized, loosely restrained rabbits, theta waves (4-7 Hz EEG waves) were recorded from electrodes straddling the hippocampus. The onset of the hippocampal theta rhythm was correlated with changes in cutaneous temperature, an observation consistent with studies indicating that the theta rhythm is a nonspecific response evoked by stimulation of several sensory modalities. Additional data from cats and rabbits were correlated with specific neurons within the hippocampus, namely pyramidal cells. Post stimulus time histograms obtained by excitation of the dorsal fornix were interpreted in terms of excitatory and inhibitory inputs to pyramidal cells. Thus, the theta rhythm, which appears to be evoked by changes in cutaneous temperature, can be related to a specific type of hippocampal neuron which is in turn connected with other areas of the brain involved in temperature regulation.

  6. Increase in short-term memory capacity induced by down-regulating individual theta frequency via transcranial alternating current stimulation.

    PubMed

    Vosskuhl, Johannes; Huster, René J; Herrmann, Christoph S

    2015-01-01

    Working memory (WM) and short-term memory (STM) supposedly rely on the phase-amplitude coupling (PAC) of neural oscillations in the theta and gamma frequency ranges. The ratio between the individually dominant gamma and theta frequencies is believed to determine an individual's memory capacity. The aim of this study was to establish a causal relationship between the gamma/theta ratio and WM/STM capacity by means of transcranial alternating current stimulation (tACS). To achieve this, tACS was delivered at a frequency below the individual theta frequency. Thereby the individual ratio of gamma to theta frequencies was changed, resulting in an increase of STM capacity. Healthy human participants (N = 33) were allocated to two groups, one receiving verum tACS, the other underwent a sham control protocol. The electroencephalogram (EEG) was measured before stimulation and analyzed with regard to the properties of PAC between theta and gamma frequencies to determine individual stimulation frequencies. After stimulation, EEG was recorded again in order to find after-effects of tACS in the oscillatory features of the EEG. Measures of STM and WM were obtained before, during and after stimulation. Frequency spectra and behavioral data were compared between groups and different measurement phases. The tACS- but not the sham stimulated group showed an increase in STM capacity during stimulation. WM was not affected in either groups. An increase in task-related theta amplitude after stimulation was observed only for the tACS group. These augmented theta amplitudes indicated that the manipulation of individual theta frequencies was successful and caused the increase in STM capacity. PMID:26005411

  7. Increase in short-term memory capacity induced by down-regulating individual theta frequency via transcranial alternating current stimulation

    PubMed Central

    Vosskuhl, Johannes; Huster, René J.; Herrmann, Christoph S.

    2015-01-01

    Working memory (WM) and short-term memory (STM) supposedly rely on the phase-amplitude coupling (PAC) of neural oscillations in the theta and gamma frequency ranges. The ratio between the individually dominant gamma and theta frequencies is believed to determine an individual’s memory capacity. The aim of this study was to establish a causal relationship between the gamma/theta ratio and WM/STM capacity by means of transcranial alternating current stimulation (tACS). To achieve this, tACS was delivered at a frequency below the individual theta frequency. Thereby the individual ratio of gamma to theta frequencies was changed, resulting in an increase of STM capacity. Healthy human participants (N = 33) were allocated to two groups, one receiving verum tACS, the other underwent a sham control protocol. The electroencephalogram (EEG) was measured before stimulation and analyzed with regard to the properties of PAC between theta and gamma frequencies to determine individual stimulation frequencies. After stimulation, EEG was recorded again in order to find after-effects of tACS in the oscillatory features of the EEG. Measures of STM and WM were obtained before, during and after stimulation. Frequency spectra and behavioral data were compared between groups and different measurement phases. The tACS- but not the sham stimulated group showed an increase in STM capacity during stimulation. WM was not affected in either groups. An increase in task-related theta amplitude after stimulation was observed only for the tACS group. These augmented theta amplitudes indicated that the manipulation of individual theta frequencies was successful and caused the increase in STM capacity. PMID:26005411

  8. Theta Phase Synchrony and Conscious Target Perception

    PubMed Central

    Slagter, Heleen A.; Lutz, Antoine; Greischar, Lawrence L.; Nieuwenhuis, Sander; Davidson, Richard J.

    2008-01-01

    The information processing capacity of the human mind is limited, as is evidenced by the attentional blink—a deficit in identifying the second of two targets (T1 and T2) presented in close succession. This deficit is thought to result from an overinvestment of limited resources in T1 processing. We previously reported that intensive mental training in a style of meditation aimed at reducing elaborate object processing, reduced brain resource allocation to T1, and improved T2 accuracy [Slagter, H. A., Lutz, A., Greisschar, L. L., Frances, A. D., Nieuwenhuis, S., Davis, J., et al. Mental training affects distribution of limited brain resources. PloS Biology, 5, e138, 2007]. Here we report EEG spectral analyses to examine the possibility that this reduction in elaborate T1 processing rendered the system more available to process new target information, as indexed by T2-locked phase variability. Intensive mental training was associated with decreased cross-trial variability in the phase of oscillatory theta activity after successfully detected T2s, in particular, for those individuals who showed the greatest reduction in brain resource allocation to T1. These data implicate theta phase locking in conscious target perception, and suggest that after mental training the cognitive system is more rapidly available to process new target information. Mental training was not associated with changes in the amplitude of T2-induced responses or oscillatory activity before task onset. In combination, these findings illustrate the usefulness of systematic mental training in the study of the human mind by revealing the neural mechanisms that enable the brain to successfully represent target information. PMID:18823234

  9. EEG markers of future cognitive performance in the elderly.

    PubMed

    van der Hiele, Karin; Bollen, Eduard L E M; Vein, Alla A; Reijntjes, Robert H A M; Westendorp, Rudi G J; van Buchem, Mark A; Middelkoop, Huub A M; van Dijk, J Gert

    2008-04-01

    This exploratory follow-up study investigated whether EEG parameters can predict future cognitive performance. Forty elderly subjects, ranging from cognitively unimpaired to those with Alzheimer disease underwent EEG registration at baseline and neuropsychological examination at both baseline and follow-up. We assessed relations between EEG measures and future cognitive performance (i.e., global cognition, memory, language, and executive functioning) controlling for age, follow-up time, and baseline cognitive performance. Regression models were constructed to predict performance on the Cambridge Cognitive Examination, a widely used tool within dementia screenings. Baseline EEG measures, i.e., increased theta activity (4-8 Hz) during eyes closed and less alpha reactivity (8-13 Hz) during eyes open and memory activation, indicated lower global cognitive, language (trend significant), and executive performance at follow-up. A regression model combining baseline cognitive and EEG measures provided the best prediction of future Cambridge Cognitive Examination performance (93%). EEG and cognitive measures alone predicted, respectively, 43% and 92% of variance. EEG and cognitive measures combined provided the best prediction of future cognitive performance. Although the "cognition only" model showed similar predictive power, the EEG provided significant additional value. The added value of EEG registration in the diagnostic work-up of dementia should be further assessed in larger samples. PMID:18340274

  10. Resonances, and mechanisms of Theta-production

    SciTech Connect

    Ya.I. Azimov; I.I. Strakovsky

    2004-09-01

    After explaining necessity of exotic hadrons, we discuss mechanisms which could determine production of the exotic Theta-baryon. A possible important role of resonances (producing the Theta in real or virtual decays) is emphasized for various processes. Several experimental directions for studies of such resonances, and the Theta itself, are suggested. We briefly discuss also recent negative results on the Theta-baryon.

  11. Working memory performance inversely predicts spontaneous delta and theta-band scaling relations.

    PubMed

    Euler, Matthew J; Wiltshire, Travis J; Niermeyer, Madison A; Butner, Jonathan E

    2016-04-15

    Electrophysiological studies have strongly implicated theta-band activity in human working memory processes. Concurrently, work on spontaneous, non-task-related oscillations has revealed the presence of long-range temporal correlations (LRTCs) within sub-bands of the ongoing EEG, and has begun to demonstrate their functional significance. However, few studies have yet assessed the relation of LRTCs (also called scaling relations) to individual differences in cognitive abilities. The present study addressed the intersection of these two literatures by investigating the relation of narrow-band EEG scaling relations to individual differences in working memory ability, with a particular focus on the theta band. Fifty-four healthy adults completed standardized assessments of working memory and separate recordings of their spontaneous, non-task-related EEG. Scaling relations were quantified in each of the five classical EEG frequency bands via the estimation of the Hurst exponent obtained from detrended fluctuation analysis. A multilevel modeling framework was used to characterize the relation of working memory performance to scaling relations as a function of general scalp location in Cartesian space. Overall, results indicated an inverse relationship between both delta and theta scaling relations and working memory ability, which was most prominent at posterior sensors, and was independent of either spatial or individual variability in band-specific power. These findings add to the growing literature demonstrating the relevance of neural LRTCs for understanding brain functioning, and support a construct- and state-dependent view of their functional implications. PMID:26872594

  12. COMPARISON OF EEG CHANGES PRODUCED BY CARBARYL (CARBAMATE), PERMETHRIN (TYPE I PYRETHROID), AND DELTAMETHRIN (TYPE II PYRETHROID)

    EPA Science Inventory

    We have reported that treatment with carbaryl may alter Theta activity in the EEG (Lyke et al., Toxicologist, 108(S-1):441, 2009). In this study, we examined the ability to detect changes in EEG activity produced by pesticides with different modes of action. Long Evans rats were ...

  13. EEG oscillations: From correlation to causality.

    PubMed

    Herrmann, Christoph S; Strüber, Daniel; Helfrich, Randolph F; Engel, Andreas K

    2016-05-01

    Already in his first report on the discovery of the human EEG in 1929, Berger showed great interest in further elucidating the functional roles of the alpha and beta waves for normal mental activities. Meanwhile, most cognitive processes have been linked to at least one of the traditional frequency bands in the delta, theta, alpha, beta, and gamma range. Although the existing wealth of high-quality correlative EEG data led many researchers to the conviction that brain oscillations subserve various sensory and cognitive processes, a causal role can only be demonstrated by directly modulating such oscillatory signals. In this review, we highlight several methods to selectively modulate neuronal oscillations, including EEG-neurofeedback, rhythmic sensory stimulation, repetitive transcranial magnetic stimulation (rTMS), and transcranial alternating current stimulation (tACS). In particular, we discuss tACS as the most recent technique to directly modulate oscillatory brain activity. Such studies demonstrating the effectiveness of tACS comprise reports on purely behavioral or purely electrophysiological effects, on combination of behavioral effects with offline EEG measurements or on simultaneous (online) tACS-EEG recordings. Whereas most tACS studies are designed to modulate ongoing rhythmic brain activity at a specific frequency, recent evidence suggests that tACS may also modulate cross-frequency interactions. Taken together, the modulation of neuronal oscillations allows to demonstrate causal links between brain oscillations and cognitive processes and to obtain important insights into human brain function. PMID:25659527

  14. TMS-induced theta phase synchrony reveals a bottom-up network in working memory.

    PubMed

    Miyauchi, Eri; Kitajo, Keiichi; Kawasaki, Masahiro

    2016-05-27

    Global theta phase synchronization between the frontal and sensory areas has been suggested to connect the relevant areas for executive processes of working memory (WM). However, little is known regarding network directionality (i.e. top-down or bottom-up) of this interaction. To address the issue, the present study conducted transcranial magnetic stimulation (TMS)-electroencephalography (EEG) experiment during WM tasks. Results showed that TMS-induced increases in theta phase synchronization were observed only when TMS was delivered to the sensory areas but not the frontal area. These findings suggest that network directionality represented in WM is bottom-up rather than top-down. PMID:27063284

  15. Perception-related EEG is more sensitive to Alzheimer's disease effects than resting EEG.

    PubMed

    Barzegaran, Elham; van Damme, Bart; Meuli, Reto; Knyazeva, Maria G

    2016-07-01

    To characterize the effects of Alzheimer's disease (AD) on cortical functional connectivity in perception, we analyzed interhemispheric lagged synchronization (ILS) in the source space of high-density EEG recorded in aged controls and patients with amnestic mild cognitive impairment (aMCI) or AD while they viewed collinear and noncollinear bilateral moving gratings. Beta-band ILS was lower in aMCI and AD compared with controls in a large region centered on BA39. As previously reported, in young adults, collinear iso-oriented gratings versus noncollinear gratings synchronizes EEG reflecting perceptual grouping. Only aged controls showed the expected beta-band ILS increase originating in the dorsal visual stream (BA18). The aMCI group only showed a theta-band increase in an adjacent region (BA19). In AD patients, there was no ILS increase. Regression analysis revealed that the posterior callosal area and EEG slowing predict reduction of beta but not emergence of theta ILS response. Considering that we found no between-group differences in resting ILS, perception-related EEG appears to be more sensitive to AD effects, including ILS signs of neurodegeneration and compensation. PMID:27255822

  16. Machine learning identification of EEG features predicting working memory performance in schizophrenia and healthy adults

    PubMed Central

    Johannesen, Jason K.; Bi, Jinbo; Jiang, Ruhua; Kenney, Joshua G.; Chen, Chi-Ming A.

    2016-01-01

    Background With millisecond-level resolution, electroencephalographic (EEG) recording provides a sensitive tool to assay neural dynamics of human cognition. However, selection of EEG features used to answer experimental questions is typically determined a priori. The utility of machine learning was investigated as a computational framework for extracting the most relevant features from EEG data empirically. Methods Schizophrenia (SZ; n = 40) and healthy community (HC; n = 12) subjects completed a Sternberg Working Memory Task (SWMT) during EEG recording. EEG was analyzed to extract 5 frequency components (theta1, theta2, alpha, beta, gamma) at 4 processing stages (baseline, encoding, retention, retrieval) and 3 scalp sites (frontal-Fz, central-Cz, occipital-Oz) separately for correctly and incorrectly answered trials. The 1-norm support vector machine (SVM) method was used to build EEG classifiers of SWMT trial accuracy (correct vs. incorrect; Model 1) and diagnosis (HC vs. SZ; Model 2). External validity of SVM models was examined in relation to neuropsychological test performance and diagnostic classification using conventional regression-based analyses. Results SWMT performance was significantly reduced in SZ (p < .001). Model 1 correctly classified trial accuracy at 84 % in HC, and at 74 % when cross-validated in SZ data. Frontal gamma at encoding and central theta at retention provided highest weightings, accounting for 76 % of variance in SWMT scores and 42 % variance in neuropsychological test performance across samples. Model 2 identified frontal theta at baseline and frontal alpha during retrieval as primary classifiers of diagnosis, providing 87 % classification accuracy as a discriminant function. Conclusions EEG features derived by SVM are consistent with literature reports of gamma’s role in memory encoding, engagement of theta during memory retention, and elevated resting low-frequency activity in schizophrenia. Tests of model performance and cross

  17. Sample Entropy Tracks Changes in EEG Power Spectrum With Sleep State and Aging

    PubMed Central

    Bruce, Eugene N.; Bruce, Margaret C.; Vennelaganti, Swetha

    2009-01-01

    The regularity of EEG signals was compared between middle-aged (47.2 ± 2.0 yrs) and elderly (78.4 ± 3.8 yrs) female subjects in Wake (W), NREM stages 2 and 3 (S2, S3), and REM. Signals from C3A2 leads of healthy normal subjects, acquired from polysomnograms obtained from the Sleep Heart Health Study, were analyzed using both Sample Entropy (SaEn) and power spectral analysis (delta, theta, alpha, and beta frequency band powers). SaEn changed systematically and significantly (p<0.001) with sleep state in both age groups, following the relationships W > REM > S2 > S3. SaEn was found to be negatively correlated with delta power and positively correlated with beta power. Small changes in SaEn appear to reflect changes in spectral content rather than changes in regularity of the signal. A better predictor of SaEn than the frequency band powers was the logarithm of the power ratio (alpha+beta)/(delta+theta). Thus, SaEn appears to reflect the balance between sleep-promoting and alertness-promoting mechanisms. SaEn of the elderly was larger than that of middle-aged subjects in S2 (p=0.029) and REM (p=0.001), suggesting that cortical state is shifted towards alertness in elderly subjects in these sleep states compared to middle-aged. PMID:19590434

  18. Social exclusion modulates event-related frontal theta and tracks ostracism distress in children.

    PubMed

    van Noordt, Stefon J R; White, Lars O; Wu, Jia; Mayes, Linda C; Crowley, Michael J

    2015-09-01

    Social exclusion is a potent elicitor of distress. Previous studies have shown that medial frontal theta oscillations are modulated by the experience of social exclusion. Using the Cyberball paradigm, we examined event-related dynamics of theta power in the EEG at medial frontal sites while children aged 8-12 years were exposed to conditions of fair play and social exclusion. Using an event-related design, we found that medial frontal theta oscillations (4-8Hz) increase during both early (i.e., 200-400ms) and late (i.e., 400-800ms) processing of rejection events during social exclusion relative to perceptually identical "not my turn" events during inclusion. Importantly, we show that only for the later time window (400-800ms) slow-wave theta power tracks self-reported ostracism distress. Specifically, greater theta power at medial frontal sites to "rejection" events predicted higher levels of ostracism distress. Alpha and beta oscillations for rejection events were unrelated to ostracism distress at either 200-400ms or 400-800ms time windows. Our findings extend previous studies by showing that medial frontal theta oscillations for rejection events are a neural signature of social exclusion, linked to experienced distress in middle childhood. PMID:26048623

  19. Grid cells and theta as oscillatory interference: theory and predictions.

    PubMed

    Burgess, Neil

    2008-01-01

    The oscillatory interference model [Burgess et al. (2007) Hippocampus 17:801-802] of grid cell firing is reviewed as an algorithmic level description of path integration and as an implementation level description of grid cells and their inputs. New analyses concern the relationships between the variables in the model and the theta rhythm, running speed, and the intrinsic firing frequencies of grid cells. New simulations concern the implementation of velocity-controlled oscillators (VCOs) with different preferred directions in different neurons. To summarize the model, the distance traveled along a specific direction is encoded by the phase of a VCO relative to a baseline frequency. Each VCO is an intrinsic membrane potential oscillation whose frequency increases from baseline as a result of depolarization by synaptic input from speed modulated head-direction cells. Grid cell firing is driven by the VCOs whose preferred directions match the current direction of motion. VCOs are phase-reset by location-specific input from place cells to prevent accumulation of error. The baseline frequency is identified with the local average of VCO frequencies, while EEG theta frequency is identified with the global average VCO frequency and comprises two components: the frequency at zero speed and a linear response to running speed. Quantitative predictions are given for the inter-relationships between a grid cell's intrinsic firing frequency and grid scale, the two components of theta frequency, and the running speed of the animal. Qualitative predictions are given for the properties of the VCOs, and the relationship between environmental novelty, the two components of theta, grid scale and place cell remapping. PMID:19021256

  20. Local Experience-Dependent Changes in the Wake EEG after Prolonged Wakefulness

    PubMed Central

    Hung, Ching-Sui; Sarasso, Simone; Ferrarelli, Fabio; Riedner, Brady; Ghilardi, M. Felice; Cirelli, Chiara; Tononi, Giulio

    2013-01-01

    Study Objectives: Prolonged wakefulness leads to a progressive increase in sleep pressure, reflected in a global increase in slow wave activity (SWA, 0.5-4.5 Hz) in the sleep electroencephalogram (EEG). A global increase in wake theta activity (5-9 Hz) also occurs. Recently, it was shown that prolonged wakefulness in rodents leads to signs of “local sleep” in an otherwise awake brain, accompanied by a slow/theta wave (2-6 Hz) in the local EEG that occurs at different times in different cortical areas. Compelling evidence in animals and humans also indicates that sleep is locally regulated by the amount of experience-dependent plasticity. Here, we asked whether the extended practice of tasks that involve specific brain circuits results in increased occurrence of local intermittent theta waves in the human EEG, above and beyond the global EEG changes previously described. Design: Participants recorded with high-density EEG completed 2 experiments during which they stayed awake ≥ 24 h practicing a language task (audiobook listening [AB]) or a visuomotor task (driving simulator [DS]). Setting: Sleep laboratory. Patients or Participants: 16 healthy participants (7 females). Interventions: Two extended wake periods. Measurements and Results: Both conditions resulted in global increases in resting wake EEG theta power at the end of 24 h of wake, accompanied by increased sleepiness. Moreover, wake theta power as well as the occurrence and amplitude of theta waves showed regional, task-dependent changes, increasing more over left frontal derivations in AB, and over posterior parietal regions in DS. These local changes in wake theta power correlated with similar local changes in sleep low frequencies including SWA. Conclusions: Extended experience-dependent plasticity of specific circuits results in a local increase of the wake theta EEG power in those regions, followed by more intense sleep, as reflected by SWA, over the same areas. Citation: Hung CS; Sarasso S

  1. EEG manifestations of nondual experiences in meditators.

    PubMed

    Berman, Amanda E; Stevens, Larry

    2015-01-01

    The holistic experiential benefits of meditation among a widely ranging population have been well established within the empirical literature. What remain less clear are the underlying mechanisms of the meditative process. A large impediment to this clarity is attributable to the lack of a unified and comprehensive taxonomy, as well as to the absence of clear differentiation within the literature between method of practice and resulting state. The present study discusses and then attempts to identify within our sample a theoretically universal culminating meditative state known as Nondual Awareness, which is differentiated from the method or practice state. Participants completed an in-lab meditation, during which neurological patterns were analyzed using electroencephalography (EEG). Analyses indicated significantly higher EEG power among slower wave frequencies (delta, theta, alpha) during the reported nondual events. These events appear neurologically distinct from meditation sessions as a whole, which interestingly demonstrated significant elevation within the gamma range. PMID:25460236

  2. Optimizing microsurgical skills with EEG neurofeedback

    PubMed Central

    Ros, Tomas; Moseley, Merrick J; Bloom, Philip A; Benjamin, Larry; Parkinson, Lesley A; Gruzelier, John H

    2009-01-01

    Background By enabling individuals to self-regulate their brainwave activity in the field of optimal performance in healthy individuals, neurofeedback has been found to improve cognitive and artistic performance. Here we assessed whether two distinct EEG neurofeedback protocols could develop surgical skill, given the important role this skill plays in medicine. Results National Health Service trainee ophthalmic microsurgeons (N = 20) were randomly assigned to either Sensory Motor Rhythm-Theta (SMR) or Alpha-Theta (AT) groups, a randomized subset of which were also part of a wait-list 'no-treatment' control group (N = 8). Neurofeedback groups received eight 30-minute sessions of EEG training. Pre-post assessment included a skills lab surgical procedure with timed measures and expert ratings from video-recordings by consultant surgeons, together with state/trait anxiety self-reports. SMR training demonstrated advantages absent in the control group, with improvements in surgical skill according to 1) the expert ratings: overall technique (d = 0.6, p < 0.03) and suture task (d = 0.9, p < 0.02) (judges' intraclass correlation coefficient = 0.85); and 2) with overall time on task (d = 0.5, p = 0.02), while everyday anxiety (trait) decreased (d = 0.5, p < 0.02). Importantly the decrease in surgical task time was strongly associated with SMR EEG training changes (p < 0.01), especially with continued reduction of theta (4–7 Hz) power. AT training produced marginal improvements in technique and overall performance time, which were accompanied by a standard error indicative of large individual differences. Notwithstanding, successful within session elevation of the theta-alpha ratio correlated positively with improvements in overall technique (r = 0.64, p = 0.047). Conclusion SMR-Theta neurofeedback training provided significant improvement in surgical technique whilst considerably reducing time on task by 26%. There was also evidence that AT training marginally reduced

  3. Electromyographic Activity in the EEG in Alzheimer's Disease: Noise or Signal?

    PubMed Central

    van der Hiele, Karin; Reijntjes, Robert H. A. M.; Vein, Alla A.; Westendorp, Rudi G. J.; van Buchem, Mark A.; Bollen, Eduard L. E. M.; Middelkoop, Huub A. M.; van Dijk, J. Gert

    2011-01-01

    Many efforts have been directed at negating the influence of electromyographic (EMG) activity on the EEG, especially in elderly demented patients. We wondered whether these “artifacts” might reflect cognitive and behavioural aspects of dementia. In this pilot study, 11 patients with probable Alzheimer's disease (AD), 13 with amnestic mild cognitive impairment (MCI) and 13 controls underwent EEG registration. As EMG measures, we used frontal and temporal 50–70 Hz activity. We found that the EEGs of AD patients displayed more theta activity, less alpha reactivity, and more frontal EMG than controls. Interestingly, increased EMG activity indicated more cognitive impairment and more depressive complaints. EEG variables on the whole distinguished better between groups than EMG variables, but an EMG variable was best for the distinction between MCI and controls. Our results suggest that EMG activity in the EEG could be more than noise; it differs systematically between groups and may reflect different cerebral functions than the EEG. PMID:21559240

  4. Electromyographic activity in the EEG in Alzheimer's disease: noise or signal?

    PubMed

    van der Hiele, Karin; Reijntjes, Robert H A M; Vein, Alla A; Westendorp, Rudi G J; van Buchem, Mark A; Bollen, Eduard L E M; Middelkoop, Huub A M; van Dijk, J Gert

    2011-01-01

    Many efforts have been directed at negating the influence of electromyographic (EMG) activity on the EEG, especially in elderly demented patients. We wondered whether these "artifacts" might reflect cognitive and behavioural aspects of dementia. In this pilot study, 11 patients with probable Alzheimer's disease (AD), 13 with amnestic mild cognitive impairment (MCI) and 13 controls underwent EEG registration. As EMG measures, we used frontal and temporal 50-70 Hz activity. We found that the EEGs of AD patients displayed more theta activity, less alpha reactivity, and more frontal EMG than controls. Interestingly, increased EMG activity indicated more cognitive impairment and more depressive complaints. EEG variables on the whole distinguished better between groups than EMG variables, but an EMG variable was best for the distinction between MCI and controls. Our results suggest that EMG activity in the EEG could be more than noise; it differs systematically between groups and may reflect different cerebral functions than the EEG. PMID:21559240

  5. Altered Theta Oscillations and Aberrant Cortical Excitatory Activity in the 5XFAD Model of Alzheimer's Disease

    PubMed Central

    Siwek, Magdalena Elisabeth; Müller, Ralf; Henseler, Christina; Trog, Astrid; Lundt, Andreas; Wormuth, Carola; Broich, Karl; Weiergräber, Marco; Papazoglou, Anna

    2015-01-01

    Alzheimer's disease (AD) is an age-related neurodegenerative disorder characterized by impairment of memory function. The 5XFAD mouse model was analyzed and compared with wild-type (WT) controls for aberrant cortical excitability and hippocampal theta oscillations by using simultaneous video-electroencephalogram (EEG) monitoring. Seizure staging revealed that 5XFAD mice exhibited cortical hyperexcitability whereas controls did not. In addition, 5XFAD mice displayed a significant increase in hippocampal theta activity from the light to dark phase during nonmotor activity. We also observed a reduction in mean theta frequency in 5XFAD mice compared to controls that was again most prominent during nonmotor activity. Transcriptome analysis of hippocampal probes and subsequent qPCR validation revealed an upregulation of Plcd4 that might be indicative of enhanced muscarinic signalling. Our results suggest that 5XFAD mice exhibit altered cortical excitability, hippocampal dysrhythmicity, and potential changes in muscarinic signaling. PMID:25922768

  6. Patterns of theta oscillation reflect the neural basis of individual differences in epistemic motivation.

    PubMed

    Mussel, Patrick; Ulrich, Natalie; Allen, John J B; Osinsky, Roman; Hewig, Johannes

    2016-01-01

    Theta oscillations in the EEG have been shown to reflect ongoing cognitive processes related to mental effort. Here, we show that the pattern of theta oscillation in response to varying cognitive demands reflects stable individual differences in the personality trait epistemic motivation: Individuals with high levels of epistemic motivation recruit relatively more cognitive resources in response to situations possessing high, compared to low, cognitive demand; individuals with low levels do not show such a specific response. Our results provide direct evidence for the theory of the construct need for cognition and add to our understanding of the neural processes underlying theta oscillations. More generally, we provide an explanation how individual differences in personality traits might be represented on a neural level. PMID:27380648

  7. Patterns of theta oscillation reflect the neural basis of individual differences in epistemic motivation

    PubMed Central

    Mussel, Patrick; Ulrich, Natalie; Allen, John J. B.; Osinsky, Roman; Hewig, Johannes

    2016-01-01

    Theta oscillations in the EEG have been shown to reflect ongoing cognitive processes related to mental effort. Here, we show that the pattern of theta oscillation in response to varying cognitive demands reflects stable individual differences in the personality trait epistemic motivation: Individuals with high levels of epistemic motivation recruit relatively more cognitive resources in response to situations possessing high, compared to low, cognitive demand; individuals with low levels do not show such a specific response. Our results provide direct evidence for the theory of the construct need for cognition and add to our understanding of the neural processes underlying theta oscillations. More generally, we provide an explanation how individual differences in personality traits might be represented on a neural level. PMID:27380648

  8. Theta oscillations accompanying concurrent auditory stream segregation.

    PubMed

    Tóth, Brigitta; Kocsis, Zsuzsanna; Urbán, Gábor; Winkler, István

    2016-08-01

    The ability to isolate a single sound source among concurrent sources is crucial for veridical auditory perception. The present study investigated the event-related oscillations evoked by complex tones, which could be perceived as a single sound and tonal complexes with cues promoting the perception of two concurrent sounds by inharmonicity, onset asynchrony, and/or perceived source location difference of the components tones. In separate task conditions, participants performed a visual change detection task (visual control), watched a silent movie (passive listening) or reported for each tone whether they perceived one or two concurrent sounds (active listening). In two time windows, the amplitude of theta oscillation was modulated by the presence vs. absence of the cues: 60-350ms/6-8Hz (early) and 350-450ms/4-8Hz (late). The early response appeared both in the passive and the active listening conditions; it did not closely match the task performance; and it had a fronto-central scalp distribution. The late response was only elicited in the active listening condition; it closely matched the task performance; and it had a centro-parietal scalp distribution. The neural processes reflected by these responses are probably involved in the processing of concurrent sound segregation cues, in sound categorization, and response preparation and monitoring. The current results are compatible with the notion that theta oscillations mediate some of the processes involved in concurrent sound segregation. PMID:27170058

  9. The effects of theta transcranial alternating current stimulation (tACS) on fluid intelligence.

    PubMed

    Pahor, Anja; Jaušovec, Norbert

    2014-09-01

    The objective of the study was to explore the influence of transcranial alternating current stimulation (tACS) on resting brain activity and on measures of fluid intelligence. Theta tACS was applied to the left parietal and left frontal brain areas of healthy participants after which resting electroencephalogram (EEG) data was recorded. Following sham/active stimulation, the participants solved two tests of fluid intelligence while their EEG was recorded. The results showed that active theta tACS affected spectral power in theta and alpha frequency bands. In addition, active theta tACS improved performance on tests of fluid intelligence. This influence was more pronounced in the group of participants that received stimulation to the left parietal area than in the group of participants that received stimulation to the left frontal area. Left parietal tACS increased performance on the difficult test items of both tests (RAPM and PF&C) whereas left frontal tACS increased performance only on the easy test items of one test (RAPM). The observed behavioral tACS influences were also accompanied by changes in neuroelectric activity. The behavioral and neuroelectric data tentatively support the P-FIT neurobiological model of intelligence. PMID:24998643

  10. Transcranial Electrical Currents to Probe EEG Brain Rhythms and Memory Consolidation during Sleep in Humans

    PubMed Central

    Marshall, Lisa; Kirov, Roumen; Brade, Julian; Mölle, Matthias; Born, Jan

    2011-01-01

    Previously the application of a weak electric anodal current oscillating with a frequency of the sleep slow oscillation (∼0.75 Hz) during non-rapid eye movement sleep (NonREM) sleep boosted endogenous slow oscillation activity and enhanced sleep-associated memory consolidation. The slow oscillations occurring during NonREM sleep and theta oscillations present during REM sleep have been considered of critical relevance for memory formation. Here transcranial direct current stimulation (tDCS) oscillating at 5 Hz, i.e., within the theta frequency range (theta-tDCS) is applied during NonREM and REM sleep. Theta-tDCS during NonREM sleep produced a global decrease in slow oscillatory activity conjoint with a local reduction of frontal slow EEG spindle power (8–12 Hz) and a decrement in consolidation of declarative memory, underlining the relevance of these cortical oscillations for sleep-dependent memory consolidation. In contrast, during REM sleep theta-tDCS appears to increase global gamma (25–45 Hz) activity, indicating a clear brain state-dependency of theta-tDCS. More generally, results demonstrate the suitability of oscillating-tDCS as a tool to analyze functions of endogenous EEG rhythms and underlying endogenous electric fields as well as the interactions between EEG rhythms of different frequencies. PMID:21340034

  11. Transcranial electrical currents to probe EEG brain rhythms and memory consolidation during sleep in humans.

    PubMed

    Marshall, Lisa; Kirov, Roumen; Brade, Julian; Mölle, Matthias; Born, Jan

    2011-01-01

    Previously the application of a weak electric anodal current oscillating with a frequency of the sleep slow oscillation (∼0.75 Hz) during non-rapid eye movement sleep (NonREM) sleep boosted endogenous slow oscillation activity and enhanced sleep-associated memory consolidation. The slow oscillations occurring during NonREM sleep and theta oscillations present during REM sleep have been considered of critical relevance for memory formation. Here transcranial direct current stimulation (tDCS) oscillating at 5 Hz, i.e., within the theta frequency range (theta-tDCS) is applied during NonREM and REM sleep. Theta-tDCS during NonREM sleep produced a global decrease in slow oscillatory activity conjoint with a local reduction of frontal slow EEG spindle power (8-12 Hz) and a decrement in consolidation of declarative memory, underlining the relevance of these cortical oscillations for sleep-dependent memory consolidation. In contrast, during REM sleep theta-tDCS appears to increase global gamma (25-45 Hz) activity, indicating a clear brain state-dependency of theta-tDCS. More generally, results demonstrate the suitability of oscillating-tDCS as a tool to analyze functions of endogenous EEG rhythms and underlying endogenous electric fields as well as the interactions between EEG rhythms of different frequencies. PMID:21340034

  12. Effects of subjective preference of colors on attention-related occipital theta oscillations.

    PubMed

    Kawasaki, Masahiro; Yamaguchi, Yoko

    2012-01-01

    Human daily behaviors are often affected by subjective preferences. Studies have shown that physical responses are affected by unconscious preferences before conscious decision making. Accordingly, attention-related neural activities could be influenced by unconscious preferences. However, few neurological data exist on the relationship between visual attention and subjective preference. To address this issue, we focused on lateralization during visual attention and investigated the effects of subjective color preferences on visual attention-related brain activities. We recorded electroencephalograph (EEG) data during a preference judgment task that required 19 participants to choose their preferred color from 2 colors simultaneously presented to the right and left hemifields. In addition, to identify oscillatory activity during visual attention, we conducted a control experiment in which the participants focused on either the right or the left color without stating their preference. The EEG results showed enhanced theta (4-6 Hz) and decreased alpha (10-12 Hz) activities in the right and left occipital electrodes when the participants focused on the color in the opposite hemifield. Occipital theta synchronizations also increased contralaterally to the hemifield to which the preferred color was presented, whereas the alpha desynchronizations showed no lateralization. The contralateral occipital theta activity lasted longer than the ipsilateral occipital theta activity. Interestingly, theta lateralization was observed even when the preferred color was presented to the unattended side in the control experiment, revealing the strength of the preference-related theta-modulation effect irrespective of visual attention. These results indicate that subjective preferences modulate visual attention-related brain activities. PMID:21820064

  13. Evidence that the recently discovered theta 1-globin gene is functional in higher primates.

    PubMed

    Shaw, J P; Marks, J; Shen, C K

    A new subfamily of the alpha-globin-like family has recently been identified in higher primates, rabbit, galago and possibly the horse. One member of this subfamily, theta 1, is downstream from the adult alpha 1-globin gene. In orang-utan, but not in rabbit or galago, the theta 1-gene appears to be structurally intact, suggesting that it may be functional in this species. The orang-utan theta 1-gene possesses initiation and termination codons, and the predicted polypeptide differs from the orang-utan alpha 1-globin by 55 amino acids. The upstream promoter boxes CCAAT and ATA are present, although approximately 150 base pairs (bp) farther upstream than in the alpha 1-gene. This structural difference in the promoter between the orang-utan theta 1- and alpha 1-genes has led Proudfoot to speculate that the theta 1-gene may be inactive. We have now cloned the theta 1- and alpha 1-globin genes from the olive baboon, and have compared their sequences with those of orang-utan. The unique promoter structure of the orang-utan theta 1-gene is highly conserved in baboon, although the orang-utan and baboon diverged nearly 30 million years ago. The coding sequences of the two theta 1-genes differ by only 6.3% with 22 out of 27 nucleotide substitutions being codon third position silent changes. These data support the view that the theta 1-gene has been functional in the baboon, orang-utan, and by implication, in man. We also estimate that the duplication event generating the theta 1- and alpha-globin-like subfamilies may have occurred as much as 260 million years ago. PMID:3561513

  14. Spurious correlations in simultaneous EEG-fMRI driven by in-scanner movement.

    PubMed

    Fellner, M-C; Volberg, G; Mullinger, K J; Goldhacker, M; Wimber, M; Greenlee, M W; Hanslmayr, S

    2016-06-01

    Simultaneous EEG-fMRI provides an increasingly attractive research tool to investigate cognitive processes with high temporal and spatial resolution. However, artifacts in EEG data introduced by the MR scanner still remain a major obstacle. This study, employing commonly used artifact correction steps, shows that head motion, one overlooked major source of artifacts in EEG-fMRI data, can cause plausible EEG effects and EEG-BOLD correlations. Specifically, low-frequency EEG (<20Hz) is strongly correlated with in-scanner movement. Accordingly, minor head motion (<0.2mm) induces spurious effects in a twofold manner: Small differences in task-correlated motion elicit spurious low-frequency effects, and, as motion concurrently influences fMRI data, EEG-BOLD correlations closely match motion-fMRI correlations. We demonstrate these effects in a memory encoding experiment showing that obtained theta power (~3-7Hz) effects and channel-level theta-BOLD correlations reflect motion in the scanner. These findings highlight an important caveat that needs to be addressed by future EEG-fMRI studies. PMID:27012498

  15. On Ramanujan's definition of mock theta function.

    PubMed

    Rhoades, Robert C

    2013-05-01

    In his famous "deathbed" letter, Ramanujan "defined" the notion of a mock theta function and offered some examples of functions he believed satisfied his definition. Very recently, Griffin et al. established for the first time that Ramanujan's mock theta functions actually satisfy his own definition. On the other hand, Zwegers' 2002 doctoral thesis [Zwegers S (2002) Mock theta functions. PhD thesis (Univ Utrecht, Utrecht, The Netherlands)] showed that all of Ramanujan's examples are holomorphic parts of harmonic Maass forms. This has led to an alternate definition of a mock theta function. This paper shows that Ramanujan's definition of mock theta function is not equivalent to the modern definition. PMID:23625007

  16. Sex differences between the combined and inattentive types of attention-deficit/hyperactivity disorder: an EEG perspective.

    PubMed

    Dupuy, Franca E; Barry, Robert J; Clarke, Adam R; McCarthy, Rory; Selikowitz, Mark

    2013-09-01

    This study investigated sex differences between the EEGs of Combined and Inattentive types of attention-deficit/hyperactivity disorder (AD/HD) within boys and girls aged 8-12 years. Subject groups included 80 AD/HD Combined type (40 boys and 40 girls), 80 AD/HD Inattentive type (40 boys and 40 girls) and 80 controls (40 boys and 40 girls). An eyes-closed resting EEG was recorded and Fourier transformed to provide estimates for absolute and relative power in the delta, theta, alpha and beta frequency bands, as well as total power and the theta/beta ratio. The boy AD/HD groups, compared with boy controls, had greater absolute and relative theta, greater theta/beta ratio, reduced absolute and relative alpha, and reduced absolute and relative beta. The girl AD/HD groups, compared with girl controls, had greater absolute delta, greater absolute and relative theta, greater theta/beta ratio, greater total power, and reduced relative delta and relative beta. Between AD/HD types, Combined type boys had globally greater absolute and relative theta, greater theta/beta ratio, and less relative alpha than Inattentive type boys. While topographical differences emerged, there were no significant global differences between AD/HD types in girls. That is, EEG differences between AD/HD types are dissimilar in boys and girls. Different EEG maturational patterns between boys and girls also obscure AD/HD-related EEG abnormalities. These results have important implications for our understanding of AD/HD in girls. Ignoring such sex differences may have compromised the value of previous AD/HD investigations, and these sex differences should be recognised in future research. PMID:23603052

  17. Supramammillary serotonin reduction alters place learning and concomitant hippocampal, septal, and supramammillar theta activity in a Morris water maze.

    PubMed

    Hernández-Pérez, J Jesús; Gutiérrez-Guzmán, Blanca E; López-Vázquez, Miguel Á; Olvera-Cortés, María E

    2015-01-01

    Hippocampal theta activity is related to spatial information processing, and high-frequency theta activity, in particular, has been linked to efficient spatial memory performance. Theta activity is regulated by the synchronizing ascending system (SAS), which includes mesencephalic and diencephalic relays. The supramamillary nucleus (SUMn) is located between the reticularis pontis oralis and the medial septum (MS), in close relation with the posterior hypothalamic nucleus (PHn), all of which are part of this ascending system. It has been proposed that the SUMn plays a role in the modulation of hippocampal theta-frequency; this could occur through direct connections between the SUMn and the hippocampus or through the influence of the SUMn on the MS. Serotonergic raphe neurons prominently innervate the hippocampus and several components of the SAS, including the SUMn. Serotonin desynchronizes hippocampal theta activity, and it has been proposed that serotonin may regulate learning through the modulation of hippocampal synchrony. In agreement with this hypothesis, serotonin depletion in the SUMn/PHn results in deficient spatial learning and alterations in CA1 theta activity-related learning in a Morris water maze. Because it has been reported that SUMn inactivation with lidocaine impairs the consolidation of reference memory, we asked whether changes in hippocampal theta activity related to learning would occur through serotonin depletion in the SUMn, together with deficiencies in memory. We infused 5,7-DHT bilaterally into the SUMn in rats and evaluated place learning in the standard Morris water maze task. Hippocampal (CA1 and dentate gyrus), septal and SUMn EEG were recorded during training of the test. The EEG power in each region and the coherence between the different regions were evaluated. Serotonin depletion in the SUMn induced deficient spatial learning and altered the expression of hippocampal high-frequency theta activity. These results provide evidence in

  18. Supramammillary serotonin reduction alters place learning and concomitant hippocampal, septal, and supramammillar theta activity in a Morris water maze

    PubMed Central

    Hernández-Pérez, J. Jesús; Gutiérrez-Guzmán, Blanca E.; López-Vázquez, Miguel Á.; Olvera-Cortés, María E.

    2015-01-01

    Hippocampal theta activity is related to spatial information processing, and high-frequency theta activity, in particular, has been linked to efficient spatial memory performance. Theta activity is regulated by the synchronizing ascending system (SAS), which includes mesencephalic and diencephalic relays. The supramamillary nucleus (SUMn) is located between the reticularis pontis oralis and the medial septum (MS), in close relation with the posterior hypothalamic nucleus (PHn), all of which are part of this ascending system. It has been proposed that the SUMn plays a role in the modulation of hippocampal theta-frequency; this could occur through direct connections between the SUMn and the hippocampus or through the influence of the SUMn on the MS. Serotonergic raphe neurons prominently innervate the hippocampus and several components of the SAS, including the SUMn. Serotonin desynchronizes hippocampal theta activity, and it has been proposed that serotonin may regulate learning through the modulation of hippocampal synchrony. In agreement with this hypothesis, serotonin depletion in the SUMn/PHn results in deficient spatial learning and alterations in CA1 theta activity-related learning in a Morris water maze. Because it has been reported that SUMn inactivation with lidocaine impairs the consolidation of reference memory, we asked whether changes in hippocampal theta activity related to learning would occur through serotonin depletion in the SUMn, together with deficiencies in memory. We infused 5,7-DHT bilaterally into the SUMn in rats and evaluated place learning in the standard Morris water maze task. Hippocampal (CA1 and dentate gyrus), septal and SUMn EEG were recorded during training of the test. The EEG power in each region and the coherence between the different regions were evaluated. Serotonin depletion in the SUMn induced deficient spatial learning and altered the expression of hippocampal high-frequency theta activity. These results provide evidence in

  19. EEG and functional ultrasound imaging in mobile rats

    PubMed Central

    Sieu, Lim-Anna; Bergel, Antoine; Tiran, Elodie; Deffieux, Thomas; Pernot, Mathieu; Gennisson, Jean-Luc; Tanter, Mickaël; Cohen, Ivan

    2015-01-01

    We developed an integrated experimental framework which extends the brain exploration capabilities of functional ultrasound imaging to awake/mobile animals. In addition to hemodynamic data, this method further allows parallel access to EEG recordings of neuronal activity. This approach is illustrated with two proofs of concept: first, a behavioral study, concerning theta rhythm activation in a maze running task and, second, a disease-related study concerning spontaneous epileptic seizures. PMID:26237228

  20. Electroencephalograph (EEG) study on self-contemplating image formation

    NASA Astrophysics Data System (ADS)

    Meng, Qinglei; Hong, Elliot; Choa, Fow-Sen

    2016-05-01

    Electroencephalography (EEG) is one of the most widely used electrophysiological monitoring methods and plays a significant role in studies of human brain electrical activities. Default mode network (DMN), is a functional connection of brain regions that are activated while subjects are not in task positive state or not focused on the outside world. In this study, EEG was used for human brain signals recording while all subjects were asked to sit down quietly on a chair with eyes closed and thinking about some parts of their own body, such as left and right hands, left and right ears, lips, nose, and the images of faces that they were familiar with as well as doing some simple mathematical calculation. The time is marker when the image is formed in the subject's mind. By analyzing brain activity maps 300ms right before the time marked instant for each of the 4 wave bands, Delta, Theta, Alpha and Beta waves. We found that for most EEG datasets during this 300ms, Delta wave activity would mostly locate at the frontal lobe or the visual cortex, and the change and movement of activities are slow. Theta wave activity tended to rotate along the edge of cortex either clockwise or counterclockwise. Beta wave behaved like inquiry types of oscillations between any two regions spread over the cortex. Alpha wave activity looks like a mix of the Theta and Beta activities but more close to Theta activity. From the observation we feel that Beta and high Alpha are playing utility role for information inquiry. Theta and low Alpha are likely playing the role of binding and imagination formation in DMN operations.

  1. The effect of a single session of short duration heart rate variability biofeedback on EEG: a pilot study.

    PubMed

    Prinsloo, Gabriell E; Rauch, H G Laurie; Karpul, David; Derman, Wayne E

    2013-03-01

    This pilot study examines the effect of heart rate variability (HRV) biofeedback on measures of electroencephalogram (EEG) during and immediately after biofeedback. Eighteen healthy males exposed to work-related stress, were randomised into an HRV biofeedback (BIO) or a comparative group (COM). EEG was recorded during the intervention and during rest periods before and after the intervention. Power spectral density in theta, alpha and beta frequency bands and theta/beta ratios were calculated. During the intervention, the BIO group had higher relative theta power [Fz and Pz (p < 0.01), Cz (p < 0.05)], lower fronto-central relative beta power (p < 0.05), and higher theta/beta [Fz and Cz (p < 0.01), Pz (p < 0.05)] than the COM group. The groups showed different responses after the intervention with increased posterior theta/beta (p < 0.05) in the BIO group and altered posterior relative theta (p < 0.05), central relative beta (p = 0.06) and central-posterior theta/beta (p < 0.01) in the post-intervention rest period. The findings of this study suggest that a single session of HRV biofeedback after a single training session was associated with changes in EEG suggestive of increased internal attention and relaxation both during and after the intervention. However, the comparative intervention was associated with changes suggestive of increased mental effort and possible anxiety during and after the intervention. PMID:23129056

  2. Electroencephalograph (EEG) study of brain bistable illusion

    NASA Astrophysics Data System (ADS)

    Meng, Qinglei; Hong, Elliot; Choa, Fow-Sen

    2015-05-01

    Bistable illusion reflects two different kinds of interpretations for a single image, which is currently known as a competition between two groups of antagonism of neurons. Recent research indicates that these two groups of antagonism of neurons express different comprehension, while one group is emitting a pulse, the other group will be restrained. On the other hand, when this inhibition mechanism becomes weaker, the other antagonism neurons group will take over the interpretation. Since attention plays key roles controlling cognition, is highly interesting to find the location and frequency band used by brain (with either top-down or bottom-up control) to reach deterministic visual perceptions. In our study, we used a 16-channel EEG system to record brain signals from subjects while conducting bistable illusion testing. An extra channel of the EEG system was used for temporal marking. The moment when subjects reach a perception switch, they click the channel and mark the time. The recorded data were presented in form of brain electrical activity map (BEAM) with different frequency bands for analysis. It was found that the visual cortex in the on the right side between parietal and occipital areas was controlling the switching of perception. In the periods with stable perception, we can constantly observe all the delta, theta, alpha and beta waves. While the period perception is switching, almost all theta, alpha, and beta waves were suppressed by delta waves. This result suggests that delta wave may control the processing of perception switching.

  3. Altered resting-state EEG source functional connectivity in schizophrenia: the effect of illness duration

    PubMed Central

    Di Lorenzo, Giorgio; Daverio, Andrea; Ferrentino, Fabiola; Santarnecchi, Emiliano; Ciabattini, Fabio; Monaco, Leonardo; Lisi, Giulia; Barone, Ylenia; Di Lorenzo, Cherubino; Niolu, Cinzia; Seri, Stefano; Siracusano, Alberto

    2015-01-01

    Despite the increasing body of evidence supporting the hypothesis of schizophrenia as a disconnection syndrome, studies of resting-state EEG Source Functional Connectivity (EEG-SFC) in people affected by schizophrenia are sparse. The aim of the present study was to investigate resting-state EEG-SFC in 77 stable, medicated patients with schizophrenia (SCZ) compared to 78 healthy volunteers (HV). In order to study the effect of illness duration, SCZ were divided in those with a short duration of disease (SDD; n = 25) and those with a long duration of disease (LDD; n = 52). Resting-state EEG recordings in eyes closed condition were analyzed and lagged phase synchronization (LPS) indices were calculated for each ROI pair in the source-space EEG data. In delta and theta bands, SCZ had greater EEG-SFC than HV; a higher theta band connectivity in frontal regions was observed in LDD compared with SDD. In the alpha band, SCZ showed lower frontal EEG-SFC compared with HV whereas no differences were found between LDD and SDD. In the beta1 band, SCZ had greater EEG-SFC compared with HVs and in the beta2 band, LDD presented lower frontal and parieto-temporal EEG-SFC compared with HV. In the gamma band, SDD had greater connectivity values compared with LDD and HV. This study suggests that resting state brain network connectivity is abnormally organized in schizophrenia, with different patterns for the different EEG frequency components and that EEG can be a powerful tool to further elucidate the complexity of such disordered connectivity. PMID:25999835

  4. Mathematically gifted adolescents mobilize enhanced workspace configuration of theta cortical network during deductive reasoning.

    PubMed

    Zhang, L; Gan, J Q; Wang, H

    2015-03-19

    Previous studies have established the importance of the fronto-parietal brain network in the information processing of reasoning. At the level of cortical source analysis, this eletroencepalogram (EEG) study investigates the functional reorganization of the theta-band (4-8Hz) neurocognitive network of mathematically gifted adolescents during deductive reasoning. Depending on the dense increase of long-range phase synchronizations in the reasoning process, math-gifted adolescents show more significant adaptive reorganization and enhanced "workspace" configuration in the theta network as compared with average-ability control subjects. The salient areas are mainly located in the anterior cortical vertices of the fronto-parietal network. Further correlation analyses have shown that the enhanced workspace configuration with respect to the global topological metrics of the theta network in math-gifted subjects is correlated with the intensive frontal midline theta (fm theta) response that is related to strong neural effort for cognitive events. These results suggest that by investing more cognitive resources math-gifted adolescents temporally mobilize an enhanced task-related global neuronal workspace, which is manifested as a highly integrated fronto-parietal information processing network during the reasoning process. PMID:25595993

  5. Directed Communication between Nucleus Accumbens and Neocortex in Humans Is Differentially Supported by Synchronization in the Theta and Alpha Band

    PubMed Central

    Horschig, Jörn M.; Smolders, Ruud; Bonnefond, Mathilde; Schoffelen, Jan-Mathijs; van den Munckhof, Pepijn; Schuurman, P. Richard; Cools, Roshan; Denys, Damiaan; Jensen, Ole

    2015-01-01

    Here, we report evidence for oscillatory bi-directional interactions between the nucleus accumbens and the neocortex in humans. Six patients performed a demanding covert visual attention task while we simultaneously recorded brain activity from deep-brain electrodes implanted in the nucleus accumbens and the surface electroencephalogram (EEG). Both theta and alpha oscillations were strongly coherent with the frontal and parietal EEG during the task. Theta-band coherence increased during processing of the visual stimuli. Granger causality analysis revealed that the nucleus accumbens was communicating with the neocortex primarily in the theta-band, while the cortex was communicating the nucleus accumbens in the alpha-band. These data are consistent with a model, in which theta- and alpha-band oscillations serve dissociable roles: Prior to stimulus processing, the cortex might suppress ongoing processing in the nucleus accumbens by modulating alpha-band activity. Subsequently, upon stimulus presentation, theta oscillations might facilitate the active exchange of stimulus information from the nucleus accumbens to the cortex. PMID:26394404

  6. An EEG-Based Fatigue Detection and Mitigation System.

    PubMed

    Huang, Kuan-Chih; Huang, Teng-Yi; Chuang, Chun-Hsiang; King, Jung-Tai; Wang, Yu-Kai; Lin, Chin-Teng; Jung, Tzyy-Ping

    2016-06-01

    Research has indicated that fatigue is a critical factor in cognitive lapses because it negatively affects an individual's internal state, which is then manifested physiologically. This study explores neurophysiological changes, measured by electroencephalogram (EEG), due to fatigue. This study further demonstrates the feasibility of an online closed-loop EEG-based fatigue detection and mitigation system that detects physiological change and can thereby prevent fatigue-related cognitive lapses. More importantly, this work compares the efficacy of fatigue detection and mitigation between the EEG-based and a nonEEG-based random method. Twelve healthy subjects participated in a sustained-attention driving experiment. Each participant's EEG signal was monitored continuously and a warning was delivered in real-time to participants once the EEG signature of fatigue was detected. Study results indicate suppression of the alpha- and theta-power of an occipital component and improved behavioral performance following a warning signal; these findings are in line with those in previous studies. However, study results also showed reduced warning efficacy (i.e. increased response times (RTs) to lane deviations) accompanied by increased alpha-power due to the fluctuation of warnings over time. Furthermore, a comparison of EEG-based and nonEEG-based random approaches clearly demonstrated the necessity of adaptive fatigue-mitigation systems, based on a subject's cognitive level, to deliver warnings. Analytical results clearly demonstrate and validate the efficacy of this online closed-loop EEG-based fatigue detection and mitigation mechanism to identify cognitive lapses that may lead to catastrophic incidents in countless operational environments. PMID:27121994

  7. Coupling between Theta Oscillations and Cognitive Control Network during Cross-Modal Visual and Auditory Attention: Supramodal vs Modality-Specific Mechanisms

    PubMed Central

    Wang, Wuyi; Viswanathan, Shivakumar; Lee, Taraz; Grafton, Scott T.

    2016-01-01

    Cortical theta band oscillations (4–8 Hz) in EEG signals have been shown to be important for a variety of different cognitive control operations in visual attention paradigms. However the synchronization source of these signals as defined by fMRI BOLD activity and the extent to which theta oscillations play a role in multimodal attention remains unknown. Here we investigated the extent to which cross-modal visual and auditory attention impacts theta oscillations. Using a simultaneous EEG-fMRI paradigm, healthy human participants performed an attentional vigilance task with six cross-modal conditions using naturalistic stimuli. To assess supramodal mechanisms, modulation of theta oscillation amplitude for attention to either visual or auditory stimuli was correlated with BOLD activity by conjunction analysis. Negative correlation was localized to cortical regions associated with the default mode network and positively with ventral premotor areas. Modality-associated attention to visual stimuli was marked by a positive correlation of theta and BOLD activity in fronto-parietal area that was not observed in the auditory condition. A positive correlation of theta and BOLD activity was observed in auditory cortex, while a negative correlation of theta and BOLD activity was observed in visual cortex during auditory attention. The data support a supramodal interaction of theta activity with of DMN function, and modality-associated processes within fronto-parietal networks related to top-down theta related cognitive control in cross-modal visual attention. On the other hand, in sensory cortices there are opposing effects of theta activity during cross-modal auditory attention. PMID:27391013

  8. Intrinsic Cornu Ammonis Area 1 Theta-Nested Gamma Oscillations Induced by Optogenetic Theta Frequency Stimulation

    PubMed Central

    Butler, James L.; Mendonça, Philipe R. F.; Robinson, Hugh P. C.

    2016-01-01

    Gamma oscillations (30–120 Hz) are thought to be important for various cognitive functions, including perception and working memory, and disruption of these oscillations has been implicated in brain disorders, such as schizophrenia and Alzheimer's disease. The cornu ammonis area 1 (CA1) of the hippocampus receives gamma frequency inputs from upstream regions (cornu ammonis area 3 and medial entorhinal cortex) and generates itself a faster gamma oscillation. The exact nature and origin of the intrinsic CA1 gamma oscillation is still under debate. Here, we expressed channelrhodopsin-2 under the CaMKIIα promoter in mice and prepared hippocampal slices to produce a model of intrinsic CA1 gamma oscillations. Sinusoidal optical stimulation of CA1 at theta frequency was found to induce robust theta-nested gamma oscillations with a temporal and spatial profile similar to CA1 gamma in vivo. The results suggest the presence of a single gamma rhythm generator with a frequency range of 65–75 Hz at 32°C. Pharmacological analysis found that the oscillations depended on both AMPA and GABAA receptors. Cell-attached and whole-cell recordings revealed that excitatory neuron firing slightly preceded interneuron firing within each gamma cycle, suggesting that this intrinsic CA1 gamma oscillation is generated with a pyramidal–interneuron circuit mechanism. SIGNIFICANCE STATEMENT This study demonstrates that the cornu ammonis area 1 (CA1) is capable of generating intrinsic gamma oscillations in response to theta input. This gamma generator is independent of activity in the upstream regions, highlighting that CA1 can produce its own gamma oscillation in addition to inheriting activity from the upstream regions. This supports the theory that gamma oscillations predominantly function to achieve local synchrony, and that a local gamma generated in each area conducts the signal to the downstream region. PMID:27076416

  9. Genetic and Disorder-Specific Aspects of Resting State EEG Abnormalities in Schizophrenia

    PubMed Central

    Venables, Noah C.; Bernat, Edward M.; Sponheim, Scott R.

    2009-01-01

    We evaluated whether abnormal frequency composition of the resting state electroencephalogram (EEG) in schizophrenia was associated with genetic liability for the disorder by studying first-degree biological relatives of schizophrenia patients. The study included a data-driven method for defining EEG frequency components and determined the specificity of resting state EEG frequency abnormalities by assessing schizophrenia patients, bipolar disorder patients, and relatives of both patient groups. Schizophrenia patients and their relatives, but not bipolar patients or their relatives, exhibited increased high-frequency activity (beta) providing evidence for disturbances in resting state brain activity being specific to genetic liability for schizophrenia. Schizophrenia patients exhibited augmented low-frequency EEG activity (delta, theta), while bipolar disorder patients and the 2 groups of relatives generally failed to manifest similar low-frequency EEG abnormalities. The Val158Met polymorphism for the catechol-O-methyl transferase (COMT) gene was most strongly associated with delta and theta activity in schizophrenia patients. Met homozygote schizophrenia patients exhibited augmented activity for the 2 low-frequency bands compared with control subjects. Excessive high-frequency EEG activity over frontal brain regions may serve as an endophenotype that reflects cortical expression of genetic vulnerability for schizophrenia. Low-frequency resting state EEG anomalies in schizophrenia may relate to disorder-specific pathophysiology in schizophrenia and the influence of the COMT gene on tonic dopamanergic function. PMID:18381357

  10. A Comparison of Frontal Theta Activity During Shooting among Biathletes and Cross-Country Skiers before and after Vigorous Exercise

    PubMed Central

    Luchsinger, Harri; Sandbakk, Øyvind; Schubert, Michael; Ettema, Gertjan; Baumeister, Jochen

    2016-01-01

    Background Previous studies using electroencephalography (EEG) to monitor brain activity have linked higher frontal theta activity to more focused attention and superior performance in goal-directed precision tasks. In biathlon, shooting performance requires focused attention after high-intensity cross-country skiing. Purpose To compare biathletes (serving as experts) and cross-country skiers (novices) and examine the effect of vigorous exercise on frontal theta activity during shooting. Methods EEG frontal theta (4–7 Hz) activity was compared between nine biathletes and eight cross-country skiers at comparable skiing performance levels who fired 100 shots on a 5-m indoor shooting range in quiescent condition followed by 20 shots after each of five 6-min high-intensity roller skiing sessions in the skating technique on a treadmill. Results Biathletes hit 80±14% and 81±10% before and after the roller skiing sessions, respectively. For the cross-country skiers these values were significantly lower than for the biathletes and amounted to 39±13% and 44±11% (p<0.01). Biathletes had on average 6% higher frontal theta activity during shooting as compared to cross-country skiers (F1,15 = 4.82, p = 0.044), but no significant effect of vigorous exercise on frontal theta activity in either of the two groups were found (F1,15 = 0.14, p = 0.72). Conclusions Biathletes had significantly higher frontal theta activity than cross-country skiers during shooting, indicating higher focused attention in biathletes. Vigorous exercise did not decrease shooting performance or frontal theta activity during shooting in biathletes and cross-country skiers. PMID:26981639

  11. Network mechanisms of responsiveness to continuous theta-burst stimulation.

    PubMed

    Rizk, Sviatlana; Ptak, Radek; Nyffeler, Thomas; Schnider, Armin; Guggisberg, Adrian G

    2013-10-01

    Continuous theta-burst stimulation (cTBS) can modify behavior, but effects are inconsistent and their mechanisms insufficiently understood. As coherence in resting-state networks influences human behavior, we hypothesized that cTBS may act via modulation of neural oscillation coherence. This study used electroencephalography (EEG) to investigate whether behavioral effects of cTBS on visuospatial attention are associated with coherence changes in the attention network. In healthy human subjects, cTBS of the right posterior parietal cortex (PPC) and the right frontal eye field was compared with sham stimulation. Effects on visuospatial attention were quantified with a visual exploration task, and network effects were assessed from surface EEG with inverse solutions and source coherence analyses. Before stimulation, left visual exploration was linearly correlated with alpha-band coherence between the right temporo-parietal cortex and the rest of the brain. Posterior parietal cortex stimulation induced neglect-like visual exploration behavior in the majority, but not all, subjects. It reduced alpha-band coherence between the stimulation site and the rest of the brain but also enhanced it between the contralateral left parietal cortex and the rest of the brain. The contralateral increase correlated with the induced reduction in left visual attention. The behavioral response of individual participants to cTBS could be predicted by coherence in the right temporo-parietal junction before stimulation. Behavioral effects of cTBS therefore depend on network states before stimulation and are linearly associated with changes in network interactions. In particular, cTBS modulates an interhemispheric competition in alpha-band coherence. EEG network imaging might help to optimize therapeutic cTBS in the future. PMID:23941616

  12. Concurrent working memory task decreases the Stroop interference effect as indexed by the decreased theta oscillations.

    PubMed

    Zhao, Y; Tang, D; Hu, L; Zhang, L; Hitchman, G; Wang, L; Chen, A

    2014-03-14

    Working memory (WM) tasks may increase or decrease the interference effect of concurrently performed cognitive control tasks. However, the neural oscillatory correlates of this modulation effect of WM on the Stroop task are still largely unknown. In the present study, behavioral and electroencephalographic (EEG) data were recorded from 32 healthy participants during their performance of the single Stroop task and the same task with a concurrent WM task. We observed that the Stroop interference effect represented in both response times (RTs) and theta-band event-related spectral perturbation (ERSP) magnitude reduced under the dual-task condition compared with the single-task condition. The reduction of interference in theta-band ERSP was further positively correlated with interference reduction in RTs, and was mainly explained by the source in the left middle frontal gyrus. In conclusion, the present study suggests that the effect of concurrent WM tasks on the reduction of the Stroop interference effect can be indexed by EEG oscillations in theta-band rhythm in the centro-frontal regions and this modulation was mediated by the reduced cognitive control under the concurrent WM task. PMID:24406438

  13. Traveling Theta Waves in the Human Hippocampus.

    PubMed

    Zhang, Honghui; Jacobs, Joshua

    2015-09-01

    The hippocampal theta oscillation is strongly correlated with behaviors such as memory and spatial navigation, but we do not understand its specific functional role. One hint of theta's function came from the discovery in rodents that theta oscillations are traveling waves that allow parts of the hippocampus to simultaneously exhibit separate oscillatory phases. Because hippocampal theta oscillations in humans have different properties compared with rodents, we examined these signals directly using multielectrode recordings from neurosurgical patients. Our findings confirm that human hippocampal theta oscillations are traveling waves, but also show that these oscillations appear at a broader range of frequencies compared with rodents. Human traveling waves showed a distinctive pattern of spatial propagation such that there is a consistent phase spread across the hippocampus regardless of the oscillations' frequency. This suggests that traveling theta oscillations are important functionally in humans because they coordinate phase coding throughout the hippocampus in a consistent manner. Significance statement: We show for the first time in humans that hippocampal theta oscillations are traveling waves, moving along the length of the hippocampus in a posterior-anterior direction. The existence of these traveling theta waves is important for understanding hippocampal neural coding because they cause neurons at separate positions in the hippocampus to experience different theta phases simultaneously. The theta phase that a neuron measures is a key factor in how that cell represents behavioral information. Therefore, the existence of traveling theta waves indicates that, to fully understand how a hippocampal neuron represents information, it is vital to also account for that cell's location in addition to conventional measures of neural activity. PMID:26354915

  14. Connectivity Measures in EEG Microstructural Sleep Elements

    PubMed Central

    Sakellariou, Dimitris; Koupparis, Andreas M.; Kokkinos, Vasileios; Koutroumanidis, Michalis; Kostopoulos, George K.

    2016-01-01

    During Non-Rapid Eye Movement sleep (NREM) the brain is relatively disconnected from the environment, while connectedness between brain areas is also decreased. Evidence indicates, that these dynamic connectivity changes are delivered by microstructural elements of sleep: short periods of environmental stimuli evaluation followed by sleep promoting procedures. The connectivity patterns of the latter, among other aspects of sleep microstructure, are still to be fully elucidated. We suggest here a methodology for the assessment and investigation of the connectivity patterns of EEG microstructural elements, such as sleep spindles. The methodology combines techniques in the preprocessing, estimation, error assessing and visualization of results levels in order to allow the detailed examination of the connectivity aspects (levels and directionality of information flow) over frequency and time with notable resolution, while dealing with the volume conduction and EEG reference assessment. The high temporal and frequency resolution of the methodology will allow the association between the microelements and the dynamically forming networks that characterize them, and consequently possibly reveal aspects of the EEG microstructure. The proposed methodology is initially tested on artificially generated signals for proof of concept and subsequently applied to real EEG recordings via a custom built MATLAB-based tool developed for such studies. Preliminary results from 843 fast sleep spindles recorded in whole night sleep of 5 healthy volunteers indicate a prevailing pattern of interactions between centroparietal and frontal regions. We demonstrate hereby, an opening to our knowledge attempt to estimate the scalp EEG connectivity that characterizes fast sleep spindles via an “EEG-element connectivity” methodology we propose. The application of the latter, via a computational tool we developed suggests it is able to investigate the connectivity patterns related to the

  15. Numerical experiments on the theta pinch

    NASA Technical Reports Server (NTRS)

    Volosevich, P. P.; Zukakishyili, G. G.

    1979-01-01

    Numerical calculation of theta pinch problems are presented. Physical processes in theta pinch systems are considered in a one dimensional, two temperature magnetohydrodynamic, approximation with allowance for end losses by longitudinal heat conductivity. The numerical calculations are compared with results of earlier experiments.

  16. Behavioral and EEG Evidence for Auditory Memory Suppression

    PubMed Central

    Cano, Maya E.; Knight, Robert T.

    2016-01-01

    The neural basis of motivated forgetting using the Think/No-Think (TNT) paradigm is receiving increased attention with a particular focus on the mechanisms that enable memory suppression. However, most TNT studies have been limited to the visual domain. To assess whether and to what extent direct memory suppression extends across sensory modalities, we examined behavioral and electroencephalographic (EEG) effects of auditory TNT in healthy young adults by adapting the TNT paradigm to the auditory modality. Behaviorally, suppression of memory strength was indexed by prolonged response time (RTs) during the retrieval of subsequently remembered No-Think words. We examined task-related EEG activity of both attempted memory retrieval and inhibition of a previously learned target word during the presentation of its paired associate. Event-related EEG responses revealed two main findings: (1) a centralized Think > No-Think positivity during auditory word presentation (from approximately 0–500 ms); and (2) a sustained Think positivity over parietal electrodes beginning at approximately 600 ms reflecting the memory retrieval effect which was significantly reduced for No-Think words. In addition, word-locked theta (4–8 Hz) power was initially greater for No-Think compared to Think during auditory word presentation over fronto-central electrodes. This was followed by a posterior theta increase indexing successful memory retrieval in the Think condition. The observed event-related potential pattern and theta power analysis are similar to that reported in visual TNT studies and support a modality non-specific mechanism for memory inhibition. The EEG data also provide evidence supporting differing roles and time courses of frontal and parietal regions in the flexible control of auditory memory. PMID:27064461

  17. Behavioral and EEG Evidence for Auditory Memory Suppression.

    PubMed

    Cano, Maya E; Knight, Robert T

    2016-01-01

    The neural basis of motivated forgetting using the Think/No-Think (TNT) paradigm is receiving increased attention with a particular focus on the mechanisms that enable memory suppression. However, most TNT studies have been limited to the visual domain. To assess whether and to what extent direct memory suppression extends across sensory modalities, we examined behavioral and electroencephalographic (EEG) effects of auditory TNT in healthy young adults by adapting the TNT paradigm to the auditory modality. Behaviorally, suppression of memory strength was indexed by prolonged response time (RTs) during the retrieval of subsequently remembered No-Think words. We examined task-related EEG activity of both attempted memory retrieval and inhibition of a previously learned target word during the presentation of its paired associate. Event-related EEG responses revealed two main findings: (1) a centralized Think > No-Think positivity during auditory word presentation (from approximately 0-500 ms); and (2) a sustained Think positivity over parietal electrodes beginning at approximately 600 ms reflecting the memory retrieval effect which was significantly reduced for No-Think words. In addition, word-locked theta (4-8 Hz) power was initially greater for No-Think compared to Think during auditory word presentation over fronto-central electrodes. This was followed by a posterior theta increase indexing successful memory retrieval in the Think condition. The observed event-related potential pattern and theta power analysis are similar to that reported in visual TNT studies and support a modality non-specific mechanism for memory inhibition. The EEG data also provide evidence supporting differing roles and time courses of frontal and parietal regions in the flexible control of auditory memory. PMID:27064461

  18. Resting State EEG in Children With Learning Disabilities: An Independent Component Analysis Approach.

    PubMed

    Jäncke, Lutz; Alahmadi, Nsreen

    2016-01-01

    In this study, the neurophysiological underpinnings of learning disabilities (LD) in children are examined using resting state EEG. We were particularly interested in the neurophysiological differences between children with learning disabilities not otherwise specified (LD-NOS), learning disabilities with verbal disabilities (LD-Verbal), and healthy control (HC) children. We applied 2 different approaches to examine the differences between the different groups. First, we calculated theta/beta and theta/alpha ratios in order to quantify the relationship between slow and fast EEG oscillations. Second, we used a recently developed method for analyzing spectral EEG, namely the group independent component analysis (gICA) model. Using these measures, we identified substantial differences between LD and HC children and between LD-NOS and LD-Verbal children in terms of their spectral EEG profiles. We obtained the following findings: (a) theta/beta and theta/alpha ratios were substantially larger in LD than in HC children, with no difference between LD-NOS and LD-Verbal children; (b) there was substantial slowing of EEG oscillations, especially for gICs located in frontal scalp positions, with LD-NOS children demonstrating the strongest slowing; (c) the estimated intracortical sources of these gICs were mostly located in brain areas involved in the control of executive functions, attention, planning, and language; and (d) the LD-Verbal children demonstrated substantial differences in EEG oscillations compared with LD-NOS children, and these differences were localized in language-related brain areas. The general pattern of atypical neurophysiological activation found in LD children suggests that they suffer from neurophysiological dysfunction in brain areas involved with the control of attention, executive functions, planning, and language functions. LD-Verbal children also demonstrate atypical activation, especially in language-related brain areas. These atypical

  19. Does greater low frequency EEG activity in normal immaturity and in children with epilepsy arise in the same neuronal network?

    PubMed

    Michels, L; Bucher, K; Brem, S; Halder, P; Lüchinger, R; Liechti, M; Martin, E; Jeanmonod, D; Kröll, J; Brandeis, D

    2011-03-01

    Greater low frequency power (<8 Hz) in the electroencephalogram (EEG) at rest is normal in the immature developing brain of children when compared to adults. Children with epilepsy also have greater low frequency interictal resting EEG activity. Whether these power elevations reflect brain immaturity due to a developmental lag or the underlying epileptic pathophysiology is unclear. The present study addresses this question by analyzing spectral EEG topographies and sources for normally developing children and children with epilepsy. We first compared the resting EEG of healthy children to that of healthy adults to isolate effects related to normal brain immaturity. Next, we compared the EEG from 10 children with generalized cryptogenic epilepsy to the EEG of 24 healthy children to isolate effects related to epilepsy. Spectral analysis revealed that global low (delta: 1-3 Hz, theta: 4-7 Hz), medium (alpha: 8-12 Hz) and high (beta: 13-25 Hz) frequency EEG activity was greater in children without epilepsy compared to adults, and even further elevated for children with epilepsy. Topographical and tomographic EEG analyses showed that normal immaturity corresponded to greater delta and theta activity at fronto-central scalp and brain regions, respectively. In contrast, the epilepsy-related activity elevations were predominantly in the alpha band at parieto-occipital electrodes and brain regions, respectively. We conclude that lower frequency activity can be a sign of normal brain immaturity or brain pathology depending on the specific topography and frequency of the oscillating neuronal network. PMID:20820898

  20. Regional and inter-regional theta oscillation during episodic novelty processing.

    PubMed

    Lee, Gwan-Taek; Lee, Chany; Kim, Kyung Hwan; Jung, Ki-Young

    2014-10-01

    Recent event-related potential (ERP) and functional magnetic resonance imaging (fMRI) studies suggest that novelty processing may be involved in processes that recognize the meaning of a novel sound, during which widespread cortical regions including the right prefrontal cortex are engaged. However, it remains unclear how those cortical regions are functionally integrated during novelty processing. Because theta oscillation has been assumed to have a crucial role in memory operations, we examined local and inter-regional neural synchrony of theta band activity during novelty processing. Fifteen right-handed healthy university students participated in this study. Subjects performed an auditory novelty oddball task that consisted of the random sequence of three types of stimuli such as a target (1000Hz pure tone), novel (familiar environmental sounds such as dog bark, buzz, car crashing sound and so on), and standard sounds (950Hz pure tone). Event-related spectra perturbation (ERSP) and the phase-locking value (PLV) were measured from human scalp EEG during task. Non-parametric statistical tests were applied to test for significant differences between stimulus novelty and stimulus targets in ERSP and PLV. The novelty P3 showed significant higher amplitude and shorter latency compared with target P3 in frontocentral regions. Overall, theta activity was significantly higher in the novel stimuli compared with the target stimuli. Specifically, the difference in theta power between novel and target stimuli was most significant in the right frontal region. This right frontal theta activity was accompanied by phase synchronization with the left temporal region. Our results imply that theta phase synchronization between right frontal and left temporal regions underlie the retrieval of memory traces for unexpected but familiar sounds from long term memory in addition to working memory retrieval or novelty encoding. PMID:25014407

  1. Neural mechanisms of infant learning: differences in frontal theta activity during object exploration modulate subsequent object recognition.

    PubMed

    Begus, Katarina; Southgate, Victoria; Gliga, Teodora

    2015-05-01

    Investigating learning mechanisms in infancy relies largely on behavioural measures like visual attention, which often fail to predict whether stimuli would be encoded successfully. This study explored EEG activity in the theta frequency band, previously shown to predict successful learning in adults, to directly study infants' cognitive engagement, beyond visual attention. We tested 11-month-old infants (N = 23) and demonstrated that differences in frontal theta-band oscillations, recorded during infants' object exploration, predicted differential subsequent recognition of these objects in a preferential-looking test. Given that theta activity is modulated by motivation to learn in adults, these findings set the ground for future investigation into the drivers of infant learning. PMID:26018832

  2. Neural mechanisms of infant learning: differences in frontal theta activity during object exploration modulate subsequent object recognition

    PubMed Central

    Begus, Katarina; Southgate, Victoria; Gliga, Teodora

    2015-01-01

    Investigating learning mechanisms in infancy relies largely on behavioural measures like visual attention, which often fail to predict whether stimuli would be encoded successfully. This study explored EEG activity in the theta frequency band, previously shown to predict successful learning in adults, to directly study infants' cognitive engagement, beyond visual attention. We tested 11-month-old infants (N = 23) and demonstrated that differences in frontal theta-band oscillations, recorded during infants' object exploration, predicted differential subsequent recognition of these objects in a preferential-looking test. Given that theta activity is modulated by motivation to learn in adults, these findings set the ground for future investigation into the drivers of infant learning. PMID:26018832

  3. An Alpha and Theta Intensive and Short Neurofeedback Protocol for Healthy Aging Working-Memory Training

    PubMed Central

    Reis, Joana; Portugal, Ana Maria; Fernandes, Luís; Afonso, Nuno; Pereira, Mariana; Sousa, Nuno; Dias, Nuno S.

    2016-01-01

    The present study tested the effects of an intensive and short alpha and theta neurofeedback (NF) protocol in working memory (WM) performance in a healthy elder population and explored the effects of a multimodal approach, by supplementing NF with cognitive tasks. Participants were allocated to four groups: NF (N = 9); neurofeedback supplemented with cognitive training (NFCT) (N = 8); cognitive training (CT) (N = 7) and sham neurofeedback (Sham-NF) (N = 6). The intervention consisted in 30-min sessions for 8 days. The NF group presented post intervention increases of alpha and theta relative power as well as performance in the matrix rotation task. In addition, a successful up training of frontal theta showed positive correlation with an improvement of post-training alpha and a better performance in the matrix rotation task. The results presented herein suggest that an intensive and short NF protocol enables elders to learn alpha and theta self-modulation and already presents moderate improvements in cognition and basal EEG. Also, CT group showed moderate performance gains on the cognitive tasks used during the training sessions but no clear improvements on neurophysiology and behavioral measurements were observed. This study represents a first attempt to study the effects of an intensive and short NF protocol in WM performance of elders. The evidence presented here suggests that an intensive and short NF intervention could be a valid alternative for introduction of older populations to NF methodologies. PMID:27458369

  4. Changes in theta and beta oscillations as signatures of novel word consolidation.

    PubMed

    Bakker, Iske; Takashima, Atsuko; van Hell, Janet G; Janzen, Gabriele; McQueen, James M

    2015-07-01

    The complementary learning systems account of word learning states that novel words, like other types of memories, undergo an offline consolidation process during which they are gradually integrated into the neocortical memory network. A fundamental change in the neural representation of a novel word should therefore occur in the hours after learning. The present EEG study tested this hypothesis by investigating whether novel words learned before a 24-hr consolidation period elicited more word-like oscillatory responses than novel words learned immediately before testing. In line with previous studies indicating that theta synchronization reflects lexical access, unfamiliar novel words elicited lower power in the theta band (4-8 Hz) than existing words. Recently learned words still showed a marginally lower theta increase than existing words, but theta responses to novel words that had been acquired 24 hr earlier were indistinguishable from responses to existing words. Consistent with evidence that beta desynchronization (16-21 Hz) is related to lexical-semantic processing, we found that both unfamiliar and recently learned novel words elicited less beta desynchronization than existing words. In contrast, no difference was found between novel words learned 24 hr earlier and existing words. These data therefore suggest that an offline consolidation period enables novel words to acquire lexically integrated, word-like neural representations. PMID:25761007

  5. An Alpha and Theta Intensive and Short Neurofeedback Protocol for Healthy Aging Working-Memory Training.

    PubMed

    Reis, Joana; Portugal, Ana Maria; Fernandes, Luís; Afonso, Nuno; Pereira, Mariana; Sousa, Nuno; Dias, Nuno S

    2016-01-01

    The present study tested the effects of an intensive and short alpha and theta neurofeedback (NF) protocol in working memory (WM) performance in a healthy elder population and explored the effects of a multimodal approach, by supplementing NF with cognitive tasks. Participants were allocated to four groups: NF (N = 9); neurofeedback supplemented with cognitive training (NFCT) (N = 8); cognitive training (CT) (N = 7) and sham neurofeedback (Sham-NF) (N = 6). The intervention consisted in 30-min sessions for 8 days. The NF group presented post intervention increases of alpha and theta relative power as well as performance in the matrix rotation task. In addition, a successful up training of frontal theta showed positive correlation with an improvement of post-training alpha and a better performance in the matrix rotation task. The results presented herein suggest that an intensive and short NF protocol enables elders to learn alpha and theta self-modulation and already presents moderate improvements in cognition and basal EEG. Also, CT group showed moderate performance gains on the cognitive tasks used during the training sessions but no clear improvements on neurophysiology and behavioral measurements were observed. This study represents a first attempt to study the effects of an intensive and short NF protocol in WM performance of elders. The evidence presented here suggests that an intensive and short NF intervention could be a valid alternative for introduction of older populations to NF methodologies. PMID:27458369

  6. Resting state cortical rhythms in athletes: a high-resolution EEG study.

    PubMed

    Babiloni, Claudio; Marzano, Nicola; Iacoboni, Marco; Infarinato, Francesco; Aschieri, Pierluigi; Buffo, Paola; Cibelli, Giuseppe; Soricelli, Andrea; Eusebi, Fabrizio; Del Percio, Claudio

    2010-01-15

    The present electroencephalographic (EEG) study tested the working hypothesis that the amplitude of resting state cortical EEG rhythms (especially alpha, 8-12 Hz) was higher in elite athletes compared with amateur athletes and non-athletes, as a reflection of the efficiency of underlying back-ground neural synchronization mechanisms. Eyes closed resting state EEG data were recorded in 16 elite karate athletes, 20 amateur karate athletes, and 25 non-athletes. The EEG rhythms of interest were delta (2-4 Hz), theta (4-8 Hz), alpha 1 (8-10.5 Hz), alpha 2 (10.5-13 Hz), beta 1 (13-20 Hz), and beta 2 (20-30 Hz). EEG cortical sources were estimated by low-resolution brain electromagnetic tomography (LORETA). Statistical results showed that the amplitude of parietal and occipital alpha 1 sources was significantly higher in the elite karate athletes than in the non-athletes and karate amateur athletes. Similar results were observed in parietal and occipital delta sources as well as in occipital theta sources. Finally, a control confirmatory experiment showed that the amplitude of parietal and occipital delta and alpha 1 sources was stronger in 8 elite rhythmic gymnasts compared with 14 non-athletes. These results supported the hypothesis that cortical neural synchronization at the basis of eyes-closed resting state EEG rhythms is enhanced in elite athletes than in control subjects. PMID:19879337

  7. The Default Mode Network and EEG Regional Spectral Power: A Simultaneous fMRI-EEG Study

    PubMed Central

    Werner, Cornelius J.; Hitz, Konrad; Boers, Frank; Kawohl, Wolfram; Shah, N. Jon

    2014-01-01

    Electroencephalography (EEG) frequencies have been linked to specific functions as an “electrophysiological signature” of a function. A combination of oscillatory rhythms has also been described for specific functions, with or without predominance of one specific frequency-band. In a simultaneous fMRI-EEG study at 3 T we studied the relationship between the default mode network (DMN) and the power of EEG frequency bands. As a methodological approach, we applied Multivariate Exploratory Linear Optimized Decomposition into Independent Components (MELODIC) and dual regression analysis for fMRI resting state data. EEG power for the alpha, beta, delta and theta-bands were extracted from the structures forming the DMN in a region-of-interest approach by applying Low Resolution Electromagnetic Tomography (LORETA). A strong link between the spontaneous BOLD response of the left parahippocampal gyrus and the delta-band extracted from the anterior cingulate cortex was found. A positive correlation between the beta-1 frequency power extracted from the posterior cingulate cortex (PCC) and the spontaneous BOLD response of the right supplementary motor cortex was also established. The beta-2 frequency power extracted from the PCC and the precuneus showed a positive correlation with the BOLD response of the right frontal cortex. Our results support the notion of beta-band activity governing the “status quo” in cognitive and motor setup. The highly significant correlation found between the delta power within the DMN and the parahippocampal gyrus is in line with the association of delta frequencies with memory processes. We assumed “ongoing activity” during “resting state” in bringing events from the past to the mind, in which the parahippocampal gyrus is a relevant structure. Our data demonstrate that spontaneous BOLD fluctuations within the DMN are associated with different EEG-bands and strengthen the conclusion that this network is characterized by a specific

  8. Brain Oscillations in Sport: Toward EEG Biomarkers of Performance

    PubMed Central

    Cheron, Guy; Petit, Géraldine; Cheron, Julian; Leroy, Axelle; Cebolla, Anita; Cevallos, Carlos; Petieau, Mathieu; Hoellinger, Thomas; Zarka, David; Clarinval, Anne-Marie; Dan, Bernard

    2016-01-01

    Brain dynamics is at the basis of top performance accomplishment in sports. The search for neural biomarkers of performance remains a challenge in movement science and sport psychology. The non-invasive nature of high-density electroencephalography (EEG) recording has made it a most promising avenue for providing quantitative feedback to practitioners and coaches. Here, we review the current relevance of the main types of EEG oscillations in order to trace a perspective for future practical applications of EEG and event-related potentials (ERP) in sport. In this context, the hypotheses of unified brain rhythms and continuity between wake and sleep states should provide a functional template for EEG biomarkers in sport. The oscillations in the thalamo-cortical and hippocampal circuitry including the physiology of the place cells and the grid cells provide a frame of reference for the analysis of delta, theta, beta, alpha (incl.mu), and gamma oscillations recorded in the space field of human performance. Based on recent neuronal models facilitating the distinction between the different dynamic regimes (selective gating and binding) in these different oscillations we suggest an integrated approach articulating together the classical biomechanical factors (3D movements and EMG) and the high-density EEG and ERP signals to allow finer mathematical analysis to optimize sport performance, such as microstates, coherency/directionality analysis and neural generators. PMID:26955362

  9. Extraversion and fronto-posterior EEG spectral power gradient: an independent component analysis.

    PubMed

    Knyazev, Gennady G; Bocharov, Andrey V; Pylkova, Liudmila V

    2012-02-01

    Several studies show that the fronto-posterior EEG spectral power gradient is a stable individual characteristic related to personality. Whether this characteristic is specifically related to agentic extraversion and theta band of frequencies or is associated with a broader set of personality traits and frequency bands is a matter of debate, as well as the specific cortical regions contributing to this effect. To clarify these questions, we used group independent component analysis (ICA) and source localization techniques. Agentic extraversion was associated with higher theta activity in the default mode network's (DMN) posterior hub and lower theta activity in the orbitofrontal cortex (OFC). Regression analyses showed that theta activity predicted agentic extraversion better than other frequency bands and agentic extraversion predicted posterior versus frontal activity better than other personality dimensions. These results are taken to indicate higher tonic activity in OFC and lower activity in DMN in extraverts as compared to introverts. PMID:22234364

  10. Resting State EEG Hemispheric Power Asymmetry in Children with Dyslexia.

    PubMed

    Papagiannopoulou, Eleni A; Lagopoulos, Jim

    2016-01-01

    Dyslexia is a neurodevelopmental disorder estimated to affect between 4 and 7% of the population. It is often referred to as a learning disability and is characterized by deficits in the linguistic system. To better understand the neural underpinnings of dyslexia, we examined the electroencephalography (EEG) power spectra between pre-adolescents with dyslexia and neurotypical control children during eyes closed state. We reported the differences in spontaneous oscillatory activity of each major EEG band (delta, theta, alpha, and beta) adopting a global as well as in a region-by-region and hemispheric approach to elucidate whether there are changes in asymmetry in children with dyslexia compared to controls. We also examined the relationship between EEG power spectra and clinical variables. The findings of our study confirm the presence of an atypical linguistic network, evident in children with dyslexia. This abnormal network hallmarked by a dominance of theta activity suggests that these abnormalities are present prior to these children learning to read, thus implicating delayed maturation and abnormal hypoarousal mechanisms. PMID:26942169

  11. Childhood abuse and EEG source localization in crack cocaine dependence.

    PubMed

    Alper, Kenneth; Shah, Jaini; Howard, Bryant; Roy John, E; Prichep, Leslie S

    2013-07-30

    Fourteen subjects with histories of sexual and/or physical abuse in childhood and 13 matched control subjects were selected from a consecutive series of clients in residential treatment for crack cocaine dependence. Standardized low-resolution electromagnetic brain tomography (sLORETA) was used to estimate the source generators of the EEG in a cortical mask with voxel z-scores referenced to normative data at frequency intervals of 039 Hz, with nonparametric permutation to correct by randomization for the number of comparisons and the intercorrelations and variance of distribution of voxel values. Subjects with histories of abuse in childhood had significantly greater EEG power than controls in the theta frequency range (3.51-7.41 Hz), with greatest differences in the 3.90-Hz band distributed mainly in the parahippocampal, fusiform, lingual, posterior cingulate, and insular gyri. The groups did not differ significantly with regard to delta (1.56-3.12 Hz), alpha (7.81-12.48 Hz), beta (12.87-19.89 Hz), and gamma (20.28-35.10 Hz) frequency power. In excess, theta EEG power, a bandwidth of transactions among hippocampus and amygdala and paralimbic and visual association cortex, may be a correlate of childhood exposure to abuse. PMID:23693089

  12. Resting State EEG Hemispheric Power Asymmetry in Children with Dyslexia

    PubMed Central

    Papagiannopoulou, Eleni A.; Lagopoulos, Jim

    2016-01-01

    Dyslexia is a neurodevelopmental disorder estimated to affect between 4 and 7% of the population. It is often referred to as a learning disability and is characterized by deficits in the linguistic system. To better understand the neural underpinnings of dyslexia, we examined the electroencephalography (EEG) power spectra between pre-adolescents with dyslexia and neurotypical control children during eyes closed state. We reported the differences in spontaneous oscillatory activity of each major EEG band (delta, theta, alpha, and beta) adopting a global as well as in a region-by-region and hemispheric approach to elucidate whether there are changes in asymmetry in children with dyslexia compared to controls. We also examined the relationship between EEG power spectra and clinical variables. The findings of our study confirm the presence of an atypical linguistic network, evident in children with dyslexia. This abnormal network hallmarked by a dominance of theta activity suggests that these abnormalities are present prior to these children learning to read, thus implicating delayed maturation and abnormal hypoarousal mechanisms. PMID:26942169

  13. Age effects on EEG correlates of the Wisconsin Card Sorting Test

    PubMed Central

    Dias, Nuno S; Ferreira, Daniela; Reis, Joana; Jacinto, Luís R; Fernandes, Luís; Pinho, Francisco; Festa, Joana; Pereira, Mariana; Afonso, Nuno; Santos, Nadine C; Cerqueira, João J; Sousa, Nuno

    2015-01-01

    Body and brain undergo several changes with aging. One of the domains in which these changes are more remarkable relates with cognitive performance. In the present work, electroencephalogram (EEG) markers (power spectral density and spectral coherence) of age-related cognitive decline were sought whilst the subjects performed the Wisconsin Card Sorting Test (WCST). Considering the expected age-related cognitive deficits, WCST was applied to young, mid-age and elderly participants, and the theta and alpha frequency bands were analyzed. From the results herein presented, higher theta and alpha power were found to be associated with a good performance in the WCST of younger subjects. Additionally, higher theta and alpha coherence were also associated with good performance and were shown to decline with age and a decrease in alpha peak frequency seems to be associated with aging. Additionally, inter-hemispheric long-range coherences and parietal theta power were identified as age-independent EEG correlates of cognitive performance. In summary, these data reveals age-dependent as well as age-independent EEG correlates of cognitive performance that contribute to the understanding of brain aging and related cognitive deficits. PMID:26216431

  14. High amplitude theta wave bursts: a novel electroencephalographic feature of rem sleep and cataplexy.

    PubMed

    Lo Martire, Viviana Carmen; Bastianini, Stefano; Berteotti, Chiara; Silvani, Alessandro; Zoccoli, Giovanna

    2015-01-01

    High amplitude theta wave bursts (HATs) were originally described during REMS and cataplexy in ORX-deficient mice as a novel neurophysiological correlate of narcolepsy (Bastianini et al., 2012). This finding was replicated the following year by Vassalli et al. in both ORX-deficient narcoleptic mice and narcoleptic children during cataplexy episodes (Vassalli et al., 2013). The relationship between HATs and narcolepsy-cataplexy in mice and patients indicates that the lack of ORX peptides is responsible for this abnormal EEG activity, the physiological meaning of which is still unknown. This review aimed to explore different phasic EEG events previously described in the published literature in order to find analogies and differences with HATs observed in narcoleptic mice and patients. We found similarities in terms of morphology, frequency and duration between HATs and several physiological (mu and wicket rhythms, sleep spindles, saw-tooth waves) or pathological (SWDs, HVSs, bursts of polyphasic complexes EEG complexes reported in a mouse model of CJD, and BSEs) EEG events. However, each of these events also shows significant differences from HATs, and thus cannot be equaled to them. The available evidence thus suggests that HATs are a novel neurophysiological phenomenon. Further investigations on HATs are required in order to investigate their physiological meaning, to individuate their brain structure(s) of origin, and to clarify the neural circuits involved in their manifestation. PMID:26742662

  15. Resting state EEG correlates of memory consolidation.

    PubMed

    Brokaw, Kate; Tishler, Ward; Manceor, Stephanie; Hamilton, Kelly; Gaulden, Andrew; Parr, Elaine; Wamsley, Erin J

    2016-04-01

    Numerous studies demonstrate that post-training sleep benefits human memory. At the same time, emerging data suggest that other resting states may similarly facilitate consolidation. In order to identify the conditions under which non-sleep resting states benefit memory, we conducted an EEG (electroencephalographic) study of verbal memory retention across 15min of eyes-closed rest. Participants (n=26) listened to a short story and then either rested with their eyes closed, or else completed a distractor task for 15min. A delayed recall test was administered immediately following the rest period. We found, first, that quiet rest enhanced memory for the short story. Improved memory was associated with a particular EEG signature of increased slow oscillatory activity (<1Hz), in concert with reduced alpha (8-12Hz) activity. Mindwandering during the retention interval was also associated with improved memory. These observations suggest that a short period of quiet rest can facilitate memory, and that this may occur via an active process of consolidation supported by slow oscillatory EEG activity and characterized by decreased attention to the external environment. Slow oscillatory EEG rhythms are proposed to facilitate memory consolidation during sleep by promoting hippocampal-cortical communication. Our findings suggest that EEG slow oscillations could play a significant role in memory consolidation during other resting states as well. PMID:26802698

  16. Emotional conflict processing induce boosted theta oscillation.

    PubMed

    Ma, Jianling; Liu, Chang; Chen, Xu

    2015-05-19

    Although previous studies have reported the neural correlates and dynamics of emotional conflict processing, the neural oscillatory features of such processing remain unclear. The present study uses time-frequency analysis to determine the event-related spectral perturbation (ERSP) characteristics underlying emotional conflict processing. Our behavioral results replicate previous findings of shorter response times and fewer response errors under the congruent condition relative to the incongruent condition, indicating a robust interference effect. Theta oscillatory activity was larger for the incongruent than for the congruent condition over frontal and frontal-central midline areas, reflecting a greater need for control under conditions of conflict. Moreover, the theta power difference was negatively associated with the RT difference, indicating that greater theta power leads to better behavioral performance. The present findings provide evidence that the theta oscillation is necessary for the control of emotional conflict. PMID:25863173

  17. Note on trigonometric expansions of theta functions

    NASA Astrophysics Data System (ADS)

    Chouikha, A. Raouf

    2003-04-01

    We are interested in properties of coefficients of certain expansions of the classical theta functions. We show that they are solutions of a differential system derived from the heat equation. We plan to explicitly give expressions of these coefficients.

  18. Human hippocampal theta activity during virtual navigation.

    PubMed

    Ekstrom, Arne D; Caplan, Jeremy B; Ho, Emily; Shattuck, Kirk; Fried, Itzhak; Kahana, Michael J

    2005-01-01

    This study examines whether 4-8-Hz theta oscillations can be seen in the human hippocampus, and whether these oscillations increase during virtual movement and searching, as they do in rodents. Recordings from both hippocampal and neocortical depth electrodes were analyzed while six epileptic patients played a virtual taxi-driver game. During the game, the patients alternated between searching for passengers, whose locations were random, and delivering them to stores, whose locations remained constant. In both hippocampus and neocortex, theta increased during virtual movement in all phases of the game. Hippocampal and neocortical theta activity were also significantly correlated with each other, but this correlation did not differ between neocortex and hippocampus and within disparate neocortical electrodes. Our findings demonstrate the existence of movement-related theta oscillations in human hippocampus, and suggest that both cortical and hippocampal oscillations play a role in attention and sensorimotor integration. PMID:16114040

  19. Neural activations during visual sequence learning leave a trace in post-training spontaneous EEG.

    PubMed

    Moisello, Clara; Meziane, Hadj Boumediene; Kelly, Simon; Perfetti, Bernardo; Kvint, Svetlana; Voutsinas, Nicholas; Blanco, Daniella; Quartarone, Angelo; Tononi, Giulio; Ghilardi, Maria Felice

    2013-01-01

    Recent EEG studies have shown that implicit learning involving specific cortical circuits results in an enduring local trace manifested as local changes in spectral power. Here we used a well characterized visual sequence learning task and high density-(hd-)EEG recording to determine whether also declarative learning leaves a post-task, local change in the resting state oscillatory activity in the areas involved in the learning process. Thus, we recorded hd-EEG in normal subjects before, during and after the acquisition of the order of a fixed spatial target sequence (VSEQ) and during the presentation of targets in random order (VRAN). We first determined the temporal evolution of spectral changes during VSEQ and compared it to VRAN. We found significant differences in the alpha and theta bands in three main scalp regions, a right occipito-parietal (ROP), an anterior-frontal (AFr), and a right frontal (RFr) area. The changes in frontal theta power during VSEQ were positively correlated with the learning rate. Further, post-learning EEG recordings during resting state revealed a significant increase in alpha power in ROP relative to a pre-learning baseline. We conclude that declarative learning is associated with alpha and theta changes in frontal and posterior regions that occur during the task, and with an increase of alpha power in the occipito-parietal region after the task. These post-task changes may represent a trace of learning and a hallmark of use-dependent plasticity. PMID:23799058

  20. Neural Activations during Visual Sequence Learning Leave a Trace in Post-Training Spontaneous EEG

    PubMed Central

    Moisello, Clara; Meziane, Hadj Boumediene; Kelly, Simon; Perfetti, Bernardo; Kvint, Svetlana; Voutsinas, Nicholas; Blanco, Daniella; Quartarone, Angelo; Tononi, Giulio; Ghilardi, Maria Felice

    2013-01-01

    Recent EEG studies have shown that implicit learning involving specific cortical circuits results in an enduring local trace manifested as local changes in spectral power. Here we used a well characterized visual sequence learning task and high density-(hd-)EEG recording to determine whether also declarative learning leaves a post-task, local change in the resting state oscillatory activity in the areas involved in the learning process. Thus, we recorded hd-EEG in normal subjects before, during and after the acquisition of the order of a fixed spatial target sequence (VSEQ) and during the presentation of targets in random order (VRAN). We first determined the temporal evolution of spectral changes during VSEQ and compared it to VRAN. We found significant differences in the alpha and theta bands in three main scalp regions, a right occipito-parietal (ROP), an anterior-frontal (AFr), and a right frontal (RFr) area. The changes in frontal theta power during VSEQ were positively correlated with the learning rate. Further, post-learning EEG recordings during resting state revealed a significant increase in alpha power in ROP relative to a pre-learning baseline. We conclude that declarative learning is associated with alpha and theta changes in frontal and posterior regions that occur during the task, and with an increase of alpha power in the occipito-parietal region after the task. These post-task changes may represent a trace of learning and a hallmark of use-dependent plasticity. PMID:23799058

  1. Monitoring task loading with multivariate EEG measures during complex forms of human-computer interaction

    NASA Technical Reports Server (NTRS)

    Smith, M. E.; Gevins, A.; Brown, H.; Karnik, A.; Du, R.

    2001-01-01

    Electroencephalographic (EEG) recordings were made while 16 participants performed versions of a personal-computer-based flight simulation task of low, moderate, or high difficulty. As task difficulty increased, frontal midline theta EEG activity increased and alpha band activity decreased. A participant-specific function that combined multiple EEG features to create a single load index was derived from a sample of each participant's data and then applied to new test data from that participant. Index values were computed for every 4 s of task data. Across participants, mean task load index values increased systematically with increasing task difficulty and differed significantly between the different task versions. Actual or potential applications of this research include the use of multivariate EEG-based methods to monitor task loading during naturalistic computer-based work.

  2. Quantitative EEG of Rapid-Eye-Movement Sleep: A Marker of Amnestic Mild Cognitive Impairment.

    PubMed

    Brayet, Pauline; Petit, Dominique; Frauscher, Birgit; Gagnon, Jean-François; Gosselin, Nadia; Gagnon, Katia; Rouleau, Isabelle; Montplaisir, Jacques

    2016-04-01

    The basal forebrain cholinergic system, which is impaired in early Alzheimer's disease, is more crucial for the activation of rapid-eye-movement (REM) sleep electroencephalogram (EEG) than it is for wakefulness. Quantitative EEG from REM sleep might thus provide an earlier and more accurate marker of the development of Alzheimer's disease in subjects with mild cognitive impairment (MCI) subjects than that from wakefulness. To assess the superiority of the REM sleep EEG as a screening tool for preclinical Alzheimer's disease, 22 subjects with amnestic MCI (a-MCI; 63.9±7.7 years), 10 subjects with nonamnestic MCI (na-MCI; 64.1±4.5 years) and 32 controls (63.7±6.6 years) participated in the study. Spectral analyses of the waking EEG and REM sleep EEG were performed and the [(delta+theta)/(alpha+beta)] ratio was used to assess between-group differences in EEG slowing. The a-MCI subgroup showed EEG slowing in frontal lateral regions compared to both na-MCI and control groups. This EEG slowing was present in wakefulness (compared to controls) but was much more prominent in REM sleep. Moreover, the comparison between amnestic and nonamnestic subjects was found significant only for the REM sleep EEG. There was no difference in EEG power ratio between na-MCI and controls for any of the 7 cortical regions studied. These findings demonstrate the superiority of the REM sleep EEG in the discrimination between a-MCI and both na-MCI and control subjects. PMID:26323578

  3. Electroencephalogram (EEG) (For Parents)

    MedlinePlus

    ... KidsHealth in the Classroom What Other Parents Are Reading Upsetting News Reports? What to Say Vaccines: Which ... For older kids, be sure to explain the importance of keeping still while the EEG is done ...

  4. EEG Power Spectra of Children with Dyslexia, Slow Learners, and Normally Reading Children with ADD during Verbal Processing.

    ERIC Educational Resources Information Center

    Ackerman, Peggy T.; And Others

    1994-01-01

    Electroencephalographic (EEG) power spectra were studied in two poor reader groups (dyslexia and slow learning) and a normal reading group with attention deficit disorder (ADD). In correlational analyses, the combination of greater low beta and less theta power significantly predicted better reading and spelling. Results suggest adequate readers…

  5. Chemotherapy disrupts learning, neurogenesis and theta activity in the adult brain.

    PubMed

    Nokia, Miriam S; Anderson, Megan L; Shors, Tracey J

    2012-12-01

    Chemotherapy, especially if prolonged, disrupts attention, working memory and speed of processing in humans. Most cancer drugs that cross the blood-brain barrier also decrease adult neurogenesis. Because new neurons are generated in the hippocampus, this decrease may contribute to the deficits in working memory and related thought processes. The neurophysiological mechanisms that underlie these deficits are generally unknown. A possible mediator is hippocampal oscillatory activity within the theta range (3-12 Hz). Theta activity predicts and promotes efficient learning in healthy animals and humans. Here, we hypothesised that chemotherapy disrupts learning via decreases in hippocampal adult neurogenesis and theta activity. Temozolomide was administered to adult male Sprague-Dawley rats in a cyclic manner for several weeks. Treatment was followed by training with different types of eyeblink classical conditioning, a form of associative learning. Chemotherapy reduced both neurogenesis and endogenous theta activity, as well as disrupted learning and related theta-band responses to the conditioned stimulus. The detrimental effects of temozolomide only occurred after several weeks of treatment, and only on a task that requires the association of events across a temporal gap and not during training with temporally overlapping stimuli. Chemotherapy did not disrupt the memory for previously learned associations, a memory independent of (new neurons in) the hippocampus. In conclusion, prolonged systemic chemotherapy is associated with a decrease in hippocampal adult neurogenesis and theta activity that may explain the selective deficits in processes of learning that describe the 'chemobrain'. PMID:23039863

  6. [The EEG and thinking].

    PubMed

    Petsche, H

    1990-12-01

    The on-going EEG contains information on thinking strategies during cognitive and creative tasks and during listening to music. This was demonstrated by a method taking use of the fact that both the amount of local current production and the degree of electric coupling of brain regions is characteristically changed by mental tasks. In groups of volunteers the significant changes of absolute power and coherence caused by different mental tasks are computed and entered into schematic brain maps (EEG probability maps). The results indicate the existence of general brain strategies even in mental activities as specific as those referred to above. Moreover, several relationships between EEG, psychological test scores, degree of special education and intelligence were found. Studies with extreme value validation according to intelligence and creativity test scores yielded significant differences between the groups of the best and the poorest performers during a creative task in the EEG. The EEG thus can be conceived of as deterministic chaos with different degrees of organization according to its information content. In this context, the question arises as to a possible function of the EEG for the optimization of thinking processes. PMID:2127009

  7. Frontal midline theta reflects individual task performance in a working memory task.

    PubMed

    Maurer, Urs; Brem, Silvia; Liechti, Martina; Maurizio, Stefano; Michels, Lars; Brandeis, Daniel

    2015-01-01

    Frontal midline (fm-)theta activity has been related to working memory (WM) processes, as it typically increases with WM load. The robustness of this effect, however, varies across studies and subjects, putting limits to its interpretation. We hypothesized that variation in the fm-theta effect may reflect individual differences in task difficulty with increasing WM load as indicated by behavioural responses. We further tested whether effects in the alpha range are robust markers of WM load. We recorded 64-channel EEG from 24 healthy adults while they memorized either 2 or 4 unfamiliar symbols (low vs. high WM load) in a modified Sternberg task. The last 2 s of the retention phase were analyzed for WM load-related changes in the theta (5-7 Hz) and alpha range (lower: 8-10 Hz, upper: 10.5-12.5 Hz). Higher WM load led to less accurate and slower responses. The increase of fm-theta with WM load was most pronounced at fm electrodes, localized to anterior cingulate regions, and correlated with the participants' decrease in accuracy due to higher WM load. Alpha peak frequency increased in the high compared to the low WM load condition, corresponding to a decrease in lower alpha range across all channels. The results demonstrate that previously reported variation in fm-theta workload effects can partly be explained by variation in task difficulty indexed by individual task accuracy. Moreover, the results also demonstrate that alpha WM load effects are prominent when separating upper and lower alpha. PMID:24687327

  8. Oscillatory EEG Correlates of Arithmetic Strategies: A Training Study

    PubMed Central

    Grabner, Roland H.; De Smedt, Bert

    2012-01-01

    There has been a long tradition of research on mathematics education showing that children and adults use different strategies to solve arithmetic problems. Neurophysiological studies have recently begun to investigate the brain correlates of these strategies. The existing body of data, however, reflect static end points of the learning process and do not provide information on how brain activity changes in response to training or intervention. In this study, we explicitly address this issue by training participants in using fact retrieval strategies. We also investigate whether brain activity related to arithmetic fact learning is domain-specific or whether this generalizes to other learning materials, such as the solution of figural-spatial problems. Twenty adult students were trained on sets of two-digit multiplication problems and figural-spatial problems. After the training, they were presented with the trained and untrained problems while their brain activity was recorded by means of electroencephalography (EEG). In both problem types, the training resulted in accuracies over 90% and significant decreases in solution times. Analyses of the oscillatory EEG data also revealed training effects across both problem types. Specifically, we observed training-related activity increases in the theta band (3–6 Hz) and decreases in the lower alpha band (8–10 Hz), especially over parietooccipital and parietal brain regions. These results provide the first evidence that a short-term fact retrieval training results in significant changes in oscillatory EEG activity. These findings further corroborate the role of the theta band in the retrieval of semantic information from memory and suggest that theta activity is sensitive to fact retrieval not only in mental arithmetic but also in other domains. PMID:23162495

  9. Relative Power of Specific EEG Bands and Their Ratios during Neurofeedback Training in Children with Autism Spectrum Disorder

    PubMed Central

    Wang, Yao; Sokhadze, Estate M.; El-Baz, Ayman S.; Li, Xiaoli; Sears, Lonnie; Casanova, Manuel F.; Tasman, Allan

    2016-01-01

    Neurofeedback is a mode of treatment that is potentially useful for improving self-regulation skills in persons with autism spectrum disorder. We proposed that operant conditioning of EEG in neurofeedback mode can be accompanied by changes in the relative power of EEG bands. However, the details on the change of the relative power of EEG bands during neurofeedback training course in autism are not yet well explored. In this study, we analyzed the EEG recordings of children diagnosed with autism and enrolled in a prefrontal neurofeedback treatment course. The protocol used in this training was aimed at increasing the ability to focus attention, and the procedure represented the wide band EEG amplitude suppression training along with upregulation of the relative power of gamma activity. Quantitative EEG analysis was completed for each session of neurofeedback using wavelet transform to determine the relative power of gamma and theta/beta ratio, and further to detect the statistical changes within and between sessions. We found a linear decrease of theta/beta ratio and a liner increase of relative power of gamma activity over 18 weekly sessions of neurofeedback in 18 high functioning children with autism. The study indicates that neurofeedback is an effective method for altering EEG characteristics associated with the autism spectrum disorder. Also, it provides information about specific changes of EEG activities and details the correlation between changes of EEG and neurofeedback indexes during the course of neurofeedback. This pilot study contributes to the development of more effective approaches to EEG data analysis during prefrontal neurofeedback training in autism. PMID:26834615

  10. The effects of Dalmane /flurazepam hydrochloride/ on human EEG characteristics.

    NASA Technical Reports Server (NTRS)

    Frost, J. D., Jr.; Carrie, J. R. G.; Borda, R. P.; Kellaway, P.

    1973-01-01

    Evaluation of the changes in the waking EEGs of six healthy male subjects who received 30 mg daily oral doses of flurazepam hydrochloride for two weeks. A placebo was then substituted for flurazepam for another two weeks. An increase in beta activity with a maximum in fronto-central leads was observed during the test period. A small increase in the mean wavelength of the alpha and theta activities in the central-occipital derivations was also apparent in the subjects during the period.

  11. What can be found in scalp EEG spectrum beyond common frequency bands. EEG–fMRI study

    NASA Astrophysics Data System (ADS)

    Marecek, R.; Lamos, M.; Mikl, M.; Barton, M.; Fajkus, J.; I, Rektor; Brazdil, M.

    2016-08-01

    Objective. The scalp EEG spectrum is a frequently used marker of neural activity. Commonly, the preprocessing of EEG utilizes constraints, e.g. dealing with a predefined subset of electrodes or a predefined frequency band of interest. Such treatment of the EEG spectrum neglects the fact that particular neural processes may be reflected in several frequency bands and/or several electrodes concurrently, and can overlook the complexity of the structure of the EEG spectrum. Approach. We showed that the EEG spectrum structure can be described by parallel factor analysis (PARAFAC), a method which blindly uncovers the spatial–temporal–spectral patterns of EEG. We used an algorithm based on variational Bayesian statistics to reveal nine patterns from the EEG of 38 healthy subjects, acquired during a semantic decision task. The patterns reflected neural activity synchronized across theta, alpha, beta and gamma bands and spread over many electrodes, as well as various EEG artifacts. Main results. Specifically, one of the patterns showed significant correlation with the stimuli timing. The correlation was higher when compared to commonly used models of neural activity (power fluctuations in distinct frequency band averaged across a subset of electrodes) and we found significantly correlated hemodynamic fluctuations in simultaneously acquired fMRI data in regions known to be involved in speech processing. Further, we show that the pattern also occurs in EEG data which were acquired outside the MR machine. Two other patterns reflected brain rhythms linked to the attentional and basal ganglia large scale networks. The other patterns were related to various EEG artifacts. Significance. These results show that PARAFAC blindly identifies neural activity in the EEG spectrum and that it naturally handles the correlations among frequency bands and electrodes. We conclude that PARAFAC seems to be a powerful tool for analysis of the EEG spectrum and might bring novel insight to the

  12. Estimation of the propagation direction and spectral properties of the EEG signals registered during sevoflurane anaesthesia using Directed Transfer Function method

    NASA Astrophysics Data System (ADS)

    Olejarczyk, Elzbieta; Kaminski, Maciej; Marciniak, Radoslaw; Byrczek, Tomasz; Stasiowski, Michal; Jalowiecki, Przemyslaw; Sobieszek, Aleksander; Zmyslowski, Wojciech

    2011-01-01

    The aim of this study was to estimate spectral properties and propagation of the EEG signals registered during sevoflurane anaesthesia between individual EEG recording channels. The intensities of activity flows were calculated for delta, theta, alpha and beta waves using the Directed Transfer Function integration procedure. It was found that delta waves played the dominant role in the EEG signal propagation during anesthesia and it was suggested that theta and alpha waves propagation could be related to the processes participating in the wakefulness control. Data obtained with DTF method were compared with data received from the analysis of cerebral blood flow with the use of PET in other laboratory. This study showed that analysis of the EEG signal propagation is useful for better understanding and thus safer induction of anaesthesia procedure.

  13. Hypermethods for EEG hyperscanning.

    PubMed

    Babiloni, Fabio; Cincotti, Febo; Mattia, Donatella; Mattiocco, Marco; De Vico Fallani, Fabrizio; Tocci, Andrea; Bianchi, Luigi; Marciani, Maria Grazia; Astolfi, Laura

    2006-01-01

    Until now, in EEG studies the activity of the brain during simple or complex tasks have been recorded in a single subject. Often, during such EEG recordings, subjects interacts with the external devices or the researchers in order to reproduce conditions similar to the those usually occurring in the real-life. However, in order to study the concurrent activity in subjects interacting in cooperation or competition activities, the issue of the simultaneous recording of their brain activity became mandatory. The simultaneous recording of hemodynamic or neuroelectric activity of the brain is called "hyperscanning". We would like present results obtained by EEG hyperscannings performed on a group of subjects engaged in cooperative games. The EEG hyperscannings have been performed with the simultaneous use of high resolution EEG devices on groups of three and four subjects while they were playing cooperative games. The analysis of such data have been conducted with analysis method that taken into account the particular nature of the data simultaneously gathered from different subjects. We called these methods hypermethods. In particular, we estimate the concurrent activity in multiple brains of the group and we depicted the causal connections between regions of different brains (hyperconnectivity). The resulting causality patterns will link certain areas of the brain of a subject to the waveforms obtained from the other brain areas of another subject of the same group. Results obtained in a study of several groups recorded by the hyperscanning reveals causal links between prefrontal areas of the different subjects when they are performing cooperative games in different frequency bands. Hypermethods for hyperscanning will open a different area for the study of neuroscience, in which the activity of multiple brains during social cooperation could be investigated. In such area the importance of EEG will be relevant due to its temporal and spatial resolution now obtainable w

  14. [Quantitative EEG analysis of a single dose of psychotropic drugs in healthy probands].

    PubMed

    Fischer, W; Streubel, F R; Heydenreich, F; Rabending, G

    1986-08-01

    In a series of 74 experiments in a double blind study, 25 healthy test persons were medicated with a single dose of Clomipramin, Desipramin, Imipramin, Diazepam, Carbamazepin, Haloperidol, and a placebo. At the end of one hour, and again at the end of three hours, an EEG was made whose frequency analysis revealed significant changes in about half the test persons. The antidepressives induced an increase in the theta waves, the slow alpha waves, and the slow beta waves, and a decrease in the fast alpha waves. The factors influencing the EEG are discussed. PMID:3786575

  15. EEG longitudinal studies in febrile convulsions. Genetic aspects.

    PubMed

    Doose, H; Ritter, K; Völzke, E

    1983-05-01

    It was the purpose of the study to obtain viewpoints on the genetics of febrile convulsions and their relationship to epilepsy by EEG long term follow up. 89 children with febrile convulsions could be followed up to the age of 11 to 13 years (in total 1046 EEG records). The study was concentrated on genetically determined EEG patterns: bilaterally synchronous spikes and waves, photosensitivity and 4-7 cps rhythms. The statistical evaluation was based on standards derived from known strict age dependence of the different patterns. Theta rhythms were found in 54%, spikes and waves of the resting record in 49% and photosensitivity in 42%. In total, genetically determined EEG patterns were found in 81% of the cases which were sufficiently investigated according to given standards. Spikes and waves are strongly age dependent with a maximum at the age of 5-6 years and appear very inconstantly. Theta rhythms and spikes and waves are closely correlated. Spikes and waves are a heterogeneous phenomenon. The type described here must be interpreted as a facultative symptom of the same functional anomaly which forms the basis of 4-7 cps rhythms. The possible pathophysiological basis of the pattern is discussed.--Photosensitivity is interpreted as the symptom of a genetically independent pathogenetic mechanism, which can lead to additive effects by interaction with other genetic abnormalities as well as exogenous factors.--The pathogenesis of febrile convulsions is multifactorial in the strict sense. While the exogenous pathogenetic factors are rather uniform, the genetic predisposition apparently is not. It is based on different genetic anomalies. Each of them is polygenically determined. In the individual case one or different factors can be involved. The genetic predisposition to febrile convulsions is definitely not only polygenic, but of heterogeneous nature. Finally the genetic relationship between febrile convulsions and epilepsy is discussed. PMID:6877532

  16. Are There Any Specific EEG Findings in Autoimmune Epilepsies?

    PubMed

    Baysal-Kirac, Leyla; Tuzun, Erdem; Altindag, Ebru; Ekizoglu, Esme; Kinay, Demet; Bilgic, Basar; Tekturk, Pinar; Baykan, Betul

    2016-07-01

    This study evaluated the EEG findings of patients whose seizures were associated with a possible autoimmune etiology. Our aim was to find clues to distinguish patients with antineuronal antibodies (Ab) through EEG studies. We reviewed our database and identified antineuronal Ab positive epilepsy patients with or without autoimmune encephalitis. These patients had Abs to N-methyl-d-aspartate receptor (NMDAR) (n = 5), glycine receptor (GLY-R) (n = 5), contactin-associated protein-like 2 (CASPR-2) (n = 4), uncharacterized voltage-gated potassium channel complex (VGKC) antigens (n = 2), glutamic acid decarboxylase (GAD) (n = 2), Hu (n = 1), and amphiphysin (n = 1). The control group consisted of 21 seronegative epilepsy or encephalopathy patients with similar clinical features. EEG findings were compared between the groups in a blindfolded design. We did not find any significant difference in EEG findings between antineuronal Ab positive epilepsy patients and seronegative control group. It was remarkable that four seropositive but none of the seronegative patients presented with nonconvulsive status epilepticus (NCSE) or focal motor status epilepticus. Continuous theta and delta rhythms were observed in 5 (71%) seropositive patients with autoimmune encephalitis and 2 (25%) seronegative patients. Eight (40 %) seropositive patients showed a frontal intermittent rhythmic delta activity (FIRDA) pattern as opposed to 5 (24%) seronegative patients. Two patients with NMDAR Ab positivity showed rhythmic delta waves superimposed with beta frequency activity resembling "delta brush" pattern. EEG seems as a limited diagnostic tool in differentiating epilepsy and/or encephalopathy patients with a possible autoimmune etiology from those without. However, antineuronal Abs associated with encephalitis should be considered in the etiology of status epilepticus forms. A possible autoimmune etiology for seizures may be considered in the presence of continuous slow waves, FIRDA, and

  17. Studying the default mode and its mindfulness-induced changes using EEG functional connectivity

    PubMed Central

    Glicksohn, Joseph; Goldstein, Abraham

    2014-01-01

    The default mode network (DMN) has been largely studied by imaging, but not yet by neurodynamics, using electroencephalography (EEG) functional connectivity (FC). mindfulness meditation (MM), a receptive, non-elaborative training is theorized to lower DMN activity. We explored: (i) the usefulness of EEG-FC for investigating the DMN and (ii) the MM-induced EEG-FC effects. To this end, three MM groups were compared with controls, employing EEG-FC (–MPC, mean phase coherence). Our results show that: (i) DMN activity was identified as reduced overall inter-hemispheric gamma MPC during the transition from resting state to a time production task and (ii) MM-induced a state increase in alpha MPC as well as a trait decrease in EEG-FC. The MM-induced EEG-FC decrease was irrespective of expertise or band. Specifically, there was a relative reduction in right theta MPC, and left alpha and gamma MPC. The left gamma MPC was negatively correlated with MM expertise, possibly related to lower internal verbalization. The trait lower gamma MPC supports the notion of MM-induced reduction in DMN activity, related with self-reference and mind-wandering. This report emphasizes the possibility of studying the DMN using EEG-FC as well as the importance of studying meditation in relation to it. PMID:24194576

  18. Analysis of matrix cracking and local delamination in (O/theta/-theta)sub s graphite epoxy laminates under tension load

    NASA Technical Reports Server (NTRS)

    Salpekar, S. A.; O'Brien, T. K.

    1991-01-01

    Several 3D finite element analyses of (O/theta/-theta)sub s graphite epoxy laminates, where theta = 15, 20, 25, 30, and 45 deg, subjected to axial tension load were performed. The interlaminar stresses in the theta/-theta interface were calculated with and without a matrix crack in the central -theta plies. The interlaminar normal stress changes from a small compressive stress when no matrix crack is present to a high tensile stress at the intersection of the matrix crack and free edge. The analysis of local delamination from the -theta matrix crack indicates a high strain energy release rate and a localized mode I component near the free edge, within one ply distance from the matrix crack. In order to examine the stress state causing the matrix cracking the maximum principal normal stress in a plane perpendicular to the fiber direction in the -theta ply was calculated in an uncracked laminate. The corresponding shear stress parallel to the fiber was also calculated. The principal normal stress at the laminate edge increases through the ply thickness and reached a very high tensile value at the theta/-theta interface indicating that the crack in the -theta ply may initiate at the theta/-theta interface. Crack profiles on the laminate edge in the -theta ply were constructed from the principal stress directions. The cracks were found to be more curved for layups with smaller theta angles, which is consistent with experimental observations in the literature.

  19. Analysis of matrix cracking and local delamination in (0/theta/-theta)sub s graphite epoxy laminates under tension load

    NASA Technical Reports Server (NTRS)

    Salpekar, S. A.; Obrien, T. K.

    1991-01-01

    Several 3D finite element analyses of (0/theta/-theta)sub s graphite epoxy laminates, where theta=15, 20, 25, 30, and 45 deg, subjected to axial tension load were performed. The interlaminar stresses in the theta/-theta interface were calculated with and without a matrix crack in the central -theta plies. The interlaminar normal stress changes from a small compressive stress when no matrix crack is present to a high tensile stress at the intersection of the matrix crack and free edge. The analysis of local delamination from the -theta matrix crack indicates a high strain energy release rate and a localized mode I component near the free edge, within one ply distance from the matrix crack. In order to examine the stress state causing the matrix cracking the maximum principal normal stress in a plane perpendicular to the fiber direction in the -theta ply was calculated in an uncracked laminate. The corresponding shear stress parallel to the fiber was also calculated. The principal normal stress at the laminate edge increases through the ply thickness and reached a very high tensile value at the theta/-theta interface indicating that the crack in the -theta ply may initiate at the theta/-theta interface. Crack profiles on the laminate edge in the -theta ply were constructed from the principal stress directions. The cracks were found to be more curved for layups with smaller theta angles, which is consistent with experimental observations in the literature.

  20. Genetic control of ethanol action on the central nervous system. An EEG study in twins.

    PubMed

    Propping, P

    1977-03-14

    The purpose of the investigation is to claify the genetic contribution to the interindividual variability of ethanol action on the central nervous system. The 52 adult male healthy twin pairs (26 MZ, 26 DZ) got 1.2 ml/kg ethanol p.o. under standardized conditions; furthermore, 13 non-twin subjects were repeatedly subjected to the same procedure in order to test the intraindividual variability. The EEG was recorded before and 60, 120, 180, and 240 min after alcohol intake. The EEGs were off-line analyzed by means of a computer program for time domain analysis. As was already known, on the average alcohol led to a better synchronisation of the EEG, i.e., the number of beta-waves decreased whereas the number of alpha- and theta-waves increased. The extent of the alcohol effect on the EEG varied enormously between individuals; however, the EEGs of MZ twins proved to react indentically to alcohol loading, whereas the EEGs of DZ twins became mor dissimilar during the course of the experiment. The low-voltage EEG presumably is resistant to alchohol; furthermore, it is supposed that there exists a special beta-prone EEG-type which is also genetic in origin. The identical EEG reaction of MZ twins to alcohol loading could not be attributed to more similar blood alcohol concentrations. It is hypothesized that the differences in the extent of the alcohol effect on the EEG between individuals might reflect differences in the sensitivity of the ascending reticular activating system. In the literature it has frequently been reported that alcoholics have preferentially brain wave patterns which are poorly synchronized. These findings are discussed in the light of the present results. PMID:557449

  1. Theta-phase gamma-amplitude coupling as a neurophysiological marker of attention deficit/hyperactivity disorder in children.

    PubMed

    Kim, Jun Won; Lee, Jaewon; Kim, Bung-Nyun; Kang, Taewoong; Min, Kyung Joon; Han, Doug Hyun; Lee, Young Sik

    2015-08-31

    Theta-phase gamma-amplitude coupling (TGC) between slow and fast oscillations is considered to represent cortico-subcortical interactions. The purpose of this electroencephalographic (EEG) study was to evaluate the diagnostic utility of TGC by comparing the power spectra and TGC at rest between ADHD and control children. Nineteen-channel EEGs were recorded from 97 volunteers (including 53 subjects with ADHD attending a camp for hyperactive children). The EEG power spectra and TGC data were analyzed. Analysis of covariance (ANCOVA) was conducted on the quantitative EEG results between the groups to adjust for sex. Receiver operator characteristic (ROC) analysis was conducted to examine the discriminating ability of each parameter for ADHD diagnosis. The ADHD group exhibited significantly decreased TGC in multiple areas, including frontal (Fp1, F3, F7, F6), temporal (T3), and occipital (O2) areas, compared with the control group. The ROC analysis performed on the TGC data generated the most accurate result among the EEG measures, with an overall classification accuracy of 71.7%. TGC, which reflects the degree of neuronal interactions between functional systems, provides information about an individual's attentional network. Therefore, resting-state TGC is a promising neurophysiological marker of ADHD in children. PMID:26170246

  2. Promotion

    PubMed Central

    Alam, Hasan B.

    2013-01-01

    This article gives an overview of the promotion process in an academic medical center. A description of different promotional tracks, tenure and endowed chairs, and the process of submitting an application is provided. Finally, some practical advice about developing skills and attributes that can help with academic growth and promotion is dispensed. PMID:24436683

  3. Measuring Theta_13 at Daya Bay

    SciTech Connect

    Lau, Kwong

    2014-03-14

    We measured the neutrino mixing angle, theta13, presumably related to the preponderance of matter over antimatter in our universe with high precision. We determined theta13 by measuring the disappearance of neutrinos from a group of six nuclear reactors. The target, located inside a mountain at about 2 km from the reactors, is 80 tons of liquid scintillator doped with trace amount of Gadolinium to increase its neutron detection efficiency. The neutrino flux is measured by the inverse beta-decay reaction where the final-state particles are detected by the liquid scintillator. The measured value of theta13, based on data collected over 3 years, is large, around 8 degrees, rendering the measurement of the parameter related to matter-antimatter asymmetry in future long baseline neutrino experiments easier.

  4. (No) time for control: Frontal theta dynamics reveal the cost of temporally guided conflict anticipation.

    PubMed

    van Driel, Joram; Swart, Jennifer C; Egner, Tobias; Ridderinkhof, K Richard; Cohen, Michael X

    2015-12-01

    During situations of response conflict, cognitive control is characterized by prefrontal theta-band (3- to 8-Hz) activity. It has been shown that cognitive control can be triggered proactively by contextual cues that predict conflict. Here, we investigated whether a pretrial preparation interval could serve as such a cue. This would show that the temporal contingencies embedded in the task can be used to anticipate upcoming conflict. To this end, we recorded electroencephalography (EEG) from 30 human subjects while they performed a version of a Simon task in which the duration of a fixation cross between trials predicted whether the next trial would contain response conflict. Both their behavior and EEG activity showed a consistent but unexpected pattern of results: The conflict effect (increased reaction times and decreased accuracy on conflict as compared to nonconflict trials) was stronger when conflict was cued, and this was associated with stronger conflict-related midfrontal theta activity and functional connectivity. Interestingly, intervals that predicted conflict did show a pretarget increase in midfrontal theta power. These findings suggest that temporally guided expectations of conflict do heighten conflict anticipation, but also lead to less efficiently applied reactive control. We further explored this post-hoc interpretation by means of three behavioral follow-up experiments, in which we used nontemporal cues, semantically informative cues, and neutral cues. Together, this body of results suggests that the counterintuitive cost of conflict cueing may not be uniquely related to the temporal domain, but may instead be related to the implicitness and validity of the cue. PMID:26111755

  5. Tobacco Smoking and the Resting Maternal Brain: A Preliminary Study of Frontal EEG

    PubMed Central

    Wilbanks, Haley E.; Von Mohr, Mariana; Potenza, Marc N.; Mayes, Linda C.; Rutherford, Helena J.V.

    2016-01-01

    Tobacco smoking has been attributed to a wide range of detrimental health consequences for both women and their children. In addition to its known physical health effects, smoking may also impact maternal neural responses and subsequent caregiving behavior. To begin investigating this issue, we employed electroencephalography (EEG) to examine resting neural oscillations of tobacco-smoking mothers (n = 35) and non-smoking mothers (n = 35). We examined seven EEG frequency bands recorded from frontal electrode sites (delta, theta, alpha, alpha1, alpha2, beta, and gamma). While no between-group differences were present in high-frequency bands (alpha2, beta, gamma), smokers showed greater spectral power in low-frequency bands (delta, theta, alpha, alpha1) compared to non-smokers. This increased power in low-frequency bands of tobacco-smoking mothers is consistent with a less aroused state and may be one mechanism through which smoking might affect the maternal brain and caregiving behavior. PMID:27354838

  6. Theta-burst Transcranial Magnetic Stimulation Alters the Functional Topography of the Cortical Motor Network

    PubMed Central

    NOH, Nor Azila; FUGGETTA, Giorgio; MANGANOTTI, Paolo

    2015-01-01

    Background: Transcranial magnetic stimulation (TMS) is a non-invasive tool that is able to modulate the electrical activity of the brain depending upon its protocol of stimulation. Theta burst stimulation (TBS) is a high-frequency TMS protocol that is able to induce prolonged plasticity changes in the brain. The induction of plasticity-like effects by TBS is useful in both experimental and therapeutic settings; however, the underlying neural mechanisms of this modulation remain unclear. The aim of this study was to investigate the effects of continuous TBS (cTBS) on the intrahemispheric and interhemispheric functional connectivity of the resting and active brain. Methods: A total of 26 healthy humans were randomly divided into two groups that received either real cTBS or sham (control) over the left primary motor cortex. Surface electroencephalogram (EEG) was used to quantify the changes of neural oscillations after cTBS at rest and after a choice reaction time test. The cTBS-induced EEG oscillations were computed using spectral analysis of event-related coherence (ERCoh) of theta (4–7.5 Hz), low alpha (8–9.5 Hz), high alpha (10–12.5 Hz), low beta (13–19.5 Hz), and high beta (20–30 Hz) brain rhythms. Results: We observed a global decrease in functional connectivity of the brain in the cTBS group when compared to sham in the low beta brain rhythm at rest and high beta brain rhythm during the active state. In particular, EEG spectral analysis revealed that high-frequency beta, a cortically generated brain rhythm, was the most sensitive band that was modulated by cTBS. Conclusion: Overall, our findings suggest that cTBS, a TMS protocol that mimics the mechanism of long-term depression of synaptic plasticity, modulates motor network oscillations primarily at the cortical level and might interfere with cortical information coding. PMID:27006636

  7. Alpha and beta EEG power reflects L-dopa acute administration in parkinsonian patients

    PubMed Central

    Melgari, Jean-Marc; Curcio, Giuseppe; Mastrolilli, Francesca; Salomone, Gaetano; Trotta, Laura; Tombini, Mario; di Biase, Lazzaro; Scrascia, Federica; Fini, Rita; Fabrizio, Emma; Rossini, Paolo Maria; Vernieri, Fabrizio

    2014-01-01

    Aim: To evaluate the effect of an acute L-dopa administration on eye-closed resting state electroencephalographic (EEG) activity of cognitively preserved Parkinsonian patients. Methods: We examined 24 right-handed patients diagnosed as uncomplicated probable Parkinson’s disease (PD). Each patient underwent Unified Parkinson’s Disease Rating Scale (UPDRS)-part-III evaluation before and 60 min after an oral load of L-dopa-methyl-ester/carbidopa 250/25 mg. Resting condition eyes-closed EEG data were recorded both pre- and post L-dopa load. Absolute EEG power values were calculated at each scalp derivation for Delta, Theta, Alpha and Beta frequency bands. UPDRS scores (both global and subscale scores) and EEG data (power values of different frequency bands for each scalp derivation) were submitted to a statistical analysis to compare Pre and Post L-Dopa conditions. Finally, a correlation analysis was carried out between EEG spectral content and UPDRS scores. Results: Considering EEG power spectral analysis, no statistically significant differences arose on Delta and Theta bands after L-dopa intake. Conversely, Alpha and Beta rhythms significantly increased on centro-parietal scalp derivations, as a function of L-dopa administration. Correlation analysis indicated a significant negative correlation between Beta power increase on centro-parietal areas and UPDRS subscores (Rigidity of arms and Bradykinesia). A minor significant negative correlation was also found between Alpha band increase and resting tremor. Conclusions: Assuming that a significant change in EEG power spectrum after L-dopa intake may be related to dopaminergic mechanisms, our findings are consistent with the hypothesis that dopaminergic defective networks are implicated in cortical oscillatory abnormalities at rest in non-demented PD patients. PMID:25452725

  8. Sources of abnormal EEG activity in the presence of brain lesions.

    PubMed

    Fernández-Bouzas, A; Harmony, T; Bosch, J; Aubert, E; Fernández, T; Valdés, P; Silva, J; Marosi, E; Martínez-López, M; Casián, G

    1999-04-01

    In routine clinical EEG, a common origin is assumed for delta and theta rhythms produced by brain lesions. In previous papers, we have provided some experimental support, based on High Resolution qEEG and dipole fitting in the frequency domain, for the hypothesis that delta and theta spectral power have independent origins related to lesion and edema respectively. This paper describes the results obtained with Frequency Domain VARETA (FD-VARETA) in a group of 13 patients with cortical space-occupying lesions, in order to: 1) Test the accuracy of FD-VARETA for the localization of brain lesions, and 2) To provide further support for the independent origin of delta and theta components. FD VARETA is a distributed inverse solution, constrained by the Montreal Neurological Institute probabilistic atlas that estimates the spectra of EEG sources. In all patients, logarithmic transformed source spectra were compared with age-matched normative values, defining the Z source spectrum. Maximum Z values were found in 10 patients within the delta band (1.56 to 3.12 Hz); the spatial extent of these sources in the atlas corresponded with the location of the tumors in the CT. In 2 patients with small metastases and large volumes of edema and in a patient showing only edema, maximum Z values were found between 4.29 and 5.12 Hz. The spatial extent of the sources at these frequencies was within the volume of the edema in the CT. These results provided strong support to the hypothesis that both delta and theta abnormal EEG activities are the counterparts of two different pathophysiological processes. PMID:10358783

  9. Distinguishing Acute Encephalopathy with Biphasic Seizures and Late Reduced Diffusion from Prolonged Febrile Seizures by Acute Phase EEG Spectrum Analysis

    PubMed Central

    Oguri, Masayoshi; Saito, Yoshiaki; Fukuda, Chisako; Kishi, Kazuko; Yokoyama, Atsushi; Lee, Sooyoung; Torisu, Hiroyuki; Toyoshima, Mitsuo; Sejima, Hitoshi; Kaji, Shunsaku; Hamano, Shin-ichiro; Okanishi, Toru; Tomita, Yutaka; Maegaki, Yoshihiro

    2016-01-01

    Background To differentiate the features of electroencephalography (EEG) after status epileptics in febrile children with final diagnosis of either febrile seizure (FS) or acute encephalopathy for an early diagnosis. Methods We retrospectively collected data from 68 children who had status epilepticus and for whom EEGs were recorded within 120 h. These included subjects with a final diagnosis of FS (n = 20), epileptic status (ES; n = 11), acute encephalopathy with biphasic seizures and late reduced diffusion (AESD; n = 18), mild encephalopathy with a reversible splenial lesion (MERS; n = 7), other febrile encephalopathies (n = 10), hypoxic-ischemic encephalopathy (n = 1), and intracranial bleeding (n = 1). Initially, all EEGs were visually assessed and graded, and correlation with outcome was explored. Representative EEG epochs were then selected for quantitative analyses. Furthermore, data from AESD (n = 7) and FS (n = 16) patients for whom EEG was recorded within 24 h were also compared. Results Although milder and most severe grades of EEG correlated with neurological outcome, the outcome of moderate EEG severity group was variable and was not predictable from usual inspection. Frequency band analysis revealed that solid delta power was not significantly different among the five groups (AESD, MERS, FS, ES and control), and that MERS group showed the highest theta band power. The ratios of delta/alpha and (delta + theta)/(alpha + beta) band powers were significantly higher in the AESD group than in other groups. The alpha and beta band powers in EEGs within 24 h from onset were significantly lower in the AESD group. The band powers and their ratios showed earlier improvement towards 24 h in FS than in AESD. Conclusion Sequential EEG recording up to 24 h from onset appeared to be helpful for distinction of AESD from FS before emergence of the second phase of AESD. PMID:27046946

  10. Multivariate genetic determinants of EEG oscillations in schizophrenia and psychotic bipolar disorder from the BSNIP study

    PubMed Central

    Narayanan, B; Soh, P; Calhoun, V D; Ruaño, G; Kocherla, M; Windemuth, A; Clementz, B A; Tamminga, C A; Sweeney, J A; Keshavan, M S; Pearlson, G D

    2015-01-01

    Schizophrenia (SZ) and psychotic bipolar disorder (PBP) are disabling psychiatric illnesses with complex and unclear etiologies. Electroencephalogram (EEG) oscillatory abnormalities in SZ and PBP probands are heritable and expressed in their relatives, but the neurobiology and genetic factors mediating these abnormalities in the psychosis dimension of either disorder are less explored. We examined the polygenic architecture of eyes-open resting state EEG frequency activity (intrinsic frequency) from 64 channels in 105 SZ, 145 PBP probands and 56 healthy controls (HCs) from the multisite BSNIP (Bipolar-Schizophrenia Network on Intermediate Phenotypes) study. One million single-nucleotide polymorphisms (SNPs) were derived from DNA. We assessed eight data-driven EEG frequency activity derived from group-independent component analysis (ICA) in conjunction with a reduced subset of 10 422 SNPs through novel multivariate association using parallel ICA (para-ICA). Genes contributing to the association were examined collectively using pathway analysis tools. Para-ICA extracted five frequency and nine SNP components, of which theta and delta activities were significantly correlated with two different gene components, comprising genes participating extensively in brain development, neurogenesis and synaptogenesis. Delta and theta abnormality was present in both SZ and PBP, while theta differed between the two disorders. Theta abnormalities were also mediated by gene clusters involved in glutamic acid pathways, cadherin and synaptic contact-based cell adhesion processes. Our data suggest plausible multifactorial genetic networks, including novel and several previously identified (DISC1) candidate risk genes, mediating low frequency delta and theta abnormalities in psychoses. The gene clusters were enriched for biological properties affecting neural circuitry and involved in brain function and/or development. PMID:26101851

  11. Multivariate genetic determinants of EEG oscillations in schizophrenia and psychotic bipolar disorder from the BSNIP study.

    PubMed

    Narayanan, B; Soh, P; Calhoun, V D; Ruaño, G; Kocherla, M; Windemuth, A; Clementz, B A; Tamminga, C A; Sweeney, J A; Keshavan, M S; Pearlson, G D

    2015-01-01

    Schizophrenia (SZ) and psychotic bipolar disorder (PBP) are disabling psychiatric illnesses with complex and unclear etiologies. Electroencephalogram (EEG) oscillatory abnormalities in SZ and PBP probands are heritable and expressed in their relatives, but the neurobiology and genetic factors mediating these abnormalities in the psychosis dimension of either disorder are less explored. We examined the polygenic architecture of eyes-open resting state EEG frequency activity (intrinsic frequency) from 64 channels in 105 SZ, 145 PBP probands and 56 healthy controls (HCs) from the multisite BSNIP (Bipolar-Schizophrenia Network on Intermediate Phenotypes) study. One million single-nucleotide polymorphisms (SNPs) were derived from DNA. We assessed eight data-driven EEG frequency activity derived from group-independent component analysis (ICA) in conjunction with a reduced subset of 10,422 SNPs through novel multivariate association using parallel ICA (para-ICA). Genes contributing to the association were examined collectively using pathway analysis tools. Para-ICA extracted five frequency and nine SNP components, of which theta and delta activities were significantly correlated with two different gene components, comprising genes participating extensively in brain development, neurogenesis and synaptogenesis. Delta and theta abnormality was present in both SZ and PBP, while theta differed between the two disorders. Theta abnormalities were also mediated by gene clusters involved in glutamic acid pathways, cadherin and synaptic contact-based cell adhesion processes. Our data suggest plausible multifactorial genetic networks, including novel and several previously identified (DISC1) candidate risk genes, mediating low frequency delta and theta abnormalities in psychoses. The gene clusters were enriched for biological properties affecting neural circuitry and involved in brain function and/or development. PMID:26101851

  12. Event-related theta activity reflects memory processes in pronoun resolution.

    PubMed

    Heine, Angela; Tamm, Sascha; Hofmann, Markus; Bösel, Rainer M; Jacobs, Arthur M

    2006-12-18

    A recent eye-tracking study reported a reverse effect of a noun's lexical frequency in the context of the resolution of coreferring pronouns. Investigating the neurophysiological basis of this effect, the present electroencephalographic study found differential patterns in theta activation when participants read pronouns referring to nouns of different frequency classes. Evoked theta power after pronoun onset increased with the frequency of the critical noun. This finding suggests differential load on memory resources depending on the nouns' frequency. Elevated attention promoting memory encoding for low-frequency words is assumed to facilitate the resolution of pronouns. Location of sources of differential theta activity in the parahippocampal region is accounted for by its role in an association network that mediates memory processes. PMID:17179854

  13. Human brain networks in physiological aging: a graph theoretical analysis of cortical connectivity from EEG data.

    PubMed

    Vecchio, Fabrizio; Miraglia, Francesca; Bramanti, Placido; Rossini, Paolo Maria

    2014-01-01

    Modern analysis of electroencephalographic (EEG) rhythms provides information on dynamic brain connectivity. To test the hypothesis that aging processes modulate the brain connectivity network, EEG recording was conducted on 113 healthy volunteers. They were divided into three groups in accordance with their ages: 36 Young (15-45 years), 46 Adult (50-70 years), and 31 Elderly (>70 years). To evaluate the stability of the investigated parameters, a subgroup of 10 subjects underwent a second EEG recording two weeks later. Graph theory functions were applied to the undirected and weighted networks obtained by the lagged linear coherence evaluated by eLORETA on cortical sources. EEG frequency bands of interest were: delta (2-4 Hz), theta (4-8 Hz), alpha1 (8-10.5 Hz), alpha2 (10.5-13 Hz), beta1 (13-20 Hz), beta2 (20-30 Hz), and gamma (30-40 Hz). The spectral connectivity analysis of cortical sources showed that the normalized Characteristic Path Length (λ) presented the pattern Young > Adult>Elderly in the higher alpha band. Elderly also showed a greater increase in delta and theta bands than Young. The correlation between age and λ showed that higher ages corresponded to higher λ in delta and theta and lower in the alpha2 band; this pattern reflects the age-related modulation of higher (alpha) and decreased (delta) connectivity. The Normalized Clustering coefficient (γ) and small-world network modeling (σ) showed non-significant age-modulation. Evidence from the present study suggests that graph theory can aid in the analysis of connectivity patterns estimated from EEG and can facilitate the study of the physiological and pathological brain aging features of functional connectivity networks. PMID:24820018

  14. Decomposing EEG data into space-time-frequency components using Parallel Factor Analysis.

    PubMed

    Miwakeichi, Fumikazu; Martínez-Montes, Eduardo; Valdés-Sosa, Pedro A; Nishiyama, Nobuaki; Mizuhara, Hiroaki; Yamaguchi, Yoko

    2004-07-01

    Finding the means to efficiently summarize electroencephalographic data has been a long-standing problem in electrophysiology. A popular approach is identification of component modes on the basis of the time-varying spectrum of multichannel EEG recordings--in other words, a space/frequency/time atomic decomposition of the time-varying EEG spectrum. Previous work has been limited to only two of these dimensions. Principal Component Analysis (PCA) and Independent Component Analysis (ICA) have been used to create space/time decompositions; suffering an inherent lack of uniqueness that is overcome only by imposing constraints of orthogonality or independence of atoms. Conventional frequency/time decompositions ignore the spatial aspects of the EEG. Framing of the data being as a three-way array indexed by channel, frequency, and time allows the application of a unique decomposition that is known as Parallel Factor Analysis (PARAFAC). Each atom is the tri-linear decomposition into a spatial, spectral, and temporal signature. We applied this decomposition to the EEG recordings of five subjects during the resting state and during mental arithmetic. Common to all subjects were two atoms with spectral signatures whose peaks were in the theta and alpha range. These signatures were modulated by physiological state, increasing during the resting stage for alpha and during mental arithmetic for theta. Furthermore, we describe a new method (Source Spectra Imaging or SSI) to estimate the location of electric current sources from the EEG spectrum. The topography of the theta atom is frontal and the maximum of the corresponding SSI solution is in the anterior frontal cortex. The topography of the alpha atom is occipital with maximum of the SSI solution in the visual cortex. We show that the proposed decomposition can be used to search for activity with a given spectral and topographic profile in new recordings, and that the method may be useful for artifact recognition and removal

  15. Classification of Single Normal and Alzheimer's Disease Individuals from Cortical Sources of Resting State EEG Rhythms

    PubMed Central

    Babiloni, Claudio; Triggiani, Antonio I.; Lizio, Roberta; Cordone, Susanna; Tattoli, Giacomo; Bevilacqua, Vitoantonio; Soricelli, Andrea; Ferri, Raffaele; Nobili, Flavio; Gesualdo, Loreto; Millán-Calenti, José C.; Buján, Ana; Tortelli, Rosanna; Cardinali, Valentina; Barulli, Maria Rosaria; Giannini, Antonio; Spagnolo, Pantaleo; Armenise, Silvia; Buenza, Grazia; Scianatico, Gaetano; Logroscino, Giancarlo; Frisoni, Giovanni B.; del Percio, Claudio

    2016-01-01

    Previous studies have shown abnormal power and functional connectivity of resting state electroencephalographic (EEG) rhythms in groups of Alzheimer's disease (AD) compared to healthy elderly (Nold) subjects. Here we tested the best classification rate of 120 AD patients and 100 matched Nold subjects using EEG markers based on cortical sources of power and functional connectivity of these rhythms. EEG data were recorded during resting state eyes-closed condition. Exact low-resolution brain electromagnetic tomography (eLORETA) estimated the power and functional connectivity of cortical sources in frontal, central, parietal, occipital, temporal, and limbic regions. Delta (2–4 Hz), theta (4–8 Hz), alpha 1 (8–10.5 Hz), alpha 2 (10.5–13 Hz), beta 1 (13–20 Hz), beta 2 (20–30 Hz), and gamma (30–40 Hz) were the frequency bands of interest. The classification rates of interest were those with an area under the receiver operating characteristic curve (AUROC) higher than 0.7 as a threshold for a moderate classification rate (i.e., 70%). Results showed that the following EEG markers overcame this threshold: (i) central, parietal, occipital, temporal, and limbic delta/alpha 1 current density; (ii) central, parietal, occipital temporal, and limbic delta/alpha 2 current density; (iii) frontal theta/alpha 1 current density; (iv) occipital delta/alpha 1 inter-hemispherical connectivity; (v) occipital-temporal theta/alpha 1 right and left intra-hemispherical connectivity; and (vi) parietal-limbic alpha 1 right intra-hemispherical connectivity. Occipital delta/alpha 1 current density showed the best classification rate (sensitivity of 73.3%, specificity of 78%, accuracy of 75.5%, and AUROC of 82%). These results suggest that EEG source markers can classify Nold and AD individuals with a moderate classification rate higher than 80%. PMID:26941594

  16. Classification of Single Normal and Alzheimer's Disease Individuals from Cortical Sources of Resting State EEG Rhythms.

    PubMed

    Babiloni, Claudio; Triggiani, Antonio I; Lizio, Roberta; Cordone, Susanna; Tattoli, Giacomo; Bevilacqua, Vitoantonio; Soricelli, Andrea; Ferri, Raffaele; Nobili, Flavio; Gesualdo, Loreto; Millán-Calenti, José C; Buján, Ana; Tortelli, Rosanna; Cardinali, Valentina; Barulli, Maria Rosaria; Giannini, Antonio; Spagnolo, Pantaleo; Armenise, Silvia; Buenza, Grazia; Scianatico, Gaetano; Logroscino, Giancarlo; Frisoni, Giovanni B; Del Percio, Claudio

    2016-01-01

    Previous studies have shown abnormal power and functional connectivity of resting state electroencephalographic (EEG) rhythms in groups of Alzheimer's disease (AD) compared to healthy elderly (Nold) subjects. Here we tested the best classification rate of 120 AD patients and 100 matched Nold subjects using EEG markers based on cortical sources of power and functional connectivity of these rhythms. EEG data were recorded during resting state eyes-closed condition. Exact low-resolution brain electromagnetic tomography (eLORETA) estimated the power and functional connectivity of cortical sources in frontal, central, parietal, occipital, temporal, and limbic regions. Delta (2-4 Hz), theta (4-8 Hz), alpha 1 (8-10.5 Hz), alpha 2 (10.5-13 Hz), beta 1 (13-20 Hz), beta 2 (20-30 Hz), and gamma (30-40 Hz) were the frequency bands of interest. The classification rates of interest were those with an area under the receiver operating characteristic curve (AUROC) higher than 0.7 as a threshold for a moderate classification rate (i.e., 70%). Results showed that the following EEG markers overcame this threshold: (i) central, parietal, occipital, temporal, and limbic delta/alpha 1 current density; (ii) central, parietal, occipital temporal, and limbic delta/alpha 2 current density; (iii) frontal theta/alpha 1 current density; (iv) occipital delta/alpha 1 inter-hemispherical connectivity; (v) occipital-temporal theta/alpha 1 right and left intra-hemispherical connectivity; and (vi) parietal-limbic alpha 1 right intra-hemispherical connectivity. Occipital delta/alpha 1 current density showed the best classification rate (sensitivity of 73.3%, specificity of 78%, accuracy of 75.5%, and AUROC of 82%). These results suggest that EEG source markers can classify Nold and AD individuals with a moderate classification rate higher than 80%. PMID:26941594

  17. Oseltamivir reduces hippocampal abnormal EEG activities after a virus infection (influenza) in isoflurane-anesthetized rats

    PubMed Central

    Cissé, Youssouf; Inoue, Isao; Kido, Hiroshi

    2012-01-01

    Background Oseltamivir phosphate (OP, Tamiflu®) is a widely used drug in the treatment of influenza with fever. However, case reports have associated OP intake with sudden abnormal behaviors. In rats infected by the influenza A virus (IAV), the electroencephalogram (EEG) displayed abnormal high-voltage amplitudes with spikes and theta oscillations at a core temperature of 39.9°C to 41°C. Until now, there has been no information describing the effect of OP on intact brain hippocampal activity of IAV-infected animals during hyperthermia. Objective The aim of the present study was to examine the effect of OP on abnormal EEG activities in the hippocampus using the rat model of influenza-associated encephalopathy. Methods Male Wistar rats aged 3 to 4 weeks were used for the study. Influenza A/WSN/33 strain (1 × 105 plaque forming unit in PBS, 60 µL) was applied intranasally to the rats. To characterize OP effects on the IAV-infected rats, EEG activity was studied more particularly in isoflurane-anesthetized IAV-infected rats during hyperthermia. Results We found that the hippocampal EEG of the OP-administered (10 mg/kg) IAV-infected rats showed significant reduction of the high-voltage amplitudes and spikes, but the theta oscillations, which had been observed only at >40°C in OP non-administered rats, appeared at 38°C core temperature. Atropine (30 mg/kg) blocked the theta oscillations. Conclusion Our data suggest that OP efficiently reduces the abnormal EEG activities after IAV infection during hyperthermia. However, OP administration may stimulate ACh release in rats at normal core temperature.

  18. Aesthetic preference recognition of 3D shapes using EEG.

    PubMed

    Chew, Lin Hou; Teo, Jason; Mountstephens, James

    2016-04-01

    Recognition and identification of aesthetic preference is indispensable in industrial design. Humans tend to pursue products with aesthetic values and make buying decisions based on their aesthetic preferences. The existence of neuromarketing is to understand consumer responses toward marketing stimuli by using imaging techniques and recognition of physiological parameters. Numerous studies have been done to understand the relationship between human, art and aesthetics. In this paper, we present a novel preference-based measurement of user aesthetics using electroencephalogram (EEG) signals for virtual 3D shapes with motion. The 3D shapes are designed to appear like bracelets, which is generated by using the Gielis superformula. EEG signals were collected by using a medical grade device, the B-Alert X10 from advance brain monitoring, with a sampling frequency of 256 Hz and resolution of 16 bits. The signals obtained when viewing 3D bracelet shapes were decomposed into alpha, beta, theta, gamma and delta rhythm by using time-frequency analysis, then classified into two classes, namely like and dislike by using support vector machines and K-nearest neighbors (KNN) classifiers respectively. Classification accuracy of up to 80 % was obtained by using KNN with the alpha, theta and delta rhythms as the features extracted from frontal channels, Fz, F3 and F4 to classify two classes, like and dislike. PMID:27066153

  19. EEG synchronization and migraine

    NASA Astrophysics Data System (ADS)

    Stramaglia, Sebastiano; Angelini, Leonardo; Pellicoro, Mario; Hu, Kun; Ivanov, Plamen Ch.

    2004-03-01

    We investigate phase synchronization in EEG recordings from migraine patients. We use the analytic signal technique, based on the Hilbert transform, and find that migraine brains are characterized by enhanced alpha band phase synchronization in presence of visual stimuli. Our findings show that migraine patients have an overactive regulatory mechanism that renders them more sensitive to external stimuli.

  20. [Computerized EEG and personality].

    PubMed

    Ramírez Pérez, A; Martínez López-Coterilla, M; Fajardo López, A; Lardelli Claret, A

    1989-01-01

    The ordinary EEG, on only showing qualitative malfunction of abnormal graphoelements in the tracings, proves itself insufficient to go into the analysis of psychological and psycho-pathological problems. Since computerised studies of EEG permit quantitative comparisons, we tried to apply them in correlation with the characteristics of the personality classified also with quantitative criteria, such as those offered in the personality inventory 16 PF; from which have been chosen the so-called factors of the second order, and the subjectivity-objectivity factors. The test was carried out on 100 voluntary subjects from Almeria (Spain), all with High School grades, between 18 and 40 years of age, of both sexes, all right-handed, without neuro-psychiatric history, and with normal ordinary EEGs. From the statistical analysis of the results one could deduce that there are significant specific relationships from the computerised EEG, with those secondary polar values of 16 PF: high and low anxiety, extroversion-introversion. Subjects with low anxiety presented a significant increase of the alpha band opposed to the subjects with high anxiety. There is a significant differences in power of the frontal areas between extrovert and introvert subjects. The extroverted subjects have a greater power of the right side and the introverted subjects a greater power of the left. PMID:2698596

  1. EEG data compression techniques.

    PubMed

    Antoniol, G; Tonella, P

    1997-02-01

    In this paper, electroencephalograph (EEG) and Holter EEG data compression techniques which allow perfect reconstruction of the recorded waveform from the compressed one are presented and discussed. Data compression permits one to achieve significant reduction in the space required to store signals and in transmission time. The Huffman coding technique in conjunction with derivative computation reaches high compression ratios (on average 49% on Holter and 58% on EEG signals) with low computational complexity. By exploiting this result a simple and fast encoder/decoder scheme capable of real-time performance on a PC was implemented. This simple technique is compared with other predictive transformations, vector quantization, discrete cosine transform (DCT), and repetition count compression methods. Finally, it is shown that the adoption of a collapsed Huffman tree for the encoding/decoding operations allows one to choose the maximum codeword length without significantly affecting the compression ratio. Therefore, low cost commercial microcontrollers and storage devices can be effectively used to store long Holter EEG's in a compressed format. PMID:9214790

  2. Flexible electroencephalogram (EEG) headband

    NASA Technical Reports Server (NTRS)

    Raggio, L. J.

    1973-01-01

    Headband incorporates sensors which are embedded in sponges and are exposed only on surface that touches skin. Electrode sponge system is continually fed electrolyte through forced feed vacuum system. Headband may be used for EEG testing in hospitals, clinical laboratories, rest homes, and law enforcement agencies.

  3. Firing relations of medial entorhinal neurons to the hippocampal theta rhythm in urethane anesthetized and walking rats.

    PubMed

    Stewart, M; Quirk, G J; Barry, M; Fox, S E

    1992-01-01

    The firing of neurons from layers II and III of medial entorhinal cortex (MEC) was examined in relation to the hippocampal theta rhythm in urethane anesthetized and walking rats. 1) MEC neurons showed a significant phase relation to the hippocampal theta rhythm in both walking and urethane anesthetized rats, suggesting that this region contributes to the generation of both atropine-resistant and atropine-sensitive theta rhythm components. 2) The proportion of phase-locked cells was three times greater in walking rats (22/23 cells) as compared to anesthetized rats (8/23 cells), indicating that MEC cells made a greater contribution during walking theta rhythm. This difference was also manifest in the greater mean vector length for the group of phase-locked MEC cells during walking: 0.39 +/- 0.13 versus 0.21 +/- 0.08. Firing rate differences between walking and urethane conditions were not significant. 3) In walking rats, MEC cells fired on the positive peak of the dentate theta rhythm (group mean phase = 5 degrees; 0 degrees = positive peak at the hippocampal fissure). This is close to the reported phases for dentate granule and hippocampal pyramidal cells. The distribution of MEC cell phases in urethane anesthetized rats was broader (group mean phase = 90 degrees), consistent with the phase data reported for hippocampal projection cells. These findings suggest that medial entorhinal neurons are the principal determinant of theta-related firing of hippocampal neurons and that their robust rhythmicity in walking as compared to urethane anesthesia accounts for EEG differences across the two conditions. PMID:1521610

  4. Frontal-posterior theta oscillations reflect memory retrieval during sentence comprehension.

    PubMed

    Meyer, Lars; Grigutsch, Maren; Schmuck, Noura; Gaston, Phoebe; Friederici, Angela D

    2015-10-01

    Successful working-memory retrieval requires that items be retained as distinct units. At the neural level, it has been shown that theta-band oscillatory power increases with the number of to-be-distinguished items during working-memory retrieval. Here we hypothesized that during sentence comprehension, verbal-working-memory retrieval demands lead to increased theta power over frontal cortex, supposedly supporting the distinction amongst stored items during verbal-working-memory retrieval. Also, synchronicity may increase between the frontal cortex and the posterior cortex, with the latter supposedly supporting item retention. We operationalized retrieval by using pronouns, which refer to and trigger the retrieval of antecedent nouns from a preceding sentence part. Retrieval demand was systematically varied by changing the pronoun antecedent: Either, it was non-embedded in the preceding main clause, and thus easy-to-retrieve across a single clause boundary, or embedded in the preceding subordinate clause, and thus hard-to-retrieve across a double clause boundary. We combined electroencephalography (EEG), scalp-level time-frequency analysis, source localization, and source-level coherence analysis, observing a frontal-midline and broad left-hemispheric theta-power increase for embedded-antecedent compared to non-embedded-antecedent retrieval. Sources were localized to left-frontal, left-parietal, and bilateral-inferior-temporal cortices. Coherence analyses suggested synchronicity between left-frontal and left-parietal and between left-frontal and right-inferior-temporal cortices. Activity of an array of left-frontal, left-parietal, and bilateral-inferior-temporal cortices may thus assist retrieval during sentence comprehension, potentially indexing the orchestration of item distinction, verbal working memory, and long-term memory. Our results extend prior findings by mapping prior knowledge on the functional role of theta oscillations onto processes genuine to human

  5. Analysis of EEG activity in response to binaural beats with different frequencies.

    PubMed

    Gao, Xiang; Cao, Hongbao; Ming, Dong; Qi, Hongzhi; Wang, Xuemin; Wang, Xiaolu; Chen, Runge; Zhou, Peng

    2014-12-01

    When two coherent sounds with nearly similar frequencies are presented to each ear respectively with stereo headphones, the brain integrates the two signals and produces a sensation of a third sound called binaural beat (BB). Although earlier studies showed that BB could influence behavior and cognition, common agreement on the mechanism of BB has not been reached yet. In this work, we employed Relative Power (RP), Phase Locking Value (PLV) and Cross-Mutual Information (CMI) to track EEG changes during BB stimulations. EEG signals were acquired from 13 healthy subjects. Five-minute BBs with four different frequencies were tested: delta band (1 Hz), theta band (5 Hz), alpha band (10 Hz) and beta band (20 Hz). We observed RP increase in theta and alpha bands and decrease in beta band during delta and alpha BB stimulations. RP decreased in beta band during theta BB, while RP decreased in theta band during beta BB. However, no clear brainwave entrainment effect was identified. Connectivity changes were detected following the variation of RP during BB stimulations. Our observation supports the hypothesis that BBs could affect functional brain connectivity, suggesting that the mechanism of BB-brain interaction is worth further study. PMID:25448376

  6. Analysis of matrix cracking and local delamination in (0/theta/-theta)s graphite epoxy laminates under tensile load

    NASA Technical Reports Server (NTRS)

    Salpekar, S. A.; O'Brien, T. K.

    1993-01-01

    Three-dimensional element analyses of (0/theta/-theta)s graphite epoxy laminates, where theta = 15, 20, 25, 30, and 45 deg, subjected to axial tensile load, were performed. The interlaminar stresses in the theta/-theta interface were calculated with and without a matrix crack in the central -theta plies. The interlaminar normal stress changes from a small compressive stress when no matrix crack is present to a high tensile stress at the intersection of the matrix crack and the free edge. The analysis of local delamination from the -theta matrix crack indicates a high strain energy release rate and a localized Mode I component near the free edge, within one-ply distance from the matrix crack. To examine the stress state causing the matrix cracking, the maximum principal normal stress in a plane perpendicular to the fiber direction in the -theta ply was calculated in an uncracked laminate. The corresponding shear stress parallel to the fiber was also calculated. The principal normal stress at the laminate edge increased through the ply thickness and reached a very high tensile value at the theta/-theta interface indicating that the crack in the -theta ply may initiate at the theta/-theta interface.

  7. EEG and Eye Tracking Demonstrate Vigilance Enhancement with Challenge Integration

    PubMed Central

    Bodala, Indu P.; Li, Junhua; Thakor, Nitish V.; Al-Nashash, Hasan

    2016-01-01

    Maintaining vigilance is possibly the first requirement for surveillance tasks where personnel are faced with monotonous yet intensive monitoring tasks. Decrement in vigilance in such situations could result in dangerous consequences such as accidents, loss of life and system failure. In this paper, we investigate the possibility to enhance vigilance or sustained attention using “challenge integration,” a strategy that integrates a primary task with challenging stimuli. A primary surveillance task (identifying an intruder in a simulated factory environment) and a challenge stimulus (periods of rain obscuring the surveillance scene) were employed to test the changes in vigilance levels. The effect of integrating challenging events (resulting from artificially simulated rain) into the task were compared to the initial monotonous phase. EEG and eye tracking data is collected and analyzed for n = 12 subjects. Frontal midline theta power and frontal theta to parietal alpha power ratio which are used as measures of engagement and attention allocation show an increase due to challenge integration (p < 0.05 in each case). Relative delta band power of EEG also shows statistically significant suppression on the frontoparietal and occipital cortices due to challenge integration (p < 0.05). Saccade amplitude, saccade velocity and blink rate obtained from eye tracking data exhibit statistically significant changes during the challenge phase of the experiment (p < 0.05 in each case). From the correlation analysis between the statistically significant measures of eye tracking and EEG, we infer that saccade amplitude and saccade velocity decrease with vigilance decrement along with frontal midline theta and frontal theta to parietal alpha ratio. Conversely, blink rate and relative delta power increase with vigilance decrement. However, these measures exhibit a reverse trend when challenge stimulus appears in the task suggesting vigilance enhancement. Moreover, the mean

  8. EEG and Eye Tracking Demonstrate Vigilance Enhancement with Challenge Integration.

    PubMed

    Bodala, Indu P; Li, Junhua; Thakor, Nitish V; Al-Nashash, Hasan

    2016-01-01

    Maintaining vigilance is possibly the first requirement for surveillance tasks where personnel are faced with monotonous yet intensive monitoring tasks. Decrement in vigilance in such situations could result in dangerous consequences such as accidents, loss of life and system failure. In this paper, we investigate the possibility to enhance vigilance or sustained attention using "challenge integration," a strategy that integrates a primary task with challenging stimuli. A primary surveillance task (identifying an intruder in a simulated factory environment) and a challenge stimulus (periods of rain obscuring the surveillance scene) were employed to test the changes in vigilance levels. The effect of integrating challenging events (resulting from artificially simulated rain) into the task were compared to the initial monotonous phase. EEG and eye tracking data is collected and analyzed for n = 12 subjects. Frontal midline theta power and frontal theta to parietal alpha power ratio which are used as measures of engagement and attention allocation show an increase due to challenge integration (p < 0.05 in each case). Relative delta band power of EEG also shows statistically significant suppression on the frontoparietal and occipital cortices due to challenge integration (p < 0.05). Saccade amplitude, saccade velocity and blink rate obtained from eye tracking data exhibit statistically significant changes during the challenge phase of the experiment (p < 0.05 in each case). From the correlation analysis between the statistically significant measures of eye tracking and EEG, we infer that saccade amplitude and saccade velocity decrease with vigilance decrement along with frontal midline theta and frontal theta to parietal alpha ratio. Conversely, blink rate and relative delta power increase with vigilance decrement. However, these measures exhibit a reverse trend when challenge stimulus appears in the task suggesting vigilance enhancement. Moreover, the mean reaction

  9. Hippocampal theta, gamma, and theta-gamma coupling: effects of aging, environmental change, and cholinergic activation

    PubMed Central

    Jacobson, Tara K.; Howe, Matthew D.; Schmidt, Brandy; Hinman, James R.; Escabí, Monty A.

    2013-01-01

    Hippocampal theta and gamma oscillations coordinate the timing of multiple inputs to hippocampal neurons and have been linked to information processing and the dynamics of encoding and retrieval. One major influence on hippocampal rhythmicity is from cholinergic afferents. In both humans and rodents, aging is linked to impairments in hippocampus-dependent function along with degradation of cholinergic function. Cholinomimetics can reverse some age-related memory impairments and modulate oscillations in the hippocampus. Therefore, one would expect corresponding changes in these oscillations and possible rescue with the cholinomimetic physostigmine. Hippocampal activity was recorded while animals explored a familiar or a novel maze configuration. Reexposure to a familiar situation resulted in minimal aging effects or changes in theta or gamma oscillations. In contrast, exploration of a novel maze configuration increased theta power; this was greater in adult than old animals, although the deficit was reversed with physostigmine. In contrast to the theta results, the effects of novelty, age, and/or physostigmine on gamma were relatively weak. Unrelated to the behavioral situation were an age-related decrease in the degree of theta-gamma coupling and the fact that physostigmine lowered the frequency of theta in both adult and old animals. The results indicate that age-related changes in gamma and theta modulation of gamma, while reflecting aging changes in hippocampal circuitry, seem less related to aging changes in information processing. In contrast, the data support a role for theta and the cholinergic system in encoding and that hippocampal aging is related to impaired encoding of new information. PMID:23303862

  10. Slowing of EEG Background Activity in Parkinson’s and Alzheimer’s Disease with Early Cognitive Dysfunction

    PubMed Central

    Benz, Nina; Hatz, Florian; Bousleiman, Habib; Ehrensperger, Michael M.; Gschwandtner, Ute; Hardmeier, Martin; Ruegg, Stephan; Schindler, Christian; Zimmermann, Ronan; Monsch, Andreas Urs; Fuhr, Peter

    2014-01-01

    Background: Slowing of the electroencephalogram (EEG) is frequent in Parkinson’s (PD) and Alzheimer’s disease (AD) and correlates with cognitive decline. As overlap pathology plays a role in the pathogenesis of dementia, it is likely that demented patients in PD show similar physiological alterations as in AD. Objective: To analyze distinctive quantitative EEG characteristics in early cognitive dysfunction in PD and AD. Methods: Forty patients (20 PD- and 20 AD patients with early cognitive impairment) and 20 normal controls (NC) were matched for gender, age, and education. Resting state EEG was recorded from 256 electrodes. Relative power spectra, median frequency (4–14 Hz), and neuropsychological outcome were compared between groups. Results: Relative theta power in left temporal region and median frequency separated the three groups significantly (p = 0.002 and p < 0.001). Relative theta power was increased and median frequency reduced in patients with both diseases compared to NC. Median frequency was higher in AD than in PD and classified groups significantly (p = 0.02). Conclusion: Increase of theta power in the left temporal region and a reduction of median frequency were associated with presence of AD or PD. PD patients are characterized by a pronounced slowing as compared to AD patients. Therefore, in both disorders EEG slowing might be a useful biomarker for beginning cognitive decline. PMID:25477817

  11. Human Hippocampal Theta Oscillations during Movement without Visual Cues.

    PubMed

    Qasim, Salman E; Jacobs, Joshua

    2016-03-16

    The hippocampus exhibits theta oscillations when animals navigate. Vass et al. (2016) discovered that theta oscillations are also present when humans are moved through a virtual environment without sensory feedback, indicating that theta oscillations have a general role in spatial cognition beyond sensorimotor processing. PMID:26985718

  12. [Slow alpha in the EEG power spectrum as an indicator for conceptual arousal].

    PubMed

    Bösel, R

    1992-01-01

    Based on previous findings (Bösel et al., 1990) it was assumed that in concept learning tasks generating on hypotheses on a concept which has to be developed is accompanied by increases of the Alpha 1 power (7.5-10 Hz) in the spontaneous EEG activity. In this study 16 subjects performed five problem solving tasks with similar processing requirements. EEG data were analyzed by means of post hoc comparisons of subjects differing in performance quality. Additionally, four control tasks were employed in which, based on previous studies, variations in the Theta frequency range were expected. An effect in the Alpha 1 frequency band was observed in tasks requiring reconstructive recall or testing the usefulness of an mathematical algorithm. The creation of a rank order or mental map is accompanied by power increases in the lower portions of the Alpha 1 frequency band (7.5-8.5 Hz). Moreover a high amount of controlled variance (eta2 up to 34%) was obtained for this effect. Increases in EEG Theta power, which presumably indicate subjects' component analysis, were found before the subjects recognized parts of geometric figures or before relevant features in the "buddhist monk problem" were discriminated. The dynamics of EEG power over time is in examples of frequency/time plots in a figure, illustrated. PMID:1441650

  13. Trait anxiety impact on posterior activation asymmetries at rest and during evoked negative emotions: EEG investigation.

    PubMed

    Aftanas, Ljubomir I; Pavlov, Sergey V

    2005-01-01

    The main objective of the present investigation was to examine how high trait anxiety would influence cortical EEG asymmetries under non-emotional conditions and while experiencing negative emotions. The 62-channel EEG was recorded in control (n=21) and high anxiety (HA, n=18) non-patient individuals. Results showed that in HA subjects, the lowest level of arousal (eyes closed) was associated with stronger right-sided parieto-temporal theta-1 (4-6 Hz) and beta-1 (12-18 Hz) activity, whereas increased non-emotional arousal (eyes open, viewing neutral movie clip) was marked by persisting favored right hemisphere beta-1 activity. In turn, viewing aversive movie clip by the HA group led to significant lateralized decrease of the right parieto-temporal beta-1 power, which was initially higher in the emotionally neutral conditions. The EEG data suggests that asymmetrical parieto-temporal theta-1 and beta-1 EEG activity might be better interpreted in terms of Gray's BAS and BIS theory. PMID:15598519

  14. Discovering frequency sensitive thalamic nuclei from EEG microstate informed resting state fMRI.

    PubMed

    Schwab, Simon; Koenig, Thomas; Morishima, Yosuke; Dierks, Thomas; Federspiel, Andrea; Jann, Kay

    2015-09-01

    Microstates (MS), the fingerprints of the momentarily and time-varying states of the brain derived from electroencephalography (EEG), are associated with the resting state networks (RSNs). However, using MS fluctuations along different EEG frequency bands to model the functional MRI (fMRI) signal has not been investigated so far, or elucidated the role of the thalamus as a fundamental gateway and a putative key structure in cortical functional networks. Therefore, in the current study, we used MS predictors in standard frequency bands to predict blood oxygenation level dependent (BOLD) signal fluctuations. We discovered that multivariate modeling of BOLD-fMRI using six EEG-MS classes in eight frequency bands strongly correlated with thalamic areas and large-scale cortical networks. Thalamic nuclei exhibited distinct patterns of correlations for individual MS that were associated with specific EEG frequency bands. Anterior and ventral thalamic nuclei were sensitive to the beta frequency band, medial nuclei were sensitive to both alpha and beta frequency bands, and posterior nuclei such as the pulvinar were sensitive to delta and theta frequency bands. These results demonstrate that EEG-MS informed fMRI can elucidate thalamic activity not directly observable by EEG, which may be highly relevant to understand the rapid formation of thalamocortical networks. PMID:26052082

  15. Can arousing feedback rectify lapses in driving? Prediction from EEG power spectra

    NASA Astrophysics Data System (ADS)

    Lin, Chin-Teng; Huang, Kuan-Chih; Chuang, Chun-Hsiang; Ko, Li-Wei; Jung, Tzyy-Ping

    2013-10-01

    Objective. This study explores the neurophysiological changes, measured using an electroencephalogram (EEG), in response to an arousing warning signal delivered to drowsy drivers, and predicts the efficacy of the feedback based on changes in the EEG. Approach. Eleven healthy subjects participated in sustained-attention driving experiments. The driving task required participants to maintain their cruising position and compensate for randomly induced lane deviations using the steering wheel, while their EEG and driving performance were continuously monitored. The arousing warning signal was delivered to participants who experienced momentary behavioral lapses, failing to respond rapidly to lane-departure events (specifically the reaction time exceeded three times the alert reaction time). Main results. The results of our previous studies revealed that arousing feedback immediately reversed deteriorating driving performance, which was accompanied by concurrent EEG theta- and alpha-power suppression in the bilateral occipital areas. This study further proposes a feedback efficacy assessment system to accurately estimate the efficacy of arousing warning signals delivered to drowsy participants by monitoring the changes in their EEG power spectra immediately thereafter. The classification accuracy was up 77.8% for determining the need for triggering additional warning signals. Significance. The findings of this study, in conjunction with previous studies on EEG correlates of behavioral lapses, might lead to a practical closed-loop system to predict, monitor and rectify behavioral lapses of human operators in attention-critical settings.

  16. Longitudinal changes in computerized EEG and mental function of the aged: a nine-year follow-up study.

    PubMed

    Nakano, T; Miyasaka, M; Ohtaka, T; Ohmori, K

    1992-01-01

    Computer-analyzed EEG data and mental functions of the healthy aged (28 survivors and 20 nonsurvivors) were followed for nine years in a study of their relationship with age and longevity. The study revealed that decrease in fast waves occurred from early senescence. The slowing of EEG, the increase in theta waves, and the decrease in alpha frequency became obvious in late senescence, after the late 70s or beyond 80 years. The amount of alpha waves was maintained until the early 80s. The decline of mental functions occurred with the slowing of EEG in late senescence. The slowing of EEG and the lowered scores of psychometrics were closely related to the longevity of life, comparing the survivors and nonsurvivors in retrospect. PMID:1391675

  17. An automatic detector of drowsiness based on spectral analysis and wavelet decomposition of EEG records.

    PubMed

    Garces Correa, Agustina; Laciar Leber, Eric

    2010-01-01

    An algorithm to detect automatically drowsiness episodes has been developed. It uses only one EEG channel to differentiate the stages of alertness and drowsiness. In this work the vectors features are building combining Power Spectral Density (PDS) and Wavelet Transform (WT). The feature extracted from the PSD of EEG signal are: Central frequency, the First Quartile Frequency, the Maximum Frequency, the Total Energy of the Spectrum, the Power of Theta and Alpha bands. In the Wavelet Domain, it was computed the number of Zero Crossing and the integrated from the scale 3, 4 and 5 of Daubechies 2 order WT. The classifying of epochs is being done with neural networks. The detection results obtained with this technique are 86.5 % for drowsiness stages and 81.7% for alertness segment. Those results show that the features extracted and the classifier are able to identify drowsiness EEG segments. PMID:21096343

  18. A Matter of Time: The Influence of Recording Context on EEG Spectral Power in Adolescents and Young Adults with ADHD.

    PubMed

    Kitsune, Glenn L; Cheung, Celeste H M; Brandeis, Daniel; Banaschewski, Tobias; Asherson, Philip; McLoughlin, Gráinne; Kuntsi, Jonna

    2015-07-01

    Elevated theta or theta/beta ratio is often reported in attention deficit hyperactivity disorder (ADHD), but the consistency across studies and the relation to hypoarousal are increasingly questioned. Reports of elevated delta related to maturational lag and of attenuated beta activity are less well replicated. Some critical inconsistencies could relate to differences in recording context. We examined if resting-state EEG power or global field synchronization (GFS) differed between recordings made at the beginning and end of a 1.5 h testing session in 76 adolescents and young adults with ADHD, and 85 controls. In addition, we aimed to examine the effect of IQ on any potential group differences. Both regional and midline electrodes yielded group main effects for delta, trends in theta, but no differences in alpha or theta/beta ratio. An additional group difference in beta was detected when using regions. Group by time interactions in delta and theta became significant when controlling for IQ. The ADHD group had higher delta and theta power at time-1, but not at time-2, whereas beta power was elevated only at time-2. GFS did not differ between groups or condition. We show some ADHD-control differences on EEG spectral power varied with recording time within a single recording session, with both IQ and electrode selection having a small but significant influence on observed differences. Our findings demonstrate the effect of recording context on resting-state EEG, and highlight the importance of accounting for these variables to ensure consistency of results in future studies. PMID:25200165

  19. Desynchronization of Theta-Phase Gamma-Amplitude Coupling during a Mental Arithmetic Task in Children with Attention Deficit/Hyperactivity Disorder

    PubMed Central

    Kim, Jun Won; Kim, Bung-Nyun; Lee, Jaewon; Na, Chul; Kee, Baik Seok; Min, Kyung Joon; Han, Doug Hyun; Kim, Johanna Inhyang; Lee, Young Sik

    2016-01-01

    Introduction Theta-phase gamma-amplitude coupling (TGC) measurement has recently received attention as a feasible method of assessing brain functions such as neuronal interactions. The purpose of this electroencephalographic (EEG) study is to understand the mechanisms underlying the deficits in attentional control in children with attention deficit/hyperactivity disorder (ADHD) by comparing the power spectra and TGC at rest and during a mental arithmetic task. Methods Nineteen-channel EEGs were recorded from 97 volunteers (including 53 subjects with ADHD) from a camp for hyperactive children under two conditions (rest and task performance). The EEG power spectra and the TGC data were analyzed. Correlation analyses between the Intermediate Visual and Auditory (IVA) continuous performance test (CPT) scores and EEG parameters were performed. Results No significant difference in the power spectra was detected between the groups at rest and during task performance. However, TGC was reduced during the arithmetic task in the ADHD group compared with the normal group (F = 16.70, p < 0.001). The TGC values positively correlated with the IVA CPT scores but negatively correlated with theta power. Conclusions Our findings suggest that desynchronization of TGC occurred during the arithmetic task in ADHD children. TGC in ADHD children is expected to serve as a promising neurophysiological marker of network deactivation during attention-demanding tasks. PMID:26930194

  20. EEG analyses with SOBI.

    SciTech Connect

    Glickman, Matthew R.; Tang, Akaysha

    2009-02-01

    The motivating vision behind Sandia's MENTOR/PAL LDRD project has been that of systems which use real-time psychophysiological data to support and enhance human performance, both individually and of groups. Relevant and significant psychophysiological data being a necessary prerequisite to such systems, this LDRD has focused on identifying and refining such signals. The project has focused in particular on EEG (electroencephalogram) data as a promising candidate signal because it (potentially) provides a broad window on brain activity with relatively low cost and logistical constraints. We report here on two analyses performed on EEG data collected in this project using the SOBI (Second Order Blind Identification) algorithm to identify two independent sources of brain activity: one in the frontal lobe and one in the occipital. The first study looks at directional influences between the two components, while the second study looks at inferring gender based upon the frontal component.

  1. Electromagnetic theta gun and tubular projectiles

    SciTech Connect

    Burgess, T.J.; Cnare, E.C.; Oberkampf, W.L.; Beard, S.G.; Cowan, M.

    1980-12-01

    Unlike the better known rail gun, the theta gun applies the propelling force along the length of its projectile. This is shown to allow much greater acceleration of high fineness ratio projectiles for a given barrel pressure, allowing much shorter barrels for military applications. A computer code which simulates performance of the theta gun is described and experimental results from a few simple, low energy experiments show close agreement with code predictions. Trajectories and aerodynamic heating for three candidate military projectiles are calculated for vertical and horizontal atmospheric launches where initial velocity is as high as 3 km/s. The calculations indicate that in some cases a thin layer of heatshield (ablator) will be required to control projectile heating.

  2. Subtractive fuzzy classifier based driver distraction levels classification using EEG.

    PubMed

    Wali, Mousa Kadhim; Murugappan, Murugappan; Ahmad, Badlishah

    2013-09-01

    [Purpose] In earlier studies of driver distraction, researchers classified distraction into two levels (not distracted, and distracted). This study classified four levels of distraction (neutral, low, medium, high). [Subjects and Methods] Fifty Asian subjects (n=50, 43 males, 7 females), age range 20-35 years, who were free from any disease, participated in this study. Wireless EEG signals were recorded by 14 electrodes during four types of distraction stimuli (Global Position Systems (GPS), music player, short message service (SMS), and mental tasks). We derived the amplitude spectrum of three different frequency bands, theta, alpha, and beta of EEG. Then, based on fusion of discrete wavelet packet transforms and fast fourier transform yield, we extracted two features (power spectral density, spectral centroid frequency) of different wavelets (db4, db8, sym8, and coif5). Mean ± SD was calculated and analysis of variance (ANOVA) was performed. A fuzzy inference system classifier was applied to different wavelets using the two extracted features. [Results] The results indicate that the two features of sym8 posses highly significant discrimination across the four levels of distraction, and the best average accuracy achieved by the subtractive fuzzy classifier was 79.21% using the power spectral density feature extracted using the sym8 wavelet. [Conclusion] These findings suggest that EEG signals can be used to monitor distraction level intensity in order to alert drivers to high levels of distraction. PMID:24259914

  3. Delta, theta, beta, and gamma brain oscillations index levels of auditory sentence processing.

    PubMed

    Mai, Guangting; Minett, James W; Wang, William S-Y

    2016-06-01

    A growing number of studies indicate that multiple ranges of brain oscillations, especially the delta (δ, <4Hz), theta (θ, 4-8Hz), beta (β, 13-30Hz), and gamma (γ, 30-50Hz) bands, are engaged in speech and language processing. It is not clear, however, how these oscillations relate to functional processing at different linguistic hierarchical levels. Using scalp electroencephalography (EEG), the current study tested the hypothesis that phonological and the higher-level linguistic (semantic/syntactic) organizations during auditory sentence processing are indexed by distinct EEG signatures derived from the δ, θ, β, and γ oscillations. We analyzed specific EEG signatures while subjects listened to Mandarin speech stimuli in three different conditions in order to dissociate phonological and semantic/syntactic processing: (1) sentences comprising valid disyllabic words assembled in a valid syntactic structure (real-word condition); (2) utterances with morphologically valid syllables, but not constituting valid disyllabic words (pseudo-word condition); and (3) backward versions of the real-word and pseudo-word conditions. We tested four signatures: band power, EEG-acoustic entrainment (EAE), cross-frequency coupling (CFC), and inter-electrode renormalized partial directed coherence (rPDC). The results show significant effects of band power and EAE of δ and θ oscillations for phonological, rather than semantic/syntactic processing, indicating the importance of tracking δ- and θ-rate phonetic patterns during phonological analysis. We also found significant β-related effects, suggesting tracking of EEG to the acoustic stimulus (high-β EAE), memory processing (θ-low-β CFC), and auditory-motor interactions (20-Hz rPDC) during phonological analysis. For semantic/syntactic processing, we obtained a significant effect of γ power, suggesting lexical memory retrieval or processing grammatical word categories. Based on these findings, we confirm that scalp EEG

  4. Diagnostic accuracy of microEEG: a miniature, wireless EEG device.

    PubMed

    Grant, Arthur C; Abdel-Baki, Samah G; Omurtag, Ahmet; Sinert, Richard; Chari, Geetha; Malhotra, Schweta; Weedon, Jeremy; Fenton, Andre A; Zehtabchi, Shahriar

    2014-05-01

    Measuring the diagnostic accuracy (DA) of an EEG device is unconventional and complicated by imperfect interrater reliability. We sought to compare the DA of a miniature, wireless, battery-powered EEG device ("microEEG") to a reference EEG machine in emergency department (ED) patients with altered mental status (AMS). Two hundred twenty-five ED patients with AMS underwent 3 EEGs. Two EEGs, EEG1 (Nicolet Monitor, "reference") and EEG2 (microEEG) were recorded simultaneously with EEG cup electrodes using a signal splitter. The remaining study, EEG3, was recorded with microEEG using an electrode cap immediately before or after EEG1/EEG2. The official EEG1 interpretation was considered the gold standard (EEG1-GS). EEG1, 2, and 3 were de-identified and blindly interpreted by two independent readers. A generalized mixed linear model was used to estimate the sensitivity and specificity of these interpretations relative to EEG1-GS and to compute a diagnostic odds ratio (DOR). Seventy-nine percent of EEG1-GS were abnormal. Neither the DOR nor the κf representing interrater reliabilities differed significantly between EEG1, EEG2, and EEG3. The mean setup time was 27 min for EEG1/EEG2 and 12 min for EEG3. The mean electrode impedance of EEG3 recordings was 12.6 kΩ (SD: 31.9 kΩ). The diagnostic accuracy of microEEG was comparable to that of the reference system and was not reduced when the EEG electrodes had high and unbalanced impedances. A common practice with many scientific instruments, measurement of EEG device DA provides an independent and quantitative assessment of device performance. PMID:24727466

  5. Cognitive-neural effects of brush writing of chinese characters: cortical excitation of theta rhythm.

    PubMed

    Xu, Min; Kao, Henry S R; Zhang, Manlin; Lam, Stewart P W; Wang, Wei

    2013-01-01

    Chinese calligraphy has been scientifically investigated within the contexts and principles of psychology, cognitive science, and the cognitive neuroscience. On the basis of vast amount of research in the last 30 years, we have developed a cybernetic theory of handwriting and calligraphy to account for the intricate interactions of several psychological dimensions involved in the dynamic act of graphic production. Central to this system of writing are the role of sensory, bio-, cognitive, and neurofeedback mechanisms for the initiation, guidance, and regulation of the writing motions vis-a-vis visual-geometric variations of Chinese characters. This experiment provided the first evidence of cortical excitation in EEG theta wave as a neural hub that integrates information coming from changes in the practitioner's body, emotions, and cognition. In addition, it has also confirmed neurofeedback as an essential component of the cybernetic theory of handwriting and calligraphy. PMID:23533532

  6. Cognitive-Neural Effects of Brush Writing of Chinese Characters: Cortical Excitation of Theta Rhythm

    PubMed Central

    Xu, Min; Kao, Henry S. R.; Zhang, Manlin; Lam, Stewart P. W.; Wang, Wei

    2013-01-01

    Chinese calligraphy has been scientifically investigated within the contexts and principles of psychology, cognitive science, and the cognitive neuroscience. On the basis of vast amount of research in the last 30 years, we have developed a cybernetic theory of handwriting and calligraphy to account for the intricate interactions of several psychological dimensions involved in the dynamic act of graphic production. Central to this system of writing are the role of sensory, bio-, cognitive, and neurofeedback mechanisms for the initiation, guidance, and regulation of the writing motions vis-a-vis visual-geometric variations of Chinese characters. This experiment provided the first evidence of cortical excitation in EEG theta wave as a neural hub that integrates information coming from changes in the practitioner's body, emotions, and cognition. In addition, it has also confirmed neurofeedback as an essential component of the cybernetic theory of handwriting and calligraphy. PMID:23533532

  7. EEG Theta and Alpha Responses Reveal Qualitative Differences in Processing Taxonomic versus Thematic Semantic Relationships

    ERIC Educational Resources Information Center

    Maguire, Mandy J.; Brier, Matthew R.; Ferree, Thomas C.

    2010-01-01

    Despite the importance of semantic relationships to our understanding of semantic knowledge, the nature of the neural processes underlying these abilities are not well understood. In order to investigate these processes, 20 healthy adults listened to thematically related (e.g., leash-dog), taxonomically related (e.g., horse-dog), or unrelated…

  8. Different types of theta rhythmicity are induced by social and fearful stimuli in a network associated with social memory

    PubMed Central

    Tendler, Alex; Wagner, Shlomo

    2015-01-01

    Rhythmic activity in the theta range is thought to promote neuronal communication between brain regions. In this study, we performed chronic telemetric recordings in socially behaving rats to monitor electrophysiological activity in limbic brain regions linked to social behavior. Social encounters were associated with increased rhythmicity in the high theta range (7–10 Hz) that was proportional to the stimulus degree of novelty. This modulation of theta rhythmicity, which was specific for social stimuli, appeared to reflect a brain-state of social arousal. In contrast, the same network responded to a fearful stimulus by enhancement of rhythmicity in the low theta range (3–7 Hz). Moreover, theta rhythmicity showed different pattern of coherence between the distinct brain regions in response to social and fearful stimuli. We suggest that the two types of stimuli induce distinct arousal states that elicit different patterns of theta rhythmicity, which cause the same brain areas to communicate in different modes. DOI: http://dx.doi.org/10.7554/eLife.03614.001 PMID:25686218

  9. Progressive Fracture of [0/90/ + or - Theta]s Composite Structure Under Uniform Pressure Load

    NASA Technical Reports Server (NTRS)

    Gotsis, Pascalis K.; Chamis, Christos C.; Gotsis, Christos K.; Mouratidis, Ericos

    2007-01-01

    S-Glass/epoxy [0/90/plus or minus theta]s for theta =45 deg., 60 deg., and 75 deg. laminated fiber-reinforced composite stiffened plate was simulated to investigated for damage and fracture progression under uniform pressure. An integrated computer code was augmented for the simulation of the damage initiation, growth, accumulation, and propagation to fracture and to structural collapse. Results show in detail the damage progression sequence and structural fracture resistance during different degradation stages. Damage through the thickness of the laminate initiated first at [0/90/plus or minus 45]s at 15.168 MPa (2200 psi), followed by [0/90/plus or minus 60]s at 16.96 MPa (2460 psi) and finally by [0/90/plus or minus 75]s at 19.3 MPa (2800 psi). After damage initiation happened the cracks propagate rapidly to structural fracture.

  10. [General Features of the Formation of EEG Wave Structure in Children and Adolescents Living in Northern European Russia].

    PubMed

    Soroko, S I; Bekshaev, S S; Rozhkov, V P; Nagornova, Zh V; Shemyakina, N V

    2015-01-01

    The article presents the results of the analysis of EEG wave structure formation in children and adolescents aged 7-18 years living under severe conditions of the North. The approaches developed in discrete mathematics (the graph theory, the theory of network flows) were used to assess the time-frequency transformations of EEG patterns. We evaluated conditional probabilities of reciprocal transitions between the components of six frequency bands of E EG (delta, theta, alpha-1, alpha-2, beta-1, beta-2). We described age- and sex-related features as well as regional specificities of the EEG wave structure. We defined the age periods of reorganization of diffuse EEG activities into the main EEG rhythms; the role of distinct rhythms in the maintenance of the EEG wave structure and its dynamic rearrangements was also discussed. The age-related changes of the structure of EEG patterns form some general picture of the morphofunctional development of brain in children and adolescents at different stages of postnatal ontogenesis under severe climate and socio-economic conditions of the North. PMID:26485790

  11. Loss of balance during balance beam walking elicits a multifocal theta band electrocortical response

    PubMed Central

    Gwin, Joseph T.; Makeig, Scott; Ferris, Daniel P.

    2013-01-01

    Determining the neural correlates of loss of balance during walking could lead to improved clinical assessment and treatment for individuals predisposed to falls. We used high-density electroencephalography (EEG) combined with independent component analysis (ICA) to study loss of balance during human walking. We examined 26 healthy young subjects performing heel-to-toe walking on a treadmill-mounted balance beam as well as walking on the treadmill belt (both at 0.22 m/s). ICA identified clusters of electrocortical EEG sources located in or near anterior cingulate, anterior parietal, superior dorsolateral-prefrontal, and medial sensorimotor cortex that exhibited significantly larger mean spectral power in the theta band (4–7 Hz) during walking on the balance beam compared with treadmill walking. Left and right sensorimotor cortex clusters produced significantly less power in the beta band (12–30 Hz) during walking on the balance beam compared with treadmill walking. For each source cluster, we also computed a normalized mean time/frequency spectrogram time locked to the gait cycle during loss of balance (i.e., when subjects stepped off the balance beam). All clusters except the medial sensorimotor cluster exhibited a transient increase in theta band power during loss of balance. Cluster spectrograms demonstrated that the first electrocortical indication of impending loss of balance occurred in the left sensorimotor cortex at the transition from single support to double support prior to stepping off the beam. These findings provide new insight into the neural correlates of walking balance control and could aid future studies on elderly individuals and others with balance impairments. PMID:23926037

  12. Intrahippocampal infusion of the Ih blocker ZD7288 slows evoked theta rhythm and produces anxiolytic-like effects in the elevated plus maze.

    PubMed

    Yeung, Michelle; Dickson, Clayton T; Treit, Dallas

    2013-04-01

    Hippocampal theta rhythm has been associated with a number of behavioral processes, including learning and memory, spatial behavior, sensorimotor integration and affective responses. Suppression of hippocampal theta frequency has been shown to be a reliable neurophysiological signature of anxiolytic drug action in tests using known anxiolytic drugs (i.e., correlational evidence), but only one study to date (Yeung et al. (2012) Neuropharmacology 62:155-160) has shown that a drug with no known effect on either hippocampal theta or anxiety can in fact separately suppress hippocampal theta and anxiety in behavioral tests (i.e., prima facie evidence). Here, we attempt a further critical test of the hippocampal theta model by performing intrahippocampal administrations of the Ih blocker ZD7288, which is known to disrupt theta frequency subthreshold oscillations and resonance at the membrane level but is not known to have anxiolytic action. Intrahippocampal microinfusions of ZD7288 at high (15 µg), but not low (1 µg) doses slowed brainstem-evoked hippocampal theta responses in the urethane anesthetized rat, and more importantly, promoted anxiolytic action in freely behaving rats in the elevated plus maze. Taken together with our previous demonstration, these data provide converging, prima facie evidence of the validity of the theta suppression model. PMID:23280856

  13. EEG-MEG Integration Enhances the Characterization of Functional and Effective Connectivity in the Resting State Network

    PubMed Central

    Mideksa, Kidist Gebremariam; Anwar, Abdul Rauf; Stephani, Ulrich; Deuschl, Günther; Freitag, Christine M.; Siniatchkin, Michael

    2015-01-01

    At the sensor level many aspects, such as spectral power, functional and effective connectivity as well as relative-power-ratio ratio (RPR) and spatial resolution have been comprehensively investigated through both electroencephalography (EEG) and magnetoencephalography (MEG). Despite this, differences between both modalities have not yet been systematically studied by direct comparison. It remains an open question as to whether the integration of EEG and MEG data would improve the information obtained from the above mentioned parameters. Here, EEG (64-channel system) and MEG (275 sensor system) were recorded simultaneously in conditions with eyes open (EO) and eyes closed (EC) in 29 healthy adults. Spectral power, functional and effective connectivity, RPR, and spatial resolution were analyzed at five different frequency bands (delta, theta, alpha, beta and gamma). Networks of functional and effective connectivity were described using a spatial filter approach called the dynamic imaging of coherent sources (DICS) followed by the renormalized partial directed coherence (RPDC). Absolute mean power at the sensor level was significantly higher in EEG than in MEG data in both EO and EC conditions. At the source level, there was a trend towards a better performance of the combined EEG+MEG analysis compared with separate EEG or MEG analyses for the source mean power, functional correlation, effective connectivity for both EO and EC. The network of coherent sources and the spatial resolution were similar for both the EEG and MEG data if they were analyzed separately. Results indicate that the combined approach has several advantages over the separate analyses of both EEG and MEG. Moreover, by a direct comparison of EEG and MEG, EEG was characterized by significantly higher values in all measured parameters in both sensor and source level. All the above conclusions are specific to the resting state task and the specific analysis used in this study to have general

  14. A theory of alpha/theta neurofeedback, creative performance enhancement, long distance functional connectivity and psychological integration.

    PubMed

    Gruzelier, John

    2009-02-01

    Professionally significant enhancement of music and dance performance and mood has followed training with an EEG-neurofeedback protocol which increases the ratio of theta to alpha waves using auditory feedback with eyes closed. While originally the protocol was designed to induce hypnogogia, a state historically associated with creativity, the outcome was psychological integration, while subsequent applications focusing on raising the theta-alpha ratio, reduced depression and anxiety in alcoholism and resolved post traumatic stress syndrome (PTSD). In optimal performance studies we confirmed associations with creativity in musical performance, but effects also included technique and communication. We extended efficacy to dance and social anxiety. Diversity of outcome has a counterpart in wide ranging associations between theta oscillations and behaviour in cognitive and affective neuroscience: in animals with sensory-motor activity in exploration, effort, working memory, learning, retention and REM sleep; in man with meditative concentration, reduced anxiety and sympathetic autonomic activation, as well as task demands in virtual spatial navigation, focussed and sustained attention, working and recognition memory, and having implications for synaptic plasticity and long term potentiation. Neuroanatomical circuitry involves the ascending mescencephalic-cortical arousal system, and limbic circuits subserving cognitive as well as affective/motivational functions. Working memory and meditative bliss, representing cognitive and affective domains, respectively, involve coupling between frontal and posterior cortices, exemplify a role for theta and alpha waves in mediating the interaction between distal and widely distributed connections. It is posited that this mediation in part underpins the integrational attributes of alpha-theta training in optimal performance and psychotherapy, creative associations in hypnogogia, and enhancement of technical, communication and

  15. EEG Studies with Young Children.

    ERIC Educational Resources Information Center

    Flohr, John W.; Miller, Daniel C.; deBeus, Roger

    2000-01-01

    Describes how electroencephalogram (EEG) data are collected and how brain function is measured. Discusses studies on the effects of music experiences with adult subjects and studies focusing on the effects of music training on EEG activity of children and adolescents. Considers the implications of the studies and the future directions of this…

  16. Transcranial direct current stimulation and power spectral parameters: a tDCS/EEG co-registration study

    PubMed Central

    Mangia, Anna L.; Pirini, Marco; Cappello, Angelo

    2014-01-01

    Transcranial direct current stimulation (tDCS) delivers low electric currents to the brain through the scalp. Constant electric currents induce shifts in neuronal membrane excitability, resulting in secondary changes in cortical activity. Concomitant electroencephalography (EEG) monitoring during tDCS can provide valuable information on the tDCS mechanisms of action. This study examined the effects of anodal tDCS on spontaneous cortical activity in a resting brain to disclose possible modulation of spontaneous oscillatory brain activity. EEG activity was measured in ten healthy subjects during and after a session of anodal stimulation of the postero-parietal cortex to detect the tDCS-induced alterations. Changes in the theta, alpha, beta, and gamma power bands were investigated. Three main findings emerged: (1) an increase in theta band activity during the first minutes of stimulation; (2) an increase in alpha and beta power during and after stimulation; (3) a widespread activation in several brain regions. PMID:25147519

  17. Reward feedback processing in children and adolescents: Medial frontal theta oscillations

    PubMed Central

    Crowley, Michael J.; van Noordt, Stefon J.R.; Wu, Jia; Hommer, Rebecca E.; South, Mikle; Fearon, R. M. P.; Mayes, Linda C.

    2014-01-01

    We examined event-related electroencephalography (EEG) oscillations, including event-related spectral perturbations (ERSP) and intertrial coherence (ITC), to compare feedback processing during a chance-based reward vs. non-reward task in groups of 10-12-year-old (n = 42), 13-14-year-old (n = 34) and 15-17-year-olds (n = 32). Because few, if any studies have applied these analytic methods to examine feedback processing in children or adolescents, we used a fine-grained approach that explored one half hertz by 16 ms increments during feedback (no win vs. win events) in the theta (4-8 Hz) frequency band. Complex wavelet frequency decomposition revealed that no win feedback was associated with enhanced theta power and phase coherence. We observed condition and age-based differences for both ERSP and ITC, with stronger effects for ITC. The transition from childhood to early adolescence (13-14 yrs.) was a point of increased differentiation of ITC favoring no win vs. wins feedback and also compared to children or older adolescents, a point of heightened ITC for no win feedback (quadratic effect). PMID:24360036

  18. The neuronal mechanisms underlying improvement of impulsivity in ADHD by theta/beta neurofeedback.

    PubMed

    Bluschke, Annet; Broschwitz, Felicia; Kohl, Simon; Roessner, Veit; Beste, Christian

    2016-01-01

    Neurofeedback is increasingly recognized as an intervention to treat core symptoms of attention deficit hyperactivity disorder (ADHD). Despite the large number of studies having been carried out to evaluate its effectiveness, it is widely elusive what neuronal mechanisms related to the core symptoms of ADHD are modulated by neurofeedback. 19 children with ADHD undergoing 8 weeks of theta/beta neurofeedback and 17 waiting list controls performed a Go/Nogo task in a pre-post design. We used neurophysiological measures combining high-density EEG recording with source localization analyses using sLORETA. Compared to the waiting list ADHD control group, impulsive behaviour measured was reduced after neurofeedback treatment. The effects of neurofeedback were very specific for situations requiring inhibitory control over responses. The neurophysiological data shows that processes of perceptual gating, attentional selection and resource allocation processes were not affected by neurofeedback. Rather, neurofeedback effects seem to be based on the modulation of response inhibition processes in medial frontal cortices. The study shows that specific neuronal mechanisms underlying impulsivity are modulated by theta/beta neurofeedback in ADHD. The applied neurofeedback protocol could be particularly suitable to address inhibitory control. The study validates assumed functional neuroanatomical target regions of an established neurofeedback protocol on a neurophysiological level. PMID:27514985

  19. The neuronal mechanisms underlying improvement of impulsivity in ADHD by theta/beta neurofeedback

    PubMed Central

    Bluschke, Annet; Broschwitz, Felicia; Kohl, Simon; Roessner, Veit; Beste, Christian

    2016-01-01

    Neurofeedback is increasingly recognized as an intervention to treat core symptoms of attention deficit hyperactivity disorder (ADHD). Despite the large number of studies having been carried out to evaluate its effectiveness, it is widely elusive what neuronal mechanisms related to the core symptoms of ADHD are modulated by neurofeedback. 19 children with ADHD undergoing 8 weeks of theta/beta neurofeedback and 17 waiting list controls performed a Go/Nogo task in a pre-post design. We used neurophysiological measures combining high-density EEG recording with source localization analyses using sLORETA. Compared to the waiting list ADHD control group, impulsive behaviour measured was reduced after neurofeedback treatment. The effects of neurofeedback were very specific for situations requiring inhibitory control over responses. The neurophysiological data shows that processes of perceptual gating, attentional selection and resource allocation processes were not affected by neurofeedback. Rather, neurofeedback effects seem to be based on the modulation of response inhibition processes in medial frontal cortices. The study shows that specific neuronal mechanisms underlying impulsivity are modulated by theta/beta neurofeedback in ADHD. The applied neurofeedback protocol could be particularly suitable to address inhibitory control. The study validates assumed functional neuroanatomical target regions of an established neurofeedback protocol on a neurophysiological level. PMID:27514985

  20. Effect of Sudarshan Kriya (meditation) on gamma, alpha, and theta rhythm during working memory task

    PubMed Central

    Chandra, Sushil; Sharma, Greeshma; Mittal, Alok Prakash; Jha, Devendra

    2016-01-01

    Aims: The present study focuses on analyzing the effects of Sudarshan Kriya yoga (SKY) on brain signals during a working memory (WM) task. To envision the significant effects of SKY on WM capacity (WMC), we chose a control group for contriving a cogent comparison that could be corroborated using statistical tests. Subjects and Methods: A total of 25 subjects were taken in the study, of which 10 were allotted to a control group and 15 to an experimental group. Electroencephalograph was taken during a WM task, which was an automated operation span test before and after SKY with 90 days intervals. No SKY was given to the control group. Statistical Analysis Used: t-test and one-way ANOVA were applied. Results: SKY promoted the efficient use of energy and power spectral density (PSD) for different brain rhythms in the desired locations as depicted by the gamma (F8 channel), alpha, and theta 2 (F7 and FC5) bands. It was found that gamma PSD reduced for both phases of memory in the experimental group. Alpha energy increased during the retrieval phase in the experimental group after SKY. Theta 1 rhythm was not affected by SKY, but theta 2 had shown left hemispheric activation. Theta rhythm was associated with memory consolidation. Conclusions: SKY had shown minimized energy losses while performing the task. SKY can improve WMC by changing the brain rhythms such that energy is utilized efficiently in performing the task. PMID:26865775

  1. Seizure (Ictal)—EEG Characteristics in Subgroups of Depressive Disorder in Patients Receiving Electroconvulsive Therapy (ECT)—A Preliminary Study and Multivariate Approach

    PubMed Central

    Wahlund, Björn; Piazza, Paolo; von Rosen, Dietrich; Liberg, Benny; Liljenström, Hans

    2009-01-01

    Objectives. Examine frequency distributions of ictal EEG after ECT stimulation in diagnostic subgroups of depression. Methods. EEG registration was consecutively monitored in 33 patients after ECT stimulation. Patients were diagnosed according to DSM IV and subdivided into: (1) major depressive disorder with psychotic features (n = 7), (2) unipolar depression (n = 20), and (3) bipolar depression (n = 6). Results. Results indicate that the diagnostically subgroups differ in their ictal EEG frequency spectrumml: (1) psychotic depression has a high occurrence of delta and theta waves, (2) unipolar depression has high occurrence of delta, theta and gamma waves, and (3) bipolar depression has a high occurrence of gamma waves. A linear discriminant function separated the three clinical groups with an accuracy of 94%. Conclusion. Psychotic depressed patients differ from bipolar depression in their frequency based on probability distribution of ictal EEG. Psychotic depressed patients show more prominent slowing of EEG than nonpsychotic depressed patients. Thus the EEG results may be supportive in classifying subgroups of depression already at the start of the ECT treatment. PMID:19551153

  2. Modafinil Increases Awake EEG Activation and Improves Performance in Obstructive Sleep Apnea during Continuous Positive Airway Pressure Withdrawal

    PubMed Central

    Wang, David; Bai, Xiao Xue; Williams, Shaun C.; Hua, Shu Cheng; Kim, Jong-Won; Marshall, Nathaniel S.; D'Rozario, Angela; Grunstein, Ronald R.

    2015-01-01

    Objectives: We examined the changes in waking electroencephalography (EEG) biomarkers with modafinil during continuous positive airway pressure (CPAP) withdrawal in patients with obstructive sleep apnea (OSA) to investigate neurophysiological evidence for potential neurocognitive improvements. Design: Randomized double-blind placebo-controlled crossover study. CPAP was used for the first night and then withdrawn for 2 subsequent nights. Each morning after the 2 CPAP withdrawal nights, patients received either 200 mg modafinil or placebo. After a 5-w washout, the procedure repeated with the crossover drug. Setting: University teaching hospital. Participants: Stable CPAP users (n = 23 men with OSA) Measurement and Results: Karolinska Drowsiness Test (KDT) (awake EEG measurement with eyes open and closed), Psychomotor Vigilance Task (PVT), and driving simulator Performance were assessed bihourly during the 3 testing days following CPAP treatment and CPAP withdrawal nights. Compared to placebo, modafinil significantly increased awake EEG activation (faster EEG frequency) with increased alpha/delta (A/D) ratio (P < 0.0001) and fast ratio = (alpha+beta)/(delta+theta) (P < 0.0001) across the 2 days of CPAP withdrawal. The A/D ratio significantly correlated with the driving simulator response time (P = 0.015), steering variation (P = 0.002), and PVT reaction time (P = 0.006). In contrast, individual EEG band power of alpha, beta, theta, and delta did not correlate with any neurocognitive performance. Conclusions: Modafinil administration during continuous positive airway pressure (CPAP) withdrawal increased awake EEG activation, which correlated to improved performance. This study provides supporting neurophysiological evidence that modafinil is a potential short-term treatment option during acute CPAP withdrawal. Citation: Wang D, Bai XX, Williams SC, Hua SC, Kim JW, Marshall NS, D'Rozario A, Grunstein RR. Modafinil increases awake EEG activation and improves performance

  3. Memory load effect in auditory-verbal short-term memory task: EEG fractal and spectral analysis.

    PubMed

    Stokić, Miodrag; Milovanović, Dragan; Ljubisavljević, Miloš R; Nenadović, Vanja; Čukić, Milena

    2015-10-01

    The objective of this preliminary study was to quantify changes in complexity of EEG using fractal dimension (FD) alongside linear methods of spectral power, event-related spectral perturbations, coherence, and source localization of EEG generators for theta (4-7 Hz), alpha (8-12 Hz), and beta (13-23 Hz) frequency bands due to a memory load effect in an auditory-verbal short-term memory (AVSTM) task for words. We examined 20 healthy individuals using the Sternberg's paradigm with increasing memory load (three, five, and seven words). The stimuli were four-letter words. Artifact-free 5-s EEG segments during retention period were analyzed. The most significant finding was the increase in FD with the increase in memory load in temporal regions T3 and T4, and in parietal region Pz, while decrease in FD with increase in memory load was registered in frontal midline region Fz. Results point to increase in frontal midline (Fz) theta spectral power, decrease in alpha spectral power in parietal region-Pz, and increase in beta spectral power in T3 and T4 region with increase in memory load. Decrease in theta coherence within right hemisphere due to memory load was obtained. Alpha coherence increased in posterior regions with anterior decrease. Beta coherence increased in fronto-temporal regions. Source localization delineated theta activity increase in frontal midline region, alpha decrease in superior parietal region, and beta increase in superior temporal gyrus with increase in memory load. In conclusion, FD as a nonlinear measure may serve as a sensitive index for quantifying dynamical changes in EEG signals during AVSTM tasks. PMID:26169106

  4. [Features of the stress reaction in rats with genetically-determined emotionality (from EEG indicators)].

    PubMed

    Sviderskaia, N E; Seredenin, S B; Korol'kova, T A; Kozhechkin, S N; Kozhedub, R G; Koshtoiants, O Kh

    2001-01-01

    The features of the EEG spatial organization in two rat strains, i.e., with expressed emotional reactions (Maudsley reactive, MR) and less reactive (Maudsley nonreactive, MNR) were compared in two stress situations: during exposure to the action of pain (P) (i.p. injection of 0.9% NaCl solution) and during 24-hour water deprivation (D). Multichannel EEG recording (24 derivations) and their multiparametric estimation (840 signs) made it possible to differentiate characteristic features of the EEG spatial organization in rats with initially increased emotional reactions and passive behavioral strategy during exposure to stress. In both stress-inducing conditions, an increase in crosscorrelation and coherence between cortical potentials in parallel with rise of the spectral power in the range of high-frequency theta and its drop in the range of EEG high-frequency band was observed in the MR rats. The MNR rats showed the opposite changes. Different reactivity of the ratio between the coherence and spectral power of potentials was observed in two strains of rats. This index characterizes the level of the information-energy component of the spatial organization of cortical potentials. It is suggested that different character of the EEG changes reflects the features of interhemispheric relations, information-energy processes, and cortical regulation of autonomic processes in the system of adaptive stress reactions at different levels of emotionality and behavioral strategy. PMID:11764521

  5. Modulation of cortical activity in 2D versus 3D virtual reality environments: an EEG study.

    PubMed

    Slobounov, Semyon M; Ray, William; Johnson, Brian; Slobounov, Elena; Newell, Karl M

    2015-03-01

    There is a growing empirical evidence that virtual reality (VR) is valuable for education, training, entertaining and medical rehabilitation due to its capacity to represent real-life events and situations. However, the neural mechanisms underlying behavioral confounds in VR environments are still poorly understood. In two experiments, we examined the effect of fully immersive 3D stereoscopic presentations and less immersive 2D VR environments on brain functions and behavioral outcomes. In Experiment 1 we examined behavioral and neural underpinnings of spatial navigation tasks using electroencephalography (EEG). In Experiment 2, we examined EEG correlates of postural stability and balance. Our major findings showed that fully immersive 3D VR induced a higher subjective sense of presence along with enhanced success rate of spatial navigation compared to 2D. In Experiment 1 power of frontal midline EEG (FM-theta) was significantly higher during the encoding phase of route presentation in the 3D VR. In Experiment 2, the 3D VR resulted in greater postural instability and modulation of EEG patterns as a function of 3D versus 2D environments. The findings support the inference that the fully immersive 3D enriched-environment requires allocation of more brain and sensory resources for cognitive/motor control during both tasks than 2D presentations. This is further evidence that 3D VR tasks using EEG may be a promising approach for performance enhancement and potential applications in clinical/rehabilitation settings. PMID:25448267

  6. EEG spectra, behavioral states and motor activity in rats exposed to acetylcholinesterase inhibitor chlorpyrifos.

    PubMed

    Timofeeva, Olga A; Gordon, Christopher J

    2002-06-01

    Exposure to organophosphates (OP) has been associated with sleep disorders such as insomnia and "excessive dreaming." The central mechanisms of these effects are not well understood. OPs inhibit acetylcholinesterase (AChE) activity, leading to a hyperactivity of the brain cholinergic systems that are involved in sleep regulation. We studied alterations in the EEG, behavioral states, motor activity and core temperature in rats orally administered with 10 or 40 mg/kg of the OP insecticide chlorpyrifos (CHP). Occipital EEG, motor activity and core temperature were recorded with telemetric transmitters. Behavioral sleep-wake states were visually scored. Both doses of CHP produced alterations of the EEG (decrease in power of sigma/beta and increase in slow theta and fast gamma bands) characteristic of arousal. EEG alterations were consistent with behavioral changes such as an increase in wakefulness and a decrease in sleep. Waking immobility was a prevalent behavior. We did not detect any overt signs of CHP toxicity, such as an abnormal posture or gait, suggesting that reduced locomotion can be a result of central effects of CHP (such as activation of cholinergic motor inhibitory system) rather than peripheral (such as an impairment of neuromuscular function). Changes in the EEG and behavior occurred independently of the decrease in core temperature. Increased wakefulness together with reduced motor activity after exposure to CHP seems to be a result of hyperactivity in brain cholinergic neuronal networks. PMID:12175464

  7. REM sleep EEG spectral analysis in patients with first-episode schizophrenia.

    PubMed

    Poulin, Julie; Stip, Emmanuel; Godbout, Roger

    2008-10-01

    The pathophysiology of schizophrenia includes abnormalities in subcortical-cortical transfer of information that can be studied using REM sleep EEG spectral analysis, a measure that reflects spontaneous and endogenous thalamocortical activity. We recorded 10 patients with first-episode schizophrenia and 30 healthy controls for two consecutive nights in a sleep laboratory, using a 10-electrode EEG montage. Sixty seconds of REM sleep EEG without artifact were analyzed using FFT spectral analysis. Absolute and relative spectral amplitudes of five frequency bands (delta, theta, alpha, beta1 and beta2) were extracted and compared between the two groups. Frequency bands with significant differences were correlated with BPRS positive and negative symptoms scores. Patients with schizophrenia showed lower relative alpha and higher relative beta2 spectral amplitudes compared to healthy controls over the averaged total scalp. Analysis using cortical regions showed lower relative alpha over frontal, central and temporal regions and higher relative beta2 over the occipital region. Absolute spectral amplitude was not different between groups for any given EEG band. However, absolute alpha activity correlated negatively with BPRS positive symptoms scores and correlated positively with negative symptoms scores. Since similar results have been reported following EEG spectral analysis during the waking state, we conclude that abnormalities of subcortical-cortical transfer of information in schizophrenia could be generated by mechanisms common to REM sleep and waking. PMID:18280502

  8. Use of electroencephalography (EEG) to assess CNS changes produced by pesticides with different modes of action: effects of permethrin, deltamethrin, fipronil, imidacloprid, carbaryl, and triadimefon.

    PubMed

    Freeborn, Danielle L; McDaniel, Katherine L; Moser, Virginia C; Herr, David W

    2015-01-15

    The electroencephalogram (EEG) is an apical measure, capable of detecting changes in brain neuronal activity produced by internal or external stimuli. We assessed whether pesticides with different modes of action produced different changes in the EEG of adult male Long-Evans rats. The EEG was recorded using two montages (visual cortex referenced to the cerebellum and to the frontal cortex) in unrestrained rats at the time of peak behavioral effects. Pesticides included: permethrin and deltamethrin (Type I and Type II pyrethroids; 2 h), fipronil (single and repeated doses; phenylpyrazole; 6 h), imidacloprid (neonicotinoid; 2 h), carbaryl (carbamate; 0.5 h), and triadimefon (triazole; 1 h), using dosages that produced approximately an ED30 or an ED50-ED80 change in motor activity. Permethrin (43, 100 mg/kg) increased amplitudes or areas (delta, alpha, or gamma bands) in the EEG. Deltamethrin (2.5, 5.5 mg/kg) reduced the amplitudes or areas of the delta, theta, alpha, beta, and gamma bands, but the changes were not dose-related. A single treatment with fipronil (25, 50 mg/kg, but not 5, 10 mg/kg) decreased gamma band area. Additional changes in the delta, theta, and gamma bands were observed when fipronil (5, 10 mg/kg) was administered for 14 days. Imidacloprid (50, 100 mg/kg) did not alter the EEG. Carbaryl (10, 50 mg/kg) decreased theta area, and decreased delta and increased beta frequency. Triadimefon (75, 150 mg/kg) produced minimal changes in the EEG. The results show that the EEG is affected differently by approximately equipotent doses of pesticides with different modes of action. PMID:25481984

  9. Dry EEG Electrodes

    PubMed Central

    Lopez-Gordo, M. A.; Sanchez-Morillo, D.; Valle, F. Pelayo

    2014-01-01

    Electroencephalography (EEG) emerged in the second decade of the 20th century as a technique for recording the neurophysiological response. Since then, there has been little variation in the physical principles that sustain the signal acquisition probes, otherwise called electrodes. Currently, new advances in technology have brought new unexpected fields of applications apart from the clinical, for which new aspects such as usability and gel-free operation are first order priorities. Thanks to new advances in materials and integrated electronic systems technologies, a new generation of dry electrodes has been developed to fulfill the need. In this manuscript, we review current approaches to develop dry EEG electrodes for clinical and other applications, including information about measurement methods and evaluation reports. We conclude that, although a broad and non-homogeneous diversity of approaches has been evaluated without a consensus in procedures and methodology, their performances are not far from those obtained with wet electrodes, which are considered the gold standard, thus enabling the former to be a useful tool in a variety of novel applications. PMID:25046013

  10. Endotoxin enhances EEG alpha and beta power in human sleep.

    PubMed

    Trachsel, L; Schreiber, W; Holsboer, F; Pollmächer, T

    1994-03-01

    Endotoxin, a lipopolysaccharide (0.4 or 0.8 ng/kg body weight), was injected at 1900 hours in 17 healthy men in a single-blind, placebo-controlled experiment. The administration was followed by a 4-hour period of quiet wakefulness in bed (light intensity < 200 lux). Unlimited sleep was allowed after 2300 hours (lights off) until the next morning. The electroencephalogram (EEG), electromyogram, electrooculogram, electrocardiogram and rectal temperature were recorded throughout the experimental session. Standard sleep stages were assessed, and the EEG was submitted to a state-specific, serial spectral analysis. Endotoxin administration induced a rise of body temperature and heart rate, which started approximately 2 hours after the injection and persisted through most of the sleep period. Sleep latency remained unchanged, whereas rapid eye movement (REM) sleep latency increased from 60.3 to 89.0 minutes (paired t test; p = 0.06) compared to control values. Stage 2 sleep was elevated from 45.5 to 49.0% of time in bed (p < 0.05), and total nonrapid eye movement (NREM) sleep from 64.2 to 69.1% (p < 0.05). No significant change could be observed in slow-wave sleep (SWS, stages 3 and 4). During the first 4 hours of the sleep period, NREM sleep EEG spectral power was distinctly and markedly increased between 8 and 12 Hz (alpha) and 15 and 20 Hz (beta) (p < 0.05), whereas at the same time EEG power between 1 and 8 Hz (delta, theta) was not significantly changed. We conclude that in humans the primary host response induced by endotoxin initially suppresses REM sleep and increases stage 2 NREM sleep, but does not affect SWS. No clear modification of sleep EEG delta activity could be observed after endotoxin injection, despite marked endocrinological and physiological changes such as the elevation of body temperature. Numerous factors related to the human primary host response may be responsible for the EEG intensification of the alpha and beta range. PMID:8036367

  11. Separating cognitive processes with principal components analysis of EEG time-frequency distributions

    NASA Astrophysics Data System (ADS)

    Bernat, Edward M.; Nelson, Lindsay D.; Holroyd, Clay B.; Gehring, William J.; Patrick, Christopher J.

    2008-08-01

    Measurement of EEG event-related potential (ERP) data has been most commonly undertaken in the time-domain, which can be complicated to interpret when separable activity overlaps in time. When the overlapping activity has distinct frequency characteristics, however, time-frequency (TF) signal processing techniques can be useful. The current report utilized ERP data from a cognitive task producing typical feedback-related negativity (FRN) and P300 ERP components which overlap in time. TF transforms were computed using the binomial reduced interference distribution (RID), and the resulting TF activity was then characterized using principal components analysis (PCA). Consistent with previous work, results indicate that the FRN was more related to theta activity (3-7 Hz) and P300 more to delta activity (below 3 Hz). At the same time, both time-domain measures were shown to be mixtures of TF theta and delta activity, highlighting the difficulties with overlapping activity. The TF theta and delta measures, on the other hand, were largely independent from each other, but also independently indexed the feedback stimulus parameters investigated. Results support the view that TF decomposition can greatly improve separation of overlapping EEG/ERP activity relevant to cognitive models of performance monitoring.

  12. Spectral and brain mapping analysis of EEG based on Pwelch in schizophrenic patients

    NASA Astrophysics Data System (ADS)

    Akbar, Y.; Khotimah, S. N.; Haryanto, F.

    2016-03-01

    The aim of this study is to investigate and analyze the differences of power spectral distribution in various frequency bands between healthy subjects and schizophrenic patients. Subjects in this study were 8 people consisting of 4 schizophrenic patients and 4 healthy subjects. Subjects were recorded from 12 electrodes with Electroencephalography (EEG). EEG signals were recorded during a resting eye-closed state for 4-6 minutes. Data were extracted and analyzed by centering and filtering, then performed using Welch Periodogram technique for the spectral estimation with a Hamming window. The results of this study showed that delta power spectral in schizophrenic patients increased ten times from healthy subjects; theta power spectral in schizophrenic patients increased three times from healthy subjects; alpha power spectral in schizophrenic patients decreased with an increase of one third of healthy subjects. These results were confirmed by Kolmogorov-Smirnov test showing there were significant differences between schizophrenic and healthy subjects on delta, theta and alpha brain wave. Based on the results of Brain Mapping analysis showed that there was significant increasing in the activity of delta waves and theta waves in frontal lobe of schizophrenics, whereas the alpha waves indicated a decrease in the occipital lobe in all schizophrenic patients.

  13. EEG Recording and Analysis for Sleep Research

    PubMed Central

    Campbell, Ian G.

    2010-01-01

    The electroencephalogram (EEG) is the most common tool used in sleep research. This unit describes the methods for recording and analyzing the EEG. Detailed protocols describe recorder calibration, electrode application, EEG recording, and computer EEG analysis with power spectral analysis. Computer digitization of an analog EEG signal is discussed, along with EEG filtering and the parameters of fast Fourier transform (FFT) power spectral analysis. Sample data are provided for a typical night's analysis of EEG during NREM (non-REM) and REM sleep. PMID:19802813

  14. The EEG measurement technique under exercising.

    PubMed

    Hosaka, Naoya; Tanaka, Junya; Koyama, Akira; Magatani, Kazushige

    2006-01-01

    Our purpose of the research is a development of the detecting method of EEG under exercising. Usually, measuring EEG is done in the quiet state. In case of the measuring EEG under exercising, a movement of the body causes vibration of electrodes and artifact for the EEG. Therefore, generally detection of the EEG under exercising is said to be difficult. So, we developed the measuring method of EEG under exercising by using algorithm that we designed. Five normal subjects were tested with our method, and EEG without artifact was able to be measured in all cases. PMID:17945632

  15. EEG recording and analysis for sleep research.

    PubMed

    Campbell, Ian G

    2009-10-01

    The electroencephalogram (EEG) is the most common tool used in sleep research. This unit describes the methods for recording and analyzing the EEG. Detailed protocols describe recorder calibration, electrode application, EEG recording, and computer EEG analysis with power spectral analysis. Computer digitization of an analog EEG signal is discussed, along with EEG filtering and the parameters of fast Fourier transform (FFT) power spectral analysis. Sample data are provided for a typical night's analysis of EEG during NREM (non-REM) and REM sleep. PMID:19802813

  16. Combined transcranial alternating current stimulation and continuous theta burst stimulation: a novel approach for neuroplasticity induction.

    PubMed

    Goldsworthy, Mitchell R; Vallence, Ann-Maree; Yang, Ruiting; Pitcher, Julia B; Ridding, Michael C

    2016-02-01

    Non-invasive brain stimulation can induce functionally relevant plasticity in the human cortex, making it potentially useful as a therapeutic tool. However, the induced changes are highly variable between individuals, potentially limiting research and clinical utility. One factor that might contribute to this variability is the level of cortical inhibition at the time of stimulation. The alpha rhythm (~ 8-13 Hz) recorded with electroencephalography (EEG) is thought to reflect pulsatile cortical inhibition; therefore, targeting non-invasive brain stimulation to particular phases of the alpha rhythm may provide an approach to enhance plasticity induction. Transcranial alternating current stimulation (tACS) has been shown to entrain cortical oscillations in a frequency-specific manner. We investigated whether the neuroplastic response to continuous theta burst stimulation (cTBS) was enhanced by timing bursts of stimuli to the peak or the trough of a tACS-imposed alpha rhythm. While motor evoked potentials (MEPs) were unaffected when cTBS was applied in-phase with the peak of the tACS-imposed oscillation, MEP depression was enhanced when cTBS was applied in-phase with the trough. This enhanced MEP depression was dependent on the individual peak frequency of the endogenous alpha rhythm recorded with EEG prior to stimulation, and was strongest in those participants classified as non-responders to standard cTBS. These findings suggest that tACS may be used in combination with cTBS to enhance the plasticity response. Furthermore, the peak frequency of endogenous alpha, as measured with EEG, may be used as a simple marker to pre-select those individuals likely to benefit from this approach. PMID:26663460

  17. Long-range neural synchronization supports fast and efficient reading: EEG correlates of processing expected words in sentences

    PubMed Central

    Molinaro, Nicola; Barraza, Paulo; Carreiras, Manuel

    2013-01-01

    Word reading is heavily influenced by the information provided by previous context. In this study, we analyzed the neurophysiological bases of sentence reading through the EEG activity elicited during reading the same word embedded in differently constraining contexts: a) a low-constraining context; b) a high-constraining semantic compositional context; c) a high-constraining collocational context in which the item was in final position of a multi-word fixed-order expression. Cloze-probability of the two high-constraining contexts was equated. Before reading the target word we observed increased EEG gamma phase synchronization for the high-constraining compositional context and increased EEG theta synchronization for the collocational context (both compared to the low-constraining condition). After reading the target word we observed increased frontal positive EEG evoked activity (~220 ms) for the high-constraining compositional context but an even earlier (~120 ms) effect for the high-constraining collocational condition that was distributed over the scalp. A positive correlation was found only between the increased theta synchronization and the early EEG effect for the high-constraining collocational condition. Results indicate that long-range frontal-occipital interactions in the theta band - indexing working memory operations - support early visual-orthographic analysis of an incoming stimulus (such as the expected word); gamma-phase synchronization better represents binding operations between feed-forward activation and matching feedback. These data suggest that internal linguistic knowledge stored in long-term memory - if unambiguously pre-activated - supports the low-level perceptual processes involved in reading. PMID:23357072

  18. Blinded, multi-center validation of EEG and rating scales in identifying ADHD within a clinical sample.

    PubMed

    Snyder, Steven M; Quintana, Humberto; Sexson, Sandra B; Knott, Peter; Haque, A F M; Reynolds, Donald A

    2008-06-30

    Previous validation studies of attention deficit/hyperactivity disorder (ADHD) assessment by rating scales or EEG have provided Class-IV evidence per standards of the American Academy of Neurology. To investigate clinical applications, we collected Class-I evidence, namely from a blinded, prospective, multi-center study of a representative clinical sample categorized with a clinical standard. Participating males (101) and females (58) aged 6 to 18 had presented to one of four psychiatric and pediatric clinics because of the suspected presence of attention and behavior problems. DSM-IV diagnosis was performed by clinicians assisted with a semi-structured clinical interview. EEG (theta/beta ratio) and ratings scales (Conners Rating Scales-Revised and ADHD Rating Scales-IV) were collected separately in a blinded protocol. ADHD prevalence in the clinical sample was 61%, whereas the remainder had other childhood/adolescent disorders or no diagnosis. Comorbidities were observed in 66% of ADHD patients and included mood, anxiety, disruptive, and learning disorders at rates similar to previous findings. EEG identified ADHD with 87% sensitivity and 94% specificity. Rating scales provided sensitivity of 38-79% and specificity of 13-61%. While parent or teacher identification of ADHD by rating scales was reduced in accuracy when applied to a diverse clinical sample, theta/beta ratio changes remained consistent with the clinician's ADHD diagnosis. Because theta/beta ratio changes do not identify comorbidities or alternative diagnoses, the results do not support the use of EEG as a stand-alone diagnostic and should be limited to the interpretation that EEG may complement a clinical evaluation for ADHD. PMID:18423617

  19. A review of EEG and MEG for brainnetome research.

    PubMed

    Zhang, Xin; Lei, Xu; Wu, Ting; Jiang, Tianzi

    2014-04-01

    The majority of brain activities are performed by functionally integrating separate regions of the brain. Therefore, the synchronous operation of the brain's multiple regions or neuronal assemblies can be represented as a network with nodes that are interconnected by links. Because of the complexity of brain interactions and their varying effects at different levels of complexity, one of the corresponding authors of this paper recently proposed the brainnetome as a new -ome to explore and integrate the brain network at different scales. Because electroencephalography (EEG) and magnetoencephalography (MEG) are noninvasive and have outstanding temporal resolution and because they are the primary clinical techniques used to capture the dynamics of neuronal connections, they lend themselves to the analysis of the neural networks comprising the brainnetome. Because of EEG/MEG's applicability to brainnetome analyses, the aim of this review is to identify the procedures that can be used to form a network using EEG/MEG data in sensor or source space and to promote EEG/MEG network analysis for either neuroscience or clinical applications. To accomplish this aim, we show the relationship of the brainnetome to brain networks at the macroscale and provide a systematic review of network construction using EEG and MEG. Some potential applications of the EEG/MEG brainnetome are to use newly developed methods to associate the properties of a brainnetome with indices of cognition or disease conditions. Associations based on EEG/MEG brainnetome analysis may improve the comprehension of the functioning of the brain in neuroscience research or the recognition of abnormal patterns in neurological disease. PMID:24624229

  20. Gamma- and theta-band synchronization during semantic priming reflect local and long-range lexical-semantic networks

    PubMed Central

    Mellem, Monika S.; Friedman, Rhonda B.; Medvedev, Andrei V.

    2013-01-01

    Anterior and posterior brain areas are involved in the storage and retrieval of semantic representations, but it is not known how these areas dynamically interact during semantic processing. We hypothesized that long-range theta-band coherence would reflect coupling of these areas and examined the oscillatory dynamics of lexical-semantic processing using a semantic priming paradigm with a delayed letter-search task while recording subjects' EEG. Time-frequency analysis revealed facilitation of semantic processing for Related compared to Unrelated conditions, which resulted in a reduced N400 and reduced gamma power from 150-450 ms. Moreover, we observed greater anterior-posterior theta coherence for Unrelated compared to Related conditions over the time windows 150-425 ms and 600-900 ms. We suggest that while gamma power reflects activation of local functional networks supporting semantic representations, theta coherence indicates dynamic coupling of anterior and posterior areas for retrieval and post-retrieval processing and possibly an interaction between semantic relatedness and working memory. PMID:24135132

  1. Exercise and DHA prevent the negative effects of hypoxia on EEG and nerve conduction velocity.

    PubMed

    Erken, Haydar Ali; Erken, Gülten; Colak, Rıdvan; Genç, Osman

    2013-12-01

    It is known that hypoxia has a negative effect on nervous system functions, but exercise and DHA (docosahexaenoic acid) have positive effect. In this study, it was investigated whether exercise and/or DHA can prevent the effects of hypoxia on EEG and nerve conduction velocity (NCV). 35 adult Wistar albino male rats were divided into five groups (n=7): control (C), hypoxia (H), hypoxia and exercise (HE), hypoxia and DHA (HD), and hypoxia and exercise and DHA (HED) groups. During the 28-day hypoxia exposure, the HE and HED groups of rats were exercised (0% incline, 30 m/min speed, 20 min/day, 5 days a week). In addition, DHA (36 mg/kg/day) was given by oral gavage to rats in the HD and HED groups. While EEG records were taken before and after the experimental period, NCV records were taken after the experimental period from anesthetized rats. Data were analyzed by paired t-test, one-way ANOVA, and post hoc Tukey test. In this study, it was shown that exposure to hypoxia decreased theta activity and NCV, but exercise and DHA reduced the delta activity, while theta, alpha, beta activities, and NCV were increased. These results have shown that the effects of hypoxia exposure on EEG and NCV can be prevented by exercise and/or DHA. PMID:24377343

  2. From lab to field conditions: a pilot study on EEG methodology in applied sports sciences.

    PubMed

    Reinecke, Kirsten; Cordes, Marjolijn; Lerch, Christiane; Koutsandréou, Flora; Schubert, Michael; Weiss, Michael; Baumeister, Jochen

    2011-12-01

    Although neurophysiological aspects have become more important in sports and exercise sciences in the last years, it was not possible to measure cortical activity during performance outside a laboratory due to equipment limits or movement artifacts in particular. With this pilot study we want to investigate whether Electroencephalography (EEG) data obtained in a laboratory golf putting performance differ from a suitable putting task under field conditions. Therefore, parameters of the working memory (frontal Theta and parietal Alpha 2 power) were recorded during these two conditions. Statistical calculations demonstrated a significant difference only for Theta power at F4 regarding the two putting conditions "field" and "laboratory". These findings support the idea that brain activity patterns obtained under laboratory conditions are comparable but not equivalent to those obtained under field conditions. Additionally, we were able to show that the EEG methodology seems to be a reliable tool to observe brain activity under field conditions in a golf putting task. However, considering the still existing problems of movement artifacts during EEG measurements, eligible sports and exercises are limited to those being relatively motionless during execution. Further studies are needed to confirm these pilot results. PMID:21800184

  3. EEG oscillations during sleep and dream recall: state- or trait-like individual differences?

    PubMed

    Scarpelli, Serena; D'Atri, Aurora; Gorgoni, Maurizio; Ferrara, Michele; De Gennaro, Luigi

    2015-01-01

    Dreaming represents a peculiar form of cognitive activity during sleep. On the basis of the well-known relationship between sleep and memory, there has been a growing interest in the predictive role of human brain activity during sleep on dream recall. Neuroimaging studies indicate that rapid eye movement (REM) sleep is characterized by limbic activation and prefrontal cortex deactivation. This pattern could explain the presence of emotional contents in dream reports. Furthermore, the morphoanatomical measures of amygdala and hippocampus predict some features of dream contents (bizarreness, vividness, and emotional load). More relevant for a general view of dreaming mechanisms, empirical data from neuropsychological and electroencephalographic (EEG) studies support the hypothesis that there is a sort of continuity between the neurophysiological mechanisms of encoding and retrieval of episodic memories across sleep and wakefulness. A notable overlap between the electrophysiological mechanisms underlying emotional memory formation and some peculiar EEG features of REM sleep has been suggested. In particular, theta (5-8 Hz) EEG oscillations on frontal regions in the pre-awakening sleep are predictive of dream recall, which parallels the predictive relation during wakefulness between theta activity and successful retrieval of episodic memory. Although some observations support an interpretation more in terms of an intraindividual than interindividual mechanism, the existing empirical evidence still precludes from definitely disentangling if this relation is explained by state- or trait-like differences. PMID:25999908

  4. Quantitative EEG is an objective, sensitive, and reliable indicator of transient anesthetic effects during Wada tests.

    PubMed

    Tu, Bin; Assassi, Nadege J; Bazil, Carl W; Hamberger, Marla J; Hirsch, Lawrence J

    2015-04-01

    The intracarotid amobarbital or Wada procedure is a component of the presurgical evaluation for refractory epilepsy, during which monitoring the onset and offset of transient anesthetic effects is critical. In this study, the authors characterized changes of 8 quantitative measures during 26 Wada tests, which included alpha, beta, theta, and delta powers, alpha/delta power ratio, beta/delta power ratio, median amplitude-integrated EEG, and 90% spectral edge frequency (SEF90), and correlated them with contralateral hemiplegia. The authors found that on the side of injection, delta and theta powers, alpha/delta power ratio, beta/delta power ratio, and SEF90 peaked within 1 minute after injection of 70 to 150 mg amobarbital or 4 to 7 mg methohexital. When contralateral arm strength returned to 3/5, delta power and amplitude-integrated EEG decayed on average 24% and 19%, respectively, for amobarbital, similar to that of methohexital (27% and 18%). Because delta power resolution most closely mirrored that of the hemiplegia and amplitude-integrated EEG had the highest signal/noise ratio, these quantitative values appear to be the best measures for decay of anesthetic effects. Increase in alpha power persisted longest, and therefore may be the best measure of late residual anesthetic effects. PMID:25580802

  5. Age-dependent electroencephalogram (EEG) patterns during sevoflurane general anesthesia in infants

    PubMed Central

    2015-01-01

    Electroencephalogram (EEG) approaches may provide important information about developmental changes in brain-state dynamics during general anesthesia. We used multi-electrode EEG, analyzed with multitaper spectral methods and video recording of body movement to characterize the spatio-temporal dynamics of brain activity in 36 infants 0–6 months old when awake, and during maintenance of and emergence from sevoflurane general anesthesia. During maintenance: (1) slow-delta oscillations were present in all ages; (2) theta and alpha oscillations emerged around 4 months; (3) unlike adults, all infants lacked frontal alpha predominance and coherence. Alpha power was greatest during maintenance, compared to awake and emergence in infants at 4–6 months. During emergence, theta and alpha power decreased with decreasing sevoflurane concentration in infants at 4–6 months. These EEG dynamic differences are likely due to developmental factors including regional differences in synaptogenesis, glucose metabolism, and myelination across the cortex. We demonstrate the need to apply age-adjusted analytic approaches to develop neurophysiologic-based strategies for pediatric anesthetic state monitoring. DOI: http://dx.doi.org/10.7554/eLife.06513.001 PMID:26102526

  6. EEG oscillations during sleep and dream recall: state- or trait-like individual differences?

    PubMed Central

    Scarpelli, Serena; D’Atri, Aurora; Gorgoni, Maurizio; Ferrara, Michele; De Gennaro, Luigi

    2015-01-01

    Dreaming represents a peculiar form of cognitive activity during sleep. On the basis of the well-known relationship between sleep and memory, there has been a growing interest in the predictive role of human brain activity during sleep on dream recall. Neuroimaging studies indicate that rapid eye movement (REM) sleep is characterized by limbic activation and prefrontal cortex deactivation. This pattern could explain the presence of emotional contents in dream reports. Furthermore, the morphoanatomical measures of amygdala and hippocampus predict some features of dream contents (bizarreness, vividness, and emotional load). More relevant for a general view of dreaming mechanisms, empirical data from neuropsychological and electroencephalographic (EEG) studies support the hypothesis that there is a sort of continuity between the neurophysiological mechanisms of encoding and retrieval of episodic memories across sleep and wakefulness. A notable overlap between the electrophysiological mechanisms underlying emotional memory formation and some peculiar EEG features of REM sleep has been suggested. In particular, theta (5–8 Hz) EEG oscillations on frontal regions in the pre-awakening sleep are predictive of dream recall, which parallels the predictive relation during wakefulness between theta activity and successful retrieval of episodic memory. Although some observations support an interpretation more in terms of an intraindividual than interindividual mechanism, the existing empirical evidence still precludes from definitely disentangling if this relation is explained by state- or trait-like differences. PMID:25999908

  7. Test-retest reliability of a single-channel, wireless EEG system.

    PubMed

    Rogers, Jeffrey M; Johnstone, Stuart J; Aminov, Anna; Donnelly, James; Wilson, Peter H

    2016-08-01

    Recording systems to acquire electroencephalogram (EEG) data are traditionally lab-based. However, there are shortcomings to this method, and the ease of use and portability of emerging wireless EEG technologies offer a promising alternative. A previous validity study demonstrated data derived from a single-channel, wireless system (NeuroSky ThinkGear, San Jose, California) is comparable to EEG recorded from conventional lab-based equipment. The current study evaluated the reliability of this portable system using test-retest and reliable change analyses. Relative power (RP) of delta, theta, alpha, and beta frequency bands was derived from EEG data obtained from a single electrode over FP1 in 19 healthy youth (10-17years old), 21 healthy adults (18-28years old), and 19 healthy older adults (55-79years old), during eyes-open, eyes-closed, auditory oddball, and visual n-back conditions. Intra-class correlations (ICCs) and Coefficients of Repeatability (CRs) were calculated from RP data re-collected one-day, one-week, and one-month later. Participants' levels of mood and attention were consistent across sessions. Eyes-closed resting EEG measurements using the portable device were reproducible (ICCs 0.76-0.85) at short and longer retest intervals in all three participant age groups. While still of at least fair reliability (ICCs 0.57-0.85), EEG obtained during eyes-open paradigms was less stable, and any change observed over time during these testing conditions can be interpreted utilizing the CR values provided. Combined with existing validity data, these findings encourage application of the portable EEG system for the study of brain function. PMID:27318008

  8. EEG neurofeedback effects in the treatment of adolescent anorexia nervosa.

    PubMed

    Lackner, Nina; Unterrainer, Human-Friedrich; Skliris, Dimitris; Shaheen, Sandra; Dunitz-Scheer, Marguerite; Wood, Guilherme; Scheer, Peter Jaron Zwi; Wallner-Liebmann, Sandra Johanna; Neuper, Christa

    2016-01-01

    A pre-post design including 22 females was used to evaluate the effectiveness of neurofeedback in the treatment of adolescent anorexia nervosa. Resting EEG measures and a psychological test-battery assessing eating behavior traits, clinical symptoms, emotionality, and mood were obtained. While both the experimental (n = 10) and control group (n = 12) received their usual maintenance treatment, the experimental group received 10 sessions of individual alpha frequency training over a period of 5 weeks as additional treatment. Significant training effects were shown in eating behavior traits, emotion regulation, and in relative theta power in the eyes closed condition. Although the results are limited due to the small sample size, these are the first empirical data demonstrating the benefits of neurofeedback as a treatment adjunct in individuals with anorexia nervosa. PMID:27027700

  9. [Age Effect on Relationship Between Intelligence and EEG Characteristics].

    PubMed

    Belousova, L V; Razumnikova, O M; Volf, N V

    2015-01-01

    Age effect on EEG correlates of psychometrically estimated intelligence (IQ) in the younger (N = 132, age mean = 21.8 ± 3.1) and elder groups (N = 84, age mean = 64.1 ± 6.6) was studied. Regression analysis of individual alpha peak frequency's meanings, total power of biopotentials in eight frequency ranges indicated that a decrease of IQ correlates with age increase, or with decrease of individual alpha peak frequency with positive contribution of the alpha3 power and negative--of the beta1. High meaning of the alpha3 power and low meaning of the beta1 are the predictors of high intelligence in the younger group. High intelligence in the elder group is accompanied by a trend to increase of the individual alpha peak frequency and to decrease of the theta/beta1 power ration together with significant decrease of the alpha3/alpha2 power ratio. PMID:26841657

  10. High-resolution EEG (HR-EEG) and magnetoencephalography (MEG).

    PubMed

    Gavaret, M; Maillard, L; Jung, J

    2015-03-01

    High-resolution EEG (HR-EEG) and magnetoencephalography (MEG) allow the recording of spontaneous or evoked electromagnetic brain activity with excellent temporal resolution. Data must be recorded with high temporal resolution (sampling rate) and high spatial resolution (number of channels). Data analyses are based on several steps with selection of electromagnetic signals, elaboration of a head model and use of algorithms in order to solve the inverse problem. Due to considerable technical advances in spatial resolution, these tools now represent real methods of ElectroMagnetic Source Imaging. HR-EEG and MEG constitute non-invasive and complementary examinations, characterized by distinct sensitivities according to the location and orientation of intracerebral generators. In the presurgical assessment of drug-resistant partial epilepsies, HR-EEG and MEG can characterize and localize interictal activities and thus the irritative zone. HR-EEG and MEG often yield significant additional data that are complementary to other presurgical investigations and particularly relevant in MRI-negative cases. Currently, the determination of the epileptogenic zone and functional brain mapping remain rather less well-validated indications. In France, in 2014, HR-EEG is now part of standard clinical investigation of epilepsy, while MEG remains a research technique. PMID:25648821

  11. The electrophysiological correlates of the working memory subcomponents: evidence from high-density EEG and coherence analysis.

    PubMed

    Rutar Gorišek, Veronika; Belič, Aleš; Manouilidou, Christina; Koritnik, Blaž; Repovš, Grega; Bon, Jure; Žibert, Janez; Zidar, Janez

    2015-12-01

    Synchronization between prefrontal (executive) and posterior (association) cortices seems a plausible mechanism for temporary maintenance of information. However, while EEG studies reported involvement of (pre)frontal midline structures in synchronization, functional neuroimaging elucidated the importance of lateral prefrontal cortex (PFC) in working memory (WM). Verbal and spatial WM rely on lateralized subsystems (phonological loop and visuospatial sketchpad, respectively), yet only trends for hemispheric dissociation of networks supporting rehearsal of verbal and spatial information were identified by EEG. As oscillatory activity is WM load dependent, we applied an individually tailored submaximal load for verbal (V) and spatial (S) task to enhance synchronization in the relevant functional networks. To map these networks, we used high-density EEG and coherence analysis. Our results imply that the synchronized activity is limited to highly specialized areas that correspond well with the areas identified by functional neuroimaging. In both V and S task, two independent networks of theta synchronization involving dorsolateral PFC of each hemisphere were revealed. In V task, left prefrontal and left parietal areas were functionally coupled in gamma frequencies. Theta synchronization thus provides the necessary interface for storage and manipulation of information, while left-lateralized gamma synchronization could represent the EEG correlate of the phonological loop. PMID:26209929

  12. Serum anticholinergic activity and cerebral cholinergic dysfunction: An EEG study in frail elderly with and without delirium

    PubMed Central

    Thomas, Christine; Hestermann, Ute; Kopitz, Juergen; Plaschke, Konstanze; Oster, Peter; Driessen, Martin; Mundt, Christoph; Weisbrod, Matthias

    2008-01-01

    Background Delirium increases morbidity, mortality and healthcare costs especially in the elderly. Serum anticholinergic activity (SAA) is a suggested biomarker for anticholinergic burden and delirium risk, but the association with cerebral cholinergic function remains unclear. To clarify this relationship, we prospectively assessed the correlation of SAA with quantitative electroencephalography (qEEG) power, delirium occurrence, functional and cognitive measures in a cross-sectional sample of acutely hospitalized elderly (> 80 y) with high dementia and delirium prevalence. Methods 61 consecutively admitted patients over 80 years underwent an extensive clinical and neuropsychological evaluation. SAA was determined by using radio receptor assay as developed by Tune, and standard as well as quantitative EEGs were obtained. Results 15 patients had dementia with additional delirium (DD) according to expert consensus using DSM-IV criteria, 31 suffered from dementia without delirium (D), 15 were cognitively unimpaired (CU). SAA was clearly detectable in all patients but one (mean 10.9 ± 7.1 pmol/ml), but was not associated with expert-panel approved delirium diagnosis or cognitive functions. Delirium-associated EEG abnormalities included occipital slowing, peak power and alpha decrease, delta and theta power increase and slow wave ratio increase during active delirious states. EEG measures correlated significantly with cognitive performance and delirium severity, but not with SAA levels. Conclusion In elderly with acute disease, EEG parameters reliable indicate delirium, but SAA does not seem to reflect cerebral cholinergic function as measured by EEG and is not related to delirium diagnosis. PMID:18793418

  13. EEG oscillatory states as neuro-phenomenology of consciousness as revealed from patients in vegetative and minimally conscious states.

    PubMed

    Fingelkurts, Alexander A; Fingelkurts, Andrew A; Bagnato, Sergio; Boccagni, Cristina; Galardi, Giuseppe

    2012-03-01

    The value of resting electroencephalogram (EEG) in revealing neural constitutes of consciousness (NCC) was examined. We quantified the dynamic repertoire, duration and oscillatory type of EEG microstates in eyes-closed rest in relation to the degree of expression of clinical self-consciousness. For NCC a model was suggested that contrasted normal, severely disturbed state of consciousness and state without consciousness. Patients with disorders of consciousness were used. Results suggested that the repertoire, duration and oscillatory type of EEG microstates in resting condition quantitatively related to the level of consciousness expression in brain-damaged patients and healthy-conscious subjects. Specifically, results demonstrated that (a) decreased number of EEG microstate types was associated with altered states of consciousness, (b) unawareness was associated with the lack of diversity in EEG alpha-rhythmic microstates, and (c) the probability for the occurrence and duration of delta-, theta- and slow-alpha-rhythmic microstates were associated with unawareness, whereas the probability for the occurrence and duration of fast-alpha-rhythmic microstates were associated with consciousness. In conclusion, resting EEG has a potential value in revealing NCC. This work may have implications for clinical care and medical-legal decisions in patients with disorders of consciousness. PMID:22054641

  14. Hippocampo-cerebellar theta band phase synchrony in rabbits.

    PubMed

    Wikgren, J; Nokia, M S; Penttonen, M

    2010-02-17

    Hippocampal functioning, in the form of theta band oscillation, has been shown to modulate and predict cerebellar learning of which rabbit eyeblink conditioning is perhaps the most well-known example. The contribution of hippocampal neural activity to cerebellar learning is only possible if there is a functional connection between the two structures. Here, in the context of trace eyeblink conditioning, we show (1) that, in addition to the hippocampus, prominent theta oscillation also occurs in the cerebellum, and (2) that cerebellar theta oscillation is synchronized with that in the hippocampus. Further, the degree of phase synchrony (PS) increased both as a response to the conditioning stimuli and as a function of the relative power of hippocampal theta oscillation. However, the degree of PS did not change as a function of either training or learning nor did it predict learning rate as the hippocampal theta ratio did. Nevertheless, theta band synchronization might reflect the formation of transient neural assemblies between the hippocampus and the cerebellum. These findings help us understand how hippocampal function can affect eyeblink conditioning, during which the critical plasticity occurs in the cerebellum. Future studies should examine cerebellar unit activity in relation to hippocampal theta oscillations in order to discover the detailed mechanisms of theta-paced neural activity. PMID:19945512

  15. EEG hemispheric asymmetry as a predictor and correlate of short-term response to clozapine treatment in schizophrenia.

    PubMed

    Knott, V; Labelle, A; Jones, B; Mahoney, C

    2000-07-01

    In search of early neuroleptic response predictors in schizophrenia, functional interhemispheric and intrahemispheric asymmetry indices, derived from spectrally analyzed resting electroencephalographic (EEG) activity, were examined in 17 schizophrenic patients prior to open label treatment with the atypical neuroleptic clozapine. Compared to EEG asymmetry indices derived from a normative data bank, patients exhibited significant interhemispheric (left greater than right) and intrahemispheric (anterior greater than posterior) deviations in delta, theta, alpha and beta frequency bands. Intrahemispheric indices were positively correlated with clinical ratings of positive symptoms and global psychopathology. Clozapine-induced improvements in positive and negative symptoms and global psychopathology symptom ratings were related to pretreatment intrahemispheric asymmetry only, with relationships varying with symptom, recording region and frequency band. The results are discussed in relation to the neurobiology of schizophrenia and the utility of EEG as an informative predictor of treatment response. PMID:10923202

  16. EEG Biofeedback as a Treatment for Substance Use Disorders: Review, Rating of Efficacy, and Recommendations for Further Research

    PubMed Central

    Cannon, Rex L.; Trudeau, David L.

    2008-01-01

    Electroencephalographic (EEG) biofeedback has been employed in substance use disorder (SUD) over the last three decades. The SUD is a complex series of disorders with frequent comorbidities and EEG abnormalities of several types. EEG biofeedback has been employed in conjunction with other therapies and may be useful in enhancing certain outcomes of therapy. Based on published clinical studies and employing efficacy criteria adapted by the Association for Applied Psychophysiology and Biofeedback and the International Society for Neurofeedback and Research, alpha theta training—either alone for alcoholism or in combination with beta training for stimulant and mixed substance abuse and combined with residential treatment programs, is probably efficacious. Considerations of further research design taking these factors into account are discussed and descriptions of contemporary research are given. PMID:18214670

  17. Mode and site of acupuncture modulation in the human brain: 3D (124-ch) EEG power spectrum mapping and source imaging.

    PubMed

    Chen, Andrew C N; Liu, Feng-Jun; Wang, Li; Arendt-Nielsen, Lars

    2006-02-15

    This study determined: (a) if acupuncture stimulation at a traditional site might modulate ongoing EEG as compared with stimulation of a control site; (b) if high-frequency vs. low-frequency stimulation could exert differential effects of acupuncture; (c) if the observed effects of acupuncture were specific to certain EEG bands; and (d) if the acupuncture effect could be isolated at a specific scalp field, with its putative underlying intracranial source. Twelve healthy male volunteers (age range 22-35) participated in two experimental sessions separated by 1 week, which involved transcutaneous acupoint stimulation at selected acupoint (Li 4, HeGu) vs. a mock point at the fourth interosseous muscle area on the left hand in high (HF: 100 Hz) vs. low-frequency (LF: 2 Hz) stimulation by counter-balanced order. 124-ch EEG data were used to analyze the Delta, Theta, Alpha-1, Alpha-2, Beta, and Gamma bands. The absolute EEG powers (muv2) at focal maxima across three stages (baseline, stimulation, post) were examined by two-way (condition, stage) repeated measures ANOVA. The activity of the Theta power significantly decreased (P = 0.02), compared with control during HF but not LF stimulation at acupoint stimulation, however, there was no study effect at the mock point. A decreased Theta EEG power was prominent at the frontal midline sites (FCz, Fz) and the contralateral right hemisphere front site (FCC2h). In contrast, the Theta power of low-frequency stimulation showed an increase from the baseline as those in both controlled mock point stimulations. The observed high-frequency acupoint stimulation effects of Theta EEG were only present during, but not after, simulation. The topographic Theta activity was tentatively identified to originate from the intracranial current source in cingulate cortex, likely ACC. It is likely that short-term cortical plasticity occurs during high-frequency but not low-frequency stimulation at the HeGu point, but not mock point. We suggest

  18. [EEG manifestations in metabolic encephalopathy].

    PubMed

    Lin, Chou-Ching K

    2005-09-01

    Normal brain function depends on normal neuronal metabolism, which is closely related to systemic homeostasis of metabolites, such as glucose, electrolytes, amino acids and ammonia. "Metabolic encephalopathy" indicates diffuse brain dysfunction caused by various systemic derangements. Electroencephalogram (EEG) is widely used to evaluate metabolic encephalopathy since 1937, when Berger first observed slow brain activity induced by hypoglycemia. EEG is most useful in differentiating organic from psychiatric conditions, identifying epileptogenicity, and providing information about the degree of cortical or subcortical dysfunction. In metabolic encephalopathy, EEG evolution generally correlates well with the severity of encephalopathy. However, EEG has little specificity in differentiating etiologies in metabolic encephalopathy. For example, though triphasic waves are most frequently mentioned in hepatic encephalopathy, they can also be seen in uremic encephalopathy, or even in aged psychiatric patients treated with lithium. Spike-and-waves may appear in hyper- or hypo-glycemia, uremic encephalopathy, or vitamin deficiencies, etc. Common principles of EEG changes in metabolic encephalopathy are (1) varied degrees of slowing, (2) assorted mixtures of epileptic discharge, (3) high incidence of triphasic waves, and (4), as a rule, reversibility after treatment of underlying causes. There are some exceptions to the above descriptions in specific metabolic disorders and EEG manifestations are highly individualized. PMID:16252619

  19. Ecological validity of neurofeedback: modulation of slow wave EEG enhances musical performance.

    PubMed

    Egner, Tobias; Gruzelier, John H

    2003-07-01

    Biofeedback-assisted modulation of electrocortical activity has been established to have intrinsic clinical benefits and has been shown to improve cognitive performance in healthy humans. In order to further investigate the pedagogic relevance of electroencephalograph (EEG) biofeedback (neurofeedback) for enhancing normal function, a series of investigations assessed the training's impact on an ecologically valid real-life behavioural performance measure: music performance under stressful conditions in conservatoire students. In a pilot study, single-blind expert ratings documented improvements in musical performance in a student group that received training on attention and relaxation related neurofeedback protocols, and improvements were highly correlated with learning to progressively raise theta (5-8 Hz) over alpha (8-11 Hz) band amplitudes. These findings were replicated in a second experiment where an alpha/theta training group displayed significant performance enhancement not found with other neurofeedback training protocols or in alternative interventions, including the widely applied Alexander technique. PMID:12824763

  20. Cross coherence independent component analysis in resting and action states EEG discrimination

    NASA Astrophysics Data System (ADS)

    Almurshedi, A.; Ismail, A. K.

    2014-11-01

    Cross Coherence time frequency transform and independent component analysis (ICA) method were used to analyse the electroencephalogram (EEG) signals in resting and action states during open and close eyes conditions. From the topographical scalp distributions of delta, theta, alpha, and beta power spectrum can clearly discriminate between the signal when the eyes were open or closed, but it was difficult to distinguish between resting and action states when the eyes were closed. In open eyes condition, the frontal area (Fp1, Fp2) was activated (higher power) in delta and theta bands whilst occipital (O1, O2) and partial (P3, P4, Pz) area of brain was activated alpha band in closed eyes condition. The cross coherence method of time frequency analysis is capable of discrimination between rest and action brain signals in closed eyes condition.

  1. Circadian cycle dependent EEG biomarkers of pathogenicity in adult mice following prenatal exposure to in utero inflammation

    PubMed Central

    Adler, Daniel A; Ammanuel, Simon; Lei, Jun; Dada, Tahani; Borbiev, Talaibek; Johnston, Michael.V.; Kadam, Shilpa.D.; Burd, Irina

    2014-01-01

    Intrauterine infection or inflammation in preterm neonates is a known risk for adverse neurological outcomes, including cognitive, motor and behavioral disabilities. Our previous data suggest that there is acute fetal brain inflammation in a mouse model of intrauterine exposure to lipopolysaccharides (LPS). We hypothesized that the in utero inflammation induced by LPS produces long-term EEG biomarkers of neurodegeneration in the exposed mice that could be determined by using continuous quantitative video-EEG-EMG analyses. A single LPS injection at E17 was performed in pregnant CD1 dams. Control dams were injected with same volumes of saline (LPS n=10, Control n=8). At postnatal age of P90-100, 24h synchronous video/EEG/EMG recordings were done using a tethered recording system and implanted subdural electrodes. Behavioral state scoring was performed blind to treatment group, on each 10 second EEG epochs using synchronous video, EMG and EEG trace signatures to generate individual hypnograms. Automated EEG power spectrums were analyzed for delta and theta-beta power ratios during wake vs. sleep cycles. Both control and LPS hypnograms showed an ultradian wake/sleep cycling. Since rodents are nocturnal animals, control mice showed the expected diurnal variation with significantly longer time spent in wake states during the dark cycle phase. In contrast, the LPS treated mice lost this circadian rhythm. Sleep microstructure also showed significant alteration in the LPS mice specifically during the dark cycle, caused by significantly longer average NREM cycle durations. No significance was found between treatment groups for the delta power data; however, significant activity dependent changes in theta-beta power ratios seen in controls were absent in the LPS-exposed mice. In conclusion, exposure to in utero inflammation in CD1 mice resulted in significantly altered sleep architecture as adults that were circadian cycle and activity state dependent. PMID:24954445

  2. Changes in EEG power spectra and behavioral states in rats exposed to the acetylcholinesterase inhibitor chlorpyrifos and muscarinic agonist oxotremorine.

    PubMed

    Timofeeva, O A; Gordon, C J

    2001-03-01

    Organophosphates (OPs) inhibit acetylcholinesterase (AChE) activity causing cholinergic stimulation in the central nervous system (CNS). Cholinergic systems are crucial in electroencephalogram (EEG) generation and regulation of behavior; however, little is known about how OP exposure affects the EEG and behavioral states. We recorded EEG, core temperature and motor activity before and after exposure to the OP pesticide chlorpyrifos (CHP) in adult female rats implanted with telemetric transmitters. The recording and reference electrodes were placed in the occipital and frontal bones, respectively. The animals received CHP, 25 mg/kg, p.o., or oxotremorine (OX), 0.2 mg/kg, s.c. CHP led to a significant increase in delta (0.1-3.5 Hz), slow theta (4-6.5 Hz), gamma 2 (35.5-50 Hz), reduction in fast theta (7-8.5 Hz), alpha/sigma (9-14 Hz), beta 1 (14.5-24 Hz), beta 2 (24.5-30 Hz) and gamma 1 (30.5-35 Hz) powers, slowing of peak frequencies in 1-9 Hz range, hypothermia and decrease in motor activity. The drop in 7-14 Hz was associated with cholinergic suppression of sleep spindles. Changes in behavioral state were characterized by dramatic diminution of sleep postures and exploring activity and prolongation of quiet waking. There was recovery in all bands in spite of continued inhibition of AChE activity [44,45] in rats exposed to CHP. OX-induced EEG and behavioral alterations were similar to CHP except there was no increase in delta and the onset and recovery were more rapid. We did not find a correlation between the EEG and core temperature alterations. Overall, changes in EEG (except in delta band) and behavior following CHP were attributable to muscarinic stimulation. Cortical arousal together with increased quiet waking and decreased sleep after CHP occurred independently from inhibition of motor activity and lowering of core temperature. PMID:11223004

  3. A systematic review of the neurophysiology of mindfulness on EEG oscillations.

    PubMed

    Lomas, Tim; Ivtzan, Itai; Fu, Cynthia H Y

    2015-10-01

    Mindfulness meditation has been purported to be a beneficial practice for wellbeing. It would therefore be expected that the neurophysiology of mindfulness would reflect this impact on wellbeing. However, investigations of the effects of mindfulness have generated mixed reports of increases, decreases, as well as no differences in EEG oscillations in comparison with a resting state and a variety of tasks. We have performed a systematic review of EEG studies of mindfulness meditation in order to determine any common effects and to identify factors which may impact on the effects. Databases were reviewed from 1966 to August 2015. Eligibility criteria included empirical quantitative analyses of mindfulness meditation practice and EEG measurements acquired in relation to practice. A total of 56 papers met the eligibility criteria and were included in the systematic review, consisting of a total 1715 subjects: 1358 healthy individuals and 357 individuals with psychiatric diagnoses. Studies were principally examined for power outcomes in each bandwidth, in particular the power differentials between mindfulness and a control state, as well as outcomes relating to hemispheric asymmetry and event-related potentials. The systematic review revealed that mindfulness was most commonly associated with enhanced alpha and theta power as compared to an eyes closed resting state, although such outcomes were not uniformly reported. No consistent patterns were observed with respect to beta, delta and gamma bandwidths. In summary, mindfulness is associated with increased alpha and theta power in both healthy individuals and in patient groups. This co-presence of elevated alpha and theta may signify a state of relaxed alertness which is conducive to mental health. PMID:26441373

  4. Pre-stimulus BOLD-network activation modulates EEG spectral activity during working memory retention.

    PubMed

    Kottlow, Mara; Schlaepfer, Anthony; Baenninger, Anja; Michels, Lars; Brandeis, Daniel; Koenig, Thomas

    2015-01-01

    Working memory (WM) processes depend on our momentary mental state and therefore exhibit considerable fluctuations. Here, we investigate the interplay of task-preparatory and task-related brain activity as represented by pre-stimulus BOLD-fluctuations and spectral EEG from the retention periods of a visual WM task. Visual WM is used to maintain sensory information in the brain enabling the performance of cognitive operations and is associated with mental health. We tested 22 subjects simultaneously with EEG and fMRI while performing a visuo-verbal Sternberg task with two different loads, allowing for the temporal separation of preparation, encoding, retention and retrieval periods. Four temporally coherent networks (TCNs)-the default mode network (DMN), the dorsal attention, the right and the left WM network-were extracted from the continuous BOLD data by means of a group ICA. Subsequently, the modulatory effect of these networks' pre-stimulus activation upon retention-related EEG activity in the theta, alpha, and beta frequencies was analyzed. The obtained results are informative in the context of state-dependent information processing. We were able to replicate two well-known load-dependent effects: the frontal-midline theta increase during the task and the decrease of pre-stimulus DMN activity. As our main finding, these two measures seem to depend on each other as the significant negative correlations at frontal-midline channels suggested. Thus, suppressed pre-stimulus DMN levels facilitated later task related frontal midline theta increases. In general, based on previous findings that neuronal coupling in different frequency bands may underlie distinct functions in WM retention, our results suggest that processes reflected by spectral oscillations during retention seem not only to be "online" synchronized with activity in different attention-related networks but are also modulated by activity in these networks during preparation intervals. PMID:25999828

  5. Pre-stimulus BOLD-network activation modulates EEG spectral activity during working memory retention

    PubMed Central

    Kottlow, Mara; Schlaepfer, Anthony; Baenninger, Anja; Michels, Lars; Brandeis, Daniel; Koenig, Thomas

    2015-01-01

    Working memory (WM) processes depend on our momentary mental state and therefore exhibit considerable fluctuations. Here, we investigate the interplay of task-preparatory and task-related brain activity as represented by pre-stimulus BOLD-fluctuations and spectral EEG from the retention periods of a visual WM task. Visual WM is used to maintain sensory information in the brain enabling the performance of cognitive operations and is associated with mental health. We tested 22 subjects simultaneously with EEG and fMRI while performing a visuo-verbal Sternberg task with two different loads, allowing for the temporal separation of preparation, encoding, retention and retrieval periods. Four temporally coherent networks (TCNs)—the default mode network (DMN), the dorsal attention, the right and the left WM network—were extracted from the continuous BOLD data by means of a group ICA. Subsequently, the modulatory effect of these networks' pre-stimulus activation upon retention-related EEG activity in the theta, alpha, and beta frequencies was analyzed. The obtained results are informative in the context of state-dependent information processing. We were able to replicate two well-known load-dependent effects: the frontal-midline theta increase during the task and the decrease of pre-stimulus DMN activity. As our main finding, these two measures seem to depend on each other as the significant negative correlations at frontal-midline channels suggested. Thus, suppressed pre-stimulus DMN levels facilitated later task related frontal midline theta increases. In general, based on previous findings that neuronal coupling in different frequency bands may underlie distinct functions in WM retention, our results suggest that processes reflected by spectral oscillations during retention seem not only to be “online” synchronized with activity in different attention-related networks but are also modulated by activity in these networks during preparation intervals. PMID

  6. EEG Topographic Mapping of Visual and Kinesthetic Imagery in Swimmers.

    PubMed

    Wilson, V E; Dikman, Z; Bird, E I; Williams, J M; Harmison, R; Shaw-Thornton, L; Schwartz, G E

    2016-03-01

    This study investigated differences in QEEG measures between kinesthetic and visual imagery of a 100-m swim in 36 elite competitive swimmers. Background information and post-trial checks controlled for the modality of imagery, swimming skill level, preferred imagery style, intensity of image and task equality. Measures of EEG relative magnitude in theta, low (7-9 Hz) and high alpha (8-10 Hz), and low and high beta were taken from 19 scalp sites during baseline, visual, and kinesthetic imagery. QEEG magnitudes in the low alpha band during the visual and kinesthetic conditions were attenuated from baseline in low band alpha but no changes were seen in any other bands. Swimmers produced more low alpha EEG magnitude during visual versus kinesthetic imagery. This was interpreted as the swimmers having a greater efficiency at producing visual imagery. Participants who reported a strong intensity versus a weaker feeling of the image (kinesthetic) had less low alpha magnitude, i.e., there was use of more cortical resources, but not for the visual condition. These data suggest that low band (7-9 Hz) alpha distinguishes imagery modalities from baseline, visual imagery requires less cortical resources than kinesthetic imagery, and that intense feelings of swimming requires more brain activity than less intense feelings. PMID:26420001

  7. The frequency of hippocampal theta rhythm is modulated on a circadian period and is entrained by food availability

    PubMed Central

    Munn, Robert G. K.; Tyree, Susan M.; McNaughton, Neil; Bilkey, David K.

    2015-01-01

    The hippocampal formation plays a critical role in the generation of episodic memory. While the encoding of the spatial and contextual components of memory have been extensively studied, how the hippocampus encodes temporal information, especially at long time intervals, is less well understood. The activity of place cells in hippocampus has previously been shown to be modulated at a circadian time-scale, entrained by a behavioral stimulus, but not entrained by light. The experimental procedures used in the previous study of this phenomenon, however, necessarily conflated two alternative entraining stimuli, the exposure to the recording environment and the availability of food, making it impossible to distinguish between these possibilities. Here we demonstrate that the frequency of theta-band hippocampal EEG varies with a circadian period in freely moving animals and that this periodicity mirrors changes in the firing rate of hippocampal neurons. Theta activity serves, therefore, as a proxy of circadian-modulated hippocampal neuronal activity. We then demonstrate that the frequency of hippocampal theta driven by stimulation of the reticular formation also varies with a circadian period. Because this effect can be observed without having to feed the animal to encourage movement we were able to identify what stimulus entrains the circadian oscillation. We show that with reticular-activated recordings started at various times of the day the frequency of theta varies quasi-sinusoidally with a 25 h period and phase-aligned when referenced to the animal’s regular feeding time, but not the recording start time. Furthermore, we show that theta frequency consistently varied with a circadian period when the data obtained from repeated recordings started at various times of the day were referenced to the start of food availability in the recording chamber. This pattern did not occur when data were referenced to the start of the recording session or to the actual time of

  8. Use of electroencephalography (EEG) to assess CNS changes produced by pesticides with different modes of action: Effects of permethrin, deltamethrin, fipronil, imidacloprid, carbaryl, and triadimefon

    SciTech Connect

    Freeborn, Danielle L. McDaniel, Katherine L. Moser, Virginia C. Herr, David W.

    2015-01-15

    The electroencephalogram (EEG) is an apical measure, capable of detecting changes in brain neuronal activity produced by internal or external stimuli. We assessed whether pesticides with different modes of action produced different changes in the EEG of adult male Long–Evans rats. The EEG was recorded using two montages (visual cortex referenced to the cerebellum and to the frontal cortex) in unrestrained rats at the time of peak behavioral effects. Pesticides included: permethrin and deltamethrin (Type I and Type II pyrethroids; 2 h), fipronil (single and repeated doses; phenylpyrazole; 6 h), imidacloprid (neonicotinoid; 2 h), carbaryl (carbamate; 0.5 h), and triadimefon (triazole; 1 h), using dosages that produced approximately an ED{sub 30} or an ED{sub 50}–ED{sub 80} change in motor activity. Permethrin (43, 100 mg/kg) increased amplitudes or areas (delta, alpha, or gamma bands) in the EEG. Deltamethrin (2.5, 5.5 mg/kg) reduced the amplitudes or areas of the delta, theta, alpha, beta, and gamma bands, but the changes were not dose-related. A single treatment with fipronil (25, 50 mg/kg, but not 5, 10 mg/kg) decreased gamma band area. Additional changes in the delta, theta, and gamma bands were observed when fipronil (5, 10 mg/kg) was administered for 14 days. Imidacloprid (50, 100 mg/kg) did not alter the EEG. Carbaryl (10, 50 mg/kg) decreased theta area, and decreased delta and increased beta frequency. Triadimefon (75, 150 mg/kg) produced minimal changes in the EEG. The results show that the EEG is affected differently by approximately equipotent doses of pesticides with different modes of action. - Highlights: • Pesticides with different modes of action have different effects on in vivo rodent EEG. • The EEG was also changed differently after single vs. repeated treatment with fipronil. • The data suggest that EEG may be used as an apical measure for detecting chemical effects on the central nervous system.

  9. Effects of sweet and bitter gustatory stimuli in anorexia nervosa on EEG frequency spectra.

    PubMed

    Tóth, Erika; Túry, Ferenc; Gáti, Agnes; Weisz, Júlia; Kondákor, István; Molnár, Márk

    2004-05-01

    The possible differences in processing gustatory stimuli in anorexic patients compared to healthy control subjects was investigated by electrophysiological methods. The electroencephalogram (EEG) was recorded in outpatients treated with anorexia nervosa (AN) and age-matched controls after exposure to sweet (milk chocolate) and bitter (black tea) taste stimuli. Power spectrum analysis was performed on EEG epochs recorded in the above conditions. Compared to controls a significantly higher percent of theta, and lower percent of alpha1 band power was found in anorexic patients, irrespective of the kind of taste effects and hemispheric side. The pattern of activation caused by sweet and bitter stimuli was found to be different in these two groups, possibly indicating altered gustatory processing mechanisms in AN. PMID:15094251

  10. Source-domain spectral EEG analysis of sports-related concussion via Measure Projection Analysis.

    PubMed

    Balkan, Ozgur; Virji-Babul, Naznin; Miyakoshi, Makoto; Makeig, Scott; Garudadri, Harinath

    2015-01-01

    Here, we investigated EEG-based source-level spectral differences between adolescents with sports-related concussions and healthy age matched controls. We transformed resting state EEG collected in both groups to the source domain using Independent Component Analysis (ICA) and computed the component process power spectra. For group-level analysis in the source domain, we used a probabilistic framework, Measure Projection Analysis (MPA), that has advantages over parametric k-means clustering of brain sources. MPA revealed that some frontal brain sources in the concussed group had significantly more power in the beta band (p<;0.005) and significantly less delta (p<;0.01) and theta band power (p<;0.05) than the healthy control group. These results suggest that a shift in spectral profile toward higher frequencies in some frontal brain regions might distinguish individuals with concussion from healthy controls. PMID:26737184

  11. Tai Chi/ Yoga Effects on Anxiety, Heartrate, EEG and Math Computations

    PubMed Central

    Field, Tiffany; Diego, Miguel; Hernandez-Reif, Maria

    2010-01-01

    Objective To determine the immediate effects of a combined form of tai chi/yoga. Design 38 adults participated in a 20-minute tai chi/yoga class. The session was comprised of standing tai chi movements, balancing poses and a short tai chi form and 10 minutes of standing, sitting and lying down yoga poses. Main outcome measures The pre- and post- tai chi/ yoga effects were assessed using the State Anxiety Inventory (STAI), EKG, EEG and math computations. Results Heartrate increased during the session, as would be expected for this moderate intensity exercise. Changes from pre to post session assessments suggested increased relaxation including decreased anxiety and a trend for increased EEG theta activity. Conclusions The increased relaxation may have contributed to the increased speed and accuracy noted on math computations following the tai chi/yoga class. PMID:20920810

  12. Effect of immobilization on the EEG of the baboon. Comparison with telemetry results from unrestricted animals

    NASA Technical Reports Server (NTRS)

    Bert, J.; Collomb, H.

    1980-01-01

    The EEG of the baboon was studied under two very different sets of conditions: 37 were totally immobolized while 12 were studied in their free movements with 4 channel telemetry. For the immobilzed, 3 stages were described: (1) activation, record desynchronized; (2) rest with 13-15 cm/sec rhythm, like the human alpha rhythm stage but with eyes open or closed; (3)relaxation with a decrease in 13-15 rhythm and the appearance of 5-7 cm/sec theta waves, eyelids closed, animal apparently sleeping. For the free animals the rest stage appeared when the animal's attention was not directed anywhere and there was no relaxation stage. It is concluded that the EEG pattern of the immobilized animal that was described as the "relaxation" stage really represents a special functional state which one must distinguish clearly from the physiological stages of sleep.

  13. EEG correlates of spatial orientation in the human retrosplenial complex.

    PubMed

    Lin, C-T; Chiu, T-C; Gramann, K

    2015-10-15

    Studies on spatial navigation reliably demonstrate that the retrosplenial complex (RSC) plays a pivotal role for allocentric spatial information processing by transforming egocentric and allocentric spatial information into the respective other spatial reference frame (SRF). While more and more imaging studies investigate the role of the RSC in spatial tasks, high temporal resolution measures such as electroencephalography (EEG) are missing. To investigate the function of the RSC in spatial navigation with high temporal resolution we used EEG to analyze spectral perturbations during navigation based on allocentric and egocentric SRF. Participants performed a path integration task in a clearly structured virtual environment providing allothetic information. Continuous EEG recordings were decomposed by independent component analysis (ICA) with subsequent source reconstruction of independent time source series using equivalent dipole modeling. Time-frequency transformation was used to investigate reference frame-specific orientation processes during navigation as compared to a control condition with identical visual input but no orientation task. Our results demonstrate that navigation based on an egocentric reference frame recruited a network including the parietal, motor, and occipital cortices with dominant perturbations in the alpha band and theta modulation in frontal cortex. Allocentric navigation was accompanied by performance-related desynchronization of the 8-13 Hz frequency band and synchronization in the 12-14 Hz band in the RSC. The results support the claim that the retrosplenial complex is central to translating egocentric spatial information into allocentric reference frames. Modulations in different frequencies with different time courses in the RSC further provide first evidence of two distinct neural processes reflecting translation of spatial information based on distinct reference frames and the computation of heading changes. PMID:26163801

  14. Theta synchronizes the activity of medial prefrontal neurons during learning.

    PubMed

    Paz, Rony; Bauer, Elizabeth P; Paré, Denis

    2008-07-01

    Memory consolidation is thought to involve the gradual transfer of transient hippocampal-dependent traces to distributed neocortical sites via the rhinal cortices. Recently, medial prefrontal (mPFC) neurons were shown to facilitate this process when their activity becomes synchronized. However, the mechanisms underlying this enhanced synchrony remain unclear. Because the hippocampus projects to the mPFC, we tested whether theta oscillations contribute to synchronize mPFC neurons during learning. Thus, we obtained field (LFP) and unit recordings from multiple mPFC sites during the acquisition of a trace-conditioning task, where a visual conditioned stimulus (CS) predicted reward delivery. In quiet waking, the activity of mPFC neurons was modulated by theta oscillations. During conditioning, CS presentation caused an increase in mPFC theta power that augmented as the CS gained predictive value for reward delivery. This increased theta power coincided with a transient theta phase locking at distributed mPFC sites, an effect that was also manifest in the timing of mPFC unit activity. Overall, these results show that theta oscillations contribute to synchronize neuronal activity at distributed mPFC sites, suggesting that the hippocampus, by generating a stronger theta source during learning, can synchronize mPFC activity, in turn facilitating rhinal transfer of its activity to the neocortex. PMID:18612069

  15. Inter-hemispheric EEG coherence analysis in Parkinson's disease: assessing brain activity during emotion processing.

    PubMed

    Yuvaraj, R; Murugappan, M; Ibrahim, Norlinah Mohamed; Sundaraj, Kenneth; Omar, Mohd Iqbal; Mohamad, Khairiyah; Palaniappan, R; Satiyan, M

    2015-02-01

    Parkinson's disease (PD) is not only characterized by its prominent motor symptoms but also associated with disturbances in cognitive and emotional functioning. The objective of the present study was to investigate the influence of emotion processing on inter-hemispheric electroencephalography (EEG) coherence in PD. Multimodal emotional stimuli (happiness, sadness, fear, anger, surprise, and disgust) were presented to 20 PD patients and 30 age-, education level-, and gender-matched healthy controls (HC) while EEG was recorded. Inter-hemispheric coherence was computed from seven homologous EEG electrode pairs (AF3-AF4, F7-F8, F3-F4, FC5-FC6, T7-T8, P7-P8, and O1-O2) for delta, theta, alpha, beta, and gamma frequency bands. In addition, subjective ratings were obtained for a representative of emotional stimuli. Interhemispherically, PD patients showed significantly lower coherence in theta, alpha, beta, and gamma frequency bands than HC during emotion processing. No significant changes were found in the delta frequency band coherence. We also found that PD patients were more impaired in recognizing negative emotions (sadness, fear, anger, and disgust) than relatively positive emotions (happiness and surprise). Behaviorally, PD patients did not show impairment in emotion recognition as measured by subjective ratings. These findings suggest that PD patients may have an impairment of inter-hemispheric functional connectivity (i.e., a decline in cortical connectivity) during emotion processing. This study may increase the awareness of EEG emotional response studies in clinical practice to uncover potential neurophysiologic abnormalities. PMID:24894699

  16. Functional Connectivity Changes in Resting-State EEG as Potential Biomarker for Amyotrophic Lateral Sclerosis

    PubMed Central

    Iyer, Parameswaran Mahadeva; Egan, Catriona; Pinto-Grau, Marta; Burke, Tom; Elamin, Marwa; Nasseroleslami, Bahman; Pender, Niall; Lalor, Edmund C.; Hardiman, Orla

    2015-01-01

    Background Amyotrophic Lateral Sclerosis (ALS) is heterogeneous and overlaps with frontotemporal dementia. Spectral EEG can predict damage in structural and functional networks in frontotemporal dementia but has never been applied to ALS. Methods 18 incident ALS patients with normal cognition and 17 age matched controls underwent 128 channel EEG and neuropsychology assessment. The EEG data was analyzed using FieldTrip software in MATLAB to calculate simple connectivity measures and scalp network measures. sLORETA was used in nodal analysis for source localization and same methods were applied as above to calculate nodal network measures. Graph theory measures were used to assess network integrity. Results Cross spectral density in alpha band was higher in patients. In ALS patients, increased degree values of the network nodes was noted in the central and frontal regions in the theta band across seven of the different connectivity maps (p<0.0005). Among patients, clustering coefficient in alpha and gamma bands was increased in all regions of the scalp and connectivity were significantly increased (p=0.02). Nodal network showed increased assortativity in alpha band in the patients group. The Clustering Coefficient in Partial Directed Connectivity (PDC) showed significantly higher values for patients in alpha, beta, gamma, theta and delta frequencies (p=0.05). Discussion There is increased connectivity in the fronto-central regions of the scalp and areas corresponding to Salience and Default Mode network in ALS, suggesting a pathologic disruption of neuronal networking in early disease states. Spectral EEG has potential utility as a biomarker in ALS. PMID:26091258

  17. Optimal set of EEG features for emotional state classification and trajectory visualization in Parkinson's disease.

    PubMed

    Yuvaraj, R; Murugappan, M; Ibrahim, Norlinah Mohamed; Sundaraj, Kenneth; Omar, Mohd Iqbal; Mohamad, Khairiyah; Palaniappan, R

    2014-12-01

    In addition to classic motor signs and symptoms, individuals with Parkinson's disease (PD) are characterized by emotional deficits. Ongoing brain activity can be recorded by electroencephalograph (EEG) to discover the links between emotional states and brain activity. This study utilized machine-learning algorithms to categorize emotional states in PD patients compared with healthy controls (HC) using EEG. Twenty non-demented PD patients and 20 healthy age-, gender-, and education level-matched controls viewed happiness, sadness, fear, anger, surprise, and disgust emotional stimuli while fourteen-channel EEG was being recorded. Multimodal stimulus (combination of audio and visual) was used to evoke the emotions. To classify the EEG-based emotional states and visualize the changes of emotional states over time, this paper compares four kinds of EEG features for emotional state classification and proposes an approach to track the trajectory of emotion changes with manifold learning. From the experimental results using our EEG data set, we found that (a) bispectrum feature is superior to other three kinds of features, namely power spectrum, wavelet packet and nonlinear dynamical analysis; (b) higher frequency bands (alpha, beta and gamma) play a more important role in emotion activities than lower frequency bands (delta and theta) in both groups and; (c) the trajectory of emotion changes can be visualized by reducing subject-independent features with manifold learning. This provides a promising way of implementing visualization of patient's emotional state in real time and leads to a practical system for noninvasive assessment of the emotional impairments associated with neurological disorders. PMID:25109433

  18. Separation of circadian and wake duration-dependent modulation of EEG activation during wakefulness

    NASA Technical Reports Server (NTRS)

    Cajochen, C.; Wyatt, J. K.; Czeisler, C. A.; Dijk, D. J.

    2002-01-01

    The separate contribution of circadian rhythmicity and elapsed time awake on electroencephalographic (EEG) activity during wakefulness was assessed. Seven men lived in an environmental scheduling facility for 4 weeks and completed fourteen 42.85-h 'days', each consisting of an extended (28.57-h) wake episode and a 14.28-h sleep opportunity. The circadian rhythm of plasma melatonin desynchronized from the 42.85-h day. This allowed quantification of the separate contribution of circadian phase and elapsed time awake to variation in EEG power spectra (1-32 Hz). EEG activity during standardized behavioral conditions was markedly affected by both circadian phase and elapsed time awake in an EEG frequency- and derivation-specific manner. The nadir of the circadian rhythm in alpha (8-12 Hz) activity in both fronto-central and occipito-parietal derivations occurred during the biological night, close to the crest of the melatonin rhythm. The nadir of the circadian rhythm of theta (4.5-8 Hz) and beta (20-32 Hz) activity in the fronto-central derivation was located close to the onset of melatonin secretion, i.e. during the wake maintenance zone. As time awake progressed, delta frequency (1-4.5 Hz) and beta (20-32 Hz) activity rose monotonically in frontal derivations. The interaction between the circadian and wake-dependent increase in frontal delta was such that the intrusion of delta was minimal when sustained wakefulness coincided with the biological day, but pronounced during the biological night. Our data imply that the circadian pacemaker facilitates frontal EEG activation during the wake maintenance zone, by generating an arousal signal that prevents the intrusion of low-frequency EEG components, the propensity for which increases progressively during wakefulness.

  19. Interval analysis of interictal EEG: pathology of the alpha rhythm in focal epilepsy

    NASA Astrophysics Data System (ADS)

    Pyrzowski, Jan; Siemiński, Mariusz; Sarnowska, Anna; Jedrzejczak, Joanna; Nyka, Walenty M.

    2015-11-01

    The contemporary use of interictal scalp electroencephalography (EEG) in the context of focal epilepsy workup relies on the visual identification of interictal epileptiform discharges. The high-specificity performance of this marker comes, however, at a cost of only moderate sensitivity. Zero-crossing interval analysis is an alternative to Fourier analysis for the assessment of the rhythmic component of EEG signals. We applied this method to standard EEG recordings of 78 patients divided into 4 subgroups: temporal lobe epilepsy (TLE), frontal lobe epilepsy (FLE), psychogenic nonepileptic seizures (PNES) and nonepileptic patients with headache. Interval-analysis based markers were capable of effectively discriminating patients with epilepsy from those in control subgroups (AUC~0.8) with diagnostic sensitivity potentially exceeding that of visual analysis. The identified putative epilepsy-specific markers were sensitive to the properties of the alpha rhythm and displayed weak or non-significant dependences on the number of antiepileptic drugs (AEDs) taken by the patients. Significant AED-related effects were concentrated in the theta interval range and an associated marker allowed for identification of patients on AED polytherapy (AUC~0.9). Interval analysis may thus, in perspective, increase the diagnostic yield of interictal scalp EEG. Our findings point to the possible existence of alpha rhythm abnormalities in patients with epilepsy.

  20. EEG Changes Due to Experimentally Induced 3G Mobile Phone Radiation

    PubMed Central

    Roggeveen, Suzanne; van Os, Jim; Viechtbauer, Wolfgang; Lousberg, Richel

    2015-01-01

    The aim of this study was to investigate whether a 15-minute placement of a 3G dialing mobile phone causes direct changes in EEG activity compared to the placement of a sham phone. Furthermore, it was investigated whether placement of the mobile phone on the ear or the heart would result in different outcomes. Thirty-one healthy females participated. All subjects were measured twice: on one of the two days the mobile phone was attached to the ear, the other day to the chest. In this single-blind, cross-over design, assessments in the sham phone condition were conducted directly preceding and following the mobile phone exposure. During each assessment, EEG activity and radiofrequency radiation were recorded jointly. Delta, theta, alpha, slowbeta, fastbeta, and gamma activity was computed. The association between radiation exposure and the EEG was tested using multilevel random regression analyses with radiation as predictor of main interest. Significant radiation effects were found for the alpha, slowbeta, fastbeta, and gamma bands. When analyzed separately, ear location of the phone was associated with significant results, while chest placement was not. The results support the notion that EEG alterations are associated with mobile phone usage and that the effect is dependent on site of placement. Further studies are required to demonstrate the physiological relevance of these findings. PMID:26053854

  1. Principal Dynamic Mode Analysis of EEG Data for Assisting the Diagnosis of Alzheimer’s Disease

    PubMed Central

    Escudero, Javier; Shin, Dae; Ifeachor, Emmanuel; Marmarelis, Vasilis

    2015-01-01

    We examine whether modeling of the causal dynamic relationships between frontal and occipital electroencephalogram (EEG) time-series recordings reveal reliable differentiating characteristics of Alzheimer’s patients versus control subjects in a manner that may assist clinical diagnosis of Alzheimer’s disease (AD). The proposed modeling approach utilizes the concept of principal dynamic modes (PDMs) and their associated nonlinear functions (ANF) and hypothesizes that the ANFs of some PDMs for the AD patients will be distinct from their counterparts in control subjects. To this purpose, global PDMs are extracted from 1-min EEG signals of 17 AD patients and 24 control subjects at rest using Volterra models estimated via Laguerre expansions, whereby the O1 or O2 recording is viewed as the input signal and the F3 or F4 recording as the output signal. Subsequent singular value decomposition of the estimated Volterra kernels yields the global PDMs that represent an efficient basis of functions for the representation of the EEG dynamics in all subjects. The respective ANFs are computed for each subject and characterize the specific dynamics of each subject. For comparison, signal features traditionally used in the analysis of EEG signals in AD are computed as benchmark. The results indicate that the ANFs of two specific PDMs, corresponding to the delta–theta and alpha bands, can delineate the two groups well. PMID:27170890

  2. EEG correlates of spontaneous self-referential thoughts: a cross-cultural study.

    PubMed

    Knyazev, Gennady G; Savostyanov, Alexander N; Volf, Nina V; Liou, Michelle; Bocharov, Andrey V

    2012-11-01

    The default mode network (DMN) has been mostly investigated using positron emission tomography and functional magnetic resonance imaging (fMRI) and has received mixed support in electroencephalographic (EEG) studies. In this study, after sLORETA transformation of EEG data, we applied group spatial independent component analysis which is routinely used in fMRI research. In three large and diverse samples coming from two different cultures (Russian and Taiwanese), spontaneous EEG data and retrospective questionnaire measures of subject's state, thoughts, and feelings during the EEG registration were collected. Regression analyses showed that appearance of spontaneous self-referential thoughts was best predicted by enhanced alpha activity within the DMN. Diminished theta and delta activity in the superior frontal gyrus and enhanced beta activity in the postcentral gyrus added to the prediction. The enhanced alpha activity prevailed in the posterior DMN hub in Russian, but in the anterior DMN hub in Taiwanese participants. Possible cross-cultural differences in personality and attitudes underlying this difference are discussed. PMID:22985738

  3. Analysis of the energetic parameters of a theta pinch

    SciTech Connect

    Cavalcanti, G. H.; Farias, E. E.

    2009-12-15

    This work is devoted to study experimentally the performance of a theta pinch when the number of capacitors and turns of magnetic coil and the diameter of the glass tube are changed. To model the theta pinch a simple RLC circuit is used and the measurement of energy transmission from the bank of capacitors to the plasma is made using few experimental resources. In this work it was analyzed more than 2500 curves with a nonlinear procedure. Our results show that it is possible to design an optimized theta pinch making the appropriated choice of energetic parameters and therefore to reduce the stress of the system.

  4. [Event-related synchronization and desynchronization of EEG during appraisal of threatening and pleasant visual stimuli in high anxious subjects].

    PubMed

    Aftans, L I; Pavlov, S V; Reva, N V; Varlamov, A A

    2004-01-01

    The 62-channel EEG was recorded while low (LA, n = 18) and high (HA, n = 18) trait-anxious subjects viewed sequentially presented neutral, threatening and pleasant IAPS stimuli. Event-related desynchronization (ERD) and synchronization (ERS) were studied in the delta, theta1, theta2, alpha1, alpha2, beta1, beta2, beta3, and gamma frequency bands. Between-group differences, related to stimulus emotionality, were linked to theta1 and theta2 bands. In the low theta at prefrontal sites in the test period of 100-700 ms after stimulus onset HA exhibited relative predominance of the left hemisphere in response to both threatening and pleasant stimuli, whereas LA yielded larger right than left hemisphere activity in response to all the three stimulus categories. In the upper theta band between group differences were associated with posterior cortical regions and the test period of 0-1000 ms after stimulus onset: HA exhibited the largest ERS to threatening, whereas LA prompted the largest ERS to pleasant stimuli. Finally, according to the ERD data, in the alpha1 band HA participants in comparison with LA revealed enhanced left hemisphere activation in response to all the stimulus categories. It is suggested that as it is indexed by theta-ERS relative predominance of the left hemisphere at prefrontal sites along with the largest bilateral activity of posterior cortical regions (i.e., enhanced higher order visual processing) to threatening stimuli could form the basis for general bias towards threatening information in HA at the very early stages of emotional processing. PMID:15481384

  5. Immediate effects of Alpha/theta and Sensory-Motor Rhythm feedback on music performance.

    PubMed

    Gruzelier, J H; Hirst, L; Holmes, P; Leach, J

    2014-07-01

    This is one of a series of investigations comparing two EEG-neurofeedback protocols - Alpha/theta (A/T) and Sensory-Motor Rhythm (SMR) - for performance enhancement in the Arts, here with the focus on music. The original report (Egner and Gruzelier, 2003) established a beneficial outcome for elite conservatoire musicians following A/T training in two investigations. Subsequently this A/T advantage was replicated for both advanced instrumental and novice singing abilities, including improvisation, while SMR training benefited novice performance only (Gruzelier, Holmes et al., 2014). Here we report a replication of the latter study in university instrumentalists who as before were novice singers with one design change - post-training performances were conducted within the tenth final session instead of on a subsequent occasion. As before expert judges rated the domains of Creativity/Musicality, Communication/Presentation and Technique. The proximity to training of the music performances within the last session likely compromised gains from A/T learning, but perhaps reinforced the impact of SMR training efficacy. In support of validation there was evidence of strong within- and across-session A/T learning and positive linear trends for across-session SMR/theta and SMR/beta-2 ratio learning. In support of mediation learning correlated with music performance. The A/T outcome was markedly discrepant from previous studies and should dispel any impression that the hypnogogic state itself is transferred to the performance context. The effects of SMR ratio training are consistent with an impact on lower-order abilities required in novice performance such as sustained attention and memory, and benefiting all three domains of music assessment. PMID:24681246

  6. EEG signal analysis: a survey.

    PubMed

    Subha, D Puthankattil; Joseph, Paul K; Acharya U, Rajendra; Lim, Choo Min

    2010-04-01

    The EEG (Electroencephalogram) signal indicates the electrical activity of the brain. They are highly random in nature and may contain useful information about the brain state. However, it is very difficult to get useful information from these signals directly in the time domain just by observing them. They are basically non-linear and nonstationary in nature. Hence, important features can be extracted for the diagnosis of different diseases using advanced signal processing techniques. In this paper the effect of different events on the EEG signal, and different signal processing methods used to extract the hidden information from the signal are discussed in detail. Linear, Frequency domain, time - frequency and non-linear techniques like correlation dimension (CD), largest Lyapunov exponent (LLE), Hurst exponent (H), different entropies, fractal dimension(FD), Higher Order Spectra (HOS), phase space plots and recurrence plots are discussed in detail using a typical normal EEG signal. PMID:20433058

  7. Engagement Assessment Using EEG Signals

    NASA Technical Reports Server (NTRS)

    Li, Feng; Li, Jiang; McKenzie, Frederic; Zhang, Guangfan; Wang, Wei; Pepe, Aaron; Xu, Roger; Schnell, Thomas; Anderson, Nick; Heitkamp, Dean

    2012-01-01

    In this paper, we present methods to analyze and improve an EEG-based engagement assessment approach, consisting of data preprocessing, feature extraction and engagement state classification. During data preprocessing, spikes, baseline drift and saturation caused by recording devices in EEG signals are identified and eliminated, and a wavelet based method is utilized to remove ocular and muscular artifacts in the EEG recordings. In feature extraction, power spectrum densities with 1 Hz bin are calculated as features, and these features are analyzed using the Fisher score and the one way ANOVA method. In the classification step, a committee classifier is trained based on the extracted features to assess engagement status. Finally, experiment results showed that there exist significant differences in the extracted features among different subjects, and we have implemented a feature normalization procedure to mitigate the differences and significantly improved the engagement assessment performance.

  8. Hippocampal-Prefrontal Theta Oscillations Support Memory Integration.

    PubMed

    Backus, Alexander R; Schoffelen, Jan-Mathijs; Szebényi, Szabolcs; Hanslmayr, Simon; Doeller, Christian F

    2016-02-22

    Integration of separate memories forms the basis of inferential reasoning--an essential cognitive process that enables complex behavior. Considerable evidence suggests that both hippocampus and medial prefrontal cortex (mPFC) play a crucial role in memory integration. Although previous studies indicate that theta oscillations facilitate memory processes, the electrophysiological mechanisms underlying memory integration remain elusive. To bridge this gap, we recorded magnetoencephalography data while participants performed an inference task and employed novel source reconstruction techniques to estimate oscillatory signals from the hippocampus. We found that hippocampal theta power during encoding predicts subsequent memory integration. Moreover, we observed increased theta coherence between hippocampus and mPFC. Our results suggest that integrated memory representations arise through hippocampal theta oscillations, possibly reflecting dynamic switching between encoding and retrieval states, and facilitating communication with mPFC. These findings have important implications for our understanding of memory-based decision making and knowledge acquisition. PMID:26832442

  9. Reversed theta sequences of hippocampal cell assemblies during backward travel.

    PubMed

    Cei, Anne; Girardeau, Gabrielle; Drieu, Céline; Kanbi, Karim El; Zugaro, Michaël

    2014-05-01

    Hippocampal cell assemblies coding for past, present and future events form theta-timescale (~100 ms) sequences that represent spatio-temporal episodes. However, the underlying mechanisms remain largely unknown. We recorded hippocampal and entorhinal cortical activity as rats experienced backward travel on a model train. Although the firing fields of place cells remained stable, the order in which they were activated in the theta sequence was reversed during backward travel. Thus, hippocampal cell assemblies coordinated their relative timing to correctly predict the sequential traversal of place fields in reverse order. At the single-cell level, theta phase represented distance traveled through the field, even though the head of the rat was oriented opposite to travel direction and entorhinal head-direction cells maintained their preferred firing direction. Our results challenge most theoretical models of theta sequence generation in the hippocampus. PMID:24667574

  10. Simultaneous observations of a theta aurora and associated magnetotail plasmas

    SciTech Connect

    Huang, C.Y.; Craven, J.D.; Frank, L.A.

    1989-08-01

    Observations of a transpolar arc and simultaneous measurements of associated plasmas in the magnetotail lobe on March 25, 1982, are presented. The auroral imager on board Dynamics Explorer 1 observes a theta aurora in the northern polar cap for more than 2 hours, between 0502 and 0720 UT. ISEE 1 is located in the southern lobe of the geomagnetic tail at a distance of 22.2 RE during this time. The plasma and particle detectors measure intermittent bursts of particle fluxes between 0530 and 0705 UT. The observations suggest that these particle fluxes represent the high-altitude signature of a theta aurora in the southern polar cap. The relatively dense and energetic plasmas are organized into several filamentary structures. Magnetic mapping between the two polar regions indicates that the theta aurora in the southern hemisphere is a mirror reflection about the noon-midnight meridional plane of the theta aurora in the northern hemisphere.

  11. Neutrino mass hierarchy determination for theta{sub 13} = 0

    SciTech Connect

    Gandhi, Raj; Ghoshal, Pomita; Goswami, Srubabati; Sankar, S. Uma

    2010-03-30

    We examine the possibility of determining the neutrino mass hierarchy in the limit theta{sub 13} = 0 using atmospheric neutrinos as the source. In this limit, theta{sub 13} driven matter effects are absent so independent measurements of DELTA{sub 31} and DELTA{sub 32} can, in principle, lead to hierarchy determination. Since their difference is DELTA{sub 21}, one needs an experimental arrangement where DELTA{sub 21}L/E > or approx. 1 can be achieved. This can be satisfied by atmospheric neutrinos which have a large range of L and E. Still, we find that hierarchy determination in the theta{sub 13} = 0 limit with atmospheric neutrinos is not a realistic possibility, even in conjunction with a beam experiment like T2K or NOnuA. We discuss why, and also reiterate the general conditions for hierarchy determination if theta{sub 13} = 0.

  12. Probing {theta}{sub 23} in neutrino telescopes

    SciTech Connect

    Choubey, Sandhya; Niro, Viviana; Rodejohann, Werner

    2008-06-01

    Among all neutrino mixing parameters, the atmospheric neutrino mixing angle {theta}{sub 23} introduces the strongest variation on the flux ratios of ultrahigh-energy neutrinos. We investigate the potential of these flux ratio measurements at neutrino telescopes to constrain {theta}{sub 23}. We consider astrophysical neutrinos originating from pion, muon-damped, and neutron sources and make a comparative study of their sensitivity reach to {theta}{sub 23}. It is found that neutron sources are most favorable for testing deviations from maximal {theta}{sub 23}. Using a {chi}{sup 2} analysis, we show, in particular, the power of combining (i) different flux ratios from the same type of source, and also (ii) combining flux ratios from different astrophysical sources. We include in our analysis 'impure' sources, i.e., deviations from the usually assumed initial (1 ratio 2 ratio 0), (0 ratio 1 ratio 0), or (1 ratio 0 ratio 0) flux compositions.

  13. The cos-theta coil re-re-visited

    NASA Astrophysics Data System (ADS)

    Crawford, Christopher

    2013-10-01

    Precision measurement of symmetry violating effects such the electric dipole moment (EDM) of fundamental particles requires extremely uniform fields. The cos-theta coil is the standard workhorse for generating uniform transverse magnetic fields in these experiments. Limitations in field uniformity include fringe effects (finite length), discretization (finite number of wires), and construction tolerance (finite resources). The field can be isolated from its environment by superposition of two coaxial cos-theta coils of different radii and opposite magnetic moment (double-cos-theta coil), or by shielding the coil inside a permeable or superconducting cylinder. I will discuss methods for optimizing the field uniformity of a compact cos-theta coil, and compare the ultimate limit on errors due to each source described above. Within the context of the scalar potential, I will show a straightforward generalization to non-circular coils with z- or ϕ-symmetry. Supported in part by DOE contract DE-SC0008107.

  14. Simultaneous observations of a theta aurora and associated magnetotail plasmas

    NASA Technical Reports Server (NTRS)

    Huang, C. Y.; Craven, J. D.; Frank, L. A.

    1989-01-01

    Observations of a transpolar arc and simultaneous measurements of associated plasmas in the magnetotail lobe on March 25, 1982, are presented. The auroral imager on board Dynamics Explorer 1 observes a theta aurora in the northern polar cap for more than two hours, between 0502 and 0720 UT. ISEE 1 is located in the southern lobe of the geomagnetic tail at a distance of 22.2 R(E) during this time. The plasma and particle detectors measure intermittent bursts of particle fluxes between 0530 and 0705 UT. The observations suggest that these particle fluxes represent the high-altitude signature of a theta aurora in the southern polar cap. The relatively dense and energetic plasmas are organized into several filamentary structures. Magnetic mapping between the two polar regions indicates that the theta aurora in the Southern Hemisphere is a mirror reflection about the noon-midnight meridional plane of the theta aurora in the Northern Hemisphere.

  15. Auditory Conflict Resolution Correlates with Medial–Lateral Frontal Theta/Alpha Phase Synchrony

    PubMed Central

    Huang, Samantha; Rossi, Stephanie; Hämäläinen, Matti; Ahveninen, Jyrki

    2014-01-01

    When multiple persons speak simultaneously, it may be difficult for the listener to direct attention to correct sound objects among conflicting ones. This could occur, for example, in an emergency situation in which one hears conflicting instructions and the loudest, instead of the wisest, voice prevails. Here, we used cortically-constrained oscillatory MEG/EEG estimates to examine how different brain regions, including caudal anterior cingulate (cACC) and dorsolateral prefrontal cortices (DLPFC), work together to resolve these kinds of auditory conflicts. During an auditory flanker interference task, subjects were presented with sound patterns consisting of three different voices, from three different directions (45° left, straight ahead, 45° right), sounding out either the letters “A” or “O”. They were asked to discriminate which sound was presented centrally and ignore the flanking distracters that were phonetically either congruent (50%) or incongruent (50%) with the target. Our cortical MEG/EEG oscillatory estimates demonstrated a direct relationship between performance and brain activity, showing that efficient conflict resolution, as measured with reduced conflict-induced RT lags, is predicted by theta/alpha phase coupling between cACC and right lateral frontal cortex regions intersecting the right frontal eye fields (FEF) and DLPFC, as well as by increased pre-stimulus gamma (60–110 Hz) power in the left inferior fontal cortex. Notably, cACC connectivity patterns that correlated with behavioral conflict-resolution measures were found during both the pre-stimulus and the pre-response periods. Our data provide evidence that, instead of being only transiently activated upon conflict detection, cACC is involved in sustained engagement of attentional resources required for effective sound object selection performance. PMID:25343503

  16. Posterior versus frontal theta activity indexes approach motivation during affective autobiographical memories.

    PubMed

    Walden, K; Pornpattananangkul, N; Curlee, A; McAdams, D P; Nusslock, R

    2015-03-01

    Research has recently identified a promising neurophysiological marker of approach motivation involving posterior versus frontal (Pz - Fz) electroencephalographic (EEG) theta activity PFTA; Wacker, Chavanon, & Stemmler (Journal of Personality and Social Psychology 91:171-187, 2006). Preliminary evidence indicated that PFTA is modulated by dopaminergic activity, thought to underlie appetitive tendencies, and that it indexes self-reported behavioral activation system (BAS) sensitivity. To date, research has largely relied on resting indices of PFTA and has yet to examine the relationship between PFTA and specific approach-related affective states generated by emotionally salient laboratory tasks. Accordingly, the present study evaluated PFTA both at rest and during an ecologically valid autobiographical memory task in which participants recalled personal life experiences involving a goal-striving, an anxious apprehension, a low-point (i.e., difficult), and a neutral memory while EEG data were recorded. In line with prediction, elevated PFTA was observed during both goal-striving and anxious apprehension autobiographical memories. PFTA was particularly elevated during anxious apprehension memories coded as being high on approach-related tendencies. Elevated PFTA during anxious apprehension is consistent with a growing literature indicating that anxious apprehension is associated with elevated approach- and reward-related brain function. Lastly, elevated resting PFTA was positively correlated with self-reported trait anger, a negatively valenced emotion characterized by approach-related tendencies. These results have implications for (a) enhancing our understanding of the neurophysiology of approach-related emotions, (b) establishing PFTA as an index of appetitive motivational states, and (c) clarifying our understanding of the neurophysiology and approach-related tendencies associated with both anxious apprehension and anger. PMID:25245178

  17. Medial prefrontal theta phase coupling during spatial memory retrieval.

    PubMed

    Kaplan, Raphael; Bush, Daniel; Bonnefond, Mathilde; Bandettini, Peter A; Barnes, Gareth R; Doeller, Christian F; Burgess, Neil

    2014-06-01

    Memory retrieval is believed to involve a disparate network of areas, including medial prefrontal and medial temporal cortices, but the mechanisms underlying their coordination remain elusive. One suggestion is that oscillatory coherence mediates inter-regional communication, implicating theta phase and theta-gamma phase-amplitude coupling in mnemonic function across species. To examine this hypothesis, we used non-invasive whole-head magnetoencephalography (MEG) as participants retrieved the location of objects encountered within a virtual environment. We demonstrate that, when participants are cued with the image of an object whose location they must subsequently navigate to, there is a significant increase in 4-8 Hz theta power in medial prefrontal cortex (mPFC), and the phase of this oscillation is coupled both with ongoing theta phase in the medial temporal lobe (MTL) and perceptually induced 65-85 Hz gamma amplitude in medial parietal cortex. These results suggest that theta phase coupling between mPFC and MTL and theta-gamma phase-amplitude coupling between mPFC and neocortical regions may play a role in human spatial memory retrieval. PMID:24497013

  18. Analytical Insights on Theta-Gamma Coupled Neural Oscillators

    PubMed Central

    2013-01-01

    In this paper, we study the dynamics of a quadratic integrate-and-fire neuron, spiking in the gamma (30–100 Hz) range, coupled to a delta/theta frequency (1–8 Hz) neural oscillator. Using analytical and semianalytical methods, we were able to derive characteristic spiking times for the system in two distinct regimes (depending on parameter values): one regime where the gamma neuron is intrinsically oscillating in the absence of theta input, and a second one in which gamma spiking is directly gated by theta input, i.e., windows of gamma activity alternate with silence periods depending on the underlying theta phase. In the former case, we transform the equations such that the system becomes analogous to the Mathieu differential equation. By solving this equation, we can compute numerically the time to the first gamma spike, and then use singular perturbation theory to find successive spike times. On the other hand, in the excitable condition, we make direct use of singular perturbation theory to obtain an approximation of the time to first gamma spike, and then extend the result to calculate ensuing gamma spikes in a recursive fashion. We thereby give explicit formulas for the onset and offset of gamma spike burst during a theta cycle, and provide an estimation of the total number of spikes per theta cycle both for excitable and oscillator regimes. PMID:23945442

  19. [CORRELATIONS BETWEEN EEG AND RHEOGRAPHIC INDICES OF CEREBRAL BLOOD FLOW IN CHILDREN ON NORTH-EAST OF RUSSIA].

    PubMed

    Burykh, E A

    2015-09-01

    The purpose of the work was an estimation of correlations between EEG spectral parameters and rheoencephalogram (REG) indicators of cerebral blood flow (CBF) in the group of children of 7-18 years old living in the North-East of Russia. Well-known data were confirmed about age-dependent EEG and REG-CBF indicators dynamics. It was not revealed strong coordination between EEG and REG age-dependent changes in this period of life. This may to our opinion speak of relative independence of development of those systems which reflect itself in EEG and REG--structural functional organization of the brain and cerebral metabolic rate. In a narrow age band 14.8-15.6 years old it was found highly significant positive correlation between EEG theta activity and REG amplitude-frequency parameter--indicating CBF. The hypothesis was suggested explaining this fact from the point of view of the down-regulation mechanism of the brain in the period of energy expensive synthetic processes in puberty period. PMID:26672163

  20. Application of alpha/theta neurofeedback and heart rate variability training to young contemporary dancers: state anxiety and creativity.

    PubMed

    Gruzelier, J H; Thompson, T; Redding, E; Brandt, R; Steffert, T

    2014-07-01

    As one in a series on the impact of EEG-neurofeedback in the performing arts, we set out to replicate a previous dance study in which alpha/theta (A/T) neurofeedback and heart rate variability (HRV) biofeedback enhanced performance in competitive ballroom dancers compared with controls. First year contemporary dance conservatoire students were randomised to the same two psychophysiological interventions or a choreology instruction comparison group or a no-training control group. While there was demonstrable neurofeedback learning, there was no impact of the three interventions on dance performance as assessed by four experts. However, HRV training reduced anxiety and the reduction correlated with improved technique and artistry in performance; the anxiety scale items focussed on autonomic functions, especially cardiovascular activity. In line with the putative impact of hypnogogic training on creativity A/T training increased cognitive creativity with the test of unusual uses, but not insight problems. Methodological and theoretical implications are considered. PMID:23684733

  1. Pattern changes of EEG oscillations and BOLD signals associated with temporal lobe epilepsy as revealed by a working memory task

    PubMed Central

    2014-01-01

    Background It is known that the abnormal neural activity in epilepsy may be associated to the reorganization of neural circuits and brain plasticity in various ways. On that basis, we hypothesized that changes in neuronal circuitry due to epilepsy could lead to measurable variations in patterns of both EEG and BOLD signals in patients performing some cognitive task as compared to what would be obtained in normal condition. Thus, the aim of this study was to compare the cerebral areas involved in EEG oscillations versus fMRI signal patterns during a working memory (WM) task in normal controls and patients with refractory mesial temporal lobe epilepsy (MTLE) associated with hippocampal sclerosis (HS). The study included six patients with left MTLE-HS (left-HS group) and seven normal controls (control group) matched to the patients by age and educational level, both groups undergoing a blocked design paradigm based on Sternberg test during separated EEG and fMRI sessions. This test consisted of encoding and maintenance of a variable number of consonant letters on WM. Results EEG analysis for the encoding period revealed the presence of theta and alpha oscillations in the frontal and parietal areas, respectively. Likewise, fMRI showed the co-occurrence of positive and negative BOLD signals in both brain regions. As for the maintenance period, whereas EEG analysis revealed disappearance of theta oscillation, fMRI showed decrease of positive BOLD in frontal area and increase of negative BOLD in the posterior part of the brain. Conclusions Generally speaking, these patterns of electrophysiological and hemodynamic signals were observed for both control and left-HS groups. However, the data also revealed remarkable differences between these groups that are consistent with the hypothesis of reorganization of brain circuitry associated with epilepsy. PMID:24766708

  2. Integration of an EEG biomarker with a clinician's ADHD evaluation

    PubMed Central

    Snyder, Steven M; Rugino, Thomas A; Hornig, Mady; Stein, Mark A

    2015-01-01

    Background This study is the first to evaluate an assessment aid for attention-deficit/hyperactivity disorder (ADHD) according to both Class-I evidence standards of American Academy of Neurology and De Novo requirements of US Food and Drug Administration. The assessment aid involves a method to integrate an electroencephalographic (EEG) biomarker, theta/beta ratio (TBR), with a clinician's ADHD evaluation. The integration method is intended as a step to help improve certainty with criterion E (i.e., whether symptoms are better explained by another condition). Methods To evaluate the assessment aid, investigators conducted a prospective, triple-blinded, 13-site, clinical cohort study. Comprehensive clinical evaluation data were obtained from 275 children and adolescents presenting with attentional and behavioral concerns. A qualified clinician at each site performed differential diagnosis. EEG was collected by separate teams. The reference standard was consensus diagnosis by an independent, multidisciplinary team (psychiatrist, psychologist, and neurodevelopmental pediatrician), which is well-suited to evaluate criterion E in a complex clinical population. Results Of 209 patients meeting ADHD criteria per a site clinician's judgment, 93 were separately found by the multidisciplinary team to be less likely to meet criterion E, implying possible overdiagnosis by clinicians in 34% of the total clinical sample (93/275). Of those 93, 91% were also identified by EEG, showing a relatively lower TBR (85/93). Further, the integration method was in 97% agreement with the multidisciplinary team in the resolution of a clinician's uncertain cases (35/36). TBR showed statistical power specific to supporting certainty of criterion E per the multidisciplinary team (Cohen's d, 1.53). Patients with relatively lower TBR were more likely to have other conditions that could affect criterion E certainty (10 significant results; P ≤ 0.05). Integration of this information with a

  3. Inter-individual and intra-individual variation of the effects of pulsed RF EMF exposure on the human sleep EEG.

    PubMed

    Lustenberger, Caroline; Murbach, Manuel; Tüshaus, Laura; Wehrle, Flavia; Kuster, Niels; Achermann, Peter; Huber, Reto

    2015-04-01

    Pulse-modulated radiofrequency electromagnetic fields (RF EMF) can alter brain activity during sleep; increases of electroencephalographic (EEG) power in the sleep spindle (13.75-15.25 Hz) and delta-theta (1.25-9 Hz) frequency range have been reported. These field effects show striking inter-individual differences. However, it is still unknown whether individual subjects react in a similar way when repeatedly exposed. Thus, our study aimed to investigate inter-individual variation and intra-individual stability of field effects. To do so, we exposed 20 young male subjects twice for 30 min prior to sleep to the same amplitude modulated 900 MHz (2 Hz pulse, 20 Hz Gaussian low-pass filter and a ratio of peak-to-average of 4) RF EMF (spatial peak absorption of 2 W/kg averaged over 10 g) 2 weeks apart. The topographical analysis of EEG power during all-night non-rapid eye movement sleep revealed: (1) exposure-related increases in delta-theta frequency range in several fronto-central electrodes; and (2) no differences in spindle frequency range. We did not observe reproducible within-subject RF EMF effects on sleep spindle and delta-theta activity in the sleep EEG and it remains unclear whether a biological trait of how the subjects' brains react to RF EMF exists. PMID:25690404

  4. Relation between Resting State Front-Parietal EEG Coherence and Executive Function in Parkinson's Disease

    PubMed Central

    Teramoto, Hiroko; Akimoto, Takayoshi; Shiota, Hiroshi; Kamei, Satoshi

    2016-01-01

    Objective. To assess the relation between executive dysfunction (ED) in Parkinson's disease (PD) and resting state functional connectivity evaluated using electroencephalography (EEG) coherence. Methods. Sixty-eight nondemented sporadic PD patients were assessed using the Behavioural Assessment of the Dysexecutive Syndrome (BADS) to evaluate executive function. EEG coherence in the left frontoparietal electrode pair (F3-P3) and the right frontoparietal electrode pair (F4-P4) was analyzed in the alpha and theta range. The BADS scores were compared across the coherence groups, and the multiple logistic regression analysis was performed to assess the contribution of confounders. Results. The standardized BADS score was significantly lower in the low F3-P3 coherence group in the alpha range (Mann-Whitney U test, p = 0.032), though there was no difference between F4-P4 coherence group in the alpha range, F3-P3, and F4-P4 coherence groups in the theta range and the standardized BADS score. The multiple logistic regression analysis revealed the significant relation between the F3-P3 coherence group in alpha range and age-controlled standardized BADS score (p = 0.039, 95% CI = 1.002–1.062). Conclusion. The decrease in resting state functional connectivity between the frontal and parietal cortices especially in the left side is related to ED in PD. PMID:27433473

  5. Study on Brain Dynamics by Non Linear Analysis of Music Induced EEG Signals

    NASA Astrophysics Data System (ADS)

    Banerjee, Archi; Sanyal, Shankha; Patranabis, Anirban; Banerjee, Kaushik; Guhathakurta, Tarit; Sengupta, Ranjan; Ghosh, Dipak; Ghose, Partha

    2016-02-01

    Music has been proven to be a valuable tool for the understanding of human cognition, human emotion, and their underlying brain mechanisms. The objective of this study is to analyze the effect of Hindustani music on brain activity during normal relaxing conditions using electroencephalography (EEG). Ten male healthy subjects without special musical education participated in the study. EEG signals were acquired at the frontal (F3/F4) lobes of the brain while listening to music at three experimental conditions (rest, with music and without music). Frequency analysis was done for the alpha, theta and gamma brain rhythms. The finding shows that arousal based activities were enhanced while listening to Hindustani music of contrasting emotions (romantic/sorrow) for all the subjects in case of alpha frequency bands while no significant changes were observed in gamma and theta frequency ranges. It has been observed that when the music stimulus is removed, arousal activities as evident from alpha brain rhythms remain for some time, showing residual arousal. This is analogous to the conventional 'Hysteresis' loop where the system retains some 'memory' of the former state. This is corroborated in the non linear analysis (Detrended Fluctuation Analysis) of the alpha rhythms as manifested in values of fractal dimension. After an input of music conveying contrast emotions, withdrawal of music shows more retention as evidenced by the values of fractal dimension.

  6. Preliminary study of Alzheimer's Disease diagnosis based on brain electrical signals using wireless EEG

    NASA Astrophysics Data System (ADS)

    Handayani, N.; Akbar, Y.; Khotimah, S. N.; Haryanto, F.; Arif, I.; Taruno, W. P.

    2016-03-01

    This research aims to study brain's electrical signals recorded using EEG as a basis for the diagnosis of patients with Alzheimer's Disease (AD). The subjects consisted of patients with AD, and normal subjects are used as the control. Brain signals are recorded for 3 minutes in a relaxed condition and with eyes closed. The data is processed using power spectral analysis, brain mapping and chaos test to observe the level of complexity of EEG's data. The results show a shift in the power spectral in the low frequency band (delta and theta) in AD patients. The increase of delta and theta occurs in lobus frontal area and lobus parietal respectively. However, there is a decrease of alpha activity in AD patients where in the case of normal subjects with relaxed condition, brain alpha wave dominates the posterior area. This is confirmed by the results of brain mapping. While the results of chaos analysis show that the average value of MMLE is lower in AD patients than in normal subjects. The level of chaos associated with neural complexity in AD patients with lower neural complexity is due to neuronal damage caused by the beta amyloid plaques and tau protein in neurons.

  7. EEG Alpha Power and Intelligence.

    ERIC Educational Resources Information Center

    Doppelmayr, M.; Klimesch, W.; Stadler, W.; Pollhuber, D.; Heine, C.

    2002-01-01

    Tested whether alpha power in different sub-bands is selectively related to intelligence. For 74 Austrian subjects, the EEG was recorded during a resting session and 2 different intelligence tests were performed. Findings show a strong positive correlation between intelligence and alpha power. (SLD)

  8. The observation of theta wave modulation on brain training by 5 Hz-binaural beat stimulation in seven days.

    PubMed

    Yamsa-Ard, Traisak; Wongsawat, Yodchanan

    2015-08-01

    Traditional buddhist meditation method maybe easy for someone with high experience. However, for the beginner, it is very difficult to keep mental concentration with the tradition way for more than 5 minutes. This research aims to observe effect of the new method for meditation in various analysis methods. A piano music mixed with a 5 Hz (theta band enhancement) binaural beat frequency was used to modulate the brain signals continuously for 7 days. Male of the average age of 33.5±3.84 and female of the average age of 28.6±2.49 were participated. All participants were acquired EEGs twice, before the experiment and seven days after the experiment. We also proposed the observations on the changes of absolute powers, relative powers and brain connectivity (coherence) of the participants. After seven days of training, the absolute power, relative power, and coherence were clearly closer to the normative database. We can initially say that the recommended meditation method can efficiently mimic the effect of having the traditional buddhist meditation on enhancing the delta and theta powers in the brain. PMID:26737822

  9. Electrical stimulation of the frontal cortex enhances slow-frequency EEG activity and sleepiness.

    PubMed

    D'Atri, A; De Simoni, E; Gorgoni, M; Ferrara, M; Ferlazzo, F; Rossini, P M; De Gennaro, L

    2016-06-01

    Our aim was to enhance the spontaneous slow-frequency EEG activity during the resting state using oscillating transcranial direct currents (tDCS) with a stimulation frequency that resembles the spontaneous oscillations of sleep onset. Accordingly, in this preliminary study, we assessed EEG after-effects of a frontal oscillatory tDCS with different frequency (0.8 vs. 5Hz) and polarity (anodal, cathodal, and sham). Two single-blind experiments compared the after effects on the resting EEG of oscillatory tDCS [Exp. 1=0.8Hz, 10 subjects (26.2±2.5years); Exp. 2=5Hz, 10 subjects (27.4±2.4years)] by manipulating its polarity. EEG signals recorded (28 scalp derivations) before and after stimulation [slow oscillations (0.5-1Hz), delta (1-4Hz), theta (5-7Hz), alpha (8-12Hz), beta 1 (13-15Hz) and beta 2 (16-24Hz)] were compared between conditions as a function of polarity (anodal vs. cathodal vs. sham) and frequency of stimulation (0.8 vs. 5Hz). We found a significant relative enhancement of the delta activity after the anodal tDCS at 5Hz compared to that at 0.8Hz. This increase, even though not reaching the statistical significance compared to sham, is concomitant to a significant increase of subjective sleepiness, as assessed by a visual analog scale. These two phenomena are linearly related with a regional specificity, correlations being restricted to cortical areas perifocal to the stimulation site. We have shown that a frontal oscillating anodal tDCS at 5Hz results in an effective change of both subjective sleepiness and spontaneous slow-frequency EEG activity. These changes are critically associated to both stimulation polarity (anodal) and frequency (5Hz). However, evidence of frequency-dependence seems more unequivocal than evidence of polarity-dependence. PMID:26964682

  10. Odds Ratio Product of Sleep EEG as a Continuous Measure of Sleep State

    PubMed Central

    Younes, Magdy; Ostrowski, Michele; Soiferman, Marc; Younes, Henry; Younes, Mark; Raneri, Jill; Hanly, Patrick

    2015-01-01

    Study Objectives: To develop and validate an algorithm that provides a continuous estimate of sleep depth from the electroencephalogram (EEG). Design: Retrospective analysis of polysomnograms. Setting: Research laboratory. Participants: 114 patients who underwent clinical polysomnography in sleep centers at the University of Manitoba (n = 58) and the University of Calgary (n = 56). Interventions: None. Measurements and Results: Power spectrum of EEG was determined in 3-second epochs and divided into delta, theta, alpha-sigma, and beta frequency bands. The range of powers in each band was divided into 10 aliquots. EEG patterns were assigned a 4-digit number that reflects the relative power in the 4 frequency ranges (10,000 possible patterns). Probability of each pattern occurring in 30-s epochs staged awake was determined, resulting in a continuous probability value from 0% to 100%. This was divided by 40 (% of epochs staged awake) producing the odds ratio product (ORP), with a range of 0–2.5. In validation testing, average ORP decreased progressively as EEG progressed from wakefulness (2.19 ± 0.29) to stage N3 (0.13 ± 0.05). ORP < 1.0 predicted sleep and ORP > 2.0 predicted wakefulness in > 95% of 30-s epochs. Epochs with intermediate ORP occurred in unstable sleep with a high arousal index (> 70/h) and were subject to much interrater scoring variability. There was an excellent correlation (r2 = 0.98) between ORP in current 30-s epochs and the likelihood of arousal or awakening occurring in the next 30-s epoch. Conclusions: Our results support the use of the odds ratio product (ORP) as a continuous measure of sleep depth. Citation: Younes M, Ostrowski M, Soiferman M, Younes H, Younes M, Raneri J, Hanly P. Odds ratio product of sleep EEG as a continuous measure of sleep state. SLEEP 2015;38(4):641–654. PMID:25348125

  11. Theta phase coherence in affective picture processing reveals dysfunctional sensory integration in psychopathic offenders.

    PubMed

    Tillem, Scott; Ryan, Jonathan; Wu, Jia; Crowley, Michael J; Mayes, Linda C; Baskin-Sommers, Arielle

    2016-09-01

    Psychopathic offenders are described as emotionally cold, displaying deficits in affective responding. However, research demonstrates that many of the psychopathy-related deficits are moderated by attention, such that under conditions of high attentional and perceptual load psychopathic offenders display deficits in affective responses, but do not in conditions of low load. To date, most studies use measures of defensive reflex (i.e., startle) and conditioning manipulations to examine the impact of load on psychopathy-related processing, but have not examined more direct measures of attention processing. In a sample of adult male offenders, the present study examined time-frequency EEG phase coherence in response to a picture-viewing paradigm that manipulated picture familiarity to assess neural changes in processing based on perceptual demands. Results indicated psychopathy-related differences in the theta response, an index of readiness to perceive and integrate sensory information. These data provide further evidence that psychopathic offenders have disrupted integration of sensory information. PMID:27373371

  12. Quantum modular forms, mock modular forms, and partial theta functions

    NASA Astrophysics Data System (ADS)

    Kimport, Susanna

    Defined by Zagier in 2010, quantum modular forms have been the subject of an explosion of recent research. Many of these results are aimed at discovering examples of these functions, which are defined on the rational numbers and have "nice" modularity properties. Though the subject is in its early stages, numerous results (including Zagier's original examples) show these objects naturally arising from many areas of mathematics as limits of other modular-like functions. One such family of examples is due to Folsom, Ono, and Rhoades, who connected these new objects to partial theta functions (introduced by Rogers in 1917) and mock modular forms (about which there is a rich theory, whose origins date back to Ramanujan in 1920). In this thesis, we build off of the work of Folsom, Ono, and Rhoades by providing an infinite family of quantum modular forms of arbitrary positive half-integral weight. Further, this family of quantum modular forms "glues" mock modular forms to partial theta functions and is constructed from a so-called "universal" mock theta function by extending a method of Eichler and Zagier (originally defined for holomorphic Jacobi forms) into a non-holomorphic setting. In addition to the infinite family, we explore the weight 1/2 and 3/2 functions in more depth. For both of these weights, we are able to explicitly write down the quantum modular form, as well as the corresponding "errors to modularity," which can be shown to be Mordell integrals of specific theta functions and, as a consequence, are real-analytic functions. Finally, we turn our attention to the partial theta functions associated with these low weight examples. Berndt and Kim provide asymptotic expansions for a certain class of partial theta functions as q approaches 1 radially within the unit disk. Here, we extend this work to not only obtain asymptotic expansions for this class of functions as q approaches any root of unity, but also for a certain class of derivatives of these functions

  13. Interactive effects of age and gender on EEG power and coherence during a short-term memory task in middle-aged adults.

    PubMed

    Kober, Silvia Erika; Reichert, Johanna Louise; Neuper, Christa; Wood, Guilherme

    2016-04-01

    The effects of age and gender on electroencephalographic (EEG) activity during a short-term memory task were assessed in a group of 40 healthy participants aged 22-63 years. Multi-channel EEG was recorded in 20 younger (mean = 24.65-year-old, 10 male) and 20 middle-aged participants (mean = 46.40-year-old, 10 male) during performance of a Sternberg task. EEG power and coherence measures were analyzed in different frequency bands. Significant interactions emerged between age and gender in memory performance and concomitant EEG parameters, suggesting that the aging process differentially influences men and women. Middle-aged women showed a lower short-term memory performance compared to young women, which was accompanied by decreasing delta and theta power and increasing brain connectivity with age in women. In contrast, men showed no age-related decline in short-term memory performance and no changes in EEG parameters. These results provide first evidence of age-related alterations in EEG activity underlying memory processes, which were already evident in the middle years of life in women but not in men. PMID:26973112

  14. Harnessing the power of theta: natural manipulations of cognitive performance during hippocampal theta-contingent eyeblink conditioning.

    PubMed

    Hoffmann, Loren C; Cicchese, Joseph J; Berry, Stephen D

    2015-01-01

    Neurobiological oscillations are regarded as essential to normal information processing, including coordination and timing of cells and assemblies within structures as well as in long feedback loops of distributed neural systems. The hippocampal theta rhythm is a 3-12 Hz oscillatory potential observed during cognitive processes ranging from spatial navigation to associative learning. The lower range, 3-7 Hz, can occur during immobility and depends upon the integrity of cholinergic forebrain systems. Several studies have shown that the amount of pre-training theta in the rabbit strongly predicts the acquisition rate of classical eyeblink conditioning and that impairment of this system substantially slows the rate of learning. Our lab has used a brain-computer interface (BCI) that delivers eyeblink conditioning trials contingent upon the explicit presence or absence of hippocampal theta. A behavioral benefit of theta-contingent training has been demonstrated in both delay and trace forms of the paradigm with a two- to four-fold increase in learning speed. This behavioral effect is accompanied by enhanced amplitude and synchrony of hippocampal local field potential (LFP)s, multi-unit excitation, and single-unit response patterns that depend on theta state. Additionally, training in the presence of hippocampal theta has led to increases in the salience of tone-induced unit firing patterns in the medial prefrontal cortex, followed by persistent multi-unit activity during the trace interval. In cerebellum, rhythmicity and precise synchrony of stimulus time-locked LFPs with those of hippocampus occur preferentially under the theta condition. Here we review these findings, integrate them into current models of hippocampal-dependent learning and suggest how improvement in our understanding of neurobiological oscillations is critical for theories of medial temporal lobe processes underlying intact and pathological learning. PMID:25918501

  15. Harnessing the power of theta: natural manipulations of cognitive performance during hippocampal theta-contingent eyeblink conditioning

    PubMed Central

    Hoffmann, Loren C.; Cicchese, Joseph J.; Berry, Stephen D.

    2015-01-01

    Neurobiological oscillations are regarded as essential to normal information processing, including coordination and timing of cells and assemblies within structures as well as in long feedback loops of distributed neural systems. The hippocampal theta rhythm is a 3–12 Hz oscillatory potential observed during cognitive processes ranging from spatial navigation to associative learning. The lower range, 3–7 Hz, can occur during immobility and depends upon the integrity of cholinergic forebrain systems. Several studies have shown that the amount of pre-training theta in the rabbit strongly predicts the acquisition rate of classical eyeblink conditioning and that impairment of this system substantially slows the rate of learning. Our lab has used a brain-computer interface (BCI) that delivers eyeblink conditioning trials contingent upon the explicit presence or absence of hippocampal theta. A behavioral benefit of theta-contingent training has been demonstrated in both delay and trace forms of the paradigm with a two- to four-fold increase in learning speed. This behavioral effect is accompanied by enhanced amplitude and synchrony of hippocampal local field potential (LFP)s, multi-unit excitation, and single-unit response patterns that depend on theta state. Additionally, training in the presence of hippocampal theta has led to increases in the salience of tone-induced unit firing patterns in the medial prefrontal cortex, followed by persistent multi-unit activity during the trace interval. In cerebellum, rhythmicity and precise synchrony of stimulus time-locked LFPs with those of hippocampus occur preferentially under the theta condition. Here we review these findings, integrate them into current models of hippocampal-dependent learning and suggest how improvement in our understanding of neurobiological oscillations is critical for theories of medial temporal lobe processes underlying intact and pathological learning. PMID:25918501

  16. Theta oscillations and human navigation: a magnetoencephalography study.

    PubMed

    de Araújo, Dráulio B; Baffa, Oswaldo; Wakai, Ronald T

    2002-01-01

    Magnetoencephalography (MEG) was used to study alpha and theta activity while subjects navigated through a computer-generated virtual reality town. The subjects were first allowed to explore the environment freely. They then had to navigate from a starting point to a destination, knowing that an obstruction would appear at one of several possible locations along the main route and force them to take a detour. Spatiotemporal analysis of the theta and alpha bands were performed (1) prior to the start of navigation, (2) from the start of navigation until the obstruction was encountered, (3) during the time subjects were contemplating a detour and were not navigating, and (4) from the resumption of navigation until the destination was reached. In all subjects, theta power was strongest during the two periods of navigation. The peak frequency of the oscillations was approximately 3.7 Hz. Control studies consisted of a motor task similar to that required for navigation, passive viewing of a tour through the same virtual reality town, and a mental concentration task. No consistent increases in theta power were seen in the MEG during any of the control tasks. The results suggest an association between theta rhythm and the performance of navigational tasks in humans. PMID:11798388

  17. EEG Oscillation Evidences of Enhanced Susceptibility to Emotional Stimuli during Adolescence

    PubMed Central

    Meng, Xianxin; Liu, Wenwen; Zhang, Ling; Li, Xiang; Yao, Bo; Ding, Xinsheng; Yuan, JiaJin; Yang, Jiemin

    2016-01-01

    Background: Our recent event-related potential (ERP) study showed that adolescents are more emotionally sensitive to negative events compared to adults, regardless of the valence strength of the events. The current work aimed to confirm this age-related difference in response to emotional stimuli of diverse intensities by examining Electroencephalography (EEG) oscillatory power in time-frequency analysis. Methods: Time-frequency analyses were performed on the EEG data recorded for highly negative (HN), moderately negative (MN) and Neutral pictures in 20 adolescents and 20 adults during a covert emotional task. The results showed a significant age by emotion interaction effect in the theta and beta oscillatory power during the 500–600 ms post stimulus. Results: Adolescents showed significantly less pronounced theta synchronization (ERS, 5.5–7.5 Hz) for HN stimuli, and larger beta desynchronization (ERD; 18–20 Hz) for both HN and MN stimuli, in comparison with neutral stimuli. By contrast, adults exhibited no significant emotion effects in theta and beta frequency bands. In addition, the analysis of the alpha spectral power (10.5–12 Hz; 850–950 ms) showed a main effect of emotion, while the emotion by age interaction was not significant. Irrespective of adolescents or adults, HN and MN stimuli elicited enhanced alpha suppression compared to Neutral stimuli, while the alpha power was similar across HN and MN conditions. Conclusions: These results confirmed prior findings that adolescents are more sensitive to emotionally negative stimuli compared to adults, regardless of emotion intensity, possibly due to the developing prefrontal control system during adolescence. PMID:27242568

  18. Theta oscillations regulate the speed of locomotion via a hippocampus to lateral septum pathway

    PubMed Central

    Bender, Franziska; Gorbati, Maria; Cadavieco, Marta Carus; Denisova, Natalia; Gao, Xiaojie; Holman, Constance; Korotkova, Tatiana; Ponomarenko, Alexey

    2015-01-01

    Hippocampal theta oscillations support encoding of an animal's position during spatial navigation, yet longstanding questions about their impact on locomotion remain unanswered. Combining optogenetic control of hippocampal theta oscillations with electrophysiological recordings in mice, we show that hippocampal theta oscillations regulate locomotion. In particular, we demonstrate that their regularity underlies more stable and slower running speeds during exploration. More regular theta oscillations are accompanied by more regular theta-rhythmic spiking output of pyramidal cells. Theta oscillations are coordinated between the hippocampus and its main subcortical output, the lateral septum (LS). Chemo- or optogenetic inhibition of this pathway reveals its necessity for the hippocampal regulation of running speed. Moreover, theta-rhythmic stimulation of LS projections to the lateral hypothalamus replicates the reduction of running speed induced by more regular hippocampal theta oscillations. These results suggest that changes in hippocampal theta synchronization are translated into rapid adjustment of running speed via the LS. PMID:26455912

  19. Theta oscillations regulate the speed of locomotion via a hippocampus to lateral septum pathway.

    PubMed

    Bender, Franziska; Gorbati, Maria; Cadavieco, Marta Carus; Denisova, Natalia; Gao, Xiaojie; Holman, Constance; Korotkova, Tatiana; Ponomarenko, Alexey

    2015-01-01

    Hippocampal theta oscillations support encoding of an animal's position during spatial navigation, yet longstanding questions about their impact on locomotion remain unanswered. Combining optogenetic control of hippocampal theta oscillations with electrophysiological recordings in mice, we show that hippocampal theta oscillations regulate locomotion. In particular, we demonstrate that their regularity underlies more stable and slower running speeds during exploration. More regular theta oscillations are accompanied by more regular theta-rhythmic spiking output of pyramidal cells. Theta oscillations are coordinated between the hippocampus and its main subcortical output, the lateral septum (LS). Chemo- or optogenetic inhibition of this pathway reveals its necessity for the hippocampal regulation of running speed. Moreover, theta-rhythmic stimulation of LS projections to the lateral hypothalamus replicates the reduction of running speed induced by more regular hippocampal theta oscillations. These results suggest that changes in hippocampal theta synchronization are translated into rapid adjustment of running speed via the LS. PMID:26455912

  20. Segmented flow sampling with push-pull theta pipettes.

    PubMed

    Saha-Shah, Anumita; Green, Curtis M; Abraham, David H; Baker, Lane A

    2016-03-21

    We report development of a mobile and easy-to-fabricate theta pipette microfluidic device for segmented flow sampling. The theta pipettes were also used as electrospray emitters for analysis of sub-nanoliter segments, which resulted in delivery of analyte to the vacuum inlet of the mass spectrometer without multiple transfer steps. Theta pipette probes enable sample collection with high spatial resolution due to micron or smaller sized probe inlets and can be used to manipulate aqueous segments in the range of 200 pL to tens of nanoliters. Optimized conditions can enable sampling with high spatial and temporal resolution, suitable for chemical monitoring in biological samples and studies of sample heterogeneity. Intercellular heterogeneity among Allium cepa cells was studied by collecting cytoplasm from multiple cells using a single probe. Extracted cytoplasm was analyzed in a fast and high throughput manner by direct electrospray mass spectrometry of segmented sample from the probe tip. PMID:26907673

  1. Geometrical model for non-zero {theta}{sub 13}

    SciTech Connect

    Chen Junmou; Wang Bin; Li Xueqian

    2011-10-01

    Based on Friedberg and Lee's geometric picture by which the tribimaximal Pontecorvo-Maki-Nakawaga-Sakata leptonic mixing matrix is constructed, namely, corresponding mixing angles correspond to the geometric angles among the sides of a cube. We suggest that the three realistic mixing angles, which slightly deviate from the values determined for the cube, are due to a viable deformation from the perfectly cubic shape. Taking the best-fitted results of {theta}{sub 12} and {theta}{sub 23} as inputs, we determine the central value of sin{sup 2}2{theta}{sub 13} should be 0.0238, with a relatively large error tolerance; this value lies in the range of measurement precision of the Daya Bay experiment and is consistent with recent results from the T2K Collaboration.

  2. Which EEG patterns in coma are nonconvulsive status epilepticus?

    PubMed

    Trinka, Eugen; Leitinger, Markus

    2015-08-01

    Nonconvulsive status epilepticus (NCSE) is common in patients with coma with a prevalence between 5% and 48%. Patients in deep coma may exhibit epileptiform EEG patterns, such as generalized periodic spikes, and there is an ongoing debate about the relationship of these patterns and NCSE. The purposes of this review are (i) to discuss the various EEG patterns found in coma, its fluctuations, and transitions and (ii) to propose modified criteria for NCSE in coma. Classical coma patterns such as diffuse polymorphic delta activity, spindle coma, alpha/theta coma, low output voltage, or burst suppression do not reflect NCSE. Any ictal patterns with a typical spatiotemporal evolution or epileptiform discharges faster than 2.5 Hz in a comatose patient reflect nonconvulsive seizures or NCSE and should be treated. Generalized periodic diacharges or lateralized periodic discharges (GPDs/LPDs) with a frequency of less than 2.5 Hz or rhythmic discharges (RDs) faster than 0.5 Hz are the borderland of NCSE in coma. In these cases, at least one of the additional criteria is needed to diagnose NCSE (a) subtle clinical ictal phenomena, (b) typical spatiotemporal evolution, or (c) response to antiepileptic drug treatment. There is currently no consensus about how long these patterns must be present to qualify for NCSE, and the distinction from nonconvulsive seizures in patients with critical illness or in comatose patients seems arbitrary. The Salzburg Consensus Criteria for NCSE [1] have been modified according to the Standardized Terminology of the American Clinical Neurophysiology Society [2] and validated in three different cohorts, with a sensitivity of 97.2%, a specificity of 95.9%, and a diagnostic accuracy of 96.3% in patients with clinical signs of NCSE. Their diagnostic utility in different cohorts with patients in deep coma has to be studied in the future. This article is part of a Special Issue entitled "Status Epilepticus". PMID:26148985

  3. Automatic sleep onset detection using single EEG sensor.

    PubMed

    Zhuo Zhang; Cuntai Guan; Ti Eu Chan; Juanhong Yu; Ng, Andrew Keong; Haihong Zhang; Chee Keong Kwoh

    2014-01-01

    Sleep has been shown to be imperative for the health and well-being of an individual. To design intelligent sleep management tools, such as the music-induce sleep-aid device, automatic detection of sleep onset is critical. In this work, we propose a simple yet accurate method for sleep onset prediction, which merely relies on Electroencephalogram (EEG) signal acquired from a single frontal electrode in a wireless headband. The proposed method first extracts energy power ratio of theta (4-8Hz) and alpha (8-12Hz) bands along a 3-second shifting window, then calculates the slow wave of each frequency band along the time domain. The resulting slow waves are then fed to a rule-based engine for sleep onset detection. To evaluate the effectiveness of the approach, polysomnographic (PSG) and headband EEG signals were obtained from 20 healthy adults, each of which underwent 2 sessions of sleep events. In total, data from 40 sleep events were collected. Each recording was then analyzed offline by a PSG technologist via visual observation of PSG waveforms, who annotated sleep stages N1 and N2 by using the American Academy of Sleep Medicine (AASM) scoring rules. Using this as the gold standard, our approach achieved a 87.5% accuracy for sleep onset detection. The result is better or at least comparable to the other state of the art methods which use either multi-or single- channel based data. The approach has laid down the foundations for our future work on developing intelligent sleep aid devices. PMID:25570439

  4. Frontal EEG/ERP correlates of attentional processes, cortisol and motivational states in adolescents from lower and higher socioeconomic status

    PubMed Central

    D'Angiulli, Amedeo; Weinberg, Joanne; Oberlander, Tim F.; Grunau, Ruth E.; Hertzman, Clyde; Maggi, Stefania

    2012-01-01

    Event-related potentials (ERPs) and other electroencephalographic (EEG) evidence show that frontal brain areas of higher and lower socioeconomic status (SES) children are recruited differently during selective attention tasks. We assessed whether multiple variables related to self-regulation (perceived mental effort) emotional states (e.g., anxiety, stress, etc.) and motivational states (e.g., boredom, engagement, etc.) may co-occur or interact with frontal attentional processing probed in two matched-samples of fourteen lower-SES and higher-SES adolescents. ERP and EEG activation were measured during a task probing selective attention to sequences of tones. Pre- and post-task salivary cortisol and self-reported emotional states were also measured. At similar behavioural performance level, the higher-SES group showed a greater ERP differentiation between attended (relevant) and unattended (irrelevant) tones than the lower-SES group. EEG power analysis revealed a cross-over interaction, specifically, lower-SES adolescents showed significantly higher theta power when ignoring rather than attending to tones, whereas, higher-SES adolescents showed the opposite pattern. Significant theta asymmetry differences were also found at midfrontal electrodes indicating left hypo-activity in lower-SES adolescents. The attended vs. unattended difference in right midfrontal theta increased with individual SES rank, and (independently from SES) with lower cortisol task reactivity and higher boredom. Results suggest lower-SES children used additional compensatory resources to monitor/control response inhibition to distracters, perceiving also more mental effort, as compared to higher-SES counterparts. Nevertheless, stress, boredom and other task-related perceived states were unrelated to SES. Ruling out presumed confounds, this study confirms the midfrontal mechanisms responsible for the SES effects on selective attention reported previously and here reflect genuine cognitive

  5. Event-related EEG power modulations and phase connectivity indicate the focus of attention in an auditory own name paradigm.

    PubMed

    Lechinger, Julia; Wielek, Tomasz; Blume, Christine; Pichler, Gerald; Michitsch, Gabriele; Donis, Johann; Gruber, Walter; Schabus, Manuel

    2016-08-01

    Estimating cognitive abilities in patients suffering from Disorders of Consciousness remains challenging. One cognitive task to address this issue is the so-called own name paradigm, in which subjects are presented with first names including the own name. In the active condition, a specific target name has to be silently counted. We recorded EEG during this task in 24 healthy controls, 8 patients suffering from Unresponsive Wakefulness Syndrome (UWS) and 7 minimally conscious (MCS) patients. EEG was analysed with respect to amplitude as well as phase modulations and connectivity. Results showed that general reactivity in the delta, theta and alpha frequency (event-related de-synchronisation, ERS/ERD, and phase locking between trials and electrodes) toward auditory stimulation was higher in controls than in patients. In controls, delta ERS and lower alpha ERD indexed the focus of attention in both conditions, late theta ERS only in the active condition. Additionally, phase locking between trials and delta phase connectivity was highest for own names in the passive and targets in the active condition. In patients, clear stimulus-specific differences could not be detected. However, MCS patients could reliably be differentiated from UWS patients based on their general event-related delta and theta increase independent of the type of stimulus. In conclusion, the EEG signature of the active own name paradigm revealed instruction-following in healthy participants. On the other hand, DOC patients did not show clear stimulus-specific processing. General reactivity toward any auditory input, however, allowed for a reliable differentiation between MCS and UWS patients. PMID:27216625

  6. Pre-stimulus thalamic theta power predicts human memory formation.

    PubMed

    Sweeney-Reed, Catherine M; Zaehle, Tino; Voges, Jürgen; Schmitt, Friedhelm C; Buentjen, Lars; Kopitzki, Klaus; Richardson-Klavehn, Alan; Hinrichs, Hermann; Heinze, Hans-Jochen; Knight, Robert T; Rugg, Michael D

    2016-09-01

    Pre-stimulus theta (4-8Hz) power in the hippocampus and neocortex predicts whether a memory for a subsequent event will be formed. Anatomical studies reveal thalamus-hippocampal connectivity, and lesion, neuroimaging, and electrophysiological studies show that memory processing involves the dorsomedial (DMTN) and anterior thalamic nuclei (ATN). The small size and deep location of these nuclei have limited real-time study of their activity, however, and it is unknown whether pre-stimulus theta power predictive of successful memory formation is also found in these subcortical structures. We recorded human electrophysiological data from the DMTN and ATN of 7 patients receiving deep brain stimulation for refractory epilepsy. We found that greater pre-stimulus theta power in the right DMTN was associated with successful memory encoding, predicting both behavioral outcome and post-stimulus correlates of successful memory formation. In particular, significant correlations were observed between right DMTN theta power and both frontal theta and right ATN gamma (32-50Hz) phase alignment, and frontal-ATN theta-gamma cross-frequency coupling. We draw the following primary conclusions. Our results provide direct electrophysiological evidence in humans of a role for the DMTN as well as the ATN in memory formation. Furthermore, prediction of subsequent memory performance by pre-stimulus thalamic oscillations provides evidence that post-stimulus differences in thalamic activity that index successful and unsuccessful encoding reflect brain processes specifically underpinning memory formation. Finally, the findings broaden the understanding of brain states that facilitate memory encoding to include subcortical as well as cortical structures. PMID:27208861

  7. On the Individuality of Sleep EEG Spectra

    PubMed Central

    Lewandowski, Achim; Rosipal, Roman; Dorffner, Georg

    2013-01-01

    Research in recent years has supported the hypothesis that many properties of the electroencephalogram (EEG) are specific to an individual. In this study, the intra- and inter-individual variations of sleep EEG signals were investigated. This was carried out by analyzing the stability of the average EEG spectra individually computed for the Rechtschaffen and Kales (RK) sleep stages. Six EEG channels were used to account for the topographical aspect of the analysis. Validity of the results was supported by considering a wide dataset of 174 subjects with normal sleep. Subjects spent two consecutive nights in the sleep laboratory during which EEG recordings were obtained. High similarity between average spectra of two consecutive nights was found considering an individual. More than 89% of the second night recordings were correctly assigned to their counterparts of the first night. The average spectra of sleep EEG computed for each RK sleep stage have shown a high degree of individuality. PMID:23997385

  8. Differential geometry of the Fermat quartic and theta functions

    NASA Astrophysics Data System (ADS)

    Hadnot, Jason

    2012-02-01

    The universal curve over a finite cover of the moduli space of elliptic curves with level four structure is embedded in C as the Fermat quartic and is parametrized via the four Jacobi theta functions. Constructions from completely integrable systems have shown the importance of looking at the curvature of certain spaces and here we compute sectional curvatures. For our computations, we choose the ambient Fubini-Study metric of C. We also derive several theta identities which arise from the quartic's holomorphic two-form.

  9. Correlated Components of Ongoing EEG Point to Emotionally Laden Attention – A Possible Marker of Engagement?

    PubMed Central

    Dmochowski, Jacek P.; Sajda, Paul; Dias, Joao; Parra, Lucas C.

    2012-01-01

    Recent evidence from functional magnetic resonance imaging suggests that cortical hemodynamic responses coincide in different subjects experiencing a common naturalistic stimulus. Here we utilize neural responses in the electroencephalogram (EEG) evoked by multiple presentations of short film clips to index brain states marked by high levels of correlation within and across subjects. We formulate a novel signal decomposition method which extracts maximally correlated signal components from multiple EEG records. The resulting components capture correlations down to a one-second time resolution, thus revealing that peak correlations of neural activity across viewings can occur in remarkable correspondence with arousing moments of the film. Moreover, a significant reduction in neural correlation occurs upon a second viewing of the film or when the narrative is disrupted by presenting its scenes scrambled in time. We also probe oscillatory brain activity during periods of heightened correlation, and observe during such times a significant increase in the theta band for a frontal component and reductions in the alpha and beta frequency bands for parietal and occipital components. Low-resolution EEG tomography of these components suggests that the correlated neural activity is consistent with sources in the cingulate and orbitofrontal cortices. Put together, these results suggest that the observed synchrony reflects attention- and emotion-modulated cortical processing which may be decoded with high temporal resolution by extracting maximally correlated components of neural activity. PMID:22623915

  10. Effects of oxcarbazepine and phenytoin on the EEG and cognition in healthy volunteers.

    PubMed

    Salinsky, M C; Spencer, D C; Oken, B S; Storzbach, D

    2004-12-01

    We studied the EEG and cognitive effects of oxcarbazepine (OXC) and phenytoin (PHT) using a double-blind, randomized, parallel-group design. Thirty-two healthy volunteers received a maximum of 1200 mg of OXC or 360 mg of PHT. EEG and cognitive testing were performed at baseline and after 12 weeks of treatment. For each subject and measure, test-retest Z scores were calculated from regression equations derived from 73 healthy controls. Twenty-six subjects completed the study. Both the OXC and PHT groups had significant slowing of the EEG peak frequency and increased relative theta and delta power. Differences between AEDs (antiepileptic drugs) were not significant. Significant cognitive effects were seen on 5 of 20 measures, primarily measures of motor speed and reaction time. Again, there were no significant differences between AEDs. The only significant difference between AEDs was for the POMS-Vigor scale, favoring OXC. The small sample size may have contributed to the lack of significant differences between AEDs. PMID:15582838

  11. A novel EEG for alpha brain state training, neurobiofeedback and behavior change.

    PubMed

    Stinson, Bruce; Arthur, David

    2013-08-01

    Mindfulness meditation, with the resulting alpha brain state, is gaining a strong following as an adjunct to health, so too is applying self-affirmation to stimulate behavior change through subconscious re-programming. Until recently the EEG technology needed to demonstrate this has been cumbersome and required specialist training. This paper reports a pilot study using a remote EEG headband, which through a sophisticated algorithm, provides a real-time EEG readout unencumbered by conventional artifacts. In a convenience sample of 13, the difference in brain waves was examined while the subjects were occupied in an 'attention' and an 'alpha mind state' exercise. There was a significant difference in the mean scores for theta, delta, beta and gamma brain waves. Alpha brain waves remained static suggesting an ability of the headset to discriminate a mindful state and to provide real-time, easy to interpret feedback for the facilitator and subject. The findings provide encouragement for research applications in health care activities providing neurobiofeedback to subjects involved in mindfulness behavior change activities. PMID:23890456

  12. Association of autonomic nervous system and EEG scalp potential during playing 2D Grand Turismo 5.

    PubMed

    Subhani, Ahmad Rauf; Likun, Xia; Saeed Malik, Aamir

    2012-01-01

    Cerebral activation and autonomic nervous system have importance in studies such as mental stress. The aim of this study is to analyze variations in EEG scalp potential which may influence autonomic activation of heart while playing video games. Ten healthy participants were recruited in this study. Electroencephalogram (EEG) and electrocardiogram (ECG) signals were measured simultaneously during playing video game and rest conditions. Sympathetic and parasympathetic innervations of heart were evaluated from heart rate variability (HRV), derived from the ECG. Scalp potential was measured by the EEG. The results showed a significant upsurge in the value theta Fz/alpha Pz (p<0.001) while playing game. The results also showed tachycardia while playing video game as compared to rest condition (p<0.005). Normalized low frequency power and ratio of low frequency/high frequency power were significantly increased while playing video game and normalized high frequency power sank during video games. Results showed synchronized activity of cerebellum and sympathetic and parasympathetic innervation of heart. PMID:23366661

  13. Asynchronous detection of kinesthetic attention during mobilization of lower limbs using EEG measurements

    NASA Astrophysics Data System (ADS)

    Melinscak, Filip; Montesano, Luis; Minguez, Javier

    2016-02-01

    Objective. Attention is known to modulate the plasticity of the motor cortex, and plasticity is crucial for recovery in motor rehabilitation. This study addresses the possibility of using an EEG-based brain-computer interface (BCI) to detect kinesthetic attention to movement. Approach. A novel experiment emulating physical rehabilitation was designed to study kinesthetic attention. The protocol involved continuous mobilization of lower limbs during which participants reported levels of attention to movement—from focused kinesthetic attention to mind wandering. For this protocol an asynchronous BCI detector of kinesthetic attention and deliberate mind wandering was designed. Main results. EEG analysis showed significant differences in theta, alpha, and beta bands, related to the attentional state. These changes were further pinpointed to bands relative to the frequency of the individual alpha peak. The accuracy of the designed BCI ranged between 60.8% and 68.4% (significantly above chance level), depending on the used analysis window length, i.e. acceptable detection delay. Significance. This study shows it is possible to use self-reporting to study attention-related changes in EEG during continuous mobilization. Such a protocol is used to develop an asynchronous BCI detector of kinesthetic attention, with potential applications to motor rehabilitation.

  14. EEG changes caused by spontaneous facial self-touch may represent emotion regulating processes and working memory maintenance.

    PubMed

    Grunwald, Martin; Weiss, Thomas; Mueller, Stephanie; Rall, Lysann

    2014-04-01

    Spontaneous facial self-touch gestures (sFSTG) are performed manifold every day by every human being, primarily in stressful situations. These movements are not usually designed to communicate and are frequently accomplished with little or no awareness. The aim of the present study was to investigate whether sFSTG are associated with specific changes in the electrical brain activity that might indicate an involvement of regulatory emotional processes and working memory. Fourteen subjects performed a delayed memory task of complex haptic stimuli. The stimuli had to be explored and then remembered for a retention interval of 5min. The retention interval was interrupted by unpleasant sounds from The International Affective Digitized Sounds and short sound-free periods. During the experiment a video stream of behavior, 19-channel EEG, and EMG (of forearm muscles) were recorded. Comparisons of the behavioral data and spectral power of different EEG frequency bands (theta, alpha, beta, and gamma) were conducted. An increase of sFSTG during the application of unpleasant sounds was observed. A significant increase of spectral theta and beta power was observed after exploration of the stimuli as well as after sFSTG in centro-parietal electrodes. The spectral theta power extremely decreased just before sFSTG during the retention interval. Contrary to this, no significant changes were detected in any of the frequencies when the spectral power before and after instructed facial self-touch movements (b-iFSTG and a-iFSTG) were compared. The changes of spectral theta power in the intervals before and after sFSTG in centro-parietal electrodes imply that sFSTG are associated with cortical regulatory processes in the domains of working memory and emotions. PMID:24530432

  15. Tele-transmission of EEG recordings.

    PubMed

    Lemesle, M; Kubis, N; Sauleau, P; N'Guyen The Tich, S; Touzery-de Villepin, A

    2015-03-01

    EEG recordings can be sent for remote interpretation. This article aims to define the tele-EEG procedures and technical guidelines. Tele-EEG is a complete medical act that needs to be carried out with the same quality requirements as a local one in terms of indications, formulation of the medical request and medical interpretation. It adheres to the same quality requirements for its human resources and materials. It must be part of a medical organization (technical and medical network) and follow all rules and guidelines of good medical practices. The financial model of this organization must include costs related to performing the EEG recording, operating and maintenance of the tele-EEG network and medical fees of the physician interpreting the EEG recording. Implementing this organization must be detailed in a convention between all parties involved: physicians, management of the healthcare structure, and the company providing the tele-EEG service. This convention will set rules for network operation and finance, and also the continuous training of all staff members. The tele-EEG system must respect all rules for safety and confidentiality, and ensure the traceability and storing of all requests and reports. Under these conditions, tele-EEG can optimize the use of human resources and competencies in its zone of utilization and enhance the organization of care management. PMID:25703437

  16. Technical and clinical analysis of microEEG: a miniature wireless EEG device designed to record high-quality EEG in the emergency department

    PubMed Central

    2012-01-01

    Background We describe and characterize the performance of microEEG compared to that of a commercially available and widely used clinical EEG machine. microEEG is a portable, battery-operated, wireless EEG device, developed by Bio-Signal Group to overcome the obstacles to routine use of EEG in emergency departments (EDs). Methods The microEEG was used to obtain EEGs from healthy volunteers in the EEG laboratory and ED. The standard system was used to obtain EEGs from healthy volunteers in the EEG laboratory, and studies recorded from patients in the ED or ICU were also used for comparison. In one experiment, a signal splitter was used to record simultaneous microEEG and standard EEG from the same electrodes. Results EEG signal analysis techniques indicated good agreement between microEEG and the standard system in 66 EEGs recorded in the EEG laboratory and the ED. In the simultaneous recording the microEEG and standard system signals differed only in a smaller amount of 60 Hz noise in the microEEG signal. In a blinded review by a board-certified clinical neurophysiologist, differences in technical quality or interpretability were insignificant between standard recordings in the EEG laboratory and microEEG recordings from standard or electrode cap electrodes in the ED or EEG laboratory. The microEEG data recording characteristics such as analog-to-digital conversion resolution (16 bits), input impedance (>100MΩ), and common-mode rejection ratio (85 dB) are similar to those of commercially available systems, although the microEEG is many times smaller (88 g and 9.4 × 4.4 × 3.8 cm). Conclusions Our results suggest that the technical qualities of microEEG are non-inferior to a standard commercially available EEG recording device. EEG in the ED is an unmet medical need due to space and time constraints, high levels of ambient electrical noise, and the cost of 24/7 EEG technologist availability. This study suggests that using microEEG with an electrode cap

  17. Integrative Frequency Power of EEG Correlates with Progression of Mild Cognitive Impairment to Dementia in Parkinson's Disease.

    PubMed

    Gu, Youquan; Chen, Jun; Lu, Yaqin; Pan, Suyue

    2016-04-01

    Clinically, predicting the progression of mild cognitive impairment (MCI) and diagnosing dementia in Parkinson's disease (PD) are difficult. This study aims to explore an integrative electroencephalography (EEG) frequency power that could be used to predict the progression of MCI in PD patients. Twenty-six PD patients, in this study, were divided into the mild cognitive impairment group (PDMCI, 17 patients) and dementia group (PDD, 9 patients) according to cognitive performance. Beta peak frequency, alpha relative power, and alpha/theta power were recorded and analyzed for the prediction. Mini Mental State Examination (MMSE) scores at initiation, in the first year, and in the second year were examined. The sensitivity, specificity, positive predictive value, Matthew correlation coefficient, and positive likelihood ratio were calculated in both the integrative EEG biomarkers and single best biomarker. Of the 17 patients with MCI for 2 years, 6 progressed to dementia. Integrative EEG biomarkers, mainly associated with beta peak frequency, can predict conversion from MCI to dementia. These biomarkers had sensitivity of 82% and specificity of 78%, compared with sensitivity of 61% and specificity of 58% of the beta peak frequency. In conclusion, the integrative EEG frequency powers were more sensitive and specific to MCI progression in PD patients. PMID:25519446

  18. EEG correlates of P300-based brain-computer interface (BCI) performance in people with amyotrophic lateral sclerosis

    NASA Astrophysics Data System (ADS)

    Mak, Joseph N.; McFarland, Dennis J.; Vaughan, Theresa M.; McCane, Lynn M.; Tsui, Phillippa Z.; Zeitlin, Debra J.; Sellers, Eric W.; Wolpaw, Jonathan R.

    2012-04-01

    The purpose of this study was to identify electroencephalography (EEG) features that correlate with P300-based brain-computer interface (P300 BCI) performance in people with amyotrophic lateral sclerosis (ALS). Twenty people with ALS used a P300 BCI spelling application in copy-spelling mode. Three types of EEG features were found to be good predictors of P300 BCI performance: (1) the root-mean-square amplitude and (2) the negative peak amplitude of the event-related potential to target stimuli (target ERP) at Fz, Cz, P3, Pz, and P4; and (3) EEG theta frequency (4.5-8 Hz) power at Fz, Cz, P3, Pz, P4, PO7, PO8 and Oz. A statistical prediction model that used a subset of these features accounted for >60% of the variance in copy-spelling performance (p < 0.001, mean R2 = 0.6175). The correlations reflected between-subject, rather than within-subject, effects. The results enhance understanding of performance differences among P300 BCI users. The predictors found in this study might help in: (1) identifying suitable candidates for long-term P300 BCI operation; (2) assessing performance online. Further work on within-subject effects needs to be done to establish whether P300 BCI user performance could be improved by optimizing one or more of these EEG features.

  19. A Low energy neutrino factory for large theta(13)

    SciTech Connect

    Geer, Steve; Mena, Olga; Pascoli, Silvia; /Durham U., IPPP

    2007-01-01

    If the value of {theta}{sub 13} is within the reach of the upcoming generation of long-baseline experiments, T2K and NOvA, they show that a low-energy neutrino factory, with peak energy in the few GeV range, would provide a sensitive tool to explore CP-violation and the neutrino mass hierarchy. They consider baselines with typical length 1000-1500 km. The unique performance of the low energy neutrino factory is due to the rich neutrino oscillation pattern at energies between 1 and 4 GeV at baselines {Omicron}(1000) km. They perform both a semi-analytical study of the sensitivities and a numerical analysis to explore how well this setup can measure {theta}{sub 13}, CP-violation, and determine the type of mass hierarchy and the {theta}{sub 23} quadrant. A low energy neutrino factory provides a powerful tool to resolve ambiguities and make precise parameter determinations, for both large and fairly small values of the mixing parameter {theta}{sub 13}.

  20. Holomorphic projections and Ramanujan’s mock theta functions

    PubMed Central

    Imamoğlu, Özlem; Raum, Martin; Richter, Olav K.

    2014-01-01

    We use spectral methods of automorphic forms to establish a holomorphic projection operator for tensor products of vector-valued harmonic weak Maass forms and vector-valued modular forms. We apply this operator to discover simple recursions for Fourier series coefficients of Ramanujan’s mock theta functions. PMID:24591582

  1. Presence of state transitions in the cryptophyte alga Guillardia theta

    PubMed Central

    Cheregi, Otilia; Kotabová, Eva; Prášil, Ondřej; Schröder, Wolfgang P.; Kaňa, Radek; Funk, Christiane

    2015-01-01

    Plants and algae have developed various regulatory mechanisms for optimal delivery of excitation energy to the photosystems even during fluctuating light conditions; these include state transitions as well as non-photochemical quenching. The former process maintains the balance by redistributing antennae excitation between the photosystems, meanwhile the latter by dissipating excessive excitation inside the antennae. In the present study, these mechanisms have been analysed in the cryptophyte alga Guillardia theta. Photoprotective non-photochemical quenching was observed in cultures only after they had entered the stationary growth phase. These cells displayed a diminished overall photosynthetic efficiency, measured as CO2 assimilation rate and electron transport rate. However, in the logarithmic growth phase G. theta cells redistributed excitation energy via a mechanism similar to state transitions. These state transitions were triggered by blue light absorbed by the membrane integrated chlorophyll a/c antennae, and green light absorbed by the lumenal biliproteins was ineffective. It is proposed that state transitions in G. theta are induced by small re-arrangements of the intrinsic antennae proteins, resulting in their coupling/uncoupling to the photosystems in state 1 or state 2, respectively. G. theta therefore represents a chromalveolate algae able to perform state transitions. PMID:26254328

  2. Presence of state transitions in the cryptophyte alga Guillardia theta.

    PubMed

    Cheregi, Otilia; Kotabová, Eva; Prášil, Ondřej; Schröder, Wolfgang P; Kaňa, Radek; Funk, Christiane

    2015-10-01

    Plants and algae have developed various regulatory mechanisms for optimal delivery of excitation energy to the photosystems even during fluctuating light conditions; these include state transitions as well as non-photochemical quenching. The former process maintains the balance by redistributing antennae excitation between the photosystems, meanwhile the latter by dissipating excessive excitation inside the antennae. In the present study, these mechanisms have been analysed in the cryptophyte alga Guillardia theta. Photoprotective non-photochemical quenching was observed in cultures only after they had entered the stationary growth phase. These cells displayed a diminished overall photosynthetic efficiency, measured as CO2 assimilation rate and electron transport rate. However, in the logarithmic growth phase G. theta cells redistributed excitation energy via a mechanism similar to state transitions. These state transitions were triggered by blue light absorbed by the membrane integrated chlorophyll a/c antennae, and green light absorbed by the lumenal biliproteins was ineffective. It is proposed that state transitions in G. theta are induced by small re-arrangements of the intrinsic antennae proteins, resulting in their coupling/uncoupling to the photosystems in state 1 or state 2, respectively. G. theta therefore represents a chromalveolate algae able to perform state transitions. PMID:26254328

  3. Preterm EEG: a multimodal neurophysiological protocol.

    PubMed

    Stjerna, Susanna; Voipio, Juha; Metsäranta, Marjo; Kaila, Kai; Vanhatalo, Sampsa

    2012-01-01

    Since its introduction in early 1950s, electroencephalography (EEG) has been widely used in the neonatal intensive care units (NICU) for assessment and monitoring of brain function in preterm and term babies. Most common indications are the diagnosis of epileptic seizures, assessment of brain maturity, and recovery from hypoxic-ischemic events. EEG recording techniques and the understanding of neonatal EEG signals have dramatically improved, but these advances have been slow to penetrate through the clinical traditions. The aim of this presentation is to bring theory and practice of advanced EEG recording available for neonatal units. In the theoretical part, we will present animations to illustrate how a preterm brain gives rise to spontaneous and evoked EEG activities, both of which are unique to this developmental phase, as well as crucial for a proper brain maturation. Recent animal work has shown that the structural brain development is clearly reflected in early EEG activity. Most important structures in this regard are the growing long range connections and the transient cortical structure, subplate. Sensory stimuli in a preterm baby will generate responses that are seen at a single trial level, and they have underpinnings in the subplate-cortex interaction. This brings neonatal EEG readily into a multimodal study, where EEG is not only recording cortical function, but it also tests subplate function via different sensory modalities. Finally, introduction of clinically suitable dense array EEG caps, as well as amplifiers capable of recording low frequencies, have disclosed multitude of brain activities that have as yet been overlooked. In the practical part of this video, we show how a multimodal, dense array EEG study is performed in neonatal intensive care unit from a preterm baby in the incubator. The video demonstrates preparation of the baby and incubator, application of the EEG cap, and performance of the sensory stimulations. PMID:22371054

  4. The Voice of Anger: Oscillatory EEG Responses to Emotional Prosody.

    PubMed

    Del Giudice, Renata; Blume, Christine; Wislowska, Malgorzata; Wielek, Tomasz; Heib, Dominik P J; Schabus, Manuel

    2016-01-01

    Emotionally relevant stimuli and in particular anger are, due to their evolutionary relevance, often processed automatically and able to modulate attention independent of conscious access. Here, we tested whether attention allocation is enhanced when auditory stimuli are uttered by an angry voice. We recorded EEG and presented healthy individuals with a passive condition where unfamiliar names as well as the subject's own name were spoken both with an angry and neutral prosody. The active condition instead, required participants to actively count one of the presented (angry) names. Results revealed that in the passive condition the angry prosody only elicited slightly stronger delta synchronization as compared to a neutral voice. In the active condition the attended (angry) target was related to enhanced delta/theta synchronization as well as alpha desynchronization suggesting enhanced allocation of attention and utilization of working memory resources. Altogether, the current results are in line with previous findings and highlight that attention orientation can be systematically related to specific oscillatory brain responses. Potential applications include assessment of non-communicative clinical groups such as post-comatose patients. PMID:27442445

  5. The Voice of Anger: Oscillatory EEG Responses to Emotional Prosody

    PubMed Central

    del Giudice, Renata; Blume, Christine; Wislowska, Malgorzata; Wielek, Tomasz; Heib, Dominik P. J.; Schabus, Manuel

    2016-01-01

    Emotionally relevant stimuli and in particular anger are, due to their evolutionary relevance, often processed automatically and able to modulate attention independent of conscious access. Here, we tested whether attention allocation is enhanced when auditory stimuli are uttered by an angry voice. We recorded EEG and presented healthy individuals with a passive condition where unfamiliar names as well as the subject’s own name were spoken both with an angry and neutral prosody. The active condition instead, required participants to actively count one of the presented (angry) names. Results revealed that in the passive condition the angry prosody only elicited slightly stronger delta synchronization as compared to a neutral voice. In the active condition the attended (angry) target was related to enhanced delta/theta synchronization as well as alpha desynchronization suggesting enhanced allocation of attention and utilization of working memory resources. Altogether, the current results are in line with previous findings and highlight that attention orientation can be systematically related to specific oscillatory brain responses. Potential applications include assessment of non-communicative clinical groups such as post-comatose patients. PMID:27442445

  6. Violations of parity and charge conjugation in the {theta} vacuum with imaginary chemical potential

    SciTech Connect

    Kouno, Hiroaki; Sakai, Yuji; Sasaki, Takahiro; Kashiwa, Kouji; Yahiro, Masanobu

    2011-04-01

    Charge conjugation (C) and parity (P) are exact symmetries at {theta}={pi} and {Theta}{identical_to}{mu}/(iT)={pi}, where {theta} is the parameter of the so-called {theta} vacuum, {mu} is the imaginary quark-number chemical potential and T is the temperature. Spontaneous breakings of these discrete symmetries are investigated by the Polyakov-loop extended Nambu-Jona-Lasinio model. At zero T, P symmetry is spontaneously broken while C symmetry is conserved. As T increases, P symmetry is restored just after C symmetry is spontaneously broken, so that either P or C symmetry or both the symmetries are spontaneously broken for any T. The chiral-symmetry restoration and the deconfinement transition at {theta}={Theta}=0 are remnants of the P restoration and the C breaking at {theta}={Theta}={pi}, respectively.

  7. Editorial: EEG Phenomenology and Multiple Faces of Short-term EEG Spectral Pattern

    PubMed Central

    Fingelkurts, Al. A; Fingelkurts, An. A

    2010-01-01

    An electroencephalogram (EEG) signal is extremely nonstationary, highly composite and very complex, all of which reflects the underlying integral neurodynamics. Understanding the EEG “grammar”, its internal structural organization would place a “Rozetta stone” in researchers’ hands, allowing them to more adequately describe the information processes of the brain in terms of EEG phenomenology. This Special Issue presents a framework where short-term EEG spectral pattern (SP) of a particular type is viewed as an information-rich event in EEG phenomenology. It is suggested that transition from one type of SP to another is accompanied by a “switch” between brain microstates in specific neuronal networks, or in cortex areas; and these microstates are reflected in EEG as piecewise stationary segments. In this context multiple faces of a short-term EEG SP reflect the poly-operational structure of brain activity. PMID:21347201

  8. EEG applications for sport and performance.

    PubMed

    Thompson, Trevor; Steffert, Tony; Ros, Tomas; Leach, Joseph; Gruzelier, John

    2008-08-01

    One approach to understanding processes that underlie skilled performing has been to study electrical brain activity using electroencephalography (EEG). A notorious problem with EEG is that genuine cerebral data is often contaminated by artifacts of non-cerebral origin. Unfortunately, such artifacts tend to be exacerbated when the subject is in motion, meaning that obtaining reliable data during exercise is inherently problematic. These problems may explain the limited number of studies using EEG as a methodological tool in the sports sciences. This paper discusses how empirical studies have generally tackled the problem of movement artifact by adopting alternative paradigms which avoid recording during actual physical exertion. Moreover, the specific challenges that motion presents to obtaining reliable EEG data are discussed along with practical and computational techniques to confront these challenges. Finally, as EEG recording in sports is often underpinned by a desire to optimise performance, a brief review of EEG-biofeedback and peak performance studies is also presented. A knowledge of practical aspects of EEG recording along with the advent of new technology and increasingly sophisticated processing models offer a promising approach to minimising, if perhaps not entirely circumventing, the problem of obtaining reliable EEG data during motion. PMID:18682293

  9. American Clinical Neurophysiology Society: EEG Guidelines Introduction.

    PubMed

    Tsuchida, Tammy N; Acharya, Jayant N; Halford, Jonathan J; Kuratani, John D; Sinha, Saurabh R; Stecker, Mark M; Tatum, William O; Drislane, Frank W

    2016-08-01

    This revision to the EEG Guidelines is an update incorporating current EEG technology and practice. "Standards of practice in clinical electroencephalography" (previously Guideline 4) has been removed. It is currently undergoing revision through collaboration among multiple medical societies and will become part of "Qualifications and Responsibilities of Personnel Performing and Interpreting Clinical Neurophysiology Procedures." The remaining guidelines are reordered and renumbered. PMID:27482792

  10. Analysis of EEG Related Saccadic Eye Movement

    NASA Astrophysics Data System (ADS)

    Funase, Arao; Kuno, Yoshiaki; Okuma, Shigeru; Yagi, Tohru

    Our final goal is to establish the model for saccadic eye movement that connects the saccade and the electroencephalogram(EEG). As the first step toward this goal, we recorded and analyzed the saccade-related EEG. In the study recorded in this paper, we tried detecting a certain EEG that is peculiar to the eye movement. In these experiments, each subject was instructed to point their eyes toward visual targets (LEDs) or the direction of the sound sources (buzzers). In the control cases, the EEG was recorded in the case of no eye movemens. As results, in the visual experiments, we found that the potential of EEG changed sharply on the occipital lobe just before eye movement. Furthermore, in the case of the auditory experiments, similar results were observed. In the case of the visual experiments and auditory experiments without eye movement, we could not observed the EEG changed sharply. Moreover, when the subject moved his/her eyes toward a right-side target, a change in EEG potential was found on the right occipital lobe. On the contrary, when the subject moved his/her eyes toward a left-side target, a sharp change in EEG potential was found on the left occipital lobe.

  11. EEG Recorded from the Ear: Characterizing the Ear-EEG Method

    PubMed Central

    Mikkelsen, Kaare B.; Kappel, Simon L.; Mandic, Danilo P.; Kidmose, Preben

    2015-01-01

    Highlights Auditory middle and late latency responses can be recorded reliably from ear-EEG.For sources close to the ear, ear-EEG has the same signal-to-noise-ratio as scalp.Ear-EEG is an excellent match for power spectrum-based analysis. A method for measuring electroencephalograms (EEG) from the outer ear, so-called ear-EEG, has recently been proposed. The method could potentially enable robust recording of EEG in natural environments. The objective of this study was to substantiate the ear-EEG method by using a larger population of subjects and several paradigms. For rigor, we considered simultaneous scalp and ear-EEG recordings with common reference. More precisely, 32 conventional scalp electrodes and 12 ear electrodes allowed a thorough comparison between conventional and ear electrodes, testing several different placements of references. The paradigms probed auditory onset response, mismatch negativity, auditory steady-state response and alpha power attenuation. By comparing event related potential (ERP) waveforms from the mismatch response paradigm, the signal measured from the ear electrodes was found to reflect the same cortical activity as that from nearby scalp electrodes. It was also found that referencing the ear-EEG electrodes to another within-ear electrode affects the time-domain recorded waveform (relative to scalp recordings), but not the timing of individual components. It was furthermore found that auditory steady-state responses and alpha-band modulation were measured reliably with the ear-EEG modality. Finally, our findings showed that the auditory mismatch response was difficult to monitor with the ear-EEG. We conclude that ear-EEG yields similar performance as conventional EEG for spectrogram-based analysis, similar timing of ERP components, and equal signal strength for sources close to the ear. Ear-EEG can reliably measure activity from regions of the cortex which are located close to the ears, especially in paradigms employing frequency

  12. EEG Recorded from the Ear: Characterizing the Ear-EEG Method.

    PubMed

    Mikkelsen, Kaare B; Kappel, Simon L; Mandic, Danilo P; Kidmose, Preben

    2015-01-01

    Highlights Auditory middle and late latency responses can be recorded reliably from ear-EEG.For sources close to the ear, ear-EEG has the same signal-to-noise-ratio as scalp.Ear-EEG is an excellent match for power spectrum-based analysis. A method for measuring electroencephalograms (EEG) from the outer ear, so-called ear-EEG, has recently been proposed. The method could potentially enable robust recording of EEG in natural environments. The objective of this study was to substantiate the ear-EEG method by using a larger population of subjects and several paradigms. For rigor, we considered simultaneous scalp and ear-EEG recordings with common reference. More precisely, 32 conventional scalp electrodes and 12 ear electrodes allowed a thorough comparison between conventional and ear electrodes, testing several different placements of references. The paradigms probed auditory onset response, mismatch negativity, auditory steady-state response and alpha power attenuation. By comparing event related potential (ERP) waveforms from the mismatch response paradigm, the signal measured from the ear electrodes was found to reflect the same cortical activity as that from nearby scalp electrodes. It was also found that referencing the ear-EEG electrodes to another within-ear electrode affects the time-domain recorded waveform (relative to scalp recordings), but not the timing of individual components. It was furthermore found that auditory steady-state responses and alpha-band modulation were measured reliably with the ear-EEG modality. Finally, our findings showed that the auditory mismatch response was difficult to monitor with the ear-EEG. We conclude that ear-EEG yields similar performance as conventional EEG for spectrogram-based analysis, similar timing of ERP components, and equal signal strength for sources close to the ear. Ear-EEG can reliably measure activity from regions of the cortex which are located close to the ears, especially in paradigms employing frequency

  13. Differences in EEG power in young and mature healthy adults during an incidental/spatial learning task are related to age and execution efficiency.

    PubMed

    López-Loeza, Elisa; Rangel-Argueta, Ana Rosa; López-Vázquez, Miguel Ángel; Cervantes, Miguel; Olvera-Cortés, María Esther

    2016-04-01

    The differential characteristics of absolute power in the EEG theta (4-8 Hz) and gamma (30-45 Hz) frequency bands have been analysed in young (18-25 years old, n = 14) and mature adults (45-65 years old, n = 12) during the incidental or intentional behavioural conditions of learning and recalling in a visuospatial task. A printed drawing of a maze including eight figures of common objects in specific placements, solved by connecting its entrance and exit points, allowed the subject's performance efficiency to be measured based on the number, position accuracy and/or identity of incidentally or intentionally learned and remembered objects. Meanwhile, EEG recordings from frontal, parietal and temporal derivations were obtained to determine the power values of the theta (4-8 Hz) and gamma (30-45 Hz) bands for each behavioural condition and derivation. Relative to the young adults, the mature adults generally showed lower absolute theta power values, mainly due to their low theta powers under the basal and incidental learning conditions, and higher absolute gamma power values in the frontal and temporal regions. Furthermore, higher theta band power in the frontal regions was related to higher performance efficiency in both incidental and intentional learning, regardless of the subjects' age. A significant negative correlation between the parameters of individual incidental or intentional learning performance and age was also found. Indeed, a differential accuracy of remembered information seems to be associated with age and incidental or intentional learning/memory testing conditions. These data support an increasing vulnerability of visuospatial learning abilities at mature ages and as ageing progresses. PMID:26961695

  14. EEG entropy measures in anesthesia

    PubMed Central

    Liang, Zhenhu; Wang, Yinghua; Sun, Xue; Li, Duan; Voss, Logan J.; Sleigh, Jamie W.; Hagihira, Satoshi; Li, Xiaoli

    2015-01-01

    Highlights: ► Twelve entropy indices were systematically compared in monitoring depth of anesthesia and detecting burst suppression.► Renyi permutation entropy performed best in tracking EEG changes associated with different anesthesia states.► Approximate Entropy and Sample Entropy performed best in detecting burst suppression. Objective: Entropy algorithms have been widely used in analyzing EEG signals during anesthesia. However, a systematic comparison of these entropy algorithms in assessing anesthesia drugs' effect is lacking. In this study, we compare the capability of 12 entropy indices for monitoring depth of anesthesia (DoA) and detecting the burst suppression pattern (BSP), in anesthesia induced by GABAergic agents. Methods: Twelve indices were investigated, namely Response Entropy (RE) and State entropy (SE), three wavelet entropy (WE) measures [Shannon WE (SWE), Tsallis WE (TWE), and Renyi WE (RWE)], Hilbert-Huang spectral entropy (HHSE), approximate entropy (ApEn), sample entropy (SampEn), Fuzzy entropy, and three permutation entropy (PE) measures [Shannon PE (SPE), Tsallis PE (TPE) and Renyi PE (RPE)]. Two EEG data sets from sevoflurane-induced and isoflurane-induced anesthesia respectively were selected to assess the capability of each entropy index in DoA monitoring and BSP detection. To validate the effectiveness of these entropy algorithms, pharmacokinetic/pharmacodynamic (PK/PD) modeling and prediction probability (Pk) analysis were applied. The multifractal detrended fluctuation analysis (MDFA) as a non-entropy measure was compared. Results: All the entropy and MDFA indices could track the changes in EEG pattern during different anesthesia states. Three PE measures outperformed the other entropy indices, with less baseline variability, higher coefficient of determination (R2) and prediction probability, and RPE performed best; ApEn and SampEn discriminated BSP best. Additionally, these entropy measures showed an advantage in computation

  15. Detection of EEG-resting state independent networks by eLORETA-ICA method

    PubMed Central

    Aoki, Yasunori; Ishii, Ryouhei; Pascual-Marqui, Roberto D.; Canuet, Leonides; Ikeda, Shunichiro; Hata, Masahiro; Imajo, Kaoru; Matsuzaki, Haruyasu; Musha, Toshimitsu; Asada, Takashi; Iwase, Masao; Takeda, Masatoshi

    2015-01-01

    Recent functional magnetic resonance imaging (fMRI) studies have shown that functional networks can be extracted even from resting state data, the so called “Resting State independent Networks” (RS-independent-Ns) by applying independent component analysis (ICA). However, compared to fMRI, electroencephalography (EEG) and magnetoencephalography (MEG) have much higher temporal resolution and provide a direct estimation of cortical activity. To date, MEG studies have applied ICA for separate frequency bands only, disregarding cross-frequency couplings. In this study, we aimed to detect EEG-RS-independent-Ns and their interactions in all frequency bands. We applied exact low resolution brain electromagnetic tomography-ICA (eLORETA-ICA) to resting-state EEG data in 80 healthy subjects using five frequency bands (delta, theta, alpha, beta and gamma band) and found five RS-independent-Ns in alpha, beta and gamma frequency bands. Next, taking into account previous neuroimaging findings, five RS-independent-Ns were identified: (1) the visual network in alpha frequency band, (2) dual-process of visual perception network, characterized by a negative correlation between the right ventral visual pathway (VVP) in alpha and beta frequency bands and left posterior dorsal visual pathway (DVP) in alpha frequency band, (3) self-referential processing network, characterized by a negative correlation between the medial prefrontal cortex (mPFC) in beta frequency band and right temporoparietal junction (TPJ) in alpha frequency band, (4) dual-process of memory perception network, functionally related to a negative correlation between the left VVP and the precuneus in alpha frequency band; and (5) sensorimotor network in beta and gamma frequency bands. We selected eLORETA-ICA which has many advantages over the other network visualization methods and overall findings indicate that eLORETA-ICA with EEG data can identify five RS-independent-Ns in their intrinsic frequency bands, and

  16. Mobile phone emission modulates interhemispheric functional coupling of EEG alpha rhythms.

    PubMed

    Vecchio, Fabrizio; Babiloni, Claudio; Ferreri, Florinda; Curcio, Giuseppe; Fini, Rita; Del Percio, Claudio; Rossini, Paolo Maria

    2007-03-01

    We tested the working hypothesis that electromagnetic fields from mobile phones (EMFs) affect interhemispheric synchronization of cerebral rhythms, an important physiological feature of information transfer into the brain. Ten subjects underwent two electroencephalographic (EEG) recordings, separated by 1 week, following a crossover double-blind paradigm in which they were exposed to a mobile phone signal (global system for mobile communications; GSM). The mobile phone was held on the left side of the subject head by a modified helmet, and orientated in the normal position for use over the ear. The microphone was orientated towards the corner of the mouth, and the antenna was near the head in the parietotemporal area. In addition, we positioned another similar phone (but without battery) on the right side of the helmet, to balance the weight and to prevent the subject localizing the side of GSM stimulation (and consequently lateralizing attention). In one session the exposure was real (GSM) while in the other it was Sham; both sessions lasted 45 min. Functional interhemispheric connectivity was modelled using the analysis of EEG spectral coherence between frontal, central and parietal electrode pairs. Individual EEG rhythms of interest were delta (about 2-4 Hz), theta (about 4-6 Hz), alpha 1 (about 6-8 Hz), alpha 2 (about 8-10 Hz) and alpha 3 (about 10-12 Hz). Results showed that, compared to Sham stimulation, GSM stimulation modulated the interhemispheric frontal and temporal coherence at alpha 2 and alpha 3 bands. The present results suggest that prolonged mobile phone emission affects not only the cortical activity but also the spread of neural synchronization conveyed by interhemispherical functional coupling of EEG rhythms. PMID:17432975

  17. Ictal Spread of Medial Temporal Lobe Seizures With and Without Secondary Generalization: An Intracranial EEG Analysis

    PubMed Central

    Yoo, Ji Yeoun; Farooque, Pue; Chen, William; Youngblood, Mark W.; Zaveri, Hitten P.; Gerrard, Jason L.; Spencer, Dennis D.; Hirsch, Lawrence J.; Blumenfeld, Hal

    2013-01-01

    Summary Objective Secondary generalization of seizures has devastating consequences for patient safety and quality of life. The aim of this intracranial EEG (icEEG) study was to investigate the differences in onset and propagation patterns of temporal lobe seizures that remained focal vs. those with secondary generalization in order to better understand the mechanism of secondary generalization. Methods A total of 39 seizures were analyzed in 9 patients who met the following criteria: 1) icEEG-video monitoring with at least 1 secondarily generalized tonic clonic seizure (GTC), 2) pathologically proven hippocampal sclerosis, and 3) no seizures for at least 1 year after anteromedial temporal lobe resection. Seizures were classified as focal or secondary generalized by behavioral analysis of video. Onset and propagation patterns were compared by analysis of icEEG. Results We obtained data from 22 focal seizures without generalization (FS), and 17 GTC. Seizure onset patterns did not differ between FS and GTCs, but there were differences in later propagation. All seizures started with low voltage fast activity except 7 seizures in one patient (6 FS, 1 GTC), which started with sharply contoured theta activity. 15 of 39 seizures started from the hippocampus and 24 seizures (including 6 seizures in a patient without hippocampal contacts) started from other medial temporal lobe areas. We observed involvement or more prominent activation of the posterior-lateral temporal regions in GTCs prior to propagation to the other cortical regions, vs. FS which had no involvement or less prominent activation of the posterior lateral temporal cortex. Occipital contacts were not involved at the time of clinical secondary generalization. Significance The posterior-lateral temporal cortex may serve as an important “gateway” controlling propagation of medial temporal lobe seizures to other cortical regions. Identifying the mechanisms of secondary generalization of focal seizures may

  18. Attention and Working Memory-Related EEG Markers of Subtle Cognitive Deterioration in Healthy Elderly Individuals.

    PubMed

    Deiber, Marie-Pierre; Meziane, Hadj Boumediene; Hasler, Roland; Rodriguez, Cristelle; Toma, Simona; Ackermann, Marine; Herrmann, François; Giannakopoulos, Panteleimon

    2015-01-01

    Future treatments of Alzheimer's disease need the identification of cases at high risk at the preclinical stage of the disease before the development of irreversible structural damage. We investigated here whether subtle cognitive deterioration in a population of healthy elderly individuals could be predicted by EEG signals at baseline under cognitive activation. Continuous EEG was recorded in 97 elderly control subjects and 45 age-matched mild cognitive impairment (MCI) cases during a simple attentional and a 2-back working memory task. Upon 18-month neuropsychological follow-up, the final sample included 55 stable (sCON) and 42 deteriorated (dCON) controls. We examined the P1, N1, P3, and PNwm event-related components as well as the oscillatory activities in the theta (4-7 Hz), alpha (8-13 Hz), and beta (14-25 Hz) frequency ranges (ERD/ERS: event-related desynchronization/synchronization, and ITC: inter-trial coherence). Behavioral performance, P1, and N1 components were comparable in all groups. The P3, PNwm, and all oscillatory activity indices were altered in MCI cases compared to controls. Only three EEG indices distinguished the two control groups: alpha and beta ERD (dCON >  sCON) and beta ITC (dCON <  sCON). These findings show that subtle cognitive deterioration has no impact on EEG indices associated with perception, discrimination, and working memory processes but mostly affects attention, resulting in an enhanced recruitment of attentional resources. In addition, cognitive decline alters neural firing synchronization at high frequencies (14-25 Hz) at early stages, and possibly affects lower frequencies (4-13 Hz) only at more severe stages. PMID:26401557

  19. Abnormal Parietal Brain Function in ADHD: Replication and Extension of Previous EEG Beta Asymmetry Findings

    PubMed Central

    Hale, T. Sigi; Kane, Andrea M.; Tung, Kelly L.; Kaminsky, Olivia; McGough, James J.; Hanada, Grant; Loo, Sandra K.

    2014-01-01

    Background: Abundant work indicates ADHD abnormal posterior brain structure and function, including abnormal structural and functional asymmetries and reduced corpus callosum size. However, this literature has attracted considerably less research interest than fronto-striatal findings. Objective: To help address this imbalance, the current study replicates and extends our previous work showing abnormal parietal brain function in ADHD adults during the Conner’s Continuous Performance Test (CPT). Method: Our previous study found that ADHD adults had increased rightward EEG beta (16–21 Hz) asymmetry in inferior parietal brain regions during the CPT (p = 0.00001), and that this metric exhibited a lack of normal correlation (i.e., observed in controls) with beta asymmetry at temporal–parietal regions. We re-tested these effects in a new ADHD sample and with both new and old samples combined. We additionally examined: (a) EEG asymmetry in multiple frequency bands, (b) unilateral effects for all asymmetry findings, and (c) the association between EEG asymmetry and a battery of cognitive tests. Results: We replicated our original findings by demonstrating abnormal rightward inferior parietal beta asymmetry in adults with ADHD during the CPT, and again this metric exhibited abnormal reduced correlation to temporal–parietal beta asymmetry. Novel analyses also demonstrated a broader pattern of rightward beta and theta asymmetry across inferior, superior, and temporal–parietal brain regions, and showed that rightward parietal asymmetry in ADHD was atypically associated with multiple cognitive tests. Conclusion: Abnormal increased rightward parietal EEG beta asymmetry is an important feature of ADHD. We speculate that this phenotype may occur with any form of impaired capacity for top-down task-directed control over sensory encoding functions, and that it may reflect associated increase of attentional shifting and compensatory sustained/selective attention. PMID

  20. Learner Acquisition of Dialect Variation in a Study Abroad Context: The Case of the Spanish [Theta

    ERIC Educational Resources Information Center

    Ringer-Hilfinger, Kathryn

    2012-01-01

    The present study aims at analyzing the acquisition of dialect variation by native English-speaking university students who study Spanish for a semester in Spain. The selected variable is the phoneme /[theta]/ (theta). The goal is to assess learner awareness, opinion, and use of [theta]. Data were elicited through a set of oral and written tasks…

  1. Modulation of Hippocampal Theta Oscillations and Spatial Memory by Relaxin-3 Neurons of the Nucleus Incertus

    ERIC Educational Resources Information Center

    Ma, Sherie; Olucha-Bordonau, Francisco E.; Hossain, M. Akhter; Lin, Feng; Kuei, Chester; Liu, Changlu; Wade, John D.; Sutton, Steven W.; Nunez, Angel; Gundlach, Andrew L.

    2009-01-01

    Hippocampal theta rhythm is thought to underlie learning and memory, and it is well established that "pacemaker" neurons in medial septum (MS) modulate theta activity. Recent studies in the rat demonstrated that brainstem-generated theta rhythm occurs through a multisynaptic pathway via the nucleus incertus (NI), which is the primary source of the…

  2. Tensor analyzing powers T/sub 20/(theta) and T/sub 22/(theta) in the /sup 2/H(darrow,. gamma. ) /sup 4/He reaction

    SciTech Connect

    Seyler, R.G.; Weller, H.R.

    1985-05-01

    Reaction theory expressions are used to prove that the tensor analyzing powers T/sub 20/(theta) and T/sub 22/(theta) for the /sup 2/H(darrow,..gamma..) /sup 4/He reaction are isotropic if the reaction is pure E2 and terms quadratic in channel-spin-2 matrix elements are neglected. Experimental departures from isotropy can be expected near theta-0/sup 0/, 90/sup 0/, and 189/sup 0/.

  3. Analysis of correlation between white matter changes and functional responses in thalamic stroke: a DTI & EEG study.

    PubMed

    Duru, Adil Deniz; Duru, Dilek Göksel; Yumerhodzha, Sami; Bebek, Nerses

    2016-06-01

    Diffusion tensor imaging (DTI) allows in vivo structural brain mapping and detection of microstructural disruption of white matter (WM). One of the commonly used parameters for grading the anisotropic diffusivity in WM is fractional anisotropy (FA). FA value helps to quantify the directionality of the local tract bundle. Therefore, FA images are being used in voxelwise statistical analyses (VSA). The present study used Tract-Based Spatial Statistics (TBSS) of FA images across subjects, and computes the mean skeleton map to detect voxelwise knowledge of the tracts yielding to groupwise comparison. The skeleton image illustrates WM structure and shows any changes caused by brain damage. The microstructure of WM in thalamic stroke is investigated, and the VSA results of healthy control and thalamic stroke patients are reported. It has been shown that several skeleton regions were affected subject to the presence of thalamic stroke (FWE, p < 0.05). Furthermore the correlation of quantitative EEG (qEEG) scores and neurophysiological tests with the FA skeleton for the entire test group is also investigated. We compared measurements that are related to the same fibers across subjects, and discussed implications for VSA of WM in thalamic stroke cases, for the relationship between behavioral tests and FA skeletons, and for the correlation between the FA maps and qEEG scores.Results obtained through the regression analyses did not exceed the corrected statistical threshold values for multiple comparisons (uncorrected, p < 0.05). However, in the regression analysis of FA values and the theta band activity of EEG, cingulum bundle and corpus callosum were found to be related. These areas are parts of the Default Mode Network (DMN) where DMN is known to be involved in resting state EEG theta activity. The relation between the EEG alpha band power values and FA values of the skeleton was found to support the cortico-thalamocortical cycles for both subject groups. Further

  4. Event-related desynchronization of frontal-midline theta rhythm during preconscious auditory oddball processing.

    PubMed

    Kawamata, Masaru; Kirino, Eiji; Inoue, Reiichi; Arai, Heii

    2007-10-01

    The goal of this study was to explore the frontal-midline theta rhythm (Fm theta) generation mechanism employing event-related desynchronization/synchronization (ERD/ERS) analysis in relation to task-irrelevant external stimuli. A dual paradigm was employed: a videogame and the simultaneous presentation of passive auditory oddball stimuli. We analyzed the data concerning ERD/ERS using both Fast Fourier Transformation (FFT) and wavelet transform (WT). In the FFT data, during the periods with appearance of Fm theta, apparent ERD of the theta band was observed at Fz and Cz. ERD when Fm theta was present was much more prominent than when Fm theta was absent. In the WT data, as in the FFT data, ERD was seen again, but in this case the ERD was preceded by ERS during both the periods with and without Fm theta. Furthermore, the WT analysis indicated that ERD was followed by ERS during the periods without Fm theta. However, during Fm theta, no apparent ERS following ERD was seen. In our study, Fm theta was desynchronized by the auditory stimuli that were independent of the video game task used to evoke the Fm theta. The ERD of Fm theta might be reflecting the mechanism of "positive suppression" to process external auditory stimuli automatically and preventing attentional resources from being unnecessarily allocated to those stimuli. Another possibility is that Fm theta induced by our dual paradigm may reflect information processing modeled by multi-item working memory requirements for playing the videogame and the simultaneous auditory processing using a memory trace. ERS in the WT data without Fm theta might indicate further processing of the auditory information free from "positive suppression" control reflected by Fm theta. PMID:17993201

  5. Quantitative EEG Monitoring of Vigilance: Effects of Sleep Deprivation, Circadian Phase and Sympathetic Activation

    NASA Technical Reports Server (NTRS)

    Dijk, Derk-Jan

    1999-01-01

    Shuttle astronauts typically sleep only 6 to 6.5 hours per day while in orbit. This sleep loss is related to recurrent sleep cycle shifting--due to mission-dependent orbital mechanics and mission duration requirements-- and associated circadian displacement of sleep, the operational demands of space flight, noise and space motion sickness. Such sleep schedules are known to produce poor subjective sleep quality, daytime sleepiness, reduced attention, negative mood, slower reaction times, and impaired daytime alertness. Countermeasures to allow crew members to obtain an adequate amount of sleep and maintain adequate levels of neurobehavioral performance are being developed and investigated. However, it is necessary to develop methods that allow effective and attainable in-flight monitoring of vigilance to evaluate the effectiveness of these countermeasures and to detect and predict online critical decrements in alertness/performance. There is growing evidence to indicate that sleep loss and associated decrements in neurobehavioral function are reflected in the spectral composition of the electroencephalogram (EEG) during wakefulness as well as in the incidence of slow eye movements recorded by the electro-oculogram (EOG). Further-more, our preliminary data indicated that these changes in the EEG during wakefulness are more pronounced when subjects are in a supine posture, which mimics some of the physiologic effects of microgravity. Therefore, we evaluate the following hypotheses: (1) that during a 40-hour period of wakefulness (i.e., one night of total sleep deprivation) neurobehavioral function deteriorates, the incidence of slow eye-movements and EEG power density in the theta frequencies increases especially in frontal areas of the brain; (2) that the sleep deprivation induced deterioration of neurobehavioral function and changes in the incidence of slow eye movements and the spectral composition of the EEG are more pronounced when subjects are in a supine

  6. Developmental differences in EEG and sleep responses to acute ethanol administration and its withdrawal (hangover) in adolescent and adult Wistar rats.

    PubMed

    Ehlers, Cindy L; Desikan, Anita; Wills, Derek N

    2013-12-01

    Age-related differences in sensitivity to the acute effects of alcohol may play an important role in the increased risk for the development of alcoholism seen in teens that begin drinking at an early age. The present study evaluated the acute and protracted (hangover) effects of ethanol in adolescent (P33-P40) and adult (P100-P107) Wistar rats, using the cortical electroencephalogram (EEG). Six minutes of EEG was recorded during waking, 15 min after administration of 0, 1.5, or 3.0 g/kg ethanol, and for 3 h at 20 h post ethanol, during the rats' next sleep cycle. Significantly higher overall frontal and parietal cortical power was seen in a wide range of EEG frequencies in adolescent rats as compared to adult rats in their waking EEG. Acute administration of ethanol did not produce differences between adolescents and adults on behavioral measures of acute intoxication. However, it did produce a significantly less intense acute EEG response to ethanol in the theta frequencies in parietal cortex in the adolescents as compared to the adults. At 20 h following acute ethanol administration, during the rats' next sleep cycle, a decrease in slow-wave frequencies (1-4 Hz) was seen and the adolescent rats were found to display more reduction in the slow-wave frequencies than the adults did. The present study found that adolescent rats, as compared to adults, demonstrate low sensitivity to acute ethanol administration in the theta frequencies and more susceptibility to disruption of slow-wave sleep during hangover. These studies may lend support to the idea that these traits may contribute to increased risk for alcohol use disorders seen in adults who begin drinking in their early teenage years. PMID:24169089

  7. Source-based neurofeedback methods using EEG recordings: training altered brain activity in a functional brain source derived from blind source separation

    PubMed Central

    White, David J.; Congedo, Marco; Ciorciari, Joseph

    2014-01-01

    A developing literature explores the use of neurofeedback in the treatment of a range of clinical conditions, particularly ADHD and epilepsy, whilst neurofeedback also provides an experimental tool for studying the functional significance of endogenous brain activity. A critical component of any neurofeedback method is the underlying physiological signal which forms the basis for the feedback. While the past decade has seen the emergence of fMRI-based protocols training spatially confined BOLD activity, traditional neurofeedback has utilized a small number of electrode sites on the scalp. As scalp EEG at a given electrode site reflects a linear mixture of activity from multiple brain sources and artifacts, efforts to successfully acquire some level of control over the signal may be confounded by these extraneous sources. Further, in the event of successful training, these traditional neurofeedback methods are likely influencing multiple brain regions and processes. The present work describes the use of source-based signal processing methods in EEG neurofeedback. The feasibility and potential utility of such methods were explored in an experiment training increased theta oscillatory activity in a source derived from Blind Source Separation (BSS) of EEG data obtained during completion of a complex cognitive task (spatial navigation). Learned increases in theta activity were observed in two of the four participants to complete 20 sessions of neurofeedback targeting this individually defined functional brain source. Source-based EEG neurofeedback methods using BSS may offer important advantages over traditional neurofeedback, by targeting the desired physiological signal in a more functionally and spatially specific manner. Having provided preliminary evidence of the feasibility of these methods, future work may study a range of clinically and experimentally relevant brain processes where individual brain sources may be targeted by source-based EEG neurofeedback. PMID

  8. A model code for the radiative theta pinch

    SciTech Connect

    Lee, S.; Saw, S. H.; Lee, P. C. K.; Akel, M.; Damideh, V.; Khattak, N. A. D.; Mongkolnavin, R.; Paosawatyanyong, B.

    2014-07-15

    A model for the theta pinch is presented with three modelled phases of radial inward shock phase, reflected shock phase, and a final pinch phase. The governing equations for the phases are derived incorporating thermodynamics and radiation and radiation-coupled dynamics in the pinch phase. A code is written incorporating correction for the effects of transit delay of small disturbing speeds and the effects of plasma self-absorption on the radiation. Two model parameters are incorporated into the model, the coupling coefficient f between the primary loop current and the induced plasma current and the mass swept up factor f{sub m}. These values are taken from experiments carried out in the Chulalongkorn theta pinch.

  9. Simplified scaling model for the THETA-pinch

    SciTech Connect

    Ewing, K. J.; Thomson, D. B.

    1982-02-01

    A simple ID scaling model for the fast THETA-pinch was developed and written as a code that would be flexible, inexpensive in computer time, and readily available for use with the Los Alamos explosive-driven high-magnetic-field program. The simplified model uses three successive separate stages: (1) a snowplow-like radial implosion, (2) an idealized resistive annihilation of reverse bias field, and (3) an adiabatic compression stage of a BETA = 1 plasma for which ideal pressure balance is assumed to hold. The code uses one adjustable fitting constant whose value was first determined by comparison with results from the Los Alamos Scylla III, Scyllacita, and Scylla IA THETA-pinches.

  10. Concordance between distributed EEG source localization and simultaneous EEG-fMRI studies of epileptic spikes.

    PubMed

    Grova, C; Daunizeau, J; Kobayashi, E; Bagshaw, A P; Lina, J-M; Dubeau, F; Gotman, J

    2008-01-15

    In order to analyze where epileptic spikes are generated, we assessed the level of concordance between EEG source localization using distributed source models and simultaneous EEG-fMRI which measures the hemodynamic correlates of EEG activity. Data to be compared were first estimated on the same cortical surface and two comparison strategies were used: (1) MEM-concordance: a comparison between EEG sources localized with the Maximum Entropy on the Mean (MEM) method and fMRI clusters showing a significant hemodynamic response. Minimal geodesic distances between local extrema and overlap measurements between spatial extents of EEG sources and fMRI clusters were used to quantify MEM-concordance. (2) fMRI-relevance: estimation of the fMRI-relevance index alpha quantifying if sources located in an fMRI cluster could explain some scalp EEG data, when this fMRI cluster was used to constrain the EEG inverse problem. Combining MEM-concordance and fMRI-relevance (alpha) indexes, each fMRI cluster showing a significant hemodynamic response (p<0.05 corrected) was classified according to its concordance with EEG data. Nine patients with focal epilepsy who underwent EEG-fMRI examination followed by EEG recording outside the scanner were selected for this study. Among the 62 fMRI clusters analyzed (7 patients), 15 (24%) found in 6 patients were highly concordant with EEG according to both MEM-concordance and fMRI-relevance. EEG concordance was found for 5 clusters (8%) according to alpha only, suggesting sources missed by the MEM. No concordance with EEG was found for 30 clusters (48%) and for 10 clusters (16%) alpha was significantly negative, suggesting EEG-fMRI discordance. We proposed two complementary strategies to assess and classify EEG-fMRI concordance. We showed that for most patients, part of the hemodynamic response to spikes was highly concordant with EEG sources, whereas other fMRI clusters in response to the same spikes were found distant or discordant with EEG

  11. Scalp EEG does not predict hemispherectomy outcome

    PubMed Central

    Greiner, Hansel M.; Park, Yong D.; Holland, Katherine; Horn, Paul S.; Byars, Anna W.; Mangano, Francesco T.; Smith, Joseph R.; Lee, Mark R.; Lee, Ki-Hyeong

    2012-01-01

    Background Functional hemispherectomy is effective in carefully selected patients, resulting in a reduction of seizure burden up to complete resolution, improvement of intellectual development, and developmental benefit despite possible additional neurological deficit. Despite apparent hemispheric pathology on brain magnetic resonance imaging (MRI) or other imaging tests, scalp electroencephalography (EEG) could be suggestive of bilateral ictal onset or even ictal onset contralateral to the dominant imaging abnormality. We aimed to investigate the role of scalp EEG lateralization pre-operatively in predicting outcome. Methods We retrospectively reviewed 54 patients who underwent hemispherectomy between 1991 and 2009 at Medical College of Georgia (1991–2006) and Cincinnati Children’s Hospital Medical Center (2006–2009) and had at least one year post-operative follow-up. All preoperative EEGs were reviewed, and classified as either lateralizing or nonlateralizing, for both ictal and interictal EEG recordings. Results Of 54 patients, 42 (78%) became seizure free. Twenty-four (44%) of 54 had a nonlateralizing ictal or interictal EEG. Further analysis was based on etiology of epilepsy, including malformation of cortical development (MCD), Rasmussen syndrome (RS), and stroke (CVA). EEG nonlateralization did not predict poor outcome in any of the etiology groups evaluated. Conclusion Scalp EEG abnormalities in contralateral or bilateral hemispheres do not, in isolation, predict a poor outcome from hemispherectomy. Results of other non-invasive and invasive evaluations should be used to determine candidacy. PMID:21813300

  12. Cold iron cos THETA magnet option for the SSC

    SciTech Connect

    Reardon, P.

    1985-01-01

    We review first the evolution over the past several years of a cold iron, high field cos THETA magnet design option for the SSC. We note the collaborative approach pursued by BNL and LBL on the 2-in-1 option, and the culmination of this effort in the tests of the BNL 4.5 m model magnets. Next, we discuss the subsequent 1-in-1 option being pursued jointly by BNL, Fermilab and LBL.

  13. The role of REM sleep theta activity in emotional memory

    PubMed Central

    Hutchison, Isabel C.; Rathore, Shailendra

    2015-01-01

    While non-REM (NREM) sleep has been strongly implicated in the reactivation and consolidation of memory traces, the role of rapid-eye movement (REM) sleep remains unclear. A growing body of research on humans and animals provide behavioral evidence for a role of REM sleep in the strengthening and modulation of emotional memories. Theta activity—which describes low frequency oscillations in the local field potential within the hippocampus, amygdala and neocortex—is a prominent feature of both wake and REM sleep in humans and rodents. Theta coherence between the hippocampus and amygdala drives large-scale pontine-geniculo-occipital (PGO) waves, the density of which predicts increases in plasticity-related gene expression. This could potentially facilitate the processing of emotional memory traces within the hippocampus during REM sleep. Further, the timing of hippocampal activity in relation to theta phase is vital in determining subsequent potentiation of neuronal activity. This could allow the emotionally modulated strengthening of novel and gradual weakening of consolidated hippocampal memory traces during REM sleep. Hippocampal theta activity is also correlated with REM sleep levels of achetylcholine - which is thought to reduce hippocampal inputs in the neocortex. The additional low levels of noradrenaline during REM sleep, which facilitate feedback within the neocortex, could allow the integration of novel memory traces previously consolidated during NREM sleep. We therefore propose that REM sleep mediates the prioritized processing of emotional memories within the hippocampus, the integration of previously consolidated memory traces within the neocortex, as well as the disengagement of consolidated neocortical memory traces from the hippocampus. PMID:26483709

  14. Correlation of hippocampal theta rhythm with changes in cutaneous temperature

    NASA Technical Reports Server (NTRS)

    Horowitz, J. M.; Saleh, M. A.; Karem, R. D.

    1974-01-01

    Investigation of the possibility that the hippocampus performs the function of alerting an animal to changes in cutaneous temperature, using unanesthetized, loosely restrained rabbits. The results indicate that the hippocampal theta rhythm, which appears to be evoked by changes in cutaneous temperature, can be related to a specific type of hyppocampal neuron which is, in turn, connected with other areas of the brain involved in temperature regulation.

  15. The role of REM sleep theta activity in emotional memory.

    PubMed

    Hutchison, Isabel C; Rathore, Shailendra

    2015-01-01

    While non-REM (NREM) sleep has been strongly implicated in the reactivation and consolidation of memory traces, the role of rapid-eye movement (REM) sleep remains unclear. A growing body of research on humans and animals provide behavioral evidence for a role of REM sleep in the strengthening and modulation of emotional memories. Theta activity-which describes low frequency oscillations in the local field potential within the hippocampus, amygdala and neocortex-is a prominent feature of both wake and REM sleep in humans and rodents. Theta coherence between the hippocampus and amygdala drives large-scale pontine-geniculo-occipital (PGO) waves, the density of which predicts increases in plasticity-related gene expression. This could potentially facilitate the processing of emotional memory traces within the hippocampus during REM sleep. Further, the timing of hippocampal activity in relation to theta phase is vital in determining subsequent potentiation of neuronal activity. This could allow the emotionally modulated strengthening of novel and gradual weakening of consolidated hippocampal memory traces during REM sleep. Hippocampal theta activity is also correlated with REM sleep levels of achetylcholine - which is thought to reduce hippocampal inputs in the neocortex. The additional low levels of noradrenaline during REM sleep, which facilitate feedback within the neocortex, could allow the integration of novel memory traces previously consolidated during NREM sleep. We therefore propose that REM sleep mediates the prioritized processing of emotional memories within the hippocampus, the integration of previously consolidated memory traces within the neocortex, as well as the disengagement of consolidated neocortical memory traces from the hippocampus. PMID:26483709

  16. Cell discharge correlates of posterior hypothalamic theta rhythm. Recipe for success in recording stable field potential.

    PubMed

    Bocian, Renata; Kłos-Wojtczak, Paulina; Konopacki, Jan

    2016-09-01

    The theta rhythm discovered in the posterior hypothalamus area (PHa) differs from theta observed in the hippocampal formation. In comparison to hippocampal spontaneous theta, the theta recorded in the PHa is rarely registered, has lower amplitude, often disappears, and sometimes returns after a few minutes. These features indicate that spontaneous theta recorded in the PHa is not an appropriate experimental model to search for the correlation between PHa cell discharges and local field potential. In this paper we present standard experimental conditions necessary to record theta-related cells in the PHa in anesthetized rats. Three pharmacological agents were used in the experiments to induce PHa theta rhythm in urethanized rats: carbachol (CCH), carbenoxolone and kainic acid, which are potent enough to induce well-synchronized PHa theta. However, CCH was found to be the best pharmacological tool to induce PHa theta oscillations, due to its longest duration of action and lack of preliminary epileptogenic effects. It seems that CCH-induced theta can be the most suitable pharmacological model for experiments with the use of protocol of long-lasting recordings of PHa theta-related cell discharges. PMID:27353451

  17. A Modified Theta Projection Model for Creep Behavior of Metals and Alloys

    NASA Astrophysics Data System (ADS)

    Kumar, Manish; Singh, I. V.; Mishra, B. K.; Ahmad, S.; Venugopal Rao, A.; Kumar, Vikas

    2016-06-01

    In this work, a modified theta projection model is proposed for the constitutive modeling of creep behavior of metals and alloys. In the conventional theta projection model, strain hardening exponent is a function of time and theta, whereas in the modified theta projection model, the exponent is taken as a function of time, theta, and applied stress. The results obtained by the modified theta projection model for Al 2124 T851 alloy at constant uniaxial tensile stress are compared with the experimental results and with the predictions of the conventional theta projection method. The creep behavior of Al 7075 T651 alloy is also predicted using modified and conventional theta projection model and compared with the available experimental data. It is observed that the modified theta projection model captures the creep behavior more accurately as compared to the conventional theta projection model. The modified theta projection model can be used to predict the creep strain of pure metals and class M alloys (similar creep behavior to pure metals) for intermediate range of stress and temperature.

  18. Theta Series, Wall-Crossing and Quantum Dilogarithm Identities

    NASA Astrophysics Data System (ADS)

    Alexandrov, Sergei; Pioline, Boris

    2016-05-01

    Motivated by mathematical structures which arise in string vacua and gauge theories with {{{N}=2}} supersymmetry, we study the properties of certain generalized theta series which appear as Fourier coefficients of functions on a twisted torus. In Calabi-Yau string vacua, such theta series encode instanton corrections from k Neveu-Schwarz five-branes. The theta series are determined by vector-valued wave-functions, and in this work we obtain the transformation of these wave-functions induced by Kontsevich-Soibelman symplectomorphisms. This effectively provides a quantum version of these transformations, where the quantization parameter is inversely proportional to the five-brane charge k. Consistency with wall-crossing implies a new five-term relation for Faddeev's quantum dilogarithm {Φ_b} at b = 1, which we prove. By allowing the torus to be non-commutative, we obtain a more general five-term relation valid for arbitrary b and k, which may be relevant for the physics of five-branes at finite chemical potential for angular momentum.

  19. Adaptive [theta]-methods for pricing American options

    NASA Astrophysics Data System (ADS)

    Khaliq, Abdul Q. M.; Voss, David A.; Kazmi, Kamran

    2008-12-01

    We develop adaptive [theta]-methods for solving the Black-Scholes PDE for American options. By adding a small, continuous term, the Black-Scholes PDE becomes an advection-diffusion-reaction equation on a fixed spatial domain. Standard implementation of [theta]-methods would require a Newton-type iterative procedure at each time step thereby increasing the computational complexity of the methods. Our linearly implicit approach avoids such complications. We establish a general framework under which [theta]-methods satisfy a discrete version of the positivity constraint characteristic of American options, and numerically demonstrate the sensitivity of the constraint. The positivity results are established for the single-asset and independent two-asset models. In addition, we have incorporated and analyzed an adaptive time-step control strategy to increase the computational efficiency. Numerical experiments are presented for one- and two-asset American options, using adaptive exponential splitting for two-asset problems. The approach is compared with an iterative solution of the two-asset problem in terms of computational efficiency.

  20. Theta Series, Wall-Crossing and Quantum Dilogarithm Identities

    NASA Astrophysics Data System (ADS)

    Alexandrov, Sergei; Pioline, Boris

    2016-08-01

    Motivated by mathematical structures which arise in string vacua and gauge theories with N=2 supersymmetry, we study the properties of certain generalized theta series which appear as Fourier coefficients of functions on a twisted torus. In Calabi-Yau string vacua, such theta series encode instanton corrections from k Neveu-Schwarz five-branes. The theta series are determined by vector-valued wave-functions, and in this work we obtain the transformation of these wave-functions induced by Kontsevich-Soibelman symplectomorphisms. This effectively provides a quantum version of these transformations, where the quantization parameter is inversely proportional to the five-brane charge k. Consistency with wall-crossing implies a new five-term relation for Faddeev's quantum dilogarithm {Φ_b} at b = 1, which we prove. By allowing the torus to be non-commutative, we obtain a more general five-term relation valid for arbitrary b and k, which may be relevant for the physics of five-branes at finite chemical potential for angular momentum.

  1. Speech encoding by coupled cortical theta and gamma oscillations.

    PubMed

    Hyafil, Alexandre; Fontolan, Lorenzo; Kabdebon, Claire; Gutkin, Boris; Giraud, Anne-Lise

    2015-01-01

    Many environmental stimuli present a quasi-rhythmic structure at different timescales that the brain needs to decompose and integrate. Cortical oscillations have been proposed as instruments of sensory de-multiplexing, i.e., the parallel processing of different frequency streams in sensory signals. Yet their causal role in such a process has never been demonstrated. Here, we used a neural microcircuit model to address whether coupled theta-gamma oscillations, as observed in human auditory cortex, could underpin the multiscale sensory analysis of speech. We show that, in continuous speech, theta oscillations can flexibly track the syllabic rhythm and temporally organize the phoneme-level response of gamma neurons into a code that enables syllable identification. The tracking of slow speech fluctuations by theta oscillations, and its coupling to gamma-spiking activity both appeared as critical features for accurate speech encoding. These results demonstrate that cortical oscillations can be a key instrument of speech de-multiplexing, parsing, and encoding. PMID:26023831

  2. Impaired theta-gamma coupling in APP-deficient mice

    PubMed Central

    Zhang, Xiaomin; Zhong, Wewei; Brankačk, Jurij; Weyer, Sascha W.; Müller, Ulrike C.; Tort, Adriano B. L.; Draguhn, Andreas

    2016-01-01

    Amyloid precursor protein (APP) is critically involved in the pathophysiology of Alzheimer’s disease, but its physiological functions remain elusive. Importantly, APP knockout (APP-KO) mice exhibit cognitive deficits, suggesting that APP plays a role at the neuronal network level. To investigate this possibility, we recorded local field potentials (LFPs) from the posterior parietal cortex, dorsal hippocampus and lateral prefrontal cortex of freely moving APP-KO mice. Spectral analyses showed that network oscillations within the theta- and gamma-frequency bands were not different between APP-KO and wild-type mice. Surprisingly, however, while gamma amplitude coupled to theta phase in all recorded regions of wild-type animals, in APP-KO mice theta-gamma coupling was strongly diminished in recordings from the parietal cortex and hippocampus, but not in LFPs recorded from the prefrontal cortex. Thus, lack of APP reduces oscillatory coupling in LFP recordings from specific brain regions, despite not affecting the amplitude of the oscillations. Together, our findings reveal reduced cross-frequency coupling as a functional marker of APP deficiency at the network level. PMID:26905287

  3. Distinct representations and theta dynamics in dorsal and ventral hippocampus

    PubMed Central

    Royer, Sébastien; Sirota, Anton; Patel, Jagdish; Buzsáki, György

    2010-01-01

    Although anatomical, lesion and imaging studies of the hippocampus indicate qualitatively different information processing along its septo-temporal axis, physiological mechanisms supporting such distinction are missing. We found fundamental differences between the dorsal (dCA3) and the ventral-most parts (vCA3) of the hippocampus in both environmental representation and temporal dynamics. Discrete place fields of dCA3 neurons evenly covered all parts of the testing environments. In contrast, vCA3 neurons i) rarely showed continuous two-dimensional place fields, ii) differentiated open and closed arms of a radial maze, and iii) discharged similar firing patterns with respect to the goals, both on multiple arms of a radial maze and during opposite journeys in a zig-zag maze. In addition, theta power and the fraction of theta-rhythmic neurons were substantially reduced in the ventral as compared to dorsal hippocampus. We hypothesize that the spatial representation in the septo-temporal axis of the hippocampus is progressively decreased. This change is paralleled with a reduction of theta rhythm and an increased representation of non-spatial information. PMID:20130187

  4. [Comparative quantitative pharmacological-EEG analysis of the effects of psychostimulants].

    PubMed

    Krapivin, S V; Voronina, T A

    1995-01-01

    Amphetamine, caffeine, sydnocarb, meclofenoxate, adapromine, midantan, and nomifensine were studied for their effects on bioelectrical activity and Fourier EEG power spectra of the sensomotor cortex, dorsal hippocamp and lateral hypothalamus of freely behaving awake rats. The drop in the absolute power of all frequency ranges with the enhanced power of fast beta 1,2-ranges was common to the action of psychostimulants. In addition to the common properties, specific features of their action were revealed. Amphetamine, meclofenoxate, and nomifensine were found to increase the amplitude of the dominant peak in the theta-range and amphetamine shifts the frequency of the dominant peak to the region of faster ranges. The agents-induced electrophysiological changes correspond to the varying degrees of activation of the central nervous system, causing the optimization of behavioral functions, abolition of fatigue and drowsiness and enhancing physical and mental working capacity. PMID:7627000

  5. Quantitative EEG: investigation in children with end stage renal disease before and after haemodialysis.

    PubMed

    Balzar, E; Saletu, B; Khoss, A; Wagner, U

    1986-10-01

    Changes in brain function of 9 children (6 males and 3 females) ages 7 to 14 years (mean 12 years) with end stage renal disease (ESRD) were investigated before and after haemodialysis treatment, utilizing computer assisted spectral analysis of the scalp-recorded EEG. A control group of age-matched healthy children was studied as well. Statistical analyses demonstrated that ESRD children exhibited more Delta and Theta activity, less Beta activity, a slower dominant frequency of the Alpha activity as well as a slower centroid of the total activity before treatment than the controls. These findings suggest a deterioration of vigilance as characterized by Head. Haemodialysis decreased slow activity and increased Alpha and Beta activity, thereby inducing an improvement of brain function. PMID:3791647

  6. [Continuous EEG monitoring for aneurysmal subarachnoid hemorrhage].

    PubMed

    Pugin, D; Vulliemoz, S; Bijlenga, P; Gasche, Y

    2014-12-10

    Subarachnoid hemorrhage (SAH) still carries a high morbidity and mortality, despite improvement in surgical and medical management. Seizures and delayed cerebral ischemia (DCI) secondary to vasospasm or cortical spreading depression are frequent after SAH. Continuous EEG allows early detection of non-convulsive seizures or delayed cerebral ischemia and may become a promissing tool in the monitoring of SAH patients. However, its use in clinical practice is still limited because many resources are required for recording and analyzing continuous EEG. Moreover, we require more data to confirm the relationship between aggressive treatment of non-convulsive seizure or delayed cerebral ischemia triggered by continuous EEG and outcome. PMID:25632630

  7. Enabling computer decisions based on EEG input

    NASA Technical Reports Server (NTRS)

    Culpepper, Benjamin J.; Keller, Robert M.

    2003-01-01

    Multilayer neural networks were successfully trained to classify segments of 12-channel electroencephalogram (EEG) data into one of five classes corresponding to five cognitive tasks performed by a subject. Independent component analysis (ICA) was used to segregate obvious artifact EEG components from other sources, and a frequency-band representation was used to represent the sources computed by ICA. Examples of results include an 85% accuracy rate on differentiation between two tasks, using a segment of EEG only 0.05 s long and a 95% accuracy rate using a 0.5-s-long segment.

  8. The Diagnostic Accuracy of Prolonged Ambulatory Versus Routine EEG.

    PubMed

    Keezer, Mark R; Simard-Tremblay, Elisabeth; Veilleux, Martin

    2016-04-01

    Prolonged ambulatory electroencephalography (paEEG) is increasingly used in clinical practice but its diagnostic accuracy relative to that of routine EEG (rEEG) remains uncertain. We examined a consecutive sample of 72 individuals who had undergone 32-channel paEEG immediately after an rEEG, creating perfectly matched EEG samples. Each recording was prospectively assessed for epileptiform discharges (ED) and nonepileptiform abnormalities. The median paEEG duration was 22.5 hours (interquartile range: 22.0-23.0). The sensitivity of paEEG was 2.23 times greater than that of rEEG [sensitivity ratio: 2.23 (95% CI=1.49-3.34)] if a positive test was limited to the presence of epileptiform discharges. This benefit of paEEG versus rEEG was no longer evident if the definition of a positive test included nonepileptiform abnormalities (sensitivity ratio 1.26; 95% CI=1.02-1.55). The specificity of the 2 tests was not evidently different (specificity ratio 0.67; 95% CI=0.17-2.67). Twenty-six percent of paEEG recorded epileptic seizures while none of the rEEG did (absolute difference 26.0% (95% CI=11.8-40.2). Our findings quantify the benefit of 32-channel paEEG, relative to rEEG, and support its role in the diagnosis and characterization of epilepsy. PMID:26376916

  9. Resting-State Subjective Experience and EEG Biomarkers Are Associated with Sleep-Onset Latency.

    PubMed

    Diaz, B Alexander; Hardstone, Richard; Mansvelder, Huibert D; Van Someren, Eus J W; Linkenkaer-Hansen, Klaus

    2016-01-01

    Difficulties initiating sleep are common in several disorders, including insomnia and attention deficit hyperactivity disorder. These disorders are prevalent, bearing significant societal and financial costs which require the consideration of new treatment strategies and a better understanding of the physiological and cognitive processes surrounding the time of preparing for sleep or falling asleep. Here, we search for neuro-cognitive associations in the resting state and examine their relevance for predicting sleep-onset latency using multi-level mixed models. Multiple EEG recordings were obtained from healthy male participants (N = 13) during a series of 5 min eyes-closed resting-state trials (in total, n = 223) followed by a period-varying in length up to 30 min-that either allowed subjects to transition into sleep ("sleep trials," n sleep = 144) or was ended while they were still awake ("wake trials," n wake = 79). After both eyes-closed rest, sleep and wake trials, subjective experience was assessed using the Amsterdam Resting-State Questionnaire (ARSQ). Our data revealed multiple associations between eyes-closed rest alpha and theta oscillations and ARSQ-dimensions Discontinuity of Mind, Self, Theory of Mind, Planning, and Sleepiness. The sleep trials showed that the transition toward the first sleep stage exclusively affected subjective experiences related to Theory of Mind, Planning, and Sleepiness. Importantly, sleep-onset latency was negatively associated both with eyes-closed rest ratings on the ARSQ dimension of Sleepiness and with the long-range temporal correlations of parietal theta oscillations derived by detrended fluctuation analysis (DFA). These results could be relevant to the development of personalized tools that help evaluate the success of falling asleep based on measures of resting-state cognition and EEG biomarkers. PMID:27148107

  10. Resting-State EEG Source Localization and Functional Connectivity in Schizophrenia-Like Psychosis of Epilepsy

    PubMed Central

    Canuet, Leonides; Ishii, Ryouhei; Pascual-Marqui, Roberto D.; Iwase, Masao; Kurimoto, Ryu; Aoki, Yasunori; Ikeda, Shunichiro; Takahashi, Hidetoshi; Nakahachi, Takayuki; Takeda, Masatoshi

    2011-01-01

    Background It is unclear whether, like in schizophrenia, psychosis-related disruption in connectivity between certain regions, as an index of intrinsic functional disintegration, occurs in schizophrenia-like psychosis of epilepsy (SLPE). In this study, we sought to determine abnormal patterns of resting-state EEG oscillations and functional connectivity in patients with SLPE, compared with nonpsychotic epilepsy patients, and to assess correlations with psychopathological deficits. Methodology/Principal Findings Resting EEG was recorded in 21 patients with focal epilepsy and SLPE and in 21 clinically-matched non-psychotic epilepsy controls. Source current density and functional connectivity were determined using eLORETA software. For connectivity analysis, a novel nonlinear connectivity measure called “lagged phase synchronization” was used. We found increased theta oscillations in regions involved in the default mode network (DMN), namely the medial and lateral parietal cortex bilaterally in the psychotic patients relative to their nonpsychotic counterparts. In addition, patients with psychosis had increased beta temporo-prefrontal connectivity in the hemisphere with predominant seizure focus. This functional connectivity in temporo-prefrontal circuits correlated with positive symptoms. Additionally, there was increased interhemispheric phase synchronization between the auditory cortex of the affected temporal lobe and the Broca's area correlating with auditory hallucination scores. Conclusions/Significance In addition to dysfunction of parietal regions that are part of the DMN, resting-state disrupted connectivity of the medial temporal cortex with prefrontal areas that are either involved in the DMN or implicated in psychopathological dysfunction may be critical to schizophrenia-like psychosis, especially in individuals with temporal lobe epilepsy. This suggests that DMN deficits might be a core neurobiological feature of the disorder, and that abnormalities

  11. Resting-State Subjective Experience and EEG Biomarkers Are Associated with Sleep-Onset Latency

    PubMed Central

    Diaz, B. Alexander; Hardstone, Richard; Mansvelder, Huibert D.; Van Someren, Eus J. W.; Linkenkaer-Hansen, Klaus

    2016-01-01

    Difficulties initiating sleep are common in several disorders, including insomnia and attention deficit hyperactivity disorder. These disorders are prevalent, bearing significant societal and financial costs which require the consideration of new treatment strategies and a better understanding of the physiological and cognitive processes surrounding the time of preparing for sleep or falling asleep. Here, we search for neuro-cognitive associations in the resting state and examine their relevance for predicting sleep-onset latency using multi-level mixed models. Multiple EEG recordings were obtained from healthy male participants (N = 13) during a series of 5 min eyes-closed resting-state trials (in total, n = 223) followed by a period–varying in length up to 30 min–that either allowed subjects to transition into sleep (“sleep trials,” nsleep = 144) or was ended while they were still awake (“wake trials,” nwake = 79). After both eyes-closed rest, sleep and wake trials, subjective experience was assessed using the Amsterdam Resting-State Questionnaire (ARSQ). Our data revealed multiple associations between eyes-closed rest alpha and theta oscillations and ARSQ-dimensions Discontinuity of Mind, Self, Theory of Mind, Planning, and Sleepiness. The sleep trials showed that the transition toward the first sleep stage exclusively affected subjective experiences related to Theory of Mind, Planning, and Sleepiness. Importantly, sleep-onset latency was negatively associated both with eyes-closed rest ratings on the ARSQ dimension of Sleepiness and with the long-range temporal correlations of parietal theta oscillations derived by detrended fluctuation analysis (DFA). These results could be relevant to the development of personalized tools that help evaluate the success of falling asleep based on measures of resting-state cognition and EEG biomarkers. PMID:27148107

  12. Comparison of numerical techniques for the evaluation of the Doppler broadening functions psi(x,theta) and chi(x,theta)

    NASA Technical Reports Server (NTRS)

    Canright, R. B., Jr.; Semler, T. T.

    1972-01-01

    Several approximations to the Doppler broadening functions psi(x, theta) and chi(x, theta) are compared with respect to accuracy and speed of evaluation. A technique, due to A. M. Turning (1943), is shown to be at least as accurate as direct numerical quadrature and somewhat faster than Gaussian quadrature. FORTRAN 4 listings are included.

  13. EEG-neurofeedback for optimising performance. I: a review of cognitive and affective outcome in healthy participants.

    PubMed

    Gruzelier, John H

    2014-07-01

    A re-emergence of research on EEG-neurofeedback followed controlled evidence of clinical benefits and validation of cognitive/affective gains in healthy participants including correlations in support of feedback learning mediating outcome. Controlled studies with healthy and elderly participants, which have increased exponentially, are reviewed including protocols from the clinic: sensory-motor rhythm, beta1 and alpha/theta ratios, down-training theta maxima, and from neuroscience: upper-alpha, theta, gamma, alpha desynchronisation. Outcome gains include sustained attention, orienting and executive attention, the P300b, memory, spatial rotation, RT, complex psychomotor skills, implicit procedural memory, recognition memory, perceptual binding, intelligence, mood and well-being. Twenty-three of the controlled studies report neurofeedback learning indices along with beneficial outcomes, of which eight report correlations in support of a meditation link, results which will be supplemented by further creativity and the performing arts evidence in Part II. Validity evidence from optimal performance studies represents an advance for the neurofeedback field demonstrating that cross fertilisation between clinical and optimal performance domains will be fruitful. Theoretical and methodological issues are outlined further in Part III. PMID:24125857

  14. Statistics over features: EEG signals analysis.

    PubMed

    Derya Ubeyli, Elif

    2009-08-01

    This paper presented the usage of statistics over the set of the features representing the electroencephalogram (EEG) signals. Since classification is more accurate when the pattern is simplified through representation by important features, feature extraction and selection play an important role in classifying systems such as neural networks. Multilayer perceptron neural network (MLPNN) architectures were formulated and used as basis for detection of electroencephalographic changes. Three types of EEG signals (EEG signals recorded from healthy volunteers with eyes open, epilepsy patients in the epileptogenic zone during a seizure-free interval, and epilepsy patients during epileptic seizures) were classified. The selected Lyapunov exponents, wavelet coefficients and the power levels of power spectral density (PSD) values obtained by eigenvector methods of the EEG signals were used as inputs of the MLPNN trained with Levenberg-Marquardt algorithm. The classification results confirmed that the proposed MLPNN has potential in detecting the electroencephalographic changes. PMID:19555931

  15. Cortical source multivariate EEG synchronization analysis on amnestic mild cognitive impairment in type 2 diabetes.

    PubMed

    Cui, Dong; Liu, Jing; Bian, Zhijie; Li, Qiuli; Wang, Lei; Li, Xiaoli

    2014-01-01

    Is synchronization altered in amnestic mild cognitive impairment (aMCI) and normal cognitive functions subjects in type 2 diabetes mellitus (T2DM)? Resting eye-closed EEG data were recorded in 8 aMCI subjects and 11 age-matched controls in T2DM. Three multivariate synchronization algorithms (S-estimator (S), synchronization index (SI), and global synchronization index (GSI)) were used to measure the synchronization in five ROIs of sLORETA sources for seven bands. Results showed that aMCI group had lower synchronization values than control groups in parietal delta and beta2 bands, temporal delta and beta2 bands, and occipital theta and beta2 bands significantly. Temporal (r = 0.629; P = 0.004) and occipital (r = 0.648; P = 0.003) theta S values were significantly positive correlated with Boston Name Testing. In sum, each of methods reflected that the cortical source synchronization was significantly different between aMCI and control group, and these difference correlated with cognitive functions. PMID:25254248

  16. Color combinations of visual display terminal (VDT) icon on user preferences and EEG response.

    PubMed

    Ko, Ya-Hsien; Shen, I-Hsuan; Lee, Der-Song

    2010-04-01

    This study explored the effects of color combinations and polarity on user preferences and EEG responses using an icon design for a visual display terminal. 72 college students (M=24.5 yr., SD=2.3 yr.) were tested. The seven color combinations of top 16% with rating scores (5-point scale) over 3.60 almost always included black or white as a target or background, including white-on-black, red-on-black, yellow-on-black, blue-on-white, and black-on-white; the other two preferred color combinations were yellow-on-blue and blue-on-yellow. The eight color combinations of the bottom 16% with rating scores under 2.38 almost always included green, turquoise, or purple as a target or background. Negative image polarity (higher luminance color image shown on a lower luminance color background) was preferred over positive image polarity (lower luminance color image shown on a higher luminance color background) by the subjects. The theta and alpha band power in the right hemisphere were greater than those in the left hemisphere during the experiment. There seemed to be no linear correlation between the rating scores of subjective preferences and brain wave power of theta and alpha bands, so the possibility of using brain wave power to measure subjective preference is questionable. PMID:20499552

  17. What hemodynamic (fNIRS), electrophysiological (EEG) and autonomic integrated measures can tell us about emotional processing.

    PubMed

    Balconi, Michela; Grippa, Elisabetta; Vanutelli, Maria Elide

    2015-04-01

    Due to its fast temporal evolution and its representation and integration among complex and widespread neural networks, the emotion perception process should preferably be examined by means of multimethodological approach. Indeed the indubitable vantage of acquiring both the autonomic (arousal-related) and the central (cortical-related) activities stands in the possibility to better elucidate the reciprocal interplay of the two compartments. In the present study EEG (frequency band analysis), systemic SCR and heart rate (HR) were all recorded simultaneously with hemodynamic (NIRS, Near-Infrared Spectroscopy) measurements as potential biological markers of emotions, related to both central and peripheral systems. These multiple measures were then related to the self-report correlates, that is the subjective appraisal in term of valence (positive vs. negative) and arousal (high vs. low) by using SAM rating. Twenty subjects were submitted to emotional cues processing (IAPS) when fNIRS, frequency bands (alpha, beta, delta, theta), SCR and HR were recorded. As shown by O2Hb increasing within the right hemisphere, the contribution of prefrontal cortex was elucidated, by pointing out a relevant lateralization effect (more right-PFC activity) induced by the specific valence (negative) of the emotional patterns. Secondly, EEG activity (mainly low-frequency theta and delta bands) was intrinsically associated with the cortical hemodynamic responsiveness to the negative emotional patterns, within the right side. Finally SCR increased mainly in response to negative patterns, and the autonomic behavior was related to explicit (SAM) and cortical (NIRS; EEG) activity. The intrinsic relationships between these three different levels are discussed. PMID:25721430

  18. Peak frequency in the theta and alpha bands correlates with human working memory capacity.

    PubMed

    Moran, Rosalyn J; Campo, Pablo; Maestu, Fernando; Reilly, Richard B; Dolan, Raymond J; Strange, Bryan A

    2010-01-01

    Theta oscillations in the local field potential of neural ensembles are considered key mediators of human working memory. Theoretical accounts arising from animal hippocampal recordings propose that the phase of theta oscillations serves to instantiate sequential neuronal firing to form discrete representations of items held online. Human evidence of phase relationships in visual working memory has enhanced this theory, implicating long theta cycles in supporting greater memory capacity. Here we use human magnetoencephalographic recordings to examine a novel, alternative principle of theta functionality. The principle we hypothesize is derived from information theory and predicts that rather than long (low frequency) theta cycles, short (high frequency) theta cycles are best suited to support high information capacity. From oscillatory activity recorded during the maintenance period of a visual working memory task we show that a network of brain regions displays an increase in peak 4-12 Hz frequency with increasing memory load. Source localization techniques reveal that this network comprises bilateral prefrontal and right parietal cortices. Further, the peak of oscillation along this theta-alpha frequency axis is significantly higher in high capacity individuals compared to low capacity individuals. Importantly while we observe the adherence of cortical neuronal oscillations to our novel principle of theta functioning, we also observe the traditional inverse effect of low frequency theta maintaining high loads, where critically this was located in medial temporal regions suggesting parallel, dissociable hippocampal-centric, and prefrontal-centric theta mechanisms. PMID:21206531

  19. Aged rats show dominant modulation of lower frequency hippocampal theta rhythm during running.

    PubMed

    Li, Jia-Yi; Kuo, Terry B J; Yang, Cheryl C H

    2016-10-01

    Aging causes considerable decline in both physiological and mental functions, particularly cognitive function. The hippocampal theta rhythm (4-12Hz) is related to both cognition and locomotion. Aging-related findings of the frequency and amplitude of hippocampal theta oscillations are inconsistent and occasionally contradictory. This inconsistency may be due to the effects of the sleep/wake state and different frequency subbands being overlooked. We assumed that aged rats have lower responses of the hippocampal theta rhythm during running, which is mainly due to the dominant modulation of theta frequency subbands related to cognition. By simultaneously recording electroencephalography, physical activity (PA), and the heart rate (HR), this experiment explored the theta oscillations before, during, and after treadmill running at a constant speed in 8-week-old (adult) and 60-week-old (middle-aged) rats. Compared with adult rats, the middle-aged rats exhibited lower theta activity in all frequency ranges before running. Running increased the theta frequency (Frq, 4-12Hz), total activity of the whole theta band (total power, TP), activity of the middle theta frequency (MT, 6.5-9.5Hz), and PA in both age groups. However, the middle-aged rats still showed fewer changes in these parameters during the whole running process. After the waking baseline values were substracted, middle-aged rats showed significantly fewer differences in ΔFrq, ΔTP, and ΔMT but significantly more differences in low-frequency theta activity (4.0-6.5Hz) and HR than the adult rats did. Therefore, the decreasing activity and response of the whole theta band in the middle-aged rats resulted in dominant modulation of the middle to lower frequency (4.0-9.5Hz) theta rhythm. The different alterations in the theta rhythm during treadmill running in the two groups may reflect that learning decline with age. PMID:27496645

  20. Short-Term EEG Spectral Pattern as a Single Event in EEG Phenomenology

    PubMed Central

    Fingelkurts, Al. A; Fingelkurts, An. A

    2010-01-01

    Spectral decomposition, to this day, still remains the main analytical paradigm for the analysis of EEG oscillations. However, conventional spectral analysis assesses the mean characteristics of the EEG power spectra averaged out over extended periods of time and/or broad frequency bands, thus resulting in a “static” picture which cannot reflect adequately the underlying neurodynamic. A relatively new promising area in the study of EEG is based on reducing the signal to elementary short-term spectra of various types in accordance with the number of types of EEG stationary segments instead of using averaged power spectrum for the whole EEG. It is suggested that the various perceptual and cognitive operations associated with a mental or behavioural condition constitute a single distinguishable neurophysiological state with a distinct and reliable spectral pattern. In this case, one type of short-term spectral pattern may be considered as a single event in EEG phenomenology. To support this assumption the following issues are considered in detail: (a) the relations between local EEG short-term spectral pattern of particular type and the actual state of the neurons in underlying network and a volume conduction; (b) relationship between morphology of EEG short-term spectral pattern and the state of the underlying neurodynamical system i.e. neuronal assembly; (c) relation of different spectral pattern components to a distinct physiological mechanism; (d) relation of different spectral pattern components to different functional significance; (e) developmental changes of spectral pattern components; (f) heredity of the variance in the individual spectral pattern and its components; (g) intra-individual stability of the sets of EEG short-term spectral patterns and their percent ratio; (h) discrete dynamics of EEG short-term spectral patterns. Functional relevance (consistency) of EEG short-term spectral patterns in accordance with the changes of brain functional state

  1. Automated Identification of Abnormal Adult EEGs

    PubMed Central

    López, S.; Suarez, G.; Jungreis, D.; Obeid, I.; Picone, J.

    2016-01-01

    The interpretation of electroencephalograms (EEGs) is a process that is still dependent on the subjective analysis of the examiners. Though interrater agreement on critical events such as seizures is high, it is much lower on subtler events (e.g., when there are benign variants). The process used by an expert to interpret an EEG is quite subjective and hard to replicate by machine. The performance of machine learning technology is far from human performance. We have been developing an interpretation system, AutoEEG, with a goal of exceeding human performance on this task. In this work, we are focusing on one of the early decisions made in this process – whether an EEG is normal or abnormal. We explore two baseline classification algorithms: k-Nearest Neighbor (kNN) and Random Forest Ensemble Learning (RF). A subset of the TUH EEG Corpus was used to evaluate performance. Principal Components Analysis (PCA) was used to reduce the dimensionality of the data. kNN achieved a 41.8% detection error rate while RF achieved an error rate of 31.7%. These error rates are significantly lower than those obtained by random guessing based on priors (49.5%). The majority of the errors were related to misclassification of normal EEGs. PMID:27195311

  2. Sensitivity distributions of EEG and MEG measurements.

    PubMed

    Malmivuo, J; Suihko, V; Eskola, H

    1997-03-01

    It is generally believed that because the skull has low conductivity to electric current but is transparent to magnetic fields, the measurement sensitivity of the magnetoencephalography (MEG) in the brain region should be more concentrated than that of the electroencephalography (EEG). It is also believed that the information recorded by these techniques is very different. If this were indeed the case, it might be possible to justify the cost of MEG instrumentation which is at least 25 times higher than that of EEG instrumentation. The localization of measurement sensitivity using these techniques was evaluated quantitatively in an inhomogeneous spherical head model using a new concept called half-sensitivity volume (HSV). It is shown that the planar gradiometer has a far smaller HSV than the axial gradiometer. However, using the EEG it is possible to achieve even smaller HSV's than with whole-head planar gradiometer MEG devices. The micro-superconducting quantum interference device (SQUID) MEG device does have HSV's comparable to those of the EEG. The sensitivity distribution of planar gradiometers, however, closely resembles that of dipolar EEG leads and, therefore, the MEG and EEG record the electric activity of the brain in a very similar way. PMID:9216133

  3. The octave approach to EEG analysis.

    PubMed

    Stassen, H H

    1991-10-01

    A "tonal" approach to EEG spectral analysis is presented which is compatible with the concept of physical octaves, thus providing a constant resolution of partial tones over the full frequency range inherent to human brain waves, rather than for equidistant frequency steps in the spectral domain. The specific advantages of the tonal approach, however, mainly pay off in the field of EEG sleep analysis where the interesting information is predominantly located in the lower octaves. In such cases the proposed method reveals a fine structure which displays regular maxima possessing typical properties of "overtones" within the three octaves 1-2 Hz, 2-4 Hz and 4-8 Hz. Accordingly, spectral patterns derived from tonal spectral analyses are particularly suited to measure the fine gradations of mutual differences between individual EEG sleep patterns and will therefore allow a more efficient investigation of the genetically determined proportion of sleep EEGs. On the other hand, we also tested the efficiency of tonal spectral analyses on the basis of our 5-year follow-up data of 30 healthy volunteers. It turned out that 28 persons (93.3%) could be uniquely recognized after five years by means of their EEG spectral patterns. Hence, tonal spectral analysis proved to be a powerful tool also in cases where the main EEG information is typically located in the medium octave 8-16 Hz. PMID:1762585

  4. The Significance of REM Sleep on Routine EEG.

    PubMed

    Gangadhara, Shreyas; Pizarro-Otero, Jose; Bozorg, Ali; Benbadis, Selim

    2016-03-01

    The objective of this study was to report on sleep-onset REM period (SOREMP) during routine EEG and conditions associated with it at a comprehensive epilepsy program. We retrospectively reviewed all outpatient and inpatient EEGs performed at Tampa General Hospital, a comprehensive epilepsy center over a four-month period. All EEGs were reviewed by experienced board-certified epileptologists. When SOREMP was identified, the chart was reviewed to identify the most likely etiology and the associated conditions that might be contributing. A total of 449 EEGs were reviewed between August 10, 2009, and December 9, 2009. Of those, 106 were outpatient EEGs and 343 were inpatient EEGs. There were 7 EEGs with SOREMP identified, 6 from inpatient EEGs, and 1 from an outpatient EEG. Thus, SOREMP was more common in the inpatinent setting than outpatient. There is an association of SOREMP with sleep deprivation and drug withdrawal. PMID:27180506

  5. EEG anomalies in adult ADHD subjects performing a working memory task.

    PubMed

    Missonnier, P; Hasler, R; Perroud, N; Herrmann, F R; Millet, P; Richiardi, J; Malafosse, A; Giannakopoulos, P; Baud, P

    2013-06-25

    Functional imaging studies have revealed differential brain activation patterns in attention deficit hyperactivity disorder (ADHD) adult patients performing working memory (WM) tasks. The existence of alterations in WM-related cortical circuits during childhood may precede executive dysfunctions in this disorder in adults. To date, there is no study exploring the electrophysiological activation of WM-related neural networks in ADHD. To address this issue, we carried out an electroencephalographic (EEG) activation study associated with time-frequency (TF) analysis in 15 adults with ADHD and 15 controls performing two visual N-back WM tasks, as well as oddball detection and passive fixation tasks. Frontal transient (phasic) theta event-related synchronization (ERS, 0-500 msec) was significantly reduced in ADHD as compared to control subjects. Such reduction was equally present in a task-independent manner. In contrast, the power of the later sustained (∼500-1200 msec) theta ERS for all tasks was comparable in ADHD and control groups. In active WM tasks, ADHD patients displayed lower alpha event-related desynchronization (ERD, ∼200-900 msec) and higher subsequent alpha ERS (∼900-2400 msec) compared to controls. The time course of alpha ERD/ERS cycle was modified in ADHD patients compared to controls, suggesting that they are able to use late compensatory mechanisms in order to perform this WM task. These findings support the idea of an ADHD-related dysfunction of neural generators sub-serving attention directed to the incoming visual information. ADHD cases may successfully face WM needs depending on the preservation of sustained theta ERS and prolonged increase of alpha ERS at later post-stimulus time points. PMID:23518223

  6. The Influence of Finasteride on Mean and Relative Spectral Density of EEG Bands in Rat Model of Thioacetamide-Induced Hepatic Encephalopathy.

    PubMed

    Mladenović, D; Hrnčić, D; Rašić-Marković, A; Macut, Dj; Stanojlović, O

    2016-08-01

    Liver failure is associated with a neuropsychiatric syndrome, known as hepatic encephalopathy (HE). Finasteride, inhibitor of neurosteroid synthesis, may improve the course of HE. The aim of our study was to investigate the influence of finasteride on mean and relative power density of EEG bands, determined by spectral analysis, in rat model of thioacetamide-induced HE. Male Wistar rats were divided into groups: (1) control; (2) thioacetamide-treated group, TAA (900 mg/kg); (3) finasteride-treated group, FIN (150 mg/kg); and (4) group treated with finasteride (150 mg/kg) and thioacetamide (900 mg/kg), FIN + TAA. Daily doses of FIN (50 mg/kg) and TAA (300 mg/kg) were administered during 3 subsequent days, and in FIN + TAA group FIN was administered 2 h before every dose of TAA. EEG was recorded 22-24 h after treatment and analyzed by fast Fourier transformation. While TAA did not induce significant changes in the beta band, mean and relative power in this band were significantly higher in FIN + TAA versus control group (p < 0.01). TAA caused a significant decline in mean power in alpha, theta, and delta band, and in FIN + TAA group the mean power in these bands was significantly higher compared with control. While in TAA group relative power was significantly decreased in theta (p < 0.01) and increased in delta band (p < 0.01) versus control, the opposite changes were found in FIN + TAA group: an increase in theta (p < 0.01) and a decrease in delta relative power (p < 0.01). In this study, finasteride pretreatment caused EEG changes that correspond to mild TAA-induced HE. PMID:26951455

  7. The phase of ongoing EEG oscillations predicts the amplitude of peri-saccadic mislocalization

    PubMed Central

    McLelland, Douglas; Lavergne, Louisa; VanRullen, Rufin

    2016-01-01

    Our constant eye movements mean that updating processes, such as saccadic remapping, are essential for the maintenance of a stable spatial representation of the world around us. It has been proposed that, rather than continually update a full spatiotopic map, only the location of a few key objects is updated, suggesting that the process is linked to attention. At the same time, mounting evidence links attention to oscillatory neuronal processes. We therefore hypothesized that updating processes should themselves show oscillatory characteristics, inherited from underlying attentional processes. To test this, we carried out a combined psychophysics and EEG experiment in human participants, using a saccadic mislocalization task as a behaviourally measureable proxy for spatial updating, and simultaneously recording 64-channel EEG. We then used a time-frequency analysis to test for a correlation between oscillation phase and perceptual outcome. We found a significant phase-dependence of mislocalization in a time-frequency region from around 400 ms prior to saccade initiation and peaking at around 7 Hz, principally apparent over occipital electrodes. Thus the degree of perceived mislocalization is correlated with the phase of a theta-frequency oscillation prior to saccade onset. We conclude that spatial updating processes are indeed linked to rhythmic processes in the brain. PMID:27403937

  8. EEG neural oscillatory dynamics reveal semantic and response conflict at difference levels of conflict awareness

    PubMed Central

    Jiang, Jun; Zhang, Qinglin; Van Gaal, Simon

    2015-01-01

    Although previous work has shown that conflict can be detected in the absence of awareness, it is unknown how different sources of conflict (i.e., semantic, response) are processed in the human brain and whether these processes are differently modulated by conflict awareness. To explore this issue, we extracted oscillatory power dynamics from electroencephalographic (EEG) data recorded while human participants performed a modified version of the Stroop task. Crucially, in this task conflict awareness was manipulated by masking a conflict-inducing color word preceding a color patch target. We isolated semantic from response conflict by introducing four color words/patches, of which two were matched to the same response. We observed that both semantic as well as response conflict were associated with mid-frontal theta-band and parietal alpha-band power modulations, irrespective of the level of conflict awareness (high vs. low), although awareness of conflict increased these conflict-related power dynamics. These results show that both semantic and response conflict can be processed in the human brain and suggest that the neural oscillatory mechanisms in EEG reflect mainly “domain general” conflict processing mechanisms, instead of conflict source specific effects. PMID:26169473

  9. Discriminating Multiple Emotional States from EEG Using a Data-Adaptive, Multiscale Information-Theoretic Approach.

    PubMed

    Tonoyan, Yelena; Looney, David; Mandic, Danilo P; Van Hulle, Marc M

    2016-03-01

    A multivariate sample entropy metric of signal complexity is applied to EEG data recorded when subjects were viewing four prior-labeled emotion-inducing video clips from a publically available, validated database. Besides emotion category labels, the video clips also came with arousal scores. Our subjects were also asked to provide their own emotion labels. In total 30 subjects with age range 19-70 years participated in our study. Rather than relying on predefined frequency bands, we estimate multivariate sample entropy over multiple data-driven scales using the multivariate empirical mode decomposition (MEMD) technique and show that in this way we can discriminate between five self-reported emotions ([Formula: see text]). These results could not be obtained by analyzing the relation between arousal scores and video clips, signal complexity and arousal scores, and self-reported emotions and traditional power spectral densities and their hemispheric asymmetries in the theta, alpha, beta, and gamma frequency bands. This shows that multivariate, multiscale sample entropy is a promising technique to discriminate multiple emotional states from EEG recordings. PMID:26829885

  10. Cognitive training modifies frequency EEG bands and neuropsychological measures in Rett syndrome.

    PubMed

    Fabio, Rosa Angela; Billeci, Lucia; Crifaci, Giulia; Troise, Emilia; Tortorella, Gaetano; Pioggia, Giovanni

    2016-01-01

    Rett syndrome (RS) is a childhood neurodevelopmental disorder characterized by a primary disturbance in neuronal development. Neurological abnormalities in RS are reflected in several behavioral and cognitive impairments such as stereotypies, loss of speech and hand skills, gait apraxia, irregular breathing with hyperventilation while awake, and frequent seizures. Cognitive training can enhance both neuropsychological and neurophysiological parameters. The aim of this study was to investigate whether behaviors and brain activity were modified by training in RS. The modifications were assessed in two phases: (a) after a short-term training (STT) session, i.e., after 30min of training and (b) after long-term training (LTT), i.e., after 5 days of training. Thirty-four girls with RS were divided into two groups: a training group (21 girls) who underwent the LTT and a control group (13 girls) that did not undergo LTT. The gaze and quantitative EEG (QEEG) data were recorded during the administration of the tasks. A gold-standard eye-tracker and a wearable EEG equipment were used. Results suggest that the participants in the STT task showed a habituation effect, decreased beta activity and increased right asymmetry. The participants in the LTT task looked faster and longer at the target, and show increased beta activity and decreased theta activity, while a leftward asymmetry was re-established. The overall result of this study indicates a positive effect of long-term cognitive training on brain and behavioral parameters in subject with RS. PMID:26859707

  11. Test-retest reliability of EEG spectral parameters during cognitive tasks: II. Coherence.

    PubMed

    Harmony, T; Fernández, T; Rodríguez, M; Reyes, A; Marosi, E; Bernal, J

    1993-02-01

    We analyzed test-retest reliability of EEG coherence during rest and during two cognitive tasks: one verbal, the search for a synonym, and the other consisting of mental mathematical calculations. The experiment was performed twice, with a month's interval between each session. Coherence between all pairwise combinations of the EEG recorded in 15 leads was computed for delta, theta, alpha and beta bands. Comparing the changes observed between sessions for each condition, few significant changes were observed during rest, and the condition which manifests the most changes was calculation. Differences between conditions were observed in the second session in P3-T5, P3-T6, P3-T3, P4-T6, P4-T5, P4-Cz and Cz-T6 delta coherences ordered in a decreasing order from calculation to synonyms to rest. In order to ascertain whether the pattern of coherences across the head in each subject varied in relation to the session and the condition, we computed the correlation coefficients between all coherences values for one condition versus the other condition per band. For all subjects correlation coefficients near unity were observed between conditions in each session. However, correlation coefficients between sessions, even for the same condition, were much lower. We also computed the correlation coefficients for the coherence values between subjects in the same condition separately for each session. Correlation coefficients between subjects were much higher in the second session than in the first one.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8063531

  12. The Dynamics of Visual Experience, an EEG Study of Subjective Pattern Formation

    PubMed Central

    Elliott, Mark A.; Twomey, Deirdre; Glennon, Mark

    2012-01-01

    Background Since the origin of psychological science a number of studies have reported visual pattern formation in the absence of either physiological stimulation or direct visual-spatial references. Subjective patterns range from simple phosphenes to complex patterns but are highly specific and reported reliably across studies. Methodology/Principal Findings Using independent-component analysis (ICA) we report a reduction in amplitude variance consistent with subjective-pattern formation in ventral posterior areas of the electroencephalogram (EEG). The EEG exhibits significantly increased power at delta/theta and gamma-frequencies (point and circle patterns) or a series of high-frequency harmonics of a delta oscillation (spiral patterns). Conclusions/Significance Subjective-pattern formation may be described in a way entirely consistent with identical pattern formation in fluids or granular flows. In this manner, we propose subjective-pattern structure to be represented within a spatio-temporal lattice of harmonic oscillations which bind topographically organized visual-neuronal assemblies by virtue of low frequency modulation. PMID:22292053

  13. An analysis on driver drowsiness based on reaction time and EEG band power.

    PubMed

    Ruyi Foong; Kai Keng Ang; Chai Quek; Cuntai Guan; Aung Aung Phyo Wai

    2015-08-01

    Falling asleep during driving is a serious problem that has resulted in fatal accidents worldwide. Thus, there is a need to detect driver drowsiness to counter it. This study analyzes the changes in the electroencephalography (EEG) collected from 4 subjects driving under monotonous road conditions using a driving simulator. The drowsiness level of the subjects is inferred from the time taken to react to events. The results from the analysis of the reaction time shows that drowsiness occurs in cycles, which correspond to short sleep cycles known as `microsleeps'. The results from a time-frequency analysis of the four frequency bands' power reveals differences between trials with fast and slow reaction times; greater beta band power is present in all subjects, greater alpha power in 2 subjects, greater theta power in 2 subjects, and greater delta power in 3 subjects, for fast reaction trials. Overall, this study shows that reaction time can be used to infer the drowsiness, and subject-specific changes in the EEG band power may be used to infer drowsiness. Thus the study shows a promising prospect of developing Brain-Computer Interface to detect driver drowsiness. PMID:26738144

  14. Independent component analysis of EEG dipole source localization in resting and action state of brain

    NASA Astrophysics Data System (ADS)

    Almurshedi, Ahmed; Ismail, Abd Khamim

    2015-04-01

    EEG source localization was studied in order to determine the location of the brain sources that are responsible for the measured potentials at the scalp electrodes using EEGLAB with Independent Component Analysis (ICA) algorithm. Neuron source locations are responsible in generating current dipoles in different states of brain through the measured potentials. The current dipole sources localization are measured by fitting an equivalent current dipole model using a non-linear optimization technique with the implementation of standardized boundary element head model. To fit dipole models to ICA components in an EEGLAB dataset, ICA decomposition is performed and appropriate components to be fitted are selected. The topographical scalp distributions of delta, theta, alpha, and beta power spectrum and cross coherence of EEG signals are observed. In close eyes condition it shows that during resting and action states of brain, alpha band was activated from occipital (O1, O2) and partial (P3, P4) area. Therefore, parieto-occipital area of brain are active in both resting and action state of brain. However cross coherence tells that there is more coherence between right and left hemisphere in action state of brain than that in the resting state. The preliminary result indicates that these potentials arise from the same generators in the brain.

  15. The phase of ongoing EEG oscillations predicts the amplitude of peri-saccadic mislocalization.

    PubMed

    McLelland, Douglas; Lavergne, Louisa; VanRullen, Rufin

    2016-01-01

    Our constant eye movements mean that updating processes, such as saccadic remapping, are essential for the maintenance of a stable spatial representation of the world around us. It has been proposed that, rather than continually update a full spatiotopic map, only the location of a few key objects is updated, suggesting that the process is linked to attention. At the same time, mounting evidence links attention to oscillatory neuronal processes. We therefore hypothesized that updating processes should themselves show oscillatory characteristics, inherited from underlying attentional processes. To test this, we carried out a combined psychophysics and EEG experiment in human participants, using a saccadic mislocalization task as a behaviourally measureable proxy for spatial updating, and simultaneously recording 64-channel EEG. We then used a time-frequency analysis to test for a correlation between oscillation phase and perceptual outcome. We found a significant phase-dependence of mislocalization in a time-frequency region from around 400 ms prior to saccade initiation and peaking at around 7 Hz, principally apparent over occipital electrodes. Thus the degree of perceived mislocalization is correlated with the phase of a theta-frequency oscillation prior to saccade onset. We conclude that spatial updating processes are indeed linked to rhythmic processes in the brain. PMID:27403937

  16. Simple and difficult mathematics in children: a minimum spanning tree EEG network analysis.

    PubMed

    Vourkas, Michael; Karakonstantaki, Eleni; Simos, Panagiotis G; Tsirka, Vasso; Antonakakis, Marios; Vamvoukas, Michael; Stam, Cornelis; Dimitriadis, Stavros; Micheloyannis, Sifis

    2014-07-25

    Sensor-level network characteristics associated with arithmetic tasks varying in complexity were estimated using tools from modern network theory. EEG signals from children with math difficulties (MD) and typically achieving controls (NI) were analyzed using minimum spanning tree (MST) indices derived from Phase Lag Index values - a graph method that corrects for comparison bias. Results demonstrated progressive modulation of certain MST parameters with increased task difficulty. These findings were consistent with more distributed network activation in the theta band, and greater network integration (i.e., tighter communication between involved regions) in the alpha band as task demands increased. There was also evidence of stronger intraregional signal inter-dependencies in the higher frequency bands during the complex math task. Although these findings did not differ between groups, several MST parameters were positively correlated with individual performance on psychometric math tasks involving similar operations, especially in the NI group. The findings support the potential utility of MST analyses to evaluate function-related electrocortical reactivity over a wide range of EEG frequencies in children. PMID:24887585

  17. Behavioral and EEG changes in male 5xFAD mice.

    PubMed

    Schneider, F; Baldauf, K; Wetzel, W; Reymann, K G

    2014-08-01

    Transgenic animal models of Alzheimer's disease (AD) are widely used to investigate mechanisms of pathophysiology and cognitive dysfunctions. A model with a very early development of parenchymal plaque load at the age of 2months is the 5xFAD mouse (Tg6799, Oakley et al. 2006). These 5xFAD mice over-express both human amyloid precursor protein (APP) and human presenilin 1 (PS1). Mice from this line have a high APP expression correlating with a high burden and an accelerated accumulation of the 42 amino acid species of amyloid-β (Aβ). The aim of this study was the behavioral and functional investigations of 5xFAD males because in most studies females of this strain were characterized. In comparison to literature of transgenic 5xFAD females, transgenic 5xFAD males showed decreased anxiety in the elevated plus maze, reduced locomotion and exploration in the open field and disturbances in learning performance in the Morris water maze starting at 9months of age. Electroencephalogram (EEG) recordings on 6month old transgenic mice revealed a decrease of delta, theta, alpha, beta and gamma frequency bands whereas the subdelta frequency was increased. EEG recordings during sleep showed a reduction of rapid eye movement sleep in relation to the amount of total sleep. Thus, 5xFAD males develop early functional disturbances and subsequently behavioral deficits and therefore they are a good mouse model for studying Alzheimer's disease. PMID:24907698

  18. A review on epilepsy in the horse and the potential of Ambulatory EEG as a diagnostic tool.

    PubMed

    van der Ree, Marleen; Wijnberg, Inge

    2012-01-01

    Epilepsy in the horse is diagnosed based on clinical signs, but diagnosing can be difficult if a grand mal is not present. The future prospects of the horse and potentially the safety of the owner depend on an accurate diagnosis. This review presents information on epilepsy and focuses on the diagnostic potential of (Ambulatory) electroencephalography ((A) EEG). An epileptic seizure is a brain disorder, which expresses itself as a recurrent episode of involuntary abnormal behaviour. The aetiology can originate from inside or outside the brain or is idiopathic. Besides those categories, seizures can be classified as generalised or partial. A typical generalised tonic-clonic seizure is characterised by the prodrome, the ictus and the post-ictal phase. EEG is the graphic recording of rhythmic bioelectric activity which originates predominantly from the cerebral cortex. In human medicine, the 10/20 international basis system for electrode placement is used. This makes comparison more reliable and consistent. The normal human brainwaves recorded are alpha, beta, theta and delta waves. In the horse, fewer descriptions of normal signals are available. In humans suffering from epilepsy, spikes, complexes, spike-and-wave discharges and rhythmical multi-spike activity are seen. In horses suffering from epilepsy, spikes, sharp waves and spike-and-wave discharges are seen. In humans, AEEG has numerous advantages above short-duration EEG in diagnosing epilepsy or intracranial pathology. In future, AEEG might be useful to record brain signals in awake horses expressing their behaviour under natural circumstances. PMID:23163553

  19. Issues and considerations for using the scalp surface Laplacian in EEG/ERP research: A tutorial review.

    PubMed

    Kayser, Jürgen; Tenke, Craig E

    2015-09-01

    Despite the recognition that the surface Laplacian may counteract adverse effects of volume conduction and recording reference for surface potential data, electrophysiology as a discipline has been reluctant to embrace this approach for data analysis. The reasons for such hesitation are manifold but often involve unfamiliarity with the nature of the underlying transformation, as well as intimidation by a perceived mathematical complexity, and concerns of signal loss, dense electrode array requirements, or susceptibility to noise. We revisit the pitfalls arising from volume conduction and the mandated arbitrary choice of EEG reference, describe the basic principle of the surface Laplacian transform in an intuitive fashion, and exemplify the differences between common reference schemes (nose, linked mastoids, average) and the surface Laplacian for frequently-measured EEG spectra (theta, alpha) and standard event-related potential (ERP) components, such as N1 or P3. We specifically review common reservations against the universal use of the surface Laplacian, which can be effectively addressed by employing spherical spline interpolations with an appropriate selection of the spline flexibility parameter and regularization constant. We argue from a pragmatic perspective that not only are these reservations unfounded but that the continued predominant use of surface potentials poses a considerable impediment on the progress of EEG and ERP research. PMID:25920962

  20. Issues and considerations for using the scalp surface Laplacian in EEG/ERP research: A tutorial review

    PubMed Central

    Kayser, Jürgen; Tenke, Craig E.

    2015-01-01

    Despite the recognition that the surface Laplacian may counteract adverse effects of volume conduction and recording reference for surface potential data, electrophysiology as a discipline has been reluctant to embrace this approach for data analysis. The reasons for such hesitation are manifold but often involve unfamiliarity with the nature of the underlying transformation, as well as intimidation by a perceived mathematical complexity, and concerns of signal loss, dense electrode array requirements, or susceptibility to noise. We revisit the pitfalls arising from volume conduction and the mandated arbitrary choice of EEG reference, describe the basic principle of the surface Laplacian transform in an intuitive fashion, and exemplify the differences between common reference schemes (nose, linked mastoids, average) and the surface Laplacian for frequently-measured EEG spectra (theta, alpha) and standard event-related potential (ERP) components, such as N1 or P3. We specifically review common reservations against the universal use of the surface Laplacian, which can be effectively addressed by employing spherical spline interpolations with an appropriate selection of the spline flexibility parameter and regularization constant. We argue from a pragmatic perspective that not only are these reservations unfounded but that the continued predominant use of surface potentials poses a considerable impediment on the progress of EEG and ERP research. PMID:25920962

  1. Theta brain rhythms index perceptual narrowing in infant speech perception

    PubMed Central

    Bosseler, Alexis N.; Taulu, Samu; Pihko, Elina; Mäkelä, Jyrki P.; Imada, Toshiaki; Ahonen, Antti; Kuhl, Patricia K.

    2013-01-01

    The development of speech perception shows a dramatic transition between infancy and adulthood. Between 6 and 12 months, infants' initial ability to discriminate all phonetic units across the world's languages narrows—native discrimination increases while non-native discrimination shows a steep decline. We used magnetoencephalography (MEG) to examine whether brain oscillations in the theta band (4–8 Hz), reflecting increases in attention and cognitive effort, would provide a neural measure of the perceptual narrowing phenomenon in speech. Using an oddball paradigm, we varied speech stimuli in two dimensions, stimulus frequency (frequent vs. infrequent) and language (native vs. non-native speech syllables) and tested 6-month-old infants, 12-month-old infants, and adults. We hypothesized that 6-month-old infants would show increased relative theta power (RTP) for frequent syllables, regardless of their status as native or non-native syllables, reflecting young infants' attention and cognitive effort in response to highly frequent stimuli (“statistical learning”). In adults, we hypothesized increased RTP for non-native stimuli, regardless of their presentation frequency, reflecting increased cognitive effort for non-native phonetic categories. The 12-month-old infants were expected to show a pattern in transition, but one more similar to adults than to 6-month-old infants. The MEG brain rhythm results supported these hypotheses. We suggest that perceptual narrowing in speech perception is governed by an implicit learning process. This learning process involves an implicit shift in attention from frequent events (infants) to learned categories (adults). Theta brain oscillatory activity may provide an index of perceptual narrowing beyond speech, and would offer a test of whether the early speech learning process is governed by domain-general or domain-specific processes. PMID:24130536

  2. Theta-Pinch Thruster for Piloted Deep Space Exploration

    NASA Technical Reports Server (NTRS)

    LaPointe, Mike R.; Reddy, Dhanireddy (Technical Monitor)

    2000-01-01

    A new high-power propulsion concept that combines a rapidly pulsed theta-pinch discharge with upstream particle reflection by a magnetic mirror was evaluated under a Phase 1 grant awarded through the NASA Institute for Advanced Concepts. Analytic and numerical models were developed to predict the performance of a theta-pinch thruster operated over a wide range of initial gas pressures and discharge periods. The models indicate that a 1 m radius, 10 m long thruster operated with hydrogen propellant could provide impulse-bits ranging from 1 N-s to 330 N-s with specific impulse values of 7,500 s to 2,500 s, respectively. A pulsed magnetic field strength of 2 T is required to compress and heat the preionized hydrogen over a 10(exp -3) second discharge period, with about 60% of the heated plasma exiting the chamber each period to produce thrust. The unoptimized thruster efficiency is low, peaking at approximately 16% for an initial hydrogen chamber pressure of 100 Torr. The specific impulse and impulse-bit at this operating condition are 3,500 s and 90 N-s, respectively, and the required discharge energy is approximately 9x10(exp 6) J. For a pulse repetition rate of 10 Hz, the engine would produce an average thrust of 900 N at 3,500 s specific impulse. Combined with the electrodeless nature of the device, these performance parameters indicate that theta-pinch thrusters could provide unique, long-life propulsion systems for piloted deep space mission applications.

  3. Time course of EEG oscillations during repeated listening of a well-known aria.

    PubMed

    Jäncke, Lutz; Kühnis, Jürg; Rogenmoser, Lars; Elmer, Stefan

    2015-01-01

    While previous studies have analyzed mean neurophysiological responses to musical stimuli, the current study aimed to identify specific time courses of electroencephalography (EEG) oscillations, which are associated with dynamic changes in the acoustic features of the musical stimulus. In addition, we were interested in whether these time courses change during a repeated presentation of the same musical piece. A total of 16 subjects repeatedly listened to the well-known aria "Nessun dorma," sung by Paul Potts, while continuous 128-channel EEG and heart rate, as well as electrodermal responses, were recorded. The time courses for the EEG oscillations were calculated using a time resolution of 1 second for several frequency bands, on the basis of individual alpha-peak frequencies (theta, low alpha-1, low alpha-2, upper alpha, and beta). For all frequency bands, we identified a more or less continuous increase in power relative to a baseline period, indicating strong event-related synchronization (ERS) during music listening. The ERS time courses, however, did not correlate strongly with the time courses of the acoustic features of the aria. In addition, we did not observe changes in EEG oscillations after repeated presentation of the same musical piece. Aside from this distinctive feature, we identified a remarkable variability in EEG oscillations, both within and between the repeated presentations of the aria. We interpret the continuous increase in ERS observed in all frequency bands during music listening as an indicator of a particular neurophysiological and psychological state evoked by music listening. We suggest that this state is characterized by increased internal attention (accompanied by reduced external attention), increased inhibition of brain networks not involved in the generation of this internal state, the maintenance of a particular level of general alertness, and a type of brain state that can be described as "mind wandering." The overall state can

  4. Time course of EEG oscillations during repeated listening of a well-known aria

    PubMed Central

    Jäncke, Lutz; Kühnis, Jürg; Rogenmoser, Lars; Elmer, Stefan

    2015-01-01

    While previous studies have analyzed mean neurophysiological responses to musical stimuli, the current study aimed to identify specific time courses of electroencephalography (EEG) oscillations, which are associated with dynamic changes in the acoustic features of the musical stimulus. In addition, we were interested in whether these time courses change during a repeated presentation of the same musical piece. A total of 16 subjects repeatedly listened to the well-known aria “Nessun dorma,” sung by Paul Potts, while continuous 128-channel EEG and heart rate, as well as electrodermal responses, were recorded. The time courses for the EEG oscillations were calculated using a time resolution of 1 second for several frequency bands, on the basis of individual alpha-peak frequencies (theta, low alpha-1, low alpha-2, upper alpha, and beta). For all frequency bands, we identified a more or less continuous increase in power relative to a baseline period, indicating strong event-related synchronization (ERS) during music listening. The ERS time courses, however, did not correlate strongly with the time courses of the acoustic features of the aria. In addition, we did not observe changes in EEG oscillations after repeated presentation of the same musical piece. Aside from this distinctive feature, we identified a remarkable variability in EEG oscillations, both within and between the repeated presentations of the aria. We interpret the continuous increase in ERS observed in all frequency bands during music listening as an indicator of a particular neurophysiological and psychological state evoked by music listening. We suggest that this state is characterized by increased internal attention (accompanied by reduced external attention), increased inhibition of brain networks not involved in the generation of this internal state, the maintenance of a particular level of general alertness, and a type of brain state that can be described as “mind wandering.” The overall

  5. Distribution entropy analysis of epileptic EEG signals.

    PubMed

    Li, Peng; Yan, Chang; Karmakar, Chandan; Liu, Changchun

    2015-08-01

    It is an open-ended challenge to accurately detect the epileptic seizures through electroencephalogram (EEG) signals. Recently published studies have made elaborate attempts to distinguish between the normal and epileptic EEG signals by advanced nonlinear entropy methods, such as the approximate entropy, sample entropy, fuzzy entropy, and permutation entropy, etc. Most recently, a novel distribution entropy (DistEn) has been reported to have superior performance compared with the conventional entropy methods for especially short length data. We thus aimed, in the present study, to show the potential of DistEn in the analysis of epileptic EEG signals. The publicly-accessible Bonn database which consisted of normal, interictal, and ictal EEG signals was used in this study. Three different measurement protocols were set for better understanding the performance of DistEn, which are: i) calculate the DistEn of a specific EEG signal using the full recording; ii) calculate the DistEn by averaging the results for all its possible non-overlapped 5 second segments; and iii) calculate it by averaging the DistEn values for all the possible non-overlapped segments of 1 second length, respectively. Results for all three protocols indicated a statistically significantly increased DistEn for the ictal class compared with both the normal and interictal classes. Besides, the results obtained under the third protocol, which only used very short segments (1 s) of EEG recordings showed a significantly (p <; 0.05) increased DistEn for the interictal class in compassion with the normal class, whereas both analyses using relatively long EEG signals failed in tracking this difference between them, which may be due to a nonstationarity effect on entropy algorithm. The capability of discriminating between the normal and interictal EEG signals is of great clinical relevance since it may provide helpful tools for the detection of a seizure onset. Therefore, our study suggests that the Dist

  6. The effective chiral Lagrangian from the theta term

    SciTech Connect

    Mereghetti, E.; Hockings, W.H.; Kolck, U. van

    2010-11-15

    We construct the effective chiral Lagrangian involving hadronic and electromagnetic interactions originating from the QCD {theta}-bar term. We impose vacuum alignment at both quark and hadronic levels, including field redefinitions to eliminate pion tadpoles. We show that leading time-reversal-violating (TV) hadronic interactions are related to isospin-violating interactions that can in principle be determined from charge-symmetry-breaking experiments. We discuss the complications that arise from TV electromagnetic interactions. Some implications of the expected sizes of various pion-nucleon TV interactions are presented, and the pion-nucleon form factor is used as an example.

  7. Chiral symmetry breaking and {theta} vacuum structure in QCD

    SciTech Connect

    Morchio, G. Strocchi, F.

    2009-10-15

    The solution of the axial U(1) problem, the role of the topology of the gauge group in forcing the breaking of axial symmetry in any irreducible representation of the observable algebra and the {theta} vacua structure are revisited in the temporal gauge with attention to the mathematical consistency of the derivations. Both realizations with strong and weak Gauss law are discussed; the control of the general mechanisms and structures is obtained on the basis of the localization of the (large) gauge transformations and the local generation of the chiral symmetry. The Schwinger model in the temporal gauge exactly reproduces the general results.

  8. Reduced Theta-Band Power and Phase Synchrony during Explicit Verbal Memory Tasks in Female, Non-Clinical Individuals with Schizotypal Traits

    PubMed Central

    Choi, Jeong Woo; Jang, Kyoung-Mi; Jung, Ki-Young; Kim, Myung-Sun; Kim, Kyung Hwan

    2016-01-01

    The study of non-clinical individuals with schizotypal traits has been considered to provide a promising endophenotypic approach to understanding schizophrenia, because schizophrenia is highly heterogeneous, and a number of confounding factors may affect neuropsychological performance. Here, we investigated whether deficits in explicit verbal memory in individuals with schizotypal traits are associated with abnormalities in the local and inter-regional synchrony of brain activity. Memory deficits have been recognized as a core problem in schizophrenia, and previous studies have consistently shown explicit verbal memory impairment in schizophrenic patients. However, the mechanism of this impairment has not been fully revealed. Seventeen individuals with schizotypal traits and 17 age-matched, normal controls participated. Multichannel event-related electroencephalograms (EEGs) were recorded while the subjects performed a continuous recognition task. Event-related spectral perturbations (ERSPs) and inter-regional theta-band phase locking values (TPLVs) were investigated to determine the differences in local and global neural synchrony between the two subject groups. Additionally, the connection patterns of the TPLVs were quantitatively analyzed using graph theory measures. An old/new effect was found in the induced theta-band ERSP in both groups. However, the difference between the old and new was larger in normal controls than in schizotypal trait group. The tendency of elevated old/new effect in normal controls was observed in anterior-posterior theta-band phase synchrony as well. Our results suggest that explicit memory deficits observed in schizophrenia patients can also be found in non-clinical individuals with psychometrically defined schizotypal traits. PMID:26840071

  9. Reduced Theta-Band Power and Phase Synchrony during Explicit Verbal Memory Tasks in Female, Non-Clinical Individuals with Schizotypal Traits.

    PubMed

    Choi, Jeong Woo; Jang, Kyoung-Mi; Jung, Ki-Young; Kim, Myung-Sun; Kim, Kyung Hwan

    2016-01-01

    The study of non-clinical individuals with schizotypal traits has been considered to provide a promising endophenotypic approach to understanding schizophrenia, because schizophrenia is highly heterogeneous, and a number of confounding factors may affect neuropsychological performance. Here, we investigated whether deficits in explicit verbal memory in individuals with schizotypal traits are associated with abnormalities in the local and inter-regional synchrony of brain activity. Memory deficits have been recognized as a core problem in schizophrenia, and previous studies have consistently shown explicit verbal memory impairment in schizophrenic patients. However, the mechanism of this impairment has not been fully revealed. Seventeen individuals with schizotypal traits and 17 age-matched, normal controls participated. Multichannel event-related electroencephalograms (EEGs) were recorded while the subjects performed a continuous recognition task. Event-related spectral perturbations (ERSPs) and inter-regional theta-band phase locking values (TPLVs) were investigated to determine the differences in local and global neural synchrony between the two subject groups. Additionally, the connection patterns of the TPLVs were quantitatively analyzed using graph theory measures. An old/new effect was found in the induced theta-band ERSP in both groups. However, the difference between the old and new was larger in normal controls than in schizotypal trait group. The tendency of elevated old/new effect in normal controls was observed in anterior-posterior theta-band phase synchrony as well. Our results suggest that explicit memory deficits observed in schizophrenia patients can also be found in non-clinical individuals with psychometrically defined schizotypal traits. PMID:26840071

  10. Associative Memory Storage and Retrieval: Involvement of Theta Oscillations in Hippocampal Information Processing

    PubMed Central

    Stella, Federico; Treves, Alessandro

    2011-01-01

    Theta oscillations are thought to play a critical role in neuronal information processing, especially in the hippocampal region, where their presence is particularly salient. A detailed description of theta dynamics in this region has revealed not only a consortium of layer-specific theta dipoles, but also within-layer differences in the expression of theta. This complex and articulated arrangement of current flows is reflected in the way neuronal firing is modulated in time. Several models have proposed that these different theta modulators flexibly coordinate hippocampal regions, to support associative memory formation and retrieval. Here, we summarily review different approaches related to this issue and we describe a mechanism, based on experimental and simulation results, for memory retrieval in CA3 involving theta modulation. PMID:21961072

  11. Benzodiazepine recognition site inverse agonists Ro-15-4513 and FG 7142 both antagonize the EEG effects of ethanol in the rat

    SciTech Connect

    Marrosu, F.; Mereu, G.; Giorgi, O.; Corda, M.G.

    1988-01-01

    The aim of the present study was to compare the ability of Ro 15-4513 and FG 7142, two inverse agonists for benzodiazepine recognition sites, to antagonize the EEG effects of ethanol in freely moving rats. Ethanol induced sedation and ataxia associated with a progressive suppression of the fast cortical activities and an enhancement of low frequencies in both cortical and hippocampal tracings. In contrast, Ro 15-4513 and FG 7142 both caused a state of alertness associated with desynchronized cortical activity and theta hippocampal rhythm as well as spiking activity which was predominantly observed in the cortical tracings. When rats were treated with FG 7142 or Ro 15-4513 either before or after ethanol, a reciprocal antagonism of the behavioral and EEG effects of ethanol and of the partial inverse agonists was observed. These data support the view that the anti-ethanol effects of Ro 15-4513 may be related to its partial inverse agonist properties.

  12. Ordinal patterns in epileptic brains: Analysis of intracranial EEG and simultaneous EEG-fMRI

    NASA Astrophysics Data System (ADS)

    Rummel, C.; Abela, E.; Hauf, M.; Wiest, R.; Schindler, K.

    2013-06-01

    Epileptic seizures are associated with high behavioral stereotypy of the patients. In the EEG of epilepsy patients characteristic signal patterns can be found during and between seizures. Here we use ordinal patterns to analyze EEGs of epilepsy patients and quantify the degree of signal determinism. Besides relative signal redundancy and the fraction of forbidden patterns we introduce the fraction of under-represented patterns as a new measure. Using the logistic map, parameter scans are performed to explore the sensitivity of the measures to signal determinism. Thereafter, application is made to two types of EEGs recorded in two epilepsy patients. Intracranial EEG shows pronounced determinism peaks during seizures. Finally, we demonstrate that ordinal patterns may be useful for improving analysis of non-invasive simultaneous EEG-fMRI.

  13. Sleep EEG Characteristics in Young and Elderly Patients with Obstructive Sleep Apnea Syndrome

    PubMed Central

    Lee, Yu Jin; Kim, Jong Won; Lee, Yu-Jin G.

    2016-01-01

    Objective In the present study, it was hypothesized that the sleep electroencephalogram (EEG) characteristics of young (<30 yrs) and elderly (>55 yrs) OSAS patients would differ. Methods We analyzed 76 sleep EEG recordings from OSAS patients (young group: n=40, mean age: 24.3±4.9 yrs; elderly group: n=36, mean age: 59.1±4.9 yrs), which were obtained during nocturnal polysomnography. The recordings were assessed via spectral analysis in the delta (0.5–4.5 Hz), theta (4.5–8 Hz), alpha (8–12 Hz), beta (12–32 Hz), slow sigma (11–13 Hz), and fast sigma (13–17 Hz) frequency bands. Results Apnea Hypopnea Index (AHI) and sleep efficiency (%) did not differ significantly between the two groups (19.8±14.4 vs. 25.9±16.0, p=0.085; 84.4±12.6 vs. 80.9±11.0, p=0.198, respectively). After adjusting for gender, the slow/fast sigma ratio was not significantly correlated with AHI in the elderly group (r=-0.047, p=0.790) but AHI was inversely correlated with the slow/fast sigma ratio in the young group (r=-0.423, p=0.007). A multiple linear regression analysis revealed that a higher AHI was related with a lower slow/fast sigma ratio in the young group (β=-0.392, p=0.028) but not the elderly. Conclusion In the present study, sleep EEG activity differed between young and elderly OSAS patients. The slow/fast sigma ratio was associated with OSAS severity only in young patients, suggesting that young OSAS patients may have a distinctive brain plasticity compared with elderly patients. PMID:27081383

  14. Wireless brain-machine interface using EEG and EOG: brain wave classification and robot control

    NASA Astrophysics Data System (ADS)

    Oh, Sechang; Kumar, Prashanth S.; Kwon, Hyeokjun; Varadan, Vijay K.

    2012-04-01

    A brain-machine interface (BMI) links a user's brain activity directly to an external device. It enables a person to control devices using only thought. Hence, it has gained significant interest in the design of assistive devices and systems for people with disabilities. In addition, BMI has also been proposed to replace humans with robots in the performance of dangerous tasks like explosives handling/diffusing, hazardous materials handling, fire fighting etc. There are mainly two types of BMI based on the measurement method of brain activity; invasive and non-invasive. Invasive BMI can provide pristine signals but it is expensive and surgery may lead to undesirable side effects. Recent advances in non-invasive BMI have opened the possibility of generating robust control signals from noisy brain activity signals like EEG and EOG. A practical implementation of a non-invasive BMI such as robot control requires: acquisition of brain signals with a robust wearable unit, noise filtering and signal processing, identification and extraction of relevant brain wave features and finally, an algorithm to determine control signals based on the wave features. In this work, we developed a wireless brain-machine interface with a small platform and established a BMI that can be used to control the movement of a robot by using the extracted features of the EEG and EOG signals. The system records and classifies EEG as alpha, beta, delta, and theta waves. The classified brain waves are then used to define the level of attention. The acceleration and deceleration or stopping of the robot is controlled based on the attention level of the wearer. In addition, the left and right movements of eye ball control the direction of the robot.

  15. Noisy galvanic vestibular stimulation modulates the amplitude of EEG synchrony patterns.

    PubMed

    Kim, Diana J; Yogendrakumar, Vignan; Chiang, Joyce; Ty, Edna; Wang, Z Jane; McKeown, Martin J

    2013-01-01

    Noisy galvanic vestibular stimulation has been associated with numerous cognitive and behavioural effects, such as enhancement of visual memory in healthy individuals, improvement of visual deficits in stroke patients, as well as possibly improvement of motor function in Parkinson's disease; yet, the mechanism of action is unclear. Since Parkinson's and other neuropsychiatric diseases are characterized by maladaptive dynamics of brain rhythms, we investigated whether noisy galvanic vestibular stimulation was associated with measurable changes in EEG oscillatory rhythms within theta (4-7.5 Hz), low alpha (8-10 Hz), high alpha (10.5-12 Hz), beta (13-30 Hz) and gamma (31-50 Hz) bands. We recorded the EEG while simultaneously delivering noisy bilateral, bipolar stimulation at varying intensities of imperceptible currents - at 10, 26, 42, 58, 74 and 90% of sensory threshold - to ten neurologically healthy subjects. Using standard spectral analysis, we investigated the transient aftereffects of noisy stimulation on rhythms. Subsequently, using robust artifact rejection techniques and the Least Absolute Shrinkage Selection Operator regression and cross-validation, we assessed the combinations of channels and power spectral features within each EEG frequency band that were linearly related with stimulus intensity. We show that noisy galvanic vestibular stimulation predominantly leads to a mild suppression of gamma power in lateral regions immediately after stimulation, followed by delayed increase in beta and gamma power in frontal regions approximately 20-25 s after stimulation ceased. Ongoing changes in the power of each oscillatory band throughout frontal, central/parietal, occipital and bilateral electrodes predicted the intensity of galvanic vestibular stimulation in a stimulus-dependent manner, demonstrating linear effects of stimulation on brain rhythms. We propose that modulation of neural oscillations is a potential mechanism for the previously-described cognitive

  16. Theta and gamma coherence across the septotemporal axis during distinct behavioral states.

    PubMed

    Penley, Stephanie C; Hinman, James R; Sabolek, Helen R; Escabí, Monty A; Markus, Etan J; Chrobak, James J

    2012-05-01

    Theta (4-12 Hz) and gamma (40-100 Hz) field potentials represent the interaction of synchronized synaptic input onto distinct neuronal populations within the hippocampal formation. Theta is quite prominent during exploratory activity, locomotion, and REM sleep. Although it is generally acknowledged that theta is coherent throughout most of the hippocampus, there is significant variability in theta, as well as gamma, coherence across lamina at any particular septotemporal level of the hippocampus. Larger differences in theta coherence are observed across the septotemporal (long) axis. We have reported that during REM sleep there is a decrease in theta coherence across the long axis that varies with the topography of CA3/mossy cell input rather than the topography of the prominent entorhinal input. On the basis of differences in the rat's behavior as well as the activity of neuromodulatory inputs (e.g., noradrenergic and serotonergic), we hypothesized that theta coherence across the long axis would be greater during locomotion than REM sleep and exhibit a pattern more consistent with the topography of entorhinal inputs. We examined theta and gamma coherence indices at different septotemporal and laminar sites during distinct theta states: locomotion during maze running, REM sleep, following acute treatment with a θ-inducing cholinomimetic (physostigmine) and for comparison during slow-wave sleep. The results demonstrate a generally consistent pattern of theta and gamma coherence across the septotemporal axis of the hippocampus that is quite indifferent to sensory input and overt behavior. These results are discussed with regards to the neurobiological mechanisms that generate theta and gamma and the growing body of evidence linking theta and gamma indices to memory and other cognitive functions. PMID:21748821

  17. Correlation of the Hippocampal theta rhythm to changes in hypothalamic temperature

    NASA Technical Reports Server (NTRS)

    Saleh, M. A.; Horowitz, J. M.; Hsieh, A. C. L.

    1974-01-01

    Warming and cooling the preoptic anterior hypothalamic area in awake, loosely restrained rabbits was found to evoke theta rhythm. This is consistent with previous studies indicating that theta rhythm is a nonspecific response evoked by stimulation of several sensory modalities. Several studies have correlated theta rhythm with alertness. A neural pathway involving the hypothalamus, the hippocampus, the septal area, and the reticular formation is proposed. Thus, a role of this pathway may be to alert the animal to changes in its body temperature.

  18. Light-front description for the theta dependence of meson masses in the massive Schwinger model

    SciTech Connect

    Burkardt, M.; Harada, K.

    1998-05-01

    We present a continuum formulation for {theta} vacua in the massive Schwinger model on the light front, where {theta} enters as a background electric field. The effective coupling of the external field is partially screened due to vacuum polarization processes. For small fermion masses and small {theta}, we calculate the mass of the meson and find agreement with results from bosonization. {copyright} {ital 1998} {ital The American Physical Society}

  19. Pentaquark {Theta}{sup +} production from the reaction {gamma}p {yields} {pi}{sup +} K{sup -} {Theta}{sup +}

    SciTech Connect

    W. Liu; C. M. Ko; V. Kubarovsky

    2004-02-01

    The cross section for {Theta}{sup +} production from the reaction {gamma}p {yields} {pi}{sup +} K{sup -} {Theta}{sup +}, which was observed in the CLAS experiment at the Jefferson National Laboratory, is evaluated in a hadronic model that includes couplings of {Theta}{sup +} to both KN and K*N. With their coupling constants determined from the empirical {pi} NN(1710) and {rho} NN(1710) coupling constants using the SU(3) symmetry, the cross section for this reaction has been evaluated by taking {Theta}{sup +} to have spin 1/2 and isospin 0 but either positive or negative parity. We find that the cross section is 10-15 nb if {Theta}{sup +} has positive parity as predicted by the chiral soliton model. The cross section is reduced by more than a factor of 10 if {Theta}{sup +} has negative parity as given by lattice QCD studies. For both parities, the differential distribution peaks at small negative four momentum transfer as expected from the dominating t-channel kaon-exchange diagram that involves only the coupling of {Theta}{sup +} to KN.

  20. The use of cubic Nd-Ba-Cu-O seeds to create {theta}[100], 90{degree}-{theta}[100], and {theta}[001] tilt Y-Ba-Cu-O grain boundaries.

    SciTech Connect

    Field, M. B.

    1998-10-20

    Using seeding techniques to control the orientation of grains, we have been able to create a wide variety of YBa{sub 2}Cu{sub 3}O{sub 6+x}, grain boundaries. In addition to five domain samples with 90{degree}[100] twist and tilt grain boundaries, we have now developed a method to produce grain boundaries in the same sample that have the misorientations {theta}[001] tilt, {theta}[100] tilt, and 90{degree} {approximately} {theta}[100], where the disorientation angle {theta} is fully controllable. We will demonstrate how these boundaries can be synthesized, give experimental evidence via polarized light microscopy and electron backscatter patterns (EBSP) that the intended grain boundaries were indeed formed, and discuss the importance of these boundaries in future grain boundary studies.

  1. Cholinergic Blockade Reduces Theta-Gamma Phase Amplitude Coupling and Speed Modulation of Theta Frequency Consistent with Behavioral Effects on Encoding

    PubMed Central

    Gillet, Shea N.; Climer, Jason R.; Hasselmo, Michael E.

    2013-01-01

    Large-scale neural activation dynamics in the hippocampal-entorhinal circuit local field potential, observable as theta and gamma rhythms and coupling between these rhythms, is predictive of encoding success. Behavioral studies show that systemic administration of muscarinic acetylcholine receptor antagonists selectively impairs encoding, suggesting that they may also disrupt the coupling between the theta and gamma bands. Here, we tested the hypothesis that muscarinic antagonists selectively disrupt coupling between theta and gamma. Specifically, we characterized the effects of systemically administered scopolamine on movement-induced theta and gamma rhythms recorded in the superficial layers of the medial entorhinal cortex (MEC) of freely moving rats. We report the novel result that gamma power at the peak of theta was most reduced following muscarinic blockade, significantly shifting the phase of maximal gamma power to occur at later phases of theta. We also characterize the existence of multiple distinct gamma bands in the superficial layers of the MEC. Further, we observed that theta frequency was significantly less modulated by movement speed following muscarinic blockade. Finally, the slope relating speed to theta frequency, a correlate of familiarity with a testing enclosure, increased significantly less between the preinjection and recovery trials when scopolamine was administered during the intervening injection session than when saline was administered, suggesting that scopolamine reduced encoding of the testing enclosure. These data are consistent with computational models suggesting that encoding and retrieval occur during the peak and trough of theta, respectively, and support the theory that acetylcholine regulates the balance between encoding versus retrieval. PMID:24336727

  2. Resting state theta band source distribution and functional connectivity in remitted schizophrenia.

    PubMed

    Shreekantiah Umesh, D; Tikka, Sai Krishna; Goyal, Nishant; Nizamie, S Haque; Sinha, Vinod Kumar

    2016-09-01

    Increased resting theta activity is one consistent observation occurring during all the phases of schizophrenia. However, the resting theta oscillations during the remission phase are yet unclear. We studied resting theta current source density and functional connectivity in remitted schizophrenia and compared with healthy controls. Significantly increased current source density was found in the dominant anterior cingulate cortex. Increased connectivity between the inferior parietal lobe bilaterally and between the left inferior parietal lobe and right middle frontal gyrus was also found. It may be concluded that schizophrenia patients have aberrant regional theta band current source density and functional connectivity even during remission. PMID:27484634

  3. Theta variation and spatiotemporal scaling along the septotemporal axis of the hippocampus

    PubMed Central

    Long, Lauren L.; Bunce, Jamie G.; Chrobak, James J.

    2015-01-01

    Hippocampal theta has been related to locomotor speed, attention, anxiety, sensorimotor integration and memory among other emergent phenomena. One difficulty in understanding the function of theta is that the hippocampus (HPC) modulates voluntary behavior at the same time that it processes sensory input. Both functions are correlated with characteristic changes in theta indices. The current review highlights a series of studies examining theta local field potential (LFP) signals across the septotemporal or longitudinal axis of the HPC. While the theta signal is coherent throughout the entirety of the HPC, the amplitude, but not the frequency, of theta varies significantly across its three-dimensional expanse. We suggest that the theta signal offers a rich vein of information about how distributed neuronal ensembles support emergent function. Further, we speculate that emergent function across the long axis varies with respect to spatiotemporal scale. Thus, septal HPC processes details of the proximal spatiotemporal environment while more temporal aspects process larger spaces and wider time-scales. The degree to which emergent functions are supported by the synchronization of theta across the septotemporal axis is an open question. Our working model is that theta synchrony serves to bind ensembles representing varying resolutions of spatiotemporal information at interdependent septotemporal areas of the HPC. Such synchrony and cooperative interactions along the septotemporal axis likely support memory formation and subsequent consolidation and retrieval. PMID:25852496

  4. Preferred EEG brain states at stimulus onset in a fixed interstimulus interval equiprobable auditory Go/NoGo task: a definitive study.

    PubMed

    Barry, Robert J; De Blasio, Frances M; De Pascalis, Vilfredo; Karamacoska, Diana

    2014-10-01

    This study examined the occurrence of preferred EEG phase states at stimulus onset in an equiprobable auditory Go/NoGo task with a fixed interstimulus interval, and their effects on the resultant event-related potentials (ERPs). We used a sliding short-time FFT decomposition of the EEG at Cz for each trial to assess prestimulus EEG activity in the delta, theta, alpha and beta bands. We determined the phase of each 2 Hz narrow-band contributing to these four broad bands at 125 ms before each stimulus onset, and for the first time, avoided contamination from poststimulus EEG activity. This phase value was extrapolated 125 ms to obtain the phase at stimulus onset, combined into the broad-band phase, and used to sort trials into four phase groups for each of the four broad bands. For each band, ERPs were derived for each phase from the raw EEG activity at 19 sites. Data sets from each band were separately decomposed using temporal Principal Components Analyses with unrestricted VARIMAX rotation to extract N1-1, PN, P2, P3, SW and LP components. Each component was analysed as a function of EEG phase at stimulus onset in the context of a simple conceptualisation of orthogonal phase effects (cortical negativity vs. positivity, negative driving vs. positive driving, waxing vs. waning). The predicted non-random occurrence of phase-defined brain states was confirmed. The preferred states of negativity, negative driving, and waxing were each associated with more efficient stimulus processing, as reflected in amplitude differences of the components. The present results confirm the existence of preferred brain states and their impact on the efficiency of brain dynamics in perceptual and cognitive processing. PMID:25043955

  5. D3-instantons, mock theta series and twistors

    NASA Astrophysics Data System (ADS)

    Alexandrov, Sergei; Manschot, Jan; Pioline, Boris

    2013-04-01

    The D-instanton corrected hypermultiplet moduli space of type II string theory compactified on a Calabi-Yau threefold is known in the type IIA picture to be determined in terms of the generalized Donaldson-Thomas invariants, through a twistorial construction. At the same time, in the mirror type IIB picture, and in the limit where only D3-D1-D(-1)-instanton corrections are retained, it should carry an isometric action of the S-duality group SL(2, {Z} ). We prove that this is the case in the one-instanton approximation, by constructing a holomorphic action of SL(2, {Z} ) on the linearized twistor space. Using the modular invariance of the D4-D2-D0 black hole partition function, we show that the standard Darboux coordinates in twistor space have modular anomalies controlled by period integrals of a Siegel-Narain theta series, which can be canceled by a contact transformation generated by a holomorphic mock theta series.

  6. Speech encoding by coupled cortical theta and gamma oscillations

    PubMed Central

    Hyafil, Alexandre; Fontolan, Lorenzo; Kabdebon, Claire; Gutkin, Boris; Giraud, Anne-Lise

    2015-01-01

    Many environmental stimuli present a quasi-rhythmic structure at different timescales that the brain needs to decompose and integrate. Cortical oscillations have been proposed as instruments of sensory de-multiplexing, i.e., the parallel processing of different frequency streams in sensory signals. Yet their causal role in such a process has never been demonstrated. Here, we used a neural microcircuit model to address whether coupled theta–gamma oscillations, as observed in human auditory cortex, could underpin the multiscale sensory analysis of speech. We show that, in continuous speech, theta oscillations can flexibly track the syllabic rhythm and temporally organize the phoneme-level response of gamma neurons into a code that enables syllable identification. The tracking of slow speech fluctuations by theta oscillations, and its coupling to gamma-spiking activity both appeared as critical features for accurate speech encoding. These results demonstrate that cortical oscillations can be a key instrument of speech de-multiplexing, parsing, and encoding. DOI: http://dx.doi.org/10.7554/eLife.06213.001 PMID:26023831

  7. Resting-state EEG study of comatose patients: a connectivity and frequency analysis to find differences between vegetative and minimally conscious states

    PubMed Central

    Lehembre, Rémy; Bruno, Marie-Aurélie; Vanhaudenhuyse, Audrey; Chatelle, Camille; Cologan, Victor; Leclercq, Yves; Soddu, Andrea; Macq, Benoît; Laureys, Steven; Noirhomme, Quentin

    2012-01-01

    Summary The aim of this study was to look for differences in the power spectra and in EEG connectivity measures between patients in the vegetative state (VS/UWS) and patients in the minimally conscious state (MCS). The EEG of 31 patients was recorded and analyzed. Power spectra were obtained using modern multitaper methods. Three connectivity measures (coherence, the imaginary part of coherency and the phase lag index) were computed. Of the 31 patients, 21 were diagnosed as MCS and 10 as VS/UWS using the Coma Recovery Scale-Revised (CRS-R). EEG power spectra revealed differences between the two conditions. The VS/UWS patients showed increased delta power but decreased alpha power compared with the MCS patients. Connectivity measures were correlated with the CRS-R diagnosis; patients in the VS/UWS had significantly lower connectivity than MCS patients in the theta and alpha bands. Standard EEG recorded in clinical conditions could be used as a tool to help the clinician in the diagnosis of disorders of consciousness. PMID:22687166

  8. Theta responses are abnormal in mild cognitive impairment: evidence from analysis of theta event-related synchronization during a temporal expectancy task.

    PubMed

    Caravaglios, Giuseppe; Muscoso, Emma Gabriella; Di Maria, Giulia; Costanzo, Erminio

    2013-07-01

    We examined the hypothesis that the attention/executive deficits in mild cognitive impairment (MCI) due to Alzheimer's disease is associated to an abnormal cortical activation, revealed by the method of event-related synchronization/desynchronization (ERS/ERD) in the theta band during a paradigm of temporal orienting of attention. MCI patients (n = 25) and healthy elderly (HE) matched controls (n = 15) performed a task in which periodically omitted tones had to be predicted and their virtual onset time had to be marked by pressing a button. Single-trial theta responses were measured, respectively, before and after the motor response. Then, theta responses were compared to theta power during eyes closed resting state (ERD/ERS method).The temporal course of the task was characterized by two different behavioural conditions: (1) a pre-event epoch, in which the subject awaited the virtual onset of the omitted tone, (2) a post-event (after button pressing) epoch, in which the subject was in a post-motor response condition. The most important findings are summarized as follows: (1) in both groups, the pre-event epoch was characterized by theta ERS on temporal electrodes, but HE had a greater theta ERS compared to that of MCI group; (2) in both groups, during the post-motor condition, there was a theta ERS on prefrontal regions, and, also in this case, HE showed a greater theta enhancement compared to that of MCI patients; (3) HE showed evidence of lateralization: during the waiting epoch, theta ERS was dominant on the right posterior temporal lead (T6), whilst, during the post-motor epoch, theta ERS was greater on the left, as well as the midline prefrontal leads. Compared to the traditional neuropsychological measures for the episodic memory, these theta ERS indicators were less accurate in differentiating MCI patients from healthy elderly. The clinical relevance of these findings is that the weaker theta reactivity in MCI would indicate an early impairment in the

  9. EEG Correlates of Self-Referential Processing

    PubMed Central

    Knyazev, Gennady G.

    2013-01-01

    Self-referential processing has been principally investigated using functional magnetic resonance imaging (fMRI). However, understanding of the brain functioning is not possible without careful comparison of the evidence coming from different methodological domains. This paper aims to review electroencephalographic (EEG) studies of self-referential processing and to evaluate how they correspond, complement, or contradict the existing fMRI evidence. There are potentially two approaches to the study of EEG correlates of self-referential processing. Firstly, because simultaneous registration of EEG and fMRI has become possible, the degree of overlap between these two signals in brain regions related to self-referential processing could be determined. Second and more direct approach would be the study of EEG correlates of self-referential processing per se. In this review, I discuss studies, which employed both these approaches and show that in line with fMRI evidence, EEG correlates of self-referential processing are most frequently found in brain regions overlapping with the default network, particularly in the medial prefrontal cortex. In the time domain, the discrimination of self- and others-related information is mostly associated with the P300 ERP component, but sometimes is observed even earlier. In the frequency domain, different frequency oscillations have been shown to contribute to self-referential processing, with spontaneous self-referential mentation being mostly associated with the alpha frequency band. PMID:23761757

  10. EEG correlates of self-referential processing.

    PubMed

    Knyazev, Gennady G

    2013-01-01

    Self-referential processing has been principally investigated using functional magnetic resonance imaging (fMRI). However, understanding of the brain functioning is not possible without careful comparison of the evidence coming from different methodological domains. This paper aims to review electroencephalographic (EEG) studies of self-referential processing and to evaluate how they correspond, complement, or contradict the existing fMRI evidence. There are potentially two approaches to the study of EEG correlates of self-referential processing. Firstly, because simultaneous registration of EEG and fMRI has become possible, the degree of overlap between these two signals in brain regions related to self-referential processing could be determined. Second and more direct approach would be the study of EEG correlates of self-referential processing per se. In this review, I discuss studies, which employed both these approaches and show that in line with fMRI evidence, EEG correlates of self-referential processing are most frequently found in brain regions overlapping with the default network, particularly in the medial prefrontal cortex. In the time domain, the discrimination of self- and others-related information is mostly associated with the P300 ERP component, but sometimes is observed even earlier. In the frequency domain, different frequency oscillations have been shown to contribute to self-referential processing, with spontaneous self-referential mentation being mostly associated with the alpha frequency band. PMID:23761757

  11. Sharp Slow Waves in the EEG.

    PubMed

    Janati, A Bruce; AlGhasab, Naif Saad; Alshammari, Raed Ayed; saad AlGhassab, Abdulmohsen; Al-Aslami Yossef Fahad

    2016-06-01

    There exists a paucity of data in the EEG literature on characteristics of "atypical" interictal epileptiform discharges (IEDs), including sharp slow waves (SSWs). This article aims to address the clinical, neurophysiological, and neuropathological significance of SSW The EEGs of 920 patients at a tertiary-care facility were prospectively reviewed over a period of one year. Thirty-six patients had SSWs in their EEG. Of these, 6 patients were excluded because of inadequate clinical data. The clinical and neuroimaging data of the remaining 30 patients were then retrospectively collected and reviewed, and the findings were correlated. The data revealed that SSWs were rare and age-related EEG events occurring primarily in the first two decades of life. All patients with SSWs had documented epilepsy, presenting clinically with partial or generalized epilepsy. It is notable that one-third of the patients with SSWs had chronic or static central nervous system (CNS) pathology, particularly congenital CNS anomalies. Though more than one mechanism may be involved in the pathogenesis of SSWs, this research indicates that the most compelling theory is a deeply seated cortical generator giving rise to this EEG pattern. The presence of SSWs should alert clinicians to the presence of partial or generalized epilepsy or an underlying chronic or static CNS pathology, in particular congenital CNS anomalies, underscoring the significance of brain magnetic resonance imaging in the work-up of this population. PMID:27373055

  12. Exploring miniaturized EEG electrodes for brain-computer interfaces. An EEG you do not see?

    PubMed

    Bleichner, Martin G; Lundbeck, Micha; Selisky, Matthias; Minow, Falk; Jäger, Manuela; Emkes, Reiner; Debener, Stefan; De Vos, Maarten

    2015-04-01

    Electroencephalography (EEG) allows the study of the brain-behavior relationship in humans. Most of what we have learned with EEG was through observing the brain-behavior relationship under well-controlled laboratory conditions. However, by reducing "normal" behavior to a minimum the ecological validity of the results can be limited. Recent developments toward mobile EEG solutions allow to study the brain-behavior relationship outside the laboratory in more natural situations. Besides mobility and robustness with respect to motion, mobile EEG systems should also interfere as little as possible with the participant's behavior. For example, natural interaction with other people could be hindered when it is obvious that a participant wears an EEG cap. This study evaluates the signal quality obtained with an unobtrusive solution for EEG monitoring through the integration of miniaturized EEG ton-electrodes into both a discreet baseball cap and an individualized ear piece. We show that such mini electrodes located at scalp and ear locations can reliably record event related potentials in a P300 brain-computer-interface application. PMID:25847919

  13. Exploring miniaturized EEG electrodes for brain-computer interfaces. An EEG you do not see?

    PubMed Central

    Bleichner, Martin G; Lundbeck, Micha; Selisky, Matthias; Minow, Falk; Jäger, Manuela; Emkes, Reiner; Debener, Stefan; De Vos, Maarten

    2015-01-01

    Electroencephalography (EEG) allows the study of the brain–behavior relationship in humans. Most of what we have learned with EEG was through observing the brain–behavior relationship under well-controlled laboratory conditions. However, by reducing “normal” behavior to a minimum the ecological validity of the results can be limited. Recent developments toward mobile EEG solutions allow to study the brain–behavior relationship outside the laboratory in more natural situations. Besides mobility and robustness with respect to motion, mobile EEG systems should also interfere as little as possible with the participant's behavior. For example, natural interaction with other people could be hindered when it is obvious that a participant wears an EEG cap. This study evaluates the signal quality obtained with an unobtrusive solution for EEG monitoring through the integration of miniaturized EEG ton-electrodes into both a discreet baseball cap and an individualized ear piece. We show that such mini electrodes located at scalp and ear locations can reliably record event related potentials in a P300 brain–computer–interface application. PMID:25847919

  14. EEG Monitoring in Cerebral Ischemia: Basic Concepts and Clinical Applications.

    PubMed

    van Putten, Michel J A M; Hofmeijer, Jeannette

    2016-06-01

    EEG is very sensitive to changes in neuronal function resulting from ischemia. The authors briefly review essentials of EEG generation and the effects of ischemia on the underlying neuronal processes. They discuss the differential sensitivity of various neuronal processes to energy limitations, including synaptic disturbances. The clinical applications reviewed include continuous EEG monitoring during carotid surgery and acute ischemic stroke, and EEG monitoring for prognostication after cardiac arrest. PMID:27258443

  15. The Mozart Effect: A quantitative EEG study.

    PubMed

    Verrusio, Walter; Ettorre, Evaristo; Vicenzini, Edoardo; Vanacore, Nicola; Cacciafesta, Mauro; Mecarelli, Oriano

    2015-09-01

    The aim of this study is to investigate the influence of Mozart's music on brain activity through spectral analysis of the EEG in young healthy adults (Adults), in healthy elderly (Elderly) and in elderly with Mild Cognitive Impairment (MCI). EEG recording was performed at basal rest conditions and after listening to Mozart's K448 or "Fur Elise" Beethoven's sonatas. After listening to Mozart, an increase of alpha band and median frequency index of background alpha rhythm activity (a pattern of brain wave activity linked to memory, cognition and open mind to problem solving) was observed both in Adults and in Elderly. No changes were observed in MCI. After listening to Beethoven, no changes in EEG activity were detected. This results may be representative of the fact that said Mozart's music is able to "activate" neuronal cortical circuits related to attentive and cognitive functions. PMID:26036835

  16. Modular, bluetooth enabled, wireless electroencephalograph (EEG) platform.

    PubMed

    Lovelace, Joseph A; Witt, Tyler S; Beyette, Fred R

    2013-01-01

    A design for a modular, compact, and accurate wireless electroencephalograph (EEG) system is proposed. EEG is the only non-invasive measure for neuronal function of the brain. Using a number of digital signal processing (DSP) techniques, this neuronal function can be acquired and processed into meaningful representations of brain activity. The system described here utilizes Bluetooth to wirelessly transmit the digitized brain signal for an end application use. In this way, the system is portable, and modular in terms of the device to which it can interface. Brain Computer Interface (BCI) has become a popular extension of EEG systems in modern research. This design serves as a platform for applications using BCI capability. PMID:24111196

  17. A wireless multichannel EEG recording platform.

    PubMed

    Filipe, S; Charvet, G; Foerster, M; Porcherot, J; Bêche, J F; Bonnet, S; Audebert, P; Régis, G; Zongo, B; Robinet, S; Condemine, C; Mestais, C; Guillemaud, R

    2011-01-01

    A wireless multichannel data acquisition system is being designed for ElectroEncephaloGraphy (EEG) recording. The system is based on a custom integrated circuit (ASIC) for signal conditioning, amplification and digitization and also on commercial components for RF transmission. It supports the RF transmission of a 32-channel EEG recording sampled at 1 kHz with a 12-bit resolution. The RF communication uses the MICS band (Medical Implant Communication Service) at 402-405 Mhz. This integration is a first step towards a lightweight EEG cap for Brain Computer Interface (BCI) studies. Here, we present the platform architecture and its submodules. In vivo validations are presented with noise characterization and wireless data transfer measurements. PMID:22255783

  18. 21 CFR 882.1855 - Electroencephalogram (EEG) telemetry system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Electroencephalogram (EEG) telemetry system. 882.1855 Section 882.1855 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... Electroencephalogram (EEG) telemetry system. (a) Identification. An electroencephalogram (EEG) telemetry...

  19. 21 CFR 882.1855 - Electroencephalogram (EEG) telemetry system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Electroencephalogram (EEG) telemetry system. 882.1855 Section 882.1855 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... Electroencephalogram (EEG) telemetry system. (a) Identification. An electroencephalogram (EEG) telemetry...

  20. 21 CFR 882.1855 - Electroencephalogram (EEG) telemetry system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Electroencephalogram (EEG) telemetry system. 882.1855 Section 882.1855 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... Electroencephalogram (EEG) telemetry system. (a) Identification. An electroencephalogram (EEG) telemetry...

  1. 21 CFR 882.1855 - Electroencephalogram (EEG) telemetry system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Electroencephalogram (EEG) telemetry system. 882.1855 Section 882.1855 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... Electroencephalogram (EEG) telemetry system. (a) Identification. An electroencephalogram (EEG) telemetry...

  2. Developmental Quantitative EEG Differences during Psychomotor Response to Music.

    ERIC Educational Resources Information Center

    Flohr, John W.; Miller, Daniel C.

    This study examined the electrophysiological differences between baseline EEG frequencies and EEG frequencies obtained during a psychomotor response to musical stimuli. Subjects were 9 children, with mean age of 5.2 years old. Electrophysiological differences between two different musical conditions were also compared. EEG was recorded during 3…

  3. 21 CFR 882.1855 - Electroencephalogram (EEG) telemetry system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Electroencephalogram (EEG) telemetry system. 882... Electroencephalogram (EEG) telemetry system. (a) Identification. An electroencephalogram (EEG) telemetry system consists of transmitters, receivers, and other components used for remotely monitoring or measuring...

  4. 21 CFR 882.1420 - Electroencephalogram (EEG) signal spectrum analyzer.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Electroencephalogram (EEG) signal spectrum....1420 Electroencephalogram (EEG) signal spectrum analyzer. (a) Identification. An electroencephalogram (EEG) signal spectrum analyzer is a device used to display the frequency content or power...

  5. 21 CFR 882.1420 - Electroencephalogram (EEG) signal spectrum analyzer.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Electroencephalogram (EEG) signal spectrum....1420 Electroencephalogram (EEG) signal spectrum analyzer. (a) Identification. An electroencephalogram (EEG) signal spectrum analyzer is a device used to display the frequency content or power...

  6. 21 CFR 882.1420 - Electroencephalogram (EEG) signal spectrum analyzer.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Electroencephalogram (EEG) signal spectrum....1420 Electroencephalogram (EEG) signal spectrum analyzer. (a) Identification. An electroencephalogram (EEG) signal spectrum analyzer is a device used to display the frequency content or power...

  7. 21 CFR 882.1420 - Electroencephalogram (EEG) signal spectrum analyzer.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Electroencephalogram (EEG) signal spectrum....1420 Electroencephalogram (EEG) signal spectrum analyzer. (a) Identification. An electroencephalogram (EEG) signal spectrum analyzer is a device used to display the frequency content or power...

  8. 21 CFR 882.1420 - Electroencephalogram (EEG) signal spectrum analyzer.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Electroencephalogram (EEG) signal spectrum....1420 Electroencephalogram (EEG) signal spectrum analyzer. (a) Identification. An electroencephalogram (EEG) signal spectrum analyzer is a device used to display the frequency content or power...

  9. Brain-training for physical performance: a study of EEG-neurofeedback and alpha relaxation training in athletes.

    PubMed

    Mikicin, Mirosław; Orzechowski, Grzegorz; Jurewicz, Katarzyna; Paluch, Katarzyna; Kowalczyk, Marek; Wróbel, Andrzej

    2015-01-01

    In recent years, EEG-neurofeedback training (EEG-NFB) has been increasingly used to optimize various brain functions. Better performance in various activities was also reported after relaxation trainings, another popular method in therapeutic practice. Both these methods are used as a part of professional coaching in sports training centers. In the present study, we aimed to evaluate the impact of such holistic training on physiological (EEG) and behavioral measures on semi-professional athletes. EEG-NFB paradigm was intended for amplification of the amplitudes of SMR (12-15 Hz) and beta1 (13-20 Hz) bands and simultaneous reduction of the amplitude of theta (4-7.5 Hz) and beta2 (20-30 Hz). Participation in NFB sessions was accompanied with self-administration of relaxing, audio-visual stimulation after each daily athletic training session. The training program resulted in the increase of alpha and beta1 power of trained participants when assessed in rest with eyes-closed. In eyes - open state, participants of the trained group maintained the same level in all frequency bands, in opposite to the control subjects, whose power decreased in the second measurement in beta1 band when compared to the first one. The trained group exhibited greater reduction of reaction times in a test of visual attention than the control group and showed improvement in several performance measures of Kraepelin's work-curve, used to evaluate speed, effectiveness and work accuracy. Together, these results present initial support for the use of holistic, neurophysiological training in sports workout. PMID:26994421

  10. Identifying periods of drowsy driving using EEG.

    PubMed

    Brown, Timothy; Johnson, Robin; Milavetz, Gary

    2013-01-01

    Drowsy driving is a significant contributor to death and injury crashes on our nation's highways. Predictive neurophysiologic/physiologic solutions to reduce these incidences have been proposed and developed. EEG based metrics were found to be promising in initial studies, but remain controversial in their efficacy, primarily due to failures to develop replication studies within the simulation settings used for development, and real-world validation. This analysis sought to address these short comings by assessing the utility of the B-Alert algorithms, in a replication study of driving and drowsiness. Data were collected on the National Advanced Driving Simulator from 72 volunteer drivers exposed to three types of roadways at three times of day representing different levels of drowsiness. EEG metrics, collected using the B-Alert X10 Wireless Headset were evaluated to determine their utility in future predictive studies. The replication of the B-Alert algorithms was a secondary focus for this analysis, resulting in highly variable start times within each time of day segment, leading to EEG data being confounded by the diurnal variations that occur in the basal EEG signal. Regardless of this limitation, the analysis revealed promising outcomes. The EEG based algorithms for sleep onset, drowsiness, as well as fatigue related power spectral bandwidths (i.e. lateral central, and parietal alpha) varied with time of day of the drives. Interestingly, EEG metrics of cognitive workload were also sensative to the terrain of the drives. The replicaiton of the B-Alert algorithms were a secondary focuse in the study design, Taken together, these data indicate great potential of carefully designed studies to utilize neurophysiologic metrics to identify time of day and task and road conditions that may be at greatest risk during fatigued/drowsy periods. PMID:24406950

  11. Interrater agreement for Critical Care EEG Terminology

    PubMed Central

    Gaspard, Nicolas; Hirsch, Lawrence J.; LaRoche, Suzette M.; Hahn, Cecil D.; Westover, M. Brandon

    2016-01-01

    Summary Objective The interpretation of critical care electroencephalography (EEG) studies is challenging because of the presence of many periodic and rhythmic patterns of uncertain clinical significance. Defining the clinical significance of these patterns requires standardized terminology with high interrater agreement (IRA). We sought to evaluate IRA for the final, published American Clinical Neurophysiology Society (ACNS)–approved version of the critical care EEG terminology (2012 version). Our evaluation included terms not assessed previously and incorporated raters with a broad range of EEG reading experience. Methods After reviewing a set of training slides, 49 readers independently completed a Web-based test consisting of 11 identical questions for each of 37 EEG samples (407 questions). Questions assessed whether a pattern was an electrographic seizure; pattern location (main term 1), pattern type (main term 2); and presence and classification of eight other key features (“plus” modifiers, sharpness, absolute and relative amplitude, frequency, number of phases, fluctuation/evolution, and the presence of “triphasic” morphology). Results IRA statistics (κ values) were almost perfect (90–100%) for seizures, main terms 1 and 2, the +S modifier (superimposed spikes/sharp waves or sharply contoured rhythmic delta activity), sharpness, absolute amplitude, frequency, and number of phases. Agreement was substantial for the +F (superimposed fast activity) and +R (superimposed rhythmic delta activity) modifiers (66% and 67%, respectively), moderate for triphasic morphology (58%), and fair for evolution (21%). Significance IRA for most terms in the ACNS critical care EEG terminology is high. These terms are suitable for multicenter research on the clinical significance of critical care EEG patterns. PMID:24888711

  12. Intracranial EEG potentials estimated from MEG sources: A new approach to correlate MEG and iEEG data in epilepsy.

    PubMed

    Grova, Christophe; Aiguabella, Maria; Zelmann, Rina; Lina, Jean-Marc; Hall, Jeffery A; Kobayashi, Eliane

    2016-05-01

    Detection of epileptic spikes in MagnetoEncephaloGraphy (MEG) requires synchronized neuronal activity over a minimum of 4cm2. We previously validated the Maximum Entropy on the Mean (MEM) as a source localization able to recover the spatial extent of the epileptic spike generators. The purpose of this study was to evaluate quantitatively, using intracranial EEG (iEEG), the spatial extent recovered from MEG sources by estimating iEEG potentials generated by these MEG sources. We evaluated five patients with focal epilepsy who had a pre-operative MEG acquisition and iEEG with MRI-compatible electrodes. Individual MEG epileptic spikes were localized along the cortical surface segmented from a pre-operative MRI, which was co-registered with the MRI obtained with iEEG electrodes in place for identification of iEEG contacts. An iEEG forward model estimated the influence of every dipolar source of the cortical surface on each iEEG contact. This iEEG forward model was applied to MEG sources to estimate iEEG potentials that would have been generated by these sources. MEG-estimated iEEG potentials were compared with measured iEEG potentials using four source localization methods: two variants of MEM and two standard methods equivalent to minimum norm and LORETA estimates. Our results demonstrated an excellent MEG/iEEG correspondence in the presumed focus for four out of five patients. In one patient, the deep generator identified in iEEG could not be localized in MEG. MEG-estimated iEEG potentials is a promising method to evaluate which MEG sources could be retrieved and validated with iEEG data, providing accurate results especially when applied to MEM localizations. Hum Brain Mapp 37:1661-1683, 2016. © 2016 Wiley Periodicals, Inc. PMID:26931511

  13. Fractal Dimension in Epileptic EEG Signal Analysis

    NASA Astrophysics Data System (ADS)

    Uthayakumar, R.

    Fractal Analysis is the well developed theory in the data analysis of non-linear time series. Especially Fractal Dimension is a powerful mathematical tool for modeling many physical and biological time signals with high complexity and irregularity. Fractal dimension is a suitable tool for analyzing the nonlinear behaviour and state of the many chaotic systems. Particularly in analysis of chaotic time series such as electroencephalograms (EEG), this feature has been used to identify and distinguish specific states of physiological function.Epilepsy is the main fatal neurological disorder in our brain, which is analyzed by the biomedical signal called Electroencephalogram (EEG). The detection of Epileptic seizures in the EEG Signals is an important tool in the diagnosis of epilepsy. So we made an attempt to analyze the EEG in depth for knowing the mystery of human consciousness. EEG has more fluctuations recorded from the human brain due to the spontaneous electrical activity. Hence EEG Signals are represented as Fractal Time Series.The algorithms of fractal dimension methods have weak ability to the estimation of complexity in the irregular graphs. Divider method is widely used to obtain the fractal dimension of curves embedded into a 2-dimensional space. The major problem is choosing initial and final step length of dividers. W